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Abstract—Sensor networks are used for applications in moni-
toring harsh environments including reconnaissance and surveil-
lance of areas that may be inaccessible to humans. Such applica-
tions depend on reliable collection, distribution and delivery of
information to processing centres which may involve multi-hop
wireless networks which experience disruptions in communica-
tion and exhibit packet drops, connectivity loss and congestion.
Some of these faults are periodic, attributed to external, recurring
factors. In this paper, we study an effective way to forecast
such repetitive conditions using time-series analysis. We, further,
present an application-level, autonomic routing service that
adapts sensor readings routes to avoid areas in which failures or
congestion are expected. A prototype system of the approach is
developed based on an existing middleware solution for sensor
network management. Simulation results on the performance of
this approach are also presented.

I. INTRODUCTION

Wireless sensor networks are used to monitor environments
that might be impractical or unsafe for humans to enter. Areas
being monitored may be too large for single hop communi-
cation to the monitoring centre, requiring collection, distri-
bution and delivery of information that typically travels over
multiple, interconnected nodes to reach processing centres.
These networks may be susceptible to various communication
disruptions such as connectivity loss due to unreliable links as
well as packet drops due to noise on the wireless medium or
high-volume of traffic overloading links and network buffers.

While many of the faults can be attributed to random events,
some of them exhibit specific repeating patterns caused by
periodic events in the environment, such as day-night cycle
of nearby electrical equipment, movement of inhabitants or
vehicles in the environment generating noise or affecting
signal paths. Periodic events detected by multiple nodes in the
sensor network may result in increased traffic within a region
of the network leading to congestion and possible message
loss. Finally, in hostile environments, causes may include
adversaries that try to compromise communication.

In this paper, we study an effective way to forecast repet-
itive patterns in quality of service metrics of the network,
using time-series analysis. We present an application-level,
autonomic routing service that adapts sensor readings routes to
avoid areas that are expected to have low link-quality, while,
at the same time, avoid overload of good quality paths.

We also discuss the integration of this service in the
Sensor Fabric [1], a sensor networks middleware that takes

care of the sensor identification, discovery, access control
interoperability, data dissemination and management of sensor
nodes, developed within the International Technology Alliance
(ITA) project1. We use the extension mechanisms of Fabric
to collect real-time network information on node availability,
link packet drop rates and traffic loads in order to select
the routes that maximise the likelihood of message delivery
across the network over an unreliable multi-hop network. The
routing service maintains forecasting models for each link
performance metric and decides route allocation to active
network paths matching node requirements. Finally, we eval-
uate our approach in a simulated environment and evaluate
the effectiveness of network failure forecasting. In previous
work [2], we have applied the forecasting model to predict
node disappearance from a neighbourhood. Here, we study
more extensively how forecasting can be applied on predicting
periodic degradation of packet delivery rates on links and how
to utilise repetitive bursty traffic patterns in order to avoid
congestion due to overload of network buffers in nodes.

The rest of the paper is structured as follows: in Section II
we provide background on the ITA Sensor Fabric architecture
and operation. Section III presents the network performance
metrics we consider in the network, the route selection method
and the forecasting model we use for predicting future perfor-
mance based on past observations. In section IV, we discuss
integration with the ITA Sensor Fabric and the implementa-
tion of extensions for the adaptive, routing forecast service.
Section V, includes evaluation of our methods using simulated
scenarios. Finally, in section VI, we discuss related work from
bibliography and we conclude in section VII.

II. ITA SENSOR FABRIC MIDDLEWARE

The Fabric middleware is a network management layer that
connects assets in a sensor network to clients/actors providing
a publish/subscribe communication abstraction [3]. Sensors act
as publishers providing data feeds based on raw or processed
sensor readings. Client nodes are the consumers of this infor-
mation and can subscribe to sensor feeds to receive readings
as they become available. There can be multiple subscribers
to published messages and publishers are not aware of the
identity or address of the subscribers, i.e. there is a decoupling

1http://www.usukita.org/
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between publishers and subscribers. Clients refer to a directory
service to locate potential messages types of interest that they
subscribe to. The Fabric infrastructure matches publications
of these messages to subscriptions and sets up routes over the
multi-hop network for relaying messages to the subscriber.

