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Thermal Infrared Video Stabilization for Aerial
Monitoring of Active Wildfires

Mario Miguel Valero , Steven Verstockt , Bret Butler, Daniel Jimenez, Oriol Rios, Christian Mata, LLoyd Queen,
Elsa Pastor, and Eulàlia Planas

Abstract—Measuring wildland fire behavior is essential for fire
science and fire management. Aerial thermal infrared (TIR) imag-
ing provides outstanding opportunities to acquire such information
remotely. Variables such as fire rate of spread (ROS), fire radiative
power (FRP), and fireline intensity may be measured explicitly both
in time and space, providing the necessary data to study the re-
sponse of fire behavior to weather, vegetation, topography, and fire-
fighting efforts. However, raw TIR imagery acquired by unmanned
aerial vehicles (UAVs) requires stabilization and georeferencing
before any other processing can be performed. Aerial video usually
suffers from instabilities produced by sensor movement. This prob-
lem is especially acute near an active wildfire due to fire-generated
turbulence. Furthermore, the nature of fire TIR video presents
some specific challenges that hinder robust interframe registration.
Therefore, this article presents a software-based video stabilization
algorithm specifically designed for TIR imagery of forest fires. After
a comparative analysis of existing image registration algorithms,
the KAZE feature-matching method was selected and accompanied
by pre- and postprocessing modules. These included foreground
histogram equalization and a multireference framework designed
to increase the algorithm’s robustness in the presence of missing
or faulty frames. The performance of the proposed algorithm was
validated in a total of nine video sequences acquired during field
fire experiments. The proposed algorithm yielded a registration
accuracy between 10 and 1000× higher than other tested methods,
returned 10×more meaningful feature matches, and proved robust
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in the presence of faulty video frames. The ability to automatically
cancel camera movement for every frame in a video sequence solves
a key limitation in data processing pipelines and opens the door to
a number of systematic fire behavior experimental analyses. More-
over, a completely automated process supports the development
of decision support tools that can operate in real time during an
emergency.

Index Terms—Fire behavior, image registration, KAZE, remote
sensing, unmanned aerial systems (UAS), video stabilization,
wildland fire.

I. INTRODUCTION

A ERIAL thermal infrared (TIR) imaging is widely used to
acquire detailed spatial information about active wildfires.

Data such as the location of the fire perimeter, its rate of spread
(ROS), fireline intensity, and fire radiative power (FRP) can be
computed from georeferenced TIR footage [1]–[9]. This infor-
mation has subsequently been used for additional fire behavior
analysis and evaluation of suppression activities [10]–[12]. Fur-
thermore, there is a growing trend to incorporate observed fire
perimeter evolution into operational fire spread simulators in or-
der to improve forecasts using data assimilation techniques [13]–
[17].

However, there are a number of unsolved issues in the data
processing pipeline that prevent full exploitation of unmanned
aerial vehicle (UAV) potential for wildfire remote sensing. Lim-
itations begin at the very first processing step with image regis-
tration. For aerial imagery to be useful, it must be georeferenced
so that image information can be projected onto geographic
coordinates. In theory, there are a few alternatives to achieve
this goal, but none has proved to be completely successful thus
far. A few modern dedicated airborne monitoring systems, such
as the NASA Ikhana UAV [18], [19], are able to geocorrect
acquired imagery on board, automatically and even in real time,
using high-accuracy positioning systems and powerful comput-
ing units. However, completely autonomous on-board process-
ing is only possible if very accurate information about camera
position and orientation is provided by high-performance global
positioning systems and inertial measurement units (IMUs).
Although achieving sufficient location and orientation accuracy
is technically feasible at present, the equipment capable of doing
this is usually tailor-made, heavy, and expensive. For example,
the autonomous modular sensor (AMS), installed aboard the
NASA Ikhana UAV, weighs 109 kg [20]. Most frequently, data
are acquired by less sophisticated platforms, usually consisting
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of commercial off-the-shelf (COTS) small unmanned aerial
systems (UAS) or hand-held cameras operated manually from
a helicopter—see, for instance, [3], [5], [10], [21], [22]. In
none of these studies could aerial footage be automatically
georeferenced, i.e., registered onto a digital elevation model.

To date, thermal image geocorrection for wildfire research
has required manual identification of ground control points
(GCPs) [2], [3], [6], [7], [9], [23], [24]. This approach is easy
to implement and allows achieving high-accuracy results un-
der certain conditions, but it has very important limitations in
practice.

First, identifying and annotating GCPs in every video frame is
extremely time consuming. A minimum of four GCP pairs are
needed to estimate the projective transformation between two
planes, and higher amounts of GCPs are required when remote
sensing information must be projected onto nonflat terrain.
Moreover, manual identification and annotation of GCPs are
prone to errors in feature detection, localization, and matching.
Resulting inaccuracies are hard to quantify and minimize due
to the small amounts of feature matches typically available,
which prevent the application of statistical methods. While the
existence of these errors encourages the annotation of additional
GCPs, reaching a sufficient amount of point matches is usually
unfeasible.

Furthermore, the user time required for point annotation
imposes a limit to the maximum temporal resolution at which
fire behavior can be studied. Modern TIR imaging sensors are
capable of recording high-frequency video with high spatial res-
olution and low hardware requirements [25]. There are a number
of fire dynamics aspects that could be studied if high-frequency
infrared (IR) video could be correctly georegistered [26]. How-
ever, due to the cost of GCP annotation, the video sampling fre-
quency is usually reduced to some value between 1 and 0.1 Hz,
which is around 30–300 times lower than the technical limit.

