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Abstract

This document describes a numerical model that was developed to study two-dimensional,

reduced-gravity, shallow-water flows. When the dynamics of these flows is strongly non-

linear, the flow may become hydraulically supercritical and discontinuities in the flow field

may arise. The presence of discontinuities in the flow field requires a special numerical treat-

ment in order to maintain both accuracy and stability in the numerically-approximated solu-

tion. In this model, a shock-capturing scheme called the Essentially Non-Oscillatory (ENO)

scheme is implemented. The ENO scheme is a high-order, adaptive-stencil, finite-difference,

characteristic-based scheme for hyperbolic equations that has been applied widely to flows

governed by the Euler equations of gas dynamics. The model described in this document

was developed for geophysical applications, and therefore includes the effects of rotation

(constant Coriolis parameter), forcing (time dependent and/or spatially varying), and bot-

tom drag (linear or nonlinear). The presentation includes the mathematical formulation of

the model as well as instructions on how to prepare and execute model runs.
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1 Introduction

The numerical model described in this document was developed as part of a research effort

conducted by Roger Samelson and myself on orographically-modified winds in the coastal

marine atmospheric boundary layer, funded by the ONR Coastal Meteorology Accelerated

Research Initiative, grant NOOOl4-93-1-1369.

The model was developed to investigate hydraulically transcritical, two-dimensional,

reduced-gravity shallow-water flows (Rogerson 1999). The dynamics of these flows is strongly

nonlinear, and when the flow velocity exceeds the gravity-wave phase speed the flow becomes

hydraulically supercritical and discontinuities in the flow ~eld may arise. The presence of

discontinuities in the flow field requires a special numerical treatment in order to main-

tain both accuracy and stabilty in the numerically-approximated solution. In this model,

the Essentially Non-Oscilatory (ENO) shock-capturing scheme is implemented. The ENO

scheme is a high-order, adaptive-stencil, finite-difference, characteristic-based scheme for

hyperbolic equations that has been applied widely to non-rotating flows, including, for

example, flows governed by the 2-D Euler equations of gas dynamics. For the present appli-

cation to the reduced-gravity shallow-water system, the effects of forcing (time dependent

andj or spatially varying), bottom drag (linear or nonlinear), and rotation (constant Coriolis

parameter) have been included.

The model is designed to approximate a solution on a user-specified orthogonal curvi-

linear grid. The original application involved channel-like domains with varying side-wall

geometries which could be discretized onto an orthogonal curvilnear grid (using a conformal

mapping program developed by Wilkin and modified successively by Signell, by Samelson,

and by Rogerson). In this case, variations in the side-wall geometry can lead to hydraulic

criticality in the two-dimensional flow. In contrast, problems in classic hydraulic flow theory

typically involve a rectilnear channel geometry (or one-dimensional geometry) with varying
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bottom topography. The presence of bottom topography is not currently included in the

model, but could be incorporated easily to simulate flows in which the layer interface never

intersects the bottom. For cases in which the layer depth goes to zero, significant modifi-

cation would be required and it is possible that another approach (i.e., using a different

numerical scheme entirely) would be more fruitfuL.

The types of boundary conditions that are currently implemented in the model reflect

the fact that a channel geometry was used in the original application, although it is also

possible to specify doubly-periodic boundary conditions. For the channel confguration,

one wall of the channel may be "opened." All walled boundaries are free-slip. As with

all numerical models, the boundary treatment is critical to the stabilty of the solution.

Because the ENO scheme has high accuracy and low numerical dissipation, it is particularly

sensitive to inappropriate and/or inaccurate boundary treatments. The presence ofrotation

in particular requires careful consideration in terms of the numerical treatment of walled

boundaries.

This document has been created with the hope that it wil serve as a useful aid to re-

searchers who want to use and/or modify the modeL. The presentation is fairly technical, in

that it includes a complete description of the ENO algorithm and some of the mathematical

formalism behind the scheme, as well as instructions on how to prepare and execute model

runs. The model equations are formulated in Section 2. In Section 3, the Essentially Non-

Oscilatory (ENO) scheme is introduced, and a detailed description of the ENO algorithm

as it applies to the flux in a one-dimensional scalar equation is presented as an example.

The application of the ENO algorithm to the two-dimensional shallow-water system is dis-

cussed in Section 4. Finite-difference approximations for the non-conservative terms in the

model equation are presented in Section 5, followed by the time-stepping scheme in Sec-

tion 6. Boundary conditions and their implementations are presented in Section 7. The

steps required to prepare and execute the model are outlined in Section 8. An auxilary
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program, swgrid. f, that can be used to generate an orthogonal curvilnear computational

grid is described in the Appendix.
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2 Model Equations

Consider the rotating, reduced-gravity (1-1/2 layer), shallow-water flow governed by the

equations,

Ut + U . \1 U + f (k xu)
, 1 1

= -9 \1h - -\1pa - -TBP ph (1)

ht + \1 . (uh) = 0 (2)

where u = (u, v) is the horizontal velocity vector, h is the depth of the layer (which is

assumed to be nonzero), p is the density of the layer, 9' = 9l:P/P is the reduced gravity, f

is the Coriolis parameter, Pa (x, y, t) is the imposed pressure forcing, and T B is the stress at

the bottom of the layer. The bottom stress is typically parameterized, and in the present

case takes the form,

TB = pCDlulu.

Equations (1)-(2) are nondimensionalized using length, velocity, time, and layer depth

scales L *, U*, t* = L * /U*, and D*, respectively, to yield,

Ut + u. \1u + fo(k xu) 2 r= -Fr- \1h - \1P - h1u1u

ht + \1. (uh) = 0

(3)

(4)

where fo == f L* /U* is the inverse Rossby number, Fr-2 == 9' D* /U*2 = c*2/U*2 is the

squared inverse of the scaling Froude number, \1 P = (\1P/ p)(L* /U*2) is the nondimen-

sional pressure gradient divided by the density of the layer, and r = GDL* / D* is the

nondimensional drag coeffcient.

Equations (3)-(4) can be generalized to any orthogonal curvilinear coordinate system.

If ((, r¡) are the coordinates in the orthogonal curvilnear system, then the change in the

position vector æ = (x,y) in the Cartesian system can be written as,

óæ = mI8(' + m28r¡fi
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where mi and m2 are the coordinate metrics given by

mi =
(åx)2 (åy)2å( + å(

(~~) 2 + (~~) 2

(5)

m2 = (6)

(Batchelor 1967). It follows that the gradient of a scalar cp is,

('å fiå)
'Vcp= --+-- cp

mi å( m2 år¡

the divergence of the vector v = (Vi, V2) is,

'V. v = ~ (å(m2Vl) + å(m1V2))mim2 å( år¡

and the gradient of v in the direction of nis,

n. 'Vv
- '('1' 'VVi + ~ (n1 åmi - n2 åm2))mim2 år¡ å(
+ fi (n. 'VV2 - ~ (n1 åmi - n2 åm2)) .mim2 år¡ å(

Therefore, in the ((,r¡)-coordinate system Equations (3)-(4) become,

1 1 1
Ut + -uuç + -vur¡ + -v( umi'7 - vm2ç) - fov =mi m2 mim2 1 2 r

--(P- he; + .Pç) - -lulu (7)mi r h1 1 1
Vt + -uvç + -vvr¡ - -u( umi'7 - vm2ç) + fou =mi m2 mim2 1 -2 r

- m2 (Fr hr¡ + Pr¡) - h1ulv (8)
1ht + - ((m2uh)ç + (mivh)r¡) = 0 (9)

mim2

where now U and v are the velocity components in the' and fi directions, respectively.

