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Abstract

The surface mooring component of the CLIVAR Long Term Evolution and Coupling of
the Boundary Layersin the Stratus Deck Regions study (STRATUS) took place from October
2000 in the eastern tropical Pacific. As part of the Eastern Pacific Investigation of Climate
Processes in the Coupled Ocean-Atmosphere System (EPIC), STRATUS isa CLIVAR study
with the goal of investigating links between sea surface temperature variability in the eastern
tropical Pacific and climate over the American continents. This study started a three-year
occupation off Chili in order to collect accurate time series of surface forcing and upper ocean
variability.

The Upper Ocean Processes (UOP) Group at WHOI deployed one fully instrumented
surface mooring near 20°S 85°W in October 2000, at the western edge of the stratocumulus
cloud deck found west of Peru and Chile, to achieve a good understanding of the role of clouds
in the eastern Pacific in modulating atmosphere-ocean coupling. Data from the moorings will
improve our understanding of the air-sea fluxes and be used to examine the processes that
control sea surface temperature in the cold tongue/intertropical convergence zone (ITCZ) and in
the stratus deck region.

The first surface mooring (Stratus 1) was deployed in October 2000 by the UOP group and
replaced by a second mooring one year later with amost identical instrumentation (Stratus 2).
Stratus 1 was equipped with meteorological instrumentation, including two Improved
METeorological (IMET) systems. The mooring aso carried Vector Measuring Current Meters
(VMCMy), single point temperature, salinity and conductivity recorders, and an acoustic Doppler
Current Profiler (ADCP) to monitor the upper 500m of the ocean. In addition to the traditional
instruments, several other experimental instruments were deployed with limited success on the
mooring line including an acoustic current meter, bio-optical instrumentation packages, and an
acoustic rain gauge.

This report describes the instrumentation deployed on the first Stratus surface mooring
(Stratus 1 mooring) from October 2000 to October 2001, along with information on the
processing and quality control of the returned data. It presents a detailed overview of the
meteorological and physical oceanographic data including time series plots, statistics and spectra
of key parameters. It also presents the estimated air-sea heat, moisture and momentum fluxes.
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Section 1: Introduction

The sea surface temperature field in the eastern tropical Pacific, with its strong asymmetry
about the equator, annual and interannual variability, persistent stratus clouds and links to
climate are of great interest to studies of coupled ocean-atmosphere variability and of the ocean’s
impact on climate. Under CLIVAR, we began a program entitled Long-Term Evolution and
Coupling of the Boundary Layers in the Stratus Deck Regions (STRATUS). The focus of this
study was on coupled ocean and atmosphere variability under the stratus clouds off northern
Chile.

From October 2000 through October 2001, the Stratus 1 surface mooring located at
approximately 20°S 85°W was equipped to collect accurate time series of surface meteorology
and upper ocean temperature, velocity, and salinity structure (Figure 1-1). The mooring site was
chosen because of the characteristic of the persistent stratus decks to the west of Peru and Chile
which exert a strong cooling influence on the local and global heat balance and, further, play a
role in maintaining the equatorial asymmetry of sea surface temperature and winds in the eastern
tropical Pacific.

Figure 1-1. STRATUS eastern tropical Pacific mooring location
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The mooring carried two complete sets of meteorological sensors (wind speed and
direction, air and sea temperature, incoming short-wave radiation and incoming long-wave
radiation, humidity, barometric pressure, precipitation). Improved METeorological (IMET;
Hosom et al., 1995) systems were used in redundancy to ensure that a complete and accurate
time series of all meteorological variables would be collected. The mooring also carried
oceanographic sensors (temperature, salinity, conductivity and current) placed in the top 500 m
of the ocean to monitor the upper ocean variability.

The meteorological data permit the accurate calculation of the heat, freshwater, and
momentum fluxes across the air-sea interface via the bulk formulae using techniques perfected in
the Tropical Ocean-Global Atmosphere Coupled Ocean Atmosphere Response Experiment
(TOGA COARE; Fairall et a., 1996a). Data from the mooring will improve our understanding
of the air-sea fluxesin the eastern tropical Pacific and the processes that control sea surface
temperature.

The mooring was deployed in October 2000 from the R/ Melville and recovered in
October 2001 and another mooring with almost identical instrumentation was deployed in its
place near 20°S 85°W onboard the R/V R H Brown. A detailed description of the field work can
be found in the cruise reports (Lucas et al., 2001, Vallée et al., 2002). Meteorological and
hydrographic data were collected in order to observe the temporal evolution of the vertical
structure of the upper 500 m of the ocean, and to document and quantify the local coupling of the
atmosphere and ocean in this region.

This report documents the meteorological and oceanographic data returned from the
Stratus 1 surface mooring. Section 2 describes the instrumentation used on the mooring. Section
3 describes the data processes and quality control. Time series plots, statistics and spectra of key
parameters are in Section 4.

The specific times and locations are given below in Table 1-1.

Table 1-1 Stratus 1 mooring deployment/r ecovery information

Mooring Deployment Date Recovery Date Anchor

and Time and Time Position
WHOI 7 October 2000 17 October 2001 20°07.409'S
Stratus 1 @20:43UTC @12:39UTC 85°08.432'W
Discus Buoy

WHOI Mooring Reference No. 1052
Water depth: 4440 m




Section 2: Instrumentation

Details about each type of instrument on the Stratus 1 mooring are provided below
beginning with the meteorological instrumentation and then followed by the subsurface
instrumentation. Specific information about the instrumentation deployed during Stratus 1 can be
foundin Lucas, et al., 2001 and in Vallée, et al., 2002.

