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Abstract

This paper presents an experimental investigation of the Uniform Expected
Utility (UEU) criterion, a model for ranking sets of uncertain outcomes. We
verified whether the two behavioral axioms characterizing UEU, i.e., Averaging
and Restricted Independence, are satisfied in a pairwise choice experiment with
monetary gains. Our results show that neither of these axioms holds in general.
Averaging in particular, appears to be violated on a large scale. On the basis of
the current study and a previous one, we can conclude that none of the models
for set ranking that have been axiomatically characterized so far is able to model
observed choices between sets of possible outcomes in a satisfactory fashion. In
this paper we therefore lay out the foundations for a new descriptive model for
set ranking: the Uniform Rank-Dependent Utility (URDU) criterion.

Keywords: Complete uncertainty, uniform expected utility, set ranking

1. Introduction

A far-famed approach to the modelling of uncertainty is the Bayesian one,
which claims that, in the absence of objective probabilities, the decision maker
should have her own subjective probabilities and these probabilities should guide
her decisions. Another approach, not using probabilities, can be found in the5

literature about set rankings, surveyed by Barberà et al. [4]. In this domain,
decisions are quite frugally described by nothing more than the sets of their
possible outcomes. Comparing decisions hence reduces to comparing sets of
possible outcomes.

The Min and Max Induced Rankings (MMIR) form a family of set rankings10

(Maximin, Maximax, Minmax, Maxmin, etc.) that require preferences over sets
to be induced from comparison of the best and/or worst elements within those
sets. The Minmax and Maxmin criteria [3, 9], for example, treat the best and
worst elements in a lexicographical fashion. According to Minmax, comparison
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of the minima will be the primary criterion for ranking sets. In the case where15

the minima coincide, Minmax prescribes that the decision maker will proceed
to comparing the maxima. An indifference will be stated if the minima as well
as the maxima of both sets are identical. The Maxmin rule is the dual case in
which the decision maker first considers the maxima in the sets to be compared,
and when these are identical, she will go on to comparing the minima.20

The Uniform Expected Utility (UEU) criterion, axiomatized by Gravel et al.
[17], is another type of model for ranking sets of possible outcomes. The UEU
criterion shows some similarities to the classical Expected Utility (EU) criterion
in that it states that sets are ranked on the basis of the expected utility of
their outcomes. In the absence of information about probabilities, however,25

it is assumed that the decision maker acts as if she considers all the possible
outcomes of a decision as equally likely.

Most of the research in the field is pursued by theorists who are mainly
concerned with the axiomatic characterizations of models for set ranking. From
our point of view, however, it also seems interesting to investigate whether any30

of these models are capable of describing observed decision behavior.
So far, we know of only two studies that have adopted a descriptive approach

in order to study set rankings: Vrijdags [31] investigated whether rankings of
sets of monetary consequences obey the transitivity axiom, and in a second
paper, the MMIRs were examined empirically [32].35

In the current study, UEU will be the model under scrutiny. In specif-
ically designed tests, reported in Vrijdags [32], UEU appears to outperform
the MMIRs in predicting the subjects’ preferences. Yet, some observations
were made that are hard to accommodate within the UEU framework. In Vri-
jdags [32], subjects are asked to choose between sets of monetary consequences.40

When asked to choose between A1 = {35, 4, 3}1 and B1 = {35, 3}, for exam-
ple, 46% are estimated to prefer A1. When confronted with the choice between
A2 = {20, 3, 2} and B2 = {20, 1}, as much as 78% of all participants opted for
A2. A similar choice is the one between A3 = {20, 2, 1} and B3 = {20, 1}, where
38% stated a preference for set A3. For a considerable share of subjects, it thus45

appears that they prefer one more outcome in the middle, instead of being con-
strained to a set with one high and one low outcome, even when the value of this
middle outcome is very close to the minimum. This decision behavior might be
explained by a positive attitude towards a diversification of uncertainty within
the range of the minimum and the maximum of a set. Such choices—where a set50

with a considerably lower average is preferred—are hard to explain with UEU,
unless one assumes an extremely risk averse utility function over the outcomes
for all subjects choosing the three-elements sets with the lower arithmetic means
over the outcomes. Although this seems rather implausible, it deserves empiri-
cal analysis. That is why we devote a large part of this paper to the empirical55

1Set A1 can be thought of as an occasion to win either e35, e4, or e3 with unknown
probabilities. A more detailed account of how the subjects are instructed to conceive of the
sets they are presented with can be found in the Method section.
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validation of the behavioural axioms, among those characterizing UEU.
The next section presents the model and the axioms that will be tested in

the rest of the paper. Sections 3 and 4 will then present the empirical method
and the results. In Section 6, we will discuss these results and propose a new
promising model, close in spirit to the Rank-Dependent Utility model.60

2. The uniform expected utility model

Let X be a non-empty universal set of outcomes, and let X denote the set
of all non-empty, finite subsets of X. We assume the subjects have preferences
over X that can be represented by a weak order (transitive2 and complete binary
relation) % over X . The asymmetric part (strict preference) of % is denoted by65

� while the symmetric part (indifference) is denoted by ∼.
We say that % is representable in the UEU model if and only if there exists

a real-valued mapping u defined on X such that, for all A,B ∈ X ,

A % B ⇐⇒ UEU(A) ≥ UEU(B),

where

UEU(A) =
1

#A

∑
a∈A

u(a).

Provided the relation % satisfies a richness condition, UEU has been char-
acterized [17] by means of two behavioral axioms (Averaging and Restricted In-
dependence) and a technical condition (Archimedeanness). Sections 3, 4 and 5
focus on these two conditions.70

Averaging: for all disjoint sets A and B ∈ X ,

A % B ⇔ A % A ∪B ⇔ A ∪B % B. (1)

The Averaging axiom, first used by [14], ensures that enlarging a set A with a
(disjoint) set of outcomes B that is not considered better than A is a worsening
of the original set A. On the other hand, the axiom implies that enlarging
B with a set A which is considered at least as attractive as B, constitutes an75

improvement of the original set B. The Averaging axiom is intended to capture
an intuitive property satisfied by calculations of “average” in various settings.

Restricted Independence: ∀A,B,C ∈ X with #A = #B and A ∩ C =
B ∩ C = ∅,

A % B ⇔ A ∪ C % B ∪ C. (2)

The Restricted Independence axiom is a consistency condition which requires80

that the ranking of sets with equal cardinality is independent of any elements

2We know from Vrijdags [31] that transitivity is a reasonable hypothesis in this context.
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they may have in common. Hence, adding these common elements to or with-
drawing them from the sets should not affect their ranking. A similar condition
has been used in [25], although the latter is weaker because it constrains sets A
and B to be singletons. Notice also the existence of a condition with a similar85

appearance in the literature on qualitative probability [e.g., 23, p.204]; there,
A and B are events rather than sets of outcomes, and they do not necessarily
have the same cardinality; it is used to derive an additive representation of a
probability.