Equations (7)-(9) can be rewritten in flux form in terms of the state vector,

q=(~n~(n
5



yielding

qt + rri W(q))ç + rr2 ¡G(q)Jr = C + 'P + 'D + M (10)

where

( U2/h + Fr-2h2/2 )

F = UV / h ,
U ( UV / h )

G = V2/h + :r-2h2 /2

are the fluxes in the' and r, directions, respectively, and

( foV ) ( -hPdmi ) ( -rIUIU/h2 )
C = - ~U , 'P = -hP3/m2 , 1) = -rIUciV/h2

1 (-a1V/h-a2U/h)M=- aiU/h-a2V/h
mim2

-012

are the terms resulting from the Coriolis, pressure forcing, bottom stress, and grid-metric

contributions, respectively. In the expression for M,

011 == Umlr¡ - Vm2ç, 012 == Um2ç + Vmlr¡'
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3 The Essentially Non-Oscillatory (ENO) Scheme

The Essentially Non-Oscilatory (ENO) scheme is a numerical method for hyperbolic con-

servation laws of the form,

au ~ afi(U)
- + L.at i=1 aæi

u(æ, t = 0) =

= 0 (or = r( u, æ, t), a residual or forcing term) (11)

Uo (æ ) (12)

where u(æ, t) = (Ul, U2,.. ., um)T, æ = (Xi, X2,... , Xd)T, d is the spatial dimension of the

problem, m is the number of independent variables, and t is time. The system is hyperbolic

in the sense that any linear combination of the Jacobian matrices,

t Ii afi
i=1 au

for real Ii = (,1,/2,... ,id), always has m real eigenvalues and a complete set of eigenvec-

tors.

It is well known that the solution to this equation can develop discontinuities even when

the initial condition uo(æ) is smooth. Traditional finite-difference techniques wil provide

poor numerical approximations of the solution in this case. In general, shock-capturing

schemes aim to:

. achieve high accuracy in regions where the solution is smooth;

. maintain sharp profiles of discontinuities (i.e., avoid excessive numerical dissipation);

. avoid spurious oscilations in the vicinity of discontinuities;

. accurately represent the location and speed of discontinuities; and

. avoid non-physical solutions (e.g., entropy-violating expansion shocks).

The ENO scheme satisfies these criteria. In addition, the ENO scheme is globally high-order,

losing only one order of accuracy in discontinuous regions compared to smooth regions.
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A good review of numerical methods for conservation laws can be found in the book

by LeVeque (1990). A more complete description of the ENO scheme can be found in the

papers by Shu and Osher (1988 and 1989), and references contained therein.

3.1 END Primer

To ilustrate the fundamental principles of the ENO scheme and simplify the discussion,

consider the one-dimensional scalar equation,

Ut + (J(u))x = 0 (13)

for some function f ( u).

A numerical approximation to (13) is called conservative if it is of the form,

n+1 n flt (A A)Ui = Ui - flx fi+l/2 - !i-l/2 (14)

where Îi+l/2 - Î(Ui-I,...,Ui+k) for some l,k :; 0 (LeVeque 1990). The key to shock-

capturing schemes hinges on how the numerical fluxes at the "half" grid points, Îi+l/2, are

estimated. By using a conservative method, the Lax-Wendroff theorem guarantees that if

the numerical scheme converges to a numerical solution, then the numerical solution does

indeed approximate a weak solution of the partial differential equation (Lax and Wendroff

1960). Convergence of the numerical scheme can often be proved if the scheme is total-

variation diminishing (TVD) or total-variation bounded (TVB) (Harten 1984). The total

variation is defined as,

TV(u) = L IUi+1 - uil
i

and the scheme is term:ed TVD if

TV(un+1) ~ TV(un)

for all n. The scheme is termed TVB in 0 ~ t ~ T if

TV(un) ,B

8



for some fied B that depends only on TV(uO), and for all nand D.t such that 0 S nD.t S T.

The ENO scheme is a descendent of TVD and TVB schemes, but is unique in that it uses

adaptive stencils to compute the numerical approximations of the flux, Îi+l/2' High accuracy

is achieved by approximating Îi+1/2 and Îi-l/2 to very high order in such a way that the

difference yields a high-order èstimate for the derivative af iax (as opposed to seeking a

high-order approximation for af iax directly). The use of an (r + l)-point adaptive stencil

yields (r + 1 )-order accuracy in smooth regions of the flow and r-order accuracy right up to

discontinuities, and is formally r-order accurate. A high-order interpolating polynomial is

constructed at each time step to approximate the flux from information at the surrounding

grid points, avoiding regions where discontinuities are present. For example, to compute

Îi+l/2 using a 4-point stencil in a smooth region of the flow, the centered stencil

Îi+l/2 = Î(Ui-i,Ui,Ui+1,Ui+2)

wòuld be utilzed, while in the presence of a local discontinuity, say located near Xi-I, the

stencil would be shifted to the right to obtain information from the smoother region, e.g.,

Îi+1/2 = Î(Ui, Ui+l, Ui+2, Ui+3).

The fact that the scheme involves an adaptive stencil application has hindered progress

towards a convergence theory for the ENO scheme. Nevertheless, numerical convergence

has been demonstrated empirically in a number of challenging problems in gas dynamics

including Riemann problems, shock-wave interactions, and shock-turbulence interactions

(see, for example, Hannappel, Hauser and Friedrich 1995).

To aid the stencil selection process and the construction of the interpolating polynomial,

divided differences are computed for the flux. The divided differences of a function W = W (x)

are defined recursively as,

W¡XiJ = W(Xi)

9



r ) WlXi+1,"', Xi+k) - WlXi,... , XHk-l)WiXi,... ,Xi+k = xHk - Xi

where WlXi,. .., Xi+k) denotes the divided difference of W of order k. If W is smooth (Le., W

is infnitely differentiable; W E COO) in the interval lXi, Xi+k), then

1 dkw( ()
WlXi, . . . , Xi+k) = k! dxk ' ( E lXi, Xi+k),

but if W is discontinuous in the p-th derivative (0 ~ p ~ k), then

r. . )-O(A -k+pr (p)))WlXi,'" ,Xi+k - J.X lW

where lw(P)) denotes the jump in the p-th derivative (Harten et aL. 1987). Therefore, divided

differences can be used to detect discontinuities. Now consider the function h(x) such that,

1 ix+t:x/2!(u(x)) = -A h(()d(.
t.X x-t:x/2

It follows easily that if H is the primitive function of h, i.e.,

H(x) = 1: h(()d(

then

jXi+1/2 i rXk+1/2 i
H(XHI/2) = . h(()d( = L I, h(()d( = L (Xk+l/2 - Xk-l/2)!(Uk)

-00 k=-oo Xk-l/2 k=-oo

and

H(Xi+1/2) - H(Xi-l/2) = (Xi+1/2 - Xi-l/2)!(Ui).

Therefore, the divided differences of H can be obtained directly from the divided differences

of !,

Hlxi-l/2, Xi-l/2+1) flUi)

1

kflui,' . . , Ui+k-l)'
Hlxi-l/2, . . . , Xi-l/2+k)

10



3.1.1 Basic ENO-Roe Algorithm

We seek a solution to

Ut + (f(u))x = 0

in which (f(u))x is approximated via,

1 (A 'A )
ßx !i+1/2 - fi-l/2 .

The numerical fluxes J are computed to r-th order using the algorithm outlined below. To

simplify the notation, we wil denote the k-th divided difference of H at Xi-l/2 as,

Htl/2 == H(Xi-l/2, . . . , Xi-l/2+Ù

The "ENO-Roe" algorithm (Shu and Osher 1989) for Ji-\I/2 is:

1. Compute the divided differences,

HLI/2 = f(ui) = f(Ui)

Htl/2 1

= kf(Ui"'" Ui+k-l),
k = 2, . . . , r + 1

2. Estimate the local sign of df /du at xi+1/2 by computing the Roe speed (Roe 1981),

f(Ui+l) - f( Ui)ai+1/2 =
Ui+l - Ui

3. Let s(k) denote the starting stencil point at stage k in the selection process. Select

the first stencil point (k = 1) in the upwind direction,

s(1) = t ~ + 1
if ai+1/2 2: 0

otherwise

4. At each stage thereafter, add an additional point to the stencil from the "smoother"

region, using the difference table for the comparison;

f s(k) - 1s(k + 1) = 1. s(k)
if H:(k)-1/2 2: H:(k)-1/2-1

otherwise
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When H:(k)-1/2 2: H:(k)-1/2-1' the starting stencil location is backed up; we add the

point to the "left" of previous starting point. When H:(k)-1/2 .. H:(k)-1/2-1' the

starting stencil location is unchanged; we effectively add a point to the "right-hand"

end of the stenciL.

