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ABSTRACT 
 

Despite its wide application today, in vitro fertilization (IVF) treatment continues to 

have relatively low efficacy, largely due to inaccuracy in selecting the best quality 

embryo(s) from the cohort for transfer. Novel methodologies for improved selection 

are being developed, and time-lapse observation of human embryos is gaining 

increasing popularity due to the more detailed morphokinetic information obtained 

plus uninterrupted culture conditions. The morphokinetic information enables the use 

of quantitative timings in developmental milestones of embryos and qualitative 

measures of abnormal biological events, to assist embryo selection/deselection. This 

project aimed to identify current limitations in the use of such measures and to develop 

recommendations for improvement in clinical application. 

 

In the current study, most data were collected retrospectively from infertile couples 

seeking IVF treatment at a fertility clinic, with consent to use time-lapse incubation 

(Embryoscope) for embryo culture. Comparisons of time-lapse measures were made 

between embryos with confirmed implantation and non-implantation outcomes 

following uterine transfers. Thereafter, an embryo deselection model was proposed 

based on the retrospective findings, followed by prospective validation.  

 

It was found in the current study that the reference starting time point (t0) in certain 

existing time-lapse systems was inaccurate due to (i) the early biological variations 

between sibling oocytes, (ii) technical limitations in current equipment and protocols, 

and (iii) different insemination methods used (Papers 1&2). The above variations may 

be minimized by using pronuclear fading (PNF, a biological time point) as t0 rather 

than insemination (a procedural time point) (Paper 2). An example of such application 

was the comparison of embryo development between patients with high and low serum 

progesterone levels on the trigger-day (Paper 3). Furthermore, the growth rate of 

embryos reported in the literature is subject to multiple clinical or laboratory factors, 

and this was in agreement with the present study where a published time-lapse 

algorithm emphasizing quantitative timing parameters was shown to lose its 
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discriminatory power in implantation prediction when applied in two different 

laboratories (Paper 4). Interestingly, the qualitative measures seemed to have better 

inter-laboratory transferability due to the embryo growth patterns appearing 

independent of clinical and technical factors (Paper 4). Two novel qualitative measures 

were reported in the present study, namely reverse cleavage and less than 6 

intercellular contact points at the end of the 4-cell stage, showing negative correlations 

with embryo implantation outcomes (Papers 5&6). A qualitative embryo deselection 

model was therefore proposed, including several qualitative measures with 

implantation rates being potentially increased from 22.4% to 33.6% (Paper 6). Finally, 

an embryo deselection model combining both qualitative and quantitative measures 

was reported with the use of PNF as t0, showing significant prediction of implantation 

outcomes in embryos regardless of insemination method (Paper 7).  

 

In conclusion, this thesis demonstrates the usefulness of time-lapse embryo selection 

during IVF treatment in one specific laboratory. However, any new time-lapse 

parameter or model for embryo selection requires external validation by properly 

designed large-scale studies. Future clinical research and the development of 

integrated engineering and computer technology may further improve the efficacy of 

time-lapse selection of human embryos. 
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CHAPTER 1: General introduction 
 

1.1 Human in vitro fertilization (IVF) and embryo selection 

On average, 9% of the global population are suffering from infertility (1). Following 

the birth of the first baby conceived through IVF in 1978 (2), IVF together with its 

emerging derivative technologies have become one of the most effective options for 

infertility management. IVF treatment usually involves the creation of multiple 

embryos per cycle, however, the potential to implant after uterine transfer for each 

individual embryo in the same cohort is not necessarily equal (3). Therefore, it is 

crucial to maximize the capability of identifying the very best quality embryo(s) from 

the cohort for transfer, so that the treatment efficacy is maintained at the highest 

posible level (4). The most widely used non-invasive embryo assessment in IVF 

laboratories is the morphology based evaluation via static observations (3), which may 

be performed on either cleavage or blastocyst stage embryos (5). Morphology 

assessment at the cleavage stage takes into consideration cell count, degree of 

fragmentation, and symmetry of blastomeres at specific checkpoints, and/or 

pronuclear analysis (5); whilst blastocyst evaluation involves the combination of 

developmental stage judged by the volume of cavity, and the patterns of how the cells 

organize in the inner cell mass and trophectoderm (5, 6). These approaches are 

considered relatively safe and cost effective to apply, by simply involving static 

observations only. However, selections based on the limited observations, mostly once 

or twice daily with various timings of observations, may result in subjective gradings, 

or even inaccurate embryo selections as a result (7). Aiming at improved embryo 

selection, additional complementary methods have been explored over the last few 

decades, which will be briefly reviewed in this section.  

 

The preimplantation genetic testings of human embryos, which involves the removal 

of one or more cells from the embryo for chromosomal study or certain single gene 

disorder detection, have been discussed and practiced since a couple of decades ago 

(8, 9). More recently, comprehensive chromosome screening has been reported to be 

effective in the improvement of embryo selection by analyzing the chromosome/DNA 
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quality of the embryos (10). The sampling procedures may involve different biopsy 

approaches for the required analysis, which is generally considered invasive (11). The 

sample collected could be either a blastomere from a cleavage stage embryo, or a few 

trophectoderm cells from a blastocyst (11). The associated risks on the subsequent 

embryonic development and well-being of offspring following embryo biopsy have 

not yet been fully understood, although the removal of excessive blastomeres was 

considered to be one of the contributors to adverse subsequent outcomes (12). A recent 

time-lapse study revealed a delay after blastomere biopsy of 8-cell stage human 

embryos to reach the compaction stage, while the growth rate towards subsequent 

milestones after the initial delay was unaffected (13). Furthermore, since the first 

report of a live birth after the use of a combination of polar body biopsy and 

chromosomal analysis via fluorescent in-situ hybridization in 1995 (14), rapid progress 

has been achieved over the last 20 years as indicated by the improved accuracy of 

testing results (4). It is however still debatable as to (i) whether or not the improvement 

has been properly validated (15), (ii) which patient groups are more/less likely to 

benefit from this technique (16), and (iii) its cost-effectiveness when applied in routine 

clinical practice (17).  

