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ABSTRACT 

This work presents a reliable, cost-effective, rapid and infield voltammetric method for the 

detection of barium.  The optimized method consists of an ultrathin mercury film deposited in-situ 

on a glassy carbon electrode in 0.02 M potassium chloride without deoxygenation; a deposition 

potential of -2500 mV, pulse height = 50 mV, step duration = 10 ms and a scan rate of 100 mV/s 

using differential pulse anodic stripping voltammetry (DP-ASV). 

The linear working range for barium was determined to be 5 – 80 µg/L (r2 = 0.997), and limit of 

detection (LOD) was 1.6 µg/L, for 30 sec deposition time. Percent relative standard deviation for 10 

measurements performed at 20 µg/L was 5.8%.  

Application of the method allowed for the quantitative determination of barium concentration in a 

variety of waters, brake pad dust and gunshot residue (GSR) samples. Comparative analysis of 

sample results from DP-ASV with inductively-coupled plasma mass spectroscopy (ICP-MS) 

showed a mean percent difference of 1.8%. The method also permitted the simultaneous 

measurement of barium and lead, crucial for GSR samples. 
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GLOSSARY OF TERMS 

	

%RDS    percent residual standard deviation 

Au   gold 

Ba   barium 

Bi   bismuth 

BiE   solid bismuth electrode 

BiFE   bismuth film electrode 

Deposition Potential  the chosen potential with which the analyte is concentrated at the working electrode 
for a specified time 

C-SWV cyclic-square wave voltammetry 

DP-ASV differential pulse anodic stripping voltammetry 

GCE   glassy carbon electrode 

GSR   gunshot residue 

Hg   mercury 

HMDE   hanging mercury drop electrode 

HNO3   nitric acid 

Hold Potential  the working electrode is held at the Hold potential for the specified time to allow 
equilibration of the working electrode prior to measurement 

ICP-MS   inductively coupled plasma mass spectroscopy 

KCl   potassium chloride 

KI   potassium iodide 

µg/L   micrograms per litre 

mg/L     milligrams per litre 

LiClO4   lithium perchlorate 

LOD    limit of detection 

LS-ASV   linear sweep anodic stripping voltammetry 

Measurement Start the point from which the instrument takes measurements until the      
Potential  designated Stop potential is reached 

M   moles per litre 

mM   millimoles per litre 

Pb   lead 

Sb   antimony 

SW    square wave voltammetry 

TMACl   tetramethylammonium chloride 
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CHAPTER 1 – INTRODUCTION AND SIGNIFICANCE 

1.1 BACKGROUND 

Barium is a heavy metal belonging to the alkaline earth group (II) in the Periodic Table. It exhibits 

high reactivity in air and water, and therefore occurs naturally in the form of inorganic compounds 

rather than as a pure metal.  It is most commonly found as barite (BaSO4) or witherite (BaCO3) but 

is also detectable as soluble salts; barium chloride (BaCl2), barium nitrate (Ba(NO3)2 ) and barium 

hydroxide (Ba(OH)2 ) in almost all surface waters on Earth [1].  Due to its reactivity, typical uses of 

barium metal are as a “getter” to remove remaining gases from vacuum tubes and in the 

manufacture of other metals and alloys [2]. Myriad applications exist for barium compounds 

including the hydroxide used in greases, lubricating oils and plastics stabilizers, and the chloride 

used in water softening, dyeing, glass, and pigments in cosmetics and drugs [3].  Barium nitrate and 

the peroxide form are used in fireworks, detonators and tracer bullets; the carbonate is a rodenticide 

and provides lustre in glass, brick and clay products. The mined sulphate (barite) is applied as a 

weighting agent in drilling fluids for oil and gas wells and is also used in medicine as a radiopaque 

contrast medium in X-ray photography of the digestive tract [3].  

With such widespread use of barium compounds in so many products, there is growing concern 

about the accumulation of barium compounds in the environment and their effects.  Most barite 

mining occurs in the UK and USA and some environmental management concerns have been raised 

there about long-term accumulation of barium in river sediments and groundwater [4].  Although 

few studies exist in the literature, negative effects of dissolved barium on aquatic life in marine 

waters have been reported, specifically for bivalves and daphnids [5, 6]. Further, in a review by 

Kravchenko et al. [6], the authors note that recent expansion of shale gas drilling has increased the 

risk of barium pollution in groundwater and wells, igniting interest in scientific investigation of 

potential human and environmental health impacts since published information is limited. 

1.1.1 ENVIRONMENTAL EXPOSURE 

Soluble salts of barium are highly toxic to humans and ingestion or inhalation of the powders can be 

fatal [3, 7]. The slightly soluble carbonate is also toxic if swallowed due to digestion by stomach 

acid however acute poisoning cases are rare and mostly accidental through food preparation errors 

or deliberate suicides [8, 9]. Known adverse health effects related to human consumption of water 

highly contaminated with barium are cardiovascular disease, hypertension and muscle weakness 

[10, 11].  The main sources of drinking water contamination are usually from the erosion of natural 

deposits, discharge of drilling wastes and discharge from metal refineries [6]. In 2011 the World 

Health Organisation (WHO) revised its global drinking water guideline for barium from 2 mg/L 

down to 0.7 mg/L [12]. The US Environmental Protection Agency (EPA) [7] and Australian [11] 
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drinking water guidelines remain at 2 mg/L, despite studies reporting that chronic exposure to 

barium at low concentrations may be problematic [6].  As well, recent studies conducted in 

Bangladesh and Vietnam strongly suggest that the presence of barium promotes the carcinogenicity 

of arsenic in tube-wells [13, 14].    

Monitoring human exposure to barium at industrial workplaces or through disposal of barium-rich 

industrial effluent is normally part of required heavy metals analyses in the interest of public health 

and environmental management. This is important because soluble barium compounds, such as the 

chloride, nitrate and hydroxide forms can be absorbed by the human body and are toxic to humans. 

The current data from animal studies on rats and mice show strong evidence that renal function is 

most adversely affected by long-term oral exposure to barium [10, 11]. 

1.1.2 SIGNIFICANCE 

Routine analysis of heavy metals can be performed by a suite of analytical chemical methods; 

however, inductively coupled plasma mass spectrometry (ICP-MS) and flame atomic absorption 

spectrometry (FAAS) are the most commonly applied techniques because they are well established 

accredited methods [7, 10, 11]. Laboratory analyses using these methods are expensive, can be 

time-consuming and are not suitable for in-field analysis. An in-situ and inexpensive portable 

analytical method is an attractive alternative in remote locations or when immediate and on-site 

results are a necessity.  Voltammetry could provide such an alternative technique.  Voltammeters 

are easily available, portable and relatively cheap compared with ICP-MS and FAAS, and anodic 

stripping voltammetry is one of several officially recognized techniques for the detection and 

speciation of metal ions in natural waters outlined in the National Water Quality Management 

Strategy [11].  