Sensor networks do not, typically, form a fully connected
graph, instead they rely on multi-hop end-to-end paths. Fab-
ric supports multi-hop communication among nodes in the
network while abstracting details of their location from the
application developer, who perceives the existence of a fully
connected network. Fabric provides the abstraction of a com-
munication bus, where nodes can publish information, i.e.
sensor feed readings, that eventually reach consumers that
are subscribed to these feeds. Fabric builds an open platform
of assets, where producers of information, e.g. physical or
even virtual sensors, generate data that consumers, e.g. fusion
centres or applications, subscribe to without imposing a single
endpoint/sink in the network.

Sensor data feeds are identified using globally unique names
that consumers, i.e. subscribers, can refer to and receive
produced data. Information for available resources and assets,
as well as real-time metrics on network status are stored in a
distributed database, the Fabric Registry.

A. Fabric Components Architecture

Figure 1 presents the architectural components of Fabric.
We provide a brief description of these component introduce
the terminology used in the remaining paper.

Registry is a Gaian database2 distributed among nodes in
the network. It contains all information about the state of
the network including node IDs and physical location, neigh-
bouring sets, network assets, registered data subscriptions and
virtual circuit paths between nodes. The database is distributed
among a subset of Fabric nodes, each maintaining local data.
Information retrieval happens as a query that collects data
from nodes that eventually get propagated to the request point.
Registry communication can take place over a secondary low-
traffic link that is not subject of our mechanism as it is
considered more reliable, due to the sparsity of data on it.

Node is the network endpoint of Fabric, which runs a
Fabric Manager service. The Fabric Manager provides multi-

2http://www.alphaworks.ibm.com/tech/gaiandb

hop communication and the publish-subscribe service. Fabric
nodes are not to be confused with typical resource constrained
sensor nodes. They have the power of a netbook computer
and may have substantial battery or external power source
(photoelectric cells). They run a Java virtual machine and
maintain a part of the Fabric Registry that stores local runtime
information. Nodes are also the extension points in Fabric as
discussed later.

Platform is an adaptor that connects sensors and actors to
a Fabric node. A Platform could be the equivalent of MOTE-
like small, constrained device with low-power radio running
on batteries. In spite of being logically a separate component
to the Fabric node, a platform could also reside on the same
physical device.

Sensors are attached to platforms and are the produc-
ers/publishers of information in the network. They provide
feeds of data that actors can subscribe to in order to receive
readings updates. A sensor may encapsulate a hardware sens-
ing device or it can be a virtual device that produces informa-
tion by consuming feeds from other network endpoints, i.e. a
fusion centre.

Data Feeds are series of values produced by sensors. One
sensor may provide multiple feeds, for example two separate
resolution feeds from a camera or a feed with raw thermometer
readings as well as their averages.

Actors are either human users or software services. Similar
to sensors, they have a unique identifier that allows the
middeware to route information towards them.

Client is a virtual entity, consisting of an actor and a
platform through which it can interact with Fabric.

B. Extension Infrastructure

The Fabric core provides a minimum set of services required
to implement a distributed communication bus service, while
maintaining a small footprint and overhead in the system.
Additional capabilities are introduced as plug-ins, which are
grouped into families. A plug-in family is a user-defined
collection of extensions that share data and management
operations. Fabric allows for three types of plug-ins; Message
Plug-ins, Fablets and Services.

1) Message Plug-Ins: Nodes process messages as they are
relayed by Fabric on each hop. Message Plug-ins are modules
that can be attached to a node’s Fabric Manager to process
messages directly. There are three sub-types of Message Plug-
ins: node, task and actor – allowing filtering of messages that
are related to any of these. Their life-cycle is managed by the
Fabric Manager and they are, typically, short-lived operations,
such as policy enforcement, filtering, transformation, logging,
caching and encryption, without the ability to have side-
effects outside their controlled environment. Plug-ins can be
registered to operate either on incoming or outgoing messages
of a node allowing messages to be decrypted, processed and
encrypted again using different plug-ins.

