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Abstract: pH sensors are widely used in chemical and biological applications. Metal  

oxides-based pH sensors have many attractive features including insolubility, stability, 

mechanical strength, electrocatalyst and manufacturing technology. Various metal oxide thin 

films prepared by radio frequency (R.F.) magnetron sputtering have attractive features, 

including high pH sensitivity, fast response, high resolution, good stability and reversibility 

as well as potential for measuring pH under conditions that are not favourable for the 

commonly used glass electrodes-based pH sensors. In addition, thin film pH sensors 

prepared by R.F. magnetron sputtering offer many advantages, such as ease of packaging, 

low cost through the use of standard microfabrication processes, miniaturisation, capability 

of measuring pH at high temperatures, ruggedness and disposability. In this paper,  

recent development of R.F. magnetron sputtered thin films for pH sensing applications  

are reviewed. 

Keywords: R.F. magnetron sputtering; pH sensor; thin film; metal-oxides  

 

1. Introduction 

Nearly all processes involving water require accurate pH monitoring. Most living things rely on a 

proper pH level to sustain life. All human beings and animals rely on internal mechanisms to maintain 
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the pH level of their blood, which must be between 7.35 and 7.45. Exceeding this range could prove 

fatal. Additionally, dysregulated pH in human tumours has been shown to be correlated with tumour 

progression and malignancy [1]. Optimal soil pH provides best growth condition and high crop yields 

for corn, wheat and other plants as well as food products. Appropriate pH control retains milk from 

turning sour, prevents shampoo from hurting our eyes and makes strawberry jelly gel. The pH of 

wastewater leaving manufacturing plants, purification plants as well as potable water from municipal 

drinking water plants, must be within a specific pH range that is set forth by regulatory agencies. Other 

pH applications include neutralization of effluent in steel, pulp and paper, chemical, pharmaceutical 

manufacturing, cyanide destruction, odour scrubbers, reverse osmosis, pharmaceutical manufacturing, 

chemical and petrochemical manufacturing. Simply, pH is an integral part of our everyday life [2–4].  

The well-known glass electrode is the most commonly used pH sensor because of desirable 

characteristics, such as good sensitivity, stability, and long lifetime [5,6]. However, traditional glass 

electrodes have many disadvantages, such as high cost, mechanical fragility, difficult to miniaturize, 

need for wet storage, large size and limited shape. To overcome these drawbacks and further expand the 

application fields, alternative pH sensor structures based on ion-sensitive field effect transistor 

(ISFET) [7–9], solid state [10,11], hydrogel [12,13], and microelectrode [14,15], have been reported.  

Among different materials, metal oxides, in particular, offer many advantages in terms of pH sensing 

including insolubility, stability, mechanical strength, electrocatalyst and manufacturing technology. In 

recent years, a number of metal oxides based pH sensors have been developed incorporating IrO2 [16–19], 

RuO2 [20–24], PtO2 [25], SnO2 [25], TaO2 [25], TiO2 [25,26] and Ta2O5 [27,28]. pH sensors have been 

developed using a variety of deposition techniques including magnetron sputtering [20–22], sol-gel [17,29], 

screen-printing [24,30] and plasma enhanced chemical vapour deposition (PECVD) [31,32] and 

electroplating [33–35]. Among the different thin film deposition techniques, magnetron sputtering has 

become the process of choice for the deposition of a wide range of materials. Magnetron sputtering is 

extensively used in the semiconductor industry for the deposition of various materials significant for 

integrated circuit fabrication. Thin film sensors and photovoltaic thin films are just some of the various 

applications of this method. In particular, owing to its compatibility with conventional microfabrication 

processes, magnetron sputtering technique is advantageous in terms of high-throughput production and 

fabrication of high density, high quality thin films. Recently, various materials including RuOx, RuN, 

SnO2, a-WO3, AlN, TiO2, WO3-IrO2, deposited using R.F. magnetron sputtering, have demonstrated 

excellent capabilities for pH sensing applications. 

In this paper, we review the recent developments in magnetron sputtered thin films for pH sensing 

applications with particular emphasis on the pH sensitivity, response time, drift rate, stability as well as 

potential for measuring pH under conditions that are not favourable for the commonly used glass 

electrodes-based pH sensors.  

2. R.F. Magnetron Sputtering 

In a basic sputtering process, a target (or source) material, to be deposited onto a substrate, is 

bombarded by energetic ions, typically inert gas ions, such as Argon (Ar+). The forceful collision of 

these inert gas ions onto the target causes the removal (known as sputtering) of target atoms, which 

condense on the substrate as a thin film of stoichiometry similar to that of the target material. Though, 
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the basic idea of operation is apparently simple, the actual mechanisms involved in sputtering are quite 

complex. Nonetheless, the process is limited by low deposition rates, high substrate heating and low 

ionization efficiencies. These limitations have been overcome by the development of magnetron 

sputtering system.  

Magnetron sputtering is now considered as the most effective process for the deposition of a wide 

range of thin film materials [36–40]. The main driving force behind this development has been the 

increasing demand for high quality functional thin films in many diverse market sectors. In many cases, 

magnetron sputtered films now outperform films deposited by other physical vapour deposition 

processes, and can offer the same functionality as much thicker films produced by other surface coating 

techniques. Magnetron sputtering systems generate a strong magnetic field near the target area, which 

causes the travelling electrons to spiral along magnetic flux lines near the target. This arrangement 

confines the plasma near the target area without causing the damage to the thin films being formed on 

the substrate, and maintains the stoichiometry and thickness uniformity of the deposited thin film. 

Moreover, in an R.F. magnetron sputtering systems, the generated electrons travel a longer distance, 

hence increasing the probability of further ionizing the inert gas atoms (Ar+) and generating stable  

high-density plasma that improves the sputtering process efficiency. Figure 1 illustrates the basic 

components of an R.F. magnetron sputtering system. Briefly, ionised Ar atoms bombard a sputtering 

target, thus releasing the molecules/atoms that form thin layers on a substrate.  

Figure 1. Schematic diagram illustrating the basic components of a magnetron sputtering system. 