 

1.2 ANODIC STRIPPING VOLTAMMETRY THEORY 

Anodic stripping voltammetry (ASV) is an electro-analytical technique enabling detection of metals 

in various matrices [15]. ASV is relatively inexpensive and allows for the simultaneous 

determination of several metals. It exhibits high sensitivity for most metals and does not require any 

pre-concentration of the samples prior to analysis because the reduction step itself concentrates the 

metal ions. The limit of detection is ICP-MS comparable due to advances in electronics enabling 

measurement of micro currents [16].  

The ASV technique consists of three steps performed using an electrochemical cell fitted with three 

electrodes: the working, reference and counter electrodes [17] as shown in Figure 1. The counter 

electrode is used to avoid the potential drop due to solution resistance in a 2-electrode system.  
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used to coat electrodes tend to deteriorate quickly at very negative potentials making reproducibility 

difficult [16]. Dissolved oxygen can cause hysteresis in the voltammogram between the sample and 

the blank, due to the generation of background noise in ASV. This appears as a shift in the peak and 

therefore deoxygenation of the sample is often required [22].  

Woolever and Dewald [18, 22] were the first to detect Ba using ASV simultaneously with Pb in 

gunshot residue (GSR) using mercury (Hg) film on glassy carbon electrode. Various electrolytes 

were investigated with the aim to alter the deposition potential to a less negative value, but they 

ultimately selected dp = -2400 mV, while the peak potential for Ba changed depending on the 

electrolyte.  Standard deviations were large due to H2 evolution however, and Ba detection failed 

for low concentration samples. Other researchers [19, 21] also attempted barium analysis by ASV 

using a mercury-film working electrode with various electrolytes, such as LiClO4, KCl and KI, and 

they all reported issues with reproducibility and interferences from gases. The reported deposition 

times were 1 – 6 minutes; hence gas evolution was inevitable at such negative potentials (Table 1). 

As can been seen in Table 1, GCE with mercury film is the most commonly studied electrode, 

however, there are now other electrodes available, such as bismuth (Bi) electrode, which maybe a 

possible alternative to GCE/Hg system. Thus, although achieving a robust method for the 

determination of barium by ASV is difficult predominantly because of its very negative standard 

reduction potential, a thorough systematic study of the GCE/Hg system has not been completed and 

other alternative electrode systems have not been investigated [19].   

 

Table 1.  Summary of experimental conditions previously employed in the detection of barium by 

voltammetry in the literature reviewed. LS = linear sweep; DP = differential pulse; C-SWV= cyclic-

square wave voltammetry. 

Year Reference Working 
Electrode 

Technique Electrolyte Deoxygenation DepositionTime 

2000 Woolever et al. [18] GCE + Hg 
film 

DP-ASV 0.1 M LiClO4 N2 6 min 

2001 Kovaleva et al. [25] Ag + Hg 
film 

LS-ASV 0.1 M KCl Ar 3 min 

2001 Woolever et al. [27] GCE + Hg 
film 

DP-ASV 0.1 M TEABr N2 3 min 

2005 Agrawal et al. [28] GCFE DP-ASV 0.1 M TMACl N2 2 min 

2009 Wajrak [23] GCE + Hg 
film 

LS-ASV 0.5 M KCl No 1 min 

2012 Vuki et al. [30] GCE + Hg 
in-situ 

C-SWV 0.1 M LiClO4 No 3 min 
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Mercury film on carbon and gold electrodes are advantageous in ASV as mercury forms amalgams 

with many metals, producing peaks with excellent resolution. Films provide a replaceable and 

reproducible surface too and one advantage of gold-mercury film electrode over carbon-mercury 

film is that it can withstand very negative potentials without damage [P. Lewtas, personal 

communication, 7th September 2015].  

In 2005, Wang reviewed bismuth electrodes as a ‘green’ alternative to Hg electrodes and 

commented that bismuth electrodes need to be more thoroughly studied [26]. Bismuth electrodes 

have a wide cathodic potential window and are less susceptible to background interference from 

oxygen; two attractive features for possible Ba analysis. In addition the two metals (Ba and Bi) have 

been recently used together in some newer alloys [26], indicating potential affinity between the two 

metals, which is important for voltammetry.  

Solid bismuth electrodes (or bulk bismuth disks) are very similar to bismuth films apart from 

exhibiting slightly lower hydrogen overvoltages and have been developed as a non-toxic alternative 

to mercury electrodes [26]. Bismuth performs well in ASV for heavy metals with standard 

reduction potential more negative than bismuth (-300 mV), offering high hydrogen overvoltage, low 

susceptibility to oxygen interference, a wide cathodic window and good peak resolution.   

Although solid electrodes are an attractive choice over films deposited on electrodes, which tend to 

deteriorate with analytical runs, solid electrodes require polishing and chemical conditioning before 

detection of a particular analyte [24]. Polishing physically creates a smoother, more even surface for 

uniform distribution of the accumulating analyte, producing a better signal. Chemical conditioning 

activates the electrode towards the analyte of interest and may take a number of voltammetric runs 

until a capacitance peak is seen for the analyte and/or the peak stabilises at a certain height for a 

known concentration of analyte [16]. 

In ASV, the sensitivity of the electrode is usually a strong function of deposition potential [24] so 

altering that value and the amount of time allowed for deposition (tdep) can increase or decrease the 

accumulation of analyte at the electrode, thereby altering the current generated at the stripping 

potential for that analyte [15]. In the case of barium, it is beneficial to use a less negative deposition 

potential for the shortest tdep to prevent signal interference from hydrolysis of the electrolyte itself 

[19, 21]. The optimal deposition potential is an adjustment between some loss of accumulation and 

better resolution of the stripping peak. 

The choice of electrolyte also has a major influence on the deposition potential, selectivity of the 

electrode to the analyte and the potential area where the capacitance peak of the analyte is produced 

and seen on the voltammogram [24].  The electrolyte also enhances or suppresses chemical 

reactions in solution and production of compounds that produce signal interference [22]. Choice of 
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electrolyte therefore, is important in altering peak position to avoid overlap with other analyte 

peaks, thereby reducing interferences.   

Another consideration for electrolyte choice was its ability to endure scanning to very negative 

potentials with limited effects from electrolysis [24]. Tetraalkylammonium halides, LiClO4 and KCl 

electrolytes can resist electrolytic breakdown until approximately -2900 mV, thus are the 

electrolytes of choice in voltammetric detection of barium. For this project, the intention was to use 

the least toxic electrolyte possible and to pair it with the ‘greenest’ electrode without compromising 

sensitivity to barium, so KCl was most extensively investigated. 