 

Apart from the intactness of an embryo at the chromosome/DNA level, its viability 

may also be reflected by certain physiological activities (4). The dynamic profilings of 

such biomarkers including certain types of proteins (18) or metabolites (19) were 

reported to be associated with blastocyst development after the analysis of spent 

culture media, while being independent of morphological gradings (4). A few 

biomarkers, such as the consumption of glucose (20) or oxygen (21) at specific 

developmental stages of the embryo, were succesfully linked with subsequent 

implantation outcomes. Additionally, amino acid profiling was proposed to have good 

potential for the improvement of non-invasive embryo selection (22, 23), however, the 

effect of oxygen level used in the culture environment should be taken into 

consideration before drawing any firm conclusions (24, 25). Interestingly, some of the 

investigated markers such as glucose uptake and amino acid utilization were also found 

to vary between embryos with different genders (26). However, a recent randomized 

controlled trial studying metabolomic profiling of spent culture media of human day 3 

embryos reported no significant differences observed in live birth results after embryo 
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selection using near-infrared spectroscopy in addition to morphology compared to 

using morphology alone (27). Further research is warranted on how to incorporate such 

factors into the embryo selection process.  

 

Time-lapse technology has only been introduced into human IVF in recent years (28, 

29), but is showing great potential in improving treatment outcomes (30), most likely 

due to the optimized embryo culture conditions via closed incubation and/or improved 

embryo selection based on morphokinetic information collected via continuous 

observations (31). The traditional approach for morphological assessment of human 

embryos is carried out at a low frequency (mostly 24 hour intervals or even longer) 

which is still being widely used today (5), while the emergence of time-lapse imaging 

in human IVF has no doubt offered us the opportunity to look more closely at embryo 

development in a non-invasive manner. Due to the large amount of information 

obtained, a good number of novel morphokinetic markers generated after continuous 

monitoring of human early embryo development have been reported to be associated 

with the subsequent implantation outcomes (4, 32, 33). Although it’s wise to take 

precautions when introducing time-lapse into clinical routine, as suggested in a few 

review articles (33-36), great potential does exist in this field for further improved 

embryo selection due to the range of unexplored aspects regarding early human 

embryo development. The following sections will review the current application of 

time-lapse technology in human IVF, then specify some limitations of existing 

commercially available time-lapse systems, upon which a series of study aims in the 

thesis are introduced.   

 

1.2 Application of time-lapse technology in human IVF  

Time-lapse observations of animal embryos were reported as early as the 1950’s (37), 

but the same had not been applied to human embryos until the late 1990’s (38). This 

was about two decades after the successful birth of the first IVF baby (2), likely due 

to technical limitations in the incubator manufacturing and automated high resolution 

imaging technology. Early time-lapse monitoring of human embryos was carried out 

with in-house equipment mainly for experimental purposes, with embryos/oocytes 
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being observed one at a time (38, 39). Starting from the early 2010’s, time-lapse 

monitoring of human embryos for treatment purposes has been emerging in the 

literature, with the use of commercially available time-lapse equipment or devices (28, 

29). So far, there have been a few options of these available on the commercial market, 

either in the form of a separate device (e.g., the Eeva or Primo Vision system) that can 

be placed in the chamber of a traditional incubator, or an integrated incubator and time-

lapse camera (e.g., the Embryoscope). Two recent randomized clinical trials 

comparing the conventional and time-lapse (Embryoscope) incubators did not find 

significant differences with regard to embryo development and 

pregnancy/implantation rates (40, 41). Despite the encouraging results regarding time-

lapse selection of human embryos reported by a couple of recent large-scale 

retrospective studies and randomized trials (30, 31), others have expressed caution 

about applying this technology routinely before a full validation has been completed 

(33-36). In this section, the current application of quantitative and qualitative measures 

generated by the time-lapse technology is reviewed in terms of (i) timing parameters 

that were identified at different embryonic developmental stages, namely up to first 

cleavage division post fertilization, cleavage stage, and morula or blastocyst stage; and 

(ii) abnormal biological events. 

 

1.2.1 Early biological events up to the first cleavage division 

Early experimental studies on donated human oocytes showed a large variation in 

timings for early biological events following sperm injection, including second polar 

body extrusion, appearance of male or female pronuclei, and pronuclear abuttal (38). 

The same study (38) also reported that the quality of subsequent day 3 embryos was 

significantly correlated with the timings for second polar body extrusion and 

pronuclear abuttal, or the synchrony between appearance of male and female 

pronuclei. Later in 2008, Mio et al. (39) reported a detailed time-lapse video, 

demonstrating a series of biological evens following sperm entry via conventional IVF. 

In the same year, Lemmen et al. (42) identified the differences in early stage milestones 

between embryos fertilized via IVF and intracytoplasmic sperm injection (ICSI), and 

reported that early pronuclear fading or first cleavage division was significantly 

associated with larger cell numbers in the subsequent day 2 embryos. More recently, 
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using modern time-lapse equipment, Azzarello et al. (43) found that embryos resulting 

in live birth had a later timing for pronuclear fading than those without live birth, while 

the pronuclear morphology scores and timing for second polar body extrusion were 

not associated with live birth results. However, Aguilar et al. (44) successfully 

correlated implantation results and early events occurring within the first cell cycle, 

including timings for second polar body extrusion and pronuclear fading after sperm 

injection, and the S-phase (time between pronuclear appearance and disappearance). 

Although time-lapse technology offers a great opportunity for clinical embryologists 

to reveal more details regarding early biological events in human embryo 

development, conflicting results are still present. Considering the young stage this area 

of science is at, further exploration is surely warranted. 

 

1.2.2 Morphokinetics at cleavage stage 

Over the last 15 years, significant improvement has been achieved in embryo selection 

via the introduction of extended culture and embryo transfer at blastocyst stage (5, 45). 

Although blastocyst culture is being used in a high proportion of clinics globally due 

to the benefits of significantly optimized live birth rates per embryo transfer (46), 

concerns still exist with regard to the potential adverse obstetric outcomes and 

increased risk of epigenetic disorders or long-term impact on the health of offspring 

following blastocyst transfers rather than transfers at cleavage stage (47-51), despite 

conflicting results from other groups (52-56). The inconsistent conclusions may be 

attributed to the different interpretations of observed differences, as pointed out by 

Gardner (57) recently, depending on whether or not to consider the contribution of 

oxygen concentration used in the culture system. Nevertheless, this topic is still under 

debate (58) until further evidence becomes available based on more up-to-date large-

scale studies. Furthermore, patients with a low number of embryos available in the 

treatment cycle may have a high risk of zero blastocyst formation, and subsequent 

cancelled transfer as a result, in which case extended culture is often not preferred (59, 

60). Consequently there has been a demand for improved selection at an earlier stage 

without the need for extended culture of embryos (59). Following the emergence of 

time-lapse technology used in human IVF laboratories, a number of studies have 

focused on the use of morphokinetic parameters at cleavage stage for prediction of 
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blastulation (61-63), or implantation results (28, 64). A range of predictive cleavage 

stage timing parameters have been reported, such as t3 (time from insemination to 3-

cell stage), t4 (time from insemination to 4-cell stage), t5 (time from insemination to 

5-cell stage), t8 (time from insemination to 8-cell stage), cc2 (duration of 2-cell stage), 

s2 (duration of 3-cell stage) and s3 (time interval between 5- and 8-cell stages) and 

other relative timing expressions (33).  