The top photo view on the Stratus 1 buoy is shown in Figure 2-1-1. The instrumented buoy
is shown in Figure 2-1-2. The mooring diagram is shown in Figure 2-1-3. A side view of the
buoy, showing the buoy tower and bridle for mooring is shown in Figure 2-1-4.

2-1. Meteorological I nstrumentation

The WHOI discus buoy was outfitted with two separate and redundant meteorol ogical
packages. The meteorological data recording system called IMET (Improved METeorological
measurements) logged data from eight meteorological sensors sampling at one minute intervals;
this data was averaged into one hour intervals and telemetered via Service Argos. There were
two IMET systems on the Stratus 1 surface mooring, and a separate relative humidity and air
temperature instrument which made an independent measurement and recorded the data
internally.

Figure 2-1-1 shows the mounting locations and orientations of the instruments on the
Stratus 1 mooring. Table 2-1-1 lists the buoy-mounted instrumentation on the Stratus 1. The
information listed includes sensor identification and sensor height with respect to the water line.
The height of all buoy-mounted instrumentation is referenced to the buoy deck and the water
line.



Figure 2-1-1: Stratus 1 Buoy IMET Towertop.




Figure 2-1-2: Photo of the Stratus 1 Instrumented Buoy




Figure 2-1-3: Schematic of Stratus1 Mooring.
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Figure 2-1-4: Tower Top Instrumentation on Stratus 1 Buoy.
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Table 2-1-1: Stratus 1 discus buoy-mounted sensorsinformation and corresponding elevations.

Elevation Elevation
Parameter Sensor 1D relative to rel ativeto Meaerement
buoy deck water line location
(meters) (meters)
IMET system 1 Logger 117
Wind speed WND 104 2.96 3.39 Prop axis
Wind direction WND 104 2.96 3.39 Prop axis
Air Temperature TMP 102 161 2.04 End of probe
Relative Humidity HRH 108 231 274 Tip of sensor
Barometric Pressure BPR 107 2.36 2.79 Center of port
Precipitation PRC 102 271 3.14 Top of funnel
Long-wave Radiation LWR 101 3.15 3.48 Base of dome
Short-wave Radiation SWR 111 3.14 347 Base of dome
Sea Temperature SST 003 -1.00 -0.57 End of probe
IMET system 2 Logger 226
Wind speed WND 105 2.89 3.32 Prop axis
Wind direction WND 105 2.89 3.32 Prop axis
Air Temperature TMP 104 1.59 2.02 End of probe
Relative Humidity HRH 110 2.34 277 Tip of sensor
Barometric Pressure BPR 106 240 2.83 Center of port
Precipitation PRC 101 274 317 Top of funnel
Long-wave Radiation LWR 106 3.15 3.58 Base of dome
Short-wave Radiation  SWR 109 314 3.57 Base of dome
Sea Temperature SST 104 -1.00 -0.57 End of probe
Stand-alone .
Relative Humidity HRH 204 2.32 2.75 Tip of sensor
Tidbit Air Temp 358910 1.77 2.20 I(')id o TMP
SBE-39 Floating SST 0072 surface 0
Tidbit Sea Temp 358909 -1.00 -0.57 Near SST 003
SeaCat Conductivity/ 1 g7g -1.00 057  Centerof cell
Temperature




The meteorological instruments are described in detail below.

2-1-a. Improved METeorological System

The IMET systems for the Stratus 1 discus buoy consisted of eight IMET sensor modules
and one Argos transmitter module to telemeter data via satellite back to WHOI through Service
Argos. Table 2-1-2 details IMET sensor specifications. The modules measure the following
parameters:

3 relative humidity with temperature
4  barometric pressure
5 air temperature (R. M. Young passive shield)
6 seasurfacetemperature
7  precipitation
8 wind speed and direction
9 short-wave radiation
10 long-wave radiation
All IMET modules for the Stratus experiment were modified for lower power
consumption so that a non-rechargeable alkaline battery pack could be used.

The IMET system including the data logger and modules are powered off a common bank of
batteries.

The data logger for the system was based on an Onset Computer Corp. model 7 Tattletale
computer with hard drive, aso configured and programmed with power conservation in mind.
An associated interface board ties the model 7 viaindividual power and RS-485 communications
lines to each of the nine IMET modules, including the PTT module.

2-1-b. Onset StowAway TidbiT Temperature Loggers

The Tidbit temperature logger is a completely sealed, small (~3 cm diameter) medallion
like temperature logger. It is depth rated to approximately 300 m (1,000 ft.) and has an operating
temperature range of -20° to +50°C. The tidbit uses optical communication via an Optical Base
Station that plugs into a standard PC serial port. One Tidbit was placed on the IMET system #2
air temperature module, co-located with the sensor. The sampling rate was set to once every 30
minutes.

2-1-c. ASIMET relative humidity with temperature instrument

An ASIMET relative humidity module was mounted to provide a third humidity and air
temperature measurement on the Stratus 1 discus buoy. The ASIMET module is an improved
version of the IMET module developed for the World Ocean Circulation Experiment (WOCE)
program. ASIMET modules are self-powered and internally recording. The relative humidity
measurement is made with a Rotronic MP-101A sensor. The sensor is packaged in a custom
housing, which is more rugged than the standard housing and with high pressure water seals. The
humidity temperature probe provides analog outputs of 0 voltsto 1.0 volt DC for humidity (1 to
100% rh): and 0 to 1.0 volts DC for temperature (-40° to +60°C). These signals are amplified and
converted to digital in the module. One set of measurements are made every minute and
calibrated via a fourth order polynomial for rh% and degrees C. The probe is placed inside a
standard Y oung multi-plate radiation shield. The height of the buoy mounted instrumentation can
be found in Table 2-1-1.