 

R.F. magnetron sputtering offers additional advantages, including the use of non-conductive targets, 

charge-up effects and reduced arching due to the use of alternating electric field (R.F. frequency). It is 

important to note that R.F. magnetron sputtering is especially advantageous in the deposition of thin 

films using non-conductive target materials. This is at the cost of R.F. power supplies and an impedance 

matching network between the R.F. generator and the sputtering target. It should also be noticed that 

without the use of a magnetron, the non-conducting materials may have more difficulty forming into a 

thin film as they become positively charged. Reactive sputtering can also be used, whereby the deposited 

film is formed by chemical reaction between the target material and the gas introduced into the vacuum 
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chamber. Oxides and nitrides are examples of thin films developed through reactive sputtering, where 

the compositions of these films can be controlled by adjusting the relative pressures of the inert and 

reactive gases. 

3. pH Sensing Mechanism  

pH measurements have conventionally relied on either optical [41–45] or electrochemical 

techniques [46–50]. Optical methods offer high sensitivity and non-invasiveness, however, they often 

require the use of dyes, which can change their optical properties due to interactions with specific 

analytes. In addition, quantitatively precise optical measurements are typically not straightforward due 

to the drift of optoelectronic components, such as light source, detector and dye concentration variations. 

Therefore, it is often necessary to also utilize reference dyes in optical pH measurement methods.  

On the other hand, electrochemical methods are typically straightforward and inherently quantitative, 

and require simpler operation and setups. Electrochemical methods, however, have downsides, such as 

long-term instability and vulnerability to electrode fouling, but nevertheless, they are the most 

commonly used methods for pH detection, whereby the potential (potentiometric) [20,21,51–56], current 

(amperometric) [57–63], or charge in an electrochemical cell serve as the analytical signals. Indeed,  

the glass electrode is currently the most commonly used electrochemical sensor for potentiometric  

pH measurements.  

Potentiometry is the most preferred technique for monitoring the pH value of aqueous solutions in 

process control and continuous in-line measurements. In this method, the potential difference between a 

sensing electrode and a reference electrode immersed in the test solutions is measured. The reference 

electrode provides a stable constant reference potential while the ion selective electrode (sensing electrode) 

responds to the change of the hydrogen ion (H+) concentration in the solution. Potentiometry-based pH 

sensors developed using R.F. magnetron sputtering mainly consist a metal-oxide or metal-nitride sensing 

electrode and a silver/silver chloride (Ag/AgCl) reference electrode. The Ag/AgCl reference electrode 

either consists of a silver-chloride-coated silver wire immersed in an electrolyte solution or screen-printed 

using Ag/AgCl paste. The equilibrium reaction governing the Ag/AgCl electrode potential response is 

given by [6,12]: 

    (aq)s sAgCl e Ag Cl     (1)

Therefore the equilibrium potential of the electrode can be expressed by the Nernstian equation: 
0

AgCl AgCl
( / ) ln( ) / ( )E E RT nF a a    (2)

where E0 is the reference electrode potential in Volt, R is the universal gas constant, T is the absolute 

temperature in Kelvin, n is the number of electrons involved in the reaction, F is the Faraday constant, 

ax is the activity of species x (AgCl, Ag or Cl−). The Nernstian equation for a cell is often articulated in 

terms of base 10 logarithms as follows:  

0 0.592log Cl 0.0592log( )E E k    (3)
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where k is the ratio of AgCl to Ag concentration. Nernstian behaviour is demonstrated by the electrode 

when the measured electrode potential decreases by 59 mV for every decade change in Cl− concentration 

at room temperature of 25 °C.  

Fog and Buck proposed five possible interpretations for the pH response mechanism of metal oxides, 

with the most recognized theory being oxygen intercalation [25]. The following equilibrium reaction 

represents the oxygen intercalation mechanism: 
+

δ 2Mo 2δH 2δe Mo δH Ox x     (4)

where MOx is a higher metal oxide, MOx−δ is a lower metal oxide and δ is the oxygen intercalation. 

The Nernst’s mathematical equation predicting the potential between the sensing and reference 

electrodes versus the pH value is given by [21]: 
0 02.303( / )pH= 0.05916pHE E RT F E    (5)

The term 2.303 (RT/F) is called the Nernst slope, which is 59.16 mV/pH at room temperature (25 °C). 

4. pH Sensor Performance 

4.1. Sensitivity  

The sensitivity of a pH electrode is determined by the linear slope response of the pH electrode as 

defined by the Nernst equation. It is represented in the unit of mV/pH [64]. 

4.2. Response Time  

The response time is defined as the time at which the pH concentration in a solution is changed on 

contact with a pH sensor and a reference electrode has reached 95% (or 90%) of the final value. The 

response time is reported as t95% or t90% in seconds or minutes [5,64]. 

4.3. Drift Rate 

The potential drift is defined as the difference between the peak potential value and the 90% value of 

the saturated potential. The potential drift measured over time is drift rate and generally represented  

in mV/h [64]. 

4.4. Hysteresis 

Hysteresis is defined as the difference in the electrochemical potentials measured at same pH level. 

The electrochemical potentials at the same pH level may be different due to various factors, such as 

different oxidation states and the degree of hydration on the film surfaces, which may establish a new 

equilibrium of ions every time in the redox reactions at different times of testing [5,64]. In potentiometric 

measurements, it is represented in mV. 
  



Coatings 2014, 4 761 

 

 

4.5. Temperature Coefficient of Sensitivity 

The temperature coefficient of sensitivity (TCS) is an important parameter that is typically used to 

compensate for temperature variations, and evaluate the effect of temperature on the output voltage of 

the pH sensor. The TCS of the pH sensor is represented in mV/pH °C [65,66].  

4.6. Reversibility 

Reversibility is an essential property in pH measurements for practical applications. To evaluate the 

reversibility, the pH sensor potential is measured in different pH solutions in the acid-to-base direction 

and vice versa [5,21]. 

4.7. Resolution 

The resolution of a pH sensor is defined as the minimum change in pH above the noise floor that can 

be detected by the pH-sensor [64,67]. 