 

One of the most influential day 3 embryo selection algorithms so far was reported by 

Meseguer et al. (28) in 2011, combining t5, cc2 and s2 into a hierarchical algorithm 

after applying a few excluding and discarding criteria. Assessed against a number of 

criteria in this algorithm, day 3 embryos were then classified into 10 grades (A+, A-, 

B+, B-, C+, C-, D+, D-, E, F with descending quality) of which the reported 

implantation rates ranged from 66% to 8% in the first 9 grades (28). This algorithm 

was recently modified by the same group and tested on a larger-scale at a multicenter 

level, by (i) using t3 as the primary selection criterion instead of t5 which has been 

downgraded to a tertiary criterion in the modified version, (ii) removal of s2 from the 

system, and (iii) modification of optimal ranges for t5 and cc2 (65). However the 

predictive power of the algorithm did not appear as impressive as in the original report 

in 2011. 

 

Whilst the majority of publications regarding time-lapse selection models for human 

embryos were performed using the Embryoscope, there was another model created 

through the use of the Eeva system (29, 64). Although in this system dark-field 

imaging facilitates the capability of auto-detecting initial cell divisions (29), the 

nuclear status of blastomeres could be difficult to evaluate due to limited visibility 

(66), which may lead to inaccurate judgment, e.g., differentiation between blastomere 

and large non-nucleated fragmentation. In this model, two morphokinetic parameters 

P2 (cc2, duration of 2-cell stage) and P3 (s2, duration of 3-cell stage) were used to 

structure Eeva grades, and may be used in the conjunction with conventional day 3 

morphology assessment to predict blastulation (64, 67).  
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In spite of the fact that a good number of early cleavage timing parameters are 

evidently associated with embryo viability, it is still not conclusive regarding how to 

organize those parameters for improved discriminatory power with both satisfactory 

sensitivity and specificity (35). Furthermore, as a few recent studies have shown 

inconsistent prediction of implantation outcomes after applying the published models 

on embryos created in different laboratories (68-70), further investigations are required 

to uncover the reasons behind those findings. 

 

1.2.3 Morphokinetics at morula and blastocyst stages 

While the vast majority of time-lapse studies have focused on early stage markers 

during embryo development (33), there have also been a few reports exploring later 

stage markers of embryo viability during morula and blastocyst formation (63, 71-74). 

The time for embryos to reach morula stage has been reported to be associated with 

the formation and quality of subsequent blastocysts (63, 74), and implantation results 

(72). Although two later stage timing parameters, timings to reach start of blastulation 

and full blast stage, have been proposed to be used for prediction of ploidy status of 

embryos (71) and implantation outcomes (72), conflicting results were reported by 

another independent laboratory who failed to reproduce the proposed classification 

model based on a selected population of poor –prognosis patients (73).This highlights 

the need to consider patient-related confounders, such as female age, when interpreting 

correlations between timing parameters of observed embryos and implantation 

outcomes, as stated by Kirkegaard et al. (75), who also reported that timing parameters 

at blastocyst stage were more affected by patient-related factors than those at cleavage 

stage.     

     

1.2.4 Abnormal biological events 

Apart from the quantitative parameters (i.e., continuous timing data) as mentioned 

above, another benefit of having embryos continuously monitored is the capability of 

detecting abnormal biological events during embryo development (76). Due to the 

dynamic nature of embryo development, it would be very difficult to identify such 

events via static observations in the conventional embryo incubation system. For 
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example, multinucleation (MN) in human IVF embryos has been studied for more than 

a decade (77). Despite its value for clinical application being widely accepted, the 

accuracy and feasibility of assessment are limited due to the various cell cycle stages 

at time of observation. According to a recent time-lapse study (78), only 27.6% of 

embryos with MN were identified within the timing window proposed by the 

consensus meeting (5) for embryo observation.  

 

A few abnormal cleavage patterns of early stage human embryos were reported 

recently (62, 79, 80). Direct cleavage (DC) 2-3 cells was referred to as an embryo 

undergoing a tri-polar cell division, resulting in 3 daughter cells instead of 2 as seen in 

the typical cell division (62). The occurrence of such event has been witnessed at both 

the first and second cleavage cycles of early embryo development, with the prevalence 

at 8.3-13.7% (79, 80) and 9.2% (79) respectively. It can be expected that such types of 

cell division would very likely result in uneven distribution of the duplicated 

chromosomes into 3 daughter cells, which requires future aneuploidy studies to 

confirm. However, currently available publications do show reduced subsequent 

blastulation (62, 79) and implantation rates (79, 80) of affected embryos. More 

recently, the presence of collapse at blastocyst stage was also shown to be adversely 

correlated with implantation results, so potentially can be used as another late stage 

predictive marker for implantation (81). The above indicates that qualitative measures, 

with the outcome being either positive or negative, may be used as deselection 

parameters as an additional advantage of time-lapse culture of human embryos. 

  

1.3 Limitations in existing time-lapse systems in human IVF 

Although extensive time-lapse research has been carried out during the last 5 years 

since the introduction of commercially available time-lapse equipment into clinical 

practice (28, 29), this field of science is still at a young age. A number of implantation 

predictive parameters have been reported by either individual laboratories or even 

multicenter studies, but there is still a lack of wide range consensus regarding the 

usefulness of time-lapse monitoring on embryo selection (33-36). In spite of the recent 

publication of the first guidelines aiming to standardize parameters that could be 
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generated by the time-lapse equipment/device (76), there is still room for improvement 

on the current timing systems. Encouragingly a few embryo selection models have 

been published so far (28, 64, 71), however, the reproducibility has been raised as a 

potential barrier to their wider application (68-70). The current project focuses on the 

following 2 major limitations of current systems, and explores their potential causes 

followed by the proposal of corresponding solutions.  

 

1.3.1 Limited accuracy and certainty of current timing systems  

The vast majority of current time-lapse studies were based on ICSI embryos only (33), 

likely due to the ease of defining a start time point (t0), sperm injection, to time 

subsequent biological events. In contrast, IVF embryos mostly have uncertain sperm 

entry time because of the reduced visualization due to the presence of cumulus cells 

around the oocytes at time of fertilization. Although the published guidelines have 

proposed using the time of mixing sperm and oocyte-cumulus-complex in 

conventional IVF as a t0 (76), the actual sperm entry time for each individual oocyte 

is mostly unknown, being later than the recorded time point. It is widely acknowledged 

that ICSI technique should not be overused due to the potential risk posed to 

subsequent offspring considering its invasive nature (82), therefore time-lapse 

technology should not be constrained by ICSI cases only. 