5. After the (r+1)-point stencil has been selected, we construct a high-order interpolating

polynomial for the primitive function,

Q(r+1) (x) H;(1)_1/2(X - XS(I)-1/2)

+ H;(2)_1/2(X - XS(I)-1/2)(X - Xs(I)-1/2+1)

+ H;(3)_1/2(X - Xs(2)-1/2)(X - XS(2)-1/2+1)(X - Xs(2)-1/2+2) +...

~ H;(I)_1/2(X - X,(I)-1/2) + ~ f H:(k)-1/2in (x - X'(k-ll-I/2+oiJ J

whose derivative is,

~Q(r+1)(X) = HIdx s(1)-1/2
+ H;(2)_1/2((X - XS(I)-1/2) + (x - XS(I)-1/2+1)) +...

= H;(1)-1/2 + L r H:(k)-1/2 rL IT (x - XS(k-l)-1/2+ß)) L
k=2 L L a=O ß=O,a:;ß r

The interpolating polynomial for Îi+l/2 is then,

Îi+l/2 = ~Q(r+l) Idx Xi+l/2
- H;(I)-1/2

+ L r H:(k)-1/2 rL IT (Xi+1/2 - XS(k-l)-1/2+ß)) l. (15)k=2 L L a=O ß=O,a:;ß r

3.1.2 Entropy Fix; the ENO-LLF Algorithm

The ENO-Roe scheme described above does admit a non-physical entropy-violating expan-

sion shock but the problem can be easily remedied (Shu and Osher 1989). If j'(u) does

12



not change sign between Ui and Ui+l, then we compute the numerical flux, Ji+1/2, accord-

ing to Equation (15) in the ENO-Roe fashion. If f'(u) does change sign between Ui and

Ui+l, then we compute the numerical flux in a slightly different fashion based on the local

Lax-Friedrichs flux (the "ENO-LLF" scheme) described below.

The flux, j(u), can be split into two parts

j(u) = j+(u) + j-(u)

where

j+(u)
1

2(J(u) + auJ .
i

= 2U(u) - auJj-(u)

with

a = max It(u)1

so that

aj+ :; 0
au
aj-
au

.: o.

The numerical flux is similarly split in the Lax-Friedrichs fashion,

A A+ . A_
ji+l/2 = ji+1/2 + ji+l/2

and ENO approximations are computed for each component as follows:

1. Compute the divided diferences for + Hand - H,

1
:: HLI/2 = 2U¡uiJ ~ ai+l/2u¡XiJ)

11
:: HLI/2 = k2U¡ui,"" Ui+k-1J ~ ai+l/2u¡Xi,.. . , Xi+k-1J), k = 2, . . . , r + 1

13



2. Define

Ui+l/2 = max If'(u)1
Ui~U~UHl

3. Select the first stencil point for the + and - components in the upwind direction with

respect to the half-grid point i + 1/2. Since

8f+1
8u XHI/2

8f-1
8u XHI/2

_ 1 ""
- 2 U.i+l/2 :; 0

- 1 0- -2 Ui+l/2 ..

the first stencil points are chosen as,

8+(1) i
8-(1) = i+l

4. Select the rest of the stencil in the ENO fashion,

:: f 8:: (k) - 18 (k + 1) = 1. 8:: (k)
'f ::Hk :;:: Hki s:l(k)-1/2 - s:l(k)-1/2-1

otherwise

5. Form the interpolating polynomials for Ji~I/2 and Ji-¡I/2'

A::

fi+1/2 = :: HIs:l(I)-1/2

+ ~ f :: H::l(k)-1/2 rÏ: IT (Xi+1/2 - XS:l(k-i)-1/2+ß)J 1

k=2 1 L -y=0 ß=o,-yt=ß f (16)

6. The numerical flux computed using the ENO-LLF scheme is then,

A A+ A_
!i+l/2 = fi+1/2 + fi+l/2 (17)

To prevent entropy-violating expansion shocks in the ENO-Roe scheme, the numerical

flux must be computed according to Equations (16)-(17) if j'(u) changes sign between Ui

and Ui+1, and not in accordance with Equation (15).

14



Since the entropy fi for the ENO-Roe scheme requires the implementation of an aadi-

tional scheme, ENO-LLF, one might wonder if it would be better to compute all of the fluxes

using the ENO-LLF scheme in the first place. Employing the ENO-LLF scheme globally

would certainly be simpler (algorithmically) than ENO-Roe with entropy fi, and in the

shallow-water model the user has the option to select either scheme. However, the numerical

dissipation associated with the ENO-Roe scheme is less than that of ENO-LLF (Shu and

Osher 1989), so there is less shock smearing and better overall accuracy with ENO-Roe.

In general, I have found the ENO-Roe (with entropy fi) solutions to be superior to those

generated by ENO-LLF.

3.1.3 Hybrid END; Biased Stencil Selection

Adaptive stencil selection is the key feature of the ENO scheme. It allows an interpolating

polynomial to be constructed using a stencil that avoids discontinuous regions of the flow.

It is inevitable that in this process linearly unstable stencils wil be selected. In general,

however, the selection of linearly unstable stencils does not lead to numerical instabilty

since rapid stencil switching is often observed (Harten et aL. 1987). However, in smooth

regions of the flow, the use of linearly unstable stencils (and the rapid stencil switching that

accompanies it) can degrade the convergence rate of the solution (Rogerson and Meiburg

1990). The error reduction during mesh refinement is not uniform and in some cases grid

refinement can produce an increase in the truncation error. This degeneration in accuracy

can be remedied by using fied linearly stable stencils in smooth regions of the solution and

adaptive stencils where strong gradients are present. A simple modification to the basic

ENO algorithm combines the use of fied and adaptive stencils, creating a "hybrid" ENO

scheme that restores the desired accuracy (Shu 1990). In the stencil selection process (item

4 in ENO-Roe and ENO-LLF algorithms) we simply replace,

r s(k) - 1s(k + 1) = L s(k)
if H:(k)-1/2 2: H:(kl-l/2-1
otherwise

15



with
if s(k) :; c(k) then

s(k + 1) = i :~:~ - 1

else

f s(k) - 1s(k + 1) = 1. s(k)

if 2H:(k)_1/2 ~ H:(k)-1/2-1

otherwise
(18)

if H:(k)-1/2 ~ 2H:(k)_1/2_1

otherwise

where c(k) is the leftmost grid point in the centered stenciL. The weighting factor of 2

in Equation (18) is used for the reasons provided by Shu (1990). Restated, the modified

algorithm is,

if the stencil is to the right of the centered stenèil (i.e., s(k) :; c(k)J then
favor adding a point on the left (i.e., s(k + 1) = s(k) - 1J

else
favor adding a point on the right (i.e., s(k +' 1) = s(k)J.

The modified algorithm biases the stencil selection towards the linearly stable centered

stencil in smooth regions where H:(k)-1/2 and H:(kl-l/2-1 are the same order of magnitude.

3.1.4 Implementation Issues

Notice that on an equally-spaced grid, Equation (15) becomes,

ii+1/2 = H;(I)-1/2 + L f H:(k)_1/2(ó'x)k-l ¡L IT (i - s(k - 1) + 1 - ß)J 1. (19)k=2 1 a=O ß=O,a;jß f
Therefore, if we compute the undivided differences,

1-a-l/2 = f(Ui)

llk = llk-1 llk-1 .i-l/2 i+1/2 - i-l/2' k = 2, . . . , r + 1

(19) becomes,

r+l \ ¡k-l k-l J )
ii+1/2 = 1l~(1)-1/2 + L 1l~(k)-1/2 L II (i - s(k - 1) + 1 - ß) .

k=2 a=O ß=O,a;jß
(20)

Since the coeffcients in the summation,

k-l k-l

L II (i - s (k - 1) + 1 - ß),
a=O ß=O,a;jß

k = 2, . . . , r + 1
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depend on (i - s(k)) (the difference between the grid point in question and the left-most

stencil point) and not on i itself, the set of possible coeffcients can be precomputed for use

in Equation (20). A similar simplification can be applied to the split numerical fluxes in

the ENO-LLF algorithm (Equation (16)).

