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As all human activities, verbal communication is fraught with errors. It is estimated that humans 
produce around 16,000 words per day, but the word that is selected for production is not always 
correct and neither is the articulation always flawless. However, to facilitate communication, 
it is important to limit the number of errors. This is accomplished via the verbal monitoring 
mechanism. A body of research over the last century has uncovered a number of properties of 
the mechanisms at work during verbal monitoring. Over a dozen routes for verbal monitoring 
have been postulated. However, to date a complete account of verbal monitoring does not 
exist. In the current paper we first outline the properties of verbal monitoring that have been 
empirically demonstrated. This is followed by a discussion of current verbal monitoring models: 
the perceptual loop theory, conflict monitoring, the hierarchical state feedback control model, 
and the forward model theory. Each of these models is evaluated given empirical findings and 
theoretical considerations. We then outline lacunae of current theories, which we address with 
a proposal for a new model of verbal monitoring for production and perception, based on con-
flict monitoring models. Additionally, this novel model suggests a mechanism of how a detected 
error leads to a correction. The error resolution mechanism proposed in our new model is then 
tested in a computational model. Finally, we outline the advances and predictions of the model.

Keywords: Language production; Auditory word processing; Action and perception; Cognitive 
Control; Speech perception

Introduction
During speech production we monitor our speech constantly and automatically for errors. As a result, approxi-
mately one out of every ten utterances in naturalistic speech undergoes some form of revision (Nakatani & 
Hirschberg, 1994). Corpus analyses by Meringer (1908), reanalyzed by Nooteboom (1980, 2005a), revealed 
that 70–80% of phonological errors and 50–63% of lexical errors are corrected. Similarly, when we listen 
to somebody else speak, we also detect errors. Although the listener cannot influence the production of the 
error, we still perceive these errors and try to resolve them with the aim of comprehending the speaker. We can 
detect errors in perception because what we hear is incompatible with our internal knowledge of the world, 
or common sense knowledge (e.g., a politician says: ‘It will take time to restore chaos and order’), because 
the speech does not map unto any meaningful message (e.g., ‘I felt so stilly’), or because linguistic criteria are 
violated, such as grammatical agreement (that same politician: ‘Rarely is the question asked: Is our children 
learning?’). Especially the latter form of error detection indicates that during speech perception we do not only 
comprehend (there is no problem in understanding the grammatically incorrect example), but we also moni-
tor for errors. Indeed, without the ability to detect errors during the perception of speech produced by others 
(other monitoring), it would not have been possible to collect corpora of speech errors, which have been highly 
influential in shaping our ideas about language production (e.g., Garrett, 1975).1 Thus, speech-monitoring is a 
process that takes place in both speech production (property I) and comprehension (property II).

	 1	 However, see Cutler (1982) and Meyer (1992) for overviews of limitations on speech error detectability and its effect on speech 
error corpora.
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The most basic and staightforward account of verbal monitoring is that a speaker hears herself speak, 
and by perceiving her speech she is able to correct errors. Several observations lead to the additional pos-
tulation of an internal or inner loop in addition to the external loop (perception of the speech after pro-
duction), which allows the producer to monitor the utterance before actual production (property III). A 
primary observation for postulating the inner loop is that of extremely fast self-corrections. Arguably, the 
processes of production, interruption, and repair are too fast for monitoring to take place through the exter-
nal route of perception. If the external route is used for monitoring, the processes of hearing, recognition, 
and interruption are estimated to take between 350 and 400 ms (Levelt, 1989, Marslen-Wilson and Tyler, 
1980, Hartsuiker & Kolk, 2001). Measurements of actual interruptions revealed that error-to-cutoff times are 
distributed bimodally with two peaks, roughly 500 ms apart with the first peak around 140 ms (Nooteboom 
& Quené, 2017). Even extremely short error-to-cutoff intervals are observed, in which the erroneous item is 
cut off almost immediately after initiation (‘v- horizontal’, Levelt, 1989). Clearly, the interruption follows the 
erroneous production too fast for the interruption to have been processed via production of the phoneme, 
hearing and processing the phoneme, error detection, and interruption of the incorrect word production, 
and start of the correct word.

The existence of an internal monitor is further supported by studies demonstrating that participants are 
able to detect produced errors when external speech is not available, as speech is only produced internally 
or when speech is masked by a loud noise, in essence forcing participants to use internal monitoring. When 
participants perform a task only using internal speech (no articulation), they still report the production of 
errors, demonstrating that indeed internal speech is monitored (Dell & Repka 1992; Oppenheim & Dell, 
2008). Sceptical readers are invited here to internally repeat the phrase ‘a quick witted cricket critic’ three 
times as fast as possible and investigate whether they are able to detect any errors in their internal produc-
tions. A number of studies investigated internal monitoring by masking the auditory feedback with noise 
(Lackner & Tuller, 1979; Postma & Kolk 1992a, b). Noise-masking studies demonstrated that proprioception 
and bone conductance might be additional available routes for monitoring; under noise-masked conditions 
errors of place of articulation were detected frequently (84% vs. 92% under normal feedback) but errors of 
voicing were detected relatively infrequently (19% vs. 72% under normal feedback) (Lackner & Tuller, 1979). 
However, Postma and Noordanus found no difference in the number of reported errors between silent, 
mouthed, and noise-masked speech, while more errors were detected in the normal feedback condition. 
Lackner and Tuller reported that error detection without external feedback is faster compared to normal 
feedback. This is consistent with the idea that internal monitoring is faster as no articulation and auditory 
perception need to take place.

A fourth (IV) property of verbal monitoring is that we can exert some control over the monitoring process. 
When presented with a SLIP task in which certain slips would result in taboo utterances (e.g., TOOL – KITS), 
participants produced fewer of these slips compared to neutral slip utterances (e.g., TOOL – CARTS) (Motley, 
Camden, & Baars, 1981, 1982). This indicates that the participant made the SLIP internally, and was able 
to prevent production with a process of covert editing (Motley et al., 1982). It also suggests that top-down 
influence can be exerted over the monitoring system. The participant really wants to avoid producing taboo 
utterances, and is indeed able to intercept and repair the taboo utterance slip quicker than neutral slips. This 
is further supported by an elevated galvanic skin response that was measured in the taboo trials, even when 
no slip was made. Similarly a functional Magnetic Resonance Imaging (fMRI) study investigating the neural 
correlates of inhibition of taboo utterances found increased right inferior frontal gyrus activation on taboo 
trials compared to neutral trials (Severens, Janssens, Kühn, Brass, & Hartsuiker, 2011), an area of the brain 
that is thought to play a role in the inhibition of action (Xue, Aaron & Poldrack, 2008).

Further support for context sensitivity comes from the lexical bias effect (LBE). The lexical bias is the ten-
dency for phonological slips to result in an existing word, rather than a non-word (Baars, Motley and MacKay, 
1975; Dell, 1986; Dell, 1990; Humphreys, 2002; Costa, Roelstraete & Hartsuiker, 2006; Nooteboom, 2005b). 
This effect is modulated by context; in a non-word context, the LBE disappears (Baars et al., 1975, Hartsuiker, 
Corley & Martensen, 2005). Thus, like the taboo word effect, one can consider the LBE as the result of covert 
editing based on a monitoring criterion that is sensitive to the context.2 However, the amount of top-down 
control that is exerted over the monitoring system seems to be limited: in spontaneous speech (Meringer, 

	 2	 Note that the LBE can be viewed as a detection bias, where it would be easier to detect a non-word as erroneous, but also as a 
correction bias, where some detected errors are corrected more often than others; however, there is no evidence that supports the 
latter theory (see Hartsuiker, 2006).
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1908) and in experiments with task-relevant speech (Levelt, 1983) the correction rate is similar, while one 
might expect the participants to want to exert more control in the formal experimental setting compared 
to spontaneous speech.

Further properties of the verbal monitoring system are revealed by studies with brain-damaged patients. 
These studies specifically highlight a dissociation in error detection in production and perception. A num-
ber of studies have shown patients with a combination of defective self-monitoring during production with 
intact comprehension, such as patients with neologistic speech (Butterworth and Howard, 1987). Studies 
with Parkinson’s Disease patients have found impaired monitoring skills and a differential recruitment of 
monitoring channels compared to healthy controls (Gauvin, Mertens, Marien, Santens, Pickut & Hartsuiker, 
2017; McNamara, Obler, Au, Durso & Albert, 1992). In a study of 69 aphasics by Miceli, Gainotti, Caltagirone, 
and Masullo (1980), no relationship was found between the degree of phonemic output disorder and the 
number of phonemic discrimination errors. Some of the patients with the most severe output disorder 
had no discrimination problems. And some patients with a less severe output disorder were incapable of 
performing the phonemic discrimination in the perception task. Nickels and Howard (1995) examined 15 
aphasic patients with phonological production errors, and found no correlation between the proportion of 
phonological errors in naming and their performance on a series of comprehension tasks. Also a measure of 
self-monitoring behavior, proportion of attempted error corrections, showed no relation with their perfor-
mance on auditory comprehension. However, a reanalysis by Roelofs (2005) showed that for phonological 
processing production and perception skills were correlated.

Marshall et al. (1998) observed subjects who had preserved comprehension, but impaired self-monitoring. 
Most interestingly, some patients showed successful monitoring of someone else’s speech, despite defective 
self-monitoring. One particularly interesting case of a dissociation between monitoring in production and 
perception is described by Marshall, Rappaport, and Garcia-Bunuel (1985). A woman with physically intact 
hearing suffered from severe auditory agnosia; a near-total loss of the ability to understand speech and 
non-speech sounds. Despite this loss, she corrected and attempted to correct many of her phonemic errors, 
while she ignored her semantic errors. These findings suggest that self-monitoring can be performed inde-
pendently of sound perception (property V).

Marshall et al.’s (1985) case study further suggest that semantic and phonemic monitoring can be lesioned 
independently (property VI). Relatedly, Oomen, Postma, and Kolk (2005) described a patient with Broca’s 
aphasia, G., who relied heavily on an internal channel for self-monitoring (when external feedback was 
masked by white noise, self-monitoring performance remained the same, whereas in the healthy controls 
self-monitoring decreased). Furthermore G. produced many phonological errors, after which often multiple 
attempts for repair were made that only resulted in a successful repair 38% of the time. Semantic errors 
were produced far less frequently, and these were successfully repaired in 64% of the trials. In the per-
ception task, G.’s semantic errors detection was impaired (60% detection, compared to 89% detection by 
controls), whereas the percentage of phonological errors repaired was similar to controls (84% vs. 86%). So 
whereas semantic monitoring is impaired in both production and perception, phonological monitoring is 
only impaired in production. Importantly, this finding is further evidence that monitoring can be impaired 
separately for semantic and phonological processing. This result suggests that self- and other-monitoring 
can be performed via different processing routes. Taken together these patient data show that self-monitor-
ing and other-monitoring can be selectively impaired at the semantic and phonological level, and that intact 
comprehension and intact other-monitoring are not sufficient for correct self-monitoring.

A further property (property VII) of verbal monitoring is that errors are detected, interrupted and a new 
attempt is made to produce the correct utterance (repaired) (Levelt, 1989). Speech production is monitored 
for appropriateness, semantic, syntactic, phonological, and prosodic accuracy. The time from error word 
onset to interruption is referred to as the error-to-cutoff interval. The time from error interruption to pro-
duction of the repair is referred to as the cutoff-to-repair interval (Blackmer & Mitton, 1991). A number of 
studies suggest that a speaker interrups an incorrect utterance as soon as possible (Levelt, 1989; Bredart, 
1991). Consistent with this, error-to-cutoff and cutoff-to-repair intervals are often very short, sometimes 
below 200 ms (Blackmer & Mitton, 1991). A number of disfluencies, such as repetitions, (filled) pauses and 
prolongations are interpreted as a sign that an error is detected before production and are therefore referred 
to as indications of covert repairs3 (Levelt, 1989).