Table 2-1-2: IMET sensor specifications.

Parameter Sensor Nominal
Accuracy
Air temperature Platinum Resistance Thermometer +/-.25°C
Sea temperature Platinum Resistance Thermometer +/-.005°C
Relative humidity Rotronic MP-100F +/- 3%
Barometric pressure Quartz crystal; AIR S2B +/- .5 mbar

Wind speed and wind R.M. Y oung model 5103 Wind -3% (speed); +/-

direction Monitor 1.5° (dir)

Short-wave radiation Temperature Compensated +/- 3%
Thermopile; Eppley PSP

Long-wave radiation Pyrometer; Eppley PIR +/- 10%

Precipitation R.M. Young Model 50201 Self- +/- 10%

siphoning rain gauge

The logger pollsal IMET modules at one-minute intervals (takes several seconds) and then goes to low-power sleep
mode for the rest of the minute. Data are written to disk once per hour. The logger aso monitors main battery and
aspirated temperature battery voltage.

The air temperature, sea surface temperature, barometric pressure, relative humidity, long-wave radiation and
precipitation modules take a sample once per minute and then go to low-power sleep mode for the rest of the minute.

The short-wave radiation modul e takes a sample every 10 seconds and produces a running, one-minute average of
the six most recent samples. It goesto low-power sleep mode between ten-second samples.

The vane on the wind module is sampled at one-second intervals and averaged over 15 seconds. The compassis
sampled every 15 seconds and the wind speed is averaged every 15 seconds. East and north current components are
computed every 15 seconds.

Once aminute, the logger stores east and north components that are an average of the most recent four 15-second
averages. In addition, average speed from four 15 second averages is stored, along with the maximum and
minimum speed during the previous minute, average vane computed from four 15-second averages, and the most
recent compass reading.

In addition, an IMET Argos PTT moduleis set for three IDs and transmits via satellite the most recent six hours of

one-hour averages from the IMET modules. At the start of each hour, the previous hour’ s data are averaged and sent
to the PTT, bumping the oldest hour’ s data out of the data buffer.
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2-2. Sub-surface I nstrumentation

The measured water line for the Stratus 1 buoy was 0.43 meters below the buoy deck.
Figure 2-1-4 illustrates the location of the subsurface sensors attached to the discus bridle of the
Stratus 1 buoy. The depths of the instruments, parameters sampled, and sampling rates are
summarized in Table 2-2-1. Whenever possible, instruments were protected from being fouled
by fishing lines by “trawl-guards’ designed and fabricated at WHOI. These guards are meant to
keep lines from hanging up on the in-line instruments. Table 2-2-2 lists the Stratus 1 subsurface
instrumentation and the depths where they were deployed.

2-2-a. Floating SST Sensor

A SeaBird SBE-39 was placed in a floating holder (a buoyant block of synthetic foam
sliding up and down along 3 stainless steal guide rods) in order to sample the sea temperature as
close as possible to the sea surface. Visual check of this sensor after deployment indicated a
depth of ~2 cm. The Seabird model SBE-39 is a small, light weight, durable and reliable
temperature logger that was set to record the sea surface temperature every 5 minutes.

2-2-b. Sub-surface Argos Transmitter

An NACLS, Inc. Subsurface Mooring Monitor (SMM) was mounted upside down on the
bridle of the discus buoy. This was a backup recovery aid in the event that the mooring parted
and the buoy flipped upside down.

2-2-c. SEACAT Conductivity and Temperature Recorders

There were five, Sea-Bird, Inc., SEACAT conductivity and temperature recorders
deployed on the WHOI surface mooring. The model SBE 16 SEACAT was designed to measure
and record temperature and conductivity at high levels of accuracy while deployed in either a
fixed or moored application. Powered by internal batteries, a SEACAT is capable of recording
data for periods of a year or more. Data are acquired at intervals set by the user. An internal
back-up battery supports memory and the real-time clock in the event of failure or exhaustion of
the main battery supply. The SEACAT is capable of storing atotal of 260,821samples. A sample
rate of 225 seconds was used on the Stratus 1 SEACATS. The shallowest SEACAT was mounted
directly to the bridle the discus buoy. The others were mounted on in-line tension bars and
deployed at various depths throughout the moorings. The conductivity cell is protected from
biofouling by the placement of anti-foulant cylinders at each end of the conductivity cell tube.

2-2-d. MicroCAT Conductivity and Temperature Recorder

The MicroCAT, model SBE37, is a high-accuracy conductivity and temperature recorder
with internal battery and memory. It is designed for long-term mooring deployments and
includes a standard serial interface to communicate with a PC. Its recorded data are stored in
non-volatile FLASH memory. The temperature range is -5° to +35°C, and the conductivity range
is 0 to 6 Siemens/meter. The pressure housing is made of titanium and is rated for 7,000 meters.
The MicroCAT is capable of storing 419,430 samples of temperature, conductivity and time.
The sampling interval of the Stratus 1 MicroCATs was 225 seconds (3.75 minutes). These
instruments were mounted on in-line tension bars and deployed at various depths throughout the
moorings. The conductivity cell is protected from biofouling by the placement of anti-foulant
cylinders at each end of the conductivity cell tube.
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2-2-e. Brancker Temperature Recorders

The Brancker temperature recorders are self-recording, single-point temperature loggers.
The operating temperature range for this instrument is 2° to 34°C. It has internal battery and
logging, with the capability of storing 24,000 samples in one deployment. A PC is used to
communicate with the Brancker via serial cable for instrument set-up and data download. The
Stratus 1 Branckers were set to record data every 30 minutes. A total of 13 Brancker temperature
loggers were deployed on the discus mooring.