When the grid is not uniform, we make a change of variables, e.g., x -+ (, and reformulate

the governing equation,

Ut + ~lf(u)Jç= 0
m

where m = 8x/8( is the grid metric. The approximation for the flux, Ji+l/2, then proceeds

an the ( grid for which .6( is constant.

3.1.5 Implemented ENO Algorithm

The ENO algorithm that is implemented in the model is a hybrid ENO-Roe scheme with

the "entropy fi" (Shu and Osher 1988; Shu and Osher 1989; Rogerson and Meiburg 1990;

Shu 1990). Below, we recapitulate the algorithm for clarity as it applies to the 1-D scalar

equation (13).

1. Compute the undivided differences for f and u,

1l.-1/2 = flUiJ = f(Ui)

ULI/2 U(XiJ = u(xd

1-f-l/2
i
k"flUi"'" Ui+k-1J

Ul-l/2
1=
k"U(Xi, . . . , Xi+k-1J,

k = 2, . . . , r + 1

2. Compute the Roe speed,

f(Ui+1) - f(Ui)ai+l/2 =
Ui+1 - Ui

and

0!i+l/2 = max 1f'(u)1
Ui::U::Ui+l
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3. Form the undivided difference tables for the split local Lax-Friedrichs flux,

::1-:-1/2 = ~(1-:-1/2 :: O:i+1/2 U:-1/2), k = 1,..., r + 1

4. If j/ (u) does not change sign between Ui and Ui+1, then construct h+1/2 using the

ENO-Roe algorithm.

. Select the first stencil point in the upwind direction,

s(l) = \ ~ + 1
if ai+1/2 ~ 0

otherwise

. Select the remaining stencil points. Bias the stencil selection towards theJinearly

stable centered stencil, c( k), in smooth regions.

if s(k) :? c(k) then

f s(k) - 1s(k + 1) = 1. s(k)

else

f s(k) - is(k + 1) = 1. s(k)

if 21-~(k)_1/2 ~ 1-~(k)-1/2-1

otherwise

if 1-~(k)-1/2 ~ 21-~(k)-1/2-1

otherwise

. Compute the interpolating polynomial for Ji+l/2,

Ji+l/2 - 1-;(1)-1/2

+ ~ t 1l~(k)-1/2 (~JL (i - s(k - 1) + 1 - ß)) J

5. If j/(u) changes sign between Ui and Ui+l, then construct Ji+l/2 using the ENO-LLF

algorithm.

. Select the first stencil point in the upwind direction,

s+(l) i
s-(l) i+1
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. Select the remaining stencil points, s+(k) and s+(k), in the hybrid ENO fashion,

if s:1(k) :; c(k) then

:1 f s:1(k) - 1s (k + 1) = L s:1(k)

else

:1 f s:1(k) - 1s (k + 1) = L s:1(k)

if 2(:11£~(k)_1/2) ;::1 1£~(k)-1/2-1

otherwise

if :11£~(k)_1/2 ;: 2(:11£~(k)_1/2_1)

otherwise

· Form the interpolating polynomials for ii"tl/2 and ii-¡I/2'

A:1

fi+1/2 :1 1£1
5:1(1)-1/2

+ ~ f :11£~:I(k)_1/2 rL IT (i - s:1(k - 1) + 1 - mJ 1.
k=2 1. L a=O ß=O,a=fß f

. Sum the split fluxes to obtain the interpolating polynomial for the numerical

flux,

, '+ A_
fi+l/2 = fi+1/2 + fi+l/2

6. Repeat the previous steps to compute ii-l/2 and approximate (af /aU)i as,

afl. 1 A A
- = -(1+1/2 - ¡. 1/2)au i b.x z z-

3.2 Time-stepping Scheme

ENO spatial approximations are typically paired with TVD time-stepping schemes (see Shu

and Osher (1988) for background). Shu and Osher (1988) formulated several Runge-Kutta

time-stepping schemes that have optimal (Le., large) CFL restrictions. For the equation,

au
- = L(u)
at

the 2nd-order and 3rd-order Runge-Kutta methods are,

ua _ un + b.tL(un)

1 1 1un+1 _un + _ua + -b.tL(ua)2 2 2

(21)

(22)
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and

ua = un + l:tL(un) (23)

ub
3 1 1

(24)= _un + _ua + -l:tL(ua)4 4 4
un+1

1 2 2= _un + _ub + -l:tL(ub). (25)3 3 3
The theoretical CFL coeffcient for both schemes is 1. In practice, the recommended maxi-

mal CFL coeffcient is 0.6 when L(u) is approximated with an ENO algorithm (C.-W. Shu,

personal communication), Le.,

l: t
-: max If'(u)¡ :: 0.6.
uX u (26)
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4 ENO Scheme for the Shallow Water System

Reconsider the shallow-water system in flux form on a curvilinear grid (see Equation (10),

Section 2), 1 1
at + -¡F(a))ç + -¡G(a)Jr = Q. mi m2 (27)

where

q=(~n=(n

( U2/h + Fr-2h2/2 )

F = UV / h ,
U ( UV / h )

G = V2/h + Cr-2h2 /2

and Q = C+'P+Ð+M is the sum of all of the terms on the right-hand side of Equation (10).

For systems of equations, the ENO algorithm is applied to each local characteristic field,

not to each state variable. To ilustrate how the fluxes in the , direction are computed,

consider the one-dimensional conservation equation,

1

(28)at + -¡F(a))ç = 0mi

or

1
(29)at + -AaC; = 0mi

where

A ~ 8F ~ C:
0 -u' + F.-'h )

u -uv .
8a . 1

0 0

The matrix A has eigenvalues and left and right eigenvectors,

).(1) = u i(l) = ( 0 1 -v ) 1'(1) ( 0 1 0 )T
).(2) = u+c i(2) = 1

( -1 0 u-c ) 1'(2) = ( u+c v 1 )T-2c
).(3) = u-c i(3) = 1

( -1 0 u+c ) 1'(3) - ( u-c v 1 )T2c

where c = ..Fr-2h. Equation (29) can be projected onto the eigenspace via

1
S-lat + _(S-1 AS)S-laC; = 0

mi
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where

8 = (r(1) r(2) r(3)),
( i(l) )

8-1 = i(2)
i(3)

yielding,

1Rt+-ARr,=O
mi

where

R= (U:2C)' A=8-1A8= (À(1) À(2)
u- 2c

As in the 1-D scalar case (see Equation (14), Section 3.1), the spatial derivative in

À (3) ) .

Equation (28) is computed using the simple difference formula,

ÔF(a) I .. (Fi+1/2 - Fi-i/2) - ~. _ ~.
ar - (I' 1') - Fi+l/2 Fi-l/2': i ':i+1/2 - ':i-l/2

where Fi+1/2 and Fi-l/2 are high-order approximations to the flux obtained from an adap-

tive stencil that avoids discontinuous regions of the flow. To compute Fi+1/2, the algorithm

outlined in Section 3.1.5 for the 1-D scalar case is generalized. First, undivided difference

tables are computed for each component of the flux and the state vector, as in step 1 in

Section 3.1.5, i.e.,

llLl/2 - Flail

ULI/2 - al(iJ

llLl/2 1-
kFlai,"', ai+k-i1

ULI/2
i-
kal(i, . . . , (i+k-l),

k = 2, . . . , r + 1.

The difference tables are then projected onto the eigenspace using the left eigenvectors of

A,

- -1
lli-l/2 = (8 )i+l/21li-l/2'

Only the portion of the difference table that might be utilized in the approximation for

Fi+l/2 is projected onto the eigenspace (see Figure 1). For each projected component, p,
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k=4: d3f/dx 3

, : 4 .
¡ 4 ¡Hi+1i21:H; ., . 4 : i-1I Y :

: 4 :H'3/2Y . ¡: :)-, :
. 4 ¡ H i-5/2 V ¡
1 Hi-7/21/ . .v .

-,
~

~

k=2: df/dx

, ~
'1 3 .