Finally, limiting the information used for registration to a few
points per image may result in further unexpected data losses.
Several GCPs may stop being identifiable for various reasons,
and this may prevent image registration. For example, GCPs may
disappear from the field of view or they may become occluded by
trees, buildings, or other aircraft. Similarly, a common practice
in experimental controlled burns consists of using fire beacons
as GCPs, but this approach may fail if beacons burn or blow out.

Due to these limitations, image registration has recently been
identified as one of the most significant sources of uncertainty
when computing fire behavior properties from aerial IR im-
agery [27], and several authors have reported significant chal-
lenges when registering, stabilizing, and georeferencing aerial
TIR video of active fires [6], [7], [20].

A promising strategy to solve existing limitations consists
of automated video stabilization. Most of the time that remote
sensing equipment is deployed during an active wildfire, the fire
is recorded from a quasi-static overhead position. A nominal
vantage point is selected and a camera is set in that position
either in a tower or on hovering rotary-wing aircraft. With
this configuration, and if the camera was totally still, GCP
annotation in one single reference frame would suffice to geo-
reference the complete video sequence. However, the wildfire
environment is characterized by highly turbulent winds fostered

by the interaction among atmospheric wind, topography, and
buoyancy originated from the fire [28]–[33]. This environment
generates undesired displacements in any rotary-wing aircraft
hovering near the fire [7], with small UAS being especially
affected by aerodynamic turbulence. Mechanical stabilization
systems can reduce camera movement, but they do not cancel
it completely [25]. Video jitter has been observed even when
installing IR cameras on ground boom lifts and towers [24]. On
the contrary, if camera movement can be estimated and canceled
using software-based solutions, resulting still video becomes
significantly easier to analyze both qualitatively and through
computer vision algorithms. Stable footage can be georefer-
enced using a single geometric transformation, and the optimum
transformation can be robustly estimated by combining GCPs
visible at different times.

Video stabilization is a rather mature field in other remote
sensing areas, and it has successfully been used in combination
with GCPs to improve the geocorrection accuracy of visible
imagery [34]. However, to the best of our knowledge, this
approach has not yet been extended to thermal IR imagery of fire.
Stabilization of fire imagery acquired in the TIR range entails
additional challenges due to limitations in image resolution
and a lower level of detail. Because of the high-temperature
measurement ranges required to observe fire, cold details in
the image background are rarely visible in aerial TIR imagery.
Furthermore, the fire itself, which is sometimes the only visible
item, is highly dynamic, and this hinders the identification of
persistent features in consecutive frames. Some authors have
proposed the use of phase correlation in the Fourier–Mellin
space for the registration of nonfire aerial TIR imagery [35].
However, we are not aware of any system capable of solving this
issue in a wildfire scenario. In fact, recent review articles have
concluded that in the field of forest fire monitoring, a simple and
low-cost image processing approach that can be used for image
motion calculation and elimination is still in high demand [23].

Therefore, this article presents a video stabilization algorithm
specifically designed for aerial TIR imagery of wildfire. First,
Section II describes the type of data to be processed. Afterward,
Section III details the study design we followed, the registration
methods that were considered, and the proposed video stabi-
lization algorithm. Section IV presents and discusses the results
of this study, which include data about registration accuracy,
method robustness, and video stabilization performance, plus a
demonstration of algorithm deployment in three real study cases.
Finally, Section V summarizes the contributions of this article
and future work.

II. DATA

The TIR video used in this study was recorded during nine
field experiments conducted between 2008 and 2018. Remote
sensing data were acquired by different teams, using dissimi-
lar setups and equipment. These nine fires were selected as a
representative sample of the varied fire behavior and imaging
conditions present in wildfire research.

In all scenarios, experimental fires propagated on flat terrain
and fire evolution were recorded from vantage points using TIR
cameras. Still, the scenarios showed significant differences in
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TABLE I
CAMERA PROPERTIES AND PARAMETERS USED TO RECORD THE ANALYZED FOOTAGE

the experimental setup, fuels, and spatial scale. This variability
affected the observed fire behavior. Appreciable differences
occurred in flaming activity and ROS, both of which have an
important impact on image content as well as its evolution
with time. Moreover, the distance between camera and fire
ranged from a few to more than a hundred meters. Different
camera models, provided by various manufacturers, were used to
monitor fire behavior from different perspectives. The disparity
in camera resolution, together with variations in their distance
to fire, contributed to inhomogeneous pixel sizes. Moreover,
although all cameras worked in the same spectral range (long-
wave IR), radiance measurement ranges also differed among
tests. The radiance measurement range selected to record a TIR
video sequence has a critical impact on the amount of image de-
tail. Background objects with brightness temperature below the
selected measurement range are invisible, whereas zones with
a brightness temperature above the selected range are likely to
cause sensor saturation. Both situations are highly detrimental to
image processing techniques. Finally, video recording frequency
varied between 1 and 32 frames per second.

The experiment in Scenario 1 was conducted in 2018 at the
Centre for Technological Risk Studies (Universitat Politècnica
de Catalunya—BarcelonaTech). A homogeneous bed of straw
was burned over a 1.5 × 3 m combustion table to reproduce
fire spread on a flat horizontal surface with no wind. Scenarios
2 and 3 were recorded at the Tall Timbers Research Station in
Tallahassee, FL, USA, in April 2017. These video sequences
were acquired during a set of small-scale experimental burns
on mixed rough/long leaf pine fuels. Scenarios 4, 5, and 6
correspond to tests S3, S4, and S5, respectively, pertaining to
the Prescribed Fire Combustion and Atmospheric Dynamics
Research Experiment (RxCADRE, FL, USA, 2012) [24], [36].
Burned vegetation was a mix of grass and shrubs, predominantly
turkey oak. Finally, Scenarios 7, 8, and 9 were recorded during
another set of large-scale field experiments conducted in the
Ngarkat Conservation Park, South Australia [11], [37]. These
three video sequences correspond to a series of controlled burns
in horizontal mallee-heath shrub plots with areas ranging from
4 to 25 ha.

