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10 Abstract To investigate the association of tag-SNPs and

11 haplotype structures of the CIDEA gene with obesity in a

12 Han Chinese population. Five single nucleotide polymor-

13 phisms (SNPs) (rs1154588/V115F, rs4796955/SNP1,

14 rs8092502/SNP2, rs12962340/SNP3 and rs7230480/SNP4)

15 in the CIDEA gene were genotyped in a case–control study.

16 Genotyping was performed using the sequenom matrix-

17 assisted laser desorption/ionization time-of-flight mass

18 spectrometry iPLEX platform. There were significant dif-

19 ferences between the obese and control groups in genotype

20 distributions of V115F (P\ 0.001), SNP1 (P = 0.006)

21and SNP2 (P = 0.005). Carriers of V115F-TT, SNP1-GG

22and SNP2-CC genotypes had a 2.84-fold (95 % CI

231.73–4.66), 2.19-fold (95 % CI 1.09–4.38) and 4.37-fold

24(95 % CI 1.21–15.08) increased risk for obesity, respec-

25tively. Haplotype analysis showed that GTTC (SNP1/

26SNP2/V115F/SNP4) had 1.41-fold (95 % CI 1.02–1.95)

27increased risk for obesity; whereas, haplotype TTGC had

280.48-fold (95 % CI 0.24–0.96) decreased risk for obesity.

29Using the multifactor dimensionality reduction method, the

30best model including SNP1, SNP2, V115F and SNP4

31polymorphisms was identified with a maximum testing

32accuracy to 59.32 % and a perfect cross-validation con-

33sistency of 10/10 (P = 0.011). Logistic analysis indicated

34that there was a significant interaction between SNP1 and

35V115F associated with obesity. Subjects having both

36genotypes of SNP1/GG and V115F/TT were more sus-

37ceptible to obesity in the Han Chinese population (OR

382.66, 95 %: 1.22–5.80). Genotypes of V115F/TT, SNP1/

39GG and SNP2/CC and haplotype GTTC of CIDEA gene

40were identified as risk factors for obesity in the Han Chi-

41nese population. The interaction between SNP1 and V115F

42could play a joint role in the development of obesity.

43

44Keywords Chinese � Association study � Obesity �

45CIDEA � Polymorphism � Haplotype

46Introduction

47Obesity, largely developed from the imbalance between

48energy intake and expenditure, manifests as excessive total

49body fat. It is a result of the interaction between environ-

50mental factors and genetic loads. It has been demonstrated

51in twins and familial studies that genetic contributions exist

52[1, 2]. Linkage and association studies indicate that cell
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53 death-inducing DNA fragmentation factor alpha-like

54 effector A (CIDEA) is a candidate gene for the develop-

55 ment of obesity [3–5].

56 The CIDEA gene (18p11.12) is 23.22 kb in length with

57 five exons and four introns. It was identified by virtue of its

58 sequence homology to the N-terminal region of the apop-

59 totic DNA fragmentation factor Dff40/CAD and Dff45/

60 ICAD [6]. CIDEA protein is a member of the cell death-

61 inducing DNA fragmentation factor alpha-like effector

62 (CIDE) protein family. CIDEA is highly expressed in

63 brown adipose tissue (BAT) of rodents and white adipose

64 tissue (WAT) of humans, and is associated with the

65 development of obesity in both rodents [7] and humans [8].

66 CIDEA-null mice show lean phenotypes with increased

67 metabolic rate and lipolysis in BAT, and are resistant to

68 diet-induced obesity and diabetes mellitus [7]. In humans,

69 CIDEA expression is associated with a decrease in body

70 mass index (BMI), waist measurement, waist-to-hip ratio

71 (WHR) and basal metabolic rate [8]. It has also been

72 suggested that CIDEA expression may cross-talk with

73 tumor necrosis factor-a (TNF-a). TNF-a down-regulates

74 CIDEA expression and at the same time stimulates basal

75 lipolysis in human fat cells [9].

76 Association studies on CIDEA gene focused on the

77 V115F (rs11545881) single nucleotide polymorphism

78 (SNP), which is a non-synonymous SNP in exon 4 that

79 results in an amino acid substitution (V115F). A study

80 showed that the V115F polymorphism was associated with

81 BMI both in males (P = 0.023) and females (P = 0.021),

82 and G allele was a risk allele (OR 1.32, 95 % CI

83 1.03–1.69) in a Swedish population [10]. However, our

84 previous research in both Japanese [11] and Chinese pop-

85 ulations [12] have shown that the T allele may serve as a

86 risk factor for metabolic syndrome and its related

87 phenotypes.

