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“I give you thanks, O LORD, with all my heart; I will sing your praise…I will give thanks to your 

name for your unfailing love and faithfulness“  Psalm 138: 1-2  (Holy Bible: New Living 

Translation, 1996). 

 

All the way my Savior leads me; 

What have I to ask beside? 

Can I doubt His tender mercies,  

Who thro’ life has been my guide? 

Heav’nly peace, divinest comfort, 

Here by faith in Him to dwell! 

For I know, whate’er befall me, 

Jesus doeth all things well; 

For I know, whate’er befall me, 

Jesus doeth all things well. 

All the way my Savior leads me; 

Cheers each winding path I tread,  

Gives me grace for ev’ry trial,  

Feeds me with the living bread.  

Tho’ my weary steps may falter,  

And my soul athirst may be, 

Gushing from the Rock before me, 

Lo! a spring of joy I see; 

Gushing from the Rock before me,  

Lo! a spring of joy I see. 

 

All the way my Savior leads me;  

Oh, the fullness of His love!  

Perfect rest to me is promised 

In my Father’s house above; 

When my spirit, clothed immortal,  

Wings its flight to realms of day, 

This my song thro’ endless ages: 

Jesus led me all the way; 

This my song thro’ endless ages: 

Jesus led me all the way. 

Hymn 62 (Baptist Hymnal, 1991)  
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ABSTRACT  

At both the junior and senior secondary school levels in Nigeria, student performance in 

mathematics examinations has been poor.  Within the context of large classes, with 

inadequate facilities, and teaching and learning in a second language, algebra and algebra 

word problems are introduced to students during their first year of junior secondary school. 

The transition from primary school arithmetic to the use of the algebraic letter is challenging to 

students and it is important that teachers should know the likely difficulties and 

misconceptions students may have as they begin algebra (Welder, 2012).  

In this study, the impact of a teacher professional learning program on teachers’ knowledge, 

beliefs and practice was examined. The impact on students’ ability to solve word problems in 

beginning algebra was also investigated.  To do this, a multiple case study was designed and 

data were collected using quantitative and qualitative methods. Thirty teachers of first year 

junior secondary students completed a questionnaire and this provided general information 

about the teachers’ beliefs and algebra teaching practice.  After this, 12 of the teachers 

actively participated and collaborated in a professional learning workshop designed as an 

intervention program. The program focused on enhancing the teachers’ knowledge of student 

misconceptions about variables, expressions and equations, and language-based teaching 

strategies. Four teachers and their classes, two each from public and private schools, served as 

case studies and provided further data about the impact of the intervention program. Before 

and after the intervention program, lessons were observed, students completed algebra tests 

and some of them were interviewed using the Newman interview protocol. The data for each 

case study were analysed and the key findings generated from each of them were used for a 

cross-case analysis.  

The study revealed that these Nigerian teachers had mainly traditional beliefs about 

mathematics teaching and that teacher-talk dominated the classroom practice. Prior to the 

intervention, the teachers had limited knowledge of students’ algebra misconceptions and the 

students’ main difficulty was that they did not understand the questions. The professional 

learning increased the teachers’ knowledge of algebra, their pedagogical content knowledge 

and their awareness of algebra misconceptions. The teachers used more student-centred and 

language-based teaching strategies when working on algebra problems. There was a significant 

improvement in students’ problem-solving success on the post-test because more students 

were able to understand the word problems and displayed fewer misconceptions. The 

incidences of ignoring the algebraic letter, believing that the algebraic letters cannot have the 



iii 
 

same value and confusing product and sum reduced. However, the use of the letter as an 

object or a label and a belief that the algebraic letter had alphabetical positioning persisted.  

The study demonstrated the effectiveness of the professional learning model used in this study 

and it should be considered for more widespread implementation with in-service teachers. 

There is also an implication for pre-service teacher education. Mathematics education 

programs should ensure that student teachers are aware of common algebra misconceptions 

and the language-based strategies needed to support school students’ transition from 

arithmetic to algebra.  
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 CHAPTER ONE: GENERAL INTRODUCTION 

This study describes how beginning algebra word problems are taught in in Nigerian schools, 

and the impact of a teacher professional learning intervention on classroom practices and on 

students’ learning of Beginning Algebra. The first and second sections provide background 

information about Nigeria and Beginning Algebra, the third section identifies the problem; the 

fourth and fifth sections discuss the rationale and significance of the study; and the sixth 

section states the research purpose and questions.  

Background 

Nigeria, a developing Commonwealth country with over 159 million people (United Nations 

Population Division, 2012) has three main ethnic groups and is reportedly “the most complex 

country in Africa linguistically, and one of the most complex in the world” (Blench, 1998, p. 

187). Located in West Africa, Nigeria became independent in 1960, a republic in 1963, and has 

democracy entrenched at the Federal, State and Local Government levels. The country is 

subdivided into 36 states and the Federal Capital Territory (FCT). While Nigeria’s administrative 

capital is Abuja in the FCT, the economic capital is Lagos in Lagos State. The official language of 

communication is English, which is not the first language for Nigerians.   

A significant challenge that cannot be ignored exists in the education sector. Western 

education was introduced to the western and southern regions of the country by Christian 

missionaries while Islamic education was introduced to the northern region by the Arabs 

(Fafunwa, 1974). In the north, the focus was on the Arabic language needed for Islamic 

education; as a result, the northern region did not embrace western education as quickly as 

the other parts of the country (Umar, 2001). Parents were encouraged to send their children 

to school in the western and southern regions since education was free, resulting in these 

regions having an educational advantage over the northern region (Fafunwa, 1974).  

Successive governments have tried to bridge this gap through enacting various policies and 

laws to make education compulsory for all children. 

The National Policy on Education (NPE) is the guide and blueprint for the implementation of 

the educational aspirations of the country. These aspirations are reflected in the nation’s 

educational goals (Federal Republic of Nigeria, 2004) which include:  

the training of the mind in the understanding of the world around;  and  the 
acquisition of appropriate skills and the development of mental, physical and 
social abilities and competencies as equipment for the individual to live in 
and contribute to the development of the society.  (p. 3) 
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One way to implement these goals according to the policy is to make the learner central in all 

educational activities (p. 4). A major realisation from the policy is that “no educational system 

may rise above the quality of its teachers” (Federal Republic of Nigeria, 2004, p. 33). 

Recognition of the quality and role of the teacher led to the development of a teacher 

education policy in 2009 that should be fully implemented by 2013. The existing challenge in 

the sector is to be redressed through initial training that is focussed on subject-content and 

pedagogy, and professional development for in-service teachers in various fields (Federal 

Ministry of Education, 2009).  

The educational system consists of three major phases. These are the basic, senior secondary 

and tertiary levels of education. Although the basic level is taken as the first major phase, early 

childhood education has a very strong visible presence and operates within private schools. 

The NPE adopted six years as the entry age into the basic level, which covers a period of nine 

years comprising six years at a primary school and three years at a junior secondary school 

(JSS) (Federal Republic of Nigeria, 2004). The compulsory nine years of schooling has increased 

the number of students and schools, teacher shortage and an attendant increase in teacher 

workload.  This is more obvious in Lagos State, which has 325 junior secondary schools, the 

highest number in a single state in the country (Akparanta & Anuforo, 2010). 

On completion of this mandatory schooling period, students proceed to the Senior Secondary 

School (SSS) or a technical/vocational school, depending on their skills, interest and 

performance in the Federal and State organised examinations. The SSS spans a three-year 

period and terminates with external examinations conducted by the National and West African 

examination bodies. Successful students who are interested in further education proceed to 

the tertiary level of education at universities, polytechnics or colleges of education.  

There are two languages of communication during the period of formal education. The first is 

the language spoken at the lower primary level. The NPE (Federal Republic of Nigeria, 2004, p. 

11) indicated that teaching in the first three years of basic education should be in the 

“language of the environment of the school”.  After the first three years, English is the 

language of communication until the end of formal education. The implementation of this 

policy aspect is less rigorous in the private schools, so children are taught in English not only in 

lower primary classes but also in the nursery schools. 

Mathematics and English are the only subjects that students study throughout their basic and 

upper secondary education. To gain entry into a university, credit passes in English and 

mathematics are required. Mathematics is disliked and feared by Nigerian students for various 

reasons (Ifamuyiwa & Akinsola, 2008). Information, mostly negative, from senior students and 
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peers often causes them to have preconceived notions before attending classes. Performance 

in the West African School Certificate mathematics examination which is taken in the senior 

secondary terminal year is below average. Reports between 1997 and 2004 reflect an average 

of 28.5 % of students passed their mathematics examination and in 2010 only 25% of students 

passed (Adesina, 2010; Ifamuyiwa & Akinsola, 2008). Various means such as cooperative 

learning strategies, peer group tutoring, use of technology, formation of mathematics clubs, 

and mathematics competitions for students have been suggested to improve the situation but 

many students still believe that the subject is abstract and only meant for a few,  especially 

males (Adesoji & Yara, 2007; Ifamuyiwa & Akinsola, 2008). Constraints of class space and large 

class sizes are also challenges to the implementation of such strategies in Nigeria (Noah, 

Falodun, & Ade, 2011). 

Algebra 

Algebra is an important domain in mathematics and it is fundamental for mathematical 

proficiency. Algebra is defined as “the domain consisting of operating on and with the letter, 

transformation of expressions with letters, formal and generalized understanding of rules and 

properties of operations, and using the letter for representing, proving and generalizing” 

(Banerjee & Subramaniam, 2012, p. 352). Previously, algebra involved the use of alphabets 

known as letters or literal symbols to mainly represent the unknown, but mathematical 

developments have led to its use to represent the known, allowing for generalisations of both 

the known and unknown (Kieran, 1992).  For example, if we need to find the value of 5h, and 

h=2, then 5h=10, but if h=0.4, then 5h=2; so h is a variable that can take on any value assigned 

to it. Similarly if z= 4+p, then it follows that as the value of p changes, the value of z will also 

change. This notion of algebra moves it away from just a representation of the unknown to 

generalisations of patterns and is defined by Kieran (1992, p. 391) to be “the branch of 

mathematics that deals with symbolizing general numerical relationships and mathematical 

structures and with operating on these structures”.  

Algebra has been described as the “gateway to higher mathematics” (Kaput, 1999, p. 134; 

Stacey, 2004, p. 8), so failure to understand algebra affects its application, which is needed in 

other areas of mathematics (Goos, Stillman, & Vale, 2007). The use of principles and 

generalisations in mathematics makes the knowledge of algebra fundamental for success. As a 

result of its various uses, various definitions exist. However, for this study, which is situated in 

beginning algebra which is the introductory and early aspects of algebra taught in the first few 

years of the secondary school, it will be viewed mainly as generalized arithmetic (Kieran, 

1992). Students are introduced to the use of the algebraic letter to solve questions given in 
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symbolic form and word problems which are, mathematical questions written in literal form, in 

other words, mathematical sentences (Stacey & MacGregor, 1997). In Nigeria, Beginning 

Algebra is taught under the theme of algebraic processes and is offered at the JSS level.  

In Beginning Algebra, concepts of the variable, expressions, equality, graphs and functions are 

necessary but the literature has established that students often have misconceptions about 

them (Kieran, 1981; Küchemann, 1981; MacGregor & Stacey, 1993b; Perso, 1993; Sfard, 1991). 

These misconceptions have been linked to the difficulties that students experience as they 

transit from arithmetic to algebra. While Herscovics and Linchevski (1994, p. 75) described the 

ensuing state as “a cognitive gap”, Goldin (2008, p. 186) called it a “cognitive obstacle” existing 

in the transition process. These difficulties translate into students committing various errors, 

identifiable through error analysis protocols such as Newman (1983b), that ultimately affect 

their ability to solve algebraic questions including word problems. Newman (1983a, p. 25) 

identified five “performance strategies” that have been found to be useful when solving 

mathematical questions. These steps are: reading recognition; comprehension; 

transformation; process skills and encoding. White (2005) reported the use of these steps in a 

professional development workshop for primary school teachers in Brunei. The Newman 

strategies allowed them to identify students’ processing errors which in turn would help 

teachers provide proper remediation. 

Difficulties in Beginning Algebra may arise from the generalisations involved and the use of 

letters which, in algebra, differ from the everyday use that students know. For example, in  

Stacey and MacGregor’s (1997) study, tasks were given to over 2,000 Australian students aged 

11 to 15 years. In one of the tasks, the students were told that David is 10 cm taller than Con 

and Con is h cm tall. Students were asked what they could write as David’s height. Answers 

given included: 18 (taking h as the eighth letter and computing 10 + 8), 10h, h10, h= h+10 and 

11.  Their study reported misconceptions by students such as, among others, using letters as 

labels for objects, using sums as products and giving solutions that did not reflect an 

understanding of the use of equality. With these tendencies, it is no wonder that students 

experience difficulties in algebra and mathematics in general. As a result, students’ general 

interest and attitude to the subject is poor. However, teachers also have a role to play in 

reducing the occurrences of algebraic misconceptions. 

The teachers’ methods of teaching and beliefs affect students’ learning. Mathematics and the 

sciences are closely linked, and science teaching in Nigeria is largely teacher-centred and 

traditional in approach (M. A. Benjamin, 2004). It has been noted that the quality of teaching 
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and learning science is compromised by students’ poor background knowledge of mathematics  

(Ogunmade, 2005).  

The Problem 

Students’ performances in mathematics in Nigeria over the years have remained poor. Various 

factors contribute to these poor performances including large class sizes, students’ negative 

attitudes, teachers’ negative beliefs, poor teaching strategies, and a lack of instructional and 

textual materials (Aburime, 2007; Okigbo & Osuafor, 2008; Tella, 2008). The seriousness and 

urgency of the situation is reflected in the results from the 2011 West African School 

Certificate Examinations (WASCE) in which only 39% of the more than one and a half million 

students who sat for the examinations scored 50% or higher in mathematics (Uwadiae, 2011). 

This is not surprising as the mathematics essay paper (Paper 2) presents most of the questions 

in words,  and worded problems have been reported to be one of many students’ weak areas 

(McClure, 2009; Rosales, Santiago, Chamoso, Munez, & Orrantia, 2012). At the JSS level also, 

the 2006 average national performance in mathematics was 38% (Mohammed, 2012). 

Word problems often require the use of algebra to solve them. Solving word problems at 

levels beyond the primary school most often involves interpreting and translating the 

sentences into algebraic forms before mathematical operations are carried out. As a 

mathematics educator for more than two decades, the Researcher often saw pre-service 

mathematics teachers struggle to solve algebra word problems. Since the questions are either 

in English, algebraic letters or a combination of both, facility in both English and mathematical 

language is necessary for success in problem-solving. 

“One way of trying to find out what makes algebra difficult is to identify the kinds of errors 

students commonly make in algebra and then to investigate the reasons for these errors” 

(Booth, 1999, p. 299). Errors can occur at any stage while solving word problems and the use 

of Newman’s procedure has been established as a means to identify, categorise and analyse 

student’ errors, with a view towards further action by the teacher (Chinen, 2008; Clements, 

1982; A. White, 2005). 

Studies have indicated that students have misconceptions in beginning algebra about 

variables, expressions and equality. Nigeria is no exception and Sule’s (1992) study sought to 

identify difficult areas of the JS mathematics curriculum by giving 200 students questions from 

all components of the curriculum. His study reported a 30% pass in the algebra component, 

indicating the need for a focus on algebra teaching and learning. The Federal Government of 

Nigeria however, recognises that “consistent quality of teaching and learning remains a 
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significant challenge” (Federal Ministry of Education, 2009, p. 2) which needs to be addressed 

if students’ performances are to improve. 

Professional learning that allows teachers to gain an understanding of how students think as 

they engage in mathematical tasks modifies teachers’ practices and improves students’ 

understanding (Carpenter, Fennema, & Franke, 1996; Krebs, 2005; Sowder, 2007). One way of 

intervening is to equip mathematics teachers with an awareness of the misconceptions and 

difficulties experienced by some students as they start learning algebra. Equally important is 

the need for mathematics teachers to ensure that they are communicating with the students 

who are learning two languages simultaneously, that is, English language used in teaching 

them and the language of mathematics (Setati, 2005). 

 Rationale 

Understanding how to solve word problems in algebra will help students to make connections 

between the various concepts they have learnt. Proficiency in solving algebraic word problems 

can also be transferred to word problems in other areas of mathematics. This kind of flexibility 

strengthens the ability of students to move across and between various representations in 

order to select the appropriate one for use. This ability also forms one of the key cognitive 

constructs in mathematics needed for abstractions (Goldin, 2008).  

 Algebra features all through secondary mathematics. One of the aims of the JSS curriculum is 

to provide mathematical literacy to all students (Federal Ministry of Education, 2007). As a 

result, students should ideally be able to solve problems represented algebraically from their 

first year in secondary school as they transit from arithmetic to mathematics. Competence in 

using algebra makes it possible to apply the knowledge to other areas of mathematics, 

ultimately giving them a firm foundation for problem solving in later years. If the students’ 

poor performances are not checked, it may limit Nigeria’s capacity to move towards scientific 

and technological development as expressed in the NPE. 

Significance 

The study will create new knowledge about how algebra is taught to Junior Secondary 1 (JS 1) 

students in Nigerian secondary schools and the difficulties experienced by the students. It is 

envisaged that this research will contribute to the existing knowledge of what is involved in the 

teaching and learning of algebraic word problems in a language of instruction which is not 

native to the teachers and students. 
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The literature is scarce concerning intervention strategies focused on enhancing secondary 

school teachers’ awareness of students’ misconceptions in Beginning Algebra as a way of 

reducing errors committed by students. Newman’s (1983a, 1983b) procedure has been found 

to be useful in identifying errors committed by students and providing a strategy for solving 

word problems (Clements, 1982; A. White, 2005). 

The use of Newman’ approach in error analysis, which has its origin in Australia, enables a 

comparison of results between developed and developing countries. Although the approach 

has been used in Australia and several other countries, its use in a West African country, or its 

use in an adapted form as an intervention learning program for secondary school teachers, has 

not been reported. This study will contribute new knowledge about professional learning 

interventions addressing algebra learning which involves Newman error analysis. 

The outcome of the study will be beneficial to stakeholders in the teacher education sector. 

Research findings will inform curriculum planning and training for pre-service mathematics 

teachers. It will benefit pre-service teachers as it will prepare them better for the world of 

teaching. Students at the JS 1 level will also be able to have a smoother transition from 

arithmetic to Beginning Algebra and subsequently improve their performance in mathematics. 

Purpose and Research Questions 

The study describes how word problems are taught in beginning algebra and the difficulties 

experienced by JS 1 students. It also examines the impact of a teacher professional learning 

intervention designed to address both student misconceptions and language process errors 

when solving algebraic word problems. 

The major questions to be considered are: 

1. How are word problems in JS 1 beginning algebra classes taught prior to the 

intervention? 

2.  What difficulties do students in JS 1 experience in solving algebraic word problems 

prior to the intervention? 

3.  How does the teacher professional learning intervention program impact on JS 1 

mathematics teachers’ beliefs, knowledge and teaching practice? 

4. How does the teacher professional learning intervention program impact on students’ 

difficulties and success in solving algebraic word problems?     

The next chapter presents a more comprehensive review of the literature concerning the 

learning and teaching of algebra and why this Nigerian study is necessary. 



8 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9 
 

CHAPTER TWO: LITERATURE REVIEW 

This section is subdivided into a brief review of literature governing the study, and the 

conceptual framework. The literature will be reviewed under four headings, namely the 

background to the study, the theories that underpin the study, the learning of algebra, and the 

teacher and professional learning. 

Background 

The background to the study provides an overview of mathematics education in Nigeria, the 

importance of mathematics education and a reflection on the importance of algebra.  

Mathematics education in Nigeria 

Before gaining independence in 1960, mathematics was taught in accordance with the British 

curriculum using Britain’s 6-5-2-3 educational system. Arithmetic was taught in primary 

schools and it was the only compulsory aspect of mathematics included in the training for 

prospective primary school teachers (Ohuche, 1978). Examinations were conducted at the end 

of the six years in primary school to gain admission into a secondary school. Traditional 

mathematics consisting of arithmetic, trigonometry, algebra and geometry was taught at the 

secondary school level. Students who were considered gifted or exceptional in mathematics 

were offered additional mathematics which comprised some topics from applied mathematics 

and pure mathematics as an extra subject. The secondary mathematics external examinations 

had two alternatives (A and B) and each school was required to choose one that her students 

would undergo. Topics covered in Alternative B consisted of arithmetic, trigonometry, algebra, 

Euclidean geometry and coordinate geometry while Alternative A excluded coordinate 

geometry. Learning was rote and emphasis was on developing computational skills and 

ensuring the correctness of answers (Ale, 1981). Textbooks used at the primary and secondary 

levels were published in England and had foreign examples. This system was in place until after 

independence.  

After independence, a conference was convened in USA for invited African countries with 

British and American representatives to deliberate on curriculum reforms in Africa with regard 

to advancements in science (Ohuche, 1978). Ohuche explained that the 1961 conference gave 

birth to an African Mathematics Writers Program in Entebbe, Kenya in 1963. Writing 

workshops which continued up until 1967 led to the production of primary, secondary and 

teacher training mathematics textbooks for Africans (Fafunwa, 1974; Ohuche, 1978).  

Advancement in technology in the developed world led to the introduction of a new type of 
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mathematics called modern mathematics. Modern mathematics focused on understanding 

and on the application of mathematics to real-life situations and included fields like binary 

operations and set theory. This new type of mathematics was reflected in the textbooks 

written for both primary and secondary schools. In Lagos State, primary schools started 

teaching modern mathematics in 1971 but the traditional arithmetic textbooks were used 

alongside the modern mathematics textbooks which were known as the Entebbe series 

(Ohuche, 1978). Secondary schools also started teaching modern mathematics using the 

provided text books.  However, not all schools and states participated in this endeavour as 

each state was free to decide for its schools. Schools had to decide whether or not their 

students would be offered traditional or modern mathematics in the secondary school leaving 

examinations. Mathematics teachers were not adequately prepared to teach modern 

mathematics and this genre was not familiar to the pre-service elementary teachers. The 

situation resulted in poor examination performances and public outcry. 

A conference in Benin was convened by the Federal Government in 1977 to address the 

situation. The conference was held in Benin, a town in the Midwest of the country, in January 

1977, and has since then been known as the Benin conference (Ohuche, 1978). The Federal 

Ministry of Education invited some mathematicians, mathematics educators and other 

stakeholders to discuss the situation and the way forward. The Federal Government “had 

made up its mind that modern mathematics was to be suspended for the present in 

elementary schools and de-emphasized in secondary schools of all the states of  Nigeria” 

(Ohuche, 1978, p. 278). Other recommendations of the conference included: simple use of the 

word “mathematics” (without descriptors of Entebbe, modern or traditional) in primary and 

secondary schools; a new subject called further mathematics, to be taught instead of 

additional mathematics; provision of national mathematics curricula for all primary and 

secondary schools in the country and the development of objectives for mathematics teaching 

at all levels. 

In line with the recommendations, new curricula were published for the primary and 

secondary levels. The six-year primary level curriculum was published in 1979; the three-year 

junior secondary curriculum in 1981, the three-year senior secondary curriculum in 1984 and 

the three-year further mathematics curriculum in 1985. The new curricula reflected an 

integration of both traditional and modern mathematics with stated objectives for teaching 

mathematics in schools. Despite the new curricula in use at all levels of primary and secondary 

education, students’ performance in senior secondary external examinations has been poor. In 

the 2004 WASCE, 35% of the students passed mathematics (Ifamuyiwa & Akinsola, 2008) while 

39% of the students passed in 2011 (Uwadiae, 2011). At the junior secondary level, the 
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triennial national assessment by the National Assessment of Learning Achievements in Basic 

Education (NALABE) reported that the average JS 1 national mathematics performance for 

2006 was 37% (Mohammed, 2012). Mathematics remains a revered and feared subject to 

Nigerian students (Adesoji & Yara, 2007; Ale, 1981). 

The teaching of mathematics has its challenges. An inadequate number of qualified teachers 

led to non-specialists teaching mathematics such as engineers and architects (Ale, 1981), 

although the situation seems to be gradually improving (Mohammed, 2012). Other challenges 

include large class sizes, inadequate resources, negative attitudes of students, inappropriate 

teaching styles and negative teacher beliefs (Adesoji & Yara, 2007; Ale, 1981; Igbokwe, 2000).  

The language of instruction in secondary schools, English, cannot be overlooked because it is a 

second language which the students are concurrently learning in school. Facility with the 

everyday use of a language develops more easily than facility with its academic use (Cummins, 

1979; Kersaint, Thompson, & Petkova, 2009). In Nigerian private primary schools teaching at all 

levels is in English Language, while in public schools the native language is used for teaching in 

the first three years. In Adetula’s (1989) study concerning Nigerian Primary 4 public and 

private school students, there was generally a better performance on questions written in the 

native language than on the questions written in English language. This finding is to be 

expected since the students in the public schools would have experienced only one year of 

instruction in English and therefore would have had limited English proficiency. Students in the 

private schools performed better on arithmetic word problems written in English while the 

students in the public schools performed better when the questions were written in the native 

language (Adetula, 1990). While earlier assumptions were that learning in a second language 

limits proficiency with mathematics, recent studies interestingly suggest that students with 

proficiency in the first and second languages have added cognitive benefits which may allow 

them to record greater success than monolinguals (Clarkson, 1992; Ni Riordain & O'Donoghue, 

2009). It is argued that proficiency in the first language strengthens the acquisition of 

mathematics in the second language (Clarkson, 1991b; Cummins, 2000).  

A revision of the existing mathematics curriculum was completed and the new JSS curriculum 

was published in 2007 (Federal Ministry of Education, 2007). The revised version has six 

themes: number and numeration, basic operations, measurement, geometry and 

mensuration, algebraic process and everyday statistics, and these include also the application 

of the mathematics learnt. The objectives for mathematics teaching at the basic (primary and 

junior secondary) level, as stated in the Basic Education Mathematics Curriculum (Federal 

Ministry of Education, 2007, p. iv) are:  



12 
 

1. Acquire mathematical literacy necessary to function in an information age. 

2. Cultivate the understanding and application of mathematics skills and 
concepts necessary to thrive in the ever changing technological world. 

3. Develop the essential element of problem solving, communication, 
reasoning and connection within their study of mathematics. 

4. Understand the major ideas of mathematics bearing in mind that the world 
has changed and is still changing since the first National Mathematics 
Curriculum was developed in 1977. 

These objectives relate positively to current western mathematics standards which focus on 

understanding of both mathematical processes and literacy (Australian Association  of 

Mathematics Teachers, 2006; National Council of Teachers of Mathematics, 2000). 

Achievement of the above listed objectives is conducted through the linking of mathematics 

content with the teaching-learning process. The importance of the field of study that facilitates 

this linkage, mathematics education, is next discussed. 

Importance of mathematics education and algebra 

Mathematics education provides not only knowledge of mathematics but the ability to use it in 

a practical way. Mathematical literacy implies the ability to use mathematics in everyday living, 

for higher studies and career development. The Programme for International Student 

Assessment (PISA) 2009 framework (OECD, 2010, p. 84) defined mathematical literacy as  

 [A]n individual’s capacity to identify and understand the role that 
mathematics plays in the world, to make well-founded judgements, and 
to use and engage with mathematics in ways that meet the needs of that 
individual’s life as a constructive, concerned and reflective citizen. 

The Australian process standards implies that a mathematically literate person has capabilities 

of investigating, conjecturing, using problem solving strategies, applying and verifying, using 

mathematical language and working in context (Goos et al., 2007). These mathematical literacy 

indices also exist in Nigeria as evidenced from the stated objectives. Described as a ”tool” by 

Confrey (1990, p. 110), mathematics plays various roles, such as the use of arithmetic in 

shopping and budgeting; the use of  measures in travelling and planning; and the use of 

statistics for planning and decision making in everyday living. Students’ familiarity with 

mathematics in the school setting enables them to apply the knowledge in their career 

choices. For instance, architecture requires knowledge of numbers and spatial geometry, 

engineering requires algebra and calculus, and economics requires statistics and algebra. 

Algebra occupies a key position in mathematics. Consisting of two aspects, namely 

“conventional symbol systems and … certain kinds of human activities”, it is perceived through 

generalizations, functions and modelling (Kaput, 2008, pp. 10-11). It is described as the 
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“language” of higher mathematics (Fearnley-Sander, 2000, p. 77), and the “key to the 

characterization and understanding of mathematical structures” (Usiskin, 1999, p. 13). As a 

language, it allows an individual to use letters of the alphabet, known also as variables or 

literal symbols, in general numeric forms across other mathematical domains. The letter 

possesses the ability to represent whatever value a person wants to assign to it (Ely & Adams, 

2012). This ability to use variables in a general form allows algebra to serve as an entry point 

through which other areas of mathematics can be developed (Ely & Adams, 2012). Advanced 

mathematics and the applied mathematics in the sciences, engineering and applied sciences all 

use algebraic means of representations as a tool for solving problems (Cathcart, Pothier, 

Vance, & Bezuk, 2006). 

Algebra is defined by the Australian Concise Oxford Dictionary (1997, p. 31) as “the branch of 

mathematics that uses letters and other general symbols to represent numbers and quantities 

in formulae and equations”. This captures one of algebra’s features. Another of its features is 

depicted by Cathcart et al. (2006, p. 394) definition as ”the study of patterns, which forms the 

foundation for the logical connections in all of mathematics”. Concepts of variables, equality, 

functions and graphs are introduced within the first few years of secondary school in a general 

form as Beginning Algebra (Stacey & MacGregor, 1997; Tabach & Friedlander, 2008). Algebra 

has its own cultural practices (Franke, Carpenter, & Battey, 2008) and students’ lack of 

understanding of these concepts may affect their ability to apply the knowledge to problem 

solving. This is discussed in more detail further in this chapter. The following section however 

discusses the theories that underpin the way knowledge is constructed in the study. 