2-2-f. SBE-39 Temperature Recorder

The Seabird model SBE-39 is a small, light weight, durable and reliable temperature
logger that was set to record temperature every 5 minutes.

2-2-g. Onset StowAway TidbiT Temperature Loggers

The Tidbit temperature logger is a completely sealed, small (~3 cm diameter) medallion
like temperature logger. It is depth rated to approximately 300 m (1,000 ft.) and has an operating
temperature range of -20° to +50°C. The tidbit uses optical communication via an Optical Base
Station that plugs into a standard PC serial port. A total of three Tidbit temperature loggers were
placed on the Stratus 1 mooring line. In order to make a reliable comparison of performance all
of the Tidbits were co-located with other temperature recording devices: one on the (IMET
system #1) 1 m Sea Surface temperature module, one on the 10 m VMCM temperature sensor,
and one on the 16 m SEACAT loadbar. The sampling rate was set to once every 30 minutes.

2-2-h. Vector Measuring Current Meters

The VMCM had two orthogonal cosine response propeller sensors that measured the
components of horizontal current velocity parallel to the axles of the two-propeller sensors. The
orientation of the instrument relative to magnetic north was determined by a flux gate compass.
East and north components of velocity were computed continuously, averaged and then stored on
cassette magnetic tape. Temperature was also recorded using a thermistor mounted in a fast
response pod, which was mounted on the top end cap of the VMCM. The VMCMs were set to
record every 7.50 minutes.

A new generation VMCM was deployed at the 350m depth on the Stratus 1 discus buoy.
It has al of the same components as the previous original VMCM but has new electronics and a
flash card memory module to replace the tape drive. It can store up to 40 Mb of data on the flash
card therefore the sampling rate was set to once per minute.

A total of 3 VMCMs were deployed on the surface mooring. All of the VMCMs had a
compass spin performed at the dock in Aricato verify that the instrument was not damaged in
transport.

2-2-i. Falmouth Scientific Instruments Current M eter

The 3D ACM, s/n 1325a, is an acoustic current meter from Falmouth Scientific
Instruments, Inc. (FSI). The FSI current meter uses four perpendicularly oriented transducers to
extract a single-point measurement. In addition to current values of north, east and up, the
instrument also records temperature, tilt, direction and time. The instrument was set to record
once every 30 minutes with an averaging interval of 450 seconds.
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2-2-j. RDI Acoustic Doppler Current Profiler

An RD Instruments (RDI) Workhorse Acoustic Doppler Current Profiler (ADCP, Model
WHS300-1, Serial number TSN-1218) was mounted at 135 m looking upwards on the mooring
line. The RDI ADCP measures a profile of horizontal current velocities. The data sampling rates
and parameters are user-definable, and were set as follows: 12 velocity bins of 10 m each,
starting 11.98 m from the transducers and ending at 131.98 m; 30 pings per ensemble with one
ping per second; and a 30-minute interval between the start of ensembles. These settings
provided an approximately 400-day deployment lifetime on the internal battery. These particular
settings are only available using the Windows version of the RDI deployment software (the DOS
version limits you to 8 m bins). The time between pings must be set manually in the text-based
deployment file before it is sent to the instrument.

2-2-k. Chlorophyll Absorption Meter

A WETLabs Chlorophyll Absorption Meter (CHLAM), model number 9510005, serial
number ACHO0126, was placed on the STRATUS 1 discus mooring at a depth of 25 meters. The
CHLAM was mounted on a frame that fits inside a standard VM CM cage. A SeaBird pump drew
water through a mesh filter and the CHLAM, and past two brominating canisters arranged end-
to-end. Between samples, the bromide diffused through the system to reduce biofouling. Data
were stored in a WET Labs MPAK data logger, serial number PK-023. The CHLAM/MPAK
recorded a reference and signal from three optical wavelengths (650, 676 and 712 nanometers)
and an internal temperature. The sample interval rate is 2 hours. At each sample, the pump is
turned on for 10 seconds to flush the system. Ten seconds of sampling follow, with the 10-
second average of signal and reference stored in the MPAK. The complete system was powered
by two, 10 D-cell alkaline battery packs and should last for approximately 400 days.

2-2-1. Acoustic Rain Gauge

An acoustic rain gauge from Jeff Nystuen at the Applied Physics Laboratory at the
University of Washington was deployed on the Stratus 1 mooring at a depth of 23.5 meters. This
instrument uses a hydrophone and listens to ambient noise. Rain falling on the sea surface
produces noise at certain frequencies, and these frequencies are sampled by this instrument.
Data from the IMET rain gauges on the surface buoy as well as from the acoustic rain gauge can
be compared.

2-2-m. Acoustic Release

On the STRATUS mooring there are 2 different acoustic releases. A primary release used
for recovery of the mooring, and a secondary release used for test purposes. The primary release
is an EG&G model 322 acoustic release. The test release is a Burn-wire Acoustic Release
Transponder modified to be motor driven with a WHOI fabricated load bar.

The test release has a titanium strength bar which was designed at WHOI. It was cut
using a computer driven water jet. The strength member is rated for 60,000 Ibs. This is being
tested for the first time because the release mechanism on the BACS release can not handle the
load it sees during the launch of the mooring and anchor drop. There is a piece of 1/2” trawler
chain inside 2 " tygon tubing in parallel with the release. If the release fails or the strength
member fails, the mooring will be held by the trawler chain. Then the recovery will be done with
the primary release.
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Table 2-2-1: Stratus 1 subsurface sensorsinformation.