88 In this study, we genotyped V115F (rs11545881) in

89 another Chinese sample to validate this risk allele for obesity,

90 and further selected another four tag-SNPs in the CIDEA

91 gene (rs4796955/SNP1, rs8092502/SNP2, rs12962340/

92 SNP3, and rs7230480/SNP4). This was done to investigate a

93 possible interaction between the effects of SNPs and hap-

94 lotypes of the CIDEA gene on obesity in Han Chinese.

95 Materials and methods

96 Subjects

97 This present study was a part of the National High Tech-

98 nology Research and Development Program-863 of China,

99 a population-based cross-sectional survey on relative risk

100 factors of chronic non-communicable diseases (NCD) in

101 the Chinese population during a 2-year period of

1022007–2008. We selected 309 obese and 433 controls from

103the 3,000 participants of this nation-wide study and mat-

104ched on age, gender and residence. An individual was

105defined as being obese if they had a BMI of 28 kg/m2 or

106more, according to the recommended standard by the

107Cooperative Meta-analysis Group of Working Group on

108Obesity in China [13]. We excluded from this study indi-

109viduals with the following: (1) physician-diagnosed dia-

110betes mellitus, coronary heart disease, myocardial

111infarction, stroke, cancer, severe kidney or liver diseases;

112(2) infectious diseases; (3) secondary obesity caused by

113other reasons; and (4) Cushing Syndrome.

114All of the participants signed informed consents before

115participating in this study, with approval been granted by

116the Ethical Committee, Capital Medical University, Bei-

117jing, China.

118Measurement of anthropometric parameters

119Following an interview by questionnaire, which covered

120demographic characteristics, residential history, socioeco-

121nomic status, personal behavior and medical history, all

122participants were asked to fast overnight before having a

123physical examination. Body weight, height, waist circum-

124ference (WC), hip circumference (HC), systolic blood

125pressure (SBP) and diastolic blood pressure (DBP) were

126measured by well-trained community doctors. Each mea-

127surement was performed three times and the average value

128was calculated as a final reading. Height and weight were

129measured to the nearest 0.1 kg and 0.1 cm respectively,

130with participants wearing light indoor clothing without

131shoes. BMI was calculated as weight in kilograms divided

132by height in meters squared (kg/m2). After inhalation and

133exhalation, WC was obtained at the midpoint between the

134lowest rib and the iliac crest to the nearest 0.1 cm, while

135the subject stood upright, with arms hanging freely and feet

136together. HC was measured over nonrestrictive underwear

137or light-weight shorts at the level of the maximum exten-

138sion of the buttocks in a horizontal level, without com-

139pressing the skin. WHR was calculated as WC divided by

140HC. Blood pressure was measured by mercury sphygmo-

141manometer on the right arm of the participant in a com-

142fortable sitting position after at least a 15 min rest.

143Finger capillary blood collection and DNA preparation

144Finger capillary blood was collected in the morning after

145an overnight fasting, and stored on 903 specimen collection

146paper (Kent, UK). The saver card has a sample collection

147area of five 1.3 cm circles with each circle holding

14875–80 lL of sample. Paper samples were air dried over-

149night, then individually placed in plastic bags with desic-

150cants and stored at -20 �C.
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151 Whole-genome DNA was extracted by the Chelex-100

152 extraction method [14]. Firstly, a piece of 3 mm 9 3 mm

153 dried blood stain was cut down and put into a 1.5 mL

154 centrifuge tube. Then 1 mL ddH2O was added, the tube

155 was shaken for 10 s and placed at room temperature for

156 half an hour. After centrifugation for 3 min at 12,5009g,

157 the majority of the supernatant liquid was removed and

158 200 lL of freshly prepared 5 % (w/v) Chelex-100 was

159 added into the tube. The sample was mixed for 10 s and

160 followed by centrifugation for 3 min at 12,5009g again.

161 The sample was then incubated at 56 �C for 30 min, fol-

162 lowed by 100 �C for 8 min. Finally, centrifugation for

163 3 min at 13,0009g was performed. The supernatant liquid

164 containing DNA was stored at 4 �C for amplification.

165 Tag-SNP selection

166 We downloaded Han Chinese population SNP data from

167 the database of the international HapMap Project (HapMap

168 Data Rel 24/phase II Nov08, on NVBI B36 assembly,

169 dbSNP b126). Using Haploview 4.0 software, we selected

170 five tag-SNPs of the CIDEA gene (SNP/V115F:

171 rs11545881, SNP1: rs4796955, SNP2: rs8092502, SNP3:

172 rs12962340, and SNP4: rs7230480) which had a minor

173 allele frequency (MAF) C5 % in Han Beijing Chinese.