3. Method90

3.1. Choice stimuli

Our goal is to determine to what extent UEU applies through an investiga-
tion of its characterizing behavioral axioms: Averaging and Restricted Indepen-
dence.

If the subjects’ choices do not obey Averaging and/or Restricted Indepen-95

dence, we know that they do not decide according to the UEU model. When
devising experiments for axiom tests, one usually tries to “challenge” the axiom
under consideration by selecting choice objects or stimuli that are expected to
be capable of refuting an axiom if it does not hold in general. Previous research
has led us to believe that the choices of people who do not appear to follow100

UEU might be guided by an inclination towards a diversification of the possible
outcomes within the range bounded by the minimum and the maximum of the
set. Consequently, where possible, we used this assumption when devising the
choice stimuli for this study.

Table 1 shows the pairs of sets that were used to investigate the descriptive105

validity of Averaging and Restricted Independence. These pairs of sets are
administered to the subjects in a forced choice experiment. The instructions
of the experiment explain that the numerical set elements represent monetary
amounts in e. Each set can be conceived of as a lottery in the form of a container
holding one hundred tickets. On each of these tickets, one of the amounts in110

the set is printed. However, the frequency distribution of the different tickets
in the container is unknown. For example, a set {30, 23} can be thought of as a
container holding an unknown number of tickets with “30” printed on them as
well as an unknown number of tickets with “23” printed on them, both of which
sum to one hundred. In order to play the lottery, one ticket would be drawn at115

random from the container, and the amount on it would be the prize to be won
in e. Hence, in the current experiment, choosing a set comes down to choosing
the lottery one would rather play.

In order to test Averaging, three choices need to be made; one between the
original sets A and B, and two between each of the original sets and the union120

of both, A versus A ∪ B, and A ∪ B versus B. Table 1 shows the four tests
that were constructed for Averaging, each consisting of three choices. In all
four of them, A1 and A2 are instances of A in equation 1, B1 and B3 were
chosen as instances of B in equation 1, and, consequently, B2 and A3 represent
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Test Choice Sets
No. First (A) Second(B)

Averaging 1 4 A1 = {30, 23} B1 = {27, 25}
5 A2 = {30, 23} B2 = {30, 27, 25, 23}
6 A3 = {30, 27, 25, 23} B3 = {27, 25}

Averaging 2 7 A1 = {70, 60, 20} B1 = {55, 50, 45}
8 A2 = {70, 60, 20} B2 = {70, 60, 55, 50, 45, 20}
9 A3 = {70, 60, 55, 50, 45, 20} B3 = {55, 50, 45}

Averaging 3 10 A1 = {9, 7, 5} B1 = {8, 6}
11 A2 = {9, 7, 5} B2 = {9, 8, 7, 6, 5}
12 A3 = {9, 8, 7, 6, 5} B3 = {8, 6}

Averaging 4 13 A1 = {94, 25} B1 = {45, 43, 32}
14 A2 = {94, 25} B2 = {94, 45, 43, 32, 25}
15 A3 = {94, 45, 43, 32, 25} B3 = {45, 43, 32}

Restricted Independence 1 19 A1 = {40, 1} B1 = {11, 10}
20 A2 = {40, 37, 25, 22, 1} B2 = {37, 25, 22, 11, 10}

Restricted Independence 2 21 A1 = {100, 9} B1 = {29, 27}
22 A2 = {100, 94, 93, 92, 9} B2 = {94, 93, 92, 29, 27}

Restricted Independence 3 23 A1 = {65, 5} B1 = {13, 11}
24 A2 = {65, 64, 63, 62, 5} B2 = {64, 63, 62, 13, 11}

Restricted Independence 4 25 A1 = {24, 1} B1 = {8, 7}
26 A2 = {24, 15, 13, 1} B2 = {15, 13, 8, 7}

Table 1: Choice stimuli used for the examination of the axioms used in the characterization
of UEU: Averaging and Restricted Independence.

the union A ∪ B. Only two of the eight possible response patterns for the125

sequence of three choices are in line with Averaging: the pattern where the
first set is chosen in all three choices of a test, i.e. A1A2A3, and the pattern
where the second set is chosen in all three choices, i.e. B1B2B3. With the
aforementioned inclination towards a diversification of uncertainty in mind, we
tried to challenge Averaging by constructing the stimulus pairs in such a way130

that people would prefer the union of both sets to each of the originals. In
that case they will demonstrate patterns A1B2A3 or B1B2A3 which constitute
violations of Averaging. For the test Averaging 1, we used two binary sets.
In this test, A1 = {30, 23} contains the more extreme outcomes, while the two
outcomes of B1 = {27, 25} are situated in the middle between those of A1. Based135

on the assumed inclination towards diversification, we might expect people to
prefer the union of both sets B2 = {30, 27, 25, 23} to A2 = {30, 23}. If those
people also prefer A3 = {30, 27, 25, 23} to B3 = {27, 25}, they are violating
Averaging. In the second test, Averaging 2, the sets to be united both have
three outcomes. Considering the assumed inclination towards diversification,140

we anticipate that most people will prefer B2 = {70, 60, 55, 50, 45, 20} to A2 =
{70, 60, 20}. Maybe, some people will also prefer A3 = {70, 60, 55, 50, 45, 20} to
B3 = {55, 50, 45} since A3 has two extra higher outcomes as opposed to only
one extra lower outcome. In the third test, the dispersion of the outcomes is
minimal. The last test, Averaging 4, consists of enlarging a rather risky binary145

set, A1 = {95, 25} with three middle outcomes, B1 = {45, 43, 32}.
For the empirical examination of Restricted Independence we need the sub-

jects to make two choices, one between the original sets A and B, and one
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between the extended sets A∪C and B∪C. Again, four tests were constructed,
shown in Table 1, each consisting of two choices. In order to comply with150

Restricted Independence, people should demonstrate pattern A1A2 or pattern
B1B2. In each test, we chose A1 and B1 as instances of A and B in equation 2.
In the choice between A2 and B2, the original sets are enlarged with the same
common elements, as prescribed by Restricted Independence. For this axiom
it is not possible to use our assumptions about an inclination towards larger155

sets, since the sets to be compared have, by definition, the same number of out-
comes. Therefore, the tests were constructed following a different recipe. In all
four tests, the first pair of sets to be compared consisted of one risky binary set
A1 with an extremely high and an extremely low outcome and a considerably
higher average over the outcomes than the second, safer set B1 comprising two160

relatively low outcomes. In the second choice of each test, three (in the first
three tests) or two (in the last test) higher outcomes are added to both original
sets. These added outcomes are lower than the maximum of the risky set, but
higher than both outcomes in the safe set. Adding these high outcomes might
render the highest outcome of the risky set less salient, since it is now flanked by165

a number of other very high outcomes. The enlarged safe set now also contains
a number of very high outcomes, while it does not have the extremely low out-
come which is present in the enlarged risky set. This might lead some subjects
to switch their preference from the risky set in the first choice to the enlarged
safe set in the second choice, which would constitute a violation of Restricted170

Independence.

