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Association of Systemic Lupus Erythematosus With Decreased
Immunosuppressive Potential of the IgG Glycome
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Objective. Glycans attached to the Fc portion of
IgG are important modulators of IgG effector functions.
Interindividual differences in IgG glycome composition
are large and they associate strongly with different inflam-

matory and autoimmune diseases. IKZF1, HLA–DQ2A/B,
and BACH2 genetic loci that affect IgG glycome composi-
tion show pleiotropy with systemic lupus erythematosus
(SLE), indicating a potentially causative role of aberrant
IgG glycosylation in SLE. We undertook this large multi-
center case–control study to determine whether SLE is
associated with altered IgG glycosylation.The views expressed herein are those of the authors and are not
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Mr. Vučković and Ms Kri�stić contributed equally to this work.
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Methods. Using ultra-performance liquid chroma-
tography analysis of released glycans, we analyzed the
composition of the IgG glycome in 261 SLE patients and
247 matched controls of Latin American Mestizo origin
(the discovery cohort) and in 2 independent replication
cohorts of different ethnicity (108 SLE patients and 193
controls from Trinidad, and 106 SLE patients and 105
controls from China).

Results. Multiple statistically significant differ-
ences in IgG glycome composition were observed between
patients and controls. The most significant changes includ-
ed decreased galactosylation and sialylation of IgG (which
regulate proinflammatory and antiinflammatory actions of
IgG) as well as decreased core fucose and increased bisect-
ing N-acetylglucosamine (which affect antibody-dependent
cell-mediated cytotoxicity).

Conclusion. The IgG glycome in SLE patients is
significantly altered in a way that decreases immunosup-
pressive action of circulating immunoglobulins. The mag-
nitude of observed changes is associated with the intensity
of the disease, indicating that aberrant IgG glycome com-
position or changes in IgG glycosylation may be an impor-
tant molecular mechanism in SLE.

N-glycans attached to the Fc portion of IgG are
important modulators of IgG effector functions (1,2) (see
Supplementary Figure 1, available on the Arthritis & Rheu-
matology web site at http://onlinelibrary.wiley.com/doi/
10.1002/art.39273/abstract). Glycans that lack terminal galac-
tose activate complement and make IgG proinflammatory,
while the addition of galactose decreases the inflammatory
potential of IgG (1,3). Further extension of IgG glycans by
the addition of sialic acid dramatically changes the physio-
logic role of IgG, converting it from a proinflammatory
agent into an antiinflammatory agent. This relatively small
fraction of sialylated IgG is believed to be responsible for
the immunosuppressive activity of intravenous immunoglo-
bulins (IVIGs) (4). Another feature of the IgG glycan,
fucose attached to the glycan core (core fucose), interferes
with binding of IgG to Fcg receptor IIIa (FcgRIIIa) and
greatly diminishes its capacity for the activation of
antibody-dependent cell-mediated cytotoxicity (ADCC)
(5). The removal of core fucose from IgG glycans increases
clinical efficacy of monoclonal antibodies, enhancing their
therapeutic effect through ADCC-mediated killing (6,7).
Our recent genome-wide association study (GWAS) of the
IgG glycome in 2,247 individuals identified 16 genetic loci
that are associated with variations in composition of the
IgG glycome (8). Three of these 16 genes (IKZF1, BACH2,
and HLA–DQA2) have previously also been identified as
GWAS hits in systemic lupus erythematosus (SLE) (9–11).

SLE is a chronic multiorgan autoimmune disease
that predominantly affects women and certain ethnic
groups including African/African Caribbean, American
Indian, Asian Indian, Polynesian, and Chinese populations.
Development of SLE includes multiple genetic and envi-
ronmental risk factors that result in loss of tolerance and
development of an autoreactive immune response, includ-
ing autoimmune cells producing pathogenic autoantibod-
ies, mainly of the IgG1 and IgG3 subclasses. The molecular
mechanisms leading to SLE are unknown, but mice lacking
a-mannosidase II (aM-II) develop an SLE-like syndrome
(12). Absence of aM-II leads to the absence of complex
branched N-glycans (13). Studies by Green et al ruled out
the notion that an ontogenic defect of the kidneys is
involved in SLE pathogenesis and, by bone marrow recon-
stitution experiments, also excluded a role of bone mar-
row–derived cells. However, mice that are deficient in
recombination-activating genes and that therefore cannot
generate functional B and T cells showed a more severe dis-
ease, indicating the importance of the immunosuppressive
role of IgG in SLE. This idea was confirmed by the finding
that IgG administration dampened SLE-like symptoms
(12). Aiming to investigate the potential role of IgG glyco-
sylation in SLE, we analyzed IgG glycome composition in 3
cohorts of SLE patients and matching controls.

PATIENTS AND METHODS

Description of patient cohorts. A group of 261 SLE
patients and 247 age-, sex-, and ethnicity-matched controls from
the Latin American Genoma de Lupus Eritematoso Sistemico
Network (GENLES) study was selected for the present study.
This group of patients has been extensively described (14). All
patients fulfilled the American College of Rheumatology (ACR)
1982 revised criteria for SLE (15).