174 Among the SNPs whose r2 C0.8, we selected the one with

175 highest MAF for genotyping. Figure 1a shows the detailed

176 information of the selected tag-SNPs of the CIDEA gene.

177 SNP genotyping

178 A combined approach utilizing nested polymerase chain

179 reaction (PCR) and pyrosequencing technology (PSQ

180 96MA, BIOTAGE, Sweden) was used for V115F

181genotyping. The nested PCR primers were designed as fol-

182lowed: the outside primers were 50-CTGGCATAAGAGCA

183GAGTG-30 (forward) and 50-GAGCCTGTGGGATAAG

184AGT-30 (reverse), and the inner primers were 50-GGT

185TAGGAAGGCTCCTGA-30 (forward) and 50-GATGTCG

186TAGGACACGGAGTA-30 (reverse). The pyrosequencing

187primers were 50-CAGGGCAGCCAGCAC-30. The first-

188stage PCR was executed in a 20 lL volume containing 2 lL

189109 PCR buffer (including MgCl2), 2 lL dNTPs (2.5 mM),

1900.2 lL forward primer(20 lM), 0.2 lL reverse pri-

191mer(20 lM), 4 lL genomic DNA (25 ng/lL), 0.08 lL Taq

192polymerase (5 U/lL, Takara, Japan), and 11.52 lL deion-

193ized H2O. The second-stage PCR was executed in a 55 lL

194volume containing 5.5 lL 109 PCR buffer (including

195MgCl2), 5.5 lL dNTPs (2.5 mM), 0.55 lL forward primer

196(20 lM), 0.55 lL reverse primer (20 lM), 3 lL DNA (the

197production of the first-stage PCR), 0.22 lL Taq polymerase

198(5 U/lL, Takara, Japan) and 39.68 lL deionizedH2O. PCRs

199were initiated by denaturation at 95 �C for 5 min, followed

200by 35 cycles of; 30 s at 94 �C, 30 s at 57 �C, and 60 s at

20172 �C, with the PCR products prolonged for 10 min at 72 �C

202in the final cycle and finally held at 4 �C.

203The genotyping of the other four tag-SNPs (SNP1:

204rs4796955, SNP2: rs8092502, SNP3: rs12962340 and

205SNP4: rs7230480) was performed using the sequenom

206matrix-assisted laser desorption/ionization time-of-flight

207(MALDI-TOF) mass spectrometry (MS) iPLEX platform

208[15]. This technique is a high-throughput MS method for

209detecting SNPs. According to the manufacturers’ instruc-

210tions, the whole process includes: multiplex PCR amplifi-

211cation, shrimp alkaline phosphatase treatment, iPLEX

212primer extension, clean resin, MALDI-TOF MS analysis

213and data analysis [16, 17].

214We randomly selected 30 samples from the participants

215to validate the genotyping results of all the five SNPs using

216another genotyping method, i.e., Sanger dideoxy method to

217confirm the identity.

218Statistical analysis

219Each polymorphism was evaluated for Hardy–Weinberg

220equilibrium by online software (http://ihg2.helmholtz-

221muenchen.de/cgi-bin/hw/hwa1.pl). P C 0.01 was consid-

222ered to obey the Hardy–Weinberg equilibrium. The dis-

223tributions of allelic and genotypic frequencies were

224analyzed using v2 test. The single locus association

225between a polymorphism and obesity was estimated by

226multiple logistic regression analysis, with age and gender

227adjusted. For continuous variables with normal distribu-

228tion, we used ANOVA to detect the difference of distri-

229bution between the different genotypes. The variables

230which were non-normal distributions were analyzed via

231rank sum test. The statistical analyses were carried out

Fig. 1 a The location of the tag-SNPs in the CIDEA gene. The exons
were indicated by black boxes. b LD plot among five tag-SNPs of
CIDEA gene
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232 using SPSS version 19.0 for Windows (SPSS Inc., Chi-

233 cago, IL, USA). The frequencies of the haplotypes and

234 association analyses were completed by Haploview soft-

235 ware (version 4.0; Mark Daly’s Laboratory, Broad Insti-

236 tute; http://sourceforge.net/projects/haploview/) [18]. We

237 analyzed the presence of interactions associated with

238 obesity susceptibility between the tag-SNPs by multifactor

239 dimensionality reduction method (MDR) (version 1.1.0;

240 Computational Genetics Laboratory, Dartmouth Medical

241 School, Lebanon, NH; www.epistasis.org) and logistic

242 regression. The MDR method is nonparametric and model-

243 free, which is directly applicable to case–control studies to

244 detect the interaction between gene–gene and gene–envi-

245 ronment. The best MDR model is determined to have a

246 P value\0.05, a maximum testing accuracy and a high

247 cross-validation consistency (CVC) [19]. Probability val-

248 ues presented were for two-tailed tests and P\ 0.05 was

249 considered statistically significant.