	 3	 Alternatively the repetitions and pauses have been interpreted to result from a heavy processing load, planning of the production, 
or a temporary lack of access (Clark & Wasow, 1998; Garret, 1982).
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Neuroimaging studies have identified a number of neural correlates of verbal monitoring (propery VIII). 
Activation of the superior temporal gyrus (STG) is consistently observed in response to speech feedback 
alterations in fMRI and magneto-encephalography (MEG) studies (McGuire et al., 1996; Hirano et al., 1997; 
Hashimoto & Sakai 2003; Christoffels et al., 2007, 2011; Tourville et al., 2008; Zheng et al., 2010; Takaso 
et al., 2010, Shergill et al., 2002). An fMRI study investigating the neural correlates of error detection in 
speech production and perception revealed a network of areas that was active during error detection for 
both production and perception (Gauvin, De Baene, Brass & Hartsuiker, 2016). The observed network con-
sisted of pre-supplementary motor area (pre-SMA), dorsal anterior cingulate cortex (ACC), bilateral inferior 
frontal gyrus (IFG), and anterior insula.

In sum, for a model of verbal monitoring to be complete, the scope needs to include both monitoring of 
self-produced speech, as well as monitoring of speech produced by someone else. The mechanism needs to 
be modifiable to context. Furthermore, production and perception need to be independently lesionable, 
and the same is true for the semantic and phonological level. The model needs to explain how speakers 
interrupt and correct their errors. A good model needs to be congruent with behavioral and neuroimaging 
data. A further theoretical consideration is that the theory should be as parsimonious as possible.

In the following section we critically review current theories of verbal monitoring, and evaluate their 
support given empirical findings and theoretical considerations. This is followed by a proposal for a verbal 
monitoring mechanism that covers gaps of current theories. Finally, we provide computational evidence for 
the error resolution mechanism proposed in our new model.

Overview and critical review of current monitoring theories
Perception based monitoring: the perceptual loop theory
A highly influential and long standing account of speech-monitoring during production is the perceptual 
loop theory (PLT) (Levelt, 1983, 1989; Indefrey & Levelt, 2004; Indefrey, 2011). This theory assumes that 
monitoring is dependent on perceptual systems. A schematic overview of the PLT is presented in Figure 1.

Architecture of the perceptual loop theory
The PLT assumes that speakers use both external and internal monitoring. The speaker monitors speech by 
listening to the produced speech (the external route), or via perception of the planned speech before produc-
tion (the internal route). The external loop thus functions the same for self-produced speech, as for speech 
produced by others. In the internal loop, a phonemic/phonetic representation is fed into the speech compre-
hension system (Wheeldon & Levelt, 1995). As a result, the external and internal loop thus both feed into the 
same verbal monitoring mechanism, and are accomplished identically. The PLT assumes that after detection 
of an error during speech production, speech is immediately halted and a restart is initiated (Nooteboom, 
1980). This principle of halting production upon error detection is known as ‘the main interruption rule’.

Figure 1: Self-Monitoring according to the Perceptual Loop Model (Levelt, 1983, 1989).
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A formalized version of the PLT was proposed by Hartsuiker and Kolk (2001). The model predicted the time 
course of monitoring based on estimates of the duration of production and comprehension processes. This 
model largely shared the architecture of the PLT but differed in the assumptions about interruption and 
repair. Specifically, interruptions and repairs were assumed to immediately follow the detection of errors 
and were planned in parallel.

The neurological substrate for monitoring according to the PLT is the superior temporal gyrus (Indefrey 
& Levelt, 2004), based on studies demonstrating this area’s involvement in processing feedback alterations. 
In an updated version of his sketch of the biological basis of language production, Indefrey (2011) addition-
ally suggested that the anterior cingulate cortex (ACC) and supplementary motor area (SMA) are involved 
in internal monitoring. However, no suggestion was made about the specific role of these areas or why, in 
contrast to the PLT, internal monitoring would recruit different areas compared to external monitoring.

Empirical data
When monitoring, participants detect more errors in the speech of others than in their own speech, how-
ever, equal proportions of semantically and form-related errors are detected in one’s own and someone 
else’s speech (Oomen & Postma, 2001; Oomen & Postma, 2002). This suggests that similar mechanisms 
underlie error detection during monitoring of self and others’ produced speech.

Evidence in support of similar monitoring for internal (covert) and external (overt) speech comes from 
experiments showing similar distributions in detecting semantic and phonological errors in overt and covert 
speech (Dell 1978; Dell & Repka 1992; Postma & Noordanus, 1996). The link between internal and external 
verbal monitoring was further supported by a study showing speech perception effects, more specifically a 
uniqueness-point effect, during phoneme-monitoring in production (Özdemir, Roelofs, and Levelt, 2007). 
The authors argued that this task taps into internal speech monitoring, and interpreted the results as show-
ing that the internal loop is indeed perceived in an identical manner as external speech. However, in this 
task inner speech is only tested in the absence of external speech (e.g., in silent phoneme monitoring). In 
a series of experiments in which perception-specific effects (i.e., speech-driven eye-movements) in inner 
speech were tested in the presence of external speech, no inner speech effects were observed (Huettig & 
Hartsuiker 2010; Gauvin, Hartsuiker & Huettig, 2013). Furthermore, the uniqueness-point effect observed 
by Özdemir et al. (2007) is a result of sequential processing that is sensitive to the predictability of the suc-
cessive segement. It is thus not nescessarily a speech perception effect.4

The PLT assumes one (perceptual) monitoring mechanism. However, there is ample evidence for a dis-
sociation between error detection in language production and perception from patient studies, of which 
a number were listed above. This is irreconcilable with the PLT, as internal self-monitoring, external self-
monitoring, and comprehension are all performed by the comprehension system by feeding a stream of 
perceived speech to the conceptual level, thereby assuming a tight link between error monitoring at the 
different stages (e.g., semantics and phonology) and between production and perception.

In a series of experiments Nooteboom and Quené (2013, 2017) investigated the relation between the 
perceptibility of errors in production and perception. In a SLIP production task (2017) the error-to-cutoff 
times of repaired errors showed a bimodal distribution, with the two peaks roughly 500 ms apart. This fits 
well with the internal and external monitoring mechanisms proposed by the PLT; presumably early detected 
errors are detected via the internal monitoring loop and late detected errors via the external monitoring 
loop. However, in the SLIP production task (Nooteboom & Quene, 2017) masking the speech with a loud 
noise did not at all affect late error detection rates, which suggests that the late detected errors are not 
detected through the external loop.

As in the PLT error detection is dependent on the perception of errors, a number of predictions can 
be derived about an experimental situation in which listeners are instructed to identify consonants from 
auditory fragments excerpted from SLIP-task data (Nooteboom & Quené, 2013). Specifically, these authors 
compared reaction times and misidentification rates for initial phonemes of correct production (e.g., good 
beer), undetected errors (e.g., bood geer), early detected errors (e.g., boo…good beer), and late-detected errors 
(e.g., bood gee…good beer). The authors reasoned that errors, in contrast to correct responses, would often 
have perceptual traces of both the correct /g/ and incorrect /b/ segment (articulatory blending) and would 
therefore be perceptually unclear. On the further assumption that the less perceptually clear a segment is, 
the longer it takes to identify it, the authors predicted that: (1) correct segments can be detected faster than 

	 4	 We are grateful to Sieb Nooteboom for making this suggestion.
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errors; (2) detected errors can be responded to faster than undetected errors; (3) early detected errors can 
be detected faster than late detected errors. However, only the third prediction was borne out by the data. 
In contrast to the predictions derived from the PLT, reaction times for errors and corrects did not differ and 
early-detected errors were even responded to faster than corrects. Additionally, and also in contrast to pre-
dictions, late-detected errors were responded to more slowly than undetected errors.

Support for the PLT’s assumptions about interruption of speech production and restart is based on the 
observation that interruptions do not follow word boundaries but seem to be instantiated immediately after 
error detection (an exception to this observation are so called appropriateness repairs (e.g., ‘a glass’ followed 
by the repair ‘a tall glass’), which are often delayed until the end of a word (Levelt, 1983). Further support 
for the main interruption rule comes from a study by Brédart (1991) showing that short words are more 
often completed before interruption than long words. However, more recent work by Hartsuiker, Catchpole, 
De Jong, and Pickering (2008) reported evidence suggesting that the interruption is sometimes postponed 
until the repair is planned (also see Seyfeddinipur, Kita, & Indefrey, 2008). A computational test of the 
theory was performed by Hartsuiker and Kolk (2001) with simulations. Hartsuiker and Kolk tested whether 
the observed short error-to-cutoff and cutoff-to-repair intervals were possible in a model using the percep-
tual loop for monitoring. These simulations showed that error correction via perception is fast enough to 
explain the short error-to-cutoff intervals, but only with a working inner loop. Importantly, when the inner 
loop in the model was lesioned, the error-to-cutoff intervals were much longer than in the empirical data. 
Additionally, the computational model was able to simulate the effect of speech rate on error-to-cutoff and 
cutoff-to-repair intervals.

More recently, Nooteboom and Quené (2019) proposed an alternative account, according to which at 
lexical selection multiple candidates are highly active, and during error repair the competition is sustained. 
As a result, right after error production the correct word is highly active and can be produced right away as 
a repair. On some occasions, however, the speaker might hold off the repair for strategic reasons when the 
repair is not readily available.

In a study with altered auditory feedback, Lind et al. (2014a, b) manipulated the auditory feedback of 
participants performing a Stroop task, such that upon producing ‘green’ the participants hear ‘grey’ in their 
headphones. Utterances with altered feedback were sometimes accepted as the actual production by the 
participant. If errors are detected by a comparison of internally generated conceptual and phonological 
codes with perceived conceptual and phonological codes, one would not expect errors that differ at the 
conceptual and phonological level to be able to go undetected. However, note that many of the speech 
exchanges were in fact detected (~ 73% according to Meekings et al., 20155). Furthermore the cognitive load 
imposed by this variant of the Stroop task might account for reduced error detection, in line with previous 
studies (Oomen & Postma, 2002). Lind et al.’s results thus do not form a conclusive argument against per-
ceptual monitoring.

The neural activation observed in the STG in response to feedback alterations (e.g., McGuire et al., 1996) 
has been taken to be evidence of the involvement of the perception system in speech monitoring during 
production (Indefrey & Levelt, 2004; Indefrey, 2011). However, it is questionable whether neuroimaging 
studies supporting a role for the STG in verbal monitoring are support for the PLT. Specific about the PLT 
is that it assumes that internal speech is monitored via the perceptual system. The neuroimaging studies 
cited as support merely point out that altered external speech is processed via the perceptual system. The 
STG has been demonstrated to be active during internal speech production (e.g., Tian & Poeppel, 2010, 
2013). However it is not demonstrated that the STG is involved as a function of perceptual monitoring. 
A more widely accepted assumption is that STG activation is observed as the result of an automatic per-
ceptual prediction following the activation of speech plans. In our view, the observed STG activations are 
not compelling evidence for the PLT, as it does not clarify anything about the internal monitoring route. 
Furthermore, an fMRI study investigating internal verbal monitoring during masked production and speech 
produced by others found no role for the STG in verbal self-monitoring (Gauvin et al., 2016).

Theoretical considerations
Several criticisms can be raised against this form of perception-based monitoring. First of all, both the inner 
and outer loop recruit the perception system so that this system deals with two versions of the same signal 
with a temporal delay of roughly 500 ms (Nooteboom and Quené, 2017). Nevertheless, speakers do not 

	 5	 However, see Lind et al.’s (2015) response regarding the detection rates.
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report the perception of overt speech as an “echo” of inner speech (Vigliocco & Hartsuiker, 2002; Nozari 
et al., 2011). One theoretical solution would be to assume that one of the channels remains unperceived 
as a result of selective attention. However, this idea is not supported by data of error detection rates. Error 
detection rates are frequently reported to be higher in speech with normal auditory feedback, compared to 
speech with masked feedback (where the participant can only monitor internal speech) and compared to the 
detection of errors in speech produced by others (where only the external monitoring route can be used), 
suggesting that in normal speech both the internal and external route are attended at least under some cir-
cumstances. However, note that masking auditory input does not always lead to significant changes in error 
detection (Nooteboom & Quené, 2017; Gauvin et al., 2017).