I nstrumentation mounted on the mooring line of the 3 meter discus buoy

Instrument Seria Depth from Sampling Parameter(s)
Number Mooring Rate/Recor Measured
Diagram d Rate
(meters)
SeaCat 1875 371 3.75 Min. Temperature
1873 7 o
2305 16 Conductivity
1880 30
Brancker 3763 13 30 Min. Temperature
4491 35
T-Pod 3301 475
3831 55
3830 70
3764 775
3258 92,5
3263 100
4495 115
4485 145
4228 160
3836 220
3259 250
VMCM VMO038 10 7.5 Min. East and North
VMO037 20 Currents
New Gen VMO1 350
VMCM
MicroCat 1328 40 3.75 Min. Temperature
1326 62.5 Conductivity
1305 85
1330 130
1306 190
SBE-39 0050 25 (on Chlam) 5 Min. Temperature
0048 349
0049 350
Chlam ACHO0126 25 2 Hours Chlorophyll-a
ADCP TSN-1218 135 30 Min. East and North
Currents
FSI 1325A 235 30 Min. East and North
Currents
Tidbit 358909 (on bridle) 30 Mins Temperature
358907 10 (on VMCM)
358908 16 (on SeaCat)
Acoustic Fo 235 Precipitation
Rain Gauge
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Table 2-2-2. Stratus 1 Subsurface I nstrumentation.

Depth (m) Sensors
0.02 MicroCAT-39
1 SEACAT-1878
3.71 SEACAT-1875
7 SEACAT-1873
10 VM-038
13 TPOD-3763
16 SEACAT-2325
20 VM-037
235 RainGauge-F9
25 CHLAM-ACHO0126
25 MicroCAT-0050
30 SEACAT-1880
35 TPOD-4491
40 MicroCAT-1328
475 TPOD-3301
55 TPOD-3831
62.5 MicroCAT-1326
70 TPOD-3830
775 TPOD-3764
85 MicroCAT-1305
92.5 TPOD-3258
100 TPOD-3263
115 TPOD-4495
130 MicroCAT-1330
135 ADCP
145 TPOD-4485
160 TPOD-4228
190 MicroCAT-1306
220 TPOD-3836
235 FSI-1325
250 TPOD-3259
349 MicroCAT-0048
350 VM-01
450 MicroCAT-0049
Legend TPOD-#### = Brancker Temperature Recorder

SEACAT #### = SEACAT Conductivity and Temperature Recorder
VM-### = Vector Measuring Current Meter

MicroCAT-### = MicroCAT Conductivity and Temperature Recorder
ADCP = Acoustic Doppler Current Profiler

FSI-## = Falmouth Scientific Instruments Current Meter
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Section 3: Data Processing and Return

This section presents a summary of the data return rates and data processing and quality
control. It is broken down into two subsections. The first will cover the surface meteorological
data and air-seafluxes. The second will cover all the subsurface data.

3-1. Meteorological data processing.

The two Improved METeorological (IMET) and a Stand-Alone ASIMET were deployed
on the 3 m diameter discus buoy. Theraw IMET and ASIMET data were processed using IDL
programming language scripts developed by WHOI UOP. Pre-deployment calibrations were
applied to each instrument initially and post-deployment calibrations were only used when they
yielded better agreement during inter-comparisons with other sensors. All calibrated data were
converted to EPIC-compliant Net CDF files (Denbo and Zhu, 1993; Rew et al. 1993). The raw
wind directions were rotated by 7.51° to correct for the local magnetic deviation. After initial
processing, qualitative checks were performed on the data to identify sensor problems such as
spikes, drop-outs or gross errors.

The meteorological data from both systems IMET are evaluated by using the redundant
measurements and pre-deployment/post-deployment calibrations.

Except for the wind module of IMET logger 1, meteorological IMET variables |ook good
and subsequent intercomparisons with shipboard instruments revealed a good agreement. No
empirical adjustments have been applied at this time to the data to improve agreement among
these collocated sensors. Around 20 February 2001, the IMET logger 1 wind direction sensor
failed when the vane froze in position. After 02/20/01, logger 1 direction data had been replaced
by logger 2 direction data.

The Stand-Alone ASIMET Air Temperature/Relative Humidity dropped one hour of data
before 7 october 2000. The unit stopped recording after 14:00 UTC on 24 august 2001 when the
flashcard memory was filled.

This section summarizes the evaluation of meteorological parameters from IMET systems.
Statistics, plots and air-sea fluxes shown in Section 4 are derived from IMET meteorol ogical
time series data for both systems and each variable.

Written summaries for the Stratus 1 buoy and its deployment, describing the condition of
the sensors and an evaluation of the data quality follow in Table 3-1-1. Datareturn for the
meteorological instrumentsis provided in Table 3-1-2 showing the percentage of time that a
particular instrument was returning good data for the deployment.

Section 3 -3 includes a description of the processing used to calculate a time series of the
air-sea exchange of fresh water, heat and momentum from the IMET time series.
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Table 3-1-1: Stratus 1 Meteorological Summary

Data Return
IMET data loggers provided a complete data set.
Stand-Alone ASIMET provided air temperature and relative humidity data.

Wind Speed and Wind Direction

The wind speed for both systems is similar with a mean difference of only .018 m si
Around 20 February 2001, the IMET logger 1 wind direction failed due to a frozen vane.
The IMET logger 2 looks good.