250 Results

251 V115F polymorphism of CIDEA gene and obesity

252 V115F (G/T) was genotyped in 742 participants (309 obese

253 vs. 433 controls), with the basal demographic and clinical

254 characteristics of these participants summarized in

255 Table 1. The obese group had significantly higher levels of

256 BMI, SBP, DBP, WC, HC and WHR compared to the

257 control group. No significant differences were found in age

258 and gender among the two groups (Table 1).

259 V115F genotypic frequencies for the GG, GT and TT

260 were 19.54, 59.70, and 20.75 %, respectively. The allelic

261 frequencies of G and T alleles were 49.39 and 50.61 %,

262 respectively. The genotypic distribution of the V115F

263 followed Hardy–Weinberg equilibrium in the controls

264 (P = 0.011). The frequency of the TT genotype was sig-

265 nificantly higher in the obese group compared to the con-

266 trol group (23.62 vs. 18.71 %, P\ 0.001) (Table 2).

267 Multiple logistic regression analysis (age and gender

268 adjusted) identified that participants with the TT genotype

269 were 2.84-fold at risk (95 % CI 1.73–4.66, P\ 0.001) and

270 those with the GT genotype were 2.63-fold at risk

271 (95 % CI 1.72–4.01, P\ 0.001) for obesity when com-

272 pared to those with the GG genotype. Meanwhile, v2

273 analysis results showed that participants with the T allele

274 were 1.46-fold (95 % CI 1.19–1.80, P\ 0.001) at risk for

275 obesity when compared to those with the G allele.

276 In genotypic model (GG vs.GT vs.TT), we found that

277 the average BMI, WC, HC and WHR measurements were

278 highest in patients with the TT genotype followed by GT

279 and GG. In the dominant model (TT vs. TG ? GG), we

280 found that these obesity related levels were significantly T
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281 higher in TT group than those in GG ? GT group (BMI,

282 P\ 0.001; SBP, P\ 0.001; DBP, P\ 0.001; WC,

283 P = 0.012; HC,P = 0.042;WHR,P\ 0.001, respectively)

284 (Table 1). In the recessive model (GG vs. GT ? TT), the

285differences of these levels were significantly higher in

286GT ? TT group compared to the GG group as expected

287(BMI, P\ 0.001; SBP, P\ 0.001; DBP, P\ 0.001; WC,

288P\ 0.001; HC, P = 0.005, WHR, P\ 0.001, respectively)

Table 2 Multiple logistic regression analysis of associations between the CIDEA genotypes and obesity

SNPs Polymorphism Controla Obesitya P valueb OR 95 % CI

SNP1 Genotype 0.006*

GG 46 (26.59) 68 (43.31) 0.027* 2.19 1.09–4.38

GT 99 (57.23) 70 (44.59) 0.903 1.04 0.54–2.02

TT 28 (16.18) 19 (12.10) – 1.00 –

Allele

G 191 (55.20) 206 (65.61) 0.006D* 1.55 1.13–2.12

T 155 (44.80) 108 (34.39)

SNP2 Genotype 0.005*

CC 3 (1.73) 13 (8.39) 0.025* 4.37 1.21–15.80

TC 62 (35.84) 36 (23.23) 0.035* 0.59 0.04–0.96

TT 108 (62.43) 106 (68.39) – 1.00 –

Allele

C 68 (19.65) 62 (20.00) 0.911D 1.02 0.70–1.50

T 278 (80.35) 248 (80.00)

SNP3 Genotype 0.367

TT 91 (81.98) 76 (88.37) 0.811 1.16 0.35–3.80

TA 13 (11.71) 5 (5.81) 0.424 0.53 0.11–2.50

AA 7 (6.31) 5 (5.81) – 1.00 –

Allele

T 195 (87.84) 157 (91.28) 0.272D 1.45 0.75–2.82

A 27 (12.16) 15 (8.72)

SNP4 Genotype 0.968

CC 128 (73.99) 117 (74.52) 0.799 1.22 0.26–5.67

CT 41 (23.7) 37 (23.57) 0.810 1.21 0.25–5.86

TT 4 (2.31) 3 (1.91) – 1.00 –

Allele

C 297 (85.84) 271 (86.31) 0.862D 1.04 0.670–1.62

T 49 (14.16) 43 (13.69)

