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Homogenization of slender periodic composite structures 

Julian Dizy1, Rafael Palacios2, and Silvestre T. Pinho3 
Imperial College, London, SW7 2AZ, United Kingdom 

A homogenization technique is developed to obtain the equivalent 1-D stiffness properties 
of complex slender periodic composite structures with varying cross-sections. All this is done 
while removing the limitation of a constant cross-section often imposed in literature. The 
problem is posed using a unit cell approach and applying periodic boundary conditions such 
that: 1) the microscopic strain state averages to the macroscopic conditions, and 2) the 
deformation energy is conserved between scales. The methodology also allow for stress 
recovery and local buckling analysis. Numerical examples are shown to illustrate the diverse 
capabilities of the method: an isotropic ribbed prismatic beam is used to introduce the 
method, show the reinforcements and local buckling capabilities; a composite laminated 
cylinder is shown to demonstrate span-wise varying properties and parametric analysis and, 
finally, a composite blade section exemplifies it for complex geometries. 

Nomenclature 
b = unit cell depth 
𝒞𝑖𝑗𝑘𝑙  = material elasticity tensor 
𝜃𝑖 = macroscopic local rotations 
E = Young’s modulus 
𝜖 = beam strains 
𝜀𝑖𝑗 = Cauchy’s strain tensor 
G = shear modulus 
ν = Poisson’s ratio 
L = length of the beam 
Ω = volume of the unit cell 
𝒮4×4 = homogenized stiffness matrix 
𝒰 = elastic strain energy 
𝑢𝑖 = macroscopic local displacements 
𝑣𝑖 = microscopic displacement field 
𝑤𝑖  = warping field 

I. Introduction 
ESPITE huge advances in computational power in the last decade, which allow direct solid modeling of most 
aerospace structures, there is still a practical interest in dimensionally-reduced structural models. Beam models, 

in particular, can provide excellent approximations of the primary structures for low-frequency aeroelastic analysis 
of high-aspect-ratio wings, helicopter rotor blades or wind turbines. The simplicity of construction of the models 
also makes them essential tools in many other applications for conceptual studies. A great deal of effort has been put 
into developing composite beam models [1], able to account for elastic couplings in reduced one-dimensional 
models. In general, the modeling process can be split into two different stages: Firstly, there is a homogenization 
step, which determines the constitutive relations of the reduced model (i.e., sectional properties of the beams); 
secondly, there is a solution step, in which one evaluates the response of the dimensionally-reduced model to the set 
of applied loads. Both stages are interrelated as assumptions on one affect the other. The equations of motion in the 
solution stage have been well developed, including geometrically-nonlinear effects, in the works of, for instance, 
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Simo and Vu-Quoc [2]; Cardona and Geradin [3] and Hodges [4, 5]. The constitutive relations in the first stage have 
been mostly obtained under the assumption of constant (or slowly-varying) cross sections. In our case, only the 
homogenized section metrics need to be slow varying. The constitutive relations are the focus of this work. 
 For composite beams, one of the most successful approaches in dealing with arbitrary sectional properties is the 
Variational Asymptotic Method (VAM) [6]. The cross-sectional analysis calculates the 3-D warping functions 
asymptotically and finds the constitutive model for the 1-D nonlinear beam analysis. After the global deformation 
from the 1-D beam analysis is obtained, the original 3-D displacements, stresses and strains can also be recovered 
using the already available 3-D warping functions. It is worth noting that solutions based on VAM only work well 
away from the beam boundaries or sudden changes in the cross-sectional geometry along the span (including 
transverse reinforcements). Very recently, Lee and Yu [7] have proposed, as a remedy to that shortcoming, to use 
the smallness of the heterogeneity and incorporate a dimensional reduction, simultaneous to the homogenization 
step, to the variational asymptotic method. Another possibility is to use the Formal Asymptotic Method [8-10]. It 
exploits the existence of two scales in the original dynamic 3D equations governing the beam structure to perform 
an asymptotic homogenization. However it has a few disadvantages such as finding an adequate set of boundary 
conditions, implementing it numerically or adapting it to simple engineering models [7]. A further possibility is that 
proposed by Kennedy and Martins [11] which builds the kinematic description of the beam based on a linear 
combination of fundamental state solutions, which are axially-constant, and calculated at the mid plane of the beam 
by using a 2D finite-element method to obtain the stresses and strains due to the Saint-Venant (axial, bending, 
torsion and shear) [12] and Almansi-Michell (distributed surface load) loadings [13]. This method yields FEM 
comparable accurate solutions as long as the sections do not vary along the axis of the beam and the loads are 
statically determined. 
 The previous solutions either were limited to constant-section geometries, or required dedicated –and often quite 
involved– implementations. Furthermore, they are linear approaches that do not provide information about the 
strength of the structure. Due to their high strength-stiffness ratio, composite thin wall structures usually exhibit 
local or distortional buckling before material failure [14] and this is often a design constraint. The objective of the 
present work is to introduce a general methodology to evaluate both the elastic constants and the local buckling 
strain of composite beams, with periodic properties along the spanwise direction, which can be implemented into a 
general-purpose finite-element code. The method is based on the analysis of a unit cell, which defines a local scale 
much smaller than the characteristic wavelength in the beam response. This is formally similar to the work of Lee 
and Yu [7] but the final equations to obtain the beam stiffness constants can be solved using periodic boundary 
conditions in most off-the-shelf finite-element solvers. Application of this approach to high-aspect ratio vehicle 
analysis is expected to improve the accuracy of the results in the conceptual stage of design, reducing the time and 
cost of the whole design process and bringing project inception and flight readiness closer together. 