Prior to 02/07/01, the mean difference between IMET logger 1 and IMET logger 2
direction is-3.07 degrees with a standard deviation difference of 2.3 degrees.

Air Temperature

Mean difference between IMET logger 1 and logger 2 is-.0017°C with a standard
Deviation of .011°C. These statistics show good agreement between the two loggers.
The stand alone ASIMET stopped recording after 14:00 UTC on 24 August 2001 due

to the full flashcard. Prior to 08/24/01, ASIMET is higher than both systems by 0.10°C,
0.088°C for logger 1 and logger 2 respectively.

Considering that the ASIMET sensor islocated at .71m above the logger 1 sensor, and at
.73m above the logger 2 sensor on the buoy, the air temperature measurements indicate
good agreement.

Relative Humidity
Both IMET logger 1 and logger 2 have full record and look good. Mean difference
between logger 1 and logger 2 is0.75 % with a standard deviation of the difference of
.01%. ASIMET looks good. Prior to 08/24/01, ASIMET islower than IMET
logger 1 and logger 2 by a mean difference of 5.97% and 5.3% respectively.

Specific Humidity
IMET logger 1 and logger 2 have a mean difference of .09 g/kg.

Barometric Pressure
Both logger 1 and logger 2 data look good with only a mean difference of .3 mbar for the
entire deployment, a difference of .65 mbar at deployment (7 October 2000) and 0.5 mbar
difference at recovery (17 October 2001).

Short-wave Radiation
Both systems look good. Logger 2 is 1.44% higher than Logger 1.

L ong-wave Radiation
Logger 1 and Logger2 have good data for the entire deployment. Both the mean and

standard deviation of the differences are less than 3 W m™2, indicati ng good agreement.
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Table 3-1-2: Datareturn in percentage of meteorological instruments.

Sensors Rate
IMET system 1

Wind speed 37
Wind direction 37
Air temperature 100
Relative Humidity 100
Barometric Pressure 100
Precipitation 100
Long-wave radiation 100
Short-wave radiation 100
Sea surface temperature 100
Vane average 37
Compass 100
IMET system 2

Wind speed 100
Wind direction 100
Air temperature 100
Relative Humidity 100
Barometric Pressure 100
Precipitation 100
Long-wave radiation 100
Short-wave radiation 100
Sea surface temperature 100
Vane average 100
Compass 100
Stand-alone

ASIMET relative humidity 86
Tidbit Air temperature 100
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3-2. Subsurface I nstrumentation

The raw MicroCATSs (SBE-37) and SBE-39 data were processed using the WHOI UOP
software package (Prada, 1992). The RDI workhorse ADCP was processed using the RDI
WinADCP software package. The ADCP data s treated as velocity time series from the center
depth of the sampling bins: 23, 33, 43, 53, 63, 73, 83, 93, 103, 113, 123 and 133. The SeaBird
SEACAT (SBE-16) raw data were processed initially with SBE SeaSoft software to apply the
pre-deployment calibrations, and then converted to EPIC using the UOP software package. The
other raw subsurface data were processed and converted into EPIC-compliant Net CDF files,
using available pre-deployment calibrations, with IDL and C-code programs developed by UOP.
The raw current vectors were rotated by 7.51° to correct for the local magnetic deviation. After
initial processing, qualitative checks were performed on the data to identify sensor problems
such as spikes, drop-outs or gross errors.

The FSI did not operated correctly. There were only two samplesin thefile: one at the
beginning of the deployment period and one just prior to the dump. The Acoustic Rain Gauge
(ARG) was dumped at-sea by copying files off the Compact Flash card. The instrument never
woke up and started to sample as it was programmed to do. The CHLAM did not work because
both battery housings had |eaked.

SeaCATS ¢/n 1873 and s/n 1875 stopped before the recovery day due to battery depletion
(both reported low or dead batteries upon recovery).

A summary of the data return with brief preliminary processing notes for each subsurface
instrument is provided in a separate table. (Tables 3-2-1). No empirical adjustments have been
applied at thistime to the data to improve agreement among these collocated sensors. The
processing notes indicate “full record” if the instrument provided a complete time series and
appears to have functioned within specification. If the record ended short, date of the last record
isnoted in the Table. Also it is noted if one of the measurement parameters from a specific
instrument appears to have malfunctioned. For example, the RDI ADCP performed poorly,
intermittently failing to record velocities at 23 and 33 m. Tables 3-2-2 and 3-2-3 present the data
return in percentage for temperature, salinity, conductivity and velocity.
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Table 3-2-1. Stratus 1 Subsurface Data Return.

Depth (m) Type Sensors S/N prelim processing notes
Sur f ace seabird sbe- 39 72 full record
1 seabird seacat 1878 full record
3.71 seabird seacat 1875 data stopped after 15 sept.Ol1 for tenp., salinity, and cond.
7 seabird seacat 1873 data stopped after 12 aug.0l for tenp. Record failed on the
13 dec 00 for cond. and sal.
10 vntm vm 38 full record
13 br ancker t pod 3763 full record
16 seabird seacat 2325 full record
20 vntm vm 37 full record
23.5 rain gauge rain gauge F9 no data, did not record
25 wet | ab chl am ACHO0126 no data, did not record
25 seabird sbe- 39 50 full record
30 seabird seacat 1880 full record
35 br ancker t pod 4491 full record
40 m crocat ncat 1328 full record
47.5 br ancker t pod 3301 full record
55 br ancker t pod 3831 full record
62.5 m crocat ncat 1326 full record for tenp. Data stopped after 7 august
forsal and cond.
70 br ancker t pod 3830 full record
77.5 br ancker t pod 3764 full record
85 m crocat ntat 1305 full record
92.5 br ancker t pod 3258 full record
100 br ancker t pod 3263 no data, did not record
115 br ancker t pod 4495 full record
130 m crocat ncat 1330 full record
135 rdi adcp 23 Al most full record with intermittent stops during all depl oyment
rdi adcp 33 Al most full record with intermittent stops during all depl oyment
rdi adcp 43 full record
rdi adcp 53 full record
rdi adcp 63 full record
rdi adcp 73 full record
rdi adcp 83 full record
rdi adcp 93 full record
rdi adcp 103 full record
rdi adcp 113 full record
rdi adcp 123 full record
rdi adcp 133 full record
145 brancker t pod 4485 full record
160 br ancker t pod 4228 full record
190 m crocat ntat 1306 full record
220 brancker t pod 3836 full record
235 acoustic current m fsi 1325 no data, did not record
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250
349
350
450