V115F Genotype \0.001*

TT 81 (18.71) 73 (23.62) \0.001* 2.84 1.73–4.66

GT 242 (55.89) 201 (65.05) \0.001* 2.63 1.72–4.01

GG 110 (25.40) 35 (11.33) – 1.00 –

Allele

T 404 (46.65) 347 (56.15) \0.001D* 1.46 1.19–1.80

G 462 (53.35) 271 (43.85)

Combined genotypes \0.001*

0-risk 106 (61.27) 61 (38.85) – 1.00 –

1-risk 56 (32.37) 72 (45.68) 0.001* 2.23 1.40–3.58

2-risk 11 (63.58) 24 (15.29) 0.001* 3.79 1.74–8.28

OR odd ratio, 95 % CI 95 % confidence interval

* P\ 0.05
a Numbers are frequencies and percentage
b P value was calculated by v2 test (D) or multiple logistic regression (age and sex adjusted)

Mol Biol Rep

123
Journal : Large 11033 Dispatch : 18-9-2013 Pages : 9

Article No. : 2671
h LE h TYPESET

MS Code : MOLE-6442 h CP h DISK4 4

A
u

th
o

r
 P

r
o

o
f



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

289 (Table 1). The distribution of the two genotype frequencies

290 were significantly different between the obese and controls

291 (P\ 0.001).

292 Association between the other four tag-SNPs

293 and obesity

294 We genotyped another four selected CIDEA tag-SNPs

295 (SNP1 G/T, SNP2 T/C, SNP3 T/A, SNP4 C/T) in 330

296 participants (obese/controls = 157/173). Distributions of

297 the genotypes and alleles of the four SNPs are listed in

298 Table 2. Analysis showed that the controls were in Hardy–

299 Weinberg equilibrium at SNP1 (P = 0.039), SNP2

300 (P = 0.076) and SNP4 (P = 0.740), while the genotypic

301 distribution of SNP3 did not follow Hardy–Weinberg

302 equilibrium (P\ 0.001), so SNP3 was excluded from

303 further analysis. The MAF of these SNPs (SNP1T, SNP2C

304 and SNP4T) were 44.80, 19.65 and 14.17 % in controls,

305 respectively (Table 2). These were consistent with the

306 MAF of Han Chinese in Beijing, China (http://www.ncbi.

307 nlm.nih.gov/pubmed). Multiple logistic regression analysis

308 (adjusted by age and gender) indicated that both SNP1 and

309 SNP2 polymorphisms were significantly associated with

310 obesity (P = 0.006 and 0.005, respectively) (Table 2).

311 SNP1/GG and SNP2/CC genotypes were more frequent in

312 the obese group compared to the control group (P = 0.027,

313 0.025, respectively).

314 The analysis results of SNP1 showed overall that WC and

315 BMI levels in the GG genotype (WC = 90.31 ± 10.91 cm;

316 BMI = 27.08 ± 4.24 kg/m2) were significantly higher

317 compared to any other two genotypes (GT: WC = 86.06 ±

318 12.00 cm, P = 0.030; BMI = 25.45 ± 4.45 kg/m2, P =

319 0.030; TT: WC = 85.94 ± 11.36 cm, P = 0.002; BMI =

320 25.41 ± 4.43 kg/m2, P = 0.028), suggesting that partici-

321 pants with the GG genotype were more susceptible to

322 obesity. Multiple logistic regression (adjusted for age and

323 gender) analysis revealed that when compared with the TT

324 genotype, participants carrying the GG genotype had a 2.19-

325 fold (95 % CI 1.09–4.38, P = 0.027) risk of obesity, and

326when compared with the T allele, participants with the G

327allele had a 1.55-fold (95 % CI 1.13–2.12, P = 0.006) risk

328of obesity. All of these results indicated that the variant G

329allele of SNP1 was the risk allele of obesity.

330The analysis results of SNP2 showed thatWC levels were

331higher based on genotypes of CT (84.55 ± 11.62 cm)\TT

332(88.31 ± 11.32 cm)\CC (92.75 ± 11.70 cm), and there

333was a statistically significant difference between the three

334genotypes (P = 0.005). Logistic regression analysis of

335SNP2 showed that when compared with the TT genotype,

336participants with the CC genotype had a 4.37-fold (95 % CI

3371.21–15.80, P = 0.025) risk, while the CT genotype was

338lower with a 0.59-fold (95 % CI 0.04–0.96, P = 0.035) risk

339of obesity. No significant difference was detected in the BMI

340according to the genotypes.

