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Abstract

This paper proposes monolithic and partitioned methods to calculate the

static deformation of a membrane structure due to a given volume of pond-

ing water. The partitioned methods involve coupling of a structural solver for

membranes and a volume-conserving solver, modeling static incompressible

fluid. Two methods of this type are proposed, either using coupling iter-

ations with convergence accelerator between structural solver and volume-

conserving solver or adding the linearized fluid behavior in the structural

solver in addition to the external coupling iterations. The monolithic meth-

ods solve the system of structural equations under hydrostatic load with the

volume conservation behavior of the fluid included in the Newton-Raphson (N-

R) iterations of the structural solver. One such method was already discussed

in the literature and updates the free surface plane to conserve volume exactly

after every N-R iteration. In the second, new monolithic method, the vol-
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ume conservation constraint is added as an additional equation and solved

together with the structural equations. It was found that the partitioned

method used with a quasi-Newton convergence accelerator was very robust

but slower than the monolithic methods. On the other hand, the new mono-

lithic method proposed in this paper was found to be both computationally

efficient and robust.

Keywords: Ponding, Partitioned method, Monolithic method, Hydrostatic

load, Volume-conserving solver

1. Introduction1

Membrane structures have a unique characteristic of carrying loads by2

undergoing significant deflection. This makes them efficient in terms of ma-3

terial usage compared to the load capacity but also makes them vulnerable4

to ponding. Most light weight structures are designed with sufficient gradi-5

ent to avoid this scenario. However, there are cases where a seeding event6

such as snowfall can create a local depression to trigger ponding. Following7

the seeding event, based on the initial prestress, the type of cable supports8

and the elastic property of the membrane material, rain can lead to a stable9

or unstable water pond. The latter scenario will be fatal for the structure10

as this will result in indefinite increase of accumulating water till the struc-11

tural collapse or failure. Therefore, it is important to evaluate membrane12

structures for stability under ponding. This requires a fluid-structure (FSI)13

simulation between the membrane and the ponding water.14

Even in the stable pond scenario, if the rain is accompanied by strong15

winds, the wind flow around the structure may induce large oscillations. In16
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2011, during the Pukkelpop festival held in Kiewit (Belgium) [1], a strong17

wind interacting with ponding water led to huge swaying of the large festival18

tents, eventually resulting in the collapse of these structures. Studying such19

cases will involve fluid-structure interaction simulation between the mem-20

brane structure, the water and the wind flow. Imposing an initial condition21

with a pond on a membrane requires computation of the static deformation of22

the membrane structure under the load of a given volume of ponding water,23

which is the main motivation of the current work.24

Some of the other applications of this analysis include floating caps of oil25

storage tanks [2], and optical reflector forming using ponding loads [3]. Com-26

pared to the many other aspects of analysis on membrane structures such27

as large deformation analysis, form finding [4], wrinkling [5] and membrane28

wind interaction [6], the analysis involving ponding water on a membrane29

structure is relatively rare. What makes this type of analysis in membrane30

structures challenging is the that the shape of the ponding fluid on the struc-31

ture is unknown. Therefore, the region of fluid loading is not known before;32

in most cases the structure will be initially flat before the ponding analysis33

and so cannot contain any fluid. The deformation of the structure is depen-34

dent on structural stiffness and pressure exerted by the fluid on the structure,35

which is in turn a function of structural deformation. Therefore, the prob-36

lem of finding the deformed shape of a structure under the hydrostatic load37

exerted by a given volume of ponding fluid is very non-linear.38

In the literature, stability behavior under ponding has been extensively39

discussed by Szyszkowski and Glockner [7] where they studied ponding stabil-40

ity and deformation on spherical inflatables by solving axi-symmetric mem-41
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brane equations with the hydrostatic loads. Tuan [3] in his work focused42

on large deformations and strains of initially flat, simply supported circular43

membranes under gradually accumulated fluid. He used fourth-order Runge-44

Kutta numerical integration with an iterative finite element analysis using45

shell elements to calculate the deformation due to ponding. However, these46

studies only involved axi-symmetric geometries. A more general approach to47

calculate deformation due to hydrostatic follower forces on structures in the48

finite element framework is discussed in [8] where they linearize the static49

behaviour of incompressible fluid under gravity to obtain the symmetric load50

stiffness matrix used in the Newton-Raphson (N-R) iterations. The symme-51

try of the load stiffness matrices is also discussed in [9, 10] with the name52

elasto-gravity operator. Similar work can be also found in a more recent53

paper by Hoareau and Deü [11, 12], where a level set approach is used for54

numerical integration on the loaded surface to compute volume, nodal forces55

and load stiffness matrix, where the element faces were part of a quadratic56

hexahedral mesh. They computed the deformed shape of tanks partially filled57

with liquid by performing volume conservation in every structural N-R itera-58

tion with the added load stiffness matrix discussed in [8]. Since their primary59

interest was to study deformation of tanks under hydrostatic loads, a good60

initial geometry was available that can contain fluid, and thus relatively sim-61

pler than the ponding analysis on large membrane tents. An example closely62

related to ponding on membrane structures can be found in [13] where they63

studied stability of a hydrostatic load on a flat circular membrane. They64

used a generalized path-following scheme [14] with free surface height as a65

controlling parameter to plot the equilibrium path of the structure. In their66
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analysis, they found several limit points on the equilibrium path when the67

free surface height was used as a controlling parameter and suggested to use68

the volume of the fluid instead.69

All the studies discussed in the previous paragraph fall under the category70

of monolithic methods to compute structural deformation under hydrostatic71

loads. The current paper discusses two monolithic methods to calculate72

static deformation due to a fixed volume of ponding fluid. The first method73

which imposes conservation of volume after every structural N-R iteration,74

similar to one discussed in [11] but a faster and robust iteration scheme is75

used for volume conservation. Therefore, in this paper it is called monolithic76

method with volume conservation inside structural iterations (MVCIS). This77

is because unlike a flexible water tank which has some stiffness due to the78

geometry, the ponding analysis involving a relatively flat and flexible mem-79

brane structure will undergo large deformation during initial N-R iterations80

of the structural solver, thus requiring an efficient and robust algorithm for81

volume conservation. The main problem with this monolithic method is that82

it enforces the volume conservation constraint exactly in non-equilibrium83

shapes found during structural N-R iterations, which is unnecessary and in84

some cases it led to divergence. The second method, which is a novelty,85

solves the structural equations under hydrostatic loads with the constraint86

that the fluid volume should be equal to the target volume. The structural87

equations with the constraint are solved using N-R iterations by linearizing88

the system of equations with the constraint. This way the structural equi-89

librium equations and volume constraint are satisfied only at the end of N-R90

iterations. The proposed method therefore is called monolithic method with91
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volume conservation as constraint (MVCC). This method was found to be92

more robust than MVCIS, which will be shown later in Section 8.2.93

Clearly, implementation of the above methods is only possible if the struc-94

tural solver is accessible, but in some cases where the solver is proprietary95

software, ponding analysis can be only performed with partitioned methods.96

Therefore, in this paper we also a present partitioned methods to perform97

ponding analysis. One example of this approach is presented in the work of98

Bown et al. [15], where an in-house structural code inTENS is coupled with99

a shallow water solver in a partitioned method to analyze ponding on ten-100

sioned membrane structures. The partitioned methods for ponding analysis101

presented in this paper use a volume-conserving solver instead of a transient102

shallow water solver as used by Bown et al. The volume-conserving solver103

models the quasi-static behavior of fluid by updating the free surface, which104

is a plane perpendicular to gravity, to conserve a given volume of the ponding105

fluid. In this method the structural solver and the volume-conserving solver106

are executed sequentially inside a loop with the output of the other solver as107

its input. The volume-conserving solver takes the displacement field of the108

structure as input and updates the free surface plane to conserve the volume,109

while the structural solver uses the updated hydrostatic pressure, which de-110

pends on the new vertical height of the free surface plane to calculate a new111

displacement field, resulting in a fixed point iteration. Convergence accel-112

erators are used to speed up the convergence and stabilize the fixed point113

iteration [16, 17]. The iterations are continued till the norm of the fixed point114

residual, defined later in Section 6.1, is below certain tolerance.115

Additionally, a second partitioned method is presented in this paper in116
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which a linearized fluid behavior is added inside the structural solver to ac-117

celerate the fixed-point iterations. Technically, this is not a pure partitioned118

method, since the method involves modifying a structural solver. However,119

the method is classified as partitioned method because it still involves outer120

fixed point iterations to solve the problem. While this method loses the ad-121

vantage of code modularity, it has better convergence characteristics than122

the pure partitioned method due to the inclusion of linearized behavior of123

the fluid solver in the structural solver. However, it has one problem at the124

first coupling iteration when the fluid volume increment is large, which will125

be discussed in Section 8.2.126

The outline of the paper is as following. In Section 2, the mathematical127

formulation of the ponding problem is presented, which involves non-linear128

equilibrium equations of the membrane structure and equilibrium equations129

of the fluid. This is followed by constitutive equations for the isotropic130

plane-stress linear elastic and hyper-elastic material model. Subsequently,131

the two solver components used in the analysis are presented in Section 3:132

the structural solver with membrane elements and the volume-conserving133

solver, which models the quasi-static behavior of the fluid. The linearization134

of the fluid loading used in N-R iterations of three of the discussed methods135

is explained in Section 4. Section 5 and Section 6 discuss the monolithic and136

partitioned methods for ponding analysis, respectively. The procedure for137

integration on a discretized surface required by the various methods is pre-138

sented in Section 7. Finally, in Section 8 the proposed methods are analyzed139

and compared using numerical examples.140
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2. Mathematical formulation141

Consider a membrane structure, denoted by ∂Ωs, containing a certain142

volume Vt of incompressible fluid of specific weight γf . The fluid region is143

denoted by Ωf , which is enclosed by free surface of the fluid (∂Ωf ) and wetted144

surface of the membrane (∂Ωfs). This system has two components: fluid145

and membrane structure. To find the static deformation due to ponding, the146

equilibrium equations of both fluid and membrane have to be solved along147

with the constraint that the volume of fluid is equal to Vt.148

Figure 1: Ponding on a membrane structure.