Within the Fabric Manager, the Registry contains infor-
mation about each data-feed that flows over the bus. This
includes what tasks it is part of, where it was generated, who is



subscribed to it and the characteristics of its destination actors.
This information is available to message plug-ins as they are
applied to each individual data-feed message.

2) Fablets: Fablets are extensions that run on nodes inde-
pendently of the message flow. They run in separate threads,
managed by the Fabric Manager, and are more flexible than
Message Plug-ins allowing a broader range of operations. They
can directly access Fabric resources such as the Registry and
the publish-subscribe bus, but also other non-Fabric resources
such as storage devices or application databases. Typical
uses of Fablets include accessing non-Fabric resources and
platforms or implementation of data fusion algorithms.

3) Fabric Services: Fabric Services are the mechanism
used to implement most high-level Fabric features, a modular
approach that builds on Fabric’s core message passing func-
tions. Services are complementary to other plug-ins. They are
separate processes that work on the side and can be attached
to Fabric though the Actors mechanism to interact with the
node’s local bus. For instance, Fabric’s sensor subscription
service is implemented to provide sensor data feeds as a
Service on top of Fabric’s core features; communication bus,
the Registry and event handling.

In section IV, we describe the family of Fabric plug-ins
that have been developed for prototyping a dynamic routing
mechanism for routing of sensor data avoiding links that are
expected to have high message drop rates.

III. ADAPTATION THROUGH FORECASTING

As described in the previous section, Fabric handles propa-
gation of data from producers, i.e. sensors and fusion centres,
to consumers, i.e. fusion and analysis centres via multi-hop
routing over Fabric Nodes. Routing paths for the subscriptions
are created on-demand, when a request for a new subscription
is received or an existing one is broken. Fabric uses virtual
circuit switching, as opposed to a connectionless scheme,
to guarantee that packets are routed only through particular
trusted nodes for security concerns. Fabric Registry contains
the full catalogue of network subscriptions and their virtual
circuits. In this paper, we extend the current routing mecha-
nism of Fabric by introducing a dynamic, self-adaptive routing
service that relies on forecasting link reliability and traffic
patterns in the network.

A. Performance Metrics

We measure the performance and reliability of the network
by collecting a set of metrics from Fabric nodes. We collect
application-layer metrics for network performance that allows
the approach to be independent from the underlying network.
We account for node availability, drop rate of network links
and traffic characteristics of feed subscriptions. Based on these
attributes, we build forecasting models and periodically update
multi-hop relay routes in the Fabric Registry.

A Fabric Discovery Service runs on nodes to track availabil-
ity of directly reachable, single-hop neighbours. It should be
noted that this node relationship is not necessarily symmetric
as the fact that node A is directly reachable from node B does

not imply that the reverse is necessarily true in a wireless
network. The discovery service periodically broadcasts beacon
messages to verify a node’s existence to its neighbourhood. In
order to conserve battery power, nodes do not constantly listen
for broadcasts. Instead, they turn their radio on periodically to
receive beacon messages. This process may miss some of the
beacon messages, hence there is a threshold of consecutive
messages that can be missed before a neighbour is considered
unavailable.

Apart from availability of neighbouring nodes, the quality of
the wireless links, based on measured packet drop rate (PDR),
is also necessary to make a routing decision that maximises
the likelihood of a message being delivered to its destination.
PDR is measured by piggybacking sequence numbers on
messages for each hop. Due to virtual circuit packet switching
that Fabric uses, traversed nodes remain the same for each
subscription, thus, per-hop sequence numbers can work. The
approach has the advantage of being an inexpensive way to
measure drop rates by only appending a few extra bytes on
existing traffic, minimising energy overheads, however, there
are some drawbacks. First, there is a non-bounded delay on
metric updates. In case no messages are received by a node,
either lack of traffic or large number of dropped messages can
be inferred. However, the Fabric Discovery Service beacon
message will also be affected by a link failure thus removing
the node as a neighbour, which sets an upper bound on the
update delay.

In case of low underlying traffic, underutilised links result
in limited traffic samples weak for statistical inference. To
compensate for this, additional low frequency control mes-
sages can be introduced over low-traffic links to sample their
status. Furthermore, we introduce a confidence level on the
link quality metric. The confidence level is a real number value
in the range [0.1, 1] that quantifies the statistical confidence
on the observations for link PDR, based on the number of
packets that have been relayed over the link. The confidence is
the fraction of a minimum acceptable number of messages, c,
that need to be relayed over the link in order to have a reliable
metric on the link quality. We cap the confidence level to 1,
even when a link accommodates more than c messages.