The data set from Trinidad used in this analysis com-
prised 108 SLE patients (10 male and 98 female) and 193 age-,
sex-, and ethnicity-matched controls with complete age, sex, and
glycan data. The case definition of SLE was based on the ACR
1982 revised criteria applied to medical records (available for
.90% of the patients) and to the medical history given by the
patient. For the purpose of identifying patients in this study, a
person was considered to have SLE if any 4 or more of the 11
elements of the criteria were present, serially or simultaneously,
during any interval of observation. The study was approved by
the London School of Hygiene and Tropical Medicine ethics
board and the Trinidad and Tobago Ministry of Health (see ref.
16 for further details).

A total of 106 SLE patients (7 male and 99 female, ages
14–74 years) and 105 age- and sex-matched controls of Han
Chinese ethnicity from Northern China (Beijing and Tangshan)
were included in the study. The Systemic Lupus International
Collaborating Clinics revision of the ACR criteria for SLE (17)
was used to diagnose SLE in this cohort. Individuals diagnosed
as having cancer or specific severe diseases involving the cardio-
vascular system, respiratory system, genitourinary system, or
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digestive system were excluded. Permissions for conduct of the
study were obtained from the local ethics committees, and writ-
ten informed consent was obtained from all participants.

Analysis of IgG glycans. IgG was isolated, and Fc and
Fab glycans were released and analyzed by hydrophilic interac-
tion chromatography–ultra-performance liquid chromatography
(UPLC) as described recently (18).

Statistical analysis. Clinical characteristics among
patients and controls in all 3 cohorts were compared using Wil-
coxon and Fisher’s exact tests. In order to remove experimental
variation from measurements, normalization and batch correction
were performed on UPLC glycan data. To make measurements
across samples comparable, normalization by total area was per-
formed in which the peak area of each of 24 glycan structures
(glycan peaks [GPs]) was divided by the total area of the corre-
sponding chromatogram. Prior to batch correction, normalized
glycan measurements were log-transformed due to right skewness
of their distributions and the multiplicative nature of batch
effects. Batch correction was performed on log-transformed
measurements using the ComBat method (R package “sva”;
https://bioconductor.org/packages/sva/), in which the technical
source of variation (which sample was analyzed on which plate)
was modeled as a batch covariate. To get measurements cor-
rected for experimental noise, estimated batch effects were sub-
tracted from log-transformed measurements.

In addition to 24 directly measured glycan structures,
57 derived traits were calculated from the directly measured
glycans. These derived traits average particular glycosylation
features (galactosylation, fucosylation, sialylation) across dif-
ferent individual glycan structures, and consequently they are
more closely related to individual enzymatic activities and
underlying genetic polymorphisms. As derived traits represent
ratios and sums of initial glycans, they were calculated using
normalized and batch-corrected glycan measurements after
transformation to the proportions (exponential transformation
of batch-corrected measurements).

Analyses of associations between disease status and gly-
can traits were performed using a logistic regression model with
age and sex included as additional covariates. Intracase analysis
was also performed in which associations between glycan levels
and clinical traits (antinuclear antibody [ANA] positivity, pericar-
ditis, proteinuria, disease duration, and the like) were examined
using a regression model adjusted for age and sex, with the glycan
trait described as the dependent variable. Both case–control and
intracase analyses were first performed for each cohort separately
and then combined using an inverse variance–weighted meta-
analysis approach (R package “metafor”; http://www.metafor-
project.org/). Prior to analyses, glycan variables were all trans-
formed to a standard normal distribution (mean 5 0, SD 5 1) by
inverse transformation of ranks to normality (R package
“GenABEL,” function rntransform; http://www.genabel.org/).
Using rank-transformed variables in case–control and intracase
analyses makes estimated effects of different glycans in different
cohorts comparable, as transformed glycan variables have the
same standardized variance. In case–control logistic regression
analysis, estimated odds ratios (ORs) always correspond to 1 SD
change in the measured glycan trait. In intracase regression ana-
lysis, coefficients of binary predictors (ANA positivity, pericardi-
tis, proteinuria) refer to change in a glycan variable between 2
classes of binary predictors expressed in SDs. The false discovery
rate (FDR) for both analyses was controlled using the Benjamini-

Hochberg procedure (19), and P values corrected for multiple
testing (with FDR set at 0.05) are shown throughout.

For prediction of SLE status, a regularized logistic (elas-
tic net) regression model was applied (R package “glmnet”;
http://www.jstatsoft.org/v33/i01/). For classification, only 24 initial
glycan traits were used as predictors. Prior to model training,
elastic net regularization parameters (alpha and lambda) were
tuned on 50% of the Latin American cohort (250 samples), and
optimal parameters chosen by the tuning procedure (a 5 0,
l 5 0.1) were used in all further classification models (R package
“caret”; http://github.com/topepo/caret/). To evaluate the bio-
marker potential of glycans, the model was trained and validated
on each lupus cohort separately. For each cohort 2 models were
built—1 using only age and sex as predictors and 1 using age, sex,
and 24 glycan traits. To evaluate performance of the predictive
model based on glycans, a 10–cross-validation procedure was
used. The predictions from each validation round were merged
into one validation set on which the performance of a cohort-
specific model was evaluated based on area under the curve
(AUC) criteria. Additionally, the predictive power of each indi-
vidual glycan trait was evaluated by receiver operating character-
istic (ROC) curve analysis. Differences in glycomes between
patients and controls were visualized using principal components
analysis (PCA). PCA was applied only on 4 glycan variables
(GP6, GP9, GP10, GP14) that showed strong predictive power in
all 3 cohorts. The AUCs of different classification models were
compared using a bootstrap test. Data were analyzed and visual-
ized using R programming language (version 3.0.1).