Electrolyte concentration is important for conductivity and quantity of supporting ions in the 

solution [24, 34]. Having a high quantity of ions ensures that the voltage drop that occurs between 

the electrode and the bulk solution happens within a distance of 10-20 Å, and the electron transfer 

reactions occur at the traditionally accepted rate constants. The typical value for electrolyte 

concentration is 0.1 M or higher and this is consistent with the literature (Table 1).   

The type of potential delivery influences the sensitivity of the instrument in measuring the current.  

Linear sweep is least sensitive but is fast and simple and has been used for the voltammetric 

detection of barium (Table 1). The majority of researchers have preferred differential pulse because 

being able to subtract the background current from the Faradaic current produces a net current that 

is both more accurate and sensitive [24, 36].  Scan rate, also known as sweep rate, is the rate at 

which the potential is applied and affects the speed of stripping [34].  The amount of electrons 

released is the same but over a shorter or longer time frame, and depending on the kinetics of the 

chemical reactions in the solution undergoing analysis, can affect peak heights obtained from 

analytes [35]. 

 

1.3 PROJECT RATIONALE AND AIMS 

1.3.1  RATIONALE 

A gap in the literature exists pertaining to barium analysis by ASV. This project, therefore, is 

predominantly focused on the fundamental development of an ASV method for the detection of 

barium.  The pervasive use of barium compounds in our society and the toxicity of the soluble 

compounds, such as barium nitrate, which is a component of gunshot residue, prompt the 

monitoring of barium in the environment in order to reduce human exposure.  Accordingly, reliable, 

onsite detection of barium would be desirable. The secondary focus of this project therefore, was 

the application of the ASV method to analysis of barium in several types of samples, such as 
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drinking water, GSR and brake pad dust as an alternative to current laboratory-based methods, such 

as ICP-MS and FAAS.  

A rapid barium detection method could be an advantage for environmental consultants, because it 

would allow for monitoring of water supplies in the vicinity of oil and gas fracking activities [6].  

Trace metal detection of barium can also be used as an indicator of vehicle brake pad deterioration 

[25]. Brake dust has recently been shown to be a major contributor of particulate matter in urban air 

pollution following studies conducted in the UK [42].  Barite is a filler material in brake pads and 

has been defined as a unique tracer to separate brake wear pollution from the wear of other car 

parts.  

 Additionally, the ability to detect barium in-field is potentially a useful tool for screening gunshot 

residue samples (GSR) collected by forensic personnel at sites of interest. O’Mahony & Wang [19] 

point out that the presence of barium is a stronger indicator of GSR compared with lead as there are 

fewer environmental sources that could account for its presence. Pre-screening of samples could 

eliminate the number of negative samples sent for scanning electron microscopy with energy 

dispersive X-ray analysis (SEM-EDX), and deliver a considerable cost-savings benefit to forensic 

police departments.      

1.3.2  PROJECT AIMS  

The two major aims of this project are: 

1.  To develop and validate a cost-effective, reliable and robust, in-field ASV method for 

quantitative determination of barium using a PDV6000plus instrument.  

2.  To apply the optimized voltammetric method for the quantification of barium in various 

samples, including water samples, industrial effluent and GSR samples and compare to ICP-

MS results.        
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CHAPTER 2 – EXPERIMENTAL 

2.1 EXPERIMENTAL DESIGN 

Development of a voltammetric method for the determination of barium was undertaken and the 

method applied to quantitative analyses of various samples possibly containing barium.  Systematic 

trialing of various electrodes and electrolytes in controlled voltammetric tests on known quantities 

of barium standards achieved the optimum method of detection. The optimized ASV method for 

barium detection was then applied to various samples and metal concentration was determined  

using standard addition method with correlation coefficient (R2) being greater or equal to 0.99  and 

the results compared to ICP-MS.  

2.2 CHEMICALS 

All metal standards purchased were ICP grade from Australian Chemical Reagents (ACR).  1000 

mg/L metal standards in 2% nitric acid solution were obtained from ACR for mercury, lead, barium, 

antimony and bismuth. Analytical grade potassium chloride ≥99.9995% (Fluka), sodium chloride 

≥99.999% (Fluka), sodium acetate ≥99.999% (Fluka), tetramethylammmonium chloride ≥97% 

(USA) and acetic acid ≥99.5% were purchased from Sigma-Aldrich (Sydney, Australia). Nitric acid 

69% Suprapur® was purchased from Merck (Australia).  All solutions were prepared with deionized 

water generated by a Millipore Milli-Q water system (Bedford Massachussetts, USA) with 

resistivity not less than 18.2 MΩ.cm-1 at 25°C.  Certified GhostWipesTM Standards of 100 µg 

barium per wipe were purchased from EnviroExpress. 

2.3 SOLUTIONS 

2.3.1 STANDARDS 

Separate 20 ppm working standard solutions of barium and lead were prepared daily in 

voltammetric analysis cups, diluting 400 µL of the primary standard in 19.6 mL Milli-Q water. 

Each analysis cup was covered with a watchglass to prevent evaporation loss and dust 

contamination.  Certified GhostWipesTM Standards were prepared in 50 mL sample tubes and 

submerged in 15.0 mL 3% nitric acid solution to extract the metals.  The extraction process was 

conducted by agitating sample tubes for 4 hours and allowing solutions to equilibrate for 24 hours.  

2.3.2 ELECTROLYTES 

100 mL of 2.0 M KCl stock solution was prepared with 14.91 g of potassium chloride accurately 

weighed on a Mettler AE200 analytical balance and dissolved in Milli-Q water. Working solutions 

ranging from 0.001–0.5 M were prepared from the stock solution, directly into 20 mL voltammetric 

analysis cups as required, with the addition of 100 µL of 1000 mg/L Hg standard to produce a 

mercury concentration of 5ppm. A 3% HNO3 stock solution was prepared by diluting 15 mL 
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concentrated nitric acid in 485 mL of Milli-Q water. 1.0 M tetramethylammonium chloride 

(TMACl) stock solution was prepared using 10.96 g TMACl accurately weighed into a beaker on 

the analytical balance. The crystals were dissolved in Milli-Q water and the solution quantitatively 

transferred to a 100 mL volumetric flask and made up to the mark with Milli-Q water. Working 

solutions of 0.01 M, 0.1 M and 0.5 M TMACl were prepared in 20 mL voltammetric analysis cups 

from the stock solution as required.  Acetate buffer (ClAc) solution was prepared by combining 7.3 

g sodium chloride, 1.35 g sodium acetate and 0.6 mL acetic acid in a 500 mL volumetric flask and 

diluting appropriately with Milli-Q water. 	

A Eutech cyberscan pH/conductivity/TDS/oC/oF meter was used to measure pH and calibration was 

performed using Merck brand pH 4 and pH 7 buffers. Laboratory glassware was acid washed and 

thoroughly rinsed with Milli-Q water prior to use and supplied by Edith Cowan University.   	