Despite the significant variability among test scenarios, video
sequences 1–6 have an important property in common: they
were all acquired from stable vantage positions with a clear
overhead view of the fire. This property was exploited here for
algorithm development and validation: the application of known

synthetic vibrations to the stable video facilitated the quantitative
measurement of image registration performance and, therefore,
the comparison of different registration methods.

Conversely, video sequences 7–9 were recorded from a hover-
ing helicopter under circumstances similar to an actual wildfire.
These datasets were used for the demonstration of the proposed
video stabilization algorithm in independent footage with real
jitter.

Sample frames from each video sequence are displayed in
Fig. 1, while Table I summarizes the most relevant technical
information about the deployed thermal cameras.

III. METHODOLOGY

Video stabilization software is primarily based on image
registration. Owing to the wide range of applications of image
registration and the variety of image types available, a good num-
ber of registration methods have been developed [38], [39], some
of them specifically designed for remote sensing applications
(e.g., [40]–[44]). However, to date, there has been no detailed
analysis of image registration in wildfire monitoring scenarios.
As the first step to build our video stabilization algorithm, we
conducted a comparative analysis of existing image registration
techniques in order to assess their performance on wildfire
TIR imagery. Subsequently, we selected the best-performing
method and designed additional pre- and postprocessing op-
erations to optimize the accuracy and robustness of the algo-
rithm. Section III-A summarizes the tested registration methods,
Section III-B describes the study design, and Section III-C
details the implementation of our complete video stabilization
algorithm.

A. Comparative Analysis of Image Registration Methods

Despite the wide variety of existing image registration meth-
ods, the majority of the algorithms follow one of three ap-
proaches: image similarity maximization, phase correlation, or
feature matching. In this study, we included some of the most
widespread methods within each of these categories.

1) Image Similarity Metrics and the Optimization Problem:
Assuming that two images are correctly aligned when their
similarity is maximum, registration may be understood as an
optimization problem with a certain similarity metric as a cost
function. This constitutes the most generic approach with barely
any need for a priori information.
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Fig. 1. Sample frames of the nine video sequences used in this study. Length values indicate approximate ground distances. (a) Scenario 1. (b) Scenario 2.
(c) Scenario 3. (d) Scenario 4. (e) Scenario 5. (f) Scenario 6. (g) Scenario 7. (h) Scenario 8. (i) Scenario 9.

Image similarity can be estimated using various metrics,
and how image similarity is measured has implications for
registration algorithms. After a comparative analysis of various
popular alternatives, our previous results encouraged the use of
mutual information (MI) as a similarity metric for TIR image
registration in wildfire contexts [45].

MI is a widely adopted metric to measure image similarity
during registration problems in remote sensing applications [41],
[43]. It has favorable properties for image similarity measure-
ment because it does not rely on any assumption about the
nature of the images or their relation. Therefore, MI provides
precise and reliable information about how much information
two images share even if they were acquired by different sensors
or under dissimilar lighting conditions. Furthermore, MI has
showed sharper peaks than cross correlation at the point of
correct alignment [46] and higher robustness in front of Gaussian
noise and nonlinear intensity relationships between images [43].

Nevertheless, MI itself is a similarity measure, not a registra-
tion technique. Similarity information is not accompanied by an
estimation of the optimal transformation that should be applied
to register two images. This limitation has traditionally made it
challenging to find global optima [41]. Although some authors
have addressed this issue [41], [47] and proposed mathematical
and computational models that facilitate and accelerate conver-
gence [43], poor convergence and high computation cost remain

two critical limitations of MI-based registration algorithms. At
present, there is active research aimed at improving the MI
maximization scheme [48].

2) Phase Correlation and the Fourier–Mellin Transform:
Phase correlation was first proposed in [49] as an algorithm
to align two images that were shifted with respect to each
other. Like similarity maximization algorithms, it uses all in-
tensity information contained in the image. The main difference
between phase correlation and other intensity-based methods
resides in the mathematical space used for image comparison.
By studying images in the frequency domain, phase correlation
takes advantage of the Fourier shift theorem, which states that a
displacement in the space domain is transformed into a change in
phase in the frequency domain. Based on this property, relative
translation between two identical images can be found uniquely
without the need for an optimization algorithm.

However, the phase correlation method is valid only for pure
translations. In order to accommodate rotations and changes in
scale, Reddy and Chatterji [50] proposed a revised algorithm that
combines phase correlation with a log-polar transformation. The
use of polar coordinates allows handling rotations as translations
of the independent variable, while expressing the signal modulus
in logarithmic scale also converts scaling to a translational
movement. These properties allow applying the Fourier shift
theorem in the different spaces in order to sequentially retrieve



VALERO et al.: THERMAL INFRARED VIDEO STABILIZATION FOR AERIAL MONITORING OF ACTIVE WILDFIRES 2821

rotation, scaling, and translation. Complete details about the
mathematical algorithm and its original implementation can be
found in [50].