Social Constructivism and Sociocultural Theory 

Social constructivism has its roots in constructivism. From the root word, to “construct”, 

constructivism refers to individuals actively engaged in building their own knowledge (Goldin, 

1990). The process of knowledge building involves making meaning from experiences in terms 

of existing knowledge (Cobb, Wood, & Yackel, 1990). In particular, students individually 

construct their patterns of reasoning which lead to the actions they take.  So, in learning 

mathematics, persons relate known patterns to new ones and also build knowledge  (Hiebert 

& Carpenter, 1992). Social constructivism recognises that individuals do not exist in isolation 

but learn within a social setting in which understanding is co-constructed with others (Franke, 

Kazemi, & Battey, 2007). Each individual’s present knowledge is a potential springboard to 

move to higher rungs of knowledge acquisition and with assistance, this is achievable 

(Vygotsky, 1978). 
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It is in the process of communicating and interacting using mathematical terms and words that 

mathematical concepts are learnt and learning occurs (Campbell, Adams, & Davis, 2007; Lim & 

Presmeg, 2011; Setati, Chitera, & Essien, 2009). Therefore, in a constructivist classroom, a 

mathematics teacher does not focus primarily on the correctness of the answer but on the 

process followed by each individual involved in arriving at it (Beswick, 2007; Hensberry & 

Jacobbe, 2012). Newman’s (1983a, 1983b) notion of performance strategies also rests on this 

belief, because she sees the solution to a problem involving a series of stages,  forming a 

pattern that each student builds on as they decide on a pathway to follow in solving problems.   

Sociocultural theory emphasises that individuals do not exist in isolation but must interact 

within communities. As individuals grow up within a community of practice, they are 

introduced to established ways or patterns of working, and to the communal language of the 

discipline (Cobb, 1994). Social theorists draw on Leont’ev’s and Vygotsky’s works and believe 

that an individual develops his reasoning in line with the patterns of the society (Cobb, 2007). 

Students receive “social assistance” (van Oers, 2000, p. 141) as complex ideas and problem 

solutions are constructed on the social plane of the classroom and are made available for each 

individual to internalize and construct knowledge. This highlights the importance of 

collaboration in the learning of mathematics.   

Mathematics is also described as a cultural activity because it uses its own language as a 

cultural tool to communicate (Cobb, 2000). The language has its own vocabulary, 

representations and symbols. Pape and Tchoshanov (2001, p. 126) asserted that, 

“representation is inherently a social activity. Students come to understand both the process 

of representation and its products through social activity”. So, thinking occurs both internally 

by the individual, and externally in a verbal form. Students’ engagement in mathematics 

learning in the classroom creates opportunities for knowledge building and initiation into 

cultural practices of the mathematical community (Cobb, 1994). Campbell et al’s (2007) model 

in Figure 2.1 below illustrates the relationships and interactions that occur in the mathematics 

classroom. It seeks coordination between the world of the student learning mathematics and 

that of the teacher teaching mathematics. Both parties bring to the class, perceptions of each 

other, the classroom environment, language, culture, mathematics, their experiences and 

knowledge (Shirley, 2001). 
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Figure 2.1: Mathematics classroom interactions. (Campbell et al., 2007, p. 17) 

These two theories formed the framework within which this research took place. In the next 

section, the relevance of these ideas to the specific learning and teaching of algebra is 

discussed. 

Learning Algebra 

This section considers literatures pertaining to the cognitive processes in learning algebra, and 

some common misconceptions in beginning algebra. The focus of the latter is on concepts of 

variable, expressions and equations/equality. This review draws on many seminal articles 

written when the mathematical reforms started about three decades ago. 

Cognitive processes in algebra 

Learning algebra involves many cognitive activities so as to successfully learn and solve 

problems. These activities can be grouped as: generalized which involves patterns, procedural 

which involves expressions, relational which uses varying quantities, and structural which uses 

structural objects (Usiskin, 1999). Kieran (1981, 2007) classified them into three stages: the 

generational, transformational and the global/meta stages. The generational stage represents 

an understanding of algebra as arithmetic that is generalised, in that it uses mathematical 

language and variables with expressions and functions. The transformation stage consists of 

understanding algebra as involving representations, identities, equivalence, axioms and 

properties. The global/ meta stage applies the understanding of algebra as a tool to solve real 

life situations which may not be directly mathematical. These processes in algebra are all 

important as algebraic reasoning develops. This study employs Kieran’s classifications, 



16 
 

focussing mostly on the generational stage but with some reference to the transformational 

stage since the study involves beginning algebra. 

Algebra taught in schools as generalised arithmetic involves a move from the realm of 

specifics, in numbers, to the realm of the unknown in letters. The TIMSS report for the 2011 

survey identified that algebra generally presented the most difficult content for Grade 8 

students and that they only demonstrated a 37% facility this area (Trends in International 

Mathematics and Science Study, 2012). Studies showed that this transition is difficult because 

of the need to use variables, most often seen as letters, in arithmetical operations (Goldin, 

2008; Herscovics & Linchevski, 1994; Linchevski & Herscovics, 1996). In using both letters and 

numbers in a given question, a student has to process cognitively at different levels. First the 

student must move from the representational format of the question to another format that is 

generated by the individual for use in solving the problem. A student must be able to 

“interpret, construct and operate” effectively use the two representational formats (Pape & 

Tchoshanov, 2001, p. 120). This is followed by the need for the use of computations and 

arithmetic skills on the generated format so as to arrive at a solution (Davis & Maher, 1990; 

Reed, 1999). The question form and type of solution needed, which might be in words, tables, 

graphs, symbols or diagrams, determines how representational shifts would be involved. 

Schoenfeld (2008, p. 482) defined the process of algebraic thinking as “a particular form of 

mathematical sense making related to symbolization”. Kieran (1992, p. 394) described the 

situation students’ encounter as follows: 

Thus, the cognitive demands placed on algebra students include, on the one 
hand, treating symbolic representations which have little or no semantic 
content, as mathematical objects and operating upon these objects with 
processes that do not yield numerical solutions, and, on the other hand, 
modifying their former interpretations of certain symbols and beginning to 
represent the relationships of word–problem situations with operations that 
are often the inverses of those that they used almost automatically for 
solving similar problems in arithmetic.  

The likely thinking patterns of students when trying to solve algebraic problems need to be 

understood by their teachers. Students may select visible data in the question and perform 

mathematical operations on them without recourse to the problem context (Palm, 2008). It is 

important that as cognitive processing goes on, the student has a proper understanding of the 

concepts involved. The next section highlights the important role of understanding in the 

solving word problems. 
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Word problems 

Word problems written in sentences, also known as verbal problems, serve as an introduction 

to algebra. Verschaffel, Greer and De Corte (2000, p. ix) defined them to be: 

Verbal descriptions of problem situations wherein one or more questions 
are raised the answer to which can be obtained by the application of 
mathematical operations to numerical data available in the problem 
statement.  

They are important for developing an understanding of algebra, even though students often 

find algebra word problems difficult (Kieran, 2007; Reed, 1999). Solving word problems 

requires the abilities to read, interpret and transform the stated words within their context 

into a symbolic form, before embarking on a search for manipulative or computational 

strategies (Newman, 1983a; Oviedo, 2005; Pimm, 1991). The change of representational form 

requires knowledge of the language text; mathematical language and mathematical 

knowledge (Adetula, 1989; Ormond, 2000; Oviedo, 2005). Word problems are valuable for 

investigating both language difficulty and conceptual understanding (Newman, 1983a; Reed, 

1999). 

The level of proficiency in the text language and the language of communication may also 

affect performance in word problems, especially in the case of bilingual and multilingual 

students (Adetula, 1990; Clarkson, 1991a; Ni Riordain & O'Donoghue, 2009). This is of 

particular importance, of course, to the Nigerian context. In the mathematics classroom, many 

bilinguals and multilinguals may experience difficulty with understanding the lesson when the 

language of instruction is not their first language and the students are not proficient in it 

(Setati et al., 2009). Suggested teaching strategies include explicit instruction about the 

differences in the everyday and mathematical meaning of the same word, a limit on the 

number of new words in a lesson, student collaboration, encourage students’ use of new 

words mathematically within real-life contexts, and the use of multiple representation 

(Kersaint et al., 2009; Oviedo, 2005). Language-based approaches provide prompts to facilitate 

students’ development of literacy in mathematics and subsequently should increase their 

word problem-solving ability. As noted by Krebs (2005, p. 409), “sometimes much is learned by 

and about students from an incomplete or incorrect solution”. 

Booth (1984) reported on mathematical tasks given to over 3,500 students aged 13 to 15 years 

in U.K. On a task that requested students to ‘add 4 onto 3n’, only 45% of the sampled students 

and 22% of those aged 13 years obtained the correct answer of 3n + 4. Others gave answers 

like 3n4, 7n and 12, which indicate a transfer of arithmetic operations with numbers into 
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algebra that uses both numbers and letters. In another study, on the question “add 5 to 3n”, 

only 38% of students aged 12 years correctly answered 3n + 5 and 17% wrote 8n (Ryan & 

Williams, 2007).  

A large number of the existing literature on word problems is focused on arithmetic word 

problems mainly at the primary school level. For students, finding solutions to multi-step 

problems were more difficult than single-step questions, and questions that involved 

comparing quantities were more difficult than those requiring changing or combining 

quantities (Adetula, 1989; Verschaffel et al., 2000). It is also argued that word problems 

framed using real-life contexts and situations enabled students to first focus on understanding 

the question (Chapman, 2006; Palm, 2008; Verschaffel et al., 2000).  However, class 

observations have evidenced a prevalent practice that word problems are all about algorithms 

and that teaching is mainly about the mathematical structures in the questions, irrespective of 

the context of the question (Chapman, 2006; Depaepe, De Corte, & Verschaffel, 2010; Rosales 

et al., 2012).  

“Algebraic reasoning depends on an understanding of a number of key ideas, of which 

equivalence and variable are, arguably, two of the most fundamental” (Knuth, Alibali, McNeil, 

Weinberg, & Stephens, 2005, p. 68). For students to forge ahead there has to be a connection 

between what they already know, and the correct ways in which these patterns are used. 

Limited knowledge of arithmetic operations impacts negatively upon students’ facility with 

algebra even beyond the middle school grade levels. When students are unable to correctly 

conceive new concepts, it might lead to misconceptions and mistakes in algebra problem-

solving (Russell, O'Dwyer, & Miranda, 2009; Welder, 2012). This will now be discussed.  

Misconceptions in beginning algebra 

Beginning Algebra is defined as the introductory aspects of formal algebra and consists of the 

important and fundamental mathematical concepts of variables, expressions, equality, 

functions and graphs (Goos et al., 2007; Knuth et al., 2005; Nathan & Koellner, 2007; 

Schoenfeld & Arcavi, 1999; Sfard, 1991). The first three of these are the initial concepts 

introduced to students in the first year at the junior secondary school level, and are the focus 

of this study and the next point of discussion. 

Misconceptions about the variable 

Studies show that students have misconceptions about variables. A variable is a quantity that 

can have varying values and is represented with an alphabetical letter (Goos et al., 2007). The 

letter can take on different roles depending on the context of the problem at hand (Ely & 

Adams, 2012; Usiskin, 1999). The different uses of a letter as a variable implies that the 



19 
 

quantity it represents may or may not vary. It may be a single letter, a combination of letters 

and operations, or an abstract number of things (Linchevski & Herscovics, 1996; R. A.  Philipp & 

Schappelle, 1999; Usiskin, 1999). The letter can represent a unique unknown value like x+8=19; 

have a varying quantity (ies) in an observed general expression like 2m + 3 or the final answer 

of an operation like 3x + 5y; represent varying quantities that vary and used to show 

relationships of two sides like 2f + 4 =7d. Ely and Adams (2012, p. 23) asserted that, 

 two important practices required for the developed idea of variable ….are 
(a) the use of a letter to stand for any set of indeterminate quantities, not 
just a single unknown, and (b) the representation and quantification of the 
way one quantity changes with respect to another.  

This implies that students have to go beyond ‘seeing’ the letter as an unknown value to its use 

as a placeholder and its ability to take on varying values.   

Ryan and Williams (2007) noted that these various meanings and uses of the algebraic letters 

are a source of difficulty for many who are beginning to learn algebra and that they may bring 

about misconceptions based on students’ misinterpretation. These misconceptions about 

variables are identified in the research as:  

 a letter is an object/label (Booth, 1984; Küchemann, 1981; MacGregor & Stacey, 
1993b; S Wagner, 1999);  

 a letter is a word so it cannot be used/ ignored (Küchemann, 1981; Perso, 1993); 

 a letter has a fixed value from its alphabetical position (MacGregor & Stacey, 1993b; I. 
Watson, 1980);  

 a standalone letter has a fixed value of 1 (Perso, 1993; Stacey & MacGregor, 1997); 

 a letter has a fixed/ specific known number (Knuth et al., 2005; Küchemann, 1981); 

 letters have place values (Booth, 1984); and,  

 different letters cannot have the same value (Booth, 1984; MacGregor & Stacey, 
1993b; Perso, 1993).  

Stacey and MacGregor’s (1997) study was mentioned earlier, in which over 2,000 Australian 

students aged 11 to 15 years solved some questions including: “David is 10 cm taller than Con. 

Con is h cm tall. What can you write for David’s height?”.  They reported a 50% success rate for 

the first year algebra students. Different answers were received. As reported, some students 

wrote 18 in which the alphabetical position of h was represented by its value (8) and added to 

10 giving a sum of 18. Some assumed h was equal to 1 and obtained a solution of 11 while 

some wrote h = David + 10. Booth (1984) found that students translated ‘3a’ as ‘3 apples’ 

instead of ‘3 times the number of apples’. When the letter is wrongly used to represent the 
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object,” [t]he term “fruit salad algebra” is sometimes used for this misconception” (Chick, 

2009, p. 121).  

Ely and Adams (2012) observed that the 8th graders in their study at times chose different but 

specific values to represent the general term x or resorted to the use of alphabetical position. 

The knowledge of the letter as a generalised quantity is also required to simplify expressions 

like “2t + 3t -9 into 5t - 9” (p. 22).  

These appear to indicate students’ common misconceptions of variables as they transit from 

words to symbolic representations.  

Misconceptions about the concept of expressions 

Similarly, students may experience difficulty accepting that the solution of a question is an 

expression involving two or more terms. “An algebra expression is a description of some 

operation involving variables, such as 3a, x+1, or x-y” (S. Wagner & Parker, 1999, p. 331). In 

arithmetic, the final answer is a number so it becomes difficult to accept an algebraic 

expression like ‘2a + 5b’ as an answer because it is thought to add up to ‘7ab’ (Booth, 1999). 

This misconception has several names such as “inability to accept the lack of closure,… name-

process dilemma” (Chalouh & Herscovics, 1999) or  ‘process-product dilemma‘ (Sfard & 

Linchevski, 1994), or wrongly ‘conjoining’ (Tirosh, Even, & Robinson, 1998).  

 An answer like 3p + 2a is a process involving addition of two terms which some students 

wrongly ‘join’ together in order to close up the expression. Stacey and MacGregor’s (1997) 

study supported the existence of  this misconception as some students wrote 10h and h10 as 

answers to the question. Falle (2007) also asked 222 Years 8 and 9 students to “simplify 5p – p 

+ 1”. A majority (38) of the wrong answers (49) were inappropriate conjoining such as 6, 6p or 

5p.   On the question, “add 6 to x + 3”, Ryan and Williams (2007) also reported that students 

aged 12 years in Britain had a 19% facility.    

The level of awareness of teachers about this misconception must affect their practice. Tirosh 

et al. (1998) described how teachers’ awareness of this misconception affected the algebra 

teaching practice of four Grade 7 teachers. Two of the observed teachers, experienced and 

aware of this misconception, had designed strategies to improve their students’ 

understanding. One of the others, a beginning teacher, was unaware of the misconception. He 

told students to add the constants together and the ones with the same letters together. This 

rule was followed up with procedural examples and students continued to experience 

difficulties. To prevent this misconception, teachers often resort to the use of objects as labels 

for letters, such as 3 pears and 2 apples for the example above,  and this is likely to 

unconsciously reinforce the variable misconception (that is, that the variable represents an 
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object rather than an quantity). In Banaerjee and Subramaniam’s (2012) study, teachers’ focus 

on the similarities in the structures of arithmetic and algebraic expressions resulted in a 

reduction of these misconceptions and increased students’ understanding,  

Misconceptions about the concept of equality/equations 

Understanding the concept of equality is challenging for many students. Students enter the 

secondary school with the belief that the equal sign means they should write the final answer 

after completing necessary operations (Kieran, 1992), or the belief that it is a link to the next 

operation (Stacey & MacGregor, 1997). An equation is “any algebraic expression of equality 

containing a letter (or letters)” (Herscovics & Kieran, 1999, p. 185). For students, the 

knowledge of the equal sign (=) to represent equality of the two sides of the equation is 

minimal, if present (Kieran, 1992). Students write the letter in the equation as the subject 

(stand-alone) or engage in guess work using specific values (Egodawatte, 2011; Kieran, 1992).  

Many middle school students seem to have more of an operational view of the equal sign 

rather than a relational view (Knuth et al., 2005). In their study, 56% of Grade 7 students’ 

definitions of the equal sign were variations of the sign asking them to perform an operation, 

in contrast to the 36% who saw the sign as some form of equivalence. However, students’ 

relational view of the equal sign improved from Grades 6 to Grade 8. This relational view “is 

essential to understanding that the transformations performed in the process of solving an 

equation preserve the equivalence relation – an idea many students find difficult, and that is 

not an explicit focus of typical instruction” (p. 69). The misinterpretation of the equal sign 

continues beyond the middle grades for some students (Egodawatte, 2011).  

Since word problems are literal, translations are sometimes done directly from the left to the 

right, leading to the formation of wrong symbolic notations and errors including situations 

involving inverse operations (Kieran, 1992; Reed, 1999). Clement (1982) gave 150 first year 

engineering students the following question amongst others to write in algebraic notation. 

Write an equation using the variables S and P to represent the following 
statement: There are six times as many students as professors in this 
university. Use S for the number of students and P for the number of 
professors. 

 Only 63 % of the students wrote the answer correctly. Of the 47 undergraduates who were 

taking college algebra as a course but were not science majors, only 43% obtained the right 

answer, with the rest answering incorrectly with 6S = P. The students had read and translated 

into numbers and letters literally without regard to the reversal built into the question 

(Clement, 1982). One of the reasons that the students could have made in this error was that 
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in their minds, they rightly ‘saw’ the quantities of the two objects but were unable to establish 

equivalence. This is known as ‘static comparison’ (Clement, 1982). High proportions of 

students using the letter as a label or having reversal errors on the same question have since 

then been identified. These were post-secondary students enrolled in algebra and calculus 

courses in colleges and universities, and pre-service teachers of various nationalities (Lochhead 

& Mestre, 1999; Reese, 2007; Rosnick, 1981). 

The use of mathematical terms and language may bring about misconceptions of operations 

that need to be performed. In the course of translation, sum and product are often 

misinterpreted, also resulting in reversal errors (Reed, 1999). MacGregor and Stacey (1993a, p. 

223) found that only 35% of the 281 Year 9 students sampled could use symbols to represent 

the sentence “ the number y is eight times the number z” with many writing it as z = 8y instead 

of y = 8z.  Also, less than 30% could correctly write  ”s is eight more than t” as many wrote t = s 

+ 8 instead of s = t + 8. There was also an association of y with the number 8 while z and t 

became the subjects of the equation. Some students may wrongly generate expressions or 

inequalities as answers to word problems which rightly require construction of equations. 

These errors were named as “lack of equation“  and “inequation” (MacGregor, 1991, p. 61). 

Writing algebra involves using or interpreting the letter within a particular context without any 

extra meanings being read into it (Ormond, 2000). 

In conclusion, misconceptions arising both from the use of a letter as an object, label or word, 

and about the meaning of the equal sign make it difficult for many students to transit from 

arithmetic to introductory algebra, where letters are substituted and patterns emerge. 

Inability to translate, perform inverse operations and develop suitable algebraic forms from 

word problems inhibits proper processing of questions and leads to errors before the 

computation and processing stages are reached (Clement, 1982; A. White, 2005).  

Diagnosis of students’ problem-solving difficulties: The Newman protocol 

This section describes the Newman protocol and explores studies that have used the protocol 

in order to assess student understanding. 

The Newman procedure identifies errors made by students as they solve word problems. 

Newman (1983b) established an interview protocol consisting of five questions, which has the 

intention of identifying problem solving difficulties of students in mathematics. The interview 

is conducted after the student has attempted to solve the problem and failed to generate a 

correct solution. Children may find it difficult to solve word problems because they have to 

process the language of the text before they embark on solving the question (Pimm, 1991). In 

a study of the patterns of 124 low achieving Grade 6 pupils as they solved mathematical 
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questions given to them, Newman (1977, 1983a) reported that 13%, 22% and 12% of the 

pupils had reading, comprehension and transformation errors respectively on the questions. 

She identified that errors could occur at each procedural step, and classified these into five 

main categories which are briefly described and also shown in Figure 2.2 below. 

Reading recognition: Reading of the question involves recognition of both the words and 

symbols in the given task. A reading error would stall the process of answering the question. 

Comprehension: The second step entails students showing an understanding of specific terms 

and saying the questions in their own words.  Ability to extract the core issues in a question “is 

one of the most important skills in mathematics” (Newman, 1983b, p. 16). If they cannot 

paraphrase what the question is about, they are unable to move any further and this is called a 

comprehension error. 

 

 

 

                                            

                                 

 

                                                                                                                                               

                                                                 

                                                                                                                                    

                                                                       

 

 

 

          Figure 2.2: Newman Strategies   Adapted from Newman (1983b, p. 2) 

Transformation: The word problem once understood is written in a mathematical form. The 

understanding derived from the question which is in a literal form now has to be transformed 

into other suitable and correct representations, depending on the requirements of the task 

(Newman, 1983b). For this study, this would involve the symbolic form that will be needed to 

     Question  

Motivation                          Carelessness Task     type 

                                Read the problem 

  Comprehend specific terms and general meaning 

                 Encode the answer   

  Transform the words into a suitable representation 

Process the new representation mathematically 
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solve the question in algebra. An understanding of concepts and an identification of 

operation(s) and method(s) to be used is examined during this stage. If an individual is unable 

to identify the needed operation(s) it is called a transformation error. 

Process skills: After successful transformation of the question, it is then processed using 

mathematical computation and conceptual understanding. Depending on the new 

representation form, the arithmetical operations and computations needed to process the 

question are carried out. If a person does not know, guesses, uses the wrong operations, 

calculations or procedures, it is termed a process skill error. 

Encoding ability:  At the last step, the solution has to be written in an acceptable form. The 

acceptability depends on what the question asked for, that is, an answer in symbols or words 

or a table. If a student is unable to write the answer in a form which is acceptable, it is called 

an encoding error.  

Other errors exist that may affect an individual’s problem solving ability, though they are not 

directly related to the question being solved. Newman identified these as: careless errors, 

motivation errors and the task form. If an individual correctly carries out a step he missed 

during the first attempt of the question, it could be as a result of any one of the above three, 

which may occur at any of the stages.  

The activities Newman outlined above for solving mathematical tasks are similar to those of 

Polya (1957), namely, understanding the problem, finding a plan, carrying out the plan and 

checking the solution. The main difference lies in Polya’s first step, that of understanding of 

the problem. Newman subdivided this step into two, comprising reading and comprehension, 

and she indicated the importance of language in understanding word problems (Chinen, 2008). 

Solving word problems requires an understanding of mathematics, the language of the text 

and the language of mathematics (Kersaint et al., 2009; Morgan, 2005) which students need to 

acquire and apply. However, it is often assumed that an understanding will be picked up as 

students’ progress in their studies; hence little attention is paid to them during teaching. 

Everyday words such as mean and product, symbols like + or : have mathematical  meanings 

that differ. Durkin (1991, p. 15) commented that “the language of maths is often demanding 

and ambiguous – pupils have ultimately to come to terms with this reality rather than to avoid 

it “.   

Studies conducted have reported that about half of the word problem solving errors 

committed by students occurred before the processing stage that requires mathematical skills 

on selected operations. Wrong or incomplete solutions to questions provide insights into 
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students’ thinking (An & Wu, 2012; Krebs, 2005; A. White, 2005).  Children with ages less than 

8 years had about 70% of errors from reading and comprehension (I. Watson, 1980) about 58% 

of Grade 5 pupils were reported to have comprehension and transformation errors (Clarkson, 

1991b). Over 50% of Grade 7 students were identified to have transformation and process 

errors (Clements, 1980). In Chinen’s (2008) study with Year 9 students, about 59% of the 

students’ difficulties were comprehension and transformation errors. After a four-week 

language-based intervention, he reported a 27% drop in language-based errors committed by 

the students. Identification of errors can lead to remediation efforts by the teacher. However, 

the beliefs and practices of a teacher also have a strong influence on the situation.   

To resolve misconceptions and ease the transition to algebra, research identified various 

strategies such as: introduce pre-algebraic ideas in the elementary school (Cathcart et al., 

2006; Fujii & Stephens, 2008; Ormond, 2012; Warren & Cooper, 2008); use of technology 

(Rojano, 2008); teaching with a context-based approach (Linsell, Cavanagh, & Tahir, 2013; 

Tabach & Friedlander, 2008); pre-service teacher awareness of students’ misconceptions 

(Tanisli & Kose, 2013); and, teacher professional development (Tirosh et al., 1998; Welder, 

2012). Professional learning to increase teacher awareness of students’ misconceptions in 

algebra and knowledge of the way students think might help in reducing the difficulties 

encountered by students in understanding algebra (Kieran, 2007).  

This study examined the impact of a professional learning intervention for teachers on the way 

teachers teach Beginning Algebra and students’ problem solving success. The last section of 

this review therefore considers literature about teachers’ knowledge and beliefs and how they 

impact students’ learning, and about professional learning. 

Teacher and Professional Learning  

Teacher beliefs and knowledge that affect practice 

Teachers are members of communities of practice which share a set of cultural beliefs and 

practices. Teachers acquire these practices and beliefs from experiences at school and pre-

service levels, in-service training, subject associations and professional learning programs. 

Teacher beliefs refer to ”preferences a teacher holds as true and which affect the actions 

adopted in teaching”, while teacher knowledge is defined as “the beliefs held by a teacher that 

are true and justified” (R. A. Philipp, 2007, p. 259). The difficulty in separating beliefs and 

knowledge led Thompson (1992) to refer to them as conceptions.  Various scales have been 

developed to measure teacher beliefs but as noted by R. A. Philipp (2007), case studies provide 

insights about teacher knowledge and beliefs not always captured by scales. Teacher beliefs, 
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knowledge and practices are discussed in this section with particular reference to mathematics 

teaching and the algebra teacher.  

Teachers hold individual beliefs about the curriculum, mathematics, methods of teaching 

mathematics and student’s mathematical thinking. Stipek, Givvin, Salmon and MacGyvers 

(2001, p. 224) observed that “teachers had a fairly coherent set of beliefs which predicted their 

instructional practices”. Mathematics teachers’ beliefs that underpin their practice are beliefs 

about the nature of mathematics, mathematics learning, students and their capabilities, and 

teachers’ beliefs about themselves and their capabilities (Beswick, 2007; Stipek et al., 2001; A. 

Watson & De Geest, 2005). These beliefs determine the level of focus on the students, use of 

dialogue and classroom tasks, and where teacher emphasis is placed (Beswick, 2007; Drageset, 

2010). Teachers with mainly traditional beliefs emphasise speed, accuracy, rules and the use of 

teacher-directed strategies, in contrast to those with mainly constructivist beliefs who 

emphasise understanding, student effort, reasoning and the use of student-centred strategies 

(Beswick, 2006; Swan, 2006).  

Teacher knowledge has several interrelated parts. Cochran-Smith and Lytle (1999) identified 

three components of teacher knowledge: knowledge for practice, knowledge in practice and 

knowledge of practice. In relation to mathematics these refer to: knowledge of mathematics, 

curriculum and methods of mathematics teaching; knowledge gained through experiences, 

reflections and situations; and, knowledge gained by participating in professional learning 

programs, and research. Therefore the knowledge acquired during training is to be bolstered 

and improved upon with teaching experience and professional support. Ball, Thames and 

Phelps (2008) building on Shulman’s (1986) work classified and illustrated (Figure 2.3 ) the 

knowledge a mathematics teacher would need for teaching.  

Mathematical knowledge for teaching (MKT) is defined as “the mathematical knowledge 

needed to carry out the work of teaching mathematics” (Ball et al., 2008, p. 395) and this 

greatly impacts students’ achievement in mathematics (Ball, Lubienski, & Mewborn, 2001; Hill, 

Rowan, & Ball, 2005; Norton, 2012). A teacher’s knowledge about the subject matter has a 

strong bearing on the content taught and how it is taught (Ball et al., 2008; Carpenter, 

Fennema, Peterson, & Carey, 1988; Drageset, 2010). It follows, therefore, that to teach algebra 

effectively, a teacher must understand and know the algebra that is to be taught.  
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Figure 2.3: Domains of mathematical knowledge for teaching (Ball et al., 2008, p. 403) 

 

Pedagogical content knowledge is knowledge of how to teach the subject content (Shulman, 

1986) and is “critical for effective teaching” (Walshaw, 2012, p. 182) because it enables a 

teacher to help students understand mathematics. Ball et al. (2008) posited that the 

knowledge of mathematics for teaching has two subdivisions: knowledge of content and 

student and knowledge of content and teaching.  

Knowledge of content and student is a combination of knowledge of the student and 

mathematics (Ball et al., 2008). It includes knowledge of students’ likely errors and 

misconceptions, ability to interpret students’ thinking and their likely responses (Ball et al., 

2008). Teachers should also be able to determine the choice and difficulty levels of students’ 

tasks. The importance of this knowledge for the mathematics teacher’s practice has been 

exemplified in studies on algebraic expressions and representational forms of algebraic 

questions (Even & Tirosh, 2008; Nathan & Koedinger, 2000; Tirosh et al., 1998). Algebra 

teachers should be aware of common misconceptions and errors committed by students in 

beginning algebra (Welder, 2012) in order to help students use these experiences to enrich 

their learning (Ledesma, 2011).  

Knowledge of content and teaching is a combination of knowledge of teaching and of 

mathematics (Ball et al., 2008). With this knowledge, teachers are able to sequence and 

scaffold instructional content to suit students’ abilities. It also involves recognition of 

challenges posed by various representational tasks and the teacher’s plan for handling them 

(Ball et al., 2008). A teacher has to know how to make use of leading questions and how to 

build on students’ explanations and problem solutions in order to enrich teaching. In 

particular, an algebra teacher needs to present different examples, and different forms of 

representations and approaches, and uses of concepts.  
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Teachers’ beliefs and knowledge affect their implementation of the subject curriculum. The 

mathematics curriculum serves as a guide that details the content, suggested materials and 

teaching approaches that should be used by a teacher. If adhered to, a curriculum should 

affect practice positively, but R. A. Philipp (2007) remarked that what happens in the 

classroom may differ from that which is expected. Teachers with years of experience develop 

routines which they follow, and  they have identified potential trouble spots and developed 

their own ways of handling them, unlike beginning teachers who might turn to the curriculum 

or to textbooks for support, as exemplified in Tirosh’s study on algebra teaching (Tirosh et al., 

1998). 