II. Theory 
Consider a slender prismatic solid made by repeating a periodic cell along its longitudinal dimension −𝐿

2
≤ 𝑦 ≤ 𝐿

2
 

(see Figure 1). The transverse dimensions of the structure, h are much smaller than the characteristic longitudinal 
dimension ℎ ≪ 𝐿. The coordinate y in the reference configuration defines the reference line for the 1-D macroscopic 
(beam) which coincides with the neutral axis. The longitudinal dimension of the cell is 𝑏 ≪ 𝐿. We are interested in 
the linear homogenized elastic constants, so linear 
assumptions will be also used for the kinematics 
and the local material properties.  

The adopted solution relies on two 
assumptions made between scales to deduce a set 
of periodic boundary conditions and obtain the 
beam stiffness constants [15]. These assumptions 
are: a) the large scale variables are an average of 
the small scale ones, and b) the deformation 
energy is conserved between scales. The 
formulation described here is, at this stage, a first-
order theory and does not include the effects from 
transverse shear which are still being investigated. 
All throughout this section, Einstein notation is 
used for repeated indices, with Latin indices 

 
Figure 1: Schematic diagram of the continuum beam 
with the unit cell representation. 
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assuming values from 1 to 3 and Greek ones assuming values of 2 and 3.  

A. Kinematics 
 
Under linear assumptions, the deformation of the reference line can be described by three local displacements 𝑢𝑖(𝑦) 
and three local rotations 𝜃𝑖(𝑦) with respect to the 𝑥𝑖 coordinate system in Figure 1. The beam strain measures are 
obtained from linearization of the strain-displacement kinematic relations in Ref. [16], as 

 𝛾1(𝑦) = 𝑢1′ ;  𝛾𝛼(𝑦) = 𝑢𝛼′ − 𝑒𝛼𝛽𝜃𝛽;  𝜅𝑖(𝑦) = 𝜃𝑖′ (1)  

with 𝑒𝛼𝛽  being the Levi-Civita or permutation symbol. If we further assume 𝛾𝛼(𝑦) = 0, i.e., a first-order theory, that 
implies 

 𝜃2 = −𝑢3′ ;  𝜃3 = 𝑢2′  (2)  

We define the vector of first-order beam strains containing extensional strain 𝛾1, bending curvatures in two 
directions 𝜅2, 𝜅3 and torsional curvature 𝜅1, as 

 𝜖T = {𝛾1 𝜅1 𝜅2 𝜅3}  (3)  

At the small scale level, we consider the 3-D deformation of a cell of volume Ω centered at y (see Figure 1). The 
undeformed position within the cell will be given by coordinates 𝑥𝑖, where 𝑥1 is parallel to 𝑦, but measures lengths 
at cell scales (i.e.,𝑑𝑥1

𝑑𝑦
= 𝑏

𝐿
), so it can be seen as magnified coordinate system. The three components of the 

microscopic displacement field are 𝑣𝑖(𝑦; 𝑥1,𝑥2, 𝑥3). The two longitudinal dependencies are introduced to separate 
between small scale- (~𝑥1) and large scale-fluctuations (~𝑦) of the structural deformations [7]. The microscopic 
and macroscopic variables can be related through an arbitrary warping field, as 