With regard to network traffic, nodes monitor the volume
of traffic that they relay and the volume of messages they pro-
duce. Messages originating from other nodes, passing through
the intermediary are counted as relayed traffic, while messages
generated from a local platform attached to the node, are
considered as originating traffic. Originating traffic must be
sent out on the node’s links, whereas relayed traffic could be
rerouted to bypass the node in case of overload. They are both
used to train a prediction model on future message volumes.

B. Subscription Route Selection

In this section, we describe the algorithm that selects the
virtual circuits that are created for active subscriptions in the
network based on the metrics described. Fabric middleware
uses virtual circuit routing instead of connectionless datagrams
as it targets military environments, where all nodes are not



equally trusted. Routing selection is also affected by admin-
istrator policies that are enforced by a policy management
system that dictate whether some data subscriptions can only
be relayed by particular trusted nodes. This would be more
complex to do with connectionless datagram routing requiring
per hop decisions instead of a decision at the set-up time.

We construct a link graph GR = (V,ER) of the network,
where the vertices V are the network nodes, and edges ER

are the direct links between them. Edge weights represent
the expected failure rate between node pairs. Weights are
calculated as a linear combination of node availability and the
product of link PDR and the confidence level of the metric.
The graph GR essentially represents a map of link health in the
network. Applying a shortest path algorithm on GR between
the producers and the consumers of feeds, gives a prediction
for the most reliable route, i.e. the one that is less likely to
drop messages in the near future.

Subscription routes in Fabric are locally cached on the
nodes. When routes are updated in Fabric Registry, nodes do
not immediately update their current routes. Instead, nodes
update data subscription routes only when they break due
to a link failure or bad reception rate that degrades below
a predefined threshold. Then the producer node sets-up a new
subscription path using the updated route from the Registry.

Another consideration in event-driven, multi-hop sensor net-
works is when an event occurs in the environment monitored
by the nodes, and generates increased traffic in the network. If
additional feed subscriptions are routed over the same nodes
there might be increased packet loss due to congestion in
node buffers. In such cases, it is preferable to separate high
traffic flows to use different nodes for relaying messages.
Consequently, we use the information on the traffic volumes
that a sensor generates to separate high volume flows over
different paths. To prevent congestion, we enhance the routing
map GR generated based on link qualities, using the expected
traffic of the channels in order to prevent overloading healthy
channels with too many subscriptions. To achieve this we
increase link costs on graph GR by a proportion of the overall
traffic they expect to carry which penalises high traffic links.
In order to determine the load of a link, we normalise the
number of packets that are expected to traverse the link based
on allocated feed subscriptions. All loads are expressed as
a proportion of the link with maximum load. However the
actual link utilisation is not known, so this could result in
penalising links with low utilisation which carry a relatively
high percentage of subscriptions even though the total traffic
is quite low. In order to resolve this issue, the administrator
can specify a threshold above which the congestion prevention
algorithm would start.

Finally, the intention is to avoid routing traffic through
congested links while avoiding throttling links with low to
medium utilisation that can carry more traffic. Thus, instead
of a linear scale on link cost penalties, we use an exponential
scale so that penalisation will mostly affect the costs of
highest-traffic links of the network, which are also the most
likely to exhibit congestion.

Fablet
Registry

Routing 
Service

Incoming Outgoing

Fabric Node

message 
plug-in

forecast 
models

Fig. 2. Fabric plug-in architecture

IV. INTEGRATION WITH FABRIC

A. Routing Service Architecture

In this section, we discuss the architecture of the plug-in
family developed for Fabric’s routing prediction mechanism
and how different extensions collect metrics from the network
during its operation to support the decision mechanism. Figure
2 gives an overview of the adaptive Forecast Routing service
architecture for Fabric.