3.2. Statistical Model

For the statistical analysis, we will use the “true and error” (TE) model,
proposed by Birnbaum and Bahra [7]3. It assumes that each subject (1) has a
true preference relation (that can vary across individuals) and (2) makes random175

errors in responding. These hypotheses are similar to those made by, a.o.,
Harless and Camerer [18], Hey and Orme [20]. A particularity of Birnbaum’s
model is that it does not assume that the error probability is the same for each
choice made by the subject. That is why every choice needs to be presented
several times in order to unambiguously estimate the error rate for each distinct180

choice.
This TE model will permit us to estimate, for each test of an axiom, the

proportion of subjects with a particular choice pattern. For instance, for the
first test of Averaging (see Table 1), we will estimate the proportion of subjects
with pattern A1A2A3. Adding this proportion to the proportion of subjects185

with pattern B1B2B3 will yield the proportion of subjects whose choices are
compatible with Averaging.

Notice that we will not test the hypothesis that an axiom (say Averaging)
holds, because we consider that subjects can be divided into several categories,

3Birnbaum actually proposed this TE model earlier, in [5], but the way it is presented in
[7] will make it easier for the reader to follow our analysis.
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according to the way they behave. It is therefore perfectly possible that some190

subject satisfy Averaging and some others not. That is why we want to estimate,
for every axiom, the probability of subjects satisfying it.

3.3. Data

The data for this paper were gathered by means of a forced choice experiment
presented as an Internet questionnaire. Participants were recruited with an195

e-mail, inviting them to complete a questionnaire regarding decision behavior.
The questionnaire comprised a total of 66 choices between sets. The participants
were asked to state their preference by clicking a “radio button” besides the
preferred set. There were 33 different pairs of sets (the experimental choices in
Table 1 and some warm-up and filler choices). Each of the pairs was presented200

twice, since the proportion of preference reversals between replications of the
same choice is needed to estimate the error rate for that choice.

In the first series, the pairs were presented a first time. Consequently, the
whole series was repeated. Between the first and the second presentation, the
order of the sets within each pair was reversed in order to counterbalance any205

potential effect of this order. Within each series, the order of presentation of the
choices was randomized. It was repeatedly stressed in the instructions that the
proportions of the different numbers in the containers, and thus the probabilities
of winning the respective monetary prizes, were unknown. Participants were
also informed that ten of them would be selected at random to play one of their210

chosen lotteries for real money.
A total of 193 people participated in the experiment. Most of the partici-

pants were students in the Faculty of Psychology and Educational Sciences of
Ghent University, 75% were female and 81% were between 18 and 24 years of
age.215

4. Results

4.1. Averaging

The frequencies of each response pattern for the complete sequence of three
choices in the test Averaging 1 are tabulated in Table 2. Since the three choices
were presented twice, there are 26 = 64 possible response patterns in total.220

Most of these 64 patterns have zero frequencies. Therefore, the data are pooled
into 16 cells as in [7]. For each of the eight preference patterns in Table 2, the
number of times it was shown on both replicates was counted as well as the
number of times it was shown on either the first or the second replicate, but not
both, divided by two. For example, in the first row of Table 2 it is shown that 24225

out of 193 participants demonstrated pattern A1A2A3 (i.e., A1 � B1, A2 � B2,
and A3 � B3) on the first replicate, and 20 did so on the second replicate. Out
of these, nine people showed pattern A1A2A3 on both replicates. The number
of times A1A2A3 was shown on either the first or the second replication, but
not both is then given by (24 − 9) + (20 − 9) = 26. In order to avoid that230

responses with differing patterns in the first and second replicate are counted
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twice (once for the pattern in the first replicate and once for the pattern in the
second replicate), this number is divided by two, which yields 13. Grouping
the 64 frequencies of the complete patterns over the two replicates in the way
described above yields the 16 mutually exclusive frequencies in the fourth and235

fifth column of Table 2.

Response Observed frequencies Estimated true

pattern Rep 1 Rep 2 Both One not both probability

A1A2A3 24 20 9 13 0.110

A1A2B3 7 11 2 7 0.039

A1B2A3 75 62 37 31.5 0.508

A1B2B3 9 20 2 12.5 0.002

B1A2A3 9 6 1 6.5 0.000

B1A2B3 6 12 0 9 0.022

B1B2A3 39 49 19 25 0.221

B1B2B3 24 13 6 12.5 0.099

Total 193 193 76 117 1.000

Table 2: Observed frequencies and estimated true probabilities for each of the 8 possible
response patterns in the first test of Averaging, comprised by the sequence of choices 4, 5 and
6. Entries in bold are the probabilities of the true patterns that comply with Averaging. Esti-
mated error rates are 0.238, 0.135, and 0.156 for Choices 4, 5, and 6, respectively. Evaluation
of the TE model yields χ2(5) = 7.76, p = 0.170.

The TE model was fit to the 16 frequencies in the “Both” and “One not
both” columns in Table 2, as in [7]. From these 16 frequencies that have 15 de-
grees of freedom (they sum to the total number of participants), there are three
error terms and eight true probabilities to be estimated. Since the probabilities240

of the eight possible patterns sum to one, this leaves 15− 3− 7 = 5 degrees of
freedom to test the fit of the TE model. The column labelled “Estimated true
probability” in Table 2 shows the estimated true probabilities of each pattern.
For the analysis of the first test of Averaging, Averaging 1, in Table 2, χ2(5)
equals 7.76 (p = 0.17), which is not significant (with α = 0.05), suggesting245

that the general TE model can be retained. With this model, merely 20.9%
(p̂(A1A2A3) + p̂(B1B2B3)) of all participants are estimated to have a true pat-
tern that complies with Averaging. As much as 72.9% (p̂(A1B2A3)+p̂(B1B2A3))
is violating Averaging by choosing the union in choices 4 and 5. However, 6.1%
(p̂(A1A2B3) + p̂(B1A2B3)) of the violations is produced by people who have a250

true preference for the smaller set in choices 4 and 5.
Table 3 shows the analysis of the response patterns for Averaging 2, which

reveals that more than half of the participants, i.e. 54.1%, have a true pattern
that complies with Averaging. As anticipated when constructing these stimuli,
the largest portion of violations is again accounted for by patterns A1B2A3 and255

B1B2A3, where the union is preferred to the original sets in choices 8 and 9.
As shown in Table 4, the third test of Averaging produced the highest num-

ber of violations. Of all participants, 55.6% violated averaging by opting for the
largest set in all three choices. Surprisingly, 18.1% truly preferred the smallest
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Response Observed frequencies Estimated true
pattern Rep 1 Rep 2 Both One not both probability
A1A2A3 12 13 4 8.5 0.049
A1A2B3 1 7 0 4 0.000
A1B2A3 37 27 18 14 0.213
A1B2B3 5 10 1 6.5 0.000
B1A2A3 8 9 1 7.5 0.004
B1A2B3 20 14 6 11 0.060
B1B2A3 43 43 14 29 0.182
B1B2B3 67 70 38 30.5 0.492
Total 193 193 82 111 1.000

Table 3: Observed frequencies and estimated true probabilities for each of the 8 possible
response patterns in the second test of Averaging, choices 7, 8, and 9. Estimated error rates
are 0.124, 0.138, and 0.187 for choices 7, 8, and 9, respectively. Evaluation of the TE model
yields χ2(5) = 6.94, p = 0.225, an acceptable fit. Entries in bold are the probabilities of the
true patterns that comply with Averaging.