Second, the PLT leaves the process of comparison rather underspecified. That is, it assumes that the out-
put of the comprehension system, “parsed speech”, is fed back into the system that created the message 
for production (the “conceptualizer”) and that a comparison takes place at that level. It is unclear, however, 
what kind of representation of intended speech can be compared with what kind of perceived speech. The 
fact that we can detect errors at all levels of production (including semantic, phonological, syntactic, and 
conceptual errors), suggests that the comparison process must be sensitive to errors at all of these levels.

Final evaluation of the Perceptual loop theory
The PLT is a highly parsimonious account; the model assumes one system, the perception system, which is 
necessarily there, by which error detection takes place after production and during comprehension. No sys-
tem outside the language system is needed to detect language errors. The scope is also excellent; the model 
explains verbal monitoring in production and perception. However, the empirical data clearly speak against 
the PLT. The dissociations found between self-, and other-monitoring, and additionally dissociations at the 
different levels of language processing observed in patients are irreconcilable with the PLT, which assumes 
one monitoring mechanism for all those components. Data on perception of phonemes in other people’s 
errors do not support a perceptual monitoring account, while recent findings on the timing of repairs do 
not support the PLT’s assumption about the coordination of interruption and repair. Finally, the PLT is not 
supported by neuroimaging data.

Conflict monitoring
An alternative to a perception-based monitoring system is monitoring via mechanisms internal to the produc-
tion-system itself (production-based accounts). The earliest production-based account of verbal monitoring 
assumed that speech is monitored throughout the processing stages, by either several distributed monitors 
(Laver, 1980), or by a single monitor that inspects the intermediate and output levels (De Smedt & Kempen, 
1987; Van Wijk & Kempen, 1987). More recent models of conflict monitoring bear more resemblance to 
MacKays node structure theory, in which during lexical selection the increased activation of uncommitted 
nodes leads to an awareness of the erroneous code and subsequent error detection (MacKay, 1987, 1992a, 
b). No special device is necessary to detect the error. However, it does require the error to become conscious.

Architecture of the Conflict Monitoring Account
Neuroimaging work showing ACC involvement in response conflict during speech production initiated 
the hypothesis of conflict monitoring during speech production (de Zubicaray, 2001). The most elaborate 
production-based monitoring account is the conflict monitoring account of Nozari et al. (2011). The model 
builds on domain-general theories of error detection and conflict resolution (e.g., Botvinick et al., 2001; 
Mattson & Baars 1992; Yeung et al., 2004). The conflict monitoring model proposes that monitoring takes 
place by determining the conflict between response options in a representational system, where conflict 
can be seen as a function of the activation levels of units representing these options. In case of a correct 
production, there is typically only a single highly active unit whereas errors are characterized by multiple 
units with high activation. The conflict information is then relayed to a domain-general executive center. 
Nozari and colleagues extended Dell and colleagues’ two-step model of word production (Dell et al., 1997; 
Foygel & Dell, 2000) with assumptions about conflict monitoring. The model assumes a layer of lexical 
nodes and a layer of phoneme nodes that are connected via reciprocal connections (see Figure 2). Because 
of noise in the system and an interplay of different nodes sending and receiving activation, other units than 
the target one may be highly active (i.e., there is high conflict). Simulations with the model showed that 
on trials in which the model produced an error, a measure of this conflict was typically much higher than 
on trials in which the model did not produce an error, suggesting that conflict is diagnostic for the occur-
rence of an error. As conflict is a layer-specific mechanism, conflict detection can also be layer-specific, and 
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so it is also clear in which layer there is need for conflict resolution. We note that the conflict monitoring 
model has also been extended to explain how it would function in sentence context (Dell, Oppenheim, and 
Kitteredge, 2008).

Empirical data 
The model is supported by computational tests. Simulations demonstrated a strong correlation between 
patients’ error-detection abilities in a picture naming task and how the model characterized their produc-
tion skill in terms of lesioning of the semantic and phonological weights (Nozari et al., 2011). The model 
receives some behavioral support from Nooteboom and Quené’s (2013) study on the perception of errors 
in the SLIP task. The authors demonstrated that early-detected errors differed more from the late-detected 
errors than from either undetected errors or correct responses, suggesting that early- and late-detected 
errors have rather different properties. The authors suggested that early-detected errors – which are percep-
tually clear – are cases of overly hasty speech initiation (e.g., of /b/) but that activation of the correct seg-
ment (e.g., /g/) catches up quickly, leading to high conflict and quick interruption. Late-detected errors on 
the other hand seem to suffer most from articulatory blending. They might be detected by conflict monitor-
ing or by self-monitoring of overt speech; however, Nooteboom and Quené (2017) showed that late-detected 
errors did not suffer from auditory feedback masking, ruling out the latter account. Note, however, that the 
authors leave open the possibility that these late-detected errors are detected by further channels such as 
proprioception or tactile feedback.

The majority of evidence for domain-general conflict monitoring comes from a growing body of research 
demonstrating neural correlates that show a high degree of overlap in response to error processing across 
cognitive processes. Conflict monitoring studies typically show an event-related negativity (ERN or Ne) com-
ponent in EEG research and ACC/pre-SMA activation in fMRI research during both error production and 
in high-conflict situations. The Ne component is a response-locked error-related negativity that is observed 
50–150 ms after the initiation of an incorrect response in linguistic tasks, with both covert and overt speech 
responses (Ganushchak & Schiller, 2006, 2008a, b; Masaki et al., 2001; Riès et al., 2011) and in non-linguistic 
tasks also independent of response modality (Falkenstein et al., 1990, 1991, 1995; Gehring et al., 1993; Holroyd 
et al., 1998; Vidal et al., 2000). The Ne component is observed independent of the awareness of the error by 
the participant (Endrass, Franke & Kathmann 2005; Nieuwenhuis et al., 2001; Postma 2000; Ullsperger & von 
Cramon, 2006). The Ne is also observed in response to situations with high amounts of conflict, such as the 
Stroop and Eriksen flanker task (for an overview see Botvinick et al., 2001), semantic blocking during picture 
naming (Ganushchak & Schiller, 2008a), in language decision tasks with homographs (Van Heuven et al., 
2008), and in potentially taboo-eliciting trials in a SLIP task (Severens et al., 2011). The amplitude of the Ne is 
similarly affected by error rate and time pressure across modalities; a low error rate induces a larger Ne after 
incorrect responses, and time pressure decreases the amplitude (Falkenstein et al., 1996; Gehring et al., 1993; 
Ganushchak & Schiller, 2006, 2009). Source localization has determined the ACC region as the origin of the 
Ne component (e.g., Ullsperger, Fischer, Nigbur & Endrass, 2014). Taken together the findings for the Ne com-
ponent suggest that this is a domain-general response to conflict that arises independently from awareness 
and comes from a single source that computes a domain-general process. This is very much in line with the 
predictions of the conflict monitoring account.

Figure 2: Self-Monitoring according to the Conflict Monitoring Model (Nozari, Dell & Schwartz, 2011).
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The ACC region is broadly connected to motor planning and control systems, and has consistently been 
observed to be active in neuroimaging research during error production and in high-conflict situations (Coles 
et al., 1998; Dehaene et al., 1994; Falkenstein et al., 1991; Holroyd et al., 1998; Miltner et al., 2003; Van Veen 
& Carter 2002; Roger et al., 2010; Debener et al., 2005). The ACC has been shown to be active in a wide variety 
of tasks, including language, learning and memory, motor control, imagery, and dual task performance (for 
an overview of experiments, see Botvinick et al., 2001). Most of the studies are consistent with the idea that 
ACC responds to conflict, and there is broad support for the idea that ACC is involved in cognitive control 
(D’Esposito et al., 1995; LaBerge 1990; Mesulam 1981; Posner & DiGirolamo 1998). Also in language tasks 
where participants can freely select from multiple responses there is a consistent report of increased ACC 
activation compared to repetition or a predetermined response (Andreasen, et al., 1995; Petersen et al., 1988, 
1989; Warburton, et al., 1996; Wise et al., 1991; Friston, Frith, Liddle, & Frackowiak, 1993; Frith, Friston, Liddle, 
& Frackowiak, 1991a; 1991b; Yetkin, et al., 1995; Buckner et al., 1995).

De Zubicaray et al. (2001, 2002) were the first to report ACC involvement during conflict resolution of 
speech production, and to link this to a domain-general conflict monitoring mechanism. Piai, Roelofs, 
Acheson, and Takashima (2013) observed the dorsal ACC to be active during incongruent trials across lan-
guage and non-language tasks, suggesting a domain-general attentional control mechanism. Acheson and 
Hagoort (2014) investigated whether indeed cross-task correlations of error detection could be found in the 
EEG signal acquired during three conflict tasks: the Eriksen flanker task, the Stroop task, and a tongue twister 
task. However, no cross-task correlations with the tongue twister task were found. This led the authors to 
conclude that the different signatures probably did not arise from a single domain-general conflict monitor. 
However, as Nozari and Novick (2017) indicate, domain-generality can mean similar computational prin-
ciples, and does not necessarily entail a shared neural implementation or cross-task resource application. 
Additionally, it is perhaps not surprising that a highly somatotopically organized structure (Chainay et al., 
2004) elicits different signals in response to two tasks that differ on quite a few aspects. There are several 
important differences between the verbal and non-verbal task that Acheson and Hagoort used that may 
explain the lack of neural overlap. For instance, the tasks differ in response modality (manual versus vocal), 
complexity of visual stimulus display, and demands made on working memory (the tongue twister task likely 
requires memorization). An fMRI experiment by Gauvin et al. (2016) investigating whether overlapping 
mechanisms were involved in verbal monitoring during production and perception found a network of areas 
consistently found to be active for error monitoring in the action domain including ACC, pre-SMA, and IFG 
(Rizzolatti et al., 2001; Wicker et al., 2003; Keysers et al., 2004; Iacoboni, 2005; Botvinick et al., 2005; Shane 
et al., 2008; de Bruijn et al., 2009; Newman-Norlund et al., 2009; Desmet et al., 2013). These results confirm 
the predictions of the conflict monitoring account of error detection, and are not directly compatible with 
a perception-based account.

Theoretical considerations 
A theoretical issue that can be raised against the conflict monitoring account is that it leaves many aspects 
of self-monitoring underspecified. Most importantly, it leaves unspecified what happens once the conflict 
is detected; no theoretical mechanism for repair is proposed. The model in its current state has a principled 
basis for deciding that an intervention is needed (i.e., in Nozari et al., 2011, a criterion value is reported that 
would allow for the detection of about half the errors while only falsely raising the alarm for correct produc-
tions in less than 1%). However, the model does not specify how such an intervention would proceed and at 
which stage(s) of processing. The how question concerns the mechanism of repairing: for instance, is a repair 
a restart from scratch? Is a certain amount of extra activation injected into the system to create the repair? 
If so, at which level(s)? The when question concerns the moment of the intervention relative to conflict 
detection. Is the repair initiated only after the word has been produced? Or can the repair take place earlier, 
possibly preventing the error? Arguably, the conflict monitoring model is a model of the control of lexical 
and phonological selection rather than a model of verbal monitoring; it specifies in great detail how conflict 
occurs during lexical and phonological selection, but an account of how conflict detection after or during 
speech production leads to a repair is missing.