5. pH Sensing Materials and Applications  

Table 1 shows the summary of pH sensing materials prepared by R.F. magnetron sputtering in recent 

years. pH sensors are generally characterised using the buffer solutions of known pH values before 

applying the sensor for real time pH monitoring. Recently, we have developed pH sensor consisting  

R.F. magnetron sputtered ruthenium oxide (RuO2) sensing electrode in conjunction with an on-chip 

integrated Ag/AgCl reference electrode. A 99.95% pure RuO2 sputtering target was used to sputter 

50 nm, 175 nm, 300 nm and 425 nm RuO2 thin-films in 90% Ar + 10% O2 environment with R.F. power 

100 W at 1 mTorr process pressure. Potentiometric measurement has been used to test the sensor in 

buffer solutions of pH 4, pH 7 and pH 10. Figure 2 shows the schematic representation of potentiometric 

measurement setup. Briefly, in the experiments, a unity-gain amplifier was developed and used as a 

buffer amplifier to provide impedance matching, therefore preventing signal loss. An Agilent 34410A 

high performance digital multimeter was used for real-time potential recording, which has a built-in web 

interface that makes it easy to setup and transfer readings using only a PC with web browser. Figure 3 

shows measured sensor potential versus pH value for different RuO2 thin-film thicknesses [21]. 

Furthermore, effect of RuO2 sensing electrode thickness on the performance of pH sensing was 

investigated. The thin film RuO2 sensing electrode with thickness ranging from 50 nm to 425 nm were 

prepared using 99.95% pure RuO2 sputtering target with R.F. power 100 W in 90% Ar + 10% O2 

environment at 1 mTorr process pressure. The highest sensitivity of 68.63 mV/pH was reported for RuO2 

film thickness of 300 nm when tested in buffer solutions of pH 4, pH 7 and pH 10.  

Figure 4 shows the response time versus the RuO2 thin-film thickness for different pH test solutions. 

For 50 nm thick RuO2 film, the measured response times were 3 s, 10 s and 73.5 s for pH 4, pH 7 and 

pH 10, respectively. For 175 nm thick RuO2 film, the response times for pH 4, pH 7 and  

pH 10 were from 3 s, 4 s and 22.5 s, respectively. On the other hand, when the thickness of the RuO2 film 

was increased to 300 nm, the response times for pH 4, pH 7 and pH 10 were 3 s, 8 s and 3 s, respectively. 

The results in Figure 4 demonstrate that a faster response time can be attained by increasing the RuO2 

thin-film thickness up to 300 nm [21]. The pH sensor stability measured in pH 4, pH 7 and pH 10 
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solutions is assessed through the measured potential-versus-time curves shown in Figure 5. It is evident from 

Figure 5 that the sensing film thickness of 300 nm shows stable potential outputs for all pH values. The 

pH sensor reversibility was also investigated by switching the pH sequentially in pH loop (4-7-10-7-4). 

Figure 6 shows the average measured potentials for different RuO2 thin film thicknesses. The 

experimental results in Figure 6 demonstrate an excellent reversibility and stable pH sensor’s response 

for a sensing film thickness of 300 nm. 

Table 1. Magnetron sputtered pH sensing materials and their performances. 

pH sensing 

material 

Sputtering 

target material 

pH test 

solution 

pH Sensitivity 

(mV/pH) 

Response 

time (s) 

Drift rate 

(mV/h) 

Hysteresis 

(mV) 
Ref. 

RuO2 RuO2 4–10 58.5 < 3 – – [20] 

RuO2 Ru 4–10 49.8–59.1 < 1 0.38 4.36 [22] 

RuN-RuOx Ru 1-13 55.52–57.05 30 – – [23] 

Ta2O5 Ta 1–10 56.19 – – ~5 [28] 

SnO2 SnO2 2–12 59 – – 7–11 [68] 

TiO2:Ru TiO2, Ru 1–13 55.20 < 1 1.03–1.16 – [69] 

IrO2 & Ta2O5 Ir, Ta2O5 2–13 59.44–59.50 < 15 < 0.1 – [70] 

AlN Al 4–10 54.5 – – – [71] 

TiO2 TiO2 1–13 56.21 – – – [72] 

WO3-IrO2 WO3-Ir 2–12 0.168 µA/pH < 7 – – [73] 

RuOx Ru 5.5–11 52–58 < 2 1–2 – [74] 

GdTixOy Gd, Ti 2–12 64.13 – 0.4 < 1 [75] 

Figure 2. Schematic representation of potentiometric measurement setup (S.E.—sensing 

electrode; R.E.—reference electrode). 
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Figure 3. Measured sensor potential versus pH value for different RuO2 thin-film 

thicknesses. Reprint with permission from [21]. Copyright 2014 Elsevier. 

 

Figure 4. Measured response time versus sensing film thickness for test solutions of different 

pH values. Reprint with permission from [21]. Copyright 2014 Elsevier. 

 

Figure 5. Measured potential in pH 4-7-10 to demonstrate stability. Reprint with permission 

from [21]. Copyright 2014 Elsevier. 

 



Coatings 2014, 4 764 

 

 

Figure 6. Measured average potential versus time in pH loop (4-7-10-7-4) for different RuO2 

film thickness. Reprint with permission from [21]. Copyright 2014 Elsevier. 

 

Various materials deposited using magnetron sputtering are listed in Table 1. These materials have 

been widely studied for pH sensing application including water quality, engine oil oxidation detection, 

Coca-Cola, base water, lemon, wine, vinegar, milk, seawater and hard clam (meretrix lusoria) cultivated 

solutions, glucose concentration, total cholesterol concentration and biosensor applications. 