Response Observed frequencies Estimated true
pattern Rep 1 Rep 2 Both One not both probability
A1A2A3 14 17 5 10.5 0.048
A1A2B3 18 17 3 14.5 0.053
A1B2A3 62 60 33 28 0.556
A1B2B3 23 19 3 18 0.005
B1A2A3 5 11 0 8 0.000
B1A2B3 26 24 8 17 0.181
B1B2A3 19 26 4 18.5 0.021
B1B2B3 26 19 7 15.5 0.137
Total 193 193 63 130 1.000

Table 4: Observed frequencies and estimated true probabilities for each of the 8 possible
response patterns in the third test of Averaging with choices 10, 11, and 12. Estimated error
rates are 0.210, 0.177, and 0.214 for choices 10, 11, and 12 respectively. Evaluation of the TE
model yields χ2(5) = 6.14, p = 0.293, an acceptable fit. Entries in bold are the probabilities
of the true patterns that comply with Averaging.

set in all three choices of this test.260

Table 5 presents the the results of the fourth test. For this test as well, the
bulk of the violations is generated by subjects who opted for the union instead
of the original sets in choices 14 and 15. The responses of only 22.1% of all
subjects are estimated to comply with Averaging.

4.2. Restricted Independence265

With respect to the choices in Table 1, people should demonstrate either
pattern A1A2 (i.e., A is preferred over B in the first choice of the test as well
as in the second choice), or pattern B1B2 (if B is preferred over A in both

9



Response Observed frequencies Estimated true
pattern Rep 1 Rep 2 Both One not both probability
A1A2A3 30 30 12 18 0.116
A1A2B3 4 3 1 2.5 0.007
A1B2A3 93 84 54 34.5 0.661
A1B2B3 9 8 1 7.5 0.000
B1A2A3 6 2 0 4 0.000
B1A2B3 2 1 0 1.5 0.000
B1B2A3 26 49 9 28.5 0.111
B1B2B3 23 16 9 10.5 0.105
Total 193 193 86 107 1.000

Table 5: Observed frequencies and estimated true probabilities for each of the 8 possible re-
sponse patterns in the fourth test of Averaging composed of choices 13, 14, and 15. Estimated
error rates are 0.153, 0.119, and 0.121 for choices 13, 14, and 15, respectively. Entries in bold
are the estimated probabilities of the true patterns that comply with Averaging. Evaluation
of the TE model yields an only marginally acceptable fit (χ2(5) = 9.483, p = 0.091), implying
that the estimated probabilities need to be considered with the necessary caution.

choices of the test) in order to comply with the requirements of Restricted
Independence. For each test of the axiom, there are now four possible patterns270

of choice (A1A2, A1B2, B1A2 orB1B2) instead of eight. The data and results can
therefore be presented in a single table (Table 6). The estimated probabilities
of someone’s true preferences corresponding to a specific pattern are displayed
in columns four to seven of Table 6, i.e., the “Parameter Estimates” columns.
The results in Table 6 confirm rather than contravene Restricted Independence.275

A large portion of the people who opted for A1 in the first choice of each test,
also preferred A2 in the second choice. Of the people who chose B1 in the first
choice, on the other hand, almost everyone chose B2 as well. This results in
violation percentages (p̂(A1B2) + p̂(B1A2)) varying from 18.7% (in the fourth
test) to 34.7% (in the second test), so we can hardly conclude that this axiom280

is systematically violated with our stimuli.

Parameter Estimates
Test Choice ê p̂(A1A2) p̂(A1B2) p̂(B1A2) p̂(B1B2) p-value
Restr. Ind. 1 19 0.126 0.193 0.318 0.023 0.466 0.066

20 0.093
Restr. Ind. 2 21 0.095 0.269 0.341 0.006 0.383 0.241

22 0.169
Restr. Ind. 3 23 0.074 0.613 0.269 0.000 0.117 0.227

24 0.244
Restr. Ind. 4 25 0.105 0.419 0.147 0.040 0.395 0.638

26 0.169

Table 6: Estimated true probabilities of each response pattern in the four tests of Restricted
Independence. The p-values resulting from the tests of the TE model are shown in the last
column. All five of them show acceptable fits (α = .05). Entries in bold are the probabilities
of the true patterns that comply with Restricted Independence.
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Nevertheless, one has to consider the possibility that some of the subjects
who comply with Restricted Independence in one of the tests, violate the axiom
in one or more of the other tests. In order to truly know the compliance rate for
Restricted Independence axiom, we should examine how many people comply285

with the axiom in all four tests.
Since each test of Restricted Independence consists of two choices, we would

need to analyze response patterns for a sequence of eight choices if we want to
obtain the percentage of people complying with all four tests. Unfortunately,
we do not have enough data to estimate the excessive number of parameters290

needed to fit such a model (256 possible true patterns of which the probabilities
sum to one, plus eight error rate estimates yields 256 - 1 + 8 parameters). With
the amount of data that we have, it seems feasible to analyze sequences of up to
four choices with the TE model. This way, we can estimate for every possible
couple of tests how many people comply with both of them.295

Estimated percentage of people who showed
Tests 2 violations 2 compliances 1 viol. + 1 compl.
Restricted Independence 1 & 2 0.275 0.555 0.169
Restricted Independence 1 & 3 0.155 0.497 0.347
Restricted Independence 1 & 4 0.115 0.587 0.299
Restricted Independence 2 & 3 0.196 0.509 0.295
Restricted Independence 2 & 4 0.073 0.539 0.388
Restricted Independence 3 & 4 0.051 0.561 0.389

Table 7: Estimated true probabilities of the proportions of violations, compliances, and
mixed responses for each couple of tests of Restricted Independence.

The results of these analyses are shown in Table 7. The two by two analysis
of the four tests of Restricted independence yields 6 couples of tests. Each
line in Table 7 presents the results for one such couple of tests. To estimate the
fraction of respondents complying with both tests in a couple, we had to analyze
sequences of four choices, resulting in 24 = 16 possible true patterns. In order to300

present the results in an orderly and concise manner, the estimated proportions
were summed for all patterns complying with Restricted Independence in both
tests4— remember that a compliance consists of either choosing set A or set
B in both choices of a test—patterns with two violations5 and the remaining
patterns with one compliance and one violation.305

In the first row of table 7, it is shown that 55.5% of all subjects is estimated
to truly comply with Restricted Independence in the first two tests. Since for
both tests the compliance rate was approximately 65% (see Table 6), this means

4There are four patterns with two compliances: AAAA if one consistently chooses the first
set in both tests, AABB if the first set is chosen twice in the first test and the second set
is chosen twice in the second test, BBAA for the reverse pattern, and finally BBBB if one
consistently chooses the second set in both tests.

