
Projection Based Models for High
Dimensional Data

A thesis presented for the degree of

Doctor of Philosophy of Imperial College London

September, 2011

Brian Victor Parulian McWilliams
Department of Mathematics

Imperial College London

180 Queen’s Gate

London SW7 2BZ

2

I certify that this thesis, and the research to which it refers, are the product of my

own work, and that any ideas or quotations from the work of other people, published

or otherwise, are fully acknowledged in accordance with the standard referencing

practices of the discipline.

Signed:

3

Copyright

Copyright in text of this thesis rests with the Author. Copies (by any process) either

in full, or of extracts, may be made only in accordance with instructions given

by the Author and lodged in the doctorate thesis archive of the Imperial College

London central library. Details may be obtained from the Librarian. This page

must form part of any such copies made. Further copies (by any process) of copies

made in accordance with such instructions may not be made without the permission

(in writing) of the Author.

The ownership of any intellectual property rights which may be described in this

thesis is vested in Imperial College London, subject to any prior agreement to the

contrary, and may not be made available for use by third parties without the written

permission of the University, which will prescribe the terms and conditions of any

such agreement. Further information on the conditions under which disclosures and

exploitation may take place is available from the Imperial College London registry.

4

Abstract

In recent years, many machine learning applications have arisen which deal with the

problem of finding patterns in high dimensional data. Principal component analysis

(PCA) has become ubiquitous in this setting. PCA performs dimensionality reduc-

tion by estimating latent factors which minimise the reconstruction error between

the original data and its low-dimensional projection. We initially consider a sit-

uation where influential observations exist within the dataset which have a large,

adverse affect on the estimated PCA model. We propose a measure of “predic-

tive influence” to detect these points based on the contribution of each point to the

leave-one-out reconstruction error of the model using an analytic PRedicted REsid-

ual Sum of Squares (PRESS) statistic. We then develop a robust alternative to PCA

to deal with the presence of influential observations and outliers which minimizes

the predictive reconstruction error.

In some applications there may be unobserved clusters in the data, for which

fitting PCA models to subsets of the data would provide a better fit. This is known

as the subspace clustering problem. We develop a novel algorithm for subspace

clustering which iteratively fits PCA models to subsets of the data and assigns ob-

servations to clusters based on their predictive influence on the reconstruction error.

We study the convergence of the algorithm and compare its performance to a num-

ber of subspace clustering methods on simulated data and in real applications from

computer vision involving clustering object trajectories in video sequences and im-

ages of faces.

We extend our predictive clustering framework to a setting where two high-

dimensional views of data have been obtained. Often, only either clustering or

5

predictive modelling is performed between the views. Instead, we aim to recover

clusters which are maximally predictive between the views. In this setting two block

partial least squares (TB-PLS) is a useful model. TB-PLS performs dimensionality

reduction in both views by estimating latent factors that are highly predictive. We

fit TB-PLS models to subsets of data and assign points to clusters based on their

predictive influence under each model which is evaluated using a PRESS statistic.

We compare our method to state of the art algorithms in real applications in web-

page and document clustering and find that our approach to predictive clustering

yields superior results.

Finally, we propose a method for dynamically tracking multivariate data streams

based on PLS. Our method learns a linear regression function from multivariate

input and output streaming data in an incremental fashion while also performing

dimensionality reduction and variable selection. Moreover, the recursive regression

model is able to adapt to sudden changes in the data generating mechanism and also

identifies the number of latent factors. We apply our method to the enhanced index

tracking problem in computational finance.

6

Acknowledgements

Firstly, I wish to thank my supervisor Dr. Giovanni Montana for all the guidance,

ideas and countless hours of discussions.

Thanks also to my friends and colleagues at Imperial Statistics and Edinburgh In-

formatics for many stimulating conversations over lunch, coffee and beers.

A special thanks to Mike McQuaid, Wei Lin Sung and Nick Houston for invaluable

assistance both technical and non-technical.

An extra special thanks to Corina who made the tough times easier.

Finally, the biggest debt of gratitude is owed to my parents, Andrew and Ratna, and

my brother George. This would not have been possible without your unwavering

support and tireless encouragement. Your contribution to this work is immeasur-

able. Terima kasih!

Brian McWilliams

7

Table of contents

Abstract 4

Glossary 14

1 Introduction 15

2 Learning linear subspaces in high-dimensions 20
2.1 Penalised regression . 21
2.2 Principal component analysis . 24
2.3 Sparse PCA . 26
2.4 Model selection and detecting influential observations 27

2.4.1 Model selection . 28
2.4.2 Identifying influential observations 34

2.5 Subspace clustering . 39
2.5.1 Clustering in high dimensions 39
2.5.2 Linear subspace clustering 43

2.6 Discussion . 52

3 Predictive methods for PCA 54
3.1 The predictive reconstruction error 54

3.1.1 PRESS for PCA . 55
3.1.2 Approximation error . 57

3.2 A measure of predictive influence for PCA 60
3.3 Predictive robust PCA (PRoPCA) 62
3.4 An example application to face images 64

4 Predictive subspace clustering 73
4.1 Clustering based on predictive reconstruction 74
4.2 The PSC algorithm . 77

4.2.1 Convergence of PSC . 78
4.2.2 Model selection in PSC . 81

4.3 Connection with K-subspaces . 82
4.4 Penalised PSC . 84

8

4.5 Simulations . 86
4.6 Applications to computer vision 91

4.6.1 Yale faces B database . 91
4.6.2 Hopkins 155 motion segmentation database 93

4.7 Discussion . 98

5 Multi-view predictive modelling 103
5.1 Learning in multiple views . 104

5.1.1 High-dimensional multi-response regression 104
5.1.2 Two block partial least squares regression 105
5.1.3 Multi-view clustering . 108

5.2 Detecting influential observations 112
5.2.1 PRESS for TB-PLS . 112
5.2.2 Predictive influence for TB-PLS 114

5.3 Multi-view predictive partitioning 115
5.3.1 The MVPP algorithm . 115
5.3.2 Algorithm convergence . 117
5.3.3 Total predictive influence 120
5.3.4 Model selection . 121

5.4 Performance evaluation using simulated data 122
5.4.1 Identifying influential observations 122
5.4.2 Simulation settings . 126
5.4.3 Experimental results . 131

5.5 Applications to web data . 138
5.6 Discussion . 142

6 On-line variable selection in streaming data 145
6.1 Multivariate methods for data streams 146

6.1.1 Recursive Least Squares 147
6.1.2 The power method and adaptive SIM 150
6.1.3 Online PLS . 151
6.1.4 Online variable selection 152

6.2 PLS regression . 152
6.3 Sparse PLS regression . 155

6.3.1 Off-line learning . 155
6.3.2 On-line learning . 157
6.3.3 Adaptive behaviour using self-tuning forgetting factors . . . 161
6.3.4 Detecting changes in the number of important latent factors 163

6.4 Experimental results with simulated data 164
6.4.1 Ability to track the important explanatory variables 164
6.4.2 Convergence of the incremental soft-thresholding update . . 167
6.4.3 Ability to adapt to changes 169

9

6.4.4 Sensitivity analysis . 175
6.4.5 Performance with high-dimensional responses 178
6.4.6 Ability to track the number of important latent factors . . . 180

6.5 An application to index tracking 181
6.6 Discussion . 187

7 Conclusions and further work 190

A Derivations and proofs for Chapter 3 193
A.1 Derivation of Definition 3.2 . 193
A.2 Proof of Lemma 3.1 . 195

B Proof of Lemma 4.1 197

C Derivations and proofs for Chapter 5 200
C.1 Derivation of Definition 5.1 . 200
C.2 Derivation of Definition 5.4 . 201
C.3 Proof of Lemma 5.1 . 202
C.4 Proof of Lemma 5.2 . 205

D Linear Algebra 208
D.1 Singular Value Decomposition . 208
D.2 Woodbury Matrix Identity . 209

References 220

10

List of Figures

2.1 The PCA objective function as a function of the number of compo-
nents. 30

2.2 Model selection using cross-validation. 33
2.3 An example of points belonging to two clusters which lie in two

different planes. 45

3.1 The mean squared approximation error between the leave-one-out
cross validation and our analytic PRESS statistic as a function of
the number of samples, N over 100 Monte Carlo simulations. It
can be seen that the empirical approximation error scales according
to the theoretical error, O(

q

logN
N

) shown as a dashed line. Also
reported is the difference in computational time between the two
methods which increases super-linearly with N. 60

3.2 The ten subjects of the Yale faces B database under ambient lighting
conditions. 64

3.3 An example a subject under ten of the 64 different lighting conditions. 65
3.4 An example of detecting a single influential observation (indicated

by the red box) using (a) the PCA residual and (b) the predictive
influence. 66

3.5 An example of detecting three influential observations (indicated
by the red boxes) using (a) the PCA residual and (b) the predictive
influence. 68

3.6 A comparison of the receiver operating characteristic curve for iden-
tifying influential observations obtained by the predictive influence
and the PCA residual. 69

3.7 An outlying image corrupted with two different levels of additive
uniform noise. 71

3.8 A comparison between the PCA reconstruction and the PRoPCA
reconstruction when trained on 15 examples of the target face and
one example of an outlying face corrupted with additive uniform
noise. 72

3.9 Image reconstruction using ROBPCA. 72

LIST OF FIGURES 11

4.0 Example results of clustering data belonging to several different
subspaces using K-means and PSC. The middle plots shows the
results of clustering with K-means. 89

4.1 Single frames from the Hopkins155 dataset. 101
4.2 Comparison of the distribution of clustering errors obtained using

PSC and the reference (P-REF) on the Hopkins155 motion segmen-
tation dataset. 102

5.1 The two clusters in the X view consist of points sampled uniformly
on a 1-d line and a 2-d plane embedded in three dimensions. The
clusters in the Y view are noisy linear combinations of the corre-
sponding clusters in the X view. 110

5.2 Identifying influential observations using the TB-PLS predictive in-
fluence. 124

5.3 ROC curve which compares the ability to detect outliers of the pre-
dictive influence and the residual. 125

5.4 The result of clustering the example dataset introduced in Figure
5.1 using MV-CCA and MVPP. 127

5.5 An example of data generated in scenario A where the clusters are
“geometric clusters”. 129

5.6 An example of data generated in scenario B. 131
5.7 The ratio between the value of the objective function obtained using

the predictive influence with respect to xi and yi and the predictive
influence with respect to xi. 132

5.8 Comparing the mean clustering accuracy of different methods for
K = 2 in simulation setting A. 133

5.9 Comparing the mean clustering accuracy in simulation setting B. . . 135
5.10 Comparing the mean leave-one-out prediction error of the clusters

obtained by different methods for K = 2 in simulation setting A. . . 136
5.11 Comparing the mean leave-one-out prediction error of the clusters

obtained in simulation setting B. 137
5.12 Comparing the prediction error with the objective function for dif-

ferent values of K in the first simulation setting where the true value
of K = 2. 138

5.13 The effect of the number of latent factors, R on the clustering accu-
racy. 139

6.1 ROC curve obtained by S-PLS, LARS and S-PCA. 166
6.2 Sensitivity of the iS-PLS algorithm. 168
6.3 A block-wise representation of input data streams and the streams

selected by iS-PLS. 170
6.4 Sensitivity of iS-PLS for different values of !. 171

LIST OF FIGURES 12

6.5 Sensitivity of iS-PLS when using a self-tuning !. 172
6.6 Comparison of sensitivity and MSE between iS-PLS, R-LARS and

aLasso. 174
6.7 The mean sensitivity of the iS-PLS algorithm as a function of a and b.176
6.8 Sensitivity of the S-PLS algorithm as a function of the number of

variables selected and the signal to noise ratio in the first latent factor.177
6.9 Performance with high-dimensional responses. 179
6.10 Self-tuning the number of latent factors. 181
6.11 Comparison of enhanced tracking (+15% annual returns) of the

S&P 100 index using a static portfolio of 10 stocks chosen out of
98 using S-PLS and LARS. 184

6.12 A comparison between iS-PLS and an averaged random portfolio
performing bivariate enhanced tracking. 186

6.13 A comparison of bivariate enhanced tracking (+15% annual returns)
between iS-PLS, Recursive LARS and adaptive Lasso. 187

13

List of Tables

1.1 Examples of common problem domains and their approximate di-
mension. This highlights the range of problems which are consid-
ered “high-dimensional”. 15

4.1 Comparison of clustering error (e%) and computational time in sec-
onds, t(s), between PSC and four other state-of-the-art methods for
simulated data. 90

4.2 Comparison of clustering error and computational time in seconds
between PPSC and competing methods for sparse data. 92

4.3 Mean clustering error and computation time for Yale faces B dataset. 94
4.4 Mean and median clustering errors for sequences with two motions

in the Hopkins 155 data set. 97
4.5 Mean and median clustering errors for sequences with three mo-

tions in the Hopkins 155 data set. 97

5.1 A summary of the number of observations and variables in the dif-
ferent configurations of the WebKB dataset. 140

5.2 The clustering accuracies (Acc) and mean squared leave-one-out
prediction error on the WebKB-2 dataset. 141

5.3 The clustering accuracies (Acc) and mean squared leave-one-out
prediction error on the WebKB-4 dataset. 142

5.4 The clustering accuracies (Acc) and mean squared leave-one-out
prediction error on the Citeseer dataset. 143

14

Glossary

CCA Canonical Correlations Analysis

iS-PLS Incremental Sparse Partial Least Squares

LOOCV Leave-one-out Cross Validation

MVPP Multi-view Predictive Partitioning

OLS Ordinary Least Squares

PCA Principal Components Analysis

PLS Partial Least Squares

PPSC Penalised Predictive Subspace Clustering

PRESS Predicted Residual Sum of Squares

ProPCA Predictive Robust Principal Components Analysis

PSC Predictive Subspace Clustering

SCC Spectral Curvature Clustering

SLBF Spectral Local Best Flats

SSC Sparse Subspace Clustering

SVD Singular Value Decomposition

TB-PLS Two-block Partial Least Squares

15

Chapter 1

Introduction

In recent years a large number of interesting problems in machine learning have

emerged in a variety of applications, supported by many publicly available datasets.

Exponential increases in computing power have allowed datasets of previously pro-

hibitive dimensionality to become commonplace. Table 1.1 gives an example of dif-

ferent data types which are commonly encountered in real applications and the ap-

proximate dimensionality associated with data of that type. For example, in compu-

tational finance, the dimensionality may represent the number of constituent stocks

in an index. In text mining, the dimensionality refers to the number of different,

important words which appear in a document or webpage and in image recognition,

the dimensionality typically refers to the number of pixels which make up each im-

age. One of the great challenges in machine learning today is the development of

methods to deal with such high-dimensional problems in an efficient manner.

Data Type Dimensionality
Financial indices [61] 100

Web pages [10] 1, 000
Digital photographs [33] 10, 000
Gene expression [102] 100, 000

Table 1.1: Examples of common problem domains and their approximate di-
mension. This highlights the range of problems which are considered “high-
dimensional”.

Chapter 1. Introduction 16

Broadly speaking, there are two paradigms for learning in high-dimensional

data: supervised and unsupervised learning. In supervised learning, given multi-

variate predictor variables X 2 RN⇥P , we aim to predict an observed response

variable, y 2 RN⇥1. On the other hand, unsupervised learning refers to many types

of problems where no response is observed. For example we may wish to partition

X such that we detect naturally occurring clusters in the N rows (samples) of X . In

this setting, there is often no “ground truth” and so driving the learning process and

objectively evaluating the results is often difficult. Throughout this work we use X

to refer to a matrix of observations and xi to refer to individual observations, rows

of X , as opposed to random variables.

When the number of variables, P , is large we encounter well known issues re-

lating to the fact that many of the dimensions may be highly correlated, noisy or

simply irrelevant for the task at hand. A common method of dealing with these

problems is to recover a low-dimensional representation of the original data. This

typically involves estimating a small number of latent factors, linear combinations

of the original variables, which explain the important information in the data. The

latent factors are estimated by projecting the data into a low-dimensional subspace

which is in some way optimal such that important information for the task at hand

is retained but irrelevant information such as noise is discarded. These latent fac-

tors can then be used to perform clustering or predictive modelling in place of the

original data.

In this work we build on the idea of recovering low-dimensional projections of

the data and extend these conceptually simple, linear models to solve more com-

plex, non-linear problems in high-dimensions. In each case, the problems we ad-

dress have emerged recently and typically have not been widely considered in the

literature.

In the unsupervised case, principal component analysis (PCA) is a ubiquitous

technique for performing dimensionality reduction [45]. PCA estimates a low-

dimensional linear subspace oriented in the direction of maximal variance in the

data and obtains the latent factors by projecting the observations onto this sub-

space. PCA has been successfully applied in a huge variety of application domains

Chapter 1. Introduction 17

spanning many branches of the physical, life and social sciences.

In Chapter 2 we briefly review penalised regression and PCA in the context

of dealing with high-dimensional data and discuss several open problems in PCA

regarding model selection. We examine the related questions of selecting the num-

ber of latent factors and detecting influential observations which have a detrimental

effect on the PCA model fit. Since most methods for model selection involve de-

termining the effect of removing a single observation from the PCA model, they

require as many model fits as observations which is computationally expensive.

PCA is a linear method and this limits its use in real problems which may be

highly non-linear. We consider one such situation where there are heterogeneous

clusters present in the data. In this situation, a single PCA model does not fit the

data well and instead we make the assumption that the points in each of the clus-

ters belongs to a cluster-specific low-dimensional subspace. Here the problem then

consists in estimating the subspace parameters and the cluster assignments simul-

taneously. Recently, a number of state-of-the-art methods have been proposed to

tackle this problem. However, we recognise some important limitations common to

most methods which are related to the problem of model selection.

In Chapter 3 we propose a simple, unified framework which solves the problems

of model selection and identifying influential observations in a computationally

efficient manner based on an closed-form expression for the predictive performance

of the PCA model called the Predicted REsidual Sum of Squares (PRESS). We

propose a measure for “predictive influence” based on the effect of each observation

on the PRESS. We extend this framework for dealing with influence by proposing

a robust PCA criterion which seeks to directly minimise the effect of influential

observations by minimising the PRESS rather than the standard PCA reconstruction

error. In Chapter 4 we apply our method of identifying influential observations

to the subspace clustering problem. Here, we propose an iterative optimisation

algorithm based on minimising the predictive influence within each cluster. We

compare our predictive subspace clustering (PSC) algorithm with the state-of-the-

art methods reviewed in Chapter 2 and find that it produces highly competitive

results on simulated and real datasets. Part of the work in Chapters 3 and 4 appears

Chapter 1. Introduction 18

in [62].

In the second half of this work we consider a general supervised setting where

the responses, Y 2 RN⇥Q are also allowed to be high-dimensional. This is some-

times referred to as the multi-view setting where each set of high-dimensional ob-

servations is considered to be a “view” of the data. In this setting, two-block partial

least squares (TB-PLS) is a popular method for dimensionality reduction which can

be seen as a generalisation of PCA to two views. TB-PLS estimates latent factors

which explain maximal covariance between the views. However, the ultimate pur-

pose of performing dimensionality reduction with TB-PLS is to model the predic-

tive relationship between predictors and responses using the low-dimensional latent

factors instead of the original variables. As with PCA, the issues of model selection

and influential observations are important considerations. In order to address this

we propose an efficient PRESS for TB-PLS

Recently, the problem of performing unsupervised clustering using multiple

views jointly has emerged. In Chapter 5 we extend our predictive subspace clus-

tering method in two views to attack the problem of multi-view clustering which

is gaining popularity in the machine learning literature. Here, the assumption is

that each pair of predictors and responses, {xi,yi} belongs to one of a number of

heterogeneous clusters in the data. We propose a novel solution to the problem

of recovering these cluster assignments which assumes that within each cluster, a

predictive relationship exists between views. The problem of recovering the true

clustering then amounts to one of identifying the optimal predictive models in the

data which we drive by fitting TB-PLS models to the data and then minimising the

predictive influence which each point exerts within each cluster. In order to validate

our novel approach to multi-view clustering, we compare our proposed multi-view

predictive partitioning (MVPP) algorithm with three other multi-view clustering al-

gorithms in a variety of simulated settings and a real application to clustering web

pages and academic papers. The efficient PRESS for TB-PLS appears in [60]

The final problem we tackle in Chapter 6 again concerns estimating a predictive

model in high-dimensions. However, now we assume that each pair of points is

indexed by time and is observed sequentially, as {xt,yt}. Furthermore, we assume

Chapter 1. Introduction 19

that the underlying data generating process is non-stationary and so the predictive

relationship between views can change in time. The problem now amounts to esti-

mating a temporally adaptive PLS model which is able to adjust quickly to sudden

changes in the data. Since the data is high-dimensional we assume that some of

the predictors do not contribute to the predictive relationship. Therefore, in order to

improve our model, we also aim to identify which observations are unimportant and

should be removed from the model. This amounts to solving a penalised PLS re-

gression problem on-line. We propose a novel algorithm for incremental sparse PLS

(iS-PLS) which is able to automatically adapt to changes in the underlying predic-

tive model. We apply this method to the problem of financial index tracking where

we attempt to identify which assets are important for predicting the movement of

a financial index. We also address some of the issues relating to the ever-present

problem of model selection. The work in Chapter 6 has appeared in [61].

20

Chapter 2

Learning linear subspaces in
high-dimensions

In this chapter we discuss well known methods for learning with high-dimensional

data in both supervised and unsupervised settings.

In the supervised setting, often the task is to estimate a set of coefficients which

model a linear relationship between a set of predictor variables and a response.

This is commonly achieved by performing ordinary least squares (OLS) regres-

sion. However, in high-dimensions there are well-known problems with the OLS

solution. Penalised regression methods have become increasingly popular in the

last decade. These methods are based on imposing a penalty on the size of the

coefficients estimated using least squares regression which has the effect of iden-

tifying and downweighting “unimportant” variables which do not contribute to the

response. The most common penalty, the Lasso [88], places a restriction on the `
1

norm of the coefficients. This causes some of the variables to be removed from the

model and results in a sparse solution.

Principal component analysis (PCA) [45] has become a popular technique for

unsupervised learning in high-dimensional data. PCA assumes that the important

variation in the data can be well represented by a low-dimensional linear subspace.

It has found use in a multitude of widely ranging fields throughout the social, physi-

cal and life sciences. However, because of its ubiquity, PCA can be applied without

Chapter 2. Learning linear subspaces in high-dimensions 21

thought or consideration as to its appropriateness for a given problem. In these

cases, two important questions can arise relating to how well the estimated PCA

model fits the data. The first concerns the well known problem of selecting the

number of principal components which is important for interpretibility and ensur-

ing the model does not overfit. The second issue is the less-studied problem of

identifying influential observations. These are points which have a large effect on

the estimated model relative to other points and so care must be taken to detect the

existence of such points to determine whether they should be included in the model.

If the low-dimensional structure in the data is assumed to be non-linear, fitting

a single, low-dimensional subspace to the data using PCA may no longer be ap-

propriate. We examine a special case of this problem whereby the data belong to

several disjoint subsets, or clusters and each of the clusters lies on a different lin-

ear subspace. Here, a single PCA model is no longer suitable and instead, we must

consider the problem of subspace clustering. This problem involves simultaneously

recovering the clusters and estimating the low-dimensional representations within

each cluster such that we perform locally linear dimensionality reduction. How-

ever, the same issues regarding model selection and influence apply in each cluster.

We review the current state-of-the-art subspace clustering methods, which attempt

to address these issues, and identify their limitations.

2.1 Penalised regression

In the supervised setting, we observe points, {xi}N
1

2 R1⇥P and paired response

variables, {yi}N
1

. We can represent the observed points in matrix form X 2 RN⇥P ,

where the ith row is xi with a corresponding vector of responses y 2 RN⇥1. We

model the relationship between y and X through a linear function y = X� + ✏

where � 2 RP⇥1 is a vector of regression coefficients. We assume that ✏ is mean

zero noise which is uncorrelated with the response. The aim of linear regression is

to obtain an estimate of the coefficients, which we denote ˆ�, in such a way that the

2.1 Penalised regression 22

residual sum of squares between y and ˆy = X ˆ� is minimised1,

min

�

ky �X�k2. (2.1)

The estimate of � which minimises Eq (2.1) is the ordinary least squares (OLS)

solution. Provided X is of full rank, there is a unique analytic solution to this

problem given by
ˆ� =

�

X>X
��1

X>y. (2.2)

However, when P is large X may be rank deficient due to highly correlated vari-

ables or a smaller number of observations than variables (the N < P case). In these

cases, S = X>X will not have a unique inverse and so the estimates of the least

squares coefficients ˆ� will not have a unique solution.

We can overcome this problem by restricting the `
1

norm of the parameter so

that the least squares cost function becomes

min

�

ky �X�k2 + �k�k
1

where k�k
1

=

PP
p=1

|�p| is the `
1

norm of �. This is known as the Lasso penalty

[88]. The Lasso has the property that for appropriate values of � it forces certain

coefficients to be exactly zero. This is an important property as it has the effect of

performing variable selection.

Unlike OLS, there is no simple analytical solution to every Lasso problem.

Therefore, determining the shrinkage effect that the Lasso penalty has on the coef-

ficients is not so straightforward. In the special case of orthogonal predictors (i.e.

X>X = IP)2, we can write the Lasso penalised residual sum of squares as

�>� � 2y>X� + �k�k
1

.

1Throughout this work, k · k with no superscript denotes the `2 norm which for vectors is the
Euclidean norm and for matrices is the spectral norm.

2Throughout this work, IP denotes the P ⇥ P identity matrix.

Chapter 2. Learning linear subspaces in high-dimensions 23

By minimizing the penalised residual sum of squares, the solution for ˆ�lasso is given

as a function of the ordinary least squares solution ˆ� as follows

ˆ�lasso
p = sign(ˆ�p)(|ˆ�p|� �)

+

where

(a)
+

(

a if a > 0

0 else

is the soft-thresholding operation. Written in this form, we can see that the Lasso

has the effect of truncating every coefficient by a constant, �. Coefficients whose

values change sign are assigned a value of zero.

An attractive feature of the Lasso is that it improves interpretability of the re-

sults. Since only a few variables are included in the model, these can be considered

to be the important variables which can then be examined more closely. This is

particularly useful in bioinformatics applications where selected variables may cor-

respond to, for example, important genes which can then be the target of further

experiments.

In general however, the Lasso is a convex optimisation problem and cannot be

solved through simple soft-thresholding. Recently, efficient methods to obtain the

Lasso coefficients have been developed, for example the LARS algorithm [28] and

more recently, co-ordinate descent [31]. The advent of these methods have greatly

increased the popularity of the Lasso in many application domains dealing with

high-dimensional data analysis.

As mentioned, the number of variables included in the model depends on the

parameter, �. This dependence is highly non-linear and the number of variables

included can have a large effect on both the predictive ability and the resulting

interpretation of the model. Therefore, the value of � must be chosen carefully

which is an important model selection problem.

2.2 Principal component analysis 24

2.2 Principal component analysis

We now consider the unsupervised setting where we observe points, {xi}N
1

2 R1⇥P

as before but do not observe a paired response variable. Here, it is often desirable

to obtain a low-dimensional representation of the data which retains the important

features and reduces the effect of noise. This is useful for visualisation and for

identifying patterns and structure in the data which would otherwise be undetectable

in P -dimensional feature space.

Principal component analysis (PCA) has emerged as a ubiquitous technique for

unsupervised dimensionality reduction. PCA aims to represent each observation

in terms of a small number, R << P , of uncorrelated latent factors. PCA can be

motivated from two different viewpoints in order to find a low-dimensional repre-

sentation of the data which is in some sense optimal. In each instance, the latent

factors are a linear combination of the original variables; in other words, an orthog-

onal projection of the original variables onto a lower dimensional subspace.

Finding an optimal low-dimensional representation of the data using PCA can

be motivated in several ways depending on which properties of the data we consider

important. In the first instance, we could consider the variance to be an important

quantity such that we wish to find the projection of each xi onto a subspace of

dimension R whose variance is maximised. To start with, we represent the sample

mean of the data as µ =

1

N

PN
i=1

xi and the covariance matrix as S =

PN
i=1

(xi �
µ)>(xi � µ) = X>X where X 2 RN⇥P is a matrix whose ith row is given by

xi � µ and we have omitted a scaling factor of 1

N
for notational convenience. We

first consider a projection of each column of the centered data matrix X onto a

one-dimensional subspace (R = 1) which we represent as a vector of unit length,

v 2 RP⇥1. We can obtain a projection which maximises the variance by solving

the following optimisation problem

max

v

Var(Xv)2, (2.3)

subject to kvk = 1

Chapter 2. Learning linear subspaces in high-dimensions 25

which is equivalent to

max

v

v>Sv (2.4)

subject to kvk = 1.

The constraint in (2.4) is necessary to prevent kvk ! 1.

We can also approach the problem of identifying a low-dimensional projection

of the data by considering how much information is lost. We define the reconstruc-

tion error of the low-dimensional representation to be the difference between X

and the projection of the low-dimensional representation space back into P dimen-

sions. We can obtain an optimal low-dimensional projection of X by ensuring the

resulting reconstruction error is minimised. For a one dimensional projection, this

problem can be expressed as the least squares objective function

min

v

N
X

i=1

kxi � xivv
>k2, (2.5)

subject to kvk = 1.

The solution to both (2.4) and (2.5) is obtained by computing the singular value

decomposition (SVD) of X (see for example, [36]), given by

X = U⇤V >, (2.6)

where U = [u(1), ...,u(N)

] 2 RN⇥N and V = [v(1), ...,v(P)

] 2 RP⇥P are orthonor-

mal matrices whose columns are the left and right singular vectors of X , respec-

tively. The columns of V are also the eigenvectors of S. ⇤ = diag(�(1), . . . ,�(N)

) 2
RN⇥P is a diagonal matrix whose entries are the singular values of X , and the

square root eigenvalues of S, in descending order.

The solution to (2.4) and (2.5), therefore is v = v(1). The corresponding prin-

cipal component is u(1)

=

1

�(1)Xv(1), where �(1)

2 quantifies the variance explained

by the first principal component. Subsequent principal components are given by

2.3 Sparse PCA 26

subsequent columns of U . The projection of each xi onto subsequent loading vec-

tors, given by the columns of V , explains a decreasing amount of the total variance,

given by Tr(⇤2

).

2.3 Sparse PCA

Recently, several similar methods have been proposed which take a penalised re-

gression approach to estimating sparse PCA loading vectors [102, 110, 80, 81].

As with penalised regression, the underlying assumption is that in high dimensions

there are many noisy or irrelevant variables.

Sparse PCA (S-PCA) [80] aims to minimise the reconstruction error between

the data matrix, X and the reconstruction of the principal components, u using

sparse loading vectors, v by applying the Lasso penalty to the PCA objective func-

tion (2.5). Initially, for R = 1, sparse PCA imposes a penalty on the `
1

norm of the

PCA loadings, v. This results in the following optimization problem

min

u,v
kX � uv>k2F + �kvk

1

(2.7)

subject to kuk = 1.

where kAk2F = Tr(A>A) denotes the squared Frobenius norm. This problem can

be solved by first obtaining u = u(1) and v = �(1)v(1) from the SVD of X and

then applying the following iterative soft thresholding procedure to the elements of

v:

v =sgn
�

X>u
� �

�

�X>u
�

�� �
�

+

(2.8)

u =

Xv

kXvk (2.9)

Equations (2.8) and (2.9) are applied iteratively until the change in v between it-

erations falls below some threshold. Subsequent sparse loadings can be found by

deflating the data matrix to obtain X = X � uv> and repeating the above steps.

The complexity of this procedure to extract R principal components is O(NPR),

Chapter 2. Learning linear subspaces in high-dimensions 27

therefore the regularised SVD method provides an efficient way of obtaining sparse

loading vectors for PCA. The `
1

penalty term can be replaced by one of a number

of other penalties by replacing the soft-thresholding step in Eq. (2.9) by the co-

ordinate descent procedure of [31]. Several other sparse PCA methods have similar

problem formulations and result in almost identical iterative algorithms [102].

Similar to the Lasso, S-PCA aids in the interpretability of the resulting model

by identifying which variables contribute to each latent factor and therefore which

variables are important for explaining the variation in the data.

2.4 Model selection and detecting influential observations

When modelling high dimensional data using PCA, the fundamental assumption

we make is that the data can be well approximated by a lower-dimensional linear

subspace. The validity of this assumption relies on two important considerations.

The first consideration is how many components to retain which is the well known

problem of model selection in PCA. The number of components has several im-

portant interpretations. Selecting the correct number of dimensions is integral to

correctly interpreting results obtained through PCA. This question of model selec-

tion is important since it determines how well the estimated model generalises to

unseen data from the same distribution. If too many dimensions are retained, the

resulting PCA model may overfit and therefore obtain a poor reconstruction error

on novel observations than if fewer components were retained.

The second consideration is the implicit assumption that all the observed data

points are describing the same underlying phenomenon and therefore come from

the same distribution. Of course we may observe a large degree of variability in the

data which may be as a result of measurement noise. Furthermore, the data may

naturally contain outliers, that is, points occuring far away from the mean. Such

characteristics of the data are readily observed by examining summary statistics

and simple visualisations of the data.

Of greater concern are “influential observations” [9]. Influential observations

are points which have a large effect on the model parameters relative to other points.

2.4 Model selection and detecting influential observations 28

In some cases, influential observations may arise as a case of measurement error. In

other cases, the presence of influential observations might indicate that the data does

not consist of a single, homogeneous population. This has important implications

since the resulting model fit will be biased towards the influential points and will

not explain the data well.

Although detecting influence and performing model selection have seemingly

different initial motivations, it can be shown that they are actually very similar. In

this section, we review approaches taken to identify influential observations in the

context of OLS and PCA. We also show the connection with model selection for

PCA.

2.4.1 Model selection

Learning the number of principal components, R is an important question in mod-

elling high dimensional data. Learning the true value of R is important to ensure

that all of the important structure in the data is captured whilst at the same time,

ensuring that the dimensionality is low enough so as not to overfit. In some appli-

cations there are theoretical justifications for specifying a particular value of R but

for most applications R is unknown.

In the case of noise-free data, the number of principal components can be de-

termined exactly by evaluating R = rank(X). However, when the data is noisy, X

may be of full rank and so a more robust means of estimating R is required. The

different formulations of the PCA problem allow for several different approaches

for considering model selection in PCA. A class of methods relies on so-called “el-

bow” heuristics to estimate R. The general idea is to plot the value of the PCA

objective function as a function of R and observe the value for which the change

between values of r and r + 1 is greatest (the elbow point). Under the maximum

variance interpretation of PCA, this is known as a scree plot and is achieved by

plotting the cumulatative sum of eigenvalues �
1

, . . . ,�R. Alternatively, under the

minimum reconstruction error interpretation, the equivalent heuristic involves iden-

tifying the point at which the change in reconstruction error between r and r + 1

Chapter 2. Learning linear subspaces in high-dimensions 29

is the smallest. This can be assessed by approximating the second derivative of
PN

i=1

ke(r)
i k2 for r = 1, . . . , R with respect to r.

In general, both PCA objective functions vary monotonically since as R in-

creases successively more variance is explained. Although when R is increased

beyond its true value, the variance explained by subsequent latent factors is noise.

There are several common heuristics used to guess the dimensionality of the data.

Often, R is chosen so that some large proportion, say 95% of the variance of the

data is retained. Figure 2.1 shows an example where P = 20 but the intrinsic di-

mensionality, R = 10. Standard Gaussian noise has been added. Figure 2.1a shows

the proportion of variance explained, Figure 2.1b shows the scree plot and Figure

2.1c shows the residual error as a function of the number of components. It can be

seen that each of the plots varies monotonically and their respective optimal values

occur when the number of components is 20. Choosing R based on one of these

common heuristic methods would result in a different value depending on which

method is used. In this case, selecting R based on explaining 95% of the variance

results in an overestimate and using the scree plot or the residual error plot results

in an underestimate.

This problem has been considered in the context of OLS. The problem of over-

fitting can be overcome by partitioning the dataset into a separate training and test

sets. Using the training set we fit the model and using the test set, we evaluate the

model fit by computing the reconstruction error. In this way, the same samples are

not used for both model fitting and evaluation. G-fold cross-validation (CV) is a

generalization of this technique whereby the dataset is split into G equal-sized par-

titions and for g = 1, . . . , G, X = [X>
1

, . . . ,X>
G]

>. We fit the model using the

partitions {1, . . . , g � 1, g + 1, . . . , G} and evaluate the reconstruction error on the

remaining parition, Xg. The G-fold cross-validated error is then given by

JCV =

1

G

G
X

g=1

ky{g} �X{g}�{�g}k2.

where X{g} is a matrix whose rows are the indices in the partition {g} and �{�g} are

2.4 Model selection and detecting influential observations 30

0 5 10 15 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

p
o

rt
io

n
 o

f
va

ri
a

n
ce

 e
xp

la
in

e
d

Number of components

(a) Proportion of variance explained.

0 5 10 15 20
0

20

40

60

80

100

120

V
a

ri
a

n
ce

Number of components

(b) Scree plot.

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

R
e

si
d

u
a

l e
rr

o
r

Number of components

(c) Reconstruction error.

Figure 2.1: The PCA objective function as a function of the number of components.
2.1a shows the proportion of variance explained. 2.1b shows the scree plot. 2.1c
shows the residual error. These quantities vary monotonically and the optimal value
always occurs when the number of components is 20.

Chapter 2. Learning linear subspaces in high-dimensions 31

the OLS regression coefficients which have been estimated using all the data except

for the observations corresponding to the indices in {g}. As such, the problem

of overfitting is addressed by never using the same observations for both model

fitting and model evaluation. The aim in using CV for model selection is to identify

the model parameters which minimise the CV error. The choice of G is an open

question. Values of G = 5 or 10 are commonly chosen for convenience with no

real methodological justification. Important considerations include the number of

samples and the dimensionality of the problem. If the number of samples is small,

choosing G to be large will result in few cross-validation iterations meaning the

resulting model may not generalise well. If either N or P is large, choosing G to

be small will result in an increased computational burden.

Leave-one-out cross validation (LOOCV) occurs as a special case when G = N

[85]. LOOCV is performed by estimating the model N times leaving out each ob-

servation in turn and then evaluating the prediction error on the unused observation.

The OLS LOOCV function is

JLOOCV =

1

N

N
X

i=1

kyi � xi��ik2, (2.10)

where ��i denotes the estimate of the OLS regression coefficient when the ith ob-

servation has been removed. This amounts to computing ��i = (X>
�iX�i)

�1X>
�iy�i.

LOOCV makes most efficient use of the available data since only a single obser-

vation is left out at a time. In the case of linear models, LOOCV is asymptotically

equivalent to the Akaike information criterion (AIC) [86].

For OLS, it is well known that the LOOCV error can be computed analytically

without the need to explicitly partition the data set. Naively computing this quantity

for all i = 1, . . . , N would require the least squares model to be fit N times. Esti-

mating � requires computing the inverse of the covariance matrix, P = (X>X)

�1

which is computationally expensive. However, since each ��i differs from � by

only one observation, xi we can easily compute P�i = (X>
�iX�i)

�1 from P us-

ing the matrix inversion lemma without the need to perform another P ⇥ P matrix

2.4 Model selection and detecting influential observations 32

inversion [9]:

�

X>
�iX�i

��1

=

�

X>X � x>
i xi

��1

=P +

Pxix
>
i P

1� hi

, (2.11)

where hi = x>
i Pxi. This allows the leave-one-out estimate, ��i to be written as

a function of ˆ� in the following way, without the need to explicitly remove any

observations

��i =
�

X>
�iX�i

��1

�

X>y � x>
i yi
�

=

✓

� � (yi � xi�)Pxi

1� hi

◆

. (2.12)

The ith LOOCV error, e�i = yi � xi��i, is then given by

e�i =
ei

1� hi

. (2.13)

where ei = yi�xi� is the residual error. When expressed in this analytic form, the

LOOCV for OLS is commonly known as the Predicted REsidual Sum of Squares

(PRESS).

In the context of PCA, cross validation, especially LOOCV, is commonly used

to estimate the number of components to retain. The LOOCV function for PCA is

given by

J =

1

N

N
X

i=1

kxi � xiV�iV
>
�ik2, (2.14)

where V�i denotes the estimate of the PCA loadings when the ith observation has

been removed. This amounts to computing the eigendecomposition of X>
�iX�i =

X>X � x>
i xi. Figure 2.2 demonstrates the result of performing LOOCV as a

function of the number of selected components on the example in figure 2.1. Figure

2.2a again shows the residual error which decreases monotonically as the number of

components increases. Figure 2.2b shows the LOOCV error. It is clear that although

the overall magnitude of the LOOCV error is larger than that of the residual, it

Chapter 2. Learning linear subspaces in high-dimensions 33

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4
R

e
si

d
u
a
l e

rr
o
r

Number of components

(a) Reconstruction error.