2.1. Fluid equations149

Under static conditions, the free surface of the fluid is always flat and150

perpendicular to gravity. For the sake of brevity, we assume that gravity is151

along negative z-direction and therefore ez is the unit normal at any point on152

the free surface. Additionally, the pressure p at any point on the free surface153
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is zero (relative to atmosphere). This boundary condition with the fluid154

equilibrium equation at static conditions, given in Eq.(1) and the constraint155

that the volume of fluid region Ωf should be equal to Vt, forms the system156

of equations for the fluid at rest,157

∇p = −γfez ∀x ∈ Ωf (1)

p = 0 ∀x ∈ ∂Ωf (2)∫
Ωf

dV = Vt. (3)

However, the system of equations Eqs. (1), (2) and (3) requires volume158

discretization of Ωf . This is avoided by expressing it in terms of surface159

quantities. To that end, integrating Eq.(1) with Eq.(2) as boundary condition160

results in the familiar hydrostatic loading on the wetted surface, p = −γf (z−161

zf ) with z = x ·ez, ∀x ∈ ∂Ωfs and zf as the z-coordinate of the free surface.162

Furthermore, with the absence of shear stress under hydrostatic condition the163

traction at the wetted surface can be written in terms of pressure and the164

unit normal n̄ as t = pn̄. For the membrane surface which is not in contact165

with the fluid (∂Ωs \ ∂Ωfs), the pressure relative to the atmosphere is zero.166

Consequently, in the absence of any other external load the traction is equal167

to the zero vector in ∂Ωs \∂Ωfs. The volume conservation constraint Eq. (3)168

can also be expressed in terms of a surface integral of infinitesimal vertical169

volume elements dV = (z − zf )ez · n̄ dS, which results in the following set170

of equations for the fluid in terms of surface quantities,171
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t = −γf (z − zf )n̄ ∀x ∈ ∂Ωfs, (4)

t = 0 ∀x ∈ ∂Ωs \ ∂Ωfs,∫
∂Ωfs

(z − zf ) ez · n̄ dS = Vt, (5)

2.2. Structural equations172

The membrane structure shown in Fig. 1 is in static equilibrium with the173

ponding fluid. Therefore, by applying the principle of virtual work for the174

structure in its current configuration we can write,175

∫
∂Ωs

t σ : δε dS︸ ︷︷ ︸
δWint

−
∫
∂Ωs

t · δu dS︸ ︷︷ ︸
δWext

= 0, ∀δu ∈ Cu (6)

where σ is the Cauchy stress tensor and ε = 1
2

(
∇xδu+∇T

xδu
)

is the virtual176

Eulerian strain tensor, with ∇x• = ∂•
∂x

, δu as virtual displacement field and177

Cu is the kinematically admissible space of smooth enough functions. The178

thickness of the membrane is denoted by t, which need not be constant. The179

equation has two terms: the internal virtual work (δWint), and the exter-180

nal virtual work (δWext). In the total Lagrangian formulation, the internal181

virtual work is written in the reference configuration as,182

δWint =

∫
∂Ω0

s

t S : δE dS0, (7)

where S is the second Piola-Kirchhoff stress tensor and δE = 1
2

(
δF TF + F T δF

)
183

is the virtual Green-Lagrange strain tensor, with δF = ∇Xδu and F =184

10



∇Xu. The operator ∇X• = ∂•
∂X

is defined as the gradient of a field with185

respect to the material coordinate X. In a typical displacement based ap-186

proach [18], the internal and external work are expressed in terms of the187

displacement field as unknown. To that end, the stress tensor at any point188

is expressed as a function of the strain tensor which is in turn written as a189

function of the displacement field using the strain definition above.190

The external virtual work is generally written in terms of the quantities191

in the current configuration which depends on the traction field t from the192

ponding fluid resulting in the final expression of the principle of virtual work193

that needs to be satisfied at equilibrium,194 ∫
∂Ω0

s

t S : δE dS0 −
∫
∂Ωs

t · δu dS = 0. (8)

2.3. Constitutive models195

The relation between stress and strain tensor is described using the con-196

stitutive model or material law. In the numerical example presented in the197

paper, two types of hyper-elastic materials are used: the Saint-Venant Kirch-198

hoff material law, given in Eq. (9) and the incompressible Mooney-Rivlin199

material law, given in Eq. (10). The former material law is applicable for200

large displacements and small strains cases, while the latter is applicable for201

large displacements and finite strains [19].202

SSV = 2µE + λtr(E)I, (9)
203

SMR = βC−1 + 2
∂ΨMR(C)

∂C
, (10)

where the subscripts SV and MR stand for Saint-Venant Kirchhoff and204

Mooney Rivlin, respectively. As clear from Eq.(9), the relation between the205
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2nd Piola Kirchhoff and the Green-Lagrange strain tensor E = 1
2

(
F TF − I

)
206

is linear. The two constants appearing in Eq. (9) are called Lamé constants207

which are related to the material properties, Young’s modulus E and Pois-208

son’s ratio ν as209

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
. (11)

The relation between stress and strain tensor for the incompressible Mooney-210

Rivlin material on the other hand is non-linear. The expression of the 2nd211

Piola-Kirchhoff stress tensor is given in terms of the Cauchy-Green strain212

tensor (C = F TF ), strain energy function ΨMR and Lagrange multiplier β.213

The most commonly used expression of the strain energy function is written214

in terms of the first invariant (I1) and second invariant (I2) of the Cauchy-215

Green strain tensor,216

ΨMR = c1(I1 − 3) + c2(I2 − 3), (12)

where I1 = tr(C) and I2 = 1
2

(
I2

1 − tr(CTC)
)

with material constants c1 and217

c2 [20].218

For the plane stress case the 2nd Piola-Kirchhoff stress tensor can be fur-219

ther simplified because the components along the thickness direction vanish,220

leading to a form:221

S =


S11 S12 0

S21 S22 0

0 0 0

 , (13)

where direction 3 is normal to the membrane surface (thickness direction).222
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Moreover, by using the small thickness assumption of the membrane as com-223

pared to the other spatial dimensions, the off-diagonal components along the224

thickness direction can be neglected. As a result, the Cauchy-Green tensor225

and Green-Lagrange strain tensor have the following simplified forms:226

C =


C11 C12 0

C21 C22 0

0 0 C33

 ,E =


E11 E12 0

E21 E22 0

0 0 E33

 . (14)

Using the condition S33 = 0, we get the linear stress-strain relation for227

Saint-Venant Kirchhoff material expressed in Voigt notation,228


S11

S22

S12

 =
E

1− ν2


1 ν 0

ν 1 0

0 0 1−ν
2




E11

E22

2E12

 . (15)

Similarly, for the case of the Mooney-Rivlin material law the value of229

β is determined by using the plane stress condition S33 = 0 and using the230

Cauchy-Green tensor of the form given in Eq. (14). When the obtained value231

of β is substituted in Eq. (10), we get the following relation between stress232

and strain:233
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
S11

S22

S12

 =2c1


1

1

0

− 2c1

(C11C22 − C2
12)2


C22

C11

−C12

+
2c2

C11C22 − C2
12


1

1

0



+ 2c2

(
1−

(
C11C22 − C2

12

)2
(C11 + C22)

)
C22

C11

−C12

 . (16)

3. Solver components234

The deformed shape of the membrane is found when the virtual work235

equation in Eq. (8) is satisfied together with the fluid equations given in236

Eq. (4) and (5). The virtual work equation is solved using a structural solver237

with the load boundary condition from Eq. (4), while the volume conservation238

constraint is implemented using a volume-conserving solver. Three of the four239

methods discussed in this paper find the solution by coupling these solvers to240

determine the deformed shape. The only exception is the second monolithic241

method (MVCC), where the structural equations are modified to include the242

volume conservation constraint without using the volume conservation solver,243

which will be discussed in Section 5.2.244

3.1. Structural solver245

In this section we will briefly discuss how the structural solver solves the246

virtual work equation Eq. (8), given a traction field t from the ponding fluid.247

Using the stress-strain relation given in Eqs. (15) and (16) and the strain248

definition discussed before, we can express the internal virtual work in terms249