 

Even for the ICSI cases, where the time point of sperm injection for each individual 

oocyte can be recorded, it may not be easy to do so in certain types of time-lapse 

systems. For example, the Embryoscope incubator may contain up to 6 Embryoslides, 

each of which carries up to 12 embryos. However, the current timing system only 

allows a single t0 to be defined for the whole Embryoslide, instead of a different t0 for 

each individual embryo. Since the whole ICSI procedure may take considerable time 

for the completion of the entire cohort of oocytes, only the middle time of the whole 

procedure can be used as t0 as suggested by the published guidelines (76). 

Furthermore, nuclear mature oocytes (metaphase II) produced in the same cohort may 

not have the same degree of cytoplasmic maturity, and this may be partially indicated 

by the fact that sibling metaphase II (MII) oocytes extrude their second polar bodies 
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at a wide range of times after sperm injection (38, 44). So these should lead to the 

exploration of an alternative t0 to increase the accuracy and certainty in the current 

timing systems, with the potential to remove the reported inconsistencies in the timings 

of early stage development between ICSI and IVF embryos (83, 84).      

 

1.3.2 Limited reproducibility of published algorithms 

In recent years, a number of time-lapse prediction models have been published, 

including a day 3 model to predict implantation potential (28) and a day 5 model to 

predict ploidy status (71). However, despite the impressive results shown in the 

original reports, there have been other studies by independent laboratories showing 

reduced discriminatory power or reproducibility after employing the reported models 

(68-70, 73). The reason behind this is unclear but may involve multiple patient- and 

laboratory-related factors, and the time in culture, as blastocyst time-lapse parameters 

are more affected by patient-related factors than cleavage parameters (75). Therefore, 

the current project intends to explore potential explanations for such inconsistent 

findings, upon which solutions could be developed to improve outcomes. 

 

1.4 Thesis aims 

In accordance with the limitations in current time-lapse systems as discussed above, 

the current thesis is structured as a series of related publications, measuring and 

defining various morphokinetic parameters (see appendix 1), with each individual 

publication serving a single aim. Aims in different chapters/sections are shown below: 

Aim 1: To explore variations in timings of early biological events in human MII 

oocytes following sperm injection, and their relationship with subsequent cleavage 

divisions (Section 2.2).  

Aim 2: To propose the use of pronuclear fading as an alternative biological reference 

starting time point for timing subsequent cleavage divisions (Section 2.3). 
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Aim 3: To compare traditional embryology parameters and embryo morphokinetics 

by using pronuclear fading as a reference starting time point according to the trigger-

day serum progesterone level (Section 2.3). 

Aim 4: To investigate variations in embryo growth rates between two independent 

IVF laboratories for potential explanation of the poor inter-laboratory reproducibility 

after applying a published algorithm (Section 3.3).  

Aim 5: To report two novel qualitative time-lapse parameters, namely reverse 

cleavage and less than 6 intercellular contact points at the end of the 4-cell stage, 

followed by the proposal of a time-lapse qualitative deselection model (Chapter 4). 

Aim 6: Based on the findings in previous chapters, to develop a universal time-lapse 

deselection model for day 3 human embryos regardless of insemination method, by 

combining both qualitative and quantitative measures (Chapter 5). 
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CHAPTER 2: Variations in early biological milestone 
timings in human oocytes following fertilization 
 

2.1 Prelude  

 
Conventional static observations on human embryos are used as routine protocol in 

IVF programs today but only provide limited dynamic information regarding the early 

embryonic development of fertilized oocytes. This chapter takes the opportunity 

offered by modern time-lapse technology to investigate the timings of early biological 

milestones of oocytes following fertilization. Two papers were included in this chapter 

with citation information shown below. Paper 1 focused on the variations over time 

for human MII oocytes to reach early events up to the first cleavage division post ICSI, 

including second polar body extrusion, pronuclear fading and first mitotic division. 

Based on the findings in Paper 1, Paper 2 explored the weakness of the current timing 

system (Embryoscope) used in the conventional IVF and ICSI cycles, which may be 

inaccurate when timing biological events by using “insemination” as the start time 

point (t0). Additionally, this paper proposed that pronuclear fading should be used as 

t0 for avoidance of such uncertainty in developmental timings at early stage post IVF 

or ICSI insemination. Concomitantly, there’s a potential to build a timing system to 

describe embryo development that is compatible to both insemination methods. 

 

Liu Y, Chapple V, Roberts P, Ali J, Matson P. Time-lapse videography of human 

oocytes following intracytoplasmic sperm injection: events up to the first cleavage 

division. Reproductive Biology. 2014;14(4):249-56. Epub 2014/12/03. (Paper 1) 
 
Liu Y, Chapple V, Feenan K, Roberts P, Matson P. Time-lapse videography of human 

embryos: Using pronuclear fading rather than insemination in IVF and ICSI cycles 

removes inconsistencies in time to reach early cleavage milestones. Reproductive 

Biology. 2015;15(2):122-5. Epub 2015/06/09. (Paper 2)
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1485-1491. doi: 10.1016/j.fertnstert.2015.03.017.  
The abstract of the article is available at http://ro.ecu.edu.au/ecuworkspost2013/948/  
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CHAPTER 3: Factors affecting embryo 

morphokinetics  
 

3.1 Prelude 
After the introduction of time-lapse technology into human IVF programs, the 

observation of dynamic behaviours of embryos in culture became possible. It has been 

reported that embryo morphokinetics could be affected by different female patient 

populations, type of ovarian stimulation protocols and hormone levels, sperm DNA 

integrity, and embryo culture systems. In this chapter, Paper 3 investigated the impact 

of the trigger-day serum progesterone on embryo quality assessed via both routine 

embryology and time-lapse videography. In addition, Paper 4 compared embryo 

morphokinetic features expressed by both quantitative and qualitative measures 

between two independent laboratories, which had various patient profiles and embryo 

culture conditions (Paper 4). Also, in this paper, both the implanting and non-

implanting embryos were analysed separately. 

 

Liu Y, Copeland C, Chapple V, Roberts P, Feenan K, Matson P. The relationship 

between embryo quality assessed using routine embryology or time–lapse videography 

and serum progesterone concentration on the day of ovulatory trigger in in vitro 

fertilization cycles. Asian Pacific Journal of Reproduction. 2015;4(2):140-6. (Paper 3) 

 

Liu Y, Copeland C, Stevens A, Feenan K, Chapple V, Myssonski K, Roberts P, 

Matson P. Assessment of human embryos by time-lapse videography: a comparison 

of quantitative and qualitative measures between two independent laboratories. 

