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Abstract 

 

Exposure assessment in cancer epidemiological studies relies on measurable 

intermediate molecular biomarkers with high sensitivity and specificity in order to 

prevent common problems due to misclassification of exposure. Studies on the 

early stages of carcinogenesis have helped to identify molecular changes that 

are detectable in pre-cancerous lesions and that are thought to occur as the 

result of specific exposures such as tobacco smoking. More recently, in vitro 

evidence started to support the potential cancer-protective role of various micro-

nutrients acting through epigenetic and genetic mechanisms. Somatic mutations 

in “master” cancer genes and modifications of epigenetic patterns in the promoter 

region of specific genes involved in cell cycle, apoptosis or DNA repair may prove 

good candidates of carcinogenic and dietary exposure even if the evidence that 

these changes may be present and detectable in “normal” tissue are still scarce 

(due in part to the practical and ethical difficulty to conduct experimental 

prospective studies in healthy individuals).  

In this thesis, I have developed two projects exploring the application of TP53, 

KRAS, EGFR mutations and of DNA methylation changes as biomarkers of 

exposure to tobacco smoking, in experimental and observational study designs. 

Somatic mutations were analysed by dHPLC, ME-PCR, RFLP and sequencing 

and DNA-methylation analysis was performed by pyrosequencing. Moreover, 

somatic mutations were analysed in a prospective context of lung cancer 

recurrence; also the capacity of dietary polyphenols and isothiocyanates to 

modify methylation patterns in smokers was assessed in an intervention trial.  

The results show that somatic mutations are good markers of different forms of 

tobacco-related lung cancers but have limited short-term prognostic value, with 

the exception of KRAS mutations in adenocarcinoma. Methylation data 

suggested that a specific short-term dietary intervention may stabilize global 

epigenetic (LINE1 DNA methylation) patterns in peripheral white blood cells. 
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Chapter I: Introduction 

 

 

Biomarkers in the molecular epidemiology of cancer  

 
The most important incentive for physicians and research scientists in the field of 

cancer research is to detect cancer at an early stage, before it spreads and 

becomes incurable. One of the most effective ways to achieve this goal is to 

identify environmental and lifestyle factors that increase or reduce cancer risk, as 

these factors will be the milestones on which prevention strategies can be built.  

The field of molecular epidemiology integrates molecular biology techniques into 

epidemiologic studies, with the aim of providing new insights into the distribution, 

causes and mechanisms of diseases across human populations. The term was 

first popularized in the context of infectious diseases, and was applied to cancer 

research in the early 1980s, thus giving birth to the field of molecular cancer 

epidemiology. Molecular cancer epidemiology aims to incorporate molecular 

biomarkers into epidemiology in order to reveal mechanisms and pathways that 

occur between initial exposure and the development of a characterized disease 

(Perera and Weinstein 1982). The discovery of biomarkers that reflect exposure 

to a carcinogen and/or its effect is of key interest, since cancer takes many years 

to develop (a latency of 10–40 years between first exposure and clinical 

diagnosis is commonly observed), thus offering a long temporal window for 

preventive intervention. The biological interactions between different types of 

carcinogens, e.g. initiators or promoters, as well as their interactions over time 

have been well characterised in vitro and in animal models and there is now the 

need to translate these findings into the clinic.  

 

Biomarkers are commonly defined as biological measures of cellular, biochemical 

or molecular alteration in a biological sample (such as human tissue, cell or fluid), 

with the ability to predict the risk of human disease (Shulte and Perera 1993; 

Rothman et al. 1995). A classic example of biomarkers study is that from 
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MacMahon and colleagues on the geographical correlation between urinary 

estrogens concentration and breast cancer (MacMahon et al. 1982). This study 

provided support for the hypothesis that estrogens are important in breast cancer 

aetiology. Another essential contribution to the field of molecular cancer 

epidemiology was to uncover the link between aflatoxin and initiation/progression 

of hepatocellular carcinoma, in particular in the presence of hepatitis B virus 

infection (Wild et al. 1993). This important discovery allowed the establishment of 

prevention strategies for aflatoxin exposure in low resource countries where the 

toxin was ingested daily through the diet. The validation of urinary adducts as 

biomarker of exposure to aflatoxin (IARC 2002) was made possible by several 

considerations: (i) the strong potency of aflatoxin as human carcinogen, (ii) the 

availability of a relatively specific and sensitive biomarker highly correlated with 

biologically effective dose and (iii) the availability in several populations of 

individuals with very different exposure levels and patterns. 

 

 

Biomarkers for clinical use 

 

In many instances, a single biomarker lacks the sensitivity and/or specificity to 

support unambiguous detection or monitoring of a cancer disease. Exceptions 

include α-fetoprotein (AFP) levels that can be used for diagnosis, staging and risk 

assessment of testicular teratoma (Diamandis et al. 2002). This serum marker is 

also used for the detection and diagnosis of liver cancer, although high specificity 

is only achieved at high levels of plasma AFP that are detected in only a fraction 

of cancer patients (Luo et al. 2010).  

Cancer biomarkers may also be useful to distinguish patients with respect to 

clinical outcome ahead of a drug treatment. This capacity characterizes the 

predictive value of a biomarker. The introduction into clinical practice of screening 

breast cancer for oestrogen receptor positive status has represented a major 

achievement, since those patients (which represent around 70% of breast cancer 

patients) have a favourable prognosis, and more importantly, may better benefit 
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from endocrine treatment (McGuire et al., 1997; Harris et al. 2007). Nowadays, 

virtually all clinical trials have introduced oestrogen and progesterone receptors 

testing to distinguish between groups of breast cancer patients with different 

responses to therapy and outcomes. Furthermore, rapid developments in the 

identification of biomarkers distinguishing between different molecular 

phenotypes of breast cancer provide valuable tools for assigning patients to 

specific treatment protocols. 

 

One of the most spectacular developments in using molecular cancer biomarkers 

in clinical practice is the identification of specific oncogene mutations that 

generate constitutively activated enzymes, which can be blocked by specific 

pharmaceutical drugs. After the seminal example of Imatinib (Gleevec), which 

blocks the activated c-KIT tyrosine kinase oncogene in some forms of leukaemia 

and in gastro-intestinal stromal tumours, the “mutation biomarker/small drug” 

paradigm is now applied with success to the treatment of lung adenocarcinomas, 

in which activating mutations in the EGFR gene encoding the epidermal growth 

factor receptor are common (in particular in never-smoking women). Patients with 

this mutation have been shown to have excellent clinical response to treatment 

by tyrosine kinase inhibitors Gefitinib (Iressa) or Erlotinib (Tarceva). In the past 5 

years, a number of other “-inibs” (enzyme inhibitors) have been phased into 

clinical trials to target specific molecular end-points in many different types of 

cancers.  

 

There exist many forms of tumour markers, such as hormones, enzymes, 

receptors, genetic mutations, amplifications or translocation, to evaluate “normal 

biologic processes, pathogenic processes, or pharmacologic responses to a 

therapeutic intervention” (Biomarkers Working Group 2001). The main difficulty in 

using biomarkers is to set up the conditions for their objective measure and 

evaluation. In order to measure them both easily and reliably, assays must 

provide high analytical and diagnostic sensitivity and specificity (Kulasingam and 

Diamandis 2008).  
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This promise is offered by recent analytical technologies (e.g. gene-expression 

profiling or protein arrays), which have significantly increased the number of 

candidate DNA, RNA and protein biomarkers. Despite the advances in molecular 

biology, there is still a considerable gap in translating these bench results into 

bedside applications. Paraphrasing Taylor Coleridge, “there is water everywhere 

but still little to drink”; in fact, even if the emerging biomarkers proposed are 

countless, very few of them have been taken through the extensive validation 

pipe-line required for their routine usage in clinical cancer care or in prevention. 

Few biomarkers have been clinically approved by the US Food and Drug 

Administration (FDA) and even less have been integrated into the clinical 

practice. Figure 1 compares Medline publications under the keyword “cancer 

biomarker” with the number of FDA-approved plasma protein markers per year 

from 1994 up to 2003 (Ludwig and Weinstein 2005). While the number of 

publications on biomarkers (and hence the number of candidate biomarkers) has 

steadily increased, the number of biomarkers that went through full validation has 

decreased. This comparison shows a gap between biomarker research and 

clinical application. The main reason for this gap is the extensive workload and 

costs associated with validation, which can sometimes discourage investment at 

the level needed to fully evaluate a biomarker. Yet, in laboratory practice, 

researchers are continuously confronted with the common drawback of lack of 

appropriate biomarker validation. Lack of validation often appears when trying to 

reproduce data from a published study; this could be either due to a lack of 

robust validation in the original study, or to poor sensitivity and specificity of the 

biomarkers identified, or, in the worst case, to over-optimistic presentation and 

interpretation of initial data. As a result, it is often extremely difficult to validate 

data and to repeat a study. Robust biomarkers and a low inter-operator and inter-

institution variability are eventually attained by setting, whenever possible, large 

collaborative studies, since they enable the creation of laboratory standards and 

the screening of a larger panel of samples (thus also increasing statistical 

power). 
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Figure 1: Medline publications (with “biomarker” as  heading, red squares; as text word, 
red circles) and number of FDA-approved markers per  year (green triangles) 

From Ludwig et al. 2005 

 

 

Biomarker families 

 
There are many different ways of classifying biomarkers. In molecular 

epidemiology, the most accepted way is to distinguish between three broad 

families of biomarkers (i.e. biomarkers of exposure, of effect and of 

susceptibility), according to their contribution to the suspected chain of causality 

linking environmental exposure to a disease end-point.  

 

For IARC to classify an agent as carcinogenic to humans both exposures in vivo 

(assessed on the basis of animal and human studies) and biological mechanistic 

evidences are combined (IARC 2006). In fact, if the same biological response 

occurs across species, there is higher probability that we are observing an 

appropriate biomarker. Common examples of carcinogenic exposure that are 

validated with reliable biomarkers are dietary toxins (e.g. aflatoxin B1), chemical 

and physical carcinogens (e.g. UV), tobacco smoking, and alcohol beverages.  
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The carcinogenesis from exposure to cancer is a complicated picture where 

multiple molecular and cellular events take place over a long period of time, 

influencing each other and ultimately transforming a normal cell into a malignant, 

neoplastic one. During this process, the cellular interaction with chemical or 

physical carcinogens commonly leads to “initiation”, i.e. the acquisition of diverse 

genetic and epigenetic alterations which somehow “prime” a target cell to 

become cancerous. Further to initiation, a phase of “promotion” is required for the 

clonal expansion of initiated cells; promotion is often defined as a reversible 

and/or preventable event. Promotion then leads to irreversible “progression”, 

which characterizes the evolution from benign to fully malignant, invasive lesions. 

This general model, although largely questioned by many recent developments in 

molecular cancer biology, still provides an elegant framework for identifying 

biomarkers associated with different stages of carcinogenesis.  

 

At least theoretically, at each step of the process it would be possible to define a 

biomarker; either to assess exposure to potential environmental hazards, to gain 

insight into disease mechanisms by describing early changes, to express 

epiphenomena of preclinical disease or to understand acquired or inherited 

susceptibility (Perera and Weinstein 2000; Vineis and Perera 2007). During 

initiation, promotion or progression, different molecules or events may 

accumulate in tissues or in biological fluids. Their effect may simply reflect 

exposure or ongoing physiopathological changes without providing direct 

evidence of detriment to survival and good health, or may prove to be associated 

to the future or current, sub-clinical development of a disease. In the latter case, 

biomarkers may provide a pre-clinical application and link a genotype to a 

phenotype.  

 

Biomarkers are commonly measured in easily accessible surrogate tissues, e.g. 

urine or blood samples, and are broadly divided into three classes or “families” 

(Figure 2). The classification is temporal and assumes that the carcinogenic 

process is a continuum where one step leads to the following one. In reality 
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sometimes the classification overlaps, e.g., DNA adducts that are used as 

biomarkers of exposure may also imply a biological effect since failure to repair 

DNA adducts may lead to mutations in genes that “drive” carcinogenesis. 

 

Figure 2 : Examples of biomarkers of exposure, of effect and o f susceptibility 
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nature of the process by which environmental factors have influenced or caused 

carcinogenesis. In many instances, biomarkers of exposures are those that can 
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specific to a particular chemical of exposure. Examples are biomarkers of internal 

dose and of biologically effective dose of the exposure compound.  

 

Biomarkers of effect reflect the biological effect that follows the initial exposure. 

Examples are biomarkers of early biological effect, such as alterations in liver 
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liver cancer. They also include anatomo-pathological markers of precursor 
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Biomarkers of effect may be non-specific to the carcinogenic agent but, 

compared to biomarkers of exposure, they may better reflect complex exposures 

and cumulative exposures over time.  

 

Biomarkers of susceptibility indicate the often constitutive ability of an individual 

to respond to a given exposure. Biomarkers of susceptibility may include gene 

loci associated to risk for a particular type of cancer such as lung cancer 

(Brennan et al. 2011), as well as polymorphisms of specific genes associated 

with the metabolism of a compound that eventually alter the risk of cancer 

(Boccia et al. 2009). Inherited genetic differences in metabolism are generally 

small at the individual level, due to the sequential involvement of many different 

enzymes in any metabolic pathway and to their redundancy. However, they may 

become very significant at population level, and may result in different effects for 

the same exposure across entire groups or populations. Many single nucleotide 

polymorphisms (SNPs) may alter the expression or activity of a gene product and 

may modulate the body response to a toxicant. Examples of biomarkers of 

susceptibility are enzymes responsible for the metabolism of xenobiotics and for 

DNA repair.  

 

As in the case of biomarkers of exposure, the use of biomarkers of effect to 

measure a disease outcome (typically cancer) in an epidemiological study may 

increase the specificity and the sensitivity in defining the outcome. For example, 

microarray-based techniques, used to measure the expression of a large number 

of genes, have led to the discovery that breast cancers may show profoundly 

different patterns of genetic expression, allowing their classification into up to six 

sub-groups not easily distinguished on the basis of histopathological features. 

These sub-classifications are now proving to be extremely helpful when 

assigning patients to specific treatment regimens.  

The proposed concept of “biomarkers families” suggests that if a member of a 

family (i.e. category of biomarkers) is established as measurement of risk, then 
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other members too, as well as “relatives”, could be candidates as reliable 

biomarkers, as suggested in Figure 3. 

 
Figure 3: Theoretical correlation among the main bi omarkers families 
 
 

 

 

 

 

 

 

 
 
 

 

 

 

Biomarkers of exposure, of effect and of susceptibility are all intermediate 

biomarkers whose aim is to describe the endo-phenotype that develops during 

the pathogenesis of environment-related diseases.  

In particular, markers of internal dose measure the amount of compound (or its 
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exposure), or genetic polymorphisms for metabolic enzymes. The product of 
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adducts, is a marker of the compound’s biologically effective dose (sometimes 

called tissue dose) (Denissenko et al. 1996; Jarabek et al. 2009). These 
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mutations, gene-promoter methylation and modifications of chromatin structure 

(Downs 2007).  

Biomarkers of effect may be extremely useful in understanding pathways and 

mechanisms of carcinogenicity in relation to exposure. A common example is the 

analysis of TP53 mutations in lung cancer in relation to smoking status (Hainaut 

and Pfeifer 2001) since the pattern of mutations in lung cancers of non-smokers 

is very different from that in smokers. The link between biological and 

epidemiological findings was provided by studies on carcinogens present in 

tobacco, and specifically on polycyclic aromatic hydrocarbons such as 

benzo(a)pyrene, which induces G to T transversions at characteristic hotspots of 

the tumour suppressor TP53.  

In other cases, biomarkers of effect still encounter many challenges to provide 

additional evidence for risk of an etiologically defined cancer. A highly promising 

field is DNA methylation profiling in cancer cases. Recently methylation of the 

CDKN2A promoter has been associated with tobacco smoking (Vaissière et al. 

2009) and recurrence of early lung cancer stages (Brock et al. 2008).  

 

 

Challenges in applying biomarkers to epidemiologica l studies: pre-

analytical variations in large cohorts 

 
Analytical variations observed during biomarker validation can be due to both 

biological inter- and intra-individual variations and to laboratory variation. The 

degree of variability relates to the biomarker accuracy in measuring the relevant 

exposure. Not only can the biomarker levels vary due to genetic and disease 

states, but there are also important issues concerning sample collection, storage 

conditions and quality controls of laboratory methods, statistics and reporting of 

data. The reproducibility among laboratories reflects the measure of accuracy, 

i.e. the measurement error of the biomarker which stay in between the 

biomarker’s true value (or gold standard) and the measured biomarker. 
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Pre-analytical variation usually reflects accuracy in sample collection, storage 

conditions and quality controls; analytical variation refers to laboratory methods, 

statistics and reporting of data. These variations can be minimized by relying on 

standard operating procedures during all phases of the analysis. Techniques 

have to be reproducible, both intra and inter-laboratories, measurements have to 

prove sensitive, accurate and precise, and references have to be available to 

make results comparable over a period of time.  

Well validated laboratory techniques are fundamental when studying the 

causality of a certain biomarkers expression upon environmental exposure, 

especially when the environmental exposure triggers very subtle changes in the 

biomarker expression (as in the case of gene promoter methylation upon dietary 

exposure). The validity of a laboratory assay is reflected in its reliability, i.e. how 

often the same results are obtained from multiple retesting, ideally in different 

laboratory contexts and using different instrument platforms, and it is correlated 

to the measurement error and the stability of the biological sample.  

 

Measurement error, to which laboratory analyses are prone, is also called 

laboratory drift and can be due to a batch effect, to a storage effect or to repeated 

freeze-thaw cycles (Rundle et al. 2005).  

Batches are created whenever it is unfeasible to process all of the samples 

together. Batch effects can create random noise or bias and are due to 

technological issues (e.g. the number of wells in a PCR plate), to logistic issues 

(e.g. transport and shipping limitations) or more simply to different availability of 

laboratory staff. This effect may lead to a misclassification of the exposure 

(Schulte and Perera 1993). In the ideal case of an even distribution of the 

measurement error among cases and controls (non-differential error) it may lead 

to an underestimation of the biomarker’s association with the disease; in case the 

bias is unevenly distributed (differential error) it would be important to have the 

same proportion of cases and controls in each batch, and in general all 

measurements should be compared with a standard. In the present report, all 



 24 

measurements have been conducted at least in duplicate with appropriate 

controls in each batch and following validated laboratory procedures. 

 

Storage effect may arise whenever samples are not analysed immediately after 

collection; in fact, the level of some biomarkers can be easily influenced by both 

storage conditions (Table 1) and duration. Since it may take many years for a 

large multicenter study to assemble all samples and since biomarker levels can 

decline over time, samples must be stored in a consistent manner that does not 

vary by recruitment site and time, thus minimizing the storage effect on biomarker 

levels.  

 

A variant of the storage effect arises when the volume of sample used for a 

particular test is smaller than the stored aliquots. Consequently, the remaining 

portion of the aliquot is stored again and thus may undergo several freeze-thaw 

cycles. Freeze-thaw cycles may alter chemical as well other properties of a 

biological sample through several physical and chemical mechanisms (Brey et al. 

1994); they can degrade DNA (Lahiri and Schnabel 1993) and the situation is 

even more delicate for proteins, RNAs or metabolites. During freezing, the higher 

concentration of solutes in the liquid phase increases ionic strength, as well as it 

changes pH, and it may cause protein precipitation and denaturation (Van den 

Berg and Rose 1959). Thus, since biomarker levels could be influenced by the 

sequence in which the hypotheses are tested, the freeze-thaw cycles necessitate 

careful planning. 
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Table 1: Examples of storage recommendations for bi omarkers 
 

 
 
From Caboux et al. 2008 
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Challenges in applying biomarkers to epidemiologica l studies: biomarker 

validation 

 
During the past few decades, great efforts have been invested in the 

identification of biomarkers of carcinogen exposure and early effects, and the 

development of analytical methods for their detection and quantification. The 

sensitivity of these assays may enable the measurement of the concentrations of 

metabolites, or adducts with macromolecules, of many environmentally relevant 

carcinogens at very low levels of exposure, or the detection and quantification of 

early genetic effects (ECNIS 2006). Biomarkers must always undergo the critical 

process of validation to ascertain their biological relevance to both exposure and 

disease in order to assess the “accuracy, precision, and effectiveness of results” 

(ECNIS 2007). The validity of an exposure biomarker might be compared with 

that of other exposure assessment methods, such as questionnaires and 

environmental monitoring. The main criteria to be met remain the relevance of 

the biomarker to the exposure of interest, its specificity (e.g. chemicals often 

share common metabolites) and the characteristics of the assay, including 

sensitivity, source of variability and effect modifiers. 

Validation is required for any new method to ensure that it is capable of giving 

reproducible and reliable results, when it is used by different operators employing 

the same equipment in the same or different laboratories. The type of validation 

programme required depends entirely on the particular method and its proposed 

applications.  

 

Technical validity may be defined as the lack of systematic error in measuring the 

biomarker in comparison to a standard. The degree of reproducibility is tested on 

results obtained by analysing the same sample under a variety of normal test 

conditions such as different analysts, laboratories, instruments, reagents and 

different days (for dHPLC also matter assay temperatures and small variations in 

mobile phase). Systematic errors may result from the methodology, the 
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instrument or the operator, and can affect both the accuracy and the precision of 

the measurement.  

 

The components of analytical validity are mainly sensitivity, specificity and test 

reliability and they should apply to all kinds of biomarkers, including intermediate 

biomarkers of exposure and early response. Sensitivity and specificity evaluate 

how well the test detects the marker when it is present and when it is absent, 

respectively. Sensitivity has two meanings: i) the proportion of true positive 

results that the test will report as positive (i.e. absence of false negatives) and ii) 

the ability to detect a small proportion of positive material in a large amount of 

normal tissue (e.g. tumour DNA in a background of wild-type DNA). It is the first 

meaning that we shall usually refer to when describing the performance of a 

mutation detection assay, and of course it is desirable that the sensitivity is as 

close to 100% as possible, although it is not easy to establish this other than by 

empirical studies. Specificity is the absence of false positive results; only true 

positives are scored in a 100% specific assay. In mutation detection, this can be 

made more demanding by asking to report only pathogenic mutations and not 

normal sequence variants. When detecting somatic mutations by 

chromatography or DNA methylation levels by pyrosequencing for example, it is 

important to define a limit of detection. This is the lowest concentration in a 

sample that can be detected, but not necessarily quantified, under the stated 

experimental conditions and once the background noise of the technique has 

been reduced as much as possible. In particular, for somatic mutations that are 

detected in a background of wild-type DNA, but in general for any screening 

assay, the minimum percentage of biomarker should be inspected in comparison 

to internal controls (both positives and negatives).  

When a technique yields high sensitivity, we may have stronger confidence in 

interpreting the correspondence of the measurement with a conceptual entity. 

Example of a sensitive technique is immunohistochemistry for detecting the 

stress-induced nuclear accumulation of p53 protein. Under stress conditions wild-

type p53 protein accumulates in the nucleus to block DNA synthesis and hence 
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cell division (Martinez et al. 1991); but it has a half-life of less than 20 minutes 

and does not normally accumulate at levels that are high enough to be detectable 

by immunohistochemical methods. In contrast, the mutated TP53 gene codes for 

a protein that has a considerably prolonged half-life and that can be detected by 

immunohistology. Accumulation of proliferating-cell nuclear p53 detected by 

immunohistology is a sensitive method for assessing p53 abundance and status 

in cancerous samples and is simple to perform (Melhem et al. 1995). However, 

interpreting the results may sometimes be tricky since the absence of a 

detectable protein may occur when TP53 gene contains a nonsense or frameshift 

mutation. Therefore, when this technique is followed by a validated one for TP53 

mutation detection (e.g. dHPLC and/or bidirectional sequencing), we obtain a 

robust laboratory method for screening somatic mutations in lung cancer. 

 

Biomarker validation requires the choice of the appropriate target sample for 

measurement. Biomarkers can be measured in exhaled air, blood, urine and in 

tissue samples. Often the actual target organ or cell is not readily available for 

measurements and biomarkers of exposure are thus often surrogate measures of 

doses or effects at the target. The ideal biomarker has been described as 

chemical-specific, detectable at low levels, inexpensive to analyse and 

quantitatively related to prior exposures (Kulasingam and Diamandis 2008). The 

ideal biomarker should also be available using non-invasive techniques, meaning 

that biological materials should be easily accessible in sufficient amounts under 

routine conditions and without unacceptable discomfort or health risk for the 

patient. For these reasons blood and urine are most commonly used as source of 

biomarkers, since cells in blood may provide surrogate endpoints for the effects 

in internal organs. Hair, teeth, nails and exfoliated buccal cells have also been 

used for biomonitoring, but knowledge of these media requires further 

improvement and validation (Esteban and Castano 2009). The choice of target 

material may also influence the exposure time that a marker will reflect. Levels of 

chemicals in blood usually reflect a short time period of exposure (a few hours or 

days) whereas adduct levels in urine may reflect a much longer time of exposure.  
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After data collection, one can evaluate the ability of the marker to describe 

exposure and its specificity and selectivity. The relationship of the biomarker to 

the observed effects may be then investigated by evaluating a dose-response 

pattern. Possible shortcomings arising at this stage could be a lack of 

pharmacokinetic models describing a certain compound’s metabolism or a 

substantial endogenous production of the studied biomarker. For example, in the 

case of formaldehyde, the normal endogenous metabolism in humans is higher 

that the recorded occupational exposure limits, suggesting the need to look for 

alternative biological sources of the biomarker. In other words, it is important in 

this case both to establish practical thresholds for the exogenous compound and 

to improve the sensitivity of the assays.  

 

 

Large scale biomarker analysis using “-omics” techn ologies: state of 

validation  

 
In recent years, the field of biomarkers has considerably expanded and gained in 

complexity through the emergence of technologies collectively identified as 

“omics”, allowing the simultaneous analysis of multiple markers in a single 

specimen. The use of the suffix “-omics” entails extensive coverage of a 

particular type of molecule and analysis of the whole set of this particular 

molecule in a given specimen target. Thus, genomics, proteomics and 

metabonomics encompass the analysis of, respectively, the whole genome, 

proteome and metabonome. From a methodological viewpoint, -omics 

techniques often consist in the multiplexing of the same techniques as those 

used for detection of a single biomarker, within a miniaturized matrix (micro-

array). Thus, all the problems and difficulties in biomarker discovery, assessment 

and validation are the same for -omics as for single-biomarker approaches. 

There are however two major differences. First, with “omics”, a new type of 

biomarker can be defined, arising from the identification of a pattern of changes 
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simultaneously affecting a wide range of molecules (thus defining a “signature”). 

Second, the analysis of data from “omics” and, significantly, the identification of 

“signatures” critically depend upon heavy computing capacity (bioinformatics). 

Therefore, with “omics”, the problem of biomarker validation is compounded by 

adding to logistic and laboratory issues, a whole range of issues including 

bioinformatic methods, biostatistics and availability of extensive databases 

serving as resources for the correct identification of biomarkers.  

 

-Omics technologies offer means for characterizing exposures to several 

important classes of environmental and life-style factors with a multi-targets 

approach. The integration of complementary –omics technologies open the path 

towards a more complete systems biology model which highlights novel 

responses to exposure within particular biological pathways. The concept is 

particularly appealing when studying intermediate biomarkers and when 

investigating the carcinogenic fingerprints of environmental exposure ahead of 

disease onset.  

 

Typical -omics fields are genomics, proteomics, metabolomics, as well as 

transcriptomics and epigenomics. Genomics based biomarkers are found through 

DNA chip-arrays, quantitative real time PCR, reverse transcriptase polymerase 

chain reaction, DNA sequencing, fluorescent in situ hybridization etc. Gene 

expression profiling of two to several thousand genes may provide diagnostic, 

prognostic, or predictive information about tumours. Genomic microarrays 

represent a powerful technology for gene-expression studies, arrays are high 

resolution “lenses” which allow the analysis of a massive amount of data per 

experiment, comprehensive of thousands of individual genes. Results from high-

density arrays have for instance enabled to classify breast cancer types into 

prognostic categories based on the expression of certain genes (Weigelt et al. 