0 5 10 15 20
4

6

8

10

12

14

16

18

20

22

L
O

O
C

V
 e

rr
o
r

Number of components

(b) Leave-one-out error.

Figure 2.2: Model selection using cross-validation. 2.2a shows the residual error.
2.2b shows the LOOCV error. The residual error is monotonically decreasing as a
function of the number of components wheras the LOOCV exhibits a global mini-
mum when the correct number of components are added to the model.

exhibits a minimum when the number of PCA components is exactly 10.

Although PCA can be expressed as a least squares problem, the PCA parameters

are estimated using a SVD. Therefore, an exact recursive formulation for the PCA

LOOCV error in Eq. (2.14) is not possible. Naively computing the PCA LOOCV

error requires N SVD computations which is extremely expensive when N or P

are large, as is frequently the case when PCA is applied. It has been observed that

in large sample sizes the LOOCV error is almost equivalent to �RPP
r=R+1 �r

which

requires the computation of only a single SVD, however this relationship breaks

down when N is small [45]. An efficient method for the exact computation of the

PRESS for PCA has been proposed [65] based on computing a rank-one downdate

of the eigendecomposition obtained by PCA when a single observation is removed.

Although exact and an order of magnitude more efficient than the naive approach to

leave-one-out cross validation for PCA, this method has not received wide-spread

attention or use in the literature.

2.4 Model selection and detecting influential observations 34

2.4.2 Identifying influential observations

An outlying observation is typically defined as being an observation far from the

mean. These can usually be identified easily. However, unlike outliers the effects of

influential observations are not neccesarily apparent through simple visualisations

of the data and so detecting influence is a more involved procedure. Exactly how

to determine what the type and magnitude of “effect” constitutes an influential ob-

servation is an important and difficult question. For starters, the very definition of

what it means for an observation to be influential is not well defined. A commonly

cited definition is: [9]:

An influential observation is one which, either individually or together

with several other observations, has a demonstrably larger impact on

the calculated values of various estimates... than is the case for most

other observations.

This definition suggests that a measure of influence could determine which obser-

vations have a detrimental effect on the resulting model fit. However the vagueness

of the definition suggests what exactly constitutes influence and how to measure

it is an open question. Neither does this definition consider how points come to

be influential in the first place which is an important issue when dealing with such

observations.

Much of the existing literature concerning influential observations concentrates

on identifying such points in the context of OLS. Since PCA can be considered as a

least squares problem, several analogies can be drawn with PCA so it is beneficial

to first examine the main approaches to identifying influence in OLS. A particular

quantity of interest is the “hat matrix” [9],

H = X(X>X)

�1X> 2 RN⇥N ,

where Hy = X�, the estimated response. The term Hii is known as the leverage

of the ith point, and determines the contribution of the ith point in estimating its

associated response. The partial leverage, Hij is a related quantity which gives

Chapter 2. Learning linear subspaces in high-dimensions 35

the contribution of the jth point for estimating the response associated to the ith

point. These quantities are used to detect influential observations which have a

larger contribution to the estimated responses relative to other points. However,

H does not take into account any information from y and so these leverage terms

alone are not always sufficient to determine which observations are influential [9].

Alternatively, an obvious approach might be to examine the residual error given by

ei = yi � ŷi = yi � xi�. (2.15)

We would perhaps expect that influential observations exhibit a large residual com-

pared to other observations. However, it has been observed that observations which

exert a large leverage on the regression may obtain relatively smaller residual errors

compared to points which exert a smaller leverage [73]. This is due to the tendency

of the OLS model to overfit to outlying or influential observations. This makes the

use of the residual error alone unsuitable for detecting influential observations [26].

A different approach for identifying influential observations is by observing the

effect on the estimated coefficient of removing each point in turn. This is achieved

by removing a single observation, i from the model and computing the regression

coefficients, ��i. We can then observe the relative effect of removing each obser-

vation in turn by computing the following statistic

DFBETAi = � � ��i, (2.16)

where ��i is computed in the same way as in Eq. (2.12)

��i =

✓

� � (yi � xi�)Pxi

1� hi

◆

.

From this expression we can see that DFBETAi has the closed form expression

DFBETAi = � � ��i =
(X>X)

�1xiei
1� hi

. (2.17)

2.4 Model selection and detecting influential observations 36

which provides an expression which combines the ith residual, ei with the leverage

of the ith point, hi and ei
1�hi

is exactly the form of the ith predicted residual used to

compute the PRESS. This forms the basis of the DFFIT statistic which quantifies

the difference between the estimated response, ŷi and its leave-one-out estimate,

ŷi,�i

DFFITi = ŷi � ŷi,�i = xi(� � ��i) =
hiei
1� hi

. (2.18)

Several other widely used methods of identifying influential observations are

also related to the predicted residual. For example, the DFFITS statistic has the

form

di =
ei

��i

p
1� hi

hi

1� hi

�

1/2

,

where ��i is the standard deviation of the residual estimated without the ith obser-

vation [9]. Similarly, Cook’s distance can be written as [64]

ci =
e2

i

(1� hi)
2

hi

P�2

�

.

It can be seen that both of these methods rely on scaling the ith residual by a func-

tion of 1 � hi which implicitly involves estimating the leave-one-out error of the

regression model. It is clear then, that evaluating the prediction error is an important

step in constructing a method for identifying influential observations in the context

of OLS. The analytic form of this error, shown in the previous section allows these

measures of influence to be computed efficiently.

It is clear then that despite being motivated in different ways, many methods of

detecting influential observations are closely related to the leave-one-out prediction

error. It must be noted that these methods are all designed to identify a single out-

lying or influential observation. When multiple influential observations are present,

their effects can be more complicated. Two common effects are masking, where the

effects of the influential observations are hidden and swamping where normal ob-

servations are mistaken for influential ones [75]. To solve this problem, generalised

Chapter 2. Learning linear subspaces in high-dimensions 37

versions of these deletion based methods have been proposed based on observing

the effect of deleting groups of observations. Although this adds the combinatorial

problem of choosing the number of influential observations.

In the context of PCA, single sample deletion-based methods, analogous to

those for OLS, have been proposed for the purpose of detecting influential obser-

vations. Whereas in OLS, the quantity of interest is the leave-one-out estimate of

the regression parameter ��i, for PCA there are two natural quantities to examine:

the downdated eigenvalues, {�(r)
�i}R1 and eigenvectors, {v(r)

�i }R1 for all i = 1, . . . , N

[65]. The first quantity is the sum of the difference between the original eigenval-

ues, ⇤ and their leave-one-out estimates ⇤�i. The total effect of this eigenvalue

downdate is computed as

⇢i =
R
X

r=1

�(r) � �(r)
�i .

However, they note that this quantity is equivalent to evaluating

⇢i =
N

N � 1

kxi � µk2,

that is, the Euclidean distance from the deleted observation to the mean of the data.

Therefore, examining the leave-one-out estimates of eigenvalues is only likely to

identify influential points if they are also outliers. Instead, they suggest a better

measure of influence to be the angle between the original eigenvector and its down-

dated version for each observation,

cos(✓
v,v�i) = v>v�i.

This measure considers the stability of the estimates of the eigenvector when an

observation has been removed. If the ith observation is influential, the angle be-

tween the original eigenvector and the downdated eigenvector will be large so

cos(✓
v,v�i)! 1. Aside from these obvious measures which are analogous to meth-

ods used in OLS, the problem of identifying influence in PCA has not been widely

developed in the literature.

2.4 Model selection and detecting influential observations 38

However, once the influential observations have been identified, the question of

how to deal with such observations is encountered. Dealing with influence in the

appropriate manner requires some knowledge of why a particular observation might

be influential. Often the assumption is that the influential observations do not be-

long to the model and so the prescribed treatment is to remove them altogether. In

certain cases, influential observations may occur as a result of noise, measurement

error or an extreme case of the measured phenomenon. In these cases, it may not

be appropriate to remove the influential observations entirely. Furthermore, even

after applying these diagnostic tests, it is not always clear which observations are

influential. Many of these methods have heuristic thresholds beyond which an ob-

servation is deemed to be influential [17] although ultimately the process is very

data dependent and care must be taken in any subsequent steps.

Another important question is what action should be taken when influential ob-

servations are detected. Often, the prescribed treatment is to remove such observa-

tions however, this is again data and application specific. An alternative to identify-

ing outlying observations is to obtain an estimate by incorporating all observations

using a robust model. Methods for performing robust PCA have been proposed

which attempt to estimate a PCA model in the presence of noise or outliers. The

goal of these methods is to implicitly identify the outlying observations and in doing

so downgrade their relative importance in the resulting PCA model.

Amongst these, ROBPCA [43] combines several heuristic approaches in order

to estimate robust principal components. First, ROBPCA attempts to find L least

outlying observations with which to estimate an initial, robust covariance matrix.

The number, L is chosen so that N � L is greater than the number of outlying

points. These L points are then used to construct the covariance matrix, SL whose

M < N � 1 largest eigenvectors are found as VL = [v
(1)

L , . . . ,v(M)

L] where M is a

parameter which must be specified. The original data are then projected onto this

subspace to obtain UL = XVL 2 RN⇥M . The robust PCA parameters are then

obtained by computing the SVD of UL.

Since the outlying points are discarded from the estimation of the initial M <

N -dimensional subspace, when they are projected onto this subspace their contribu-

Chapter 2. Learning linear subspaces in high-dimensions 39

tion to the subsequent estimates of the ROBPCA loadings are reduced. As a result

the estimates of the ROBPCA loadings are not biased towards the outlying points.

2.5 Subspace clustering

Up to this point we have assumed that all of the points we observe lie on the same,

low-dimensional subspace. In the presence of outliers and influential observations,

we have considered methods to detect these points and either remove them or, in the

case of robust estimation, incorporate them into the estimate of the subspace. How-

ever, in some cases we may observe numerous outlying or influential points which

belong to heterogeneous sub-populations in the data where each sub-population lies

on a different low-dimensional subspace. In the following section we consider the

problem of identifying these sub-populations and estimating their associated sub-

spaces.

2.5.1 Clustering in high dimensions

As before, we observe N data points, {xi}N
1

. However, now we assume the ob-

servations belong to K non-overlapping clusters. The set Ck contains the indices

of the Nk points belonging to the kth cluster. In this section, we consider the task

of recovering the true cluster assignments in an unsupervised fashion. The popular

K-means algorithm is one of the most widely used unsupervised clustering meth-

ods [27]. K-means attempts to recover K tightly grouped clusters of points in the

data where the squared Euclidean distances between points inside each cluster is

smaller than the distance between clusters. Cluster assignments, {Ck}K
1

are found

which minimise

C =

K
X

k=1

X

i2Ck

kxi � µkk2. (2.19)

where µk =
1

Nk

P

i2Ck
xi is the sample mean of the observations assigned to cluster

Ck. K-means is an iterative algorithm which alternates between assigning points to

clusters such that C is minimised and re-computing the sample mean in each cluster.

2.5 Subspace clustering 40

When the dimensionality of the data is large there are two well known problems

related to the curse of dimensionality which affect the ability of methods such as

K-means to recover the clusters accurately[72].

• As the number of dimensions increases, the Euclidean distance between all

pairs of points tends towards uniformity.

• Many of the P dimensions in the data may be irrelevant or noisy. Therefore,

computing distances between points using all P dimensions can mask the

true clustering.

A solution to both problems is to first identify the relevant dimensions in the data

which contain information about the difference between clusters and use only those

to perform cluster analysis. These R < P relevant dimensions can be thought of

as low-dimensional subspaces of the original P dimensional space. The subspace

clustering problem can be generally stated as simultaneously identifying a small

number of dimensions in the data for which some measure of clustering accuracy is

minimised.

Several different approaches to identifying relevant dimensions for clustering

in high-dimensional data exist which broadly fall under the category of subspace

clustering. One type of subspace clustering is based on feature selection [72]. That

is, the similarity between points is measured on only a subset of the available vari-

ables. These methods employ a heuristic approach to identifying which subsets

contain the important discriminative information between clusters. Such feature-

selection based methods can be separated into two categories, Bottom-up search
and top-down search methods.

Bottom-up search methods initially examine each dimension individually and

identify the dimensions for which the “densest” groups of observations occur. That

is, subsets of variables which contain the largest number of observations. Dimen-

sions for which similarly dense groups of observations are found are grouped to-

gether as clusters. Bottom-up search methods make uses of the so-called downward

closure property of density. This property states that if a dense cluster exists in R

specific dimensions, it also exists in all combinations of R� 1 of those dimensions.

Chapter 2. Learning linear subspaces in high-dimensions 41

The CLIQUE algorithm [2] is an example of such a method which defines a dense

group as a subset of R dimensions that contains more than a specific proportion of

the total number of points. CLIQUE starts from the densest single dimension and

incrementally adds dimensions until all points have been assigned to a cluster. Al-

ternatively, the ENCLUS algorithm [20] relates the density of a subset to its entropy.

A dense subset will have a lower entropy and so dimensions are added to the subset

such that the entropy of each subset remains below a threshold. Conversely, top-
down search methods attempt to initially recover clusters in full P dimensional

space. Dimensions are then downweighted or removed entirely until the densest

possible clusters are obtained. The PROCLUS algorithm [1] proposes an extension

to the K-means algorithm which assigns a weight to each variable in each cluster,

whereas the clustering on a subset of attributes (COSA) algorithm [32] and more

recently the sparse K-means algorithm [103] also assign a weight for each variable.

The approach to subspace clustering employed by these bottom-up and top-

down search methods could more correctly be thought of as “subset clustering”

since the goal is to identify a subset of the available variables in which an optimal

clustering exists. However, these methods do not make any assumptions about the

types of subspaces which are represented by the selected variables. As such these

methods are sensitive to several tuning parameters and require expensive searches

through all possible subspaces. In order to accommodate these additional parame-

ters, complicated heuristic optimisation strategies are required.

If we make an assumption about the type of subspaces on which the clusters can

lie, we can develop a more principled approach to performing subspace clustering

such that heuristic search strategies are not required. We therefore concentrate on

a different approach to subspace clustering which aims to identify low dimensional

projections of the data which lie on linear subspaces. We refer to this approach as

linear subspace clustering [94].

The use of low-dimensional projections to identify clusters can be motivated by

examining the similarities between the K-means algorithm and PCA. It has long

been observed that in high dimensional clustering problems, applying PCA dimen-

sion reduction before performing K-means cluster analysis improves the accuracy

2.5 Subspace clustering 42

of the recovered clusters. More recently the connection between K-means and PCA

has been established formally. It has been shown that the eigenvectors obtained

by PCA can be viewed as a continuous relaxation of the cluster assignments [25].

The K-means within cluster sum of squares objective function in Eq. (2.19) can be

expressed as

C =

N
X

i=1

xix
>
i �

K
X

k=1

1

Nk

X

i,j2Ck

xix
>
j .

The terms within the sum over k can be replaced by a matrix of indicator variables,

U 2 RN⇥K where the kth column of U is

uk = (0, . . . , 0,

Nk
z }| {

1, . . . , 1, 0, . . . , 0)>/N1/2
k .

Each row of V has a single non-zero entry. Now J can be written as

C = Tr(XX>
)�

K
X

k=1

uk
>XX>uk

= Tr(XX>
)� Tr(U>XX>U).

Since Tr(XX>
) is a constant, C is minimised when Tr(U>XX>U) is max-

imised.

If the elements of U are allowed to be continuous, max

U

Tr(U>XX>U) is an

eigenproblem where the columns of U are the eigenvectors of XX> [25]. It can

be seen in the case of K = 2 that the columns of U contain redundancies. That is,

u(1) defines the cluster assignment for both clusters. Therefore, only the first K�1

eigenvectors must be recovered. However, since the columns of u are no longer

binary indicator vectors, this procedure does not minimise the original function, C

and recover the cluster assignments. However the actual cluster assignments can be

obtained by performing K-means on the columns of U .

Furthermore, bounds on the minimum distance between clusters required in

order for the PCA pre-processing step to separate the clusters in the projected space

Chapter 2. Learning linear subspaces in high-dimensions 43

have been established [93] . It has been shown that if the data come from a mixture

of K isotropic Gaussians with minimum mixing proportion wmin, the subspace

spanned by the top K � 1 principal components is the subspace spanned by the

means of the mixture. Projecting the data onto this lower dimensional space then

has the effect of preserving the distance between means but shrinking the distances

between points in a cluster by a factor of
q

K�1

P
. This result requires the minimum

separation between the means of any two clusters, C
1

and C
2

to be kµ
1

� µ
2

k �
cmax{�

1

, �
2

}(K logN)

1
4 where c is a constant and �

1

is the variance of cluster

C
1

. Although this bound only holds for mixtures of isotropic Gaussians, using PCA

as a preprocessing step for K-means has shown to be effective in a number of

real world applications such as clustering of gene expression data and document

clustering [25].

The use of PCA as a pre-processing method for clustering assumes that the data

all lie on the same R-dimensional subspace. As with standard K-means clustering,

these techniques assume that the clusters are well separated in terms of Euclidean

distance in that subspace. However, in many applications clusters may lie in dif-

ferent low-dimensional subspaces, each with its own dimension. In these situations

the data no longer satisfy the minimum separation requirement of [93] and so global

PCA is unsuitable for recovering the correct clusters.

2.5.2 Linear subspace clustering

As before, we assume to have observed N points, {xi}N
1

, where each xi 2 R1⇥P

and the dimension P is usually very large. Again, each point is assumed to belong

to one of K non-overlapping clusters, {Ck}K
1

. However, we further assume that the

points in the kth cluster lie in a Rk�dimensional subspace, Sk where Rk << P .

Each subspace Sk is defined in the following way

Sk = {xi : xi = µk + uk,iVk
>} (2.20)

with i 2 Ck and k = 1, . . . , K, where Vk 2 RP⇥Rk is a basis for Sk whose columns

are restricted to be mutually orthonormal. The point uk,i 2 R1⇥Rk is the low di-

2.5 Subspace clustering 44

mensional representation of xi and µk 2 R1⇥P is an arbitrary point in Sk, typically

chosen to be 0.

When only one cluster exists, i.e. K = 1, a subspace of this form can be

estimated by fitting a PCA model, which provides the best low-rank linear approx-

imation of the original data. In this case µ =

1

N

PN
i=1

xi and the columns of Vk are

the first R right singular vectors of X . The low dimensional representation of xi is

then uk,i = xiVk. When the data partition into more than one cluster, i.e. K > 1,

but the cluster assignments are known, a subspace of form (2.20) can be estimated

by fitting a PCA model independently in each cluster. However, since the cluster

assignments are generally unknown, the problem of subspace clustering consists in

the simultaneous identification of the number of clusters, K, the subspaces {Si}K
1

and the cluster assignments {Ci}K
1

.

There are several fundamental difficulties associated with this problem:

1. The ability to estimate the true subspaces is dependent on recovering the true

clusters and vice-versa.

2. Subspaces may not be independent which implies they may intersect at sev-

eral locations which causes difficulties when attempting to assign points to

subspaces at these intersections. This causes standard clustering techniques

such as K-means to fail.

3. The subspace parameters and the cluster assignments are depended on both

the number of clusters, K and the dimensionality of their respective sub-

spaces {Rk}K
1

. These quantities are difficult to estimate from the data and

are often taken as known. However, in realistic scenarios both of these quan-

tities could be unknown.

A variety of approaches have been proposed to solve problems 1 and 2 which

we review in the remainder of this chapter. However, problem 3 is an issue of

model selection which is a more difficult issue. In the noise-free case, assuming the

correct clusters have been recovered, the rank of X within each subspace gives the

local dimensionality of that subspace, Rk. However, in the presence of noise, two

Chapter 2. Learning linear subspaces in high-dimensions 45

Figure 2.3: An example of points belonging to two clusters which lie in two dif-
ferent planes. The middle plot shows the result of fitting a single subspace using
a PCA model which provides a poor fit to the data. The right-hand plot shows the
result of clustering using K-Means which fails to accurately recover the clusters.

issues complicate this task. Firstly, recovering the correct clustering and therefore

estimating the true subspace parameters becomes harder. Secondly, the noisy data

may be of full rank. This requires the estimation of these parameters to be robust in

the presence of noise.

Figure 2.3 provides an example of points in three dimensions which belong to

two clusters. Each cluster consists of points which are distributed uniformly on a

different two-dimensional subspace. The middle plot shows the result of fitting a

single subspace to the data using a global PCA model. It is clear that the estimated

subspace lies somewhere between the two true subspaces and as a result fits neither

cluster well. The right-hand plot shows the result of using K-means to cluster the

data. The points are assigned to clusters based on their geometric distance.

K-subspaces

Many methods for subspace clustering have been proposed which generalise the

well-known K-means algorithm to K-subspaces [13, 91, 97]. K-subspaces aims to

recover clusters such that the within cluster distances between observations, xi and

their Rk-dimensional reconstruction, xVkVk
> is minimised. This can be expressed

2.5 Subspace clustering 46

in terms of the following objective function

CKSS =

K
X

k=1

X

i2Ck

kxi � xiVkVk
>k2, (2.21)

where Vk 2 RP⇥Rk and subject to Vk
>Vk = I . K-subspaces is an iterative al-

gorithm which alternates between assigning points to clusters and estimating the

subspace parameters. Within each cluster, minimizing the distance
P

i2Ck kxi �
xiVkVk

>k2 is equivalent to the minimum reconstruction error formulation of PCA.

Therefore, for a given cluster assignment, {Ck}K
1

, the K-subspaces are estimated

by PCA.

Generalised PCA

Generalised PCA (GPCA) [58] takes an algebraic approach to the problem of par-

titioning the data and identifying the subspaces underlying those partitions. GPCA

is based on the idea that points belonging to a union of K subspaces of dimension

R can be represented by K polynomials of order R.

The motivating idea behind GPCA is that points lying in a subspace Sk can be

parameterised by a vector, bk 2 RP⇥1 which is orthogonal to Sk such that xibk = 0

if xi 2 Ck. For a union of K subspaces, where each point xi can only live in one of

the subspaces, each point can be represented as

(xib1)(xib2), . . . , (xibK) =
K
Y

k=1

(xibk) = 0.

A point lying in one of the subspaces, Sk must satisfy one of the equations (x>bk =

0) so the subspace clustering problem becomes one of finding the roots of the poly-

nomial.

However, in this representation, the polynomials are non-linear in the data points.

This problem can be reformulated as an equivalent linear problem in terms of the

monomials of xi by means of a function, ⌫, a Veronese map which performs the

mapping ⌫ : RP ! RM . The new dimensionality, M is the number of all monomi-

Chapter 2. Learning linear subspaces in high-dimensions 47

als of xi of degree K which is given by the binomial coefficient

M =

K + P � 1

K

!

.

By applying this function to each observation xi we obtain a new vector ⌫(xi) 2
R1⇥M ,

⌫(xi) = ⌫

0

B

B

B

B

B

@

xi,1

xi,2

...

xi,P

1

C

C

C

C

C

A

=

0

B

B

B

B

B

@

xK
i,1

xK�1

i,1 xi,2

...

xK
i,P

1

C

C

C

C

C

A

. (2.22)

The problem can now be represented in the following linear expression

K
Y

k=1

(xibk) = ⌫(xi)c = 0,

where c 2 RM⇥1 is the vector of coefficients. In matrix form this is

2

6

6

4

⌫(x
1

)

...

⌫(xn)

3

7

7

5

c = ⌫(X)c = 0.

The coefficients, c can then be estimated by identifying the null space of ⌫(X).

This can be achieved by computing the right singular vectors corresponding to the

zero singular values of the matrix ⌫(X). Finally, GPCA estimates the subspace

basis vectors bk for each of the subspaces, Sk. Since these are defined as vectors or-

thogonal to their respective subspace, they are obtained by computing the derivative

of the polynomial with respect to a point on that subspace.

Since GPCA remaps the points to M dimensions given by the binomial coeffi-

cient M =

(P+K�1)!

K!(P�1)!

, M increases exponentially with P . In practical applications,

this causes the computational complexity of GPCA to become unmanageable when

P > 10. In most real applications, global PCA is often used to reduce the dimen-

sionality of the data to R+1 (where R is the maximum dimension of the subspaces).

2.5 Subspace clustering 48

This operation preserves the number and dimension of subspaces in the data how-

ever it requires knowledge of R. Since GPCA is an algebraic method it is sensitive

to noise and outliers. Furthermore, the estimation of the subspace parameters de-

pends on knowing the number of subspaces and their dimension in order to use the

Veronese mapping function. An extension to GPCA, Robust GPCA, seeks to esti-

mate the correct number and dimensions of subspace within the data [42] by using

the Geometric information criterion (GAIC) [46].

Spectral clustering

GPCA represents each subspace using a polynomial with many parameters and as

such it is not robust in the presence of noise. Rather than assigning points to sub-

spaces based on exact algebraic techniques, a class of subspace clustering methods

are based on spectral clustering. These methods consider how to measure the simi-

larity between observations based on the subspaces they belong to. For each point,

xi, these methods estimate a local representation of the subspace using the points

nearby to xi, typically in the Euclidean sense. The distances between points are

then represented as distances between local estimates of subspaces.

Spectral clustering is based on graph theoretic representation of the relationship

between data points [68, 57]. Spectral clustering methods operate on an affinity

matrix A 2 RN⇥N where the entry Aij is a measure of distance between the points

xi and xj . The relationship between points described in A can be considered to be

a weighted graph where each Aij represents a weighted edge between two vertices.

The assignment of each observation to one of K clusters can be written in compact

matrix form

L>AL

where the kth column of L is a binary vector which represents the assignment to

the kth cluster

lk = (0, . . . , 0,

Nk
z }| {

1, . . . , 1, 0, . . . , 0)>.

We can consider the problem of recovering clusters such that the sum of pairwise

Chapter 2. Learning linear subspaces in high-dimensions 49

weights between all points in each clusters are minimised. This can be expressed in

the following way

min

L

L>AL. (2.23)

In this representation, the problem of clustering points becomes one of partitioning

the graph such that similar points are grouped together by cutting edges between

vertices. Most proposed algorithms to perform these cuts are NP hard.

Spectral clustering allows the constraint on the binary structure of the columns

of L to be relaxed. Under these conditions, solving Eq. (2.23) amounts to comput-

ing the smallest K�1 eigenvectors of A. The columns of L are real-valued vectors

and so a transformation is required since the cluster assignments are binary. This is

typically achieved by performing K-means on L.

The distance measure used to construct the affinity matrix defines the type of

clusters which may be recovered. Therefore, choosing a suitable distance is cru-

cial for subspace clustering. When the Euclidean distance is used we obtain the

PCA, K-means method described in the previous section. However, when points

lie in different subspaces, Euclidean distances between points are no longer a useful

measure of similarity since points in different subspaces can lie close to each other.

Similarly, far away points can lie on the same subspace.

Several different distance measures have been proposed which in some way

quantify the notion that points may lie on different subspaces. These methods typ-

ically estimate a local representation of the subspace at each data point and com-

pute some measure of distance between these local subspaces rather than the points

themselves. In particular, GPCA has been used in conjunction with spectral clus-

tering for situations where the data is noisy. In these cases, an affinity matrix is

constructed by computing the distances between normal vectors at each point.

An important property of linear subspaces is that they are closed under linear

transformations. This property implies that a linear combination of points belong-

ing to a subspace, Sk will also belong to Sk. This means that each point in Sk can

also be represented as a linear combination of all other points in Sk. This property

has been exploited by several spectral subspace clustering methods to construct an

2.5 Subspace clustering 50

affinity matrix. Generally, these methods aim to represent a local subspace Si for

each point, xi, as a linear combination of its nearest neighbours.

The issue of choosing a neighbourhood is addressed by sparse subspace cluster-

ing (SSC) [29] which instead views estimating the individual subspaces as a sparse

estimation problem. SSC relies the assumption that the K underlying subspaces

are independent, that is each of the subspaces exist in different dimensions in the

original space. SSC seeks to estimate a local subspace for each point as a linear

combination of other “nearby” points. This can be viewed as estimating a sparse

linear combination of every point. In the noiseless case, this amounts to solving the

following `
1

optimisation problem for a vector of weights, wi 2 R1⇥N�1 for each

i = 1, . . . , N

CSSC =

N
X

i=1

min kwik1 (2.24)

subject to xi = wiX�i (2.25)

where X�i = [x>
1

, . . . ,x>
i�1

,x>
i+1

, . . . ,x>
N]

>. Since the criterion to be minimised

is the `
1

norm of the weights, this ensures that points which do not lie in the same

subspace as xi will be assigned a zero weight. The optimal sparse representation is

obtained when xi is a combination of only other points in the same subspace.

In the presence of noise, the optimal sparse solution may contain points from

other subspaces and so the SSC criterion is modified so that the `
2

reconstruction

accuracy of the subspaces is considered.

CSSC =

N
X

i=1

kwik1 + �
N
X

i=1

kxi �wiX�ik2

This criterion represents a trade-off between estimating sparse weights, wi and min-

imizing the `
2

reconstruction error between the original data points and the esti-

mated subspaces. This trade-off is controlled by a regularization parameter, � � 0.

The sparse matrix of weights W = [w
1

, . . . ,wN], can be viewed as a graph where

the non-sparse elements indicate observations which belong to the same subspace.

Chapter 2. Learning linear subspaces in high-dimensions 51

Clustering can then be performed using spectral methods. SSC only considers clus-

ters of points which lie in linear or affine subspaces. Although the SSC approach is

only provably correct when the subspaces are independent, results show that it still

works well in the case of dependent subspaces.

Since the neighbourhood of points which contribute to each subspace is defined

by the sparsity in W , it is not necessary to define a neighbourhood of g�nearest

neighbours. However, in the noisy case, the sparsity is affected by the tradeoff with

the `
2

reconstruction penalty which is controlled by the parameter, �. Tuning this

parameter is an open question and it is not clear exactly how sensitive the SSC

clustering method is to different values of �.

Spectral local best flats (SLBF) [108] estimates the cluster assignments based

on minimising the distance between points and their local subspaces

di,j =
q

dist(xi,Sj)dist(xj,Si)

where the function dist() is the Euclidean distance between a point and a subspace.

The subspace Si is estimated using PCA for the point xi and its g-nearest neigh-

bours. The method uses these distances to construct an affinity matrix, A with i, jth

entry

Ai,j = exp(�di,j/2�2

j) + exp(�di,j/2�2

i)

where �2

i is a measure of how well Sj fits xj and its g-nearest neighbours. Spectral

clustering is performed on A to obtain the cluster assignments. SLBF has an overall

computational complexity of O((K+RP)N2

+KPN) which arises from the need

to compute a local PCA model for each observation.

Spectral curvature clustering (SCC) [19] assumes that the data belong to K

clusters which exist in different affine subspaces each with the same dimensions, R.

However, the SCC method does not attempt to estimate the subspace parameters and

so does not compute a measure of reconstruction error. Instead SCC constructs an

affinity matrix based on how likely different points are to exist in the same subspace.

The basic idea behind SCC considers the volume of the simplex formed by selecting

R+ 2 points at random. If the points are in the same subspace, this volume is zero.

2.6 Discussion 52

SCC uses this idea as the basis for a measure of distance between groups on points.

SCC computes multi-way affinity measures between R+ 1 points, {xi}R+2

i=1

se-

lected at random by measuring the polar sine function between them. The polar sine

function is related to the volume of those points however is also scale invariant. If

Vol(x
1

, . . . ,xR+1

) is the volume of the simplex formed by the points x
1

, . . . ,xR+1

,

the polar sine at each vertex, xi is

psin =

(R + 1)!Vol(x
1

, . . . ,xR+1

)

Q

j 6=i kxj � xik

which is zero when all the points lie in the same subspace. SCC then performs

spectral clustering on the recovered distances. Since the SCC procedure constructs

an affinity by computing the polar sine between points sampled randomly from the

whole dataset, it is not necessary to choose a neighbourhood g as with other spectral

based methods. Because of this, SCC is less sensitive to noise and intersections be-

tween subspaces. However, SCC requires O((R+1)

2NP) operations per sample so

a tradeoff must be made between clustering accuracy and computational time which

can be achieved using heuristic sampling methods. Furthermore, SCC assumes all

subspaces are of the same dimensionality which causes it to perform poorly when

there are different subspaces of widely varying dimensionality.

Since spectral clustering based methods rely on globally maximizing an objec-

tive function using an eigendecomposition, they are non-iterative. As such they do

not suffer from issues associated with local minima and sensitivity to starting val-

ues. Furthermore, since the clustering step relies only on an eigendecomposition,

it can be computed efficiently. However, as mentioned the choice of distance is

extremely important and as seen, can add significant computational cost depending

on the measure used. Furthermore, the issue of model selection is still important.

2.6 Discussion

In this chapter we have examined issues relating to the modelling of high-dimensional

data using PCA. Among these is the well known open question of model selection

Chapter 2. Learning linear subspaces in high-dimensions 53

in PCA. Many approaches to this are either based on heuristics or cross-validation,

the latter of which is typically computationally expensive. We have also introduced

the related problem of detecting influential observations. Similar to model selec-

tion, detecting influence using PCA is typically based on extensions of deletion

based methods developed for OLS and has not been developed much beyond this.

The issue of dealing with such observations, even within the context of OLS is still

an open question although methods for robust estimation of PCA exist.

The field of subspace clustering has emerged in the last decade and the cur-

rent state-of-the-art achieves excellent results in a number of real-world problems.

However, the important questions of model selection and identifying influential ob-

servations persist and all of the methods we review have difficulties when the di-

mensionality of each subspace is different. Solving these issues are vital for the

accurate estimation of subspaces, which as we have seen is directly related to the

problem of recovering the true clustering assignments. As a result of these lim-

itations, subspace clustering algorithms must employ computationally expensive

search strategies in order to accurately estimate the underlying subspaces.

In the following chapters we propose an efficient framework for model selection

and detecting influential observations in the context of PCA with the ultimate goal

of developing an algorithm for subspace clustering based on the notion of influential

observations which resolves the problem of model selection.

54

Chapter 3

Predictive methods for PCA

In this chapter we develop an efficient framework for model selection and detecting

influential observations for PCA based on the concept of predictive reconstruction.

We achieve this by noticing that since the PCA reconstruction error can be for-

mulated as a least squares problem, we can derive a recursive expression for the

leave-one-out estimates of the PCA loadings. This forms the basis of an efficient,

approximate formulation of a PRESS statistic for PCA. We then propose a mea-

sure of predictive influence based on the effect each observation has on the PRESS

under a given PCA model. We also propose a novel, robust solution to PCA by

directly minimising the predictive influence. To conclude this chapter we present

an example application in facial recognition.

3.1 The predictive reconstruction error

In the context of PCA, computing the leave-one-out error typically requires N

model fits each using N � 1 data points. In the previous chapter, we reviewed a

method for computing the exact PRESS for PCA efficiently [65]. However, this

method still requires multiple SVD and renormalisation steps and so the resulting

expression for the PRESS is not an analytic, differentiable function of the observa-

tions, xi.

In this section we propose an efficient approximation of the PRESS for PCA

Chapter 3. Predictive methods for PCA 55

which is computed at the expense of a single SVD. Importantly, unlike the method

of [65], the PRESS function we propose has a closed-form recursive relationship

between the PCA subspace parameters, V and their leave-one-out estimates, V�i.

We will show in Section 3.3 that such a property is desirable as it allows us to di-

rectly minimise a measure of the prediction error rather than the residual error. This

results in a PCA algorithm which is more robust to outliers and which generalises

well to unseen observations.

3.1.1 PRESS for PCA

In this section we define an analytic, closed form of the PRESS for PCA. This

formulation of the PRESS is based on the recursive formulation of the PRESS for

OLS given by Eq. (2.13). However, since the PCA loadings are obtianed through

the SVD, the derivation of this expression is not as straightforward and requires an

approximation such that the loadings can be obtained using least squares estimation.

We initially consider the exact leave-one-out reconstruction error using a single

principal component. This quantity has the following form

J =

1

N

N
X

i=1

kxi � xiv�iv
>
�ik2,

where each v�i is the first right singular vector of the SVD estimated using all but

the ith observation of X . Therefore, computing J requires N SVD computations

which is expensive when either N or P is large. We instead propose an approximate

PRESS by introducing the following assumption

Assumption 3.1. When the number of samples, N is large the estimate of the prin-

cipal subspace, v does not change much if we estimate the SVD using N or N � 1

observations. In other words we assume that v�i ⇡ v and therefore xiv�i ⇡ xiv.

We justify this assumption with intuitive and theoretical arguments in Section

3.1.2. This is known as the projection approximation subspace tracking (PAST)

approximation [106]. Using this approximation and defining di = xiv, we can

3.1 The predictive reconstruction error 56

express the PRESS in terms of the ith leave-one-out errors, e�i, as a quadratic

function of v�i in the following way

J =

1

N

N
X

i=1

ke�ik2 =
1

N

N
X

i=1

kxi � div
>
�ik2. (3.1)

Now v�i can be obtained through least squares estimation in the following way

v�i =
�

d>
�id�i

��1

�

X>
�id�i

�

. (3.2)

Since v�i is an eigenvector of
PN

j 6=i x
>
j xj , it is constrained to be mutually orthonor-

mal to any subsequently estimated eigenvectors. Enforcing such a constraint on v�i

would involve a renormalisation operation which breaks the linear relationship be-

tween v and v�i. Therefore, approximating each LOO estimate of v�i using least

squares relies on relaxing this constraint which induces a small deviation from or-

thonormality. It has been shown that the deviation from orthonormality in the PAST

solution when initialised with a random unit vector, depends on the number of ob-

servations, N as O(

1

N2) [107]. Therefore, when N ! 1, this error tends to zero.

As the number of samples (and thus iterations) grows, the estimates converge to the

true eigenvectors. We can now define a closed-form approximation for the PCA

PRESS.

Definition 3.1. The closed-form approximation for the PRESS for a PCA model is

given by

J (R) ⇡ 1

N

N
X

i=1

ke(R)

�i k2. (3.3)

where each leave-one-our error is given by

e
(R)

�i =

R
X

r=1

e
(r)
i

1� h(r)
i

� (R� 1)xi,

where e
(r)
i = xi � xiv

(r)v(r)> and h(r)
i =

(xiv
(r)

)

2

v

(r)>
X

>
Xv

(r)
.

Chapter 3. Predictive methods for PCA 57

It can be seen that this expression depends only on quantities estimated using a

single PCA model fit. The expressions in Definition 3.1 are derived by considering

a recursive expression for v�i in terms of the original eigenvector v using the matrix

inversion lemma

v�i = v �
�

x>
i � div

�

Ddi
1� hi

,

where hi = diDdi and D =

�

d>d
��1. Now, using this expression for v�i in Eq

(3.1) we obtain the ith PRESS error for PCA as

e�i =
ei

1� hi

,

where ei = xi � xivv
> is the ith reconstruction error. From this expression,

it can be seen that the ith leave one out error can be written in terms of the ith re-

construction error and quantities estimated by performing PCA without any explicit

leave-one-out steps. Since the contribution of subsequent latent factors to the recon-

struction error is additive, we can easily obtain the leave-one-out error for (R > 1)

PCA components. This is achieved by simply computing the PRESS errors ob-

tained using r = 2, . . . , R separately in the same way as for r = 1 and adding their

contributions.

3.1.2 Approximation error

The ability to derive a recursive form for the PCA PRESS relies on making an

approximation about the SVD regarding the mutual orthonormality of singular vec-

tors and sample complexity. This approximation relies upon Assumption 3.1. In

this section we describe and justify this assumption.

Assumption 3.1 implies that provided the sample size, N is sufficiently large,

we are also able to estimate the PCA model accurately with N � 1 samples. This

relates to the approximation error between the rth singular value of SN = X>
NXN

which has been estimated using N rows of X , �(r)
(SN) and the rth singular value

3.1 The predictive reconstruction error 58

of SN�1

which has been estimated using N � 1 rows of X , �(r)
(SN�1

). That is,

�

��(r)
(SN)� �(r)

(SN�1

)

�

� ✏,

for 1 r R where the approximation error, ✏ is arbitrarily small.

Since the rank r approximation error of the SVD is given by �r+1

, if the differ-

ence between the pairs of singular values is small, it implies the difference between

the corresponding pairs of singular vectors is also small. In other words, within

the leave-one-out iterations, it is not necessary to recompute the SVD of X>
�iX�i.