! 3 ¡ H i+ 1/2 ¡

3 : H. 1/2 j :. , ')-. :: 3 :H'3/2j :: :)-. :: H '-5/2 V: \!. )., .: . . . ~'l, : '\ 2 :, 'H': 2 : i+l/2 :'H' ,, 2 : i-1I2 / ¡¡Hi-/2V . \y . -. :

~

k=3: d2f/dx2
'I

~

-ii
i-3

: i : 1 ,
¡ H. 1/2: H. 1/2 :, )- . )+ .~. .

!

i~1 i+2 i+3 i+4

k=I: f

~
i-2 i-I

i + 1/2

Figure 1: The portion of the difference table that could possibly be utilied in the approx-
imation of Fi+l/2'
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'-

an appropriate stencil is selected in the ENO fashion and the interpolating polynomial,

Fi~i/2' is formed, as outlined in steps 2-5 in Section 3.1.5. The interpolating polynomials

in the eigenspace are then projected back using the right eigenvectors of A, i.e.,

Fi+1/2 = Si+1/2Fi+1/2'

The Roe speeds in this case are the eigenvalues,

(p) - ).(p)ai+l/2 - i+1/2' p = 1,2,3

and the local Lax-Friedrichs estimate is,

a~p) = max ).(P)(q)i+1/2 q.-=q-=q ,
i- - 1+1

p=1,2,3.

Since the Roe speeds and projection matrices are evaluated at the half-grid points, a suitable

average must be computed for u, v, and h. The appropriate averages are the Roe-averaged

quantities (Roe 1981) given by,

Vi+1/2 -

uïviii + Ui+1 vr
.. + .¡ hi+1

Vi.. + Vi+1 vr
.. + .¡ hi+ 1

1

2(hi + hi+l)'

Ui+l/2 -

hi+1/2 =

The ENO scheme is easily generalized to multi-dimensions since the approximations to

the fluxes F(q) and G(q) are computed separately. Equation (27) is therefore approximated

as

1 A A 1 A A
qt == --(Fi+l/2,j - Fi-l/2,j) - -(Gi,i+l/2 - Gi,j-l/2) + Qij. (30)mi m2

The computation of Gi,+1/2 is analogous to that of Fi+l/2,j' For completeness, it is

noted that the matrix

( V~ 2u1V

B = 8G =
8q

-UV )
-v2 +0 Fr-2 h
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has eigenvalues and left and right eigenvectors,

À(I) v i(l) = ( 1 0 -u ) r(l) = ( 1 0 0 )T
À(2) = v+c i(2) = 1

( 0 -1 v -c ) r(2) = ( u v+c 1 )T-2c
À(3) = v -c i(3) = 1

( 0 -1 v +c ) r(3) = ( u v-c 1 )T.2c
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5 The "Right-hand Side"

This section describes the finite-difference approximations for the non-conservative terms

on the right-hand side of Equation (10),

1 1
qt + -(F(q)k + -(G(q)Jr¡ = C + 'P + 1) + Mmi m2

where

q~(~n=(n
and C, 'P, 1), and M represent the Coriolis, pressure forcing, bottom stress, and grid-metric

contributions, respectively. The approximations for C, 'P, 1), and M are all straightfor-

ward.

5.1 CorIolis Term

The approximation for the Coriolis term is simply,

( fo Vij )

Cij = - fOl:ij .

5.2 Pressure Forcing Term

The pressure forcing term is,

( -hP(/mi )

'P = -hP3/m2 .

The model is currently set up to read from an input file the steady component of the

(nondimensional) pressure-gradient forcing,

\7po = (~8PO((,r¡) ~ 8PO((,r¡))
mi 8( , m2 8r¡

along with the initial flow fields. If there is a time-dependent component to the pressure

gradient,

\7P' = (~8P,((,r¡,t) ~ 8P'((,r¡,t))mi 8( , m2 8r¡
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it should be specified in subroutine Forcing. (In the current version, \1 P' corresponds

to a propagating low-pressure anomaly.) The approximation for the pressure term is then

simply,
-h (Pl + PD/mi

-h (P~ + P~)/m2'Pij =

o ij

5.3 Bottom Stress Term

The bottom stress term is,

( -rIUIU/h2 )

'D = -rIUJV/h2

where r = CDL* / D* is the nondimensional drag coeffcient. The appropriate formula for

CD is, of course, application specific. For the original application to the marine atmospheric

boundary layer flow, for example, two formulas for CD for the air-sea interface were coded.

The fist is the 10-m neutral drag coeffcient given by Large and Pond (1981),

io3CD = r 1.14 UI0 ~ 10 m s-~
1. 0.49 + 0.065uio uio)- 10 m s- .

The second is the drag coeffcient obtained from the Coastal Waves 96 field experiment

(Edwards and Rogerson, in preparation),

103CD = r 2.43 - 0.261uio Uio ~ 6.1 m S-1

1. 0.44 + 0.065uI0 UI0)- 6.1 m s-l.

In both cases, the 10-m winds in the formula, Uio, must be related to the model's nondi-

mensionallayer-averaged wind speed, lu¡. This relation is currently specified as,

UI0 = 0.75IuIU*.

Note that, to obtain the nondimensional drag coeffcient, r, the length, velocity, and depth

scales (L *, U*, and D*) must be specified as well.
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A linear bottom stress may also be modeled. In this case,

( -fU/h )

Ð = -f~/h

where f is a (constant) nondimensionallinear drag coeffcient provided as model input.

5.4 Grid Metric Term

The grid metric term is,

1 (-ai V / h - a2 U / h )M= - aiU/h-a2V/h
mim2 -a2

where

ai == Uml7) - Vm2ç, a2 == Um2ç + Vml7)'

The metric derivatives,
ami
ar¡ ,

am2
a( ,

are computed during the initialization phase of the model using simple first-order differences.

The approximation for Mij during the model integration follows directly from the algebraic

expression above.
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6 Time-stepping Scheme

The numerical solution to

1 1
qt = L(q) = --(F(q)jç - -(G(q)Ji + Qmi m2 (31)

is advanced in time with a TVD Runge-Kutta scheme (see Section 3.1 for the definition of

TVD). In the shallow-water model, the user can specify either 2nd-order or 3rd-order TVD

Runge-Kutta time-stepping in the form,

qa qn + ßtL(qn)

1 1 1_qn + _qa + -ßtL(qa)2 2 2

(32)

(33)
qnH

or

qa - qn + ßtL(qn)

qb 3 1 1= _qn + _qa + -ßtL(qa)4 4 4
qn+1 1 2 2= _qn + _qb + -ßtL(qb)

3 3 3

(34)

(35)

(36)

respectively. As mentioned in Section 3.2, the theoretical CFL coeffcient for both schemes

is 1. In practice, however, the recommended maximal CFL coeffcient is 0.6, i.e.,

ßt max ( 1ArIF'(q)1 + -LIG/(q)l) :s 0.6q miUi. m2Ur¡ (37)

when L(u) is approximated with an ENO algorithm (C.-W. Shu, personal communication).

The use of lower CFL coeffcients (e.g., 0.1 or 0.2) is frequently quoted in the literature as

welL. For the shallow-water model, I have typically selected CFL coeffcients in the range

0.4-0.5 and would categorize the use of CFL coeffcients in the range 0.1-0.2 as conservative.
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7 Boundary Conditions

The types of boundary conditions that are currently implemented in the model correspond

to two basic geometries: a channel-like domain and a doubly-periodic domain. For the

channel confguration, the along-channel direction is assumed to be the r¡ direction. In the

following discussion, the r¡ direction (or y direction in the rectilnear case) is also referred to

as the north-south direction, while the ( (or x) direction is associated with the east-west

direction. The user currently has the following options with regard to boundary conditions:

( (or x) direction r¡ (or y) direction

. periodic . periodic

. east wall/west wall . open (north and south)

. east wall/west open

Free-slip no-normal-flow boundary conditions are applied at the walls. Gravity-wave radi-

ation is approximated at the open boundaries.

In general, boundary conditions can be treated in one of two ways; (i) one can appro-

priately assign values to points "outside" the computational domain and apply the same

algorithm used in the interior, or (ii) one can apply a diferent algorithm at the boundary.