2005). Unfortunately, despite these encouraging results, the use of gene-arrays 

is still not recommended for widespread clinical use (Diamandis et al. 2006) since 

validation studies often do not report high reliability of the original data.  
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The expression of proteins is often studied by proteomics. This type of “omics” 

encompasses highly sophisticated pipe-line for the purification of a large variety 

of proteins over several orders of magnitude of abundance, their fractionation into 

small peptide units and the complete characterization of the mass and amino-

acid sequence of these peptides by mass spectrometry. The multiple individual 

mass fragments are then automatically compared against databases to identify 

and “reconstruct” the proteins from which they derive. Data from such proteomic 

approaches can be used to discover new protein markers that can be further 

assessed and validated using simpler, routine technologies such as 

immunodetection (e.g. enzyme-linked immunosorbent assays). Alternatively, 

complex peptidic patterns can be used to generate specific “signatures”, although 

in this case it is often extremely difficult to ensure the reproducibility of analyses 

across laboratories and instrument platforms (Chan et al. 2006). 

 

The past few years have seen the advent of metabonomics (or metabolomics). 

This methodology aims at providing an extensive identification of the set of 

metabolites present in a given sample. It employs two complementary 

technologies, mass spectrometry-based and 1H Nuclear Magnetic Resonance, to 

process a variety of biological specimens. Analysis of metabolic fingerprints leads 

to a list of metabolites that can be interpreted for mechanisms of toxicity as well 

as for eventual biomarkers of exposure.  

 

One of the most daunting challenges risen by the “-omics” is to summarize and to 

purge the huge amount of data from spurious results. Bioinformatics has the 

possibility to model the heterogeneity of pathways and to reveal shared biological 

patterns (Abu-Asab et al. 2011) within the data. In the case of cancer, and after 

clearing inconsistencies caused by logistical and technical problems, most of the 

heterogeneity is due to the fact that clonal, driver and most likely irreversible 

aberrations on one side and non-expanded, passenger or reversible aberrations 

on the other side, are both potentially taking place during the carcinogenesis 
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process (Loeb et al. 2008). In cancer, clonal and mostly irreversible alterations 

are hypothesized to drive the carcinogenic process by the selective pressure 

given by a proliferative advantage. These alterations could act as potential 

clinical biomarkers since they are the most common among individuals with the 

same disease. Bioinformatics could map both “random” alterations occurring in a 

subset of individuals and “common” alterations, and create models where shared 

clonal alterations would be considered as the “baseline” reference. In this way it 

would be possible to biologically describe the identity of diseased against normal 

non-diseased specimens. Ideally, the resulting molecular pathway could be 

translated into the clinical setting for early detection, diagnosis, prognosis and 

treatment assessment.  

 

As underlined in this introduction, the current approach of biomarker studies does 

not entirely fulfil its immediate, explicit objective of finding new markers for 

screening, detection or prognosis. Several methodological problems have been 

identified including the lack of reproducibility of analytic methods or of data 

analysis among different laboratories. Moreover, there is a lack of harmonization 

on protocols for sample collection, processing and storage. In the case of 

Genome-Wide Association Studies replication of findings is built into the study, 

this is not common in molecular epidemiology studies. The ‘Strengthening the 

Reporting of Observational Studies in Epidemiology’ (STROBE) initiative was 

established aiming at providing guidance on how to report observational research 

in order to improve the quality of reporting observational studies and studies 

investigating associations between exposures and health outcomes (Gallo et al. 

2011). These guidelines and recommendations have been recently 

complemented by the BRISQ recommendations (Biospecimen Reporting for 

Improved Study Quality, (Moore et al. 2011) which specifically address data 

collection and annotation for specimen biobanks.  

 

Although seen as «translational research», cancer biomarker research is actually 

a new approach for understanding the mechanisms of carcinogenesis and the 
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power and flexibility of -omics technologies address molecular carcinogenesis on 

a wider scale. Biomarkers could be successful in identifying similarities among 

patient subgroup, by focusing on specific pathways to molecularly define a 

subset of tumours categorized at diagnosis. A big achievement would be 

represented by discovering biomarkers that provide the best stratification of 

clinical outcome, in order to reliably target patients who are most likely to benefit 

from a particular agent. Consequently, biomarkers should demonstrate evidence-

based clinical validity and utility in prospective, well-designed clinical studies 

across multiple institutions, with well-established standards for laboratory 

analyses and assessment of exposures. Once the validation of a personalized 

medicine based on the discovered biomarkers occurs, it remains to evaluate if 

the commercial incentives to develop these complex assays are in place for a 

broader clinical use. In fact, the financial aspect of the overall process should 

also be carefully considered, since the biomarker must be identified, an assay to 

measure it reliably in clinical samples (ideally in a non-invasive manner) must be 

developed and the usefulness of the biomarker to make a clinical distinction must 

be demonstrated. 

 

In conclusion, the concept of “personalized medicine” must be addressed with 

caution since implementing biomarkers requires clinical trials and robust, 

reproducible evidence through systematic technical and epidemiological 

validation studies.  
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 Lung cancer: a paradigm to discover and validate b iomarkers associated 

with environmental exposures  

 

Lung cancer is the most common cancer in the world today (12.7% of all new 

cancers, 18.2% of cancer deaths with a ratio of mortality to incidence of 0.86). 

There were an estimated 1.61 million new cases and 1.38 million deaths in 2008. 

In Figure 4, from Globocan 2008, the age-standardized prevalence rates for men 

and women are combined to generate total prevalence. It has to be taken into 

account that there are important gender differences in incidence, where lung 

cancer is the most common cancer in men worldwide (1.1 million cases, 16.5% of 

all cancers) and the fourth most frequent cancer in women (516000 cases, 8.5% 

of all cancers). 

In industrialized countries, the past century has witnessed a lung cancer 

epidemic due to tobacco smoking. Despite progress in smoking prevention in 

many developed countries, this tobacco-related lung cancer epidemic is 

spreading at an unabated rate in many emerging and low-resources countries. 

Given the demonstrated role of tobacco carcinogens as causal agents for lung 

cancer, this cancer represents a paradigm for research on biomarkers associated 

with lifestyle habits and environmental exposures. Tobacco smoke is a complex 

mixture that contains many carcinogens. Yet, despite its complexity and the wide 

diversity of the patterns of exposure to tobacco, this exposure is measurable, 

quantifiable and the risk associated with it has been well defined by numerous 

large-scale epidemiological studies.  

 

Therefore, studies in smokers and in patients with lung cancer associated with 

smoking offer a perfect opportunity to discover, assess and validate biomarkers 

of this particular form of environmental exposure. In this Thesis, I have used this 

epidemiological context as focal point for developing different approaches on 

biomarkers of exposures. 

 

 



 35 

Figure 4: Estimated age-standardised lung cancer in cidence rate per 100,000 individuals by country 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Globocan (2008) 
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Epidemiology of lung cancer worldwide 

 

The overwhelming majority of cancer cases are associated with environmental 

factors. Only a fraction of lung cancer cases (5% to 10%) are caused by genetic 

susceptibility and inheritance, although there is accumulating evidence that 

genetic susceptibility plays an important role in modulating how an exposed 

person responds to environmental lung carcinogens (Brennan et al. 2011). Lung 

cancer is extremely strongly associated with smoking in developed/industrialized 

countries and differences in geographical incidence are strongly linked to the 

evolution of smoking-habits, particularly among women and in developing 

countries. Industrialized countries in Northern and Western Europe, North 

America, and the Western Pacific region are generally at approaching this stage. 

Nearly 80% of the more than one billion smokers worldwide live in low- and 

medium-income countries, where the burden of tobacco-related illness and death 

is heaviest even if a proportion of lung cancer cases are attributable to causes 

other than smoking (Youlden et al. 2008). Incidence lung cancer rates are high 

but decreasing in Europe and Northern America, while low but increasing in 

Middle and Western Africa. If trends continue, eight million people a year will die 

from tobacco-related causes by 2030 and 80% of these deaths will occur in low- 

and middle-income countries (WHO 2011).  

 

The conceptual framework that links the various stages of the tobacco epidemic 

into a continuum, rather than a series of isolated events is the WHO model of the 

four stages of the evolving epidemic (Figure 5). The power of this model, 

originally proposed by Lopez et al. (Lopez et la. 1994) is that it allows virtually 

every country to find itself in relation to the larger pandemic. 
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Figure 5: Four stages of the tobacco epidemic 
 

 
From Lopez et al. 1994 

 

Almost all lung cancers are carcinomas, with other histologies counting for much 

less than 1%. The disease is clinically divided into two subtypes: non-small-cell 

lung cancer (NSCLC), representing almost 80% of all lung cancers, and small 

cell lung cancer (SCLC) that comprise about 10-15% of cases (IARC 2007). 

These two types of lung cancer are two different diseases, each with its own 

recommended therapies.  

 
NSCLC, which originates from bronchial or alveolar epithelial cells, is further 

subdivided into three histological subtypes: adenocarcinoma (ADC; derived from 

bronchioalveolar epithelial cells), squamous cell carcinoma (SCC; that arises 

from bronchial epithelial cells through a squamous metaplasia/dysplasia process) 

and large cell carcinoma (LC). SCLC, in contrast, originates from cells with 

neuroendocrine differentiation that are present within the normal lung mucosa. 

SCLC is composed of several different pathological entities distinguished by their 

proliferative potential as well as histological characteristics. Both NSCLC and 
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SCLC, are strongly associated with tobacco smoking, although the magnitude of 

this association differs between histological types.  

In recent decades, the number of squamous cell carcinomas has decreased 

while an increase of adenocarcinomas has been recorded. SCC represents 44% 

of lung cancers in men and 25% in women worldwide except for certain Asian 

populations (Chinese, Japanese) and North American (USA, Canada) where 

ADC incidence exceed that of SCC in men. ADC represents 28% of lung cancer 

cases in men and 42% in women worldwide. ADC is the most frequent histology 

in women, particularly in Asian women, with the exception of Poland and England 

where SCC predominates. Classically, tobacco smoking was considered to be 

more strongly associated with SCC than with ADC but the incidence trends do 

not correlate with the smoking prevalence. Changes in the manufacture and 

composition of cigarettes (e.g. filters), and the corresponding changes in smoke 

composition along with nicotine-compensating smoking patterns are suggested to 

contribute to the observed epidemiologic profiles (Khuder 2001). Another 

hypothesis is that the changes in cigarette composition have reduced the yield of 

polycyclic aromatic hydrocarbons, inducers of SCC, while increasing the yields of 

carcinogenic tobacco-specific N-nitrosamines, inducers of ADC (Hoffmann et al. 

1997). These factors, along with advances in histological classification and 

detection methods for tumours in the distal airways, have contributed to the 

emerging predominance of ADC in lung cancers. 

 

Lung cancer is one of the most insidious and aggressive neoplasms since it 

usually causes clinical symptoms only at a stage when the tumour has already 

invaded the lung parenchyma at least locally. Many patients who report with 

symptoms – coughing, respiratory distress – already have advanced forms of 

cancer. Furthermore, the perception of symptoms is often delayed because it is 

blurred by the underlying background of chronic bronchitis that occurs in many 

lifelong smokers. Resection remains the basis of therapy. However, fewer than 

20 to 30% of lung cancer patients have lesions that are sufficiently localized to 

allow local (lobular) tumour resection. The survival rate is 48% for completely 
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resected cases detected when the disease is still localized, but only 15% of lung 

cancers are diagnosed at this early stage. As a result, the five-year overall lung 

cancer survival rate is still very low at around 15% (Jemal et al. 2010) and 

decreases by increasing stage of cancer at diagnosis. Combined modality 

treatments including surgery, radiotherapy and chemotherapy, have greatly 

progressed in the past 30 years. Still, a critical issue remains the frequency of 

unnecessary treatments, thus indicating the need for biomarkers of early 

diagnosis and appropriate therapy.  

 

Lung cancer risk associated with tobacco smoking is strongly related to smoking 

duration and declines with increasing duration of cessation (more rapidly for SCC 

than ADC). Nevertheless, the estimated cumulative risk of lung cancer death 

among former smokers remains high, ranging from approximately 6% in smokers 

who quit smoking at the age of 50, to 10% for smokers who quit at age 60 and 

started in early adulthood (around 18 years old), while that for lifetime smokers in 

the United Kingdom was estimated between 9% and 16% (Doll et al. 2004).  

The well established risk factor of tobacco smoking makes it a good model for 

studying exposure to risk as well as to protective factors (e.g. dietary factors). 

Screening for early lung cancer is being evaluated in a number of randomized 

trials and it is possible that screening high-risk individuals might be of great 

importance to public health intervention. Incorporating biomarkers of exposure 

and early effect into studies will further clarify the effects of cumulative exposure, 

smoking intensity and duration in relation to lung cancer risk and to subgroup 

susceptibility.  
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Genetic and epigenetic modifications in tobacco-ind uced carcinogenesis of 

the lung 

 

The causal role of tobacco smoking in lung cancer incidence has been 

recognized by public health and regulatory authorities since the mid-1960s and 

first evaluated by the IARC Monographs in 1986 (IARC 1986) as a guide to 

regulatory and public health agencies in their decision making. The strong dose–

response relationship between tobacco smoking and lung cancer previously 

reported (Medical Research Council 1957) was again confirmed in both 

questionnaire-based and biomarker-based studies (IARC 2004a).  

Polycyclic aromatic hydrocarbons (PAHs), are formed as complex mixtures 

during many combustion processes and are implicated in the causation of lung 

cancer. The biomarker of exposure to PAHs that has been used in many studies 

is the excretion of 1-hydroxypyrene in urine (Aquilina et al. 2010). Many PAHs 

have been shown to be carcinogenic in animals via a genotoxic mode of action. 

Benzo(a)pyrene is the best studied PAH and was recently classified as a human 

carcinogen by IARC (IARC 2010). The strong dose–response relationship 

between tobacco smoking and lung cancer (Medical Research Council 1957; 

IARC 1986, 2004a and 2010) is confirmed by both questionnaire-based and 

biomarker-based studies. However, not all smokers develop lung cancer, 

indicating an inter-individual variation in susceptibility to tobacco smoke. 

Accordingly, it is reasonable to assume that tobacco-related lung cancer is 

caused by the interplay between tobacco smoke and other factors, including 

environmental factors and individual (genetic or acquired) susceptibility. 

Unravelling the molecular basis of tobacco carcinogenesis continues to inspire 

epidemiological studies incorporating genetic, molecular markers and refined 

statistical modelling techniques.  

 

Molecular genetic studies have shown that lung cancer cells acquire a number of 

genetic lesions, including activation of dominant oncogenes and inactivation of 



 41 

tumour suppressor genes or recessive oncogenes (Hanahan and Weinberg 2000 

and 2011). Several acquired characteristics of tumours can be caused by specific 

point mutations. In smokers, the most common mutated genes are TP53 and 

KRAS, the latter being primarily found in adenocarcinomas (ADC). In ADC in 

never-smokers, after the identification of EGFR mutations in 2005, a wide panel 

of oncogenes has been detected as recurrent target of mutations, including ALK, 

PI3K, MET or BRAF (Sharma et al. 2010). This specificity in mutational targets 

according to tobacco smoking status further supports the notion that tobacco 

smoking causes lung cancer by inducing mutations in specific genes that directly 

contribute to the cancer phenotype. 

 

The role of TP53 as the ‘‘guardian of the genome’’ is central in forcing genetically 

damaged cells into growth arrest, senescence or apoptosis. The p53 protein is a 

transcription factor that regulates the expression of a large panel of genes 

involved in multiple aspects of growth suppression and genetic stability. The 

protein functions can be lost during the course of tumour progression, either 

through inactivating mutations or via other mechanisms such as complex binding 

of p53 to specific viral or cellular proteins. By switching off p53 functions, these 

mutations facilitate the acquisition of the large number of genetic alterations 

required for developing a fully invasive/metastatic phenotype. The accumulation 

of such genetic changes is triggered by the numerous carcinogens as well as 

inflammatory agents contained in cigarette smoke.  

 

The scheme below shows the carcinogenic process leading to lung cancer 

development (Figure 6).  
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Figure 6: Scheme linking tobacco-smoke carcinogens and lung cancer 
 
 

 
From Hecht et al. 2003 
 

Although many of these genetic changes may occur independently of histological 

type, their frequency and timing of occurrence with respect to cancer progression 

are different between SCLC and NSCLC. Furthermore, as described above, a 

number of genetic and epigenetic differences have been identified between the 

two main histological types of NSCLC, i.e. SCC and ADC, as well as between 

smoking and non-smoking related cancers.  

 

In a simplified view of the multistep carcinogenic process, three main stages can 

be described for all cancers: initiation, promotion and progression. The initiation 

stage is a rapid phase of interaction between the carcinogenic agent and the 

target cell DNA. Most carcinogens in tobacco products require metabolic 

activation before they can react with DNA, although some, such as ethylene 

oxide, formaldehyde and acetaldehyde, can react directly. The response of the 

organism to carcinogens is similar to that for any other foreign compound or drug. 

Many carcinogens are lipophilic compounds that readily cross plasma 

membranes to accumulate in the cytoplasm and the nucleus. 
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The metabolism involves phase I reactions, mainly mediated by microsomal 

oxidases encoded by the cytochrome P450 gene superfamily, however, other 

enzymes such as epoxide hydrolase 1 are involved as well. Cytochrome P450 

enzymes, which are part of the mammalian systems designed to respond to 

foreign compounds, catalyze the addition of an oxygen atom to the carcinogen, 

increasing its water solubility and converting it to a metabolite that is more readily 

excretable (Guengerich 2003). This “metabolic detoxification” process is further 

assisted by phase II enzymes to convert the oxygenated carcinogen to a form 

that is highly soluble in water. As far as this process is efficient, the organism will 

be protected. However, some of the intermediates formed by the interaction of 

cytochrome P450 enzymes with carcinogens are in fact quite reactive. Such 

intermediates or metabolites generally possess an electrophilic center and can 

react with nucleophilic guanines in DNA, resulting in the formation of DNA 

adducts (Figure 7). The overall process is known as metabolic activation and 

converts an un-reactive chemical (benzo(a)pyrene) into an intermediate (diol 

epoxide) that covalently binds to DNA.  

 

The equilibrium between metabolic activation and detoxification varies between 

individuals; detoxification constitutes the most effective way of preventing cancer, 

by blocking the genotoxic damage at the early stages of carcinogenesis. If DNA 

adducts are bypassed by a DNA polymerase during the process of detoxification, 

the resulting G:A and G:G mismatches cause G>T and G>C transversion 

mutations. This phase is relatively long and marked by the establishment and 

replication of mutated cells. Somatic mutations derived from DNA adducts can 

contribute to cancer promotion and represent more specific endpoints than DNA 

damage. Mutations can occur in reporter genes, such as HPRT (hypoxanthine-

guanine phosphoribosyltransferase) i.e., in genes not related to cancer 

development but used as surrogates because they are relatively easily 

evaluated, or can occur more specifically, e.g. in oncogenes or tumour 

suppressor genes. 
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Figure 7 : In vivo  oxidative metabolic pathway of benzo(a)pyrene via  hydrophilic 
intermediates (I-IV) and formation of DNA adducts w ith guanine base 
 
 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Formenton et al. 2005 

 

It has been established conclusively that PAH-DNA adducts derived from 

cigarette-smoke carcinogens cause specific mutations, most frequently G>T, that 

lead to miscoding (Pfeifer and Denissenko 1998, Hecht 2003). If growth 

controlling genes are involved, these somatic mutations strongly contribute to 

cellular transformation and the development of tumours. Recently, it has been 

demonstrated (Anna et al. 2009) that carriers of G to T transversions also had a 

high level of bulky DNA adducts in non-tumorous lung tissue, thus providing 
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evidence for tobacco-related carcinogenesis in lung cancer development. The 

mutated cell(s) are selected in vivo because of their growth advantage (e.g. loss 

of contact inhibition, loss of apoptotic pathways), which correlates with increased 

genetic instability (i.e. the potential to acquire further advantageous genetic 

changes) and with capability to metastasize (Beerenwikel et al. 2007). As a 

result, proto-oncogenes (e.g. KRAS) and tumour suppressor genes (e.g. TP53 

and CDKN2A) in particular, but also all genes involved in cell-cycle regulation, 

tumour cell invasion, DNA repair, chromatin remodelling, cell signalling, 

transcription, and apoptosis, are critical targets of mutations by carcinogens. 

Damaged cells may be removed by apoptosis but if uncontrolled cell growth 

persists, premalignant cells will gradually develop into neoplastic ones. This is 

the final stage of tumorigenesis, the progression phase, where cells bear some or 

all of the “hallmarks of cancer”. Six “hallmarks of cancer” cells have been 

originally described by Hanahan and Weinberg. These hallmarks included 

persistent proliferative signalling (e.g. through disrupted negative-feedback 

mechanisms that attenuate proliferative signalling), insensitivity to growth 

suppressors, evasion of apoptosis, limitless replicative potential, sustained 

angiogenesis and activated tissue invasion and metastasis (Hanahan and 

Weinberg 2000). A recent re-assessment (Hanahan and Weinberg 2011) has 

added 4 additional “hallmarks” (inducing genome instability and mutation; 

avoiding immune destruction; deregulating cellular energetic; tumour-promoting 

inflammation). These functions allow cancer cells to survive, to proliferate and to 

disseminate, and they are acquired in different tumour types via distinct 

mechanisms and at various times during the course of multistep tumorigenesis.  

 

Nutrition and other lifestyle-related factors that influence cellular processes may 

also interfere with the hallmarks’ development at many levels. Of course they are 

critical in directly influencing energy metabolism and interconnected mechanisms 

leading to inflammation. At a more subtle level, they may also have a direct effect 

on the tumour micro-environment, on the control of the production of potentially 
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damaging reactive oxygen or nitrogen species and on carcinogen metabolism or 

detoxification reactions.  

Somatic mutations that are causally related to environmental carcinogen 

exposure and that may activate downstream proliferative pathways are valuable 

candidates both as biomarkers of exposure and biomarkers of effect. A 

carcinogenic mutational spectrum shows distinctive features, a sort of molecular 

“signature” of carcinogenesis that traces the causative carcinogenic agent. The 

PAH-DNA adduct positions are known today as the major mutational hotspots of 

TP53 in human lung cancer (Greenblatt et al. 1994). A TP53 Mutation Database 

has been maintained and developed at the International Agency for Research on 

Cancer in Lyon, France, since 1994. The database compiles all TP53 mutations 

that have been reported in the published literature since 1989 (Petitjean et al. 

2007). This database is highly informative concerning the mutational spectra in 

TP53 with respect to interactions with mutagenic chemicals and other 

environmental carcinogens. 

TP53 encodes an all-round tumour suppressor transcription factor, p53, which 

mediates multiple anti-proliferative effects in response to a variety of stresses, 

including in particular DNA damage. Most known mutations fall within the DNA-

binding domain and inactivate the suppressor activity by preventing DNA binding 

and transactivation (Figure 8). Mutations at five major “hotspots” account for 

about 30% of all known mutations. These codons are R175, G245, R248, R249, 

R273 and R282. The apparent “hypermutability” of these sites is due to two 

factors that suggest interplay between selection and mutagenesis. First, these 

residues play important roles at the surface of contact between p53 and target 

DNA. Thus, substitution of these residues results in a protein with decreased 

affinity for DNA, which has lost the capacity to suppress proliferation (Cho et al., 

1994). Second, G to T transversion mutations induced by benzo(a)pyrene diol 

epoxide adducts from tobacco smoke in TP53 have been shown to occur 

preferentially at methylated CpG (cytosine-phosphate-guanine) sites, thus 

strengthening a link between PAHs present in cigarette smoke, lung cancer 

mutations and epigenetic marks (Yoon et al. 2001). 
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Figure 8: Codon distribution of TP53 mutations 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From IARC TP53 database, November 2010 
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Epigenetic changes can precede and drive genetic alterations, thus contributing 

to attenuate maintenance of the integrity of the genome. In this sense epigenetic 

instability could be the counterpart of genetic instability. The most studied 

epigenetic change that in some cases is associated with a genetic one is gene 

promoter hypermethylation driving somatic point mutations, which in turn may 

activate oncogenes and inactivate tumour suppressor genes. As an example, a 

significant association between epigenetic silencing by promoter methylation of 

O6-methylguanine-DNA methyltransferase (MGMT) and G:C-to-A:T transition 

mutations in TP53 and in KRAS at codon 12, has been found (Watanabe et al. 

2005; Esteller et al., 2000).  

 

DNA methylation is a postreplication modification almost exclusively found in the 

position 5 of cytosines (5-mC) in a dinucleotide CpG sequence context, and is 

carried out by methyltransferase enzymes. The CpG dinucleotide is 

underrepresented in the genome and is generally methylated, except for CpG-

rich clusters of approximately 1-2 Kb length (so called CpG islands) found in the 

promoter region and first exons of many genes. Methylation of CpG islands is 

important for the establishment and maintenance of cell-type and/or tissue-

specific gene expression. It is often associated with the inhibition of gene 

expression, but not necessarily with gene silencing, and it changes slowly with 

age and in response to environmental effects such as diet. 

It is not clearly understood why certain CpG islands are hypermethylated in 

cancer cells while others remain methylation free, but it can be hypothesized, as 

it has been done in the case of genetic mutations, that a particular gene is 

preferentially methylated with respect to others in certain tumour types because 

its inactivation confers a selective clonal advantage. Another hypothesis 

concerns the role played by the environment and nutrition, since the most 

hypermethylated tumour types are those of the gastrointestinal tract (Esteller, 

2007) probably because they are more exposed to external carcinogenic agents. 

Evidence of a causal role of the environment in epigenetic modifications came 

first from observing that epigenetic patterns of monozygotic twin pairs diverged 
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as they became older (Fraga et al., 2005). It is thus quite reasonable to assume 

that external factors such as smoking, physical activity or diet, among others, 

together with internal factors can influence the hypermethylation status of specific 

tumour suppressor genes. 

 

Major epigenetic changes include DNA methylation, post-translational 

modifications of histone proteins (affecting mainly chromatin folding) and non-

coding RNAs (playing a role in heterochromatin formation, DNA methylation 

targeting and gene silencing). Epigenetic mechanisms affect functional DNA 

regulation without changing the DNA structure and they can be seen as acting at 

the interface between genome and environmental signals. The list of genes 

altered by epigenetic mechanisms and observed to be associated with cancer is 

rapidly expanding due to next-generation sequencing techniques and to various 

initiatives in the field of epigenetics, such as the Human Epigenome Project. The 

epigenome is extremely sensitive to endogenous and exogenous (environmental) 

stimuli in cancer. It is characterized by a gradual and reversible acquisition of 

tumour-specific alterations that are implicated in virtually every step of tumour 

development and progression (Jones and Baylin 2002), thus acting as ideal 

intermediate biomarkers. In particular, several studies have provided evidence 

that DNA promoter hypermethylation detected in tumour cells as well as 

surrogate cancerous tissues (blood or plasma DNA) could be exploited as a 

source of diagnostic and prognostic biomarkers for lung cancer. 

Even if the exact causal relationship is still poorly understood, it has been 

suggested that gene promoter hyper-methylation could: (i) contribute to enhance 

the binding of carcinogens, (ii) increase the mutability of methylated cytosines 

and (iii) silence tumour-suppressor genes and DNA repair genes facilitating 

tumourigenesis (Sawan et al. 2008). Aberrant DNA methylation may also 

precede genetic changes and possibly trigger them in the course of tumour 

development. Mouse models of lung cancer development have shown that even 

a few weeks of exposure to tobacco smoke or tobacco smoke condensate can 

increase the methylation levels of numerous genes prior to any overt 
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histopathological changes (Phillips and Goodman 2009). Anyway, the 

mechanisms in humans through which smoking inactivates genes involved in 

DNA repair, detoxification, cell cycle regulation, and apoptosis are still not clearly 

understood. In exposed humans, tobacco smoking has been shown to influence 

DNA methylation levels of specific genes (e.g. MTHFR) whereas methylation 

levels of other genes investigated (including CDKN2A and RASSF1A) were not 

associated with smoking status (Vaissière et al., 2009; Vineis et al., 2011). These 

interesting results indicate that tobacco smoke may target specific genes for 

promoter methylation and point out that DNA methylation changes may alter the 

expression of genes with weak or no tumour suppressing activity, including 

genes with other cellular functions such as DNA repair or carcinogen detoxifying 

activity.  