14



of only the displacement field as unknown. The resultant expression will be250

non-linear for large displacements, regardless of the use of linear or non-linear251

material law, as C and E are non-linear functions of the displacement field.252

Moreover, if the traction or the resultant external forces on the structure253

depends on the deformed state, the external virtual work will be also a non-254

linear function of u. In fact, the hydrostatic forces on the structure due to255

ponding is one such example of so-called follower forces.256

The finite element discretization of the internal and external virtual work257

gives a non-linear residual equation, Eq. (17) as a function of the nodal dis-258

placement vector û, where the displacement and virtual displacement field259

are approximated using the shape function matrix N as u ≈ uh = Nû and260

δu ≈ δuh = Nδû, respectively. The superscript •h represents the approx-261

imation of a given field with finite element discretization and the accent •̂262

represents the associated nodal vector for the approximation. The resultant263

residual equation from the discretized virtual work expression can be written264

as,265

f̂ext(û)− f̂int(û) = 0, (17)

where f̂int is the internal nodal forces and f̂ext is the external nodal forces.266

The structural solver used in the current work is implemented in an open-267

source FEM code called KRATOS [21], which uses the N-R algorithm to268

solve the vector equation given in Eq. (17), where at every iteration we solve269

a linear system270

15



Ktan∆û = r̂ (18)

to obtain the update in the nodal displacements ∆û, where r̂ = f̂ext − f̂int271

is the out of balance force vector or residual vector, and Ktan is the tangent272

stiffness matrix, where273

Ktan = Kmem −Kl. (19)

The matrix Kmem is the familiar global tangent stiffness matrix from274

membrane elements, interested readers can refer to [22] for more details. The275

second matrix in Eq. (19) is called the load stiffness matrix, which depends276

on the type of follower load [8, 23]. In the current paper, the follower tangent277

stiffness matrixKl depends on the type of approach, whether it is partitioned278

or monolithic.279

3.2. Volume-conserving solver280

The ponding fluid on membrane structures (generally water) is always281

incompressible and therefore the volume of the ponding fluid is always con-282

served. Moreover, under static conditions the free surface of the fluid is flat283

and perpendicular to gravity i.e. normal to the z-direction in Fig. 1. These284

properties of the ponding fluid under static conditions are used to update the285

free surface position using an algorithm called the volume-conserving solver.286

The volume-conserving solver consists of two components: a volume calcu-287

lation algorithm and an iterative algorithm to conserve a given volume by288

moving the flat and horizontal free surface vertically. The volume of the fluid289

enclosed by ∂Ωf ∪ ∂Ωfs in Fig. 1 can be calculated using the relation,290
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Vf =

∫
∂Ωfs

(z − zf ) ez · n̄ dS (20)

as already discussed in Section 2.1, and its derivative with respect to zf ,291

∂Vf
∂zf

=

∫
∂Ωfs

−ez · n̄ dS = Af , (21)

where Af is the area of the free surface. In the current work, the leap-292

frogging Newton’s method is used for conserving a given volume. This293

method is discussed in detail in [24]. It consists of a Newton step followed294

by a pseudo secant step, as shown in Fig. 2. The main advantage of this295

method is that it has cubic convergence at a simple root with computa-296

tional efficiency comparable to that of Newton’s method. Newton’s method297

and leap-frogging Newton method were tested for volume conservation with298

some axi-symmetric geometries and it was found that the leap-frogging New-299

ton was much more robust and had faster convergence rate than Newton’s300

method. Hence, it was chosen over the other. The equations used for iter-301

ation to conserve volume are given in Eqs. (22) and (23), with the function302

f(zmf ) being the volume residual (V m
f − Vt), and f ′(zmf ) its derivative with303

respect to zf , where the superscript •m denotes the iteration number and the304

accent •̌ is used to specify quantities at the intermediate position. It should305

be noted that the denominator in Eq. (23) can cause rounding-off problems,306

as it could become very small quickly. To avoid this problem, using the307

machine precision npre we add another stopping criteria for the iterations,308

|f(zmf )− f(žmf )| = |V m
f − V̌ m

f | < 10npre−1.309
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Figure 2: Leap froging Newton’s algorithm adopted from [24], with z†f as the root of the

function f(zf ).

žmf = zmf −
f(zmf )

f ′(zmf )
(22)

zm+1
f = zmf −

f(zmf )2

f ′(zmf )
(
f(zmf )− f(žmf )

) (23)

Using Eqs. (20)-(23) we can write an algorithm for the volume-conserving310

solver. As already discussed, the leap-frogging Newton algorithm is robust311

and has good convergence characteristics. However, for certain cases it would312

update the free surface position below the wetted surface. As a result, the313

algorithm would fail to update the free surface in the next step since the314

calculated volume and free surface area would be zero. One example of such315

a case is shown in Fig. 3, where the intermediate position of the free surface316

plane after the nth iteration goes below the membrane surface i.e. žmf < z∗f317

or ∆žmf < z∗f − zf with Vf (z
∗
f ) = 0. As evident from Fig. 3a the limit value318
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of the slope is given by f ′min < (V m
f − 0)/(zmf − z∗f ). Therefore, the standard319

leap-frogging Newton algorithm is modified to limit the slope to avoid such320

cases and the final proposed algorithm can be found in Algorithm 1.321

Algorithm 1 Modified Leap-frogging Newton’s method for volume conser-

vation.
1: m = 0

2: while
∣∣∣Vm

f −Vt
Vt

∣∣∣ > ε and |V m
f − V̌ m

f | < 10npre−1 and m < mmax do

3: Calculate f(zmf ) = V m
f − Vt

4: Calculate f ′(zmf ) = Amf

5: if ∆žm+1
f < (z∗f − zmf ) then

6: Af = V m
f /(z

m
f − z∗f )

7: end if

8: Calculate žmf using Eq. (22). Move the plane to žmf .

9: Calculate f(žmf ) = V̌ m
f − Vt.

10: Calculate zm+1
f using Eq. (23). Move the plane to zm+1

f .

11: m = m+ 1

12: end while
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(a) (b)

Figure 3: An example where the standard leap-frogging Newton volume conservation

algorithm will fail, when implemented without any condition on the slope of the volume

residual: a) volume of the ponding fluid Vf vs position of the free surface zf showing the

minimum slope to avoid failure of the algorithm , b) corresponding membrane structure

and the free surface update that will move the free surface below the membrane surface.
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4. Linearization of the fluid loading322

The ponding fluid interacts with the structure by applying traction on323

the wetted region, which manifests as an external nodal force vector f̂ext on324

the structure. It will be explained in this section that the external nodal325

force vector is a non-linear function of the displacement field. Therefore, by326

including the linearized behavior of the fluid loading in the N-R iteration327

convergence speed can be greatly improved. In terms of implementation328

this means including a load stiffness matrix, mentioned in Section 3.1 in329

the N-R iterations of the structural solver. In this section, we present the330

full linearization of the fluid loading and discuss the load stiffness matrices331

associated with the different contributions to the load behavior of the fluid.332

The derived load stiffness matrices will be used fully or partially depending333

on the method.334

The expression of the nodal force vector can be obtained by considering335

the discretized virtual external work δW h
ext associated with δWext in Eq. (6)336

and using the traction t from Eq. (4),337

δW h
ext =

∫
∂Ωfs

δuh · −γf (zh − zf )n̄h dS +

∫
∂Ωs\∂Ωfs

δuh · 0 dS

= −γf
∫
η

∫
ξ

δuh · (zh − zf )nh dξdη

= δûT
(
−γf

∫
η

∫
ξ

(zh − zf )NTnh dξdη

)
︸ ︷︷ ︸

f̂ext

= δûT f̂ext. (24)

In the equations above it can be seen that the domain of integration is338

changed to the parametric space ξ− η of the discretized wetted surface with339
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base vectors ghξ = xh,ξ and ghη = xh,η, where •,r = ∂•
∂r

for any parameter r. This340

transformation of integration domain uses the definitions of a normal vector341

at any point on the discretized wetted surface nh = ghξ ×ghη =
∥∥ghξ × ghη∥∥ n̄h342

and an infinitesimal surface area dS =
∥∥ghξ × ghη∥∥ dξdη. It can observed that343

the discretized virtual external work and consequently nodal external force344

vector is a non-linear function of nodal displacement vector û as345

nh = ghξ × ghη = xh,ξ (û)× xh,η (û) ,

z = xh (û) · ez,

and zf = zf (û) from the volume conservation constraint. Linearizing the346

discretized virtual work we get,347

δW h
ext + ∆δWext[∆u

h] =−
∫
η

∫
ξ

δuh · γf (zh − zf )nh dξdη

− γf
∫
η

∫
ξ

(zh − zf ) δuh · ∆nh[∆uh] dξdη︸ ︷︷ ︸
∆δW∆n

ext [∆uh]

−γf
∫
η

∫
ξ

δuh ·∆zh[∆uh] nh dξdη︸ ︷︷ ︸
∆δW∆z

ext [∆uh]

+ γf

∫
η

∫
ξ

δuh ·∆zf [∆uh] nh dξη︸ ︷︷ ︸
∆δW

∆zf
ext [∆uh]

. (25)