We introduce the following theorem which details an upper bound on the maximum

difference between pairs of ordered singular values of the covariance matrix of X

estimated with all N observations and the covariance matrix estimated with N � 1

observations. The value of the error term defined by the bound is dependent on the

size of N and decreases as N increases.

Theorem 3.1. Let SN be the covariance matrix of XN 2 RN⇥P and SN�1

be

the sample covariance matrix of XN�1

2 R(N�1)⇥P . �(r)
(SN) is the rth largest

singular value of SN then

max

r

�

��(r)
(SN)� �(r)

(SN�1

)

�

� sN�1

,

where

sN�1

= c

r

log(N � 1)

N � 1

a,

where c is a constant and a � kxk.

In what follows we provide an intuitive justification for this result and show an

example using simulated data. We first establish a bound on the error between the

sample covariance matrices SN and SN�1

by adapting the argument in Theorem

3.1 from [79] which details an upper bound on the expected difference between the

expected value of the covariance of a random vector x, S = E[x>x] and its sample

covariance matrix using N independent and identically distributed realisations of

x, SN =

1

N

PN
i=1

x>
i xi.

Chapter 3. Predictive methods for PCA 59

Using this result with N and N�1 samples we obtain the following inequalities

EkS � SNk sN (3.4)

EkS � SN�1

k sN�1

. (3.5)

Although these results only hold in expectation, we would expect the difference

kSN �SN�1

k to be at least as small as the difference kS�SN�1

k. So, subtracting

Eq (3.4) from Eq (3.5) and applying the triangle inequality we arrive at an expres-

sion for the difference between terms SN and SN�1

as follows

|kS � SN�1

k � kS � SNk| |sN � sN�1

|

kSN � SN�1

k sN�1

(3.6)

We now relate this result to the difference between computing the SVD of SN

and the SVD of SN�1

by recognising that SN is obtained as a result of perturbing

SN�1

by S
1

= x>
1

x
1

where x
1

2 R1⇥P is the single observation missing from SN .

Using a result from matrix perturbation theory, Theorem 4.11 from [84, p. 204],

which details an upper bound on the maximum difference between the singular

values of a covariance matrix MN�1

and the perturbed matrix SN�1

+S
1

we obtain

max

r
|�(r)

(SN�1

+ S
1

)� �(r)
(SN�1

)| kSN � SN�1

k

 sN�1

,

From this we can see that the result in Theorem 3.1 holds.

This result shows that using the SVD estimated with all of the observations

introduces a small error of at most O
✓

q

log(N�1)

N�1

◆

! 0 as N ! 1 into the

computation of di = xv. This justifies Assumption 3.1 and means that our efficient

method of computing the PRESS is almost equivalent to LOOCV in the case of

large N .

This result can be illustrated by measuring the approximation error between the

leave-one-out error and our PRESS statistic. Figure 3.1 shows the approximation

3.2 A measure of predictive influence for PCA 60

0 20 40 60 80 100 120 140 160 180 200
0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

A
p
p
ro

xi
m

a
tio

n
 e

rr
o
r

number of samples, N

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

D
iff

e
re

n
ce

 in
 c

o
m

p
u
ta

tio
n
a
l t

im
e
,
s

number of samples, N

Empirical error
Theoretical error

Figure 3.1: The mean squared approximation error between the leave-one-out cross
validation and our analytic PRESS statistic as a function of the number of samples,
N over 100 Monte Carlo simulations. It can be seen that the empirical approxima-
tion error scales according to the theoretical error, O(

q

logN
N

) shown as a dashed
line. Also reported is the difference in computational time between the two methods
which increases super-linearly with N.

error as a function of N using data simulated under a PCA model with P = 500

variables. It can be seen that the decrease in the approximation error follows the

theoretical error O(

q

logN
N

) (plotted as a dashed line) and the difference in compu-

tational time increases super-linearly.

3.2 A measure of predictive influence for PCA

Using the form for the PCA PRESS derived in the previous section, we now con-

sider how to measure the influence each point exerts on the PCA model. Since we

Chapter 3. Predictive methods for PCA 61

are interested in the predictive performance of the PCA model, we aim to identify

influential points as those observations having the greatest effect on the prediction

error. In order to quantify this effect, we define the predictive influence with respect

to an observation xi as the rate of change of the PRESS at that point whilst all other

observations remain constant.

Definition 3.2. The predictive influence of a data point xi under the PCA model

parameterised by V , which we denote ⇡
xi(V) 2 Rp⇥1, is the gradient of the PRESS

with respect to xi and has the following form

⇡
xi(V) = e

(R)

�i

0

@

R
X

r=1

⇣

IP � v(r)v(r)>
⌘

⇣

1� h(r)
i

⌘ � (R� 1)

1

A . (3.7)

The derivation of the predictive influence is provided in Appendix A.1. The

predictive influence measures the sensitivity of the prediction error in response to

an incremental change in the observation xi. The rate of change of the PRESS at

this point is given by the magnitude of the predictive influence vector, k⇡
xi(V)k2.

If the magnitude of the predictive influence is large, this implies a small change

in the observation will result in a large change in the prediction error relative to

other points. In this case, removing such a point from the model would cause a

large improvement in the prediction error. We can then identify the most influential

observations as those for which the increase in the PRESS is larger relative to other

observations.

It was observed in [21] that single deletion methods for identifying influence,

such as the PRESS, are only sensitive to large errors. Instead they propose weight-

ing each observation and observing the change in the error as each weight is per-

turbed between 0 (equivalent to LOOCV) and 1 (equivalent to the standard residual)

by computing the derivative of the residual with respect to the weight. They term

this quantity local influence. In this context, our proposed predictive influence mea-

sure can be viewed as a measure of local influence. Here, the gradient of the PRESS

with respect to each observation quantifies the effect of a perturbation in that obser-

3.3 Predictive robust PCA (PRoPCA) 62

vation. This ensures we arrive at a quantity which is more sensitive to influential

observations than other methods which rely on the leave one out error alone.

It can be seen that the form of the predictive influence has more in common

with the the measures of detecting influential observations for OLS, than those for

PCA as reviewed in Section 2.4.2. Whereas measures of detecting influence in

PCA typically involve examining the leave-one-out estimates of the eigenvalues or

eigenvectors, instead our predictive influence measure consists of a function of the

residual error scaled by a term analogous to the leverage of that point under a PCA

model.

3.3 Predictive robust PCA (PRoPCA)

In section 2.4.2 we noted that dealing with influential observations in PCA is a

challenging problem. We reviewed an approach to dealing with such observations

without removing them for the model. Instead, robust PCA methods seek to identify

and downweight the importance of such observations whilst estimating the PCA

model. In this section we consider how such a robust approach can be incorporated

into the framework for predictive influence developed in the previous section.

The predictive influence exerted by the ith observation on the PCA model, given

in Definition 3.2, consists of the ith PCA reconstruction error weighted by its lever-

age under that model. This weight effectively determines the importance of each

observation under a standard, non-robust PCA model. We can downgrade the im-

portance of influential observations by taking these weights into account. There-

fore, rather than obtaining loading vectors which minimise the PCA reconstruction

error, we aim to obtain loadings which minimise the weighted reconstruction error,

that is the predictive influence of each observation.

For R = 1 we can state our problem as

min

v

N
X

i=1

k⇡
xi(v)k2, (3.8)

subject to kvk = 1.

Chapter 3. Predictive methods for PCA 63

The following lemma shows that the solution to (3.8) can be obtained by itera-

tively re-estimating a PCA model where each observation is weighed by its lever-

age.

Lemma 3.1. Solving the minimisation problem, (3.8) is equivalent to solving the

following maximisation problem

max

v

v>X>⌅�2Xv, (3.9)

subject to kvk = 1.

where ⌅ 2 RN⇥N is a diagonal matrix with diagonal elements ⌅i = (1� hi)
2.

The proof of this Lemma is provided in Appendix A.2. From Lemma 3.1, the

objective function, (3.9) can be recognised as an eigenproblem where each observa-

tion has been weighted by a function of its leverage under the PCA model. However,

each diagonal element of ⌅ is defined as a non-linear function of v. Therefore, if

⌅ 6= IN , Eq. (3.9) cannot be solved analytically using a single eigendecomposi-

tion of X>⌅�2X . Instead, the optimal parameters can be obtained by using the

following iterative procedure which we term Predictive Robust PCA (PRoPCA)

Starting with the principal eigenvector, v of X>X:

1. Compute the entries of the matrix, ⌅ where ⌅i =

⇣

1� (xv

0
)

2

v

>
X

>
Xv

⌘

2

.

2. Compute the principal eigenvector, v⇤ of X>⌅�2X .

3. v v⇤.

Repeat until 1� v>v⇤ < tol.

Successive robust principal components can be computed by deflating X by

removing the contribution of the previously extracted component, X = X �
Xv⇤v⇤> and repeating the above procedure.

In the following section we present results showing the ability of the predictive

influence and PRoPCA to detect and deal with influential observations using data

from a real application in computer vision.

3.4 An example application to face images 64

Figure 3.2: The ten subjects of the Yale faces B database under ambient lighting
conditions.

3.4 An example application to face images

In this section we present a series of examples on a real dataset which highlight

the ability of the predictive influence to detect influential observations. We use

the Yale faces B database [33] which consists of frontal images of ten individual

faces taken under 64 different illumination conditions. Each image has dimensions

120 ⇥ 160 pixels. We represent each image by a single 19200-dimensional vector

and concatenate all the images so that the full dataset is represented by a matrix

X 2 R64K⇥19200. It should be noted that by representing the images in this way we

make no use of the spatial information in each image. Figure 3.2 shows an example

image of each of the ten subjects under ambient lighting conditions.

Under the assumption that its pose is constant, it is known that images of an

object under all illumination conditions form a convex cone in image space. This

cone can be well approximated by a low-dimensional, linear subspace [33]. When

applied to the Yale faces database, this implies that images of a single individual

can be well approximated by a standard PCA model. Figure 3.3 shows an example

of an individual under ten of the different lighting conditions.

Chapter 3. Predictive methods for PCA 65

Figure 3.3: An example a subject under ten of the 64 different lighting conditions.

Detecting influence

We first provide illustrative results which show the ability of the PCA predictive

influence to identify influential observations compared to the PCA residual. In the

context of face detection, this amounts to identifying faces of different individuals.

We constructed a dataset consisting of N
1

= 20 faces randomly selected from sub-

ject one. We then select a single face N
2

= 1 randomly out of all the remaining nine

subjects such that N = N
1

+ N
2

= 21. This is considered to be the “influential”

face. We train a standard PCA model on the data and examine both the residual

error and predictive influence of each observation.

Figure 3.4 shows the result of a single example of this experiment. Figure 3.4a

shows the magnitude residuals of each face. A single influential face (marked by a

red box) exhibits a residual which is approximately the mean residual. The implies

that the influential observation is not identifiable by simply examining the residual

error. Figure 3.4b shows the magnitude predictive influence of each face exerted on

the PCA model. The influential faces exhibits a noticably larger influence than all

other faces.

We then performed a Monte Carlo study consisting of 300 simulations each

with N
1

= 20 faces randomly selected from subject one. We then select N
2

= 3

influential faces randomly out of all of the remaining nine subjects so N = 23.

3.4 An example application to face images 66

0 5 10 15 20 25
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

M
a
g
n
itu

d
e
 r

e
si

d
u
a
l

(a) PCA residual

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

18

M
a
g
n
itu

d
e
 p

re
d
ic

tiv
e
 in

flu
e
n
ce

(b) Predictive influence

Figure 3.4: An example of detecting a single influential observation (indicated by
the red box) using (a) the PCA residual and (b) the predictive influence.

For iteration, M = 1, . . . , N we examine the M faces with the largest magnitude

predictive influence and the M faces with the largest magnitude residuals. An influ-

Chapter 3. Predictive methods for PCA 67

ential observation is correctly identified if it is amongst those M selected points. All

other observations amongst those M selected points are considered false positives.

Since N
2

= 3, this can introduce the effects of masking and swamping which

typically make it more difficult to identify groups of influential observations. Due

to the effect of masking, single observation tests may not identify the influential

points so it may be necessary to test groups of points simultaneously. However, if

we test groups of observations simultaneously where the size of each group is larger

than N
2

, the effect of one of the influential observations may swamp the others and

so they may be determined to be non-influential. Therefore it is helpful if we can

detect influential observations by simply testing each observation individually.

Figure 3.5 reports on a single example of this study. Figure 3.5a shows the mag-

nitude residuals of each face. The three influential faces exhibit residuals which are

larger than the mean residual. However the influential faces are not identifiable by

simply examining the residual error. Figure 3.5b shows the magnitude predictive in-

fluence of each face exerted on the PCA model. Two of the influential faces exhibit

a noticably larger influence than all other faces. All three influential faces exhibit

larger influence than the those images belonging to subject one. It has been shown

that local influence measures are typically more resistant to the effects of masking

and swamping [76]. Therefore, even in the presence of multiple influential obser-

vations evaluating the predictive influence at each point individually is sufficient to

identify the influential observations and so the effects of masking and swamping

are negated.

Figure 3.6 compares the receiver operator characteristic of the predictive influ-

ence with that of the residual error over the 300 Monte Carlo simulations. It can

be seen that using the PCA residual to detect influential observations is extremely

prone to identifying false positives. Maximum sensitivity is only achieved at a false

positive rate of 0.97. On the other hand, the predictive influence is able to detect

the influential points accurately with a true positive rate of 0.99 occurring at a false

positive rate of 0.3. The above results confirm that in the presence of influential

observations, the residual error tends to overfit the data. This causes the influential

observations to be undetectable by simply examining the residual errors. However,

3.4 An example application to face images 68

0 5 10 15 20 25
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

M
a

g
n

itu
d

e
 r

e
si

d
u

a
l

(a) PCA residual

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

18

M
a

g
n

itu
d

e
 p

re
d

ic
tiv

e
 in

flu
e

n
ce

(b) Predictive influence

Figure 3.5: An example of detecting three influential observations (indicated by the
red boxes) using (a) the PCA residual and (b) the predictive influence.

Chapter 3. Predictive methods for PCA 69

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
 p

o
si

tiv
e
 r

a
te

Predictive influence

Residual

Figure 3.6: A comparison of the receiver operating characteristic curve for iden-
tifying influential observations obtained by the predictive influence and the PCA
residual. The predictive influence identifies 99% of true positives at a false positive
rate of 0.3 whereas using the residual, this true positive rate is achieved at a false
positive rate of 0.97.

the predictive influence is able to accurately detect both single and multiple influ-

ential observations.

Robust estimation using PRoPCA

We now provide an illustrative example of using PRoPCA as a scheme for robust

estimation of subspaces by incorporating influential observations instead of remov-

ing them. We construct a training set consisting of 15 images from subject one.

We then add a single outlying image which has been corrupted with additive uni-

form noise. Two examples of these noisy images are shown in figure 3.7. Figure

3.7a shows an image which has been corrupted with low noise such that the main

features of the image are still distinguishable. Figure 3.7b shows an image which

has been corrupted with high noise such that any recognisable features have been

3.4 An example application to face images 70

masked by the noise. These are considered the influential observations. For both

PCA and ProPCA we fit the model using the training set then evaluate the mean

predictive reconstruction error on the image of the first subject taken under am-

bient lighting conditions (see figure 3.2). In this way we evaluate the predictive

performance when the model has been trained with a dataset consisting of influen-

tial observations. In this case, we would expect standard PCA to overfit so that the

resulting image would be a poor representation of the true image. We also com-

pare the result obtained by PRoPCA with that of the ROBPCA method reviewed in

Section 2.4.2.

Figure 3.8 shows the comparison between the PCA reconstruction and the PRoPCA

reconstruction in the presence of a single noisy influential observation. Figure 3.8a

shows the result of the presence of an outlier corrupted by low noise. There is a noti-

cible loss of detail in the image reconstructed using PCA, especially in the hair and

the separation between the face and the background. On the other hand, the recon-

struction using PRoPCA has retained most of the detail in the image. Figure 3.8b

shows the result of an outlier corrupted with high noise. The image reconstructed

using PCA retains no detail or distinguishable features. The image reconstructed

using PRoPCA still retains most of the details of the original image including high-

light detail especially in the eyes and forehead.

This example illustrates the extreme effect that even a single influential obser-

vation can have on the PCA model and underscores the importance of being able to

reliably detect such observations. It also shows the ability of PRoPCA to estimate

an accurate representation of the subspace even in the presence of such influential

observations. This shows the suitability of PRoPCA as a solution for dealing with

influential observations within the PCA framework.

Figure 3.9 shows the reconstruction using Robust PCA (ROBPCA). ROBPCA

clearly achieves a good reconstruction of the original face in the presence of low

and high noise and achieves a smaller reconstruction error than PRoPCA in both

cases. However qualitatively, it can be seen that much of the “noise” removed

by ROBPCA is actually signal and so all the detail in the background, forehead and

hair has been removed and the separation between the subject and the background is

Chapter 3. Predictive methods for PCA 71

(a) Low noise. (b) High noise.

Figure 3.7: An outlying image corrupted with two different levels of additive uni-
form noise. A low level of noise preserves most of the features. A high level of
noise removes almost all of the details.

less pronounced. This comparison highlights the importance of interpreting results

obtained by PCA qualitatively as well as in terms of reconstruction error.

It should be noted that these methods are useful when only a few influential

observations are present in the dataset. However, if a large number of influential

observations are present, it may be more realistic to change our assumptions about

the data such that instead, we assume several heterogenous sub-populations exist

in the dataset whose members are not known a priori. In the following chapter we

show that the ability to accurately identify influential observations can be success-

fully applied to the field of subspace clustering.

3.4 An example application to face images 72

Original PCA − MSE = 29.533 PRoPCA − MSE = 26.0542

(a) Low noise.

Original PCA − MSE = 35.735 PRoPCA − MSE = 26.8291

(b) High noise.

Figure 3.8: A comparison between the PCA reconstruction and the PRoPCA re-
construction when trained on 15 examples of the target face and one example of an
outlying face corrupted with additive uniform noise.

ROBPCA − MSE = 24.1555

(a) Low noise.

ROBPCA − MSE = 21.6941

(b) High noise.

Figure 3.9: Image reconstruction using ROBPCA for the low noise setting, (a)
and the high noise setting, (b). When compared to Figure 3.8, ROBPCA always
achieves a smaller reconstruction error than PRoPCA. However, some of the detail
in the image is sacrificed as a result.

73

Chapter 4

Predictive subspace clustering

So far we have developed a framework to detect influential observations and esti-

mate robust PCA models in the presence of such observations. We now revisit the

linear subspace clustering problem introduced in Section 2.5.2. It is known that

learning the number of clusters, the dimension of each subspace, and the correct

assignments is a challenging task. Many of the existing algorithms often perform

poorly in the presence of subspaces that have different dimensions and possibly

overlap, or are otherwise computationally expensive. In this chapter we present a

novel approach to subspace clustering that learns the numbers of clusters and the

dimensionality of each subspace in an efficient way. We assume that the data points

in each cluster are well represented in low-dimensions by a PCA model so that mis-

clustered observations can be identified as exerting a large influence on the PCA

model. We drive the clustering process by assigning points to clusters such that

the predictive influence exerted by each point is minimised. The proposed predic-

tive subspace clustering (PSC) algorithm is assessed on both simulated data and on

the popular Yale faces database where state-of-the-art performance and speed are

obtained.

4.1 Clustering based on predictive reconstruction 74

4.1 Clustering based on predictive reconstruction

In Chapter 2 we reviewed recent subspace clustering methods and identified several

important limitations of the current state-of-the-art. The most important limitation

concerns estimating subspaces of different dimensionality. In the case of GPCA,

the dimensionality of each subspace must be specified in advance. In the case of

successful spectral methods such as SSC, SCC and SLBF, the dimensionality of

the largest subspace must be specified. This raises problems when either the exact

dimensions are not known or are significantly different from each other. When the

difference between maxk(Rk) and mink(Rk) increases, these algorithms become

less able to identify lower-dimensional subspaces.

SSC and SLBF are able to achieve state-of-the-art clustering performance be-

cause they adopt computationally expensive strategies to estimate a local represen-

tation of the subspace at each observation. Such strategies are necessary to ensure

these methods are robust to noise, outliers and are able to correctly assign points on

the intersection between subspaces. However, as P and N increase, these methods

become prohibitively expensive.

In this chapter we addresses these limitations by proposing a novel approach to

solving the subspace clustering problem. As with K-subspaces, we iteratively fit

cluster-wise PCA models and reassign points to clusters until a certain optimality

condition is met. This keeps the computational cost of the algorithm small. How-

ever, rather than trying to minimise the residuals under the individual PCA models

we adopt an approach more similar to spectral clustering-based algorithms which

evaluate the local properties of the subspace at each observation. We introduce an

objective function based on minimising the predictive influence within each cluster

such that it particularly robust to noise and outliers. This also enables the result-

ing algorithm to learn both the number of clusters and the dimensionality of each

subspace.

Specifically, the problem we tackle is the linear subspace clustering problem

as described in Section 2.5.2. That is, we observe N points, xi where each point

belongs to one of K clusters, {Ck}K
1

. Points within each cluster lay on an Rk-

Chapter 4. Predictive subspace clustering 75

dimensional linear subspace, Sk as defined in (2.20). We consider the general case

and assume that the number of dimensions in each subspace, Rk is unknown and

can be different between subspaces. Our aim is therefore to simultaneously:

1. Recover the true cluster assignments, C ⌘ {Ck}K
1

.

2. Estimate the subspace parameters, S ⌘ {Sk}K
1

corresponding to each cluster.

We aim to assign observations such that the reconstruction of points on the sub-

space is optimal in some way. As seen by the many approaches to subspace clus-

tering, the definition of an optimal assignment rule is an open question. However,

as we have seen in Section 3.4, minimising the PCA reconstruction error is prone

to overfitting. For instance, the data may be corrupted by noise or lie on the inter-

section between subspaces and so points within clusters may be geometrically far

apart. Since the PCA reconstruction error is not robust to outliers, such points may

bias the estimated subspace which is a fundamental limitation for assigning points

to clusters. Furthermore, since the PCA reconstruction error decreases monoton-

ically as a function of dimensionality, in the situation where each subspace has

a different intrinsic dimensionality points may be wrongly assigned to the cluster

with the largest dimensionality. Such an approach therefore limits the number of

dimensions to be the same in each cluster.

To avoid these problems relating to overfitting, we instead take an approach

based on assigning points such that the out-of-sample prediction of the reconstruc-

tion error is minimised. In this way, we aim to recover clusters whose points truly

belong to the underlying subspace. In each cluster we can quantify the influence

exerted on the reconstruction error by each point on each PCA model. In Section

3.2 we introduced a method for evaluating the predictive influence of a point on the

PCA reconstruction. We showed how using this measure, influential observations

which otherwise exhibit small residual errors can be identified. In some cases, these

points may not belong to the underlying PCA model and so should be removed. In

the case where we have heterogeneous subsets of points lying on different sub-

spaces, the predictive influence can be used to identify observations which may

have been misclustered.

4.1 Clustering based on predictive reconstruction 76

The proposed algorithm relies on the following observation. If the cluster as-

signments were known and a PCA model was fit to the data in each cluster, then

the predictive influence of a point xi belonging to cluster Ck should be small when

evaluated using the correct PCA model for that cluster, and would be larger when

using any of the remaining K � 1 PCA models. In this respect, the predictive in-

fluence provides a goodness of fit measure that can be used to drive the clustering

process.

The objective of the clustering algorithm is to partition the N observations xi

into one of K non-overlapping clusters such that each cluster contains exactly Nk

observations and
PK

k=1

Nk = N . Assuming that K is known, we recover the par-

titioning by ensuring each point is assigned to the cluster for which it exerts the

smallest predictive influence relative to all other PCA models. This is achieved by

minimising the following objective function.

Definition 4.1. The sum of within-cluster predictive influences is given by

C(S, C) =
K
X

k=1

X

i2Ck

k⇡
xi(Vk)k2, (4.1)

where ⇡
xi(Vk) is the predictive influence of a point xi under the kth PCA model.

It is clear that if the expression in Eq. (4.1) is minimised, the prediction error

for each PCA model will be minimised since all points in each cluster will exert

minimum predictive influence. Therefore, we aim to recover clusters such that the

predictive influence of points within each cluster is minimised. We refer to this

approach as Predictive Subspace Clustering (PSC).

The objective function considers the predictive reconstruction error between

each point and each subspace. By assigning points to clusters such that the predic-

tive reconstruction within a cluster is minimised, the model estimation and selec-

tion problems are resolved simultaneously. If we compare Eq. (4.1) with (3.8), we

see that minimising the objective function can be viewed as estimating a PRoPCA

model in each cluster.

Chapter 4. Predictive subspace clustering 77

Minimising Eq. (4.1) requires determining the true partitioning of the observa-

tions and estimating PCA model parameters for those K partitions simultaneously.

Since the true partitioning is unknown, there is no analytic solution to this problem.

Instead, estimating both the subspaces and the optimal cluster assignments can be

attacked by considering the two related optimisation problems:

1. Given K subspaces with parameters, S and keeping these fixed, recover the

cluster assignments which solve

min

{C1,...,CK}
C(S, C). (4.2)

2. Given a set of cluster assignments, C and keeping these fixed, estimate the

parameters of the K subspaces

min

{V1,...,VK}
C(S, C), (4.3)

subject to V >
k Vk = IP .

In the following section we propose an iterative algorithm to solve this problem.

4.2 The PSC algorithm

Since obtaining cluster assignments by solving (4.2) changes the PCA model pa-

rameters obtained as a result of solving (4.3) and vice versa, these objective func-

tions must be solved iteratively. We propose an algorithm which minimises Eq.

(4.1) by alternately solving (4.2) and (4.3). At each iteration, the PSC algorithm

follows three steps which are outlined below.

Initialisation (I): Given an initial partitioning of the data, C, both the PCA

model parameters and the predictive influences, ⇡
xi(Vk), are computed for all k =

1, . . . , K clusters and i = 1, . . . , N observations.

Partitioning (P): Keeping the model parameters fixed, the cluster assignments

that minimise (4.2) are obtained by assigning points to the clusters, such that the set

4.2 The PSC algorithm 78

Ck consists of the indices, i corresponding to the observations which exert minimal

predictive influence under the kth PCA model,

Ck
n

i : min

k
k⇡

xi(Vk)k2
oN

i=1

, for k = 1, . . . , K. (4.4)

Estimation (E): Keeping the cluster allocations fixed, the algorithm estimates

the parameters, S of the PCA models using the new cluster assignments obtained

during the P step. For all clusters, k = 1, . . . , K, we estimate new PCA model

parameters using {xi} for all i 2 Ck.

The main computational cost involved in the PSC algorithm is the compua-

tion of the SVD in each cluster. Every other quantity required by the algorithm is

either directly computed using the SVD or is cheaply computed through a scalar

operation. Therefore, each iteration of the PSC algorithm requires O (KP 2

+N2

)

operations. Furthermore, since all of the operations in each cluster can be computed

independently for each iteration, the PSC algorithm is suited to highly parallelised

implementation. This can be extended to computing each PCA PRESS component

in its own thread which will result in an extremely fast implementation.

4.2.1 Convergence of PSC

In this section we demonstrate that the proposed PSC algorithm converges to a local

minimum of the objective function in Eq. (4.1). We first provide a sketch of the

argument and show explicitly the effect on the objective function of applying the

P step and the E step. We consider the case where R = 1 however this holds for

R > 1. At the beginning of each iteration we have cluster assignments Cold and

corresponding PCA parameters Sold. Using these values, we evaluate the objective

function, Eq. (4.1), to obtain C(Sold, Cold
).

We then perform Step P to obtain Cnew. Keeping the previous values of the

parameters, Sold, we obtain a new value of the objective function, C(Sold, Cnew
),

Chapter 4. Predictive subspace clustering 79

which satisfies

C(Sold, Cnew
) C(Sold, Cold

),

since following the assignment rule, (4.4) minimises the objective function by def-

inition.

Keeping Cnew fixed, we perform Step E to obtain Snew, where the parameters are

estimated independently in each cluster. In order to show the algorithm converges

we must show that the new value of the objective function, C(Snew, Cnew
), satisfies

C(Snew, Cnew
) C(Sold, Cnew

). (4.5)

Since the cluster assignments are fixed, from Lemma 3.1 we know that for R = 1,

solving (4.3) is is equivalent to solving

max

v

X

i2Cnew
k

v>x>
i ⌅

�2

i xiv (4.6)

subject to kvk = 1,

within each cluster. Following this procedure yields the optimal parameters, S⇤
=

{v⇤
k}K1 . Using these parameters we obtain a value of the objective function, C(S⇤, Cnew

)

which is minimised and thus satisfies (4.5). However, these optimal parameters are

obtained using the iterative PRoPCA procedure in Section 3.3 which requires multi-

ple, expensive SVD operations. Instead, we prove that estimating Snew
= {vnew

k }K
1

by fitting PCA models independently in each cluster, as in Step E, achieves a value

of C(Snew, Cnew
) which satisfies (4.5).

Associated with this step is an approximation error between the PRoPCA solu-

tion and the standard PCA solution. The following lemma shows that estimating a

new PCA model at each iteration always decreases this approximation error and the

objective function.

Lemma 4.1. For each cluster k, we define the approximation error between the

optimal parameters v⇤
k obtained by solving (3.9), and the old PCA parameters vold

k

4.2 The PSC algorithm 80

as

E(S⇤,Sold
) =

X

i2Cnew
k

v⇤
k
>x>

i ⌅
�2

k,ixiv
⇤
k �

X

i2Cnew
k

vold
k

>
x>
i xiv

old
k .

We then define the approximation error between the optimal parameters and the

new PCA parameters as

E(S⇤,Snew
) =

X

i2Cnew
k

v⇤
k
>x>

i ⌅
�2

k,ixiv
⇤
k �

X

i2Cnew
k

vnew
k

>x>
i xiv

new
k .

These error terms satisfy the inequality,

E(S⇤,Snew
) E(S⇤,Sold

). (4.7)

The proof of this lemma is provided in Appendix B. This lemma states that

estimating a new PCA model within each cluster always yields a solution which

is closer to the optimal solution than the PCA model estimated at the previous

iteration.

Theorem 4.1. Starting with any cluster configuration, {Cold
k }K

1

, the PSC algorithm

converges to a local minimum of the objective function, Eq. (4.1).

Proof. We demonstrate that when performing a single iteration the objective func-

tion is always decreased, that is

C(Snew, Cnew
) C(Sold, Cnew

) C(Sold, Cold
). (4.8)

By definition, the cluster assignments, Cnew obtained in Step P minimise the objec-

tive function and so

C(Sold, Cnew
) C(Sold, Cold

).

From Lemma 3.1, minimising the objective function by solving the minimisa-

tion problem, (4.3) is equivalent to solving the maxmisation problem, (4.6) in each

cluster. This yields the optimal PSC parameters which obtain the minimum value of

Chapter 4. Predictive subspace clustering 81

the objective function, C(S⇤, Cnew
) such that C(S⇤, Cnew

) C(Sold, Cnew
), which

is the value of the objective function using the old PCA parameters. From Lemma

4.1, the difference between the optimal PSC parameters and the old PCA parame-

ters is given by E(S⇤,Sold
).

Similarly, estimating the new PCA parameters yields a value of the objective

function, C(Snew, Cnew
) � C(S⇤, Cnew

) where the difference between the opti-

mal parameters and the new PCA parameters is given by E(S⇤,Snew
). Since from

Lemma 4.1, E(S⇤,Snew
) E(S⇤,Sold

), in Step E of the PSC algorithm we es-

timate new PCA parameters which are closer to the optimal parameters obtained

by solving (4.6) in each cluster. We therefore obtain a new value of the objective

function which satisfies

C(Snew, Cnew
) C(Sold, Cnew

).

Since (4.8) holds at each iteration, as a result the objective function always de-

creases and the PSC algorithm converges to a locally optimal solution.

4.2.2 Model selection in PSC

Model selection is an integral part of the PSC algorithm. As mentioned in Section

2.5.2, identifying the true subspaces and thus recovering the true cluster assign-

ments depends heavily on accurate selection of the parameters, K and Rk. The

ability to learn these parameters and have Rk be different for each cluster is an

open problem. The PRESS statistic provides a robust method for efficiently evalu-

ating the fit of the PCA models within our framework. Straightforward extensions

of the basic algorithm allow us to identify the optimal number of clusters, K, and

the dimensionality of each subspace, {Rk}K
1

.

Assuming K is known at each iteration, using all data points in each cluster

k, we evaluate all PCA PRESS statistics as in Eq. (3.3) using all values of each

Rk 2 {1, . . . , Rmax}. We select each Rk such that it minimises the PRESS in

cluster k.

The number of subspaces, K is estimated using a scheme in which we dynam-

4.3 Connection with K-subspaces 82

ically add and remove clusters from the model. If a cluster is not supported by the

data, it is allowed to drop out of the model naturally. We add a cluster by identify-

ing the cluster which exhibits the largest PRESS after convergence and dividing its

observations between two new clusters, thereby increasing the number of clusters

to K +1. This process continues until the overall PRESS is no longer decreased by

adding a new cluster. Furthermore, the splitting operation makes the PSC algorithm

less susceptible to local optimal solutions as it performs a more thorough search of

the possible cluster configurations.

Our PRESS statistic for PCA allows both K and Rk to be efficiently learned

from the data. Given that the SVD at each iteration and for each cluster has been

computed up to dimension Rmax, the additional computational effort required to

evaluate all Rmax values of the PRESS is negligible since all the quantities required

to compute the PRESS are obtained via the SVD. Furthermore, PSC only requires

the user to specify the single parameter, Rmax. Since each one of the Rk values is

typically much smaller than P , we can set Rmax to be small relative to P so the

computation of the full, P -dimensional SVD is not necessary.

4.3 Connection with K-subspaces

Our proposed PSC method for subspace clustering has noticible similarities to the

K-subspaces method in that it iteratively fits K PCA models to the data and assigns

points to clusters based on a measure of distance between each point and the PCA

models. If we do not take into account the model selection aspect of PSC, for

a fixed number of dimensions and clusters, PSC and K-subspaces differ only in

the assignment step. A key question then is how much difference does using the

predictive influence make as opposed to the reconstruction error. In this section we

show that the predictive influence used by our PSC algorithm displays improved

discrimination between observations from different subspaces when the number of

dimensions, R increases. This is contrary to the behaviour of K-subspaces which

becomes less discriminatory as R increases. Furthermore, this behaviour ensures

that PSC is suitable for solving the subspace clustering problem when the number

Chapter 4. Predictive subspace clustering 83

of dimensions in each subspace is different.

Initially, we can see a clear connection with K-subspaces if we examine the

simplest case of R = 1. The K-subspaces algorithm minimises the sum of squared

reconstruction errors

CKSS =

K
X

k=1

X

i2Ck

kxi � xivv
>k2.

By contrast, PSC minimises the sum of squared predictive influence within each

cluster where the predictive influence exerted by a point ⇡
xi(v) has the following

closed-form expression

k⇡
xi(v)k2 =

keik2

(1� hi)
2

.

It can be seen that this is simply the PCA reconstruction error used by K-subspaces,

scaled by the square of its leverage xi
(1�hi)

2 . The differences between PSC and K-

subspaces become more apparent when R > 1. In the case when R = 2, the

K-subspaces distance between two points when R = 2 is

CKSS(i) = kxi

Ip �
2

X

r=1

v(r)v(r)>
!

k2.

The closed form solution for the predictive influence of a point, xi is given by

k⇡
xi(V)k2 = k

xi(Ip � v(1)v(1)

>
)

1� h(1)

i

+

xi(Ip � v(2)v(2)

>
)

1� h(2)

i

!

k2

=

ke(1)

i k2

(1� h(1)

i)

2

+

ke(2)

i k2

(1� h(2)

i)

2

+

2kxi

⇣

Ip �
P

2

r=1

v(r)v(r)>
⌘

k2

(1� h(1)

i)(1� h(2)

i)

.

It can be seen that the final term in the predictive influence is again equivalent to

a scaled version of the K-subspaces objective function. However, the predictive

influence also includes two other terms which are the distance between the projec-

tion of the point onto the principal eigenvector, v(1) and the distance between the

projection of the point onto the second eigenvector, v(2).

As the dimensionality of the subspaces, R increases, the PCA residual decreases

4.4 Penalised PSC 84

monotonically since

xi(Ip �
R
X

r=1

v(r)v(r)
)

> � xi(Ip �
R+1

X

r=1

v(r)v(r)
)

>.

Therefore, if we increase the number of dimensions beyond R = 1, the distance

between points becomes less discriminative. In contrast, as the components of the

PSC objective function are additive, the PSC distance between two points increases

as more dimensions are added, since

xi(Ip � v(r)v(r)>
) < xi(Ip � v(r+1)v(r+1)

>
).

This implies that as the number of dimensions is increased, the predictive influ-

ence function becomes more discriminative between different clusters. Hence, the

use of the predictive influence effectively imposes a penalty on higher-dimensional

clusters unless they are supported by the data and therefore resolves the problem of

overfitting.

4.4 Penalised PSC

In Section 2.5.1 we briefly mentioned a class of subspace clustering methods which

seek to find subsets of important variables within each cluster which determine the

cluster assignments. Recently, it has been observed that sometimes only certain

dimensions of the data are important for determining the separation between clus-

ters [103]. In such cases, if all variables are used for clustering, the results may be

affected by the unimportant variables. It is therefore desirable to be able to identify

and remove these other variables, which could also be considered as noise, from

playing a role in clustering. In this section we extend the PSC algorithm to the

problem of variable selection in clustering.

PCA estimates the subspaces by taking linear combinations of all P variables

in X . However, in high dimensional problems, some of these variables may be

noisy. Furthermore in our subspace clustering application, these noisy or unimpor-

Chapter 4. Predictive subspace clustering 85

tant dimensions may also be unimportant for discriminating between clusters. In

this situation, it may improve subspace estimation (and therefore clustering) if we

constrain the solution such that only “important” dimensions are considered in the

estimation of each subspace.

Each cluster lies on a different subspace which may consist of different impor-

tant dimensions. The eigenvectors obtained by PCA can be considered as a weight

vector in that they determine the importance of each variable in the subspace. By

imposing a penalty on the eigenvectors obtained in each cluster, we can arrive at a

framework for feature selection in subspace clustering. It should be stressed that

this approach to “sparse” clustering is not the same as the compressive sensing ap-

proach of SSC, described in section 2.5.2. Instead of estimating subspaces which

are sparse in the observations as SSC, we consider estimating subspaces which are

sparse in the variables which until now has not been widely explored in the subspace

clustering literature.

Returning to the PSC objective function in Eq. (4.1), we first consider only one-

dimensional subspaces and so the sparse predictive subspace clustering problem

now consists of estimating K clusters and for each cluster, a sparse subspace. This

penalised PSC (PPSC) problem can be expressed in the following objective function

min

{C1,...,CK},{v1,...,vK}
C (4.9)

subject to ||vk||1 �k for k = 1, . . . , K

where the parameter which controls the level of sparsity, �k, could be different for

each cluster. It can be seen that there are K inequality constraints, one for each of

the subspaces.

1. Given K penalised PCA models with parameters, {v
1

, . . . ,vK} and keeping

these fixed, recover the cluster assignments which solve

min

{C1,...,CK}
C. (4.10)

4.5 Simulations 86

2. Given a set of cluster assignments, {C
1

, ..., CK} and keeping these fixed, esti-

mate the parameters of the K penalised PCA models which solve

min

{v1,...,vK}
C, (4.11)

subject to kvkk1 �k for k = 1, . . . , K

The PPSC algorithm proceeds in a similar way to the standard PSC algorithm.

We solve (4.10) in exactly the same way as in standard PSC by assigning points

to clusters such that predictive influence in each cluster is minimised. For a given

set of sparsity constraints, solving (4.11) with respect to a cluster, Ck amounts to

estimating a sparse PCA model using the method described in Section 2.3. This

implies convergence for PPSC is guaranteed following the same arguments as in

Section 4.2.1. The one-dimensional PPSC method can easily be extended to find

Rk sparse components in each cluster. This introduces
PK

k=1

Rk inequality con-

straints which can be solved sequentially in each cluster using a standard sparse

PCA algorithm.

Since PPSC estimates subspaces using only relevant subsets of the available

dimensions, this approach can be seen as a combination of the “subset” clustering

approach, described in section 2.5.1, and linear subspace clustering. The additional

parameters, {�k}K
1

determine the degree of sparsity in each cluster and so selecting

appropriate values is important. This introduces a further issue of model selection

which we discuss in Section 4.7. In the following section we present simulation

results for both the standard and penalised PSC algorithms.