Y. H. Liao et al. [22] have used RuO2 thin film as the sensing layer of hydrogen ion selective 

electrodes (ISE) for pH array sensors. The RuO2 pH-sensing membrane was prepared using the R.F. 

sputtering system at a process pressure of 10 mTorr in Ar:O2 = 4:1 gas ratio at an R.F. power of 100 W 

for 1 h. The pH sensitivity of the RuO2 sensing membrane for the developed ISE devices was about 

55.64 mV/pH and the drift rate was 0.38 mV/h for a pH 7 buffer solution. The hysteresis widths of the 

RuO2 ISE device were 4.36 mV and 2.2 mV in pH 7-4-7-10-7 and pH 7-10-7-4-7 loop cycles, 

respectively. J. Chou et al. [23] have investigated reactively sputtered ruthenium oxide (RuOx) and 

ruthenium nitride (RuN) sensing membrane deposited on silicon substrate for pH sensing applications. 

The RuOx film was prepared in an Ar/O2 process gas ratio of 40 sccm/15 sccm at an R.F. power of 100 W 

with a 10 mTorr pressure for 60 min. A linear pH sensitivity of 55.52 mV/pH was reported for pH values 

between 1 and 12 at room temperature. Moreover, in order to increase the sensing range of the pH sensor, 

the RuN was deposited in an Ar/O2 process gas ratio of 15 sccm/30 sccm at 10 mTorr for 1 h with an 

R.F. power of 100 W. The RuN membrane exhibited a linear pH sensitivity of 57.05 mV/pH over a pH 

range of 1–13 at room temperature. Additionally, RuOx/Si sensing membrane tested for the detection of 

the penicillin G showed a rapid response time of 35 s in comparison to 120 s response time of SnO2/ITO. 

M. Chen et al. [28] have developed a Ta2O5 based capacitive electrolyte-ion sensitive membrane-oxide-

semiconductor (EIOS) pH sensor and investigated its performance by means of electrochemical 

impedance spectroscopy (EIS) and capacitance-voltage (C-V) measurements. A 60 nm Ta film was R.F. 

sputtered onto oxidized silicon substrate in an Ar atmosphere at 3.3 mTorr working pressure with an 

R.F. power of 300 W for 5 min. Subsequently, the Ta2O5 film was obtained by the oxidation of the Ta 

layer in oxygen atmosphere for about 3 h at 525 °C, which resulted in a Ta2O5 film thickness of about 

155 nm. Electrochemistry measurements were carried out on an advanced two-electrode electrochemical 

system, with a conventional Ag/AgCl (3 M KCl) electrode being the reference electrode. A Nernstian 
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response of ~56.19 mV/pH in the pH range 1 to 10 was attained. The EIS measurement revealed that the 

space charge capacitance can easily distinguish pH changes.  

C. Tsai et al. [68] have studied the pH sensing characteristics and hysteresis effect of the R.F. 

sputtered tin oxide (SnO2) electrode. The hysteresis experiments were carried out with short pH loop  

(7-4-7-10-7) and long pH loop (7-2-7-12-6). The hysteresis value was less than 7 mV in short pH loop 

and 9 mV for pH 7 in acid side (HA) and 11 mV in alkali side (HB). The reported pH sensitivity of the 

SnO2 was about 59 mV/pH for pH range of 2–12. J. C. Chou et al. [69] have carried out long-term 

monitoring of sea water using solid-state TiO2:Ru sensing electrodes for hard clam cultivation. In this 

study, a co-sputtering system was used to fabricate the TiO2:Ru sensing film deposited on a p-type silicon 

substrate. The co-sputtering parameters were: R.F. power of 100 W, D.C. power of 30 W, process pressure 

30 mTorr and Ar/O2 ratio of 40 sccm/2 sccm, and a sputtering time of 60 min. The mean sensitivity and 

linearity of the TiO2:Ru sensing electrode were 55.20 mV/pH and 0.999, respectively, over a pH range 

of 1–13. Particularly, the TiO2:Ru sensing electrode was able to measure the pH levels for two sample 

solutions of pH 8 and 9, confirming the weak alkali range and suitable meretrix lusoria growth. L. M. 

Kuo et al. [70] have reported a precise pH microsensor developed using R.F. sputtering of iridium oxide 

(IrO2) and tantalum pentoxide (Ta2O5) films on Pt-electrode. In their study, an easily implemented 

surface modification scheme was adopted, based on employing a Ta2O5 membrane that covers the IrO2 

electrode, making the sensor insensitive to H+ ions and hence eliminating redox species interference. 

The sensitivity of the sensor was in the range of 59.44–59.50 mV/pH for the pH range  

2–13. Furthermore, the pH sensor displayed high ion selectivity with respect to K+, Na+, and Li+ with 

log KH,M values (~−12.4) with a working lifetime exceeding one week.  

W. Bunjongpru et al. [71] have developed pH-ISFET sensor using CMOS compatible processes.  

A nanocrystalline-aluminum nitride (AlN) thin film (acted as an ion-sensitive membrane) was prepared 

by reactive gas-timing R.F. magnetron sputtering without heating the substrate and post annealing. In a 

conventional reactive gas-timing sputtering system, the feeding gas is on-off controlled periodically in 

such a way that the deposited AlOxNy film has a quite stable composition of aluminum, nitrogen and 

oxygen (Al:O:N = 52:18:30%) all over the entire film area. The deposition parameters used for the 

preparation of AlN films of various thicknesses (20, 40, 80 nm) were 12 sccm Ar and 7 sccm N2 gas 

flow, gas-timing (Ar:N2 = 10 s:90 s), and an R.F. power of 200 W, without heating the substrate. The 

pH-sensitivity characteristics showed that the pH sensitivity increases with increasing the film thickness. 

The highest pH-sensitivity attained was 54.50 mV/pH, for an AlN layer thickness of 80 nm.  

J. Chou et al. [72] have investigated the current-voltage characteristics of an ion-sensitive field effect 

transistor (ISFET) to determine the pH value at the point of zero charge (pHpzc) of a pH-ISFET device 

comprising a 25 nm TiO2 sensing membrane R.F. sputtered for 120 min at a pressure of 30 mTorr in 

Ar/O2 = 80 sccm/20 sccm gas mixture and an R.F. power of 150 W. A pHpzc value of about 6.2 at 25 °C 

was reported. pH sensitivities of 51.81, 54.01, 56.21, 58.41, 60.71, 63.01 mV/pH were attained at 5, 15, 

25, 35, 45 and 55 °C, respectively.  