Chick (2009) asked 35 teachers about their perceptions on a textbook’s explanation of 

questions on the distributive law in algebra. One of the questions used ‘apples and bananas’ to 

illustrate the operation 6a + 4b gives 2(3a + 2b).  Only 26% of the teachers identified the use of 

the letter as an object while 74% said they would use similar explanations and provided their 

reasons. Chick further opined that many teachers’ pedagogy appeared to still include the ‘fruit 

salad’ approach and this may be traceable to some textbooks using it, and the teachers 

replicating how they themselves learnt it. 

Teachers’ beliefs about teaching and the role of a teacher impact on classroom practice. 

Wilson and Cooney (2002, p. 144) noted that “the evidence is clear that teacher thinking 

influences what happens in the classroom, what teachers communicate to students, and what 

students ultimately learn”. In Nigeria, teacher beliefs and practices in mathematics and the 

sciences are largely traditional, and teaching is largely teacher centred as the teacher is seen as 

a person who has the knowledge and passes it to the student (Igbokwe, 2000; Ogunmade, 

2005). Mathematics in Nigeria is hardly seen as a subject that can be creative and interesting 

to learn (Ladele, 2008). However, reforms in mathematics education globally have caused a 

significant shift from the traditional methods of teaching mathematics to one of teaching for 

understanding and application to real-life situations. Kieran (2007) has also called for more 

study into practising algebra teachers’ beliefs and knowledge about students’ thinking, 

misconceptions, difficulties, interpretations and ways of answering algebraic problems. This 

research study heeded that call.  

Teacher professional learning 

Professional learning for in-service teachers is needed to raise awareness of developments 

within their disciplines and education in general. Professional learning  programs should be a 

blend of theory and practice in which teachers can connect new knowledge with their practice 

while receiving ongoing support and engaging in professional collaboration with others 
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(Cavanagh & Garvey, 2012; Darling-Hammond & McLaughlin, 1995). New knowledge refers to 

that which has emerged as a result of research, technological development or change in 

approaches to the subject discipline (Sowder, 2007). For example, mathematics previously 

taught as a system consisting of manipulations and computations requiring memorization is 

now more often taught for understanding and everyday use, allowing individuals to take 

possession of knowledge rather than it being imposed (Goos et al., 2007, pp. 36-39; National 

Council of Teachers of Mathematics, 2000). 

There are certain activities that constitute an effective professional learning program. 

Ingvarson, Meiers and Beavis (2005) conducted a study with over 3,000 teachers with at least 

10 years’ experience. They identified that an effective teacher professional learning program 

should include a collaborative examination of students’ work, follow-up, consideration of 

duration and time span, feedback, focus on content, active learning and reflection, and the 

building of a professional community.  

An examination of students’ work in professional learning provides teachers with an 

understanding of students’ thinking as they solve mathematical problems. Teachers’ 

understanding of students’ misconceptions and problem solving difficulties can help them 

teach in ways that address these problems (An & Wu, 2012; Fennema et al., 1996; Krebs, 

2005). Several decades ago, a Cognitively Guided Instruction (CGI) approach to professional 

development was used with some Grade 1 teachers in USA (Carpenter, Fennema, Peterson, 

Chiang, & Loef, 1989). A framework was developed concerning how students think when 

solving addition and subtraction problems and teachers were equipped with this knowledge 

and other curricular issues during a four-week workshop. Results within a year indicated both 

a change in teachers’ beliefs and practice, and pupil performance was found to have improved. 

The CGI has been found by some other studies (Vacc & Bright, 1999) to modify teacher 

practice, although its focus is on primary mathematics teaching.  

In Kreb’s (2005) study, 20 middle-grade teachers participated in a professional learning 

program that also focused on students’ thinking. The teachers answered some questions on 

patterns, and then examined some Grade 8 students’ solutions to the same set of questions 

before watching video clips of the students as they solved the questions. Krebs argued that the 

activities enriched the teachers’ understanding of how students think and understand algebra, 

and it also provided opportunities for the teachers to reflect upon their own pedagogy. 

An and Wu (2012) used a different approach and investigated the effect of middle-grade 

teachers’ detailed examination of their students’ homework on fractions. The teachers 
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diagnosed and remediated the students’ misconceptions individually or collectively in class.  

These activities increased the teachers’ content knowledge and their pedagogical content 

knowledge. 

The Newman framework, as describe earlier in this chapter, has also been used in training with 

in-service teachers to identify stages at which students make mistakes in problem solving with 

a view to remediation (Clements, 1980) although most studies were at the primary level. A 

professional learning program (AMIC) held in Brunei used the Newman theory as theoretical 

foundation for one of its workshop series (A. White, 2005). The primary school teacher 

participants were expected to use the Newman interview questions with their Primary 5 

students. The use of Newman procedure has been found by primary school teachers to be “an 

easily adapted and relatively simple model” in leading students as they try to work through 

problems (Clarkson, 1991b, p. 245). It “has been popular with teachers’” (A. White, 2005, p. 

19) and is the most preferred method for interpreting worded questions (P. White & 

Anderson, 2012).     

Most of the existing studies about students’ misconceptions analyse data collected from 

written work, but this research study focused also upon individualised interviews with the 

students. The professional learning intervention in this particular study took into consideration 

the activities identified in the literature for an effective learning program. It involved teachers 

collaboratively analysing students’ incorrect solutions to algebraic questions, thus aiming to 

create in them an awareness of students’ common misconceptions about variables, 

expressions and equality. It allowed for active learning with reflections on the Newman 

procedure and other language-based approaches to provide a connection with their practice. 

The program was conducted over two days and participants had the opportunity to discuss 

their experiences and to provide feedback afterwards at a one-day program.             

Conceptual Framework 

The teacher professional learning program focused on teacher awareness of research-

evidenced students’ misconceptions and errors in beginning algebra, and language-based 

teaching strategies particularly the Newman procedure. The intervention comprised activities 

that promote effective professional learning (Ingvarson et al., 2005). It is believed that this 

professional learning will impact the teachers’ beliefs and their knowledge of algebra, and how 

it is taught. Teachers’ practice would affect students’ engagement and subsequently, students’ 

understanding would reflect in their success in the algebra post-test and in responses received 

from the Newman interviews conducted. This is illustrated in Figure 2.4.  
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                       Figure 2.4: The conceptual framework for the study.     

 

 

 

 

 

 

 

   Professional      

     Learning 

Students’ 

learning 

outcome 

  Teachers’ Practice 

  Teachers’ Beliefs  Teachers’ PCK 

    Reduced 

misconceptions 
Question 

comprehension 

Students’ engagement in 

learning and problem 

solving 



32 
 

 



33 
 

  CHAPTER THREE: METHODOLOGY 

This study explored the teaching and learning of word problems in beginning algebra in 

Nigerian schools using four case studies. To do this, teachers’ beliefs, classroom practices for 

teaching word problems, and the difficulties experienced by students were examined. This was 

followed by a professional learning intervention program focused on creating an awareness of 

students’ algebra misconceptions and language-based approaches. The impact of the 

intervention on teachers’ practice and students’ success in algebraic word problems was then 

investigated.   

This chapter details the method used to accomplish the study and is organised into nine 

sections. The sections describe, in order, the research approach and design, the participants 

involved, the procedure followed and the instruments used in the study. Also included are 

descriptions about how validity and reliability of instruments were ensured, how the data were 

analysed, the ethical considerations, and the limitations of the study.  

Research Approach 

Qualitative and quantitative approaches were used to collect, analyse and interpret data. This 

mix of approaches complements the limitations of any one method, and findings are 

strengthened when different approaches result in the same findings (Cohen, Manion, & 

Morrison, 2011). A qualitative approach to research is focused on people within their natural 

settings and uses gathered information to build a full picture of the unique situation (Anderson 

& Arsenault, 1998; Silverman, 2011). To build this picture, classroom observations, semi-

structured interviews with students, and focus group discussions with teachers were 

employed. Quantitative approaches, on the other hand, use measured outcomes with numeric 

values to evaluate the impact of an intervention (Creswell, 1994). These outcomes were 

obtained from the teachers’ questionnaires and the students’ algebra tests completed before 

and after the professional learning intervention.  

Research Design 

The research design was a multiple-case study consisting of four embedded cases (Yin, 2003). 

A case study is described as “an in-depth exploration from multiple perspectives of the 

complexity and uniqueness of a particular project, policy, institution, programme or system in 

a ‘real life’ context” (Simons, 2009, p. 21) and “can be used to document and analyse the 

outcomes of interventions” (Yin, 2012, p. xix). In each of the four case studies, there was a 

focus on the teacher’s beliefs and practice and on his or her students’ understanding and 
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success in solving word problems in Beginning Algebra. This design allowed for a rich analysis 

and description of the impact of the intervention on the teachers and students. Triangulation 

of data sources within each case and findings across cases ensured the confirmability of 

assertions arising from the data (Punch, 2005; Yin, 2003). A cross-case comparison revealed 

insights into the influence of contextual factors on the success of the professional learning 

intervention. 

Research Participants 

Participants for the study were 30 JS 1 mathematics teachers and 181 JS 1 students from 

secondary schools in two of the 20 Local Education Districts (LEDs) in Lagos State. The 20 LEDs 

are grouped into six administrative districts (1-6) and the two LEDs used in this study, Ojo and 

Badagry, are a part of the five LEDs that compose District 5. After six years of primary 

schooling, students continue their basic education for the next three years in the junior 

secondary school (JSS 1-3). The JS1 level was chosen for the study because that is when 

Nigerian students are formally introduced to algebra and learn the basic concepts of variables, 

expressions and equations. In each junior secondary school, two or three mathematics 

teachers teach the three levels of students. Classes are not often streamed by ability levels.  

The teachers, from 30 different schools in the two LEDs, willingly completed the initial 

mathematics teacher questionnaire after the Researcher contacted them in their schools. The 

participants’ involvement is illustrated in Figure 3.1.  

                          

                                                                                                                                     

                                                                                                                                       

 

                                                            

                                                                                                     

                                                                                            

 

 

Figure 3.1: Overall plan of the research study 
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students as student participants answering the algebra test items in the study.  The case study 

schools comprised two public and two private schools with differing class sizes that totalled 

181 student participants. In each class four students were interviewed before and after the 

professional learning intervention, giving a total of 16 interviewed students 

Research Procedure    

The study had two phases, the pilot study and main study.   

Pilot study 

A pilot study was first conducted to ascertain that the instruments were effective and captured 

the necessary information (Anderson & Arsenault, 1998). The Researcher’s supervisors as 

experts in the field critically appraised draft instruments to ensure the validity of the 

instruments. A few JS 1 mathematics teachers and students not belonging to the educational 

zones used in the main study were given the initial questionnaire and algebra pre-test to 

complete. They were asked to bring to the attention of the Researcher items or questions that 

they were not clear about and any particular one that needed revision. As a result, there were 

slight changes of some words in the questionnaire and five questions were removed from the 

algebra test. This reduced the algebra test questions to 15 items. The lesson observation 

checklist was also trialled in two classes to ensure that it was satisfactory. The removal of 

inappropriate items and changes to ambiguous wording would have enhanced the reliability of 

the instruments. 

Main study 

The main study comprised six steps and each step is next described. Table 3.1 is a summary of 

all the steps. 

The first three steps constituted the pre-intervention stage. Approval was obtained from the 

district on 17 February, 2011 for direct access to the schools and JS 1 mathematics teachers 

(Appendix 1). The principals were approached in their schools and after obtaining consents 

(Appendix 2), the Researcher personally met the teachers, obtained their consent (Appendix 3) 

and gave them the initial questionnaire to complete. This procedure enabled the Researcher to 

establish a cordial relationship with the teachers, and the completed questionnaires were 

collected on the same or next day, resulting in a 100% return rate.  

The study was initially planned for only the public schools but the presence of many large 

classes in these schools, some above 100, led the Researcher after consulting with her 

supervisors to include private schools in the sample.  It was felt that this inclusion would give a 
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more balanced and a broader perspective of the current practices in both contexts and also 

“clarify and deepen understanding” (Neuman, 2003, p. 211). 

Table 3.1: Summary of the research study procedure  

                                                                                                    Description of step    Period  

1 Approval and consent from District 5 administrator and school 
principals 

Feb –March, 
2011 

2 Distribution and collection of questionnaire from 30 JS 1 teachers. 
Selection of 13 teachers for professional learning program.  

Feb –March, 
2011 

3 Selection and focus on four case studies – lesson observations, pre-
test and Newman interviews with four students from each school 

March, 2011 

4 Two-day professional learning workshop with 13 selected teachers, 
including the case study teachers.  

29-30 March, 
2011 

5 Focus on four case studies- lesson observations, post-test and 
Newman interviews with same set of four students from each school 

April – mid June, 
2011 

6 One-day professional learning workshop - focus group interview and 
debriefing. Completion of final teacher questionnaire by 12  teachers 

6 July, 2011 

 

The criteria for selection of the 13 teachers were an expression of willingness to participate in 

the program, possession of a professional teaching qualification in mathematics, and having 

more than two years of teaching experience. The survey provided most of the data needed. 

The four case study teachers were selected from the 13 teachers and comprised those who 

showed enthusiasm and concern about the performance of their students in algebra. Their 

schools were also easily accessible to the Researcher. Lesson observations in the specific 

classrooms chosen by the teachers started on 14 March 2011, the seventh week of the second 

term. In the Nigerian culture, the teachers act as parents and have the duty of care for their 

students within the school, so the teachers explained the research purpose to the class and the 

students verbally consented before observations commenced. Each teacher was observed at 

least twice and care was taken to ensure that all the participating classes had been taught the 

algebra content in the curriculum so that it was likely that the students could answer most of 

the algebra test questions before the pre-test was administered. 

After completing the algebra pre-test, each teacher unguided by the Researcher selected four 

students, whom the Researcher interviewed individually using the Newman interview 

protocol. In three schools, the pre-tests and interviews were done on the same day while in 

the fourth school the interview was done on the next school day due to time constraints. The 

students were all very willing to participate and the interviews took place in an empty 

classroom within the school premises. Throughout, the interviews were non-threatening, and 

the students were constantly reassured of confidentiality and of the fact that the entire 

process had nothing to do with their school grades or performances. 
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The professional learning program was the intervention stage. The 13 teachers attended a 

professional development learning workshop that ran for two days at a suitable venue within 

the College of Education where the Researcher works. Permission had earlier been obtained 

from the management of the College of Education for its use as venue for all of the 

professional learning programs. The institution was easily accessible to all the participants and 

the program was facilitated by the Researcher.  

The program focused on creating teacher awareness about common student algebraic 

misconceptions, and introducing them to language-based and more interactive approaches to 

mathematics teaching. Activities comprised discussions about students’ difficulties and 

misconceptions about variables, expressions and equality in beginning algebra, reflections on 

students’ solutions to algebra questions involving the use of letters as objects, the 

product/sum confusion and manipulation of equations, problem-solving, and active learning of 

the use of Newman strategy and other approaches.  A detailed description on this follows in 

the next chapter (Chapter 4).  

The post-intervention stage comprised the fifth and sixth steps outlined in Table 3.1. Each of 

the four case study teachers was observed thrice in their classrooms over a period of six weeks 

starting from 4 April. The Researcher provided support by encouraging the four case study 

teachers and answering their questions which were mainly about class management. After the 

first two weeks there was an end-of-term break before observations resumed on the 16 May 

(second week in the third term) for the remaining four weeks. At the end of this period, a post-

test virtually identical to the pre-test was given to the participating class in each school. The 

same sets of students earlier interviewed on the pre-test in the schools were interviewed 

again on the post-test using the Newman interview protocol. The interviews were conducted 

on the same day the tests were taken in two of the schools and on the following day in the 

other two schools.  

The teachers, 12 of them because one was unavoidably absent, attended a one-day program 

on 6 July to discuss, reflect and provide feedback on the use of the intervention in their 

classes. The focus group interview was replicated in two sessions instead of the planned single 

group because the teachers arrived at different times.  At the end of the day, the teachers 

completed the final questionnaire.  

Research Instruments 

The 10 instruments that were used in the study were pre- and post-intervention teacher 

questionnaires; pre- and post-intervention student algebra test; an algebra lesson observation 
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schedule; the Newman Interview protocol, an error analysis guideline recording sheet and a 

student profile sheet for interview responses; a teacher algebra rating sheet; and, the focus 

group discussion protocol. The association between the instruments and the research 

questions is summarised in the Table 3.2 and this is followed by a description of each 

instrument.  

Table 3.2: Relationship between research questions and data gathering instruments 

                     Research question                Instruments  used 

1. How are word problems in JS 1 beginning 
algebra classes taught prior to the 
intervention? 

Initial teacher  questionnaire, classroom 
observations,  PL discussion 

2. What difficulties do students in JS 1 
experience in solving beginning algebra 
word problems prior to the intervention? 

Algebra pre-test; Newman interview, 
error analysis sheet, profile sheet, 
teacher algebra rating sheet 

3. How does a teacher professional learning 
intervention program impact on JS 1 
mathematics teachers’ beliefs, knowledge 
and algebra teaching practice? 

Final teacher questionnaire, classroom 
observation, focus group interview 

4. How does the teacher professional 
learning intervention program impact on 
students’ difficulties and success in solving 
algebraic word problems? 

Algebra post-test; Newman interview, 
error analysis sheet, profile sheet 

 

Mathematics teacher questionnaires  

The questionnaires, an initial and final one (Appendix 4 and 5), were completed by the teacher 

participants before and after the intervention. The initial questionnaire was used to obtain 

data about the general context within which algebra was being taught at the junior secondary 

level. A questionnaire provides self-reported information about the opinion of the respondent 

on various issues (Johnson & Christensen, 2012). Consisting of 50 items divided into three 

sections, the questionnaire included closed and open-ended response items. The first section 

sought information on features like teachers’ teaching qualifications, their mathematics and JS 

1 teaching experience. The second section included Likert-type five point rating subscales 

about the teachers’ beliefs, confidence and frequency concerning using different teaching 

approaches, their knowledge of JS 1 mathematics content, and their beliefs about 

mathematics, its teaching and learning. These subscales were mainly adapted from Hackling 

and Prain’s (2005) and Olaleye’s (2012) professional learning intervention studies with 

Australian and Nigerian in-service science teachers respectively, and Beswick’s (2005) and 

Swan’s (2006) mathematics teachers’ beliefs survey. The Researcher created the other items. 

In the third section, the teachers gave reasons for the difficulty ranks they assigned to six 
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mathematics questions written in the questionnaire. An average of 10 minutes was taken by 

each of the teachers to complete the questionnaire.   

The final questionnaire was completed by only the 12 teachers who participated in the two 

phases of the professional learning program. It included most of the items from the initial 

questionnaire and a few additional open-response items that evaluated the professional 

learning intervention learning program. The teachers’ responses on both questionnaires were 

compared in order to detect any changes in views and beliefs.  

Classroom observation schedule 

The Researcher used an observation schedule to record happenings in the classroom at 

intervals of two minutes (Appendix 6).  Cohen (2011, p. 296) noted that “at the heart of many 

case studies lies observation”. Observations are a record in data gathering of happenings 

within a particular context (Anderson & Arsenault, 1998; Simons, 2009). The schedule 

indicated specific activities of teachers and students during the lesson that were of relevance 

to the study. The 14 specific activities included those related to traditional approaches such as 

teacher explaining, students listening and copying notes; others related to the five Newman 

steps, the use of mathematical language and the correction of algebraic misconceptions.  Field 

notes were also taken and a digital recorder was used to record the observed lessons.  

Algebra tests 

Before the intervention stage, the participating students completed an algebra test comprising 

15 short items (Appendix 7). The test was a mix of questions represented in word and symbols. 

The concepts treated in the questions were variables, expressions, and equality including 

reversal operations. Figure 3.2 and Table 3.3 describe the structure of the test items.           

 

 

                                                                                                                

 

 

 

                                                                                                        

                      

Figure 3.2: Composition of algebra test questions 

Algebra test 

Symbolic text 

Worded 

text 

Questions 1& 2: 

Simplification of 

algebraic 

expressions 

Question 3: 

Product of 

algebraic terms  

Questions 4 -6: 

Simple equation 

with one 

unknown 

Question 12 -

15: 

Construction 

of equation 

Question 8, 9: 

Differentiating 

sum and 

product   

Question 10, 

11: 

Expressions 

involving 

subtraction 

Question 7: 

Knowledge 

of letter as 

quantity 
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Most of the questions were adapted from existing literature or sourced from the most 

common Nigerian mathematics textbook series, New General Mathematics (NGM).   

Table 3.3: Algebra test items – concepts and required knowledge 

Question 
text 

Investigation               Questions  Concept Needed 
knowledge 

Reference  

Symbolic    Simplification of 
algebraic 
expressions 

1. Simplify  as far as possible 1 
+ x + x     
2. Simplify  as far as possible 
3m + 5n + 4m + 6n     
 

Variable 
(GN), 
expressions 

Letter is a 
quantity, 
collection of 
terms, an 
expression can 
be an answer 

NGM for JS1 
format 

Product of 
algebraic terms 

3. y× y × y =  .......... Variable 
(GN) 

Product of 
algebraic term 

NGM for JS1 
format 

Simple equation 
with one 
unknown 

4.Find the value of x: 7x = 21           
5.Find the value of x: 2x – 2 = 
10           
6.Find the value of x: 21x = 7      

Equations 
(SN) 

Balancing an 
equation, 
inverse 
operations 

NGM for JS1 
format, 
question 6 -
constructed 

Worded  Knowledge of 
letter as a 
quantity 

7. Sola has x bananas and Peju 
has p bananas.  Peter counts 
the number of bananas each 
of them have and finds they 
are the same.  Sola said you 
could write this as x=p, but 
Peju said that x and p are 
different letters and so cannot 
be the same. Who do you 
think is correct?     

Variable  
(GN) 

Letter is a 
quantity 

Constructed  

Differentiating 
sum and product 

8. Mary has x oranges and Bisi 
has four more oranges than 
Mary. How many oranges 
does Bisi have?   
9. A basket costs eight naira 
and a bag costs c Naira more 
than the basket. How much 
does the bag cost? 

Expressions 
(GN) 

‘more’ in these 
contexts refers 
to addition, an 
answer can be 
an expression 

Modified 
from 
MacGregor 
(1991), NGM 
for JS1 
format 
 

Expressions 
involving 
subtraction 

10. What is the number that is 
five less than x?         
11.There is  a   b number of 
sweets in a packet. A girl has 
two packets of sweets and 
gives her friend six sweets. 
How many sweets does she 
have remaining? 

Expressions 
(GN) 

‘less’ in this 
context refers to 
subtraction, an 
answer can be 
an expression 

Modified 
from Adetula  
(1989) and 
NGM for JS1 
 

Construction of 
equation 

12. Write in algebra: There are 
twice as many pencils as biros 
(let p be the number of pencils 
and b be the number of biros).  
13. If s is the number of 
students and t is the number 
of tables, write in algebra: 
There are three students for 
every table.   
14. If d is the number of dogs 
and c is the number of cats, 
write in algebra: There are 
four more dogs than cats.    
15. Write in algebra: There are 
three more caps than hats. 
 

Equations 
(VN) 

Letter is a 
quantity, 
establishing  
equality in 
relationship 
between 
quantities of the 
two items 

Modified 
from 
Clement et al 
(1981), 
Ormond 
(2010)  
 

Note. GN – Letter as a Generalised Number, SN – Letter as a Specific Number, VN – Letter as a Varying Number 
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Questions with given multiple answers were not used in order that that the problem-solving 

process could be understood through the students’ workings. Word problems are most suited 

for evaluating students’ conceptual understanding and language issues (Ni Riordain & 

O'Donoghue, 2009). Their difficulties were investigated through these worked solutions and 

performance in the questions which sought the students’ understanding of the mathematical 

language, the algebraic letter and operating with it, and their understanding of equations.  The 

questions examined the students’ knowledge and ability to use the algebra letter as a specific 

unknown number (Questions 4-6), a generalised number or place holder (Questions 1-3, 7-11) 

or as a quantity that varies (Questions 12 – 15). The average time taken by the students to 

complete the test was 30 minutes.  

In much of the existing literature, these sorts of questions were administered to students older 

than 12 years old. However, the Nigerian JS 1 curriculum content contains many of these 

algebra topics and this informed the Researcher’s decision to use questions comparable to 

those found in the main JS 1 mathematics textbook. The use of standard textbook questions to 

examine students’ understanding of word problems exists in the literature (Ni Riordain & 

O'Donoghue, 2009; Oviedo, 2005). It is the Researcher’s belief that what the teachers teach 

and what the JS 1 students are expected to learn, by Nigerian standards, is beneficial to 

investigate. 

The equation-construction questions were the only ones not specifically mentioned in the 

curriculum or textbook, but it was decided to explore the students’ knowledge about 

relationships between two items with different quantities. This is because in JS 2, the students 

solve linear equations in two variables algebraically and graphically and they also solve word 

problems involving algebraic fractions (Federal Ministry of Education, 2007). 

The pre- and post-test (Appendix 8) were identical tests but for the arrangement of the 

questions, alphabets and items. The exact questions were not used for the post-test in order 

to reduce students’ familiarity with the questions (Chinen, 2008). Names and currency 

reflected those relevant to the Nigerian society. Three readability tests were employed to 

ascertain that the algebra questions were within the students’ reading ability and these are 

described here.  

The difficulty of the words and sentences may be measured through the syllable and word 

count respectively (Richardson, Morgan, & Fleener, 2006). The Fry’s readability formula and 

accompanying graph is the most common and popular (R. G. Benjamin, 2012) and can be used 

to “measure the difficulty of word problems in mathematics” (Richardson et al., 2006, p. 450). 
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It also “measures the readability of material used in an instructional setting” (Richardson et al., 

2006, p. 144). The Fry readability score for both tests fell within the Grade 6 range on the 

accompanying readability graph.  The Flesch and Flesh-Kincaid readability tests are contained 

in the Windows 2010 Office software. The pre-and post-test Flesch reading ease score was 89 

and 93.9 while the Flesch-Kincaid readability test was 4.0 and 3.3 respectively. The Flesch-

Kincaid score indicates the grade suited for reading the text and for the algebra tests it was 

Grade 4, while a Flesch score of 80-90 or 90-100 means it is suited for Grade 6 or 5 

respectively.  The interpretation of these scores means that both tests were suitable for 

reading by the JS 1 students.                                                                                                                                                                                                                                                                                                                                                                                                  

Newman interview protocol 

The protocol (Appendix 9) was used by the Researcher with four students in each of the 

schools to examine the difficulties encountered in solving algebra questions. Punch (2005, p. 

168) described interviews as “one of the post powerful ways of understanding people”. The 

Newman protocol, already used in many studies, was employed and consists of five structured 

questions students are asked in relation to a given problem that they have previously solved 

incorrectly. The interview was conducted, as quickly as possible, after the pre-test and a 

second attempt (on the day of interview) at solving the questions. The protocol was slightly 

adapted in that further questions, this time unstructured, were asked when the circumstances 

warranted them, in order to get a better understanding of the student’s thinking. 

Newman error analysis guideline sheet 

The response given by the student was noted and coded appropriately into the error analysis 

guideline sheet (Appendix 10). The coding corresponded to the five structured questions asked 

during the interview and indicated the task error on the problem by the student. There was an 

extension to this guideline when deemed necessary and after the task error had been 

recorded. This extension comprised the student’s responses to the Researcher’s unstructured 

questions, if asked.  Such information was noted on the sheet as field notes. 

Diagnostic profile sheet 

Designed by Newman (1983b), the sheet is a cumulative record of a student’s incorrect 

responses to the questions (Appendix 11). It indicated the initial error cause for each item in 

the test.  

Teacher algebra rating sheet 

Ball et al. (2008) noted that teacher knowledge of content and student includes a teacher’s 

ability to predict which questions might be difficult for their students. The rating sheet 

(Appendix 12) contained the students’ algebra pre-test questions and a five point rating scale 
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from very easy (1) to very difficult (5). Each teacher who participated in the professional 

learning program completed a rating sheet. The teachers rated in a small box beside each 

question how difficult they felt it would be for their own JS 1 students to correctly answer. This 

concept was adapted from studies that compared teachers’ (and researchers’) ratings with 

students’ actual performance in mathematics problem solving (Alexandrou-Leonidou & 

Philippou, 2005; Nathan & Koedinger, 2000). The purpose was to find out the teachers’ 

opinion about the difficulty level of the questions and compare this with the students’ actual 

performances.    

Focus group 

A focus group is described by Punch (2005, p. 171) as a “grouped interview” and a means of 

gaining insights and varied perspectives from others as the participants respond to each 

other’s comments on issues. A 90 minute focus group discussion was used to engage the 12 

teachers who were involved in the professional learning on algebra. Two group interviews 

were done with six teachers in each group and the same set of three questions was used in 

both groups (Appendix 13). The purpose of this was to receive feedback from all of the 

teachers on their experiences after the post -tests had been carried out in the schools.  

Digital recorder and camera 

A digital recorder was used to record verbal communication in the classroom, interview 

sessions and meetings with the teacher participants. Visuals using a digital camera captured 

writings of some students’ mathematical work and blackboard mathematics content. Students’ 

faces were generally not visible, but when this was occasionally unavoidable they were 

completely blurred to avoid the possibility of identification. 

Reliability and Validity of Instruments 

The Cronbach alpha reliability test was carried out for the questionnaire as a whole and for the 

different subscales, to establish their internal consistency (Cohen et al., 2011). An overall alpha 

coefficient of 0.78 was obtained for the initial questionnaire pilot test and all the subscales had 

alpha coefficients between 0 .72 and 0 .93, except for the frequency of use of approach scale 

with an alpha coefficient of 0.62.  The same instruments were used to collect the data in each 

of the four cases and the use of digital recordings, pictures and students’ work, all carefully 

analysed, provided a basis for validity and reliability. In the course of data collection, care was 

taken to confirm opinions and views expressed by participants during the professional learning 

program, focus group and student interviews. This measure helped to ensure that the 

gathered information was trustworthy and reflected the respondents’ beliefs. The 
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Researcher’s supervisors as experts in the field also supported the content validity of the 

instruments. 

Data Analysis 

All the participants were given coded identification numbers and variable names were 

assigned to the questionnaire and algebra test items before analysis commenced. Each correct 

answer in the algebra test was scored one mark while a wrong answer was scored zero. Only 

students who completed both the pre- and post-tests had their scores included in the analysis. 