The linear part of change in external work due to ∆uh can be split into348

three components: ∆δW∆n
ext [∆uh], ∆δW∆z

ext [∆u
h] and ∆δW

∆zf
ext [∆uh]. The349

second term in rhs of Eq. (25) ∆δW∆n
ext [∆uh] accounts for the change in350
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normal vector due to the wetted surface movement with constant hydrostatic351

pressure. The effect of change in hydrostatic pressure from the movement352

of the wetted surface alone is represented by ∆δW∆z
ext [∆u

h] . Finally, the353

contribution from the movement of the free surface to conserve volume is354

captured by ∆δW
∆zf
ext [∆uh]. The three components of the change in external355

virtual work can be written in the form of δûTK•l ∆û such that the linear part356

of change in the nodal force vector due to the nodal displacement increment357

∆û can be written as ∆f̂ •[∆û] = K•l ∆û, where superscript • represents358

the three contributions that we discussed before. Thus, we have three load359

stiffness matrices: K∆n
l , K∆z

l and K
∆zf
l .360

Additionally, it is well known that a constant pressure and hydrostatic361

pressure loading on large displacement cases are conservative [25]. Therefore,362

the associated load stiffness matrices are symmetric. The proof of symmetry363

for the constant pressure can be found in [23] and for hydrostatic pressure364

with constant fluid volume can be found in [8, 9]. The symmetric part of365

the load stiffness matrices is obtained by performing integration by parts and366

some algebraic manipulations. The interested readers are encouraged to refer367

to [8] for detailed derivation. In the derivation, they list five conditions at the368

boundary of the wetted surface Γ to have symmetric load stiffness matrices.369

If atleast one of the conditions is satisfied it would lead to symmetric load370

stiffness matrices. Among these, either (i) p = 0 or (ii) δu = 0 on Γ is always371

satisfied in ponding scenario, see Fig. 4. With the derivation of the symmetric372

load stiffness matrices already given in some of the previous work [8, 9]373

and more recently [11], we directly state the linear part of the change in374

discretized external virtual work containing only symmetric terms:375
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(a) (b)

Figure 4: Two scenarios of ponding on a membrane structure where the boundary condi-

tions at the wetted surface Γ lead to symmetric load stiffness matrices: a) the membrane

structure is partially filled (p = 0 at Γ) and b) the membrane structure is fully filled and

the free surface moves above the fixed boundary (δu = 0 at Γ).

∆δW h
ext[∆u

h] =− 1

2
γf

∫
η

∫
ξ

(zh − zf )
(
δuh,ξ × ghη − δuh,η × ghξ

)
·∆uh dξdη

+
1

2
γf

∫
η

∫
ξ

(zh − zf ) δuh ·
(
ghη ×∆uh,ξ − ghξ ×∆uh,η

)
dξdη

− 1

2
γf

∫
η

∫
ξ

δuh ·
(
nh ⊗ ez + ez ⊗ nh

)
·∆uh dξdη

− γf
Af

∫
η

∫
ξ

δuh · nh dξdη
∫
η

∫
ξ

nh ·∆uh dξdη, (26)

where the terms in the first three lines are the sum of the contributions from376

change in normal and change in hydrostatic pressure from the movement377

of the wetted surface alone i.e ∆δW∆n
ext + ∆δW∆z

ext . The last term is the378

contribution from the free surface movement to conserve volume (∆δW
∆zf
ext ),379

which is obtained by substituting the expression of the linear part of the free380

surface movement ∆zf [∆u
h] given in Eq. (27) in the expression of ∆δW

∆zf
ext381
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(a) (b)

Figure 5: Volume conservation using the linear part of the change in volume from mem-

brane deformation: a) the linear part of change in volume ∆Vf due to deformation of the

wetted surface, indicated in red color, b) free surface update ∆zf by considering a cylinder

of volume ∆Vf with base area equal to the free surface area and height equal to ∆zf .

in Eq. (25). The linear part of the free surface movement can be obtained382

by an observation that only the normal component of the wetted surface383

displacement contributes to volume change and dividing the obtained volume384

change (∆Vf ) by the free surface area gives the linear part of the free surface385

movement, as illustrated in Fig. 5.386

∆zf [∆u
h] = −∆Vf

Af
= −

∫
η

∫
ξ

(
∆uh · nh

)
dξdη

Af
(27)

To obtain the load stiffness matrices the external virtual work expression387

in Eq. (26) can be written in terms of the associated nodal vectors and shape388

function matrix, which leads to the following expression:389
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∆δWext[∆u
h] =− δûT 1

2
γf

∫
η

∫
ξ

(zh − zf )
(
NT

,ξΩ
h
ηN −NT

,ηΩ
h
ξN
)
dξdη ∆û

+ δûT
1

2
γf

∫
η

∫
ξ

(zh − zf )
(
NTΩh

ηN,ξ −NTΩh
ξN,η

)
dξdη ∆û

− δûT 1

2
γf

∫
η

∫
ξ

NT
(
nh ⊗ ez + ez ⊗ nh

)
N dξdη ∆û

− δûT γf
Af

(∫
η

∫
ξ

NTnh dξdη

)(∫
η

∫
ξ

NTnh dξdη

)T
∆û.

(28)

where Ωh
ξ and Ωh

η are the skew matrices associated with the cross product390

of the base vectors ghξ and ghη , respectively. Finally, the symmetric load391

stiffness matrix associated with each part can be extracted by comparing392

with the expression δûTK•l ∆û,393

K∆n
l =− 1

2
γf

∫
η

∫
ξ

(zh − zf )
(
NT

,ξΩ
h
ηN −NT

,ηΩ
h
ξN
)
dξdη

+
1

2
γf

∫
η

∫
ξ

(zh − zf )
(
NTΩh

ηN,ξ −NTΩh
ξN,η

)
dξdη

K∆z
l =− 1

2
γf

∫
η

∫
ξ

NT
(
nh ⊗ ez + ez ⊗ nh

)
N dξdη (29)

K
∆zf
l =− γf

Af

(∫
η

∫
ξ

NTnh dξdη

)(∫
η

∫
ξ

NTnh dξdη

)T
∆û. (30)

5. Monolithic methods for ponding analysis394

5.1. Monolithic method with volume conservation inside structural iterations395

(MVCIS)396

Having discussed the linearized equations for the fluid loading in the pre-397

vious section, we can now start using it in the different methods for ponding398
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analysis. The first method which is classified as monolithic method involves399

volume conservation inside the structural N-R iterations. In this method we400

solve the structural equations by incorporating the full linearized equations401

of the fluid loading inside the N-R iterations of the structural solver. In terms402

of implementation this means we use the load stiffness matrices discussed in403

Section 4 along with the nested iterations of the volume-conserving solver to404

update the free surface after every N-R iteration. The complete algorithm is405

written in Algorithm. 2

Algorithm 2 Monolithic method with volume conservation inside structural

iterations (MVCIS)

1: n = 0

2: Find z0
f using Algorithm 1 with Vt as input argument

3: while
∥∥∥f̂ext − f̂int∥∥∥ > ε and n < nmax do

4: Update: Kmem, K∆n
l , K∆z

l , K
∆zf
l , f̂ext and f̂int using ûn and znf

5: Solve:
(
Kmem −K∆n

l −K∆z
l −K

∆zf
l

)
∆ûn+1 = f̂ext − f̂int

6: Update displacement: ûn+1 = ûn + ∆ûn+1

7: Update structure: x̂n+1 = X̂ + ûn+1

8: Update free surface using Algorithm 1 with Vt as input argument

9: n = n+ 1

10: end while

406

5.2. Monolithic method with volume conservation as a constraint (MVCC)407

The problem of determining the static deformation of a structure un-408

der the load of fixed volume of fluid in a monolithic approach with volume409

conservation as constraint g(û, zf ) can be stated as follows:410
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f̂int(û)− f̂ext(û, zf ) = 0, (31)

g(û, zf ) = Vf (û, zf )− Vt = 0. (32)

Here, we introduce an additional independent variable zf , the z-coordinate411

of the free surface, which allows the volume conservation constraint to be in-412

corporated in the system of equations. The system of equations given in Eqs.413

(31) and (32) can be solved using N-R algorithm, where the linearized form414

at iteration n+ 1 can be written as:415

(
∂f̂int (ûn)

∂û
−
∂f̂ext

(
ûn, znf

)
∂û

)
∆ûn+1 −

∂f̂ext
(
ûn, znf

)
∂zf

∆zn+1
f = f̂ext

(
ûn, znf

)
− f̂int (ûn)

(33)

∂g
(
ûn, znf

)
∂û

∆ûn+1 +
∂g
(
ûn, znf

)
∂zf

∆zn+1
f = Vt − V

(
ûn, znf

)
. (34)

In Eq. (33), ∂f̂int

∂û
is the familiar global membrane tangent stiffness matrix416

Kmem [22]. The second term, ∂f̂ext

∂û
in the equation is the sum K∆n

l +K∆z
l ,417

discussed in Section 4. The derivative ∂f̂ext

∂zf
can be obtained by differentiating418

f̂ext given in Eq. (24) with respect to free surface height. We have not419

discussed this before as zf was not an independent variable. The obtained420

expression is given in Eq. (35). To obtain the terms in Eq. (34), we only need421

to calculate the derivative of the fluid volume with respect to the variables,422

since Vt is constant. The first term in the left-hand side of Eq. (34) represents423

the change in fluid volume with respect to the nodal displacement vector.424

This can be obtained by substituting ∆uh = N∆û in the expression of ∆Vf425
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in Eq. 27, writing in the form of • ∆û and removing ∆û. The second term426