Reproductive Biology. 2015;15(4):210-6. (Paper 4)
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CHAPTER 4: Qualitative deselection measures of 
human embryos observed via time-lapse videography 
 

4.1 Prelude 
Embryo selection is normally performed through the identification of the embryo(s) 

with highest implantation potential, but could also be achieved by excluding those with 

the lowest implantation potential. The chance of picking the right embryo(s) from the 

cohort could be significantly increased by reducing the number of candidate embryos 

via deselection. This chapter focused on embryo deselection using qualitative 

measures generated via time-lapse monitoring. Such parameters (mostly abnormal 

cleavage patterns of embryos), are very difficult to detect via conventional static 

observations (usually once daily). Paper 5 investigated the prevalence of reverse 

cleavage in observed embryos and the impact on subsequent embryonic development. 

Furthermore, embryos affected by reverse cleavage had very low implantation rates 

following transfer. Similarly, Paper 6 reported another parameter that could be 

potentially used for embryo deselection, namely the degree of intercellular contact at 

the end of the 4-cell stage. Also, it was proposed in this paper that a qualitative 

algorithm incorporating a number of time-lapse deselection parameters may aid the 

improvement of implantation rates of embryos after deselection. 

Liu Y, Chapple V, Roberts P, Matson P. Prevalence, consequence, and significance of 

reverse cleavage by human embryos viewed with the use of the Embryoscope time-

lapse video system. Fertility and Sterility. 2014;102(5):1295-300 (Paper 5) 

 

Liu Y, Chapple V, Feenan K, Roberts P, Matson P. Clinical significance of 

intercellular contact at the four-cell stage of human embryos, and the use of abnormal 

cleavage patterns to identify embryos with low implantation potential: a time-lapse 

study. Fertility and Sterility. 2015;103(6):1485-91 (Paper 6) 
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CHAPTER 5: Clinical application – an embryo 
deselection model by use of time-lapse videography 
 

5.1 Prelude 
As illustrated in Chapter 2, considerable uncertainty exists in the timings of early 

developmental milestones following fertilization of human oocytes, while the use of 

PNF as a biological reference starting point for timing subsequent developmental 

stages may minimize such uncertainty in both IVF and ICSI cases. Furthermore, 

Chapter 4 reported two time-lapse qualitative parameters for embryo deselection, and 

a deselection model incorporating a number of such parameters was also proposed. 

Whilst in Chapter 3, inter-laboratory comparisons showed better reproducibility of 

such qualitative parameters compared with the quantitative ones. Therefore, in this 

chapter, Paper 7 focused on the clinical application based on the above findings and 

proposed an embryo deselection model combining both the qualitative and quantitative 

parameters. In this model, embryos may be graded under the same criteria regardless 

of the insemination method used, by using PNF as the reference starting time point. 

The qualitative component of this model may also be used separately for better inter-

laboratory transferability as discussed in Chapter 4. 

    

Liu Y, Chapple V, Feenan K, Roberts P, Matson P. Time-lapse deselection model for 

human day 3 in vitro fertilization embryos: the combination of qualitative and 

quantitative measures of embryo growth. Fertility and Sterility. In Press. (Paper 7)
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CHAPTER 6: General discussion and conclusions 
 

6.1 Alternative biological starting point for timing 

parameters (Chapter 2) 

At the beginning of this project (section 2.2) we investigated the times of early 

developmental events in human oocytes following sperm injection by using the 

Embryoscope, one of the commercially available time-lapse incubators. Morphometric 

and morphokinetic analysis was performed assisted by the Embryoviewer software. 

The timings of three major biological events were analyzed, namely second polar body 

extrusion, pronuclear fading and first mitotic cleavage division. We found a large 

variation in the timings of second polar body extrusion post ICSI amongst nuclear 

mature (MII) oocytes, which is in agreement with previous publications (1, 2). This 

biological milestone seems important since the morphometric analysis in this section 

showed a shrinkage of the oocytes post injection but a cessation of reduction in size 

occurred at second polar body extrusion regardless of its timing. Furthermore, the 

timings to reach subsequent early stage milestones seemed to vary less after the 

extrusion of the second polar body. The above phenomenon may be a reflection of the 

diverse maturity status in the cytoplasm of the MII stage oocytes from the same cohort 

at time of sperm injection. This indicates that the variations in cytoplasmic maturity of 

the MII oocytes may confound the timings of subsequent early developmental 

milestones if using sperm injection, a procedural time point, as the reference starting 

time point t0; while the use of a biological t0 such as second polar body extrusion or 

any early events beyond, may minimize the variations caused by such an artificial 

factor, i.e., sperm entry timing determined by ICSI protocol in the laboratory. 

 

In routine practice where only static observations are involved, the timing variations 

in the development of early human embryos, fertilized via either conventional IVF or 

ICSI, are difficult to identify. Unified time points for observations at different stages 

of embryo culture, regardless of insemination method, have been outlined in the recent 

consensus (3). Following the application of time-lapse technology in human IVF 

laboratories, it has become feasible to reveal timing differences between IVF and ICSI 
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embryos. Pronuclear fading is one of the earliest biological events that can be easily 

observed in both IVF and ICSI embryos. A number of recent time-lapse studies 

reported that ICSI embryos spent significantly less time reaching various early 

cleavage stage milestones (4-7) in comparison to their IVF counterparts when using 

insemination as t0, while by using pronuclear fading as t0 the early timing differences 

between IVF and ICSI embryos could be removed (4). In section 2.3, similar results 

were reported in timings up to the 5-cell stage in both our overall embryo population 

and the implanting embryos. However, these studies, including the present study, were 

retrospective and based on overall embryo populations, therefore patient-related 

clustering and confounding effects in such design may increase the risk of 

misinterpreting the observed results due to the influence of patient factors (8). 

Considering the above mentioned facts, future properly designed large-scale 

prospective studies are suggested to confirm these preliminary findings. Moreover, the 

method of statistical analysis should be carefully selected to minimize the risk of 

misinterpretation of observed results (8).  

 

The majority of currently published time-lapse studies were based on ICSI embryos 

probably due to the difficulties in defining the sperm entry time point in conventional 

IVF cases. However an ideal timing system, in particular a system proposed for 

embryo selection, would be able to accommodate all embryos created via either 

insemination method. Indeed conventional IVF is a crucial component in the world of 

ART. Evidence available at present implies pronuclear fading could be considered in 

the future timing systems for embryo selection, due to its potential benefits of 

improved certainty and compatibility.     