2.3.3 FILMS 

The use of thin and thick Hg films was required on carbon and gold electrodes respectively.  A        

5 ppm mercury plating solution was prepared with 100 µL of 1000 mg/L Hg standard in 19.9 mL 

ClAc for use with the glassy carbon electrode.  For the gold electrode, a 500 ppm mercury plating 

solution was prepared with 10 mL of 1000 mg/L Hg standard in 10 mL ClAc.  The 20 ppm bismuth 

plating solution was prepared using 400 µL 1000 mg/L Bi standard in 19.6 mL 0.1 M HNO3 for use 

with the carbon electrode.	

 

2.4 SAMPLE PREPARATION 

All samples were prepared according to their type, altering the volume of electrolyte or sample 

solution dispensed into the analysis cup depending on the pH of solution or concentration of barium 

in the sample solution. Voltammetric runs for sample analysis were performed in the following 

order: a blank sample run at 0 sec tdep, a sample analysis at 30 sec tdep, and up to four 10 µL standard 

additions of Ba (10 ppb) each for 30 sec tdep.  If a Ba peak did not appear at 30 sec tdep, then the 

sample was run with 60 sec tdep, or 120 sec or 240 sec tdep, after which if no Ba peak had appeared 

on the voltammogram it would be considered to be below the limit of detection.   

2.4.1 DRINKING WATER SAMPLES 

Various types of Western Australian drinking water samples were collected: tap water, bore water, 

bottled water, and a sample from a rainwater tank.  Samples were collected in 1L plastic bottles that 

were triple rinsed prior to filling. Bore water samples were collected by the property owners in 

Muchea, Bullsbrook, Craigie and Wangara, WA.  Bottled water was purchased at a local 

supermarket and remained sealed until analysis. Tap water was collected from the author’s home 
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kitchen faucet in Wanneroo, a drinking water fountain on the Joondalup campus at Edith Cowan 

University, and from a church in Bullsbrook where the patrons freely drink the supplied ‘holy 

water’, obtained from a faucet on the grounds.  

Samples were diluted prior to voltammetric analyses.  Samples were run as 2.0 mL aliquots, in 18.0 

mL 0.02 M KCl electrolyte with a 100 µL aliquot of 1000 mg/L Hg standard in the 20 mL analysis 

cup. These quantities provided the electrolyte conditions of 0.02 M KCl and 5ppm Hg in the 

optimized method and not more than 1.5 mM HNO3 content.  

For ICP-MS analysis, a 9 mL aliquot of sample plus 1 mL 3% nitric acid were transferred to 15 mL 

sample tubes and sealed. 

2.4.2  BRAKE PAD DUST SAMPLES 

Vehicle wheel rims, brake calipers and brake pads were wiped with cotton cleaning patches or 

Ghostwipes™ in accordance with NIOSH (2009) procedures and placed in 50 mL sample tubes.  

Brake pads covered in loose dust were shaken into 50 mL sample tubes for dust particle collection. 

All samples were submerged in 15.0 mL 3% HNO3 solution to undergo extraction for 24 hours and 

sent for ICP-MS analysis. For voltammetric analysis, up to 63 µL aliquot of sample was added to 

19.37 mL of 0.02 M KCl + Hg 5ppm electrolyte solution, equal to 3.0 mM total content of HNO3.   

2.4.3 GUNSHOT RESIDUE SAMPLES 

Ghostwipes™ containing GSR samples from a previous study were re-analysed using the optimized 

barium method.   Surface samples were originally taken at a gun range in Swanbourne, Western 

Australia. 100 cm2 sized surface areas were wiped using Ghost WipeTM lead sampling wipes and 

placed into sealed sterile tubes. Gloves were worn to prevent contamination.  Ghost WipesTM’ were 

placed inside clean 15.0 mL sample tubes with 15.0 mL of 2% nitric acid added to each sample. 

Two controls were prepared by transferring 15.0 mL 2% nitric acid only to a clean sample tube and 

by placing an unused Ghost WipeTM in another sample tube with 15.0 mL 2% nitric acid. All 

samples were agitated for approximately 4 hours at 500 mot/min, to speed up the extraction process. 

After agitation, all samples were allowed to equilibrate for 24 hours. Samples were analysed using 

ICP-MS and ASV.  For voltammetric analysis, a 63 µL aliquot of sample was transferred to 19.37 

mL of prepared electrolyte in a voltammetric analysis cup in preparation for analysis by ASV. Total 

volume of sample and electrolyte contained a total concentration of 3.0 mM HNO3.   

2.4.4 ENVIRONMENTAL SAMPLES 

Thirteen prepared water samples were received from ChemCentre, acidified to < pH 2 with nitric 

acid in 50 mL plastic sample containers. Samples had been previously analysed by ICP-MS and 

were collected from bores at locations in the Pilbara. A 63 µL aliquot of sample was transferred to 

19.37 mL of prepared electrolyte in a voltammetric analysis cup in preparation for analysis by ASV. 
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2.5.3  INDUCTIVELY COUPLED PLASMA – MASS SPECTROMETRY / ATOMIC EMISSION 

SPECTROSCOPY 

Laboratory technicians at ChemCentre, WA, performed the ICP-MS analysis of all samples except 

the environmental samples, which were analysed with ICP-AES.  The metals Ba, Pb and antimony 

(Sb) were analysed by ICP-MS method iMET1WCMS (APHA 3125) and calcium (Ca) was 

analysed by ICP-AES method iMET1WCICP (APHA 3120).   For the environmental samples, ICP-

AES methods iMET1WTICP (unfiltered) and iMET1WCICP (filtered) were used for analysis of 

Ba.  Lines used were Ba 455.403 nm, Ba 233.527 nm and confirmation line Ba 493.408 nm. 

 

2.6 STATISTICAL ANALYSIS 

All method development results were expressed as mean values and calculated using Excel for Mac 

2011, Version 14.0.0. Sample results were calculated using VAS 5.1 linear regression analysis. 

Comparative analysis between ASV and ICP-MS was performed using IBM SPSS Statistics. 
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CHAPTER 3 – RESULTS AND DISCUSSION 

3.1 OVERVIEW  

In the development of an ASV method for barium detection, one of the key factors is the choice of 

electrode. A review of the literature concerning voltammetric detection of barium (key papers 

summarized in Table 1, Section 1.2.1) indicated that glassy carbon was the most commonly 

employed electrode in combination with linear sweep or differential pulse mode for potential 

delivery. Consequently, the glassy carbon electrode system was used as a starting point for the 

determination of key voltammetric parameters, which are crucial for the successful detection of the 

analyte of interest.  