RESULTS

IgG glycome composition was analyzed in 261 SLE
patients of Latin American Mestizo origin and 247
matched controls recruited through a multicenter collabo-
ration (20). The first replication cohort consisted of 108
SLE patients and 193 matched controls of African Carib-
bean ethnicity from Trinidad. The second replication
cohort consisted of 106 SLE patients and 105 matched con-
trols of Han Chinese ethnicity from Beijing and Tangshan.
Basic descriptions of the cohorts are provided in Supple-
mentary Table 1, available on the Arthritis & Rheumatology
web site at http://onlinelibrary.wiley.com/doi/10.1002/art.
39273/abstract.

IgG glycosylation analysis was performed using a
recently developed high-throughput analysis method (21)
that reliably separates and individually quantifies nearly
all IgG glycans. In addition to direct measurement of 24
chromatographic peaks, an additional 57 derived traits
(representing composite traits such as galactosylation, sia-
lylation, and the like) were calculated as described previ-
ously (21).

Galactosylation of IgG. Glycans without galac-
tose (GP1–GP6) make IgG proinflammatory by promot-
ing complement activation (1,3). The proportion of IgG
molecules that carry agalactosylated glycans increases
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with age (22) and in a number of different inflammatory
diseases (23). In the discovery cohort we observed a statis-
tically significant and considerable increase in all agalacto-
sylated glycans and in derived trait G0 (which combines
all agalactosylated structures). In parallel, glycans with 2
galactoses (such as GP14) decreased significantly. The
same pattern of changes was also observed in both repli-
cation SLE cohorts (Figure 1 and Tables 1 and 2) (also

see Supplementary Table 2, available on the Arthritis &
Rheumatology web site at http://onlinelibrary.wiley.com/
doi/10.1002/art.39273/abstract).

Interestingly, a significant difference was observed
in 2 monogalactosylated glycan structures. Galactose can
be attached to the 3-arm and/or 6-arm of the IgG glycan.
Structures with galactose attached to the 6-arm (GP8) are
more abundant on human IgG, and only this structure

Figure 1. Differences in IgG glycosylation in patients with systemic lupus erythematosus and in healthy controls in 3 different populations. The
IgG glycome was analyzed using hydrophilic interaction chromatography–ultra-performance liquid chromatography in African Caribbeans (Afr;
108 patients and 193 controls), Latin Americans of Mestizo ethnicity (Lat; 261 patients and 247 controls), and Han Chinese (Chi; 106 patients
and 105 controls). Pronounced differences were observed between patients and controls in directly measured glycan structures (A) and in
derived traits that measure sialylation, galactosylation, fucosylation, and bisecting N-acetylglucosamine (GlcNAc) (B). Data are shown as box
plots. Each box represents the 25th to 75th percentiles. Lines inside the boxes represent the median. Lines outside the boxes represent the 10th
and 90th percentiles. Circles indicate outliers. Glycan peak 2 (GP2) 5 percentage of A2 glycan in total IgG glycans; GP4 5 percentage of FA2
glycan in total IgG glycans; GP6 5 percentage of FA2B glycan in total IgG glycans; GP9 5 percentage of FA2[3]G1 glycan in total IgG glycans;
GP14 5 percentage of FA2G2 glycan in total IgG glycans; GP18 5 percentage of FA2G2S1 glycan in total IgG glycans; S total 5 proportion of
sialylated structures in total IgG glycans; G0n 5 proportion of agalactosylated structures in neutral glycans; G1n 5 proportion of monogalactosy-
lated structures in neutral glycans; G2n 5 proportion of digalactosylated structures in neutral glycans; Fn total 5 proportion of fucosylated struc-
tures in neutral glycans; FBn 5 proportion of fucosylated (with bisecting GlcNAc) structures in total neutral IgG glycans. Color figure can be
viewed in the online issue, which is available at http://onlinelibrary.wiley.com/doi/10.1002/art.39273/abstract.
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decreases with age, while structures with galactose on the
3-arm do not (22). In this study we observed a significant
decrease of IgG glycan with galactose on the 3-arm (GP9)

in both the discovery and replication cohorts (Figure 1 and
Table 1). Differences in biologic functions of these 2 struc-
tures are not known, and it is also not known how this type

Table 1. Associations of the directly measured glycans with disease status (SLE), adjusted for age and sex*

Glycan Description

Meta-analysis

OR (95% CI) P

GP1 Percentage of FA1 glycan in total IgG glycans 1.93 (1.66–2.24) 1.88 3 10217

GP2 Percentage of A2 glycan in total IgG glycans 2.05 (1.75–2.40) 5.40 3 10218

GP4 Percentage of FA2 glycan in total IgG glycans 1.81 (1.55–2.11) 4.33 3 10214

GP5 Percentage of M5 glycan in total IgG glycans 1.34 (1.17–1.53) 3.00 3 1025

GP6 Percentage of FA2B glycan in total IgG glycans 3.00 (2.49–3.62) 7.38 3 10230

GP7 Percentage of A2G1 glycan in total IgG glycans 1.56 (1.35–1.79) 1.47 3 1029

GP8 Percentage of FA2[6]G1 glycan in total IgG glycans 0.86 (0.75–0.97) 2.40 3 1022

GP9 Percentage of FA2[3]G1 glycan in total IgG glycans 0.27 (0.22–0.33) 2.08 3 10239

GP10 Percentage of FA2[6]BG1 glycan in total IgG glycans 2.00 (1.72–2.32) 1.02 3 10218