 

6.2 Factors affecting embryo morphokinetics (Chapter 3) 

In section 3.2, the potential effect of trigger-day serum progesterone level during IVF 

treatment was evaluated on the subsequent oocyte viability. In order to reflect the 

oocyte quality, embryology performance (conventional IVF cycles only) was 

examined via both conventional morphology and morphokinetic assessment. ICSI 

cases were not included to avoid confounding effects from paternal factors. In the 
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morphokinetic analysis, pronuclear fading was used as t0 to time subsequent early 

embryo development so that the variations caused by uncertain sperm entry timing 

could be minimized. Although no significant impact of high progesterone level per 

follicle was found on the subsequent embryo development; the retrospective design, 

restricted range of progesterone concentrations, and absence of multivariate analysis 

in the present study may limit the conclusions drawn. Future prospective randomized 

studies should attempt to minimize the patient-related confounding variables (8) as a 

number of reports have linked a range of factors to altered embryo morphokinetics. 

These factors include embryo culture conditions such as oxygen level (9) or culture 

media (10), ovarian stimulating protocols (11, 12), and patient populations (8, 13-15). 

Meanwhile studies with different findings have been reported (16, 17), but it would 

not be surprising to see varying morphokinetics of embryos created and cultured in 

different clinics given the diversity in patient populations, culture conditions and 

ovarian stimulating protocols.  

 

To verify the above assumption regarding between-laboratory variation, section 3.3 

compared the embryo morphokinetics of both implanting and non-implanting embryos 

using KID data between two independent Australian IVF clinics. Furthermore, to 

avoid potential confounding factors from inter-operator variations with regard to 

embryo annotation, this study only involved one embryologist who had retrospectively 

annotated all included embryos from both clinics. Interestingly, between the two 

clinics, both implanting and non-implanting embryos had significantly different 

morphokinetics at early developmental stages. The variations seemed reasonable when 

looking at the differences in laboratory protocols and patient profiles between two 

clinics, as presented in Tables 12 & 13. This leads to a potential explanation of the 

recently reported low reproducibility or transferability of some published embryo 

classification models, which are mainly based on timing parameters of embryo 

development (18-21). An ideal embryo selection model or algorithm, similar to other 

diagnostic pathology tests (22), should have transferable reference ranges against 

which to compare the growth of an embryo for selection purposes. While considering 

different embryo development profiles in different laboratories as presented in Section 

3.3, one may expect different prediction power when using a model with reference 

ranges externally created. These models may not lose their discriminatory power when 
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tested within the same clinic or group, but it would be wise for an external user to take 

precautions when directly applying the published models.      

 

6.3 Qualitative deselection of embryos via time-lapse 

monitoring (Chapter 4) 

Chapter 4 concentrated on the qualitative measures that can be potentially used for 

embryo deselection. Similar parameters have been reported previously, such as direct 

cleavage where a blastomere undergoes multi-polar cell division resulting in more than 

2 daughter cells with uneven distribution of chromosomes (23, 24). Reverse cleavage 

and less than 6 ICCPs at the 4-cell stage are two abnormal cleavage patterns which 

have been reported individually in two separate papers (Sections 4.2 & 4.3), and they 

are only detectable via continuous monitoring. These events potentially impact the 

chromosomal integrity or intercellular communication in early human embryos, and 

as a result, those with such observed abnormalities are expected to have reduced 

viability. Better embryo selection could be expected by combining both qualitative and 

quantitative parameters. However, precautions must be taken when new time-lapse 

users apply embryo selection models including quantitative parameters due to the 

variations that exist between clinics as discussed in the previous section. While the 

qualitative parameters only involve two outcomes of measurement (either positive or 

negative and being independent of embryo growth rates), better inter-laboratory 

reproducibility could be achieved when used separately. This assumption was 

validated in Section 3.3, where embryo morphokinetics (quantitative parameters) 

varied between two independent laboratories (Table 14) while the occurrence of 

abnormal biological events (qualitative parameters) appeared more similar between 

the same two laboratories (Table 16). Additionally, a qualitative embryo deselection 

model was proposed at the end of section 4.3, by including a number of abnormal 

biological events observed via time-lapse monitoring, and it showed significantly 

improved implantation rates by simply deselecting embryos displaying such abnormal 

biological events. 
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Since several time-lapse systems are currently available commercially, the 

transferability of the above mentioned qualitative parameters between different time-

lapse systems may also require further validation. One of the potential issues might be 

the difficulty in identifying certain biological events in specific time-lapse systems. 

For example, the identification of direct cleavage involves the confirmation of an extra 

blastomere(s) by the visualization of a nucleus (nuclei), such that it can be 

distinguished from large non-nucleated fragmentation. Also, the detection of reverse 

cleavage involves the confirmation of nuclear disappearance before cell fusion or 

failed cytokinesis followed by its reappearance. However time-lapse systems using 

dark-field imaging, such as the Eeva system, may have difficulties confirming the 

above, therefore potentially leading to different conclusions from other systems such 

as the Embryoscope. 

   

6.4 Embryo deselection model combining both quantitative 

and qualitative measures (Chapter 5) 

Based on the findings in Chapters 2 to 4, Chapter 5 proposed a deselection model for 

human day 3 embryos, including both qualitative and quantitative parameters. 

Compared to the day 3 algorithm published by Meseguer et al. (25) in 2011, this model 

may lead to the following benefits: (i) it is applicable to both IVF and ICSI embryos 

by using PNF as t0, (ii) the qualitative deselection module may be used separately for 

new time-lapse users when collecting KID data to determine their own reference 

ranges for timing parameters, and (iii) it offers an easier decision making process for 

new time-lapse users, i.e., selecting those with a shorter t5_PNF after the exclusion of 

extreme cases (direct cleavage from 1-3 or 2-5 cells). The transferability issue is still 

not completely resolved in the current model, and it is clearly stated that individual 

laboratories must determine their own reference ranges for timing parameters based 

on KID data. However, this model provides a methodology that may be adopted by 

new time-lapse users to calculate their own reference ranges for the timing parameters. 