Final evaluation of the Conflict monitoring model
The conflict monitoring account for verbal monitoring is quite parsimonious as one monitoring mechanism 
can operate at the different levels of speech production. As the theory is production-specific, error detection 
during perception is not within its scope. It only deals with conflict monitoring during response selection 
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in a production task. The theory has no account of interruption and repair. The theory is supported by 
computational and neuroimaging data. Computational simulations of lesions in the model lead to speech 
production patterns similar to that observed in patients. The vast majority of neuroimaging data available 
on verbal monitoring are highly consistent with a domain -general cognitive control process during lexical 
and phonological selection.

Forward modeling: the hierarchical state feedback control model
Forward modeling accounts of verbal monitoring are based on Wolpert’s proposal from computational 
neuroscience (e.g., Miall and Wolpert, 1996; Desmurget and Grafton, 2000; Davidson and Wolpert, 2005). 
Wolpert’s theory was designed to explain movement in motor theory, and considers forward internal models 
that predict the consequences of actions as a central aspect of motor control and learning. We will discuss 
two forward model theories of verbal monitoring. In this section we focus on the hierarchical state feedback 
control (HSFC) model (Hickok, 2012). In the next section, we discuss a further account based on forward 
models (Pickering and Garrod, 2013a, b, 2014).

Architecture of the hierarchical state feedback control model
An important precursor of the HSFC model is the Directions Into Velocities of Articulators (DIVA) model. It is 
the most detailed and explicit model of speech motor control and uses a feedforward and feedback control 
architecture to detect and correct overt errors (Guenther, 1994, 1995; Guenther, Ghosh, & Tourville, 2006; 
Guenther, Hampson, & Johnson, 1998). DIVA is a computational model of motor control during speech 
acquisition and production. The model is highly neurobiologically specified and supported. Production in 
this model starts by activating a speech sound map (the auditory target). Speech sound maps project to 
feedforward articulator velocity maps, that represent the feedforward motor commands for the articulators. 
This is analogous to Levelts’ proposal of phonetic encoding (e.g., Levelt, Roelofs, & Meyer, 1999; Levelt & 
Wheeldon, 1994). The speech sound map also projects to auditory and somatosensory target maps. In these 
forward model projections, the sensory expectations are represented. The auditory and somatosensory target 
maps send inhibitory inputs to auditory and somatosensory error maps. The error maps receive excitatory 
activation from auditory and somatosensory state maps. As a result, the activity in the error maps is the dif-
ference between the actual and expected sensory states. In case of a discrepancy, an error signal is sent to the 
feedback control map, which in turn sends a corrective motor command. The model was further expanded to 
include the assembly and performance of speech sound sequences in the GODIVA model (Bohland, Bullock 
& Guenther, 2010).

The HSFC model (see Figure 3) builds further on the DIVA model and expands it with an internal pho-
nemic error monitoring mechanism (Hickok, 2012). The sensory input is processed via the ventral stream, 
which uses the superior and middle temporal lobe, and processes the signal for comprehension. This stream 

Figure 3: The Hierarchical State Feedback (HSFC) Model of Self-Monitoring.
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is an interface between sensory-motor representations. The motor output is processed via the dorsal stream, 
situated in the posterior planum temporale and posterior frontal lobe, which translates acoustic speech sig-
nals into articulatory representations, and forms an interface between auditory and motor representations 
of speech. These two systems each have their own forward prediction. Furthermore, these two streams are 
divided into two levels; a higher level that codes speech at a syllable level, and a lower level which codes 
speech at the phoneme/feature cluster level. A sensory motor translation system is instantiated for both 
levels; at the lower level the cerebellum mediates between the two processing streams, at the higher level 
the Sylvian parietal temporal (Spt) area, located within the Sylvian fissure at the parietal-temporal boundary, 
mediates between the two processing streams.

Activation of an auditory speech form automatically activates the corresponding motor program, regard-
less of whether there is an intention to speak. The lexical level activates the target of a speech act, and the 
associated motor phonological representation. To ensure that the activated motor representation will hit 
the auditory target, the two streams interact. The auditory target then activates the motor representation, 
which further increases motor activation. The activated motor representation sends an inhibitory signal to 
the auditory target. When the prediction and the detection match, so no correction is needed, the inhibi-
tory motor-to-sensory efference signal turns off the sensory representation, so that it no longer functions as 
a correction signal. If an incorrect motor program is selected, the correction signal remains active and will 
continue to work towards activating the correct motor representation. Internal monitoring takes place in 
an early phase; errors in motor planning fail to inhibit the correction signal of the sensory representation. 
External monitoring takes place in a later phase; suppression of the sensory representation enhances the 
detection of deviation from expectation.

Empirical data  
The HSFC model is built upon a vast body of neurolinguistic research, which we will discuss only in brief here. 
One source of evidence is the phenomenon of speaking-induced suppression: neural responses in auditory 
cortex are dampened when speaking compared to listening to one’s self (e.g., Heinks-Maldonado, Mathalon, 
Gray, & Ford, 2005). Additional evidence for the HSFC model comes from studies showing efference copy 
effects (i.e., activation of auditory cortex) during mental imagery. Tian and Poeppel (2010) recorded MEG 
while participants overtly and covertly produced speech. Around 170 ms after motor estimations by the 
participants, a response in the auditory cortex was recorded, independent of whether the speech was pro-
duced overtly or covertly. In a follow-up study, Tian and Poeppel (2013) demonstrated context-dependent 
modulations of the auditory cortex to internal simulation. These studies demonstrate a response in the 
auditory cortex in absence of auditory stimuli, in response to imagined speech production. These studies 
thus demonstrate auditory cortex involvement in the absence of sounds, which is taken as a role for forward 
models in speech production. Note that the task instruction was to only imagine articulating – without 
imagining the auditory consequence. While this seems theoretically plausible, it seems extremely difficult 
to imagine saying ‘ba’ without the auditory consequence. The instructions to participants was to focus on 
the movements the articulators go through during this imagined production. Try to imagine this yourself 
for a moment – like us, you might find it very difficult to successfully suppress the acoustics associated with 
this imagined production. Potentially the studies thus demonstrate that you cannot disentangle imagining 
producing from imagining the auditory consequence of producing. Whether this is inherent to the produc-
tion system or a confound for the task interpretation remains to be tested. Another important note here is 
that while the HSFC assumes forward models to play a role in articulatory monitoring, it actually assumes 
that the forward model is suppressive in nature. The predictions measured by Tian and Poeppel were not 
suppressive but demonstrated the same directionality as auditory cortex responses to actual feedback.6 So 
while they do support the production of prediction in imagined articulation, they do not seem to support 
the HSFC.

A second body of evidence regarding the role of auditory cortex during speech production comes from 
fMRI studies with feedback manipulations. Consistently when auditory feedback is altered, activation 
increases in the auditory cortex proportionally to the manipulation (Christoffels et al., 2007; Tourville et al., 
2008; Christoffels et al., 2011; Zheng et al., 2010). However, as pointed out previously, this merely indicates 
that the auditory cortex is involved in auditory processing, and does not provide robust evidence for a role 
in monitoring.

	 6	 We are grateful to an anonymous reviewer for making this suggestion.
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The claim that sublexical units are represented separately in the auditory and motor cortex, and the 
conversion of auditory targets to motor commands was tested computationally with the SLAM (Semantic, 
Lexical, Auditory, Motor) model (Walker & Hickok, 2016). The model performed well in simulating aphasic 
patient data. Especially noteworthy is that the model performed well on simulating conduction aphasic 
naming patterns. Conduction aphasic patients have fluent production, intact auditory comprehension, and 
good error detection. However, they produce many phonemic errors and have trouble with non-word repeti-
tion (e.g., Goodglass, 1992). This pattern is assumed to arise from damage to the link between auditory and 
motor systems (Anderson et al., 1999; Geschwind, 1965; Hickok, 2012; Hickok et al., 2000).

Finally, TMS stimulation to the right cerebellum leads to longer RTs and an increased production of pho-
nological errors, supporting the view that internal models generated by the cerebellum play a crucial role in 
phonological encoding (Runnqvist et al., 2016).

Theoretical considerations  
The HSFC is in essence a domain-general monitoring theory, as the computational principles of feedfor-
ward and feedback models and their function in error monitoring proposed have been demonstrated in 
the motor control domain (Wolpert, 1997; Wolpert, Ghahramani & Jordan, 1995; Kawato 1999; Shadmehr, 
Smith & Krakauer, 2010). However, a main theoretical concern is that the HSFC’s scope is extremely limited 
for a language model, as it only deals with phonological and motor processes. On the other hand, the model 
accounts for this restricted part of the process in a very elegant way, which is strongly supported by brain 
imaging.

As the scope of the theory is restricted to phonological processing, it is unclear whether and how an 
extended version of the model could apply to the earlier processing stages of speech production. Especially 
for the selection of grammatical structure or semantic items it is difficult to imagine how the model would 
apply, as no sensory feedback is available. One possibility is that monitoring at these levels operates inde-
pendently. Such an independence between the semantic and phonological processing levels is in line with 
the patient data above.

Second, the model only handles speech production but offers no account for monitoring perception. One 
possibility would be that during perception a prediction is made of the upcoming words, as proposed in 
the forward model theory by Pickering and Garrod (2013a, b, 2014) to which we will turn shortly. Indeed, a 
suggestion is made to the application in perception: “It [i.e., the inhibitory input to sensory systems, G & H] 
provides a mechanism for explaining the influence of the motor system on the perception of others’ speech” 
(p. 8 of Hickok, 2012). However, if motor representations were activated in speech perception, the model 
would be subject to the same criticisms that Hickok himself has on the forward model account of Pickering 
and Garrod (Hickok, 2013): sensitivity would be decreased for the perception of someone else’s speech. 
Hickok (2014) rejected this proposal, as the idea behind forward models in production is that deviations can 
be used to modify the motor plans for production. It is unclear why or how the motor plan would map onto 
a semantic representation. Instead, Hickok proposed that a ventral stream is involved in perceptual monitor-
ing, independent of the dorsal stream as proposed in the HSFC model.

Third, similar to the conflict monitoring model, the HSFC stops with error detection. There is no account 
of interruption, repair, and their coordination.

Final evaluation of the Hierarchical State feedback control model
The HSFC model provides a very elegant and neurally plausible description of verbal monitoring at the 
articulatory level. However, it is unclear whether the model is relevant for self-monitoring of human com-
munication more broadly, which requires an explanation of the detection, interruption, and repair of errors 
at many levels of language production and perception.

Forward model theory
A hybrid model for monitoring, also inspired by Wolpert’s forward models, is the forward modeling account 
that has been proposed by Pickering and Garrod (2013a, b, 2014). The model is one of the few that covers 
both production and perceptual verbal monitoring.

Architecture of the Forward Model Theory
In Pickering and Garrod’s forward modeling theory of language production (see Figure 4), a “prediction of 
the production” is created at each step of the production process, at the semantic, lexical, and phonological 
level, based on one’s intentions and production outcomes in the past. Each utterance starts with an action 
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command. From this command two processing streams start. The first goes through an action implementer 
to create a speech act. Next, this act goes through a perception implementer to create a percept. The second 
stream goes through a forward action model to create a predicted act. This predicted act goes through a 
forward perceptual model to create a predicted percept. The percept and predicted percept are then com-
pared in a comparator. Comparison takes place sequentially for each level of language production as soon 
as the percept and predicted percept are created; semantic representations are therefore compared earlier 
than phonological ones. This is thus different from the PLT where only the penultimate outcome of the pro-
duction process, namely the phonetic code, is sent to the perception system to compare with the outcome 
(external speech). Small differences between the percept and predicted percept could be resolved by updat-
ing the prediction, whereas big differences between predicted and actual utterance percept, would require 
an adjustment of the production. Importantly, this mechanism is similarly applied to speech produced by 
others. The listener uses prediction-by-simulation to predict upcoming words via their speech production 
system. Similar to speech production the predicted utterance percept, created internally by the listener, is 
compared to the actual utterance percept. Any deviations will lead to an updating of the prediction of the 
upcoming utterance.