The responses to the closed questions in the questionnaire were numerically coded and all 

documented in a coding manual. Quantitative data collected from the teachers’ responses on 

the Likert rating scales in the questionnaire were first entered into an Excel spread sheet and 

checked for correctness.  

All the coded data were then entered and analysed with SPSS/PASW 18 software for 

descriptive statistics such as percentages, means, and standard deviations. For the open-ended 

questions in the questionnaire, key words or descriptions were identified in the responses and 

used to generate categories. The multiple response descriptive analysis in the SPSS software 

was then used to obtain frequencies and percentages.  

Wilcoxon signed-rank test, a non-parametric test was used to check for significant differences 

in the students’ pre- and post-algebra test because the distributions were not normal but 

positively skewed.  Since the number of students who completed the tests was sufficiently 

large, the t-test was also used to confirm the results of the Wilcoxon signed-rank test. Kruskal-

Wallis test and Wilcoxon signed-rank tests (non-parametric tests) were also used to analyse 

the algebra rating sheets and the final teacher questionnaire results respectively, because of 

the small number (12) of teachers involved.   

Qualitative data were also coded, transcribed, and read over several times, and key 

descriptions were identified. These descriptions resulted in emerging categories identified in 

each case study, the professional learning program, the focus groups and students’ interviews. 

The students’ responses to the Newman questions particularly at the transformation and 

processing stages were used to identify the algebra misconceptions.  For example, if a student 

chose a value, say three, to represent x in the question “simplify 1 + x + x” and then obtained 

seven as the final answer, the misconception of the letter x as having a specific value (of three 

in this case) was identified as the initial cause of the error. This misconception was recorded 

for that student as a transformation error. However, if another student responded that it 

added up to 1 + 2x and obtained 3x as the answer it was analysed as a processing error. In this 
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case, wrong conjoining was identified as the algebra misconception. The use of four case 

studies allowed for individual and cross-case analysis to be carried out. The data collected was 

triangulated to identify patterns and themes that emerged from the study. Key findings that 

emerged from the quantitative and qualitative analysis were interpreted drawing on the 

literature to generate assertions, and these were subsequently used to answer the research 

questions. 

Ethics 

The research was carried out in line with ECU ethics approval received in December 2010. 

Permission for access to the teachers was obtained from the administrative district involved 

and letters of consent were signed by teachers to indicate their willingness to participate in the 

study. The teachers on behalf of parents obtained a verbal affirmation from the students to 

participate, as is normal practice within the Nigerian school culture where teachers act in loco 

parentis. All participants were informed that they could withdraw their participation in the 

research at any time.  The Researcher made sure the students felt at ease throughout the 

classroom observations and interviews, and they were at no time compelled to respond. All 

participants were assigned numerical codes which were used for data analysis.   

Limitations 

The study was case-study based and as such is limited in terms of generalizability. The number 

of teachers used was small and sampling was limited to one district so the research results 

may not be generalizable beyond the school types and district used in the study. The class sizes 

of the public schools used in the study were larger than those of the private schools and this 

may have affected the outcome. However, these large classes are typical of many of the 

existing public schools and it allowed the research to be carried out within a realistic setting 

and with consideration of the present situation. Individualised interviews with the case-study 

teachers would have captured much more of the teachers’ knowledge and views of their 

respective students. The two algebra tests that the students completed were similar but 

necessarily slightly different and this might have affected their performance. However, using 

the same test twice may also affect performance because the students, especially those who 

were interviewed, would have likely gained familiarity with the questions.  

The small number of teachers used however was advantageous in that it provided insights and 

ample opportunity for the teachers to share their views and beliefs about the teaching and 

learning of mathematics, and algebra in particular, during the professional learning 

intervention. This is described in the next chapter.  
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CHAPTER FOUR: PROFESSIONAL LEARNING INTERVENTION 

Introduction 

The professional learning intervention program was conducted in two phases. The first phase 

was for a period of two days and the second, after a six-week teaching period, was held for 

one day. The intervention focused on beginning algebra misconceptions and language-based 

approaches. As a result, the professional learning had two main purposes: first, to update 

teachers on algebra misconceptions about variables and equations/equality that have been 

reported in the literature and second, to introduce them to Newman’s language-based error 

analysis procedure and review other language-based approaches to teaching mathematics. 

While the first phase was designed to update and introduce the teachers to these issues, the 

second phase was directed towards receiving feedback from the teachers about the use of the 

acquired knowledge in their teaching practice. Thirteen JS 1teachers participated in the first 

phase and 12 were available to participate in the second phase. The professional learning 

program activities included collaborative examination of students’ work; focus on content, 

active learning and reflection, follow-up and feedback. Ingvarson et al.(2005) identified these 

as necessary components for an effective professional learning program. The majority of the 

activities were designed to be interactive and they provided opportunities for the teachers to 

support/assist themselves as they engaged in meaningful learning. 

This chapter describes the activities in which the teachers participated during the two phases 

of professional learning and reports some data about their engagement with those activities. 

The teachers participated in 10 activities in the first phase and three activities during the 

second phase.   

Day One 

The six activities the teachers were engaged with on the first day were rating of difficulty of 

some algebra questions, algebra problem solving, examining students’ solutions, discussing 

language issues and misconceptions in beginning algebra, and learning the Newman language-

based error analysis procedure.  For each activity, the purpose of the activity, the teachers’ 

responses, where relevant, and some transcript excerpts are described.  
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Activity One: Teachers’ views about the difficulty level of algebra questions  

All the teachers individually rated each of the 15 items on the students’ algebra pre-test in 

terms of how difficult it would be for their own students to solve. To do this, each teacher was 

given a copy of the pre-test and asked to rate each question on a scale of one (very easy) to 

five (very difficult). The purpose of this activity was to assess the teachers’ knowledge of the 

difficulties their students may face when solving algebra questions. The rating may also 

indicate their awareness of the abilities and conceptual understanding of their students, which 

Ball et al.(2008) described as important components of teachers’ knowledge of content and 

students in mathematics teaching.  

The mean rating score, standard deviation and ranks of the questions in increasing order of 

perceived difficulty are presented in Table 4.1.  

Table 4.1: Teachers’ mean rating scores and rankings of 15 algebra questions (n=13) 

 
                                                Question 

Mean 
rating 
/5 

Standard 
deviation 

Ranking 
from 
easiest 

y× y × y =  ..........  1.62 .768 1 

Find the value of x: 7x = 21            1.69 .751 2 

Simplify  as far as possible 1 + x + x    2.00 .577 3 

Simplify  as far as possible 3m + 5n + 4m + 6n    2.00 1.080 4 

Find the value of x: 2x – 2 = 10               2.08 .863 5 

Find the value of x: 21x = 7     2.62 1.325 6 

What is the number that is five less than x?        2.85 .689 7 

A basket costs eight naira and a bag costs c naira more than the 
basket. How much does the bag cost?   

3.15 .689 8 

If d is the number of dogs and c is the number of cats, write in 
algebra: There are four more dogs than cats.                  

3.15 .899 9 

Write in algebra: There are twice as many pencils as biros (let p be 
the number of pencils and b be the number of biros). 

3.15 .899 10 

Write in algebra: There are three more caps than hats  3.23 .832 10 

Mary has x oranges and Bisi has four more oranges than Mary. How 
many oranges does Bisi have?         

3.31 .947 12 

There is  a   b number of sweets in a packet. A girl has two packets of 
sweets and gives her friend six sweets. How many sweets does she 
have remaining?  

3.38 1.121 13 

If s is the number of students and t is the number of tables, write in 
algebra: There are three students for every table.     

3.69 1.109 14 

Sam has x bananas and Peju has p bananas. Peter counts the number 
of bananas each of them have and finds they are the same.  Sam said 
you could write this as x=p, but Peju said that x and p are different 
letters and so cannot be the same. Who do you think is correct?     

3.77 1.092 15 

Note. Teachers rated questions on a scale of Very easy=1, Easy=2, Okay=3, Difficult=4, Very difficult=5.   
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All of the questions with relatively straightforward symbolic representations were rated as 

easier than all of the word problems involving interpretation, with more than half of the 

teachers categorising them as very easy or easy for their students to solve. Two-thirds of the 

teachers felt that most of the questions (11 /15) were easy or adequate for their students to 

solve (for a detailed analysis of this, see Appendix 14).   

Many of the word problems that required the quantities of two objects to be equivalent to one 

another were rated as not particularly difficult, while the question perceived as the most 

difficult was the lengthiest word problem and required only the knowledge that the algebraic 

letter was a quantity.  The questions with large standard deviations in comparison to others 

suggest that some of the teachers (between one and four) had differing opinions about the 

demands of the questions from the majority. 

Key Finding 4.1  
Prior to the PL, all of the word problems were rated to be more difficult to solve than mainly 
symbolic questions. The most difficult symbolic question was a linear equation that had a 
fraction as answer. Two-thirds of the teachers perceived that 11 of the 15 questions, including 
three word-equations with two pronumerals, were okay. The question perceived as most 
difficult did not need any mathematical operation, only the knowledge of a letter as a quantity. 

 

 

Activity Two: Solving algebra word problems 

Each teacher was given a sheet of paper with two algebra word problems; the ‘student 

professor’ and ‘cheesecake’ questions taken from the study by Clement, Lochhead and Monk 

(1981). Two words in one of the original questions, ‘cheesecake’ and ‘strudel’, which might be 

unfamiliar to the teachers, were changed to ‘cake’ and ‘sandwich’ respectively. The teachers 

individually solved the questions in the space provided and their sheets were collected. The 

purpose of this activity was to enable the identification of any algebra misconceptions which 

the teachers also might have. The purpose of this was to address them during the program 

because teacher subject mastery is so crucial for success in mathematics. 

At the close of the first day, the Researcher examined the teachers’ written solutions. One 

teacher answered the first question correctly while no one had the right answer to the second 

question. MacGregor’s (1991) classifications were used to interpret the teachers’ incorrect 

answers. The questions and the teachers’ solutions are provided in Table 4.2. 
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Table 4.2: Teachers’ solutions to algebra questions (n=13) 

Question Responses Number   
(n=13) 

Percentage Interpretation 

1.  Write an equation using 
the variables S and P to 
represent the following 
statement: “There are six 
times as many students as 
professors at this university.” 
Use S for the number of 
students and P for the 
number of professors. 
 

S = 6p 1 7.7 Correct answer 
6s = p   5 38.5 Error-reversal  
6ps 3 23.1 Error-Product/ 

sum confusion 
6s>p  2 15.4 Error-Inequation 

6s + 6p  1 7.7 Error-Lack of 
equation  6s + p  1 7.7 

Representation: S 
represents students, p 
represents professor  

6   46.2 Error-Letter as a 
label 

2.  Write an equation using 
the variables C and S to 
represent the following 
statement: “At Mindy’s 
restaurant, for every four 
people who ordered 
cheesecake, there are five 
people who ordered strudel. 
“ Let C represent the number 
of cheesecakes and S 
represent the number of 
strudels ordered. 

4s = 5c   0 0.0 Correct answer 
4c = 5s  6 46.2 Error-Reversal 
4c + 5s   6 46.2 Error-Lack of 

equation 
cs  1 7.7  Error-Product/ 

sum confusion  

Representation: C 
represents cake, s 
represents sandwich  
 

4 30.8 Error-Letter as a 
label 

 

In Clement’s (1982) study with 150 engineering students, 37%  and 73% wrote the wrong 

answer for questions one and two respectively, while 68% of the wrong answers were reversal 

errors (that is, 6s = p and 4c = 5s). In this activity with the teachers, 39% and 46% made 

reversal errors for the two questions. The teachers’ solutions to the problems also revealed 

the misconception that the letter is a label for a word or an object. In some of the answers, 

expressions were generated instead of equations. 

Key Finding 4.2 
Many of the teachers themselves seem to have the misconception that the pronumeral letter 
in an equation is a label for a word or object, and many made reversal errors.  

 

 

Activity Three: Examination of students’ solutions to algebra question 

The teachers were divided into four groups and each group was given a sheet of paper with 

five beginning algebra questions and some incorrect student solutions adapted from studies by 

Booth (1984), MacGregor (1991) and from Stacey and MacGregor (1997). The teachers were 

not told if the solutions they were given were right or wrong.  For each question, the teachers 
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were required to provide the correct answer to a wrong one, or confirm a correct answer, and 

identify the mistakes that they believed might have led to the students’ incorrect solutions. 

The second part required each group to choose one person who presented their findings to 

the larger group for discussion.  

The purpose of this activity was to help the teachers see the issues from the students’ 

perspective and to find out how much they knew about the existence of algebra 

misconceptions. Herbel-Eismann and E.D.  Phillips (2008, p. 295) asserted:  

Through examining students’ work, teachers generate evidence for claims 

related to what they think students know. In the process, they often find 

opportunities to re-examine their own knowledge.  

The presentation format agreed upon was for each group to present their findings on the 

question number that corresponded to their group number while the other groups listened 

and commented afterwards. Questions one and two generated a lot of discussion and 

different opinions among the teachers. There was an indication that some of the teachers 

might indeed have some algebra misconceptions. By the third question, it seemed the teachers 

had a clearer understanding and reports on the remaining three questions were generally 

agreed upon. The five questions and the teachers’ responses now reported upon. 

Question 1.  Write in algebra: The number y is eight times the number z. Students’ incorrect 

answers: 8y = z, y = 8 + z, y + 8 = z. 

It was very surprising that some of the groups arrived at wrong answers and by the amount of 

discussion the question generated. It took some time before there was an agreement that that 

correct answer was y = 8z, which was not included among the provided solutions. It seemed 

some of the teachers (given pseudonyms T1 – T13) might have been confused about how to 

interpret and transform the question. The transcript below provides an insight into this. 

Researcher: What is the correct answer? 

T10 (Group 1 representative): The answer is 8y = z. 

(Mixed responses of ‘yes’ and ‘no’ from the larger group follows) 

T11: No, y = 8z is the answer, none of the answers is correct. 

Researcher: Group 1, why do you think it is 8y = z? 

T3: For me, I think the number y is now greater than z by eight. To me, 
eight multiplied by y gives z. ....That’s why I said 8y = z. That’s for me. 
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Researcher: The rest of us, do we think it is 8y = z or who supports this 
answer? 

T13: I support. Suppose z is equal to one, what will be the value of y? If 
z is two, then what is y? Being specific first, and then you generalize 
helps. 

T7: We are told that y is eight multiplied by z 

(General laughter and then after some more deliberation) 

T5: It is a word problem, not an assumption. It is clear. The number y is 
eight times the number z, so y equals eight times z. 

T4: The answer is y =8 z  

Researcher: Do we have y = 8z there? 

General response: No 

Researcher: Do we now agree that the answer is not there? 

General response: Yes 

Researcher: If we can run into this type of problem = 

T10: =what about the children?  (Professional learning workshop, 
29/3/2011) 

After agreeing on the answer, the teachers concluded that misinterpretation of the problem 

and the use of ‘more’ instead of ‘times’ led to the students’ incorrect solutions. The teachers 

also proffered possible reasons about why their students may also arrive at the given incorrect 

solutions. The excerpts are given below. 

T10 (Group 1 representative): They did not interpret the question correctly.  

T3: There is a language problem, their interpretation of ‘is’ may not be taken 
as ‘equal’. 

T7: He’s thinking the question is y is eight more than z. That is, plus, not eight 
times 

T13: Any question that involves algebra must be very, very clear. If they said 
’the number y is equal to eight times the number z’, then we can do it and it 
will be clear. I would leave it as ‘number y is equal to eight times the number 
z’ for my students. 

T11: The students misunderstood the algebraic statement (Professional 
learning workshop, 29/3/2011) 

The teachers believed that the inclusion of the word ‘equal’ in the question might have made it 

more specific and easier for the students to solve. The importance of the mathematical term 

‘times’ and its operational representation by multiplication was noted by the teachers.     
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Question 2.  Write in algebra: s is eight more than t. Students’ incorrect answers: t = s + 8, 8s = 

t, s = 8t. 

There was still some deliberation and resorting to the use of specific values before the 

teachers agreed that the correct answer, s = t + 8, was not given. The transcript below captures 

this belief. 

Researcher: What is the correct answer? 

T6 (Group 2 representative): The answer is the first one. 

Researcher: That is, s + 8 = t. Do we agree? 

T3: The answer is not there. S is eight more than (emphasis) t, that is, 8 + t. 

T11: Because s has eight extra, more than t 

T5: The answer is the first one 

T12: s is already more than t, so we are now adding eight 

T10: The statement given does not indicate = 

T12:= s is already eight more than t (with emphasis) 

T11: The answer is t = s + 8  

T4: Let us represent it with numbers, let’s assume s = 2, then t = 8 + 2 with 
option a 

T12: Then t will be equal to ten. 

Researcher: Look at it in relation to the question, not the answer you are 
giving. If s is two, then what will be t? 

T3: If s is two, then t will be minus six. 

(After more specific examples and further discussion) 

T8: The answer is not there, it is s = t + 8 

Researcher: Is the answer there or not there? 

General response: Not there (General laughter)   (Professional learning 
workshop, 29/3/2011) 

The teachers claimed that they selected wrong answers because of their misinterpretation of 

the meaning of the letters. The teachers also proffered possible reasons about why their 

students might also arrive at the given incorrect solutions. The reasons were associating eight 

with variable s, resulting in t being of greater value than s, following the left-right reading, or 

the teacher’s pedagogy. The excerpts follow. 
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T2: They will interpret the question from the back, from the last word. S is 
eight more than, seeing it as s plus eight is what gives t. 

T9: They put it down after reading the question. It is what they read they 
put down. So they interpret it in the reverse order. 

T10: Putting the statement into mathematical form is what is giving us the 
problem. (Professional learning workshop, 29/3/2011)                            

Question 3.  Write in algebra: add 4 onto 3n. Students’ incorrect answers: 3n4, 7n,7,12 

The answer to the question, 3n + 4, was easily agreed upon and a lack of familiarity with the 

word ‘onto’ was said to be the reason for the mistakes. Language was identified as being 

important. The word ‘onto’ was identified by the teachers as unfamiliar to their students and 

they felt the use of the familiar word ‘plus’ would be preferable. Some teachers felt ‘onto’ 

could be thought to be a typographical error by their students or to mean multiply.  

T10: They will not understand the word ‘onto’. We don’t normally come 

across it. 

T3: They are not familiar with the word ’onto’. If my students see it, they’ll 

think that I made a typographical error and that ‘onto’ should be ‘n to’ and 

write 7n thinking it should be ‘add 4n to 3n’.  

T11: They are not familiar with the word. 

T5:  Some may think ‘onto’ means multiplication. There is no reason to 

multiply. The word ‘add’ is familiar to them. (Professional learning 

workshop, 29/3/2011) 

Question 4.  David is 10 cm taller than Con. Con is h cm tall. What can you write for David’s 

height? Students’ incorrect answers: 18 cm, Dh = h + 10, h = D + 10, 160 cm, h10. 

The teachers quickly agreed that the correct answer, h + 10, was not given. They all seemed to 

feel that either the students did not read the question correctly or that they just picked the 

values and put them together, or they misinterpreted the question and they mixed up the 

variables. 

Question 5. Simplify if you can: 2a + 5b. Students’ incorrect answers: 7ab, 8ab, 12  

 Agreeing readily that the answer, 2a + 5b, was not given, the teachers believed that the 

students did not understand or that they had no knowledge of addition and multiplication of 

algebraic terms. 

T11: Most don’t know that ‘a’ cannot be added to ‘b’. As teachers we 
should tell them that ‘a’ is like yam and ‘b’ is like a pencil.  The two are not 
the same. 
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T6: In reality, can we not add them? We can add the items but here, they 
are not the same. 

T10: The principles guiding addition of variables in algebra has not been 
understood by the students = 

T7: = That if the variables are different they cannot be added 

T3: They need to be able to identify the unknown. We tell them 
that...called unlike terms. We can only multiply them, we cannot add them. 
(Professional learning workshop, 29/3/2011) 

As we concluded the activity, the teachers admitted that many teachers use few word 

problems because they do not understand them themselves or because of the difficulty the 

students experience in interpreting them. The excerpt below explains further. 

T11: Most teachers don’t understand word problems. 

T6: Our students in general are not exposed to word problems and we use less of it in 

our classrooms. 

T4: It is because of the interpretation 

T10: Because it is difficult. Time is also another problem.  

T8: We want the easy way out. When it crosses your mind that the students don’t 

understand, we leave it out. (Professional learning workshop, 29/3/2011) 

None of the teachers identified the words ‘simplify’ or ‘algebra’ as potential sources of 

difficulty. Their responses did not provide evidence that they were aware of many of the 

algebraic misconceptions about variables and expressions. 

Key Finding 4.3 
The teachers during the professional learning workshop do not seem to be aware that the use 
of the letter as a word/object is a misconception and a strong reason for the errors. Some 
teachers themselves appeared to initially struggle with the meaning of some questions and 
they also appeared to be unaware of misconceptions about variables and expressions. 
Teachers reported that they present few word problems in class because their students find 
them difficult. 

 

 

Activity Four: Language issues in the teaching and learning of algebra. 

The purpose of this general group discussion was to engage the teachers in thinking about the 

importance of mathematical and English language within the English as a Second Language 

(ESL) setting. The teachers admitted that ESL affects the students’ learning ability because it 
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provides an avenue for misinterpretation of questions. The following extract typified their 

general belief. 

T5: In the area of interpretation, they [students] might not really get the meaning of 
what is being written.  

T2: Some JS 1 students cannot read English well, so they do not read the questions 
(Professional learning workshop, 29/3/2011) 

Some of the teachers mentioned ways they addressed the situation in their classes. These 

include:  

Using language suited to the students’ ability level while recognising that mathematical 

language at the secondary and primary level differs. 

T8: In terms of maths, relating to the students in English, we have to come 
to the level of the students. It depends on the level of the students you are 
teaching, you explain so that they can understand. 

T5: The mathematical terms used at the primary level are what they are 
familiar with.  

T10: In JSS, level of mathematical language should be different from the 
primary school. The English teacher has a vital work to do, to help the 
maths teacher. One of the problems is the student interpreting the 
mathematical English. If they understand English, they will learn the 
meaning of words like ‘twice’ and build up other words with time. The first 
solution for word problems is the English teacher. If they [students] don’t 
understand English, I don’t know how they will understand these words in 
maths word problems. (Professional learning workshop, 29/3/2011) 

Giving notes to the children that contains mathematical English. 

T13: English language and mathematical language are two different things. 

In my time, we just work maths but nowadays you have to read maths and 

work maths. Some people don’t give notes but it is important because 

through it they know English and mathematical English...the way you deal 

with mathematical language is different from English when you transcribe 

it. (Professional learning workshop, 29/3/2011) 

Explaining the difference between meanings in English and mathematical language before the 

start of the lesson. 

T6: The only thing is that it requires time. One has to be patient with the 
students. ... When we give statements in school, take time to tell and 
explain to them the difference in meaning between ordinary and 
mathematical English....  Not that the students are poor in English, but we 
need to relate the knowledge in English to mathematical terms. 

T11: If I want to teach a topic, ... I need to give students the meaning of 
related words and explain to them before the lesson starts at all. For 
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algebra, I will give them the likely words, things related to algebra that they 
will come across. (Professional learning workshop, 29/3/2011)               

Explaining the meaning of new related words and ensuring that students write them at the 

back of their notebooks. 

T3: ....and even tell them to take notes at the back of their exercise book so 

that anytime they come across it again, they can always refer to it. In the 

next class we should relate it; if we keep referring to it there will be 

continuity in what they are learning. (Professional learning workshop, 

29/3/2011) 

The role of an individual’s first language in learning word problems was also discussed. Many 

of the teachers believed that the use of the first language at times to explain concepts helps 

students to understand. For example: 

T11:  If it were in my language, I don’t need to think twice before I know 
what you are saying. 

T1: If it is in their [students’] language, they will understand. 

T7: At times there are things you want to say, one may not have the exact 
words. But if it is your own language, you will know what to say. 
(Professional learning workshop, 29/3/2011) 

 

Key Finding 4.4 
The teachers believed that students need to be taught the language of mathematics, which is 
often different from English Language, and that a better understanding of the latter will 
facilitate understanding of word problems. That explaining concepts to students in the first 
language improves and accelerates understanding is also the belief of many teachers. 

 

Activity Five: Introduction to the Newman language-based error analysis procedure 

The teachers were introduced to the first part of the procedure which Newman called the 

“performance strategies” (1983b, p. 25). The aim of this activity was to assist the teachers to 

gain familiarity with, and to reflect on the importance of each strategy. The teachers were 

engaged through questioning to reflect on and identify the importance of each of the steps in 

solving word problems.  

The reasons given by the teachers suggest that they think most of the strategies would prevent 

errors with computation rather than comprehension. The other three performance strategies, 

carelessness, motivation and task form, which may contribute to students’ difficulties, were 

also mentioned.  The table below provides a summary of the teachers’ reflections. 
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Table 4.3: Teachers’ reflections on the importance of Newman performance strategies (n=13) 

 Performance strategy                     Importance 

1 Reading recognition You cannot solve without reading 
Recognition of things you may not otherwise notice 
It demands a conscious effort on the part of the reader 
Self-correction is made possible when you read aloud. 
 

2 Comprehension Allows for interpreting key words in their own way 
If correct, helps to solve the problem. 
 

3 Transformation Many problems occur at this stage because of the 
variables. 
If done correctly, it is easy to solve the problem 
Choice of letter used as to represent the unknown 
 

4 Process Skills Shows correct use of operations and calculations 
 

5 Encoding ability Indicates the solution to the question 
Tells you if the answer is correct or not 

 

 

Key Finding 4.5 
Most of the teachers’ reflections about the importance of the Newman strategies were 
directed towards obtaining a correct solution rather than ensuring understanding.  

 

 

Activity Six: Misconceptions in Beginning Algebra (1)   

The purpose of this activity was to engage teachers in meaningful learning of some common 

misconceptions about the concept of a variable. These are widely described in literature and 

were discussed in Chapter 2. The intention was also to help clear any possible misconceptions 

about the concept of a variable that might have been held by some of the teachers. 

Common misconceptions about a variable that were discussed included: 

 a letter is a word;  

 a letter is an object/label;  

 a letter has a fixed value from its alphabetical position;  

 a standalone letter has a fixed value of 1;  

 a letter is a fixed number;  

 letters have place values; and  
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 different letters cannot have the same value (Booth, 1984; Küchemann, 1981; 

MacGregor & Stacey, 1993b; Perso, 1993) 

To do this, the researcher made use of Ormond’s (2011a) algebra slides which gives insights 

into students’ perspectives about the concept of a variable, and misconceptions that may arise 

in presenting a particular activity (see Appendix 15).     

Day Two 

The four activities of the second day built upon the learning and collaborative experiences of 

day one. The purpose was to develop further insights into algebraic misconceptions, and the 

Newman procedure and other language-based approaches that might be used to teach word 

problems. Each of the activities is described in the next section. 

Activity Seven: Misconceptions in Beginning Algebra (2)   

The purpose of this activity was to engage the teachers in active whole group discussion in 

order to promote meaningful learning and reflection about why students may make mistakes 

when solving questions involving concepts of expressions and equations. Ormond’s slides, 

which enabled teachers to put themselves in the ‘shoes’ of a student being introduced to 

algebra, and some word problems were used to introduce this activity. The common 

misconceptions about expressions and equations discussed were: 

 the final answer must always be ‘closed’; 

 an expression cannot be an answer; 

 equations evolve from literal translation; 

 equations evolve from literal visualization; 

 equal sign means “I should sum up and write the total”; and 

 equal sign means literal equivalence (Kieran, 1981; Ormond, 2011b; Sfard, 1991)  

The activity provided an opportunity for the teachers to update their knowledge, and to 

address and assist one another to correct misconceptions of the letter as an object. It was 

remarkable that this activity generated a good deal of discussion, particularly when examining 

equations arising from ratio problems. The excerpt below provides an insight into the pattern 

of discussion, and the knowledge and beliefs of the teachers about the ’letter’. 

T13: Is there any time we can use a variable to represent an object? 

Researcher: Does anybody want to answer? 

T10: ... Since yesterday, I’ve been thinking of it. Using a variable to 
represent a quantity instead of an object...But for the students to 
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understand better in a simple way, like cup stands for c that’s why we 
teachers like to use the letter. 

T5: We should accept now that it is wrong. 

T1: Like now, the word problem, let me say for example: I think of a 
number, eight is added and the result is twenty. Are you now telling me 
that the number I’m thinking of, that number I’m thinking of within me can 
be represented by any alphabet? 

Many voices: Yes 

Researcher: Is the number an object or quantity? 

Many voices: It is a quantity 

T1: That number can now be represented by any alphabet? 

Many voices: Yes 

T1: It is a quantity 

T11: You do not say n is for number 

T1: So it is not compulsory that it must be n? 

T11: It is not compulsory 

T12: It is now a quantity 

T7: You can use any letter but there should be an indication somewhere to 
show let x represent... (Professional learning workshop, 30/3/2011) 

The teachers also assisted each other to clarify issues about the concept of equations as we 

looked at ratio problems. An excerpt of a transcript given below reflects the learning that 

occurred. 

T11: At this point, can we now conclude that in translating questions to 
algebraic form, can we say what I have on my left hand side must be equal 
to what I am going to have on my right hand side? Is it compulsory that it 
must be equal? Can we say what I have on my left hand side has to be 
exactly equal to what I have on my right hand side? 

Researcher: Let us answer. 

Many voices: Yes  

T11: Is it in all cases the translation has to be balanced?  

T3: Yes, it has to be. I want to use simultaneous equations as an 
example...the answer must be the same. That is the meaning of ‘equal to’. 
If what you have on the left hand side is not equal to what is on the right 
hand side then the values are wrong... 

T11: So in every translation, after solving it, if I don’t have, for example, if 
two is here (raises left hand)  and I don’t have two here (raises right hand), 
it is wrong. 
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T4: As long as there is an ‘equal to’ there (with emphasis) 

T9: Yes 

T11: Equal to (with emphasis) (Professional learning workshop, 
30/3/2011) 

 

Key Finding 4.6 
On the second day of the professional learning, many of the teachers were just becoming 
aware for the first time that a letter represents a quantity and not a label for an object. 
Misconceptions that some of the teachers had about equality, equations and the reversal error 
surfaced on the second day of professional learning and were addressed. 