L. M. Kuo et al. [73] have developed a pH-sensor using an R.F. sputtered WO3/IrO2 diode, which 

was sealed thoroughly by an Al2O3 encapsulation layer, and investigated the diode-like current-voltage 

characteristics of the sensor in response to hydrogen-ions. To develop the pH-sensor structure, an  

RF-sputtering of the WO3 target (99.99% pure) was carried out in Ar + 35% O2 at a pressure of 45 mTorr 

and a temperature of 100 °C. Subsequently, an annealing process was carried out in a high temperature 
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(350 °C) chamber at a pressure of 15 mTorr for 3.5 h. The IrO2 film was also fabricated by R.F. sputtering 

using an iridium target (99.95% pure) at a pressure of 60 mTorr using Ar and 50% O2 as process gases. 

Next, the Al2O3 film was R.F. magnetron sputtered using an Al2O3 target (99.99% pure) at a process 

pressure of 70 mTorr in Ar and 50% O2 process gases for 1.5 h. The measured thickness of the WO3, 

IrO2 and Al2O3 films were 300 nm, 120 nm and 25 nm, respectively. The solid-state sensor exhibited 

good stability, repeatability and reversibility in various pH environments ranging from pH 2 to 12 at 

room temperature. The pH-sensor sensitivity was 0.168 µA/pH for pH 2–12. It was concluded that the 

chemically sensitive device would be useful for the construction of durable microsensors for tracing the 

acidity in environmental and biological applications. 

M. Brischwein et al. [74] have demonstrated R.F. sputtered ruthenium oxide sensors for extracellular 

recording of cell-mediated pH changes in cell culture media. In this study, ruthenium oxide was directly 

grown with MCF-7 and L 929 cells and found to be fully biocompatible. The measured pH sensitivity 

range was 52–58 mV/pH and the sensor’s response was almost linear between pH 5.5–11. The drift rate 

of the sensor was typically in the range of 1–2 mV/h. It was also reported that an increase in the thickness 

of the ruthenium oxide layer increases in response time and decreases in drift rate. In addition, it was 

observed that the pronounced redox cross-sensitivity of ruthenium oxide is a limiting factor in situations 

where the concentration of dissolved oxygen is not constant or cannot be directly measured. The observed 

sensitivity to dissolved oxygen was ~0.2 mV/hPa. Furthermore, ruthenium oxide spots on ceramic sensor 

chips were used for an exemplary cell based assay with MCF-7 cells, demonstrating an extracellular 

acidification response to the alkaloid drug cytochalasin B. In comparison with optochemical pH-sensors 

used for the quantification of extracellular acidification, metal oxides may be directly grown with cells 

and the active area of sensor spots can be made considerably small. They do not suffer from a gradual 

decline of performance during operation and they are not affected by interfering fluorescent substances.  

J. Her et al. [75] have developed a highly pH sensitive electrolyte-insulator-semiconductor (EIS) 

device incorporating Gd2O3 and GdTixOy sensing films deposited on silicon substrates through reactive 

R.F. sputtering for biomedical engineering applications. A 40 nm Gd2O3 film was deposited on a silicon 

substrate by reactive R.F. sputtering from a gadolinium oxide target in diluted O2 environment  

(Ar/O2 = 5 sccm/2 sccm) at a substrate temperature of 27 °C, whereas a 40 nm GdTixOy film was 

deposited by reactive R.F. co-sputtering from both gadolinium and titanium targets in the same diluted 

O2 environment. All samples were annealed in a rapid thermal annealing oven in an O2 environment at 

selected reaction temperatures in the range of 700–900 °C for 30 s. Compared with Gd2O3 sensing 

membranes, the EIS device featuring GdTixOy sensing membrane annealed at 900 °C exhibited the 

highest sensitivity of 64.13 mV/pH for pH 2–12, a smaller hysteresis voltage of 1 mV for the pH loop 

7-4-7-10-7 and a lower drift rate of 0.4 mV/h in a pH 7 buffer solution. The high pH sensitivity was 

attributed to the high surface roughness of the sensing film. Finally, the detection of glucose in serum 

was successfully demonstrated using EIS with glucose oxidase-immobilized alginate films. The 

concentration of serum glucose measured by the GdTixOy EIS biosensor was comparable to that determined 

by a commercial assay kit. The GdTixOy glucose biosensor can detect glucose with reasonable sensitivity 

(8.37 mV/mM) in solutions containing glucose of concentrations in the range 0.5–6 mM, making them 

suitable for general blood glucose monitoring. 
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6. Conclusions 

Recent developments of magnetron sputtered thin films for pH sensing applications have been 

reviewed in this paper. Various metal oxide pH-sensing structures prepared by R.F. magnetron sputtering 

have been used for pH sensing applications. We have discussed the potential of various metal oxide 

based pH sensing electrodes, and highlighted the unique properties of ruthenium oxide and iridium oxide 

electrodes for pH-sensing applications, such as high sensitivity, good potential stability, wide 

temperature range, fast response and outstanding corrosion resistance. Furthermore, various applications 

of magnetron sputtered pH sensors have been discussed, including fluid quality analysis, glucose and 

cholesterol concentration monitoring and biosensing. 

Acknowledgments 

This research was supported by Edith Cowan University, Australia, and the Department of Industry, 

Innovation, Science, Research and Tertiary Education, Australian Government. 

Author Contributions 

D. K. Maurya drafted and organised this review article. A. Sardarinejad focused on the information 

about the pH sensing materials and references. K. Alameh reviewed the manuscript. All authors have 

read and approved the final manuscript. 

Conflicts of Interest 

The authors declare no conflict of interest.  

References  

1. Fierro, S.; Seishima, R.; Osamu, N.; Hideyuki, S.; Yasuaki, E. In vivo pH monitoring using boron 

doped diamond microelectrode and silver needles: Application to stomach disorder diagnosis.  

Sci. Rep. 2013, 3, doi:10.1038/srep03257. 

2. Kohlmann, F.J. What is pH, and How is it Measured? A Technical Handbook for Industry; Hach 

Company: Loveland, CO, SUA, 2003. 