341Haplotypes analysis of the selected tag-SNPs of CIDEA

342gene

343When we combined the four tag-SNPs and inferred haplo-

344types using Haploview 4.0 software, ten possible haplotypes

345were derived from the observed genotypes (SNP1/SNP2/

346V115F/SNP4) (Fig. 1b). Six haplotypes with frequencies

347above 5 % were haplotype 1 (H1)-GTTC (33.5 %), H2-

348GTGC (20.7 %), H3-TCGC (9.4 %), H4-TCTC (8.9 %),

349H5-TTTC (6.7 %) andH6-TTGC (6.0 %) (Table 3). H1was

350more common in the obese participants (37.55 %) compared

351to the controls (29.91 %,P = 0.039),whileH6was common

352in the controls (7.92 %) compared to the obese (3.98 %,

353P = 0.034). The risk of obesity was significantly increased

354among the participants carrying haplotype H1 (OR 1.41,

35595 % CI 1.02–1.95), and decreased among participants with

356haplotype H6 (OR 0.48, 95 % CI 0.24–0.96).

357Interaction analysis of CIDEA gene tag-SNPs

358on obesity

359Assuming a combined model (i.e. homozygous risk geno-

360types vs. the combining group of the other two genotypes),

Table 3 Frequencies of the haplotypes based on the tag-SNPs in obese and controls

Haplotypes Genotype Freq. Obesity Control v2 value P value OR 95 % CI

SNP1 SNP2 V115F SNP4 n (%) n (%)

H1 G T T C 0.335 117.9 (37.55) 103.5 (29.91) 4.28 0.039* 1.41 1.02–1.95

H2 G T G C 0.207 65.9 (20.99) 70.8 (20.46) 0.03 0.869 1.03 0.71–1.51

H3 T C G C 0.094 26.4 (8.41) 35.4 (10.23) 0.64 0.425 0.81 0.48–1.37

H4 T C T C 0.089 31.1 (9.90) 27.8 (8.03) 0.71 0.401 1.26 0.74–2.15

H5 T T T C 0.067 15.5 (4.94) 28.5 (8.24) 2.9 0.088 0.58 0.31–1.10

H6 T T G C 0.060 12.5 (3.98) 27.4 (7.92) 4.51 0.034* 0.48 0.24–0.96

OR odd ratio, 95 % CI 95 % confidence interval

* P\ 0.05
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361 we did combined analyses for the three SNPs which were

362 significantly associated with obesity in the previous single

363 locus analysis; SNP1 (GG vs. GT ? TT); SNP2 (CC vs.

364 CT ? TT); V115F (TT vs. GT ? GG). Compared with

365 those carrying genotypes of SNP1/GT ? TT, SNP2/

366 CT ? TT and V115F/GT ? GG, participants carrying

367 only one of the three homozygous risk genotypes (SNP1/

368 GG or SNP2/CC or V115F/TT) were associated with a

369 2.23-fold (95 % CI 1.40–3.58, P = 0.001) increased risk

370 to obesity, while the risk was statistically increased to 3.79-

371 fold (95 % CI 1.74–8.28, P = 0.001) among individuals

372 carrying two of the three homozygous risk genotypes

373 (SNP1/GG*SNP2/CC, SNP2/CC*V115F/TT, SNP1/

374 GG*V115F/TT) (Table 2). Furthermore, we found that

375 among the participants with two homozygous risk geno-

376 types, 91.43 % of them were carrying both genotypes of

377 SNP1/GG and V115F/TT. The other 8.57 % were carrying

378 both genotypes of SNP2/CC and V115F/TT.

379 In logistic regression models (adjusted by age and

380 gender), the interaction between SNP1 and V115F was

381 significantly associated with the susceptibility of obesity

382 (P = 0.012). The interaction showed that individuals with

383 both genotypes of SNP1/GG and V115F/TT were associ-

384 ated with 2.66-fold (95 % CI 1.22–5.80, P = 0.012) risk of

385 obesity, compared with the others. The risk was increased

386 to 3.21-fold when compared to participants with both

387 genotypes of SNP1/TT and V115F/GG (95 % CI 1.33–

388 7.73, P = 0.009).

389 MDR analysis was also used to detect the interaction

390 between the four tag-SNPs (V115F, SNP1, SNP2 and

391 SNP4). Table 4 summarizes the best interaction models. In

392 one-factor model, SNP2 was the best attribute for pre-

393 dicting obesity (testing accuracy = 54.58 %; CVC = 9/

394 10, P = 0.377). SNP1 and SNP2 was the best two-factor

395 model (testing accuracy = 53.56 %, CVC = 7/10,

396 P = 0.172). However, by following the best model selec-

397 ted principle, the best model was determined to be a four-

398 loci site model, which includes the polymorphisms of

399 SNP1, SNP2, V115F and SNP4, with a maximum testing

400 accuracy to 59.32 % and a perfect CVC of 10/10

401 (P = 0.011). Thus, the interaction dendrogram (Fig. 2)

402 showed that these four SNPs linked by green lines were on

403 the same branch, suggesting a synergistic interaction effect

404 on modulating the risk of obesity.