The log-polar version of the Fourier transform, also known as
Fourier–Mellin transform, has been extensively used in image
registration, video stabilization, and global motion estimation
problems [51]–[55]. Moreover, its original formulation has been
revised and coupled with additional algorithms to increase its
robustness and reduce its computational requirements [53].
Therefore, registration based on phase correlation and the
Fourier–Mellin transform was included in our comparative
study.

3) Feature-Based Methods: In order to reduce the cost of
a full 2-D intensity comparison between two images, it is a
common approach to limit the comparison to a number of
sampled features. Usually, small local features that are invariant
to scale and rotation are sought and characterized by a combina-
tion of descriptors that allow their comparison. Because feature
description is highly dependent on the type of identified features,
detectors and descriptors are usually coupled together. Widely
used feature descriptors include the scale-invariant feature trans-
form [56], speed-up robust features (SURF) [57], maximally
stable extremal regions (MSER) [58], [59], and KAZE [60].

Features detected in the images to be registered are then
compared and matched. However, estimation of the correct
geometric transformation from a set of feature matches might
not be trivial. Due to the nature of feature detection methods,
the amount of mismatches is usually sufficient to mislead least-
squares estimators [61]. A more robust approach that has been
widely employed with success relies on random sampling, with
the most famous algorithm of this type being the random sample
consensus (RANSAC) [62]. RANSAC is an iterative algorithm
in which certain hypotheses are generated from reduced sample
subsets and subsequently verified with the complete dataset.
After its original publication in 1981, several revisions and
computational optimizations have been proposed [61], [63],
[64].

Feature matching has been successfully used in medium-
altitude UAS monitoring systems. Li et al. [65] used edge
detectors for precise image registration after a previous coarse
motion estimation step. However, feature selection, description,
and matching vary greatly depending on the image nature, which
prevents the design of a universal feature-based algorithm. Fire
TIR imagery poses important challenges for feature-based reg-
istration as points, edges, and corners are not easily identifiable
in TIR fire imagery. When they are, they usually correspond to
flames, which are highly dynamic. Therefore, SURF, KAZE,
and MSER feature detectors and descriptors were included in
this study because each of them is built upon different principles
and low-level image characteristics.

B. Study Design

In order to assess the performance of different image reg-
istration approaches in a wildfire scenario, we performed a
systematic comparative study in a controlled environment. Reg-
istration accuracy was analyzed through the application of
synthetic movement to still TIR video. One hundred frames

were randomly sampled from each of the video sequences 1–6.
Afterward, random similarity transformations were applied to
the selected frames. Maximum perturbation ranges were set to
±20% of frame width and height for horizontal and vertical
translation, respectively, ±25◦ for rotation and ±20% for scal-
ing. After perturbation, the transformed frames were registered
back to their original position using each of the tested registration
algorithms.

Under normal working conditions, video stabilization is to
be performed by registering each video frame with a previous,
i.e., different, frame. However, it is difficult to conduct a generic
analysis of registration performance under such realistic opera-
tion conditions as method response to the recording frequency
may vary widely among registration strategies.

In order to account for this, we compared the performance
of selected registration algorithms under two different sets of
conditions. First, we registered each perturbed frame back to its
original position using the same original frame as a reference
for registration. Registering each frame with itself instead of a
previous frame allowed decoupling the algorithm response to
camera movement and recording frequency. We refer to this
approach as idealized working conditions. Afterward, we tested
the same registration methods under realistic working conditions
by sampling video frames at 1 Hz and registering each perturbed
frame with a previous stable frame, sampled 1 s, before the
perturbed frame.

Registration accuracy was evaluated twofold. On the one
hand, by comparing retrieved translations, rotations, and scaling
with the originally applied transformations. On the other, by
computing similarity between the output registered frame and
the original—target—frame. Image similarity was measured
using 2-D correlation as recommended in [45]. Each registered
frame was evaluated using as reference the stable version of
the same frame, both under idealized and realistic working
conditions. Therefore, the maximum achievable correlation was
always exactly 1. Furthermore, computation times required by
each registration algorithm were measured for every frame
and averaged over the complete study sample. These times
were measured on a laptop computer equipped with an Intel
i7-4700MQ CPU and 8.0 GB of RAM.

In addition to registration accuracy, robustness was assessed
for feature-based methods. Feature matching registration algo-
rithms are based on the detection of relevant features in every
frame of a video sequence and the pairing of these features
in consecutive frames. Having a sufficient number of feature
matches that conform to a single transformation is essential to
obtain a reliable estimation of the relative movement between
two images. Therefore, it is generally desirable to use a com-
bination of feature detectors and descriptors that provides large
amounts of point matches and a high inlier/outlier ratio.

C. Video Stabilization Algorithm

Based on the results obtained during the comparative analysis
(see Sections IV-A and IV-B), the KAZE feature detection and
description algorithms [60] were selected for interframe image
registration. This section describes how KAZE feature matching
was incorporated into a broader algorithm for video stabilization.



2822 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

First, we added an image preprocessing step to facilitate
feature identification. Our approach is based on histogram equal-
ization, whose original implementation was adapted to account
for the specificities of fire TIR imagery. In wildfire aerial remote
sensing, it is frequent to use high-temperature measurement
ranges in order to avoid sensor saturation. This requirement
limits the amount of cold details available in the image. Specif-
ically, if the lower end of the temperature measurement range
falls above the brightness temperature of the image background,
the intensity value of all background pixels is set to the lower
limit of the camera measurement range. Consequently, any back-
ground detail is lost. This fact has serious implications not only
for image registration and georeferencing but also for contrast
enhancement. If the amount of foreground pixels is too small in
comparison with the size of the background, histogram equal-
ization may fail completely. Such failure occurred in scenarios
4 and 5 of our study.