 
𝑣1(𝑦; 𝑥1,𝑥2,𝑥3) = 𝑢1(𝑦)− 𝑒𝛼𝛽𝑥𝛼𝜃𝛽(𝑦) + 𝑤1(𝑦; 𝑥1,𝑥2, 𝑥3), 

𝑣𝛼(𝑦; 𝑥1,𝑥2, 𝑥3) = 𝑢𝛼(𝑦) − 𝑒𝛼𝛽𝑥𝛽𝜃1(𝑦) + 𝑤𝛼(𝑦; 𝑥1,𝑥2, 𝑥3), 
(4)  

 Note that if the warping field is zero, Eq. 4 is the kinematic assumption used in Timoshenko beam theory (or 
Euler-Bernoulli theory if the condition of Eq. 2 is enforced, which has been referred to as the fundamental solution 
in asymptotic theories [10]. In general the warping field will depend on the cell and it was explicitly written as a 
function of 𝑦.  
 The independent macroscopic variables will be defined from averages in the cell, as 

 𝑢𝑖(𝑦) = 〈𝑣𝑖〉;  𝜃1(𝑦) = 1
2
〈𝑣3,2 − 𝑣2,3〉 (5)  

where 〈•〉 = 1
Ω

 ∫ • 𝑑𝑥1𝑑𝑥2𝑑𝑥3Ω  and •,𝑗= 𝜕•
𝜕𝑥𝑗

. If we take the reference axis at the centroid, i.e. 〈𝑥𝛼〉 = 0, then these 

definitions impose four constraints on the warping field, 

 〈𝑤𝑖〉 = 0;  〈𝑤2,3 − 𝑤3,2〉 = 0 (6)  

B. Equilibrium conditions 
Our interest is in the interior solution of the problem to obtain the homogenized stiffness constants, 𝒮4×4, and these 
can be obtained simply by assuming constant large scale strains, that is, 𝜖(𝑦) = 𝜖 .̅ We then postulate constitutive 
relations in the homogenized problem such that strain energy is conserved between the small and large scale levels 
[15]. Due to the periodicity of the problem, the microscopic strain energy will be independent of the cell in the 
interior solution and it will be 
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 𝒰 = 𝑏
2
𝜖̅𝑇𝒮𝜖̅ = ∫ 𝒞𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝜀𝑘𝑙𝑑𝑥1𝑑𝑥2𝑑𝑥3Ω , (7)  

with 𝒞𝑖𝑗𝑘𝑙(𝑥1, 𝑥2, 𝑥3) being the material elasticity tensor and 𝜀𝑖𝑗 = 1
2

(𝑣𝑖,𝑗 + 𝑣𝑗,𝑖) the components of the local strain 

tensor. Define now the magnitudes Δ𝑣𝑖 = 𝑣𝑖 �𝑦; 𝑏
2

, 𝑥2, 𝑥3� − 𝑣𝑖 �𝑦;−𝑏
2

, 𝑥2, 𝑥3�. Eq. 4 becomes 

 
Δ𝑣1(𝑦; 𝑥2, 𝑥3) = �̅�1𝑏 − 𝑒𝛼𝛽𝑥𝛼�̅�𝛽𝑏 + Δ𝑤1(𝑦; 𝑥2, 𝑥3) 

Δ𝑣𝛼(𝑦; 𝑥2,𝑥3) = −𝑒𝛼𝛽𝑥𝛽�̅�1𝑏 + Δ𝑤𝛼(𝑦; 𝑥2, 𝑥3). 
(8)  

For this solution to be independent of the cell, it must be Δ𝑤𝑖(𝑦; 𝑥2, 𝑥3) = 0, i.e., the warping field is periodic. This 
can also be concluded arguing that, due to periodicity, the strain field must be compatible and the only difference in 
displacement allowed between both faces of the cell is a rigid body motion, which does not create strain. We are 
finally left with the problem of obtaining the static equilibrium conditions on a generic cell under an applied 
displacement field given by 

 
𝑣1(

𝑏
2

, 𝑥2,𝑥3) =  𝑣1(−
𝑏
2

, 𝑥2,𝑥3) + �̅�1𝑏 − 𝑒𝛼𝛽𝑥𝛼�̅�𝛽𝑏, 

𝑣𝛼(
𝑏
2

, 𝑥2,𝑥3) =  𝑣𝛼(−
𝑏
2

, 𝑥2,𝑥3) − 𝑒𝛼𝛽𝑥𝛽�̅�1𝑏 

(9)  

This problem can be set up on any standard finite element package using multipoint constraints to enforce periodic 
boundary conditions.  