 

 

Activity Eight: Newman error analysis procedure  

The purpose of this activity was to introduce the teachers to the Newman interview protocol 

and error analysis procedure as a language-based diagnostic tool to detect students’ 

difficulties and to provide necessary remediation (Newman, 1983b). The teachers discussed 

the procedure; however, the plan for the teachers to listen to one of the recorded interviews 

was aborted because of insufficient time. The procedure is given below. 

Newman Interview and Procedure:  

 It is to be carried out with individual students immediately after an incorrect first 

general attempt on the questions. 

  A friendly reassuring atmosphere needs to be created before the student attempts 

the questions a second time. 

  The Newman questions are then asked which helps to classify the error type that 

corresponds to where the student gets off track for each problem. 

 Each Newman question corresponds to an error type  

1. Please read the question to me. Reading error 

2. Tell me, what the question is asking you to do? Comprehension error 

3. Which method do you use to get your answer?  Transformation error 

4. Show me how you get your answer and talk aloud as you do it so I can understand how 

you are thinking. Process error 

5. Write down your answer. Encoding error           (Newman, 1983b, pp. 8-14) 

 

The procedure in its designed form as an individualised interview would be difficult to 

implement in many Nigerian schools due to the student population and teacher workload. Part 
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of the research purpose was to examine the feasibility of the use of the Newman interview 

procedure in a more general way so as to engage more students while at the same time 

identifying their errors. A general discussion followed about how the interview procedure 

could be adapted for general use in the classroom while teaching algebra, and how it could 

serve as a potential means of identifying students’ difficulties and misconceptions and 

addressing them. The adapted form was to be trialled by the teachers during the six weeks 

teaching period after the professional learning program.  

In the adapted form, it was decided that instead of the usual pattern where one student 

answers the whole question, different students would be called to answer each of the 

Newman questions. Some of the public schools teachers observed that that they might 

sometimes have to read the questions and have the students read after them because some 

students have limited verbal abilities. It was acknowledged that the strategy would improve 

student attention and engagement, as well as reduce teacher-talk. 

T3: Some of them cannot read well. 

T8: They will read after you.  

T1: All of them will be attentive 

T4: You will be able to correct their mistakes easily 

T2: It will not only be the teacher talking all the time. (Professional learning workshop, 
30/3/11) 

Activity Nine: Examination of solutions to algebra questions 

In this activity, the teachers examined two sets of incorrect algebra solutions. The aim of the 

activity was to allow the teachers to analyse and reflect on the solutions, discuss these in 

groups, and arrive at the correct answers and the likely misconceptions which gave rise to the 

incorrect solutions. Each group of teachers presented its findings while the other teachers 

commented on their report.  

The first set of solutions comprised six of the answers the teachers provided to the two 

questions in Activity Two completed on the first day of professional learning. This solution set 

was not in the initial plan as the Researcher did not anticipate then that the majority of the 

teachers’ responses would be wrong. Their responses prompted the Researcher to include the 

errors they had made. The teachers were to provide the correct answer to each question and 

the most obvious likely misconceptions for the incorrect solutions. Most of the teachers were 

able to come up with the correct answers, as Table 4.4 shows. 
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Table 4.4: Teachers’ self-corrected responses to algebra questions (n=13) 

            Question Provided 
solution 

Response Likely 
misconception 

Error type 

Write an equation using the 
variables S and P to 
represent the following 
statement: “There are six 
times as many students as 
professors at this university.” 
Use S for the number of 
students and P for the 
number of professors. 
 

6p = s Correct   

6s = p 
 
 
 
 

Incorrect 
 

Letter is an object, 
literal translation 
and visualisation, 
use of ratio as 
equation  

Transformation 

6ps  Incorrect 
 

Left –right reading, 
letter is an object, 
use of expression as 
equation  

6s + p Incorrect 
 

Letter is an object, 
literal translation, 
Use of ‘more’ 
instead of ‘times as 
many’ 

Write an equation using the 
variables C and S to 
represent the following 
statement: “At Mindy’s 
restaurant, for every four 
people who ordered cake, 
there are five people who 
ordered sandwich. “ Let C 
represent the number of 
cakes and S represent the 
number of sandwiches 
ordered. 
 

4c = 5s Incorrect 
 

Literal translation, 
letter is an object 

Transformation 

4c + 5s Incorrect 
 

 literal visualisation, 
use of ‘and’ in 
literal translation, 
letter as an object, 
use of expression as 
equation 

 Correct 
response 
4s = 5c 

  

 

These activities provided an avenue for the teachers to identify, and correct their mistakes, 

and to apply the knowledge and skills they had been developing in the professional learning. 

The second set of incorrect solutions comprised written student answers for five of the initial 

algebra test questions. Krebs (2005) stated that such activities provide teachers with insights 

to students’ understanding and opportunities for reflection. The teachers’ reasons suggest 

they now had more awareness that students’ mistakes might result from misconceptions or 

inadequate understanding the language of mathematics.  The students’ solutions and the 

teachers’ classification of their likely misconceptions are presented in Table 4.5.  
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Table 4.5: Teachers’ classification of students’ likely misconceptions for given wrong answers 
(n=13) 

    Question Incorrect 
response 

Likely misconception 

1. Write in algebra: there are twice 
as many pencils as biros (let p be 
the number of pencils and b the 
number of biros). 

 b + 2 Letter is an object, 
‘twice’ to mean 
‘two’. 

2. A basket costs eight naira and a 
bag costs c naira more than the 
basket. How much does the bag 
cost? 

8 + c = 8c Product/sum 
confusion or ‘closing’ 
the answer 

3. Y x y x y =  y x y x y = 3y Product/sum 
confusion 

4. Sola has x bananas and Peju has 
p bananas. Peter counts the 
number of bananas each of them 
have and finds they are the 
same. Sola said you could write 
this as x=p, but Peju said that x 
and p are different letters and so 
cannot be the same. Who do you 
think is correct? 

  x and p are not 
the same, Peju is 
correct 

Letter is an object 

5. Write in algebra: There are three 
more caps than hats. 

3 + c Letter is an object, 
literal translation, no 
equation formed  

 

The teachers’ reflections provided them the opportunity to identify some misconceptions 

about variable, expressions and equation amongst their students.  

Key Finding 4.7 
During the professional learning, the teachers identified the cause of their initial error as 
transformation; they self-corrected their wrong use of a letter as a label and object, and the 
reversal error in the word problems. The teachers were also able to identify some of the likely 
misconceptions that led to the students’ wrong answers. 

 

 

Activity Ten: Language-based approaches 

This general activity was intended to update and remind the teachers about language-based 

activities which might help to enrich their teaching. The importance of this activity stems from 

the fact that English language, which is a second language to both the students and teachers, is 

the language of communication in the classroom and in textbooks. In addition to this, 
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mathematics has its own language and students have to learn and be able to use this in order 

to develop literacy in the subject which is core to success in mathematics. 

Simple explanation of mathematical language, the use of familiar words in questions and a 

conscious engagement of students in learning new vocabulary as it occurs in the class (which 

the teachers had mentioned earlier in Activity Four) were re-emphasized. Other approaches 

discussed were the teacher writing and leading students to pronounce new words; limiting the 

number of new words introduced in a lesson; allowing students’ multiple use of a new word to 

ascertain understanding; encouraging correct use of vocabulary and language; and teacher 

revoicing (Kersaint et al., 2009; Setati, 2005).  

Other strategies were reviewed. Mathematical discussions and literacy may also be enriched 

through engaging students in class discussions; suggestions of alternate ways of verbalizing 

algebraic expressions; expressing information with multiple representations; and identifying 

the key words and the mathematical operations to be used. Emphasis was to be on 

transformation once comprehension of the question was established.  The teachers were also 

encouraged to make use of the pair – share – talk strategy, and the pause and wait time 

(Kersaint et al., 2009; Oviedo, 2005). 

Summary of day one and day two activities 

The professional learning intervention program aimed at updating teachers’ knowledge of 

misconceptions about the concept of variable, expressions and equations. It also introduced 

teachers to the various language-based approaches, particularly the Newman procedure which 

is a way of finding out why and where students make language process errors in solving 

problems. The teachers were actively engaged in meaningful learning and reflections through 

interactive discussions, group work and assistance to each other. At the end of the two days, 

the teachers were able to recognise their own misconceptions and correct their errors. They 

could also identify some likely misconceptions and errors that their students might make.  

Day Three – Evaluation of Intervention 

The second phase of the professional learning intervention program was held after six weeks 

of teaching algebra back in their classrooms. During the six weeks, the Researcher provided 

support in terms of encouraging the four case study teachers and answering their questions 

which were mainly about class management. The purpose of the day three program was for 

the teachers to share experiences and offer suggestions on emerging issues concerning algebra 
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teaching and learning. The three main activities that took place were an evaluation of trialled 

approaches, a focus group interview, and discussions and further suggestions by the teachers. 

Activity Eleven: Review of approaches used by the teachers 

The teachers in groups of two or three were given a sheet of paper with questions asking them 

to review the approaches used to teach algebra within the intervention period. This reflective 

activity was intended to allow for an assessment and initial sharing of experiences in small 

groups. The analysis of their written review showed that all the teachers had trialled the 

Newman procedure in their classes and a majority (83%) of them reported that it worked well 

for them. A summary of the strategies attempted by the teachers is presented in Table 4.6. 

Table 4.6: Teachers’ use of language-based approaches (n=12) 

 Strategies used by the teachers                                                                                                                     Number of teachers (n=12) 

  Tried Worked well Difficult  

1 Newman procedure in class 12 10  
2 Explain mathematical language simply  9 7  
3 Engage students in class discussions 8 8 2 
4 Use familiar words in questions 7 7  
5 Use of revoicing 7 7  
6 Engage students to suggest alternate ways of 

verbalizing algebraic expressions 
7 7 5 

7 Encourage correct use of vocabulary and 
language 

5 5  

8 Write and lead students to pronounce potentially 
difficult new words 

5 5 2 

9 Express information with multiple 
representations 

5 3  

10 Limit the number of new words introduced in a 
lesson 

3 3 2 

11 Conscious engagement of students in learning 
new vocabulary as it occurs in the class 

3 3 2 

12 Allow for students’ multiple use of new words 2 2 3 
13 Pair-share-talk   7 
14 Frequent pausing and use of wait time   7 

Note. Responses of ‘difficult’ were not tried by the specified number of teachers 

A majority of the teachers also reported that the use of familiar words and simple language in 

teaching worked well for them. The teachers gave reasons for the approaches with which they 

had successes. The students’ conceptual understanding, classroom engagement, creativity and 

success in problem solving were reportedly aided by the approaches. Approaches that were 

effective for five or more of the teachers and the reasons given are presented in Table 4.7.  
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Table 4.7: Strategies teachers found effective and the reasons offered (n=12) 

   What worked well for you?                  Why 

Newman procedure in class Shows students’ level of understanding 
of the question  
Allows them to learn easily  
The students are familiar with questions 
Allows the students to point out mistakes 
Useful for other mathematics topics 

Explain mathematical language simply Enables better success in problem solving  
Helps students acknowledge procedures  
Aids understanding of developing 
concept 

Engage students in class discussions It helps individual participation,  
Allows for new ideas 

Use familiar words in questions Aids understanding of the concept  
Allows easy understanding and retention  
Helps students to focus on the particular 
question 

Use of revoicing It aids retention, 
It enables understanding of the concept 

Engage students to suggest alternate ways of 
verbalizing algebraic expressions 

Allows for creative thinking 
Sometimes students provide solutions 
not thought of by the teacher  
Helps most especially those that can 
express themselves to ascertain their 
understanding 

Encourage correct use of vocabulary and language Helps in understanding concepts and 
questions  
Helps students to express themselves 
better 

Write and lead students to pronounce potentially 
difficult new words 

It helps recall, aids concentration,  
Helps mastery of pronunciation 

 

The approaches were reported to help the students’ development of the language of 

mathematics and their ability to use it in mathematical discussions. 

Key Finding 4.8 
The majority (83%) of the teachers reported they had success with the use of the Newman 
procedure; many also had success with the other language-based approaches.  The teachers 
reported that the approaches facilitated students’ use of the language of mathematics, their 
conceptual understanding, class participation and problem-solving ability.   
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Some teachers had difficulties in implementing some of the approaches such as group work 

and wait time because of the class size and their students’ verbal ability. The approaches that 

five or more of the teachers found to be difficult and reasons given for those difficulties are 

presented in Table 4.8. 

Table 4.8: Strategies teachers found difficult to implement and the reasons (n=12) 

     What was difficult?                         Why? 

Pair-share-talk Overcrowded class, time consuming  

Frequent pausing and use of wait time It distracts their attention, makes the 
class dull, students give different 
meaning (something is wrong) 

Engage students to suggest alternate ways of 
verbalizing algebraic expressions 

Creates confusion, limited ability to 
express themselves 

 

Key Finding 4.9 
Sixty per cent of the teachers mentioned it was difficult for them to use group work and the 
pause and wait time approaches. 

 

Focus Group Interviews 

The focus group interview was conducted with the teachers in two separate groups. The initial 

plan was to employ one group but the teachers were not all available when the interview was 

to start, so the Researcher decided to interview them in two separate groups. The responses 

to the three questions asked in each group were transcribed and coded, and common 

categories were identified. There were also some responses peculiar to the different groups. 

The next section reports the themes that emerged from the data. 

Difficulties students encountered solving word problems 

The main difficulties mentioned by both groups were students’ understanding of English and 

mathematical language, transforming of the question and their knowledge of mathematics. 

Other difficulties are grouped under ‘Support System’. A summary of the teachers’ beliefs 

about each difficulty and some of their comments in each category follows. 

English language 

Teachers said that some students may not understand what they read or may encounter 

unfamiliar words. Many teachers noted that the students often gain understanding if such 

words are said in the student’s first language. However, teachers whose first language differed 
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from the one of the local community advocated for more use of familiar words, diagrams and 

other alternatives. 

T6: The first thing I feel the student have is the language barrier. ..Ask them 
to read it, they may read but they may not understand. They read just 
literally. They don’t know the meaning... 

T8 ..they will be looking at you that what is carton?... 

T7: I just want to say there is nothing like the mother tongue. ...I can 
remember in those days, difficult words, they will use Yoruba [a first 
language] to explain to us... 

T12: If the students know...always English ..they will sit tight...if they don’t 
understand, you use other things and ways... it’s not until you bring in the 
vernacular... 

T6: When you stand in front of 150 students, you understand, and you are 
talking and you are sweating (emphasis). You have bitterness in your mind 
because the response of the students, you cannot compare (emphasis) 
with the level of labour you are putting. By the time you discover you need 
to make some sense and just say a few words in vernacular, the students 
get it.... (Focus group, 6/7/2011) 

Mathematical language 

The teachers explained that the difficulty with the mathematical language arises because at 

times it is unfamiliar to the students and differs from that used at the primary level. Some 

students also find it difficult to understand mathematical meanings of every day English words.   

T6: For instance, when you say ‘a certain number is added to two and the 
result is divided by five’. The student is confused because number one, that 
result, they don’t know what result means.  They may understand added 
but…may relate result to equal to....but the question says the result is. 
That’s where the confusion comes. 

T8: In a word problem ‘I think of a number and the number is multiplied by 
two and the answer is now doubled’. Say for example, the students don’t 
understand the word double. What they are familiar with is two.....they will 
be looking at you what do you mean by double? 

T3: So when they now come into the secondary school, that one will 
expose them. They start asking ‘aunty, what do you mean by twice? 
Though it is an English word but because they don’t hear it often, so they 
find it so, so difficult. (Focus group, 6/7/2011)  

Transformation 

 The ability to process mathematics with variables was identified as difficult. Some said the 

identification of necessary keywords was the problem.  
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T6: The interpretation of the word problem in mathematical terms is 
difficult for the students.  

T12: ...They still want to ask you ‘aunty, why should we bring letters into 
mathematics? It’s supposed to be numbers like one, two, three, four, why 
letters?’ ...you start telling them that since you don’t know the number, 
let the unknown number be the letter. That’s where the problem lies. 
Most of them will see the question and know the answer but they will not 
be able to write it down. Their problem is to interpret and write in 
mathematical form. (Focus group, 6/7/2011)  

 Knowledge of mathematics 

The teachers believed that some students have a weak primary schooling background in 

mathematics. Students are not taught negative numbers at the primary level and the use of 

non-specialist teachers all cause difficulties for the child, they claimed.  

T5: I think their problem is from the primary school, because their 
foundation is somehow weak. 

T1: In primary schools in public schools, the primary teachers, there are 
some things they cannot teach. 

T10:  In some private schools also 

T8: ...algebra has started from the primary school but you may not frame 
it as algebra form... they taught them two plus box is ten...at junior 
level...you now move away from the box...letter representing a 
value...they must have the fundamental root of word problems at the 
primary level. 

T7: …if we say subtract seven from five or subtract seven from ten, the 
students will be looking at you. (Focus group, 6/7/2011) 

 

Support system 

This theme was strongly stressed in both groups and the teachers were passionate over the 

issues. They believed that there may be a lack of parental support in terms of encouragement, 

while some students were known to miss levels at the primary school. Student’s lack of 

interest and the teacher’s pedagogy posed impediments to the students’ word problem 

solving capabilities.  

T3: And some of them, it is due to their parents. Some parents tell their 
children that ‘I did not know maths’, so telling the students that, some of 
the students just say ‘if don’t know maths it is not a crime. I inherit it from 
my parents’. Lack of interest is part of it. 
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T5: There is another problem at JS level. Some, they will move from 
primary four to JS one without doing primary five and six.  In my school, 
we have nine years in JS one. 

T10: A parent...wants the child to sit for common entrance we said no, the 
work the child has to know in primary five and six, if the child is not doing 
well in it, how does he/her want to cope in JS 1? The parent withdrew the 
child from the school. When they saw the child cannot cope, they had to 
bring him back from that school.   

T1: The problem is that the students themselves are not ready to learn 
and they are not helping the teachers...when you go through their notes,. 
all those things I’ve been writing on the board..they did not put down 
anything... I was going through the class work..half of the class did not do 
the class work. 

T10: No writing materials,..they loan from the teachers. 

T6: ..majority of teachers, they use x as unknown number....even the 
textbook when it says a number, it is x. ....we concentrate on x and y. 
That’s why if you use another thing they think it is another form.... 

T13: Some teachers, in algebra when they want to teach word problems 
and they cannot interpret the question themselves, they will not bother 
to use it as an example. They will only select the ones they know they can 
interpret themselves and that is what they will limit the students to. 

(Focus group, 6/7/2011) 

Key Finding 4.10 
Teachers believed that students have difficulties with understanding English and mathematical 
language, transformation of the question and knowledge of mathematics. They also believed 
that many of the students are very young and may need more support from parents and 
teachers. 

 

Algebraic misconceptions 

The teachers noticed many of the misconceptions about the variable, expressions and 

equations that were discussed in the first phase of the professional learning. They included the 

use of a letter as a fixed number, letters having an alphabetical position; using  letters as 

words, objects and labels; confusing addition and multiplication (product/sum confusion), and 

gathering up of all terms. To remediate this, most of the teachers said they used overt 

explanation to the students.   

T8: I noticed the use of x as a fixed number. I like using x in solving 
problems.  When solving....x is equal to three, then you solve another....x is 
equal to five. But they will ask you this’ but aunty, x is equal to three 
before, why is it five now’? I told them that x is just an alphabet, it can be 
any number, that it is not fixed, it is not fixed...because it is not the same 
question. 



72 
 

T7: The first thing that most of them normally have, they have, what we 
call using fixed numbers for alphabets. Some of them, they believe that ‘a’ 
is always one and ‘b’ is two. So when you say z plus y, they believe that z 
will be 26 and y will be 25. So by the time you say a + b = 10 and you say ‘a’ 
is equal to one, what is b? Some of them will say b is equal to two. They will 
not even reason that you just said a plus b is equal to ten. They just have 

the misconception that an alphabet has a fixed number. 

T5: ...i asked them to collect like terms, some added together. I tried to 
explain to them…There was a question whose final answer ends at 2x + 2y. 
I now went further to say this will give 2(x + y).  This student quickly raised 
up his hand that it is wrong. I said why. He said, how can two cats plus two 
elephants be two (cats and elephants)? I now told him that here we are not 
dealing with cats or elephants. We are dealing with algebra, common 
terms. What is common? Two is common. What variable is left over? X and 
y so accept ...He said now, if that is the case, why can’t it be 4xy?  

T4: So you will explain and re-explain, re-explain. 

T5: Yes. The student went further under which condition will the answer be 
4xy?  I now said if this, plus, is not plus but times, it will give you 4xy. 

T8: I saw that the students...difficult to add and multiply...they don’t know 
...difference between product and sum... Instead of 2x they will now write 
x and x, so when it comes to multiplication x times x they will now write 2x. 
I tried to explain the difference ... 

T11: Letters like V for volume and others...discourage them that it is more 
than that...with questions ...it will not work, you can’t solve it. You can tell 
them to choose any letter...go as far as Greek alphabets. It’s just a choice of 
letter. (Focus group, 6/7/2011) 

Key concepts in algebra 

The teachers affirmed that the concepts of variable, expression and equality are basic, and 

fundamental to further work not only in algebra but almost all other aspects of mathematics. 

They also mentioned that the roots of these concepts exist informally at the primary level and 

relate to everyday living, because they are used to express situations through arithmetic word 

problems which are solved by the students.  

T7: I see algebra as the basics. That’s why it is taught immediately in JS 1. 
Take for instance...perimeter, ...area,...circumference...Most of the topics 
later that they will be taught is based on algebra that’s why they are taught 
at the initial stage. If not, they will have difficulties with other topics. That’s 
how I see it. It will cause problem once they are not well grounded in 
algebra. 

T1: They learn from simple to complex. Once the needed basic thing is 
introduced to them in JS 1, as they are growing, they will be getting used to 
the system.  

T11: I discovered that it is only algebra that we can use to explain all these 
word problem questions that we have. ..the use of letters in place of 
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numbers, something we don’t know it is algebra that will explain it 
better.... Using something to represent, we have started representing it in 
algebra...by the time we say this letter equals that, it has already turned to 
equation. So there is no way we cannot use it. It is the best approach that 
can explain this worded problem questions that we are discussing about.   

T8: ....algebra has started from the primary school but you may not frame it 
as algebra form... they taught them two plus box is ten...at junior level they 
move away from the box...letter representing a value. 

T6: Algebra goes along with life activities. That’s why the teaching of it ... 
immediately they enter school, you start introducing the students to it so 
they can carry it through life. (Focus group, 6/7/2011)     

Key Finding 4.11 
The teachers noticed amongst their students the presence of many of the misconceptions we 
had discussed during the first phase of the professional learning program and attempted to 
remediate by explaining to the students. The teachers believe that the concepts of variable, 
expression and equality are fundamental to further work in algebra word problems and to all 
mathematics. 

 

Suggestions for improving the teaching and learning of algebra 

The teachers offered many suggestions about the teaching and learning of algebra, and 

mathematics in general. Suggestions were given concerning early algebra teaching, the 

content of JS 1 algebra, teachers’ pedagogy and commitment, classroom size, and students’ 

learning readiness. Some of the teachers’ comments are stated below. 

Early algebra teaching 

It was suggested that algebra should be introduced to the students at the primary school. The 

teachers believe that this would reduce the pressure they face when teaching JS 1 students. 

T1: …elementary algebra should be done in the primary school, so that it 
will make the work of the secondary teachers easy… 

T4: …we have to start it from the grass root; the primary level is where we 
start algebra from….(Focus group, 6/7/2011) 

The teachers realised that pre-algebraic ideas was a link to beginning algebra and that 

knowledge of it would enhance students’ understanding of beginning algebra.   

Algebra content 

All the teachers observed that the JS 1 algebra content was heavy and not commensurate with 

the number of weeks allocated to teach it. As a result, some topics were always neglected or 

not taught satisfactorily. They suggested a shift of some of the content to JS 2 which they 
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noted had only algebraic fractions. Some of the teachers called for a review of textbooks seen 

themselves to promote some of the misconceptions discussed.  

T12: Look at the scheme of work…broken down ...have five 
weeks…teacher will have more time to explain in details… 

T1: The number of weeks should be increased. 

T11: …syllabus should be reduced…  

T3: …some topics should move to JS 2…most of what they do in JS2 is now 
the fraction part. ...most of the rest is now in JS 1.  

T4: There is a need to contact the publishers like….to change from the 
fruit salad approach explanation…that’s the common explanation. (Focus 
group, 6/7/2011) 

Teacher qualification, commitment and pedagogy 

Suggestions were made for teaching to be more student-centred through scaffolding concepts 

and encouraging more word problems.   They suggested that teachers should continually use 

familiar words, encourage the use of the dictionary and the Newman strategy to teach 

mathematics. There were calls for teachers to network with others and to develop themselves 

professionally. It was suggested that specialist teachers should teach mathematics both at the 

primary and secondary levels. 

T4:..should be student-centred…take time to explain…  

T5: ...they should be able to derive their own method of learning, discover 
things by themselves, not the teacher giving...adopt various methods of 
teaching… 

T11: …topics for the term come in form of worded whatever, it will assist 
us, we will get used to it as time goes on… 

T8: …we should try as much as possible to do more research ourselves, we 
should not restrict our knowledge to terms of what is in the 
textbooks….develop ourselves personally….little solution we can bring 
….problem will be eased, we should not wait until the problem is 
over…..should register and be coming for meetings…(Focus group, 
6/7/2011) 

Classroom 

The teachers asked that the class size should be reduced, so as to result in a classroom 

spacious enough to allow a teacher to move around the room and monitor students’ work.   

T6: …class should be spacious to move for the teacher to help 
monitor individual activities ….quickly correct students… 

T5: ….teacher-student ratio should be reduced… 
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T11: ..number of students should be reduced so that it will help the 
teacher to monitor them closely. (Focus group, 6/7/2011) 

Students’ learning readiness 

The teachers expressed concern that parental and societal pressure leads to ‘class skipping of 

many children and that students’ entry age impacted their performance. They suggested that 

the government enforces the official JS 1 entry age of 12 years.  

T6: It is only the government that can monitor it. (Focus group, 6/7/2011) 

Key Finding 4.12 
The teachers recommended early algebra teaching at the primary level, a reduced JS 1 algebra 
content, improved teacher pedagogy, more spacious classrooms, smaller class sizes and 
enforcement of the official 12 years entry age would help improve the teaching and learning of 
algebra. 

 

Summary 

The professional learning intervention was a three-day program focused on updating the JS 1 

teachers’ knowledge about common algebra misconceptions and language-based approaches 

particularly the Newman procedure. The program ran in two phases and by engaging in 13 

activities the teachers had opportunities to collaborate, examine, reflect, discuss and engage 

with one another in meaningful learning. 

The program revealed that many teachers themselves appeared to have misconceptions about 

the letter as a label or an object and that they were not aware that this was a misconception. 

The misconceptions about equality and the reversal error were also present, and were 

addressed during the program. Given responses also suggested that the teachers were 

unaware of many of the algebraic misconceptions before the program began. Examination of 

students’ solutions and their own solutions to word problems provided the opportunity for the 

teachers to identify their mistakes, to correct them, and to identify students’ likely 

misconceptions. The teachers stated that many teachers do not like teaching word problems 

because they were unsure of themselves. 

The meaningful learning of Newman’s language-based error analysis procedure and discussion 

about other language-based approaches provided an avenue for the teachers to highlight the 

benefits of using the first language to teach. All of the teachers reported that they used the 

Newman strategy in their classes with a majority (83%) stating that it was a success. The use of 

familiar words in teaching was also successful, but the use of group work and pause and wait 

time was difficult to achieve, mainly due to class size and time constraints. 
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An analysis of a general survey conducted prior to the professional learning provides data 

about the existing teaching-learning situation described by the PL teachers. This and the 

impact of the PL on the teachers are discussed in the next chapter.  
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CHAPTER FIVE: TEACHER PERCEPTIONS 

Introduction 

 This chapter reports the analysis of data obtained from teacher participants who were 

involved in the general survey or in the professional learning intervention program. The 

information is presented in two sections, namely: general data on the teaching and learning of 

mathematics and algebra; and data concerning the teachers in the professional learning 

intervention program. The chapter concludes with a summary of the key findings. 

The Teaching and Learning of Mathematics and Algebra 

The main purpose of the initial questionnaire was to obtain general information from teachers 

about mathematics teaching and learning at the junior secondary school level. The information 

relates to: demographics of the teacher sample; teachers’ challenges and beliefs about 

effective mathematics teaching and learning; teachers’ confidence about their knowledge of 

mathematics and algebra teaching strategies; frequency in the teachers’ use of various 

teaching strategies; and, the teachers’ assessment of the difficulty level of some algebra 

questions. 

Demographic data 

An educational district in Lagos State, Nigeria, known as District 5 was selected for the study 

and research participants were drawn from two zones of the five zones within this district. 

Thirty Junior Secondary (JS) 1 teachers from 30 schools were given questionnaires which they 

completed and returned giving a 100% return rate. The analysis of the demographic data 

which follows includes gender, zone of school, age, mathematics and JS 1 teaching experience, 

qualifications, classes taught and trainings attended.  

Most (70%) of the teachers were between 21 and 45 years of age and the number of male 

respondents (57%) was slightly more than the females (43%). In relation to mathematics 

teaching, almost all (93.3%) the teachers had between two and 15 years of experience. 

However, the majority (77%) of teachers had between two and five years of JS 1 teaching 

experience.  Table 5.1 and 5.2 present these data. 
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Table 5.1: Teachers’ by gender, zone and age group (n=30)  

   Number  Per cent 

Gender      Male  17  56.7 

    Female  13  43.3 
      

 School zone     Badagry  13  43.3 
    Ojo  17  56.7 

      

 Age group (years)     20 or less  0   0.0 

    21 to 25  5  16.7 

    26 to 30  4  13.3 

    31 to 35  8  26.7 

    36 to 40  3  10.0 

    41 to 45  6  20.0 

    46 to 50  1   3.3 

    Above 50  3  10.0 

 

 

Table 5.2: Teachers’ years of Mathematics and JS 1 teaching experience (n=30) 

Years  of 

experience 

                        Number (per cent ) of teachers 

Mathematics teaching  JS 1 teaching  

0 – 1 0    (0.0) 0    (0.0) 

2 – 5 15  (50.0) 23  (76.7) 

6 – 10 6    (20.0) 7    (23.3) 

11 – 15 7    (23.3) 0    (0.0) 

16 – 20 2    (6.7) 0    (0.0) 

Above 20 0    (0.0) 0    (0.0) 

 

None of the teachers had more than 10 years’ experience of teaching JS 1. Half of the teachers 

had between two and five years’ experience of teaching mathematics while no-one had less 

than two years or more than 20 years of experience. 