We worked around this limitation by applying the histogram
equalization methodology only to the bounding box of the image
foreground, which usually includes a balanced combination
of foreground and background pixels. This approach was im-
plemented following three steps: first, the image foreground
was identified through pixel intensity segmentation; second,
histogram equalization was applied to the minimum rectangular
bounding box containing the selected foreground; finally, the
processed foreground was merged back into the original back-
ground in order to maintain frame size.

In addition to preprocessing, we propose the introduction of
a filtering postprocessing step that increases the robustness of
interframe registration. Regardless of how reliably image fea-
tures can be detected and matched, sporadic registration failure
is unavoidable. Extreme camera movements, vision occlusion by
smoke or objects, and hardware malfunction are some examples
of the events that may produce faulty frames. Invalid frames
should neither be registered nor used as reference to register
other frames.

In order to account for faulty frames and prevent them from
affecting the overall stabilization performance, we propose the
use of a sliding multireference framework (see Fig. 2). A fre-
quent approach for video stabilization consists of registering
each new frame with the latest that has already been stabilized.
This approach provides high registration accuracy and is adapt-
able to changes in image content. However, it is not robust
against the presence of faulty frames, especially if these are
frequent. Instead, we suggest registering every new frame to the
latest five stabilized frames, obtaining the five corresponding
transformations that would map the new frame to the reference
and using the median of these transformations for registration.

The mathematical representation of 2-D similarity transfor-
mations is 3 × 3 matrices. Therefore, the direct implementation
of the proposed approach would consist of computing median
values for every element in these matrices. However, this would
result in more general transformation types not complying with
similarity specifications. In order to keep a meaningful descrip-
tion of the applied registration, we suggest applying median
filtering individually to the different movement components.
Therefore, our algorithm retrieves the estimated translation,
rotation, and scale for all five reference frames, computes their

median values, and builds a new registration matrix with the
resulting coefficients.

IV. RESULTS AND DISCUSSION

A. Registration Accuracy

Figs. 3 and 4 summarize the differences between actual and
estimated image misalignment in the form of pseudo-Bland–
Altman plots. Bland–Altman plots are a common tool used to
compare the accuracy of two methods that were designed to
measure the same magnitude. This is accomplished by graphi-
cally displaying measurement differences between both methods
along the complete range of measured samples. When ground
truth sample values are unknown, their value is estimated as
the average of measurements provided by both methods. Ad-
ditionally, bias and limits of agreement are superimposed on
the scatter plot. Bias is computed as the average difference,
whereas limits of agreement are estimated as bias plus and minus
1.96× the difference standard deviation [66]. Both bias and
limits of agreement are accompanied by their respective 95%
confidence intervals, which were computed here using the ap-
proximated estimations proposed in [67]. Confidence intervals
are not always computed in the literature when using Bland–
Altman plots, although they have been considered essential by
some authors [68]. Because in our case ground truth data are
known, Figs. 3 and 4 display pseudo-Bland–Altman plots where
horizontal axes contain ground truth values instead of method
output average.

Tables II and III summarize mean-squared errors in the es-
timation of individual motion components together with the
global registration quality achieved by each method. These
results are in agreement with Figs. 3 and 4 and show that the
best accuracy was achieved by feature matching algorithms, es-
pecially when using the KAZE detector and descriptor together.

Phase correlation systematically overestimated translations
(positive bias in pseudo-Bland–Altman plots, Figs. 3 and 4) and
reached errors exceeding 100% of frame dimensions. MI-based
registration showed better accuracy, especially for translations,
although it was seriously affected by scale and errors remained
high in general. Furthermore, both MI optimization and phase
correlation tended to fail completely at moderately high rotation
angles.

In addition to KAZE, other feature-based algorithms achieved
satisfactory performance. SURF feature matching proved espe-
cially capable of estimating rotation with high accuracy under
idealized working conditions (MSErot = 0.0040). Nonetheless,
Fig. 3 suggests that SURF successful performance was lim-
ited to light rotations. The accuracy of SURF rotation estima-
tion diminished considerably when rotation angles approached
±20◦. Similar error behavior was observed for MSER+SURF
and MSER+KAZE combinations. Furthermore, these errors
followed linear tendencies as observed in rotation plots of
Figs. 3 and 4. This fact indicates that absolute errors in rota-
tion estimation coincided with the real rotation value, which
suggests that such errors were caused by complete registration
failure. Although more subtle, similar failure tendencies were
observed in translation and scaling estimation for SURF+SURF,
MSER+SURF, and MSER+KAZE combinations. Conversely,
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Fig. 2. Workflow of the proposed multireference stabilization algorithm.

KAZE algorithms proved robust in front of all applied perturba-
tions. Finally, SURF suffered a larger decrease in performance
under realistic operation conditions than KAZE (see Tables II
and III).

Overall, feature matching approaches outperformed phase
correlation and MI optimization. Not only did they achieve
better registration accuracy but they also ran significantly faster.
Among feature-based methods, preliminary results suggested
that KAZE was the most accurate and robust. However, the
slight performance differences observed using random sampling
encouraged a more detailed analysis, which is presented in
Section IV-B. Because registration failure was likely due to the
lack of feature matches, special attention was paid to method
robustness.

B. Feature Matching Robustness

There are two dominant factors that affect the amount of inlier
image features effectively used by registration algorithms: image
content and the relative position of compared images. We studied
both by applying systematic transformations along the complete
video duration in sequences 1–6.