3. Korostynska, O.; Arshak, K.; Gill, E.; Arshak, A. Review on state-of-the-art in polymer based pH 

sensors. Sensors 2007, 7, 3027–3042.  

4. Privett, B.J.; Shin, J.H.; Schoenfisch, M.H. Electrochemical sensors. Anal. Chem. 2010, 82,  

4723–4741.  

5. Huang, W.D.; Cao, H.; Deb, S.; Chiao, M.; Chiao, J.C. A flexible pH sensor based on the iridium 

oxide sensing film. Sens. Actuators A Phys. 2011,169, 1–11. 

6. Eftekhari, A. pH sensor based on deposited film of lead oxide on aluminum substrate electrode. 

Sens. Actuators B Chem. 2003, 3, 234–238. 

7. Van der Schoot, B.H.; Bergveld, P. ISFET based enzyme sensors. Biosensors 1987, 3, 161–186. 

8. Yuqing, M.; Jianguo, G.; Jianrong, C. Ion sensitive field effect transducer-based biosensors. 

Biotechnol. Adv. 2003, 21, 527–534. 



Coatings 2014, 4 768 

 

 

9. Lee, C.; Kim, S.K.; Kim, M. Ion-sensitive field-effect transistor for biological sensing. Sensors 

2009, 9, 7111–7131. 

10. Olthuis, W.; Robben, M.A.M.; Bergveld, P.; Bos, M.; Van der Linden, W.E. pH sensor properties 

of electrochemically grown iridium oxide. Sens. Actuators B Chem. 1990, 2, 247–256. 

11. Kinlen, P.J.; Heider, J.E.; Hubbard, D.E. A solid-state pH sensor based on a nafion-coated iridium 

oxide indicator electrode and a polymer-based silver chloride reference electrode. Sens. Actuators 

B Chem. 1994, 1, 13–25.  

12. Richter, A.; Paschew, G.; Klatt, S.; Lienig, J.; Arndt, K.; Adler, H.P. Review on hydrogel-based pH 

sensors and microsensors. Sensors 2008, 1, 561–581. 

13. Gerlach, G.; Guenther, M.; Sorber, J.; Suchaneck, G.; Arndt, K.F.; Richter, A. Chemical and pH 

sensors based on the swelling behavior of hydrogels. Sens. Actuators B Chem. 2005, 111–112,  

555–561. 

14. Bezbaruah, A.N.; Zhang, T.C. Fabrication of anodically electrodeposited iridium oxide film pH 

microelectrodes for microenvironmental studies. Anal. Chem. 2002, 74, 5726–5733. 

15. Ges, I.A.; Ivanov, B.L.; Schaffer, D.K.; Lima, E.A.; Werdich, A.A.; Baudenbacher, F.J. Thin-film 

IrOx pH microelectrode for microfluidic-based microsystems. Biosens. Bioelectron. 2005, 2, 248–256. 

16. Kim, T.Y.; Yang, S. Fabrication method and characterization of electrodeposited and heat-treated 

iridium oxide films for pH sensing. Sens. Actuators B Chem. 2014, 196, 31–38. 

17. Nguyen, C.M.; Huang, W.; Rao, S.; Cao, H.; Tata, U.; Chiao, Mu.; Chiao, J. Sol-Gel iridium  

oxide-based pH sensor array on flexible polyimide substrate. IEEE Sens. J. 2013, 10, 3857–3864. 

18. Nguyen, C.M.; Rao, S.; Seo, Y.; Schadt, K.; Hao, Y.; Chiao, J.C. Micro pH sensors based on iridium 

oxide nanotubes. IEEE Trans. Nanotechnol. 2014, 5, 945–953. 

19. Prats-Alfonso, E.; Abad, L.; Casañ-Pastor, N.; Gonzalo-Ruiz, J.; Baldrich, E. Iridium oxide pH 

sensor for biomedical applications. Case urea–urease in real urine samples. Biosens. Bioelectron. 

2013, 1, 163–169. 

20. Maurya, D.K.; Sardarinejad, A.; Alameh, K. High-sensitivity pH sensor employing a sub-micron 

ruthenium oxide thin-film in conjunction with a thick reference electrode. Sens. Actuators A Phys. 

2013, 203, 300–303. 

21. Sardarinejad, A.; Maurya, D.K.; Alameh, K. The effects of sensing electrode thickness on 

ruthenium oxide thin-film pH sensor. Sens. Actuators A Phys. 2014, 214, 15–19. 

22. Liao, Y.-H.; Chou, J.-C. Preparation and characteristics of ruthenium dioxide for pH array sensors 

with real-time measurement system. Sens. Actuators B Chem. 2008, 128, 603–612. 

23. Chou, J.; Liu, S.; Chen, S. Sensing characteristics of ruthenium films fabricated by radio frequency 

sputtering. Jpn. J. Appl. Phys. 2005, 3, 1403–1408. 

24. Zhuiykov, S.; O’Brien, D.; Best, M. Water quality assessment by an integrated multi-sensor based 

on semiconductor RuO2 nanostructures. Meas. Sci. Technol. 2009, 20, doi:10.1088/0957-0233/20/ 

9/095201. 

25. Fog, A.; Buck, R.P. Electronic semiconducting oxides as pH sensors. Sens. Actuators 1984, 5,  

137–146. 

26. Chou, J.C.; Liu, C.H.; Chen, C.C. Electrochromic property of sol-gel derived TiO2 thin film for pH 

sensor. IFMBE Proc. 2011, 35, 69–72. 



Coatings 2014, 4 769 

 

 

27. Bahari, N.; Zain, A.M.; Abdullah, A.Z.; Sheng, D.B.C.; Othman, M. Study on pH sensing properties 

of RF magnetron sputtered tantalum pentoxide (Ta2O5) thin film. In Proceedings of 2010 IEEE 

International Conference on Semiconductor Electronics, Melaka, Malaysia, 28–30 June 2010;  

pp. 76–78. 