405Discussion

406In this study, we genotyped five tag-SNPs in the CIDEA

407gene and investigated their associations with the risk of

408obesity in a Han Chinese population. We found that SNP1-

409rs4796955/GG genotype, SNP2-rs8092502/CC genotype,

410V115F-rs11545881/TT genotype and haplotype GTTC

411were associated with an increased risk of obesity

412(P\ 0.05). The MDR analysis identified a significant four-

413factor interaction model including SNP1, SNP2, V115F

414and SNP4, suggesting that there was an interaction between

415the four SNPs. The logistic regression analysis (adjusted by

416age and gender) showed the interaction between SNP1 and

417V115F was significantly associated with the susceptibility

418of obesity.

419Both human and mouse models show that CIDEA pro-

420tein is emerging as an important regulator of the lipid

421metabolic pathway, and it plays important roles in lipid

422storage, lipid droplet format, lipolysis and the development

423of metabolic disorders such as obesity, diabetes mellitus,

424hepatic steatosis and cardiovascular diseases [7–9]. Mice

425with a deficiency in CIDEA were resistant to high-fat diet-

426induced obesity and diabetes mellitus with an increased

427metabolic rate, lipolysis in BAT and core body temperature

428when subjected to cold treatment, suggesting that CIDEA is

429important in energy expenditure in adipose tissues [7].

430Their lean phenotype seems to be due to a loss of CIDEA

431protein direct suppression of uncoupling protein 1 (UCP1)

432activity in BAT [20]. However, there are some striking

433discrepancies between human and rodent CIDEA protein

434expression patterns. CIDEA protein is highly expression in

435BAT of rodent but in WAT of humans [8]. In contrast with

436the mouse model, CIDEA protein expression in humans is

437inversely associated with BMI, WC, WHR and basal meta-

438bolic rate. Some studies have reported that CIDEA protein

Table 4 Summary of the MDR
interaction models

* P\ 0.05

Model Training bal.
acc. (%)

Testing bal.
acc. (%)

Sign test (P) CV consistency

SNP2 57.49 54.58 6 (0.377) 9/10

SNP1SNP2 60.23 53.56 7 (0.172) 7/10

SNP1SNP2V115 63.23 54.75 9 (0.011*) 7/10

SNP1SNP2V115SNP4 65.91 59.32 9 (0.011*) 10/10

Fig. 2 Interaction dendrogram. The different color connections show
the degree of interaction from synergy (red) to redundancy (blue)

AQ1
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439 expression was decreased two-fold in obese humans and

440 normalized after weight reduction [9]. A study in 40 obese

441 women showed that CIDEA gene expression is significantly

442 up-regulated as a result of the energy-restricted diets inter-

443 vention [21]. In contrast to the mechanism in mice, a study

444 found that there is a cross-talk betweenCIDEA and TNF-a in

445 human adipose tissue [9], and this has consequences for

446 lipolysis. CIDEA decreases the availability of TNF-a by

447 inhibiting cytokine secretion predominately through post-

448 transcriptional mechanisms, which in turn counteracts the

449 ability of TNF-a to stimulate lipolysis. TNF-a down-regu-

450 lates the expression of CIDEA through signaling via c-Jun

451 NH2-terminal kinase (JNK), which in turn increases the

452 availability of TNF-a and thereby lipolytic stimulation [9].

453 In a recent energy restriction intervention study [8], a sig-

454 nificant inverse correlation has been found between UCP1

455 and CIDEA expression levels, indicating a possible interac-

456 tion between CIDEA and UCP1 in humans. CIDEA is also

457 associated with insulin sensitivity in humans [22]. Recently,

458 a study found that starvation-induced apoptosis in adipocytes

459 is significantly inhibited when insulin decreased CIDEA

460 mRNA expression levels, suggesting that CIDEA is a novel

461 gene regulated by insulin in human adipocytes and that it

462 may play a key role in obesity [23].