Instead of limiting the study to a reduced set of randomly
selected frames and perturbations, frames were evenly sampled
at 1 Hz for the complete duration of each sequence, which
allowed assessing the response of feature detection to image
content. In addition, synthetic translations, rotations, and scaling
were applied to each sampled frame sequentially and indepen-
dently to observe the effect of each type of movement. Each
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Fig. 3. Pseudo-Bland–Altman plots for motion estimation errors committed by the studied registration methods in idealized working conditions. MI = Mutual
information optimization; FM = Fourier–Mellin-based phase correlation. Motion estimation errors are plotted against ground truth, i.e., actual, movement. Camera
movement components are: translation in the X direction (Tx), translation in the Y direction (Ty), rotation (θ), and scaling. Tx and Ty were normalized using
frame width and height, respectively. Black dots correspond to individual frames randomly sampled along all studied scenarios and randomly perturbed. Red solid
lines indicate mean bias. Red dashed lines account for limits of agreement (LoA), whereas red dotted lines represent 95% confidence intervals for estimated bias
and LoA.

TABLE II
REGISTRATION ACCURACY ACHIEVED BY TESTED ALGORITHMS WITH SYNTHETIC MOVEMENT UNDER IDEALIZED CONDITIONS

Mean-squared errors (MSE) in horizontal and vertical translations were normalized using frame width and height, respectively, whereas normalized rotations
were referred to 90◦. Registration quality was defined as the similarity between the output registered frame and the ground truth target frame, measured by
means of 2-D correlation.
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Fig. 4. Pseudo-Bland–Altman plots for motion estimation errors committed by the studied registration methods in realistic working conditions. MI = Mutual
information optimization; FM = Fourier–Mellin-based phase correlation. Motion estimation errors are plotted against ground truth, i.e., actual, movement. Camera
movement components are: translation in the X direction (Tx), translation in the Y direction (Ty), rotation (θ), and scaling. Tx and Ty were normalized using
frame width and height, respectively. Black dots correspond to individual frames randomly sampled along all studied scenarios and randomly perturbed. Red solid
lines indicate mean bias. Red dashed lines account for limits of agreement (LoA), whereas red dotted lines represent 95% confidence intervals for estimated bias
and LoA.

TABLE III
REGISTRATION ACCURACY ACHIEVED BY TESTED ALGORITHMS WITH SYNTHETIC MOVEMENT UNDER REALISTIC CONDITIONS

Mean-squared errors (MSE) in horizontal and vertical translations were normalized using frame width and height, respectively, whereas normalized rotations
were referred to 90◦. Registration quality was defined as the similarity between the output registered frame and the ground truth target frame, measured by
means of 2-D correlation.
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Fig. 5. Number of feature matches used by different combinations of feature detector + feature descriptor when registering each frame with the previous one.
Values averaged along all perturbations applied to each frame.

Fig. 6. Robustness of feature-based registration algorithms and its dependence on image alignment. Values averaged along video sequences 1–6 for each
combination of feature detector + feature descriptor. (a) Number of feature matches used when registering each frame with the previous one, after outlier rejection.
(b) Percentage of frames where registration transformation could be estimated.

distorted frame was then registered back to its original position.
In this case, the previous stable frame was used as a registration
reference in order to reproduce normal working conditions.
Fig. 5 shows the variation in feature matches with image content,
whereas Fig. 6(a) displays its dependence on image alignment.
The data shown in both of these figures correspond to the number
of matches effectively used to estimate registration transforma-
tions, i.e., inliers accepted after RANSAC optimization.

In addition to the number of feature matches, there is a
second variable representative of registration robustness. If the
selected feature detectors and descriptors are not suitable for the
type of images at hand, there are occasions when not enough
features can be found, they cannot be matched across images
or those connections do not follow a unique transformation.
In such cases, the algorithm cannot suggest any registration at
all. This fact can affect the robustness of the complete video
stabilization system, which may be able to handle the existence
of missing frames only if they are scarce. We assessed this

aspect using the percentage of frames for which each method
was able to estimate a registration transformation [see Fig. 6(b)].
Note that Fig. 6(b) only evaluates the capability of providing a
transformation estimation and it does not provide information
about registration accuracy.

Fig. 5 shows a strong dependence of the number of matches on
the portion of the image filled with fire. Footage sections with
a higher amount of successful feature matches correspond to
times when fire fills a larger portion of the image. Furthermore,
the number of feature matches also depends on the alignment
between consecutive frames, as displayed in Fig. 6(a). Despite
these dependencies, results show a significantly better perfor-
mance of KAZE features in all studied cases. KAZE’s higher
robustness is also conveyed by Fig. 6(b), KAZE being the only
method capable of maintaining a success rate close to 100% at
all translations, rotations, and changes in scale.

This difference can be explained by the feature detection
improvements introduced by the KAZE algorithm. Most feature
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Fig. 7. Number of feature matches available for registration—after outlier rejection—and its variation with video recording frequency. Values averaged along
each video sequence. Each frame was registered to the previous frame, with no synthetic perturbations applied.

detectors are based on edges and corners, which are barely
visible in TIR imagery and especially in fire video. Additionally,
traditional methods such as SURF include a multiscale filtering
step in which the original image is convolved with a Gaussian
kernel of increasing standard deviation. Although this approach
allows reducing noise and detecting salient image features, it
does not respect the natural boundaries of objects. In a general
scenario, this usually results in localization accuracy reduction.
In TIR fire imagery, consequences are worse because salient
features are usually scarce and weak. Gaussian blurring can
eventually filter them out along with noise, thus losing any
opportunity for robust registration.