However, because the literature showed mixed results with the glassy carbon electrode, other 

electrodes were also investigated, in particular gold, following the work by Saläun [16], and 

bismuth, following the work by Wang [26], keeping in mind that in order to develop an in-field 

voltammetric method for barium, avoiding deoxygenation of the electrolyte/sample solution was an 

important factor for portability [26].  

Therefore, the method development involved firstly, defining the initial voltammetric parameters 

using the glassy carbon electrode (Section 3.2), secondly, investigating different types of electrodes 

with various electrolytes (Section 3.3), and thirdly, once the most promising system was established 

and investigated more thoroughly (Section 3.4), validating the method by determining linear 

working range, limit of detection and stability along with some examination of interferences 

(Section 3.5).   

Following optimisation, the method was then applied to a variety of samples and those results were 

compared to analysis of those samples by ICP-MS and/or ICP-AES (Sections 3.6 and 3.7). 

Pb detection was also investigated in conjunction with Ba because of possible application of the 

method to GSR samples; therefore some results for Pb are included in the discussion. 

	

3.2 VOLTAMMETRIC PARAMETERS 

Initial parameters were chosen based on the standard reduction potential of barium, which has been 

determined to be -2.92V at standard temperature and pressure [20], and linear sweep was the type of 

potential delivery first used. As shown in Figure 7, a -3000 mV deposition potential was used with 

the intention of decreasing it as much as possible during the optimisation process.  
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3.2.1 SWEEP POTENTIAL DELIVERY 

Initially, linear sweep delivery was used in 0.5 M KCl electrolyte with Hg 1ppm – Hg 100 ppm 

with high quantities of Ba (100 ppb – 5 ppm), in order to find the Ba stripping region and confirm 

the Ba peak. The initial resultant peaks were either non-existent, very strangely shaped or poorly 

resolved (data not shown).  The baseline was very noisy or steeply sloped, or both and peaks were 

not reproducible over a number of runs.  A Ba peak of 15.29 µA was detected using linear sweep 

(0.05 M KCl + Hg 5 ppm, 500 mV/s, at deposition potential of -3000 mV), for 50 ppb concentration 

of Ba (Table 2). A Ba peak did not appear using linear sweep at the less negative dp = -2500 mV.  

When detection was attempted with differential pulse potential delivery (0.05 M KCl + Hg 5 ppm, 

100 mV/s, dp = -3000 mV and -2500 mV), Ba peaks of 36.93 µA and 87.27 µA were produced for 

Ba concentrations of 50 ppb at -3000 mV and -2500 mV respectively. As well, at dp = -3000 mV 

both techniques required a deposition time (tdep) of 60 sec, whereas at dp = -2500 mV only tdep of 30 

sec was required to detect peaks.   

Table 2. Capacitance peak heights for Ba using linear sweep (LS-ASV) and differential pulse (DP-

ASV) potential delivery techniques.  

Sweep type Deposition potential   
(mV) 

Deposition time       
(s) 

Ba concentration 
(ppb) 

Peak height          
(µA) 

LS-ASV -3000 60 50 15.29 

LS-ASV -2500 30 50 - 

DP-ASV -3000 60 50 36.93 

DP-ASV -2500 30 50 87.27 

                                                                                                                                                            

These results clearly demonstrated the superior sensitivity of differential pulse potential delivery for 

the detection of barium, particularly at less negative deposition potential and so DP-ASV technique 

was selected for the duration of the project. 

3.2.2 SWEEP RATE 

Using linear sweep, the Ba peak was seen consistently between -2180 mV to -2080 mV and the Pb 

peak at -880 mV to -710 mV. With linear sweep however, the baseline noise was indistinguishable 

from the Ba peak for 50 and 100 mV/s sweep rates (Figure 8). The optimum rate was 500 mV/s 

using linear sweep technique due to the non-linear behavior of Ba and resolution of peaks on the 

voltammograms. Peak heights for Ba and Pb at 500 mV/s were 15.26 µA and 16.6 µA respectively. 

Wu reported similar results for Pb and Cu [35] using fast sweep rates with linear sweep, concluding 

that slower reaction kinetics of Cu was the reason for its non-linear behavior and is possibly the 

case here with barium. 
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[30], where in-situ Hg on glassy carbon was used in conjunction with LiClO4 and cyclic-square 

wave voltammetry to detect an organic GSR component with Ba in one run. As shown in Table 4, 

the GCE + in-situ Hg performed best overall. BiE produced similar peak heights to GCE + in-situ 

Hg, but peak resolution was poor and variability was high between replicates.   

Table 4.  Comparison of barium peak heights from three electrode systems under the same 

conditions for 20 ppb barium: 0.02 M KCl, tdep = 30 sec, dp = -2500 mV, 100 mV/s. 

Ba Peak Heights (µA) 
 

tdep = 30sec GCE + in-situ 
Hg 5ppm 

Au + Hg film Solid BiE 

(n = 10)    

Mean 19.08 2.28 17.44 

Std. dev. 1.121 0.37 2.04 

%RSD 5.87 16.2  11.69 

 

Comparing all the successful systems, the most reliable in terms of reproducibility and most 

sensitive towards barium was the glassy carbon electrode with in-situ mercury in potassium 

chloride electrolyte. This system was then further optimized as discussed in Section 3.4. 

 

3.4 OPTIMISATION OF THE BEST SYSTEM:  GLASSY CARBON ELECTRODE WITH 

MERCURY IN-SITU  

Having determined the best electrode system, optimisation of the electrolyte was the next step for 

this system. The three key components of the electrolyte matrix that required investigation were: 

concentration of the bulk electrolyte, mercury concentration and nitric acid concentration from the 

barium and mercury standards. 

Having trialed TMACl, ClAc, HNO3, CH3COOH and KCl during electrode investigation, the 

preferred electrolyte was found to be KCl, due to its more neutral pH, low toxicity and generally 

flatter baseline. Optimisation of the KCl concentration was carried out by using a low concentration 

of Ba (10 ppb) in the minimum concentration of electrolyte (0.01 M) and increasing concentration 

stepwise by 0.01 M up to a maximum of 0.1 M KCl (Table 5). Three replicates at each 

concentration level were taken with a blank run performed at each concentration change. The 

response for Ba was unexpectedly varied and non-linear, ranging from a mean value of 14.25 ± 2.23 

µA for 0.01 M KCl, to 2.40 ± 1.19 µA for 0.05 M KCl, to 6.78 ± 0.96 µA for 0.1M KCl 

concentrations.   
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Table 5. Change in response of Ba (10 ppb) as KCl concentration is increased from 0.01 M to 0.1 

M, Hg 5 ppm, tdep= 60 sec, dp= -2500 mV, 100 mV/s, differential pulse. Yellow highlighted values 

are considered optimal due to substantial peak height and lower standard deviation between 

replicates than at other concentrations of KCl. 