The node availability metric is already provided in Fabric
Registry by the Discovery Service, however, we had to im-
plement message plug-ins to measure link quality as well as
generated and relayed traffic. Three message plug-ins have
been prototyped for measuring link packet drop rates and
message traffic load. An outgoing message plug-in at the
transmitting node inserted messages sequence numbers related
to a node pair, while an incoming message plug-in at the
receiving node checks the sequence number to verify whether
any messages have been lost from that link. The message
plug-in system of Fabric permits piggyback information on
messages as an extension without modifying the underlying
feed subscription service. A third message plug-in monitors
a node’s local publish/subscribe bus for feed messages and
counts them per time unit to quantify traffic of the node.

Message plug-ins are expected to be short-lived and avoid
use of external resources such as hard-disk writes or network
communication as this would have a performance impact on
the number of messages a node can process. Thus, message
plug-ins write information extracted from messages to a Fablet
that is running alongside the Fabric Manager on the node.
Fablets, being separate threads, have their own execution flow
control and memory storage. They collect information posted
by local message plug-ins and use it to update the forecasting
models they maintain. The link quality and traffic load fore-
casting models in the Fablet periodically update the distributed
Fabric Registry with new values for monitored attributes.
Although the forecasting model incorporates information from
all samples collected throughout a system’s lifetime, it is
relatively small in size – in the order of a few kilobytes. As
a result, it can be serialised and stored in the Registry in a
binary format. Updating forecasting models locally, rather than
close to the Registry, significantly reduces the communication
overhead, compared to propagating observations to a sink to
perform forecasting model update outside the network.



The Routing Service pulls forecasting models from Fabric
Registry to update its routing paths. After the forecasting phase
of the algorithm, it updates the subscription routes table in
the Registry used by nodes when they need to deploy new
subscriptions.

B. Forecasting Mechanism

Forecasting models are produced from collected perfor-
mance metrics to create two network models – the link quality
and the traffic load graphs of the network projected to a future
period in time. We build three forecasting models for different
aspects of the network. The first model caters for recurring
isolation of nodes in their neighbourhood. The second forecast
model considers the packet drop rates between node links.
Finally, a forecast model is used for predicting the traffic
volume that a sensor feed requires.

We consider these metrics as a time-series and we use a fit-
ting model that describes their behaviour. We have selected the
Holt-Winter Additive Seasonal model that is able to capture
trend as well as periodic effects in time-series. Holt-Winter
applies exponentially decreasing weights on the historical data
to update the model. It decomposes the time-series in three
components; the level St, local trend bt and the periodic
factor It. Each of these components are updated incrementally
(online) using exponential smoothing. Forecasts in the model
are calculated as a linear combination of the aforementioned
components as shown in equation 1, where t is the current
time instance, m is the units in the future for the prediction
and L is the period of the time-series.

Ft+m = St + bt ∗m+ It+m−L (1)

We use the IBM Watson Forecasting library (WatFore) to
construct and manage the forecasting models. The WatFore
library provides a fully automated, extensible and scalable
streaming predictive analytics framework that is suitable for
monitoring any type of Key Performance Indicators (KPIs). It
implements a number of streaming algorithms (including the
Holt-Winters Additive Seasonal) that do not require permanent
storage of historical performance measurements, thus bound-
ing memory requirements for maintaining and using forecast-
ing models. This is particularly important in our application
domain, as sensor platforms cannot be assumed to have large
storage capabilities solely for performance monitoring pur-
poses. Furthermore, the incremental updates to the forecasting
models with newly obtained measurements from continuous
monitoring minimizes the processing requirements for keeping
the models up to speed, imposing only marginal overhead to
the sensor platform. The library also provides methods for
calculating the periodicity of the performance metric using
Fourier analysis, and automatic training of the forecasting
models once enough data measurements have been collected.

V. EVALUATION

For the evaluation of the forecasting effectiveness on route
selection we emulated network scenarios that we consider fit
well with expected periodic failure error classes in sensor

networks. We initially evaluated the effectiveness of the al-
gorithm for coping with node reachability and link failures,
then considered congestion effects in high-traffic networks. In
all scenarios, we use a grid layout, where nodes can directly
communicate only with its immediate neighbours. Hence, most
nodes can send messages directly to 8 neighbours while nodes
at the corners are limited to 3-5 neighbours, depending on their
position.