∂g
∂zf

is already discussed in Section 3.2, given in Eq. (21).427

∂f̂ext
∂zf

=γf

∫
η

∫
ξ

NTnh dξdη (35)

∂g

∂û
=

(∫
η

∫
ξ

NTnh dξdη

)T
. (36)

Substituting all the terms and eliminating ∆zn+1
f from Eqs. (33) and (34)428

we get,429

(
Kmem −K∆n

l −K∆z
l −K

∆zf
l

)
∆ûn+1 = f̂ext − f̂int +

γf
(
Vt − V n

f

)
Af

∫
η

∫
ξ

NTnh dξdη

(37)

∆zn+1
f =

(
Vt − V n

f

)
Af︸ ︷︷ ︸

∆zn+1
f, ∆V

−

(∫
η

∫
ξ
NTnh dξdη

)T
∆ûn+1

Af︸ ︷︷ ︸
∆zn+1

f, ∆u

. (38)

Finally, this monolithic method has been written in Algorithm 3. Note430

that the main difference between this monolithic method and MVCIS is that431

there is no nested volume conservation iterations inside the structural solver432

but instead there is an explicit equation for the free surface update which can433

be split into two parts. The first part ∆zf, ∆V compensates for the difference434

between the current fluid and the target fluid volume (volume residual),435

while the second part, ∆zf, ∆u takes into account the change in volume due436

the deformation of the wetted surface. If we carefully observe, the volume437
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residual also appears as an extra pressure,438

p∆V = γf (Vt − Vf ) /Af , (39)

with the corresponding nodal force vector,439

f̂∆V = p∆V

∫
η

∫
ξ

NTnh dξdη, (40)

in the structural equations, which should converge to zero when the solver440

converges. If the volume difference is positive then it applies a positive441

extra pressure on the structure resulting in increase in fluid volume and442

vice versa. Additionally, in order to prevent the free surface to move below443

the lowest point of wetted surface, the area of free surface is modified for the444

calculation of ∆zf, ∆V when this happens, while ∆zf, ∆u is applied unchanged445

with the assumption that ∆zf, ∆u > z∗f − zf always holds. The modification446

in ∆zf, ∆V is similar to the one discussed in Section 3.2, except here we447

also account for the movement of the free surface due to the deformation of448

wetted surface, ∆zf, ∆u. Moreover, we consider the updated structure for the449

volume calculation as we want the free surface to remain above the structure450

in the updated configuration. However, we cannot prevent the membrane451

surface to go above the free surface during N-R iterations and therefore if452

this happens the algorithm will fail. The same is true for MVCIS where this453

is more probable, as will be explained later in Section 8.2.454

It is worth observing that in step 5 of Algorithm 2 and Algorithm 3,455

K
∆zf
l is a rank one update in the linear system of equations, which results456

in a dense matrix. In case of multiple ponds at different locations, this457

matrix will result in rank r update where r is the number of ponds. When458

solved directly, this drastically increases the computing time of linear solvers.459
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Therefore, we use the Woodbury formula [26] to solve the equation in Step 4,460

which computes the inverse of a rank-r correction of a matrix by performing461

a rank-r correction to the inverse of the original matrix. For the special case462

where r = 1, the formula reduces to Sherman-Morrison formula [26].463

Algorithm 3 Monolithic method with volume conservation as a constraint

(MVCC)

1: n = 0

2: Find z0
f using Algorithm 1 with Vt as input argument

3: while
∥∥∥f̂ext − f̂int + f̂∆V

∥∥∥ > ε and n < nmax do

4: Update: Kmem, K∆n
l , K∆z

l , K
∆zf
l , f̂ext, f̂∆V and f̂int using ûn and

znf

5: Solve:
(
Kmem −K∆n

l −K∆z
l −K

∆zf
l

)
∆ûn+1 = f̂ext − f̂int + f̂∆V

6: Update displacement: ûn+1 = ûn + ∆ûn+1

7: Update structure: x̂n+1 = X̂ + ûn+1

8: Calculate ∆zn+1
f using Eq. (38)

9: if ∆zn+1
f < z∗f − zf then

10: Af = V n+1
f /(znf − z∗f + ∆zn+1

f, ∆u)

11: ∆zn+1
f, ∆V = (Vt − V n+1

f )/Af

12: ∆zn+1
f = ∆zn+1

f, ∆V + ∆zn+1
f, ∆u

13: end if

14: zn+1
f = znf + ∆zn+1

f

15: n = n+ 1

16: end while
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6. Partitioned methods for ponding analysis464

This section discusses two partitioned methods to calculate the static465

deformation of a membrane structure due to ponding. In this section, the466

accent •̂ which was used in the previous sections to denote the nodal vectors,467

will be omitted to avoid multiple accents on a symbol. As a result, in the468

discussion that follows all the nodal vectors are denoted by small letter bold469

characters.470

6.1. Implicit partitioned coupling method (IPC)471

In the partitioned approach the problem of finding the static deformation472

under ponding load is formulated as a fixed-point problem, where the struc-473

tural solver and the volume-conserving solver are called sequentially. The474

structural solver takes the nodal vertical distance vector d (= z − zf ) from475

the free surface as input to solve for the nodal displacement vector u from476

the resultant hydrostatic pressure on the membrane surface. The volume-477

conserving solver on the other hand determines the free surface position based478

on the new structural deformation. This process is continued till the norm of479

the fixed point residual, discussed below, is lower than a certain pre-defined480

tolerance. Sometimes, the fixed point iteration implemented in this manner481

may diverge or the convergence rate can be very slow. Therefore, convergence482

accelerators such as Aitken relaxation [16, 27] and IQN-ILS [17] are used to483

achieve faster convergence. Mathematically, if we denote volume-conserving484

solver as an operator F and the structural solver for membrane surface as S,485

then we can write,486
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d = F(u)

u = S(d)

The problem of finding an equilibrium shape of the structure under the487

hydrostatic load of a fixed volume of fluid can be written as a fixed point488

problem489

u = S ◦ F(u). (41)

If k represents the iteration number for the coupling iterations, then the490

residual of Eq. (41) (fixed point residual) at the kth iteration is given by491

Eq. (42), where uk is the displacement at the kth iteration and ũk+1 =492

S ◦ F(uk).493

rk = ũk+1 − uk (42)

With all these definitions, we can write the implicit partitioned coupling494

method for the problem in Algorithm 4. Note that in each coupling iteration,495

the structural solver receives the fluid loading as pressure fields and there-496

fore only K∆n
l is used in the non-linear iterations of the structural solver,497

which is generally implemented. Compared to the monolithic methods dis-498

cussed before, the main advantage of this method apart from being modular499

is that it is more robust as we are doing volume conservation on constant500

pressure equilibrium shapes of the structure. Therefore, it is less likely that501

the structural displacement between the coupling iterations will be such that502

the wetted surface moves above the free surface causing the algorithm to fail.503
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Algorithm 4 Implicit partitioned coupling (IPC) method

1: k = 0

2: ũ1 = S ◦ F(u0)

3: r0 = ũ1 − u0

4: while
∥∥rk∥∥ > ε and k < kmax do

5: Calculate uk+1 using convergence accelerator [17, 16, 27]

6: k = k + 1

7: ũk+1 = S ◦ F(uk)

8: rk = ũk+1 − uk

9: end while

6.2. Implicit partitioned coupling method with fluid load linearization (IPCFL)504

During the numerical experiments, it was observed that the IPC method505

can require a large number of coupling iterations for convergence depend-506

ing on the structural and fluid properties. Therefore a modification of the507

above algorithm was made where the modularity was sacrificed for increased508

convergence speed. The main idea behind the modification is that if we509

include linearized behavior of the fluid in the structural solver, the struc-510

ture can anticipate the free surface movement and the resulting pressure511

fields. Consequently, convergence speed of the coupling iterations will be512

improved. To that end, the linearization of the fluid loading discussed in513

Section 4 is added in every structural N-R iteration as load stiffness matri-514

ces (K∆n
l +K∆z

l +K
∆zf
l ) along with the linear update of the free surface,515

Eq. (27). As a result, during the structural iterations the free surface is516

updated to conserve the volume between the structural iterations but be-517

cause it is a linear update, the volume is not maintained as Vt. Nevertheless,518
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this is corrected afterwards by the volume-conserving solver (Algorithm 1)519

in the next coupling iteration. This is repeated till the norm of the fixed520

point residual, discussed in Section 6.1, is below a certain tolerance. It was521

found that in all the numerical experiments, the number of coupling itera-522

tions required for convergence was much lower and hence there was no need523

for the convergence accelerator. Finally, we can write the IPCFL method524

for ponding analysis in Algorithm 5, where the modified structural solver525

with the linearized fluid loading is denoted as S ⊕ L(F), which is given by526

Algorithm 6.527

Algorithm 5 Partitioned FSI iterations to calculate structural deformation

under ponding load.