GP11 Percentage of FA2[3]BG1 glycan in total IgG glycans 1.10 (0.96–1.26) 1.80 3 1021

GP12 Percentage of A2G2 glycan in total IgG glycans 1.19 (1.05–1.36) 1.11 3 1022

GP14 Percentage of FA2G2 glycan in total IgG glycans 0.37 (0.31–0.44) 9.74 3 10227

GP15 Percentage of FA2BG2 glycan in total IgG glycans 0.97 (0.84–1.11) 6.50 3 1021

GP16 Percentage of FA2G1S1 glycan in total IgG glycans 0.61 (0.53–0.71) 1.63 3 10211

GP17 Percentage of A2G2S1 glycan in total IgG glycans 1.22 (1.06–1.39) 5.28 3 1023

GP18 Percentage of FA2G2S1 glycan in total IgG glycans 0.55 (0.47–0.64) 1.23 3 10213

GP19 Percentage of FA2BG2S1 glycan in total IgG glycans 1.31 (1.14–1.49) 1.01 3 1024

GP21 Percentage of A2G2S2 glycan in total IgG glycans 0.91 (0.80–1.04) 1.87 3 1021

GP22 Percentage of A2BG2S2 glycan in total IgG glycans 1.59 (1.38–1.83) 1.11 3 10210

GP23 Percentage of FA2G2S2 glycan in total IgG glycans 0.61 (0.53–0.70) 1.63 3 10211

GP24 Percentage of FA2BG2S2 glycan in total IgG glycans 1.60 (1.40–1.84) 3.29 3 10211

* SLE 5 systemic lupus erythematosus; OR 5 odds ratio; 95% CI 5 95% confidence interval; GP1 5 glycan peak 1.

Table 2. Associations of the derived glycan traits with disease status (SLE), adjusted for age and sex*

Description Glycan

Meta-analysis

OR (95% CI) P

Proportion of agalactosylated structures in neutral glycans G0n 2.31 (1.95–2.72) 3.14 3 10222

Proportion of monogalactosylated structures
in neutral glycans

G1n 0.56 (0.48–0.64) 8.42 3 10215

Proportion of digalactosylated structures in neutral glycans G2n 0.46 (0.39–0.55) 2.67 3 10219

Proportion of fucosylated structures in neutral glycans Fn total 0.67 (0.59–0.77) 1.62 3 1028

Proportion of fucosylation in agalactosylated structures FG0 total/G0 0.65 (0.56–0.74) 1.73 3 1029

Proportion of fucosylated structures with bisecting
GlcNAc in monogalactosylated structures

FG1 total/G1 0.61 (0.53–0.70) 1.63 3 10211

Proportion of fucosylated structures with bisecting
GlcNAc in digalactosylated structures

FG2 total/G2 0.51 (0.44–0.59) 7.99 3 10218

Proportion of sialylated structures in total IgG glycans S total 0.69 (0.60–0.79) 3.13 3 1027

Proportion of monosialylated structures in total IgG
glycans

S1 total 0.59 (0.51–0.69) 1.63 3 10211

Proportion of disialylated structures in total IgG glycans S2 total 1.00 (0.88–1.14) 9.99 3 1021

Proportion of fucosylated (with bisecting GlcNAc)
structures in total neutral IgG glycans

FBn 2.67 (2.25–3.17) 2.06 3 10228

Proportion of fucosylation (without bisecting GlcNAc) of
agalactosylated structures

FBG0/G0 1.57 (1.36–1.80) 4.71 3 10210

Proportion of fucosylation (without bisecting GlcNAc) of
monogalactosylated structures

FBG1/G1 2.37 (2.02–2.78) 3.00 3 10225

Proportion of fucosylation (without bisecting GlcNAc) of
digalactosylated structures

FBG2/G2 2.97 (2.48–3.55) 1.06 3 10231

Incidence of bisecting GlcNAc in all fucosylated
monosialylated structures in total IgG glycans

FBS1/(FS1 1 FBS1) 2.03 (1.73–2.38) 2.23 3 10217

Incidence of bisecting GlcNAc in all fucosylated
disialylated structures in total IgG glycans

FBS2/(FS2 1 FBS2) 4.03 (3.29–4.93) 2.39 3 10240

* SLE 5 systemic lupus erythematosus; OR 5 odds ratio; 95% CI 5 95% confidence interval; GlcNAc 5 N-acetylglucosamine.
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of difference can be generated since the same enzyme adds
galactose to both arms. However, a recent IgG glycome
GWAS identified a specific association between BACH2
and 1 of the 2 possible monogalactosylated forms of the
IgG glycan (8).

Sialylation of IgG. The addition of sialic acid
to IgG glycans converts IgG into an antiinflammatory
molecule (24). Initially it was thought that only a small
fraction of IgG molecules bear sialylated glycans, but our
recent large study revealed that this was a methodologic
artifact and that ;50% of all digalactosylated IgG glycans
are also sialylated (18). A new method that reliably quanti-
fies IgG sialylation was used in the present study, and it
enabled us to demonstrate that major sialylated glycans
(GP16, GP18, and GP23) were significantly decreased in
both the discovery and replication cohorts (Figure 1 and
Table 1), indicating significantly decreased immunosup-
pressive potential of IgG in SLE. Interestingly, in contrast

to major sialylated IgG glycans, sialylated glycans GP17,
GP19, and GP24 were increased in SLE patients. A com-
mon characteristic of these glycans is the presence of
bisecting N-acetylglucosamine (GlcNAc), and the increase
of this structural feature in SLE (see below) apparently
outweighed the effects of a decrease in sialylation.