III. Numerical implementation 
There are three basic steps in the implementation of the homogenization procedure described above which have 
been schematized in Figure 2:  

I. The geometry of the cell is created using a Python script whose inputs are dimensions, mesh density and 
material properties. Using this data an Abaqus standard input file is generated including a set of periodic 
boundary conditions from Eq. (9). Each loading case is introduced via a different master node for which 
prescribed displacements are applied. 

II. The model is meshed using ‘C3D8R’ (3D-cuboid-8node) elements with reduced integration for the 
calculation of the stiffness properties and ‘C3D8’in case of a buckling analysis. This is due to the 
complexity of buckling deformed shapes and hence the likelihood of hourglassing and other convergence 
problems. For the anisotropic cases, each element has its own local coordinate system which coincides with 
the axis of the element and each composite ply is modeled with a layer of elements. 

III. A set of analysis is then performed: a standard linear elastic with ten steps –corresponding to each of the 
loadings and the pair-wise combinations of these–, and a linear perturbation analysis for the axial case. 

IV. Then the binary output database (.odb) file generated from the analysis is read automatically. This step 
further justifies the use of Python as Abaqus uses this language internally for analysis and database 
organization. Finally, the elastic strain energy is integrated for the whole model and using Eq. (7) the 
stiffness terms are calculated and printed to an output text file. 

Note that this approach is however independent of our particular implementation here. The input file is a 
standard Abaqus model and requires no user-defined modules in the FE solver. 
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IV. Numerical studies 
The methodology described above is exemplified here via three models subject to five case studies of increasing 

complexity. Each of them presents a unique feature of the methodology. The first case is a model of a prismatic 
isotropic beam for which analytical results exist. The study is complemented with two extra subcases of transverse 
shear effects and transverse reinforcements. The second and third cases are based on a laminated thin walled 
cylinder used to substantiate the implementation of composite materials and compare the results to those obtained 
using UM/VABS [17]. In the third case 3D capabilities of the method are showcased by comparing a prismatic cell 
with varying cross-sectional thickness to a full model consisting of 20 cells under static loads and performing a 
parametric analysis on an y-axis dependent variable. The forth case refers to the introduction of the local buckling 
strain prediction. Finally the fifth case is a highly complex rotor blade section which encompasses many of the key 
points of this theory: material orientations, reinforcements and asymmetric geometry.  

A. Isotropic prismatic beam with transverse reinforcements 
The model is a ribbed prismatic box beam 

made out of homogenous isotropic material 
(aluminum: E=70GPa, ν=0.3) with dimensions of 
width=2m, height=1m and a total thickness of 
0.025m along all walls. The distance between ribs 
is b=1m which results in 1m unit cells and a full 
beam model of L=20m. The full beam is built-in 
on one end and all the loads or moments are 
applied via a rigid body node-constraint and a 
reference point at the other end. The geometry is 
shown in Figure 3. 

The results are summarized in Table 1 and 
compared with results without ribs obtained by: 
a) analytical results from thin-walled beam 
theory; b) full beam analysis using Abaqus and 
static loading; c) UM/VABS. The last column 
shows the effect of adding a transverse wall of the 
same thickness of the outer walls at the mid-span 
position of every cell.  

The agreement of the results produced by this homogenization method is excellent both with the theory and the 
current available tools. The small discrepancy that thin-wall theory has, in the case of torsion, with both UM/VABS 

 

Figure 2: Flow of information between the large and small scales 

 

Figure 3: Vertical cut of the full beam FE model with 
reinforcements illustrating the mesh. 
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and the proposed method, is due to the thin-wall assumption of the former and it is the latter techniques which are 
more accurate. The addition of the transverse wall resulted in very little improvement in stiffnesses as it was 
expected from a thin flat plate positioned at right angle with respect to the beam axis. The von-Mises stress contour 
of the full beam with reinforcements for a bending moment load can also be seen in Figure 3. 

 

 
 

B. Laminated cylinder with constant ply angle and span-wise variable thickness 
In this example, there are two subcases: a 2-ply, constant fiber orientation angle circular cylinder used to 

demonstrate the stiffness variation as the ply angle changes and then a modified section of this used to exemplify the 
parametric capabilities of the method dealing with varying thickness cross sections. Material orientations are taken 
clockwise around the normal vector of the element with the x1 direction as the reference for a zero degree ply angle. 

 

 
The dimensions of the constant sections are unitary 

radius, R=1m measured to the outer wall, and 5% thickness, 
t=0.05m as depicted in Figure 4. The length of the unit-cell 
model, which does not affect the homogenized results, is 
b=0.1m. The material properties of the composite used are 
given in Table 2. 