The search for predictive epigenetic biomarkers could then be reasonably 

expanded beyond the traditional panel of tumour suppressor genes. To date, only 

few studies have investigated overall 5-mC content (e.g. LINE-1: repetitive 

elements often used as indicators of global DNA methylation) and smoking and 

they failed to find a clear association, at least in adulthood. However, global 

hypo-methylation co-exists with gene-specific promoter hyper-methylation in 

most human cancers (Herceg 2007) and it is thought to re-express proto-

oncogenes or imprinted genes, to activate latent viral and parasitic transposons, 

thus contributing to genomic chromosomal instability. It has been suggested that 

tobacco smoke chemicals that affect epigenetic marks in adulthood could have a 

larger impact when exposure occurs in utero, i.e. during establishment of 

epigenetic profiles. Evidences of altered epigenetic patterns in the offspring of 

women who smoked during pregnancy (Breton et al. 2009) may suggest a role of 

epigenetic mechanisms in developmental disease. 

In summary, epigenetic mechanisms can be viewed as an interface between the 

environment and the genome; their deregulation may disrupt key cellular 

processes and ultimately result in oncogenic transformation and tumour 

development. Environmental factors such as tobacco smoke may leave 
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epigenetic fingerprints that could be exploited as biomarkers for risk assessment 

and prevention. In contrast to the genome itself, epigenetic status is more 

dynamic and recent studies suggested that the establishment and maintenance 

of epigenetic patterns might be particularly sensitive to environmental influences 

during specific stages (such as in utero development). Also, epigenetic 

alterations are reversible and typically acquired in a gradual manner, thus 

offering opportunities for prospective investigations on exposed individuals who 

develop alterations over time. However, still much remains unknown and future 

studies need to establish epigenomes in normal tissues and specific cancers as 

well as to identify environmental factors associated with epigenetic changes. 

There is also the need to elucidate the molecular mechanisms by which 

environmental factors deregulate normal epigenetic patterns and how these 

events relate to cancer development. Finally, it remains to be established how 

epigenetic deregulation induced by exposures in early life could influence cancer 

risk in adulthood. Remarkable conceptual advances in epigenetics and the 

emergence of powerful technologies that allow the analysis of epigenetic events 

in high throughput and genome-wide settings as well as the availability of unique 

prospective and population-based cohorts should facilitate this task. A genome-

wide approach using surrogate samples such as peripheral tissue samples for 

epigenetic risk factors may provide important information for the discovery of new 

tissue- and cell- specific epigenetic biomarkers.  
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Protective effect of diet against cancer developmen t 

  

The close relationship between nutrition and health has always been clear to 

humans, as witnesses this ancient statement of Hippocrates in 400 B.C.: “…to 

the human body it makes a great difference whether the bread be fine or coarse; 

with or without the hull, whether mixed with much or little water, strongly wrought 

or scarcely at all, baked or raw…. Whoever pays no attention to these things, or, 

paying attention, does not comprehend them, how can he understand the 

diseases which befall man?”  

 

The field of nutrition started to gain interest in the mid 1900, and in 1975 the 

results from a small prospective study suggested that people with a low intake of 

vitamin A from foods were at increased risk for lung cancer (Bjelke 1975). The 

differences in cancer rates between countries in relation to diet were also 

investigated at that time and it was suggested that various dietary factors, 

including plant foods, might have important effects on cancer risk (Armstrong and 

Doll 1975). The number of epidemiological studies on nutrient intake and cancer 

then  started to increase, and in 1992 a review of 156 studies concluded that ‘for 

most cancer sites, persons with low fruit and vegetable intake experience about 

twice the risk of cancer compared to those with a high intake, even after control 

for potentially confounding factors’ (Block et al. 1992). Figure 9 suggests a role 

for red meat intake in colon cancer development, as the countries with the 

highest incidence (North-America and Australia in Panel A) correlate well with the 

countries consuming the most red-meat (Panel B). Epidemiological evidence 

started also to be supported by mechanistic results showing the potential 

protective effects of various micro-nutrients, such as the reduction of oxidative 

DNA damage or an increased activity of carcinogens detoxifying enzymes 

(Steinmetz and Potter 1991). In 1997, the First World Cancer Research Report 

on Diet and Cancer (World Cancer Research Fund/American Institute for Cancer 

Research 1997) established that there was convincing evidence that high intakes 
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of fruit and/or vegetables may decrease the risk of cancers of mouth, pharynx, 

oesophagus, stomach, colon and lung. 

 

Figure 9: Comparison between colon cancer incidence  and red meat consumption 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Bingham et al. 2004 
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The same report, 10 years after, updated the previous evidence from convincing 

to either probable or limited-suggestive (World Cancer Research Fund/American 

Institute for Cancer Research 2007), highlighting the difficulty to extrapolate 

epidemiological findings to humans. This report is the most comprehensive 

critical review to date on diet and cancer and includes an updated process to 

continuously incorporate new evidence, perform meta-analyses and to revise 

judgements as necessary. The association of fruit and vegetable consumption 

with smoking-related cancer incidence was evaluated in the large European 

Prospective Investigation into Cancer and Nutrition (EPIC) and found to 

significantly decrease lung cancer risk (Linseisen et al. 2007). In contrast, other 

studies showed no beneficial effects (Tsubono et al. 2001) or failed to find a 

positive association for a reduced risk of lung cancer (Wright et al. 2008). IARC 

evaluation (IARC, Handbook of Cancer Prevention Vol. 9, 2004b) concluded that 

there was limited evidence that eating cruciferous vegetables reduces lung 

cancer risk and inadequate evidence to assess the independent effects on 

human cancer risk of specific micronutrients (e.g. isothiocyanates) as opposed to 

their combined effects with other compounds. 

 

Clearly, a huge challenge encountered by nutritional epidemiology is an accurate 

estimate of exposure’s levels to identify which dietary components, at what doses 

and over what time periods, enhance risk or protect against cancer development 

(Jenab et al. 2009). In many epidemiological studies, exposure is assessed from 

food frequency questionnaires giving rise to a number of methodological issues 

such as problems of misclassification, confounding and recall bias. The difficulty 

in exposure assessment is due to the poor use of validated diet assessment 

instruments and there is a need for development and application of dietary 

biomarkers.  

Consumption of foods varies by season, dietary habits, age and environment. 

The best approach is to estimate dietary intake by combining information on 

intake with measured concentrations of the micronutrient under study. A 

biomarker or set of biomarkers (e.g. urinary isothiocyanates) better reflect the 
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intake of a food, that contains a specific pattern of substances, and may also 

provide insights into biological mechanisms. Moreover, biomarkers of dietary 

exposure offer objectivity and accuracy and overcome differences in cooking and 

dietary habits. 

 

In conclusion, the use of biomarkers in nutrition is very attractive although very 

few dietary biomarkers have been validated in humans so far. In vitro studies are 

very promising and agents that decrease oxidative DNA damage have already 

been proven to decrease the subsequent development of cancer. On the other 

hand, the actual mechanisms in humans of these chemopreventive agents are 

very complex and a biomarker will need to account for the actual dietary intake, 

different bioavailabilities (different metabolites in tissue compared to 

plasma/urine), high inter-individual variability in metabolic processes, lifestyle 

variables (e.g. smoking, physical activity).  

 

Protective mechanisms of polyphenols and isothiocya nates: epigenetic 

modulation  

 

A new research field in nutrition which carries the promise of elucidating 

mechanism pathways is the study of epigenetic regulation by diet. The molecular 

link between epigenetics and nutrition can be exemplified by the one-carbon 

metabolic pathway whereby dietary compounds such as vitamin B12 or folic acid 

are implicated in the regulation of the cytosine methylation pathway (Figure 10).  

Given that S-adenosylmethionine (SAM) is the donor of methyl groups during 

DNA methylation, dietary sources of methyl groups, including folate and 

methionine, are primary candidates as potential modulators of DNA methylation. 

More broadly, dietary factors that interact with the one-carbon metabolism 

include B vitamins that act as coenzymes (e.g. vitamins B6 and B12) and are 

also modulators of DNA methylation.  
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It is not clearly understood why certain CpG islands are hypermethylated in 

cancer cells while others remain methylation free. The environment and nutrition 

could modulate this local hypermethylation, since the most hypermethylated 

tumour types are those of the gastrointestinal tract that are more exposed to 

external carcinogenic agents. Moreover, if we take into consideration the study 

from Fraga et al. (Fraga et al. 2007) that reports that patterns of epigenetic 

modifications of monozygotic twin pairs diverge as they become older, it is not 

surprising that external factors such as smoking habits, or diet, together with 

internal factors, can influence the hypermethylation status of specific tumour 

suppressor genes. Another proof of principle that dietary exposures affect 

epigenetic marks comes from studies of the adult offspring of women exposed to 

famine during their pregnancy. Adults who were exposed periconceptionally to 

famine during the Dutch Hunger Winter of 1944–1945 had lower methylation 

levels of the imprinted gene insulin-like growth factor-2 (a gene critical for 

tumourigenesis) compared with their unexposed, same-sex siblings (Heijmans et 

al. 2008).  

Even if these studies had several limitations including lack of knowledge of the 

specific dietary habits linked with the DNA methylation changes, they 

demonstrate the impact of dietary changes on epigenetic marks.  

Nowadays, a growing body of literature demonstrates that some micronutrients, 

constituents of food and herbs, may have a great influence on DNA methylation 

patterns. Studies of effect of natural compounds indicate that they are able to 

prevent or reverse promoter hypermethylation-induced silencing of key tumour 

suppressor genes and inhibit cancer development (Lee et al. 2005; Fang et al. 

2003).  
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Figure 10: Methyldonor through one-carbon metabolis m 
 

 
 
 
Methionine reacts with ATP to form S-adenosyl methionine (SAM) which is the methyl (-CH3) donor for DNA methylation. Folate in the form of 
tetrahydrofolate (THF) participates in one-carbon transfer reactions. Vitamin B12 acts as an essential co-enzyme in the transfer of the methyl 
group from 5-methyl THF to methionine. Vitamin B6 serves as a co-enzyme in other reactions (TS, thymidylate synthase; MS, methionine 
synthase). From Lamprecht and Lipkin 2003. 
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Among the many plant phytochemicals, tea polyphenols (e.g. catechin, 

epicatechin, (-)-epigallocatechin-3-gallate), bioflavonoids (e.g. quercetin, fisetin, 

myricetin), genistein from soybean and coffee polyphenols (e.g. caffeic acid, 

chlorogenic acid) have received much attention for their health benefits. It was 

recently shown that they have the ability to inhibit DNA methyltransferase, thus 

DNA methylation levels, and eventually provide chemopreventive and anticancer 

properties (Li and Tleefsbol 2010). It was recently proposed (Guarrera et al. 

2007) that a flavonoids-rich diet might influence the gene expression of DNA 

repair genes and thus possibly be implicated in decreasing tumour development.  

Flavonoids have been reported to have multiple biological effects, depending on 

their structure and characteristics, including scavenging of oxidative agents, anti-

inflammatory action, inhibition of platelet aggregation and antimicrobial activity 

(Rhodes and Price. 1997, Yang et al. 2001, Yoon and Baek 2005; Shen et al. 

2005). 

The numerous in vitro and in vivo evidences of chemopreventive and therapeutic 

effects of these phytochemicals have encouraged several clinical trials looking for 

evidence of cancer prevention. In vitro studies have shown that tea polyphenols 

and bioflavonoids inhibit DNMT-1-mediated DNA methylation in a dose-

dependent manner (Lee et al. 2005). This effect appears to be due to increased 

synthesis of S-adenosylhomocysteine (SAH), a non-competitive inhibitor of trans-

methylation reactions, by decreasing methionine synthase activity. Polyphenols 

are present in fruits, vegetables, seeds and drinks (e.g. green tea) and are 

regularly consumed in a healthy diet.  

Several thousand polyphenolic molecules have been identified (i.e. with a 

common structure of diphenylpropanes C6-C3-C6), providing a large panel of 

diverse structures that influence polyphenols’ bioavailability, biological properties 

and health effects (Figure 11).  
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Figure 11: The basic structure of flavonoids and th e chemical structure of selected 
polyphenols 
 

 
From Manach et al. 2004 

 

In particular, it has been reported that epigallocatechin gallate (EGCG; a 

polyphenol contained in green tea) inhibited DNA methyltransferase activity 

dose-dependently in several types of cancer cells, resulting in transcriptional 

reactivation (increased protein expression) of the methylation-silenced genes 

CDKN2A and MLH1 (a gene involved in DNA mismatch repair) (Fang et al. 

2003). The proposed mechanism of action of EGCG is a competitive inhibition of 

DNA methyltransferase 1 (DNMT1) through interaction with its catalytic site 

(Figure 12). 
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Figure 12: Interaction of EGCG with DNMT1 
 
 

 
From Li and Tleefsbol 2010 

 

However, it is important to note that the gene expression regulation seems to be 

cell specific (based on in vitro differences among cells from the same tissue), 

dose- (opposite effects for the same polyphenol depending on dose level) and 

time-dependent (Ramos 2008). Moreover, polyphenols markedly differ from one 

another in their bioavailability and intestinal metabolism. 

 

Another class of highly promising cancer-preventive dietary agents, which 

possibly act through epigenetic mechanisms, is the isothiocyanates (ITCs). ITCs 

are metabolites of glucosinolates stored in plants such as cruciferous vegetables 

(e.g., broccoli, cabbage, cauliflower, Brussels sprouts). Cruciferous vegetables 

belong to the large botanical family of Brassicaceae, which count about 3000 

species. The petals of plants of this family have a distinctive cruciform 

arrangement, which is the origin of the term “cruciferous”. Upon wounding of the 

vegetable, for example during harvesting, during freeze-thawing, during food 

preparation, or during chewing whilst eating, myrosinase is released from the 

“myrosin” cells and is able to hydrolyse glucosinolates within the damaged plant. 

The outcome of the reaction with myrosinase depends on the nature of the 

aglycone, as well as the reaction temperature and the pH (Figure 13).  
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Figure 13: Hydrolysis of glucosinolates 
 

 
At high or neutral pH the formation of isothiocyanates is favoured while at low pH the formation of 
nitriles is favoured. From Hayes 2008. 
 

Hydrolysis of glucosinolates with aliphatic or aromatic side chains gives rise 

primarily to ITCs at neutral pH (Hayes et al. 2008). The bioavailability of ITCs 

greatly depends upon myrosinase activity, which can be partially inactivated by 

heat during cooking or steaming, and by the length of time the vegetable is 

chewed. 

Many of the biological properties of these compounds are determined by the 

chemical structure of the side-chain, which, in turn, is determined by the structure 

of the parent glucosinolate molecule. In view of the diverse spectrum of 

chemicals generated from glucosinolates, it is not surprising that a number of 

distinct cancer chemopreventive mechanisms have been proposed for 

cruciferous vegetables. In vitro studies suggested that ITCs may induce 

apoptosis, cell-cycle arrest and Phase II carcinogen-detoxifying enzymes (Zhang 

2004; Seow et al. 2005). The xenobiotic-metabolizing phase II enzymes are 

among the most important of the defence systems. They modulate the access of 
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intermediate chemical carcinogens to DNA in target tissues, usually by reducing 

their biological activity and by accelerating their excretion. ITCs may inhibit the 

bioactivation of pro-carcinogens found in tobacco smoke such as PAH (Hecht 

2000), enhancing excretion of carcinogenic metabolites before they can damage 

DNA. Recent epidemiological evidence of the protective effect of ITCs against 

cancer comes from studies on lung cancer risk and consumption of either total or 

specific cruciferous vegetables (Lam et al. 2009, IARC 2004b). It has also been 

suggested that ITCs may indirectly activate transcription factors such as Nrf2 

(nuclear factor E2-related factor 2) and NF-kB (nuclear factor-kappaB), whose 

signalling pathways cover a variety of protective cellular events (Shen et al. 

2005). Finally, the isothiocyanate sulforaphane has been shown to inhibit histone 

deacetylases (HDACs) (Myzak et al. 2006), possibly altering gene expression 

and having then implications for cell fate by altering tumourigenesis. HDAC 

enzymes may prevent gene transcription by favouring chromatin’s coiled 

structure. In pre-cancerous and cancerous cells, tumour suppressor genes are 

associated with deacetylated histones, resulting in the inactivation of these 

genes. Inhibition of HDACs may prevent the removal of acetyl moieties from 

histones, thus allowing transcription of the tumour suppressor genes. 

 

Many other food compounds, including food toxins, alcohol and folate, may 

influence DNA methylation. Folate is a vitamin B that participates in the one-

carbon metabolism and affects methyl-group availability; alcohol is known to 

interfere with folate absorption and supply to tissue (Hillman and Steinberg 

1982). Moreover, recently, alcohol and folate were shown to be significantly and 

independently associated with methylation profiles in breast tumours 

(Christensen et al. 2010). 

Several studies on nutrition and cancer show highly encouraging results from 

both in vitro and in human evidence, but several questions still remain to be 

addressed. Since the pathways of nutrient metabolism are encoded in the genes 

it is essential to understand the influence of an individual’s genetic make-up on 

the metabolism of nutrients and of nutrients on gene regulation.  
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Numerous bioactive compounds have been isolated and identified, and their 

potential health-promoting effects evaluated extensively, both in vitro and in vivo. 

An important aspect that could be advocated is that purified phytochemicals not 

necessarily have the same beneficial health effect as when their source is a food 

or a complete diet. There is a growing body of evidence suggesting that the 

actions of phytochemicals administered as dietary supplements may fail to 

provide the health benefits that have been observed when following diets rich in 

fruits, vegetables or whole grains.  

Compounds contained in cruciferous vegetables could affect cancer risk by 

several mechanisms and relatively high doses of single bioactive agents may 

show potent anti-carcinogenic effects. As a note, the cancer-preventive effects 

that certain whole foods and diets were shown to have can better be explained in 

terms of synergistic interactions between the different dietary ingredients 

involved. In conclusion the field of diet influence on cancer risk is a very complex 

and challenging one, where new biomarkers of exposure and effect are most 

needed and where emerging mechanistic hypotheses should be tested in 

appropriately designed randomised controlled trials. 

 

 

Biomarkers of environmental exposure: genetic and e pigenetic approaches 

 

Many studies on exposure have focused on environmental factors that induce 

measurable biomarkers in exposed subjects ahead of disease development.  

This category of biomarkers of exposure is very wide and includes DNA or 

protein adducts of carcinogens, measurement of viral loads, of immune 

response, of the accumulation of toxins, of inflammatory cytokines, etc. In recent 

years, studies on the early steps of carcinogenesis have helped identify early 

genetic changes that are detectable primarily in cancer tissues but are thought to 

occur well before development of the tumours. Two of these early changes are 

mutations in “master” cancer genes such as TP53, and modifications of 
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epigenetic patterns in the promoter region of specific genes involved in cell cycle, 

apoptosis or DNA repair. Evidence that these changes may occur and be 

detectable in normal tissue as the result of exposure to specific cancer-causing 

agents is still scarce due to practical and ethical difficulties in conducting 

experimental prospective studies in a human setting.  

Nevertheless, mutations and methylation in several genes that are good 

candidate markers of exposure to carcinogens have been studied in some details 

in tobacco-induced lung carcinogenesis. With respect to TP53 mutation patterns, 

it has been shown that some tobacco carcinogens induce specific mutations that 

are rare in cancers associated with exposures other than tobacco (including lung 

cancers of never-smokers). With respect to methylation patterns, several studies 

using bronchial tumour and matched, non tumour tissues have uncovered the 

presence of high levels of methylation in the promoter of genes such as CDKN2a 

or RASSF1.  

Not only tobacco but also diet may alter DNA methylation in tissues. Recent in 

vitro evidences showed the capacity of specific micronutrients (i.e. polyphenols) 

to inhibit DNA methyltransferase activity in several cancer cells, thus 

transcriptionally reactivating methylation-silenced tumour suppressor genes or 

genes involved in cell-cycle regulation. However, the mechanisms through which 

these epigenetic changes occur is still poorly understood and effects in humans 

are controversial.  

Thus, while it is legitimate to consider that these modifications occur as a direct 

or indirect result of exposure, whether such mutation or methylation changes can 

be used as biomarkers of exposure in molecular epidemiology is still very 

questionable. 

 



 65 

Chapter II: Research Objectives 

 
In this thesis, I have explored the application of either DNA methylation changes 

or TP53 mutations to the study of exposure to tobacco smoking in two different 

settings, i.e. observational and experimental. The main objective was to identify 

and solve logistical, technical, data analysis and interpretation problems related 

to the application of these molecular parameters as biomarkers. Moreover, the 

prognosis impact of mutations (i.e. TP53, KRAS or EGFR) on the risk of lung 

cancer recurrence or metastasis was explored, evaluating their use as 

biomarkers of disease progression, and the use of DNA methylation as biomarker 

of exposure to diet. 

 

The project was articulated in two parts: 

 

A: Study of the effects of a calibrated, defined dietary intervention on DNA 

methylation patterns of specific genes, in heavy smokers  

In a randomized intervention trial, 90 heavy smoking volunteers were assigned to 

different dietary regimens for one month. Peripheral blood was collected at 

inclusion in the study and at the end of the intervention period, and patterns of 

methylation were analysed by pyrosequencing. We have measured levels of 

gene-promoter methylation as biomarker of exposure to tobacco and as 

biomarker of intermediate effect of specific micronutrients (i.e. cruciferous 

vegetables and isothiocyanates). An intervention trial design was adopted since 

DNA methylation has not been yet established or validated as a biomarker of 

dietary exposure. In this study, the relationship between levels of DNA 

methylation (both global and gene-specific) and the response to particular 

micronutrients was analysed retrospectively. We analysed promoter methylation 

of genes involved in cell-cycle regulation or 1-carbon metabolism and of 

repetitive elements dispersed throughout the genome (used as indicators of 

global methylation). 
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B: Study of the pattern, types and distribution of somatic mutations and 

polymorphisms in an international series of lung cancer tissues  

Defined cases of lung cancers were recruited prospectively in several hospitals in 

Western Europe. Case-case comparisons were performed to identify differences 

in mutation patterns in relation with histology and history of exposure to 

carcinogens as well as to other factors for which data were collected at 

recruitment. The target material was DNA extracted from primary lung cancer 

tissue collected in a clinical setup. We have extended the analysis to test retro-

prospectively the biomarkers’ predictive value for lung cancer recurrence in order 

to identify whether an individual’s prognosis can be based on their status.  

 

The detailed design, methods, results and discussion are presented for each of 

these approaches and the results summarized in a general discussion 

underlining the challenges of using these parameters as biomarkers of exposure 

and early effects in cancer research. 
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Chapter III:  

Methylation patterns in sentinel genes in periphera l blood cells 

of heavy smokers: influence of cruciferous vegetabl es in an 

intervention study 

 

Working Hypothesis 

 
In this randomized intervention study, the methylation patterns of selected genes 

were analysed before and after a 4-week intervention of protective diets in a 

heavy-smokers population. To date, there have been few studies that have 

examined the effects of dietary (and other environmental) factors on epigenetic 

marks in intervention studies in humans. Current available evidence is derived 

from either observational studies (which however may carry uncertainties about 

causality and difficulties in characterizing exposure) or animal studies (where, in 

some cases, experimental conditions and/or exposure doses may be difficult to 

translate to humans). In humans, tobacco smoking has been shown to increase 

DNA methylation of cancer-associated genes such as RASSF1A (encoding a 

modulator of RAS signalling), MTHFR (a regulator of folate metabolism) and 

CDKN2A/ARF (encoding the suppressor proteins p16INK4A and p14ARF) (Vaissière 

et al. 2009). Moreover, in a cohort of smokers, Stidley et al. observed that folate 

and other nutrients were associated with decreased gene promoter methylation 

levels in cells exfoliated from the aerodigestive tract (Stidley et al. 2010). We 

have observed a similar association in a previous study using DNA extracted 

from peripheral white blood cells (WBC). In a nested case-control study on lung 

cancer within the EPIC cohort, serum methionine levels were associated with 

decreased smoking-associated hyper-methylation in CDKN2A, RASSF1A and 

MTHFR (Vineis et al 2011).  

 
A randomized intervention trial was initially undertaken to investigate the ability of 

different diets to increase urinary anti-mutagenicity and to inhibit the formation of 

DNA adducts in exfoliated bladder cells of heavy smokers (Malaveille et al 2004; 
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Talaska et al. 2006). These studies showed an increased anti-mutagenicity but 

no consistent effect on DNA adducts. Here we have extended this trial to 

measure patterns of methylation levels in DNA extracted from WBC of heavy 

smokers. The rationale for the project was that tobacco carcinogens can affect 

DNA methylation of certain key genes and dietary components may regulate this 

process. Therefore, we have analysed 5 genes proposed to be frequent targets 

of methylation in lung cancer or involved in the DNA methylation process itself, 

and with distinct endogenous methylation patterns (Table 2).  

 
Table 2: Epigenetic study: list of genes and their putative biomarker function 
 

Gene Gene card Putative biomarker characteristic 

LINE-1 Multi-copy, 

retrotransposable 

element evenly 

distributed 

throughout the 

genome 

Provide a marker for overall genome methylation; their 

expression may be associated with increased 

retrotransposition 

RASSF1A Tumour suppressor 

gene regulator of 

RAS signalling 

Very commonly hypermethylated and down-regulated in 

tobacco-induced lung cancers 

CDKN2As: 

p14ARF, 

p16 INK4a 

Locus encoding 

two critical 

suppressor factors 

regulating cell 

cycle and 

apoptosis 

Often hypermethylated in tobacco-induced cancers 

MLH1 Gene involved in 

DNA mismatch 

repair and 

therefore in the 

control of genetic 

stability 

Its down-regulation may be linked to a “mutator phenotype” 

by which cells may acquire cancer-causing mutations at a 

high rate 

MTHFR Gene coding a 

folate-metabolism 

enzyme 

Critical regulator 1C-metabolism with multiple effects on 

energy metabolism and, in particular, on precursors of DNA 

methylation and on the biosynthesis of nucleic acids 
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Materials and Methods 

 

Study design 

 

The study was designed according to the CONSORT guidelines 

(http://www.consort-statement.org). This blind randomized controlled trial was 

conducted in Torino, Italy, among a population of healthy blood-donor volunteers, 

all heavy smokers.  

An introduction phase (run-in), lasting 1 month, preceded the trial and consisted 

in a qualifying visit during which 120 consenting volunteers were asked to 

complete a questionnaire on lifestyle and medical conditions. Healthy (on the 

basis of a medical questionnaire) men, aged 52 years on average, with self-

reported history of heavy smoking (i.e. at least 15 cigarettes/day over the last 10 

years) and with balanced dietary habits were included (vegetarians were 

excluded). Inclusion data were verified by medical and epidemiological staff and 

qualifying volunteers were asked to provide informed consent for participation 

into the intervention trial.  

A total of 90 volunteers complied with all requirements and provided a non-

fasting blood sample at the beginning and at the end of the trial. A sequential 

number was assigned to each eligible volunteer. Computer-assisted 

randomization was conducted to assign the participants to each of the 

intervention groups. All subsequent sample management and analyses were 

conducted in a manner blinded as to the status of the participants.  

The participants were given an induction course by a professional cook on how to 

prepare diets according to their assigned intervention group. Participants were 

invited to substitute their regular diet with the intervention diet and to report daily 

compliance using an intervention diary. Group 1 was assigned a ‘normal diet’, 

consisting of an isocaloric diet balanced in fruits and vegetables (according to the 

recommendation of the World Cancer Research Fund). Group 2 was assigned an 

‘enriched diet’, including polyphenols- and isothiocyanates-rich foods such as 

cruciferous vegetables; and Group 3 was assigned a ‘supplemented diet’, based 
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on supplementation of the normal diet with polyphenols in the form of green tea 

and soy products.  

The trial lasted 4 weeks, starting the day after the induction course. All 

participants filled a food frequency questionnaire (FFQ) at inclusion and a dietary 

diary for the duration of the intervention. A FFQ was filled again 1 year after the 

end of the trial and smoking habits were recorded again (Figure 14).  

 

Figure 14: Schema representing the dietary recordin gs during the project 
 
 

 

 

 

 

 

Intakes of micronutrients (flavonoids, several vitamins and folate) were estimated 

through the self-administered diary, checked weekly and abstracted by a dietician 

who developed a food-nutrient-intake matrix specifically focused on flavonoids, to 

quantitatively assess their intake.  

 

Statistical analysis 

For each gene and each individual, methylation levels were expressed as the 

average percentage of methylation at all the CpGs included in the DNA domain 

analysed. Methylation levels in each intervention group were expressed as 

medians and interquartile range. We tested differences in methylation levels 

between T0 and T4 using the non-parametric Wilcoxon signed rank test. Equality 

of variance was tested using the folded form F statistic.  

To assess these differences, we did not include in this comparison samples with 

a methylation value of 0 at both T0 (inclusion) and T4 (end of intervention). 