Core fucose and bisecting GlcNAc. The addition
of fucose to the innermost GlcNAc (core fucose) signifi-
cantly attenuates binding of IgG to FcgRIIIa and serves as
a safety switch that prevents ADCC (25). The addition of
bisecting GlcNAc was reported to have an opposite effect
and cause higher affinity for FcgRIIIa (26), but it is not
clear whether this is a direct effect or an indirect conse-
quence of decreased core fucose level, because the pres-
ence of bisecting GlcNAc inhibits the addition of core
fucose (27).

We observed a significantly decreased core fucose
level and a consistent increase of all UPLC GPs that con-

Table 3. Associations between individual IgG glycans and SLE diagnostic parameters*

Glycan Description Trait
Effect,

mean 6 SEM
Meta-analysis,

adjusted P

FBS2/(FS2 1 FBS2) Bisecting GlcNAc ANA positivity 0.67 6 0.11 2.53 3 1026

GP9 Galactosylation ANA positivity 20.59 6 0.12 1.65 3 1024

FBG2/(FG2 1 FBG2) Bisecting GlcNAc ANA positivity 0.51 6 0.11 1.00 3 1023

FBn Bisecting GlcNAc ANA positivity 0.50 6 0.11 1.00 3 1023

FG1/G1 Fucosylation ANA positivity 20.51 6 0.11 1.02 3 1023

GP23 Sialylation ANA positivity 20.50 6 0.12 1.86 3 1023

GP6 Agalactosylation ANA positivity 0.43 6 0.11 4.40 3 1023

FG2/G2 Fucosylation ANA positivity 20.38 6 0.11 2.38 3 1022

GP20 Sialylation ANA positivity 20.40 6 0.12 2.38 3 1022

GP14 Galactosylation ANA positivity 20.35 6 0.11 3.01 3 1022

G0n Agalactosylation ANA positivity 0.34 6 0.11 4.13 3 1022

GP10 Bisecting GlcNAc Duration .8 years 0.29 6 0.05 1.73 3 1024

FBn Bisecting GlcNAc Duration .8 years 0.27 6 0.05 4.94 3 1024

FBG1/G1 Bisecting GlcNAc Duration .8 years 0.26 6 0.05 5.96 3 1024

FBS2/(FS2 1 FBS2) Bisecting GlcNAc Duration .8 years 0.22 6 0.05 3.74 3 1023

FG0/G0 Fucosylation Duration .8 years 20.19 6 0.05 2.23 3 1022

GP6n Agalactosylation Duration .8 years 0.16 6 0.05 4.48 3 1022

GP20 Sialylation Duration .8 years 20.17 6 0.06 5.59 3 1022

GP14 Galactosylation Pericarditis 20.50 6 0.12 3.11 3 1023

GP6 Agalactosylation Pericarditis 0.46 6 0.12 6.67 3 1023

G2n Galactosylation Pericarditis 20.44 6 0.12 1.02 3 1022

G0n Agalactosylation Pericarditis 0.44 6 0.13 1.46 3 1022

FG2/G2 Fucosylation Pericarditis 20.43 6 0.13 2.22 3 1022

GP18 Sialylation Pericarditis 20.38 6 0.12 3.78 3 1022

GP9n Galactosylation Pericarditis 20.39 6 0.13 4.48 3 1022

GP4 Agalactosylation Pericarditis 0.36 6 0.13 5.60 3 1022

GP2 Agalactosylation Proteinuria 0.43 6 0.10 1.57 3 1023

FG0 total/G0 Fucosylation Proteinuria 20.36 6 0.10 1.81 3 1022

GP6 Agalactosylation Proteinuria 0.31 6 0.10 3.69 3 1022

GP9n Galactosylation Proteinuria 20.32 6 0.10 4.05 3 1022

FG1 total/G1 Fucosylation Proteinuria 20.31 6 0.10 4.48 3 1022

FG2/G2 Fucosylation Proteinuria 20.30 6 0.10 4.84 3 1022

GP18 Sialylation Proteinuria 20.28 6 0.10 5.28 3 1022

* ANA 5 antinuclear antibody; GP9 5 glycan peak 9; FBG2/(FG2+FBG2)=incidence of bisecting GlcNAc in all fucosylated diga-
lactosylated structures in total neutral IgG glycans; FG1/G1 5 percentage of fucosylation of monogalactosylated structures; FG2/
G2 5 percentage of fucosylation of digalactosylated structures; FG0/G0 5 percentage of fucosylation of agalactosylated structures
(see Description column of Table 2 for other definitions).
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tain bisecting GlcNAc in both the discovery and replication
cohorts (Figure 1 and Tables 1 and 2). A derived trait that
measures total core fucose (Fn total) was also significantly
decreased, but the decrease in fucosylation was much more
evident when this trait was decomposed into Fn (all glycans
with core fucose that do not contain bisecting GlcNAc),
which was decreased in SLE, and FBn (all glycans with
core fucose that contain bisecting GlcNAc), which was
increased in SLE.

In general, all major glycans that contain bisecting
GlcNAc (GP6, GP10, GP19, and GP24) increased signifi-
cantly, but the increase was more pronounced in derived
traits that measure bisecting GlcNAc (Table 2). The larg-
est observed difference between patients and controls
(OR 4.03, P 5 2.39 3 10240) was in the incidence of bisect-
ing GlcNAc in all fucosylated disialylated structures in
total IgG glycans (FBS2/[FS2 1 FBS2]) (Table 2).