 

	

	

	

 

	

	

 

 

 

 

 

 

 

 

Repeating the experiment yielded the same variable results, which may be due to the use of 

electrolyte concentrations < 0.1 M when the accepted rate constants for the electrode/electrolyte 

electron transfer reactions do not apply [34]. Higher concentrations of ≥ 0.1 M were not 

investigated here because obvious gas evolution with strong odours occurred at these higher 

concentrations which resulted in excessive baseline noise obscuring the Ba peak after a few runs.  

Within the concentration range investigated, 0.02 M KCl behaved most reliably and was chosen as 

the optimum concentration for this method. 

 

3.4.1 INVESTIGATION OF MERCURY CONCENTRATION 

Barium was much more easily and consistently detected with mercury, a generally accepted 

conclusion supported by Wang [19, 30] and others, but the optimum concentration for in-situ use 

was not clearly established in the literature. Princeton Applied Research [37] recommends 2.5 – 5 

ppm Hg(NO3)2 directly added to the sample solution. 

 

KCl concentration 
(M) 

Ba 10 ppb    (µA) 

Mean ± std deviation    
(n = 3) 

 

% RSD 

0.01 14.25 ± 2.23 15.6 

0.02 13.45 ± 0.55 4.1 

0.03 6.46  ± 0.67 10.4 

0.04 2.72 ± 0.46 16.9 

0.05 2.40 ± 1.19 49.6 

0.06 3.27 ± 0.67 20.5 

0.07 5.56 ± 2.25 40.5 

0.08 7.37 ± 1.38 18.7 

0.09 5.68 ± 1.39 24.5 

0.10 6.78 ± 0.96 14.2 
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Addition of acid was investigated because of the tendency for H+ ions in solution to reduce to H2 

gas during the stripping process in ASV. In an effort to reduce the evolution of gases, that is, Cl2 

and H2, the lowest KCl concentrations were investigated that would still support conductivity and 

trace level Ba2+ ions, along with the maximum amount of nitric acid that would simulate the 

addition of sample solution (Table 6).  For 0.02 M KCl, peak heights for Ba (50 ppb) ranged from 

5.86 ± 0.11 µA to 16.99 ± 1.2 µA and down to 4.99 ± 0.29 µA in corresponding HNO3 

concentrations of 0.00156 M, 0.00256 M and 0.01006 M. At this stage, lead was also investigated, 

keeping in mind the application of this method for GSR sample analysis. The respective Pb peaks 

were 50.07 ± 5.39 µA and 76.62 ± 10.5 µA, but no peak height for 0.01006 M HNO3 due to peak 

shifting effects from the change in electrolyte composition. Pb peak heights were more variable 

between replicates than Ba peak height values.  Ba peak heights were reduced in 0.01 M KCl for the 

same HNO3 conditions ranging from 2.51 ± 0.52 µA to 1.43 ± 0.38 µA up to 5.84 ± 0.27 µA and 

similarly reduced for Pb at 43.42 ± 1.05 µA, 34.8 ± 0.55 µA and 34.35 ± 7.54 µA; and peak height 

data was not discernible for Ba or Pb when KCl concentration of 0.001 M was tested. 

 

Table 6.  Glassy carbon electrode, investigation of nitric acid effects, using 0.01 M / 0.02 M KCl + 

Hg 5 ppm (0.0015 M HNO3), Ba 50 ppb + Pb 50 ppb (total 0.00006 M HNO3), 30 sec, dp =  -2400 

mV, 100 mV/s. Optimum concentrations of KCl / HNO3 is highlighted in yellow.  

 

 

 
 
 

Electrolyte 
concentration 

(M) 

 
Initial HNO3 
concentration 
including Hg 

and metal 
standards    

(M) 

Additional 
volume 

of 3% HNO3 
(µL) 

Total HNO3 
concentration 
including Hg 

and metal 
standards   

(M) pH 

Ba mean ± sd 
(µA) 

  (n = 3) 

Pb mean ± sd  
(µA)  

 (n = 3) 
0.001 0.00156 0 0.00156 2.8 - - 

 0.00156 40 0.00256 2.6 - - 

 0.00156 200 0.01006 2.0 - - 

0.01 0.00156 0 0.00156 2.8 2.51 ± 0.52 43.42 ± 1.05 

 0.00156 40 0.00256 2.6 1.43 ± 0.38 34.80 ± 0.55 

 0.00156 200 0.01006 2.0 5.84 ± 0.27 34.35 ± 7.54 

0.02 0.00156 0 0.00156 2.8 5.86 ± 0.11 50.07 ± 5.39 
 0.00156 40 0.00256 2.6 16.99 ± 1.20 76.62 ± 10.50 
 0.00156 100 0.00506 2.3 1.50 ± 0.08 25.07 ± 7.29 
 0.00156 200 0.01006 2.0 4.99 ± 0.29 - 
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During this study, the volume of 0.001 M HNO3 added to the KCl electrolyte as a sample proxy was 

40 µL (3% HNO3) but this would equate to 63 µL for a real sample, since most samples are 

acidified with 2% HNO3.  100 µL of real-world sample therefore, would be equal to an additional ~ 

0.0015 M HNO3 in the electrolyte solution, bringing the combined total to 0.003 M HNO3 (3.0 mM) 

prior to standard additions. 

When total concentration of HNO3 reaches 0.005 M both Ba and Pb peaks reduce significantly, due 

to gas formation during the stripping step, as shown in Table 6.  Above 0.005 M HNO3 

concentration, the Pb peaks shift out of range of the detection window. An appropriate volume of 

acidified sample would therefore be < 100 µL, based on the data.  

 
	

3.5 METHOD VALIDATION 

As a result of the investigations, the optimised method for barium detection, including the 

simultaneous detection of lead, was found to be the glassy carbon electrode with in-situ Hg 5 ppm 

combined with 0.02 M potassium chloride electrolyte with less than 3.0 mM HNO3 content. The 

optimal voltammetric parameters were: differential pulse potential delivery at 100 mV/s, with pulse 

height of 50 mV and step duration of 10 ms; deposition potential of -2500 mV with tdep of 30 

seconds, and measurement start and stop potentials from -2300 mV to -500 mV within a range of 3 

mA.   

Validation of an analytical method is the procedure used in laboratory studies to evaluate the 

performance of a newly developed method [40]. The developed method must meet the requirements 

for the intended analytical applications. The constituents of method validation are: linearity range, 

limit of detection, accuracy, precision, and selectivity.  The following Section contains the figures 

of merit for the validation of this method. 