Additionally, one can still benefit by using the qualitative deselection model alone. 
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This model was constructed using retrospective data, followed by prospective 

validation using a relatively small sample size. Although preliminary tests showed 

similar predictive power in two different culture media suites within the same 

laboratory, future large-scale prospective validation is warranted, ideally involving a 

different laboratory by creating their own reference ranges after applying the same 

methodology. Retrospective studies are at frontline of methods to identify potential 

biomarkers for human embryo selection, as a means of initially identifying various 

parameters for further investigation. However, confounding factors in such 

retrospective analyses are difficult to control, potentially leading to misinterpretation 

of observed effects. So it is important for retrospective findings to be validated by 

subsequent prospective studies with a controlled design, as demonstrated in recent 

publications (26, 27). Whilst the randomized controlled trials are considered to be one 

of the preferred tools to test the effectiveness of a study objective because of the better 

controlled confounding factors via randomization, such study design is not without 

limitations such as extended duration, high running costs, difficulty in participant 

recruitment, and the inability to change protocol in response to subsequent findings.  

 

6.5 Limitations and perspectives 

Although promising, the application of time-lapse technology in clinical IVF practice 

is still in its infancy with room for improvement and refinement. One of the constraints 

is that embryos in time-lapse culture are not able to be rolled for better viewing angles, 

whilst rolling embryos under the microscope during conventional observations is quite 

often used by the embryologists to gain better three dimensional information, 

especially when assessing the inner cell mass at the blastocyst stage. In Section 4.3, 

the evaluation of intercellular contact of the 4-cell stage human embryos was 

occasionally affected by a suboptimal viewing angle and not being able to roll the 

embryos. Future time-lapse systems with an extra dimension of imaging on the 

embryos would potentially address this issue by the addition of an extra camera, i.e., a 

total of two cameras scanning the embryos in both horizontal and vertical planes.  
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As defined by current policy at the clinic where this study was performed, embryos 

included in the present study were all cultured and transferred 3 days post oocyte 

collection. Consequently, the effect of reported parameters such as reverse cleavage 

and less than 6 ICCPs at the end of the 4-cell stage on the subsequent blastulation were 

not investigated. Although day 3 morphology score and implantation were used as the 

two major end points for assessing their impact, it would no doubt provide further 

insights by including blastulation analysis since blastocyst culture is currently widely 

used globally as a routine practice. The blastulation rates of embryos classified into 

different grades (A+ to F) as described in Section 5.2 would lead to further 

understanding of the relationship between early embryo morphokinetics and 

subsequent blastulation or blastocyst quality. The implantation rate of A+ embryos 

was 52.9% as shown in Figure 9, which appears comparable with the implantation rate 

of blastocysts. It is not clear based on currently available literature whether the 

morphokinetics of early embryo development is only predictive of blastulation instead 

of implantation, or time-lapse parameters are implantation predictive independent of 

blastulation. Subsequent future research may focus on the blastulation of embryos with 

different grades in the proposed model. If morphokinetic features of early embryo 

development were predictive of blastulation only, the options may rely on the 

individual strategy at different clinics to either use blastocyst culture as a tool of 

selection with lower running costs, or transfer the embryos at an earlier developmental 

stage after time-lapse analysis with minimized potential external physical/biochemical 

stress caused by in vitro culture. However, if the early morphokinetic features were 

independent of blastulation, the parameters could then be used in combination with 

blastocyst grading for improved selection. The recent promotion of single stage culture 

media combined with extended culture of embryos in a time-lapse incubator may well 

facilitate the development of such a protocol (28).  

 

Another limitation of the present studies was the relatively small sample sizes, and 

their retrospective nature. As pointed out in a recent study by Kirkegaard et al. (8), 

retrospective studies may carry a high risk of patient-based confounding factors, 

therefore the observed differences in embryo development may be misinterpreted 

when treating embryos as independent observations. Further prospective large-scale 

randomized controlled studies are certainly necessary to validate the reported findings, 
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so that both known and unknown patient-related confounders could be equally 

distributed via the randomization of patients (8). Furthermore, the preliminary report 

of reverse cleavage in the present study only analyzed the implantation outcomes of 

22 affected embryos. Although the extremely low implantation rate reached statistical 

significance in comparison to the unaffected counterparts, the small sample size did 

not allow the evaluation of different types of reverse cleavage nor the developmental 

stage related impact on the subsequent implantation results. Indeed, less impact on the 

embryo viability could be expected when such abnormal events occurred at later 

developmental stages. In future studies, at the preliminary phase, it would be useful to 

explore blastulation rates for embryos with type I or II reverse cleavage occurring at 

different developmental stages. At the second phase, those that have successfully 

reached blastocyst stage and been cryopreserved may be used for implantation 

assessment in subsequent frozen transfer cycles. However, since they (grade Es in the 

reported deselection model) are expected to be given low priority for transfer, it may 

take a considerable amount of time to gather a good sample size for statistical analysis. 

Correlating with future findings, further detailed grading systems may be 

developed/upgraded.  

 

Evidence regarding the inter- and intra-operator reproducibility in time-lapse 

parameters on human embryos is currently limited. In a recent report, the 

reproducibility of time-lapse timing parameters appeared to be at satisfactory to good 

levels, while qualitative parameters (only multinucleation and evenness at the 2-cell 

stage were included in this study) seem to be less reproducible (29). It has been 

demonstrated previously in conventional embryo morphology grading systems that 

training sessions provided to the participating embryologists may be an effective way 

to improve inter- and intra-operator consistencies (30, 31), however the same has not 

yet been performed on the time-lapse assessment systems. Furthermore, the 

reproducibility of the identification of abnormal cleavage patterns, such as direct 

cleavage, reverse cleavage and <6ICCPs at the end of the 4-cell stage as reported in 

the present study, has also not been evaluated. All embryo annotations in the present 

study were performed by the same embryologist in order to avoid inter-operator 

variations, so future studies should investigate such inter-operator issues by involving 

multiple operators, preferably with the addition of training sessions to validate their 
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effect on the improvement of consistency. At the laboratory level, however, the 

reproducibility of qualitative parameters, which are measured as either positive or 

negative and independent of embryo growth rates, are considered to have better inter-

laboratory reproducibility in comparison to the quantitative parameters as shown in 

Section 3.3. This again will need further evaluations by involving more laboratories 

with multiple levels of comparisons.  

 

A number of published studies comparing morphokinetic timing parameters between 

embryo groups did not consider the underlying confounding impact of abnormal 

cleavage patterns (4, 6). For example, embryos displaying direct cleavage have a faster 

cleavage rate, therefore the group of embryos which have a larger proportion of such 

embryos would demonstrate a faster growth rate than the group with a smaller 

proportion of such embryos. Consequently, when analysing implantation prediction by 

certain timing parameters, a group of embryos with faster growth rates cannot be said 

to have better viability than their slower counterparts if the directly cleaved embryos 

have not been excluded from analysis. Comparisons of quantitative parameters in the 

present study have excluded direct cleavage at 1- or/and 2-cell stages and, as a result, 

data analysis is expected to be more representative. One example is the distribution of 

certain timing parameters of embryos with implantation/non-implantation outcomes in 

Section 5.2. The t5_PNF shifted from a bell shaped curve when including the direct 

cleaved embryos, to a linear shape after excluding such embryos (Figure 10). This 

change of shape enables an easier way for new time-lapse users when selecting 

embryos based on t5_PNF, by picking the one with the shortest t5_PNF without 

concerns about the unknown optimal ranges for t5_PNF in their specific laboratory.   