Association of changes in glycans with the pres-
ence of ANAs and the symptom profile. In addition to
being different between SLE patients and controls, levels of
IgG glycans were significantly different between patients
with less severe disease and those with more severe disease.
The presence of ANAs at the time of sampling for this study
and a number of secondary phenotypes, e.g., pericarditis
and proteinuria, were consistently associated with decreased
galactosylation, decreased sialylation, and increased levels
of bisecting GlcNAc (Table 3) (also see Supplementary Fig-
ure 2 and Supplementary Table 3, available on the Arthritis

& Rheumatology web site at http://onlinelibrary.wiley.com/
doi/10.1002/art.39273/abstract). The decrease in levels of
core fucose in patients with the same phenotypes was also
statistically significant, but the magnitude of significance
was lower. The difference in glycome composition seemed
to be cumulative, since a greater number of symptoms/
complications (that were associated with changes in glycome
composition) within an individual patient was associated
with more extensive changes in IgG glycome composition
(Figure 2).

Effects of corticosteroids on IgG glycans. One
potential problem for the interpretation of the observed
differences was the fact that the majority of patients were
receiving corticosteroids, while controls were not. There-
fore, it was difficult to exclude the possibility that the
observed changes in IgG glycome composition were the
effect of treatment with corticosteroids. Effects of steroids
on the IgG glycome are not known, but 1 recently reported
study showed effects of medication (including steroids) on
the total plasma glycome (28). Neutral plasma glycans
originate predominantly from IgG (29); thus, by analyzing
the reported data, we were able to estimate effects of
corticosteroids on the IgG glycome. The only IgG glycan
that was measured as a separate high-performance liquid
chromatography peak was G0, and effects of cortico-
steroids on it have not been reported (28).

To explore this further, we analyzed effects of ste-
roids on a population of twins from the TwinsUK cohort

Figure 2. Changes in glycans are associated with symptom profile of systemic lupus erythematosus (SLE) in African Caribbean and Latin Amer-
ican cohorts. Prior to analysis, the 2 cohorts were pooled (n 5 358). Patients were divided into groups by the number of SLE complications/
symptoms. For this analysis, only symptoms that showed the strongest associations with changes in glycome composition were selected (anti-
nuclear antibody positivity, pericarditis, proteinuria, and disease duration .8 years). Glycosylation changes were more pronounced in patients
with a larger number of complications/symptoms (for G0n, P 5 1.28 3 1027; for G2n, P 5 1.21 3 1028; for Fn total, P 5 5.27 3 1022; for propor-
tion of monosialylated structures in total IgG glycans [S1 total], P 5 2.14 3 1026; for FBn, P 5 1.49 3 1026). Data are shown as box plots. Each
box represents the 25th to 75th percentiles. Lines inside the boxes represent the median. Lines outside the boxes represent the 10th and 90th
percentiles. Circles indicate outliers. C 5 control samples (see Figure 1 for other definitions). Color figure can be viewed in the online issue,
which is available at http://onlinelibrary.wiley.com/doi/10.1002/art.39273/abstract.
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who underwent IgG glycome analysis in a recent study (22).
Data on steroid use were available for 2,179 twins of Euro-
pean ethnicity and indicated that 53 of them were receiving
steroid therapy. Random intercept logistic regressions were
applied to study the association of steroid use with IgG gly-
come composition. All models were adjusted for age, body
mass index, sex, and family relatedness. After correction for
multiple testing, no significant differences were observed.
Since we could not identify any effects of steroids on major
glycans that differed between SLE patients and controls,
we concluded that the observed differences likely resulted
from SLE and not from corticosteroid therapy.

Classification of SLE using IgG glycans. Since
the majority of glycan structures were strongly associat-
ed with disease status, we tried to build a glycan-based

discriminative model using regularized logistic regres-
sion. In the discriminative model, only 24 directly mea-
sured glycan traits were used as predictors. To evaluate
the biomarker potential of glycans, the model was
trained and validated on each SLE cohort separately.
For each cohort, a 10–cross-validation procedure was used
to evaluate model performance. Predictions from each val-
idation round were merged into 1 large validation set on
which performance of the cohort-specific model was
assessed using ROC curve analysis. While a model based
on age and sex did not show significant discriminative pow-
er (AUC for African Caribbean cohort 0.537, AUC for
Latin American cohort 0.498, AUC for Han Chinese
cohort 0.552), addition of glycan variables into the model
increased its discriminative power considerably in all 3

Figure 3. A, Receiver operating characteristic curves illustrating the performance of a regularized logistic regression model in predicting disease
status of patients with systemic lupus erythematosus (SLE) and healthy controls in the African Caribbean (left), Latin American (middle), and
Han Chinese (right) cohorts. While models based only on age and sex did not show predictive power (red lines), addition of glycan traits
increased predictive power of models (black lines). AUC 5 area under the curve. B, Principal components analysis plots showing differences in
GP6, GP9, GP10, and GP14 glycans between SLE patients and healthy controls in the African Caribbean (left), Latin American (middle), and
Han Chinese (right) cohorts. Comp. 5 component (see Figure 1 for other definitions).
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cohorts (AUC for African Caribbean cohort 0.842, AUC
for Latin American cohort 0.850, AUC for Han Chinese
cohort 0.881) (Figure 3A).