The non-zero terms of the 4x4 stiffness matrix have been 
plotted in Figure 5 together with the results obtained using 
UM/VABS [17]. These terms include: extensional (S11), 
torsional (S22), and bending (S33) stiffnesses plus the coupling 
between the first two (S12). (Only one bending stiffness is 
shown as the section is symmetric.) The evolution of these 
constants with the ply angle agrees very well between both 
methods and the error is always less than 0.1%. 

Table 1: Stiffness constants for the prismatic box beam obtained from different methods. 

Stiffness  
constant 

No ribs  With ribs 
Analytical 

(Thin wall) 
FE 

(full beam) UM/VABS Present method Present method 

S11(EA) [GN] 10.3 10.3 10.3 10.3 10.5 
S22(GJ) [GNm2] 1.79 1.71 1.71 1.71 1.72 

S33(EIzz) [GNm2] 1.91 1.91 1.91 1.91 1.94 
S44(EIyy) [GNm2] 5.58 5.58 5.58 5.58 5.62 
 

Table 2: Material properties of the 
composite used in the laminated cylinder 

E11=1.42×1011 Pa E22= E33=9.8×109 Pa 
G12=G13=6.0×109 Pa G23=4.8×109 Pa 

ν12= ν13=0.3 ν23=0.3 
 

 

Figure 4: Cross-sectional discretization of the 
circular section and its dimensions. (Cell model is 

3-D.) 
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Figure 5: Stiffness constants as a function of the ply angle for the cylinder with constant cross sections. 

A modified version of the previous example will be used next to explore the capabilities of the method to model 
3D cells that include heterogeneity along the x1 direction. For that purpose, the outer radius will remain the same but 
the thickness of the section will vary as a function of the span wise position. This change consists of a 25% 
reduction in thickness of the inner sections (‘a’ region) with a linear variation region joining the outermost sections 
which remain the same thickness. The material properties are those from Table 2. This is depicted in Figure 6. 

 
Figure 6: Longitudinal cut of the cell showing the thickness variation 

The composite layup is now a [45,-45,0,90]s. In order to assess the performance of the methodology, the results 
will be compared to a full size FE analysis in Abaqus of a 10-cell beam created with a tessellation of the cell just 
described clamped on one end and with a 𝜅1=0.1 equivalent moment applied. It is worth noting that the unit cell 
model runs almost instantaneously but the full-size model requires over 8GB RAM and takes two orders of 
magnitude longer to run. Figure 7 shows how the top nodes (x2=R, x3=0) deflect as a function of x1 in the full model 
as compared to the deflection of a beam of the homogenized stiffness under the same load. Both solutions are very 
close with minor discrepancies at the boundaries of the beam, since end effects are not accounted for in the 
homogenized model. Table 3 contains the von Mises stress values through the thickness of all the plies at a 45º angle 
cut (x2=x3=√2/2m) at the mid-span location (x1=b/2m). It corroborates that the technique not only predicts 
homogenized stiffness and displacements correctly, but it also provides stress levels across the plies. 
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Given the level of automation of the mesh generation it is easy to perform a parametric analysis to check the 
sensitivity of the structure to variations of one (or more) of its variables. In this case, the effect of the thickness of 
the wall has been studied. This is done by increasing the relative length of the ’a’ region (25%-reduced thickness 
part) with respect to the total length, b. The results are plotted in Figure 8 . Note that in the limit when a/b=1 this 
corresponds to a cylinder of constant thickness 0.75t. The evolution of the stiffness parameters follows an expected 
mild decrease as the thickness is reduced. 
 

 
Figure 8: Parametric analysis on the thickness effect for a laminated cylinder 

C. Local buckling of a reinforced prismatic beam 
This case explores the suitability of a unit cell analysis to obtain local buckling loads under compressive loads. 

Global buckling is not accounted for here but instead computed by the beam model. The model used is similar, in 
shape, to that of case A -a prismatic beam with perpendicular wall reinforcements- but the thickness of the skin and 
the reinforcement have been modified to exhibit a characteristic skin-buckling response. The new dimensions are 
hence: 1mm for the skin and 10cm for the reinforcement. All other model properties are kept the same as in the 
aforementioned case. As it can be seen from Figure 9 the deformed shape of the structure is coincident in both 
models -the unit cell and the full 3D one-. Note the deformation scales are the same so they can be readily compared 

Table 3: Interpolated von Mises stress values 
across plies at mid-span nodes. 