Key Finding 5.1 
Most (87%) of the 30 teachers were between 21 and 45 years of age and there were more 
males (57%) than females. Most (77%) of the teachers had between two and five years of JS 1 
mathematics teaching experience. 

 

All the teachers had undergone a three or four year training to obtain a professional 

mathematics teaching qualification. The National Certificate in Education (NCE), obtained after 
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a three year post-secondary training, is the minimum professional qualification for teaching in 

Nigeria. The certificate holders often have two subject specialisations and teach both primary 

and junior secondary school students. Half the teachers had only the NCE qualification and 11 

of the remaining 15 teachers who were first degree holders also had the NCE qualification. 

These data are presented in Table 5.3. 

Table 5.3: Teachers’ qualification (n=30) 

Qualification Number                                                                      Per cent 

NCE  only  15 50.0 
 B.Sc(Ed) only   4  13.3 
NCE and B.Sc(Ed)   7  23.3 
NCE and B.(Ed)   2   6.7 
NCE and B.Sc   2   6.7 
PGDE, M.Ed, M .Sc   0   0.0 

 

All the teachers had a first specialization in mathematics. Some of the teachers also had a 

second specialization and the most common of these were economics (12), integrated science 

(8) and physics (6). One of the teachers had a master’s degree in Business Administration. 

Half of the teachers reported that they had attended one or two trainings in the past two years 

while nine of them had not attended any. Only one teacher had attended four trainings and 

the remaining five teachers had attended three trainings in the past two years.   

Since the teaching followed the secondary model, most teachers taught more than one class. 

The teachers reported on the number of JS 1 classes they taught and the number of students 

in each class.  Almost a third (31%) of the teachers had 40 or fewer students in each class. The 

classes tended to be smaller in the fee paying schools, and many of the teachers taught fewer 

classes than in government schools. Forty per cent of the teachers taught one or two classes.  

However, those who reportedly taught between four and six classes were all from public 

schools. The official JS 1 class size is 40 (Federal Republic of Nigeria, 2004).  

The graph shows a bi-modal distribution where a large group of classes, mainly from the 11 

private schools, were within the regulation size and another larger group, from the 19 public 

schools, that were very much above the number that the policy prescribes. This information is 

presented in Figure 5.1. 
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Figure 5.1: Class sizes of teachers (n=30) 

 

Key Finding 5.2 
All the teachers were professionally qualified to teach mathematics and 70% of them indicated 
that they had attended one or more mathematics training programs within the past two years. 
About two-thirds of the teachers reported they had class sizes between 41 and 200. Sixty per 
cent of the teachers indicated that they taught between three and six classes of JS 1. 

 

Challenges and beliefs about effective mathematics teaching 

Teachers responded to three open ended questions regarding the challenges faced and their 

beliefs about effective teaching of mathematics.  For each question, the responses were sorted 

into categories and coded before further analysis was done. The questions and the teachers’ 

responses are reported next. 

The first question was “What challenges do you face in teaching upper basic mathematics 

effectively?” The most common challenges mentioned were lack of instructional materials, 

weak students’ prior mathematical knowledge, inadequate facilities and large class sizes. A few 

stated that they had challenges with students’ inability to interpret word problems, young 

entry age and lack of interest in mathematics.  Many of the challenges mentioned have also 

been identified by other Nigerian science and mathematics teachers (Igbokwe, 2000; Olaleye, 

2012). The responses are summarised in Table 5.4. 
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Table 5.4: Challenges faced by teachers in the effective teaching of mathematics (n=30) 

           Description of challenge  Number of 
responses a 

Per cent 

Lack of instructional materials    10  17.2 
Students’ weak prior mathematical knowledge      8  13.8 
Inadequate facilities      7  12.1 
Large class population      5   8.6 
Students’ inability to interpret word problems      4   6.9 
Students’ young entry age       4  6.9 
Students’ lack of interest in mathematics      4   6.9 
Insufficient number of teachers      3   5.2 
Assessment of students’ learning      3   5.2 
Lack of stationeries and textbooks      3  5.2 
Insufficient teaching time      3   5.2 
Students’ fear of mathematics      2   3.4 
Knowledge of appropriate teaching method      2   3.4 

Note. a Most teachers gave more than one response to the question 

Key Finding 5.3 
The most common challenges to effective mathematics teaching reported by teachers were 
inadequate instructional materials and facilities, students’ weak prior mathematics knowledge 
and large class sizes. A few teachers mentioned students’ young entry age, their lack of 
interest and difficulty in interpreting word problems.  

 

The second and third questions were “What do you believe are the characteristics of effective 

upper basic mathematics teaching?” and “What do you believe are the most effective teaching 

strategies that may help students learning mathematics?” Many teachers mentioned the use 

of adequate instructional materials, different teaching methods, effective class management 

and satisfactory organisation skills, but a third of them also believed problem solving, student 

activity and learner engagement were important. The responses are presented in Table 5.5.  

Table 5.5: Teachers’ responses about effective mathematics teaching and learning (n=30) 

                                                      Number and per cent of teachersa 

Characteristics of  teaching   Strategies for learning    

Instructional materials usage 15 28.3 Use of instructional materials 13 23.6 
Teacher understanding of 
students’ learning needs 

10 18.9 Using practical and 
demonstration 

 8 14.5 

Good class management   6 11.3 Student participation  8 14.5 
Good communication skills  4  7.5 Problem solving  5  9.1 
Learner engagement  1  1.9 Group work  1  1.8 
Others 17 32.1 Others  20 36.5 

Note. a  Most teachers gave more than one response to the questions 

The responses were mainly a reflection of teachers’ solutions to the challenges of teaching 

resources, class size and student-related issues the teachers had identified and were stated in 
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Key Finding 5.3. Very few teachers reported the need to possess good communication skills or 

utilise problem solving strategies, and only one person mentioned group work as an effective 

mathematics teaching strategy.  The remaining responses were grouped as ‘others’ because 

they varied in scope, with relatively few responses. 

Key Finding 5.4 
Very few (10%) teachers mentioned characteristics or strategies like communication skills and 
learner engagement or problem solving and group work. Many characteristics and strategies 
believed by a higher number of teachers to bring about effective mathematics teaching 
appeared to be solutions to previously identified challenges in Key Finding 5.3.  

 

Teachers’ confidence with mathematics teaching 

Two scales, knowledge of mathematics and strategies for teaching algebra, were employed to 

describe the teachers’ confidence. The majority (83%) of the teachers were very confident or 

confident about their knowledge of all aspects of mathematics taught at the junior secondary 

level, with confidence with algebra having the highest rating and geometry and mensuration 

having the lowest. This pattern of teachers’ high opinions of self-competence has been 

established to be common in many studies before an intervention occurs, and it is believed to 

reflect a lack of awareness of what constitutes competence or other needed skills/pedagogy.  

Their responses are presented in Table 5.6.  

Table 5.6: Teachers’ responses about confidence with mathematical knowledge (n=30) 

                                                                                                                  Per cent of teachers 

Aspect Very 
confident  

Confident  Okay  Limited 
confidence  

Not 
confident  

Mean 
rating/5 

Algebraic processes 76.7 23.3 0.0 0.0 0.0 4.77 
Basic operations 73.3 26.7 0.0 0.0 0.0 4.73 
Every day statistics 70.0 23.3 6.7 0.0 0.0 4.63 
Number and 
numeration 

66.7 30.0 3.3 0.0 0.0 4.63 

Geometry and 
mensuration 

30.0 53.3 13.3 3.3 0.0 4.10 

Note.  Confidence was scored on a 5 point scale Very confident=5; Confident=4; Okay=3; Limited 
confidence=2; Not confident=1.   

Key Finding 5.5 
The majority of the teachers indicated confidence in teaching all aspects of junior secondary 
mathematics and the highest mean rating of confidence was for algebraic processes (4.77/5).  

 

With the ability to use some specific strategies to teach algebra, most teachers were confident 

in their use of traditional strategies but less confident with strategies involving student 

collaboration and discussion. Their responses are presented in Table 5.7. 
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Table 5.7: Teachers’ responses about confidence in using strategies to teach algebra (n=30) 

 
       Strategies 
 
 
 

                               Per cent  of teachers 
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Explaining algebra concepts 40.0 50.0 10.0 0.0 0.0 4.30 
Engaging students’ interest in algebra 40.0 46.7 13.3 0.0 0.0 4.27 
Assessing children’s learning in algebra 30.0 53.3 16.7 0.0 0.0 4.13 
Managing discussions and interpretations 
of word problems 

33.3 53.3 6.7 6.7 0.0 4.13 

Developing vocabulary and terms needed 
for learning  algebra 

20.0 56.7 23.3 0. 0 0.0 3.97 

Involving majority of the students in class 
discussions/activities  

33.3 36.7 16.7 10.0 3.3 3.87 

Using  knowledge of students’ 
misconceptions to plan  algebra lessons 

23.3 40.0 26.7  6.7 3.3 3.73 

Managing group activities in algebra 20.0 0.0 26.7 10.0 3.3 3.63 
Note.  Confidence was scored on a 5 point scale Very confident=5; Confident=4; Okay=3; Limited 
confidence=2; Not confident=1 

Traditional approaches like explaining and assessing learning had high ratings with more than 

83% of the teachers indicating they were very confident or confident in using the strategies. 

Discussion and collaborative approaches like involving the students in discussion or managing 

group activities in algebra had lower mean ratings. Although many teachers indicated that 

were very confident or confident about their ability to use the knowledge of students’ 

misconceptions to plan lessons, this item had the second lowest mean rating (3.73/5).  

Key Finding 5.6 
Teachers indicated least confidence in the use of class discussions, group work and knowledge 
of students’ misconceptions in algebra lesson planning. Traditional approaches had higher 
mean ratings although most teachers were confident in engaging students.  

 

Teachers’ classroom strategies 

Three scales were employed to describe the teachers’ classroom strategies. Teachers rated 

how they managed classroom talk, their use of some approaches and their students’ level of 

engagement in the classroom. Their responses on each of the scales are presented below. 

Almost all of the teachers indicated that they were effective in using questions and discussions 

in the mathematics classroom.  The responses are presented in Table 5.8. 
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Table 5.8: Teachers’ responses to ways of managing talk in the mathematics classroom (n=30) 

                 Per cent of teachers 

                   Strategies  
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I am effective in encouraging and supporting students to 
ask questions in my mathematics class. 

3.3  0.0 0.0 30.0 66.7 4.57 

I am able to respond to students answers in ways that 
help develop an effective discussion of mathematical 
ideas. 

3.3  0.0 0.0 46.7 50.0 4.47 

My rich knowledge of mathematics helps me respond 
appropriately to students’ answers to my questions. 

0.0  3.3 0.0 46.7 50.0 4.43 

I am effective in asking questions to suit the purpose and 
flow of classroom discussions in mathematics. 

3.3  0.0 0.0 46.7 50.0 4.40 

My rich knowledge of mathematics helps me ask the 
right questions to develop mathematics ideas through 
discussion. 

3.3  0.0 3.3 43.3 50.0 4.37 

I am effective in engaging most students in responding to 
my questions during mathematics discussions. 

0.0 10.0 0.0 46.7 43.3 4.23 

I am effective in establishing a classroom atmosphere in 
which most students feel confident to give their own 
answers to questions. 

3.3  3.3 3.3 50.0 40.0 4.20 

I am effective in using questioning to identify students’ 
prior knowledge of mathematics topics. 

0.0  6.7 3.3 53.3 36.7 4.20 

I am normally able to respond to students’ answers in 
ways that maintain and promote further discussion of 
the mathematics ideas. 

0.0  0.0 6.7 70.0 23.3 4.17 

I am able to sustain discussions so that we thoroughly 
discuss the mathematics ideas. 

0.0  0.0 6.7 73.3 20.0 4.13 

Note.  Confidence was scored on a 5 point scale Strongly agree=5; Agree=4; Not sure=3; Disagree=2; 
Strongly disagree=1 

Very few(10%) of the teachers indicated that they were not effective in engaging students in 

responding to their questions, establishing a classroom atmosphere that makes students 

confident to give their own answers, or using questions to identify students’ prior knowledge. 

These high ratings appeared to be subject to the teachers’ own context as they are also at 

variance with their reported confidence to use classroom discussions (Key Finding 5.6). 

Key Finding 5.7 
Almost all of the teachers indicated they were effective in the use of questions and discussion 
in the mathematics classroom. However, lower mean ratings were obtained for some 
statements about sustaining discussions.  
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The teachers also indicated how frequently they used specific approaches in teaching algebra. 

While claiming high self-efficacy for using discussion, the teachers’ ratings on approaches 

frequently used did not appear to privilege discussion over instruction as an approach to 

teaching algebra. The responses are presented in Table 5.9. 

Table 5.9: Frequency of teachers’ use of various teaching approaches (n=30) 

                       Per cent of teachers 

       Approaches 
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Working examples on the board for students 
to copy 

66.7 16.7 13.3  0.0 3.3 4.43 

Writing notes on the board for students to 
copy 

46.7 16.7 13.3 16.7 6.7 3.80 

Explaining the meaning of equations 46.7 13.3 33.3  6.7 0.0 4.00 
Asking students to identify what the question 
asks us to do 

43.3 33.3 16.7  3.3 3.3 4.10 

Asking students to identify key words and 
symbols in the question 

43.3 26.7 16.7 13.3 0.0 4.00 

Having students solving  questions individually 40.0 33.3 23.3  3.3 0.0 4.10 
Using different types of mathematical 
representations 

30.0 30.0 36.7  3.3 0.0 3.87 

Reminding students about the meaning  of a 
variable 

30.0 30.0 33.3  6.7 0.0 3.83 

Asking students identify the plan for solving 
the question 

26.7 36.7 30.0  6.7 0.0 3.83 

Inviting students to explain the working for 
their answer 

26.7 23.3 36.7 13.3 0.0 3.63 

Having students reading aloud the question to 
be solved 

26.7 20.0 23.3 23.3 6.7 3.37 

Whole class discussion of mathematical ideas 20.0 33.3 33.3 10.0 3.3 3.57 
Identifying students’ misconceptions of 
algebra  

16.7 36.7 36.7 10.0 0.0 3.60 

Grouping/pairing  students to solve questions  
in the class 

0.0  23.3 50.0 20.0 6.7 2.90 

 

The frequencies in the use of approaches seemed to be at two ends of a spectrum in which 

mainly teacher-directed strategies are at the higher end while the student–focused ones are at 

the lower end. The more frequently used approaches having higher mean ratings involve direct 

instruction in contrast to the less used approaches which had low mean frequency ratings. This 

confirms Key Finding 5.6 that traditional approaches had higher mean ratings.   
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The teachers also rated, on a scale of one to 10, the level to which their students were actively 

engaged in the classroom during lessons. More than half of the teachers rated this as seven or 

more.  The responses are presented in Table 5.10.    

Table 5.10: Teachers’ rating of the level of students’ engagement in the classroom (n=30) 

                              Very   passive                                                                     Very    active Mean 
rating/10 

Engagement 
level 

1 2 3  4  5 6  7 8  9 10  
   6.67 

Per cent of 
teachers 

0.0 0.0 0.0 10.0 16.7 20.0 20.0 20.0 10.0 3.3 

  

It should be noted that the teachers’ ratings of student engagement would be in the context of 

Nigerian mathematics teaching and the culture of Nigerian classrooms. 

Key finding 5.8 
The more teacher-directed approaches were reportedly used more regularly while approaches 
that elicit mathematical discussions were used less often. About half (53%) of the teachers 
rated their students’ class engagement level to be more than six out of 10 and the overall 
mean rating was 6.67. 

 

Teacher beliefs about mathematics, their teaching and students’ learning  

Teachers were requested to respond to statements about their beliefs regarding mathematics, 

their teaching, and their students’ learning. Some of the statements were negatively posed (for 

example, ‘not all students can learn mathematics’) which means that agreement indicated 

they were generally less supportive of the study’s theoretical framework of constructivism.     

While most of the teachers indicated that they enjoyed teaching mathematics, many strongly 

believed mathematics is largely procedural, but that students have a weak mathematics 

background.  Most of the teachers believed that mathematics, and algebra in particular, has 

rules that need to be learnt. More than half of the teachers reported that they used the native 

language at times to explain concepts, and that teaching is essentially about the teacher 

talking. Almost equal proportions of teachers found word problems easier to teach than 

symbolic questions and vice versa. Many of the teachers also believed that all students could 

learn mathematics. Their responses are presented in Table 5.11. 
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Table 5.11: Teachers’ beliefs about mathematics, their teaching and students’ learning (n=30) 

                  Per cent of teachers 
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                                                                          Nature of mathematics  

Mathematics consists of rules and procedures.a  3.3   0  3.3 40.0 53.3 

Mathematics is mainly calculations.a 10.0 40.0   0 33.3 16.7 

                                                                            Teaching mathematics 

    Teaching enjoyment 

I always enjoy my mathematics teaching.  3.3  3.3   0 40.0 53.3 

If I was free to choose, I would not teach 
mathematics.a 

53.3 40.0   0  3.3  3.3 

    Teaching practices 

If a teacher does not tell students how to solve 
questions, they will make mistakes.a 

 3.3 23.3  3.3 46.7 23.3 

I sometimes use the native language to explain 
mathematical ideas in the class. 

20.0 20.0  3.3 36.7 20.0 

 Teaching word problem 

I find it easier to teach algebraic word problems than 
those with symbolic notations. 

20.0 33.3  3.3 36.7  6.7 

                                                                     Learning mathematics  

Not all students can learn mathematics.a 43.3 30.0  3.3 13.3 10.0 

Students’ mathematics background is often weak.  3.3   0   0 60.0 36.7 

  Students’ classroom behaviour 

Students have to be attentive in a mathematics class.   0  3.3   0 26.7 70.0 

Students do not like to ask questions in the class.a  6.7 43.3  3.3 33.3 13.3 

   Students’ learning algebra 

Students believe algebra is difficult.  6.7  3.3 16.7 63.3 10.0 

There are rules in algebra that students have to learn.   0   0  3.3 33.3 63.3 

Note.  Confidence was scored on a 5 point scale  Strongly agree=5; Agree=4; Not sure=3; Disagree=2; 
Strongly disagree=1      

a
Negatively posed items 

 

Key Finding 5.9 
Almost all (over 90%) of the teachers indicated that mathematics is procedural, that they enjoy 
teaching it but that students often have a weak mathematics background. Many (70%) also 
believed that students find algebra difficult and have to be told how to solve problems, while 
slightly more than half of the teachers found it easier to teach symbolic questions and 
sometimes explained with the native language. 
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Teachers’ assessment of algebra questions 

The teachers compared six beginning algebra questions, made up of two questions presented 

in three different but essentially equivalent formats, and had to rank in ascending order how 

difficult they perceived each question would be for a JS 1 student. The questions with algebraic 

letters were ranked as more difficult than the box type questions but easier than the worded 

questions. The teachers’ rankings and the median ranks are presented in Table 5.12.  

Table 5.12: Ranking of algebra questions in order of difficulty by teachers (n=30) 

Question 

type 

Mathema

tical skill 

required 

 

  Question                                  Per cent of teachers Median 

rating 

rank/6 

                               Difficulty rank 

    1  

 

 

   2    3    4  

 

  5  

 

  6 

 

Box Understa

ding of 

place 

holder 

            X 5 = 20.  

 

What is           ? 

 83.3    - 13.3 3.3    -     -      1 

Letter Understa

nding of 

place 

holder 

5x = 20. What is 

x? 

6.7 50.0 23.3 13.3 6.7     -      2 

Box Inverse             X 20 = 5.  

 

What is            ?                  

    - 33.3 20.0 30.0 13.3 3.3      3 

Letter Inverse 20x = 5. What is 

x? 

    - 6.7 40.0 43.3     - 10.0      4 

Worded: 

“a certain 

number” 

Understa

nding of 

place 

holder 

5 lots of a certain 

number is 20. 

What is the 

number? 

    - 10.0 3.3 10.0 70.0 6.7      5 

Worded: 

“a certain 

number” 

Inverse Twenty lots of a 

certain number 

is five. What is 

the number?        

10.0    -  -        - 10.0 80.0      6 

Note. Difficulty was ranked from one to six. Easiest =1; Easier=2; Easy=3; Difficult=4; More difficult=5; 
Most difficult=6 

The majority of the teachers agreed on the rankings of the easiest and the two most difficult 

questions and recognition of the question type seemed to determine the teachers’ perception 
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of its difficulty. For example, the question ranked as easiest (1) was in box form while the same 

question written in words was ranked as most difficult (5) by a majority of the teachers. All 

three questions requiring inverse operations were also believed to be more difficult than 

corresponding question types not needing inverses. Perhaps not surprisingly, the question 

ranked as the most difficult was a word problem involving an inverse operation. 

Every teacher had to state a reason for awarding the fourth, fifth and sixth ranks to their 

selected questions. The majority of the teachers said it was because division, fractions, 

variable or words were included in the questions. Table 5.13 presents the teachers’ responses. 

Table 5.13: Teachers’ reasons for questions ranked in the difficult category (n=30) 

Question  
 
 

Number Percentage 

                         Reason for difficulty 

20x = 5. What is x?                              Rank 
4 

  

Presence of a fraction or the use of division in the question  12 40.0 
Presence of a variable in the question  1 3.3 
Others    17 56.7 
5 lots of a certain number is 20. What is the number? Rank 

5 
  

Interpretation of the word problem    11 36.7 
Presence of a variable in the question   7 23.3 
The use of division in the question   3 10.0 
Others   9 30.0 
Twenty lots of a certain number is five. What is the number?         

Rank 
6                                                                   

  

Interpretation of the word problem   18 60.0 
The use of divisions by a coefficient in the question   4 13.3 
Presence of a variable in the question   2 6.7 
Others   6 20.0 

Note. Difficulty category ranks are Rank 4=Difficult, Rank 5=More difficult, Rank 6=Most difficult. 

 

The rank of four was given by the teachers because of the presence of fractions or the use of 

division rather than the presence of an algebraic letter in the question. The interpretations 

needed for solving the word problems were the main reasons for the two questions being 

ranked as fifth and sixth. The use of divisions was a greater contributor for choice of difficulty 

at the sixth rank. This ranking pattern is similar to that obtained from the rating activity done 

during the professional learning program (Key Finding 4.1). 
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Key Finding 5.10 
There was a general agreement by most teachers on the ranking of the difficulty of algebra 
questions. Worded questions or those involving inverse operations were perceived to be more 
difficult for students to solve. The most difficult question was a word problem with inverse 
operation. Many of the teachers ranked questions to be difficult because they involved 
fractions, divisions, had a variable or they were word problems. 
 

Professional Learning Participants Data 

This group comprised the 12 teachers who completed both initial and final questionnaires, and 

participated in all the professional learning (PL) programs. The majority (75%) of the teachers 

had between two and 10 years mathematics teaching experience. Only one of them had 

taught JS 1 for more than five years and a third of them had classes within the regulation size 

of 40 students. Comparisons of the teachers’ responses in both questionnaires are reported 

with other responses related to feedback from the intervention using six headings. These are: 

teachers’ beliefs about effective mathematics teaching and learning; teachers’ confidence 

about their knowledge of mathematics and algebra teaching strategies; frequency of the 

teachers’ use of various teaching strategies; teachers’ assessment of the difficulty level of 

some algebra questions; the importance of knowledge of students’ thinking and mathematical 

talk; and, feedback from the professional learning intervention program. 

Teachers’ beliefs about effective teaching and learning of mathematics 

There was a slight shift in beliefs between pre- and post-intervention surveys. Communication 

skills and teacher capability increased, while the conviction about the importance of 

instructional materials decreased slightly. Table 5.14 presents their responses. 

Table 5.14: PL teachers’ beliefs about characteristics of effective mathematics teaching (n=12) 

Initial Questionnaire Numbera Final Questionnaire Numbera 

Instructional materials usage 5  Communication skills 4  
Teacher understanding of 
students’ learning needs 

5  Teacher capability  4  

Good class management   3  Good class management  4 
Encouraging student interest  2  Instructional materials usage 4  
Teacher capability   1 Effective feedback 3  
Learner engagement  1  Teacher understanding of 

students’ learning needs  
3  

Others   3 Learner engagement 1 
   Others  3 

Note. a  Most teachers gave more than one response to the questions 

Communication skills and effective feedback were new characteristics and there was a drop in 

some of the more traditional teacher-centred characteristics. Learner engagement remained 

least recognised. Language-based approaches emerged as a strategy that teachers found to be 
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effective for learning mathematics while the proportion of teachers who mentioned the use of 

instructional materials reduced by half. Table 5.15 presents this information.  

Table 5.15: PL teachers’ beliefs about effective strategies for learning mathematics (n=12) 

Initial Questionnaire Number a Final Questionnaire Number a 

Use of Instructional materials  6  Student participation 4  
Student participation 4  Teacher attending to student 4  
Use of practicals and 
demonstrations  

4 Language-based approaches  3  

Class work  2 Use of instructional materials 3  
Problem solving  2 Use of textbooks  3  
Teacher attending to students 2  Problem solving 1 
Others  6 Others   5 

Note. a  Most teachers gave more than one response to the questions 

The importance of teachers attending to students was mentioned in some of the responses. 

Fewer teachers than before now mentioned the more traditional beliefs and problem solving 

was not reported as an effective strategy by many. 

Key Finding 5.11 
After the professional learning, beliefs that communication skills, feedback and language 
approaches were effective characteristics and strategies for teaching and learning 
mathematics emerged. There was a drop in the number of teachers who believe effectiveness 
comes from using instructional material and more teachers mentioned teacher capability and 
attending to students’ learning needs.  

 

Teachers’ confidence about mathematics knowledge and algebra teaching strategies 

The teachers’ self-reported confidence level about algebra knowledge dropped slightly after 

the intervention. Table 5.16 presents the data. 

Table 5.16: PL teachers’ self-reported confidence level with knowledge of junior school 
mathematics (n=12) 

Aspect                                     Mean rating/5 

  Initial Questionnaire  Final Questionnaire 

 Mean SD Mean   SD 

Algebraic processes 4.75 .452 4.67 .492 
Basic operations 4.67 .492 4.83 .389 
Number and numeration  4.58 .515 4.75 .622 
Everyday statistics 4.58 .669 4.67 .651 
Geometry and mensuration 4.25 .622 4.25 .622 
Note.  Confidence was scored on a 5 point scale Very confident=5; Confident=4; Okay=3; Limited 
confidence=2; Not confident=1 

The teachers’ ratings remained generally high on all aspects as in the general survey (Key 

Finding 5.5). However, their initial confidence with algebra dropped from first position to tie 
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with statistics for the second to the last position. Geometry remained the aspect they were 

least confident with. 

Key Finding 5.12 
After the professional learning intervention period, the teachers’ self-reported mean rating of 
confidence level for algebra knowledge dropped from first position (4.75/5) to third (4.67/5). 
Basic operations and geometry now had the highest and lowest mean scores respectively. 

 

The teachers’ general high ratings of self-efficacy in using different strategies for algebra 

teaching remained after the intervention period. The teachers’ confidence in their ability to 

explain and develop relevant vocabulary and terms increased significantly (z = -2.121, p < 0.5) 

but their confidence in managing word problem discussions and group activities reduced.  

Although the teachers reported more confidence in assessing algebra learning, using the 

knowledge of students’ likely misconceptions to plan lessons retained the lowest mean 

confidence score. Table 5.17 presents the data. 

Table 5.17: PL teachers’ responses about confidence in using strategies to teach algebra (n=12) 

Strategies                          Mean ratings/5 

          Initial              Final  

 Mean SD  Mean   SD 

Explaining algebra concepts 4.33 .651  4.83* .389 
Developing vocabulary and terms needed 
for learning  algebra 

3.83 .718  4.33* .651 

Engaging students’ interest in algebra 4.42 .669  4.33 .651 
Assessing children’s learning in algebra 4.08 .669  4.33 .778 
Managing discussions and interpretations of 
word problems 

4.42 .515  4.08 .669 

Involving the majority of the students in 
class discussions/activities  

4.08 .996  4.08 .793 

Managing group activities in algebra   4.00 .603  3.75 .754 
Using  knowledge of students’ 
misconceptions to plan  algebra lessons 

3.75 .965  3.67 .985 

Note.  Confidence was scored on a 5 point scale Very confident=5; Confident=4; Okay=3; Limited 
confidence=2; Not confident=1    

   *Significant at p<.05 on Wilcoxon Signed Ranks Test 

Key Finding 5.13 
After the professional learning, there was significant increase in the mean rating of teachers’ 
confidence to explain algebra concepts and develop relevant vocabulary and terms. While the 
mean rating on confidence for algebra assessment increased, that of managing word problem 
discussion, using knowledge of students’ misconceptions and group work reduced.  
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Teachers’ classroom strategies 

Most teachers believed that they are able to use classroom discussions and questions 

effectively as a teaching tool and this belief generally increased after the intervention 

program.  The means and standard deviations concerning these are presented in Table 5.18. 

Table 5.18: PL teachers’ responses about managing talk in the classroom (n=12) 

Strategies                   Mean ratings/5  

           Initial          Final  

Mean SD  Mean SD 

My rich knowledge of mathematics helps me 
respond appropriately to students’ answers to my 
questions. 

4.50 .522  4.75 .452 

I am effective in using questioning to identify 
students’ prior knowledge of mathematics topics. 

4.08 .793  4.67 .492 

I am effective in engaging most students in 
responding to my questions during mathematics 
discussions. 

4.33 .888  4.58 .515 

I am effective in encouraging and supporting 
students to ask questions in my mathematics class. 

4.33 1.155  4.58 .515 

I am able to respond to students answers in ways 
that help develop an effective discussion of 
mathematical ideas.   

4.67 .492  4.58 .515 

My rich knowledge of mathematics helps me ask 
the right questions to develop mathematics ideas 
through discussion. 

4.33 1.155  4.50 .522 

I am normally able to respond to students’ 
answers in ways that maintain and promote 
further discussion of the mathematics ideas.   

4.25 .452  4.42 .515 

I am able to sustain discussions so that we 
thoroughly discuss the mathematics ideas.    

4.25 .452  4.25 .866 

I am effective in asking questions to suit the 
purpose and flow of classroom discussions in 
mathematics. 

4.25 1.138  4.25 .866 

I am effective in establishing a classroom 
atmosphere in which most students feel confident 
to give their own answers to questions.    