These negative samples included 25 pairs (T0/T4) for MLH1 and 10 pairs for 

ARF. Similarly, an outlier value for LINE1 was not included in the final analysis. 

This outlier was observed at T4 for patient 67 (normal diet: T0=72.05; T4=66.23).  

T 0 
T 4 weeks 

FFQ 

T 1 year 

FFQ Dietary diary 

T 0 
T 4 weeks 

FFQ 

T 1 year 

FFQ 
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The Kruskal-Wallis test was used for comparison of differences in methylation 

across the three dietary regimes.  

All analyses were performed using STATA 11 and SAS V9.2. All tests were two 

sided and statistical significance was assessed at the level of 0.05. 

 

Laboratory Methods 

 

DNA methylation analysis 

To identify gene-specific and global DNA methylation (methylation of repetitive 

elements interspersed throughout the genome) of genomic DNA from blood 

lymphocytes, we relied on the well validated pyrosequencing technique. Sensitive 

and quantitative methods are needed to detect even subtle changes in the 

degree of methylation as biological samples often represent a heterogeneous 

mixture of different cells. 

The analysis involved several steps: (1) the bisulfite treatment to discriminate the 

methylation status of the sample, (2) the PCR amplification of the sample, (3) 

sample preparation for pyrosequencing analysis and (4) analysis in the 

pyrosequencing instrument. 

 

Bisulfite treatment of genomic DNA 

Bisulfite treatment of genomic DNA samples results in the hydrolytic deamination 

of nonmethylated cytosines (C) to uracils (U), whereas methylated cytosines 

(mC) are resistant to conversion (Figure 15). After PCR, U is amplified as 

thymine (T), and mC is amplified as C. In the resulting pyrogram, mC and C are 

therefore represented as C (former methylayed cytosine) and T (former 

nonmethylated cytosine) peaks, respectively, and can be analysed as a virtual 

C/T polymorphism in the bisulfite-treated DNA. Probably the most critical step in 

the bisulfite conversion is denaturing the DNA since only single-stranded DNA is 

accessible to chemical modification.  
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Figure 15: Bisulfite treatment and example of DNA s equencing product 
 

 

 

 

 

 

 

 

 

 

 

 

 

The methylated cytosine at nucleotide position #5 remained intact while the unmethylated 

cytosines at positions #7, 9, 11, 14 and 15 are converted into uracil and detected as thymine 

following PCR. Adapted from Zymo Research website. 

 

0.5-1µg of genomic DNA from blood lymphocytes were treated with EZ DNA 

methylation-Gold KitTM (D5007, Zymo Research, Orange, USA), according to the 

manufacturer protocol which allows a conversion efficiency >99% and DNA 

recovery >75%. 130µl of CT conversion reagent was added to 20µl of each DNA 

sample in a conversion plate. DNA was denaturated (at 98°C for 10min), 

incubated (at 64°C for 2.5h) and stored (at 4°C up to 20h). After desulphonation, 

single-stranded DNA was washed and desulphonated. 30µl were recovered with 

an elution buffer and stored at -20°C.  

 

PCR amplification 

DNA treatment with sodium bisulfite converts the four-letter genetic code into a 

three-letter alphabet. As the former complementary DNA strands are differentially 

modified, 2 populations of DNAs are available for primer design. DNA was 

quantified by PicoGreen (Picofluor™ Fluorometer and PicoGreen dsDNA 
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Quantitation Reagent, supplied by Molecular Probes, Inc., Eugene, Oregon) and 

diluted to 20-25ng/µL. Bisulfite-treated DNA was amplified in 50 µL using specific 

PCR conditions (Table 3) and primers (Table 4). PCR reactions involved a 15-

min polymerase activation at 95°C, 50 cycles of denaturation (95°C, 30s), primer 

annealing (30s at 51°C for MLH1, 55°C for RASSF1A and ARF, 56°C for 

MTHFR, 58°C for LINE-1, 64°C for CDKN2A), and extension (72°C, 30s), 

followed by a final 10-min extension at 72°C. 10µL of PCR products were 

checked on agarose gel previous to pyrosequencing analysis.  

 

Table 3: PCR mixtures 

 

 

Purification and preparation 

PCR products were converted into single-stranded DNA, one strand was isolated 

(through labelling with biotin) and used as template in the pyrosequencing 

reaction. dNTP were removed from the PCR mixture to allow for controlled 

addition of single nucleotides (PyroGold Reagent kit, Biotage AB, Uppsala, 

Sweden). 3µl of Streptavidin Sepharose HP beads (Amersham Biosciences, 

Uppsala, Sweden) were added to 40µl binding buffer (10 mM Tris-HCl, pH 7.6, 2 

M NaCl, 1 mM EDTA, 0.1% Tween 20) and mixed with 40µl PCR product for 10 

min at room temperature. The beads containing the immobilized templates were 

captured on the filter probes after the vacuum was applied and then washed with 

70% ethanol for 10s, denaturation solution (0.2 M NaOH) for 10s, and washing 

buffer (10 mM Tris-acetate, pH 7.6) for 10s. The vacuum was then released, and 

the beads were released into a PSQ 96 Plate Low (Biotage AB) containing 40µl 

annealing buffer (20 mM Tris-acetate, 2 mM MgAc2, pH 7.6) and 0.5 µM 

sequencing primer. 

MLH1 – RASSF1A – MTHFR – LINE-1 
 5u/µl GoTaq Hot Start (Biomega), 5X buffer, 25mM MgCl2, 8mM each dNTP, 10µM each primer  

ARF – CDKN2A 
5u/µl Hotstar Taq (Qiagen), 10X buffer, 8mM each dNTP, 10µM each primer 
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Table 4: List of primers used in the pyrosequencing  assay 
 

Gene Amplification primers (5' →3') Sequencing primers 
(5'→3') 

Modified sequence/corresponding unmodified 
sequence analysed (5' →3') 

p14ARF (F) TTGAGGGTGGGAAGATGGT GGAGGGAGAGGAA YGYGGGTTTTGAGTYGTTYGYGYGYGYG 

p14ARF (R) biotin-CCCRAACCTCCAAAATCTC  CGCGGGCCCTGAGCCGCCCGCGCGCGCG 

RASSF1A (F) AGTTTGGATTTTGGGGGAGG GGGTTAGTTTTGTGGTTT YGTTYGGTTYGYGTTTGTTAGYGTTTAAAGTTAGYG 

RASSF1A 
(R) 

biotin-CAACTCAATAAACTCAAACTCCCC  CGCCCGGCCCGCGCTTGCTAGCGCCCAAAGCCAGCG 

LINE-1 (F) biotin-TAGGGAGTGTTAGATAGTGG AACTCCCTAACCCCTTAC RCCCTACTTCRACTCRCRCACRATACR 

LINE-1 (R) AACTCCCTAACCCCTTAC  GCCCTGCTTCGGCTCGCGCACGGTGCG 

MLH1 (F) TTTAGGAGTGAAGGAGGT GTTTTGAYGTAGAYGTTTT
ATTAGGGT 

YGYGYGTTYGTYGTTYGTTATATATYGTTYGTAGTATT 

MLH1 (R) biotin-CCCTATACCTAATCTATC  CGCGCGCTCGCCGTCCGCCACATACCGCTCGTAGTATT 

MTHFR (F) TTTTAATTTTTGTTTGGAGGGTAGT GGGTTTGGATTTTGAG YGGTATGAGAGATTTYGGGAGAAGATGAGGYGGYGATTG 

MTHFR (R) biotin-AAAAAAACCACTTATCACCAAATTC  CGGCATGAGAGACTCCGGGAGAAGATGAGGCGGCGATTG 

p16INK4a (F) GAGGGGTTGGTTGGTTATTAGA TGGTTATTAGAGGGTG GGGYGGATYGYGTGYGTTYGGYGGTTGYGGAGAGG 

p16INK4a (R) biotin-TACAAACCCTCTACCCACCTAAAT  GGGCGGACCGCGTGCGCTCGGCGGCTGCGGAGAGG 



 75 

Pyrosequencing reaction 

Pyrosequencing reactions were performed according to the manufacturer's 

instructions using the PSQ 96 SNP Reagent Kit (Biotage AB), which contained 

the enzyme, substrate, and nucleotides. The PCR involved two amplification 

primers that are specific to the sequence of interest, one of which is a biotinylated 

primer (please refer to Table 4 for details). During the PCR, the biotin tail is 

incorporated into the amplicon sequence. Biotin-labeled amplicons are captured 

by binding to streptavidin-coated Sepharose beads, and DNA is denatured to 

produce ssDNA template for the pyrosequencing assay. The ssDNA is released 

and is combined with the sequencing primer, which is extended during the 

pyrosequencing reaction to provide the sequence of the template DNA.  

 

The sequential incorporation of every nucleotide is converted to light, which is 

detected by the PSQ 96 instrument, enabling the sequence of the template 

strand to be determined. DNA polymerase catalyzes the incorporation of the 

dNTP into the DNA strand if it is complementary to the base in the template 

strand. Each incorporation event releases a pyrophosphate, which is converted 

to ATP by a sulfurylase (Figure 16). This ATP then drives the luciferase-mediated 

conversion of luciferin to oxyluciferin that generates visible light in amounts that 

are proportional to the amount of ATP. ATP and unincorporated dNTPs are 

continuously degraded by apyrase. The light is switched off, and the next dNTP 

is added. As the process continues, the complementary DNA strand is built up.  

 

The light signal is detected via CCD camera and is converted into a quantitative 

signal in the program which allows determination of the nucleotide sequence. 

The resulting pyrograms are converted to numerical values for peak heights 

using the instrument’s software.  
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Figure 16: The principle of pyrosequencing and the output pyrogram  
 

 
Double peak heights indicate incorporation of two nucleotides in a row. Adapted from Qiagen 

website. 

 

The degree of methylation at a single CpG is calculated as allele frequency: 

 

 

 

 

 

Figure 17 gives an example of pyrogram showing the percentage at each CpG 

site interrogated in the gene (for each CpG dinucleotide interrogated, C 

represents the methylated allele and T represents the un-methylated allele 

converted during the bisulfite treatment). 

 

 

 

Methylation % =  

peak height methylated  

peak height methylated + peak height non-methylated 

* 100 
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Figure 17: RASSF1A  pyrogram of promoter methylation in sample 1 at th e end of the trial (T4 of supplemented diet) 
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The methylation levels for each gene at the target CpGs were finally expressed 

as mean percentage of methylation of all CpG sites analysed.  

Pyrosequencing is a highly reliable and quantitative method for the analysis of 

DNA methylation at multiple CpGs and it provides a quantitative estimate of the 

level of DNA methylation at defined CpG sites with reference to built-in internal 

controls (Tost et al. 2003) to minimize PCR bias.  

 

We analysed promoter methylation of p16INK4A, p14ARF, MTHFR, RASSF1A 

and MLH1. INK4A assay interrogated 7 CpGs; ARF assay interrogated 8 CpGs; 

MTHFR assay interrogated 6 CpGs; RASSF1A assay interrogated 6 CpGs and 

MLH1 assay interrogated 8 CpGs. LINE-1 assay interrogated 6 CpG sites. 
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Results 

 
Life-style profiles in the different dietary groups  

Table 6 shows dietary habits (data from diary at the end of the study) among the 

three groups. The regimens were successful in increasing the intake of 

isothiocyanates (i.e. cruciferous vegetables), particularly in the group following 

the enriched diet, and of polyphenols (i.e. green tea and soya products) in the 

group receiving flavonoids supplementation. Moreover, a previous publication on 

the same study (Table 5) showed that blood protein adducts levels of dietary 

isothiocyanates (i.e. SFN-Lys: sulforaphane lysine) correlated with cruciferous 

vegetables intake in the enriched group as determined by the dietary 

questionnaire (Kumar et al. 2010). Adducts levels of sulforaphane mirrored ITCs 

bioavailability during the 4-week intervention (T0: baseline and T4: end of study). 

 
Table 5: SFN-Lys and cruciferous vegetable intake b y trial arm at T0 and T4  
 
Dietary group (n) SFN-Lysine (%) Cruciferous vegetables (g/day) 

 T0 T4 T0 T4 

Control (29) 17.2 10.3 2.4 6.3 

Enriched (29) 13.8 31.0 4.9 68.8 

Supplemented (27) 44.4 29.6 4.5 38.7 

Adapted from Kumar et al. 2010 
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Table 6 : Mean (g/day averaged on the 4-weeks intervention) and standard deviation (SD) of selected food items for each dietary group  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dietary items Normal diet 
(n=29) 

Enriched diet 
(n=30) 

Supplemented diet 
(n=29) P-value 

Other foods 13.90 (32.03) 27.95 (18.00) 20.96 (12.55) <0.0001 
Soft drinks 13.91 (22.49) 19.42 (34.33) 30.21 (67.05) 0.81 
Butter 2.31 (3.97) 1.78 (2.00) 1.42 (1.32) 0.89 
Coffee 140.10 (68.08) 140.35 (54.46) 130.27 (61.14) 0.63 
Meat 111.97 (52.36) 86.20 (36.70) 112.58 (67.39) 0.06 
Cereals 393.43 (157.28) 373.18 (98.68) 373.01 (116.40) 0.93 
Sweets 64.27 (51.60) 66.01 (44.43) 58.63 (33.95) 0.87 
Cheese 41.42 (25.31) 40.99 (25.32) 33.86 (16.79) 0.35 
Fruits 317.14 (192.01) 459.69 (147.23) 359.57 (167.10) 0.002 
Nuts 2.01 (2.36) 3.59 (5.26) 0.83 (1.65) 0.002 
Milk 87.13 (190.17) 64.86 (69.65) 73.33 (74.31) 0.59 
Legumes 22.52 (19.94) 42.16 (22.93) 36.93 (20.91) 0.002 
Margarine 0.04 (0.12) 0.01 (0.04) 0.06 (0.25) 0.48 
Oil 26.52 (8.98) 25.20 (7.17) 23.06 (10.14) 0.17 
Potatoes 32.04 (21.22) 33.68 (23.35) 43.46 (19.93) 0.07 
Fish 56.49 (32.04) 52.83 (21.82) 45.74 (21.48) 0.42 
Spices 0.45 (1.46) 0.18 (0.24) 0.26 (0.35) 0.35 
Soya and derivatives 0.45 (1.20) 2.62 (7.71) 3.54 (7.34) 0.05 
Green tea 6.10 (22.39) 1.42 (6.10) 56.23 (61.13) <0.0001 
Eggs 12.38 (6.46) 9.42 (5.76) 11.78 (8.08) 0.24 
Vegetables 227.70 (103.26) 298.72 (125.76) 253.64 (93.45) 0.06 
Cruciferous 6.30 (9.43) 68.80 (46.43) 38.73 (32.24) <0.0001 
Flavonoids (mg/day) 61.71 [59.73] 217.47 [77.83] 229.23 [84.00] < 0.0001 
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There is evidence that age, alcohol, and folate may influence DNA methylation. 

Age is associated with methylation in non-pathological tissues (Ozanne and 

Constancia 2007), folate is a vitamin B that participates in the one-carbon 

metabolism and affects methyl-group availability, and alcohol is known to 

interfere with folate absorption and supply to tissues (Hillman and Steinberg 

1982). We studied the levels of these variables by type of diet and found no 

association (see Table 7) for folate, age or alcohol. Consequently we think that 

these factors should not confound the association between methylation and diet.  

On the other hand, participants in the normal-dietary group appeared to smoke 

slightly more than in the experimental groups. Consequently all comparisons are 

adjusted by number of cigarettes smoked at the time of blood collection. 

 

Table 7 : Age, selected lifestyle and dietary habits by diet ary group on the 4-week 
intervention, mean (SD) 
 

 

Variable  Normal diet 
(n=29) 

Enriched diet 
(n=30) 

Supplemented diet 
(n=29) P-value  

Age (years) 51.19 (7.02) 53.65 (6.99) 52.39 (6.15) 0.40 

Alcohol (mg/day)  303.56 (246.07) 242.28 (255.78) 228.48 (126.31) 0.53 

Folate intake (g/day) 212.40 (66.13) 199.86 (6.79) 200.60 (8.56) 0.34 

Smoking (cigs/day) 27.28 (9.52) 20.43 (5.48) 20.28 (5.94) 0.005 
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Methylation patterns in individual markers 

 

Three distinct patterns of methylation were distinguishable (Figure 18). LINE-1 

was highly methylated, with over 70% of all CpGs consistently methylated in all 

subjects at both time points. MTHFR showed an intermediate methylation pattern 

with an average of over 50% methylated sites. The two CDKN2A genes and 

MLH1 showed a low constitutive methylation level (between 0% and 5%); 

p14ARF showed methylation below the detection levels in 11% of individuals and 

MLH1 in 29%, at both T0 and T4. RASSF1A methylation values were between 

5% and 15% for 16% of individuals at T0 and 5% at T4. 

The high methylation level of LINE-1 is in agreement with the hypothesis that 

these nuclear elements, which are distributed across the genome, may reflect on 

average the whole genome methylation changes. Previous studies have reported 

a similar level of methylation of LINE-1 in other groups of subjects, including 

cancer cases and controls. The intermediate methylation status of MTHFR 

suggests that this locus has a mechanism of methylation control distinct from 

whole genome methylation. Methylation levels of the cancer-related genes 

CDKN2As (p16INK4a and p14ARF), RASSF1A and MLH1 were very low and had a 

skewed distribution (with a large number of null values), at both the beginning 

and the end of the 4-week dietary intervention.  
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Figure 18: Plots of % methylation distribution in t he selected genes and LINE1 sequences, 
by three dietary regimes 
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Influence of a 4-week dietary intervention 

In Table 8, the difference between methylation levels at T0 and T4 (p-value1) and 

the equality of variance in the two populations (p-value2) are presented.  

The comparison between methylation patterns at T0 and T4 across all dietary 

regimes shows small but significant changes for LINE-1, but not for MTHFR. For 

the latter gene, no changes were detected between T0 and T4 within any 

intervention group or between the three intervention groups.  

Methylation levels of the cancer-related genes were very low (<5%) both before 

and after dietary intervention. Consequently, changes in methylation, although 

statistically significant, are unlikely to impair gene expression but could reflect 

changes in peripheral blood cells population. 
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Table 8: Median and Inter Quartile Range (IQR) of p ercentage methylation levels, by gene, 
dietary group and time point (T0 and T4) 

 

LINE-1 interquartile range at T4 appears to be much smaller than at T0, with 

statistically significant differences in the variances at T0 and T4, respectively 

(also in Figure 19). This result suggests a decrease of inter-individual methylation 

levels of LINE1 after dietary intervention. 

Figure 19: % methylation of LINE-1 and MTHFR by diet 

 

 

 

 

For the cancer-related genes the changes were of low amplitude counting for  

 

T0 T4 Gene Diet  
Median [IQR]  Median [IQR]  

P-value 1 P-value 2 

LINE-1 Normal 72.1 [69.5-73.7] 73.4 [72.6-74.3] <0.0001 <0.0001 
 Enriched 72.4 [69.7-73.7] 73.2 [72.4-74.0] 0.0009 <0.0001 
 Supplem. 71.9 [70.5-72.8] 74.0 [71.9-74.5] <0.0001 0.36 

MTHFR Normal 54.2 [46.0-63.2] 53.7 [48.7-61.4] 0.85 0.34 
 Enriched 54.3 [44.6-59.5] 53.3 [44.0-58.4] 0.59 0.99 
 Supplem. 55.6 [44.9-63.6] 54.2 [45.5-64.6] 0.98 0.73 

p16 INK4a Normal 0.8 [0.0-1.2] 1.3 [0.6-2.1] 0.0002 0.12 
 Enriched 0.7 [0.0-1.1] 1.3 [0.5-2.3] 0.0001 0.07 
 Supplem. 0.8 [0.4-1.5] 1.5 [1.0-2.1] <0.0001 0.14 

p14ARF Normal 0.2 [0.0-1.3] 0.7 [0.4-1.0] <0.0001 <0.0001 
 Enriched 0.2 [0.0-0.6] 0.5 [0.2-0.7] 0.0002 0.22 
 Supplem. 0.0 [0.0-0.4] 0.5 [0.4-0.8] <0.0001 0.08 

RASSF1A Normal 1.6 [0.9-16.1] 2.0 [1.8-14.9] 0.25 0.02 
 Enriched 1.1 [0.8-11.7] 1.7 [1.3-2.1] 0.005 <0.0001 
 Supplem. 1.1 [0.9-1.4] 1.9 [1.4-4.7] <0.0001 <0.0001 

MLH1 Normal 0.1 [0.1-0.8] 1.6 [0.6-4.2] <0.0001 <0.0001 
 Enriched 0.1 [0.0-0.1] 2.7 [0.9-5.4] <0.0001 <0.0001 
 Supplem. 0.0 [0.0-0.0] 2.0 [1.0-4.2] 0.05 <0.0001 

Normal diet Supplemented dietEnriched diet

p <0.0001 p =0.0009 p <0.0001

LINE-1
Normal diet Supplemented dietEnriched diet

p <0.0001 p =0.0009 p <0.0001

Normal diet Supplemented dietEnriched diet

p <0.0001 p =0.0009 p <0.0001

LINE-1



 85 

 

Figure 20 shows the difference between methylation levels at T0 and T4 in the 

remaining genes analysed.  

Figure 20: % methylation of INK4A , ARF, RASSF1A  and MLH1 by diet 
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Kruskal-Wallis test was performed for comparing differences in methylation 

across the three dietary regimes at each time point (T0 and T4). Results are 

shown in Figure 21 (diet 1=normal diet, diet 2= enriched diet, diet 3= 

supplemented diet).  

We judged the measured changes for genes other than LINE-1 and MTHFR to 

be too unstable for any meaningful comparison. 

 
Figure 21: LINE-1 and MTHFR % methylation at T0 and T4 for each diet 
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Discussion 

 
As described previously, specific pyrosequencing primers were designed to focus 

on a series of five to eight CpG dinucleotides in the promoter region of the cyclin-

dependent kinases inhibitor 2A (p16INK4A and p14ARF), the 

methylenetetrahydrofolate reductase (MTHFR), the Ras-association domain 

family 1 isoform A (RASSF1A), the mutL homolog 1 (MLH1) gene and for the 

LINE-1 (long interspersed nuclear elements) repetitive sequence. 

Pyrosequencing has been extensively used to measure DNA methylation in our 

laboratory (Vaissire et al. 2009) and the food frequency questionnaire was 

previously validated by biological measures of nutrients intake (Kumar et al. 

2010). Nevertheless we cannot rule out the possibility to have encountered PCR 

bias due to preferential amplification of one allele and a laboratory drift due to a 

batch effect. PCR bias may result in a large sequence difference between 

completely methylated and non-methylated template after bisulfite treatment. 

Moreover, even if we obtained good standard deviation from repeating a subset 

of samples with the two time points from the same subject in the same batch, we 

have run them in first instance in different batches and here we have presented 

results from this first experiment. 

 

The observed inter-individual differences (often an order of magnitude) in all 

genes do not appear to be a result of a technical artifact attributable to 

pyrosequencing, because similar large inter-individual differences for many 

genes have been validated in other studies by quantitative RT-PCR. These 

changes could be linked to substantial variation in allele-specific methylation at 

each locus. Intra-individual differences between the baseline and the end of the 

dietary intervention were observed in particular for LINE-1 and MTHFR; the 

remaining genes showing negligible differences. These differences may reflect a 

dietary impact on global methylation levels and on one-carbon metabolism. 

Moreover, since there are evidences that different CpG sites within a genomic 

island may be methylated at different level, and that smoking may affect the 
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methylation status of some (but not other) CpG sites in the same gene, it would 

be of great interest to perform single CpG analyses, rather than regional, and 

evaluate the associated mRNA promoter expression in response to diet.  

 

Loss of methylation of LINE-1 has been considered as a risk factor for cancer, 

neurological and cardiovascular diseases (Baccarelli et al. 2009). LINE-1 are a 

group of transposable elements distributed throughout the genome. While most 

LINE-1 sequences are methylated and silent, a small subset of them is actively 

transcribed and can be retrotransposed within the human genome. We observed 

a high methylation level for LINE-1 (median above 72%), in agreement with 

methylation levels reported in cancer-free individuals in peripheral blood cells 

(Choi et al. 2009, Zhang et al. 2011). We also observed a small but significant 

increase in global methylation of LINE-1 among the participants, consistent with 

the role of DNA methylation in controlling retrotransposon mobility by lowering 

their activities and thereby stabilizing the genome. Moreover, the inter-individual 

methylation levels of LINE-1 decreased after dietary intervention, while this effect 

was not obvious for the selected genes. Specifically, the Interquartile Range 

appears to be much smaller at the end of the intervention, with statistically 

significant differences in the variances with respect to the baseline. This result 

suggests that intervention with a controlled diet may have beneficial impact at 

individual level by stabilizing the basal patterns of DNA methylation levels 

distributed over the genome, narrowing inter-individual epigenetic variations and 

thus reducing biodiversity. Together, the increase in LINE-1 methylation and the 

decrease of dispersion in the distribution of individual LINE-1 methylation levels 

may reflect a form of increased epigenetic stability after dietary intervention. In 

the case of LINE-1, this epigenetic stability may have an impact on the 

expression and retrotransposition of these multi-copy, mobile elements, thus 

controlling their capacity to modify genetic and chromatin landscapes. Epigenetic 

stability could be the counterpart of genetic stability and play a role in cancer 

prevention, since it has been shown that loss of genetic stability may promote 

tumour progression. More precise evaluation of these changes will require a 
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better understanding of temporal changes in methylation patterns in subjects who 

did not change their diet. 

 

Methylation levels of cancer-related genes analysed in the cancer-free individuals 

were extremely low (<5%) and we did not observe the aberrations potentially 

associated with smoking in cancer cells such as promoter hyper-methylation of 

cancer-related genes (Vaissière et al. 2009). Also, average levels of MTHFR 

methylation were 50% as reported in tumours of never-smokers. The 

mechanisms through which smoking might trigger epigenetic changes are still not 

clearly understood and our patterns of methylation do not seem to suggest 

exposure to tobacco smoking.  

 

We observed no major difference between the intervention groups, suggesting 

that the effects detected at T4 were not driven by differences in the nature of the 

dietary intervention. We have evidence from questionnaires (Malaveille et al. 

2004, Talaska et al. 2006) that subjects did alter their dietary habits when 

entering the study. Correspondingly, we observed a change in methylation levels 

after intervention in each group, including in the normal isocaloric diet group. It is 

likely that the dietary changes induced in group 1, which forms the basis of the 

diet received by the two other groups, superseded those of specific 

supplementation at this particular time point. Shorter as well as longer time points 

would be necessary to conclude whether the supplementation in groups 2 and 3 

may have a specific effect on methylation patterns in addition to those of the 

isocaloric diet (designed following dietary international recommendations). 

 

Epigenetic regulation of gene expression by dietary polyphenols is most probably 

cell specific, dose- and time-dependent (Ramos 2008). Moreover, the 

mechanisms in humans is further complicated by the actual dietary intake 

(particularly of methyl donors), different bioavailabilities (different metabolites in 

tissue compared to plasma/urine) and high inter-individual variability in metabolic 

processes. Consequently, our results raise the question of whether peripheral 
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blood may be an adequate source of DNA for monitoring variations in methylation 

patterns induced by environmental exposures or by dietary interventions. 

Peripheral blood cells mainly comprise quiescent or post-mitotic cells, in which 

DNA methylation levels might be extremely stable as compared to those of 

actively dividing cells. On the other hand, the lifetime of peripheral blood cells 

varies from a few hours to a few weeks suggesting that in the present study 

design (extending over a 4-week period), most cells may have been completely 

renewed at least once, if not several times.  

It would be interesting to extend the intervention described here in two directions. 

First, it would be important to use shorter time intervals to better monitor the 

patterns of DNA methylation changes that may occur within the lifetime of a given 

blood cell population (e.g., over one week). Second, it would be interesting to 

separate different cell populations and assess their methylation profiles in relation 

to their proliferative capacity (Wu et al. 2011). The use of a combination of 

markers in flow cytometry may allow the isolation of a small subpopulation of 

cells with hematopoietic stem cell (HSC) characteristics in which intervention-

induced methylation changes may be of much greater amplitude and relevance 

to cancer than whole peripheral blood cells. In the present study design, such 

variations may be masked by the stability of methylation patterns of the post-

mitotic cells that form the overwhelming population of cells present in buffy coat. 