The treatment for walled boundaries in a rotating flow follows the second approach, while

the others use the first approach. Recall that the r-th order ENO scheme requires an r + 1

adaptive stencil, so to follow the first approach r + 1 points outside the domain must be

assigned.

In the discussion that follows, consider a computational grid that is discretized into

M x N grid points,

(i, i = 0, . . . , M - 1

r¡j, j = 0, .. . , N - 1.

The western and eastern boundaries are located at (0 and (M-l, respectively. The southern
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and northern boundaries are located at 170 and 17N-I, respectively.

7.1 Periodic BCs

The implementation of periodic boundary conditions is triviaL. In the 17 direction, for

example, we simply set

q-j qN-j

qN-1+j = %-1' for j = 1, . . . , r + 1.

7.2 Radiation BCs

Radiation boundary conditions are easily implemented in the model since the ENO scheme

is a characteristic-based scheme. In the eigenspace, the sign of the eigenvalue indicates

the direction of wave propagation along the characteristic. When the wave propagation is

directed out of the domain, the radiation treatment calls for extrapolation of the Riemann

invariant to the grid points "outside" the domain. When the wave propagation is directed

into the domain, the value of the Riemann invariant outside the domain is prescribed. In

the current model implementation, the prescribed values for the incoming waves are the

initial conditions along the boundary.

In the 17 direction, for example, we obtain the Riemann invariants by projecting q using

the left eigenvectors of B = ôG/ôq, i.e.,

'R = p-lq,

1 0 -u
p-l = 0 ic -ic(v - c)

o -ic ic(V + c)

The eigenvalues of B,

(.x(1\.x(2),.x(3)) = (v,v +c,v - c)

reveal the direction of wave propagation at the northern and southern boundaries and

determine how the value of the Riemann invariants outside the domain wil be set. At the
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southern boundary (at grid point j = 0), for example, the algorithm for the p-th Riemann

invariant is,

if ).(p) :: 0 then
n(p) (r¡-j, t) = n(p) (r¡o, t = 0), j = 1, . . . , r + i

else
n(p) (r¡-j, t) = n(p) (r¡o, t), j = 1, . . . , r + 1.

The value of the state vector outside the domain is then set by projecting back to physical

space via the right eigenvectors of B, Le.,

q=pn,
p=u

U

V+c
1

v~c )

7.3 Walled BCs for Non-rotating Flows

In the absence of rotation, u = 0 implies h( = 0 and v( = 0 (see Equation (7)). Therefore

the no-normal-flow condition at the western boundary (grid point i = 0), for example, can

be satisfied by simply setting,

Uo = 0, and

U-i = -Ui

V-i Vi

h-i = hi, for i = 1, . . . , r + 1.

In this scenario, the points outside the domain are typically referred to as image points or

ghost points.

7.4 Walled BCs for Rotating Flows

While the use of ghost points works well in the non-rotating case, an alternative approach

is necessary when rotation is present. In rotating flows, U = 0 implies

1 -2
fov = -Fr h(.mi
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Even though we could stil anti-image u at the wall (e.g., U-i = -ud, we do not know the

functional form of h (or v), so we cannot effectively assign values to h and v at the ghost

points that would maintain the geostrophic relationship to a high order of accuracy. Ex-

trapolation from the interior to the ghost points was tested (up to 4th-order extrapolation),

but a mismatch in the truncation error between the ghost point and the wall point resulted

in an error in the flux at the wall that eventually contaminated the numerical solution. For

rotating flows, we have not found a satisfactory method to update the flow field at the wall

using ghost points. Instead, we have implemented a boundary treatment that locally solves

a Riemann problem to update the grid points at the wall using only interior information.

Consider the mod~l equations (see Equation (10)) rewritten as,1 -
qt + -¡F(q))ç = Qmi

where

- 1
Q = --(G(q)Jii + C + 'P + 'D + M.

m2

Applying the projection matrix to the system, i.e.,

S-lqt + 2-(S-1 AS)S-lq( = S-Igmi

o 1 -v
A= âF

âq'
( i(l) )

S-1 = i(2) =
i(3)

2~ 0 -ie(u - c)

-ie 0 ie (u + c)

yields the characteristic form,

1Rt+-AR( =Q
mi

where

R = ( u: 2c ) , A = (U u + c )u - 2c u - c
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and
g(2) _ Vg(3)

Q = ~ g(1) _ (u _ C)g(3)

g(1) _ (u + c)g(3)

(see Section 4). Since u = 0 at a wall, we have

El) = Q(I)

E2) + ~ R(2) = Q(2)mi (;

E3) _ ~ R(3) = Q(3) .mi (;

Note that since R(3) = _R(2) when u = 0, the flow at the wall can be obtained from the

interior flow fields, and no information outside the domain is necessary. For the eastern

wall at ( = (M-l, we solve for R(I) and R(2); for the western wall at ( = (0, we solve for

R(I) and R(3).

Consider the wall at the eastern boundary, ( = (M-l, which we now denote by (w' The

characteristic quantities at the wall at time tn, (1) R~ and (2) R~, are computed by locating

the characteristic that intersects the wall at the required time level, as depicted in Figure 2.

(The vector-component index has been moved to the left of the vector variable for notational

clarity.) The characteristic quantities at the wall are advanced in time in a manner that is

consistent with the time-stepping scheme used in the interior. For example, when the 3rd-

order TVD Runge-Kutta is used in the interior (see Section 6), the characteristic quantities

at the wall are advanced according to,

(1) Ra _ (1) Rn + .bt(I)Qnw w w
(2) Rr: = (2) R~ + .bt(2) Q~

(1) R~ (1) Rr: + ~t ((I)Q~ +(1) Qr:)
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(2) Rb
w

_ (2) R~ + ~t ((2)Q~ +(2) Q~)

(1) Rn+1
w

= (1) R~ + ~t ((I)Q~ +(1) Q~ + 4(1)Q~)

= (2) Rb + flt ((2)Qn +(2) Qa + 4(2) Qb )* 6 w w w .(2) Rn+1
w

(It is easily verified that this form of the Runge-Kutta is equivalent to that defined by

Equations (34)-(36).) The computation of (2) Rw involves the evaluation of (2) R* =(2) R((*).

Here (* is the interior location of the characteristic that intersects the wall at the next partial

time step (see Figure 2) and is given by,

C (w - J.fltc~mi

(: = (w - J. fl4t (c~ + c~)mi
r*b r 1 flt ( n a 4 b )': = ':w - - -6 Cw + Cw + Cw .mi

Four-point Lagrange interpolation is then used to evaluate (2) R* from (2) Rw, (2) Rw-i,

(2) Rw-2, and (2) Rw-3. The new values of R are projected back using the right eigenvectors

of A = ~r to update the physical flow variables a.

Since the values at the wall are updated by this alternative method, the flux at the half-

grid point adjacent to the wall does not have the same truncation error as fluxes computed at

points farther in the interior using the ENO algorithm, and therefore high-order accuracy

of the derivative is not guaranteed. To help alleviate this slight mismatch, the first two

interior points adjacent to the wall are weakly smoothed after the flow has been advanced

to the new time level,

n+l n+l n+l
n+l 81aw-i-l + 82aw-i + 83aw-i+la .= ,w-i 81 + 82 + 83 for i = 1,2.

For the original application of the model, I typically used the smoothing coeffcients,

(81,82,83) = (1,38,1).
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Figure 2: Schematic of the time advancement of the Riemann invariant along the eastern
wall, (1) R~, and into the wall from the interior, (2) R~, at each step in the 3rd-order Runge-
Kutta.
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8 Model Preparation and Execution

In this section, instructions are provided on how to prepare and execute model runs. In the

discussion that follows, the reader may find it helpful to refer to the source code since it

contains comments as well.

The model code is written in Fortran 77 and uses C-directives (Le., #define and #ifdef

constructs) to organize the source code corresponding to various model options. The source

code is divided into four files: two header files, enores.h and gpath.h, a common file,

enoswcom. f, and the main program, enosw. F.

8.1 Header File enores.h

Within the header file enores .h, the user must set the parameter specifications for the grid

size and the numerical accuracy of the scheme.