Feed subscriptions, as in the ITA Sensor Fabric framework,
may originate from any point of the network. Hence, there
is no single sink in the network, but there are multiple
subscribers that consume data from producers. Subscribers
may be terminal recipients or in turn produce new data, after
processing their input feeds, which are in turn consumed
by other nodes. This creates an open environment in which
information does not have a single flow among nodes. We
randomly generate feed subscription in the simulated network
set-ups that are examined in this section.

We compare three routing approaches in the simulations.
The first one is the static paths that are currently implemented
in the ITA Sensor Fabric framework. This is a naı̈ve approach
that provides a lower bound of network performance – an
indication of the impact of failures in the network, as it is
unable to respond to them. The second approach is dynamic
adaptation of routes based on the metrics discussed in the
paper. However, instead of forecasting future values, route
adaptations is based on recent observations. Essentially, this
approach performs adaptation based on current network status.
Finally, we make use of future predictions of metric values,
by projecting from historic data using the Holt-Winter additive
model provided by the IBM WatFore library, to dynamically
adapt routes in Fabric Registry.

A. Periodic Node Communication Failures

We first study the accuracy of forecasting fail-stop commu-
nication link failures inside the network. We emulate a 5× 5
network grid where 26 subscription are placed among nodes
randomly. Sensor feeds produce data regularly in random
intervals between 1 to 10sec. In every run, 8 nodes, roughly
1/3 of the population, experience periodic failures that cause
them to be isolated from their neighbourhood for random
time intervals. Failure times and duration are selected from
the range 10 to 50sec, with an average close to 20sec.
For this particular scenario, we assume that links between
nodes are ideal and do not drop packets due to noise, in
order to study only the effects of node disappearance. We
emulate the scenario running Fabric on desktop machines
where different nodes run in separate virtual machines and
we emulate communication failures by editing linux iptables
to add rules that drop packets from certain nodes in order to
isolate them.

Figure 3a shows the overall packet delivery rate achieved
in the network, as an average of several experiments, with
three different approaches mentioned earlier; static routes (SR),
adaptive historic routes (HR) and adaptive forecasting routes
(FR). The static routing achieves a 74% packet delivery rate,



which we consider as the lower bound because there is no
effort to adapt to node failures. The dynamic selection of
routes based on recent historic observations improves the rate
close to 85% while forecasting outperforms both, reaching a
95% packet delivery rate. Even though HR is able to adapt
to nodes that have a longer uptime phase based on recent
observation, its decisions quickly become outdated. However,
FR by projecting these values in the future achieves better
adaptation of the routing schemes as it is able to predict which
nodes are going to be available in the next rounds.

As shown in figure 3a, the FR method exhibits, initially,
similar performance with SR. The dive in the graph is due to
the training phase that is required by the Holt-Winter model
in order to start producing predictions. As soon as the model
is trained and routes are adapting, a sharp increase at the
delivery rate is presented. Furthermore, as the model continues
to collect feedback from the network, it further improves its
forecasting ability until it converges at 95% packet delivery.
It should be noted that a portion of the failed messages are
due to destination nodes, instead of intermediates, that have
failed. In that case, there is no alternative delivery path, but
the messages are still counted as undelivered.

Figure 3b presents results from a similar set-up, however
nodes do not have stable down/up-time periods. Instead their
periods follow a Gaussian distribution with a random average
value in the range of 10 to 50sec, as before, and σ value
2. Static routing is mostly unaffected from this change as it
was expected. Average node downtime is not changing in the
experiment, only the fixed periodicity that nodes disappear
from the network. Similar situations are not uncommon in
mobile networks, where patrolling nodes may occasionally
come into contact with stationary nodes. Delivery rate of
forecasting routing is affected by the introduced irregularity
in node disappearance, though still remains high around 90%.
The irregularity appears to also affect the routing based on
recent observations, but not by a significant proportion (2%)
to affect any change in the approach’s performance.

B. Node Link Reliability

The second network aspect we study is link quality between
nodes. During the lifetime of a deployed network we have
noticed that links may exhibit recurring, periodic issues with
delivery rates. This was typically due to moving obstacles that
interfered with the signal, such as environmental inhabitants
that have a certain routine, or connectivity can be affected by
mobile nodes with a periodic movement pattern, even though
they remain in theoretical communication range.