28. Chen, M.; Jin, Y.; Qu, X.; Jin, Q.; Zhao, J. Electrochemical impedance spectroscopy study of Ta2O5 

based EIOS pH sensors in acid environment. Sens. Actuators B Chem. 2000, 71, 73–76. 

29. Jeon, D.; Yoo, W.J.; Seo, J.K.; Shin, S.H.; Han, K.; Kim, S.G.; Park, J.; Lee, B. Fiber-optic pH 

sensor based on Sol-Gel film immobilized with neutral red. Opt. Rev. 2013, 2, 209–213.  

30. Glanc-Gostkiewicz, M.; Sophocleous, M.; Atkinson, J.K.; Garcia-Breijo, E. Performance of 

miniaturized thick-film solid state pH sensors. Sens. Actuators A Phys. 2013, 202, 2–7. 

31. Veeramani, M.S.; Shyam, P.; Ratchagar, N.P.; Chadha, A.; Bhattacharya, E.; Pavan, S. A 

miniaturized pH sensor with an embedded counter electrode and a readout circuit. IEEE Sens. J. 

2013, 5, 1941–1948. 

32. Choi, S.; Park, I.; Hao, Z.; Holman, H.N.; Pisano, A.P. Quantitative studies of long-term stable,  

top-down fabricated silicon nanowire pH sensors. Appl. Phys. A 2012, 107, 421–428. 

33. Huang, X.; Ren, Q.; Yuan, X.; Wen, W.; Chen, W.; Zhan, D. Iridium oxide based coaxial pH 

ultramicroelectrode. Electrochem. Commun. 2014, 40, 35–37.  

34. Grieger, C.; Köster, F. Creation of functional layers for pH sensors by galvanic deposition of 

antimony and bismuth. Sci. J. Chem. 2014, 2, 6–10. 

35. Lee, Y.; Park, J. Fabrication and characterization of multilayered nanoporous platinum films 

deposited by electroplating and nonionic surfactant molds. Appl. Surf. Sci. 2013, 277, 100–104. 

36. Kelly, P.J.; Arnell, R.D. Magnetron sputtering: A review of recent developments and applications. 

Vacuum 2000, 56, 159–172. 

37. Musil, J.; Baroch, P.; Viček, J.; Nam, K.H.; Han, J.G. Reactive magnetron sputtering of thin films: 

Present status and trends. Thin Solid Films 2005, 1–2, 208–218. 

38. Alam, M.N.; Vasiliev, M.; Kotovb, V.; Alameh, K. Recent developments in magneto-optic  

garnet-type thin-film materials synthesis. Procedia Eng. 2014, 76, 61–73. 

39. Alam, M.N.; Vasiliev, M.; Alameh, K. Bi3Fe5O12:Dy2O3 composite thin film materials for  

magneto-photonics and magneto-plasmonics. Opt. Mater. Express 2014, 4, 1866–1875. 

40. Alam, M.N.; Vasiliev, M.; Alameh, K. Nano-structured magnetic photonic crystals for magneto-optic 

polarization controllers at the communication-band wavelengths. Opt. Quantum Electron. 2009, 41, 

661–669.  

41. Michael, W.W.; Aiello, Z.T.; Berliner, A.; Banerjee, P.; Zhou, S. In-situ immobilization of quantum 

dots in polysaccharide-based nanogels for integration of optical pH-sensing, tumor cell imaging, 

and drug delivery. Biomaterials 2010, 11, 3023–3031. 

42. Zamarreño, C.R.; Hernáez, M.; Villar, I.D.; Matías, I.R.; Arregui, F.J. Optical fiber pH sensor based 

on lossy-mode resonances by means of thin polymeric coatings. Sens. Actuators B Chem. 2011, 

155, 290–297. 

43. Wu, W.; Mitra, N.; Yan, E.C.Y.; Zhou, S. Multifunctional hybrid nanogel for integration of optical 

glucose sensing and self-regulated insulin release at physiological pH. ACS Nano 2010, 8,  

4831–4839.  



Coatings 2014, 4 770 

 

 

44. Li, J.; Huang, X.; Xu, W.; Xiao, D.; Zhong, Z. A fiber-optic pH sensor based on relative Fresnel 

reflection technique and biocompatible coating. Opt. Fiber Technol. 2014, 28–31. 

45. Shao, L.; Yin, M.; Tam, H.; Albert, J. Fiber optic pH sensor with self-assembled polymer multilayer 

nanocoatings. Sensors 2013, 2, 1425–1434. 

46. Bakker, E.; Qin, Y. Electrochemical sensors. Anal. Chem. 2006, 78, 3965–3983. 

47. Rahman, M.A.; Kumar, P.; Park, D.; Shim, Y. Electrochemical sensors based on organic conjugated 

polymers. Sensors 2008, 1, 118–141. 

48. Wang, F.; Hu, S. Electrochemical sensors based on metal and semiconductor nanoparticles. 

Microchim. Acta 2009, 1–2, 1–22. 

49. Kimmel, D.W.; LeBlanc, G.; Meschievitz, M.E.; Cliffel, D.E. Electrochemical sensors and 

biosensors. Anal. Chem. 2012, 84, 685–707. 

50. Nie, Z.; Nijhuis, C.A.; Gong, J.; Chen, X.; Kumachev, A.; Martinez, A.W.; Narovlyansky, M.; 

Whitesides, G.M. Electrochemical sensing in paper-based microfluidic devices. Lab Chip 2010, 10, 

477–483. 

51. Lakard, B.; Segut, O.; Lakard, S.; Herlem, G.; Gharbi, T. Potentiometric miniaturized pH sensors 

based on polypyrrole films. Sens. Actuators B Chem. 2007, 1, 101–108. 

52. Bandodkar, A.J.; Hung, V.W.S.; Jia, W.; Valdés-Ramírez, G.; Windmiller, J.R.; Martinez, A.G.; 

Ramírez, J.; Chan, G.; Kerman, K.; Wang, J. Tattoo-based potentiometric ion-selective sensors for 

epidermal pH monitoring. Analyst 2013, 138, 123–128. 