3.92 1.311  4.25 1.138 

Note.  Agreement was scored on a 5 point scale Strongly agree=5; Agree=4; Not sure=3; Disagree=2; 

Strongly disagree=1 

Teachers indicated that their effectiveness at managing talk in the classroom generally 

improved after the professional learning intervention program. Noteworthy is their use of 

questions to identify students’ prior knowledge - this is not statistically significant but is still 

relatively high (z = -1.897, p < 0.1).  The exception to the general trend was seen in the item 

about the teachers’ ability “to respond to student answers in ways that will help develop 
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effective discussion of mathematical ideas”. This item had a slightly reduced mean score after 

the intervention. 

There was an increase in the use of student activity-based approaches and a slight decline in 

most approaches that are teacher-focused. The means and standard deviations for 

preferences for teaching strategies are presented in Table 5.19.  

Table 5.19: PL teachers’ responses about the frequency of use of different approaches (n=12) 

                                      Strategies                       Mean ratings/5  

        Initial          Final  

Mean   SD  Mean   SD 

Explaining the meaning of equations 4.17 1.115  4.50 .674 
Having students solving questions individually    4.50 .793  4.42 .669 
Reminding students about the meaning  of a variable 4.17 .835  4.42 .669 
Working examples on the board for students to copy   4.67 .778  4.42 .900 
Having students reading aloud the question to be 
solved 

3.58 1.165  4.33 .651 

Using different types of mathematical representations 4.17 .937  4.33 .651 
Identifying students’ misconceptions of algebra 3.92 .793  4.25 .754 
Asking students to identify what the question asks us 
to do 

4.08 1.240  4.17 .835 

Asking students to identify the plan for solving the 
question    

3.92 .900  4.17 .835 

Inviting students to explain the working for their 
answer 

3.92 1.165  4.00 .953 

Whole class discussion of mathematical ideas 3.75 1.357  3.75 1.055 

Asking students to identify key words and symbols in 
the question    

3.67 1.155  3.75 1.055 

Writing notes on the board for students to copy 4.00 1.477  3.67 1.435 
Grouping/pairing  students to solve questions  in the 
class 

3.17 .937  2.83 .718 

Note.  Frequency was scored on a 5 point scale Every lesson=5; In most lessons=4; In some lessons=3; In 
a few lessons=2; Never=1 

There were increases in the frequency of teachers’ explaining equations, reminding students 

about the meaning of variables and identifying students’ algebra misconceptions; and a 

reduction in teachers’ working examples for students, and writing notes. There was an 

increase in students’ involvement in planning solutions to problems and a relatively high 

increase (z = -1.897, p < 0.1) for students’ reading aloud of questions. However, the use of 

group work remained low. 

Almost all (91.7%) the teachers rated their students’ engagement level to be between six and 

eight (out of 10) after the professional learning intervention, a considerable improvement.  

This reflected an increase of 33.4% over the corresponding initial rating interval of six and 

eight, and there was no reported rating below six. The mean rating score increased by 7%. The 

ratings are presented in Table 5.20. 
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Table 5.20: PL teachers’ belief about student engagement level in the classroom (n=12) 

                                                        Very   passive                            Very    active Mean 
rating/10 

Engagement level   of student 1 – 3 4 5 6  7 8 9 10  

Number of 
teachers  

Initial 0                 1 2 3 1 3 1 1 6.83 

Final 0 0 0 3 3  5 1  0 7.33 

 

Key Finding 5.14 
After intervention, the teachers reported increased effectiveness at managing talk in their 
classes through discussions and questions. The mean rating scores increased for teachers’ use 
of explanations, identifying algebra misconceptions, students’ reading aloud and identifying a 
solution plan for questions while teachers’ working of examples and note writing reduced. 
Their student engagement level mean rating score increased by 7%. 

 

 Teacher beliefs about mathematics, their teaching and students’ learning 

The statements about teachers’ beliefs regarding mathematics, teaching and learning algebra 

were constructed to reflect traditional and constructivist beliefs both directly and more 

indirectly. This necessitated writing some statements in the reverse order for teachers to 

reflect on the statements before indicating their level of agreement. Teaching enjoyment 

increased and though many teachers seemed to have a traditional belief about mathematics 

and student learning initially, there appeared to be a slight shift from that position in the 

completed final questionnaire.  

There was increased use of the native language to explain mathematical ideas to students and 

a general agreement about the weak background of students. This confirms the teachers 

earlier expressed belief in Key Finding 4.4 that the use of the first language improves students 

understanding.  Teachers enjoyed their teaching and there was some reduction in the belief 

that students do not like asking questions. 

Analyses of the responses are presented in Table 5.21. 
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Table 5.21: PL teachers’ belief about mathematics, their teaching and students’ learning (n=12) 

Strategies                  Mean of ratings scores  

 Initial Questionnaire   Final Questionnaire 

Mean Standard 
deviation 

Mean   Standard 
deviation 

                                                                    Nature of mathematics 

Mathematics consists of rules and procedures. a 4.33 .900 4.25 .622 

Mathematics is mainly calculations.a 3.92 1.357 3.42 1.084 

                                                               Teaching mathematics  

  Teaching enjoyment 

I always enjoy my mathematics teaching. 4.25 1.138 4.58 .515 

If I was free to choose, I would not teach 
mathematics.a 

1.83 1.115 1.42 .515 

  Teaching practices  

If a teacher does not tell students how to solve 
questions, they will make mistakes.a 

3.83 1.193 3.75 1.055 

I sometimes use the native language to explain 
mathematical ideas in the class. 

2.92 1.564 3.58 1.165 

   Teaching word problems 

I find it easier to teach algebraic word problems 
than those with symbolic notations. 

2.92 1.564 2.83 1.267 

                                                           Learning mathematics  

Not all students can learn mathematics.a 2.33 1.497 2.16 1.193 

Students’ mathematics background is often weaka. 4.42 .900 4.33 .492 

   Students’ classroom behaviour 

Students have to be attentive in a mathematics 
class. 

4.42 .900 4.67 .492 

Students do not like to ask questions in the class.a 3.50 1.382 2.58 1.311 

   Students learning algebra 

Students believe algebra is difficult. 3.50 1.382 3.92 1.084 

There are rules in algebra that students have to 
learn. 

4.50 .522 4.58 .515 

Note.  Confidence was scored on a 5 point scale  Strongly agree=5; Agree=4; Not sure=3; Disagree=2; 
Strongly disagree=1    

a
Negatively posed items 

 

 Key Finding 5.15 
After the intervention period, the teachers appeared to have a stronger belief that students 
desire to ask questions. There was an increase in the use of the native language to explain 
mathematical ideas. 
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 Teacher assessment of algebra questions 

The teachers had to assess the six questions in terms of how difficult they were for a JS 1 

student to solve. The majority of teachers chose the same ranks for most of the questions in 

both questionnaires and the word problems remained the most difficult questions. Table 5.24 

shows the data. 

Table 5.22: PL teachers’ ranking of algebra questions (n=12) 

Question 
type 

Mathematical 
skill required 
 

  Question                       Level of difficulty /6 

         Initial            Final   

Mean  SD Mean  SD Rank  

Box Understanding 
of place holder 

            X 5 = 20.  
 
What is           ? 

1.33 .778 1.17 .389 1 

Letter Understanding 
of place holder 

5x = 20. What is 
x? 

2.42 1.084 2.88 .900 2 

Box Inverse             X 20 = 5.  
 
What is            ?                  

3.25 1.215 3.33 .888 3 

Letter Inverse 20x = 5. What is 
x? 

3.33 .778 4.00 .953 4 

Worded: 
“a 
certain 
number” 

Understanding 
of place holder 

5 lots of a certain 
number is 20. 
What is the 
number? 

4.67 .651 4.92 1.084 5 

Worded: 
“a 
certain 
number” 

Inverse Twenty lots of a 
certain number is 
five. What is the 
number?        

6.00 .000 5.42 .996 6 

Note. Difficulty was ranked from one to six. Easiest =1; Easier=2; Easy=3; Difficult=4; More difficult=5; 
Most difficult=6 

More teachers appeared to recognise the difficulty associated with symbolic problems 

involving the need for inverse operations, although the increase was not significant at the p < 

.05 level, and these were still ranked third and fourth respectively. On the other hand, a few 

teachers seem to think that the two word problems were not as difficult as they previously 

thought but the ranking remained. Two-thirds of the teachers again chose a word problem 

that is inverse to be the most difficult question. 
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The reasons given for ranking difficulty in the way they did portrayed an increased awareness 

that the presence of variables, fractions and word problems increases the difficulty level of a 

question. Table 5.23 presents the responses. 

Table 5.23: PL teachers’ reasons for choice of perceived difficult questions (n=12) 

Reason for difficulty   Number of teachers 

initial Final  

   Rank 4 

Presence of a fraction or use of division in the question   4 3  
Presence of variable in the question 1 3 
Multiplication has to be done 2 3 
Others  5 3 

   Rank 5 

Interpretation of the word problem  3 9 

Presence of a variable in the question 3 1 
Presence of a fraction or use of division in the question 1 1 
Others  5 1 
    Rank 6 
Interpretation of the  word problem   7 8 

Presence of a variable in the question 1 2 
Presence of a fraction or use of division in the question 1 1 
Others  3 1 

 

The number of teachers that mentioned the presence of a variable as a reason for the difficulty 

of a question slightly increased, but there was an even larger increase in the choice of reason 

for difficulty to be word problems.  

 

 Importance of knowledge of students’ thinking and mathematical talk 

Teachers also responded to the open ended questions “Why is mathematical talk important in 

the teaching and learning of algebraic word problems?” and “How has an understanding of 

students’ misconceptions and thinking helped you to teach algebra?” Their responses 

indicated that they felt that it helped students to understand the language of mathematics and 

interpret word problems, and understanding the misconceptions in preparation of lessons 

Key Finding 5.16 
After the professional learning intervention, the ranking pattern remained the same as was 
seen in the first general survey, with the two word problems perceived as the two most 
difficult questions. The reason still given for the highest difficulty ranked question was because 
it was a word problem. The presence of variables increased as a contributing reason for the 
fourth rank.  
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helped the teachers to identify them and be more conscious of students’ learning needs in 

lesson delivery. Table 5.24 presents the responses. 

Table 5.24: PL teachers’ responses about mathematical talk and knowledge of students’ 
misconceptions (n=12)  

                             Number of 
teachersa 

Per cent 

Importance of mathematical talk   
It helps the interpretation and understanding of word problems 4 26.7 
It provide a way of identifying misconceptions 3  20.0 
It increases mathematical language development 3  20.0 
The nature of algebra as a topic calls for mathematical talk 3  20.0 
It helps to keep the learner engaged in the classroom 1  6.7 
It aids the building of knowledge 1  6.7 
How understanding students’ misconceptions helps algebra teaching  
A consciousness of student learning needs 6 43.0 
Conscious of the need to review knowledge relevant to the topic  3 21.4 
Increase in teacher subject knowledge 3 21.4 
Leads to effective communication in the classroom 1  7.1 
It results in a better lesson preparation 1  7.1 
aSome teachers gave more than one response 

The teachers believed that mathematical talk highlights students’ misconceptions and 

supports their development of mathematics language and algebra knowledge.  A minority also 

stated it is important for learner engagement. Many teachers gave reasons that seemed to 

focus on ensuring students’ understanding of the algebra being taught.  The knowledge also 

improved the algebra content knowledge of a few of the teachers.  

Key Finding 5.17 
The PL teachers reported that the knowledge of students’ misconception and thinking 
increased their knowledge of algebra and made them more conscious of student learning 
needs in algebra lesson preparation and delivery. The teachers also believed mathematical talk 
exposes students’ misconceptions and leads to an increase in mathematical language 
development and, to the understanding and interpretation of word problems. 

 

Difficulties using the Newman language-based error analysis procedure 

Teachers responded to the open ended question “What difficulties did you have in using the 

Newman strategy?” Half of the teachers reported they had no difficulties but a few mentioned 

that they were constrained by time to follow through all of the Newman steps and by their 

students’ verbal ability in English Language which, as described earlier, is the official language 

of communication in schools. Table 5.25 presents the responses. 
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Table 5.25: PL teachers’ responses to difficulties faced in the use of Newman strategy (n=12) 

Difficulty Number of teachers  Per cent 

None 6  50.0 
Some students limited verbal ability 3  25.0 
Time constraints 3  25.0 

 

Key Finding 5.18 
Half of the PL teachers reported that they did not have trouble with the general use of the 
Newman language-based error procedure in the class. The other teachers worked with 
students with limited verbal abilities in English language or had insufficient time to complete 
all the Newman steps. 

 

 Workshop Gains and Suggestions 

Teachers’ responses to the open ended question “What is the most significant thing that you 

gained in this professional learning workshop?” indicated that the teacher gains were mostly in 

mathematics content knowledge and pedagogical content knowledge. Figure 5.2 below 

present their responses. 

 

Figure 5.2: PL teachers’ most significant workshop gain (n=12) 

Many teachers suggested that all mathematics teachers should attend the workshop, while all 

teachers recommended the workshop.  Table 5.26 presents the responses. 

Table 5.26: PL teachers’ suggestions and recommendations (n=12) 

 Number of teachers * Per cent 

  Suggestions  
All mathematics teachers should participate in the workshop              9 56.3 
Increased time duration               2 12.5 
Involvement and participation of the Ministry of Education               2 12.5 
Continuous networking of participants              1  6.3 
Others              2 12.5 
  Recommendation  
 Yes            12  100.0 
aSome teachers gave more than one suggestion 
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A few teachers believed that the time duration should be more than three days and that in the 

future; the Ministry officials should be invited to participate. 

Key Finding 5.19 
Mathematics and algebra content knowledge was the most significant workshop gain reported 
by 42% of the teachers. Other gains were more knowledge about algebra teaching, the 
Newman procedure and students’ algebra difficulties. The program was recommended by all 
participants to mathematics teachers and relevant Ministry officials should be invited to 
participate. 

Summary  

All of the teachers were professionally qualified but had fewer than 10 years of JS 1 teaching 

experience, with 77% of them in the two to five years range. Many had class sizes between 41 

and 200 and taught more than three classes of JS 1. The most common challenges to effective 

mathematics teaching reported by teachers were: inadequate instructional materials and 

facilities, students’ weak prior mathematics knowledge and large class sizes. Most of the 

teachers indicated high self-efficacy beliefs on the use of questioning and whole-class 

discussions, and they were all confident of their knowledge of algebra. However, traditional 

approaches had the highest mean ratings and were reported to be used regularly while 

approaches involving mathematical discussions and identification of students’ algebra 

misconceptions were used less often. Before the intervention started, two-thirds of the PL 

teachers perceived that most of the questions, including three word-equations with two pro-

numerals, were adequate for JS 1 students.  

After the professional learning, stronger beliefs that communication skills, feedback and 

language-based approaches were effective strategies for teaching and learning mathematics 

emerged. There was also a significant increase in the mean rating of PL teachers’ confidence in 

explaining algebra concepts, developing relevant vocabulary and terms and using questioning, 

while confidence reduced about their algebra knowledge and about managing word problem 

discussion and group work. The mean scores for frequency of students reading aloud and 

identifying a solution plan for questions increased while that of teachers’ working of examples 

and note writing reduced.  

The PL teachers reported that the knowledge of students’ likely misconceptions and thinking 

made them more sensitive to student learning needs in algebra lesson preparation and 

delivery, and increased their knowledge of algebra. Half of them reported that they did not 

experience any difficulty with the general use of the Newman language-based error procedure 

in the class. The other teachers worked with students with limited verbal abilities in English 

language or insufficient time to complete all the Newman steps. Gains from the professional 
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learning were seen most in mathematics and algebra content knowledge, knowledge about 

algebra teaching, effective use of the Newman procedure and awareness of student algebra 

difficulties.                                                                                  
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CHAPTER SIX: CASE STUDY ONE – RUTH’S CLASS 

The next four chapters report case studies of four of the teachers, and thus focus more closely 

on JS 1 algebra teaching and students’ successes, and difficulties with algebra problem solving 

before and after the professional learning. More specific qualitative data about teachers’ 

beliefs, knowledge and practice, and student’s algebra problem-solving ability were gathered. 

These data seen in questionnaires, lesson observations, PL activities, interviews and algebra 

tests were analysed. The analysis in each of the four chapters is reported each time in two 

sections, namely: the teachers’ pre- and post-intervention beliefs and practice; and the 

students’ pre- and post-algebra performance and Newman interviews.  

Background 

Ruth (a pseudonym) was very willing and happy to participate in the study. In her early 30s and 

having taught mathematics for more than six years, she had fewer than five years of JS 1 

teaching experience. Ruth has a first degree in mathematics education in addition to the NCE, 

which is a Nigerian teaching qualification obtained after three years of post-secondary training 

at a College of Education. She taught JS 1 and 2 in a private co-educational school located 

within an urban area in Ojo educational zone, and one of Ruth’s three JS 1 classes participated 

in the study.  The students did not number more than 35 in a class and were between 10 and 

12 years of age.   

Pre-Intervention Beliefs and Practice 

Beliefs 

Ruth’s responses in the initial questionnaire completed before the professional learning 

suggest some constructivist belief about teaching.  For example, she wrote that effective 

mathematics teaching “should be student-centred”, allowing “students to solve examples by 

themselves” and that the “interactive method” was an effective teaching strategy.  There were 

strong disagreements with statements like: not all students can learn mathematics, and 

mathematics is mainly calculations. Ruth indicated that she used the following strategies daily 

or often: inviting them to explain the working for their answer and having them solve questions 

individually. 

Ruth was very self-confident about her ability to manage classroom discussions and use 

questions; she also expressed confidence about engaging students’ interest and explaining 

algebra concepts to them. She rated her students’ classroom engagement level to be seven 

out of 10. However, she never grouped or paired students in the class. She reported that the 
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lack of instructional materials was a challenge for teaching mathematics effectively. Ruth was 

confident about her knowledge of algebra but indicated limited confidence about using the 

knowledge of students’ misconceptions to plan algebra lessons.  

On the initial questionnaire, Ruth was asked to rank six algebra problems in terms of their 

difficulty for students. The two word problems were selected as the two most difficult for her 

students with the word problem involving an inverse operation perceived to be the most 

difficult of all.  The three questions involving inverses were consistently ranked to be more 

difficult, irrespective of the question representation. 

Believing that students find mathematics, and especially algebra difficult, Ruth strongly agreed 

with the following statements: students don’t like to ask questions in the class; students’ 

mathematics background is often weak, and; if a teacher does not tell students how to solve a 

problem, they will make mistakes. Ruth expressed delight and satisfaction with her teaching 

and indicated that she used the native language sometimes to explain mathematical ideas in 

the class. 

Key Finding 6.1 
Before the intervention, Ruth had a high self-efficacy and confidence about her knowledge of 
algebra and the use of questions but limited confidence with using the knowledge of algebraic 
misconceptions in lesson planning.  She believed classroom interaction was necessary for 
effective teaching whilst having some traditional views of students’ learning.  

 

Practice 

Activities in Ruth’s classroom during two single lessons were recorded at two minute intervals. 

The four most frequent activities were: teacher explaining, students listening, students 

explaining and students’ individual works (See a sample in Appendix 17). Ruth’s classes often 

started with her giving a brief review of the previous lesson, followed by an explanation of the 

day’s lesson and then writing a question on the blackboard as an example. To explain the 

concept, Ruth read the question aloud, and then proceeded to work out the answer, 

explaining as she moved through each solution step.  The students were asked if they had any 

questions; if none, she explained the solution process again before another problem was 

written on the board.  

Ruth’s comments seemed to suggest that she herself used the letter as a detachable object, 

something that can be potentially misleading for her students.  In her spoken language, she 

also used the phrase “add the letter” as an instruction to write the letter beside the 

coefficient, not as an operation. While explaining how to simplify algebraic expressions in two 

different lessons, she said: 
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When you want to add numbers like this, first of all, add the 
coefficients then just add the letter to it if it is the same alphabet. 
(Lesson observation, 17/3/2011) 

You know, I told you that when you want to add, you add the 
coefficients and after adding them, you add the letter to it. (Lesson 
observation, 24/3/2011)  

Students’ questions were answered immediately by Ruth or other students volunteered to 

answer.  However, it appeared that rules were followed and that faulty reasoning was not 

addressed as seen below. 

First student: I have a question. Why can’t we add 8y plus 5x to give 13x? 

Ruth: Listen, listen everybody 

Second student: I want to answer the question 

Ruth: Okay, answer 

Second student: The reason why we cannot add them is that they are not 
of the same variable 

Ruth: They are not of the same variable (Lesson observation, 24/3/11) 

Ruth offered no further clarification of the fact that an addition had occurred but that the 

resulting expression could not be gathered together.    

On another occasion, a student had to simplify 8y + 5x – 5y - 3s + 1. He wrote 3y + 1 + 5x – 3s 

and then wrote final answer as 4y + 5x – 3s on the board (See Figure 6.1).  After the student 

wrote the answer, she asked 

Ruth: What are you collecting again? Is there any common term? 

Student: No (then re-wrote as 3y + 5x – 3s + 1) 

Another student: Since it is ordinary one, can’t we add it together?  

Ruth: No, we leave it like that (Lesson observation, 17/3/11)  

 

              Figure 6.1: Ruth’s student’s working on the board  
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Ruth appeared to give more attention to the computational aspects than the understanding of 

the question. In the example, Think of a number, subtract three from it and the result is nine. 

What is the number? she called a student to work out the answer on the board.  The other 

students were asked if the student’s solution process was correct, and there were mixed 

responses of yes and no. The student had written nine and three inside two shapes, added 

them and wrote 12 as the answer.  

Ruth: The question asked you to think of a number… What is the number? 
The answer is correct but the steps are not in order. You missed a step 
before you arrive at the final answer. 

(Another student is called to the board to correct the working. The 
student does it correctly using only one unknown, subtracting three from 
it and balancing the equation to obtain the value of 12 as the needed 
number.)   

Ruth: She is correct. (Students copy the answer into their notebooks) 
(Lesson observation, 17/3/11) 

A volunteer or an invited student answered the question on the board while Ruth watched the 

student’s working. If correctly answered, Ruth re-explained the process before the students 

copied the examples into their notebooks; but if wrong, another student was called or 

volunteered to solve it. At times she completed the working of the question and then gave one 

or two problems as class work. As Ruth walked around the class, individual students showed 

their solutions to her and received immediate feedback. After some time, a student was called 

upon to show the working of the answer on the board while other students watched. The 

worked examples were copied by the students and then they were directed to the textbook do 

some exercises as classwork or homework.  

Key Finding 6.2 
Prior to the professional learning, the observed classes revealed Ruth’s interaction with the 
students but teacher talk/explanation dominated. Ruth appeared to use the letter as a 
moveable object. When students made errors, their faulty reasoning were not addressed and 
it seemed there was more focus on calculating than on understanding the questions.  

 

Post-intervention Beliefs and Practice 

Beliefs 

After the professional learning intervention program and the teaching period, Ruth’s beliefs 

were analysed from her responses in the final questionnaire and the professional learning 

program. She seemed to have become more language-conscious in her beliefs. To her, 

students learnt mathematics effectively through classroom discussions in which they were the 

focus during the teaching process. Ruth’s written reflection on mathematical talk was that it 
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was important for improving students’ ability to understand how to interpret questions. She 

mentioned the importance of using familiar words to her colleagues during the final PL 

program.  

Teaching should not be teacher-oriented, it should be student-centred 
… we should not be using big words; we should use the words they are 
familiar with, simple ones. For example, product, if some of them don’t 
know the meaning, it is the same thing as multiplication. Multiplication 
is the same thing as times. Then sum, sum is the same thing as 
addition, addition is the same thing as plus”. (PL Workshop, 6/7/11) 

Ruth still indicated a general high self-efficacy in the use of questioning in the classroom but 

had reduced confidence about her ability to ask the right questions to develop mathematics 

ideas through discussion and sustain discussions so that we thoroughly discuss mathematical 

ideas.  

With increased confidence in her rating about her knowledge of students’ misconceptions to 

plan algebra lessons, Ruth believed that a teacher has to patiently explain to help students 

overcome algebra misconceptions. During a period of sharing teaching experiences with other 

teachers, she said: 

Teachers should take time to explain to them (students) in details and 
he/she should not skip any step. Maybe because of time he is 
supposed to do this stage, he will skip it (saying) that they will do it in 
JS 2 (PL workshop, 6/7/11) 

Ruth believed that students’ use of their textbooks would improve problem-solving 

performances. When asked during the PL about what she required from her students to help 

them learn algebra better, she said  

By their practising at home; whether they give them assignments or 
not, they have the textbook, they have  … exercises, practice at home. 
Any one they don’t understand …. Maybe when you want to do the 
correction, you look at it then call them one after the other to come 
and do it, you will make it random. (PL workshop, 6/7/11) 

Ruth wrote in her final questionnaire that her significant gains from the professional learning 

were her understandings that: “teaching algebra is not a fruit salad approach”, and 

“application of Newman strategy [is useful] in teaching all topics in mathematics”. By fruit 

salad approach, she meant that the algebraic letter should not be used as a label or to 

represent an object such as ‘a’ for ‘apple’, ‘b’ for ‘banana’.  When asked about her experience 

with the use of the Newman error analysis questions in her class, Ruth replied,  

Ruth: it worked 
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Researcher: When you say it worked, I may not really understand what 
you mean by ‘it worked’ 

Ruth: It will be discussion because by the time you ask them to read the 
question……you stand up, read the question, do you understand? Who 
will interpret it - the question. It is discussion (and laughed). 

Researcher: So you were able to use it? 

Ruth: Ah, yes. It worked. It’s not even only in teaching algebra…..it’s not 
only for algebra (PL workshop, 6/7/11) 

Ruth expressed concern that the JS 1 algebra syllabus was overloaded with content. 

 It’s not only the maths teachers or students alone; the scheme of 
work is at fault. Like now, the algebra, you have some topics about 
algebra. If you look at the time, you skip one, you move to another and 
it is not supposed to be. After giving them one example and they don’t 
understand, you need to explain but you leave them..and say because 
of time when you get to JS 2, you will do it. (Focus Group, 6/7/11) 

Key Finding 6.3 
Following the PL, Ruth identified language and mathematical talk as important for algebra 
teaching and learning; she attested to the efficacy of the Newman error analysis steps in her 
class as opportunities to discuss mathematics. Ruth believed the duration for algebra teaching 
was insufficient for the JS 1 content. 

 

Practice 

During a six-week teaching period, one double and two single lessons which Ruth taught were 

observed and recorded by the Researcher. The most frequent lesson activities were:  teacher 

using questions and identifying key terms; students doing board and individual work, and 

students asking questions. 

Ruth often started with a written problem which she solved herself, explaining each step and 

asking students questions. Many students often volunteered to participate in solving problems 

on the board and sometimes two students solved the same problem on the board while she 

watched.  The students at the board then explained the strategy they used in finding the 

answer and some of the other seated students were quick to point out errors, sometimes 

without Ruth calling on them. Sometimes the students conversed amongst themselves without 

reference to the teacher, as shown in the picture below. 
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                     Figure 6.2: Ruth’s students interacting at the board 

Ruth adapted the Newman interview procedure in her class by calling different students to 

answer each of the Newman questions. For example, Ruth wrote 7x – 5 = x + 7 on the board 

and asked: 

Ruth: Who will solve the question? (Many hands were raised) What will 
be the first step? 

Many students: We collect like terms   

Ruth: (Calls a student) Come and collect the terms 

Students: He’s getting it. 

Ruth: Look at [name] solution, is it correct? (Student wrote 7x –x – 5 = 7) 

Students: Mixed responses of yes and no 

Ruth: Look at it 

Many students: It is not correct. Aunty, they are teaching him 

Ruth: So, look at it now, is it correct? (7x – x = 5 + 7) 

Many students: Yes 

Ruth: Who will solve the next step? (Many eager hands are raised, calls 
another student) Do the next step 

(Student writes 6x =12) 

Ruth: How do you know it is 6x? 

Student: Coefficient of x is one, so 7x – 1x is 6x 

Ruth: Now, you want to use balance method, what do you do?  (Calls 
another student who divides both sides by 6 to obtain x = 2)  
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Ruth: What is the sign between 6 and x? 

Student: times (Lesson observation, 25/5/11) 

After the solution was written, Ruth asked the students to substitute and confirm the equality 

before she explained again.  

With the word problems, Ruth would use her students’ names in the questions and then revert 

to use real values to explain the strategy before generalizing with the algebraic letter. For 

example, the question was: In a test, Yinka gets 6 marks more than Keji. If Keji got y marks, 

how many marks did Yinka get? After reading aloud the question, Ruth continued: 

Ruth: If Keji got 5 marks, how many marks did Yinka get? 

First student: 11 

Ruth: How do you know that it is 11? 

First student: 6 + 5 

Ruth: Why is it plus? 

Second student: Because it is more than 

Ruth: That is, Yinka’s score is more than Keji’s mark.  Now, Keji has y 
marks, what is Yinka’s mark?  

(Many students shout out y+6 and 6+y, she calls one to explain his 
answer) 

Third student: It is y + 6 because we don’t know the mark of Keji. We plus 
the y plus 6 (Lesson observation, 17/5/11) 

Ruth explained the meaning of words she felt her students may not understand. For example, 

in the question a boy is 12 years old. How old was he five years ago? a student could not 

understand how “ago’ transformed to “minus’.  

Ruth: How old are you? 

Student: 10 years 

Ruth: How old were you five years ago?   

Student: Five years 

Ruth: How do you know?   

Student: I minus, 10 – 5 (Lesson observation, 17/5/11) 

After repeating the process with two other students, Ruth explained that the word ‘ago’ 

referred to the past and meant subtraction for this question. In another lesson, she mentioned 

‘eliminate’ while explaining the balance method under simple equations but quickly asked the 
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students “what does it mean”, to which they replied “remove” (Lesson observation, 

25/5/2011). 

Her questions now drew on students’ thinking and they made her students use the 

mathematical language.  For example,  

Ruth: What do you understand by linear equation? 

First student: It is an equation that has one unknown 

Ruth: Instead of unknown, that letter is called what? 

Second student: Variable 

Ruth: Give me an example 

Third student: 4x = 20 

Ruth: What is the sign between 4 and x? 

Fourth student: Multiplication (Lesson observation, 26/5/11) 

She was observed using and reminding students that the letter was a quantity and was not 

observed using it as a moveable object again. Most problems were provided by her and the 

textbook exercises were used for classwork to be submitted for marking or as homework. 

Key Finding 6.4 
Following the PL, Ruth was observed using more questions that engaged the students’ thinking 
and she adapted the Newman steps in the class. More students were engaged in classroom 
discussion, problem solving and asking questions. She explained the meaning of unfamiliar 
words and was not observed using or talking about the letter as a moveable object.   