. Ql specifies the spatial order of accuracy for the ENO scheme. The ENO scheme is

intended to be a high-order numerical scheme. For instance, one would not specify

Ql=l (specifying a 2-point stencil) since this would greatly restrict the stencil selection

process which forms the cornerstone of the ENO algorithm. The setting Ql=3 (4-point

stencil) is more typical.

. Q2 specifies the temporal order of accuracy for the Runge-Kutta scheme. Runge-

Kutta schemes for Q2=2 and Q2=3 are implemented (see Equations (32)-(33) and

Equations (34)-(36)).

. M and N specify the grid size.

. IRSIZ=2*M*N currently specifies the record length for the direct-access unformatted

(binary) I/O of one double-precision MxN model data field.
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8.2 Header File gpath. h

Within the header file gpath. h, the user must provide information regarding the grid met-

rics. If the grid is rectilnear with constant grid spacing in the x (= () and y (= r¡) directions,

then b.x and b.y need to be provided by setting the variables dxO and dyO, respectively,

e.g.,

dxO ° . 1
dyO = 0. 1

The variable gpath in this case is inactive and is used only in the creation of a log file at

the end of the model run (see below).

If a more general orthogonal curvilnear grid is to be used, then the character variable

gpath specifies the path to the grid metric data. The grid metric data are expected in a

direct-access unformatted (binary) file called svgrid.met, in record 1. The read statement

within subroutine Ini t of enosv. F is,

c * Get grid metrics
open (unit=10 ,file=gpath(l: Inblnk(gpath)) / /' swgrid.met' ,

form='unformatted' ,access='direct' ,recl=2*IRSIZ, status='old')

read(10,rec=1) ((hl(i,j), h2(i,j), i=O,M-l), j=O,N-l)
close(10)

in which the arrays h1Ci,j) and h2(i,j) store the value of the grid metrics mi and m2

(see Equations (5)-(6)).

8.3 Common File enoswcom. f

The file enoswcom. f defines the common blocks and contains all of the C-directives con-

trollng the various model options, described below. The user sets the various C-directives

by un-commenting the #def ine statements corresponding to the desired options and com-

menting out the others.

. END algorithm. As discussed in Section 3.1, the Hybrid ENO-Roe algorithm is the

recommended algorithm. Therefore, the recommended settings are
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#def ine HYBRID

#def ine ROE

The Hybrid ENO-LLF algorithm might also be considered,

#def ine HYBRID

#def ine LLF

but in my experience, the ENO-Roe solutions have been superior to those produced

using ENO-LLF.

. Computational grid type. If the grid is uniform, un-comment the statement,

#define UNIGRID

When UNIGRID is "on", the grid spacing must be specified in the header file gpath.h

(see above). If the grid is not uniform, it is expected that the grid-metric input file

can be found in the location indicated within gpath.h (see above).

. Bottom stress parameterization. A linear bottom stress is selected by turning on

LSTRESS. If LSTRESS is on, the linear drag coeffcient r wil be taken from the pa-

rameter file enosw.pars (see below). At present, two nonlinear drag coeffcients are

coded. If BSTRESS is on, the drag coeffcient derived by Large and Pond wil be used;

if CWSTRESS is on, the formula derived from the Coastal Waves 96 data wil be used.

(See Section 5.)

. Forcing. During the initialization phase of the model, the steady component of the

forcing field (see Section 5) is read from the input file enosw_in.dat, described below.

If the C-directive STDYFORC is on, the forcing is assumed to be steady (Le., the steady

component is the total field).
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If there is a time-dependent component, it should be coded in subroutine Forcing of

enosw . F and the C-directive STDYFORC should be turned off. In the original applica-

tion of the model, time-dependent forcing was used and the computational grid was

curvilinear. The time-dependent pressure gradient forcing was defined on the x-y grid

and then mapped to the (-r¡ grid. Therefore in the current version, if STDYFORC is

on and UNIGRID is off, the program wil attempt to read the curvilinear grid points

and the (x, y)-to-((, eta) transformation matrix (see Section 8.7) in subroutine Init

of enosw . F with the statements,

c * Get the grid for the HARD-CODED pressure forcing function
open(unit=10 ,file=gpath(l: lnblnk(gpath)) / /' swgrid.pts' ,

form= 'unformatted' ,status=' old')

read(10) ((x(i,j), y(i,j), i=O,M-l), j=O,N-l)
close (10)

c * Get the (x,y)-~(zeta,eta) mapping matrix to map grad(P)
open(unit=10,file=gpath(1 :lnblnk(gpath))/ /' swgrid.map' ,

form='unormatted' ,access='direct' ,recl=4*IRSIZ, status=' old')
read(10,rec=2) ((rotill(i,j) ,roti12(i,j),

roti21(i,j) ,roti22(i,j) ,i=0,M-1), j=O,N-l)

close(10)

. Boundary conditions. A number of boundary conditions have been implemented.

Refer to Section 7 for a complete description. For example, to specify a periodic

channel in a rotating system, the C-directives should be turned on and off as,

c#define XPERIODIC
c#define EastGHOST
c#define WestGHOST
#define EastWALL
#define WestWALL
c#define WestCHAR
#define YPERIODIC
c#def ine YCHAR

c#define YORLANSKI

For a channel in a non-rotating system with radiation conditions at the channel ends,

the settings would be,
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c#define XPERIODIC
#define EastGHOST
#define West GHOST

c#define EastWALL
c#define WestWALL
c#define WestCHAR
c#define YPERIODIC
#define YCHAR
c#def ine YORLANSKI

Note that the Orlanski radiation treatment is implemented for comparative purposes

only. The YCHAR option should be used for radiation boundary conditions.

. Smoothing for EastWALL or WestWALL.

If EastWALL or WestWALL is on, the C-directive SMOOTHI should also be on (see

Section 7). The smoothing coeffcients are provided in the input parameter file

enosw. pars, described below.

8.4 Initial Condition Data File enos~Lin. dat

It is assumed that the initial flow fields (i.e., the flow velocities, u and v, and the layer

thickness h) and the steady component ofthe pressure-gradient forcing (i.e., V' pO) reside in

a direct-access unformatted file called enosw -Ïn. dat. The read statement within subroutine

Ini t of enosw . F is,

c * Get initial u,v,h, and forcing fields
open(unit=10,file='enosw_in.dat' ,form='unformatted',

access=' direct' ,recl=5*IRSIZ, status=' old')

read(10) ((u(i,j ,0) ,v(i,j ,0) ,h(i,j ,0) ,pxfO(i,j) ,pyfO(i,j),
i=O,M-l), j=O,N-l)

in which the following correspondence is made,

uCi,j,O) f- U((i,7Jj,t=O)

v(i,j,O) f- V((i,7Jj,t = 0)

h(i,j ,0) f- h((i, 7Jj, t = 0)
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pxfO (i, j)
1 8pO((,r¡)

*- mi 8(
1 8pO((, r¡)

*- m2 8r¡pyfO(i,j)

After reading the initial flow fields, the variables u ( , ,) and v ( , ,) are reassigned to hold

the flux variables U = uh and V = vh, respectively.

8.5 Model Parameter File enosw. parms

A run-time parameter file, enosw. pars, is also supplied to the modeL. An example of this

ASCII file is shown below,

10. 10. 500.
0.1 1.0
0.0
0.01
O. 200. 50.
1. 38. 1.

L* (km), U* (m/s), D* (m)
fO=1/Rossby=fL/U, Fr-2=1/ (Froude~2)
r_linear (ignored if BSTRESS/CWSTRESS is on)
dt
tstart, tfinal, tdump
smoothing coefficients (s1,s2,s3)

. Line 1 specifies the length, velocity and depth scales that wil be used in the hard-

coded formulas that parameterize the nonlinear bottom stress in subroutine Friction

when either BSTRESS or CWSTRESS is on (see Section 5).

. Line 2 specifies the inverse Rossby number, fo == f L* jU *, and scaling inverse-squared

Froude number, Fr-2 == g' D* /U*2 (see Section 2).