Further studies to calibrate methylation in different populations of blood cells 

would be useful to determine how to best use this biomarker in intervention 

studies. 
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Chapter IV: 

Prevalence and prognostic value of TP53 KRAS  and EGFR 

mutations in NSCLC: the EUELC cohort 

 
 

Working Hypothesis 

 

In the multicenter study somatic mutations in tumour suppressor genes, which 

were most probably the consequence of a long process involving the effect of 

exposure to tobacco carcinogens, were analysed prior to NSCLC recurrence. At 

early stages of NSCLC, three genes appear commonly mutated: TP53 (in both 

ADC and SCC), EGFR and KRAS (mostly, if not exclusively, occurring in ADC 

and in a mutually exclusive manner). The biological impact of these mutations is 

relatively well understood: while inactivation of TP53 removes a central 

mechanism of growth suppression in response to DNA damage, activating 

mutations in EGFR or KRAS constitutively stimulate one of the main growth and 

survival promoting signalling pathways.  

 

Somatic mutations may be induced by exposure to a variety of mutagens 

occurring in the external environment. The most common sequence changes are 

base substitutions, transitions or transversion, which usually involve replacement 

of a single base. Transitions (pyrimidine C or T replaced by a pyrimidine, or 

purine A or G replaced by a purine) are commoner than transversions (pyrimidine 

replaced by a purine or conversely). The excess of transitions over transversions 

is at least partly due to the high frequency of C>T transitions resulting from 

cytosine methylation and subsequent spontaneous deamination in the CpG 

dinucleotide (Shen et al. 1992). These transitions may occur in the absence of 

direct mutagen attack onto DNA. In contrast, transversions (e.g. G >T) are often 

the consequence of covalent damage to DNA (e.g. bulky DNA adducts). 
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Functionally, TP53 mutations may differ according to their nature and position, as 

well as to the presence of a common polymorphism at codon 72 in the mutant 

allele (Bergamaschi et al. 2003). Knowing TP53 mutation status has potential 

applications for cancer prognosis (Schneider et al. 2000, Samowitz et al. 2002) 

and early diagnosis (Sidransky 2002), identification of mutagen "fingerprints" 

(Greenblatt et al. 1994), and prediction of therapeutic outcomes (Borresen et al. 

1995). Most known mutations fall within the DNA-binding domain and inactivate 

the tumour suppressor by preventing DNA binding and transactivation.  

 

In addition, the TP53 gene is highly polymorphic and there is evidence that 

mutations may occur at different rates on different TP53 alleles. We have 

analysed the distribution of 3 common polymorphisms located within a 312 bp 

region of the TP53 gene encoding the N-terminus of p53, in relation with TP53 

mutation status. These three polymorphisms are located in intron 2 (PIN2, 

rs.1642785: G to C), intron 3 (PIN3, rs.17878362: 16bp duplication) and in exon 

4 (PEX4, rs.1042522: non-silent G to C). Many studies have investigated the 

associations of TP53 polymorphisms with increased risk for cancers. The P72R 

polymorphism in exon 4 is the most extensively studied both in experimental and 

population studies. In lung cancer, the Pro/Pro genotype in exon 4 could predict 

for shorter progression-free survival (Han et al. 2008, Liu et al. 2011). The current 

consensus from a large number of studies is that the alleles of rs1042522 in 

TP53 that encode arginine (G-allele) or proline (C-allele) at codon 72 have 

different apoptotic capacities, and that R72 is more effective in inducing 

apoptosis than P72, which in turn associates with accelerated smoking-related 

decline in lung function (Hancox et al. 2009).  

P72R is in partial linkage disequilibrium with the duplication of a 16 base pairs in 

intron 3 (PIN3) that was found to be weakly associated with increased lung 

cancer risk (Wu et al. 2011, Hu et al. 2010). PIN3 may require the presence of 

Pro codon 72 variant for stronger prognostic effect (Boldrini et al. 2008). The 

mechanism trough which PIN3 may increase the risk of developing cancer 

remains to be elucidated, but the 16 base pair insertion might influence 
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alternative splicing of p53 protein, leading to unstable transcripts or proteins with 

altered activities (Gemignani et al. 2004).  

The possible biological impact of PIN2 variant in intron 2 is a matter for 

speculation. This polymorphism has been much less studied than PEX4 and 

PIN3 and there is no strong data on its possible association with cancer risk. 

Nevertheless, it is in almost complete linkage disequilibrium with PEX4, so that 

many of the associations reported for PEX4 might as well be due to PIN2 (or to 

the combination of both polymorphisms). Preliminary experimental evidence 

suggests that PIN2 may regulate the stability of p53 pre-mRNA, with 

consequences that remain to be explored (Hainaut, personal communication).  

 

Given the complex polymorphic structure of TP53, haplotypes may provide more 

relevant information than individual polymorphisms. We have also analysed TP53 

haplotypes by combining the three polymorphisms. As reference we have defined 

GNA haplotype as the presence of G allele in intron 2 (rs.1642785), Non-

duplication in intron 3 (rs.17878362) and G allele coding for Arginine in exon 4 

(rs.1042522); and CDP haplotype as the presence of PIN2 C allele, PIN3 

Duplication and PEX4 C allele coding for a Proline. 

 

EGFR gene encodes a transmembrane receptor for Epidermal Growth Factor 

and related ligands, which contains an intracellular tyrosine kinase domain 

(important for signal transduction). Deregulation of human epidermal growth 

factor receptor pathways by over-expression or constitutive activation can 

promote tumour processes including angiogenesis and metastasis and is 

associated with poor prognosis, in particular in a certain fraction of NSCLCs 

(Marks et al. 2008). Somatic mutations of EGFR gene are found almost 

exclusively in adenocarcinomas of never-smoking women and cluster in domains 

of the kinase that constitutively induce its activity and signal transduction 

(Tokumo et al. 2005). EGFR is a valid lung cancer marker that is well known to 

correlate with clinical response to tyrosine kinase inhibitor’s therapy (Paez et al. 

2004).  
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KRAS gene encodes GTP/GDP exchange factor, acting as a downstream 

effector of EGFR signalling that mediates the activation of growth promoting 

signalling cascades of kinases. Mutations mostly fall at codon 12, located in the 

GTP binding pocket and preventing its hydrolysis. KRAS status is a valid 

biomarker to predict clinical response to Cetuximab treatment in colorectal 

cancer patients (Van Cutsem et al. 2009). There is evidence that TP53 or KRAS 

transversion mutations in NSCLC of smokers occur prevalently at G bases and 

are commonly the sites of adduct formation by metabolites of polycyclic aromatic 

hydrocarbons (Denissenko et al. 1996; Hainaut and Pfeifer 2001; Hussain et al. 

2001).  

 

These observations suggest that at least some of these mutations may occur as 

the consequence of exposure to tobacco smoke and precede the development of 

cancer (Table 9), and therefore have an impact on molecular and biological 

patterns of lung carcinogenesis, but their impact on clinical lung cancer prognosis 

remains a matter of debate. The central hypothesis behind the project is that by 

detecting and treating lung cancer at an early stage, patient mortality can be 

lowered. The purposes of the study were to assess if mutations in TP53, KRAS 

or EGFR genes may act as biomarkers of tobacco exposure and to investigate 

their use as biomarkers of risk for lung cancer recurrence or metastasis.  

 

Table 9: Genetic study: list of genes and their put ative biomarker function 
 

 

Gene Gene card Putative biomarker characteristic 

TP53 Tumour suppressor 

gene 

Mutations are strongly associated with tobacco-induced 

cancers and polymorphisms  

KRAS Oncogene Activating mutations and expression is common in a subset 

of tobacco-induced cancers 

EGFR Coding a receptor 

tyrosine kinase 

Over-expression is common in multiple cancers; mutations 

occur in a subset of lung adenocarcinoma in never-smokers 
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Materials and Methods 

 

Study Design 

The EBTB and EUELC databases 

We took advantage of the European Early Lung Cancer (EUELC) project and 

biobank (Cassidy et al. 2009; Field et al. 2009) to collect patients with good 

quality frozen tissues. The EUELC project is a collaborative effort among 12 

centres in France, Germany, Italy, the Netherlands, Spain and the United 

Kingdom. The study was funded under the European Union Framework V 

Programme, which sought to promote greater research integration, co-ordination 

and exchange among European research institutions. 

The European Bronchial Tissue Bank (EBTB) central database was set up at the 

University of Liverpool (Liverpool, UK) to optimise standardisation, preservation 

and use of clinical specimens. Specimens were collected by a technician 

employed by each participating centre for this purpose. Standard operating 

procedures were developed to ensure uniformity in the collection and labelling of 

specimens. All specimens (lung cancer biopsies, sputum, bronchial lavage and 

blood) were processed and archived at the EBTB. 

The EUELC web-based database was created in SQL Server 2000 in partnership 

with InferMed. The database contained all specimens’ details and allowed an 

interactive access from all study centres to directly enter lifestyle and medical 

data during each follow-up visit. This approach ensured controlled data entry for 

each centre with data editing being restricted to the data manager and to the 

principal investigators. 

 

Selection of patients  

Beginning in 2002 and continuing through 2006 were selected 1,177 patients 

from participating hospitals with surgically resected primary NSCLC with limited 

cancer stages (such as T1N0; confirmed either by histological or cytological 

analysis). The patients were considered at very high risk of developing 

progressive lung cancer (i.e. Second Primary Lung Cancer (SPLC) and/or 
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metastasis) and were all Caucasians. Finally 733 patients with primary lung 

cancer surgery and complete data from life-style questionnaire were selected 

(Figure 22). Patients were followed-up every 6 months up to 2011 with a median 

follow-up period of about 48 months. The different statuses available to define 

patient’s health were: Alive and Well, Alive with the disease, Died from other 

causes, Died from the disease, Metastatic recurrence, SPLC, Treatment with 

chemotherapy, with radiotherapy, or with both.  

Progressive Disease (PD) was defined as the development of a SPLC or 

recurrence/metastasis in individuals with a history of a completely resected 

primary lung or head & neck cancer. Disease Free (DF) was defined as the 

absence of Progressive Disease after surgery at the time of the last follow-up.  

 

Figure 22: Selection of patients from the EUELC dat abase 
 

 

 
157 patients excluded because 
missing smoking habits, clinical or 
follow-up data  

 
890 Patients with Primary Lung 
Cancer surgery 

 
733 Patients with Primary Lung 
Cancer surgery 
 
 

 
1177 Patients with resected PLC/HN 

 
938 Patients with Primary Lung Cancer 
surgery 

 
239 patients excluded because of non 
consent 

 
48 patients excluded because 
undefined histology 
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Life-style questionnaire  

Instructions for interviewing and coding were developed and training to research 

interviewers was carried out in each centre. All lifestyle questionnaires were 

translated to ensure consistency across European partners. After obtaining 

written consent, all participants completed a 45-min in-person interview. The 

questionnaire collected detailed information on socioeconomic and demographic 

characteristics, medical history, family history of cancer, history of tobacco 

consumption and occupational exposure to asbestos. Extensive information 

about tobacco smoking was elicited for all participants including their age at 

start/end of consumption and the number of cigarettes smoked per day. 

Individuals who had smoked at least 100 cigarettes in their lifetime were 

considered as ever-smokers. A former smoker quit smoking at least 1 year 

before diagnosis while a current smoker smoked in the last 2 years before 

interview. Information on history of cancer among first-degree relatives (i.e. 

parents, siblings and biological children) was recorded, including age at 

diagnosis and site of cancer.  

 

Selection of tumour samples 

Immunohistochemistry of p53 protein was first tested on 306 lung cancer frozen 

tissues by a collaborative centre in France. Our laboratory received 273 p53 

positive samples ready for DNA extraction and for laboratory analysis of TP53, 

KRAS and EGFR genes. Only samples with known follow-up of the 

corresponding patient were included in the statistical analysis (Figure 23). 

 

Our series (Table 10) included 11 never-smokers (<100 cigarettes smoked in a 

lifetime), 86 former smokers (smoking cessation ≥ 2 years before diagnosis) and 

152 current smokers, and 1 patient without informed smoking status. There were 

110 SCC, 133 ADC and 7 patients recorded as “other histologies” (large cell 

carcinoma or mixed histologies). 
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Figure 23: Selection of samples for mutational anal ysis 
 

 
 
 
Table 10:  Characteristics of patients included in the analysi s 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Variable (missing) Items n 

Gender Male 210 
 Female 40 
Age < 60 89 
 [60-65[ 82 
 [65-70[ 30 
 ≥ 70 49 
Histology ADC 133 
 SCC 110 
 Others 7 
Asbestos exposure (2) None 191 
 Yes 57 
Tumour score (1) T1 76 
 T2 150 
 T3 15 
 T4 8 
Nodal score (1) N0 173 
 N1 65 
 N2 2 
 NX 9 
Past pulmonary illness (2) No 110 
 Yes 138 
Smoking status (1) Current smoker 152 
 Former smoker 86 
 Never-smoker 11 
Total  250 

273 samples with DNA 
extracted and qualified for 

PCR/sequencing 

306 samples received 

EGFR 
157 samples analyzed in all 

ADC (n=130) and in a subset of 
SCC (n=27) 

TP53 - KRAS 
273 samples analyzed 

27 EGFR non-ADC samples excluded  
23 TP53 and 24 KRAS samples without 

known follow-up status excluded 

TP53 status (n=250)  
TP53 polymorphisms (n=249) 

KRAS  status (n=249) 
EGFR status (n=130)  

P53 IHC score (n=230)  
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Statistical analysis 

250 patients with known follow-up status were selected for statistical analysis of 

TP53 mutations; 249 samples for KRAS; 130 ADC samples for EGFR and 249 

samples for TP53 polymorphisms. As a data quality check, Hardy Weinberg 

equilibrium was tested for all polymorphisms studied using the χ2 test.  

The Mantel-Haenszel χ2 test, stratified by centre, was used to test both the 

association of clinical parameters with biomarkers and between biomarkers (e.g. 

mutation status with polymorphisms). Bootstrap analysis was performed to obtain 

non-parametric confidence intervals for risk estimates. This method creates 

multiple samples of patients through a process of random selection and performs 

the analysis on each dataset to calculate a mean risk with its non-parametric 

confidence intervals. 

 

KRAS mutations were independently analysed from another EUELC partner 

using a different laboratory assay. Results were analysed for reproducibility 

between the two centres using the Kappa test statistic for measure of agreement 

beyond chance. 

The Kappa coefficient is a measure of inter-agreement and has been computed 

by SAS software as: 

K = (Pa-Pe) / (1-Pe) 

Pa = [(wild-types + mutants) / total samples] and Pe = [P(mutant) + P(wild-type)]. 

In this case, the K coefficient measures the agreement between two or more 

judges who have coded a qualitative variable. A value of 0 denotes an agreement 

due to chance while a value of 1 means a perfect agreement. Agreement is 

considered important beyond a value of 0.60. 

 

A Cox proportional hazard model was used to test how certain biomarkers affect 

survival, both overall and specifically from lung cancer. Clinical parameters 

associated with mortality were additionally adjusted for. The Fine & Gray (F&G) 
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model was applied to estimate association of biomarkers and clinical variables 

with the progression of primary lung cancer. The F&G model takes into account 

the presence of “competing risks” for patients who died from causes other than 

lung cancer. The aim of the regression analysis was to estimate lung cancer-

specific recurrence probabilities, by censoring failures due to competing risks.  

 

Univariate F&G analysis was carried out by computing unadjusted matched HR 

to compare Progressive Disease (PD) subjects and Disease Free (DF) subjects 

for each variable of interest. PD patients were individually matched with DF 

patients on centre, sex, age at surgery (±3 years), histology, nodal stage and 

follow-up time (at least as long as the event time for matched PD subjects). 

Biomarkers were assessed one at a time in a multivariate F&G model adjusted 

for T and N cancer scores (of the TNM classification system, Beasley et al. 2004) 

for potential risk factors of cancer recurrence identified from the univariate 

analysis. Multivariable analysis was conducted to identify risk factors that were 

independently associated with Progressive Disease. The criteria for selection of 

these variables for possible inclusion in the multivariable analysis were based on 

both biological importance and a p value of less than 0.10 in the univariate 

analysis. The analysis was stratified by centre to account for differences in the 

number of patients recruited. According to the distribution of follow up duration 

we censored the analysis at 48 months. Cumulative incidence plots were 

performed to illustrate the risk of disease progression through time according to 

the mutation status of the genes analysed.  

 

All statistical analyses were performed using SAS 9.1.3 (SAS Institute, NC). The 

F&G model was used to compute Hazard Ratio (HR) and 95% confidence 

interval (CI). Statistical significance was assessed at the level of 0.05.  
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Laboratory Methods 

 
Analysis of somatic mutations 

DNA previously extracted from frozen tissue was received from the European 

Bronchial Tissue Bank and analysed for TP53 (exons 4-10 including flanking 

splice sites, i.e. residues 52 to 364) mutations by pre-screening with denaturing 

high-pressure liquid chromatography (dHPLC) followed by a second PCR and bi-

directional sequencing. Specimen with matched dHPLC and sequencing results 

were considered as containing a mutation. Finally, TP53 mutation’s type was 

analysed with reference to the IARC mutation database.  

KRAS mutations at codon 12 were analysed by mutant-enriched PCR as 

described by Gormally et al. (Gormally et al. 2006). To avoid false-positive results 

generated during successive PCR rounds, all analyses were repeated twice. 

After digestion with MvaI enzyme, the mutant PCR product is excised, amplified 

and sequenced. KRAS codon 12 ME-PCR was able to detect up to 0.1% of 

mutant DNA in wild-type DNA (Figure 24). 

EGFR mutations were detected using PCR-based direct sequencing of the four 

exons of the TK domain (exons 18–21) as described by Pao et al. (Pao et al. 

2004). All sequencing reactions were performed in both forward and reverse 

directions, and all mutations were confirmed by an independent PCR 

amplification. 
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Figure 24: Flow chart illustrating the main steps o f the procedure for TP53 and KRAS  
analysis 
 

 
From Le Calvez et al. 2005 
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Detection of TP53 mutations by dHPLC and sequencing  

It has been previously demonstrated (Le Calvez et al. 2005) that pre-screening 

by dHPLC represents a sensitive method with detection levels of mutant DNA 

ranging between 3% and 12% depending on mutation type and sequence 

context (Table 11). In comparison, direct sequencing does not detect most 

mutations in samples containing less than 25%–30% of mutated DNA 

(Rosenblum et al. 1997; Ahrendt et al. 1999).  

 

Table 11: Detection limit of percent mutant DNA by dHPLC  
 

 

dHPLC is a conformation-based method of mutation detection that relies on the 

fact that DNA fragments analysed are a mixture of wild-type and mutant DNA. 

DNA that contains a sequence alteration (most commonly occurring in 

heterozygous form) has differential mobility under partially denaturing conditions 

during reverse-phase ion-exchange HPLC (Keller et al. 2001), resulting in 

heteroduplexes eluting first from the column. To allow for heteroduplex formation 

PCR products were heated at 95°C for 4min and then cooled at room 

temperature for one hour.  

5 to 10µl of the PCR products were then injected into a preheated reverse-phase 

column (DNASep Column, Transgenomic) equilibrated by an ion pairing agent 

TEAA 0.1M (triethylammonium acetate). DNA was removed from the column at a 

constant flow rate of 0.9ml/min by a linear acetonitrile gradient, achieved by 

mixing a buffer A (TEAA 0.1M) with a buffer B (TEAA 0.1M and acetonitrile 25%). 

Cell line Exon Codon Mutation dHPLC 

Hs578T 5 157 GTC>TTC 12.50 

T47D 6 194 CTT>TTT 3.12 

TE11 7 237 ATG>ATT 3.12 

TE6 7 248 CGG> CAG 6.25 

TE1 8 272 GTG>ATG 3.12 

MDA-MB 231 9 280 AGA>AAA 6.25 
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Acetonitrile (CH3CN) rose of 2% per min during 2.5 min from an initial 

concentration at T0.  

The temperature for optimum separation of heteroduplex from homoduplex was 

calculated by Transgenomic software in order to maintain almost 75% of PCR 

product in a double stranded form. The assay was run at three temperatures 

(except for exon 7) to attain maximal sensitivity.  

 

dHPLC, whilst very sensitive, will not distinguish between pathogenic and non-

pathogenic sequence variants and consequently it was always performed 

injecting both positive and negative internal controls for each screening 

temperature (Table 12).  

 

Table 12: dHPLC conditions used for TP53 screening  

 
 
The eluted DNA was detected at 260nm. Figure 25 shows chromatogram of a 

blank sample (Blk), of a negative control (e.g. lymphocytes – Lym-) and of a 

positive control bearing a known mutation (e.g. TE1 or R).  

The positive controls consisted either of DNA isolated from cell lines that 

contained a mutation diluted with equal quantity of wild-type DNA (e.g. TE1 + 

Exon  
Temperature 

(°C) 

(%CH3CN) 

T0-T2.5 
Cell line Mutation  Cancer 

62 50-58 IGR191 (cd 36: CCG-CCA) 

65 50-55 IGR2 (cd 91: TGG-TGA) 

Squamous Cell 

Carcinoma 

4 

68 45-50 Raji (R) (cd 72: CGC-CCC) Burkitt lymphoma 

62 59-64 T47D (cd 194: CTT-TTT) Breast 

66 53-58 YL38 (cd 144: CAG-TAG) Oesophagus 

5-6 

68 50-55 Hs578T (cd 157: GTC-TTC) Breast 

7 64 53-58 TE6 

TE11 

(cd 248: CGG-CAG) 

(cd 237: ATG-ATT) 

60 58-63 TE1 (cd 272: GTG-ATG) 

62 56-61 TE1 (cd 272: GTG-ATG) 

Oesophagus 
8-9 

65 50-55 MDA-

MB231 
(cd 280: AGA-AAA) Breast 
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lymphocytes) to enable heteroduplex formation (because only mutant sequences 

were present in our cell lines); or of DNA isolated from tumour samples (e.g. R) 

that contained mutant sequences and wild-type sequences from neighbouring 

non-tumour cells.  

 
Figure 25: Negative and positive dHPLC controls 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PCR reactions for exons 4, 5-6 and 8-9 of TP53 gene involved a 2-minute 

polymerase activation at 94°C, 20 cycles of denaturation (94°C, 30s), primer 

annealing (63°C, 45s), and extension (72°C, 60s), followed by 30 cycles of 

denaturation (94°C, 30s), primer annealing (60°C, 45s), and extension (72°C, 

60s) and a final 10-minute extension at 72°C. 
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PCR reaction for exon 7 involved a 15-minute polymerase activation at 95°C, 50 

cycles of denaturation (94°C, 30s), primer annealing (60°C, 30s), and extension 

(72°C, 30s), followed by a final 10-minute extension at 72°C. 

Table 13 lists the amplification conditions and primers (HotStar Taq and Taq 

Platinum both from Invitrogen, Paisley, UK). 

 
Table 13: PCR conditions for TP53 exons 4 to 9 
 

 

Bidirectional sequencing of PCR products was used as a final step of the 

mutation scanning procedure, both confirming and identifying the sequence 

alteration. Sequencing was performed on an independent PCR product to 

confirm presence of a mutation.  

 
Conventional unidirectional sequencing of PCR products by fluorescent di-deoxy 

terminators has a sensitivity of about 95% (i.e. may miss 1 in 20 mutations) and a 

PCR conditions Exon 4  
Forward  tgaggacctggtcctctgac Primers  

(5’3’) Reverse  agaggaatcccaaagttccA 
Mix Taq Platinum (0.8U/20ul mix), 1.5mM MgCl2, 

0.2mM each dNTP, 1µM each primer 
 

 Exon 5-6  
Forward  tgttcacttgtgccctgact Primers  

(5’3’) Reverse  ttaacccctcctcccagaga 
Mix Taq Platinum (0.8U/20ul mix), 1.5mM MgCl2,  

0.2mM each dNTP, 0.4µM each primer 
 

 Exon 7  
Forward  cttgcccacggtctccccaa Primers  

(5’3’) Reverse  aggggtcagcggcaagcaga 
Mix HotStar Taq (0.8U/20ul mix), 1.5mM MgCl2 

0.2mM each dNTP, 0.4µM each primer 
 

 Exon 8-9  
Forward  ttgggagtagatggagcct Primers  

(5’3’) Reverse  agtgttagactggaaacttt 
Mix Taq Platinum (0.8U/20ul mix), 2mM MgCl2,  

0.2mM each dNTP, 0.4µM each primer 
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low but finite false positive rate due to base mis-incorporation and other 

sequencing, optical or polymer artefacts.  

Prior sequence analysis, PCR products were purified with the enzyme ExoSap-IT 

(USB) for 15min at 37°C and 15min at 80°C. PCR prod ucts were analysed by a 

16-capillary automated sequencer (ABI PRISM® 3100 Genetic Analyser, Applied 

Biosystems), based on the Sanger method (see principle at: 

http://www.bio.davidson.edu/Courses/Molbio/MolStudents/spring2003/Obenrader

/sanger_method_page.htm). Sequencing reaction was done with 1.5µl BigDye® 

Terminator v1.1 Cycle Sequencing Kit (Applied Biosystems, Carlsbad, California, 

USA) on 7µl of purified PCR product, adding 1.25µl buffer and 0.5µl primer at 

10µM (same primers as those used for PCR amplification reactions).  

The PCR reaction involved 30 cycles of 10-min denaturation at 96°C, primer 

annealing (50°C, 5s), and extension (60°C, 4min). Sequences were imported in a 

sequence-analysis software using the reference sequence NC_000017.9 from 

Genbank (http://www-p53.iarc.fr/TP53sequence_NC_000017-9.html) to allow 

visual inspection of chromatograms. Variations were finally checked with the 

mutation validation tool available at IARC (http://www-p53.iarc.fr) to distinguish 

between a known polymorphism and a mutation as well as to obtain frequency 

and functional data. 

 
Detection of EGFR mutations by bidirectional sequen cing 

EGFR mutations were detected using PCR-based direct sequencing. All 

sequencing reactions were performed in both forward and reverse directions, and 

all mutations were confirmed by PCR amplification of an independent DNA 

isolate. The PCR mix contained 1.5mM MgCl2, 0.8µM of each primer, 200µM of 

each dNTP, 1.5U of Taq platinum polymerase. PCR reactions involved a 2-

minute Taq platinum polymerase activation at 94°C, 50 cycles of denaturation 

(94°C, 30s), primer annealing (59°C, 45s), and extension (72°C, 45s), followed 

by a final 10-minute extension at 72°C. After bidirectional sequencing, 

occurrence of mutations was assessed with reference to sequences in the 

COSMIC mutation database (www.sanger.ac.uk/genetics/CGP/cosmic/). 
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Detection of KRAS mutations by ME-PCR  

Exon 1 of KRAS gene was amplified with AmpliTaq Gold (Applied Biosystems, 

Foster City, CA, USA) and with primers forward (1F) 5'-

actgaatataaacttgtggtagtgggacct-3' and reverse (3R) 5'-

ggtgcaggaccattctttgatacagat-3'. SW480 (human colon adenocarcinoma cell line 

containing mutation at KRAS codon 12, CCA>CAA, Glycine> Valine) was used 

as PCR internal positive control.  

The PCR mix contained 1.5mM MgCl2, 0.4µM of each primer, 200µM of each 

dNTP, 1.5U of polymerase, 10mM Tris-HCl and 50mM KCl. PCR reaction 

involved a 6-minute polymerase activation at 95°C, 50 cycles of denaturation 

(94°C, 30s), primer annealing (58°C, 30s), and extension (72°C, 30s), followed 

by a final 10-minute extension at 72°C. PCR product was checked on a 2% 

agarose gel.  

10µl of the amplified product (157 bp) were digested with restriction 

endonuclease Mva I (Roche Applied Science) at 37°C overnight. The enzyme 

recognises a CC/TGG sequence, which has been created between codons 11 

and 12 by primer 1F and between codons 48 to 50 by primer 3R. Wild type 

sequence at codon 12 gives 3 digestion products of 29, 114 and 14 bp whereas 

mutant sequence at any of the 2 first positions of codon 12 abolishes the 

restriction site introduced by primer 1F giving two restriction products of 143bp 

and 14 bp. Digested products were checked on a 3% agarose gel. Enrichment of 

the mutant DNA was performed from 1µl of the first PCR product, which was re-

amplified by semi-nested PCR using primers 1F and 2R 5'-

gaggtaaatcttgttttattatgcatatta-3' under the same conditions. The 135 bp 

amplification product was digested with Mva I. Only mutant re-amplified 

fragments (and uncompleted wild-type digested product) contain restriction sites 

and are cut with Mva I. This second step allows detection of mutations in small 

quantities of mutated DNA.  
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Detection of TP53 polymorphisms  

Exon 4 was pre-screened by dHPLC; abnormal chromatograms were additionally 

analysed by RFLP on an independent PCR product. A new PCR (for primers and 

conditions please refers to Table 14) and digestion of 7µl of PCR product were 

performed. The BstUI restriction endonuclease (BioLabs) was used to cut within 

the GC|CG sequence encompassing codon 72 (CGC). Mutant fragments were 

visualised on 3% agarose gel stained with ethidium bromide, eluted, re-amplified 

by PCR and sequenced.  