br ancker
seabird
vnecm

seabird

t pod
sbe- 39
vm

sbhe- 39

3259 ful
48 full
1 ful
49 full

record
record
record

record

Table 3-2-2. Stratus 1 Temperature, Salinity and Conductivity Datareturn in percentage.

Depth (m)
Surface
1
371
7
10
13
16
20
235
25
25
30
35
40
47.5
55
62.5
70
77.5
85
925
100
115
130
135
145
160
190
220
235
250
349
450

Type
seabird
seabird
seabird
seabird
vmem

brancker
seabird
vmem
rain gauge
wetlab
seabird
seabird
brancker
microcat
brancker
brancker
microcat
brancker
brancker
microcat
brancker
brancker
brancker
microcat
rdi
brancker
brancker
microcat
brancker
acoustic current meter
brancker
seabird
seabird

Sensors
she-39
seacat
seacat
seacat

vm
tpod
seacat
vm
rain gauge
chlam
sbe-39
seacat
tpod
mcat
tpod
tpod
mcat
tpod
tpod
mcat
tpod
tpod
tpod
mcat
adcp
tpod
tpod
mcat
tpod
fsi
tpod
sbe-39
she-39

ACHO0126
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SN
72
1878
1875
1873
38
3763
2325
37
F9

50
1880
4491
1328
3301
3831
1326
3830
3764
1305
3258
3263
4495
1330

4485
4228
1306
3836
1325
3259
48
49

Temp. rates
100
100
90.9
81.5
100
100
100
100

100
100
100
100
100
100
100
100
100
100
100

100
100
100
100
100
100
100

100
100
100

Sal. and Cond. rates

100
90.9
185

185

100

100

80.4

100

100

100



Table 3-2-3. Stratus 1 Velocity Data return in percentage.

Depth (m) Type Sensors SN Velocity rates
10 vmem vm 38 100
20 vmecm vm 37 100
135 rdi adcp 23 40

rdi adcp 33 40
rdi adcp 43 99
rdi adcp 53 100
rdi adcp 63 100
rdi adcp 73 100
rdi adcp 83 100
rdi adcp 93 100
rdi adcp 103 100
rdi adcp 113 100
rdi adcp 123 100
rdi adcp 133 100
350 vmem vm 1 100

3-3. Freshwater, Heat and Momentum Fluxes

Air-sea heat and momentum fluxes were estimated from the meteorological and near-
surface oceanographic measurements using a bulk flux algorithm developed for TOGA COARE
(Fairal et al., 1996a). This agorithm is based on methods developed by Liu et al. (1979) with
modifications for, but not limited to, low wind regimes. The algorithm also includes cool skin
and warm layer adjustments based on Fairall et al. (1996b) to account for the cooling of the
upper few millimeters of the ocean due to sensible, latent and outgoing long-wave radiation heat
loss and warming of the upper few meters of the ocean due to absorption of short-wave radiation.
The cool skin was employed in the calculations presented here but not the warm layer
component of the algorithm. The wind speed relative to the sea surface used in the algorithm was
calculated using the observed wind speed vectors and subtracting the near surface current record
from the mooring.

Since only incoming short- and long-wave radiation were measured, the outgoing
components of radiation were estimated using the TOGA COARE Bulk Flux Algorithm. This
algorithm assumes a constant surface short-wave albedo. Outgoing long-wave radiation was
estimated as eaT* where € is the emissivity of the sea surface (¢ = 0.97), o is the Stefan-
Boltzmann constant and T is the sea surface skin temperature in °K. The skin temperature from
the cool skin adjustment was used as the sea surface temperature, since the outgoing long-wave
radiation is dependent on the interfacial temperature which may be quite different from the
shallowest temperature measurement.
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Section 4: Stratus 1 Statistics and Plots

Statistics of the meteorological measurements and estimated heat, momentum and
freshwater fluxes for the 12 month long experiment are presented in Table 4-1 for Stratus. The
table contains the mean, standard deviation, minimum and maximum of the meteorol ogical
measurements and fluxes. Meteorological observations are presented next followed by
precipitation, heat and flux time series, contours of subsurface temperatures, velocity stick plots
with current speed overlaid, progressive vector diagrams and auto spectra for meteorol ogical,
flux, temperature and velocity variables.