Examination of the classification performance of
each individual glycan using ROC curve analysis identi-
fied a similar set of glycans as potential biomarkers in all
3 cohorts (see Supplementary Figure 3, available on the
Arthritis & Rheumatology web site at http://onlinelibrary.
wiley.com/doi/10.1002/art.39273/abstract). Glycan struc-
ture FA2[3]G1 (GP9) had the highest predictive power in
each analyzed population, and structure FA2B (GP6) was
the second strongest predictor, while structures FA2G2
(GP14) and FA2[6]BG1 (GP10) were among the strongest
predictors in all 3 populations. Differences in GP6, GP9,
GP10, and GP14 between patients and controls were visu-
alized using PCA (Figure 3B). Since an increasing number
of different SLE symptoms present in an individual patient
was associated with progressive changes in the IgG gly-
come, we also attempted to build a glycan-based discrimi-
native model for SLE severity. Patients were divided into
one group with no symptoms or 1 symptom and another
group with 2–4 different symptoms. Regularized logistic
regression based on IgG glycans enabled significantly
improved classification compared to the basic model based
on age and sex (AUC 0.68, P 5 1 3 1027).

DISCUSSION

By analyzing IgG glycosylation in 3 independent
cohorts of SLE patients, we revealed extensive and high-
ly statistically significant changes in glycome composi-
tion. Interestingly, despite known differences in SLE
manifestation in different ethnic groups, we observed
very similar changes in IgG glycome composition in
SLE patients of African Caribbean, Han Chinese, and
Latin American Mestizo ethnicity. One of the promi-
nently changed features of IgG in SLE was the extent of
galactosylation. Since the initial discovery of decreased
IgG galactosylation in rheumatoid arthritis (RA) in
1985, the same type of change in IgG glycosylation was
reported in a number of different autoimmune and
inflammatory diseases (23), and it was also associated
with chronological and biologic age (22). Therefore, the
decrease in galactosylation is clearly not disease-specific
but is instead a general phenomenon associated with
decreased immunosuppressive potential of circulating
IgG. However, the key unresolved question is whether
this is a consequence of a disease or an individual varia-
tion that is a predisposition for a disease.

Our recent large population study of IgG glyco-
sylation revealed very large interindividual variability in
IgG glycome composition (21). The differences observed

in the general population were of the same magnitude as
(if not larger than) the differences that were previously
reported in different diseases. Despite the absence of a
direct genetic template, the heritability of individual gly-
cans was very high (up to 80%) (21,30), indicating that
low IgG galactosylation could partly be a genetically pre-
determined predisposition. This hypothesis is further
supported by the fact that in RA the decrease in IgG gal-
actosylation was observed up to several years before the
onset of the disease (31). However, galactosylation of
IgG is also dynamic and can change quite rapidly in acute
inflammation (32); thus, both genetic and environmental
factors strongly affect IgG galactosylation. This is also
supported by the fact that glycome composition is associ-
ated with both genetic polymorphisms and epigenetic
modification on multiple genetic loci (8,30). One genetic
locus (HLA–DQA2) associated with IgG galactosylation
(8) is also associated with SLE with genome-wide signifi-
cance (9), while a suggestive association with SLE was
reported for another (BACH2) (10). Our results indicate
that effects of decreased IgG galactosylation on inflam-
matory potential of IgG may be one of the molecular
mechanisms that could explain the association between
these genetic loci and SLE and/or autoimmunity.

In mice, Fc galactosylation has been shown to be
crucial for antiinflammatory activity of antigen-specific
IgG1 immune complexes by promoting association of
the inhibitory receptor FcgRIIb and the lectin-like
receptor dectin 1. This results in suppression of C5a
receptor function, one of the important proinflamma-
tory properties of complement. The complement system
has a dual role in SLE, at the same time mediating path-
ogenesis and preventing the disease. Genetic and
acquired deficiencies of components of the early part of
the classical complement cascade (namely, C1q and C4,
but also C2 and, rarely, C3) are associated with SLE
(33), showing that the classical pathway of complement
activation appears to protect against the development of
SLE (34).

On the other hand, agalactosylated IgG (present
at an increased level in all 3 populations tested) has low-
er affinity for C1q binding (35) but can bind serum
mannose-binding lectin (MBL) via terminally exposed
GlcNAc and thus activate the lectin complement path-
way (3), participating mechanistically in SLE pathogen-
esis. It is known that agalactosylated IgG binds to MBL
and contributes to chronic inflammation in RA (36).
The role of MBL and the lectin complement pathway in
SLE pathogenesis is further supported by the increased
serum MBL level found in SLE patients in various pop-
ulations, leading to enhanced complement activation
and tissue damage (37). Therefore, the high level of aga-
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lactosylated IgG in our patients probably contributes to
SLE pathogenesis on 2 levels: 1) activating the lectin
complement pathway (leading to tissue damage) via
increased binding to MBL, and 2) suppressing the clas-
sical complement pathway (leading to impaired self-
antigen clearance) via decreased binding to C1q.