Empirical data 
There is abundant evidence that prediction plays a central role in language processing. For instance, 
Altmann and Kamide investigated anticipatory eye-movements during sentence perception (Altmann & 
Kamide 1999; Kamide, Altmann & Haywood, 2003). When presented with a visual display, eye-movements 
are directed towards the picture describing a predicted sentence ending. For instance the sentence fragment 
‘The man wanted to ride’ elicited eye-movements towards the picture of a bike, whereas ‘The girl wanted to 
ride’ elicited eye-movements towards a picture of a carousel. This suggests people create predictions at the 
conceptual/semantic level. Van Berkum et al. (2005) reported EEG evidence showing that Dutch listeners 
respond to the grammatical gender-incongruency of an adjective with a noun they expect in the context. 
This suggests predictions are formed at the morpho-syntactic level. In an EEG study, DeLong, Urbach, and 
Kutas (2005) demonstrated an EEG response to a violation of expectancies at the phonological form level: if 
the wrong determiner (a/an) was encountered for a highly expected noun (e.g., kite vs. airplane), an N400 
effect occurred (for an overview of N400 effects to expectancy violations, see Kutas and Federmeier, 2011). 
However, note that recently a large-scale replication of the DeLong et al. (2005) study by nine labs failed to 

Figure 4: The Forward Model account of Self-Monitoring. Sem is the semantic representation, Syn is the 
syntactic representation, and Phon is the phonological representation.
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observe the N400 in response to the article, suggesting that the phonological form of the upcoming word 
is not pre-activated (Nieuwland et al., 2018). Additionally, an interactive cascading model and a statistical 
model (e.g., p-chain model by Dell & Chang 2014) could similarly account for the observed data, without the 
need for a comparator system, making the forward model less parsimonious than other theories.

A second assumption of the forward modeling account is that production plays a role in language com-
prehension. One piece of evidence comes from Mani and Huettig (2012) who showed that the productive 
vocabulary size in young children was correlated with prediction skills in sentence perception. Furthermore, 
studies from brain-damaged individuals (Nozari et al., 2011) and children (Hanley, Cortis, Budd & Nozari, 
2016) suggest error-detection abilities are dependent on production abilities.

If the prediction and comparison mechanism are the same in production and perception, the forward 
model theory suffers the same criticism as the PLT. That is, patient data as discussed above clearly support a 
dissociation between error detection in production and perception.

Theoretical considerations 
For the forward model to be functional, it should be both accurate and impoverished, which are two 
intrinsically conflicting properties. The prediction needs to be accurate and specific such that an error in 
the utterance percept can be detected after comparison with the predicted uttterance. An impoverished, 
reduced, prediction is necessary to allow for speedy processing, so that the prediction can precede the actual 
utterance. But if we assume the forward model prediction to have both speed and accuracy, why would we 
still need a slow process of implementing an utterance (e.g., Hartsuiker, 2013)? According to the theory, 
each utterance is produced twice; once as the intended product and once as a prediction (forward model). It 
is unclear what the advantage is of producing the same utterance twice, especially as one production is an 
impoverished version of the other (e.g., Bowers, 2013; Strijkers et al., 2013; Meyer & Hagoort 2013).

In the forward model theory, the assumption is that the predicted percept is an impoverished form of the 
percept. This, however, makes it unclear how aspects of the percept are corrected that are not part of the 
predicted percept. If the predicted percept, for instance, does not completely specify all the phonological 
details, perhaps voicing is not specified, than how can an error in voicing be detected? Meyer and Hagoort 
(2013) specify a range of related issues regarding the forward modeling account. For instance, while the role 
for prediction in comprehension is quite clear, the question is whether prediction is still a useful tool if the 
prediction and construction come from the same mechanism.

Final evaluation of the Forward Model Theory
The Forward Model Theory is highly parsimonious, as the same mechanism functions during speech pro-
duction and speech perception. However, the theory is unparsimonious in that each utterance is produced 
twice; once as the intended product and once as a prediction (forward model). An attractive aspect of the 
forward model theory is that it implements predictions during perception as a monitoring mechanism. The 
scope of the model is also excellent, as it encompasses internal monitoring, external monitoring, and other-
monitoring. On the other hand, the theory has no account of interruption and repair. A weakness of this 
model is that it proposes a very tight link between production and perception, thereby making the theory 
irreconcilable with patient data. Also more evidence is needed to see if there is a role for forward models 
between the levels of conceptual, lexical and syntactic processing.

Review summary
From the review above, we can conclude that each model has its own specific strengths and weaknesses. 
Taken together, two main problems with all current monitoring theories can be specified. The first is that 
none of the theories can give an adequate explanation of how verbal monitoring is performed during both 
production and perception. In some theories, perception is out of the scope, as in the conflict monitoring 
account and the HSFC. Other theories such as the forward model theory and PLT do specifiy monitoring for 
production and perception, but these theories cannot account for the dissociation between production and 
perception monitoring that has been found in the patient data. The second main problem of current moni-
toring theories is that they fail to explain how the detection of an error leads to the production of a correct 
item. The theories are formulated in such a way as if the detection of an error is sufficient for correct produc-
tion. Only the PLT gives a detailed account of the interruption of incorrect production, and the consequent 
repair, but this account is challenged by empirical data (e.g., Nooteboom & Quené, 2017).

From the theories discussed above, the conflict monitoring account is the only one that has a relatively 
precise account of the mechanism of error detection. This mechanism (a simple function of the activation 
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level of candidate items for selection) can be easily extended to monitoring in perception. In the next sec-
tion we propose such an extension of the conflict monitoring theory. An implication of this extension to 
perception is that the model also shares some properties with the PLT (perception can be used for monitor-
ing external speech and someone else’s speech) and especially forward models (perceptual representations 
would function as forward models). Importantly, we propose a mechanism that uses the conflict to generate 
the repair. The error detection-to-repair mechanism is tested below in a computational model.

Towards a New Model of Monitoring
Here we propose a comprehensive model of verbal monitoring that is able to account for error detection 
in production and perception. We do so by extending the conflict monitoring model of speech production 
by Nozari et al. (2011) into a monitoring model for speech production and perception. The main issue 
with previous monitoring models that account for verbal monitoring in production and perception, is that 
they have made the two processes so dependent, that a separate lesioning of one of the two modalities, 
would make verbal monitoring in both modalities impossible. However, the two modalities should not 
be completely independent, as there is plenty of evidence to suggest production and perception interact. 
Examples are the perceptive processes during production, such as the integration of perceived sounds into 
our production (Delvaux & Soquet, 2007; Pickering & Garrod, 2004), and phonetic research on speech 
imitation demonstrating improved comprehension (Adank, Hagoort & Bekkering, 2010). Therefore, we pro-
pose to connect verbal monitoring during speech production and perception in a manner that allows for 
an interaction between production and perception, but without making the two processes dependent on 
each other.

By extending the conflict monitoring model into perception, the model still does not provide a full 
account for verbal monitoring; the model addresses how an error is detected, but not how the error is 
resolved. An interesting solution as to how an error is resolved comes from the cognitive control literature. 
Verguts and Notebaert (2008, 2009) proposed that the detection of conflict can lead to adaptation via an 
arousal response in a neuromodulatory system. This response interacts with ongoing (Hebbian) learning 
and strengthens the active representations, and increases the strength of the connection between the active 
representations.

In our view, if the conflict monitoring account for speech production, as proposed by Nozari et al. (2011), 
can be successfully extended to speech perception, with the addition of a neurally inspired conflict resolu-
tion mechanism, this would be an important step forward. Furthermore, as it is a computational model, an 
extension of the model lends itself for direct testing. Below we first discuss the architecture of the model 
regarding speech production, speech perception, and how these two are linked. Second, we discuss the 
aftermath of error detection; how conflict can lead to selection and production of the correct item. This is 
followed by computational simulations of the proposed conflict resolution mechanism.

Architecture of the Model
The architecture we propose (Figure 5) consists of a production network and a perception network. The pro-
duction network is similar to the model proposed by Nozari et al. (2011); it is an interactive feedback model 
in which the semantic features in a semantic layer are connected to items in a word layer. The words are 
connected to phonemes in a phoneme layer. The semantic weight is the strength of the connection between 
the semantic and the word layer. The phonological weight is the strength of the connection between the 
word and the phoneme layer. The value of these weights thus determines how strongly the information is 
transferred between those layers. Speech production happens in two steps. First the semantic features of the 
target become active. The activation spreads through the network, activating the target word, for instance 
‘cat’, but also activating the conceptual competitors at this layer, such as ‘dog’. Via cascading, the activation 
spreads further down to the phoneme layer. As the model is interactive, the nodes in the lower layer send 
activation back to the higher layers (feedback). The activation of each node is the sum of activation the node 
receives from connecting nodes, and this activation is subject to decay and random noise. After n time steps, 
the highest activated node becomes selected at the lexical level. In the second step an arousal response is 
sent to the selected lexical node (Nozari et al., 2011; Foygel & Dell, 2000) and activation spreads for another 
n time steps. Finally, the most active node at each phoneme cluster is selected for the final response (e.g., 
onset [k], vowel [æ], coda [t]). The amount of conflict is predictive of the occurrence of an error, as demon-
strated by simulations (see also the section on simulations below). Further, conflict at each layer is predic-
tive of errors occurring at that layer: for instance conflict at the word layer is predictive of an error in lexical 
choice but not of a phonological (i.e., nonword) error.
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We extend the model with a perception network parallel to the production network, with similar rep-
resentations in both networks and a tight link between the representations. The assumption that speech 
production and perception have two distinct systems is supported by the patient data that show dissocia-
tions between verbal monitoring in production and perception. The assumption of distinct word represen-
tations for production and perception is further supported by research into language acquisition (Gupta & 
MacWhinney, 1997), dissociations between surface dyslexia and dysgraphia (Weekes & Coltheart, 1996), and 
dissociations between producing and comprehending nouns and verbs in agrammatism (Kim & Thompson, 
2000). Additionally we assume distinct representations at the phoneme level. The phonemic representa-
tions at the production level are tightly linked to the motor plans involved in articulation. The phoneme 
representations at the perceptual level are largely independent of production mechanisms; as a Dutch L1 
speaker the first author can perceive the [r] in other speakers of Dutch – in fact this gives her valuable socio-
linguistic information about the speaker – but she cannot produce it and uses the [ɻ] instead.

The tight link between the production and the perception system are motivated by the finding of cross-
modal priming. For instance properties of perceived sound can be integrated in our speech production 
(Delvaux & Soquet, 2007; Pickering & Garrod 2004) and (especially semantically related) speech we are try-
ing to ignore can be confused with attended speech during perception (Brungart 2001; Gray & Wedderburn 
1960, Lind et al., 2014a, b). Imitating an accent aids in comprehension of accented speech (Adank, Hagoort 
& Beckering, 2010). Evidence of top-down processes during perception are observed in anticipatory eye 
movements (Altmann & Kamide 1999; Kamide, Altmann & Haywood, 2003) and expectancy effects in EEG 
(Kutas & Federmeier, 2011). More evidence that “listening is an active interpretative process, and not a pas-
sive reception of an incoming signal” (Cutler, 1982, p. 13) comes from so called hearing errors where the 
listener misinterprets the heard sentence based on their own expectations (e.g., Garnes & Bond 1975, Bond 
& Garnes 1980). For example the sentence ‘Because they can answer inferential questions’ is perceived as 
‘Because they can answer in French…’ (taken from Cutler, 1982, pp. 12–13). A very good example of the inter-
pretation process that is at play during perception is an effect known as phoneme restoration. In a study in 
which a single sound in an utterance was replaced by a burst of noise participants reported hearing a cough 
simultaneous with the speech, rather than instead of it (Warren, 1970).

The process of perception starts at the phoneme level. Upon hearing speech the relevant phonemes 
become active, which in turn send activation to the word layer, which in turn sends activations to the seman-
tic layer and so on. The word layer also sends activation back to the phoneme layer.