3.5.1 LINEAR WORKING RANGE 

The linear response for barium using in-situ Hg on glassy carbon was better than on any other 

electrode/electrolyte system investigated. For parameters of 0.02 M KCl + Hg 5 ppm, dp= -2500 

mV, 100 mV/s and a deposition time of 30 sec, the linear range was determined to be 10 - 160 ppb 

(Figure 23).  If the deposition time was increased then the linear range was decreased and the same 

time the limit of detection was lower. 
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order to verify the feasibility of the method. The samples were tap water, bore water, bottled water 

and a sample from a rainwater tank.  Environmental water samples collected independently from 

bores in the Pilbara region of Western Australia and previously analysed by ICP-AES were also 

analysed by the optimised voltammetric method. 

3.6.1 DRINKING WATER SAMPLES 

Barium content was highly variable between water samples, ranging from 7.59 ± 0.1 µg/L in bottled 

water, to 73.94 ± 1.57 µg/L in Bullsbrook bore water, and up to 464.56 ± 28.15 µg/L in Wangara 

bore water (Table 8). Voltammetric analyses were quite variable between sample replicates (see 

Appendix), RSD being as low as 1.1% and as high as 49.5% across ten samples. None of the 

concentrations exceeded the WHO guideline threshold of 700 µg/L [12].  ASV results were in 

excellent agreement with ICP-MS data with less than 5% difference as shown in Table 8. An 

example of a voltammogram for one of the water samples is shown in Figure 26.  

 

Table 8.  Total Ba concentrations determined in 10 drinking water samples, taken from municipal 

tap water, bores, a rainwater tank and bottled water.  

 Barium Concentration (ppb)

Sample  ASV Mean  
(µg/L)           
(n = 3)	

Std. 
deviation	

%RSD Range                
(µg/L) 

ICP-MS 
(µg/L) 

% difference 

Bottled water,              
Mt Franklin brand 

7.59	 ± 0.10 1.3 7.49 – 7.69 7.1 3.34

Rainwater, Muchea tank	 8.47	 ± 1.29 15.23 7.18 – 9.76 9.5 5.73

Drinking fountain 
water, ECU 

429.73 ± 26.39 6.1 403.34 – 456.12 430 0.03

Tap water, Wanneroo 
residence	

411.2	 ± 30.0 7.29 381.2 – 441.2 419 0.94

Filtered tap water, 
Wanneroo (Waterways 
USA)	

419.76 	 ± 4.41 1.1 415.35 – 424.17 420 0.03

Bore, Windsor Rd 
Wangara	

464.56 ± 28.15 6.1 436.41 – 492.71 460 0.49

Bore, Chittering Rd 
Bullsbrook	

75.22	 ± 37.25 49.5 37.97 – 112.47 72 2.19

Bore, Jenkins Rd 
Bullsbrook	

73.94	 ± 1.57 2.1 72.37 – 75.51 71 2.03

Bore, Craigie	 60.89	 ± 6.53 10.72 54.36	– 67.42 60	 0.74

Bore, 85m Muchea	 48.74	 ± 7.99 16.4 40.75 – 56.73 48 0.76
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mining is done [4, 6]. Interestingly, the municipal water sources were much higher in barium 

together with one bore from a residence located near an urban industrial park, than the water from 

bores outside the Perth metropolitan area. It is not clear whether the increased barium content is 

from the water sources that comprise municipal supply or from the water treatment processes that 

are applied before release into the community, but the concentration is well within the acceptable 

range for Australian drinking water [11]. The residential tap water actually increased in barium 

content after filtration with a Waterways countertop filter cartridge (Table 8), but this may have 

been due to suppression of the barium signal due to other ions present in the unfiltered water, that 

were subsequently removed by the ion exchange process in the cartridge.  

3.6.2 ENVIRONMENTAL SAMPLES 

Bore waters collected in the Pilbara region were obtained from ChemCentre, the samples contained 

Ba concentrations in the range from 40 – 280 µg/L as determined by ICP-AES analysis (Table 9). 

Due to the fact that these samples were acidified, only two samples had high enough concentrations 

to allow for voltammetric analysis.  The barium concentrations present in the rest of the samples 

were such that a dilution factor of more than 10x produced trace amounts within the diluted sample 

that were at the LOD for the method. Also due to time constraints each sample was only analysed 

once, therefore accurate data was not obtained. However, despite that, it was possible to detect 

barium in those two samples and the ASV results were well within acceptable % error range, with 

one sample giving less than 1% difference and the other 5.8% difference with the ICP-MS result. 	

Table 9.  Total Ba concentrations determined in two environmental water samples, taken from 

groundwater bores and reticulation systems.  

 Barium Concentration 

Sample  ASV  (µg/L)  ICP-AES (µg/L) % difference 

1 96.4 95 0.7% 

2 314.4 280 5.8% 

	

Interestingly, barium concentrations in the Pilbara bore waters were very similar to those found in 

the Perth area water samples, which reinforces the stated geological dearth of barite deposits in 

Australia.   

3.6.3 BRAKE PAD DUST SAMPLES 

Most of the brake pad dust samples contained very high amounts of Ba, so even though the samples 

were acidified to extract the metals, such low sample quantities were required that any matrix 
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Brake pads have been studied as a source of environmental barium particles but the quantity of 

barium sulphate contained in the pad, if at all, varies widely between brake pad manufacturers from 

0 - 35% [25]. This study shows that the barium content in brake dust is in the ppm range, which is 

high and confirms it is possible to use barium as a tracer for urban particle pollution coming from 

brake wear [42]. For car manufacturers, the quantity of barium determined in dust residues could be 

an early indicator of deterioration of the brake pads [25].   

It has been argued that brake pad dust could be mistaken for gunshot residue [39], however, this 

idea is not widely held due to the difference in morphology of the particles revealed by SEM-EDX 

analysis [32].  Thus, using the ASV method at a crime scene to detect the presence of barium in 

possible GSR samples, would still require the sample to be further analysed by SEM-EDX for 

particle morphology.  

 

3.6.3 GSR SAMPLES 

Gunshot residue is well documented as a source of barium detectable at the site of firearm 

discharge, [19] but its presence and not quantity is the most important factor as an indicator of 

whether or not a firearm has been used at a site.  For this reason, attempts have been made to create 

a rapid voltammetric screening method to detect Ba, Pb and Sb – the traditional signature metals of 

GSR, but high variability of analyte concentration and necessary acidification of samples has made 

this difficult to achieve [18, 19, 27].  The optimized ASV method for barium detection developed 

here was tested on two GSR samples. Due to time constraints only a single analysis was done for 

each sample. Both barium and lead were detectable in these samples and the results compared to 

ICP-MS are given in Table 11. The % differences for barium are similar to the environmental and 

brake pad samples, and well within the acceptable error of less than 10%. However, the Pb result 

for one of the samples is outside the range of acceptable error. The inaccuracy of this result could 

be explained by the fact that only a single analysis was performed and the effect of the significant 

dilution (x100), which was necessary to reduce the acidity of the matrix and any organics present in 

the sample.  