1: k = 0

2: ũ1 = (S ⊕ L(F)) ◦ F(u0)

3: r0 = ũ1 − u0

4: while
∥∥rk∥∥ > ε and k < kmax do

5: uk+1 = ũk+1

6: k = k + 1

7: ũk+1 = (S ⊕ L(F)) ◦ F(uk)

8: rk = ũk+1 − uk

9: end while
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Algorithm 6 The modified structural solver S ⊕L(F) with linearized fluid

load
1: n = 0

2: while
∥∥∥f̂ext − f̂int∥∥∥ > ε and n < nmax do

3: Update: Kmem, K∆n
l , K∆z

l , K
∆zf
l , f̂ext and f̂int using ûn and znf

4: Solve
(
Kmem −K∆n

l −K∆z
l −K

∆zf
l

)
∆ûn+1 = f̂ext − f̂int

5: Update displacement: un+1 = un + ∆un+1

6: Update structure: xn+1 = X + un+1

7: Calculate ∆zn+1
f using Eq. (27)

8: zn+1
f = znf + ∆zn+1

f

9: n = n+ 1

10: end while

7. Integration on the wetted surface528

If we look back at the discussion on various methods for ponding analysis,529

one common aspect in all the methods is the integration of quantities on the530

wetted surface ∂Ωfs, be it the calculation of volume, the nodal force vectors or531

the load stiffness matrices. In the finite element framework, this is commonly532

performed by numerical integration based on Gauss quadrature [28]. For a533

special case when the integration of f(ξ, η) is sought on a 2D-surface ∂Ω,534

where the surface is parameterized by the parameters ξ ∈ [−1, 1] and η ∈535

[−1, 1], the integration is written as the weighted sum of the function values536

at n× n unevenly distributed points in the parametric space ξ − η, as given537

below:538
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∫
∂Ω

f(ξ, η) dS =

∫
ξ

∫
η

f(ξ, η)‖gξ × gη‖ dξdη

=
n∑
i=1

n∑
j=1

wijf(ξi, ηj)‖gξ × gη‖ (43)

where, the gξ and gη are the base vectors, discussed in Section 4, and wij is the539

weight corresponding to the parametric coordinates (ξi, ηj). For more discus-540

sion on these special points in the parametric domain and their corresponding541

weights, the interested readers can refer to [28]. Typically, the integration542

surface is discretized using a suitable elements based on the application. The543

numerical integration is straightforward for a surface which is discretized us-544

ing elements conforming to the surface boundary, where the integration is545

performed by Gauss quadrature in every element and the contributions from546

all elements are added to get the required global quantity. However, in our547

case often the integration domain ∂Ωfs will be non-conforming to the struc-548

tural elements during the solution process as the free surface plane can move549

independent of the membrane discretization. One solution is to remesh or550

displace the mesh every time the free surface moves to make it conforming.551

However, this is not practical and would have a detrimental effect on the com-552

putation time as it has to be performed in every volume-conserving iteration.553

An alternative is to perform integration on the wetted surface by subdivid-554

ing the elements that are cut by the free surface before performing Gauss555

quadrature. Note that we are not adding new elements or nodes during this556

process; the subdivision is only performed to carry out integration accurately.557

The process is clearly shown in Fig. 6, where we consider only linear triangle558

elements, which can be of course extended to other elements, like the one dis-559
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cussed in [11, 29]. As our focus was more on different algorithms for ponding560

analysis than developing subdividing procedures for performing integration561

on different elements, we restricted ourselves to the linear triangular case.562

In Fig. 6, we clearly see that the there are four different possibilities. The563

first case is when the elements lie above the free surface i.e the elem /∈ ∂Ωh
fs,564

where the integration is 0. The second and third case shows different possi-565

bilities of triangle elements cut by the free surface and their corresponding566

subdivisions. In these scenarios, integration is performed only in the parts567

below the free surface i.e. the shaded region. In terms of implementation,568

the Gauss points in the subdivided shaded triangles are used in Eq. (43).569

Finally, the last case is when the elements are below the free-surface, where570

the usual Gauss quadrature procedure is followed.571

Figure 6: Integration on the wetted surface when discretized with linear triangle elements,

where the subdivided triangles for integration are shown in dashed lines.
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8. Numerical Examples572

The discussed methods for ponding analysis were developed in an open-573

source finite element code called KRATOS. In this section we present three574

numerical examples: (i) ponding on a circular membrane [13],(ii) Ponding on575

an inflated membrane structure and (iii) Ponding on a square membrane. The576

first example is an academic case which is used for validating the implemented577

methods discussed in this paper. Subsequently, the different methods are578

compared for computation speed and robustness. The second example is579

used as an application case where the ponding analysis is performed on a580

real membrane structure. The objective of this example is to demonstrate581

how the ponding analysis can be used to calculate deformation of membrane582

structures due to ponding and also to show the strengths and weaknesses of583

the discussed methods. Finally, the third example is used to demonstrate584

the application of the discussed algorithms for non-axisymmetric cases.585

Before going to the numerical examples of ponding, we present the vali-586

dation of volume calculation algorithm and volume-conserving solver which587

are the main components of all the methods. To that end, we take a hollow588

sphere of radius R = 1.0 m cut at a height of 0.75 m above its center. The589

volume enclosed by the cut sphere and a flat free surface located at the top-590

most point is given by VcutSphere = 245/192π = 4.0088 m3, which was also591

found using the volume calculation algorithm, thus verifying the algorithm.592

To check the volume conserving solver at some intermediate position. The593

volume enclosed by a horizontal plane, 0.5 m below the center of the sphere594

and the sphere surface is given by, V = 5π/24 = 0.6545 m3. The volume-595

conserving solver is run with a target volume Vt = 0.6545m3 and initial free596
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surface position coinciding with the center of the sphere. The solver was run597

with 1632, 6700 and 27016 linear triangle elements, respectively. The results598

are summarized in Table 1. It clearly shows that the volume-conserving599

solver is able to determine the plane’s position accurately, limited by the600

discretization error in the surface.601

Table 1: Free surface position calculated by the volume-conserving solver with Vt =

0.6545 m3.

# Elements zcomp (m)

1632 -0.4984

6700 -0.4996

27016 -0.4999

8.1. Ponding on a circular membrane602

In the first numerical example we consider a horizontal circular membrane603

of radius Rm = 10 mm and uniform thickness tm = 0.01 mm at zm =604

0. The membrane is modeled as incompressible Mooney-Rivlin plane-stress605

material with material constants c1 = 1.92× 105 Pa and c2 = 1.92× 104 Pa,606

corresponding to the shear modulus µ = 0.4225 MPa and k = c2/c1 = 0.1,607

discussed in [13]. During the simulation all the boundary nodes are fixed and608

the membrane is filled with fluid of density ρ = 10−5 kg/mm3 (10 times that609

of water) in fluid volume increments of ∆Vf = 200mm3. The acceleration due610

to gravity is assumed to be g = 10 m/s2, along the negative z-direction. The611

problem set up of the case is clearly shown in Fig. 7a. For all simulations, we612

consider a mesh of nel = 3200 linear triangle membrane elements (Fig. 7b),613
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which is more than the number of elements considered in [13]. It was observed614

during the simulation that when the simulations were initialized with a flat615

circular sheet, none of the methods was able to converge even with some616

prestress to provide some stiffness at the first N-R iteration. Therefore,617

in the first step of the simulation a pressure of magnitude pin = 500Pa was618

applied to get a good initial geometry, and then the methods were run on the619

deformed geometry with the pressure value set to zero. This is in agreement620

with what would happen in the real scenario where the ponding process is621

preceded by a seeding event for flat geometries.622

(a) (b)

Figure 7: Ponding on a circular membrane: a) problem set up, b) meshed geometry (viewed

from top).