. Line 3 specifies the linear (nondimensional) drag coeffcient if the C-directive LSTRESS

is on. If a nonlinear bulk formula is specifed (i.e., C-directive BSTRESS or CWSTRESS

is on), then the velocity-dependent value for the drag coeffcient is hard-coded in

subroutine Friction and the value of the linear drag coeffcient in enosw. pars is

ignored (see Section 5).

. Line 4 specifies the nondimensional time step, llt (see Section 6).
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. Line 5 specifies the time associated with the beginning of the simulation (t start),

the time associated with the end of the simulation (tfinal), and the time interval at

which the model data wil be output (tdump).

. Line 6 specifies the smoothing coeffcients that are required when characteristic-based

walled boundary conditions are in effect (C-directive EastWALL and/or WestWALL) (see

Section 7).

8.6 Execution

To conduct model runs,

1. Select/generate a computational grid and edit gpath.h appropriately.

2. Set the parameters in enores .h.

3. Set the C-directives that control the model options in enosw. pars.

4. Generate enosw-Ïn.dat, the initial-condition data file.

5. Edit enosw. pars as necessary.

6. Make enosw.

7. Execute enosw. (There are no command-line arguments.)

8.7 Output files

The executable, enosw, generates the output files, u.dat, v .dat, and h.dat, containing the

data for u, v, and h, respectively. If the C-directive STDYFORC is off, two additional out-

put files, px. dat and py. dat, are created for the time-dependent pressure-gradient forcing

field. Each file is a direct-access unformatted file. For example, u. dat is opened with the

statement,

open (Uli t=20, file=' u. dat' , form=' unformatted' ,
access=' direct' ,recl=IRSIZ)
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The initial data are placed in record 1, and the remaining records correspond to time tdump,

time 2*tdump, time 3*tdump, etc., where tdump is specified in enosw. pars. For example,

the u-velocity at time t = 0 is output with the statement,

write(20,rec=1) ((u(i,j ,0) /h(i ,j ,0), i=O ,M-l), j=O ,N-l)

(Recall that the variable u ( , ,) holds the flux U = uh.)

A log file, enosw. log, is also created to catalogue the input parameters that were

specified for the model run. An example is,

(M,N)=(100,100) (Ql,Q2)=(3,3) dt=0.01000

(to, tmax, tdump)=( 0.000,200.000,50.000)

L*(km)= 10. U*(m/s)= 10. D*(m)=500.

fO= 0.100 r=O. 0000 Fi= 1.000

Grid: uniform
(dx,dy)=( 0.100,0.100)

Smoothing coefficients: 1. 38. 1.

ROE-EF HYBRID EastWALL WestWALL YCHAR LSTRSS STDYFORC SMOOTHI
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Appendix: Curvilinear Grid-Generation Program swgrid. f

The shallow-water model is designed to approximate a solution on a user-specified orthog-

onal curvilinear grid. If the desired grid is rectilinear with uniformly-spaced grid points in

the x and y direction, then the user need only specify I:x and I:y in addition to the number

of grid points in each direction. If a more general orthogonal grid is to be used, the user

must provide the (spatially-varying) grid metrics to the shallow-water modeL.

One orthogonal curvilnear grid generation program, swgrid. f, 'is included in the model

package as an example. In this section, we review the basics of coordinate transformations

and provide a brief description of swgrid. f and how it interfaces with the shallow-water

modeL.

If ((, r¡) are the coordinates in the orthogonal curvilnear system, then the change in the

position vector æ = (x,y) = (X((,r¡), Y((,r¡)) in the Cartesian system can be written as,

8æ = mI8(' + m28r¡ fJ

where mi and m2 are the coordinate metrics given by

mi =
(8x)2 (8y)28( + 8( = V Xl + Yl

(8x)2 (8y)28r¡ + 8r¡ = VX~ + yrr

(38)

m2 = (39)

A vector (u, v) on the (x, y)-grid can be transformed to the ((, r¡ )-grid via,

( u ) = (Xç/(mi~) XTj/(m2A)) ( u )v Yç/(miB) YTj/(m2B) v
(40)

where

A ¡ (~;)' + (~:)'r

B ¡ (~:)' + (~) 'J 'I'
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Similarly, a vector (ü,ií) on the ((,r¡)-grid can be transformed to the (x,y)-grid via,

( U ) 1 (Y1/mlA -Xr¡mlB) ( Ü )v - X(Yr¡ - Xr¡Y( -Y(m2A Xçm2B ií'
The metrics mi and m2 (Equations (38)-(39)) must be provided to the shallow-water

(41)

modeL. The coordinate transformation (40) can be used during the model initialization to

map flow fields specified on a rectilinear (e.g., north-south, east-west) coordinate system

to the model's curvilnear coordinate system. During the post-processing phase, the inverse

mapping (41) can be applied to visualize the model output in the rectilinear coordinate

system if so desired.

The grid-generation program swgrid. f was originally developed by Wilkin and modifed

successively by R. Signell, by R. Samelson and by A. Rogerson. In short, the user specifies

the desired boundary and provides an initial distribution of grid points along the boundary.

The orthogonal curvilinear grid is obtained by iteratively applying a conformal mapping

algorithm to the gridded domain. Detailed aspects of the algorithmic approach and the

implementation wil not be discussed here. Rather, a brief description of how to use this

program is provided below.

Several parameters must be set in swgrid. f. The first two specify the grid size and are

set by the parameter statement

parameter (L=100 ,M=200)

located at the head of program swgrid and the subroutines spline, cofx, and cofy. The

third is the number of iterations to be performed to obtain the grid, set by the data state-

ment

data i tmax /15/

in the first portion of swgrid. Following immediately after the data statement for i tmax is

the data statement
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data kb2/4/

This parameter specifies which of the four boundaries wil maintain its original distribution

of grid points after the mapping.

The user specifies the geometric shape and the initial distribution of grid points for the

western, southern, eastern, and northern boundaries within subroutine zl, and entry points

z2, z3, and z4, respectively. The boundary position data are stored in a single complex-

valued vector variable zU)=(xU) ,y(i)), which holds the position of the grid point at

the northwest corner of the domain in z (1) and the remaining data points in successive

storage locations, proceeding counter-clockwise around the boundary. In subprograms zl,

z2, z3, and z4, the boundary data are defined parametrically through the variable s which

varies from zero to one along each portion of the boundary. In the current setup, the

domain is 30 units long in the x direction and 50 units long in the y direction (variables

XL and YL in subroutine zl) and is discretized into L x M = 60 x 100 grid points. The

eastern boundary consists of a series of bends; phi (j) are the bend angles, measured from

due south, ybend(j) are the y positions of the bends, rc (j) are the radii of curvature

for the bend. The formula for the eastern boundary points is obtained after a little bit of

trigonometry. The western, northern, and southern boundaries are straight. Grid points

along the southern boundar are equally-spaced while those along the western and northern

boundaries are clustered non-uniformly. The clustering in the current implementation is

achieved by mapping the parametric variable s to a piecewise continuous cubic polynomiaL.

Additional details are provided by the comments within the source code.

When the deformation of the boundary is severe, the grid that is generated may not be

orthogonal near the edges of the domain. Two additional parameters have been introduced

at the beginning of program swgrid to clip the grid at the northern and/or southern ends

during, output,

.
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parameter (j cli pn=O, j cli ps=5)

In this case, the grid points indexed by j :: 5 are eliminated.

Program swgrid. f produces five output files:

. swgrid.met, a direct-access unformatted (binary) file containing the grid metrics, mi

and m2, on the Sadourney C grids. The metrics on the h, u, and v grids are stored in

records 1, 2, and 3, respectively. The shallow-water model accesses the grid metrics

on the h grid (record 1).

. swgrid.map, a direct-access unformatted file containing the coordinate transformation

metrics that apf)ear in Equations (40) and (41). The (x, y)- to- ((, 17) transformation

matrix is stored in record 1. The ((, 17)-to-(X, y) transformation matrix is stored in

record 2.

. swgrid. pt s, an unformatted fie containing the grid points (x, y) = (X ((, 17), Y (( , 17)).

. swgrid. bdry, an ASCII file containing the boundary points.

. mesh.dat, an ASCII file to ease the plotting of the grid mesh.

Note that for the direct-access binary files, the record length is the minimum required for

double-precision output.
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