Table 11.  Total Ba concentrations determined in two gunshot residue samples. 

 Barium Concentration Lead Concentration 

Sample  ASV  
(µg/L)	

ICP-MS 
(µg/L)	

% 
difference 

ASV  
(µg/L) 

ICP-MS 
(µg/L) 

% 
difference 

1 108.6 97 5.6 71.7 140 32.3 

2 91.1 92 0.5 37.8 36 2.4 
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CHAPTER 4 – CONCLUSIONS AND FUTURE WORK 

	

After careful and consistent investigation of various electrodes, electrolytes and optimizing for the 

most important voltammetric parameters, a robust method for the voltammetric detection of barium 

in a variety of samples has been successfully developed for in-field application. This is the first time 

that a reliable, infield voltammetric method for barium analysis has been developed and 

successfully applied to a variety of samples; drinking water, environmental waters, brake pad dust 

and GSR. 

Key features of the method are the in-situ use of mercury, a dilute, non-toxic electrolyte, short 

duration of analyte accumulation and no deoxygenation of the sample solution being required.  

This method was also suitable for the simultaneous detection of Ba and Pb in GSR samples that 

contain high concentrations of Ba. Samples typically containing high concentrations of Ba such as 

brake pad dust are best suited to this method as they can be greatly diluted thus removing matrix 

effects, yet still allow for the detection of barium due to the low limit of detection of this method. 

Another advantage of this method is the ability to analyse water samples infield immediately after 

sample collection without need of acidification.   

Despite having developed a successful ASV barium method, there are still a number of limitations 

to be considered.  Firstly, there is a limit to the acidity of the samples being analysed, not less than 

pH = 2.5; secondly, the method is highly sensitive to any organics present in the sample; thirdly, 

possible interferences from alkaline earth metals, especially calcium; and finally, the study has also 

found that barium is highly sensitive to the surface of the electrode and therefore polishing and 

conditioning of the electrode is required between samples.  

Future work in this area should include further investigation into the effect of the surface of the 

electrode towards barium, especially for bismuth electrode, which showed some promising results 

as a replacement for mercury, and investigating square wave potential delivery for bismuth, which 

is faster than DP-ASV, may also be useful for this electrode. 
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APPENDIX 

	

Table 12.  Linear Sweep potential delivery, GCE, 0.05M KCl + Hg 5ppm electrolyte solution, 60 sec 

deposition time (tdep), deposition potential (dp) = -3.000V, Ba 50ppb + Pb 50ppb, altering the scan rate 

for investigation of peak height and optimal speed.  

Scan rate 
 (mV/s) 

Ba peak  
(µA) 

Pb peak  
(µA) 

50 - 2.92 
100 - 2.89 
200 2.55 5.84 
400 7.52 11.85 
500 15.26 16.60 
600 7.77 20.73 
800 9.27 30.73 
1000 16.17 41.54 
1600 20.43 66.69 
3200 23.05 104.80 

 

 

	

	

Table 13. Differential Pulse potential delivery, GCE, 0.05M KCl + Hg 5ppm electrolyte solution, 60 

sec deposition time (tdep), deposition potential (dp) = -2.500V, Ba 50ppb + Pb 50ppb, altering the scan 

rate for investigation of peak height and optimal speed.  

Scan rate 
(mV/s) 

Ba peak 
(µA) 

Pb peak 
(µA) 

10 35.47 221.2 
20 51.99 198.9 
50 80.42 229.35 
100 71.15 144.15 
150 32.01 83.23 
200 - 16.03 
300 - - 
500 5.92 1.16 
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Table 14.  Peak heights for change in deposition time at deposition potentials ranging from -3000V 
– -2400V, Ba 10ppb, 0.05M KCl, differential pulse, 100mV/s. 

Deposition 
Potential 
(V) 

Deposition Time (sec) 

Ba peak (µA)                                               Pb peak (µA) 

10 30 60 120 10 30 60 120 

-3000 2.04 3.08 8.13 21.19 6.97 15.54 27.67 42.19 

-2900 - 4.51 6.31 12.84 9.97 19.20 29.43 40.73 

-2800 - 6.29 11.77 20.40 6.35 13.90 23.83 42.32 

-2700 - 9.34 19.65 34.55 7.03 17.47 33.89 55.20 

-2600 5.19 21.07 24.57 37.08 4.23 16.66 34.13 72.73 

-2500 9.02 37.97 51.6 101.9 8.01 32.93 66.72 111.0 

-2400 11.0 39.22 78.16 103.30 11.51 39.61 83.62 131.20 

	

	

Table 15. Barium concentrations found in 10 drinking water samples in Perth, WA using 
voltammetric analysis. 

	

	

	

	

	

 Barium (ppb)  

Sample Trial 1 r2 Trial 2 r2 Trial 3 r2 Mean Std. 
dev. 

%RSD 

1 71.26 0.999 40.11 0.999 114.3 0.999 75.22 ±37.25 49.5 

2 8.76 0.999 7.05 0.999 9.59 0.999 8.47 ±1.29 15.23 

3  441.1 0.999 381.1 0.999 411.4 0.999 411.2 ±30.0 7.29 

4 434.2 0.999 489.8  0.999 469.7 0.999 464.56 ±28.15 6.1 

5 73.27 0.999 72.82 0.999   75.73 0.999 73.94 1.57 2.1 

6 40.12 0.999 55.91 0.999 50.19 0.999 48.74 ±7.99 16.4 

 7 446.3 0.999 399.3 0.999 443.6  0.999 429.73 ±26.39 6.1 

8 423.5 0.999 414.9 0.999 420.9 0.999  419.76 ±4.41 1.1 

9 56.2 0.999 58.13 0.999 68.35  0.999 60.89 ±6.53 10.72 

10 7.618 0.997 7.477 0.999 7.676 0.992 7.59 ±0.10 1.3 



	 59

	

Table	 16.	 Barium	 concentrations	 found	 in	 5	 brake	 pad	 dust	 samples	 in	 Perth,	 WA	 using	
voltammetric	analysis.	

Brake 
pads 

Barium concentration (ppm)    

Sample Trial 1 r2 Trial 2 r2 Trial 3 r2 Mean Std. dev. %RSD 

12 14.46 0.999 7.91 0.999 13.03 0.999 11.78 3.42 29.0 

13 8.48 0.999 9.05 0.999 8.16 0.999 8.56 0.45 5.3 

14 1.65 0.999 1.52 0.999 1.84 0.999 1.67 0.16 9.6 

15 2.83 0.999 2.42 0.999 2.39 0.999 2.54 0.24 9.4 

16 4.95 0.999 4.91 0.999 4.72 0.999 4.86 0.12 2.5 
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