In order to validate all the methods, we plot volume of the fluid Vf vs cen-623

tral deflection |uz,O| and compare our results with the reference. Figs. 8a-8d624

show the relationship between the volume of fluid and the central deflection625

when computed using partitioned and monolithic methods. The relation626
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is clearly non-linear. The corresponding membrane deformations for three627

different fluid volumes are shown in Fig. 9. It should be noted that when628

zf > 0, which is the case when the free surface plane goes above the mem-629

brane boundary (Fig. 9b), it is assumed that a vertical cylinder of radius630

R = Rm is placed above the boundary. Clearly, the results are in good631

agreement with the data from the reference. The pressure distribution was632

also checked if it was linearly varying with the vertical distance below the633

free surface. The pressure distribution and the maximum principal stresses634

on the membrane surface are plotted in Figs. 10 and 11 corresponding to the635

fluid volumes in Fig. 9.636

Next, we compare the partitioned approaches in terms of number of it-637

erations and computing time. The IPC method discussed in Section 6.1 can638

have multiple variants based on the convergence accelerator that is being639

used. In the current work we use three different convergence accelerators:640

Gauss-Seidel with constant relaxation, Aitken relaxation [16, 27] and IQN-641

ILS [17]. Among partitioned methods Gauss-Seidel with a constant relax-642

ation performed worst; it also diverged at Vf = 3000 mm3 and therefore the643

results after that step are absent in Fig. 12 and 13. The initial relaxation fac-644

tor, αin = 0.6 for Aitken and IQN-ILS convergence accelerators was chosen645

based on numerical experiments with different values of αin and the maxi-646

mum value that achieved convergence for all the fluid volumes was chosen for647

the simulation. The same value was used as the constant relaxation factor α648

for Gauss-Seidel iterations. As evident from Fig. 12 and 13 the IPCFL has649

the fastest convergence among all the different partitioned methods, which650

is closely followed by IPC with IQN-ILS as convergence accelerator. The651
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performance in terms of computing time of IPCFL shown in Fig. 13 can be652

further improved by storing the factorization for the rank one update, where653

the inverse of the system matrix is required twice in every structural N-R654

iteration. However, this was not possible in the framework where the code655

was implemented. Moreover, one can also choose iterative linear solvers for656

computation where the factorization is not applicable.657

Now we look at the monolithic methods where we first plot the conver-658

gence characteristics of the two methods at different load steps (nstep), see659

Fig. 14. As seen in this figure, the two methods have quadratic convergence660

near the root. The effect of follower load stiffness matrices can be also ob-661

served in Fig. 15, where there is a clear improvement in the convergence662

characteristics when the load stiffness matrices K∆z
l and K

∆zf
l are added in663

the tangent stiffness matrix used in the N-R iteration of the structural solver.664

Note that K∆n
l is always included in the tangent stiffness matrix irrespective665

of the methods, as discussed before; therefore, its effect is not shown in the666

figure. Finally, comparing the monolithic methods and partitioned methods,667

we see that the two monolithic methods have similar performance and they668

are superior compared to partitioned methods in terms of computation time,669

as shown in Fig. 16.670

1The purpose of choosing the color bar from negative to positive value very close to

zero is to distinguish the wetted surface or region from the remaining membrane surface.
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Figure 8: Comparison of fluid volume, Vf vs central deflection, |uz,O| for all the four

methods, where the reference data is from [13]: a) IPC, b) IPCFL c) MVCIS, d) MVCC.
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(a) (b) (c)

Figure 9: Deformation of circular membrane due to hydrostatic loading from different

volumes of fluid with ρ = 10−5 kg/mm3, where the blue color on the surface indicates

negative vertical distance from the free surface, and therefore represents the wetted re-

gion.1: a) Vf = 400 mm3, b) Vf = 2000 mm3 (when the free surface surface is above the

membrane boundary), c) Vf = 4000 mm3.
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(a) (b) (c)

Figure 10: Hydrostatic pressure distribution on the circular membrane due to hydrostatic

loading from different volumes of fluid with ρ = 10−5 kg/mm3: a) Vf = 400 mm3, b)

Vf = 2000 mm3 (when the free surface surface is above the membrane boundary), c)

Vf = 4000 mm3.
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(a) (b) (c)

Figure 11: Maximum principal stress distribution on the circular membrane due to hydro-

static loading from different volumes of fluid with ρ = 10−5 kg/mm3: a) Vf = 400 mm3,

b) Vf = 2000 mm3 (when the free surface surface is above the membrane boundary), c)

Vf = 4000 mm3.
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Figure 12: Comparison of number of coupling iterations for different fluid volumes (Vf )

for partitioned methods i.e. IPC (Gauss-Seidel) with constant relaxation α = 0.6, IPC

(Aitken) with initial relaxation αin = 0.6, IPC (IQN-ILS) with initial relaxation αin = 0.6

and IPCFL.
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Figure 13: Comparison of CPU time for different fluid volumes (Vf ) for partitioned meth-

ods i.e. IPC (Gauss-Seidel) with constant relaxation α = 0.6, IPC (Aitken) with initial

relaxation αin = 0.6, IPC (IQN-ILS) with initial relaxation αin = 0.6 and IPCFL.
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Figure 14: Convergence plot for monolithic methods at nstep = 2 (Vf = 400 mm3),

nstep = 10 (Vf = 2000 mm3) and nstep = 20 (Vf = 4000 mm3): a) MVCIS, b) MVCC.

49



1 2 3 4 5 6 7 8 9

N-R iterations

10−14

10−13

10−12

10−11

10−10

10−9

10−8

10−7

‖f̂
e
x
t
−

f̂ i
n
t
‖

without K∆z
l +K

∆zf
l

with K∆z
l +K

∆zf
l

(a)

0 4 8 12 16 20 24 28 32 36

N-R iterations

10−15

10−13

10−11

10−9

10−7

‖f̂
e
x
t
−

f̂ i
n
t
‖

without K∆z
l +K

∆zf
l

with K∆z
l +K

∆zf
l

(b)

Figure 15: Effect of addition and removal of K∆z
l and K

∆zf
l on convergence speed: a)

nstep = 6 (Vf = 1200 mm3), b) nstep = 12 (Vf = 2400 mm3).
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Figure 16: Comparison of CPU time for different fluid volumes (Vf ) for IPC (IQN-ILS)

with initial relaxation αin = 0.6, IPCFL, MVCIS, MVCC.
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8.2. Ponding on an inflated membrane structure671

In the next numerical example, we consider an application case where the672

ponding analysis is applied on an inflated thin-walled membrane hemisphere.673

The material is modeled as Saint-Venant Kirchhoff plane stress material with674

material properties: Young’s modulus E = 7 × 106 N/m2, Poisson ratio675

ν = 0.45 and thickness t = 0.002 m. A difference in pressure of p = 0.5 kPa676

with respect to the atmospheric pressure is applied at the internal surface.677

To get the perfect hemisphere of diameter D = 20 m after the application678

of this pressure, an isotropic normal pre-stress calculated from the formula679

σmem = pD/4t = 1.25MPa is applied on the membrane with zero shear680

stress. The hemisphere is clamped at the bottom boundary, and for reducing681

the computational time only a quarter section of the hemisphere is simulated682

considering the symmetry of the problem. The acceleration due to gravity683

is assumed to be g = 9.8 m/s2, along the negative z-direction. To start the684

ponding process, we first apply a dead load of w = 1 kPa on the top surface of685

the membrane enclosed by a circle of radius Rdead = 1.736 m (corresponding686

to a 10◦ sector) as a seed event, which is applied throughout the simulation.687

Due to the dead load, there will be a local depression in the hemisphere. In688

the created depression, water is added in volume increment steps and the689

resulting deformation is obtained by the four methods. In all the simulations690

considered in the example, the volume-conserving solver is initialized from691

the topmost point of the undeformed hemisphere (zf = 0) and similar to the692

previous example if the free surface does not intersect the membrane surface693

then a cylinder of radius equal to Rdead is assumed above the surface. The694

discussed boundary and load conditions are clearly shown in Fig. 17a and695
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the discretized quarter model used for the simulation is shown in Fig. 17b,696

where the symmetry boundary conditions are applied on the nodes at x-z697

and y-z plane. For comparing different methods, only IPC with IQN-ILS is698

presented among different variants of IPC because the comparison between699

the different convergence accelerators is already discussed in Section 8.1.700

(a) (b)

Figure 17: Ponding on an inflated hemisphere: a) problem set up, b) quarter model of the

hemisphere discretized with 19830 linear triangle elements (viewed from top)

In this numerical example, apart from looking at the deformation results701

and computing time, we will be also evaluating the robustness of the methods702

by running with increasing value of ∆Vf . First, we consider the results with703

volume increment steps of ∆Vf = 0.2m3 where all the methods converged to704

the solution. Clearly, the results in Fig. 18a are consistent with the previous705

numerical example: the monolithic methods are superior in terms of comput-706

ing time compared to the partitioned methods, and among the partitioned707
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methods overall IPCFL is better than IPC (IQN-ILS). However, only at the708

first volume increment step we see a deviation in computing time for IPCFL.709

This deviation is more obvious in Fig. 18b, where fluid volume Vf = 0.8 m3 is710

applied in the first step2. The IPCFL method in this step takes far more time711

to converge than all the other methods. However, if we look at the number712

of iterations, it takes 50% fewer iterations than IPC (IQNILS). Therefore,713

the problem must be in the S ⊕L(F) solver. Fig. 19a shows the evolution of714

the fluid volume with the S ⊕L(F) N-R steps, where we can clearly see that715

the fluid volume jumps to a value higher than the target fluid volume when716

∆Vf = 0.2m3 in the first coupling iteration. This is because the solver con-717

serves volume based on the linearized change in volume from the membrane718

movement in the N-R iteration. When the structural movement is small, the719

difference between the actual change in volume and the linearized change in720

volume is also small, which happens after some N-R iterations and therefore721

the fluid volume can be seen constant through the later N-R iterations. As722

explained in Section 6.2, the resulting error in the volume is corrected in723

the next coupling iterations, which can be observed in Figs. 19a and 19b.724

This behavior of the solver at the first fluid load step has more pronounced725

negative effect when ∆Vf = 0.4 m3, as seen in Fig. 19b; for larger ∆Vf it726

even diverges, and therefore Fig. 18c has no data from IPCFL.727

Among monolithic methods, if MVCC and MVCIS converge they have728

2In all the simulations, at the first volume increment step (second load step of the

simulation), Vf = 2 ∆Vf because the fluid volume load is modeled as Vf = nstep ∆Vf ,

where nstep is the load step and the value of nstep is set to zero during the application of

the seeding load.