The production and perception representations are tightly linked, and activation flows automatically via 
spreading between the production node and the perception node of a representation. If a node in produc-
tion becomes active, the same node is activated in the perception system, and vice versa. When a word is 
produced, the representations of the production system are consequently active in the perception system. 
For instance, if at the word production level the target word ‘dog’ is active, the same node in the parallel word 
perception layer increases somewhat in activation. In the production system the target word ‘dog’ is selected, 

Figure 5: Hierarchical Conflict Model for Self- and Other Monitoring. Speech production and perception 
have separate words and phonemes, which are tightly connected via links. Arrows indicate the direction 
of processing.
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and a jolt of activation is sent to the production phoneme layer. Via the interconnections, and spreading 
from the perception word level, the phonemes in the perception layer also become active. Now the word 
‘dog’ is produced, and the perception system is already fully prepared to perceive this word. The activation 
acts as a prediction of the upcoming percept, and can therefore be used for self-monitoring. In the percep-
tion system the phonemes [d] and [o] increase more in activation, and via cascading the word increases in 
activation as well. After some time the most highly active word is selected, and receives a jolt of activation. 
This increases the activation at the semantic level, leading to comprehension at the conceptual level.

If an incorrect phoneme were to be selected at the phoneme production level, and an incorrect word 
would be produced, the perception system would benefit from the spreading activations to recognize the 
incorrect word. For instance the incorrect word ‘cap’ is produced, instead of the target word ‘cat’. In the per-
ception system the word ‘cat’ would already be active at both the semantic and the word layer.

When listening to someone else speaking, a bottom up process driven by the incoming speech, and a 
top-down process driven by speech production are started. Pickering and Gambi (2018) proposed a similar 
theory about the role of prediction during perception. During listening, the perceived words become active 
first in the perception system, and via the interconnections between modalities the representations in the 
production system also become active. Based on past experience, the production system activates related 
nodes, which in turn become active in the perception system, thereby creating a prediction of the upcoming 
percept. For instance perceiving the utterance ‘I just ate a’ would lead to the activation of edible items in 
the semantic system. Additionally, experience would contribute to an increase in activation of specific items 
(e.g., during lunchtime the item ‘sandwich’ would be highly expected). The higher the cloze probability of 
the word, the higher the activation of the item. In this case, a semantically related word like ‘salad’ will also 
have high activations. The activation of the items in the production system leads to parallel activations in 
the perception system, thereby preparing the perception system for these items, thus creating expectancies. 
When the predicted utterance is met, the active nodes in the perception system increase in activation, until 
after an amount of time the word is selected for comprehension. When perceived words match the predicted 
percept, speech perception thus becomes a low-effort process, as the perception of that word is prepared.

The model we propose here has two separate processing streams for production and perception, which 
can function separately and consequently be lesioned separately. The way conflict is operationalized here, 
as a function of the activation levels of multiple candidate nodes, means that error detection requires no 
specific machinery that compares a realized to an intended representation: it rather exploits information 
that is computed during language production and perception, namely the activation of the nodes in each 
layer of representations. Subsequent detection of the conflict (and as we will argue below its repair) is done 
by a domain-general mechanism. This process functions in exactly the same way during production and 
perception.

In the current model errors can be detected via two mechanisms. The first is via conflict in response selec-
tion between highly active nodes in the production layer. The second mechanism is via conflict between 
highly active nodes in the perception layer. This type of error detection is used in the perception of someone 
else’s speech, and in one own’s external speech monitoring.

Conflict resolution
In the conflict-monitoring model of Nozari et al. (2011), the story ends at the moment conflict is detected. 
There is no complete account of how the detection of the error is handled. How does the monitor decide 
which errors to handle? Does an error signal lead to an interruption? Is the interruption followed by a 
restart? Or is correct selection of a target sufficient?

The question of the aftermath of error detection has been studied, but these studies do not answer all ques-
tions stated above. Studies investigating the aftermath of error production have often focused on the tem-
poral coordination between interruption and repair and to what extent strategic components are used, such 
as postponing the interruption until the repair is planned (Hartsuiker et al., 2008; Seyfeddinipur et al., 2008; 
Tydgat, Stevens, Hartsuiker, & Pickering, 2011, Gambi, Cop, & Pickering, 2014). Another question concerns 
the mechanisms of repairing; do you start with a clean slate once you’ve interrupted an incorrect utterance? 
A number of studies showed that planning of a new word is affected by residual activation of representations 
pertaining to the abandoned word. Specifically, the experiments showed semantic facilitation and phonologi-
cal interference effects of abandoned words on repair words (Hartsuiker, Pickering, & De Jong, 2005; Tydgat, 
Diependaele, Hartsuiker, & Pickering, 2012). A study where participants had to quickly adapt their utterance 
to make it appropriate for a new context, suggested that utterances can sometimes be repaired by revising 
the speech plan, rather than plan from scratch (Boland, Hartsuiker, Pickering, & Postma, 2005).
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Currently, it is unclear what happens between the detection of an error and the production of the repair. 
As Botvinick and colleagues put it:

“Existing theories portray the relevant mechanisms as coming into play when the participation is 
required, but without an account of how the need for intervention is detected or how the inter-
vention itself is triggered. Without a good theory, control remains a sort of homunculus that ‘just 
knows’ when to intercede. For any theory on cognitive control to be complete, it will need to offer 
an account of how the system determines when control is required.” (Botvinick et al., 2001, p. 624).

Although the conflict monitoring account does provide an answer to the question ‘when’ intervention 
is needed (when conflict surpasses a certain threshold), it does not explain how the intervention is 
performed.

A possible answer to the question of how an intervention is performed might be found in the cognitive 
control literature. Verguts and Notebaert (2008, 2009) suggested that the detection of conflict can lead to 
adaptation via an arousal response, which interacts with ongoing learning and strengthens the connection 
between the active representations. This arousal response works as a non-specific boost or jolt of activation 
that increases activation of the active representations. A probable candidate for this neuromodulatory boost 
response is norepinephrine (NA), delivered via the locus coeruleus (LC).7 Anatomically the ACC is connected 
to brainstem neuromodulatory centers, including the LC. Previous research has shown that stimulation 
of the ACC leads to activation changes in the LC (e.g., Jodoj, Chiang, & Aston-Jones, 1998), demonstrat-
ing a tight functional link between these two structures. The LC itself has been demonstrated to play an 
important role in attention, response selection and task engagement (Aston-Jones, Chiang, & Alexinsky, 
1991; Aston-Jones and Cohen 2005), making it an excellent candidate to modulate learning as proposed by 
Verguts and Notebaert.

Below we integrate the noradrenergic response for conflict resolution for error detection in both pro-
duction and perception in the conflict monitoring model. Note, however, that the arousal response can in 
general also be applied to the models above, such as the forward models and PLT, in the following way: on 
an erroneous trial an error is signaled, by any of the mechanisms described in the models above. The error 
signal is picked up by the ACC, which sends a signal to the locus coeruleus (LC), which triggers the arousal 
response, thereby increasing activation of all the active neurons. The top-down arousal boost that is sent 
into the language processing system causes all active items to increase in activation exponentially, leading 
to an improved signal to noise ratio. This response strengthens active connections, which are task-relevant, 
and thereby improves the signal-to-noise ratio, leading to a faster selection of the correct item.

Stages of conflict resolution during production
If during the selection process multiple nodes compete for selection, there are two stages at which the conflict 
can be resolved. The conflict is resolved either before selection of the target, leading to steering (an adjust-
ment during the process leading to the desired outcome), or after selection of the target, leading to error 
correction. A third function of the model is learning; via the NA response the connection is strengthened.

Steering
We assume that if during the selection stage two nodes become highly active, the conflict is detected by a 
domain-general conflict monitor and a NA response is released. Between the occurrence of the conflict and 
the resolution via the response some time passes. If conflict is resolved before target selection, the conflict 
is resolved within the processing level, and resolution is part of the selection process.

Correction
If during the selection process a high conflict arises, the highest active node might become selected before 
the boost response reaches the conflict. As stated above, some time passes between the detection of the 
conflict and the moment the arousal response reaches the conflict site. In this case a boost of activation 
leads to a repetition of the selection process. As a result the repair will be selected, in the case of an incorrect 
target selection, or the correct target will be reselected, if the target already was selected, and sometimes an 
incorrect ‘repair’ will be selected.

	 7	 However, another probable candidate for this role, which cannot be excluded at this time, is dopamine.
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Learning
When two items compete for selection, the activation boost increases the chance of correct item selection, 
and it also increases the strength between the target and its related nodes. Because the connections are 
strengthened, competition between the competing items will be decreased for subsequent trials in which 
that target is selected.

Computational Tests of the Model: Steering and Repairing
To make our theory more concrete we implemented the error detection-to-repair mechanisms as a com-
putational model. Below we first describe the model in some detail and report a baseline simulation that 
replicates the results of Nozari et al.’s (2011) model. Next, we report simulations with a model that non-
specifically boosts the spread of activation after conflict detection (the gain model). We compare the results 
to alternative models, that specifically boost the activation of the input layer. While these models imple-
ment the steering function of conflict monitoring, a further simulation explores the case of later invention, 
leading to repair.

We first implemented a version of the two stage model of word production developed by Dell and col-
leagues (Dell et al., 1997; Foygel & Dell, 2000; Nozari et al., 2011). Our initial implementation was based 
on the Dell et al. (1997) version (the weight-decay model) following the specifications in that paper, as that 
version provides the basic algorithm on which all newer versions are based. A discrepancy in outcomes, due 
to a difference in a detail of implementation, was resolved with the help of the first author of that paper. 
The implementation was then validated by comparing the results to that of an implementation of the model 
available on the web under a variety of parameter settings.

Next, we created a model with the specific architecture and parameters that Nozari et al. (2011) used. Our 
implementation of the model contained a feature layer containing 57 feature nodes, a word layer of 6 word 
nodes (i.e., cat, dog, hat, mat, fog, log) and a phoneme layer containing 6 onset nodes (/k/, /d/, /h/, /m/, /f/, 
and /l/), two vowel nodes (/ae/, /o/), and two coda nodes (/t/ and /g/). Each word node was connected to 10 
unique semantic feature nodes with the exception of dog and cat that had three overlapping feature nodes 
and 7 unique nodes each. Feature-to-Word connections were bidirectional and each connection has a weight 
given by parameter s. Word nodes were connected to the appropriate nodes for their onsets, vowels, and 
codas. These connections were also bidirectional; the weight of these connections was given by a parameter f.

Processing in the model begins with a boost of activation of 10 units to the features of the target word. 
Next, during a first step of lexical selection, activation spreads throughout the network for n times steps, 
according to an activation rule by which the new activation is a function of (a) the old activation minus a 
decay component (parameter q); (b) the input, which is the sum of the activation times the weight of all 
connected nodes (i.e., both forward and feedback); (c) noise, which consists of intrinsic noise (sampled from 
a normal distribution with mean 0 and standard deviation SD1) and activation-based noise (sampled from 
a normal distribution with mean 0 and a standard deviation of SD2 times the node’s activation). After the 
nth time step, the word with the highest activation level is selected. Then, the activation level of the winning 
word is set to 100 and activation spreads for a further n time steps. Finally, the phonemes with the highest 
activation are selected in the onset, vowel, and coda pools respectively. Like Nozari et al. (2011), conflict is 
determined specifically for each layer, once at the end of lexical selection (but before the jolt of activation 
to the lexical layer) and once at the end of phoneme selection. Nozari et al. proposed two possible measures 
of conflict, namely one that was based on the standard deviation of all units in the respective layer and one 
that was based on the difference in activation between the two nodes with the highest activation. Their 
simulations showed that the latter measure (i.e., -ln (A_Winner – A_RunnerUp)) was a more sensitive index 
of errors; hence in our simulations we always used that measure of conflict.8

Simulation 1: replication of Nozari et al. (2011)
Our first simulation aimed to replicate Nozari et al.’s finding that conflict measured at the lexical level is a 
sensitive measure of whether the trial will result in a correct production or in a semantic error (by far the 
most frequent type of error in normal speakers’ picture naming, for which this model was optimized). Like 
Nozari et al., we used the network version without opportunities for mixed errors (“neighborhood 1”, Dell 
et al., 2007), and set the parameters as follows: s = 0.04, f = 0.04, q = 0.6, n = 8, SD1 = 0.01, SD2 = 0.16, 
semantic boost = 10 per feature, lexical jolt = 100. We ran the model for 10,000 trials. The model produced 

	 8	 The matlab code for the simulation is available from osf.io/fraz9.

https://osf.io/fraz9/
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9,768 correct responses (cat => cat), 216 semantic errors (cat => dog), 4 formal errors (cat => mat; cat => 
hat), 10 nonword errors (cat => lat), and 2 unrelated errors (cat => log).