5There are four patterns with two violations: ABAB, ABBA, BAAB, and BABA
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that most people who chose according to Restricted Independence in one test,
also complied with the axiom in the other test. We can see in Table 7 that310

for each couple of tests, there is an “overlap” of at least 49.7% of the subjects
complying with the axiom in both tests.

From this, we can conclude that the proportion of subjects complying with
the axiom in all four tests is at most 49.7%. A lower bound for this proportion
is provided by the proportion of subjects complying with the axiom in all four315

tests without making any “error”, i.e., those complying with Restricted Inde-
pendence in the first as well as in the second presentation of all four tests. This
proportion is obtained by simply counting the number of such subjects (without
any statistical analysis) and dividing this number by the sample size (193). We
obtain 9.8%. Note that this is a very severe lower bound because it neglects all320

subjects that made at least one “error”.
In summary, the proportion of subjects satisfying Restricted Independence

is estimated between 10 and 50%.

5. Discussion of the experiments

The empirical investigation of the axiomatic characterizations of models for325

set ranking in Vrijdags [31, 32] has revealed that choices between sets of possi-
ble monetary outcomes appear to be transitive. Furthermore, peoples’ choices
obey axioms that prevent rankings to be based on total-goodness, as well as
monotonicity axioms which ensure that replacing a set element with a better
one results in a better set. Additionally, the strength of preference between330

monetary outcomes seems to be taken into account by the subjects, and ax-
ioms that prevent rankings to be based on average-goodness were violated on a
large scale.6 All of these findings are compatible with UEU and thus constitute
evidence in favour of the criterion. Yet, we also found that under particular
circumstances, people appear to prefer sets that are obviously less attractive in335

terms of the arithmetic mean over the outcomes, which can only be explained
by UEU if an extremely risk averse utility function is assumed. This rather
surprising finding was attributed to an inclination towards a diversification of
uncertainty. The latter observations indicate that UEU might not be an all-
encompassing model which is able to explain observed set rankings in different340

kinds of situations. In the current study, we sought to bring more clarity to
the situation by testing the axioms characterizing UEU, i.e., Averaging and
Restricted Independence, in a pairwise choice experiment.

In order to construct empirical tests for the axioms, we attempted, where
possible, to devise stimuli in such a way that we believe they are most likely to345

yield violations. Averaging was challenged by taking into account the assumed
inclination towards diversification. A strategy which appears to have worked
well since our stimuli gave rise to a rather strong refutation of Averaging, with

6For a more detailed account of these findings, the interested reader is referred to Vrijdags
[32].
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violation rates ranging from 46% to 81.5%. As a result we can conclude that
most people probably do not perform any averaging operation as required by350

UEU when validating sets of possible monetary outcomes.
In order to design stimuli for the test of Restricted Independence a different

strategy was applied, which yielded violations for a significant part of the sub-
jects. Still, with our stimuli, the choices of roughly 10% to 50% of the sample
met the requirements of Restricted Independence in all four tests. Consequently,355

if one intends to model actual choice behavior for a significant portion of people,
it seems expedient to take Restricted Independence into account. However—as
always when rather small numbers of violations are found—the question might
be asked whether Restricted Independence would continue to hold up in studies
with other recipes for devising the stimuli.360

6. A new model

In the current and previous studies, we have tested all models for ranking
sets of uncertain outcomes that have been axiomatically characterized so far.
None of them could be retained as being descriptively valid, since for each365

model, one or more of the characterizing axioms was violated on a large scale.
Our previously obtained results clearly show that the MMIR, which prescribe
that attention is restricted to merely the extremes of the set, are not adequate
for describing observed choices between sets of monetary consequences. The
UEU criterion, which supposes that the decision maker’s attention is divided370

equally over all possible outcomes, has none of the shortcomings of the MMIR.
Nevertheless, both its characterizing behavioral axioms were violated by a non-
negligible portion of people, although Restricted Independence continues to hold
true for at least 10% of all subjects.

Because UEU looked so promising at first, we wondered whether UEU could375

be extended in some way so that it would perform better in empirical tests. Since
Averaging was profusely violated, and Restricted independence much less so,
we tried to find a model satisfying some kind of weakened version of Restricted
Independence, that would not be refuted by the data. Through examination of
the manner in which violations were evoked for Restricted Independence, the380

idea arose that the ranks of the outcomes in the sets might play a crucial role
in establishing the violating patterns. Note that, in each test, the set C to be
added to both sets A and B consists of outcomes that are more attractive than
all outcomes in B and less attractive than max(A). These reflections led us to a
model for set ranking that resembles Rank-Dependent Utility (RDU) for risky385

decision making.

6.1. Rank-Dependent Utility

In the literature on risky decision making, a variety of RDU models have
been proposed as solutions to different theoretical and empirical problems with
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EU-models and their extensions. They were introduced by Quiggin [26] who at-390

tempted to explain the Allais paradox without producing violations of Stochas-
tic Dominance as implied by other non-EU models such as Edwards’ Subjective
Expected Value model [13] and Prospect Theory (PT) [21]. The central idea of
RDU, i.e., rank-dependent weighting, was then incorporated into PT, and the
resulting model is known as Cumulative Prospect Theory (CPT) (Tversky &395

Kahneman, 1992). The intuition of rank-dependence entails that the attention
given to an outcome does not only depend on the probability of the outcome,
but also on how attractive the outcome is in comparison to the other possible
outcomes of a prospect.

For a lottery L = (x1, p1;x2, p2; . . . xn, pn), with possible outcomes xi and400

respective probabilities pi, RDU can be formally represented as follows:

RDU(L) =

n∑
i=1

πiu(x(i)), (3)

with the decision weights, πi, defined by

πi = w

 i∑
j=1

pj

− w
i−1∑

j=1

pj

 .

In this formulation, x(1), x(2), . . . , x(n) constitute a reordering of the out-

comes such that x(i) is the ith largest outcome in L, and w is the probabil-
ity weighting function which is strictly increasing and assigns w(0) = 0 and
w(1) = 1.405

Several processes may lead people to evaluate utility in a rank-dependent
fashion. Tversky and Kahneman [30], for example, suggest perceptual biases as
a possible cause for the non-linear weighting of outcomes. According to CPT,
overweighting occurs mainly for the most and least favorable outcomes in a
lottery. Being positioned at the ends of the distribution, these outcomes are410

assumed to be perceptually more salient. One can also think of motivational
processes to account for rank-dependence. For some reason, the decision maker
may think that an unfavorable (favorable) outcome is especially important in
decision making and therefore should receive more attention than a favorable
(unfavorable) one with the same probability. The reason therefore might be a415

pessimistic attitude that causes an irrational belief that unfavorable events tend
to happen more often, leading to an unrealistic overweighting of unfavorable
likelihoods [12].