4.5 Simulations

We first present simple simulated examples to illustrate the type of clusters that can

be detected by the proposed PSC algorithm. We generate clusters of 100 data points

which are distributed uniformly on a one, two or three-dimensional linear subspace

embedded in three-dimensional space. To define each subspace, we generate a set

of Rk orthonormal basis vectors each of dimension P = 3, where each element is

Chapter 4. Predictive subspace clustering 87

sampled from a standard normal distribution. For each cluster we then sample 100

Rk-dimensional points from a uniform distribution which are then projected onto

its corresponding subspace. In order to ensure our comparison of methods is fair,

the method we use to generate simulated data is based on the standard GPCA test

data generation software, part of the GPCA Matlab code1 , which is commonly used

to evaluate subspace clustering algorithms [19, 108].

In Figure 4.0 we consider four simulation scenarios which consist of points

which lie on:

(a) two straight lines.

(b) a straight line and a 2-D plane.

(c) two 2-D planes.

(d) a straight line, a 2-D plane and a 3-D sphere.

In each of these cases, we show the original data points in P dimensions, the clus-

tering assignments using K-means clustering in the original dimensions, and the

clustering assignment using PSC. It can be noted that the subspaces intersect so

points belonging to different clusters may lie close to each other. We apply the K-

means algorithm, which uses the Euclidean distance between points, directly to the

3-D data and as expected it consistently fails to recover the true clusters. On the

other hand, PSC correctly recovers both the true clusters and the intrinsic dimen-

sionality of the subspaces.

We also consider an additional scenario, (e), where P = 200 and K = 4.

Here, the clusters consist of points which lie uniformly on a 5-D hyperplane, 4-

D hypersphere and two lines generated as before. We then perform a comparison

in the five settings described above over 200 Monte Carlo iterations between PSC

and four state-of-the-art methods using available Matlab code; GPCA, SCC2, SSC3

1
http://perception.csl.uiuc.edu/gpca

2
http://math.umn.edu/

˜

lerman/scc

3
http://www.cis.jhu.edu/

˜

ehsan/ssc.html

http://math.umn.edu/~lerman/scc

4.5 Simulations 88

and SLBF4. Table 4.3 reports on both the mean percentage of incorrectly clustered

points using the Rand index and computation time (in seconds). In scenarios (a)-(c)

all competing methods achieve close to perfect clustering accuracy except GPCA

which performs poorly under the scenario (b) which represents a scenario where

the intrinsic dimensionality of the clusters is different. All the competing methods

perform poorly under scenario (d) where the clusters exist on three subspaces of

different dimensions. This is expected since SSC, SLBF and SCC all assume that

the number of dimensions is the same in each cluster. Even in low-dimensions,

GPCA, SSC and SLBF require at least an order of magnitude more computation

time compared to PSC. In the high-dimensional scenario (e), SLBF and SSC incur

further computational cost as P,K and N increases. GPCA cannot be applied in

such high-dimensional settings. Our PSC algorithm accurately recovers the clusters

−2
0

2 −2
0

2

−2

0

2

Original data

−2
0

2 −2
0

2

−2

0

2

K−means

−2
0

2 −2
0

2

−2

0

2

PSC

(a) Two lines

(b) Two subspaces: Line and plane

4
http://www.math.umn.edu/

˜

zhang620/lbf/

http://www.math.umn.edu/~zhang620/lbf/

Chapter 4. Predictive subspace clustering 89

(c) Two planes

(d) Three subspaces: Line, plane and sphere

Figure 4.0: Example results of clustering data belonging to several different sub-
spaces using K-means and PSC. The middle plots shows the results of clustering
with K-means. the right-hand plots show that in these examples PSC consistently
recovers the true cluster assignments and estimates the subspaces correctly.

in all settings with little computational cost. This is due to the ability to automati-

cally learn the dimensionality of each subspace.

To test the penalised PSC method we use a similar simulation setting. We re-

peat the previously described simulations with two crucial differences. Firstly, we

increase the dimensionality of each simulated dataset to P = 200. Secondly, in

order to construct the low-dimensional subspaces, we generate sparse loading vec-

tors where only ten, randomly chosen, variables out of 200 are non-zero. We add

normally distributed noise with zero-mean and variance 0.4 so that the remaining

190 variables consist only of noise. Each of the r = 1, . . . , Rk loading vectors

in each of the K clusters has the same number of non-zero elements however the

4.5 Simulations 90

Setting a b c d e

GPCA
e% 6.86 36.09 7.14 27.92 -
t(s) 2.07 3.26 1.40 7.22 -

SCC
e% 0.00 0.00 0.00 29.49 33.05
t(s) 0.49 0.51 0.53 0.80 3.76

SSC
e% 0.0 0.0 11.83 38.33 12.64
t(s) 67.05 64.46 63.88 100.12 471.62

SLBF
e% 0.00 0.00 0.00 44.70 15.28
t(s) 4.28 5.38 5.60 11.48 104.52

PSC
e% 0.00 0.03 0.12 4.09 0.78
t(s) 0.43 0.46 0.58 1.17 24.23

Table 4.1: Comparison of clustering error (e%) and computational time in seconds,
t(s), between PSC and four other state-of-the-art methods for simulated data. It can
be seen that PSC achieves the smallest clustering error in the two hardest settings,
d and e where the dimensionality of the subspaces is different. PSC manages to
achieve these results at a relatively low computational cost.

sparsity pattern in each is different. Data simulated in this way tests the ability of

the PPSC algorithm to estimate subspace parameters and simultaneously recover

cluster assignments when there is a large number of noisy, irrelevant variables.

In this task, we compare PPSC with SCC, SLBF, SSC and standard PSC. We

do not compare with GPCA since the dimensionality of the simulated data is too

large. Importantly, we assume to know the true level of sparsity in the problem and

we provide this information to the PPSC algorithm. For each algorithm, we supply

the true number of clusters, K.

Table 4.2 shows the results using the sparse dataset. It can be seen that all meth-

ods achieve a larger clustering error in the sparse setting compared to the standard

setting in Table 4.1. PPSC obtains the lowest error out of all methods in all sce-

narios apart from (a). SLBF performs comparably with PPSC in settings (a)� (c)

however it performs noticibly worse as the number of subspaces with mixed dimen-

sions increases. Furthermore, in high-dimensional settings, SLBF incurs a similar

high computational cost to SSC. It should also be noted that SLBF does not esti-

Chapter 4. Predictive subspace clustering 91

mate the sparse subspace parameters and so does not identify which variables are

important for estimating the subspaces. This can make interpretation of the results

difficult. SSC achieves the largest clustering error in every scenario which further

highlights the difference with our penalised approach which induces sparsity in the

variables instead of the observations.

This simulation setting highlights an important limitation of standard PSC which

performs worse than SCC and SLBF. This is due to PSC estimating the subspace

parameters using standard PCA which takes a linear combination of all of the vari-

ables. This causes all variables, including the noise variables, to contribute to the

estimated subspace parameters.

As we expect, the performance of PPSC degrades as the dimensionality of the

subspaces increases. This is due to the constraint that basis vectors of each sub-

space must be mutually orthonormal. Therefore, if the incorrect sparsity pattern is

estimated in the first loading, all subsequent loadings are also likely to be estimated

incorrectly. However, since PPSC still performs better than all other algorithms in

settings (d) and (e), this further highlights the benefit of estimating the underlying

subspaces using only the truly important variables.

4.6 Applications to computer vision

In this section we present a comparison of results between PSC and some state-of-

the-art methods for subspace clustering on benchmark datasets from real applica-

tions in computer vision.

4.6.1 Yale faces B database

We present clustering results using the Yale faces B dataset [33], introduced in

Section 3.4 and shown in Figures 3.2 and 3.3.

The Yale faces dataset has dimensionality, X 2 R64K⇥19200 which is too large

for most competing subspace clustering algorithms to deal with. Therefore, fol-

lowing the established procedure of [108] we first use a global PCA to reduce the

4.6 Applications to computer vision 92

Setting a b c d e

SCC
e% 31.95 16.19 10.48 27.76 21.80
t(s) 0.34 0.70 0.70 1.97 6.44

SSC
e% 46.63 47.60 46.78 61.92 63.13
t(s) 138.85 142.16 142.17 248.63 400.53

SLBF
e% 12.44 7.50 3.10 35.69 56.78
t(s) 99.11 114.72 107.93 231.59 389.90

PSC
e% 31.75 46.69 46.13 41.75 36.59
t(s) 5.12 6.12 5.64 19.94 35.42

PPSC
e% 14.16 6.95 2.96 14.30 14.06
t(s) 5.38 3.85 4.26 16.53 22.72

Table 4.2: Comparison of clustering error and computational time in seconds be-
tween PPSC and competing methods for sparse data. PPSC achieves the smallest
clustering error in all but the first setting at a low computational cost.

dimensionality of the data to P = 5 for GPCA and P = 20 for all other methods

including PSC. We then construct standard subsets of the dataset comprising of a

varying number of clusters from 2 to 10 using the following individuals: [5, 8], [1,

5, 8], [1, 5, 8, 10], [1, 4, 5, 8, 10], [1, 2, 4, 5, 8, 10], [1, 2, 4, 5, 7, 8, 10], [1, 2,

4, 5, 7, 8, 9, 10] and [1, 2, 3, 4, 5, 7, 8, 9, 10] as mentioned in [94]. We again

compare the clustering performance of PSC to GPCA, SCC, SSC and SLBF. We

use PSC without pre-specifying K and Rk, but for all the competing methods all

these parameters are fixed to be the true value of K, and the dimensionality of each

subspace is set as R = 2. The ability to accurately and quickly cluster faces has

implications in commercial implementations of facial recognition for biometric and

security systems as well for entertainment purposes.

Table 4.3 compares the mean clustering error and running time for each algo-

rithm for the settings K = 2, . . . , 10. It can be seen that PSC achieves perfect

clustering accuracy with all subsets in less time than the other state-of-the-art meth-

ods. Furthermore, for all values of K, PSC was able to correctly determine the true

number of clusters using the PRESS. On this dataset, it is clear that PSC exhibits

Chapter 4. Predictive subspace clustering 93

state-of-the-art performance and computational speed.

Of the competing methods, SSC and SLBF achieve the next best clustering

accuracy. However, each of these algorithms requires an order of magnitude more

computational time than PSC. GPCA and SCC both perform well when there are

fewer clusters, however as the number of clusters increases, they exhibit poorer

clustering accuracy.

4.6.2 Hopkins 155 motion segmentation database

The Hopkins 155 database [90] consists of a collection of video sequences which

record instances of several objects moving in a scene. Each scene consists of at most

two independently moving objects. However, due to the movement of the camera,

the background also moves relative to the observer. So at most there are three

objects moving through the scene. For each of the important objects, several feature

points are identified and tracked so that their position in each frame is recorded. The

position of the point as it moves through the scene is referred to as its trajectory.

Figure 4.1 gives an example of a single frame from each of the three types of

scene with three motions. Figure 4.1a shows an example of a “checker” sequence

where three different objects (marked with coloured points) rotate and translate

through the scene. Each of the coloured points represents a tracking point on an

object. In these sequences, the objects move independently of each other and so

the motion trajectories of each object is expected to lie on independent subspaces

of dimension three. Figure 4.1b shows a “traffic” sequence filmed in uncontrolled

conditions outdoors. Again the subspaces are independent, this time of dimension

two. Figure 4.1c shows one of the “other” sequences which consists of objects

translating, rotating and being carried through the scene. These objects do not move

independently, and so lie on dependent subspaces which causes difficulties for most

subspace clustering algorithms since the clusters are less well separated.

In this problem, there are N feature points tracked across f = 1, . . . , F frames.

In frame f , the ith feature point afi =

"

a(1)fi

a(2)fi

#

2 R2 is the two-dimensional (2-D)

projection of a point in 3-D space. We concatenate the two dimensions of each

4.6 Applications to computer vision 94

K
2

3
4

5
6

4
8

9
10

G
PC

A
e%

0.
0

49
.5

0.
0

26
.6

9.
9

25
.2

28
.5

30
.6

19
.8

t(s
)

1.
42

2.
72

4.
91

8.
08

11
.7

1
33

.1
1

99
.4

9
28

6.
36

11
22

.5
0

SC
C

e%
0.

0
0.

0
0.

0
1.

1
2.

7
2.

1
2.

2
5.

7
6.

6
t(s

)
0.

57
0.

92
1.

45
2.

30
2.

27
4.

57
6.

58
10

.2
9

7.
51

SS
C

e%
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
2.

4
4.

6
t(s

)
36

.5
6

56
.2

1
80

.8
7

10
7.

82
13

7.
83

17
4.

81
21

9.
22

27
6.

81
57

0.
57

SL
B

F
e%

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

1.
2

0.
9

t(s
)

3.
70

7.
90

14
.0

0
28

.3
2

43
.5

0
63

.7
9

11
8.

99
17

9.
70

24
9.

42

PS
C

e%
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
t(s

)
2.

55
2.

68
2.

47
2.

81
5.

92
5.

37
17

.1
0

23
.7

5
19

.4
5

Ta
bl

e
4.

3:
M

ea
n

cl
us

te
rin

g
er

ro
r

an
d

co
m

pu
ta

tio
n

tim
e

fo
r

Ya
le

fa
ce

s
B

da
ta

se
t.

PS
C

qu
ic

kl
y

ac
hi

ev
es

pe
rf

ec
t

cl
us

te
rin

g
ac

cu
ra

cy
in

al
ls

et
tin

gs
.

Th
e

ne
xt

be
st

co
m

pe
tin

g
m

et
ho

ds
,S

LB
F

an
d

SS
C

re
qu

ire
an

or
de

r
of

m
ag

ni
tu

de
lo

ng
er

to
ac

hi
ev

e
si

m
ila

rr
es

ul
ts

.

Chapter 4. Predictive subspace clustering 95

feature point in each frame such that its dimensionality is P = 2F . Now, each

vector xi = [a(1)
1i , . . . , a

(1)

Fi , a
(2)

1i , . . . , a
(2)

Fi] 2 R1⇥2F represents the trajectory of the

ith feature point as it moves in two-dimensions through each frame of the sequence.

The task in motion segmentation is to cluster the trajectories into K groups such

that each group represents the motion of a single object in the sequence.

We again compare against GPCA, SCC, SSC and SLBF using the standard,

published results in [94]. Furthermore, we also compare against two “reference”

algorithms. The standard reference algorithm (REF) [90] is the result of fitting

standard PCA models to the ground truth cluster assignments and then applying a

single step of the K-subspaces algorithm in order to assign points to the closest

subspace. This tests the validity of the basic assumption that each of the trajecto-

ries can be well represented by a low-dimensional subspace. In a sense, the REF

algorithm represents the best result possible using K-subspaces. In practise, this

algorithm cannot be used since it requires knowledge of the ground truth assign-

ments. We also define a predictive reference algorithm (P-REF) which is the result

of fitting standard PCA models as in the REF algorithm, however we now assign

points based on a single application of Step P of the PSC algorithm. This tests the

suitability of using the predictive influence to assign points to clusters.

It is important to note that for GPCA, the data was first projected onto five

dimensions using PCA. For SSC, each dataset was projected onto 4K dimensions.

For SLBF, SCC and PSC all 2F dimensions were used for every dataset. It should

be noted that in this work we only compare PSC with the state-of-the-art in motion

segmentation algorithms. Comprehensive comparisons of methods on this dataset

are presented in [94] and at the Hopkins155 website5. We apply the PSC algorithm

by specifying the true value of K but we allow the algorithm to learn the values of

{Rk}K
1

.

Table 4.4 reports on the mean and median percentage of points which are as-

signed to the wrong clusters for sequences with two motions. Firstly we note that

the standard reference algorithm obtains small segmentation error in all sequences.

5
http://www.vision.jhu.edu/data/hopkins155

http://www.vision.jhu.edu/data/hopkins155

4.6 Applications to computer vision 96

This suggests that the clusters do lie on low-dimensional subspaces. SSC and SLBF

achieve extremely small errors on all sequences. PSC performs better than GPCA

and comparably to SCC for all sequences. It can be noted that PSC consistently

obtains a smaller median clustering error than SCC. The P-REF performs worse

than the standard REF for all but the “other” sequences.

Table 4.5 reports on the mean and median percentage of points which are as-

signed to the wrong clusters for sequences with three motions. Again SSC and

SLBF obtain excellent results on all sequences. However, for sequences with three

motions, PSC displays a relative improvement in clustering accuracy compared

with the other methods and performs better than SCC in all sequences. PSC per-

forms particularly well on the “other” sequences, which comprise of dependent

subspaces, due to its ability to learn the dimensionality of the different subspaces.

In the three motion setting, the P-REF also achieves a better accuracy than the stan-

dard REF for all sequences. This suggests that using the predictive influence is

beneficial as the number of clusters in the dataset increases.

Figure 4.2 shows the distribution of clustering errors obtained by the PSC al-

gorithm compared to the reference using predictive influence. Figure 4.2a shows

this distribution for all sequences with two motions. It can be seen that 80% of se-

quences are clustered perfectly however the error distribution of the PSC algorithm

exhibits heavy tails with a few sequences clustered with up to 40% error. This

account for the larger mean but small median error values. The P-REF exhibits

somewhat thinner tails with most of the sequences being clustered with smaller er-

rors. However overall, PSC and P-REF perform similarly which suggests that PSC

often finds the globally optimal solution. Figure 4.2b shows the distribution for

sequences with three motions. Here we see that although only 70% of sequences

are clustered perfectly, the maximum clustering error is 30%. This further suggests

that PSC performs well in situations where there are more clusters.

Chapter 4. Predictive subspace clustering 97

REF GPCA SCC SSC SLBF PSC P-REF
Checker

Mean 2.76% 6.09% 1.31% 1.12% 1.59% 5.14% 2.98%
Median 0.49% 1.03% 0.06% 0.00% 0.00% 0.00% 0.00%
Traffic
Mean 0.30% 1.41% 1.02% 0.02% 0.20% 1.12% 1.53%

Median 0.00% 0.00% 0.26% 0.00% 0.00% 0.00% 0.00%
Other
Mean 1.71% 2.88% 3.21% 0.62% 0.80% 1.15% 1.66%

Median 0.00% 0.00% 0.76% 0.00% 0.00% 0.19% 0.00%
All

Mean 2.03% 4.59% 1.41% 0.82% 1.16% 3.53% 2.47%
Median 0.00% 0.38% 0.10% 0.00% 0.00% 0.00% 0.00%

Table 4.4: Mean and median clustering errors for sequences with two motions in
the Hopkins 155 data set. SSC and SLBF perform best overall. PSC exhibits com-
parable mean clustering error with SCC however achieves a better median error
suggesting most sequences are clustered perfectly but a few achieve a relatively
large error.

REF GPCA SCC SSC SLBF PSC P-REF
Checker

Mean 6.28% 31.95% 6.31% 2.97% 4.57% 6.02% 4.27%
Median 5.06% 32.93% 1.97% 0.27% 0.94% 0.74% 0.24%
Traffic
Mean 1.30% 19.83% 3.31% 0.58% 0.38% 1.10% 0.34%

Median 0.00% 19.55% 3.31% 0.00% 0.00% 0.00% 0.00%
Other
Mean 2.66% 16.85% 9.58% 1.42% 2.66% 0.48% 0.93%

Median 2.66% 28.66% 9.58% 0.00% 2.66% 0.48% 0.93%
All

Mean 5.08% 28.66% 5.90% 2.45% 3.63% 4.82% 3.57%
Median 2.40% 28.26% 1.99% 0.20% 0.64% 0.27% 0.00%

Table 4.5: Mean and median clustering errors for sequences with three motions
in the Hopkins 155 data set. SSC and SLBF perform best overall. However PSC
exhibits comparable results in most sequences and achieves the lowest mean error
in the “other” sequences. PSC consistently outperforms GPCA, SSC and even the
standard reference algorithm, REF.

4.7 Discussion 98

4.7 Discussion

In the previous chapters we have considered the related problems of model selec-

tion and influential observations in the context of PCA. We have developed a simple,

unified framework to perform both tasks based on an accurate, analytic approxima-

tion for the leave-one-out predicted reconstruction error. Furthermore we have pro-

posed a solution to the open question of dealing with influential observations within

the framework of PCA. Our predictive influence measure is effective at detecting

influential observations which are otherwise undetectable using the PCA residual

error. As a result of minimising the predictive influence as opposed to the residual

error, we obtain a robust alternative to PCA, PRoPCA which is able to incorpo-

rate influential observations and downgrade their effect so the resulting PRoPCA

model is not heavily biased towards these observations. We demonstrated the abil-

ity of the predictive influence using a series of visual experiments on the widely

used Yale faces benchmark dataset. The results obtained show that the predictive

influence is superior to the PCA residual error for identifying influential observa-

tions. We compared PRoPCA with another robust PCA method, ROBPCA, and

showed that although ROBPCA achieves a smaller reconstruction error when pre-

sented with influential training observations, PRoPCA achieves better qualitative

results. Our framework for identifying influential observations has immediately

obvious applications in facial recognition and biometrics amongst others.

The main application of these methods however, is to consider how PCA can be

extended to solve highly non-linear problems. We apply these methods to the prob-

lem of linear subspace clustering, reviewed in Section 2.5.2. We considered a novel

approach to clustering which identifies misclustered observations as those which

exert a large influence within a cluster. We proposed an algorithm which assigns

observations to clusters such that the within clusters sum of predictive influences is

minimised. Since this procedure is based on out-of-sample prediction, it overcomes

problems relating to overfitting and model selection.

The resulting PSC algorithm exhibits state of the art results on simulated data as

well as real applications in computer vision. Interestingly, it is typically in the more

Chapter 4. Predictive subspace clustering 99

challenging circumstances (large K, varying Rk, large P , dependent subspaces)

where PSC exhibits the best performance relative to competing methods. For diffi-

cult simulation settings involving subspaces of mixed dimensions, PSC outperforms

all methods at low computational cost. When we apply PSC to the problem of clus-

tering images in the Yale faces B dataset, we see that PSC achieves perfect clus-

tering for all subsets of the data comprising of number of clusters, K = 2, . . . , 10.

Again, PSC achieves this result in an order of magnitude less computational time

than the next best performing methods, SLBF and SSC. Finally, on the Hopkins155

dataset, we observe that PSC achieves results which are competitive with the state-

of-the-art. In particular, in difficult settings where the subspaces are dependent,

PSC achieves the best performance due to its ability to correctly estimate the di-

mensionality in each subspace. We also show that using a predictive influence

based clustering criterion accurately assigns points to clusters.

We also proposed an extension to PSC, penalised PSC, which performs simul-

taneous subspace clustering and variable selection using sparse PCA. PPSC is able

to accurately recover cluster assignments in simulated data where the data is noisy

with many irrelevant variables.

There are a number of open questions for further research within the PSC frame-

work. The most obvious concerns how to perform model selection in PPSC. The

standard PSC algorithm is able to learn K and {Rk}K
1

efficiently and accurately us-

ing the PRESS. However PPSC adds the additional parameters {�k}K
1

which con-

trol the number of important variables in each cluster. It has been observed that

prediction based methods such as the PRESS do not perform well for selecting the

sparsity parameter. Recently, subset resampling methods such as stability selection

[63] have shown promising results for accurately selecting regularisation parame-

ters. However, implementing such a method within the PPSC framework would be

computationally prohibitive. Furthermore, we are faced with the added combina-

torial problem of selecting {Rk}K
1

and {�k}K
1

at each iteration where the cluster

assignments themselves also depend on these parameters. This framework could be

extended further still to allow for a different sparsity parameter for each component

within each cluster. It is clear that a different optmisation strategy would need to be

4.7 Discussion 100

investigated.

Currently, we have only considered penalising the `
1

norm of the PCA param-

eter. However a number of different penalties exist which have benefits in other

application domains [31]. Furthermore a similar framework could also be used to

obtain non-negative parameters which provide a better model in some computer vi-

sion [81] and bioinformatics [102] applications. We revisit the topic of penalisation

and sparsity in Chapter 6.

Chapter 4. Predictive subspace clustering 101

(a) Checker.

(b) Traffic.

(c) Other.

Figure 4.1: Single frames from the Hopkins155 dataset showing examples of (a)
“checker”, (b) “traffic” and (c) “other” sequences. The coloured crosses represent
the tracking points of each object whose trajectories we aim to cluster.

4.7 Discussion 102

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

Clustering error

O
cc

u
rr

e
n

ce
s

(%
)

PSC
P−REF

(a) Two motions.

0 5 10 15 20 25 30 35 40
0

20

40

60

80

Clustering error

O
cc

u
rr

e
n

ce
s

(%
)

PSC
P−REF

(b) Three motions.

Figure 4.2: Comparison of the distribution of clustering errors obtained using PSC
and the reference (P-REF) on the Hopkins155 motion segmentation dataset for (a)
two motions and (b) three motions. In both settings, PSC achieves perfect clustering
in most of the sequences and achieves a similar error distribution to P-REF. This
suggests that the PSC algorithm often finds the optimal solution.

103

Chapter 5

Multi-view predictive modelling

In the previous chapters we considered the problem of performing unsupervised

clustering in high-dimensions with a single view of data. In the following chap-

ters, we consider the supervised, or multi-view, setting where we observe a ran-

dom sample of N independent and identically distributed data points, {xi,yi}, for

i = 1, . . . , N , where each xi 2 R1⇥P is the “explanatory view” and each yi 2 R1⇥Q

is the “response view” observed on the ith sample. The dimensions of both views,

P and Q, are allowed to be very large. The N observations can then be arranged

in two paired matrices, one containing all the explanatory variables observed in the

samples, X 2 RN⇥P , and one containing the corresponding response variables,

Y 2 RN⇥Q. The variables in both views are centred and scaled so as to have zero

mean and unit variance.

When multiple views of data are available, the task of identifying clusters is less

well defined. There may be reasons to believe that the observations should cluster

in the same way under each of the available views, hence the process of inferring

the true clustering can be improved by making joint use of all views.

Multi-view clustering methods have become particularly popular for a broad

class of problems in web mining where data of many different types may co-occur

on the same page, for example text, hyperlinks, images and video. A common ap-

plication is that of clustering web pages [10]. Pages can be clustered together based

on the similarity of both their text content and link structure, and the clusters iden-

5.1 Learning in multiple views 104

tify broad subject categories. Another problem in the web mining domain involves

clustering and annotating images represented as a vector of pixel intensities as well

as bag of words containing the corresponding textual annotation [16]. The ability

to accurately cluster these data have implications in web search and advertising.

We extend the ideas in Chapter 3 to develop an efficient PRESS statistic for

TB-PLS as well as a measure of predictive influence. The resulting predictive,

multi-view clustering algorithm can then be seen as an extension of the predictive

subspace clustering method of Chapter 4 to the multi-view setting.

5.1 Learning in multiple views

5.1.1 High-dimensional multi-response regression

In this section we consider the problem of fitting a regression model when both

the predictors and the responses are high-dimensional. In such a setting, ordinary

least squares (OLS) is unsuitable for two reasons. The first is the problem of mul-

ticollinearity mentioned in Section 2.1. Secondly, when the response is high di-

mensional the OLS solution is equivalent to fitting as many multivariate regression

models as the number of responses [38]. This means that no information about the

covariance structure of the response is used.

A number of methods have been proposed for simultaneous dimensionality re-

duction and predictive modelling in such settings. For instance, reduced-rank re-

gression (RRR) imposes a rank restriction on the OLS regression coefficients and

effectively identifies latent factors underlying the response which explain the cor-

relation with the predictors [44]. The regression coefficients are then estimated by

performing the least squares regression of the predictors on these latent factors.

Other models related to RRR also consider linear combination of the response vari-

ables [15].

Chapter 5. Multi-view predictive modelling 105

5.1.2 Two block partial least squares regression

Among latent factor models for simultaneous dimensionality reduction and predic-

tion, two-block partial least squares (TB-PLS) regression has been shown to be a

particularly useful method for modelling a linear predictive relationship between

two high-dimensional views [100, 77]. Unlike RRR, TB-PLS performs dimension-

ality reduction in both predictor and response views simultaneously by assuming

that both the predictors and the responses are comprised of a set of mutually or-

thogonal latent factors. The TB-PLS latent factors are estimated such that they

maximise the covariance between the views. This model overcomes problems re-

lating to multicollinearity by estimating least squares regression coefficients using

the low dimensional latent factors, and has been widely used in the field of chemo-

metrics [105]. Among other applications, the model has been successfully used

in genomics, where regions of DNA that are highly predictive of gene expression

need to be detected, [51], and in computational finance, where the returns of several

indices have been predicted using a large basket of assets [61].

The TB-PLS regression model assumes that the predictor and response views

are noisy realisations of linear combinations of hidden variables, or latent factors,

that satisfy some optimal properties and must be inferred from the data. The specific

form of the TB-PLS model is given in the following definition. The TB-PLS model

assumes the existence of R pairs of orthogonal latent factors, t(r) and s(r) 2 RN⇥1,

for r = 1, . . . , R such that

X =

R
X

r=1

t(r)p(r)>
+Ex, (5.1)

Y =

R
X

r=1

s(r)q(r)>
+Ey,

where Ex 2 RN⇥P and Ey 2 RN⇥Q are matrices of residuals. For each r, the latent

factors are linear combinations of the P predictors and Q responses, respectively;

that is, they are found to be t(r) = Xu(r) and s(r) = Y v(r) where u(r) 2 RP⇥1 and

v(r) 2 RQ⇥1 are weight vectors of unit length. Moreover, for each r, the vectors

5.1 Learning in multiple views 106

p(r) 2 RP⇥1 and q(r) 2 RQ⇥1 are the factor loadings, that determine the contribu-

tion of the latent factors. For any given r, each pair of latent factors {t(r), s(r)} pro-

vides a one-dimensional representation of both views and is obtained by identifying

the directions on which the projected views have maximal covariance. Therefore,

for each r, the paired latent factors satisfy the property that

Cov(t(r), s(r)) = max

u

(r),v(r)
Cov(Xu(r),Y v(r)

)

2, (5.2)

under the constraints that ku(r)k = kv(r)k = 1 for all r = 1, . . . , R which en-

sure the weights are not arbitrarily large. For r = 1 this optimisation problem is

equivalent to

�(1)

= t(1)
>
s(1) = max

v

(1),u(1)
u(1)

>
X>Y v(1). (5.3)

under the same constraints posed on the weights. Here, �(1) is the largest singular

value of X>Y and the weights are the corresponding left and right singular vectors.

The R weight vectors that satisfy Eq. (5.2) can then be found by computing the

singular value decomposition (SVD) of X>Y as

X>Y = U⇤V >,

where U = [u(1), ...,u(P)

] 2 RP⇥P and V = [v(1), ...,v(Q)

] 2 RQ⇥Q are orthonor-

mal matrices and ⇤ 2 RP⇥Q is a diagonal matrix.Therefore u(r) and v(r) are taken

to be the rth left and right singular vectors of X>Y , respectively. This can be seen

as a multi-view extension of the PCA maximisation problem.

The predictive relationship between the two views is driven by a linear regres-

sion model involving the R pairs of latent factors. For each r, the response latent

variable depends linearly on the explanatory latent variable, as follows

s(r) = t(r)g(r) + h(r) (5.4)

where each g(r) is a scalar regression coefficient which describes the projection

of the latent factor relating to the response onto the latent factor relating to the

Chapter 5. Multi-view predictive modelling 107

predictors, and each h(r) 2 RN⇥1 is the vector of residual errors. Since the latent

factors are assumed to have zero mean, there is no intercept term. Using the inner

regression models (5.4), the TB-PLS model (5.1) can now be re-written in the more

familiar form

Y =

R
X

r=1

t(r)g(r)q(r)>
+E = X

R
X

r=1

u(r)g(r)q(r)>
+E

= X� +E, (5.5)

where the regression coefficients have been defined as

� =

R
X

r=1

u(r)g(r)q(r)> (5.6)

and depends on the parameter sets {u(r),v(r)}R
1

. Each one of the R factor loadings

q(r) are obtained by performing univariate regressions,

q(r)
=

Y >s(r)

s(r)
>
s(r)

. (5.7)

and each of the R regression coefficients g(r), from the inner model of Eq. (5.4), is

estimated by least squares regression of t(r) on s(r),

g(r) =
⇣

t(r)
>
t(r)
⌘�1

t(r)
>
s(r). (5.8)

Further insights about the regression coefficients that characterise the TB-PLS

model can be obtained by explaining a special case. In high-dimensional settings,

such as the one we consider, it is generally appropriate to assume the data has

spherical covariance within each view [18, 102], and so X>X = IP and Y >Y =

IQ. With only one latent factor for each view, i.e. R = 1, the TB-PLS regression

5.1 Learning in multiple views 108

coefficients, � have the following form

� = u(t>t)�1t>s(s>s)�1v>Y >Y

= u(t>t)�1t>X�OLSv(s>s)�1s>Y

= ut>X�OLSvv>.

where �OLS are the OLS regression coefficients. This expression is obtained by

recognising that t>s = u>X>Y v, and then replacing the term X>Y with

X>X(X>X)

�1X>Y .

The TB-PLS regression coefficients are thus expressed in terms of the OLS regres-

sion coefficients, and by premultiplying both sides by X we obtain the estimated

response view,

ˆY PLS
= Xuu>

ˆ�OLSvv>, (5.9)

where Xuu> is the projection of X onto its TB-PLS directions. In this form the

TB-PLS solution can be viewed in terms of obtaining the OLS regression using the

low-dimensional representation of X and projecting those predicted responses onto

the latent factors of Y .

5.1.3 Multi-view clustering

The TB-PLS regression model rests on the assumption that the N independent sam-

ples are representative of a population in which the multivariate predictors and re-

sponses have been drawn from a joint probability distribution with a (P ⇥ Q) co-

variance matrix X>Y . Under this assumption, the latent factors that determine the

regression coefficients in Eq. (5.6) can be optimally estimated using all the avail-

able data. However, in many applications the observations may be representative of

a number of different populations, each one characterised by a different covariance

structure between the views. Failing to recognise this would lead to a biased esti-

Chapter 5. Multi-view predictive modelling 109

mation of the latent factors, which would in turn provide a sub-optimal predictive

model.

We are interested in situations in which the observations have been sampled

from K different sub-populations, where the exact value of K may be unknown.

Data points belonging to a cluster Ck, for k = 1, . . . , K, have their own covari-

ance structure,
P

i2Ck x
>
i yi. If these cluster assignments were known, the optimal

strategy would consist of fitting a separate TB-PLS model for each cluster, so that

cluster Ck is associated with parameter set {uk,vk} and can be referred to as a

predictive cluster. It can be noted that in general the optimal dimension Rk is not

necessarily the same across clusters. The problem involves simultaneously recover-

ing the cluster assignments and their parameter sets, as well as learning the optimal

K. Learning the optimal dimensionality in each cluster is a much harder problem

which we address later.

An example of this scenario is given in Figure 5.1a where K = 2, R
1

= 2,

R
2

= 1 and P = 3. Here, under the X view, the points are uniformly distributed

along either one of two lower dimensional subspaces, a line and a plane, both em-

bedded in the three-dimensional space. To obtain the Y view, we have taken a

linear combination of variables in the explanatory view and added some Gaussian

noise; this ensures that, within each cluster, the Y view can be linearly predicted by

the X view. Clearly, fitting a global TB-PLS model would be inappropriate in this

setting, and this can be seen in Figure 5.1b, which shows the estimated subspaces.

It can be noted that, within each view, these estimated subspaces lie somewhere

between the true subspaces, so the predictive ability of the model is sub-optimal.

The example in Figure 5.1 highlights another difficulty which arises in mod-

elling heterogeneous data: since the subspaces in each view intersect, points be-

longing to different clusters at the intersection may be geometrically closer than

other points belonging to the same cluster. We revisit this example in Section 5.4.2

and show the results of our MVPP algorithm, for simultaneously clustering and

estimating the subspaces, in Figure 5.4.

A number of multi-view clustering algorithms have been proposed to determine

a common data partitioning between views. Two main approaches seem to have

5.1 Learning in multiple views 110

(a) Simulated data.

(b) Global TB-PLS.

Figure 5.1: Figure 5.1a shows the two clusters in the X view consist of points
sampled uniformly on a 1-d line and a 2-d plane embedded in three dimensions. The
clusters in the Y view are noisy linear combinations of the corresponding clusters
in the X view so that there is a predictive relationship between the views. Figure
5.1b shows the result of fitting a global TB-PLS model to the data. It can be seen
that the resulting subspace in the X view lies between the clusters and as a result
predicts the response poorly.

emerged in the literature: late and early fusion methods. The late fusion methods

first recover the clusters independently from each view (e.g. by using the K-means

algorithm), and then attempt to infer a “consensus” clustering by combining the

partitioning obtained within each view such that some measure of disagreement

between the individual partitionings is minimised [54, 50, 56, 37, 16]. Commonly,

Chapter 5. Multi-view predictive modelling 111

the consensus clustering assignments are recovered by assuming the existence of

latent factors that are shared between views, which are often inferred by estimating

the non-negative factorisation of the combined partition matrices.

On the other hand, early fusion multi-view clustering methods start by learning

any common patterns that may be shared by the views and that could yield a joint

clustering [10, 92, 24]. A common assumption is that the data under each view

are generated from a mixture of distributions where the mixing proportions which

determine the cluster assignments are unknown but shared between views. For in-

stance, multi-view EM algorithms have been proposed to fit mixture models in this

setting [10, 92]. Several methods have been introduced which rely on a two-step

approach to multi-view clustering where the clusters are ultimately defined in terms

of geometric separation between points lying in low-dimensional projections. For

example, multi-view CCA clustering (MV-CCA) [18] can be seen as an extension

to the PCA/K-means procedure described in Section 2.5.2. First, a joint dimen-

sionality reduction step is performed using both views, using canonical correlations

analysis (CCA) which recovers latent factors explaining maximal correlation be-

tween the views; second, K-means is used to detect the clusters among data points

in the lower dimensional space found in the first stage. Using CCA to initially per-

form dimensionality reduction has been shown to increase the separation between

the clusters similarly to using PCA followed by K-means in single-view cluster-

ing. A non-linear dimensionality reduction step using kernel CCA has also been

proposed [24].

Most of these multi-view clustering methods rely either explicitly or implic-

itly on the assumption that conditioned on the cluster assignments, the two views of

data are independent. This means they do not take into account any possible predic-

tive relationships between the two views. Indeed, the idea of multi-view clustering

based on prediction has not been explored in the literature. Finite mixtures of lin-

ear regressions have been proposed to fit regression models to subsets of the data

when the response is univariate [12, 83, 74]. This model assumes that the data are

generated from K linear regressions where the parameters consist of the regression

coefficients, the residual error and the mixing proportions which are estimated us-

5.2 Detecting influential observations 112

ing the EM algorithm. However, as we discussed in Chapter 2, the least squares

solution is prone to over-fitting and does not represent the true predictive relation-

ship inherent between the views. Furthermore, the least squares regression applies

only to a univariate response variable, and is not suitable for situations where the

response is high dimensional.

Associative clustering [82] attempts to find clusters in separate views which

maximise a measure of dependency between the views, in this case the mutual

information. However, unlike most other multi-view clustering methods, this ap-

proach does not treat the samples in each view as paired observations and so may

recover a different clustering in each view.

We propose a procedure similar to the PSC method of Chapter 4 which relies on

the following observations. Given a fixed cluster allocation and model parameters,

we assess whether, within each cluster, there are influential observations. An obser-

vation is influential if it has a large effect on the cluster-specific predictive model

between views. Our strategy then consists of iterating between fitting TB-PLS mod-

els on the current data partitions and re-allocating influential observations to the

most appropriate partitions until this process can be longer be improved. Similar to

PSC, we first propose a computationally efficient measure of predictive influence

under a TB-PLS model which is based on the PRESS statistic. We then exploit

the predictive influence measure to establish an objective function for multi-view

predictive partitioning.

5.2 Detecting influential observations

5.2.1 PRESS for TB-PLS

In the context of PLS regression with univariate response, the PRESS has also been

used for identifying influential observations [104, 59]. However, as with the PCA

PRESS, its computation requires the regression model to be fit N times, each time

using N � 1 data points. Therefore, evaluating the PRESS for TB-PLS would re-

quire N SVD computations to be performed, each with a computational cost of

Chapter 5. Multi-view predictive modelling 113

O (P 2Q+Q2P) [36]. Again, this approach is particularly expensive when the di-

mensions of the data in either view are large.