On the contrary, the KAZE feature descriptor uses a nonlinear
scale space based on nonlinear diffusion filtering [60]. This
approach implements locally adaptive blurring, thus allowing
the reduction of noise while retaining object boundaries. Figs. 5
and 6 demonstrate the importance of this property in TIR fire
imagery.

The strong relationship between the number of feature
matches and fire size suggests that the majority of the identified
features belong to fire. This constitutes an important aspect to
consider when analyzing video since fire is highly dynamic
and it may change substantially between frames. Among other
issues, if video recording frequency is too low, the amount
of successful feature matches may diminish dramatically. This
hypothesis was examined here and it was corroborated by the
results displayed in Fig. 7. However, unacceptable feature match
amounts are reached at exceptionally low recording frequencies
in the order of 0.1 Hz. Typical nominal recording frequencies in
field experiments are in the order of 1 Hz, while popular camera
models allow around 20–30 Hz. Results displayed in Fig. 5 and 6
were obtained at a nominal sampling frequency of 1 Hz and this
frequency provided acceptable results in all studied cases.

C. Video Stabilization Performance

The complete video stabilization algorithm described in
Section III-C was applied to video sequences 1–6 after sampling
their frames at a frequency of 1 Hz and perturbing the sampled

frames with random similarity transformations. A sampling fre-
quency of 1 Hz was selected as representative of the worst case
conditions expectable in wildfire behavior studies. At present,
there are no technical limitations that require the use of temporal
resolutions below 1 Hz. On the other hand, the algorithm perfor-
mance is expected to improve monotonically at higher sampling
frequencies.

Enough feature matches for registration were found in 92.7%
of the total amount of processed frames. Registration accuracy
was assessed through the comparison of actual and retrieved
image perturbations. Mean-squared errors in normalized trans-
lations, rotations, and scaling were below 1% (see Table IV).
Fig. 8 shows the registration accuracy achieved for each frame
along each video sequence. In addition to measuring absolute
performance, Fig. 8 compares the proposed algorithm with the
baseline method that does not include image preprocessing or
the multireference scheme.

Fig. 8 demonstrates how the introduction of both the mul-
tireference framework and the improved histogram equalization
contribute toward higher registration accuracy and robustness. In
general, image histogram equalization facilitates the detection
of relevant image features, which reduces registration errors.
On the other hand, registering each frame to multiple reference
images avoids discontinuities in the processing workflow when
faulty frames appear. The downside of the multireference ap-
proach is a slight decrease in registration accuracy, probably
caused by the fact of using older reference frames (see results
for scenarios 3 and 4 in Fig. 8). Nonetheless, the overall regis-
tration quality remained acceptable and the achieved increase in
robustness outweighs this limitation.

D. Measurement of Video Stability in a Real Scenario

The performance of video stabilization algorithms is easy
to assess in controlled experiments with synthetic camera
movement. However, ground truth frame transformations are
unknown in a real application scenario. To overcome this
limitation, we propose the use of a purely image-based measure
of video stability.
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TABLE IV
AVERAGE STABILIZATION RESULTS ACHIEVED BY THE PROPOSED ALGORITHM

Mean-squared errors (MSE) in horizontal and vertical translations were normalized using frame width and height, resp.,
whereas normalized rotations were referred to 90◦.

TABLE V
VALUES OF THE PROPOSED METRIC FOR VIDEO STABILITY ESTIMATION,
COMPUTED AS THE AVERAGE IMAGE SIMILARITY BETWEEN EVERY TWO

CONSECUTIVE FRAMES

Our previous work [45] recommended the use of 2-D corre-
lation to measure the similarity between fire TIR images. Here,
we found that the 2-D correlation can also be useful to estimate
overall video stability if used to compare pairs of consecutive
frames. Table V summarizes video stability indicators computed
as the average similarity between every two consecutive frames
along each complete sequence. Stability values estimated in this
fashion are in agreement with registration quality displayed in
Fig. 8, with very good stability achieved in scenarios 1, 2, 3, and
6 and slightly poorer results in scenarios 4 and 5.

The main reason for the lower stability performance achieved
in scenarios 4 and 5 is the higher brightness temperature range
used to record those video sequences (see Table I). Because
of the brightness temperature range used in scenarios 4 and 5,
nothing with a brightness temperature below 300 ◦C is visible
in the thermal video. The lower amount of detail hinders feature
detection and matching, which results in less robust image
registration and, ultimately, poorer video stability.

E. Algorithm Deployment Demonstration

Finally, algorithm deployment was demonstrated in three
real scenarios where aerial TIR video of wildfire suffered from
significant jitter. These study cases (scenarios 7–9 in Fig. 1) cor-
respond to three field experiments recorded with a TIR camera
from a helicopter hovering over the burning plot. The camera
was operated manually by the onboard personnel, which added
manual jitter to the helicopter movement.

Video sequences 7–9 are of great value to study a number of
fire behavior aspects (see, e.g., [11], [37]). However, video insta-
bility has so far limited their analysis. In past studies, individual
frames were geocorrected manually with the help of GCPs, but
the manual approach restricted temporal resolution to 0.1 Hz.
The capability of georeferencing every frame in this footage

TABLE VI
INCREASE IN VIDEO STABILITY PROVIDED BY THE PROPOSED ALGORITHM

WHEN APPLIED TO UNSTABLE VIDEO SEQUENCES 7–9

Video stability was estimated as the average 2-D correlation between every two
consecutive frames.

automatically provides an important source of new information
relevant for the study of wildfire dynamics.