We determined conflict at the lexical level and determined the distribution of conflict values for trials that 
resulted in correct responses and in semantic errors (i.e., the final outcome after phoneme selection). Mean 
conflict for correct trials was 2.88; mean conflict for semantic errors was 4.96. These distributions are shown 
in Figure 6. As is clear from the figure, conflict allows for good discriminability between correct responses 
and semantic errors. Indeed, Cohen’s d (a measure of discriminability) was 3.28 which is comparable to the 
value of 3.26 obtained by Nozari et al. (2011) and indicates good discriminability. Nozari et al. further used 

Figure 6: Distributions of conflict at the lexical level (based on the difference between the two nodes with 
the highest activation) for trials that result in corrects (top panel) and semantic errors (bottom panel). 
Corrects based on 9,768 trials, semantic errors based on 216 trials.
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a model to estimate a criterion value, given the trade-off between hits (errors detected as such) and false 
alarms (corrects that are mistakenly classified as errors). That model converged on a hit rate of 47% and a 
false alarm rate of about 1%. In our simulations, we decided to use two candidate criterion values: a value 
of 5.25 corresponded to a false alarm rate of 1% and a hit rate of 38%. We also used a value of 4.96, which 
corresponded to the median conflict value of semantic errors, hence a hit rate of 50%. These values were 
chosen so that we would have comparable hit and false alarm rates as Nozari et al. (2011).

Simulation 2: A conflict-repair model
We created a version of the model that responded to high conflict at the lexical level by delaying lexical selec-
tion with a small number of time steps (i.e., either 1 or 2 steps) and by temporarily boosting processing. Our 
hypothesis, based on proposals in the literature on conflict monitoring in cognitive neuroscience (Verguts 
& Notebaert, 2008, 2009) is that a high conflict signal is a trigger for the release of a neurotransmitter that 
non-specifically enhances processing. The effect of a neurotransmitter is typically to modulate information 
processing at the level of the synapse, and indeed Verguts and Notebaert suggested that the release of the 
neurotransmitter would specifically affect a parameter determining the connection strength (i.e., learning 
rate). We therefore opted to simulate the processing boost by temporarily adjusting the connection strengths 
between all nodes. In particular, during a brief interval following conflict detection, connection strengths are 
multiplied with a gain factor. This gain factor is non-specific (even though conflict detection is layer specific): 
it affects both downward and upward connections, and it affects not only the connections from features to 
words but also the connections from words to phonemes. We tested 20 versions of the model (each run for 
10,000 trials) crossing two criterion values (4.96 and 5.25), two extra time steps values (1 or 2), and 5 values 
of the gain parameter (1, 2, 3, 4, or 5). Note that gain = 1 corresponds to the normal model; this shows the 
baseline effect of giving the models 1 or 2 time steps extra. For each model, we determined error frequencies 
as usual. We also determined the proportion of repairs that were successful. A successful repair was defined 
as a repair that resulted in correct selection. Inevitably, this includes cases where lexical selection would 
also have been correct if there would not have been an intervention (i.e., correct responses that happen to 
have high conflict); this number is considerable given the high baseline frequency of correct responses. The 
reduction in number of semantic errors and in all error types combined for each combination of gain and 
extra time steps is given in panel A of Figure 7 for a conflict criterion of 4.96 and in panel C for a criterion 
of 5.25. The proportions of successful repairs for both values of the criterion are provided in panels B and D.

Figure 7: Panels A and C. Reduction in semantic and all errors for each combination of gain and time steps 
for criterion values of 4.96 and 5.25 respectively. Negative bars mean that the intervention reduced num-
ber of errors. Panels B and D. Proportions of successfully repaired errors for each parameter combination.
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The figure suggests that providing one or two time steps extra in a high-conflict situation may by itself 
(gain is 1) reduce the number of semantic errors slightly. Note however that the reduction in semantic errors 
in that situation (especially when two time steps extra are given) comes at the expense of an increase in 
other error types. Most importantly, the figure clearly shows a near-monotonic decrease of semantic errors 
and all errors combined with an increase in gain. Indeed, the number of successful repairs increases near-
monotonically with gain. At the highest gain tested (5), about 90% of repairs result in correct lexical selec-
tion. The increase in error reduction is near-linear between gains 1 and 3 and then levels off. Thus, it seems 
that a transient, non-specific arousal response spreading when there is high conflict can successfully steer 
lexical selection (to the extent that almost all high conflict trials result in correct productions).

There is also a clear effect of number of time steps: performance is poorer with two steps extra rather than 
with one step. This is a consequence of the activation dynamics in the network, in which more than half of a 
node’s activation decays with every time step. This means that activations around selection time are very low 
in comparison to the noise in the system, thus dampening the positive effect of gain somewhat. The pattern 
of data is very similar for simulations with a conflict criterion of 5.25 (corresponding to a false alarm rate of 
1%) and 4.96 (corresponding to a hit rate of 50%). Of course, the reduction in number of errors is larger for 
the lower value, as more candidate errors would lead to an intervention. Interestingly, the large reductions 
in numbers of non-semantic errors were accompanied by small increases in other types of errors when the 
criterion was 4.96. These increases did not occur to the same extent when the criterion was 5.25.

One way to think of this conflict-based booster mechanism is that it improves the signal-to-noise ratio: 
thus, a network with this mechanism should yield comparable results to the standard network with a lower 
than normal noise setting. To compare the effect of boosting to that of a less noisy model, further simula-
tions with the basic model (without boosting) decreased the value of intrinsic noise (SD1) until a comparable 
number of semantic errors or total errors was observed as in the model with the settings: gain = 3, criterion 
= 4.96, 1 step extra. We found that a comparable reduction in semantic errors (gain model 35.2%, reduced 
noise model 34.7%) corresponded to a decrease of the intrinsic noise parameter to .007 (noise reduction of 
30%). However, the gain model does not reduce the number of non-semantic errors. A comparable reduc-
tion in all errors (gain model 31.0%, noise reduction model 30.6%) corresponds to a decrease of the intrinsic 
noise parameter to 0.008 (noise reduction of 20%).

Simulation 3: comparison to models with a specific boost
It is important to note that the gain model reduces the number of errors substantially, but that a similar 
reduction can also be achieved by models that intervene at specific layers or representations rather than 
providing a more general boost. One such model would specifically boost the activation of the feature nodes 
(i.e., one might think of this as a loop in which a node detecting conflict at the lexical level sends activation 
to all nodes at the level of features). Such an arousal response is likely to be effective, because despite strong 
decay and the effects of noise and (noisy) feedback, the pattern of activation at the feature level is bound to 
be correlated with the pattern after the initial boost. Boosting this activation will therefore likely steer lexical 
selection in the correct direction. In our simulations, the network multiplied the activation of every feature 
unit with mf if conflict exceeded the criterion. As before, lexical selection was delayed with 1 or 2 extra time 
steps. As in the simulations with the gain model, there was a positive effect of the strength of the boost that 
leveled off at higher levels; performance was better with 1 extra time step than with 2. Performance of the 
model with mf = 3 were similar to those of the gain model with gain = 3 (Table 1).

A model that would repair in an even more specific way would simply re-activate the semantic features of 
the target word; thus, this model would not only boost the activation of the input (feature) layer but would 

Table 1: Comparison of different repair models.

Change in error rate (%)

Semantic Total Successful 
repairs (%)

Gain model (gain = 3) –35.2 –31.0 85.5

Feature layer (mf = 3) –33.8 –29.7 84.3

Target features (fr = .03) –37.0 –32.2 86.7

Note: Criterion = 4.96, one extra time step. Each model run 10,000 times.
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specifically boost the activation of the correct nodes at that layer. To simulate this mechanism, we ran the 
model and added a fraction of the semantic boost to the features of the target word and delayed selection 
with one or two time steps as usual. Even small fractions of the original boost resulted in very high success-
ful repair rates. If this fraction was 0.019 or higher, 100% of the repairs resulted in correct productions, but 
even much lower fractions already resulted in near-ceilings rates of successful repair. If the fraction was set 
at 0.019 and the criterion at 4.96, the model produced (after repair) 9876 correct responses, 107 semantic 
errors, 7 formal errors, 10 non-word errors, and 0 unrelated errors. Thus, under optimal circumstances about 
50% of semantic errors can be prevented (as is to be expected, given that a criterion value of 4.96 corre-
sponds to median conflict of semantic errors). If the fraction was lowered to .003, model performance was 
similar to that of our gain = 3 model (Table 1). Such a fraction may seem very low, but it is in proportion 
to the activation levels of the feature layer, which have decayed strongly during the previous n time steps.

Simulation 4: A model of overt repairs
The models described thus far implement the monitoring function of steering the production process: when 
high conflict suggests that something goes awry, an intervention takes place that puts the model back on 
track. A detection criterion that leads to a reasonable number of hits (e.g., about 50%) has the disadvantage 
that there will also be many false alarms (>1%) in light of the very high baseline frequency of correct produc-
tions. Arguably, such false alarms do little damage as they invariably lead to correct outcomes (i.e., repairs of 
corrects do not introduce new errors); their only consequence is a slight delay in processing.

In contrast, false alarms are more problematic in models that respond to conflict later (after the word’s 
phonemes have been selected) and thus generate overt repairs (cat… dog or k….dog). In such models, false 
alarms might lead to word repetitions (cat cat) or part-word repetitions (k…cat). We created a version of the 
model that computed conflict at the lexical level but that initiated a repair of high-conflict trials only after 
phoneme selection. The model repaired by starting afresh (reapplying the jolt of activation to the correct 
word’s feature nodes). In one version, this jolt was added to the activation levels of the features and activation 
spread for n + n time steps as usual (corresponding to a model where the repair process can be influenced by 
residual activation of the earlier trial). In another version, all activation levels were reset to 0 before applying 
the boost (corresponding to a model that has completely “wiped the slate clean”). We observed, however, that 
in both models repair success was close to ceiling. In fact, both models produced repairs on 2.49% of the 
trials. Of these, 1.07% were semantic errors that were corrected and 1.35% were correct responses that were 
repeated (the remaining .02% were failed repairs of semantic errors and .03% were “repairs” that changed 
a correct item into an error). There remained 1.11% uncorrected semantic errors. Thus, with these settings 
about 50% of semantic errors is corrected, but at the expense of introducing 1.35% repetitions.

Discussion of simulation studies
The simulations with these versions of the conflict monitoring model demonstrated that the neurally 
inspired repair mechanism we proposed, namely aselective boosting of activation spreading throughout the 
production network, intercepts and/or corrects errors effectively (equivalently to a reduction of noise in the 
network of 20%–25%). Such interventions seem particularly useful when they happen early on and so can 
steer lexical selection back on track (steering function).