In order to address such repetitive adjustments on link
quality, we apply the forecasting model on message drop
rates of links in the network and study its effectiveness in
this section. We use Castalia [4] as a simulation environment.
Castalia is built on top of Omnet++3 and provides realistic link
quality behaviour in a sensor network based on traffic, signal
interference, node distance and noise in the wireless medium.

3http://www.omnetpp.org/
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(b) Irregular periodic failures

Fig. 3. Average message delivery rate on periodic node disappearance

To introduce the periodic fluctuation on the link quality, we
modify the underlying connectivity map during the simulation.
We study how feed subscription delivery rates are affected and
how effective is dynamic forecasting in such situations.

Figure 4 illustrates the performance of each approach when
link quality varies periodically over time. The graph presents
averages for every ten rounds and the variance is illustrated as
the y-axis error bars. SR is, again, the reference line of network
degradation reaches an average message delivery rate slightly
above 50%. HR does improve the naı̈ve, static approach but
on average it does not reach 70% message delivery rates. FR
performs best in this case as well. After an initial training
phase, of roughly 20 rounds, it increases the delivery rate
slightly below 90%.

C. Traffic Load and Congestion

Exclusive use of best quality paths in the network may
result in over-utilisation of nodes causing packet congestion
in their network buffers. Congestion can be caused either in
incoming buffers, when a node is not able to process receiving
packets fast enough, or in the outgoing buffers, when the
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Fig. 4. Packet delivery rate over periodically unreliable links

medium is very busy for transmission and packets get queued.
Castalia emulates MAC and physical layer buffers and we
study the behaviour of our forecasting approach under heavy
traffic. We compare the approach from previous paragraphs,
which ignores traffic load on nodes, with the the traffic-aware
penalisation scheme that was introduced in section III-B.

We run an experiment, where nodes generate random
medium-level traffic and there are four events during the
simulation that cause group of nodes in the network to generate
increased traffic. Each event produces different volumes of
traffic. The resulting delivery rates for this experiment are
presented in figure 5. Figure 5a shows the routing behaviour
in an ideal network, where links have no drop-rates apart from
those in congested buffers. We ran the experiment in an ideal
network in order to solely observe the impact of congestion
and quantify the benefit of systematically attempting to avoid
overloading nodes with excessive traffic. The four events that
cause increased traffic can be easily observed in the graph
as delivery rates fall sharply for the traffic-unaware scheme.
On the other hand, the heavy traffic load penalisation scheme
learns over time to spread traffic through different routes in
the network grid avoiding packets due to congestion. It should
be noted that even in an ideal network there are packet drops
without heavy traffic. Such drops can be attributed to the half-
duplex radio used in the simulation, where packets are lost on
a node when the radio is in the transmission state.

Figure 5b presents the results of the same experiment that
runs on a realistic network, where links drop packets due
to noise similar to the set-up used in section V-B. Overall,
packet delivery rates are lower and their variance is increased
for both cases. However, the trends remain similar, where
the congestion-prevention scheme performs better during high-
traffic events, but the gap between the two approaches is less.
This can be explained as a side-effect of the noisy links that
reduce the amount of received packets, hence the effects of
buffer congestion are decreased.
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Fig. 5. Average delivery rate on periodic node disappearance

VI. RELATED WORK

There are several approaches in the literature for increasing
network reliability for message delivery rates, some incorpo-
rated in network management frameworks similar to Fabric.
MANNA [5] and Sympathy [6] are examples of management
systems that monitors nodes collecting metrics centrally for
analysis. In [7] a fault management service for MANNA is
described, where nodes report measurements to local managers
that are subsequently propagated to a sink. Both systems make
decisions on networks health based on recent observations.