Recently, we proposed a closed-form expression for computing the PRESS

statistic under a TB-PLS model which reduces the computational cost of explicitly

evaluating the leave-one-out errors [60]. We overcome the need to recompute the

SVD N times by approximating the leave-one-out estimates of the singular vectors

{u�i,v�i} with {u,v}. This is analogous to the approximation in Section 3.1.1.

Definition 5.1. A closed-form approximation for the PRESS for a TB-PLS model is

given by, e�i is given by

J ⇡ 1

N

N
X

i=1

ke�ik2, (5.10)

where each leave-one-out error is given by

e�i ⇡
ei � t2iEy,i � bi
(1� t2i)(1� s2i)

. (5.11)

Here, ei = yi�xi� is the TB-PLS residual error, and b = hisiyi, with hi = si�gti
being the ith residual error for the inner regression model of Eq. (5.4) and Ey,i 2
R1⇥q being the ith residual in the TB-PLS model in Eq. (5.1).

The derivation of Eq. (5.11) is provided in Appendix C.1. Definition 5.1 pro-

vides an approximation for the LOOCV error in terms of only the TB-PLS residual

errors ei. The error introduced by approximating the leave-one-out estimates of the

singular vectors is of order O
✓

q

log(N)

N

◆

. The denominator of Eq. (5.11) is a scal-

ing term related to the contribution of each data point to the latent factors, t and s.

In this form, it can be seen that the TB-PLS PRESS has similarities with the PRESS

for OLS regression where these scaling terms are related to the leverage each point

exerts on the regression.

5.2 Detecting influential observations 114

5.2.2 Predictive influence for TB-PLS

Using the approximation (5.11), we now consider how to measure the influence

each point exerts on the TB-PLS model. Since we are interested in the predictive

performance of the TB-PLS model, we aim to identify influential points as those

observations having the greatest effect on the prediction error. In order to quantify

this effect, we define the predictive influence with respect to an observation {xi,yi}
as the rate of change of the PRESS at that point whilst all other observations remain

constant.

Definition 5.2. The predictive influence of a data point {xi,yi}, which we denote

as ⇡
xi(u,v) 2 Rp⇥1, is the derivative of the PRESS with respect to xi which has

the form,

⇡
xi(u,v) =

@J

@xi

=

4e�i

N

�E>
y,i

(1� t2i)(1� s2i)
+

e>
�i

(1� ti)

!

tiu
>. (5.12)

The derivation for this expression is reported in Appendix C.2. The predictive

influence offers a way of measuring how much the prediction error would increase

in response to an incremental change in in the observation {xi,yi} or alternatively,

the sensitivity of the prediction error with respect to that observation. The rate

of change of the PRESS at this point is given by the magnitude of the predictive

influence vector, k⇡
xi(u,v)k2. If the magnitude of the predictive influence is large,

this implies a small change in the observation will result in a large change in the

prediction error relative to other points. In this case, removing such a point from

the model would cause a large improvement in the prediction error. We can then

identify influential observations as those for which the increase in the PRESS is

larger relative to other observations.

Some experimental results comparing the proposed predictive influence and the

model residuals for the identification of influential observations are reported in Sec-

tion 5.4.1. In the following Section, we develop the idea of using the predictive

Chapter 5. Multi-view predictive modelling 115

influence to identify points which may belong to different TB-PLS models in het-

erogeneous data.

5.3 Multi-view predictive partitioning

5.3.1 The MVPP algorithm

Initially we assume that the number of clusters, K, is known. As mentioned in

Section 5.1.3, the problem we aim to solve is two-fold. We aim to allocate each

observation {xi,yi}, i = 1, . . . , N into one of K non-overlapping clusters {Ck}K
1

such that each cluster contains exactly Nk observations, with
PK

k=1

Nk = N . Si-

multaneously, for each cluster, we aim to estimate a predictive model parametrised

by {uk,vk} such that within each cluster the observations are similar to each other

in a predictive sense.

We achieve this by fitting TB-PLS models to the data and assigning points to

ensure that within each cluster they exert the smallest predictive influence on the

TB-PLS model. Accordingly, we define the MVPP objective function to be min-

imised.

Definition 5.3. The within clusters sum of predictive influences is given by

C(⇥, C) =
K
X

k=1

X

i2Ck

k⇡
xi(uk,vk)k2, (5.13)

where ⇡
xi(uk,vk) is the predictive influence of a point {xi,yi} under the kth TB-

PLS model.

Minimising Eq. (5.13) involves simultaneously determining the true partition-

ing of the observations, C ⌘ {Ck}K
1

and estimating TB-PLS model parameters,

⇥ ⌘ {uk,vk}K
1

for those K partitions. If the true cluster assignments were known

a priori, fitting these models and thus minimising the objective function would be

trivial. However, since the true partitioning is unknown, there is no analytic so-

lution to this problem. Instead, this problem of estimating the predictive models

5.3 Multi-view predictive partitioning 116

and the cluster assignments which minimise the objective function can be solved

by considering two related optimisation problems:

1. Given K TB-PLS models with parameters, ⇥ and keeping these fixed, re-

cover the cluster assignments which solve

min

{C1,...,CK}
C(⇥, C). (5.14)

2. Given a set of cluster assignments, {Ck}K
1

and keeping these fixed, estimate

the parameters of the K predictive models which solve

min

{u1,v1...,uK ,vK}
C(⇥, C). (5.15)

Obtaining cluster assignments by solving (5.14) changes the TB-PLS model pa-

rameters obtained as a result of solving (5.15) and vice versa, therefore these objec-

tive functions must be solved iteratively. We propose an iterative algorithm which

minimises Eq. (5.13) by alternately solving (5.14) and (5.15). At each iteration,

the MVPP algorithm follows three main steps, outlined below, which are guaran-

teed to decrease the objective function. Therefore, MVPP is guaranteed to converge

to a local minimum. After the initialisation step, the MVPP algorithm iterates be-

tween the partitioning and estimation steps, as detailed below, until convergence is

achieved.

Initialisation (I): Given an initial partitioning of the data, C, both the TB-PLS

model parameters and the predictive influences, ⇡
xi(uk,vk), are computed for all

k = 1, . . . , K clusters and i = 1, . . . , N observations.

Partitioning (P): Keeping the model parameters fixed, the cluster assignments

that minimise (5.14) are obtained by assigning points to the clusters, such that the

set Ck consists of the indices, i corresponding to the observations which exert min-

imal predictive influence under the kth TB-PLS model,

Ck
n

i : min

k
k⇡

xi(uk,vk)k2
oN

i=1

, for k = 1, . . . , K. (5.16)

Chapter 5. Multi-view predictive modelling 117

Estimation (E): Keeping the cluster allocations fixed, the parameters {uk,vk}
that minimise (5.15) are estimated using the data points {xi,yi} for all i 2 Ck for

each k = 1, . . . , K and according to Eq. (5.2).

5.3.2 Algorithm convergence

In this section we demonstrate that the proposed MVPP algorithm converges to a

local minimum of the objective function in Eq. (5.13). Since the MVPP algorithm

shares similarities with PSC, the convergence of the algorithm can be demonstrated

in a similar manner.

Since the cluster assignments are fixed, the minimisation problem of (5.15) can

be solved by independently solving the following minimisation problem in each

cluster,

min

uk,vk

X

i2Cnew
k

k⇡
xi(uk,vk)k2. (5.17)

In the following lemma we show that although (5.17) has no closed-form solution,

it can be reformulated as a familiar maximisation problem.

Lemma 5.1. The minimisation problem of (5.17) is equivalent to the following

maximisation problem

max

uk,vk

X

i2Cnew
k

⌅

�1

k,iuk
>x>

i yivk, (5.18)

where the weight terms ⌅k,i = (1 � (xiuk)
2

)(1 � (yivk)
2

) 1 scale each obser-

vation by its leverage under the kth TB-PLS model.

The proof is provided in Appendix C.3. The maximisation problem is similar to

the optimisation required to fit the TB-PLS model, as in (5.3). However, since the

weights are also functions of the terms uk and vk, the solution cannot be obtained

as a result of estimating a single SVD within each cluster. Instead, a solution is

5.3 Multi-view predictive partitioning 118

obtained by iteratively computing uk and vk for fixed values of ⌅k,i using the SVD

and computing new values of ⌅k,i. This procedure requires multiple SVD computa-

tions which is computationally expensive. Furthermore, minimising (5.18) yeilds a

solution where the predictive influence of incorrectly assigned observations within

each cluster are downweighted by their leverage, ⌅k,i. However for assigning points

to clusters, we wish to detect terms which have a large predictive influence.

Therefore, in Step E of the MVPP algorithm, rather than solving the weighted

problem (5.18) exactly, we instead compute the standard TB-PLS solution given by

(5.3) within each cluster using the new cluster assignments. This is equivalent to

solving

max

uk,vk

X

i2Cnew
k

uk
>x>

i yivk. (5.19)

As a result there is an approximation error between the optimal MVPP solution,

obtained by solving (5.18), and the TB-PLS solution, obtained by solving (5.19).

The following lemma quantifies the difference in this approximation error be-

tween using the old TB-PLS parameters, ⇥old and the new TB-PLS parameters

⇥

new.The lemma states that estimating new TB-PLS parameters using the new clus-

ter assignments always results in a smaller approximation error.

Lemma 5.2. For each cluster k, we define the approximation error between the

optimal parameters ⇥⇤ obtained by solving (5.18), and the old TB-PLS parameters

as

E(⇥

⇤,⇥old
) =

X

i2Cnew
k

⌅

�1

k,iu
⇤
k
>x>

i yiv
⇤
k �

X

i2Cnew
k

uold
k

>
x>
i yiv

old
k .

We then define the approximation error between the optimal parameters and the

new TB-PLS parameters obtained by solving (5.19) as

E(⇥

⇤,⇥new
) =

X

i2Cnew
k

⌅

�1

k,iu
⇤
k
>x>

i yiv
⇤
k �

X

i2Cnew
k

unew
k

>x>
i yiv

new
k .

These error terms satisfy the inequality,

E(⇥

⇤,⇥new
) E(⇥

⇤,⇥old
). (5.20)

Chapter 5. Multi-view predictive modelling 119

The proof of this lemma is provided in Appendix C.4. Inequality (5.20), states

that estimating new TB-PLS models after reassigning clusters always decreases

the approximation error relative to the TB-PLS models estimated at the previous

iteration. Therefore, performing Step E of the MVPP algorithm always improves

the objective function. We are now ready to present our theorem which explicitly

states the convergence of the MVPP algorithm.

Theorem 5.1. Starting with any cluster configuration, C, the MVPP algorithm con-

verges to a local minimum of the objective function, Eq. (5.13).

The proof of this theorem follows an argument analogous to the proof of Theo-

rem 4.1.

Proof. We denote by C(⇥

old, Cold
) the objective function, Eq. (5.13), evaluated

using the cluster assignments Cold and TB-PLS model parameters ⇥old. We demon-

strate that when performing a single iteration of the MVPP algorithm the objective

function is always decreased, that is

C(⇥

new, Cnew
) C(⇥

old, Cnew
) C(⇥

old, Cold
) (5.21)

By definition, the cluster assignments, Cnew, obtained in Step P always minimise

the objective function and so

C(⇥

old, Cnew
) C(⇥

old, Cold
)

From Lemma 5.1, the optimal MVPP parameters yield a value of the objective func-

tion, C(⇥

⇤, Cnew
) such that C(⇥

⇤, Cnew
) C(⇥

old, Cnew
). From Lemma 5.2, the

difference between the optimal MVPP parameters and the old TB-PLS parameters

is given by E(⇥

⇤,⇥old
).

Similarly, estimating the new TB-PLS parameters yields a value of the objective

function, C(⇥

new, Cnew
) � C(⇥

⇤, Cnew
) where the difference between the optimal

parameters and the new TB-PLS parameters is given by E(⇥

⇤,⇥new
). Since from

5.3 Multi-view predictive partitioning 120

Lemma 5.2, E(⇥

⇤,⇥new
) E(⇥

⇤,⇥old
), the new value of the objective function

satisfies

C(⇥

new, Cnew
) C(⇥

old, Cnew
).

Since (5.21) holds at each iteration, as a result the objective function always de-

creases and the MVPP algorithm converges to a locally optimal solution.

5.3.3 Total predictive influence

The definition of the predictive influence, ⇡
xi(u,v) assumes yi is constant and

therefore does not consider how variation in yi affects the PRESS. However, ac-

cording to Eq. (5.1), TB-PLS models systematic noise in both views in the form of

the residual matrices Ex and Ey. Assuming yi is constant ignores the variation in

Ey and so the predictive influence is sensitive to noise in the response. In order to

obtain a measure of predictive influence which is robust to noise in both views it is

important to explicitly quantify the effect of yi on the predictive ability of the given

TB-PLS model. Therefore we introduce a measure of total predictive influence with

respect to the pair of points {xi,yi}.

Definition 5.4. The predictive influence of a data point {xi,yi}, which we denote

as ⇡
xi,yi(u,v) 2 R(P+Q)⇥1, is the total derivative of the PRESS with respect to the

P variables in xi and the Q variables in yi,

⇡
xi,yi(u,v) =

@J

@xi,1

, . . . ,
@J

@xi,P

,
@J

@yi,1
, . . . ,

@J

@yi,Q

�

=

@J

@xi

,
@J

@yi

�

. (5.22)

The derivation of @J
@yi

follows the same argument as the derivation of @J
@xi

in

Appendix C.2. The magnitude of the total predictive influence vector ⇡
x,y(xi,yi) 2

R(P+Q)⇥1 describes the rate of change in the PRESS function in response to an

incremental change in the predictor xi and the response yi. As such, the total

Chapter 5. Multi-view predictive modelling 121

derivative is more robust to noise than the individual gradients since it considers the

effect of both Ex and Ey on the PRESS. We demonstrate this property of the total

predictive influence with experiments in Section 5.4.

Throughout the rest of this chapter, all of the results have been obtained by

computing the predictive influence with respect to {xi,yi} as in Eq. 5.4.

5.3.4 Model selection

Model selection in both clustering and TB-PLS are challenging problems which

have previously only been considered separately. Within our framework, the PRESS

statistic provides a robust method for efficiently evaluating the fit of the TB-PLS

models to each cluster. A straightforward application of the PRESS allows us to

identify the optimal number of clusters, K. We also apply a similar intuition to

attempt to learn the number of latent factors of each TB-PLS model, R
1

, . . . , RK .

Since our algorithm aims to recover predictive relationships on subsets of the

data, the number of clusters is inherently linked to its predictive performance. If K

is estimated correctly, the resulting prediction error should be minimised since the

correct model has been found. We therefore propose a method to select the number

of clusters by minimising the out-of-sample prediction error which overcomes the

issue of over-fitting as we increase K. The strategy consists in running the MVPP

algorithm using values of K between 1 (no clusters) and Kmax, the maximum num-

ber of cluster that we think can be supported by the data. We then select the value

of K which minimises the mean PRESS value over the K clusters. This is pos-

sible due to our computationally efficient formulation of the PRESS for TB-PLS

and the fact that we aim to recover clusters which are maximally predictive. The

performance of this approach using simulated data is discussed in Section 5.4.3.

In the case where there is little noise in the data, the number of latent factors

can be learned by simply evaluating the PRESS in each cluster at each iteration.

Therefore, in the kth cluster, the value of Rk is selected such that the PRESS is

minimised. Since we select the value of Rk which minimises the PRESS, this also

guaranteed to decrease the objective function. However, as the amount of noise

5.4 Performance evaluation using simulated data 122

in the data increases, selecting each optimal Rk value becomes a more difficult

task due to the iterative nature of the algorithm. In this case, setting R = 1 tends

to capture the important predictive relationships which define the clusters whereas

increasing each Rk can actually be detrimental to clustering performance. This

issue is discussed in Section 5.4.3.

5.4 Performance evaluation using simulated data

5.4.1 Identifying influential observations

Initially we assess the ability of our criterion for detecting influential observations

under a TB-PLS model, and demonstrate why using model residuals only is un-

suitable. For this assessment, we assume an homogeneous population consisting of

bivariate points under each view, so P = Q = 2. We also assume that one latent

factor only is needed to explain a large portion of covariance between the views.

In order to generate data under the TB-PLS model, we first create the paired

vectors {t, s} by simulating N = 100 elements from a bivariate normal distribution

with zero mean, unit variances and off diagonal elements 0.9. The corresponding

factor loadings p and q are simulated independently from a uniform distribution,

Unif(0, 1). We then randomly select three observations in the X view and add

standard Gaussian noise to each so that the between-view predictive relationship

for those observations are perturbed. Figure 5.2a shows a plot of the predictors X

and the responses Y . The three influential observations are circled in each view.

Since these observations are only different in terms of their predictive relationships,

they are undetectable by visually exploring this scatter plot.

Using all 100 points, we fit a TB-PLS model with R = 1 and compute both the

residual error and the predictive influence of each observation. In Figure 5.2b, the

observations in X are plotted against their corresponding residuals (shown in the

left-hand plot) and predictive influences (shown in the right-hand plot). Since TB-

PLS aims to minimise the residual error of all observations, including the influential

observations results in a biased model fit; although the influential observations ex-

Chapter 5. Multi-view predictive modelling 123

hibit large residuals, this is not sufficient to distinguish them from non-influential

observations. On the other hand, the predictive influence of each point is computed

by implicitly performing leave-one-out cross validation and, as a consequence of

this, the predictive influence of those points is larger than that of any of the other

points. This simple example provides a clear indication that the influential obser-

vations can be identified by comparing the relative predictive influence between all

points.

We also perform a more systematic and realistic evaluation in higher dimen-

sions. For this study, we simulate 300 independent data sets, whereby each data set

has P = Q = 200, N = 100 and three influential observations. We follow a similar

simulation procedure as the one described before, and set R = 1. Once the TB-PLS

has been fit, all points are ranked in decreasing order, from those having the largest

predictive influence and largest residual. We then select the first top m ranked ob-

servations (with m = 1, . . . , N) and define a true positive as any truly influential

observation that is among the selected ones; all other observations among those m

are considered false positives.

Figure 5.3 compares the ROC curve obtained using the predictive influence and

the residual error for this task. This figure shows that the predictive influence con-

sistently identifies the true influential observations with fewer false positives than

when the residual is used. Using the predictive influence we detect all influential

observations with a false positive rate of 0.34 whereas using the residual we detect

almost as many false positives as influential observations. Maximum sensitivity

occurs with a false positive rate of 0.97. This suggests that using the residuals to

detect influential observations in high dimensions is approximately equivalent to a

random guess, and clearly demonstrates the superiority of the proposed predictive

influence measure for this task.

Here we revisit the illustrative example described in Section 5.1.3. The pre-

dictors shown in Figure 5.1 consist of three-dimensional points sampled uniformly

along a line and a plane, and these two subspaces intersect. The response consists of

a noisy linear combination of the points in each cluster. Using the same simulated

data, we can explore the performance of both our MVPP algorithm and a different

5.4 Performance evaluation using simulated data 124

−4 −2 0 2 4
−3

−2

−1

0

1

2

3
X

x
1

x 2

−4 −2 0 2 4
−3

−2

−1

0

1

2

3
Y

y
1

y 2

(a) Two dimensional predictors and responses generated under the TB-PLS model. The influential
observations are circled.

−2
0

2

−5
0

5
0

2

4

6

8

10

12

x
1

x
2

p
re

d
ic

tiv
e
 in

flu
e
n
ce

−2
0

2

−5
0

5
0

1

2

3

4

5

6

x
1

x
2

re
si

d
u
a
l

(b) Two dimensional predictors plotted against their corresponding magnitude residual error and pre-
dictive influence respectively.

Figure 5.2: 5.2a shows the two dimensional predictors, X and responses, Y with
the influential observations circled. It is clear that the influential observations can-
not be identified by simply examining these scatter plots. 5.2b shows the magnitude
residual (left-hand plot) and predictive influence (right-hand plot) for each obser-
vation in X . The predictive influence of the influential observations is much larger
than that of all other observations so that these points are clearly identified. The
same degree of separation is not evident by examining the magnitude residual error.

multi-view clustering algorithm, MV-CCA [18]. MV-CCA makes two assumptions

about the data: firstly, it fits a single, global CCA model which assumes all points

belong to the same low dimensional subspace; secondly, it recovers the clusters us-

Chapter 5. Multi-view predictive modelling 125

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
 p

o
si

tiv
e
 r

a
te

predictive influence

residual

Figure 5.3: ROC curve which compares the ability to detect outliers of the pre-
dictive influence and the residual. The results are averaged over 300 Monte Carlo
simulations. Using the predictive influence to detect influential observations con-
sistently identifies more true positives for a given false positive rate than using the
residual. The predictive influence detects all influential observations with a false
positive rate of 0.34 whereas the residual consistently identifies almost as many
false positives as true positives.

ing K-means which assumes that the clusters are well separated geometrically in

this subspace. An important aspect of MV-CCA is that since geometric clusters are

assumed to exist in both views, K-means is performed using the latent factor cor-

responding to only one of the views. In these experiments we use the latent factor

corresponding to the X view.

Figure 5.4 shows the clustering results on this example data set using both MV-

CCA and MVPP. The result of clustering using MV-CCA shown in Figure 5.4a

highlights the weaknesses of using a global, geometric distance-based method since

the existence of clusters is only apparent if local latent factors are estimated using

the correct subset of data. MV-CCA fits a single plane to the data which is similar

to the one estimated by a global TB-PLS model, as in Figure 5.1b. The points are

then clustered based on their geometric separation on that plane which results in an

5.4 Performance evaluation using simulated data 126

incorrect cluster allocation.

In comparison, Figure 5.4b shows the result of clustering with MVPP showing

how the ability to recover the true clusters, and therefore deal with the confounding

geometric structures, by inferring the true underlying predictive models. Moreover,

since the noise in the data is low, in this example we are able to let MVPP learn

the true number of latent factors in each cluster using the procedure described in

Section 5.3.4.

5.4.2 Simulation settings

In order to extensively evaluate the performance of predictive partitioning and com-

pare it fairly to other multi-view clustering methods, we devise two different sim-

ulation settings which are designed to highlight situations both where current ap-

proaches to multi-view clustering are expected to succeed and fail.

The rationale behind the two scenarios we construct comes from considering

what it means for observations to cluster in two views. Commonly, in a single view,

clusters are considered to be formed by geometrically distinct groups of data points.

This notion of geometric distance is also encountered implicitly in mixture models.

Separation conditions have been developed for the exact recovery of mixtures of

Gaussian distributions, for instance, for which the minimum required separation

between means of the clusters is proportional to the cluster variances [47]. In the

extension to two views, clusters in each view can also be defined as groups of data

points which are well separated geometrically such that similar conditions apply

[18].

Therefore, in scenario A, we construct clusters according to the assumption that

data points have a similar geometric structure under both views which should be re-

covered by existing multi-view clustering algorithms. However, in our experiments

we assess the performance as a function of the signal to noise ratio. As the level

of noise is increased, the between-cluster separation diminishes to the point that all

clusters are undetectable using a notion of geometric distance. In this scenario, it

will be clear that a clustering approach based on predictive influence is expected to

Chapter 5. Multi-view predictive modelling 127

(a) Clustering using MV-CCA

(b) Clustering using MVPP

Figure 5.4: Plot (a) shows the result of clustering the example dataset introduced in
Figure 5.1 using the MV-CCA method. It can be seen that MV-CCA fits a single
plane to the data and assigns points to clusters based on geometric distances be-
tween points on that plane so the resulting clustering is incorrect. Plot (b) shows
the result of clustering using the MVPP algorithm which models the predictive rela-
tionship within each cluster. As a result, the true subspaces and cluster assignments
are recovered.

be more robust against noise.

In scenario B we consider a situation where the clustering is not defined by

5.4 Performance evaluation using simulated data 128

geometric structure. We simulate data under cluster-wise regression models where

the geometric structure in the predictor view is different to that in the response view.

In this situation, clustering based on geometric separation is expected to perform

poorly regardless of the signal to noise ratio. In all of these settings we set the

number of latent factors, R = 1 and the number of clusters, K = 2.

Scenario A: geometric clusters

The first simulation setting involves constructing K “geometric clusters” (up until

the addition of noise). We simulate each pairs of latent factors tk and sk, with

k = 1, . . . , K, from a bivariate normal distribution. Each i = 1, . . . , Nk element,

where Nk = 50, is simulated as

(tk,i, sk,i) ⇠ N (µk,⌃), (5.23)

where the means of the latent factors, µk defines the separation between clusters.

The covariance matrix is given by ⌃ =

"

1 0.9

0.9 1

#

.

In order to induce a covariance structure in the X loadings, we first generate a

vector wk of length P = 200 where each of the p = 1, . . . , P elements is sampled

from a uniform distribution

wk,p ⇠
(

Unif[0, 1], if p = 1, . . . , P/2

Unif[1, 2], if p = P/2 + 1, . . . , p

The P elements of the X loadings and the Q elements of the Y loadings are then

simulated in the following way

uk ⇠ N
�

0,wkwk
>� , (5.24)

vk ⇠ Unif[0, 1]. (5.25)

We then normalise the vectors so that kukk = kvkk = 1. Finally, for K = 2, each

Chapter 5. Multi-view predictive modelling 129

−10 −5 0 5 10
−4

−2

0

2

4

6

X

−4 −2 0 2 4 6
−6

−4

−2

0

2

4

Y

Figure 5.5: An example of data generated in scenario A where the clusters are
“geometric clusters” i.e. the Euclidean distance between points within clusters is
small compared to points between clusters. The predictors X 2 R100⇥200 and
response Y 2 R100⇥200 have been plotted in the projected space.

pair of observations is generated from the TB-PLS model in the following way

xi =

(

t
1,iu1

>
+Ex,i, if i 2 C

1

t
2,iu2

>
+Ex,i, if i 2 C

2

(5.26)

yi =

(

s
1,iv1

>
+Ey,i, if i 2 C

1

s
2,iv2

>
+Ey,i, if i 2 C

2

(5.27)

where each element of Ex,i 2 R1⇥P and Ey,i 2 R1⇥Q are sampled i.i.d from a nor-

mal distribution, N (0, �2

). The signal to noise ratio (SNR), and thus the geometric

separation between clusters, is decreased by increasing �2.

Figure 5.5 shows an example of data points generated under this simulation

setting; the SNR is large and the geometric clusters are well separated. As the SNR

decreases, the geometric clusters become less well separated and so this setting tests

the suitability of the predictive influence for clustering when the data is noisy.

5.4 Performance evaluation using simulated data 130

Scenario B: predictive clusters

The second setting truly tests the predictive nature of the algorithm by breaking

the link between geometric and predictive clusters. In this setting, the geometric

position of the clusters in X and the predictive relationship between X and Y is

no longer related. We start by constructing the data as before according to Eqs.

(5.23) - (5.27) for K = 2. However, we now split the first cluster in X space into

three equal parts and translate each of the parts by a constant c
1

. For all i 2 C
1

xi =

8

>

>

<

>

>

:

xi + c
1

if j = 1, . . . , Nk/3

xi if i = Nk/3 + 1, . . . , 2Nk/3

xi � c
1

if i = 2Nk/3 + 1, . . . , Nk.

We then split the second cluster in X space into two equal parts and perform a

similar translation operation with a constant c
2

. For all i 2 C
2

xi =

(

xi + c
2

if i = 1, . . . , Nk/2

xi if i = Nk/2, . . . , Nk.

The result is that there are now four distinct geometric clusters in X space but still

only two clusters which are predictive of the points in Y space. Parametrising the

data simulation procedure to depend on the constants c
1

and c
2

means that we can

generate artificial data sets where one of the geometric clusters in C
1

are geometri-

cally much closer to C
2

however the predictive relationship remains unchanged. We

call these structures “confounding clusters”.

Figure 5.6 shows an example of this simulation setting when the SNR is large.

In this setting, noise is only added in the response which preserves the confounding

geometric clusters in X but removes the separation between clusters in Y . There-

fore we expect methods which do not take into account predictive influence to fail

to recover the true clusters and instead only recover the confounding geometric

clusters.

Chapter 5. Multi-view predictive modelling 131

−20 −10 0 10 20
−3

−2

−1

0

1

2

3

X

−4 −2 0 2 4 6
−3

−2

−1

0

1

2

3

Y

Figure 5.6: An example of data generated in scenario B. Points in the predictive
clusters in X have been translated to create four clear geometric clusters. In this
case, in the X view, the distance between cluster 2 (crosses) and two of the geomet-
ric clusters from cluster one (dots) is smaller than the distance between the points
in cluster one. This implies that Euclidean distance based clustering will fail to
recover the true clusters. The predictors X 2 R100⇥200 and response Y 2 R100⇥200

have been plotted in the projected space.

5.4.3 Experimental results

We first demonstrate the superiority of the predictive influence with respect to both

views over computing the predictive influence with respect to the X-view only. We

can show this by considering the ratio between the sum of predictive influences

with respect to both xi and yi and the sum of predictive influences with respect to

xi only within a cluster which we define as

 =

P

i2Ck k⇡xi,yi(uk,vk)k2
P

i2Ck k⇡xi(uk,vk)k2
.

Since our aim is to minimise the predictive influence within each cluster, gives an

expression for the relative discriminative ability of using these two different meth-

ods for computing the predictive influence for TB-PLS. Figure 5.7 shows these

ratios as a function of increasing additive noise (decreasing SNR) in both views.

We report on the mean ratios under scenario A over 200 Monte Carlo simulations.

It can be seen that when the noise in both views is small, ⇡ 1 and so both

5.4 Performance evaluation using simulated data 132

SNR in view X

S
N

R
 i
n
 v

ie
w

 Y

κ

0.511.522.5

0.5

1

1.5

2

2.5 0.75

0.8

0.85

0.9

0.95

Figure 5.7: The ratio, between the value of the objective function obtained using
the predictive influence with respect to xi and yi and the predictive influence with
respect to xi. The ratio reported is the mean over 200 Monte-Carlo simulations. As
the noise is increased in both views, using the predictive influence with respect to
both views improves the relative separation between between the clusters.

predictive influences are approximately equivalent. However, as noise in the re-

sponse increases, decreases which implies k⇡
xi(uk,vk)k increases relative to

k⇡
xi,yi(uk,vk)k. This suggests that when the response is noisy, computing the

predictive influences with respect to both xi and yi is less sensitive to noise and

therefore more discriminative for clustering.

Using data simulated under scenarios A and B, we assess the mean clustering

and predictive performance of the MVPP algorithm in comparison to some multi-

view clustering algorithms over 200 Monte Carlo simulations. In each simulation,

the latent factors, loadings and noise are randomly generated as described in section

5.4.2. We also examine issues relating to model selection in the MVPP algorithm.

Chapter 5. Multi-view predictive modelling 133

10
−0.5

10
−0.3

10
−0.1

10
0.1

0.4

0.5

0.6

0.7

0.8

0.9

1

C
lu

st
e
ri
n
g
 a

cc
u
ra

cy

SNR

MVPP

MV−CCA

MV−Kernel

WCC

Figure 5.8: Comparing the mean clustering accuracy of different methods for K =

2 in simulation setting A over 200 Monte Carlo simulations. When the SNR is
high, MVPP achieves maximum accuracy and as the noise increases, the decrease
in performance is small relative to the other methods.

Clustering performance

Figure 5.8 shows the result of the comparison of clustering accuracy between meth-

ods when K = 2 in scenario A. A SNR of 100.1 indicates that signal variance is

approximately 1.3 times that of the noise variance and so the clusters in both views

are well separated whereas a SNR of 10�0.5 indicates that the clusters overlap al-

most completely. It can be seen that when the noise level is low, MVPP is able to

correctly recover the true clusters. As the noise increases, and the geometric separa-

tion between clusters is removed, the clustering accuracy of the competing methods

decreases at a faster rate than MVPP.

Since MV-CCA assumes that the clusters are well separated geometrically, as

the noise increases the estimated latent factor is biased which decreases the separa-

tion between the clusters. Another reason for the difference in performance between

MV-CCA and MVPP lies with how the multiple views are used for clustering. Al-

though MV-CCA clustering derives a low dimensional representation of the data

5.4 Performance evaluation using simulated data 134

using both views, the actual clustering is performed using the latent factors of only

one view. MVPP considers the important predictive contribution from both views

in constructing the predictive influences and so clustering occurs jointly between

the views.

The MV-kernel method [24] relies on the Euclidean distance between points in

constructing the similarity matrix. This method works well only when the clusters

are well separated in each view. Computing the Euclidean distance between points

in high dimensions before performing dimensionality reduction means that the MV-

kernel method is affected by the curse of dimensionality. As such, its performance

degrades rapidly as the SNR decreases.

WCC [54] clusters each view separately using K-means and combines the par-

titions to obtain a consensus. Since it does not take into account the relationship

between the two views, when the data is noisy this can result in two extremely

different partitions being recovered in each view and therefore a poor consensus

clustering.

Figure 5.9 shows the result of the comparison between methods in scenario B.

It can be seen that MVPP consistently clusters the observations correctly in this

challenging setting and is extremely robust to noise due to the implicit use of cross-

validation. Since none of the other methods takes into account the predictive re-

lationship between the clusters and instead only find geometric clusters, they all

consistently fail to identify the true clusters. The similar performance for low levels

of noise corresponds to these methods consistently misclustering the points based

on their geometric position. As the noise increases, the performance of WCC, MV-

CCA and MV-kernel remains fairly constant. This confirms that these methods are

not correctly utilising the important information in the second view of data even

when the predictive clusters in the response are well separated.

Predictive performance

Since only MVPP considers the predictive performance of the clustering by eval-

uating the PRESS error in each cluster, in order to test the predictive performance

Chapter 5. Multi-view predictive modelling 135

10
−0.5

10
−0.3

10
−0.1

10
0.1

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C
lu

st
e
ri
n
g
 a

cc
u
ra

cy

SNR

MVPP

MV−CCA

MV + PLS

WCC

Figure 5.9: Comparing the mean clustering accuracy in simulation setting B over
200 Monte Carlo simulations. MVPP achieves a high clustering accuracy for all
levels of noise whereas the competing methods perform poorly even when the SNR
is large, since they recover clusters based on the confounding geometric structure
in the X view.

of the competing multi-view clustering algorithms we must perform clustering and

prediction in two steps. Therefore we first perform clustering with each of the

methods on the full dataset and then train a TB-PLS model in each of the obtained

clusters. We then test the predictive ability by evaluating the leave-one-out cross

validation error within each cluster. For comparison, we also evaluate the LOOCV

error of a global TB-PLS model which we fit using all of the data.

Figure 5.10 shows the result of predictive performances under scenario A. This

figure shows that MVPP achieves the lowest prediction error amongst the multi-

view clustering methods. This is to be expected since the clusters are specifically

obtained such that they are maximally predictive through implicit cross validation.

The prediction error of the competing multi-view methods is larger than MVPP

which indicates that these methods are really not selecting the truly predictive clus-

ters. As the noise increases, the prediction performance of all methods decreases

5.4 Performance evaluation using simulated data 136

10
−0.5

10
−0.3

10
−0.1

10
0.1

0

5

10

15

20

25

m
e
a
n
 s

q
u
a
re

d
 p

re
d
ic

tio
n
 e

rr
o
r

SNR

MVPP

MV−CCA + PLS

MV−Kernel + PLS

WCC + PLS

Global PLS

Figure 5.10: Comparing the mean leave-one-out prediction error over 200 Monte
Carlo simulations of the clusters obtained by different methods for K = 2 in sim-
ulation setting A. MVPP consistently achieves the lowest prediction error of the
multi-view clustering methods due to the clusters being selected based on their pre-
dictive ability. Similarly to the clustering performance, as the noise increases the
relative difference between MVPP and the other methods also increases. It can be
seen that all clustering methods achieve better prediction than a global PLS model.

however as MVPP is more robust to noise than the competing methods, its relative

decrease in performance is smaller. It can be noted that for low levels of noise the

global predictive model performs worst of all. This further supports the notion of

attempting to uncover locally predictive models within the data.

Figure 5.11 shows the prediction performance in scenario B. Since MVPP is

able to accurately recover the predictive clusters, it displays the lowest prediction

error amongst the multi-view clustering methods. As noted above, the other multi-

view clustering methods only recover the geometric clusters and so their predic-

tion performance is worse. The relative performance difference between competing

methods stays similar as noise increases however, since MVPP is affected by noise

in Y , its predictive performance decreases relative to the other methods.

Chapter 5. Multi-view predictive modelling 137

10
−0.5

10
−0.3

10
−0.1

10
0.1

18

18.2

18.4

18.6

18.8

19

19.2

19.4

19.6

19.8

20

m
e
a
n
 s

q
u
a
re

d
 p

re
d
ic

tio
n
 e

rr
o
r

SNR

MVPP

MV−CCA + PLS

MV−Kernel + PLS

WCC + PLS

Global PLS

Figure 5.11: Comparing the mean leave-one-out prediction error of the clusters
obtained in simulation setting B over 200 Monte Carlo simulations. MVPP achieves
the best prediction performance of the multi-view clustering methods. Since as
noise increases, the relative clustering clustering performance between MVPP and
the competing methods decreases, this relative predictive performance of MVPP
also decreases. Again, global PLS achieves the worst prediction accuracy of all
methods.

Model selection results

The ability of MVPP to learn the true number of clusters in the data is assessed using

the procedure in Section 5.3.4. In this experiment, the data was simulated under

setting A and the true number of clusters was set as K = 2. Figure 5.12 shows

a comparison between the PRESS prediction error and the objective function for

different values of K over 200 Monte Carlo simulations. As expected, the objective

function decreases monotonically as K is increased whereas the PRESS exhibits a

global minimum at K = 2.

In the above simulation settings, the number of latent factors was fixed to be

R = 1. According to the TB-PLS model in Section 5.1.2 the first latent factor

is the linear combination of each of the views which explains maximal covariance

between X and Y . Therefore, the first latent factor is the most important for predic-

5.5 Applications to web data 138

1 2 3 4 5 6 7 8
75

80

85

90

95

100

105

number of clusters, K

m
e
a
n
 s

q
u
a
re

d
 p

re
d
ic

tio
n
 e

rr
o
r

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of clusters, K

W
C

S
S

Figure 5.12: Comparing the prediction error with the objective function for different
values of K in the first simulation setting where the true value of K = 2. It can be
seen that as K increases the global minimum of the PRESS occurs when K = 2,
whereas the objective function decreases monotonically as it begins to overfit the
data. The error bars also show that the standard deviation of the PRESS is smallest
when K = 2. This allows us to use the prediction error to select the true number of
clusters.

tion. Each successive latent factor explains a decreasing amount of the covariance

between the views and so contributes less to the predictive relationship.

Figure 5.13 shows the effect of the number of latent factors, R on the cluster-

ing accuracy of MVPP in scenario A. It can be seen that for low levels of noise,

when the clusters are well separated, increasing R has little effect on the clustering

accuracy. As the noise increases, the first latent factor appears to capture all of the

important predictive relationships in the data whereas subsequent latent factors only

fit the noise which causes a detrimental effect on the clustering accuracy as more

latent factors are added.

5.5 Applications to web data

In this section we perform the comparison of methods using two real world data

sets. The first is the WebKB1 dataset. WebKB is a collection of interconnected

1
http://www.cs.cmu.edu/

˜

webkb

http://www.cs.cmu.edu/~webkb

Chapter 5. Multi-view predictive modelling 139

n
u
m

b
e
r

o
f
la

te
n
t
fa

c
to

rs
,
R

SNR

0.511.522.5

1

2

3

4

5

6

7

8

9

10

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 5.13: The effect of the number of latent factors, R on the clustering accuracy.
For low levels of noise, increasing R has little effect on the clustering accuracy.
However, as the noise increases, it can be seen that the first latent factor explains all
of the signal in the data and increasing R has a detrimental effect on the clustering
accuracy.

web pages taken from the computer science departments of four universities: Cor-

nell, Texas, Washington and Wisconsin. This dataset is commonly used to test

multi-view clustering algorithms [10, 41, 24]. Each web page can be represented

using two views: the text content of the page and the anchor text of the hyperlinks

pointing to that page. There are two separate problems associated with the WebKB

dataset. The first problem which we denote WebKB-2 involves clustering the pages

into two groups consisting of “course” and “non-course” related pages respectively.