Several researchers have provided axiomatizations of RDU models [1, 11, 22,
24, 27, 28, 33], and, according to Wakker [34, p. 352], they are said to be the420

best-performing and most-confirmed empirical models for decision under risk
and uncertainty to date. Because of their extensive use, however, numerous
empirical violations of these models have been documented as well [e.g., 6, 16,
19, 29, 35].
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6.2. Uniform Rank-Dependent Utility425

When the notion of RDU is applied to the context of set ranking, it gives
rise to an extension of UEU, which we will refer to as Uniform Rank-Dependent
Utility (URDU). The URDU criterion can be formally represented by

URDU(A) =

#A∑
i=1

w#A
i u(a(i)), (4)

where a(i) is the ith largest element in set A with respect to %, and where each

set has an associated collection of decision weights, w#A = (w#A
1 , ..., w#A

#A),
lying in the unit interval and summing to one. As shown in (4), the weights
associated with each of the ranks are conditional on the number of elements in
the set. Consequently, for one person, sets with an equal cardinality have the430

same weights assigned to each of the ranks.
In the absence of any probabilities, we assume that the decision maker acts

as if all outcomes in a set are equally probable; the decision weights in URDU
will therefore solely depend on the ranks of the outcomes. Hence, the attention
given to each of the outcomes in a set is not necessarily equally distributed as435

assumed by UEU, but will depend on how good or attractive the outcome is in
comparison to the other possible outcomes in the same set. To exemplify this
notion of rank-dependence in the context of set ranking, consider an optimistic
decision maker evaluating the set {50, 30, 15}. As she is assumed to have an
optimistic attitude, more than one third of her attention will be devoted to the440

best outcome in the set, e50. Suppose that the decision weight for this outcome,
i.e., w3

1, equals 1/2. Consequently, the other two outcomes will receive less
attention (w3

2 + w3
3 = 1/2). Since the decision maker is said to be an optimist,

the majority of her remaining attention will be devoted to the middle outcome,
which entails that w3

2 > 1/4, for example w3
2 = 1/3. Accordingly, the decision445

weight pertaining to the lowest outcome, e15 will be relatively small (w3
3 = 1

6 ).
Now, replacing the middle outcome, e30, by e55 yields set {55, 50, 15} where
e50 is no longer the most attractive outcome. Therefore, our optimistic decision
maker will pay less attention to it than in the previous set.

Note that URDU can be conceived of as a special case of RDU, that is, the450

RDU of a lottery where all outcomes have an equal probability of occurrence,
with pj = 1/#L.

Moreover, URDU also bears strong similarities with the Ordered Weighted
Averaging (OWA) aggregation operator [36].7 In fact, the OWA operator is the
special case of URDU where u(x) = x.455

6.3. Plausibility of Uniform Rank-Dependent Utility

To this point, we have gathered empirical data on every single behavioral ax-
iom that has been used in characterizations of models for set ranking. In order

7For more information about the OWA operator and its potential as a valuation method in
decision making under uncertainty, the interested reader is referred to Yager [36, for instance].
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for URDU to be qualified as a descriptive model, it should satisfy the five ax-
ioms that we were unable to refute in [31] and [32], i.e., Transitivity, Dominance,460

Simple Top Monotonicity, Simple Bottom Monotonicity, Simple Monotonicity,
and potentially a weakened version of Restricted Independence. At the same
time, URDU should violate the remaining axioms, namely the ones that did not
prove valid.

465

In [31], it was shown that most people’s choices between sets of possible mon-
etary outcomes obey Transitivity: ∀A,B,C ∈ X , A % B and B % C ⇒ A % B.
It is evident that URDU also satisfies Transitivity.

Since Vrijdags [32] failed to elicit violations for Dominance, we consider that470

URDU should also satisfy Dominance in order to be descriptive.
Dominance: For all A ∈ X , for all x, y ∈ X,

[{x} � {y} for all y ∈ A] ⇒ A ∪ {x} � A, (5)

[{y} � {x} for all y ∈ A] ⇒ A � A ∪ {x}. (6)

If one allows the weights to be chosen freely, URDU does not satisfy Domi-
nance. Suppose, for example, A = {10, 1}, and {x} = 11. If the decision weights
are the following: w2 = (0.8, 0.2) and w3 = (0.1, 0.2, 0.7), calculating URDU475

will result in a violation of Dominance. In this case, URDU(A) = 0.8×10+0.2×
1 = 8.2 will be larger than URDU(A∪{x}) = 0.1×11+0.2×10+0.7×1 = 3.8,
which contravenes the implications of Dominance. Consequently, some restric-
tions on the weights are needed. They are provided in the following result.

Proposition 1. Suppose X = R. A preference relation representable by URDU
with u increasing and continuous satisfies Dominance if and only if the weight
vectors satisfy

j∑
i=1

wn
i ≤

j+1∑
i=1

wn+1
i , ∀j ∈ {1, . . . , n− 1} (7)

and
n∑

i=j

wn
i ≤

n+1∑
i=j

wn+1
i , ∀j ∈ {2, . . . , n}. (8)

The proof8 of all propositions can be found in the appendix.480

For the comparison of a four element set with a five element set, for example,
Restrictions (7) and (8) entail:

w4
1 + w4

2 + w4
3 ≤ w5

1 + w5
2 + w5

3 + w5
4,

w4
1 + w4

2 ≤ w5
1 + w5

2 + w5
3,

w4
1 ≤ w5

1 + w5
2,

8The authors thank Jean-Luc Marichal for his assistance in formulating and proving these
restrictions.
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and

w4
2 + w4

3 + w4
4 ≤ w5

2 + w5
3 + w5

4 + w5
5,

w4
3 + w4

4 ≤ w5
3 + w5

4 + w5
5,

w4
4 ≤ w5

4 + w5
5.

These restrictions do not give the impression of being overly far-fetched, and
they still allow sufficient variability to accommodate individual and/or situa-
tional differences.

In order to be of merit in a descriptive sense, URDU must also satisfy Simple
Top Monotonicity and Simple Bottom Monotonicity, since, for these axioms, no485

violations at all were recorded [32].

Simple Top Monotonicity: For all x, y, z ∈ X,

{x} � {y} � {z} ⇒ {x, z} � {y, z}. (9)

Simple Bottom Monotonicity: For all x, y, z ∈ X,

{x} � {y} � {z} ⇒ {x, y} � {x, z}.

We easily obtain:

Proposition 2. URDU satisfies Simple Top Monotonicity and Simple Bottom490

Monotonicity.

Finally, there is one more axiom that could not be refuted in Vrijdags [32]:
Simple Monotonicity. Consequently, this axioms also needs to be satisfied by
URDU.

Simple Monotonicity: For all x, y ∈ X,495

{x} � {y} ⇒ {x} � {x, y} � {y}.