      

Additional novel qualitative parameters could be revealed in the future research. 

Dynamic features that could not possibly be observed in the conventional protocol, 

such as blastomere rolling, cytoplasmic wave and cytoplasmic string at the blastocyst 

stage have not yet been fully investigated. However the accurate description or 

quantification of such parameters may require further development of corresponding 

computer assisted software. Currently available software like the Embryoviewer have 

shown such potential in the morphometric analysis as illustrated in Section 2.2, where 
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the size of oocyte was represented by the computer calculated surface area around the 

oolemma (Figure 1). However the accuracy of current protocol still needs further 

improvement since the oocyte is not always a perfect sphere. As a result, the oocyte 

size may be (i) misrepresented by the measurement on a single image captured in one 

focal plane of the oocyte, which could actually be an oval shaped oocyte at a 3-D level; 

or (ii) underrepresented/overrepresented due to the irregularity of oolemma outline. 

Further, current measurement functions in the Embryoviewer software still require 

manually drawn lines or circles, therefore the accuracy and ease of use could 

potentially be improved by introducing more advanced image analysis software.     

 

The emergence of novel quantitative and qualitative time-lapse parameters may lead 

to improved laboratory performance monitoring. In the conventional laboratory 

management, proportion parameters such as day 2/3 good quality embryo rates or 

blastulation rates have been used as key performance indicators. Apart from these 

parameters, now we have the option of using continuous timing parameters. This 

approach could result in increased sensitivity due to the statistical advantage of 

continuous data compared to proportion data. Abnormal cleavage events revealed via 

time-lapse monitoring could also supplement the effectiveness of the use of continuous 

timing parameters. Furthermore, continuous data may also be very useful when 

assessing different products/procedures by comparing timing parameters of 

randomized sibling embryos in the time-lapse culture.      

 

Although the majority of time-lapse human embryo studies have been performed with 

the use of the Embryoscope, there are other commercially available options such as 

the Primo Vision or Eeva systems. One parameter or model developed and validated 

in one time-lapse system, does not necessarily ensure its usefulness in another time-

lapse system. Therefore, future studies may involve not only the multicenter 

prospective validation of the proposed parameters and selection models, but also 

careful testing with the use of alternative time-lapse systems. In addition, current 

advantages and disadvantages between existing systems may encourage the 

acceleration of technical evolution in modern manufacturing, with each individual 

time-lapse system being upgraded more frequently as a result.   
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6.6 Conclusions of thesis 

The main conclusions are summarized as the following: 

 Human oocytes reduce in size after sperm injection, but shrinkage is terminated 

at second polar body extrusion. 

 Second polar body extrusion occurs at various times after sperm injection. 

 Pronuclear fading may be used as an alternative biological reference starting 

time point for timing subsequent cleavage divisions. 

 Inconsistent timings of early cleavage divisions relative to insemination are 

present between IVF and ICSI embryos, but the inconsistencies may be 

removed by using pronuclear fading as a reference start point. 

 Serum progesterone level per follicle on the trigger injection day does not 

affect subsequent embryo morphokinetics.  

 A review of literature showed a range of factors affecting embryo 

morphokinetics, including patient or culture condition related variables.  

 Embryo growth rates differ between different laboratories, in both implanting 

and non-implanting embryos. 

 Embryo selection algorithms emphasizing quantitative timing parameters may 

lose their discriminatory power when introduced into a different clinic due to 

various factors affecting embryo growth. 

 Time-lapse parameters for qualitative deselection are effective in identifying 

embryos with low implantation potential, with better inter-laboratory 

reproducibility than quantitative time-lapse parameters. 

 Embryos displaying certain abnormal cleavage patterns such as direct cleavage 

should be excluded when comparing timing parameters to avoid a confounding 

impact.  

 The embryo deselection model proposed in the current study is effective to 

discriminate embryos with different implantation potential, regardless of 

insemination method. 

 Both quantitative and qualitative time-lapse parameters are predictive of 

embryo implantation results, but quantitative parameters may require 

laboratory specific reference ranges. 
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 This thesis has identified a number of potential time-lapse approaches for 

embryo deselection. These findings showed clinical usefulness in a preliminary 

prospective study, but these findings need to be confirmed by larger 

prospective randomized controlled trials. 
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Appendix 1: List of description of time-lapse parameters of human embryos 
 

Time-lapse parameters Descriptions 

Tpb2 

Tpnf 

T2 or T2_insem 

T3 or T3_insem 

T4 or T4_insem 

T5 or T5_insem 

T8 or T8_insem 

T2_pnf 

T3_pnf 

T4_pnf 

T5_pnf 

T8_pnf 

CC2 (T3-T2) 

S2 (T4-T3) 

T5_T4 

S3 (T8-T5) 

MN 

DC 

RC 

 

<6ICCP 

Time (hour) from insemination to 2nd polar body extrusion 

Time (hour) from insemination to pronuclear fading 

Time (hour) from insemination to 2-cell stage 

Time (hour) from insemination to 3-cell stage 

Time (hour) from insemination to 4-cell stage 

Time (hour) from insemination to 5-cell stage 

Time (hour) from insemination to 8-cell stage 

Time (hour) from pronuclear fading to 2-cell stage 

Time (hour) from pronuclear fading to 3-cell stage 

Time (hour) from pronuclear fading to 4-cell stage 

Time (hour) from pronuclear fading to 5-cell stage 

Time (hour) from pronuclear fading to 8-cell stage 

Time (hour) from 2-cell to 3-cell stage 

Time (hour) from 3-cell to 4-cell stage 

Time (hour) from 4-cell to 5-cell stage 

Time (hour) from 5-cell to 8-cell stage 

Multinucleation 

Direct cleavage where one cell divided into 3 or more daughter cells 

Reverse cleavage where a) two daughter cells fuse after separation, 

 or b) cell fails to separate after karyokinesis 

Less than 6 intercellular contact points at the end of the 4-cell stage 

 

  



173 

 

Appendix 2: Use of the Embryoscope- Standard Operating Procedure  
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Appendices 3-10 are not available in this version of the thesis. 
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