53



almost same computing time. However, MVCC is observed to be more ro-729

bust than MVCIS because for ∆Vf = 0.4 m3 and 0.8 m3 the MVCIS failed.730

Therfore, its data is absent in Figs. 18b and 18c. The reason why MVCIS731

failed in these cases is because during one of the N-R iterations the structure732

moved above the free surface and as a result the volume-conserving algo-733

rithm failed. This scenario although possible in MVCC is however less likely734

because the effect of free surface movement due to volume difference and735

the volume-conserving behavior are included as an additional pressure (p∆V )736

and load stiffness matrix K
∆zf
l , respectively inside the structural solver. At737

the same time, the effect of structural movement on the free surface position738

is also added as ∆zf,∆u. This intricate coupling between the two parts of739

the solver, which is absent in MVCIS makes this scenario less probable in740

MVCC. IPC (IQN-ILS) on the other hand was found to be very robust but741

was comparatively slower than monolithic methods because of the coupling742

iterations. We think the robustness of the methods is due to two reasons:743

use of IQN-ILS algorithm, which approximates the inverse Jacobian of the744

fixed point residual and application of the volume-conserving algorithm on745

the constant pressure solution of the structure which is less likely to change746

abruptly between consecutive coupling iterations. In contrast, MVCIS uses747

the volume-conserving algorithm in N-R iterations which can assume any748

arbitrary non-equilibrium shape between consecutive iterations.749

The deformation of the inflated hemispherical membrane under ponding750

loads can be viewed in Fig. 20, where the deformed shapes under two differ-751

ent volumes of water are shown. The pressure distribution and the maximum752

principal stresses on the membrane surface are plotted in Figs. 21 and 22 cor-753
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responding to the fluid volumes in Fig. 20. Finally, the relation between the754

magnitude of the vertical deflection of the top most point of the membrane,755

A(0, 0, 10) and the free surface height from the ground is plotted in Fig. 23a756

and its variation with the fluid volume is shown in Fig. 23b. The relationship757

unlike previous example appears to be linear in this fluid volume range.758
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Figure 18: Comparison of monolithic and partitioned methods for various volume incre-

ments: a) CPU time vs fluid volume Vf with volume increment, ∆Vf = 0.2 m3, b) CPU

time vs fluid volume Vf with volume increment, ∆Vf = 0.4 m3, c) CPU time vs fluid

volume Vf with volume increment, ∆Vf = 0.8 m3, d) number of coupling iterations for

partitioned methods vs fluid volume Vf with volume increment ∆Vf = 0.4 m3.
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Figure 19: Evolution of fluid volume with N-R steps of S ⊕ L(F) at the first volume

increment step for IPCFL method: a) volume increment ∆Vf = 0.2 m3, which corresponds

to Vf = 0.4 m3 at the first volume increment step, b) volume increment ∆Vf = 0.4 m3,

which corresponds to Vf = 0.8 m3 at the first volume increment step.

3See footnote 1.
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(a) (b)

Figure 20: Deformed shape of the inflated hemisphere under the initial dead load and

hydrostatic load from water, where the blue color on the surface indicates negative vertical

distance from free surface, and therefore represents wetted surface.3: a) Vf = 1.6 m3, b)

Vf = 3.2 m3.
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(a) (b)

Figure 21: Hydrostatic pressure due to water on the surface of the inflated hemispherical

membrane where the seeding load is applied: a) Vf = 1.6 m3, b) Vf = 3.2 m3.

(a) (b)

Figure 22: Maximum principal stress due to water on the inflated hemispherical membrane:

a) Vf = 1.6 m3, b) Vf = 3.2 m3.
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Figure 23: Variation of magnitude of vertical deflection of top most point of hemisphere,

point A (0, 0, 10) with fluid volume (Vf ) and free surface height (zf ) calculated using

the partitioned and monolithic methods : a) free surface height vs magnitude of vertical

deflection of point A, b) volume of fluid vs magnitude of vertical deflection of point A.
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8.3. Ponding on a square membrane759

The previous two examples show the axi-symmetric cases which can be760

also analysed using axisymmetric formulations discussed in [7, 3]. Therefore,761

in this numerical example, to show the general applicability of the discussed762

algorithms, we present an additional numerical example where we perform763

ponding analysis on a flat square membrane of side a = 10 m clamped along764

edges. The material is modeled as Saint-Venant Kirchhoff plane stress ma-765

terial with material properties: Young’s modulus E = 108 N/m2, Poisson766

ratio ν = 0.3 and thickness t = 0.001 m. The membrane is located in X-Y767

plane with the centre O at the origin as shown in Fig. 24a . The geometry is768

discretized with 7748 linear triangle elements shown in Fig. 24b. As a seeding769

event we apply an initial deformation, uinit = [0, 0,−cos(xπ/a) cos(yπ/a)].770

The ponding fluid, water (γf = 104) in this case is added gradually to simu-771

late ponding.772

The performance of the the different algorithms discussed in the paper773

were found to be in agreement with the findings of the previous numerical774

examples. Therefore, we only discuss one of the practical applications of the775

ponding analysis: stability of the pond on the given membrane structure.776

Basically, we want to check if the given structure can limit the amount of777

ponding fluid in the event of rainfall or any other similar event. The analysis778

involves adding fluid volume in steps while observing the free surface position.779

If the free surface position goes above the clamped edges, the pond is stable780

with some maximum fluid volume Vf,max. In Fig. 25, we can clearly see that781

pond is stable for the current problem. The dashed black line in the figure782

represents the free-surface at the clamped edge. The fluid volume at which783
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(a) (b)

Figure 24: Ponding on a square membrane: a) problem set up, b) meshed geometry (viewed

from top).

the free surface goes above this line gives the value of Vf,max. The simulation784

results after this point (shown in dashed lines) are obtained by assuming a785

vertical wall along the clamped edge. In the real scenario, the water will786

overflow after this point. As seen in the figure, one can decrease this volume787

by pre-stressing the membrane. The deformation of the square membrane788

under ponding loads can be viewed in Fig. 26, where the effect of membrane789

pre-stress on the deformed shapes under two different volumes of water are790

shown.791
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Figure 25: Ponding stability analysis on the square membrane with different pre-stresses

Spre, where the black dashed lines represents the maximum position of the free surface in

the real scenario.
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(a) (b)

(c) (d)

Figure 26: Deformation of the square membrane due to the hydrostatic loading from

water with different membrane pre-stress Spre, where the blue color on the surface indicates

negative vertical distance from the free surface, and therefore represents the wetted region:

a) Vf = 20 m3 and Spre = 10 MPa , b) Vf = 20 m3 and Spre = 30 MPa, c) Vf = 60 m3

and Spre = 10 MPa, d) Vf = 60 m3 and Spre = 30 MPa.
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9. Conclusions792

In this paper, we presented two monolithic and two partitioned methods793

to compute static deformation of membrane structures under ponding loads.794

In the first partitioned method (IPC) the problem of finding the static defor-795

mation under ponding loads was formulated as a fixed point problem where796

the structural solver and volume-conserving solver, were coupled externally797

using fixed point iterations or coupling iterations. When the fixed point it-798

erations were used without any modification, the coupling iterations took799

longer to converge to a solution or sometimes did not converge based on the800

fluid and structural properties. Therefore, in order to accelerate and sta-801

bilize the convergence, convergence accelerators such as Aitken relaxation802

and IQN-ILS were used. It was found that IQN-ILS had better convergence803

characteristics than Aitken relaxation because unlike Aitken relaxation, IQN-804

ILS computes a low rank approximation of the inverse Jacobian of the fixed805

point residual. This observation is consistent with the literature [30, 17].806

A second partitioned method was proposed where the structural solver was807

modified (S ⊕ L(F)) to include the linearized behavior of the fluid, which808

was called IPCFL. As expected IPCFL had better convergence characteristics809

than IPC for small fluid volume increments. However, for larger increments810

the method had problems due to the linearization error in the initial S⊕L(F)811

N-R iterations.812

In the monolithic methods the structural solver was modified to include813

the volume conservation property of fluid and the solution were obtained at814

the end of the N-R iterations. Therefore, there was no need for any external815

coupling iterations. The first monolithic method (MVCIS) used the volume-816
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conserving solver to update the free surface after every N-R iteration while817

in the second method, which was called MVCC, the volume constraint was818

included in the structural equations, where the constraint is only satisfied at819

the end of the N-R iterations. The performance of both methods was on par820

in terms of computational time but the MVCC method introduced in this821

paper was found to be more robust. Therefore, it is recommended to use822

IPC with IQN-ILS or with any other quasi-Newton convergence accelerator823

if code modularity and use of a pre-existing solver is a priority but if the824

computational cost is most important and if the structural solver can be825

modified, MVCC seems to be a better option.826

10. Future Work827

The algorithms discussed in the paper will be used to find the initial con-828

ditions for the FSI simulation where the effect of ponding on the membrane829

structure during windy weather conditions will be investigated. The ponding830

fluid and the wind in the FSI simulation will be simulated using the volume831

of fluid method.832
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