The second problem, WebKB-4, involves clustering the pages into four groups con-

sisting of “course”, “student”, “staff” and “faculty” related pages. Both views of

the pages consist of a bag of words representation of the important terms where the

stop words have been removed. Each word has been normalised according to its

frequency in each page and the inverse of the frequency at which pages containing

that word occur (term frequency-inverse document frequency normalization). We

5.5 Applications to web data 140

University Observations View 1 View 2
Course Student Staff Faculty P Q

Cornell 83 18 38 32 1703 694
Texas 103 18 33 31 1703 660
Washington 106 19 65 27 1703 715
Wisconsin 116 22 70 34 1703 745

Table 5.1: A summary of the number of observations and variables in the different
configurations of the WebKB dataset.

treat each web page as an observation, i where the predictor vector, xi is the page

text and the response vector, yi is the link text. The dimensions of these vectors

for each university is given in table 5.1. It is known that a predictive relationship

exists between views [87] and so we expect the results obtained by MVP to reflect

the ability to exploit that relationship in order to correctly identify clusters.

We also evaluate the clustering and prediction performance of MVP and com-

peting methods on a second benchmark dataset, the Citeseer data set [11]. The

Citeseer dataset consists of scientific publications (N = 3312) belonging to one

of six classes of approximately equal sizes. The predictor view, xi, consists of a

bag of words representation of the text of each publication in the same form as

the WebKB dataset (P = 3703). We perform two analyses. In the first, the re-

sponse view, yi comprises of a binary vector of the incoming references between

a paper and the other publications in the dataset (Q = 2316). In the second, the

response view comprises of a binary vector of the outgoing references from each

paper (Q = 1960).

For the WebKB-2 clustering problem there are two true clusters of approxi-

mately equal size. We again compare MVP with the WCC, MV-CCA and MV-

Kernel clustering methods. For each method, we then evaluate the leave-one-out

prediction error for the previously recovered clusterings. We also evaluate the

leave-one-out prediction error for global PLS which has been estimated using all

the data.

Table 5.2 shows the results of clustering and prediction on the WebKB-2 dataset.

In all cases, MVP achieves almost 100% clustering accuracy whereas the other

Chapter 5. Multi-view predictive modelling 141

University Global PLS WCC MV-CCA MV-Kernel MVPP
Cornell
Acc - 0.50 0.56 0.65 0.96
Error 163.69 46.71 137.65 159.93 37.35

Texas
Acc - 0.50 0.57 0.71 0.95
Error 177.50 40.90 132.01 173.79 33.74

Washington
Acc - 0.87 0.79 0.69 0.97
Error 209.40 46.44 106.86 109.16 31.53

Wisconsin
Acc - 0.67 0.76 0.59 0.98
Error 234.16 68.86 171.58 244.85 55.72

Table 5.2: The clustering accuracies (Acc) and mean squared leave-one-out predic-
tion error on the WebKB-2 dataset. MVPP consistently accurately recovers the true
clusters and therefore also obtains the best prediction accuracy. The large variance
in prediction accuracy between the other methods demonstrates the importance of
fitting the correct local models.

methods achieve between 50 � 87% accuracy which suggests that there is a pre-

dictive relationship between the text view of the webpage and the incoming links

which MVP is able to exploit to recover the true clusterings. MVP also achieves a

much lower prediction error than the other clustering methods which vary widely.

This suggests that since the dimensionality of the problem is large, a small error in

cluster assignment can lead to fitting a poor predictive model.

For the WebKB-4 clustering problem there are four true clusters where one of

the clusters is much larger than the others. This poses a particularly challenging

scenario since K-means based techniques favour clusters which are of a similar

size. Table 5.3 details the results on this dataset. Again, in all cases, MVP achieves

the highest clustering accuracy. In this dataset, the clustering accuracy for MVP

is approximately 15% lower than for K = 2 due to the irregular cluster sizes and

the poorer separation between clusters. The other methods also generally achieve

poorer clustering accuracy however the relative decrease is not as large. Similarly

for the previous dataset, the better clustering performance of the multi-view meth-

5.6 Discussion 142

University Global PLS WCC MV-CCA MV-Kernel MVPP
Cornell
Acc - 0.70 0.69 0.44 0.83
Error 163.69 35.43 19.77 105.04 17.89

Texas
Acc - 0.58 0.68 0.41 0.86
Error 177.50 54.35 26.21 141.34 18.97

Washington
Acc - 0.70 0.68 0.53 0.75
Error 209.40 36.14 33.26 98.58 17.34

Wisconsin
Acc - 0.69 0.74 0.53 0.85
Error 234.16 61.61 31.27 110.89 21.13

Table 5.3: The clustering accuracies (Acc) and mean squared leave-one-out pre-
diction error on the WebKB-4 dataset. MVPP again achieves the best clustering
and prediction performance. Although the clustering accuracy is worse than in the
WebKB-2 configuration, the improved prediction performance suggests that fitting
four clusters is a more accurate model of the data.

ods does not necessarily achieve better prediction performance. Despite achieving

a relatively poorer clustering accuracy, fitting four clusters instead of two greatly

improves the prediction performance of all clustering methods.

Table 5.4 shows the results for clustering and prediction using the Citeseer

dataset. It can be seen that in both configurations, MVP achieves the highest clus-

tering accuracy although the relative difference is not as large as for the WebKB

dataset. In this case, MVP achieves the lowest prediction error of all methods. The

large variance in prediction error between the multi-view clustering methods despite

their similar clustering accuracy again suggests that incorrectly clustering observa-

tions can severely affect the prediction performance due to the high dimensionality

of the data.

5.6 Discussion

In this chapter, we have considered the increasingly popular situation in machine

learning of identifying clusters in data by combining information from multiple

Chapter 5. Multi-view predictive modelling 143

Configuration Global PLS WCC MV-CCA MV-Kernel MVPP
Text + Inbound

Acc - 0.76 0.76 0.73 0.81
Error 344.06 70.62 76.50 110.30 39.51

Text + Outbound
Acc - 0.76 0.76 0.72 0.87
Error 278.53 110.46 84.50 73.95 52.96

Table 5.4: The clustering accuracies (Acc) and mean squared leave-one-out predic-
tion error on the Citeseer dataset. MVPP achieves the best clustering accuracy and
prediction error whereas the other methods all achieve a similar clustering accuracy.

views. We have highlighted some cases where the notion of a predictive cluster can

better uncover the true partitioning in the data. In order to exploit this, our work

consolidates the notion of predictive and cluster analysis which were previously

mostly considered separately in the multi-view learning literature.

In order to identify the true predictive models in the data, we have developed

a novel method for assessing the predictive influence of observations under a TB-

PLS model. We then perform multi-view clustering based on grouping together

observations which are similarly important for prediction. The resulting algorithm,

MVPP, is evaluated on data simulated under the TB-PLS model such that the true

clusters are predictive rather than geometric. The results demonstrate how geo-

metric distance based multi-view clustering methods are unable to uncover the true

partitions even if those methods explicitly assume the data is constructed using la-

tent factors. On the other hand, MVPP is able to uncover the true clusters in the

data to a great degree of accuracy even in the presence of noise and confounding

geometric structure. Furthermore, the clusters obtained by MVPP provide the basis

of a better predictive model than the clusters obtained by the competing methods.

An application to real web page and academic paper data show similar results.

We have also attempted to unify the difficult issues of model selection in cluster-

ing and TB-PLS which have previously only been considered seperately. We have

shown that our prediction based clustering criterion can be used to learn the true

number of clusters. However, we have also seen that learning the number of latent

5.6 Discussion 144

factors in each of the TB-PLS models remains a difficult problem due to the effects

of noise and the iterative nature of the algorithm.

145

Chapter 6

On-line variable selection in
streaming data

Throughout this work we have considered so called batch methods for dealing with

high-dimensional data which require access to all N observations simultaneously.

In this chapter we consider situations where the data arrives sequentially as a data

stream. In such situations, batch methods are often not appropriate due to reasons

of computational efficiency and the possibility of dealing with non-stationary data.

Streaming data arise in several application domains, including web analytics

[67], healthcare monitoring [69] and asset management [109], among others. In all

such contexts, large quantities of data are continuously collected, monitored and

analyzed over time. When dealing with data streams, a common and important

task consists of learning a regression function that explains the linear relationship

between a number of incoming streams, regarded as predictive variables or covari-

ates, and a number of co-evolving data streams, regarded as responses. In this

chapter we consider a real-time system observes P predictor and Q response data

streams at discrete time points. The input data vector observed at time t is denoted

by xt 2 R1⇥P where the subscript refers to the time stamp and the dimension P

may be very large. The output streams are collected in a vector yt 2 R1⇥Q, which

may also be very high-dimensional, although Q is generally much smaller than P .

Our objective is to recursively estimate a regression function of form yt = �txt+✏t

6.1 Multivariate methods for data streams 146

where each ✏t is an independent noise component. Our fundamental assumption

is that, at any given time, only a few selected components of xt contain enough

predictive power, and only those should be selected to build the regression model.

There are a number of challenges arising in this setting. Firstly, a decision has

to be made on how to select the truly important predictive components of the in-

put data streams that best explain the multivariate response in a computationally

efficient manner. We embrace a sparse regression approach where the unimportant

variables are excluded from the model by forcing their coefficients to be exactly

zero, as described in Section 2.1. Secondly, since the components of xt may be

highly correlated, variable selection arises in an ill-posed problem and special care

is needed in order to deal with this difficulty. As will be clear later, we take a di-

mensionality reduction approach. Thirdly, the relationship between input and out-

put streams is expected to change quite frequently over time, with the frequency of

change depending on the specific application domain and nature of the data. This

aspect requires the development of adaptive methods that are able to deal with pos-

sible non-stationarities and the notion of concept drift, that is the time-dependency

of the underlying data generating process [98].

As we have seen, when both predictors and responses are high-dimensional it is

plausible to assume the existence of latent factors that explain a large proportion

of the covariance between them. For instance, in computational finance, latent

factor models have been extensively used to explain and model asset prices [49].

The methodology we propose builds on a variant of Partial Least Squares (PLS)

regression for the efficient estimation of such latent factors.

6.1 Multivariate methods for data streams

In the online setting we assume the data arrives at discrete time points as a vector

xt 2 R1⇥P with the output, denoted as the vector yt 2 R1⇥Q. At any time t we only

have access to the data points up to the current time. In this section we briefly review

online implementations of PCA and PLS with an aim to apply these methods to

develop an online variable selection algorithm. When considering updating model

Chapter 6. On-line variable selection in streaming data 147

parameters in an incremental fashion, there are three important aspects that must be

taken into account

• In the case where the observed data is sampled from a stationary distribution,

the solution obtained from the online algorithm must converge to the solution

given by the corresponding batch algorithm.

• In the case where the distribution of the observed data changes in time, the

algorithm should be able to adapt to those changes. This can be achieved

using a variety of ways, the most common being the use of forgetting factors

which is a method of attaching less importance to older data. Therefore,

when the distribution changes, data which was sampled from the previous

distribution will not contribute as much (or at all) to the current solution. The

use of forgetting factors will be described in Section 6.1.1.

• The online algorithm should typically have a lower computational complex-

ity than the corresponding batch algorithm. Since an iteration of the online

algorithm must be executed every time a new data point is received, if this is

not the case, the batch algorithm may simply be applied over a sliding data

window. Therefore, it is desirable to be able to update the solution incremen-

tally using the previously computed solution and the new data without having

to re-estimate the solution using all of the available data.

6.1.1 Recursive Least Squares

The key step in PCA and PLS is the computation of the SVD. We have seen in

Chapter 2 how this can be reformulated as a regression problem. One potential

method of understanding how PCA and PLS may be applied to streaming data is to

first examine how online linear regression problems may be solved in an efficient

manner. Recursive least squares (see for example [55]) is a well known technique

which utilises the standard least squares criterion for linear regression with a uni-

6.1 Multivariate methods for data streams 148

variate response

RSS(t)LS =

t
X

i=1

kyi � xi�tk2.

The criterion is modified so that we set out to optimise the weighted least squares

criterion

RSS(t)WLS =

t
X

i=1

!t�ikyi � xi�t

k2.

where 0 ! 1 is a forgetting factor which allows exponential discounting of

past data so that the algorithm is able to adapt to changes in the data 1 . In the case

where ! = 1, no discounting of past data takes place and when ! = 0 the effective

sample size is reduced to the current data point only. The solution of the weighted

least squares problem is given by

ˆ�t = (

t
X

i=1

!t�ix>
i xi)

�1

t
X

i=1

!t�ix>
i yi.

From this, it can be seen that the only two quantities required to solve the least

squares problem at time t are the weighted covariance matrix of the data St =

Pt
i=1

!t�ix>
i xi and the weighted covariance between the data and the response

Mt =
Pt

i=1

!t�ix>
i yi. Using this formulation, we can update the covariance ma-

trix St as

St = !St�1

+ x>
t xt. (6.1)

Similarly, Mt can be updated as

Mt = !Mt�1

+ x>
t yt. (6.2)

We can then find the new least squares estimate at each time point by calculating
ˆ�t = MtS

�1

t where S�1

t can be efficiently updated at each time point using the

1It should be noted that in the on-line learning literature, the forgetting factor is conventionally
denoted by � which is the notation we use in [61]. However, to maintain consistency with this
document where � represents a singular value, we use the unconventional symbol !.

Chapter 6. On-line variable selection in streaming data 149

Sherman-Morrison formula as

S�1

t = (!St�1

+ x>
t xt)

�1

=

1

!

✓

S�1

t�1

�
S�1

t�1

x>
t xtS

�1

t�1

! + x>
t S

�1

t�1

xt

◆

. (6.3)

The forgetting factor has the effect of controlling the effective sample size of the

algorithm. In the most common case, ! is chosen to be close to one. The amount

of forgetting can be quantified by the memory time constant T
0

. For such a value of

! it is given by

T
0

=

1

1� !
,

which means that observations older than T
0

are weighted less than e�1 of the most

recent observation. The selection of a suitable value for ! is an important choice

which determines how well the algorithm tracks changes in the data. Typically, a

value between 0.98 and 0.995 is chosen [55]. However using a too large a value for

! can mean that the algorithm tracks changes too slowly. Conversely, if ! is too

small, the algorithm will be sensitive to noise. We examine the problem of using a

time-varying forgetting factor in Section 6.3.3.

In Section 2.2 we saw how PCA can be expressed as a regression problem.

Using the same method, a recursive form of the PCA objective function can be

derived as

RSSPCA(t) =
t
X

i=1

!t�ikxi � xiVtV
>
t k2.

However, as mentioned in Section 3.1.1, this term is fourth-order in Vt and so can-

not be solved directly using ordinary least squares. Therefore in order to simplify

the cost function, the term xtVt is approximated using the estimate at the previous

time point, ui = xiVt�1

. This is easily computed since Vt�1

is already known at

the time point t. The resulting incremental PCA cost function is

RSS 0
PCA(t) =

t
X

i=1

!t�ikxi � uiV
>
t k2. (6.4)

Provided the data is slowly changing, the approximation error introduced by this

step is small although the extracted eigenvectors will not be completely orthogonal.

6.1 Multivariate methods for data streams 150

Using this approximation, we obtain a least squares criterion which is second order

in Vt. This is the same PAST approximation we considered when computing the

leave-one-out reconstruction error for PCA in Section 3.1.1. Eq. (6.4) is minimised

using the PAST algorithm [106] which computes Vt using a procedure similar to

standard RLS.

6.1.2 The power method and adaptive SIM

The power method (see, for example [36]) is a simple, iterative algorithm to find

the largest normalised eigenvector and corresponding eigenvalue of a correlation

matrix. The algorithm involves continuously multiplying a vector v by the covari-

ance matrix S = X>X and normalising as v = Sv/kSvk. If, at the start of the

sequence, v = v
0

is initialized to have unit norm, it will converge to the largest

eigenvector of S.

The simultaneous iterations method (SIM) [36] extends the power method by

operating on the columns of the matrix V =

⇥

v(1), ...,v(R)

⇤

to find the first R

eigenvectors of S. In the SIM algorithm, each of the vectors, v(r) are extracted

sequentially in the same manner as in the power method. Without further mod-

ifications, each sequence of Sv(r) will converge to the subspace spanned by the

largest eigenvector. To ensure that they converge to different eigenvectors, the basis

vectors must be orthogonalised using a standard method such as the Gram-Schmidt

procedure [36].

In order to use SIM in the problem of adaptive, incremental PCA some modifi-

cations must be made. Adaptive SIM [30] allows the SIM algorithm to adapt to a

changing covariance matrix by updating the estimate of St as each new data point

arrives using a forgetting factor, ! in the usual manner

St = !St�1

+ x>
t xt.

This allows the adaptive SIM algorithm to track changes in the eigenstructure of

the covariance matrix. At each time point, one iteration of the SIM algorithm is

performed to update the estimate of Vt, the eigenvectors of St.

Chapter 6. On-line variable selection in streaming data 151

6.1.3 Online PLS

The literature on incremental methods for PLS is quite limited. One reason for

this may be that many of the online algorithms for PCA originate from the signal

processing and neural networks communities and PLS is not as prevalent there as

PCA.

A recursive PLS algorithm has been proposed for applications in chemical pro-

cess control [23, 22] In fact, this algorithm is not recursive in the sense of recursive

least squares where the parameter is directly estimated using a weighted version of

the previous parameter and the new data. In this method, the covariance matrices

S = X>X and M = X>Y which are required to extract the PLS weight vec-

tors and the x-loading vectors are updated using forgetting factors as in Equations

(6.1) and (6.2). As in the standard PLS algorithm, for R PLS components, each

PLS weight must be found by computing the SVD of the covariance between X

and Y . Therefore, when the algorithm is applied in an online setting, the SVD

must be computed R times. This suggests there are no significant computational

improvements compared to the batch improved PLS algorithm. The only benefit

of this recursive PLS algorithm over the batch algorithm is the ability to adapt to

changes and the reduced data storage requirements which arise from the manner in

which the covariance matrices are updated.

A simple online PLS algorithm was proposed by [95] as part of an efficient lo-

cally weighted learning algorithm locally weighted projection regression (LWPR).

LWPR incrementally learns and approximates non-linear functions in high dimen-

sional spaces and was developed for use in learning inverse dynamics in humanoid

robotics applications. At each time point, t the LWPR algorithm calculates the

weight vector ut = x>
t yt which is simply the covariance between the data and the

response. The latent factor, tt is computed as in the usual way as the projection of

the data xt onto the weight vector ut. As the weight vector is not computed using

the SVD, this method has no facility for dealing with a multivariate response.

6.2 PLS regression 152

6.1.4 Online variable selection

To date, the problem of selecting variables on-line has been somewhat less studied.

To the best of our knowledge, only two relatively recent works address this issue

within a penalised regression framework. The recursive LARS method for on-line

Lasso simply performs a single iteration of the LARS algorithm as a new data point

becomes available [48]. More recently an alternative approach to on-line Lasso,

named adaptive Lasso (aLasso), has been developed based on RLS [6]. They solve

the Lasso problem using coordinate descent combined with an adaptive RLS algo-

rithm that can adapt to changes in the data over time. However, neither approach

considers a multivariate response or high-dimensional predictors which are two key

issues addressed in this chapter.

6.2 PLS regression

In section 5.1.2 we introduced TB-PLS regression for multivariate regression with

high-dimensional response. In this section we introduce a different intepretation

of PLS which is motivated by regression problems where the predictors are high-

dimensional but the response is low-dimensional or even univariate.

In this interpretation of PLS, the predictors and responses are controlled by a

single set of R common latent factors, [s(1), . . . , s(R)

]

2 in the following way

X =

R
X

r=1

s(r)p(r)>
+Ex, Y =

R
X

r=1

s(r)q(r)>
+Ey ,

where s(r) 2 RN⇥1 are the latent factors and p(r) 2 RP⇥1 and q(r) 2 RQ⇥1 are

loading vectors of X and Y , respectively. In this setting, Q << P and sometimes,

Q < R. Ex and Ey are residuals for which we do not assume a distribution. If we

compare with the TB-PLS model in Eq. (5.1) we can consider PLS regression as a

special case of TB-PLS where the parameter which defines the inner relationship,

g = 1 and therefore t(r) = s(r). The PLS regression algorithm them aims to find the

2We denote the common latent factor as s rather than t to avoid confusion with the time index, t.

Chapter 6. On-line variable selection in streaming data 153

R latent factors of X such that s(r) = X(r)u(r) where u(r) is a vector of weights

estimated by solving the following optimization problem:

max

u

cov(X(r)u,Y)

2, (6.5)

subject to kuk = 1.

which is equivalent to solving

max

u

u>X>Y Y >Xu, (6.6)

subject to kuk = 1.

The rank of M = X>Y is given by the number of non zero singular values

of M . If Q < R is is not possible to extract all R PLS directions simultaneously

using a single SVD. In this case it is normally necessary to deflate X by removing

the contribution of the previous latent factor and recomputing the SVD using the

deflated matrix.

We address this situation by noting that a similar problem arises in ordinary least

squares fitting problems: when X is ill-conditioned, S = X>X is rank deficient

and therefore cannot be inverted. This situation is generally resolved using ridge

regression (see for example [38, p. 59]) which applying a small positive constant

to the diagonal of S which has the effect of reducing the variance in the solution

by adding some bias. We use a similar technique in order to regularise MM> by

adding a small constant term to the covariance matrix, in the following way:

G = X> �↵IN + (1� ↵)Y Y >�X, (6.7)

where 0 ↵ 1. It can be noticed that this has the effect of adding a small constant

to the diagonal of Y Y >. With this modification, it follows that rank(↵IN + (1 �
↵)Y Y >

) = rank(X>X), and this prevents H from becoming rank deficient [34].

6.2 PLS regression 154

Rearranging Eq. (6.7), we obtain a new covariance matrix

G = ↵S + (1� ↵)MM>, (6.8)

In this form, it can be noted that H is a weighted sum of the covariance matrix of X

and the covariance matrix of X and Y . The parameter ↵ has a clear interpretation:

when ↵ = 0, this yields regular PLS; when ↵ = 1, this yields PCA; when 0 <

↵ < 1, we obtain a trade-off between PLS and PCA. Therefore, using this new

covariance matrix can be thought of as biasing the PLS solution (which takes into

consideration the response in deriving the latent factors and therefore yields better

predictive performance) towards the PCA solution (which obtains latent factors in

an unsupervised manner). Since MM> is larger than S, provided ↵ is small, the

contribution of MM> to G is larger than the contribution of S. Therefore the

specific value chosen for ↵, as long as this is not too close to 1, will not have any

noticeable effect on the solution; see also Section 6.4.4 for further comments and a

sensitivity analysis. However, this simple modification will ensure that G is always

full-rank and the PLS weights can then be obtained in a single step by solving the

following optimization problem

max

U

U>GU , (6.9)

subject to U>U = IP .

so that U = [u(1), . . . ,u(R)

] are the first R eigenvectors of G. The latent fac-

tors are then computed as s(r) = Xu(r) and corresponding Y loadings, Q =

[q(1), . . . , q(R)

] are given by q(r)
= (s(r)

>
s(r))�1s(r)

>
Y . The final PLS regression

coefficients are � = UQ>.

As we will now see, this formulation of PLS suits our purposes since we must

only find a single set of weight vectors.

Chapter 6. On-line variable selection in streaming data 155

6.3 Sparse PLS regression

6.3.1 Off-line learning

We now observe that the PLS weights can be made sparse by using a penalised form

of the SVD which leads to a novel and efficient method of variable selection based

on the PLS framework. Sparse matrix factorization methods have recently been

introduced by [80] and [103]. Specifically, [80] formulates a sparse matrix factor-

ization using the best low rank approximation property of the SVD; this is achieved

by reformulating the SVD problem as a regression where the aim is to minimise

the sum of squared errors between X and its best low rank approximation. [103]

propose a more general framework for sparse matrix factorization which includes

the sparse SVD method of [80] as a special case.

Recently, a sparse PLS algorithm based on the sparse PCA method mentioned

in Section 2.3 has been proposed by [52] which computes the PLS weights using

the standard PLS algorithm described in Section 6.2. Since this method does not

use a regularised covariance matrix to extract the PLS weights, the problems of

rank-deficiency are still present and so R separate SVD computations are required

to extract all R latent factors. In this section we use sparse SVD in order to achieve

an efficient variable selection algorithm within the PLS framework described in the

previous section.

Since the SVD problem of (6.9) can viewed as an ordinary least squares problem

for each r = 1, . . . , R, we can obtain a sparse solution by imposing a penalty on

the `
1

norm of u,

min

u,v
kG� uv>k2 + �(1)kuk

1

(6.10)

subject to kvk = 1,

where �(1) is a parameter which controls the sparsity of the solution. If �(1) is large

enough, it will force some variables to be exactly zero. The problem of Eq. (6.10)

can be solved in an iterative fashion by first setting u = u(1) and v = v(1) as

6.3 Sparse PLS regression 156

before. The Lasso penalty can then be applied as an iterative component-wise soft

thresholding operation on the elements of u in the following way

u = sgn (Gv)
�

|Gv|� �(1)

�

+

, (6.11)

v = Gu/kGuk. (6.12)

Assuming known sparsity parameters {�(r)}R
1

, the procedure above allows all the

PLS weight vectors to be extracted and made sparse at once without the need to

recompute an SVD for each dimension. The remaining steps of the PLS algorithm

are unchanged.

The number R of PLS components to be retained and the sparsity parameters

{�(r)}R
1

must be pre-selected. As usually done in off-line PLS, we suggest to deter-

mine the initial R by performing K-fold cross-validation using historical data (CV)

[52]. In Section 6.3.2 we discuss how the proposed on-line algorithm is able to

track changes in the both the number of important latent factors and their weights,

over time.

The other parameters to be selected are the {�(r)}R
1

, which control the amount

of sparsity in the input. In several applications, the number of variables to include

in the model is controlled by the user, because this yields results that can be more

easily interpreted; for instance, in genomics applications [103] and in some finan-

cial applications such as index tracking and portfolio optimization (see Section 6.5).

When the user wishes to select a specific number of variables for the rth PLS com-

ponent, the corresponding �(r) can be obtained by finding the roots of the following

function related to the following thresholding function

f(�(r)
) =

p
X

i=1

I
⇣

sgn(u(r)
i)(|u(r)

i |� �(r)
)

+

> 0

⌘

� ✓,

where I is an indicator function which finds the non-zero elements of u after the

threshold has been applied. The desired value of �(r) is such that f(�(r)
) = 0.

In other applications, the objective is to identify as many important variables as

possible in order to achieve accurate predictions. When the degree of sparsity has

Chapter 6. On-line variable selection in streaming data 157

to be inferred from historical data, K-fold cross validation can again be used prior

to on-line learning; then the optimal value of �(r), r = 1, . . . , R minimises the

cross-validated prediction error. We next discuss how our on-line algorithm can

automatically track the most important latent factors and, within each, the most

important variables.

6.3.2 On-line learning

In an on-line learning setting, we no longer assume we have access to the full data

matrices X and Y . Instead the data stream arrives sequentially at each time point,

t, as xt 2 R1⇥P . Similarly, the response is observable only at discrete time points

as yt 2 R1⇥Q. The use of on-line methods for prediction in a streaming data setting

is desirable as off-line methods require a full model fit to be performed every time

a new data point arrives which can be computationally expensive.

There are three important issues involved in performing sparse and adaptive

incremental learning with PLS regression: (i) latent factors must be recursively

computed because they may be changing with time; (ii) important predictors must

be recursively extracted from the most important latent factors; (iii) adaptation to

changes in the data generating mechanism must be data-driven. In this section, we

propose an on-line learning procedure which combines all three of the above criteria

in the context of Sparse PLS. We call the resulting algorithm incremental Sparse

PLS (iS-PLS). To our knowledge, this is the first such method which combines

tracking of latent factors with variable selection in an adaptive fashion for data

streams.

Before moving on to the description of the algorithm, we state two assumptions

about the nature of the data stream:

Assumption 6.1. The number of important latent factors underlying the data as

well as their weights can evolve over time.

Assumption 6.2. The important variables to be retained within each latent factors

can evolve over time, but their number does not change.

6.3 Sparse PLS regression 158

Assumption 6.1 is required in order to allow for time-dependent changes in the

covariance structures of the data streams. Assumption 6.2 also specifies a time-

varying functional relationship between the input and the output. However, in order

to simplify the estimation procedure, we impose that the number of important vari-

ables to be extracted from each latent factor does not change over time; that is, the

parameters {�(r)}R
1

are time-invariant.

In order to track the latent factors, we must first compute the PLS weights which

are found as a result of solving the optimization problem (6.9). In the on-line set-

ting, this amounts to updating the SVD of the time-varying covariance matrix, Ht.

When a new data point xt and its corresponding response yt arrives, we update the

individual covariance matrices as follows:

St = !St�1

+ x>
t xt, Mt = !Mt�1

+ x>
t yt, (6.13)

where 0 ! 1 is a forgetting factor which downweights the contribution of

past data points. We elaborate further on the use of the forgetting factor in Section

6.3.3. We then construct the PLS covariance matrix Gt of Eq. (6.8), by summing

the weighted PCA and PLS covariance matrices St and MtM
>
t , which leads to:

Gt = ↵St + (1� ↵)MtM
>
t . (6.14)

A problem we face with applying the sparse PLS algorithm to streaming data

consists in updating the SVD of Gt recursively. Since Gt is a weighted sum be-

tween two covariance matrices we are unable to find its eigenvectors using a stan-

dard RLS method. RLS requires as input the current estimate of the inverse covari-

ance matrix and the new data observation whereas we essentially only have access

to a time-varying covariance matrix, Gt.

We resolve this by applying the adaptive SIM algorithm described in Section

6.1.2. At each time point, the estimate of the eigenvectors of the covariance matrix,

G are updated by performing a single power iteration as Ut = GtUt�1

. With-

out further modification, each individual sequence Gtu
(r)
t will converge to the pri-

Chapter 6. On-line variable selection in streaming data 159

mary eigenvector therefore, after each iteration, each column of Ut must be or-

thogonalised with respect to the other columns to ensure that they converge to dif-

ferent eigenvectors. This requirement is necessary as the true eigenvectors of G

form an orthogonal basis. The updated estimate of the eigenvectors is obtained by

Ut = orth(Ut) where orth(Ut) is any orthogonalization procedure which causes the

columns of the matrix Ut to be mutually orthonormal. This ensures the columns of

Ut will converge to different eigenvectors of G. Specifically, in our implementation

we use the Gram-Schmidt orthogonalisation procedure which has a computational

complexity of O(PR2

) [36].

Once the weight vectors Ut have been updated, they are made sparse using a

modified version of the iterative regularised SVD algorithm used for Sparse PLS

in Section 6.3. Since our algorithm is on-line and the solution is updated when a

new data point arrives, we no longer iteratively apply the thresholding operation

and instead apply it directly to the sparse estimate of the eigenvector found at the

previous time point. When the data stream is stationary, this procedure quickly

converges to the optimal solution as we effectively perform the iterations in time;

simulation studies showing that the convergence takes place are presented in Sec-

tion 6.4. In the case of a regime change, the proposed algorithm is able to quickly

adapt to changes and quickly converges to the new solution (see Sections 6.3.3 and

6.4).

The final steps of the PLS algorithm proceed as in the off-line case. The la-

tent factors s(r) are computed as s
(r)
t = xtu

(r)
t . Since the number of observa-

tions at each update is effectively one, the Y -loadings can be computed as q(r)
t =

y>
t s

(r)
t /(s(r)t

>
s
(r)
t). The sparse PLS regression coefficients are �t = UtQ

>
t so that

the estimated response at time t is ˆyt = xtUtQ
>
t . Algorithm (1) details the result-

ing iS-PLS procedure in full.

6.3 Sparse PLS regression 160

Initialise U
0

= I , M
0

= 0, S
0

= 0;

Data: Input xt and output yt at time t

Result: Sparse regression coefficients �t at time t

!t � selfTune(xt,yt,�t�1

) ;

Mt � !tMt�1

+ x>
t yt;

St � !tSt�1

+ x>
t xt;

Gt � ↵St + (1� ↵)MtM
>
t ;

for r 1 to R do
a(r) Gtu

(r);

w(r)
h

IP �
Pr�1

k=1

u(k)u(k)>
i

a(r), w(1) a(1);

u(r) w(r)/kw(r)k;
�(r) findRoot(u(r)

);

u⇤ sgn
�

u(r)
� �

|u(r)|� �(r)
�

+

;

u⇤ u

⇤

ku⇤k ;

u
(r)
t u⇤;

s
(r)
t xtu

(r)
t ;

q
(r)
t yts

(r)

s

(r)>
s

(r)
;

end
�t UtQ

>
t ;

Algorithm 1: The iS-PLS Algorithm

A few comments about the initialization of the algorithm are in order. We set

U
0

= [u
(1)

0

, ...,u(R)

0

] = IP⇥R to ensure that the initial estimates of the eigenvectors

are mutually orthogonal. We also initialise M
0

= 0 and S
0

= 0. In the off-line

case, the complexity introduced by the penalisation function is O(RNP). In the on-

line case we operate only on a single data point at a time this reduces the complexity

of the penalization function at each time point to O(RP).

Chapter 6. On-line variable selection in streaming data 161

6.3.3 Adaptive behaviour using self-tuning forgetting factors

The problem of adapting the learning algorithm to changes in the data has often

been addressed in the context of recursive least squares (RLS) [40]. The motivation

for introducing adaptive behaviour within iS-PLS is to allow us to detect changes in

the latent factors underlying the data by tracking some measure of the performance

of the algorithm and noticing when there is a decrease in performance signalling

a change. When a change is detected, the forgetting factor is modified so that the

currently computed latent factors are discarded and the soft-thresholding algorithm

starts recursively computing the new solution starting from the current data point.

In order to introduce such adaptive behaviour, we modify a self-tuning forget-

ting factor algorithm proposed by Paleologu et al. [70] to be used within our iS-PLS

algorithm. This procedure for self-tuning of the forgetting factor is motivated by the

aim of correctly identify the true least squares regression coefficients and additive

noise when the algorithm converges. This is achieved by formulating an expression

for the forgetting factor in terms of the ratio between two error quantities estimated

using RLS: the variance of the a priori error and the variance of the a posteriori

error at each time point. The a priori error, defined as et = yt � xt�t�1

, is the

prediction error of the current time point using the previously estimated coefficient

whereas the a posteriori error, defined as ✏t = yt � xt�t, is the residual error us-

ing the regression coefficient estimated at the current time point. The self-tuning

forgetting factor, !t can then be updated at each time point as

!t =
�h�✏

�e � �✏

, (6.15)

where �2

✏ is the variance of the a posteriori error and �2

e is the variance of the a priori

error. �2

h is the variance of the quantity ht = x>
t S

�1

t xt which is analogous to the

leverage at time t. When the data is stationary or changing slowly, the difference

between the a priori error and the a posteriori error is small. In this case, the

numerator dominates the ratio in Eq. (6.15) which leads to a larger value of !t. In

the case where the data is non-stationary, the difference between the a priori error

and the a posteriori error will increase. This causes the denominator to dominate

6.3 Sparse PLS regression 162

the ratio in Eq. (6.15) which leads to a smaller value of !t. Since inverting St at

each time point is a computationally expensive operation, Eq. (6.3) can be used

instead to efficiently obtain S�1

t as each new data point arrives. In order to ensure

!t remains between 0 and 1 we take !t = min{!t, 0.999}. All the estimates of

the noise variances featuring in Eq. (6.15) can be updated recursively using the

following equations:

�2

h,t = a�2

h,t�1

+ (1� a)h2

t ,

�2

e,t = a�2

e,t�1

+ (1� a)e2t ,

�2

✏,t = b�2

✏,t�1

+ (1� b)e2t ,

where 0 < a < 1 and a < b < 1 are constant terms which determine the effective

sample size for the recursive noise estimates.

The parameters a and b are selected so that the system noise is estimated using

a relatively long exponential window, as suggested in [53]. The a priori error is the

current prediction error and is tracked recursively using a short exponential time

window which assigns small weights to previous estimates; in this way, the a priori

error is sensitive to sudden changes in the current prediction error. Accordingly, the

algorithm is able to adjust the forgetting factor. Assuming stationary data, in the

limit t!1, the a posteriori error is the true system noise when the estimate of �t

has converged to its true value. In this limit, the a priori error tends towards the a

posteriori error. Based on this observation, we can estimate the a posteriori error

as the a priori error over a longer exponential window to provide a stable estimate

of the error which will not be affected by sudden changes in the current prediction

error. It can be seen that the hyper-parameters a and b control how quickly the error

estimates converge to their true values; provided that b > a, their specific values do

not greatly affect the sensitivity of the self-tuning algorithm after the convergence

period. If a = b, then �2

e,t = �2

✏,t which implies the data is stationary and so !t is

prevented from adapting. If a > b, the error estimates will not converge to their true

values and the algorithm will attempt to continuously adjust the forgetting factor.

In our experiments we set a = 0.5 which is a short exponential window allowing

Chapter 6. On-line variable selection in streaming data 163

�2

e,t to accurately track the a priori error; we also set b = 0.9 thus ensuring that �2

✏,t

will converge to the a posteriori error. Experimental results in Section 6.4 show

that the performance of the algorithm is not affected greatly by the specific choice

of these parameters as long as the constraints are obeyed. We modify the self-tuning

forgetting factor algorithm for use in the iS-PLS algorithm by computing et and ✏t

using the PLS regression coefficients. The self-tuning forgetting factor is described

in full in [70].

6.3.4 Detecting changes in the number of important latent factors

The weights determining the PLS latent factors can be time-dependent and the al-

gorithm presented so far, coupled with an adaptive forgetting factor, is able to detect

and adapt to changes over time. According to our Assumption 6.1, the number of

the most important factors that are being retained for prediction is also allowed to

change over time. As pointed out before, off-line cross-validation over a training

period can be generally used to obtain an initial value R
0

, prior to on-line learning.

In this section we describe how the algorithm adjusts Rt on-line. At each time

step, we suggest to recursively update the mean prediction errors

E(r)
t = !tE

(r)
t�1

+ kyt � ˆy
(r)
t k2,

where ˆy
(r)
t is the prediction of yt obtained at time t�1 using r latent factors. In our

procedure, we use r = Rt � 1, Rt, Rt + 1, in order to determine when to decrease

or increase the current value Rt by one. It can be noted that past errors are included

in E
(r)
t but these are downweighted using the adaptive forgetting factor whilst more

weight is given to the current prediction error term.

The error ratios Q(Rt�1)

t = E(Rt�1)

t /E(Rt)

t and Q(Rt+1)

t = E(Rt+1)

t /E(Rt)

t can

then be computed. Values of these ratios above 1 indicate that the current Rt is

appropriate and should not be changed. Conversely, values below 1 suggest that a

change in Rt is needed, as this adaptation will improve the prediction performance.

Accordingly, we define two truncated error ratios, A(Rt�1)

t = min(1, Q(Rt�1)

t) and

A(Rt+1)

t = min(1, Q(Rt+1)

t), and trigger a change in Rt when either one deviates

6.4 Experimental results with simulated data 164

substantially away from one.

6.4 Experimental results with simulated data

In this section we report on simulation experiments designed to demonstrate the

performance of the sparse PLS regression algorithm as variable selection method

in both the off-line case, where all the data has been observed, and the on-line

case, where the data is assumed to arrive sequentially at discrete time points. Both

univariate and multivariate responses will be considered.

6.4.1 Ability to track the important explanatory variables

First, we propose a simulation setting whereby groups of explanatory variables are

generated from three distinct latent factors. In this setting we impose that, each time

step, the response depends on only two out of the three existing latent factors, which

we call here the active factors. This is obtained by setting the regression coefficients

of the variables corresponding to the remaining group of variables, associated to the

inactive factor, exactly to zero. The non-zero regression coefficients associated to

the active variables are simulated so that one of the two sets of variables is more

strongly correlated with the response than the other. A similar simulation frame-

work has been described in [7].

A more precise description of the simulation scheme follows. In order to gener-

ate data that are evolving over time, the three hidden factors are assumed to follow

an autoregressive (AR) process of first order, so that factor r is given by

f (r)
t = �jf

(r)
t�1

+ ✏t,

with t = 2 . . . , 400 and starting with an arbitrary initial value at t = 1. This is

done independently for each r = 1, . . . , 3. The parameter �j is the autoregressive

coefficient for factor r, and we use �
1

= 0.1, �
2

= 0.4, �
3

= 0.2. The error terms in

each factor follow a normal distribution with different means but same variance. We

create three groups of data streams by collecting the indices representing the vari-

Chapter 6. On-line variable selection in streaming data 165

ables into three non-overlapping sets, F
1

= {1, . . . , 100}, F
2

= {101, . . . , 200},

and F
3

= {201, . . . , 300}. Each explanatory variable is then generated as

Xt,p =

8

>

>

<

>

>

:

f (1)

t + ⌘t,p, p 2 F
1

f (2)

t + ⌘t,p, p 2 F
3

f (3)

t + ⌘t,p, p 2 F
3

,

for t = 1, . . . , 400 and p = 1, . . . , 300. Here ⌘t is a standard normal variable.