General discussion and conclusion
The model we have described above has several important advantages compared to the existing models dis-
cussed at the beginning of the paper. First of all, our model described not only how errors are detected, but 
also what mechanisms come into play to resolve the conflict. We propose that the repair of an error is medi-
ated by conflict detection by a domain-general monitoring system, located in the ACC, and a subsequent NA 
boost from the locus coeruleus. This NA boost increases activation of all active items, thereby increasing the 
signal-to-noise ratio, allowing for a fast (re)selection of the correct item. Additionally, we propose that the 
NA boost strengthens the connections between the active items (note that we have not yet implemented 
this learning mechanism).

A second strength of the model above is that we specify for both speech production and speech percep-
tion how error detection and conflict resolution take place. In both processes, conflict arises as two or 
more items compete for selection. This conflict is resolved in both modalities by a domain-general conflict 
monitor as described above.

A third strength of the model is that it proposes a tight link between production and perception, without 
reduplicating the production process. By assuming a cascade of activation via tight links between the nodes 
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in the production system and the perception system, the production system can be involved in predicting 
upcoming utterances. And the perception system can use the cascading information from the production 
system for verbal self-monitoring via the external loop. It also gives a natural explanation of how perceived 
sounds can be integrated in our production.

A fourth strength of the model is that this model accounts for the patient data discussed above. Although 
production and perception are connected via tight links, neither module (intact production or perception) 
is a prerequisite for monitoring in the other module. Monitoring during production and perception can take 
place independently, and can be lesioned separately.

Advances and predictions of the model
In sum, we propose a hierarchical feedback model with conflict resolution by a domain-general monitor. 
Conflict arises as multiple nodes increase in activation, thereby competing for selection. This conflict is 
picked up by the domain-general conflict monitor in the ACC, and consequently resolved by an NA response 
that boosts all active nodes. As a result of the boost, the signal-to-noise ratio of competing items increases 
and activations are strengthened.

This model is able to explain how patients with faulty self-monitoring exhibit intact other-monitoring, 
unlike the PLT or forward model theory. It also explains how intact self-monitoring can occur without using 
the external route for self-monitoring, as suggested by the patient data discussed above. If the connections 
between the production and perception representations are lesioned, the person can still exhibit intact self-
monitoring and intact other-monitoring, but is impaired in predicting upcoming speech.

The effect of context on monitoring
Due to the architecture of the model, in which production and perception can interact, our model makes 
specific predictions about the effect of context on the monitoring process.

Unconnected speech
In unconnected speech, such as the perception of a single word in an experimental setting, conflict would 
only arise if the perceived word contains enough correct phonemes to activate a word at the semantic layer 
via the reciprocal connections. Upon perceiving ‘cactut’, ‘cactu’ leads to activation of the lexical item of ‘cac-
tus’, which leads to competition between the expected ‘s’ and the perceived ‘t’. Upon perceiving ‘cap’, where 
‘cat’ is intended, no error is detected, as ‘cap’ is a valid entry that does not lead to competition.

Connected speech
In connected speech, or speech within a context, the production system comes into play. When the pre-
dicted utterance is wrong, the incoming speech will activate different nodes than those selected by the 
production system. The subsequent competition is resolved by the ACC – LC system. For instance, you hear 
the utterance ‘Last night before I went to bed, I was brushing …’. While listening, you predict that the upcom-
ing words will probably be ‘my teeth’ or ‘my hair’. In fact, the sentence ends with ‘my teef’. In this case the 
nodes belonging to ‘my’ are highly active, the node is selected, and the activation decays. ‘teef’ activates the 
phoneme units ‘t’ ‘e’ and ‘f’. As the production system has already activated the semantics and phonology of 
‘teeth’, the phoneme units ‘t’ and ‘e’ will increase the activation of the semantic node. Competition between 
the ‘th’ and ‘f’ is resolved by the ACC – LC system, selecting the already highly active node ‘teeth’.

NA and conflict resolution
As the current account makes a direct link between NA release and conflict resolution, a clear prediction 
is that conflict leads to an NA release, with the amount of NA release related to the amount of conflict. 
Furthermore, as the NA release leads to a strengthening of the connections, we also have predictions with 
respect to the aftermath of conflict resolution.

Pupil dilation
A tight link exists between the neurotransmitter NA and pupil dilation (Rajkowski et al., 1994; Phillips et al., 
2000; Samuels & Szabadi 2008; Sterpenich et al., 2006). Under constant illumination the NA levels are 
reflected in the dilation of the pupil. If indeed NA is responsible for resolving conflict in linguistic process-
ing, then the amount of conflict should be reflected in the dilation of the pupil. In both visual and audi-
tory ambiguity resolution an increase in pupil diameter is measured just before a perceptual switch was 
reported (Einhäuser, Stout, Koch & Carter, 2008). The magnitude of the observed dilation was indicative 
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of the subsequent duration of perceptual stability. Pupil dilation has also been measured during discourse 
processing, and in this study it was found that correct prosodic cues were indeed related to the smallest 
dilations compared to uninformative prosodic cues (Zellin, 2011). Similarly Zekveld et al. (2014) found pupil 
responses to different degrees of audibility of speech. When listening to someone speak, largest dilations 
were observed when the participant heard someone else speaking simultaneously. Smaller dilations were 
observed when the speech was masked by random noise. And the smallest dilations were observed for noise-
vocoded speech. Pupil dilation has also been reported to be a reflection of word retrieval effort in bilinguals 
(Schmidtke, 2014); low word frequency and high neighborhood density were related to high pupil dilation, 
as predicted on the basis of our model. High proficient bilinguals showed, in comparison to low proficient 
bilinguals, an earlier pupil response and a smaller effect of neighborhood density and frequency. These 
findings are very much in line with our model, in which an NA response is released for conflict resolution.

Drugs
Alpha-blockers inhibit the firing of cells in the LC, thereby reducing the release of NA. Alpha-blockers are 
used for the treatment of anxiety, panic disorders, and PTSD. A direct effect of Alpha-blockers on self-moni-
toring is expected, as conflict resolution will be heavily impaired. The production of errors will increase and 
fewer corrections will be made.

Neurological disorders
Two patient groups typically associated with abnormal NA functioning are schizophrenic patients and 
patients with Alzheimer’s disease. In schizophrenic patients increased NA levels are measured in the cerebro 
spinal fluid (CSF) compared to age-matched controls (Kemali et al., 1982; Lake et al., 1980). Treatment of 
these patients with clondine or guanfacine (α2 adrenergic agonist) causes reduced functioning of NA recep-
tors, improved cognitive functioning as measured by learning, delayed recall, and the Trail B task (Fields et 
al., 1988; Friedman et al., 1999). Deficits in self-monitoring have been hypothesized to be the cause of the 
auditory illusions in some schizophrenic patents; what exactly the effects are of abnormally high NA levels 
remains to be investigated (e.g., Wilkinson, 2014; Hommes et al., 2012).

Alzheimer’s disease is associated with a loss of up to 70% of NA projecting cells in the LC (Heneka et al., 
2010). However, Alzheimer’s disease also leads to loss of neurons and synapses in the cortex and sub-cortical 
regions, including the frontal lobe, parietal lobe, temporal lobe and cingulate gyrus (Wenk, 2003), thereby 
making this disease a less ideal candidate to investigate the role of NA in language processing.

Aftermath of conflict resolution
During conflict resolution the arousal response increases the strength between the connections according 
to Verguts and Notebaert (2008, 2009). This is a form of learning. As the arousal response is in function of 
the amount of conflict, learning is also in function of the amount of conflict. So once conflict is resolved, a 
subsequent encounter of the situation should not lead to as much conflict. If, for instance, conflict arises 
between ‘tea’ and ‘coffee’ at a lexical level, the arousal response will strengthen the connections between the 
semantic and lexical level representations of ‘tea’.

As the arousal response of NA strengthens the connections between the active semantic and lexical 
nodes, conflict between nodes in the trial increases the conflict of the active items the next time they need 
to become active. So conflict resolution between two semantically related items (‘dog’ and ‘cat’) leads to 
increased interference in the production of these items in following trials.

If on trial n ‘chest’ and ‘brest’ compete, the production of ‘torso’ in trial n + 1 is subject to interference 
as the semantically related item ‘chest’ was strengthened in the previous trial. This latest prediction is con-
firmed by the finding of cumulative semantic interference (e.g., Brown, 1981; Costa, Strijkers, Martin, & 
Thierry, 2009; Howard et al., 2006; Navarrete et al., 2010; Oppenheim et al., 2010; Runnqvist, Strijkers, Alario, 
& Costa, 2012): naming latencies for items of the same semantic category increase at each consecutive trial.

The hierarchy of the model predicts that during production, a conflict at the semantic level with a late 
conflict resolution will also lead to a conflict at the phonemic level. Thus, shortly before the misselection 
of ‘dog’ for ‘cat’, the lexical items ‘dog’ and ‘cat’ will both cascade activation to phonological coding systems. 
This leads to high conflict at the phonological level. A conflict at the phonemic level will, however, not lead 
to conflict at the semantic level. The feedback activation, here from the phonological level to the semantic 
level, is not strong enough to create competition at a higher level. As a result competition at the phonemic 
level does not strengthen the connection of competing semantically related items, but competition at the 
semantic level does strengthen the connection at the phonological level of phonologically related items. 
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So competition between ‘cat’ and ‘dog’ should facilitate the production of ‘log’ in the subsequent trial, but 
competition between ‘dog’ and ‘log’ should not facilitate the production of ‘cat’ in a subsequent trial.

As the model is a direct adaptation of the conflict model of Nozari et al. (2011), semantics and phonology 
can be lesioned separately. The strength of the links between the different layers can be weak or strong, 
independent of the strength of connections to other layers. This is also a prerequisite to account for 
the patient data discussed above. Similar to the model of Nozari et al. (2011), the current model can be 
lesioned by decreasing the strength of the connections. In the case of weak connections at a specific 
layer, the boost of activation will be of relatively little help; when the connections are weak, only few 
errors will lead to a conflict high enough to trigger the boost response. And the boost response will often 
not lead to a correct target selection. So people with weak phonological processing will produce a lot 
of phonological errors, which most often remain undetected. When an error is detected, the repair will 
often be incorrect.

Proficiency
If monitoring of others’ speech is aided by interactions with the production process, then the level of moni-
toring success of the speech of others will be correlated with the production skills. Note that this is testable 
in both children and L2 learners.

Parallels with forward models
In the current model we consider cascading and feedback from lower levels as a form of forward mod-
eling, as also suggested by Dell (2013). In forward model theories, the forward model is an impoverished 
version of the production command. In a hierarchical feedback model the activation cascading down 
also increases the activation of connected nodes in the next layer, but to a much lesser extent than if 
the nodes were committed parts of a representation. The goal of the forward model is to ease the selec-
tion process, thereby speeding it up. The cascading of activation fulfills the same function. By already 
increasing activation of the connected nodes, the construction of representations at those levels is pre-
pared. And finally, the feedback from the lower layers to the higher layers in a cascading model allows 
information of the lower layers to become available to the higher layers, so these different layers can be 
coordinated, much like the forward model does for the production command. A further parallel with 
forward models is that during production, activation spreads to the perception system. This can thus 
be considered a ‘forward model’ that can be used for monitoring the external percept. However, note 
that this interpretation of an intergrated forward model differs quite from the proposals put forward 
by Hickok and Pickering and Garrod discussed above which constitute an auxiliary dedicated prediction 
mechanism (Pickering & Clark, 2014).

In this paper we proposed a conflict monitoring model for error detection in production and perception. 
We acknowledge the role of the production system in the perception of language via reciprocal connections 
through which activation cascades. As a result, perceptual representations become active during produc-
tion, allowing for external self-monitoring. And during perception, units become active in the production 
system, whereby prediction of the upcoming percept can be made. Additionally we propose a mechanism 
for verbal monitoring via a domain-general conflict detection mechanism, and a connected mechanism that 
resolves the conflict via a non-specific activation boost. Computational simulations confirmed that the pro-
posed boosting mechanism can successfully steer and correct target selection, validating the possibility of a 
domain-specific conflict monitoring mechanism for verbal monitoring.
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