The next result shows that URDU satisfies Simple Monotonicity provided a
hardly restrictive condition is met.

Proposition 3. URDU satisfies Simple Monotonicity iff 0 < w2
1 < 1.

URDU does not only satisfy the axioms that appeared to hold empirically,
but with certain values for the decision weights this model is also capable of500

violating all axioms for which substantial numbers of violations were found.
In the remainder of this paper, we will use the following weighting scheme:

w#A
i = kw#A

i+1, with k > 0 and

#A∑
i=1

w#A
i = 1. (10)

One can easily verify that this condition implies

wn
i =

kn−i∑n−1
i=0 k

i
(11)
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and that these weights satisfy (7) and (8).
Accordingly, k > 1 entails that the most favorable outcomes, with the low

indices, will be assigned the largest weights. With k < 1, the less favorable out-505

comes will receive more weight, and k = 1 indicates that there is no weighting;
all wn

i = 1/n. Although this scheme seems very rigid, it is more tractable than
(7) and (8) and it effectively serves our purpose of proving that URDU does not
satisfy the axioms that were violated on a large scale. Moreover, we will show
that URDU with restriction (10) is capable of predicting the most frequently510

occurring choice patterns recorded in Vrijdags [31, 32] and the current paper.
Consider, for instance, the data for the fourth test of Averaging in Ta-

ble 5. According to this test, 66% of all subjects truly violate averaging by
preferring A = {94, 25} over B = {45, 43, 32}, and also choosing A ∪ B =
{94, 45, 43, 32, 25} over both A and B. The UEU criterion cannot account515

for this choice pattern. However, if we assume that the subjects assign larger
weights to the most attractive outcomes (k = 3), and that they use the sim-
plest possible utility function u(x) = x, URDU with weight restriction (10)
can predict the observed modal choice pattern. Using (11), we find that the
weights for set A are w2

1 = k/(1 + k) = 3/4 and w2
2 = 1/(1 + k) = 1/4. Set520

B contains three elements, so the weights are w3
1 = k2/(1 + k + k2) = 9/13,

w3
2 = k/(1 + k + k2) = 3/13, and w3

3 = 1/(1 + k + k2) = 1/13. For the five
elements of A ∪ B, the weights are w5

1 = 81/121, w5
2 = 27/121, w5

3 = 9/121,
w5

4 = 3/121, and w5
5 = 1/121, respectively. URDU(A) is obtained by summing

the products of the utilities of the respective outcomes and their weights as525

follows w2
1u(a(1))) + w2

2u(a(2))) = 3/4 × 94 + 1/4 × 25 = 76.75. In the same
way one can calculate URDU(B) = 43.54, and URDU(A ∪ B) = 77.17. Hence,
decision makers who rank sets according to URDU with k = 3 and u(x) = x
should show the most frequently observed pattern for this choice sequence, i.e.,
A ∪ B � A � B, a violation of Averaging. Obviously, other combinations of530

weights and utility functions exist that would yield the same preference pattern.
This result indicates that the observed preference for larger sets in the tests of
Averaging, which was attributed by the authors to an inclination towards a di-
versification of uncertainty, can be explained by URDU with an overweighting
of the more favorable outcomes in the sets.535

Table 6.3 lists the other axiom tests along with examples of k-values that
will bring about violations. For all tests, the simplest possible utility function,
u(x) = x, is assumed. Where k = 1, no weighting is needed to cause a viola-
tion. Given that u(x) = x, URDU then comes down to simply calculating the
arithmetic mean over the outcomes in the sets.540

The pairwise choice tasks used in this paper and in Vrijdags [32] can be
considered fairly neutral in their situational motivation for differential weighting
of outcomes as a function of their rank, as well as in the perceptual emphasis
on certain outcomes. Therefore, one can assume that the subjects’ weighting
schemes will be mainly determined by their personal dispositions which will be545

supposed to remain constant throughout the course of the experiments. Hence,
if URDU really is a descriptively valid choice model, we should be able to find for
each subject a unique weighting scheme and utility function with which we can
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Axiom k-value Axiom k-value
Neutrality* 1 Restricted Ind. 4 0.6
Bottom Ind.* 1 Simple Uncertainty Appeal* 1
Top Ind.* 1 Simple Uncertainty Aversion* 1
Disjoint Ind.* 1 Monotone Consistency* 1
Robustness* 1 Type 1 Dominance* 1
Averaging 1 1.3 Type 2 Dominance* 1
Averaging 2 1.1 Type 1 Extension Principle* 0.6
Averaging 3 1.1 Type 2 Extension Principle* 4.1
Averaging 4 3 Type 1 Monotonicity* 0.6
Restricted Ind. 1 0.5 Type 2 Monotonicity* 0.9
Restricted Ind. 2 0.28 Extension Independence* 1
Restricted Ind. 3 0.12

Table 8: List of axioms and corresponding k-values that yield violations according to URDU

with weight restriction w#A
i = kw#A

i+1 and u(x) = x. For axioms marked with an asterisk, the
definition as well as the stimuli with which they were tested can be found in Vrijdags [32].

predict all of the true preferences demonstrated by that subject. It is especially
important to show that URDU, with a unique set of weights and utility function,550

can explain the preferences of individuals who do not choose according to the
MMIR, nor according to UEU. Unfortunately, the nature of our dataset does
not allow such analyses per person. Subjects participated either in one of both
MMIR experiments [32] or in the UEU experiment. Furthermore, experimental
choices were presented only twice, which makes it impossible to determine the555

true preferences for each person separately.
As an approximation of fitting a weighting scheme and utility function at the

individual level, we managed to find a combination of weights and a utility func-
tion that can predict the grand majority of the modal choice patterns produced
by all three experiments in [32] and the current paper. If weight restriction560

(10) is adopted with k = 3, and if one assumes an exponential utility function
u(x) = 1 − e−ax with a = 0.1, URDU can predict the modal choice pattern
for 20 out of the 23 tests in Table 6.3. Only for Averaging 2, Averaging 4 and
Restricted Independence 4, it does not predict the modal choice pattern, but
even in these cases it still explains the correct pattern for 39%, 11% and 19% of565

the subjects, respectively. Evidently, URDU also makes correct predictions for
the tests of axioms that were not violated.

It goes without saying that these results are extremely encouraging. Remem-
ber that we used the same, fairly rigid, weight restriction and utility function for
all individuals although they might differ. Rank-dependent weighting allows us570

to explain why people seem to choose according to UEU in Vrijdags [32] whilst
violating Averaging and, to a lesser degree, Restricted Independence the way
they do in the current paper. Furthermore, this new model is also capable of
explaining the puzzling asymmetries found in the tests of some of the MMIR
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axioms.9 Allowing for individual differences would of course give us even more575

flexibility for the predictions, but, as mentioned above, analysis at the individual
level is not possible with the available data.