 

PIN2 and PIN3 were analysed by bi-directional sequencing and each reaction 

was repeated at least twice. Exons 2-3 of TP53 gene were amplified with primers 

forward 5’-tctcatgctggatccccact-3’ and reverse 5’-agtcagaggaccaggtcctc-3’. The 

PCR mix contained Taq Platinum (0.8U/20µl mix), 1.5mM MgCl2, 0.2mM of each 

dNTP, 0.4µM of each primer (p559 forward and pE3Ri reverse). PCR reaction 

involved a 2-minute polymerase activation at 94°C, 50 cycles of denaturation 

(94°C, 30s), primer annealing (61°C, 45s), and extension (72°C, 45s), followed 

by a final 10-minute extension at 72°C. PCR products were sequenced and 

procedure was repeated to confirm the presence of the polymorphism. 

 

Detection of TP53 haplotypes (PIN2-PIN3-PEX4) 

To determine the haplotypes defined by the three TP53 polymorphisms, we used 

a method developed at IARC (Marcel et al. 2009), based on the amplification 

refractory mutation system (ARMS) and involving four different allele-specific 

PCR to identify haplotypes directly on agarose gel prior confirmation by 

bidirectional sequencing. 

Figure 26 represents primers location on TP53 gene for amplification of the two 

PIN2 alleles (1F, G allele: 5'-aagggcaggccaggaggggG-3' and 2F, C allele: 5'-

aagggcaggccaggaggggC-3') and the two PEX4 alleles (3R, allele coding a P: 5'-

tgctggtgcaggggccacgG-3' and 4R, allele coding an R: 5'-tgctggtgcaggggccacgC-

3').  
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The PCR mix contained Taq Platinum (0.5U/20µl mix), 0.8mM MgCl2, 0.5mM of 

each dNTP, 0.2µM of each primer. PCR reaction involved 2-minute polymerase 

activation at 94°C, 35 cycles of denaturation (94°C, 30s) and extension (72°C, 

1m30s), followed by a final 5-minute extension at 72°C. 

 
Figure 26: Schematic representation of primers loca tion on TP53 gene 
 

 

 

 

 

 

 

 

 

Haplotypes were identified directly on an agarose gel. The difference in PIN3 

status was determined by difference in the electrophoretic mobility of the two 

bands on a 3% agarose gel, the ‘‘G-A’’ band migrating faster than the ‘‘C-P’’ 

band, consistent with the presence of a repeat of the 16 bp of PIN3 in the ‘‘C-P’’ 

allele (D). This difference was assessed with positive internal controls from the 

oesophageal cellular lines TE1 (GNA haplotype) and TE3 (CDP haplotype). The 

presence of the expected haplotype was independently confirmed by bidirectional 

sequencing for the three TP53 variants. 
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Results 

 
Mutation prevalence  

Table 14 shows the mutation prevalence in the selected genes in the EUELC 

cohort. 48.4% of 250 patients bore a TP53 mutation (including 5 silent 

mutations). A total of 18.5% KRAS mutations at codons 12 and 13 were 

detected. EGFR mutations were initially analysed in 157 cases (140 ADC and 17 

non-ADC). Since earlier reports suggest that this gene is rarely mutated in 

NSCLC types other than ADC, and since we found only 1 mutation (exon 19, 

codon 742, Val>Leu) in non-ADC cases, we performed the statistical analysis on 

a selection of 130 ADC cases with known follow-up status and we detected 

13.1% EGFR mutations.  

Eighteen patients had mutations in two genes (Table 15), including 11 patients 

with TP53 mutations among 46 with KRAS mutations, and 6 patients with TP53 

mutations among 17 with EGFR mutations. One patient with KRAS mutation also 

had a silent mutation in exon 21 of EGFR (codon 836, CGC>CGT Arg>Arg). No 

patient had mutations in the 3 genes.   

 
Table 14: Mutation prevalence in EUELC patients 

 

 

 

 

 

 
 
Table 15: Prevalence of cases with mutations in mor e than one gene 

 

 

Gene Status n % 

TP53 (n=250) Wild-type 129 51.6 
 Mutant (exons 4-9) 121 48.4 

KRAS (n=249) Wild-type 203 81.5 
 Mutant (codon 12)   46 18.5 

EGFR (n=130) Wild-type 113 86.9 
 Mutant   17 13.1 

Mutations n % 

KRAS (n=46) TP53 11 23.9% 

EGFR (n=17) TP53 6 35.3% 
 KRAS 1     5% 
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TP53 mutations 

Functionally, TP53 mutations may differ according to their nature and position. 

Knowing TP53 mutation status has potential applications for identification of 

mutagen "fingerprints" (Greenblatt et al. 1994) and early diagnosis (Sidransky 

2002). 

 

Patterns and distribution 

DNA extracted from tumour material was analysed for TP53 mutations covering 

exons 4 to 9 including flanking splice sites. Based on data in the IARC TP53 

mutation database, these regions contain over 90% of all mutations ever reported 

in lung cancer. DNA was analysed for mutations in TP53 by a two-step approach, 

with first pre-screening by dHPLC followed by an independent analysis by direct 

sequencing of all DNA fragments that gave an abnormal chromatogram. Figure 

27 gives an example of mutated sample identified by an abnormal chromatogram 

(id: 04-053-00-TfD in Panel B) with a profile equivalent to that of a positive 

(mutated) internal standard (cell line TE1 in Panel A).  

Patterns of TP53 mutations are shown in Figure 28. This mutation pattern is 

dominated by a high prevalence of G:C to T:A transversions (33%), with an 

overall prevalence of transversions at G:C and A:T base pairs (49%) and G:C to 

A:T transitions at CpG dinucleotides rare (6%). This pattern is compatible with 

the known profile of TP53 mutations in lung cancers of smokers. The codon 

distribution was also in agreement with the known smoking-patterns; i.e. with G:C 

to T:A transversions and hotspots at codons 157 and 158 (Figure 28). 
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Figure 27: Panel A: Chromatogram of internal standa rds for TP53 exons 8-9 (wild-type: 
lymphocyte, mutant: TE1); Panel B: example of posit ive sample (id: 04-053-00-TfD) 
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Figure 28: Patterns of TP53 mutations broken down by type of base substitution : Panel A: 
EUELC; Panel B: TP53 database  
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Figure 29a shows the distribution of mutations along the coding sequence of 

TP53. Codons with the highest mutation prevalence were 157, 158, 249, 273 and 

282. These sites correspond to the codons reported as “hotspots” in lung 

cancers. Minor mutation spots were observed at codons 234, 244 and 285. All 

hotspots mutations are categorized as “deleterious” in the IARC TP53 mutation 

database, i.e. predicting loss of p53 transactivation function.  

 

Figure 29b shows the specific location of the codons that carried G to T 

transversions. Transversions at codon 157, 158, 273 are typical mutations 

following DNA damage by metabolites of PAH. In contrast, codon 249 has not 

been described as a major site of adduction for such compounds. Rather, it is 

specific to aflatoxin adducts. Nevertheless, an excess of G to T transversions at 

codon 249 has already been noted in lung cancers, in smokers as well as in non-

smokers. Unconfirmed reports have suggested a possible role of radon as 

inducer of these mutations. 

 

Figure 29a: TP53 mutations distribution at exons 4 to 9 
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Figure 29b: TP53 G>T mutations distribution at exons 4 to 9 
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Association with clinical/individual parameters 

The mutations were classified by effect and type according to their predicted 

capacity to modify protein sequence (Effect Group classification) and were 

grouped into categories based on the predicted effect on the p53 protein (Table 

16).  

The Effect Group  classification was as follows: 

1. Missense mutations in DNA-binding motif 

2. Missense mutations outside DNA-binding motif 

4. Non-missense (including nonsense, insertion, deletion, splice site) 

0. Silent mutations, no mutation, synonymous variation, intronic variation, 

outside splice site and wild-type. 
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The categories for TP53 mutations were as follows: 
 
Category: CONSERVATION   

� Deleterious = 1 

� Neutral = 2 

� NA = 4 or 0 (i.e. silent mutant and wild-type)  

Based on evolutionary protein conservation, groups 2 and 0 are predicted to not 

affect protein function while groups 1 and 4 are predicted to affect it. 

 

Category: TRANSACTIVATION   

� Non-functional = 1 

� Functional/Partially functional = 2 

� NA = 4 or 0 (=silent mutant and wild-type)  

In yeast assays, groups 2 and 0 retain transactivation capacity while groups 1 

and 4 loose it. 

 

Category: STRUCTURE   

� Same values as Effect Group 

 

Category: CLINICAL IMPACT   

� Deleterious = 1 (Effect Group 4 and 1) 

� Non-deleterious = 2 (Effect Group 2 and functional mutations) 

� Wild-type samples and silent mutations = 0 

Group 1 relates to very bad clinical outcome while group 2 relates to intermediate 

clinical outcome. If a sample contained more than one mutation, we considered 

the more deleterious one for statistical analysis. 
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Table 16 : TP53 mutation distribution by effect and type grouped i nto categories for 
predicted effect on the protein 
 
TP53 Categories Mutation effect n % 
Conservation 0 – Silent (and WT) 133 54.1 
 1 – Deleterious 78 31.7 
 2 – Neutral 1 0.4 
 4 – Non missense 34 13.8 
    
Transactivation 0 – Silent (and WT) 133 54.1 
 1 – Non Functional 73 29.7 
 2 – Functional/Partially functional 6 2.4 
 4 – NA 34 13.8 
    
Structure 0 – Silent (and WT) 133 54.7 
 1 – Missense mutations in DNA-binding domain 44 18.1 
 2 – Missense mutations outside DNA-binding domain 32 13.2 
 4 – Non-missense 34 14.0 
    
Type 0 – Wild Type 130 53.3 
 1 – CpGs sites 6 2.5 
 2 – A:T > xxx 24 9.8 
 3 – All G>T 36 14.8 
 4 – G>A or G>C not a CpG sites 27 11.1 
 5 – Other 21 8.6 
    
Clinical impact 0 – Silent (and WT) 133 53.8 
 1 – Deleterious 82 33.2 
 2 – Non-deleterious 32 13.0 

 

Tables 17a to d classify TP53 mutations into different categories and smoking 

variables. We found no association between smoking exposure and TP53 

mutations broken down by predicted effect on conservation, transactivation, and 

structure of p53 protein or clinical impact. 

Table 18 shows the association between the prevalence of TP53 G>T 

transversion and exposure to tobacco smoking. We did not find any association. 
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Table 17a: TP53 mutations classified into conservation  categories in relation to smoking 
 

CONSERVATION categories 
(n=246) 

2+0  1 4 Variable (missing) Items 

n % n % n % 

P 
value 

Smoking status (1) Current smoker 80 60.2 43 55.1 25 73.5 0.49 
 Former smoker 46 34.6 32 41.0 8 23.5  
 Never-smoker 7 5.3 3 3.8 1 2.9  
Age at smoking initiation (1) < 16 51 40.5 28 37.8 12 36.4 0.25 
 [16 – 18[ 21 16.7 14 18.9 5 15.2  
 [18 – 20[ 24 19.1 11 14.9 12 36.4  
 ≥ 20 30 23.8 21 28.4 4 12.1  
Years of smoking (2) < 30 16 12.8 16 21.6 1 3.0 0.18 
 [30 – 40[ 37 29.6 19 25.7 12 36.4  
 [40 – 50[ 34 27.2 26 35.1 12 36.4  
 ≥ 50 38 30.4 13 17.6 8 24.2  
Pack-years (3) < 20  21 15.9 13 16.9 3 8.8 0.80 
 [20 – 40[ 43 32.6 32 41.6 12 35.3  
 [40 – 50[ 23 17.4 12 15.6 8 23.5  
 > 50 45 34.0 20 26.0 11 32.4  
Cigarette type (4) Filter 54 43.6 33 45.2 16 48.5 0.85 
 Mixed 39 31.5 20 27.4 7 21.2  
 Non filter & rolled 31 25.0 20 27.4 10 30.3  
Years since quit smoking  [2 – 6[ 10 21.7 2 6.3 1 12.5 0.58 
 [6 – 13[ 14 30.4 10 31.3 4 50.0  
 [13 – 20[ 8 17.4 11 34.4 2 25.0  
 ≥ 20 14 30.4 9 28.1 1 12.5  
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Table 17b: TP53 mutations classified into transactivation  categories in relation to smoking 
 
 

 

TRANSACTIVATION categories 
(n=245) 

2+0 1  4  Variable (missing) Items 

n % n % n % 

P  
value 

Smoking status (1) Current smoker 83 60.1 40 54.8 25 73.5 0.50 
 Former smoker 48 34.8 30 41.1 8 23.5  
 Never-smoker 7 5.1 3 4.1 1 2.9  

< 16 52 39.7 27 39.1 12 36.4 0.15 Age at smoking initiation 
(1) 
 [16 – 18[ 21 16.0 14 20.3 5 15.2  

 [18 – 20[ 27 20.6 8 11.6 12 36.4  
 ≥ 20 31 23.7 20 29.0 4 12.1  

< 30 17 13.1 15 21.7 1 3.0 0.10 Years of smoking (2) 
 [30 – 40[ 39 30.0 17 24.6 12 36.4  
 [40 – 50[ 34 26.2 26 37.7 12 36.4  
 ≥ 50 40 30.8 11 15.9 8 24.2  
Pack-years (3) < 20  22 16.1 12 16.7 3 8.8 0.89 
 [20 – 40[ 46 33.6 29 40.3 12 35.3  
 [40 – 50[ 23 16.8 12 16.7 8 23.5  
 > 50 46 33.6 19 26.4 11 32.4  
Cigarette type (4) Filter 56 43.4 31 45.6 16 48.5 0.81 
 Mixed 41 31.8 18 26.5 7 21.2  
 Non filter & rolled 32 24.8 19 27.9 10 30.3  
Years since quit smoking  [2 – 6[ 10 20.8 2 6.7 1 12.5 0.59 
 [6 – 13[ 15 31.3 9 30.0 4 50.0  
 [13 – 20[ 8 16.7 11 36.7 2 25.0  
 ≥ 20 15 31.3 8 26.7 1 12.5  
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Table 17c: TP53 mutations classified into structure  categories in relation to smoking 
 

STRUCTURE categories (n=243) 

0 1 2 4 
Variable (missing) Items 

n % n % n % n % 

P 
value 

Smoking status (1) Current smoker 80 60.6 25 56.8 17 53.1 25 73.5 0.59 
 Former smoker 45 34.1 18 40.9 13 40.6 8 23.5  
 Never-smoker 7 5.3 1 2.3 2 6.3 1 2.9  

< 16 51 40.8 19 45.2 9 30.0 12 36.4 0.31 Age at smoking initiation 
(1) 
 [16 – 18[ 20 16.0 8 19.1 6 20.0 5 15.2  

 [18 – 20[ 24 19.2 6 14.3 4 13.3 12 36.4  
 ≥ 20 30 24.0 9 21.4 11 36.7 4 12.1  

< 30 16 12.9 7 16.7 9 30.0 1 3.03 0.11 Years of smoking (2) 
 [30 – 40[ 36 29.0 12 28.6 8 26.7 12 36.4  
 [40 – 50[ 34 27.4 13 31.0 12 40.0 12 36.4  
 ≥ 50 38 30.7 10 23.8 1 3.3 8 24.2  
Pack-years (3) < 20  21 16.0 7 16.3 6 18.8 3 8.8 0.67 
 [20 – 40[ 42 9.2 19 44.2 13 40.6 12 35.3  
 [40 – 50[ 23 17.6 4 9.3 7 21.9 8 23.5  
 > 50 45 34.4 13 30.2 6 18.8 11 32.4  
Cigarette type (4) Filter 53 43.1 21 51.2 13 43.3 16 48.5 0.86 
 Mixed 39 31.7 10 24.4 9 30.0 7 21.2  
 Non filter & rolled 31 25.2 10 24.4 8 26.7 10 30.3  
Years since quit smoking  [2 – 6[ 9 20 0 0 3 23.1 1 12.5 0.60 
 [6 – 13[ 14 31.1 6 33.3 3 23.1 4 50.0  
 [13 – 20[ 8 17.8 6 33.3 4 30.8 2 25.0  
 ≥ 20 14 31.1 6 33.3 3 23.1 1 12.5  
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Table 17d: TP53 mutations classified into clinical impact  categories in relation to smoking 
 

CLINICAL IMPACT categories 
(n=247) 

0  1  2 
Variable (missing) Items 

n % n % n % 

P value 

Smoking status (1) Current smoker 80 60.6 54 65.9 17 53.1 0.71 
 Former smoker 45 34.1 26 31.7 13 40.6  
 Never-smoker 7 5.3 2 2.4 2 6.3  

< 16 51 40.8 31 39.2 9 30.0 0.69 Age at smoking initiation (1) 
 [16 – 18[ 20 16.0 14 17.7 6 20.0  
 [18 – 20[ 24 19.2 19 24.1 4 13.3  
 ≥ 20 30 24.0 15 19.0 11 36.7  

< 30 16 12.9 10 12.7 9 30.0 0.08 Years of smoking (2) 
 [30 – 40[ 36 29.0 26 32.9 8 26.7  
 [40 – 50[ 34 27.4 25 31.7 12 40.0  
 ≥ 50 38 30.7 18 22.8 1 3.3  
Pack-years (3) < 20  21 16.0 11 13.6 6 18.8 0.84 
 [20 – 40[ 42 32.1 33 40.7 13 40.6  
 [40 – 50[ 23 17.6 13 16.0 7 21.9  
 > 50 45 34.4 24 29.6 6 18.8  
Cigarette type (4) Filter 53 43.1 38 48.7 13 43.3 0.71 
 Mixed 39 31.7 18 23.1 9 30.0  
 Non filter & rolled 31 25.2 22 28.2 8 26.7  
Years since quit smoking  [2 – 6[ 9 20.0 1 3.9 3 23.1 0.60 
 [6 – 13[ 14 31.1 10 38.5 3 23.1  
 [13 – 20[ 8 17.8 8 30.8 4 30.8  
 ≥ 20 14 31.1 7 26.9 3 23.1  
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Table 18: TP53 smoking-related mutations in relation to smoking 
 

Other 
(n = 130) 

All G > T 
(n = 36) Variable (missing) Items 

n % n % 
P value  

Smoking status (1) Current smoker 78 60.5 25 69.4 0.60 
 Former smoker 44 34.1 10 27.8  
 Never-smoker 7 5.4 1 2.8  

< 16 51 41.8 14 41.2 0.29 Age at smoking initiation (1) 
 [16 – 18[ 20 16.4 3 8.8  
 [18 – 20[ 22 18.0 4 11.8  
 ≥ 20 29 23.8 13 38.2  

< 30 15 12.4 6 17.7 0.67 Years of smoking (2) 
 [30 – 40[ 36 29.8 11 32.4  
 [40 – 50[ 33 27.3 12 35.3  
 ≥ 50 37 30.6 5 14.7  
Pack-years (3) < 20  20 15.6 4 11.4 0.24 
 [20 – 40[ 41 32.0 18 51.4  
 [40 – 50[ 22 17.2 5 14.3  
 > 50 45 35.2 8 22.9  
Cigarette type (4) Filter 53 44.2 16 45.7 0.78 
 Mixed 38 31.7 9 25.7  
 Non filter & rolled 29 24.2 10 28.6  
Years since quit smoking  [2 – 6[ 9 20.5 1 10.0 0.54 
 [6 – 13[ 14 31.8 3 30.0  
 [13 – 20[ 8 18.2 5 50.0  
 ≥ 20 13 29.6 1 10.0  
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TP53 mutations and p53 immunodetection 

Since missense TP53 mutations may lead to nuclear accumulation of mutant p53 

protein we tested their association in our series. Information on both mutation 

status and IHC was available for a subset of 230 patients.  

P53 immunostaining was expressed as a score summing up intensity and 

distribution as follows: sum of 0, no staining (= score 0); sum of 1 to 3, slight 

staining (= score 1); sum of 4 to 5, moderate staining (= score 2); and sum of 6 to 

7, marked staining (= score 3). 

We found a strong correlation between mutation status and p53 IHC (p<0.0001). 

Among tumours with mutations, 62% were highly positive for p53 protein. 

Surprisingly, also 25% of tumours with wild-type TP53 had high expression of 

p53 across the tumour (Table 19). This result suggests that p53 may be 

consistently expressed in a subset of lung cancers without missense mutations in 

the DNA binding domain.  

 

Table 19: p53 expression in association with TP53 status 
 

TP53 status  
p53 expression score  

Wild Type Mutated Total 

0,1,2 87 
37.8 % 

43 
18.7 % 

130 
56.5 % 

3 29 
12.6 % 

71 
30.9 % 

100 
43.5 % 

Total  116 
50.4 % 

114 
49.6 % 

230 
100 % 

 

 

TP53 polymorphisms   

The TP53 gene is highly polymorphic and there is evidence that mutations may 

occur at different rates on different TP53 alleles. We have analysed the 

distribution of 3 common polymorphisms located within a 312 bp region of the 

TP53 gene encoding the N-terminus of p53, in relation with TP53 mutation 

status. These three polymorphisms are located in intron 2 (PIN2, rs.1642785: G 
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to C), intron 3 (PIN3, rs.17878362: 16bp duplication) and in exon 4 (PEX4, 

rs.1042522: non-silent G to C).  

Data (Table 20) show that TP53 mutations occurred preferentially (p=0.05) in 

subjects who were homozygous for the rare PEX4 allele (i.e. CC subjects). TP53 

mutations in PEX4 CC samples were 85.7%, as compared to 43.9% and 46.6% 

in G-C heterozygous and G-G homozygous respectively. The two other 

polymorphisms did not appear to be associated with significant differences in 

mutation prevalence.  

 
Table 20 : TP53 status and polymorphisms 
 

TP53 status 
Wild type (n = 128) Mutated (n = 117) 

TP53 polymorphism  
(n= 245) TP53 allele  

n % n % 

 
P value 

 

CC 7 5.5 15 12.8 
GC 58 45.3 44 37.6 PIN2 

GG 63 49.2 58 49.6 

0.21 

DD 4 3.1 8 6.8 
ND 43 33.6 29 24.8 PIN3 

NN 81 63.3 80 68.4 

0.16 

CC 2 1.6 12 10.3 
CG 55 43.0 43 36.8 PEX4 

GG 71 55.5 62 53.0 

0.05 

 
  
 
The G allele in PIN2 was more frequent in men than women (p=0.0019). 

Tobacco exposure variables (i.e. “pack-years” and “cigarette type”) were 

differently distributed among individuals with different PIN2 alleles (Table 21a).  

Borderline association was observed between the 16bp duplication and the 

individual history of pulmonary illness (p=0.047, Table 21b). 

Previous studies (Marcel et al. 2009) showed linkage disequilibrium between 

TP53 PIN2 and TP53 PEX4. Similarly to PIN2, there were significantly more men 

than women with a PEX4 GG homozygous genotype (Table 21c). 
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Table 21a: TP53 PIN2 and clinical variables 
  

PIN2 (n=249) 
CC/CG GG Variable (missing) Items 
n % n % 

P value 

Gender Male 97 77.0 111 90.2 0.0019 
 Female 29 23.0 12 9.8  
Age < 60 47 37.3 40 32.5 0.35 
 [60-65[ 45 35.7 37 30.1  
 [65-70[ 12 9.5 19 15.5  
 ≥ 70 22 17.5 27 22.0  
Past pulmonary illness (2) No 59 47.2 50 41.0 0.30 
 Yes 66 52.8 72 59.0  
Asbestos exposure (2) None 102 81.6 89 73.0 0.12 
 Yes 23 18.4 33 27.1  
Nodal score (1) N0 85 68.0 89 72.4 0.47 
 N1,N2,NX 34 27.6 40 32.0  
Tumour score (1) T1 42 33.6 35 28.5 0.40 
 T2, T3, T4 83 66.4 88 71.5  
Histology SCC / Others 60 48.8 54 42.9 0.50 
 ADC 63 51.2 72 57.1  
Smoking status (1) Current smoker 74 58.7 78 63.9 0.32 
 Former smoker 44 34.9 41 33.6  
 Never-smoker 8 6.4 3 2.5  
Years of smoking (2) < 30 22 19.0 14 11.8 0.10 
 [30-40[ 38 32.8 30 25.2  
 [40-50[ 29 25.0 44 37.0  
 ≥ 50 27 23.3 31 26.1  
Age at smoking initiation (1) < 16 43 36.8 46 38.7 0.42 
 [16-18[ 24 20.5 18 15.1  
 [18-20[ 18 15.4 28 23.5  
 ≥ 20 32 27.4 27 22.7  
Pack-years  (3) < 20  26 21.0 13 10.7 0.04 
 [20-40[ 41 33.1 47 38.5  
 [40-50[ 26 21.0 18 14.8  
 ≥ 50 31 25.0 44 36.1  
Years since quit smoking  [2 – 6[ 7 15.9 6 14.6 0.88 
 [6 – 13[ 12 27.3 14 34.2  
 [13 – 20[ 11 25.0 10 24.4  
 ≥ 20 14 31.8 11 26.8  
Cigarette type  (4) Filter 59 51.3 44 37.3 0.036 
 Mixed 32 27.8 35 30.0  
 Non Filter & Rolled 24 20.9 39 33.1  
Family history of Lung/HN cancer (6) No Lung/HN cancer 94 77.1 86 71.1 0.32 
 Lung/HN cancer 28 23.0 35 28.9  

No Lung/HN cancer 114 91.2 110 90.2 0.93 Personal history of Lung/HN cancer (2) 

Lung/HN cancer 11 8.8 12 9.8  
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Table 21b: TP53 PIN3 and clinical variables 
 

PIN 3 (n=249) 
NN DD/ND Variable (missing) Items 

n % n % 
P value 

Gender Male 141 86 67 78,8 0.16 
 Female 23 14 18 21,2  
Age < 60 56 34,1 31 36,5 0.07 
 [60-65[ 48 29,3 34 40  
 [65-70[ 20 12,2 11 12,9  
 ≥ 70 40 24,4 9 10,6  
Past pulmonary illness  (2) No 64 39,3 45 53,6 0.047 
 Yes 99 60,7 39 46,4  
Asbestos exposure (2) None 127 77,9 64 76,2 0.53 
 Yes 36 22,1 20 23,8  
Nodal score (1) N0 119 72,6 55 65,5 0.20 
 N1,N2,NX 45 27.4 29 34.5  
Tumour score (1) T1 45 27,4 32 38,1 0.47 
 T2, T3, T4 119 72.6 52 61.9  
Histology SCC / Others 82 50 53 62,4 0.33 
 ADC 82 50 32 37.6  
Smoking status (1) Current smoker 101 62 51 60 0.96 
 Former smoker 55 33,7 30 35,3  
 Never-smoker 7 4,3 4 4,7  
Years of smoking (2) < 30 30 18,4 17 20,5 0.40 
 [30-40[ 41 25,2 27 32,5  
 [40-50[ 52 31,9 21 25,3  
 ≥ 50 40 24,5 18 21,7  
Age at smoking initiation (1) < 16 60 38,5 29 36,3 0.45 
 [16-18[ 29 18,6 13 16,3  
 [18-20[ 33 21,2 13 16,3  
 ≥ 20 34 21,8 25 31,3  
Pack-years (3) < 20  25 15,3 14 16,9 0.19 
 [20-40[ 57 35 31 37,3  
 [40-50[ 24 14,7 20 24,1  
 ≥ 50 57 35 18 21,7  
Years since quit smoking  [2 – 6[ 7 12,7 6 20 0.57 
 [6 – 13[ 19 34,5 7 23,3  
 [13 – 20[ 15 27,3 6 20  
 ≥ 20 14 25,5 11 36,7  
Cigarette type (4) Filter 64 41,6 39 49,4 0.26 
 Mixed 43 27,9 24 30,4  
 Non Filter & Rolled 47 30,5 16 20,3  
Family history of Lung/HN cancer (6) No Lung/HN cancer 114 70,8 66 80,5 0.11 
 Lung/HN cancer 47 29,2 16 19,5  
Personal history of Lung/HN cancer (2) No Lung/HN cancer 147 90,2 77 91,7 0.96 
 Lung/HN cancer 16 9,8 7 8,3  
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Table 21c: TP53 PEX4 and clinical variables 
 

PEX4 (n=249) 
GG CG/CC Variable (missing) Items 

n % n % 
P value 

Gender Male 120 88,2 88 77,9 0.0079 
 Female 16 11,8 25 22,1  
Age < 60 43 31,6 44 38,9 0.39 
 [60-65[ 20 14,7 11 9,7  
 [65-70[ 30 22,1 19 16,8  
 ≥ 70 43 31,6 39 34,5  
Past pulmonary illness (2) No 56 41,5 53 47,3 0.39 
 Yes 79 58,5 59 52,7  
Asbestos exposure (2) None 101 74,8 90 80,4 0.32 
 Yes 34 25,2 22 19,6  
Nodal score (1) N0 97 71,3 77 68,8 0.66 
 N1,N2,NX 39 28.7 35 31.3  
Tumour score (1) T1 38 27,9 39 34,8 0.17 
 T2, T3, T4 98 72.1 73 65.2  
Histology SCC / Others 67 49.3 47 41.6 0.42 
 ADC 69 50,7 66 58,4  
Smoking status (1) Current smoker 86 63,7 66 58,4 0.38 
 Former smoker 45 33,3 40 35,4  
 Never-smoker 4 3 7 6,2  
Years of smoking (2) < 30 21 15,6 26 23,4 0.15 
 [30-40[ 32 23,7 36 32,4  
 [40-50[ 46 34,1 27 24,3  
 ≥ 50 36 26,7 22 19,8  
Age at smoking initiation (1) < 16 50 38,2 39 37,1 0.88 
 [16-18[ 21 16 21 20  
 [18-20[ 28 21,4 18 17,1  
 ≥ 20 32 24,4 27 25,7  
Pack-years (3) < 20  16 11,9 23 20,7 0.08 
 [20-40[ 51 37,8 37 33,3  
 [40-50[ 20 14,8 24 21,6  
 ≥ 50 48 35,6 27 24,3  
Years since quit smoking  [2 – 6[ 7 15,6 6 15 0.92 
 [6 – 13[ 15 33,3 11 27,5  
 [13 – 20[ 11 24,4 10 25  
 ≥ 20 12 26,7 13 32,5  
Cigarette type (4) Filter 50 38,5 53 51,5 0.10 
 Mixed 40 30,8 27 26,2  
 Non Filter & Rolled 40 30,8 23 22,3  
Family history of Lung/HN cancer (6) No Lung/HN cancer 97 72,9 83 75,5 0.71 
 Lung/HN cancer 36 27,1 27 24,5  

No Lung/HN cancer 122 90,4 102 91,1 0.69 Personal history of Lung/HN cancer (2) 

Lung/HN cancer 13 9,6 10 8,9  
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TP53 haplotypes  

Haplotypes were analysed by ARMS. Figure 30 shows an example of “CDA” 

haplotype (i.e. PIN2-C allele, PIN3-Duplication and PEX4-G allele coding 

Arginine) charged on a 3% gel. Four different PCR mix were prepared to allow 

identification of PIN2 and PEX4 alleles. Positive controls allowed identification of 

PIN3: TE1 cell line was used as control for GNA haplotype (bearing Non-

duplication in PIN3) and TE3 cell line was used as control for CDP haplotype 

(bearing Duplication in PIN3). 