Finally, the univariate response is simulated as

yt = xt� + ✏t,

where the regression coefficients, � are sampled from normal distributions in the

following way

�p ⇠

8

>

>

<

>

>

:

N (10, 0.25), p 2 F
1

N (5, 0.25), p 2 F
2

,

0, p 2 F
3

,

so that the third factor does not contribute to the response. Using the simulated

data streams, we are able to show that the off-line sparse PLS regression procedure

accurately selects the correct active variables. In the on-line case, for which we pro-

pose an incremental soft-thresholding procedure, we are also able to demonstrate

how, when the underlying data is stationary, the on-line solution converges to the

off-line solution. The sparsity parameter, which determines how many variables

are included in the regression model, is selected using the ten-fold cross-validation

procedure described in Section 6.3.

Based on a Monte Carlo simulation study involving 500 data sets, the cross-

validated mean number of active variables in the first component turned out to be

105.37 with a standard error of 19.50. We also compared the performance of our

algorithm with that of two variable selection methods: standard Lasso regression

(using the LARS algorithm of [28]) and Sparse PCA (S-PCA) using the sparse

6.4 Experimental results with simulated data 166

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
 p

o
si

tiv
e

 r
a

te

ROC curve

S−PLS

LARS

S−PCA

Figure 6.1: ROC curve obtained by S-PLS, LARS and S-PCA, reported are aver-
ages for a Monte Carlo simulation of 500 runs. For the simulated data, S-PLS (solid
line) has a larger sensitivity for smaller values of specitivity than LARS (dashed
line) which means it selects the correct variables and selects fewer incorrect vari-
ables. In the portion where S-PCA (dot-dashed line) has zero sensitivity, it is se-
lecting the variables in X with the largest variance which by design are not the
variables which are most correlated with the response.

Chapter 6. On-line variable selection in streaming data 167

SVD method of [80] described in Section 6.3. Figure 6.1 compares the ROC curve

obtained by S-PLS with that of LARS and S-PCA. As before, we report on average

results based on a Monte Carlo simulation consisting of 500 simulated data sets.

The sensitivity measure is defined as the proportion of correctly selected variables,

whereas the specificity measure is defined as the proportion of variables which are

correctly assigned a zero coefficient and excluded from the model. It can be seen

that S-PLS (solid line) performs better than LARS (dashed line) in cases, such as

ours, where the explanatory variables are highly correlated. As expected, S-PCA

(dot-dashed line) exhibits zero sensitivity for a portion of the curve. This is because

S-PCA is selecting the variables in X whose projection explains a large proportion

of the input variance; by construction, these variables are not those most correlated

with the output. More generally, we expect S-PCA to exhibit much lower sensitivity

than S-PLS except in the case where the variables associated with largest variance

in the input are also able to explain a large proportion of variability in the output.

6.4.2 Convergence of the incremental soft-thresholding update

In order to test the convergence of the iS-PLS algorithm to the off-line algorithm,

we consider the same simulation setting introduced in Section 6.4.1 and assume that

all observations arrive sequentially. Figure 6.2 shows the result of a Monte Carlo

simulation consisting of 500 runs of the on-line iS-PLS algorithm with a forgetting

factor ! = 1 (since the data stream is stationary and no forgetting is required). The

shaded area shows the Monte Carlo error. It can be seen that the sensitivity of the

on-line algorithm reaches its maximum value after observing 25 data points. These

results, as well other extensive experimental results (not shown here) suggest that,

in the presence of stationary data, the iS-PLS solution converges to the solution

found by iterative soft-thresholding in an off-line setting only after a brief learning

period. In the next section we show how the on-line algorithm is also able to adapt

to changes.

6.4 Experimental results with simulated data 168

PLS Component 1 − Stationary data

time

S
e

n
si

tiv
ity

5 10 15 20 25 30 35
0.4

0.6

0.8

1

0.4

0.6

0.8

time

S
e

n
si

tiv
ity

PLS Component 2 − Stationary data

5 10 15 20 25 30 35
0.4

0.6

0.8

1

0.4

0.6

0.8

iS−PLS − ω = 1

Figure 6.2: Sensitivity of the iS-PLS algorithm. The shaded area shows the Monte
Carlo error of the sensitivity index. It can be seen that after t = 25 data points,
the iS-PLS result achieves maximum sensitivity and converges to the same solution
obtained by off-line learning, when all data are available.

Chapter 6. On-line variable selection in streaming data 169

6.4.3 Ability to adapt to changes

In order to test the adaptive behaviour of the iS-PLS algorithm in high dimensions,

we generated a non-stationary output by introducing time-dependent regression co-

efficients, according to the following scheme: For t = 1, . . . , 100,

�t,p ⇠

8

>

>

<

>

>

:

N (10, 0.25), p 2 F
1

N (5, 0.25), p 2 F
2

0 otherwise.

For t = 101, . . . , 300,

�t,p ⇠

8

>

>

<

>

>

:

N (5, 0.25), p 2 F
1

N (10, 0.25), p 2 F
2

0 otherwise.

For t = 301, . . . , 400,

�t,p ⇠

8

>

>

<

>

>

:

N (5, 0.25), p 2 F
2

N (10, 0.25), p 2 F
3

0 otherwise.

In this way, the important predictors change over time and we expect these changes

to be picked up in real-time by the algorithm.

The coefficient values are represented graphically in Figure 6.3: in plot (a) the

black shaded area represents variables with a large coefficient, the gray shaded area

represents variables with a smaller coefficient and the unshaded area represents vari-

ables with a zero coefficient (inactive variables). In this setting, we set R = 2 and

the sparsity parameters �(r) are chosen so that, at any given time, exactly 100 vari-

ables are selected. The forgetting factor ! is updated to ensure a rapid adjustment

when the coefficients switch while also keeping the switching frequency low when

the data is stationary to gain stability in the selected variables. Figure 6.3 also shows

the results of a single run of this experiment. Clearly, the first PLS component is

6.4 Experimental results with simulated data 170

Simulated pattern with three hidden factors

time

R
e
g
re

ss
io

n
 C

o
e
ff
ic

ie
n
ts

50 100 150 200 250 300 350 400

50

100

150

200

250

300
(a)

Estimated pattern with PLS Component 1

time

S
e
le

ct
e
d
 S

tr
e
a
m

s

50 100 150 200 250 300 350 400

50

100

150

200

250

300
(b)

Estimated pattern with PLS Component 2

time

se
le

ct
e
d
 s

tr
e
a
m

s

50 100 150 200 250 300 350 400

50

100

150

200

250

300
(c)

Figure 6.3: Figure (a) shows a block-wise representation of input data streams:
active streams having larger coefficients (black blocks), smaller regression coeffi-
cients (gray blocks), and inactive streams (white blocks) which only contributes to
noise. Each block is related to a different hidden factor. Figures (b) and (c) shows
the data streams selected on-line by the first and second PLS component, respec-
tively in a typical run. Noise occurs in the solution between t = 0 and t = 10

which occurs before the iS-PLS solution has converged as described in Figure 6.2.
There is also noise present when the factors switch at t = 100 before the algorithm
adjusts.

Chapter 6. On-line variable selection in streaming data 171

iS−PLS with fixed ω = 1 − MSE = 2.77×102

time

S
e

n
si

tiv
ity

0 50 100 150 200 250 300 350 400
0.2

0.4

0.6

0.8

1

iS−PLS with fixed ω = 0.9 − MSE = 94.55

time

S
e

n
si

tiv
ity

0 50 100 150 200 250 300 350 400
0.2

0.4

0.6

0.8

1

(b)

(a)

Figure 6.4: Sensitivity of iS-PLS for different values of ! averaged over 500 Monte
Carlo simulations where the shaded area shows the Monte Carlo error. In plot
(a), ! = 1 which causes the solution to converge with low variance up until the
coefficients change. It then is not able to quickly or accurately adjust to the new
important factors. In plot (b), ! = 0.9 which allows the solution to rapidly adjust to
changes, however there is a lot of variance in the solution during periods when the
coefficients are not changing due to the small forgetting factor. Despite the large
variance, when ! = 0.9 the algorithm achieves greater sensitivity throughout the
simulation which achieves a smaller prediction error as more of the correct variables
are being selected compared to the case where there is no forgetting.

able to accurately select the most important group of variables. The second com-

ponent always selects the second most important group of variables whilst mostly

ignoring the group of variables selected by the first component. Neither component

selects the inactive variables suggesting the algorithm is correctly able to distin-

guish important predictors from noise. As the regression coefficients switch, the

algorithm only requires few data points before it detects the changes and adapts.

Figure 6.4 reports on the mean sensitivity of the iS-PLS algorithm in a Monte

Carlo simulation consisting of 500 runs of this experiment for different values of !.

The solid line shows the mean percentage of correctly selected variables by the first

and second PLS components. The shaded area shows the Monte Carlo error. This

6.4 Experimental results with simulated data 172

iS−PLS with self−tuning ω − MSE = 91.94

time

S
e

n
si

tiv
ity

0 50 100 150 200 250 300 350 400
0.2

0.4

0.6

0.8

1

time

λ

Self−tuning ω

50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

(a)

(b)

Figure 6.5: Sensitivity of iS-PLS when using a self-tuning ! averaged over 500
Monte Carlo simulations where the shaded area shows the Monte Carlo error. Plot
(a) shows how the value of the self-tuning forgetting factor changes over time. Plot
(b) shows that when ! is dynamically adjusted using the variable forgetting factor
algorithm, the solution adjusts rapidly and with little error to changes in the coef-
ficients. During periods when the data is stationary, the variance in the solution is
small.

result clearly illustrates the limitations of using a fixed !. Plot (a) shows the result

when ! = 1. Here, during the first stationary period, the selected components

are stable. However, when the coefficients suddenly transit to another stationary

period, the algorithm adapts very slowly. Plot (b) shows the result when ! = 0.9.

Although the algorithm is able to adapt quickly to changes in the coefficients, during

stationary periods the estimated coefficients have higher variance. This can be seen

by observing the larger Monte Carlo error during the periods of stationary data.

However, the reported Mean Squared Error (MSE) shows that, despite the higher

variability, the ability to adapt to changes in the data (using a forgetting factor ! =

0.9, in this case) results in a smaller prediction error.

Figure 6.5 reports on the sensitivity of the iS-PLS algorithm when using the

adaptive forgetting factor introduced in Section 6.3.3. Plot (a) shows the value of

! over time as a result of a self-tuning algorithm. During stationary periods, !

Chapter 6. On-line variable selection in streaming data 173

is kept very close to 1, as we would expect. When the coefficients “jump”, ! is

automatically set to a very small value for a short period of time and then set back

to its previous value. This allows iS-PLS to adjust very quickly to sudden changes

in the data whilst allowing a low-variance solution during stationary periods. Plot

(b) shows the sensitivity measure obtained by iS-PLS when ! is adjusted using the

self-tuning forgetting factor and takes the values reported in Plot (a). It is clear

that in the stationary periods, iS-PLS correctly selects the important variables with

very little error. In response to a change in the important factors, the percentage of

correctly selected variables instantly decreases and quickly adapts to the new data.

The algorithm eventually selects the correct variables after a short settling time.

However, during this time the estimation variance increases. The reported MSE

(91.94) shows that the ability to dynamically adapt the forgetting factor results in a

smaller prediction error compared with the fixed ! case (Figure 6.4).

In order to evaluate the performance of the iS-PLS algorithm in a more chal-

lenging setting, we devised a simulation where the number of change points is a

random outcome governed by a geometric distribution with a parameter 0.1, so that

the mean number of change points is 10 over a period of 1000 data points. When

a change point occurs, the active variables also switch randomly. Furthermore,

we restrict the number of variables which contribute to the response to be some

percentage of the active variables, ranging between 1% (3 variables) and 30% (90

variables). In this case, many of the variables are effectively noise. Our results

are benchmarked against the Recursive LARS (R-LARS) algorithm of [48] and the

adaptive Lasso (aLasso) algorithm of [6]. In order to make the comparison mean-

ingful and simple to interpret, we let the number of variables to be selected by each

algorithm to be equal to the true number of active variables.

In Figure 6.6, Plot (a) reports on the mean sensitivity, averaged over 1000 data

points and over 500 Monte Carlo simulations. The shaded, colored areas represent

the Monte Carlo errors for each competing algorithm. It can be seen that iS-PLS

always achieves higher sensitivity compared to R-LARS or aLasso, even when the

number of active variables is small. This suggests that the ability to identify im-

portant latent factors is beneficial, especially in cases where a large number of the

6.4 Experimental results with simulated data 174

Figure 6.6: Comparison of mean sensitivity (a) and MSE (b) over 1000 data points
between iS-PLS, R-LARS and aLasso averaged over 500 Monte Carlo simulations
where the shaded areas show the Monte Carlo error. (a) shows that for fewer active
variables in the simulation, iS-PLS achieves a higher sensitivity than R-LARS and
aLasso. (b) shows that iS-PLS achieves a smaller MSE with lower variance than
R-LARS and aLasso however the error is not greatly affected by an increase in the
sensitivity, which suggests that iS-PLS is better suited to situations where there are
many correlated variables.

Chapter 6. On-line variable selection in streaming data 175

variables only contribute to noise and do not affect the response. Furthermore, these

results illustrate the ability of iS-PLS to adapt to changes in the latent factors. As

the number of variables increases, iS-PLS approaches quickly reaches maximum

sensitivity, whereas the other methods do not perform well. Plot (b) reports on the

corresponding MSE. The MSE achieved by iS-PLS is smaller, and has lower vari-

ance, compared to other methods; however the MSE is not greatly affected by an

increase in the sensitivity.

6.4.4 Sensitivity analysis

In order to study how the algorithm depends on the hyper-parameters, we carried

out a sensitivity analysis. First, we examined the effect of ↵ which regularises the

covariance matrix so that the full PLS solution may be extracted using only one

SVD. Based on 500 Monte Carlo replicates, when ↵ varies from 10

�5 and 10

�1, the

corresponding average MSEs (and their standard deviations) were 1.551(2.253) and

1.624(2.393), respectively; when ↵ takes larger values, such as 0.5 and 1, the MSE

gets as large as 7.899(32.551) and 32.331(187.559), respectively. Clearly, as ↵ is

kept very small, there is very little effect on the overall prediction error; however, as

the solution becomes closer to the PCR solution, the MSE and standard deviation

increase dramatically. Every value of ↵ tested yields a covariance matrix G which

is always of full rank; hence it is always sensible to choose the smallest value of ↵

to achieve a solution as close as possible to the true PLS solution.

Secondly, we look at the effect of the hyper-parameters a and b controlling the

effective memory length in the self-tuning forgetting factor algorithm. Figure 6.7

shows the sensitivity of the iS-PLS algorithm using 500 Monte Carlo simulations

as a function a and b, for b 1 and a b. The overall sensitivity ranges between

0.80 and 0.91. When b > a, the range of sensitivity is between 0.85 and 0.91. In

the case where a = b, the a priori error and the a posteriori error in Eq. (6.15)

become equal which prevents !t from adapting. Similarly when b = 1, the estimate

for the a posteriori error does not discount past data which in turn stops !t from

adapting. At these extreme cases, the algorithm achieves its lowest sensitivity of

6.4 Experimental results with simulated data 176

0.1

0.3

0.5

0.7

0.9

0.1

0.3

0.5

0.7

0.9

0.8

0.82

0.84

0.86

0.88

0.9

a

Sensitivity as a function of a and b

b

S
e

n
si

tiv
ity

0.8

0.82

0.84

0.86

0.88

0.9

Figure 6.7: The mean sensitivity of the iS-PLS algorithm after 500 Monte Carlo
simulations as a function of the hyper-parameters a and b which control the memory
length in the forgetting factor algorithm. It can be seen that the algorithm is not very
sensitive to changes in the values of these parameters provided 1 > b > a. No self-
tuning takes place at the extreme values when b = 1 and b = a and so the algorithm
achieves minimum sensitivity of 0.80. Maximum sensitivity of 0.91 occurs around
a = 0.5, b = 0.9.

0.80. In our simulations we set a = 0.5 and b = 0.9 which lies close to the region

of maximum sensitivity; we expect this to be the case because, in order to obtain

an accurate estimate of the a posteriori error, we must use a long exponential time

window whereas the a priori error is an instantaneous estimate of the current error

and can be obtained using an extremely short window.

To conclude our sensitivity analysis, we demonstrate how the sparsity parameter

and the noise level affect the performance. Figure 6.8 contains a heatmap of the

mean sensitivity of the S-PLS algorithm as a function of both the number of selected

variables and the signal-to-noise ratio. For simplicity, we only consider the first

latent factor. It clearly emerges that when the signal-to-noise ratio is high, the

Chapter 6. On-line variable selection in streaming data 177

Signal to Noise Ratio

N
u
m

b
e
r

o
f
S

e
le

ct
e
d
 V

a
ri
a
b
le

s

Sensitivity of the S−PLS algorithm

S
e
n
si

tiv
ity

2 1 0.67 0.5 0.4 0.33 0.28 0.25 0.22 0.2

50

100

150

200

250

300

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.8: Sensitivity of the S-PLS algorithm as a function of the number of vari-
ables selected and the signal to noise ratio in the first latent factor over 500 Monte
Carlo simulations. When the signal to noise ratio is high, S-PLS achieves maxi-
mum sensitivity when approximately 100 variables are selected (where 100 is the
true number of active variables). As the noise increases to the point where the vari-
ance of the noise is four times that of the signal, the sensitivity decreases so that
maximum sensitivity is only achieved when all variables are selected.

algorithm always correctly selects variables from the active group when less than

100 variables are selected (the true number of active variables in the first latent

factor). As the noise level increases, the sensitivity of the algorithm decreases to

the point where maximum sensitivity is only reached when all 300 variables are

selected; this implies that S-PLS is no longer able to distinguish the active variables

from the inactive variables. The optimal degree of sparsity should be selected using

cross-validation and, following our Assumption 6.2, will be kept fixed over time.

6.4 Experimental results with simulated data 178

6.4.5 Performance with high-dimensional responses

In order to test the ability of iS-PLS to track important variables in a setting where

multiple correlated responses are generated by the same underlying processes, we

set up the following simulation. Two independent latent factors f (1) and f (2) each

with T = 400 time points were simulated from a bivariate normal distribution with

means µ(1)

= 3 and µ(2)

= 5 and identity covariance. Two Y -loading vectors

q(1) and q(2) of length 50 were sampled from a standard normal distribution and

orthogonalised with respect to each other using the QR decomposition. The 50

responses were generated as

Y =

2

X

r=1

f (r)q(r)>
+ ✏,

where the errors are i.i.d. standard normals. Two time-varying X-loading vectors,

u
(1)

t and u
(r)
t each with P = 300 variables were generated such that the non-zero

elements in each vector were simulated in the following way: for t = 1, ..., 100,

u(1)

t,p ⇠ N (10, 0.25) when p 2 F
1

and u(2)

t,p ⇠ N (5, 0.25) when p 2 F
2

. All the

non-zero loadings in the two groups of active variables are swapped at t = 101 and

a final change of variables occurs at time t = 301. The predictor variables were

then generated as

Xt,p =

(

f (1)

t u
(1)

t + ⌘t, p 2 F
1

f (2)

t u
(2)

t + ⌘t, p 2 F
2

,

where ⌘t 2 R1⇥P is standard normal noise. In this way, only two groups of vari-

ables are correlated with the response through the latent factors, ft at any one time.

We again compare the performance of iS-PLS with R-LARS and aLasso. Since

these are univariate techniques, we run R-LARS and aLasso for each response sepa-

rately and obtain the mean result. Figure 6.9a shows the mean sensitivity of iS-PLS

compared with R-LARS and aLasso as a result of 500 Monte Carlo simulations.

It can be seen that iS-PLS is able to accurately select the important variables dur-

ing periods where the loading coefficients are stationary, achieving close to maxi-

Chapter 6. On-line variable selection in streaming data 179

0 50 100 150 200 250 300 350 400

0.4

0.5

0.6

0.7

0.8

0.9

1
Comparison of sensitivity between iS−PLS, R−LARS and aLasso with multivariate response

time

S
e
n
si

tiv
ity

iS−PLS

R−LARS

aLasso

(a)

0

1

2

3

4

5

6

iS−PLS R−LARS aLasso

M
S

E

Comparison of MSE between iS−PLS, R−LARS and aLasso with multivariate response(b)

Figure 6.9: (a) reports on a comparison of mean sensitivity between iS-PLS, R-
LARS and aLasso averaged over 500 Monte Carlo simulations in a setting where
there are 50 correlated responses. iS-PLS achieves close to maximum sensitivity.
As the important variables change, iS-PLS is able to quickly adapt. Neither R-
LARS or aLasso are able to uncover the important variables as they do not assume
the existence of latent factors and are unable to use information in all 50 responses
simultaneously. (b) reports on the distribution of MSE of the different methods over
the Monte Carlo simulations. The iS-PLS algorithm achieves a consistently lower
error than either R-LARS or aLasso.

mum sensitivity. The iS-PLS algorithm is able to quickly adapt when the loadings

change. Both R-LARS and aLasso achieve much lower sensitivity than iS-PLS and

are much slower to adapt in response to changes in the active latent factor. This

is expected as neither method is able to estimate the latent factors which affect the

important variables. Figure 6.9b shows the distribution of mean squared errors for

6.4 Experimental results with simulated data 180

the three methods. It can be seen that iS-PLS achieves a consistently lower error

than either of the univariate techniques which is expected considering the accuracy

of the tracking displayed by iS-PLS compared with R-LARS and aLasso.

We also report on the mean computational time required to run each algorithm

once for 50 responses averaged over the same 500 Monte Carlo simulations. A key

advantage of iS-PLS is its ability to handle high dimensional inputs and responses

simultaneously with relatively low computational cost. For a univariate response,

the computational complexity of R-LARS and aLasso per time point is O(P) and

O(P 2

) respectively, compared with a complexity of O(R2P) for iS-PLS. However,

iS-PLS has a further advantage in that it can handle multivariate response with no

further increase in complexity whereas both other methods will scale linearly in

the number of responses. In this setting iS-PLS took 8.31s whereas R-LARS took

556.9s and aLasso took 2391s. These timings confirm that iS-PLS is significantly

faster than both other methods when dealing with multivariate responses.

6.4.6 Ability to track the number of important latent factors

Finally, we test the ability of iS-PLS to adaptively tune the number of latent fac-

tors R. Using the same simulation framework, we simulate a third uncorrelated

latent factor in the same way as before and simulate loadings such that at time

t = 1, ..., 100, only the first loading contains non-zero elements. At time t =

101, ..., 300, the first two factors contain non-zero elements and at t = 301, ..., 400

all three loading vectors contain non-zero elements.

In Figure 6.10, plot (a) shows the mean estimated value of Rt through time

compared with the true value of Rt. It can be seen that the iS-PLS can quickly and

accurately adjust the number of latent factors active in the data as Rt increases from

1 to 3 and then decreases again. Plot (b) shows the mean value of the truncated error

ratios A(Rt�1)

t and A(Rt+1)

t . A sufficient negative gain in either ratio indicates when

the algorithm should increment or decrement the value of Rt. As more factors are

added, the resulting negative gains in the error ratios gets smaller. This is because

each subsequent latent factor added by iS-PLS accounts for progressively less of the

Chapter 6. On-line variable selection in streaming data 181

0 50 100 150 200 250 300 350 400
1

1.5

2

2.5

3
R

t

time

Automatically Tuning R
t
 On−line

0 50 100 150 200 250 300 350 400
0.5

0.6

0.7

0.8

0.9

1

E
rr

o
r

ra
tio

s

time

mean self−tuned R
t

true R
t

A(R−1)
t

A(R+1)
t

Figure 6.10: Self-tuning the number of latent factors. (a) shows how the mean
value of Rt is adjusted in response to changes in the number of latent factors in the
data over 500 Monte Carlo simulations. Starting with one important latent factor, at
t = 100 and t = 200 we increment the number of important latent factors by 1 and
at t = 300 we decrement the number of latent factors by 1. (b) shows the truncated
error ratios which determines when to update Rt. iS-PLS is able to quickly adapt
as the number of latent factors in the data changes.

total variance between the explanatory variables and the response. This accounts

for the slower adjustments made when Rt increases from 2 to 3.

6.5 An application to index tracking

We have applied the iS-PLS algorithm to the problems of both univariate and mul-

tivariate index tracking. A financial index consists of a portfolio of constituent

stocks whose daily price is determined as a weighted sum of the prices of those

constituents. A commonly used measure of performance of the index is the daily

index return, yt which is defined as the percentage gain (or loss) of the index price

6.5 An application to index tracking 182

each day. Similarly, the daily portfolio returns, xt, are the corresponding daily per-

centage gains in the individual stock prices. The makeup of an index is determined

by a number of factors such as market capitalization and asset price and as such,

stocks may be added or removed from an index based on whether they meet the

criteria for inclusion in the index. Similarly, the weights assigned to each asset

are also frequently adjusted. These changes in the index cause its returns to be

non-stationary.

There are two interconnected problems associated with index tracking: asset

selection and asset allocation. Asset selection involves selecting a subset of p out

of P available assets to construct a tracking portfolio. The asset allocation problem

involves investing a proportion of the total available capital in each one of the p se-

lected assets by estimating the index weight assigned to that asset. The overall goal

of performing index tracking is to reproduce as accurately as possible the returns of

the index. The constituents and weights of the tracking portfolio can be selected by

attempting to minimise the tracking error [66], that is the error between the index

returns yt and the tracking portfolio returns ŷt,

1

T

T
X

t=1

(yt � ŷt)
2, (6.16)

where T is the period over which the returns are observed. Following this setting,

the problem of asset allocation becomes a standard regression problem with the

portfolio weights being the parameters to be estimated. Traditionally, the prob-

lem of selecting a small number of assets from a large index such as the S&P 500

has been performed using search algorithms such as simulated annealing [8, 35].

However, this is prohibitively expensive. Therefore we must look at methods of

automatically selecting assets at low computational cost. Automatic asset selection

is not a prevalent topic in the literature with most methods either falling into the cat-

egory of full-index replication (no asset solution), computationally intensive search

or proprietary algorithms.

Our motivation for using a sparse PLS algorithm for index tracking is that a

Chapter 6. On-line variable selection in streaming data 183

number of studies of financial markets have suggested the existence of latent fac-

tors. For instance, [5, 4] use standardised principal component weights as portfolio

weights. They motivate their approach by providing evidence that the principal

eigenvector of the covariance matrix of asset returns generally captures the under-

lying market factor. Latent factor models related to principal components have also

been suggested for the construction of an index tracking portfolio by [78] and [39].

However, to our knowledge PLS has not been used in the context of financial index

tracking. Given the evidence for a latent factor underlying the market, we expect

that PLS is better suited for index tracking applications as it takes into account the

covariance between the constituent asset returns and the index returns as opposed

to just the asset returns as in PCA. This means PLS should identify the assets which

are contributing most importantly to the variation in the index returns.

For this application, we have used publicly available data sets from the S&P

100 and Nikkei indices, as previously described in [8]. The S&P 100 index has

98 constituents and the Nikkei has 225. To motivate the need for an incremental

variable selection algorithm for index tracking, we start by presenting an example

of tracking with two off-line variable selection methods, our Sparse PLS algorithm

using one latent factor and the LARS algorithm of [28]. We also compare these

methods to an Ordinary Least Squares (OLS) fit which does not perform variable

selection. We performed enhanced tracking of the S&P 100 index where the aim

is to overperform the index returns by a certain percentage. This is achieved by

creating a new target asset by adding a percentage of its annual returns to the index,

we then aim to track this enhanced index [3]. We enhance the S&P 100 by an

additional 15% annual returns.

Figure 6.11 shows the in-sample results of enhanced tracking of the S&P 100

index using a static portfolio of 10 stocks selected from 98 using S-PLS and LARS

and full index replication using OLS. Despite having access to all of the data, it is

clear that using a static portfolio for a long period of time leads to poor tracking per-

formance and in all three cases the artificial portfolios underperform the index. This

result confirms that a scheme for periodically rebalancing the portfolio is necessary

to produce better tracking performance. The OLS tracking performance exhibits

6.5 An application to index tracking 184

0 50 100 150 200 250 300

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
u

m
u

la
tiv

e
 R

e
tu

rn
s

time

Tracking the S&P 100 with S−PLS, LARS and OLS

index

S−PLS

LARS

OLS

Figure 6.11: Comparison of enhanced tracking (+15% annual returns) of the S&P
100 index using a static portfolio of 10 stocks chosen out of 98 using S-PLS and
LARS. S-PLS performs well during the first half of the tracking period, however
as the entire period is used for training, a change in the ”market factor” at around
t = 150 is not picked up by the off-line S-PLS algorithm which causes tracking
performance to degrade over the second half of the tracking period. Similarly, the
performance of LARS gets worse after t = 150. The OLS portfolio exhibits poor
tracking performance with high variance due to the correlated nature of the asset
returns.

high variance due to the many correlated data assets which further suggests that

a latent factor approach which represents correlated assets using a single factor is

appropriate.

We tested the iS-PLS algorithm in the multivariate case where two indices, the

S&P 100 and the Nikkei, are simultaneously tracked. Both benchmark indices have

been enhanced by adding 15% annual returns as previously described. The total

combined number of available stocks is 323 and we set the portfolio size to 10.

We constrain the selected stocks to be associated to the main latent factor only,

so that R = 1, as in suggested in [5]. In order to assess whether iS-PLS selects

the important variables over time more accurately than simple random guessing,

we compared its performance with the average returns obtained from a population

of 1000 random portfolios of the same size, with each portfolio being made of a

randomly selected subset of assets. To make sure that the comparison is fair, the

Chapter 6. On-line variable selection in streaming data 185

portfolio weights are also time-varying and are obtained by using a RLS method

with the same ! parameter. Figure 6.12 shows the results of this test. It can be seen

that iS-PLS consistently overperforms both indices and selects a small portfolio

achieving the target annual returns of +15%. In comparison, the mean returns of

the 1000 random portfolios underperforms the S&P index by 32.07% and the Nikkei

by 8.42%.

Our empirical results suggest that the importance of certain stocks in the index is

not constant over time so the ability to detect and adapt to these changes is certainly

advantageous. Using a model that assumes a time-varying latent factor driving the

asset returns is also advantageous in this setting, since its existence in real markets

has been heavily documented in the financial literature. Figure 6.12c is a heatmap

illustrating how the make-up of the portfolio selected by iS-PLS changes during

the entire period. Specifically, it shows the existence of a few important stocks that

are held for the majority of the period whereas other assets are picked and dropped

more frequently throughout the period, further suggesting that it is advantageous to

be able to adapt the constituents of a tracking portfolio.

Finally, we also compared the iS-PLS algorithm against the R-LARS and aLasso

algorithms. The purpose of this comparison is again to determine whether assum-

ing a time varying latent factor which explains covariance between the data and

the response is beneficial compared to two on-line variable selection techniques

which do not make this assumption. Figure 6.13 compares the performance of the

iS-PLS algorithm against that of R-LARS and aLasso for the same bivariate in-

dex tracking problem. Since both R-LARS and aLasso are univariate techniques,

they cannot perform bivariate index tracking. Therefore we compared iS-PLS per-

forming bivariate index tracking against univariate tracking performed by R-LARS

and aLasso on each of the indices separately. We set the portfolio size for each

R-LARS and aLasso portfolio equal to 10. It can be seen that R-LARS and aLasso

underperforms both indices suggesting that assuming a latent factor which explains

the important covariation between the asset returns and the index returns is bene-

ficial to performing accurate enhanced index tracking. It can be seen that aLasso

performs slightly better than R-Lars which suggests that the use of a self-tuning

6.5 An application to index tracking 186

0 50 100 150 200 250 300

0

0.2

0.4

0.6

0.8

1

C
u
m

u
la

tiv
e
 R

e
tu

rn
s

Tracking the S&P 100 using iS−PLS and a random portfolio

time

0 50 100 150 200 250 300

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

time

C
u
m

u
la

tiv
e
 R

e
tu

rn
s

Tracking the Nikkei using iS−PLS and a random portfolio

time

S
e
le

ct
e
d
 S

to
ck

s

on−line portfolio

50 100 150 200 250

2

4

6

8

10

Index components

100 200 300

index iS−PLS random

(c)

(b)

(a)

Figure 6.12: A comparison between iS-PLS and an averaged random portfolio per-
forming bivariate enhanced tracking (+15% annual returns) of the S&P 100 (a) and
Nikkei (b) indices using a dynamic portfolio of 10 stocks out of 323. The dashed
red line shows the returns of the index over the tracking period. The solid blue line
and the dashed black shows the returns of the iS-PLS and random portfolios, re-
spectively. For both indices, iS-PLS achieves the target returns whereas the random
portfolio underperforms the index. (c) shows how the stocks selected by iS-PLS
change over the tracking period, notably at t = 150 in response to the S&P 100 and
at t = 95 and t = 110 in response to the Nikkei.

Chapter 6. On-line variable selection in streaming data 187

0 50 100 150 200 250 300

0

0.2

0.4

0.6

0.8

1

C
u
m

u
la

tiv
e
 R

e
tu

rn
s

time

Tracking the S&P 100 with iS−PLS, R−LARS and aLasso

0 50 100 150 200 250 300
−0.4

−0.2

0

0.2

C
u
m

u
la

tiv
e
 R

e
tu

rn
s

time

Tracking the Nikkei with iS−PLS, R−LARS and aLasso

index iS−PLS R−LARS aLasso

(a)

(b)

Figure 6.13: A comparison of bivariate enhanced tracking (+15% annual returns)
between iS-PLS, Recursive LARS (R-LARS) and adaptive Lasso (aLasso) tracking
the S&P 100 (a) and Nikkei indices (b). R-LARS and aLasso underperform both
indices which suggests that the ability of iS-PLS to identify latent factors which
contribute to the response is important in performing index tracking.

forgetting factor is also beneficial to performing accurate tracking however it is not

as important as the ability to identify the important latent factors.

6.6 Discussion

In this chapter we have presented an efficient on-line learning algorithm for variable

selection in a multivariate regression context based on streaming data. The pro-

posed method can be interpreted as an on-line and adaptive version of two-block

PLS regression with sparsity constraints. As far as we are aware, this is the first

such algorithm which combines dimensionality reduction and variable selection for

data streams in a unified framework. iS-PLS has advantages, over other incremen-

6.6 Discussion 188

tal algorithms, in that it is able to deal with high dimensional and multicollinear

data. The algorithm is also able to self-adjust some essential parameters, such as

the number of important latent factors that need to be retained to obtain accurate

predictions, and the forgetting factor needed to detect changes in the underlying

data generating mechanism. Extensive simulation results show that the algorithm

is able to accurately detect and track the important variables that should enter the

regression model, even when sudden changes occur in the data. It also outperforms

competing methods for on-line variable selection that do not assume the existence

of latent factors.

The iS-PLS algorithm requires the specification of some parameters. Of these,

the ridge parameter ↵ and the forgetting factor memory length parameters a and b

have been shown not to play a critical role in the performance of the algorithm. The

iS-PLS algorithm is then able to accurately track any time-varying change in the co-

variance matrices and self-adjust the number and weights of latent factors. The user

is only required to select the initial number of important PLS components to be re-

tained. Prior to on-line learning, this value may be selected using domain-specific

knowledge or prior information. For instance, in the financial index tracking ap-

plication, it is well known that the first latent factor is representative of the entire

market [5]; in other areas, such as genomic [103] and chemical process control [22],

the selection of R is also guided by external information. Alternatively, the optimal

R can be obtained using cross-validation [52].

In the existing literature, other approaches for on-line tracking of latent factors

assume that the number of factors is fixed and these are updated in time without

removing or adding new factors [106, 101, 14]. Recently there have been some

attempts to update Rt on-line in the context of PCA; for instance, in [71, 80], the

proportion of variance explained by the current number of factors is estimated and

drives the tuning of Rt. However, these approaches are not immediately applicable

to PLS regression. Other than tacking the PLS weights, our proposed iS-PLS algo-

rithm is also able to improve on the prediction error by decreasing and increasing

Rt as needed to achieve good predictive performance; this is obtained by means of

an on-line approximation to cross-validation.

Chapter 6. On-line variable selection in streaming data 189

The only parameters that are assumed to be time-independent are {�(r)}R
1

, which

controls the degree of sparsity in the PLS solutions. As with R, these parameters

can be either selected using domain-specific information or, prior to on-line learn-

ing, using cross-validation. For instance, [96] present a cross validation method to

select the sparsity parameter which achieves the lowest mean squared prediction

error; however, they also suggest that some parameter tuning is done by the user

based on the number of desired variables. Recently, [103] present an application

to genomic data where both the number of latent factors and the degree of spar-

sity is also selected by the user. In the relevant on-line learning literature, very little

work has been done for adapting the degree of sparsity in recursive regression prob-

lems, especially in high-dimensional settings. To our knowledge, the only method

of adapting this parameter over time has been proposed by [6], but they deal with

a simpler on-line regression problem in which the response is univariate and the

explanatory variables are uncorrelated. In their work, the sparsity parameter is se-

lected in order to minimises a running estimate of the AIC criterion which quantify

the goodness of fit of the regression model. Although a similar solution may be in-

vestigated for our setting, this seems much harder to achieve in practice because our

PLS model assumes Rt latent factors, which may change over time; the algorithm

would then need to track the optimal sparsity parameter �(r)
t for each factor. More

work needed to be done towards the development a fully automated procedure.

We have also presented an application of iS-PLS to the bivariate index tracking

problem in computational finance. On this task, iS-PLS overperforms both target

indices by the a pre-selected amount. It also improves upon two competing on-line

variable selection methods based on penalised regression, namely recursive LARS

[48] and adaptive Lasso [6], which consistently underperform the target indices.

It should be noted that this is not a completely realistic simulation of the index

tracking problem. Associated with re-balancing a portfolio are transaction costs

which make re-estimating the sparse regression coefficients, �t at each time point

prohibitively costly. In order to develop a realistic solution to the index tracking

problem, the tracking error must be minimised subject to a constraint on the trans-

action costs.

190

Chapter 7

Conclusions and further work

In this work we have introduced three main novel methods for both supervised and

unsupervised learning in high-dimensions based on identifying low-dimensional

projections of the data. Throughout this work we have included discussion of the

successes and limitations of these methods in the relevant chapters. In this chapter

we summarise the main contributions and avenues for further research.

In our first contribution, we developed a framework for detecting observations

which are influential under a PCA model based on the out-of-sample reconstruc-

tion error. We then used this as a goodness-of-fit measure in the context of sub-

space clustering. The resulting subspace clustering method achieved state-of-the

art clustering accuracy and speed on both simulated and real datasets. We then

briefly proposed an extension to PSC based on the penalised regression framework

to obtain sparse loadings.

The PSC approach is inherently limited since it only considers clusters which

lie in linear subspaces. Whilst this works well for certain applications such as

images of faces and motion tracking, it may be desirable to develop a more general

framework for identifying clusters which do not necessarily lie in linear subspaces.

Recently, the field of multiple manifold clustering has emerged where the aim is

to find clusters which lie in non-linear manifolds of which, subspace clustering

is a special case. A recent method for spectral clustering on multiple manifolds

[99] has been shown to achieve excellent results on both simulated datasets and the

Chapter 7. Conclusions and further work 191

Hopkins155 dataset compared with linear subspace clustering methods.

In our second major contribution, we proposed a new approach to multi-view

clustering which takes a step towards consolidating supervised and unsupervised

learning in the multi-view setting. This allows us to model more complicated de-

pendencies between the views than the usual conditional independence assumption

allows. Our approach can be viewed as an extension of subspace clustering in two-

views and so carries with it the same benefits of subspace clustering compared to

geometric-distance based clustering.

The field of multi-view clustering where there is a predictive relationship be-

tween the views has not been well developed and so our work represents a signif-

icant and novel contribution which consolidates supervised and unsupervised ap-

proaches to multi-view learning. Since this method has many conceptual and algo-

rithmic similarities with PSC, an obvious extension would be to develop a penalised

MVPP algorithm which recovers sparse TB-PLS weights. However, the proposed

MVPP optimisation algorithm does not perform well when R > 1. Therefore, a

more robust approach to model selection must be developed.

Our final major contribution is a method for tracking important variables in

streaming data. As we have seen, the field of variable selection in data streams has

not been widely investigated and so our iS-PLS method represents a novel contri-

bution to the field. We highlighted one possible application in financial index track-

ing for which iS-PLS out-performs both batch methods and other on-line variable

selection methods. Earlier we noted that our index tracking application does not

obey the usual constraints imposed by considering transaction fees. Therefore, an

application-specific extension of iS-PLS would be to incorporate such constraints.