Neighbourhood collaboration is utilised in [8] for detection
of missing neighbours, where a protocol runs in two phases.
Nodes monitor which neighbours they believe are alive in
the first phase by exchanging hello messages. In the second
phase the neighbourhood exchange their local observations
of missing nodes and reach a local consensus before they
trigger a failure alert at the sink. RedFlag [9] improves on that
original algorithm, adopting some of its ideas. It requires clock
synchronisation between nodes in order to begin a handshake
round with their neighbours and verify their existence. If a



neighbour misses a configurable number of handshakes then a
neighbourhood consensus protocol takes place between nodes
on whether the node has failed. Each node tracks information
about their neighbours link quality and residual energy to infer
whether a failure is due to a broken link or power depletion.

The collection tree protocol (CTP) [10] is an efficient data
collection protocol for multi-hop sensor networks. It is based
on two main ideas for improving message delivery rates and
reduce imposed overheads. A datapath validation mechanism
avoids looping of messages among nodes that are formed due
to dynamic link health changes and adaptive node beaconing
that reduced beacon messages of nodes with healthy links to
conserve energy, but increases the rate when links start losing
packets. A backpressure collection protocol [11] improves
delivery rates of CTP for dynamic environments with moving
sinks. However, both protocols target datagram packet routing
and they do not account for recurring patterns on failures and
traffic.

Memento [12] is a service deployed inside the network
looking for fail-stop node failures. It is based on a heart-beat
mechanism that will tag a sensor failed after missing a number
of consecutive heart-beats. It also introduces a variance-bound
mechanism that can put an upper bound on false positives.
Our approach on detecting missing neighbours is similar, as
nodes periodically exchange heart-beat message to verify their
proximity and they have a certain threshold of failed attempts
before they consider a neighbour lost.

Regarding detection of missing packets, Silberstein et al.
[13] discuss how they cope with failures in a system that
suppresses updates of new values unless they exceed a pre-
defined threshold. They compare several schemes including
application level ACK messages, sequence numbers and hints
of previous, possibly lost values. They, further, use a Bayesian
approach at the sink to infer missing values using models
learned from the data instead of interpolating.

Detection of dropped and missing packets is a concern of
network protocols in most sensor dissemination protocols. Use
of NACK messages has been used in PSFQ [14] and GARUDA
[15] for detecting missing packets, however they require an
indefinite amount of packets stored in intermediate nodes. For
streaming applications, delay or lack of traffic is considered as
a symptom of fault in the network [6], [16]. We chose to follow
a less taxing approach of counting sequence numbers, even
though the method has disadvantages that have been discussed
in previous sections. However, the use of confidence factor on
link quality compensates to some extent for their weaknesses.

Link quality can be measured by the ratio of undamaged
received packets. Passively monitoring the link quality using
snooping has been used in [17] by tracking link layer sequence
numbers. Congestion levels can be monitored using buffer
occupancy levels [18] or channel loading [19]. However,
monitoring link quality and channel loading requires the radio
to operate constantly in listening mode, thus consuming high
levels of energy. Snooping has also been used in Snif [20] that
operates as a secondary system with its own dedicated wireless
channel, deployed on the side of to the normal sensor network

for monitoring purposes.
Other forecasting approaches in the literature are focusing

on predicting link availability based on node movement [21]
in mobile networks. In [22] the authors attempt to introduce
the lifetime expectancy prediction for nodes in the routing
selection to maximise network’s operating time apart from
minimising packet hop-count. Furthermore, a predictive model
for minimising transmission time in networks based on cross-
traffic estimations has been introduced in [23]. Finally, in [24],
a time-series model is proposed for predicting link quality
in the network based on RSSI and LQI metrics based on a
weighted average of past and present observations.

VII. CONCLUSION

We have presented a dynamic routing service based on
forecasting network attributes, which is integrated in the ITA
Sensor Fabric middleware. Forecasting trends of the network
allows pro-active adaptation of routing paths for long run-
ning subscriptions, avoiding recurring network degradation.
We assume the existence of a more reliable, low-traffic,
secondary channel that the nodes can use to communicate
with a distributed database, the Fabric Registry, in order for
nodes to update network statistics for the main, high-traffic
network channel carrying subscribed messages to be relayed
to consumers.

We, further, demonstrated the effectiveness of forecasting of
periodic failures, compared to adaptation based on recent his-
tory observations. The Holt-Winter’s model used for predicting
network attributes is able to distinguish different periods in the
input enabling effective estimation on future node connectivity.
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