 
Figure 30: CDA haplotype sample charged on a 3% gel   
 

 

 

.  
 
 
 
The different distribution of TP53 status among the haplotypes proved to be not 

statistically significant (Table 22). 

 

When TP53 haplotypes were analysed in relation to individual and clinical 

variables (Table 23) the GNA allele appeared to be significantly associated with 

male gender, no exposure to asbestos and an intermediate number of cigarettes 

smoked (in pack-years).  

The GNA allele frequency was of 66.85%; the following most represented alleles 

were CDP with a frequency of 16.12% and CNP with an allele frequency of 

9.16%. 
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Table 22 : TP53 status among haplotypes 
 
 

 

 

 

 

 
 

Table 23 : TP53 haplotypes and clinical variables 
 

TP53 haplotypes (n= 249) 
GNA-CDP GNA-CNP GNA-GNA Others Variable (missing) Items 
n % n % n % n % 

P 
value  

Gender Male 43 76.8 24 75.0 102 89.5 39 83.0 0.046 
 Female 13 23.2 8 25.0 12 10.5 8 17.0  
Age < 60 21 37.5 12 37.5 38 33.3 16 34.0 0.27 
 [60-65[ 6 10.7 1 3.13 15 13.2 9 19.2  
 [65-70[ 6 10.7 9 28.1 27 23.7 7 14.9  
 ≥ 70 23 41.7 10 31.3 34 29.8 15 31.9  

No 29 52.7 13 40.6 44 38.9 23 48.9 0.41 Past pulmonary illness  
(2) Yes 26 47.3 19 59.4 69 61.1 24 51.1  

None 47 85.5 28 87.5 85 75.2 31 66.0 0.02 Asbestos exposure  
(2) Yes 8 14.6 4 12.5 28 24.8 16 34.0  
Nodal score (1) N0 37 67.3 24 75.0 84 73.7 29 61.7 0.52 
 N1,N2,NX 18 32.7 8 25.0 30 26.3 18 38.3  
Tumour score (1) T1 25 45.5 10 31.3 32 28.1 10 21.3 0.11 
 T2, T3, T4 30 54.6 22 68.8 82 71.9 37 78.7  
Histology SCC/Others 19 33.9 16 50.0 58 50.9 21 44.7 0.36 
 ADC 37 66.1 16 50.0 56 49.1 26 55.3  
Smoking status (1) Current  33 58.9 19 59.4 71 62.8 29 61.7 0.65 
 Former  20 35.7 10 31.3 39 34.5 16 34.0  
 Never  3 5.4 3 9.4 3 2.7 2 4.3  
Years of smoking (2) < 30 7 13.5 7 24.1 13 11.8 9 20.5 0.61 
 [30-40[ 18 34.6 8 27.6 29 26.4 13 30.0  
 [40-50[ 14 26.9 7 24.1 38 34.6 14 31.8  
 ≥ 50 13 25.0 7 24.1 30 27.3 8 18.2  

< 16 17 32.1 12 41.4 40 36.4 20 45.5 0.65 Age at smoking initiation  
(1) [16-18[ 10 18.9 6 20.7 18 16.4 8 18.2  
 [18-20[ 10 18.9 5 17.2 27 24.6 4 9.1  
 ≥ 20 16 30.2 6 20.7 25 22.7 12 27.3  
Pack-years  (3) < 20  9 16.4 11 34.4 12 10.6 7 15.2 0.01 
 [20-40[ 24 43.6 6 18.8 45 39.8 13 28.3  
 [40-50[ 10 18.2 6 18.8 15 13.3 13 28.3  
 ≥ 50 12 21.8 9 28.1 41 36.3 13 28.3  

TP53 status 
Wild type (n = 128) Mutated (n = 117) 

TP53 haplotypes 
(n= 245) 

n % n % 

P value 
 

GNA-CDP 35 63.6 20 36.4 0.38 

GNA-CNP 16 50.0 16 50.0  

GNA-GNA 56 50.0 56 50.0  

Others 21 45.7 25 54.4  
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Years since quit smoking  [2 – 6[ 4 20.0 1 10.0 5 12.8 3 18.8 0.85 
 [6 – 13[ 6 30.0 3 30.0 14 35.9 3 18.8  
 [13 – 20[ 3 15.0 4 40.0 10 25.6 4 25.0  
 ≥ 20 7 35.0 2 20 10 25.6 6 37.5  
Cigarette type (4) Filter 25 48.1 14 48.3 41 37.6 23 53.5 0.29 
 Mixed 15 28.9 7 24.1 32 29.4 13 30.2  
 NonFilter/Rolled 12 23.1 8 27.6 36 33.0 7 16.3  

No LC/HNC 41 75.9 22 68.8 81 72.3 36 80.0 0.73 Family history of  
Lung/HN cancer (6) LC/HNC 13 24.1 10 31.3 31 27.7 9 20.0  

No LC/HNC 51 92.7 29 90.6 101 89.4 43 91.5 0.71 Personal history of  
Lung/HN cancer (2) LC/HNC 4 7.3 3 9.4 12 10.6 4 8.5  
 

 

Figure 31 shows patterns of TP53 genotypes distribution in the EUELC 

population. The three major genotypes found were GGNNAA, GCNDAP and 

GCNNAP. As a comparison we show the genotypes distribution in a Brazilian 

population (results from Marcel et al. 2009). 
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Figure 31: Patterns of TP53 genotype distribution in the EUELC population and in a Brazilian population 
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EGFR mutations 

 

Deregulation of human epidermal growth factor receptor pathways by over-

expression or constitutive activation can promote tumour processes including 

angiogenesis and metastasis and is associated with poor prognosis, in particular 

in a certain fraction of NSCLCs (Marks et al. 2008). Somatic mutations of EGFR 

gene cluster in domains of the kinase that constitutively induce its activity and 

signal transduction (in exons 18 to 21). We found 13.07% EGFR mutations, 

spread among the 4 exons tested (4% in exon 18, 3% in exon 19, 3% in exon 20 

and 5% in exon 21). 30 % of mutations were deletion in exon 19 and the single-

point mutation at position 858 (L858R) in exon 21. All EGFR mutations were 

reported by the COSMIC mutation database. Figure 32 shows a silent EGFR 

mutation (in a patient who also carried a KRAS mutation).  

 

Figure 32: EGFR mutation: exon 21, codon 836, CG C>CGT, Arg>Arg 
 

 

 

KRAS  mutations and Reproducibility of KRAS  mutational analysis 

 

A total of 18.5% KRAS mutations at codon 12 and 13 were detected. Missense 

G>T transversions represented 98% of KRAS mutations. Transversions were 

either GGT>TGT (Gly>Cys) or GGT>GTT (Gly>Val) at codon 12. KRAS and 

EGFR mutations were mutually exclusive except for one tumour containing both 

mutations (an extremely rare occurrence according to the literature). 

Interestingly, in this tumour the EGFR mutation was a silent mutation (codon 836 

CGC>CGT Arg>Arg) and was thus not supposed to lead to tyrosine kinase 

activation.  
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Figure 33 shows digestion products of KRAS samples (panel A). Negative (i.e. 

lymphocyte) and positive (i.e. SW480 cell line, KRAS mutated at codon 12) 

controls were also loaded on gel. A sequence variation at any of the 2 first 

positions of codon 12 gives two restriction products of 143bp and 14bp (non 

visible band of mutant sample). Panel B is an example of sequence that revealed 

KRAS mutations at codon 12 CCA>ACA→GGT>TGT: Gly>Cys. 

 
 
Figure 33: Panel A: wild type and mutant KRAS  samples charged on a 3% gel; Panel B: 
sequence of the mutant sample 
 

                            

 

A EUELC partner in the Netherlands analysed KRAS mutations by point 

EXACCT method (Thunissen et al. 2011); we tested the two methods (ME-PCR 

and microarray) for reproducibility. We observed clear reproducibility of KRAS 

mutations from both EUELC partners (Kappa coefficient = 0.94 and 95%CI= 

[0.88 – 1.00]; Table 24).  
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Table 24: KRAS status in the two centres 
 

 

 

 

 

 

 

 

 

 
Mutation prevalence and distribution in association  with individual and 

pathological parameters  

 

Tables 25a, b and c show the associations between mutations in TP53, KRAS, 

EGFR and pathological, demographic or exposure variables (Mantel Haenszel χ2 

test stratified by centre). None of these mutations were associated with either T 

or N score (of TNM classification of tumours) of our samples.  

TP53 mutations were significantly less frequent in ADC (39.7%) than in SCC 

(57%) with p<0.0001 (Table 25a). Similarly, KRAS mutations were preferentially 

found in ADC (89.1%) than in SCC (10.9%) with p<0.0001 (Table 25b). 

TP53 mutations were marginally more common in subjects who reported a 

personal past history of pulmonary illness or a family history of lung cancer, but 

these associations were not significant (p=0.1505 and p=0.1620, respectively). 

Exposure to tobacco smoking or asbestos (i.e. “smoking status” and “history of 

exposure to asbestos” variables) did not associate with either TP53 or KRAS 

mutations. Similarly, there was no significant association with variables related to 

tobacco smoking exposure (i.e. smoking duration, age at smoking initiation, 

consumption in pack-years, time since quitting smoking and cigarette type). 

Nevertheless, TP53 and KRAS mutations tended to be more common in lung 

cancers of ever- than former- or never-smokers: 62%, 34.7% and 3.3%, 

respectively, for TP53 and 52.2%, 45.7% and 2.2 %, respectively, for KRAS. 

KRAS  (IARC) 
KRAS  (the Netherlands )  

Wild Type Mutated Total 

Wild Type 181 
81.2 % 

4 
1.8 % 

185 
83.0 % 

Mutated 0 
0.0 % 

38 
17.0 % 

38 
17.0 % 

Total 181 
81.2 % 

42 
18.8 % 

223 
100 % 
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When analyzing EGFR status in association with smoking variables we found 

that EGFR mutations were significantly more present in never-smoking women 

(Table 25c). Somatic mutations of EGFR gene are found almost exclusively in 

adenocarcinoma of never-smoking women and cluster in domains of the kinase 

that constitutively activate its activity and signal transduction (Tokumo et al. 

2005).  

 
Table 25a : TP53 status in association with clinical and smoking va riables 
 
 

TP53 status 
Wild type (n = 129)  Mutated (n = 121) Variable (missing) Items 

n % n % 
P value 

Gender Male 107 82.9 103 85.1 0.89 
 Female 22 17.1 18 14.9  
Age < 60 40 31 49 40.5 0.60 
 [60-65[ 16 12.4 14 11.6  
 [65-70[ 24 18.6 25 20.7  
 ≥ 70 49 38 33 27.3  
Marital Status (2) Unaccompanied 39 30.2 26 21.5 0.10 
 Accompanied 90 69.8 95 78.5  
Education level (39) No/Primary Level 93 76.2 88 74.6 0.72 
 High educated 29 23.8 30 25.4  
Past pulmonary illness  (2) No 50 39.4 60 49.6 0.15 
 Yes 77 60.6 61 50.4  
Asbestos exposure (11) No 100 78.7 91 75.2 0.80 
 Yes 27 21.3 30 24.8  
Nodal score (4) N0 89 69.5 84 69.4 0.37 
 N1 30 23.4 35 28.9  
 N2 2 1.6 0 0  
 NX 7 5.5 2 1.7  
Tumour score (4) T1 39 30.5 37 30.6 0.98 
 T2 76 59.4 74 61.2  
 T3 8 6.3 7 5.8  
 T4 5 3.9 3 2.5  
Histology (1) ADC 85 65.9 48 39.7 <.0001 
 SCC 41 31.8 69 57  
 Others 3 2.3 4 3,3  
Smoking status (1) Current smoker 77 60.2 75 62 0.83 
 Former smoker 44 34.4 42 34,7  
 Never-smoker 7 5.5 4 3,3  
Years of smoking (14) < 30 15 12.5 20 17.2 0.37 
 [30-40[ 35 29.2 35 30.2  
 [40-50[ 33 27.5 39 33.6  
 ≥ 50 37 30.8 22 19.0  
Age at smoking initiation (5) < 16 50 41.3 41 35.3 0.78 
 [16-18[ 20 16.5 21 18.1  
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 [18-20[ 22 18.2 26 22.4  
 ≥ 20 29 24.0 28 24.1  
Pack-years (18) < 20 20 15.8 18 15.0 0.76 
 [20-40[ 41 32.3 48 40.0  
 [40-50[ 22 17.3 22 18.3  
 ≥ 50 44 34.7 32 26.7  
Years since quit smoking [2 – 6[ 9 20.5 4 9.5 0.71 
 [6 – 13[ 14 31.8 14 33.3  
 [13 – 20[ 8 18.2 13 31.0  
 ≥ 20 13 29.6 11 26.2  
Cigarette type (33) Filter 52 43.7 52 45.2 0.55 
 Mixed 38 31.9 29 25.2  
 Non filter & rolled 29 24.4 34 29.6  

No Lung/HN 
cancer 

96 76,8 83 69,7 0.16 Family history of 
Lung/HN cancer  (32) 

Lung/HN cancer 29 23,2 36 30,3  
No Lung/HN 

cancer 
118 92,9 107 88,4 0.44 Personal history of 

Lung/HN cancer (3) 
Lung/HN cancer 9 7,1 14 11,6  

 
 
Table 25b: KRAS  status in association with clinical and smoking va riables 
 

KRAS  status 
Wild type (n = 203)  Mutated (n = 46) Variable (missing) Items 

n % n % 
P value 

Gender Male 172 84.7 38 82.6 0.81 
 Female 31 15.3 8 17.4  
Age < 60 73 36 14 30.4 0.77 
 [60-65[ 26 12.8 5 10.9  
 [65-70[ 38 18.7 12 26.1  
 ≥ 70 66 32.5 15 32.6  
Past pulmonary illness (2) No 88 43.6 21 46.7 0.77 
 Yes 114 56.4 24 53.3  
Asbestos exposure (2) No 154 76.2 36 80 0.82 
 Yes 48 23.8 9 20  
Nodal score (1) N0 140 69.3 33 71.7 0.60 
 N1, N2, NX 62 30.7 13 28.3  
Tumour score (1) T1 68 33.7 9 19.6 0.10 
 T2, T3, T4 134 66.3 37 80.4  
Histology SCC / Others 110 54.2 5 10.9 <.0001 
 ADC 93 45.8 41 89.1  
Smoking status (1) Current smoker 128 63.4 24 52.2 0.08 
 Former smoker 64 31.7 21 45.7  
 Never-smoker 10 5 1 2.2  
Years of smoking (14) < 30 27 14.1 9 20.0 0.29 
 [30-40[ 54 28.3 14 31.1  
 [40-50[ 63 33.0 10 22.2  
 ≥ 50 47 24.6 12 26.7  
Age at smoking initiation 
(5) < 16 75 39.1 17 37.8 0.95 
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 [16-18[ 32 16.7 9 20.0  
 [18-20[ 36 18.8 9 20.0  
 ≥ 20 49 25.5 10 22.2  
Pack-years (18) < 20  28 13.9 10 21.7 0.64 
 [20-40[ 74 36.8 15 32.6  
 [40-50[ 36 17.9 8 17.4  
 ≥ 50 63 31.3 13 28.3  
Years since quit smoking  [2 – 6[ 11 17.2 2 9.5 0.71 
 [6 – 13[ 22 34.4 6 28.6  
 [13 – 20[ 15 23.4 5 23.8  
 ≥ 20 16 25.0 8 38.1  
Cigarette type (4) Filter 79 42 24 53.3 0.23 
 Mixed 58 30.9 9 20  
 Non Filter & Rolled 51 27.1 12 26.7  

No Lung/HN cancer 146 73.4 33 73.3 0.92 Family history of Lung/HN 
cancer (5) Lung/HN cancer 53 26.6 12 26.7  

No Lung/HN cancer 183 90.6 41 91.1 0.49 Personal history of 
Lung/HN cancer (2) Lung/HN cancer 19 9.4 4 8.9  

 
Table 25c: EGFR status in association with clinical and smoking va riables 
 

EGFR status 
Wild type (n = 113)  Mutated (n = 17) Variable (missing) Items 

n % n % 
P value 

Gender Male 92 81.4 11 64.7 0.35 
 Female 21 18.6 6 35.3  
Age < 60 41 36.3 5 29.4 0.21 
 [60-65[ 15 13.3 2 11.8  
 [65-70[ 19 16.8 6 35.3  
 ≥ 70 38 33.6 4 23.5  
Past pulmonary illness No 55 48.7 8 47.1 0.72 
 Yes 58 51.3 9 52.9  
Asbestos exposure No 89 78.8 14 82.4 0.93 
 Yes 24 21.2 3 17.7  
Nodal score (1) N0 83 73.5 11 68.8 0.95 
 N1, N2, NX 30 26.6 5 31.3  
Tumour score (1) T1 36 31.9 5 31.3 0.87 
 T2, T3, T4 77 68.1 11 68.8  
Smoking status Current smoker 64 56.6 8 47.1 0.11 
 Former smoker 43 38.1 5 29.4  
 Never-smoker 6 5.3 4 23.5  
Years of smoking (1) < 30 21 19.8 4 30.8 0.49 
 [30-40[ 33 31.1 2 15.4  
 [40-50[ 29 27.4 3 23.1  
 ≥ 50 23 21.7 4 30.8  
Age at smoking initiation ≥ 16 59 55.1 8 61.5 0.87 
 < 16  48 44.9 5 38.5  
Pack-years (1) ≤ 40  61 54.5 13 76.5 0.15 
 > 40  51 45.5 4 23.5  
Years since quit smoking  ≥ 13 24 55.8 3 60.0 0.96 
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 < 13 19 44.2 2 40.0  
Cigarette type (3) Filter 48 45.7 5 41.7 0.97 
 Mixed 31 29.5 4 33.3  
 Non Filter & Rolled 26 24.8 3 25.0  

No Lung/HN cancer 80 71.4 10 62.5 0.34 Family history of Lung/HN 
cancer (2) Lung/HN cancer 32 28.6 6 37.5  

No Lung/HN cancer 103 91.2 16 94.1 0.79 Personal history of 
Lung/HN cancer Lung/HN cancer 10 8.9 1 5.9  
Gender / Smoking 
status Others 109 96.5 13 76.5 0.0067 

 
Never-smoker 
female 4 3.5 4 23.5  

 

 

Update of follow-up status for EUELC patients  

 

The statistical analysis in the present report is based on the 2011 version of the 

EUELC database. Laboratory analyses were completed in 2007 but the overall 

median follow-up time per centre at that time was of only 16.6 months. This short 

follow-up could have biased both the selection of Progressive Disease (PD) and 

Disease Free (DF) subjects. Moreover, clinical data appeared to be incomplete 

for several important variables (e.g. tobacco smoking) potentially related to 

somatic mutations in TP53, KRAS and EGFR genes. In 2011 we decided that we 

were not able to exploit the laboratory results in full and consequently we asked 

the 12 centres involved in the EUELC project to provide us with clinical update. 

These centres were: Liverpool, Leicester, Belfast, Edinburg and Dublin (UK), 

Nancy and Grenoble (France), Nijmegen and Amsterdam (the Netherlands), 

Milan (Italy), Heidelberg (Germany) and Pamplona (Spain). Table 26 provides 

details of missing values for each centre as recorded in the EUELC database 

2007 version.  
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Table 26: Percentage of missing values in clinical variables by participating centre in 2007 
 

 
* Percentage computed on former and current smokers 

Centres 
Variable 

Amsterdam  Belfast  Dublin  Edinburgh  Grenoble  Heidelberg  Leicester  Liverpool  Milan  Nancy  Nijmegen  Pamplona  

Gender       0,1      
Date of interview 0,1 1,9  0,1   0,2 1,9   0,4  
Date of birth       0,1    0,1  
Marital status  2,1  0,1   0,2  0,1  1,2  
Age at end of education  0,4 3,5 0,1 0,4 0,4 2,9 0,2 2 0,1 0,3 1,6 0,8 
Highest education level 0,2 3,4  0,4 0,2  0,2 1,8 0,1  1,6  
Smoking status  1,9  0,4   0,3  0,1  1,5  
Pack-years* 0,2 2,5 0,1 0,7  0,5 0,5 0,1 0,1  1,8 0,4 
Age at smoking initiation*  2,3  0,5  0,1 0,4  0,1  1,5 0,1 
Time since quit smoking*  2  0,5   0,4  0,1  1,5  
Smoking duration* 0,2 2,3  0,6  0,5 0,5 0,1 0,1  1,8 0,4 
Type of cigarette* 0,2 3,6  0,7 1,5 0,5 0,5 0,4 0,1  1,8 0,2 
Past cancerous malignant growth / tumour 0,1 1,6 0,1 0,6   0,3    1,5  
Location of past cancerous malignant growth 0,5 7,1 0,5 2,5 1  1,5  0,5  7,6  
Asbestos exposure 0,1 2,3  0,8   0,4 0,6   1,5  
Family history of lung/head&neck cancer 0,2 3,6  2,6  0,1 0,3 1,1 0,1  1,9 0,1 
Family history of any cancer 0,2 3,6  2,6  0,1 0,3 1,1 0,1  1,9 0,1 
Primary lung cancer status      0,1 0,1      
Date of Surgery PLC             
Histology PLC             
TNM PLC    0,2  0,1 0,6 0,1     
Head and neck cancer status    0,2   0,1  1  0,1  
Date of surgery HN  2,9  8,6   2,9  25,7  5,7  
Histology HN    8,6 2,9  2,9  25,7  2,9  
TNM HN    8,6   2,9  25,7 2,9 2,9  
Total average missing values per patient 0,42 5,39 0,06 1,95 0,28 0,43 1,65 0,89 0,48 0,04 3,41 0,20 
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The update- work plan involved the following steps: 

1. Identification of a Minimal Variable List corresponding to the information 

we determined as both useful and practically feasible; 

2. Personal contact and individual arrangements with each of the major 

participating centres to develop data retrieval, taking into account the 

specificities of each centre; 

3. Final collation of results into the EUELC database. 

 

The Minimal Variable list for completeness of follow-up status included: “Alive 

and Well”, “Alive with disease” (no treatment), “Died from other causes”, “Died 

from the disease”, “Metastatic relapse/reoccurrence”, “SPLC” (Second Primary 

Lung Cancer), “Treatment with chemotherapy”, “Treatment with radiotherapy”, 

“Treatment with both chemotherapy and radiotherapy”. The clinical status in 2007 

and the updated one in 2011 are shown in Table 27. According to follow-up 

status we censored the analysis at 48 months and the overall free median follow-

up rose to 29 months.  

 
 
Table 27: Clinical status of EUELC patients before and after update of the database 
 

Clinical status Year: 2007 Year: 2011 

Progressive Disease (%) 22.1% 26.4% 

Disease Free (%) 
Disease Free median follow up (months) 

77.9% 
18  

73.6 % 
29  

Overall median follow up (months) 16.6  25  

Died of other causes (%) 5.7% 21.7 % 

Died of the disease (%) 14.7% 17.5 % 
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Prognostic significance of somatic mutations 

 

Patients were grouped into two categories according to disease evolution status 

until September 2011. In the univariate analysis, those who developed a second 

primary lung cancer, a recurrence or metastasis, or who died of the disease were 

grouped as progressive disease (PD). PD represented 26.4% of EUELC patients. 

Patients who were alive and asymptomatic for the disease and who were not 

undergoing treatment by chemotherapy and/or radiotherapy, were classified as 

disease-free (DF) and represent 73.6% of our series.  

We could identify that a more severe PLC tumour (i.e. tumour showing higher T 

and N scores) was associated to an increased risk of disease progression 

(respectively p=0.0014 and p=0.0006, Table 28). Surprisingly, smoking duration 

longer than 40 years was more frequent among DF patients than among PD 

patients (56.1% versus 43.3%).  