All three video sequences were successfully stabilized using
the proposed algorithm. Additionally, the new stability metric
described in Section IV-D was used to assess the result. Table VI
summarizes the increase in video stability, estimated through
the average interframe 2-D correlation, as well as the portion of
frames successfully processed.

A qualitative visualization of the stabilization results for
scenarios 7–9 is provided as supplementary materials. The first
of these videos shows a virtually perfect stabilization in scenario
7, while scenario 8 demonstrates the system robustness in the
presence of faulty video sections. However, scenarios 8 and 9
showcase a limitation of our algorithm: it is unable to cancel
projective transformations. Projective transformations appear
between consecutive frames when there is a significant change in
the camera location. During the experiments in scenarios 8 and 9,
the surveillance helicopter moved around the fire to seek a clear
view of relevant fire dynamics. Our stabilization algorithm was
affected in both cases, producing rotation artifacts in the output
video. This constitutes an important limitation that should be
addressed in the future.

It should be noted that scenarios 7–9 constitute real study
cases of wildfire behavior research during field experiments,
not real-scale wildfires. While the successful deployment of our
algorithm in these tests constitutes an important contribution to
the wildfire science community, additional work is needed to
monitor real-scale wildfire behavior. Higher burning intensity
and adverse fire weather conditions challenge the deployment
of active fire monitoring systems, for example, by preventing
aircraft from hovering at a stable position and increasing aerody-
namic turbulence. These effects are bound to intensify undesired
sensor movement, which will likely produce additional projec-
tive transformations in the video sequence. Therefore, correct
handling of projective transformations is required to extend this
work to real-scale wildfire monitoring.
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Fig. 8. Errors committed in the estimation of camera movement with the following configurations (from left to right): no preprocessing + single reference, no
preprocessing + multiple reference, proposed preprocessing + single reference, proposed preprocessing + multiple reference. S: scenario; NoP: no preprocessing;
HE-FG: foreground histogram equalization; R1: one single reference frame; R5: multireference approach using five reference frames. Errors were computed by
comparing estimated camera movement with ground truth applied perturbations. Translations were normalized using frame size. Rotations were normalized taking
90◦ as reference. Each row corresponds to a different video sequence.

V. CONCLUSION

Aerial TIR imagery can be used to measure a number of
wildland fire behavior metrics, such as ROS, FRP, and fireline
intensity [3], [8], [9]. However, significant uncertainty has been
reported in values estimated that way, mainly due to errors in the

delineations of fire front positions and limited accuracy in image
registration [27]. Until now, there existed no video stabilization
algorithm able to estimate and cancel camera motion in a wildfire
scenario, despite the strong need for such a system [23]. This
article bridges this gap by proposing a purely software-based
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robust and efficient video stabilization algorithm specifically
designed for TIR imagery of forest fires.

Our first contribution is a comparative analysis of state-of-
the-art image registration algorithms. TIR imagery of wildland
fires has a number of specific properties that challenge interframe
registration, including low spatial resolution, lack of background
detail, and rapid variability of image content. In order to address
this problem, we tested a set of popular registration methods
pertaining to three different families: maximization of image
similarity, phase correlation, and feature matching. In contrast
with what one could intuitively expect, feature-based registra-
tion methods outperformed alternatives relying on phase corre-
lation and MI maximization. Despite the dynamic nature of fire,
KAZE features [60] could be robustly detected and matched,
outliers being correctly discarded by a RANSAC algorithm.

Automated video stabilization was accomplished by embed-
ding feature-based interframe registration into a broader algo-
rithm. In particular, we introduced two additional processing
modules, developed to meet the specific requirements of TIR
fire imagery. First, a modified implementation of histogram
equalization was recommended for frame preprocessing. Sec-
ond, a sliding multireference registration framework improved
the system robustness in the presence of faulty or missing frames.
The performance of the proposed system was validated in six
scenarios with synthetic video jitter and demonstrated in three
more aerial video sequences with real camera movement.

Finally, we propose a new metric to measure IR video stability
under real operation conditions, where ground truth camera
movement is unknown. In such cases, video stability may be
estimated through interframe image similarity, measured using
2-D correlation. The application of this new metric was demon-
strated in the three unstable video sequences recorded from
a helicopter (scenarios 7–9), which were stabilized using the
algorithm described in this article.

The ability to register every frame in a TIR video sequence
to a common reference is bound to support wildfire behavior
studies. Video instability has so far restricted the analysis to a
subset of frames processed manually. Previous studies provided
results with a temporal resolution of 10−1 Hz, whereas the IR
video can typically be recorded at a frame rate of 20–50 Hz. The
automated processing of every frame will increase the amount
of information available for fire behavior analyses.

Furthermore, our multireference registration approach facili-
tates uncertainty quantification in output fire behavior metrics,
which has also been demanded by previous authors [27]. The
capability of obtaining multiple samples of the unknown trans-
formation allows estimation of the most probable value as well
as quantification of the confidence associated with the applied
transformation. Such uncertainty in the location of measured
data can then be combined with other sensor uncertainties and
propagated through the rest of processing algorithms. Similarly,
the increased availability of georeferenced data will enable
the computation of probability distributions for fire behavior
descriptors, complementing averaged values with dispersion
estimations and confidence intervals.

As future work, the described algorithm should be extended
to more general applications, including the correct estimation

of projective transformations and the analysis of TIR imagery
acquired by fixed-wing aircraft.
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