463 CIDEA polymorphisms have been reported to be asso-

464 ciated with human obesity in Swedish, Japanese and Chi-

465 nese populations. In this study, the G allele frequency of

466 V115F was 49.39 %, which was lower than that previously

467 reported in the Chinese (55.25 %) population and higher

468 than reported in the Japanese (48.90 %) population [11,

469 12]. Multiple logistical regression results showed that

470 participants with the TT genotype had a 2.84-fold

471 (95 % CI 1.73–4.66, P\ 0.001) risk for obesity compared

472 to those with the GG genotype. There was a trend that all

473 the index levels of obesity related phenotypes in the par-

474 ticipants were higher in the TT genotype group compared

475 to the GG genotype groups (TT[GT[GG). Both

476 genetic and continuous variable analyses indicated that the

477 T allele of V115F SNP was a risk factor for obesity in

478 Chinese. This result is consistent with our previous studies

479 in both Japanese [11] and Chinese studies [12], but con-

480 flicts with the Swedish study [10]. This result could be due

481 to the so-called ‘‘flip-flop’’ phenomenon, where, within

482 differing ethnic groups, disease marker associations with

483 reversed risk alleles are found [24, 25].

484 The possible impact of amino acid substitution of V115F

485 on the structure and function of CIDEA protein would be

486 benign based on the POLYPHEN analysis [12]. We con-

487 sidered that there might be some other causal variants at this

488 locus, whose polymorphism, interaction or linkage disequi-

489 librium could contribute to obesity; therefore, we further

490 genotyped another four tag-SNPs of the CIDEA gene to test

491 our hypotheses.

492In single locus analysis, we found that two other new

493SNPs (SNP1 and SNP2) were associated with obesity.

494Subjects with SNP1/GG and SNP2/CC genotypes had

495higher levels of WC, and were associated with 2.19-fold

496and 4.37-fold increased susceptibility to obesity when

497compared with other genotype groups. Both SNP1 and

498SNP2 were intronic polymorphisms whose functions were

499not known. However, there have been reports about the

500association between intronic polymorphisms and different

501diseases [26–28]. For example, it was reported that up to

50240 % of transcription factor binding sites are located within

503introns. The exact molecular mechanisms of how the SNP1

504and SNP2 variants affect obesity are unknown and require

505further investigation.

506In haplotype analysis, we found that haplotype GTTC had

5071.41-fold risk, while haplotypeTTGCwas a protective factor

508for obesity. Not surprisingly, the differences between hap-

509lotypeGTTC andTTGCwere associatedwith SNP1G/T and

510V115F G/T alleles. Both of these risk alleles (SNP1/G and

511V115F/T) contributed to the risk haplotype of GTTC, while

512the protective alleles (SNP1/T and V115F/G) contributed to

513the haplotype TTGC. Logistic regression analysis found that

514there was a statistically significant interaction between these

515two SNPs, and participants with both SNP1/GG and V115F/

516TT genotypes had 2.66-fold risk of developing obesity.

517There is significant evidence showing that complex dis-

518eases are induced by gene–gene, gene–environmental and

519gene–environmental–behavior interactions. It is conceivable

520that obesity is the result of interactions between multiple

521genetic variations. In this study, the combined results of the

522nonparametric MDR approach and the parametric logistic

523analysis (adjusted by age and gender) indicated that the

524interaction betweenSNP1/GGandV115F/TT could increase

525the susceptibility of obesity occurring. Although our data

526cannot explain the biological mechanism, the result suggests

527that an interaction model could provide guidance to experi-

528mental studies on the metabolic pathway of obesity.

529For this population screening study, 903 specimen col-

530lection paper was used to collect finger blood, which causes

531less discomfort to the subjects. The dried blood spots needed

532minimal storage space, caused little biohazard risk and were

533convenient for transportation [14]. The method also had the

534disadvantage of not having fresh blood samples for blood

535biochemical analyses such as triglyceride, total cholesterol,

536high density lipoprotein, which are associated with lipolysis.

537There were other limitations in our study. Firstly, the con-

538founding factors such as diet, physical activity and environ-

539ment were not considered. Secondly, all the associations

540offered in this study were a population-genetics based

541approach supported by statistical analyses, and therefore the

542explanation of the biological mechanism of obesity needs

543further investigation. Furthermore, recent interesting findings

544collectively highlight the complicated metabolite profiles in
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545 obesity at omics level, inspiring that post-genomics comple-

546 mentary approaches in obesity research are needed [29].

547 In conclusion, this is the first attempt to haplotype four

548 SNPs in the CIDEA gene in a Han Chinese population, and

549 we found that SNP1-rs4796955, SNP2-rs8092502, V115F-

550 rs11545881, haplotype GTTC and haplotype TTGC were

551 associated with the susceptibility of obesity. The strong

552 interaction between SNP1 and V115F could play a joint

553 role in the development of obesity. Further studies with

554 ethnically diverse populations and functional evaluation

555 are warranted to confirm our findings.
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