This could be achieved by considering a different penalty on the weights such as the

fused-lasso [89] which, alongside the standard Lasso penalty, imposes a constraint

on the `
1

difference between each pair of coefficients,
PP

p=2

|�p � �p�1

|. This

encourages sparsity in the coefficients as well as sparsity in the difference between

coefficients so that non-zero elements of � are piecewise constant. An on-line mod-

ification would rather impose a penalty on
PP

p=1

|�p,t � �p,t�1

| so as to encourage

a piecewise constant regression coefficient throughout time.

Chapter 7. Conclusions and further work 192

Since the framework for the efficient PRESS for both PCA and TB-PLS is based

on recursive least squares, a possible avenue of further research is extend the work

in Chapters 3, 4 and 5 to the on-line setting. In Chapter 6 we used a variable forget-

ting factor algorithm, detailed in Eq. (6.15), which monitors a function of the ratio

between the residual error and the leverage at each time point. It can be recognised

that both of these terms are commonly used in a variety of methods for identifying

influential observations including the predictive influence measures we propose.

Therefore, an interesting direction for future research would be to develop an on-

line predictive influence measure for change-point detection for streaming data. A

natural extension would then be to develop a fully on-line subspace and multi-view

clustering algorithm for identifying clusters in high-dimensional data streams. Such

methods could have applications in clustering objects in video streams. A practical

benefit of an on-line clustering algorithm is a reduced storage complexity which

allows clustering to be performed efficiently on data where there is a very large

number of observations, such as large collections of images and web-pages on the

internet without having to store them all in memory simultaneously which may be

impracticable if not impossible.

193

Appendix A

Derivations and proofs for Chapter 3

A.1 Derivation of Definition 3.2

Using the chain rule, the gradient of the PRESS with respect to xi has the following

form

@J

@xi

=

1

2

@

@xi

ke�ik2 =
1

2

e�i
@

@xi

e�i.

Using the quotient rule, the partial derivative of the ith leave-one-out error has

the following form

@e�i

@xi

=

@ei
@xi

(1� hi) + ei
@hi
@xi

(1� hi)
2

which depends on the partial derivatives of the ith reconstruction error and hi which

have the following forms respectively

@ei

@xi

=

@

@xi

xi

�

IP � vv>�

=

�

IP � vv>� ,

A.1 Derivation of Definition 3.2 194

and

@hi

@xi

=

@

@xi

xivDv>x>
i

= 2vDdi.

Finally, we can evaluate the derivative of the PRESS, J with respect to xi as

1

2

@ke�ik2

@xi

= e�i
@e�i

@xi

= 2e�i

�

IP � vv>�
(1� hi) + 2eivDdi
(1� hi)

2

However, examining the second term in the sum, eivDdi, we notice

eivDdi = (xi � xivv
>
)vDdi

= xivDdi � xivv
>vDdi

= 0.

The gradient for a single PCA component with respect to xi is given by

1

2

@ke�ik2

@xi

= 2e�i

�

IP � vv>�
(1� hi)

(1� hi)
2

= 2e�i

�

IP � vv>�

(1� hi)
.

Since the contributions of successive components are additive, for R > 1, we arrive

at the expression in Definition 3.2.

Appendix A. Derivations and proofs for Chapter 3 195

A.2 Proof of Lemma 3.1

From Definition 3.2, for R = 1, the predictive influence of a point ⇡
xi(v) is

⇡
xi(v) = e�i

(Ip � vv>
)

1� hi

=

ei

(1� hi)
2

(A.1)

This is simply the ith leave-one-out error scaled by 1 � hi. If we define a di-

agonal matrix ⌅ 2 RN⇥N with diagonal entries ⌅i = (1 � hi)
2, we can define

a matrix ⇧ 2 RN⇥P whose rows are the predictive influences, ⇡
xi(v), ⇧ =

[⇡
x1(v)

>, . . . ,⇡
xN (v)

>
]

>. This matrix has the form

⇧ = ⌅�1

�

X �Xvv>� .

Now, solving (3.8) is equivalent to minimising the squared Frobenius norm, k⇧k2F =

Tr
�

⇧>⇧
�

,

min

v

Tr
⇣

�

X �Xvv>�> ⌅�2

�

X �Xvv>�
⌘

(A.2)

subject to kvk = 1.

Expanding the terms within the trace we obtain

Tr
⇣

�

X �Xvv>�> ⌅�2

�

X �Xvv>�
⌘

= Tr
�

X>⌅�2X
�

� 2Tr
�

vv>X>⌅�2X
�

+ Tr
�

vv>X>⌅�2Xvv>� .

By the properties of the trace, the following equalities hold

Tr
�

vv>X>⌅�2X
�

= v>X>⌅�2Xv,

A.2 Proof of Lemma 3.1 196

and

Tr
�

vv>X>⌅�2Xvv>�
= Tr

�

⌅�1Xvv>vv>X>⌅�1

�

= Tr
�

⌅�1Xvv>X>⌅�1

�

= v>X>⌅�2Xv,

since ⌅ is diagonal and v>v = 1. Therefore, (A.2) is equivalent to

min

v

TrX>⌅�2X � v>X>⌅�2Xv, (A.3)

subject to kvk = 1.

It can be seen that under this constraint, Eq. (A.3) is minimised when v>X>⌅�2Xv

is maximised which, for a fixed ⌅ is achieved when v is the eigenvector correspond-

ing to the largest eigenvalue of X>⌅�2X .

197

Appendix B

Proof of Lemma 4.1

In this section we provide a proof of Lemma 4.1 which states that estimating the

PCA parameters using the newly assigned clusters always introduces an error com-

pared to the optimal parameters, however this error is always smaller than if the

previously estimated PCA parameters are used. As an additional consequence of

this proof, we develop an upper bound for the approximation error which can be

shown to depend on the leverage terms. We derive this result for a single cluster,

Cnew however it holds for all clusters.

We represent the assignment of points i = 1, . . . , N to a cluster, Cnew using a

binary valued diagonal matrix A whose diagonal entries are given by

Ai =

(

1, if i 2 Cnew

0, otherwise,
(B.1)

where Tr(A) = Nk. We have shown in Lemma 3.1 that for a given cluster assign-

ment, the parameters which optimise the objective function can be estimated by

computing the SVD of the matrix

X

i2Cnew
k

x>
i ⌅

�2

i xi = X>⌅�2AX, (B.2)

within each cluster where the ith diagonal element of ⌅ is ⌅i = (1 � hi)
2 1, so

that ⌅�2

i � 1. We can then represent ⌅�2

= IN +� where � 2 Rn⇥n is a diagonal

Appendix B. Proof of Lemma 4.1 198

matrix with entries �i = �i � 0. Now, we can represent Eq. (B.2) at the next

iteration as

M =X>A(IN +�)X. (B.3)

We can quantify the difference between the optimal parameter, v⇤ obtained by

solving (3.9) using M and the new PCA parameter estimated at iteration ⌧ + 1,

vnew as,

E(S⇤,Snew
) = v⇤>Mnewv⇤ � vnew>X>AXvnew,

where vnew is obtained through the SVD of X>AX . We can express E(S⇤,Snew
)

in terms of the spectral norm of M . Since the spectral norm of a matrix is equivalent

to its largest singular value, we have vnew>X>AXvnew
= kX>AXk Since � is

a diagonal matrix, its spectral norm, k�k = max(�). Similarly, A is a diagonal

matrix with binary valued entries, so kAk = 1.

E(S⇤,Snew
) kM �X>AXk

 kX>A�Xk

 max(�)kX>Xk. (B.4)

Where the triangle and Cauchy-Schwarz inequalities have been used. In a similar

way, we now quantify the difference between the optimal parameter and the old

PCA parameter vold.

E(S⇤,Sold
) = v⇤>Mv⇤ � vold>X>AXvold.

Since vnew is the principal eigenvector of X>AX , by definition, vnew>X>AXvnew

is maximised, therefore we can represent the difference between the new parameters

and the old parameters as

E(Snew,Sold
) = vnew>X>AXvnew � vold>X>AXvold � 0.

Appendix B. Proof of Lemma 4.1 199

Using this quantity, we can express E(vold
) in terms of the spectral norm of S as

E(S⇤,Sold
) kMk � vold>X>AXvold

kX>�AXk+ kX>AXk � vold>X>AXvold

max(�)kX>Xk+ E(Snew,Sold
), (B.5)

From Eq. (B.5) and (B.4) it is clear that

E(S⇤,Snew
) E(S⇤,Sold

). (B.6)

This proves Lemma 4.1.

The inequality in Eq. (B.6) implies that estimating the SVD using X>AX ob-

tains PCA parameters which are closer to the optimal values than those obtained

at the previous iteration. Therefore, estimating a new PCA model after each clus-

ter re-assignment step never increases the objective function. Furthermore, as the

recovered clustering becomes more accurate, by definition there are fewer influ-

ential observations within each cluster. This implies that max(�) ! 0, and so

E(S⇤,Snew
)! 0.

200

Appendix C

Derivations and proofs for Chapter 5

C.1 Derivation of Definition 5.1

For a single latent factor we can write the ith leave one out error, e�i as

e�i = yi � xi��i,

where ��i is estimated using all but the ith observation. Since � = ugq>, we can

write e�i as

e�i = yi � xiu�ig�iq
>
�i.

The difference between the singular vectors estimated using all the data and the

leave-one-out estimate, ku � u�ik is of order O
✓

q

log(n�1)

n�1

◆

[60] so that if n is

large, we can write

e�i = yi � xiug�iq
>
�i

Using the matrix inversion lemma, we can obtain recursive update equations for g�i

which only depends on g and does not require an explicit leave-one-out step in the

Appendix C. Derivations and proofs for Chapter 5 201

following way

g�i =
�

t>t
��1

�i
t>�is�i

=

�

t>t� titi
��1

�

t>s� tisi
�

= g � (si � tig)(t>t)�1ti
1� t2i

,

where the expression for g is given by Equation (5.8). In the same way we derive

an expression for q�i which only depends on q

q�i = q � (yi � siq>
)

>
(s>s)�1si

1� s2i
,

where the expression for q is given by Equation (5.7). Equation (5.11) is then

obtained by using these values for g�i and q�i in ��i = ug�iq
>
�i and simplifying.

C.2 Derivation of Definition 5.4

In this section we provide a derivation of the predictive with respect to an obser-

vation, xi. We take the partial derivative of the TB-PLS PRESS function, J with

respect to xi,

@J

@xi

=

1

N

@ke�ik2

@xi

=

2e�i

N

@e�i

@xi

.

Taking derivatives of the constituent parts of e�i in Equation (5.11) with respect

to xi we obtain

@

@xi

ei = �2�>, (C.1)

@

@xi

t2iEy,i = 2E>
y,itiu

>, (C.2)

C.3 Proof of Lemma 5.1 202

@

@xi

bi = �2�>, (C.3)

and

@

@xi

(1� t2i)(1� s2i) = �2(1� s2i)tiu
>. (C.4)

We can now obtain @e�i

@xi
by combining Equations (C.1), (C.2), (C.3) and (C.4)

@

@xi

e�i =2

�

��> �E>
y,itiu

>
+ �>�

(1� t2i)(1� s2i)

((1� t2i)(1� s2i))
2

+ 2

(ei � t2iEy,i � bi)
>
(1� s2i)tiu

>

((1� t2i)(1� s2i))
2

.

From the definition of the PRESS in Eq. (5.11) we know that ei�t2iEy,i�bi

(1�t2i)(1�s2i)
= e�i, so

@

@xi

e�i = 2

�

�E>
y,itiu

>�

(1� t2i)(1� s2i)
+ 2

e>
�itiu

>

(1� t2i)
.

Finally, the predictive influence with respect to xi is given by

⇡
xi(u,v) =

@J

@xi

=

4e�i

N

�E>
y,i

(1� t2i)(1� s2i)
+

e>
�i

(1� t2i)

!

tiu
>. (C.5)

C.3 Proof of Lemma 5.1

In this section we provide a proof of Lemma 5.1 which states that minimising the

sum of squared predictive influences as in Eq. (5.17),

min

u,v

N
X

i=1

k⇡
xi(u,v)k2, (C.6)

is equivalent to solving the following maximisation problem,

max

u,v

N
X

i=1

⌅

�1

i u>x>
i yiv.

Appendix C. Derivations and proofs for Chapter 5 203

We show this by initially rewriting the objective function in Eq. (5.17) in matrix

form for a single cluster k using the form of the predictive influence given in Eq.

(C.5) in Appendix C.2. We then optimise the objective function with respect to the

parameters, u and v.

In order to write the predictive influence in matrix form, we first construct a

matrix, E 2 RN⇥Q whose rows are the leave-one-out errors, e�i =

ei�t2iEy,i�bi

(1�t2i)(1�s2i)
,

from Eq. (5.11), so that E = [e>
�1

, . . . , e>
�N]

>. Defining diagonal matrices ⌅ 2
RN⇥N with diagonal entries ⌅i = (1� t2i)(1� s2i), and H 2 RN⇥N with elements

Hi = ⌅

�1

i t2i , we can write E as

E =⌅�1

�

Y �X� � (s� gt) s>Y
�

�HEy

=⌅�1

�

Y � gXuv> � Y vv>
+ gXuv>��H

�

Y � Y vv>�

=

�

⌅�1 �H
�

Y �
�

⌅�1 �H
�

Y vv>

=

�

⌅�1 �H
�

Y
�

Iq � vv>� . (C.7)

We also define a scaled version of E in the same way as Eq. (C.7), which we denote
˜E 2 RN⇥Q whose rows are e�i

1�t2i
. This matrix has the form

˜E =

⇣

⌅�1

˜⌅�1 � ˜H
⌘

Y
�

IQ � vv>� , (C.8)

where ˜⌅ 2 RN⇥N is a diagonal matrix with diagonal entries ˜⌅i = (1�t2i) and ˜H 2
RN⇥N is a diagonal matrix with entries ˜Hi = ⌅

�1

i
˜

⌅

�1

i t2i . Using these quantities,

we can now define a matrix ⇧ = [⇡
x1(u,v)

>, . . . ,⇡
xN (u,v)

>
]

> 2 RN⇥P whose

rows are the predictive influence terms given in Eq. (C.5),

⇧ =

4

N
E
⇣

�E>
y ⌅

�1

+

˜E>⌘

| {z }

B

Xuu>,

where for notational convenience we also define the matrix B 2 RQ⇥N . Therefore,

C.3 Proof of Lemma 5.1 204

solving (C.6) is equivalent to minimising the squared Frobenius norm,

min

u,v
Tr
�

⇧>⇧
�

= min

u,v
u>X>B>E>EBXu. (C.9)

The equality in Eq. (C.9) holds due to the following property of the trace,

Tr
�

⇧>⇧
�

= Tr
�

⇧ ⇧>� ,

and using u>u = 1. First, in order to solve Eq. (C.9), since it is explicitly a func-

tion of u, we evaluate its partial derivative with respect to u and set the resulting

expression equal to zero,

@

@u
u>X>B>E>EBXu = 2u>X>B>E>EBX = 0,

for which a solution occurs when the vector

u>X>B>
= 0 2 R1⇥q. (C.10)

Now, using Eq. (C.8) in Eq. (C.10) we have

u>X>
⇣

⌅�1

˜⌅�1 � ˜H
⌘

Y
�

IQ � vv>�
= u>X>⌅�1Y

�

IQ � vv>� , (C.11)

so a “trivial” solution occurs when both sides of Eq. (C.11) are equal to zero, that

is

u>X>⌅�1Y
�

IQ � vv>�
= 0.

If we define the scalar �
⌅

= u>X>⌅�1Y v the resulting expression is

u>X>⌅�1Y = �
⌅

v>. (C.12)

Therefore, for fixed ⌅ a solution for the optimal u and the corresponding value of

v can be obtained using the SVD where u is the left singular vector of the matrix

X>⌅�1Y with corresponding singular value �
⌅

and right singular vector, v. These

Appendix C. Derivations and proofs for Chapter 5 205

singular vectors can be obtained by solving the following maximisation problem,

max

u,v

N
X

i=1

⌅

�1

i u>x>
i yiv,

which proves the lemma.

C.4 Proof of Lemma 5.2

In this section we provide a proof of Lemma 5.2. This proof follows the same

arguments as the proof in Appendix B. We derive this result for a single cluster,

Cnew however it holds for all clusters. We represent the assignment of points i =

1, . . . , N to a cluster, Cnew using a binary valued diagonal matrix A 2 RN⇥N whose

diagonal entries are given by

Ai =

(

1, if i 2 Cnew

0, otherwise,
(C.13)

where Tr(A) = Nk. We have shown in Eq. (C.12) that for a given cluster assign-

ment, the parameters which optimise the objective function can be estimated by

computing the SVD of the matrix

X

i2Cnew

x>
i ⌅

�1

i yi = X>⌅�1AY , (C.14)

within each cluster where the ith diagonal element of ⌅ is ⌅i = (1�t2i)(1�s2i) 1,

so that ⌅�1

i � 1. We can then represent ⌅�1

= In + � where � 2 RN⇥N is a

diagonal matrix with entries �i � 0. Now, we can represent Eq. (C.14) as

M =X>A(In +�)Y . (C.15)

We can quantify the difference between the optimal parameters, ⇥⇤
= {u⇤,v⇤}

obtained by solving (5.18) using M and the new TB-PLS parameters, ⇥new
=

C.4 Proof of Lemma 5.2 206

{unew,vnew} as,

E(⇥

⇤,⇥new
) = u⇤>Mv⇤ � unew>X>AY vnew,

Taking spectral norms we have u⇤>Mv⇤
= kMk and unew>X>AY vnew

=

kX>AY k. If we define max(�) = maxi(
p
�i), we have k�k = max(�). Simi-

larly, kAk = 1. We can then express E(⇥

⇤,⇥new
) in terms of the spectral norm,

E(⇥

⇤,⇥new
) = kMk � kX>AY k

 kX>A(In +�)Y �X>AY k

 max(�)kX>Y k. (C.16)

In a similar way, we now quantify the difference between the optimal parameters

and the old TB-PLS parameters ⇥old
= {uold,vold},

E(⇥

⇤,⇥old
) = u⇤>Mv⇤ � uold>X>AY vold.

Since unew and vnew are the first left and right singular vectors of X>AY , by def-

inition, unewX>AY vnew is maximised, therefore we can represent the difference

between the new parameters and the old parameters as

E(⇥

new,⇥old
) = unew>X>AY vnew � uold>X>AY vold � 0. (C.17)

Using this quantity we can express E(⇥

⇤,⇥old
) in terms of the spectral norm of M

as

E(⇥

⇤,⇥old
) =kMk � uold>X>AY vold

kX>�AY k+ kX>AY k � uold>X>AY vold

max(�)kX>Y k+ E(⇥

new,⇥old
). (C.18)

Appendix C. Derivations and proofs for Chapter 5 207

From Eq. (C.18) and (C.16) it is clear that

0 E(⇥

⇤,⇥new
) E(⇥

⇤,⇥old
). (C.19)

This proves Lemma 5.2.

208

Appendix D

Linear Algebra

Some of the main results from linear algebra which we use in this thesis are pre-

sented in here. These results are discussed in more detail in [36].

D.1 Singular Value Decomposition

The singular value decomposition of X is

X = U⇤V >, (D.1)

where U = [u(1), ...,u(N)

] 2 RN⇥N and V = [v(1), ...,v(P)

] 2 RP⇥P are or-

thonormal matrices whose columns are the left and right singular vectors of X ,

respectively. ⇤ = diag(�(1), . . . ,�(N)

) 2 RN⇥P is a diagonal matrix whose entries

are the singular values of X .

The SVD is also related to the eigenvalue decomposition (EVD) in the following

way

S = X>X = (U⇤V >
)U⇤V >

= V ⇤2V >.

So that the the columns of V are also the eigenvectors of S and the entries of ⇤ are

the corresponding square root eigenvalues.

Appendix D. Linear Algebra 209

The first R components of the SVD constitute the best rank R approximation of

X under the Frobenius norm.

D.2 Woodbury Matrix Identity

For matrices A, B and C of the appropriate sizes we can write the inverse of

A+BC in terms of the inverse of A using the following identity,

(A+BC)

�1

= A�1 �A�1B(I +CA�1B)CA�1.

We can use this identity to efficiently update the inverse of a positive semi-definite

matrix, A 2 RP⇥P after a rank-1 update by a vector x 2 R1⇥P ,

(A+ x>x)�1

= A�1 � A�1x>xA�1

1 + xA�1x> .

Similarly, if we perform a rank-1 downdate of A we have,

(A� x>x)�1

= A�1

+

A�1x>xA�1

1� xA�1x> .

210

References

[1] C. Aggarwal, J. Wolf, P. Yu, C. Procopiuc, and J. Park. Fast algorithms for

projected clustering. Sigmod Record, 28:61–72, 1999.

[2] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace

clustering of high dimensional data for data mining applications. Sigmoid

Record, 27:94–105, 1998.

[3] C. Alexander and A. Dimitriu. The cointegration alpha: enhanced index

tracking and long-short equity market neutral strategies. Social Science Re-

search Network Working Paper Series, 2002.

[4] C. Alexander and A. Dimitriu. Equity indexing: optimising passive invest-

ments. Quantitative Finance, 4:30–33, 2004.

[5] C. Alexander and A. Dimitriu. Sources of over-performance in equity mar-

kets: mean reversion, common trends and herding. Technical report, ISMA

Center, University of Reading, UK, 2005.

[6] C. Anagnostopoulos, D. Tasoulis, D. J. Hand, and N. M. Adams. Online

optimisation for variable selection on data streams. Proceedings of the 18th

European Conf. on Artificial Intelligence, pages 132–136, 2008.

[7] E. Bair, T. Hastie, D. Paul, and R. Tibshirani. Prediction by supervised prin-

cipal components. Journal of the American Statistical Association, 101:119–

137, 2006.

REFERENCES 211

[8] J. Beasley, N. Meade, and T. J. Chang. An evolutionary heuristic for the index

tracking problem. European Journal of Operational Research, 148:621–643,

2003.

[9] D. Belsley and E. Kuh. Regression diagnostics: Identifying influential data

and sources of collinearity. Wiley, New York, USA, 1 edition, 2004.

[10] S. Bickel and T. Scheffer. Multi-view clustering. In IEEE International

Conference on Data Mining, pages 19–26. Citeseer, 2004.

[11] S. Bickel and T. Scheffer. Estimation of mixture models using co-em. In The

European Conference on Machine Learning and Principles and Practice of

Knowledge Discovery in Databases, pages 35–46, 2005.

[12] C. Bishop. Pattern recognition and machine learning. Springer, New York,

2006.

[13] P. Bradley and O. Mangasarian. k-Plane clustering. Journal of Global Opti-

mization, 16:23–32, 2000.

[14] M. Brand. Fast online svd revisions for lightweight recommender systems.

Technical report, Mitsubishi Electric Research Laboratory, 2003.

[15] L. Breiman and J. Friedman. Predicting Multivariate Responses in Multiple

Linear Regression. Journal of the Royal Statistical Society Series B, 59:3–54,

1997.

[16] E. Bruno. Multiview Clustering: A Late Fusion Approach Using Latent

Models. In Proceedings of the 32nd international ACM SIGIR conference on

Research and development in information retrieval, pages 736–737, 2009.

[17] S. Chatterjee and A. Hadi. Influential Observations, High Leverage Points,

and Outliers in Linear Regression. Statistical Science, 1:379–393, 1986.

[18] K. Chaudhuri, S. Kakade, K. Livescu, and K. Sridharan. Multi-view clus-

tering via canonical correlation analysis. Proceedings of the 26th Annual

International Conference on Machine Learning, pages 129–136, 2009.

REFERENCES 212

[19] G. Chen and G. Lerman. Spectral Curvature Clustering (SCC). International

Journal of Computer Vision, 81:317–330, 2008.

[20] C.-H. Cheng, A. W. Fu, and Y. Zhang. Entropy-based subspace clustering

for mining numerical data. In Proceedings of the fifth ACM SIGKDD inter-

national conference on Knowledge discovery and data mining, pages 84–93,

1999.

[21] R. D. Cook. Assessment of local influence. Journal of the Royal Statistical

Society Series B, 48:133–169, 1986.

[22] B. S. Dayal and J. F. Macgregor. Improved PLS algorithms. Journal of

Chemometrics, 11:73–85, 1997.

[23] B. S. Dayal and J. F. Macgregor. Recursive exponentially weighted pls and its

applications to adaptive control and prediction. Journal of Process Control,

7:169–179, 1997.

[24] V. de Sa, P. Gallagher, J. Lewis, and V. Malave. Multi-view kernel construc-

tion. Machine learning, 79:47–71, 2010.

[25] C. Ding and X. He. K-means clustering via principal component analysis.

Proceedings of the 21st international conference on Machine learning, 2004.

[26] N. Draper and J. John. Influential observations and outliers in regression.

Technometrics, 23:21–26, 1981.

[27] R. Duda and P. Hart. Pattern classification. Wiley-Interscience, 2 edition,

2000.

[28] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression.

Annals of Statistics, 32:407–499, 2004.

[29] E. Elhamifar and R. Vidal. Sparse subspace clustering. In IEEE Conference

on Computer Vision and Pattern Recognition, pages 2790–2797, 2009.

REFERENCES 213

[30] S. Erlich and K. Yao. Convergences of adaptive block simultaneous iteration

method for eigenstructure decomposition. Signal Processing, 37:1–13, 1994.

[31] J. Friedman, E. Hastie, H. Höfling, and R. Tibshirani. Pathwise Coordinate

Optimization. The Annals of Applied Statistics, 1:302–332, 2007.

[32] J. H. Friedman and J. J. Meulman. Clustering objects on subsets of attributes.

Journal of the Royal Statistical Society Series B, 66:815–849, 2004.

[33] A. Georghiades, P. Belhumeur, and D. Kriegman. From few to many: illu-

mination cone models for face recognition under variable lighting and pose.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 23:643–

660, 2001.

[34] L. Gidskehaug, H. Stødkilde-Jørgensen, M. Martens, and H. Martens.

Bridge-pls regression: two-block bilinear regression without deflation. Jour-

nal of Chemometrics, 18:208–215, 2004.

[35] M. Gilli and E. Këllezi. Threshold accepting for index tracking. Techni-

cal report, Department of Econometrics, University of Geneva, Switzerland,

2001.

[36] G. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins

University Press, 1996.

[37] D. Greene and P. Cunningham. A Matrix Factorization Approach for Inte-

grating Multiple Data Views. In Proceedings of the European Conference

on Machine Learning and Knowledge Discovery in Databases: Part I, pages

423–438, 2009.

[38] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learn-

ing. Springer, 2001.

[39] R. A. Haugen and N. Baker. Dedicated stock portfolios. Journal of Portfolio

Management, 16:17–22, 1990.

REFERENCES 214

[40] S. Haykin. Adaptive Filter Theory. Prentice Hall, 2001.

[41] C. Hou, C. Zhang, Y. Wu, and F. Nie. Multiple view semi-supervised dimen-

sionality reduction. Pattern Recognition, 43:720–730, 2010.

[42] K. Huang, Y. Ma, and R. Vidal. Minimum effective dimension for mixtures

of subspaces: a robust GPCA algorithm and its applications. In IEEE Con-

ference on Computer Vision and Pattern Recognition, pages 631–638, 2004.

[43] M. Hubert, P. Rousseeuw, and K. Vanden Branden. ROBPCA: a new ap-

proach to robust principal component analysis. Technometrics, 47:64–79,

2005.

[44] A. Izenman. Modern multivariate statistical techniques: regression, classi-

fication, and manifold learning, chapter 6, pages 107–190. Springer Verlag,

2008.

[45] I. T. Jolliffe. Principal Component Analysis. Springer Series in Statistics.

Springer-Verlag, New York, 2 edition, 2002.

[46] K. Kanatani. Geometric information criterion for model selection. Interna-

tional Journal of Computer Vision, 26:171–189, 1998.

[47] R. Kannan and S. Vempala. Spectral Algorithms. Foundations and Trends in

Theoretical Computer Science, 4:157–288, 2008.

[48] S.-P. Kim, Y. Rao, D. Erdogmus, and J. Principe. Tracking of multivariate

time-variant systems based on on-line variable selection. In IEEE Workshop

on Machine Learning for Signal Processing, pages 123–132, 2004.

[49] J. Knight and S. Satchell, editors. Linear Factor Models in Finance.

Butterworth-Heinemann, 2004.

[50] T. Lange and J. Buhmann. Fusion of similarity data in clustering. Advances

in Neural Information Processing Systems 18, pages 723–730, 2006.

REFERENCES 215

[51] K. Lê Cao, P. Martin, C. Robert-Granié, and P. Besse. Sparse canonical

methods for biological data integration: application to a cross-platform study.

BMC bioinformatics, 10, 2009.

[52] K. Lê Cao, D. Rossouw, C. Robert-Granié, and P. Besse. Sparse PLS: vari-

able selection when integrating omic data. Technical report, INRA, 2008.

[53] S.-H. Leung and C. So. Gradient-based variable forgetting factor RLS algo-

rithm in time-varying environments. IEEE Transactions on Signal Process-

ing, 53:3141–3150, 2005.

[54] T. Li and C. Ding. Weighted consensus clustering. In Proceedings of 2008

SIAM International Conference on Data Mining (SDM2008), 2008.

[55] L. Ljung. System Identification: Theory for the User. Prentice Hall, 2nd

edition, 1998.

[56] B. Long, P. Yu, and Z. Zhang. A general model for multiple view unsuper-

vised learning. In Proceedings of the 8th SIAM International Conference on

Data Mining (SDM’08), Atlanta, Georgia, USA, 2008.

[57] U. Luxburg. A tutorial on spectral clustering. Statistics and Computing,

17:395–416, Aug. 2007.

[58] Y. Ma. Generalized Principal Component Analysis: Modeling & Segmenta-

tion of Multivariate Mixed Data. 2006.

[59] H. Martens. Modified Jack-knife estimation of parameter uncertainty in bi-

linear modelling by partial least squares regression (PLSR). Food Quality

and Preference, 11:5–16, 2000.

[60] B. McWilliams and G. Montana. A PRESS statistic for two-block partial

least squares regression. In Proceedings of the 10th Annual Workshop on

Computational Intelligence, 2010.

REFERENCES 216

[61] B. McWilliams and G. Montana. Sparse partial least squares regression for

on-line variable selection with multivariate data streams. Statistical Analysis

and Data Mining, 3:170–193, 2010.

[62] B. McWilliams and G. Montana. Predictive subspace clustering. In Machine

Learning and Applications (ICMLA), 2011 Tenth International Conference

on, pages 247–252, December 2011.

[63] N. Meinshausen and P. Bühlmann. Stability selection. Journal of the Royal

Statistical Society Series B, 72:417–473, 2010.

[64] M. Meloun. Detection of single influential points in OLS regression model

building. Analytica Chimica Acta, 439:169–191, 2001.

[65] B. Mertens, T. Fearn, and M. Thompson. The efficient cross-validation of

principal components applied to principal component regression. Statistics

and Computing, 5:227–235, 1995.

[66] J. Miao and C. L. Dunis. Volatility filters for dynamic portfolio optimization.

Applied Financial Economics Letters, 1:111–119, 2005.

[67] O. Nasraoui, C. Rojas, and C. Cardona. A framework for mining evolving

trends in web data streams using dynamic learning and retrospective vali-

dation. Journal of Computer Networks - Special Issue on Web Dynamics,

50:1425–1652, 2006.

[68] A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an

algorithm. In Advances in Neural Information Processing Systems 14, pages

849–856, 2001.

[69] S.-K. Ng, G. McLachlan, and A. Lee. An incremental em-based learning

approach for on-line prediction of hospital resource utilization. Artificial

Intelligence in Medicine, 36:257–267, 2006.

REFERENCES 217

[70] C. Paleologu, J. Benesty, and S. Ciochina. A robust variable forgetting fac-

tor recursive least-squares algorithm for system identification. IEEE Signal

Processing Letters, 15:597–600, 2008.

[71] S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming pattern discovery in

multiple time-series. Proceedings of the 31st International Conference on

Very Large Data Bases, pages 697 – 708, 2005.

[72] L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimensional

data: a review. SIGKDD Explor. Newsl, 6:90–105, 2004.

[73] D. Pregibon. Logistic regression diagnostics. The Annals of Statistics, 9:705–

724, 1981.

[74] L. Qin and S. Self. On comparing the clustering of regression models method

with K-means clustering. Memorial Sloan-Kettering Cancer Center Depart-

ment of Epidemiology and Biostatistics Working Paper Series, page 14, 2007.

[75] A. Rahmatullah Imon. Identifying multiple influential observations in linear

regression. Journal of Applied Statistics, 32:929–946, 2005.

[76] M. M. S. Rancel and M. A. G. Sierra. A connection between local and dele-

tion influence. Sankhyā: The Indian Journal of Statistics, Series A, 62:144–

149, 2000.

[77] R. Rosipal and N. Krämer. Overview and Recent Advances in Partial Least

Squares. In Subspace, Latent Structure and Feature Selection, pages 34–51.

Springer, 2006.

[78] A. Rudd. Optimal selection of passive portfolios. Financial Management,

1:57–66, 1980.

[79] M. Rudelson and R. Vershynin. Sampling from large matrices. Journal of

the ACM, 54, 2007.

REFERENCES 218

[80] H. Shen and J. Huang. Sparse principal component analysis via regularized

low rank matrix approximation. Journal of Multivariate Analysis, 99:1015–

1034, 2008.

[81] C. D. Sigg and J. M. Buhmann. Expectation-maximization for sparse and

non-negative PCA. In Proceedings of the 25th international conference on

Machine learning - ICML ’08, pages 960–967, New York, New York, USA,

2008. ACM Press.

[82] J. Sinkkonen, J. Nikkilä, L. Lahti, and S. Kaski. Associative clustering. In

The European Conference on Machine Learning, pages 396–406, 2004.

[83] H. Späth. Clusterwise linear regression. Computing, 22:367–373, 1979.

[84] G. Stewart and J.-g. Sun. Matrix Perturbation Theory. Academic Press Inc.,

San Diego, USA, first edition, 1990.

[85] M. Stone. Cross-validation and multinomial prediction. Biometrika,

61(3):509–515, 1974.

[86] M. Stone. An asymptotic equivalence of choice of model by cross-validation

and Akaike’s criterion. Journal of the Royal Statistical Society Series B,

39:44–47, 1977.

[87] Y. Tian, T. Huang, and W. Gao. Robust Collective Classification with Con-

textual Dependency Network Models. In Advanced Data Mining and Appli-

cations, pages 173–180, 2006.

[88] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of

the Royal Statistical Society Series B, 58(1):267–288, 1996.

[89] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Sparsity and

smoothness via the fused lasso. Journal of the Royal Statistical Society Series

B, 67:91–108, 2005.

REFERENCES 219

[90] R. Tron and R. Vidal. A Benchmark for the Comparison of 3-D Motion

Segmentation Algorithms. In IEEE Conference on Computer Vision and

Pattern Recognition, 2007.

[91] P. Tseng. Nearest q-flat to m points. Journal of Optimization Theory and

Applications, 105:249–252, 2000.

[92] G. Tzortzis and A. Likas. Convex mixture models for multi-view clustering.

In International Conference on Artificial Neural Networks, pages 205–214,

2009.

[93] S. Vempala and G. Wang. A spectral algorithm for learning mixtures of

distributions. Journal of Computer and System Sciences, 68:841–860, 2002.

[94] R. Vidal. Subspace Clustering. IEEE Signal Processing Magazine, 28:52–

68, 2011.

[95] S. Vijayakumar, A. D’Souza, and S. Schaal. Incremental Online Learning in

High Dimensions. Neural Computation, 17:2602–2634, 2005.

[96] S. Waaijenborg and A. Zwinderman. Penalized canonical correlation anal-

ysis to quantify the association between gene expression and dna markers.

BMC Proceedings, 1, 2007.

[97] D. Wang, C. Ding, and T. Li. K-Subspace Clustering. In Machine Learning

and Knowledge Discovery in Databases, pages 506–521. Springer, 2009.

[98] H. Wang, W. Fan, P. S. Yu, and J. Han. Mining concept -drifting data streams

using ensemble classifiers. Proceedings of the ninth ACM SIGKDD interna-

tional conference on Knowledge discovery and data mining, pages 226–235,

2003.

[99] Y. Wang, Y. Jiang, Y. Wu, and Z.-H. Zhou. Spectral clustering on multiple

manifolds. IEEE Transactions on Neural Networks, 22:1149 –1161, 2011.

REFERENCES 220

[100] J. Wegelin. A Survey of Partial Least Squares (PLS) Methods, with Emphasis

on the Two-Block Case. Technical report, University of Washington, 2000.

[101] J. Weng, Y. Zhang, and W. Hwang. Candid covariance-free incremental prin-

cipal component analysis. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 25:1034–1040, 2003.

[102] D. Witten. A Penalized Matrix Decomposition, and its Applications. PhD

thesis, Stanford University, 2010.

[103] D. Witten and R. Tibshirani. A framework for feature selection in clustering.

Journal of the American Statistical Association, 105:713–726, 2010.

[104] S. Wold, A. Ruhe, H. Wold, and W. J. Dunn. The Collinearity Problem in

Linear Regression. The Partial Least Squares (PLS) Approach to Generalized

Inverses. SIAM journal on Scientific Computing, 5:735–743, 1984.

[105] S. Wold, M. Sjöström, and L. Eriksson. PLS-regression: a basic tool of

chemometrics. Chemometrics and Intelligent Laboratory Systems, 58:109–

130, 2001.

[106] B. Yang. Projection Approximation Subspace Tracking. IEEE Transactions

on Signal Processing, 43:95–107, 1995.

[107] B. Yang. Asymptotic convergence analysis of the projection approximation

subspace tracking algorithms. Signal processing, 50:123–136, 1996.

[108] T. Zhang, A. Szlam, Y. Wang, and G. Lerman. Hybrid linear modeling via

local best-fit flats. Arxiv preprint, 2010.

[109] Y. Zhu and D. Shasha. Statstream: statistical monitoring of thousands of data

streams in real time. Proceedings of the 28th VLDB Conference, 2002.

[110] H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analysis.

2004.

	Abstract
	Glossary
	Introduction
	Learning linear subspaces in high-dimensions
	Penalised regression
	Principal component analysis
	Sparse PCA
	Model selection and detecting influential observations
	Model selection
	Identifying influential observations

	Subspace clustering
	Clustering in high dimensions
	Linear subspace clustering

	Discussion

	Predictive methods for PCA
	The predictive reconstruction error
	PRESS for PCA
	Approximation error

	A measure of predictive influence for PCA
	Predictive robust PCA (PRoPCA)
	An example application to face images

	Predictive subspace clustering
	Clustering based on predictive reconstruction
	The PSC algorithm
	Convergence of PSC
	Model selection in PSC

	Connection with K-subspaces
	Penalised PSC
	Simulations
	Applications to computer vision
	Yale faces B database
	Hopkins 155 motion segmentation database

	Discussion

	Multi-view predictive modelling
	Learning in multiple views
	High-dimensional multi-response regression
	Two block partial least squares regression
	Multi-view clustering

	Detecting influential observations
	PRESS for TB-PLS
	Predictive influence for TB-PLS

	Multi-view predictive partitioning
	The MVPP algorithm
	Algorithm convergence
	Total predictive influence
	Model selection

	Performance evaluation using simulated data
	Identifying influential observations
	Simulation settings
	Experimental results

	Applications to web data
	Discussion

	On-line variable selection in streaming data
	Multivariate methods for data streams
	Recursive Least Squares
	The power method and adaptive SIM
	Online PLS
	Online variable selection

	PLS regression
	Sparse PLS regression
	Off-line learning
	On-line learning
	Adaptive behaviour using self-tuning forgetting factors
	Detecting changes in the number of important latent factors

	Experimental results with simulated data
	Ability to track the important explanatory variables
	Convergence of the incremental soft-thresholding update
	Ability to adapt to changes
	Sensitivity analysis
	Performance with high-dimensional responses
	Ability to track the number of important latent factors

	An application to index tracking
	Discussion

	Conclusions and further work
	Derivations and proofs for Chapter 3
	Derivation of Definition 3.2
	Proof of Lemma 3.1

	Proof of Lemma 4.1
	Derivations and proofs for Chapter 5
	Derivation of Definition 5.1
	Derivation of Definition 5.4
	Proof of Lemma 5.1
	Proof of Lemma 5.2

	Linear Algebra
	Singular Value Decomposition
	Woodbury Matrix Identity

	References