Ply angle 
[deg] von Mises stress [MPa] 

 Homogenized FE (full 
beam) 

45 400.0 400.5 
-45 386.0 386.5 

0 910.1 910.3 
90 211.2 210.9 
90 209.1 208.8 
0 780.2 780.9 

-45 283.7 278.9 
45 233.4 239.0 

 
Figure 7: Vertical deflection of the top nodes 

 

S11 

S22/R2 

S33/R2 or S44/R2 
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graphically. It is clear that both approaches find the same solution for the first buckling failure mode. Furthermore, 
the magnitude of the loading at which this would occur (eigenvalue) is found to be very close: 𝛾1,𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔=0.030427 
for the full 3D model and  𝛾1,𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔=0.030583 times for the unit cell. 

 
Figure 9: Contour plot of the first eigenshape of a ribbed prismatic beam under compressive loads. Full 

beam shown on the left and unit cell on the right. 

D. Active Twist Rotor blade 

 
Figure 10: Dimensions (in mm) of the ATR blade with the composite layups 

The ATR blade from NASA and MIT brings a higher level of complexity (both in the material and geometrical 
definitions) which allows further verification of the approach. The dimensions of the cross section are depicted in 
Figure 10 and its material properties described in Table 4. More details can be found in Cesnik & Ortega [18]. The 
cross section has been modelled without the foam core that it sometimes contains, and extruded to a total depth of 
20% the maximum cross sectional dimension (the default by the mesher). It is worth noting, that unlike other 
solutions, the current method allows for more than one part to be present in the assembly of the structure and the 
corresponding meshes can be joint together by specifying tie-constraints. Even though this may seem more 
complicated at first than just having a single part, it multiplies the scalability and possibilities of the reinforcements 
added and what is more important, it sets the basis for a future material bond integrity research (delamination, etc.). 
The results, shown in Table 5 are in full agreement with the existing techniques and the discrepancies never exceed 
~5% . 
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Table 4: Material properties of the ATR wing [18] 

Material 
Property Units E-Glass (Style 

120 Fabric) 
S-Glass 

(Unitape) AFC  

EL GPa 20.7 46.9 22.18 
ET GPa 20.7 12.1 14.91 
GLT GPa 4.1 3.6 5.13 
νLT - 0.13 0.28 0.454 
tPLY mm 0.114 0.229 0.203 

 
Table 5: Stiffness constants comparison between different methods 

Stiffness constant 
(% diff w.r.t. present method) VABS-A UM/VABS Present method 

S11 [N] 1.684 (0.4%) 1.677 (0.0%) 1.677 
S22 [Nm2] 34.70 (-0.1%) 34.79 (0.1%) 34.75 
S33 [Nm2] 41.64 (0.8%) 41.18 (-0.2%) 41.29 
S44 [Nm2] 1031. (-3.5%) 1086. (1.5%) 1069 
S12 [Nm] -13.07 (3.1%) -12.72 (5.7%) -13.49 
S14 [Nm] 250.7 (0.8%) 243.4 (-3.7%) 252.8 

 

 
Figure 11: stress recovery example for the direct x1-component of stress on an ATR wing for 𝜿𝟏 = 𝟎.𝟏. Units 

in Pa. 
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V. Conclusion 
A new approach to obtaining homogenized properties of slender periodic composite structures has been 

presented. The methodology is based on the equivalence between the strain states at the macro- and micro-scales 
and the conservation of strain energy between both. The implementation via periodic boundary conditions and a 
standard FEA package has also been described. The use of a 3D unit cell eliminates all previous constraints of 
constant cross-sections and non-varying properties along the length (span) of the beam; and leads to a more 
sophisticated analysis on slender structures at a preliminary stage at a very low computational cost. The modeling of 
the geometry is fully parametric which allows sensitivity analysis to be done. The way the loadings are introduced 
into the model and the final outputs exported make this approach readily compatible with aeroelastic optimization 
based on “stick models” [19]. The numerical examples show a down-to-discretization agreement with other 
available methods and, to the knowledge of the authors, demonstrate local buckling strain calculated in a beam’s 
unit cell for the first time in literature. In the future, the interfaces between the different parts of a model will be 
further exploited to introduce material integrity calculations with relative simplicity. Overall, this method is a very 
flexible and powerful candidate to obtain the homogenized stiffness and local buckling loads of an arbitrarily-shaped 
periodic (or constant-section) composite beam. 
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