53. Guinovart, T.; Valdés-Ramírez, G.; Windmiller, J.R.; Andrade, F.J.; Wang, J. Bandage-based 

wearable potentiometric sensor for monitoring wound pH. Electroanalysis 2014, 6, 1345–1353.  

54. Zuliani, C.; Matzeu, G.; Diamond, D. A potentiometric disposable sensor strip for measuring pH in 

saliva. Electrochim. Acta 2014, 132, 292–296. 

55. Li, Q.; Li, H.; Zhang, J.; Xu, Z. A novel pH potentiometric sensor based on electrochemically 

synthesized polybisphenol a films at an ITO electrode. Sens. Actuators B Chem. 2011, 2, 730–736. 

56. Das, At.; Das, An.; Chang, L.B.; Lai, C.; Lin, R.M.; Chu, F.C.; Lin, Y.H.; Chow, L.; Jeng, M.J. GaN 

thin film based light addressable potentiometric sensor for pH sensing application. Appl. Phys. 

Express 2013, 6, doi:10.7567/APEX.6.036601. 

57. Lee, H.C.; Zhang, L.F.; Lu, C.H.; Lin, J.L.; Chin, Y.L.; Sun, T.P. Development of anodic titanium 

oxide nanotubes applied to a pH sensor with amperometric and potentioimetric methods. Adv. 

Mater. Res. 2012, 528, 10–13. 

58. Shim, J.H.; Kang, M.; Lee, Y.; Lee, C. A nanoporous ruthenium oxide framework for amperometric 

sensing of glucose and potentiometric sensing of pH. Microchim. Acta 2012, 177, 211–219. 

59. Stred’anský, M.; Pizzariello, A.; Stred’anská, S.; Miertuš, S. Amperometric pH-sensing biosensors 

for urea, penicillin, and oxaloacetate. Anal. Chim. Acta 2000, 1–2, 151–157.  

60. Pizzariello, A.; Stredanský, M.; Stredanská, S.; Miertuš, S. Urea biosensor based on amperometric 

pH-sensing with hematein as a pH-sensitive redox mediator. Talanta 2001, 4, 763–772. 

61. Gao, W.; Song, J. Polyaniline film based amperometric pH sensor using a novel electrochemical 

measurement system. Electroanalysis 2009, 8, 973–978. 

62. Schwarz, M.A.; Hauser, P.C. Recent developments in detection methods for microfabricated 

analytical devices. Lab Chip 2001, 1, 1–6. 



Coatings 2014, 4 771 

 

 

63. Xu, J.; Bao, N.; Xia, X.; Peng, Y.; Chen, H. Electrochemical detection method for nonelectroactive 

and electroactive analytes in microchip electrophoresis. Anal. Chem. 2004, 23, 6902–6907. 

64. Zhang, X. Nitric oxide (NO) electrochemical sensors. In Electrochemical Sensors, Biosensors and 

Their Biomedical Applications; Zhang, X., Ju, H., Wang, J., Eds.; Academic Press: Waltham, MA, 

USA, 2011. 

65. Liao, Y.; Chou, J. Fabrication and characterization of a ruthenium nitride membrane for 

electrochemical pH sensors. Sensors 2009, 9, 2478–2490. 

66. Chin, Y.L.; Chou, J.C.; Lei, Z.C.; Sun, T.P.; Chung, W.Y.; Hsiung, S.K. Titanium nitride membrane 

application to extended gate field effect transistor pH sensor. Jpn. J. Appl. Phys. 2001, 40, 6311–6315. 

67. Harsanyi, G. Sensors in Biomedical Applications: Fundamentals, Technology and Applications; 

CRC Press LCC: Boca Raton, FL, USA, 2000. 

68. Tsai, C.; Chou, J.; Sun, T.; Hsiung, S. Study on the sensing characteristics and hysteresis effect of 

the tin oxide pH electrode. Sens. Actuators B Chem. 2005, 108, 877–882. 

69. Chou, J.; Chen, C. Long-term monitor of seawater by using TiO2:Ru sensing electrode for hard calm 

cultivation. Eng. Technol. 2009, 53, 303–307. 

70. Kuo, L.; Chou, Y.; Chen, K.; Lu, C.; Chao, S. A precise pH microsensor using RF-sputtering IrO2 

and Ta2O5 films on Pt-electrode. Sens. Actuators B Chem. 2014, 193, 687–691. 

71. Bunjongpru, W.; Porntheeraphat, S.; Trithaveesak, O.; Somwang, N.; Khomdet, P.; Jeamsaksiri, W.; 

Hruanun, C.; Poyai, A.; Nukeaw, J. The innovative AlN-ISFET based pH sensor. In Proceeds of 

ECTI-CON 2008. 5th International Conference on Electrical Engineering/Electronics, Computer, 

Telecommunications and Information Technology, Krabi, Thailand, 14–17 May 2008; pp. 833–836.  

72. Chou, J.; Laio, L. Study on pH at the point of zero charge of TiO2 pH ion-sensitive field effect 

transistor made by the sputtering method. Thin Solid Films 2005, 476, 157–161. 

73. Kuo, L.; Chen, K.; Chuang, Y.; Chao, S. A flexible pH-sensing structure using WO3/IrO2 junction 

with Al2O3 encapsulation layer. ECS Solid State Lett. 2013, 3, 28–30. 

74. Brischwein, M.; Grothe, H.; Weist, J.; Zottmann, M.; Ressler, J.; Wolf, B. Planar ruthenium oxide 

sensors for cell-on-a-chip metabolic studies. Chem. Anal. (Warsaw) 2009, 54, 1193–1201.  

75. Her, J.; Wu, M.; Peng, Y.; Pan, T.; Weng, W.; Pang, S.; Chi, L. High performance GdTixOy 

electrolyte-insulator-semiconductor pH Sensor and biosensor. Int. J. Electrochem. Sci. 2013, 8, 

606–620.  

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


	Recent Developments in R.F. Magnetron Sputtered Thin Films For pH Sensing Applications - An Overview
	Recent Developments in R.F. Magnetron Sputtered Thin Films for pH Sensing Applications—An Overview 