In contrast to changes in galactosylation, signifi-
cant changes in sialylation, core fucose, and bisecting
GlcNAc seem to be more specific for SLE. They were
not previously reported to occur to this extent in other
diseases, but analytic methods used until a few years ago
were not able to reliably measure these IgG features;
thus, these changes may have been overlooked in previ-
ous studies. The cross-sectional nature of our study does
not allow us to speculate about causality, but the
increased potential of nonfucosylated IgG to activate
ADCC has been clearly demonstrated in multiple stud-
ies (1). Genetic polymorphisms in Fc receptors are
known risk factors for SLE (38); thus, it is reasonable to
assume that differences in affinity of Fc receptors for
differentially glycosylated IgG also have functional con-
sequences in SLE.

In a very recent study of a small number of
SLE patients (n 5 15), Sjowall and colleagues showed
increased binding of lectins recognizing fucose to com-
plexed natural IgG in patients with active disease (39).
This contradicts our observation that IgG fucosylation is
decreased in SLE patients. However, Sjowall et al used
an indirect lectin assay to analyze complexed and not
isolated IgG, and, as they also suggested in their report,
the target for the observed binding of Aleuria aurantia
lectin may not be IgG itself but some other component
of the complexed IgG.

The method that we used (UPLC analysis of
released glycans) cannot differentiate glycans released
from the Fab and the Fc portions of IgG. Glycans from
Fab and Fc are known to be different, with Fab glycans
having less core fucose and more galactose, sialic acid, and
bisecting GlcNAc (40). Only ;15% of the total IgG gly-
come originates from the Fab portion of IgG; thus, the
observed differences between patients and controls pre-
sumably originate from the Fc glycans. Using this analytic
method, we cannot exclude the possibility that the decrease
of core fucose in SLE is driven by an increase in the extent
of Fab glycosylation (and consequent decrease in the pro-
portion of core fucose in the total glycome). However, in
that case we would also expect to see an increase in sialyla-
tion, while we observed a decrease instead. Therefore, the
observed differences most probably originate from altered
regulation of Fc glycosylation in SLE patients.

Decreased IgG sialylation significantly reduces
antiinflammatory activity of circulating IgG (41). IVIG is

currently not used extensively to treat SLE, but our results
indicate that decreased antiinflammatory function of circu-
lating IgG could be one of the molecular mechanisms
underlying SLE pathology. The usual dose of IVIG for
suppression of autoimmune diseases is 1–3 gm/kg/month.
However, with a plasma IgG concentration of up to 15 gm/
liter and ;50% of that in extracellular fluids, at any given
moment the total IgG concentration in the body exceeds
the maximal therapeutic dose used to treat different
inflammatory and autoimmune diseases. IgG glycans have
been shown to be crucial for efficacy of IVIG therapy (41);
thus, in principle we are all receiving continuous “internal
IVIG therapy” that is strongly affected by individual varia-
tions in IgG glycosylation. With the exception of immune
deficiencies, in which IVIG is administered at lower doses,
nearly all diseases in which IVIG is used as therapy at high
doses are associated with an IgG glycome profile that is
significantly more proinflammatory; thus, IVIG therapy
could actually only be correcting this imbalance. Concor-
dant with this hypothesis are results of a recent study that
indicate that individual differences in IgG sialylation are
predictive of the response to IVIG therapy in Kawasaki
disease (42), an immune febrile vasculitis syndrome of ear-
ly childhood. In addition, 2 minor alleles of the gene for
FcgRIIb (2386C and 2120A) conferring increased pro-
moter activity and consequently an increased level of
receptor expression are positively correlated with thera-
peutic response to IVIG in patients with Kawasaki disease
(43). Interestingly, however, these alleles are also risk
factors for SLE (38), which is not in accordance with the
well-established protective role of FcgRIIb against the
development of self-reactive response, as demonstrated in
FcgRIIb-deficient mice of certain strains that spontaneously
develop autoimmune disorders (44). Although there are
observations that indicate associations of several of its var-
iants with SLE (38), the role of the inhibiting FcgRIIb
receptor in SLE has never been demonstrated in non-Asian
populations. It may act as a modifier of autoimmune suscep-
tibility, with a minor role in tolerance maintenance in the
efferent phase (autoantibody production), but with impor-
tant roles in regulation of downstream antibody effector
pathways, such as immune complex clearance and enhanced
myeloid effector cell responses.

Genetic loci associated with IgG glycome compo-
sition have pleiotropic effects on multiple inflammatory
diseases, autoimmune diseases, and cancer (8), indicat-
ing that differences in IgG glycosylation and their func-
tional consequences may affect balance of the immune
system and contribute to the increased risk of develop-
ment of various diseases. SLE patients have also been
reported to express low levels of Ikaros family zinc-
finger protein 1 (IKZF1) in peripheral blood (9).
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IKZF1 is important for regulation of self tolerance
through B cell receptor signaling, but the molecular
mechanism is not known. IKZF1 was a major hit for
core fucose in the IgG glycome GWAS (8); thus, altered
IgG core fucosylation is a plausible mechanism for dis-
torted interactions of IgG with Fc receptors in SLE. At
the same time, HLA–DQ2A/B and BACH2 genetic loci
are associated with IgG galactosylation (8), and thus
their association with SLE could reflect subdued immu-
nosuppressive activity of IgG in SLE, which suggests
that changes in IgG glycosylation could be one molecu-
lar mechanism by which these genes affect SLE. Varia-
tion in IgG glycosylation is associated with disease risk
and severity of symptoms, and this phenomenon should
be explored further to understand its importance in a
personalized approach to treating SLE patients. It
would be particularly interesting to evaluate longitudi-
nal dynamics of the IgG glycome within an individual
patient at different stages of the disease and/or receiving
therapy with different immunomodulatory drugs.
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