 
Table 28: Clinical risk factors of disease progress ion 

 
* 9 stages unknown because of undetermined pN 

DF (n=162 ) PD (n=99 ) 
Variable (missing) Items 

n % n % 
P value 

Gender (1) Female 23 14,2 18 18,4 0.1285 
Age > 65 81 50 51 51,5 0.5066 
Education duration (22) in years > 16 54 35,8 37 41,6 0.7591 
Professional exposure (6) Asbestos 35 22 21 21,9 0.5629 
Past pulmonary illness (6) At least one 83 52,2 61 63,5 0.0991 
Family history of HN/Lung cancer 
(10) HN/Lung cancer 44 28 22 23,4 0.4807 

Family history of cancer (10) Any cancer 79 50,3 47 50 0.7761 
Smoking status (1) Current smoker 36 22,2 13 13,3 0.0634 
Cigarette type (10) Non Filtered 82 55,4 52 56,5 0.7210 
Years since quit smoking   < 5  68 42 43 43,4 0.7059 
Age at smoking initiation  < 16 years old 74 45,7 37 37,4 0.5271 
Pack-years (8) > 40  79 50,3 42 43,3 0.1196 
Smoking duration in years ( 8) >40  88 56,1 42 43,3 0.0224 
PLC Histology ADC 89 54,9 54 54,5 0.5583 
 SCC 70 43,2 40 40,4 0.4535 
Tumour score (1) T2, T3, T4 vs T0, T1 99 61,1 82 83,7 0.0014 
Nodal score (1) N1, N2, Nx vs N0 33 20,4 44 44,9 0.0006 
Tumour Stage (1+ 9 Nx*) Stages II & III vs Stage I 34 21,4 42 45,2 0.0038 
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TP53, KRAS or EGFR mutation status, however, were not associated with 

disease evolution. There were 45.4% patients with TP53 mutation in the PD 

category versus 50.7% in the DF category (p=NS). No prognostic value was 

found when mutations were grouped into different categories according to their 

predicted effects on p53 protein structure or function (Table 29). G to T 

transversions were marginally more common among PD patients than DF but this 

effect was not statistically significant (adjusted HR: 1.46 [0.89 – 2.41], p=0.14). 

Likewise, p53 IHC positive status was not associated with prognosis (p=NS). 

 
Table 29 : Associations between biomarkers and disease progres sion 
 

DF PD 
Variable Items 

n % n % 
HR 

(95% CI) P* Adj HR 
(95% CI) 

P$ 
 

TP53 status 
(n=250) 

Wild Type 
 70 49.3 59 54.6 1 1 

 
Mutated 
 72 50.7 49 45.4 0.86 (0.59 – 1.27) 

0.45 
0.91 (0.62 – 1.40) 

0.64 

Conservation 
(n=246) 

0 – Silent 
 74 51.7 60 58.3 1 1 

 
1 – Deleterious 

 44 30.8 34 33 0.74 (0.93 – 0.61) 1.01 (0.66 – 1.56) 

 
4 – Non missense 

 25 17.5 9 8.7 0.56 (0.28 – 1.14) 

0.28 

0.69 (0.34 – 1.40) 

0.56 

Transactivation 
(n=246) 

0 – Silent mt / wt/ Functional 
      / Partially functional 77 53.8 62 60.2 1 1 

 
1 – Non Functional 

 41 28.7 32 31.1 0.93 (0.60 – 1.44) 0.99 (0.64 – 1.54) 

 
4 – Non missense 

 25 17.5 9 8.7 0.56 (0.28 – 1.14) 

0.28 

0.68 (0.33 – 1.39) 

0.56 

Structure 
(n=243) 

0 – Silent and WT 
 73 51.8 60 58.8 1 1 

 1 – Missense in DNA-binding domain 23 16.3 21 20.6 1.01 (0.61 – 1.67) 1.05 (0.63 – 1.74) 

 2 – Missense outside DNA-binding domain 20 14.2 12 11.8 0.79 (0.42 – 1.49) 0.83 (0.44 – 1.56) 

 
4 – Non missense 

 25 17.7 9 8.8 0.55 (0.27 – 1.12) 

0.37 

0.67 (0.33 – 1.36) 

0.65 

Structure 
 

0/4 – Silent and WT / Non missense 98 69.5 69 67.6 1 1 

 
1/2 – Missense 

 43 30.5 33 32.4 1.01 (0.67 – 1.54) 
0.95 

1.02 (0.67 – 1.55) 
0.93 

0 – Others 124 88.6 84 80.8 1 1 Type 
(n=244) 1 – All G > T 

 16 11.4 20 19.2 1.4 (0.9 – 2.3) 
0.19 

1.46 (0.89 – 2.41) 
0.14 

Deleterious 
 0 – Wild Type and silent mutations 73 51.4 60 57.1 1 1 

 
1 – Deleterious 

 49 34.5 33 31.4 0.86 (0.56 – 1.32) 0.95 (0.61 – 1.47) 

 
2 – Non deleterious 

 20 14.1 12 11.4 0.79 (0.42 – 1.48) 

0.66 

0.82 (0.43 – 1.54) 

0.82 

KRAS status 
Wild Type 118 84.3 85 78 1 1 

 
Mutated 
 

22 15.7 24 22 1.30 (0.82 – 2.06) 
0.26 

1.19 (0.75 – 1.90) 
0.46 
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KRAS / TP53 
 

Otherwise 
 138 97.9 102 93.6 1 1 

 
Both Mutated 
 

3 2.1 7 6.4 2.08 (0.95 – 4.57) 
0.07 

1.67 (0.74 – 3.77) 
0.21 

KRAS / TP53 
 

Otherwise 
 52 36.4 40 37.7 1 1 

 
 

At least one Mutated 
 

91 63.6 66 62.3 0.92 (0.62 – 1.37) 
0.70 

0.97 (0.65 – 1.44) 
0.87 

PIN2 CC 13 9.2 9 8.4 0.98 (0.48 – 2.02) 0.97 (0.47 – 2.00) 

 CG 59 41.5 45 42.1 1.11 (0.74 – 1.67) 1.15 (0.76 – 1.74) 

 GG 70 49.3 53 49.5 1 

0.86 

1 

0.77 

PIN3 DD 5 3.5 7 6.5 1.46 (0.66 – 3.23) 1.39 (0.62 – 3.10) 

 ND 44 31 29 27.1 1.04 (0.67 – 1.62) 1.08 (0.68 – 1.70) 

 NN 93 65.5 71 66.4 1 

0.65 

1 

0.71 

PEX4 CC 9 6.3 5 4.7 0.79 (0.31 – 2.01) 0.83 (0.32 – 2.14) 

 CG 57 40.1 42 39.3 1.07 (0.71 – 1.60) 1.09 (0.72 – 1.65) 

 GG 76 53.5 60 56.1 1 

0.85 

1 

0.83 

P53 Haplotype GNA-CDP 33 23.6 23 21.1 1.07 (0.64 – 1.76) 1.16 (0.69 – 1.96) 

 GNA-CNP 17 12.1 15 13.8 1.15 (0.63 – 2.07) 1.52 (0.63 – 2.11) 

 OTHERS 65 46.4 49 45 1.15 (0.69 – 1.92) 1.11 (0.66 – 1.89) 

 GNA-GNA 25 17.9 22 20.2 1 

0.95 

1 

0.93 

Wild Type 62 87.3 51 86.4 1 1 EGFR status 
(only ADC) 

Mutated 9 12.7 8 13.6 1.31 (0.62 – 2.80) 
0.48 

0.97 (0.67 – 1.38) 
0.68 

p53 expression 0 , 1 , 2 96 53.6 67 52.8 1 1 

 3 83 46.4 60 47.2 1.00 (0.70 – 1.43) 
1.00 

0.98 (0.68 – 1.41) 
0.91 

p53 / TP53 Otherwise 88 67.2 71 71.7 1 1 

 p53 = 3 and TP53 = mutated 43 32.8 28 28.3 0.87 (0.56 – 1.35) 
0.53 

0.95 (0.60 – 1.49) 
0.81 

 
* F&G model with centre stratification 
$ F&G model with centre stratification adjusted on T and N scores. 
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Since there were important disparities in patient recruitment between countries 

and centres, we repeated these analyses on the largest homogenous subgroup, 

that is on the 103 patients from the French centres (Nancy and Grenoble; Table 

30). 

 
Table 30 : Number of patients with available TP53 mutation status, by country 
 

Country  N° patients Percentage 

France 103 41.20 

Italy 47 18.80 

UK 37 14.80 

Germany 31 12.40 

Spain 22 8.80 

The Netherlands 10 4.00 

 

Similarly, neither KRAS nor TP53 mutations had prognostic value in this 

subgroup (Table 31, F&G model with centre stratification adjusted on T and N 

scores). However, patients with tumours that carried both KRAS and TP53 

mutations had a marginally significantly higher risk of developing a SPLC, lung 

cancer recurrence or metastasis (adjusted HR: 3.26 [1.07-9.90], p=0.038). 
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Table 31 : Association between biomarkers and disease progress ion in the French 
subgroup 
 
 

DF PD Variable Items 
n % n % 

Adj HR 
(95% CI) 

P 
 

TP53 status 
 

Wild Type 
 22 38.6 22 47.8 1 

 
Mutated 
 

35 61.4 24 52.2 0.86 (0.48 – 1.54) 

0.61 

Conservation 
 

0 – Silent 
 

23 41.1 23 53.5 1 

 
1 – Deleterious 

 
22 39.3 15 34.9 0.90 (0.47 – 1.74) 

 
4 – Non missense 

 
11 19.6 5 11.6 0.60 (0.22 – 1.61) 

0.59 

Transactivation 
 

0 – Silent mt / wt / Functional  
     / Partially functional 

24 42.9 24 55.8 1 

 
1 – Non Functional 

 
21 37.5 14 32.6 0.87 (0.45 – 1.70) 

 
4 – Non missense 

 
11 19.6 5 11.6 0.59 (0.22 – 1.59) 

0.58 

Structure 
 

0 – Silent and WT 
 

23 42.6 23 53.5 1 

 
1 – Missense in DNA-binding 
domain 

9 16.7 8 18.6 1.07 (0.47 – 2.42) 

 
2 – Missense outside DNA-
binding domain 

11 20.4 7 16.3 0.90 (0.38 – 2.10) 

 
4 – Non missense 

 
11 20.4 5 11.6 0.60 (0.22 – 1.61) 

0.75 

Structure 
 

0/4 – Silent and WT / Non 
missense 

34 63 28 65.1 1 

 
1/2 – Missense    

 
20 37 15 34.9 1.08 (0.57 – 2.06) 

0.81 

Type 
0 – Others 

 
47 85.5 34 77.3 1 

 
1 – All G > T 

 
8 14.5 10 22.7 1.64 (0.80 – 3.40) 

0.18 

Deleterious 
 

0 – Wild Type and silent 
mutations 

23 41.8 23 50 1 

 
1 – Deleterious 

 
21 38.2 16 34.8 0.91 (0.47 – 1.75) 

0.94 
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2 – Non deleterious 

 
11 20 7 15.2 0.88 (0.38 – 2.06) 

KRAS status 
 

Wild Type 
 

52 89.7 38 80.9 1 

 
Mutated 
 

6 10.3 9 19.1 1.53 (0.73 – 3.22) 

0.26 

KRAS  / TP53  
 

Otherwise 
 

57 98.3 43 91.5 1 

 
Both Mutated 
 

1 1.7 4 8.5 3.26 (1.07 – 9.90) 

0.038 

KRAS / TP53 
 

Otherwise 
 17 29.8 17 37 1 

 
 

At least one Mutated 
 

40 70.2 29 63 0.86 (0.47 – 1.57) 

0.62 

PIN2 CC 7 12.3 5 10.6 0.72 (0.26 – 2.04) 

 CG 25 43.9 17 36.2 1.02 (0.54 – 1.91) 

 GG 25 43.9 25 53.2 1 

0.82 

PIN3 DD/ND 36 63.2 34 72.3 0.85 (0.44 – 1.64) 

 NN 21 36.8 13 27.7 1 

0.62 

PEX4 CC 6 10.5 4 8.5 0.75 (0.25 – 2.22) 

 CG 24 42.1 17 36.2 0.97 (0.52 – 1.80) 

 GG 27 47.4 26 55.3 1 

0.87 

P53 Haplotype GNA-CDP 13 22.8 8 17 1.03 (0.45 – 2.38) 

 GNA-CNP 8 14 7 14.9 1.06 (0.45 – 2.52) 

 OTHERS 23 40.4 23 48.9 0.70 (0.32 – 1.56) 

 GNA-GNA 13 22.8 9 19.1 1 

0.82 

Wild type 24 85.7 21 100 1 EGFR status 
(only ADC) 

Mutated 4 14.3 0 0 Not computable 

- 

P53 
Expression 0 , 1 , 2 

37 56.9 29 59.2 1 

 3 28 43.1 20 40.8 1.00 (0.56 – 1.80) 

1.00 

P53 / TP53 Otherwise 35 62.5 31 68.9 1 

 P53 = 3 and TP53 = mutated 21 37.5 14 31.1 0.91 (0.48 – 1.72) 

0.76 
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Cumulative incidence plots were performed (Figure 34, P values are from 

univariate Fine & Gray model) to illustrate the risk of disease progression through 

time according to the mutation status of the 3 genes, namely TP53, KRAS and 

EGFR. It appeared that the risk to develop a PD was higher (but not statistically 

significant) for patients with KRAS or EGFR mutation. 

 

Figure 34: Cumulative incidence plots of the Progre ssive Disease risk for TP53, KRAS  and 
EGFR mutation 
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Discussion 

 

Many studies have investigated the prognostic value of TP53 or KRAS mutations 

in lung cancer. There is evidence that both the pattern and frequency of 

mutations vary according to the risk factors. However, it remains unclear whether 

mutations are associated with increased risk of rapid disease progression and of 

unfavourable outcome. Here we have used the setup of a large European 

collaborative study, EUELC, to assess TP53, KRAS and EGFR mutations value 

as biomarkers of exposure to tobacco smoke and their prognostic value in a 

structured series of NSCLC cases. We have assessed EGFR mutations in a 

subgroup of 130 adenocarcinomas, as mutations in this gene have been reported 

to be rare in other histological types of lung cancers (Shigematsu et al. 2005, 

Yatabe and Mitsudomi 2007). We have also analysed the relationships between 

TP53 mutations and several common TP53 polymorphisms.  

 

Our data show that TP53, KRAS and EGFR mutations allow discrimination 

between the two main lung cancer histological subtypes, since the mutations 

occurred at different rates among SCC and ADC cases. TP53 mutations were 

detected in 57% of SCC, versus 39.7% of ADC. In contrast, KRAS mutations 

were detected in 89.1% of ADC and were rarer in SCC (10.9%). Of 110 ADC 

analysed, 13.1% were positive for EGFR mutation in contrast to none in SCC. 

Distribution of TP53, KRAS and EGFR mutations among NSCLC histologies 

were in agreement with previous studies in Caucasians. 

Mutation patterns clearly reflected exposure to tobacco smoking, thus enabling 

their use as biomarkers of exposure to tobacco. The TP53 mutation prevalence 

and pattern were in agreement with previous publications and with the IARC 

TP53 Mutation Database. For both TP53 and KRAS genes, the codon distribution 

showed a higher proportion of G to T transversions, in agreement with the well-

documented prevalence of this mutation type in lung cancers of smokers. 

Moreover, as shown in other case series, KRAS and TP53 mutations tended to 

be more common in lung cancers of ever-smokers than in former- or never-
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smokers. EGFR mutations were significantly associated with never-smoking 

status but not restricted to NSCLC of never-smokers, since detected in about 

10% of former (5/48) or current (8/72) smokers. One tumour was found to contain 

both EGFR and KRAS mutation, an extremely rare occurrence according to the 

literature. Interestingly, the EGFR mutation in this tumour was a silent one (codon 

836 CGC>CGT Arg>Arg) and thus would not lead to tyrosine kinase activation.  

 

We did not encounter major technical limitations. All the laboratory techniques 

used were previously well validated for high sensitivity and specificity and we 

showed high reproducibility for KRAS analyses with a collaborative centre. 

Moreover, the EUELC database provided us with good quality frozen tissues and 

warranties that data collection from life-style questionnaires was the most 

homogeneous among centres as possible.  

In the present case series, mutation of none of the three genes analysed seems 

to carry a significant prognosis value in the cohort as a whole or in specific 

histological subgroups. Given the multi-centric character of the study, and the 

possibility of a bias due to recruitment centre, we performed a separate analysis 

on the largest and most homogeneous subgroup (French centres) that revealed a 

borderline effect in patients carrying both TP53 and KRAS mutations (HR=3.26 

[1.07-9.90], p=0.038) but not in patients carrying either of these mutations.  

Similar to our results, a study on Japanese patients with surgically resected ADC 

did not identify any prognostic implication for TP53 or KRAS mutations (Kosaka 

et al.2009). The authors detected a significant association between EGFR 

mutation and longer survival while none of the gene mutations appeared to be an 

independent prognosis marker. Of note, in this Japanese series 49% of the 

patients had EGFR mutations, a much higher rate than in the present Caucasian 

series (13.1%). It is well documented that mutations in EGFR are associated with 

never-smoking status, female gender and Asian ethnicity (Mounawar et al. 2007, 

Shigematsu et al. 2005, ) then the relatively low prevalence of EGFR mutations in 

our series may reflect the characteristics of the patients recruited in EUELC, i.e. 

Caucasian, 84% males and 95.2% ever smokers. Other studies on Caucasian 
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populations reporting higher prevalence of EGFR mutations (Rosell et al. 2009) 

also show a more important proportion of never-smokers and/or of women in 

their series. The low number of non-smokers could have biased the mutation 

prevalence in our series as well as the association of mutations with smoking 

status. 

 

Based on these results, the conservative conclusion is that mutation status does 

not predict short-term outcomes in completely resected lung cancers. However, 

given the overall poor prognosis of lung cancer over a period of 5 to 8 years, the 

short length of follow-up time was a main impairing factor to the full assessment 

of prognostic significance of the genes. It remains to be determined whether 

mutation status may be a prognosis factor for longer-term outcomes. The 

absence of short-term prognosis value does not preclude that mutations have 

significance as predictors of response to specific forms of therapies. Mutations in 

EGFR, for example, are predictors of response to Tyrosine Kinase Inhibitors 

(Paez et al. 2004). From a biological viewpoint, TP53 and KRAS mutations may 

represent very early events in lung carcinogenesis, occurring before tumour 

onset as the result of genetic damage by tobacco carcinogens. Although these 

mutations do participate in launching bronchial cells on the path to transformation 

and progression, it is likely that the tumour behaviour may be dictated by specific, 

additional events that occur after their initiation. The fact that tumours carrying 

both TP53 and KRAS mutations might have a worse prognosis can have two 

explanations. First, these patients may have particularly high exposure to 

tobacco carcinogens, or second, they are particularly susceptible to their 

mutagenic effects. These patients may thus have increased risk of acquiring 

additional mutations which, in turn, may be responsible of their poorer prognosis. 

Thus, presence of both TP53 and KRAS mutations in the same lesion may 

identify a small group of tumours that are genetically unstable and prone to the 

accumulation of mutations accelerating disease progression and/or escape from 

therapy.  
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Molecular diagnosis of EUELC patients was based on bronchial biopsies which 

showed a high heterogeneity among the primary lung cancers. We could have 

taken advantage of this wide clinical population by analysing somatic mutation 

according to different stages of the tumours. Since the T and N scores of TNM 

tumours classification were associated with disease progression, it would be 

valuable to analyse the prognostic value of our biomarkers in the more common 

subpopulation of primary lung cancers (i.e. T1+T2, N0+N1). Moreover, SPLC 

should be distinguished from recurrence in the definition of disease progression 

since they show very different histopathological features and accordingly they 

may show very different mutator phenotypes and clinical outcome. In addition, 

TP53 mutations are used for tumor response to cysplatin-based therapy, tumors 

carrying EGFR mutations may be sensitive to lung cancer therapy with EGFR 

inhibitors and our results may suggest that tumors carrying both KRAS and TP53 

mutations might respond differently to therapeutic intervention. Since we have 

knowledge that in EUELC the progressive-diseases were treated by adjuvant 

therapy (both radiotherapy and chemotherapy), it would be extremely valuable to 

analyse the status of our biomarkers according to the different chemotherapeutic 

intervention that patients undergone, thus effectively translating our findings. 

Other candidate markers may involve genes with activating mutations, making it 

possible to treat these cancers using selective pharmacological inhibitors 

(Sharma et al. 2010), and epigenetic changes in DNA methylation patterns and in 

microRNA expression which may distinguish different NSCLC subgroups 

(Voortman et al. 2010). 

 

We have additionally analysed TP53 polymorphisms and showed their potential 

to modulate lung cancer pathways. Our data show that TP53 mutations tend to 

occur at different rates on different TP53 alleles. Although the group of patients 

was small, patients with two C alleles of PEX4 (encoding Proline instead of 

Arginine at codon 72) tended to have more frequently a mutation in TP53 than 

patients with at least one G allele. Thus, the C allele of TP53 may be intrinsically 

more “mutable” than the G allele, perhaps as a result of subtle differences in the 
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functional properties of p53 proteins with either Arginine or Proline at position 72. 

Experimental studies have identified such functional differences, including a 

greater ability to induce apopotosis for 72P than for 72A (Dumont et al. 2003). 

This observation is in agreement with results from Mechanic et al. (Mechanic et 

al. 2007) who found that common genetic variation in TP53 could modulate lung 

cancer pathways, as suggested by the association of TP53 codon 72 

polymorphism with lung cancer in African Americans and with somatic TP53 

mutation frequency in lung tumours. Thus, in future studies, it will be important to 

take into account both TP53 mutation and TP53 haplotypes in assessing the 

prognosis and predictive significance of TP53 gene status in lung cancer. 
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Chapter V: General Discussion and Future Perspectiv es 

 
 
In this project two approaches have been investigated to advance the use of 

biomarkers of exposure and intermediate effect in molecular epidemiology. 

The potential advantages of using biomarkers in molecular epidemiological 

studies are commonly reported as the possibility to improve the accuracy of 

exposure measurement, to identify intermediate health effects and to identify 

subpopulations with increased susceptibility to develop health effects in the 

presence of a carcinogen (Gallo et al. 2011). Examples of the potential 

opportunities for exposure and risk assessment of incorporating biomarkers in 

cancer epidemiological studies are the use of patterns of TP53 mutations to 

distinguish tobacco-related lung cancer from non tobacco-related lung cancer 

(Hainaut and Pfeifer 2001), of EGFR and KRAS status to distinguish those 

individuals who will clinically respond positively to therapy (Marks et al. 2008, 

Van Cutsem et al. 2009) and more recently, of DNA methylation to trace 

exposure to tobacco and diet (Vaissière et al. 2009, Vineis et al 2011). 

 

The actual value of a biomarker largely depends on its validity. While the list of 

biomarkers is growing fast, the validation of new biomarkers is lagging behind. In 

this thesis we have used well validated techniques of laboratory analysis, such as 

dHPLC and pyrosequencing, for all our experiments. 

 

The first part of the project is an intervention study in vivo to investigate the 

usefulness of epigenetic patterns as biomarkers of modifying effects of diet on 

tobacco-related methylation changes. This approach encompasses two 

successive hypotheses as to the amplitude of the changes that may occur in 

actual biomarker levels. First, we put forward the hypothesis that methylation 

levels in DNA from blood lymphocytes are significantly altered by smoking. 

Second, we formulate the subsequent hypothesis that specific dietary 
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intervention may at least partially reverse these methylation changes and restore 

methylation patterns similar (or close) to those detectable in never-smokers. 

Thus, one of the intrinsic difficulties of this study was that, within the proposed 

design, we were not in a position to assess each of these two hypotheses 

separately. We lacked a control group of never-smokers to establish whether 

methylation levels were different (and to which extent) from those of our smoking 

population. Therefore, we could only speculate about the amplitude of the 

expected effect of dietary intervention. These difficulties are compounded by the 

limited knowledge of the dynamics of methylation patterns in DNA from 

peripheral blood lymphocytes.   

Despite these limitations, our study has identified several features that may pave 

the way to future studies using methylation patterns as biomarkers for monitoring 

the effects of dietary intervention. In particular, one of the most striking results is 

that, in subjects receiving polyphenols supplementation, overall methylation 

levels as measured through LINE-1 methylation patterns showed an important 

reduction in their variations from one participant to the other, although the actual 

difference in average levels themselves was only very minor. This type of 

biological modification makes sense: providing participants with a homogeneous, 

calibrated diet, we may have reduced the impact of normal variability in the 

distribution of the biomarker. It follows that the intervention has somehow 

stabilized individual methylation patterns. This, in turn, is an interesting 

observation with respect to the concept of “epigenetic stability”. Indeed, it could 

be proposed that the main beneficial effect of a calibrated dietary intervention 

may stand not in increasing or decreasing methylation patterns (depending upon 

the particular gene under study) but in stabilizing the baseline pattern. Stabilizing 

baseline methylation patterns may indeed make them less prone to variations 

and consequently more resistant to modifications by reactive substances such as 

oxyradicals. In some aspects, this concept of “biomarker stabilization” is related 

to the concept of “biodiversity” used in ecological studies, with, however, a major 

difference. In the ecological conceptual model it is assumed that the larger the 

diversity, the better the impact at population level. A large dispersion and 



 156 

diversity in the biomarker distribution is supposed to help the population to cope 

with a wide range of environmental changes. In contrast, for “epigenetic 

biomarker stabilization”, the beneficial impact at individual level would stem from 

a narrower range of variations, due to re-enforcements of the mechanisms that 

control and “repair” the biomarker status. It would be of great interest to take this 

concept into further biomarker studies and examine its usefulness, in particular in 

monitoring preventive interventions.   

 

The second part of the project is a prospective study designed to assess whether 

somatic mutations can act as biomarkers of exposure to tobacco smoke and of 

risk of lung cancer recurrence. Our approach is based on a standard model of 

lung carcinogenesis, which implies the accumulation of mutations in key genes 

whose patterns reflect exposure to tobacco smoke. While this model is well 

established in both experimental and animal studies, for obvious reasons it has 

not been as such demonstrated in smokers. No one would accept taking biopsies 

in pre-cancerous and cancerous tissues of patients and keep them under 

observation to quantify the accumulation of molecular changes. Thus, our 

interpretation of the significance of the biomarkers is constrained by the 

limitations of this concept. For example, there is excellent observational and 

experimental evidence that PAHs from tobacco smoke can induce G to T 

transversions in TP53 gene. Yet in our analysis, we did not detect a significant 

association between tobacco smoking status and presence of G to T 

transversion. The lack of this expected association can be, in part, due to 

insufficient precision in estimating tobacco consumption through questionnaires. 

It may also be the consequence of the fact that tobacco contains numerous 

carcinogens other than PAH capable of inducing a wide pattern of mutations. 

Thus, measuring tobacco consumption is by no means identical to measuring 

levels of PAH that may form specific DNA-adducts in target tissues. Moreover, 

the individual susceptibility to DNA damage induced by tobacco carcinogens is 

under strong control by genetic and epigenetic factors, which as such were not 

measured in our model. 
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Aside from possible associations with exposure to tobacco smoke, mutations in 

TP53 or KRAS were strongly expected to reveal information on tumour 

prognosis. We formulated indeed the hypothesis that tumours with a defined, 

measurable detrimental mutation may have a worse biological behaviour than 

tumours without that specific mutation. However, this view overlooks the fact that 

tumours lacking a defined mutation may carry even worse genetic (or epigenetic) 

alterations in another, not measured, biomarker. In many instances, the 

biomarker may be a factor belonging to the same pathway (e.g. a factor 

regulating p53 expression, stability or activity), thus having the same overall 

effect as the measured mutation. In such circumstances, it would indeed be 

impossible to identify different prognostic effects by studying a specific mutation. 

Rather than assessing a particular form of damage in a gene, it might have been 

necessary to assess the overall function of the gene product.  

In line with the notions above, it is quite remarkable that studies on lung cancer 

as well as on other cancers where TP53 mutations are frequent have failed to 

assign a clear prognostic value to the mutations. We suggest that, in a manner 

comparable to the effects of a calibrated diet as discussed above, tobacco may 

also operate as a factor that “homogenizes” genetic and epigenetic patterns. 

Rather than generating a large diversity of changes (which would be expected to 

lead to widely different clinical behaviour of cancers), tobacco may act by 

targeting specific pathways with a high load of mutagens, thus breaking these 

pathways at different points with functionally equivalent effects. Interestingly, a 

strong prognostic effect has been assigned to TP53 mutations in breast cancer. 

In this latter cancer type, mutations are detected in only about 20-25% of the 

cases and there is strong molecular evidence that breast cancer occurs in distinct 

types and subtypes. Those cancers with TP53 mutation might well then develop 

according to mechanisms very different than those without mutations.  

 

In conclusion, our work further highlights the difficulties of implementing 

biomarkers in epidemiological cancer studies. In addition to the technical, 

logistical and statistical considerations, the main constraints are the study design 
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and the conceptual model on which the hypotheses on the significance of the 

biomarker are generated. Our work shows that it is very difficult to master these 

two aspects even in the context of studies of limited size and with biomarkers of 

limited complexity. These problems are compounded to a large scale when using 

“omics” approaches, in which the multiplicity and complexity of data points 

representing biomarkers may be even more difficult to harness within a single 

study design and conceptual model.  
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