In the literature concerning RDU, there is a remarkable degree of conver-
gence between studies regarding the functional form of the weighting function;
the key ingredient for accurate predictions appears to be an inverted S-shaped580

weighting function, where the lowest and (to a lesser degree) the highest out-
comes are simultaneously overweighted at the expense of the middle ones [e.g.,
2, 8, 10, 15, 30]. In our study, however, we are able to explain the majority
of the results with an overweighting of the most favorable outcomes (k > 1),
which seems atypical if compared with the findings for risky decision making.585

Of course, one has to keep in mind that restriction (10) constrains the weights
to be either ascending or descending, which prevents overweighting of the lowest
and the highest outcomes simultaneously. Yet, it is not impossible that with
the less stringent restrictions (7) and (8), combined with some utility function
we would find a weight set that is able to explain our data with an overweight-590

ing of the lowest as well as the highest outcomes. Nevertheless, some caution
is required in order to avoid thoughtlessly generalizing results from one area
of research to another. It may well be that decision makers employ different
weighting schemes for set ranking than for deciding between risky prospects,
where the weights depend on the probabilities as well as on the ranks.595

7. Conclusion

We have tested the foundations of the UEU model and we have laid out
the foundations of URDU, a new descriptive model for set ranking, by proving
that it satisfies, with certain restrictions, the axioms we were unable to refute
in previous research, and that it is also capable of violating the axioms for600

which substantial numbers of violations were found. Furthermore, it was shown
that with fixed parameter values, this model is capable of predicting the most
frequently observed preference patterns that have emerged from experimental
research in this domain. Still, a lot of questions remain unanswered and con-
stitute therefore ideal avenues for future research. It would, for example, be605

particularly advantageous to have a full axiomatization of the URDU model.
That way we would have a guideline for testing its specific properties without
having to estimate any utility or weighting function.

9Considering the tests of Type 1 and Type 2 Dominance, Type 1 and Type 2 Extension
Principle, and Type 1 and Type 2 Monotonicity, Vrijdags [32] found for each couple of dual
axioms a very large violation rate for one of the two counterparts, while for the other coun-
terpart the grand majority of people complied with the axiom. The author concluded that
the underlying behavioral properties represented by each couple of dual axioms must not
hold and that the lack of violations for one of the two counterparts was most likely due to a
rather unfortunate choice of stimuli. Results in the current paper, however, show that these
asymmetries follow naturally if one employs a certain weighting scheme.
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Appendix A. Proofs

Proof of Proposition 1. (5) ⇒ (7). Since X = R, % is representable by
URDU and u : R→ R is increasing, (5) can be rewritten as

∀x ∈ R, x > y(1) ⇒ wn+1
1 u(x) +

n∑
i=1

wn+1
i+1 u(y(i)) >

n∑
i=1

wn
i u(y(i)).

Because of the continuity of u, this amounts to

wn+1
1 u(y(1)) +

n∑
i=1

wn+1
i+1 u(y(i)) ≥

n∑
i=1

wn
i u(y(i)). (A.1)

Let j be an integer in {1, . . . , n − 1} and let us choose A = {z + jε, z + (j −
1)ε, . . . , z + ε, w + (n− j)ε, w + (n− j − 1)ε, . . . , w + ε}, with z > w. If ε → 0,
then, because of the continuity of u, (A.1) implies

wn+1
1 u(z) +

j∑
i=1

wn+1
i+1 u(z) +

n∑
i=j+1

wn+1
i+1 u(w) ≥

j∑
i=1

wn
i u(z) +

n∑
i=j+1

wn
i u(w),

(A.2)
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for any j ∈ {1, . . . , n − 1}. Since
∑n+1

i=1 w
n+1
i = 1 =

∑n
i=1 w

n
i , we also have∑n+1

i=1 w
n+1
i u(w) =

∑n
i=1 w

n
i u(w). This, combined with (A.2) yields

wn+1
1 (u(z)− u(w)) +

j∑
i=1

wn+1
i+1 (u(z)− u(w)) +

n∑
i=j+1

wn+1
i+1 (u(w)− u(w))

≥
j∑

i=1

wn
i (u(z)− u(w)) +

n∑
i=j+1

wn
i (u(w)− u(w))

for any j ∈ {1, . . . , n− 1}. Therefore

wn+1
1 (u(z)− u(w)) +

j∑
i=1

wn+1
i+1 (u(z)− u(w)) ≥

j∑
i=1

wn
i (u(z)− u(w))

and
j+1∑
i=1

wn+1
i ≥

j∑
i=1

wn
i , ∀j ∈ {1, . . . , n− 1}.

Notice that this is the same condition as (7).
(7) ⇒ (5) . Let us fix A = {y(1), . . . , y(n)} and define a1 = u(y(1)) and ai =

u(y(i))−u(y(i−1)) for all i ∈ {2, . . . , n}. Notice that ai ≤ 0 for all i ∈ {2, . . . , n}
and u(y(i)) =

∑i
j=1 aj for all i ∈ {1, . . . , n}. We have705

n∑
i=1

(wn
i − wn+1

i+1 )u(y(i)) =

n∑
i=1

(wn
i − wn+1

i+1 )

i∑
j=1

aj =

n∑
j=1

aj

n∑
i=j

(wn
i − wn+1

i+1 )

=

n∑
j=1

aj

 n∑
i=j

wn
i −

n∑
i=j

wn+1
i+1


=

n∑
j=1

aj

(
1−

j−1∑
i=1

wn
i − 1 +

j∑
i=1

wn+1
i

)

=

n∑
j=1

aj

(
j∑

i=1

wn+1
i −

j−1∑
i=1

wn
i

)

= wn+1
1 u(y(1)) +

n∑
j=2

aj︸︷︷︸
≤0

(
j∑

i=1

wn+1
i −

j−1∑
i=1

wn
i

)
︸ ︷︷ ︸

≥0 (by (7))

≤ wn+1
1 u(y(1)).

So,
∑n

i=1(wn
i −w

n+1
i+1 )u(y(i)) ≤ wn+1

1 u(y(1)), which is equivalent to (A.1). Going
from (A.1) to (5) is easy and left to the reader.

A similar reasoning shows that % satisfies (6) iff (8) holds. 2
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Proof of Proposition 2. We prove only Simple Top Monotonicity. By710

definition, any monotonic utility function prescribes

{x} � {y} � {z} ⇔ u(x) > u(y) > u(z). (A.3)

Suppose URDU does not satisfy (9). Then, URDU({x, z}) ≤ URDU({y, z}).
Hence, by (4), w2

1u(x) + w2
2u(z) ≤ w2

1u(y) + w2
2u(z), or equivalently, w2

1u(x) ≤
w2

1u(y). Cancellation of w2
1 yields u(x) ≤ u(y), which contradicts (A.3) and

thus proves that Simple Top Monotonicity holds. 2715

Proof of Proposition 3. {x} � {y} implies u(x) > u(y). This, in turn,
implies URDU({x}) > URDU({x, y}) > URDU({y}) ⇐⇒ 0 < w2

1 < 1. 2
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