For Temperature plots, the Seabirds s/n 1875 and s/n 1873 and the Brancker s/n 3263 are
not shown due to their deficient records. The ADCP at 23 and 33 m with bad records (shown in
Figures 4-67 and 4-68), are not plotted in the autospectra of velocity and mean profiles plots. We
chose the best available data record of IMET (Logger 2) to represent the meteorological and flux
autospectra. Band averaging was used in each of the auto spectra plots and the 95% confidence
limits are shown. Thefirst 5 frequencies were averaged over 3 bands and the number of bands
averaged was doubled every 10 frequencies thereafter (i.e., frequencies 6-15 were averaged over
6 bands, frequencies 16-25 were averaged over 12 bands, frequencies 26-35 were averaged over
24 bands, etc..). See the following table for the page numbers of the different plots.

Tabledata Section-Paget Page #
Statistics for 12 months 4-1 26

Plot type Section-Figures# Page #
Total Meteorological Time Series plots (system 1) 4-1 25
Hourly Met. Time series by month period (system 1) 4-2-4-14 26- 38
Total Heat and Momentum Flux Plots (system 1) 4-15 39
Hourly Flux Time Series by month period (system 1) 4-16 - 4-28 40 - 52
Total Meteorological Time Series plots (system 2) 4-29 53
Hourly Met. Time series by month period (system 2) 4-30—-4-42 54 - 66
Total Heat and Momentum Flux Plots (system 2) 4-43 67
Hourly Flux Time Series by month period (system 2) 4-44 —4-56 68 - 80
Hourly Time series ASIMET 4-57 81
Daily averaged Temperature 4-58 82
Temperature 2D Contours 4-59 83
Temp. Contours by 2-month time period 4-60 — 4-65 84 -89
Salinity Plots 4-66 90

Total Hourly averaged East Vel acity 4-67 91

Total Hourly averaged North Velocity 4-68 92

Total Velocity Plots 4-69 93
Velocity Plots by 2-month time period 4-70 - 4-75 94 - 99
Total Progressive Vector Plots 4-76 100
Progressive Vector Plots by month period 4-77-4-79 101 - 103
Meteorological Autospectra 4-80 104

Flux Autospectra 4-81 105
Temperature Autospectra 4-82 —4-86 106 - 110
Velocity Autospectra 4-87 - 4-88 111- 112
Mean Profiles 4-89 113
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Table4-1 Statisticsand Air-Sea Flux Time Seriesfor Stratus 1. Statisticsarefor thetime period 07
October 2000 20:43 UTC to 17 October 2001 12:39 UTC.

LOGGER 1 Unit Mean Std Dev Minimum M aximum
Variable

Air Temperature °C 19.54 1.746 13.8 23.61
Relative Humidity % 76.262 6.205 52.66 99.36
East Component ms1 -4.696 3.019 -13.79 10.88
North Component ms1 -0.661 2.899 -10.36 8.78
Scalar averaged Wind Speed mst 5.962 2.072 0 11.127
Short-wave Radiation wm 2 211.767 305.075 0.6 1548.1
Long-wave Radiation wm 2 378.216 22311 313.845 504.766
Barometric Pressure mbar 1017.3 2425 1009 1024.8
Sea Temperature at 1m °C 20.388 1554 14.223 255
Specific Humidity Gkgl 10.558 1.413 6.706 15.126
Wind Direction degrees 287.149 52.66 0 350.103
Wind Stress Magnitude N m?2 0.072 4.99E-02 0 0.28
Wind Stress Direction N m?2 288.487 56.99 0 359.754
Sensible Heat Flux wm 2 -7.643 7.85 -93.738 6.637
Net Heat Flux wm 2 49.566 280.43 -334.917 910.386
Latent Heat Flux wm 2 -101.738 39.42 -313.478 -0.001
Net Short-wave radiation wm 2 199.704 279.74 0.567 1049.12
Net L ong-wave Radiation wm 2 -40.496 22.788 -160.446 58.352
LOGGER 2

Variable

Air Temperature °C 19.557 1.735 13.79 23.61
Relative Humidity % 75.506 6.194 53.25 98.46
East Component ms1 -4.94 2.436 -13.28 6.47
North Component ms1 2.739 1.923 -6.9 12.01
Scalar averaged Wind Speed mst 5.981 2.076 0 11.035
Short-wave Radiation wm 2 213.214 307.94 11 1568.1
Long-wave Radiation wm 2 378.212 20.098 319.175 504.182
Barometric Pressure mbar 1017.603 2.447 1009.4 1025.2
Sea Temperature at 1m °C 20.383 1.553 18.03 25.47
Specific Humidity Gkgl 10.467 1.404 6.763 15.047
Wind Direction degrees 290.22 54.963 0 351.08
Wind Stress Magnitude N m?2 0.075 0.051 4.20E-06 0.281
Wind Stress Direction N m 2 291.81 58.75 0.279 359.98
Sensible Heat Flux wm 2 -7.516 1774 -72.823 6.761
Net Heat Flux wm 2 47.687 284.281 -333.968 936.763
Latent Heat Flux wm 2 -105.517 40.147 -298.674 -0.473
Net Short-wave radiation wm 2 201.231 282.06 1.039 1056.87
Net L ong-wave Radiation wm 2 -40.532 20.442 -140.95 16.763
Stand-Alone ASIMET

Relative Humidity % 70.368 6.183 47.24 93.77
Air Temperature °C 19.992 1.645 154 24.42
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Figure 4-76. Progressive vectors from VMCM and ADCP current meters at selected depths.
Symbols are placed 30 days apart.
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Figure 4-77. Progressive vectors from VMCM and ADCP current meters at selected depths.

Symbols are placed 5 days apart.
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Figure 4-78. Progressive vectors from VMCM and ADCP current meters at selected depths.

Symbols are placed 5 days apart.
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Figure 4-79. Progressive vectors from VMCM and ADCP current meters at selected depths.

Symbols are placed 5 days apart.
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