 

Changes in Ruth’s Beliefs and Practice 

Her classes appeared to be more engaging with students freely interacting with each other. 

Her reported daily teaching practice included whole-class mathematics discussion which 

previously occurred in a few lessons. The frequency of students’ individual work reduced, from 

every lesson to only some lessons. In the final questionnaire, Ruth indicated that now students 

daily read aloud the question and identify a plan for solving the question. Ruth’s reported 

algebra teaching approach now included reminding students about the meaning of a variable 

and identifying their algebra misconceptions.   Prior to the intervention, Ruth never grouped or 

paired students in her class, but indicated that she now used it in a few lessons. 

Ruth’s beliefs about some students’ classroom behaviour appear to have slightly changed. Her 

opinion on the statement students do not like to ask questions in the class, changed from a 

strong agreement to a disagreement. There was a slight reduction from a strong agreement to 
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agreement on the statement: students’ believe that algebra is difficult. Ruth increased her 

strength of disagreement, from disagree to strongly disagree; on mathematics being mainly 

calculations, and on word problems being easier to teach than symbolic problems.  Ruth 

reported that she had gained confidence in lesson planning based on the knowledge of 

algebraic misconceptions.  

Key Finding 6.5 
Ruth was more confident about her knowledge of algebra misconceptions after the 
professional learning. She believed students liked asking questions in the classroom and daily 
engaged her students in whole-class mathematics discussion.  

 

Students’ Algebra Pre-test Performance 

Before the professional learning intervention workshop, Ruth’s students completed the 

algebra pre-test. The pre-test comprised 15 questions, six symbolic and nine word problems. 

Each correct answer was scored one point, giving a maximum total score of 15 points. The 

highest total score obtained was nine, by one student, while 35% of the students answered 

only one question correctly.  Table 6.1 presents the information. 

Table 6.1: Ruth’s students’ pre-test total score (n=34) 

                                          Total score on pre-test /15   

 0 1 2 3 4 5 6 7 8 9 

Number of 
students 

5 12 10 5 0 1 0 0 0 1 

Per cent 14.7 35.3 29.4 14.7 0.0 2.9 0.0 0.0 0.0 2.9 

 

About 79% of the students correctly answered no more than two of the questions and only 

two students correctly answered one-third or more of the questions.  

More correct answers were obtained for the symbolic questions than the word problems. The 

number of students that gave correct answers to each of the 15 questions is presented in 

Table 6.2. 

Table 6.2: Number of Ruth’s students with correct answers in each pre-test question (n=34) 

                             Question number and representation format 

                 Symbolic                                     Worded  

Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Number of 
students 

2 13 6 20 2 1 9 1 3 2 1 0 0 0 1 

Total                          44/204                                          17/306 
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The 61 correct responses out of a total of 510 (34x15) possible responses represents a 12% 

overall success rate comprised of 21.6% success on the symbolic questions and 5.6% success 

on the worded problems. The easiest symbolic question was a linear equation for which the 

students had to find the value of the algebraic letter. The easiest word problem required only 

the knowledge of the letter as a quantity; no mathematical operation was required. 

Key Finding 6.6 
Ruth’s class pre-test results showed that 79% of the students correctly answered no more than 
two questions. There was a 12% overall success rate comprised of 21.6% on the symbolic 
questions and 5.6% on the word problems. 

 

Students’ Pre-test Newman Interview Results 

The difficulties encountered by the students were investigated using the Newman error 

analysis interview procedure. Four students chosen by Ruth (given codes S1, S2, S3, and S4), 

were individually interviewed by the Researcher concerning the questions they wrongly 

answered. The Researcher asked additional questions after completing the Newman interview 

protocol only when the student’s responses needed further clarification.  

One student wrongly answered all of the questions and the remaining three students gave 

one, three and five correct answers respectively when they completed the questions a second 

time as required by the Newman protocol. This led to one student being interviewed on all 15 

questions, another on 14 questions and the remaining two students on 12 and 10 questions 

respectively. Out of the 51 incorrect responses, 39% were transformation errors, 27% were 

comprehension errors and 20% were processing errors. The error pattern differed with the 

question text format, that is, symbolic as opposed to word. (See Table 6.3)  

Table 6.3: Per cent of error types made by Ruth’s students on the algebra pre-test (n=4) 

              Question representation   

   Symbolic      Word   All questions 

Initial error    Per cent  Per cent    Per cent 

Reading           0           0          0 
Comprehension        23.5         29.4       27.4 
Transformation         29.4         44.1       39.2 
Process skills        35.3         11.8       19.6 
Encoding           0          2.9         2.0 
Carelessness         11.8         11.8       11.8 

 

On the symbolic questions, the students made more process skill errors (35%) than 

transformation (29%) and comprehension errors (24%). This was unlike the word problems on 

which they made more comprehension (29%) and transformation errors (44%) than process 
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skill errors (12%). More students moved through the comprehension and transformation steps 

before errors were made in mathematical processing on the symbolic questions. However, 

with the word problems there were fewer successful moves through the comprehension and 

transformation steps. Two-thirds of all errors emanated from the word problems and there 

were an equal proportion of careless errors from both question formats. 

Key Finding 6.7 
The Newman error analysis of Ruth’s students’ incorrect pre-test responses showed that 39% 
were transformation errors and 27% were comprehension errors.  Transformation errors (44%) 
were most common with word problems while process skills errors (41%) were most common 
with symbolic questions. 

 

The analysis of the students’ incorrect responses follows, and it is based on the question 

format. The six symbolic questions are first stated, and then followed by a description of the 

students’ responses to the interview questions as they relate to the language-based errors and 

common algebra misconceptions.  

                Symbolic Questions: 1- 6 

 
1. Simplify  as far as possible 1 + x + x 
2. Simplify  as far as possible 3m + 5n + 4m + 6n  
3. y× y × y = .............. 
4. Find the value of x: 7x = 21 
5. Find the value of x: 2x – 2 = 10 
6. Find the value of x: 21x =7 

 

                          Figure 6.3: Symbolic pre-test questions 

Questions 1 and 2 examined the students’ difficulties with collecting like terms in algebraic 

expressions. To correctly answer these questions, the knowledge of an algebraic letter as a 

quantity and the knowledge that the answer may be an expression without conjoining terms is 

needed to obtain 1 +2x and 7m+11n respectively. Three of the five errors that occurred were 

process errors involving conjoining of terms and confusing sums with products.  

S4: 1 plus x plus x equals 1 plus x squared (1+ x2) 

S1: 1 plus the x gives 1x, then another x, equals 1x2 (1+x+x = 1x+x)  

 

 

 

           Figure 6.4: Ruth’s students (S1, S3 and S4) workings on Question 1 

S1

S3   S4 
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The other two errors were transformation of the letter to a zero value and as a detachable 

object. 

S3: This one (points to x) is an unknown number; it is going to be zero, 
1+0+0 = 1. You cannot write the two x, you write only one; 1x. 

S3: We are going to add them together..18mn: because there are two m’s 
and also two ns, so we are going to take one out for each. (Student 
interview, 28/3/11) 

Question 3 required the use of the multiplication operator, not addition, to obtain y3 and only 

one student gave the correct answer. The remaining three students processed the letter with a 

fixed value of one, giving rise to the algebraic misconception of the letter being a unit value. 

S2: It is y because when y is one, so, if you say 1x1x1 = 1. So in this case 
since y is one, so yxyxy = y. 

S3: It is equal to y because this y is just like one, then 1x1x1 =1, we are 
going to say yxyxy = y. (Student interview, 28/3/11) 

Questions 4 to 6 had to do with finding a specific unknown value in an equation and required 

the knowledge of the concept of equality and the ability to perform inverse operations in 

order to balance an equation. Four of the nine errors related to comprehension; three 

occurred during transformation and the remaining two were careless errors with question 4. 

Most of the comprehension errors were identified with question 6 as three students thought 

they were meant to divide 21 by seven. 

S1: It is still the same as 21 divided by 7, so we do division 

S4: To get what we are going to divide by 21, we have to divide by 7 to get 
what is x 

S3: We should find the x that is there; so we are going to say, 21 divide by 
the answer that will give us seven. (Student interview, 28/3/11) 

However, the notion of division was not carried over to Question 5 as the two transformation 

errors involved the students feeling compelled to use the equal sign as an action.  

S1: This x, we need to look for x. 12 minus two will give us 10. But how 
they write it here, I don’t understand. 

S3: I have to minus, ten minus two to get the final answer: 10 – 2 = 8 
(Student interview, 28/3/11) 

The summary of all initial errors observed in the responses of the four students interviewed 

are in Table 6.4. The most common errors were process skills (6), transformation (5) and 

comprehension (4) errors. 
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Table 6.4: Ruth’s students’ responses and initial errors on pre-test symbolic questions (n=4) 

Questions                      Students’ responses to six symbolic questions  

Correct                                                                                            Incorrect   

                                           Initial error cause  

 R C T P E CE Total  

Symbolic           
1 1  - - 1 2 - -  3 
2  2  - - 1 1 - -  2 
3 1  - - - 3 - -  3 
4 2  - - - - - 2  2 
5  1  - 1 2 - - -  3 
6  -  - 3 1 - - -  4 
Overall  7  - 4 5 6 - 2 17 

R- Reading, C- Comprehension, T -Transformation, P- Process skills, E- Encoding, CE - 

Carelessness 

 

Key Finding 6.8 
The transformation and process skill errors of Ruth’s students in the pre-test symbolic 
questions appear to result from misconceptions about the letter as a moveable object, a 
specific or unit value, product –sum confusion, inappropriate conjoining of terms and an 
inability to use inverse operations to balance an equation. 

 

A description of the nine word problems, the students’ responses and identified errors and 

algebraic misconceptions follows next. 

Worded Questions: 7-15 

 
 

7. Sola has x bananas and Peju has p bananas.  Peter counts the number of bananas each 
of them have and finds they are the same.  Sola said you could write this as x=p, but 
Peju said that x and p are different letters and so cannot be the same. Who do you 
think is correct? 

8. Mary has x oranges and Bisi has four more oranges than Mary. How many oranges 
does Bisi have? 

9. A basket costs eight naira and a bag costs c naira more than the basket. How much 
does the bag cost? 

10. What is the number that is five less than x? 
11. There is  a   b number of sweets in a packet. A girl has two packets of sweets and gives 

her friend six sweets. How many sweets does she have remaining? 
12. If d is the number of dogs and c is the number of cats, write in algebra: There are four 

more dogs than cats.    
13. Write in algebra: There are three more caps than hats. 
14. Write in algebra: There are twice as many pencils as biros (let p be the number of 

pencils and b be the number of biros). 
15. If s is the number of students and t is the number of tables, write in algebra: There are 

three students for every table. 
 

Figure 6.5: Worded pre-test questions 
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Question 7 required no mathematical operation and only required students to use the 

knowledge of the algebraic letter as a quantity to correctly answer the question. Three process 

errors occurred when the letter was interpreted alphabetically alongside a misconception that 

different letters cannot ever have the same quantities. 

S2: X cannot equal p because this thing (points to equal sign) means they 
are the same. Like human being and animal cannot be the same. This 
equal to, means they are the same; so, they cannot be equal to but they 
can be x and p. 

S3: X and p are different letters, so they can never be the same. They are 
different letters, so they cannot be written as the same variable number. 

S4: X and p are not the same   (Student interview, 28/3/11) 

Questions 8 and 9 required students to transform the word ‘more’ into addition, then sum up 

the given quantities to obtain algebraic expressions ‘x+4’ oranges and ‘8+c’ naira respectively. 

Half of the six errors were due to carelessness; the students first substituted with real numbers 

but initially did not revert to the given letter to arrive at the correct answer. The other errors 

were: transforming the word ‘more’ as meaning multiplication (S4), “We have to say eight 

multiplied by c equals 8c”; processing the terms in a conjoined form (S1),”x+4 = 4x”; and, 

writing 4 oranges (S3) after correctly saying “4+x”.    

Questions 10 and 11 required students to generate algebraic expressions involving the 

subtraction operator as correct answers. None of the students correctly answered two 

questions and seven of the eight errors were transformation-based. With Question 10, three 

students transformed ‘less’ as division to arrive at “x divided by five”.  

 

 

 

Figure 6.6: Ruth’s students’ (S1, S2 and S4) workings on Question 10                                         

 

The Researcher, curious about this and wishing to understand better, asked them why they 

used division. The reasons were:  

S3: less means when it is lower, so we divide 

S2: In the number line, a number less than five, you have to move it back. 
Since this case is a mathematical statement, it is an unknown number, so 
you have to divide it since we cannot get the answer. 

        S1                        S3                                  

       S2                             
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S1: You need to divide to get the number that is less. We don’t need to 
add because they say which number is less (emphasis), five less than x, 
that is, for example 10. It is five lesser than ten. You cannot say x+5, it will 
not give you the correct answer.  (Student interview, 28/3/11)                                   

In Question 11, all the students transformed the total number of sweets using specific values.  

S1: We need to do six times two; it will give us the amount, the b.  Six 
times two equals twelve will be the amount of sweets inside one packet. 
Since she gave her friend six, it will remain one packet and six sweets. 

S4: B is the number of sweets in a packet. The girl has two packets; b is 
equal to two packets minus six sweets. Since they are not the same, we 
leave it like this.  (Student interview, 28/3/11) 

With Questions 12 to 15, the students had to construct equations showing the relationship 

between two objects in terms of their quantities. None of the students gave a correct answer 

to this set of questions. Nine of the 16 responses indicated that the students did not 

understand the questions or thought they had to find the quantity for one of the objects. 

S4: We have to add the c to four to get the number of cats  

S2: To know the amount of students sitting on a table 

 The seven transformation errors were now more concerned with students using the letter as 

shorthand for an object and using specific values. Examples of the typical responses were:  

S1: One chair for three students that is one over three  

S2: multiply p by two to get the twice, so it is two p plus this b, biro 

S1:  this d (four), it is four more than cat, it will turn to six and this c will be 
two. So six minus 2 is four, cats is less than 4d    (Student interview, 
28/3/11) 

 

 

 

 

                                       Figure 6.7: Ruth’s students’ (S1 – S4) workings on Question 15 

The most common error types were transformation (15) and comprehension (10) errors. These 

data are summarised in Table 6.5.  

 

 

 

S1 S2    S3  

 S4      
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Table 6.5: Ruth’s students’ responses and initial errors on pre-test word problems (n=4) 

Questions                                   Number of  responses to  worded questions  

Correct                                                                                            Incorrect   

                                           Initial error cause  

 R C T P E CE Total  

7  -  -  -  - 3  - 1  4 
8  -  -  -  - 1 1 2  4 
9 2  -  -  1 - - 1  2 
10  -  -  1  3 - - -  4 
11  -  -  -  4 - - -  4 
12 -  -  2  2 - - -  4 
13  -  -  4  - - - -  4 
14 -  -  1  3 - - -  4 
15 -  -  2  2 - - -  4 
Overall  2  - 10 15 4 1 4 34 

R- Reading, C- Comprehension, T -Transformation, P- Process skills, E- Encoding, CE – 

Carelessness 

Key Finding 6.9 
Comprehension errors on the pre-test word problems occurred mainly with questions 
involving two pro-numerals; Ruth’s students gave meanings limited to one of the pro-
numerals. The word ‘less’ was also transformed to represent division. Algebraic 
misconceptions identified were: the use of the letter as an alphabet, as shorthand for an 
object; the letter has specific values; and, different letters cannot have the same value. 

 

Students’ Algebra Post-test Performance 

Ruth’s students completed the post-test after a post-intervention six-week teaching period. 

The post-test was parallel to the pre-test in that the structure and underlying concepts were 

unchanged; the changes only affected people’s names, descriptive items and the values or 

quantities used. The reason for this was to reduce the bias that might influence performance, 

since the students had been exposed to the questions earlier.  

In the post-test, 53% of the students achieved a total score of three or more and there was a 

significant improvement (z = -3.771) in the students’ general performance even though the 

overall performance remained poor. Tables 6.6 and 6.7 present the details. 

Table 6.6: Ruth’s students’ post-test total score (n=34) 

              Total score on post-test /15  Pre-test    Post-test 

 1 2 3 4 5 7 8 10 Mean SD  Mean  SD 

Number 
of 
students 

4 12 8 6 1 1 1 1 1.79* 1.68 3.12* 1.97 

Per cent 11.8 35.3 23.5 17.6 2.9 2.9 2.9 2.9 
        *Wilcoxon Signed ranks test, p<.01  
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The lowest total score was one, unlike the pre-test in which five students scored zero. There 

was a total of 101 correct answers out of a possible 510 (34x15) correct responses, 

representing a 21% success rate, an increase of 9% over the pre-test correct answers. The 

symbolic questions had more correct responses than the worded problems. 

Table 6.7: Number of Ruth’s students with correct answers in pre- and post-test questions 
(n=34) 

                                  Question number and representation format 

                 Symbolic                                     Worded  

Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Post-test   

Number 
of 
students 

6 20 13 25 9 4 9 8 6 2 2 2 0 1 0 

Total                         77/204                                           30/306 

Pre-test   

Number 
of 
students 

2 13 6 20 2 1 9 1 3 2 1 0 0 0 1 

Total                         44/204                                           17/306 

 

There was a 37.7% success rate with the symbolic questions and a 10% success rate on the 

word problems. Question 4, a symbolic-equation question, and Question 7, a word problem 

without mathematical operations, remained the easiest questions in their respective text 

formats. Further comparison of pre- and post-student performance can also be seen in Figure 

6.14.  

Key Finding 6.10 
There was a significant improvement in Ruth’s students’ post-test general performance. The 
overall success rate Increased to 21% which comprised 37.7% success with symbolic questions 
and 9.8% success with word problems. 

 

 Students’ Post-test Newman Interview Results 

The four students earlier interviewed on the pre-test using the Newman interview protocol 

participated in another round of interviews on the post-test questions. The four of them jointly 

had a total of 13 correct responses; it consisted of five, four, three and one correct answer 

respectively given by the individual students. Most of the errors were transformation (44.7%) 

and process skill (31.9%) errors. Like the pre-test, the proportions of error type differed when 

the question text format was considered. There was almost an equal proportion of process 

skill errors found with symbolic questions, as transformation errors found with word problems. 

(See Table 6.8) 
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Table 6.8: Ruth’s students’ initial errors on algebra post-test (n=4) 

Initial error                   Question format   All  questions 

 Symbolic    Worded    

Per cent  Per cent   Per cent 

Reading   0   0   0 
Comprehension   0  20.6  14.9 
Transformation 38.5  47.1  44.7 
Process skills 46.1  26.5  31.9 
Encoding   0   2.9   2.1 
Carelessness  15.4   2.9   6.4 

         
 

The students progressed further on the symbolic questions, giving them more opportunity for 

mathematical processing that led to a higher percentage (46.1%) of process skill errors. On the 

word problems, the students’ greater success with comprehension than had been seen on the 

pre-test enabled more activity at the transformation and processing stages.  

Key Finding 6.11 
Ruth’s students’ post-test interviews showed that the students made less comprehension 
errors than on the pre-test and that the majority of errors were transformation (45%) and 
process skills (32%) errors. The most common errors made on symbolic questions were 
process skill errors (46%), and transformation errors (47%) were the most common errors with 
word problems.  

 

The post-test which was analysed for errors is next described according to the question 

format. The questions are first stated, followed by a description of the identified Newman 

language-based errors and algebra misconceptions evidenced from the students’ responses to 

the Newman interview questions.  

Symbolic Questions: 1–6 

 
1. Simplify  as far as possible 1 + y + y 
2. Simplify  as far as possible 4z + 3p + 7z + 2p  
3. m × m × m = .............. 
4. Find the value of x: 6x = 24 
5. Solve for x: 5x – 5 = 20 
6. Solve for x: 24x =6 

 

                          Figure 6.8: Symbolic post-test questions 

Questions 1 and 2 responses produced five wrong answers. Most of the errors the students 

made on the two questions were processing errors arising from the use of the letter as a 

moveable object, conjoining of terms, and confusion of sums with product.  
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S1: We are going to remove the alphabets first and write only the 
numbers because we are not supposed to join the two together, we need 
to separate them, and then we take only one of them (and wrote 16 + zp) 

S3: We are going to take one of these (points to y); we can’t put the two 
of them together, so it is 1y.  

Two students added and obtained 1 + yy and 1 + y2 as their answers.  (Student interview, 

1/7/11) 

Only one student (S3) wrongly answered question 3. The student processed the letter with the 

misconception that it had a fixed value of one saying “it is equal to m, because if we want to 

say one, one times one times one will give the same one so this m now will give m”.  

Questions 4 to 6 were equations requiring students to find the unknown value that will 

balance the equation. All the students answered Question 4 correctly, in some contrast to 

Question 6 that had three errors at the point of transformation. The students were quick to 

see some form of semblance between Questions 4 and 6 but were unable to perform the 

inverse operation required.  

S1: I think this number (points to question 6) is the opposite of this 
number (points to question 4). It is just like 24 divided by six…The x is 
going to be for division so it will be 24 divided by six. 

S4: It is the same as this one (points to question 4), the digits are the 
same. (Student interview, 1/7/11) 

Two students (S3 and S4) were unable to process Question 5 and used the equal sign as 

meaning something to act upon. Both responses were of the form: “We are going to say five 

times five equals 25 minus five equals 20”. The identification of the unknown as five was not 

however linked to the letter.  The five was detached from 5x and multiplied with the other five 

(ignoring the negative sign) to obtain 25, and then five was subtracted to arrive at 20.  

 

 

 

                                           Figure 6.9: Ruth’s students’ (S3 and S4) workings on Question 5 

The most common error types were process skill (6) and transformation (5) errors. Table 6.9 

presents the summary of all initial errors observed.  
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Table 6.9: Ruth’s students’ responses and initial errors on post-test symbolic questions (n=4) 

Questions                      Students’ responses to six mainly symbolic questions  

Correct                                                                                            Incorrect   

                                           Initial error cause  

 R C T P E CE Total  

Symbolic           
1   1  - - -  3 - -  3 

2    2  - - 2 - - -  2 
3   3  - - - 1 - -  1 
4   4  - - - - - -  -  
5    1  - - - 2 - 1  3 
6    -  - - 3 - - 1  4 
Overall   11  - - 5 6 - 2 13 

R- Reading, C- Comprehension, T -Transformation, P- Process skills, E- Encoding, CE - 

Carelessness 

Key Finding 6.12 
The transformation and processing errors made by Ruth’s students on the post-test symbolic 
questions were related to algebraic misconceptions of: the letter is a detachable object, the 
letter has a fixed value of one, conjoining of terms, inability to perform inverse operations with 
larger divisors and using the equal sign as a signal to act. No comprehension errors were 
identified. 

 

Worded Questions: 7–15 

 
 

7. Sola has y bananas and Peju has x bananas.  Peter counts the number of bananas each 
of them have and finds they are the same.  Sola said you could write this as y=x, but 
Peju said that y and x are different letters and so cannot be the same. Who do you 
think is correct? 

8. Mary has m oranges and Bisi has three more oranges than Mary. How many oranges 
does Bisi have? 

9. A ball costs ten naira and a shirt costs y naira more than the ball. How much does the 
shirt cost? 

10. What is the number that is four less than x? 
11. There is  a   x number of pencils in a packet. A girl has three packets of pencils and 

gives her friend five pencils. How many pencils does she have remaining? 
12. If p is the number of plates and c is the number of cups, write in algebra: There are 

four more plates than cups.    
13. Write in algebra: There are five more goats than dogs. 
14. Write in algebra: There are twice as many books as pens (let b be the number of books 

and p be the number of pens). 
15. If b is the number of boys and g is the number of girls, write in algebra: There are three 

boys for every girl. 
 

Figure 6.10: Worded post-test questions 

The three errors that occurred with Question 7 resulted from the letters being processed 

alphabetically instead of seen as quantities. The common reason was 
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 S2: They are not the same letter and they are different and they cannot 
be equal to each other. But x can be equal to x and y can be equal to y but 
y cannot be equal to x 

 S4: They are not the same letters (Student interview, 1/7/11) 

    

 

                         Figure 6.11: Ruth’s student (S2) response on Question 7 

This work sample shows S2’s correct thinking. However, this notion is carried over incorrectly 

to the conclusion that it is never true also that x = y. 

The Researcher further asked S2 “When it says that they are the same, what does that mean”? 

The reply was: 

S2: Even though his mangoes and Sola’s mangoes are the same, but they 
are not of the same letter. Just like -2 and 2, they are not the same, so y = 
x, they are not the same. (Student interview, 1/7/11) 

Questions 8 and 9 had three transformation and three process errors. Two students (S2 and 

S3) transformed the ‘more’ in Question 9 mathematically as multiplication and subtraction to 

obtain “y – 10” and “10y” respectively.  Others chose specific values of two and three to 

represent the algebraic letter ‘m’ in Question 8 and processed the answers as “five” and “six 

oranges” respectively. A student (S1) after substituting and obtaining five oranges continued, 

and conjoined this by saying “but when they did not put the amount, we now put 3m”.  

(Student interview, 1/7/11) 

Questions 10 and 11 jointly had four transformation and three process skill errors. The word 

‘less’ in Question 10 was transformed to the inequality sign by one student and two others 

represented it as a division. 

S1: Less than, this is the sign (<) and this is four. The number that is less 
than x. Because there is no more letter or number there, we have to write 
x<4.  

S2: It is x divided by four because when they say less, they mean divide it. 

 To process the two questions, specific values were used.  

S4: This x could be any number...I’ll choose 10; so you minus four from 10, 
it will be six. 

 S3: We are going to say three times three, it will give nine. Then we 
subtract from it that five, so it is going to give you four. 

 S2: In a packet there are 12, so now in three dozens, 12 pencils each. So if 
you take five out of one packet... (Student interview, 1/7/11) 
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There were no correct answers for Questions 12 to 15 but there were more transformation 

errors (9) than comprehension errors (7). The students interpreted the questions as asking 

them to find the quantities of the two objects in the questions. For example,    

S3: There are five more goats than dogs, so the goat is going to be 10 and 
the dogs will be 5.  

S1: We are going to assume..four is going to stand for the number of 
cups,…to get the answer for plates we add this four, that is four more 
than plates, it will give us eight. (Student interview, 1/7/11) 

 

 

 

 

                                    Figure 6.12: Ruth’s students’ (S1 – S4) workings on Question 12 

Those who transformed misconceived the letter to be shorthand for the object. S2 said: “I shall 

put an algebraic letter to signify that this is dog and this is goat”.  The students continued with 

a literal translation of the question to obtain algebraic expressions and fractions such as “5g – 

d”, 4p – c”, “3b +g” and “4p/c”, already identified as equation-construction errors (Student 

interview, 1/7/11). 

The errors made by the four students is summarised in Table 7.10. The most common error 

types were Transformation (16), Process skills (9) and Comprehension (7) errors.   

Table 6.10: Ruth’s students’ responses and initial errors in post-test word problems (n=4) 

Questions                                  Students’ responses to  word questions  

Correct                                                                                            Incorrect   

                                           Initial error cause  

 R C T P E CE Total  

7  1  - -  -   3  - -  3 
8  1  - -  1 2 - -  3 
9 -  - -  2 1 1 -  4 
10  -  - -  3 1 - -  4 
11  -  - -  1 2 - 1  4 
12 -  - -  4 - - -  4 
13  -  - 2  2 - - -  4 
14 -  - 3  1 - - -  4 
15 -  - 2  2 - - -  4 
Overall  2  - 7 16 9 1 1 34 

R- Reading, C- Comprehension, T -Transformation, P- Process skills, E- Encoding, CE - 

Carelessness 

S1      S3    

S2          S4     
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Key Finding 6.13 
Ruth’s students when working on the post-test word problems transformed ‘less’ as a 
division or an inequality sign; the letter was used as shorthand for an object, leading to 
literal translations and the students calculated specific quantities for the two pronumerals 
instead of establishing relationships between them.  

 

  Changes in Ruth’s Students’ Performances and Error Types 

This study sought to examine the impact of the professional learning intervention on students’ 

success in algebra problem solving. To do this, the students’ pre and post-test performance 

and error analyses were compared.  

 

Figure 6.13: Ruth’s students’ performance on pre- and post-tests 

There was a slight change in the types and proportions of errors made by the four interviewed 

students on the algebra post-test.   Comprehension difficulties reduced by 44% but 

transformation remained the greatest challenge. Table 6.11 presents this information.  

Table 6.11: Per cent of Ruth’s students’ errors before and after intervention (n=4) 

                                                Per cent errors  

Error type Pre-test  Post-test 

Reading   0   0 
Comprehension 27.4  17.0 
Transformation  37.2  44.7 
Process skills 21.6  29.8 
Encoding   2.0   2.1 
Carelessness  11.8   6.4 

 

There were increased process skill errors since the four students’ ability to move beyond the 

prior steps of comprehension and transformation enabled them to engage in mathematical 
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processing of the questions. Transformation and processing errors jointly accounted for 76.6% 

of all errors.  Figure 6.14 shows the error pattern across the tests and text formats.  

 

Figure 6.14: Distribution of errors on Ruth’s students’ pre- and post-test  

 

Key Finding 6.14 
Ruth’s students overall success rate increased by 9%; success on symbolic and word problems 
increased by 16% and 4.2% respectively.  The frequency of comprehension errors was 
reduced by 44% and there were consequent increases in transformation and processing 
errors.  

 

Summary 

 

Before the professional learning, Ruth believed that teaching should be interactive, focused on 

the student who is actively involved in problem solving during the lesson. However, she also 

indicated that students did not like asking questions. Whole-class mathematical discussions in 

her class were few, although she asked many questions in class. By the end of the intervention 

period, Ruth’s classes were more interactive, with students asking questions and whole-class 

discussions taking place. Ruth had gained more confidence about her algebra knowledge, 

students’ misconceptions, and the use of language-based approaches.  

There was a significant improvement in Ruth’s students’ algebra performance and a decrease 

in the proportion of comprehension errors. Algebraic misconceptions about the letter as an 
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object, inappropriate conjoining of terms and the inability to do inverse operations remained. 

The next case studied was also in a private school but with fewer students.  
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CHAPTER SEVEN: CASE STUDY TWO - DOROTHY’S CLASS 

One of the teachers who was very interested in the professional learning program and 

indicated willingness to serve as one of the four case studies was Dorothy (pseudonym).  In 

this chapter, Dorothy’s knowledge and beliefs about mathematics, especially algebra, her 

teaching practice, and her students’ difficulties with algebra before and after the professional 

learning intervention are described. This description provides information about the impact of 

the intervention on how algebra is taught and learnt, and the difficulties students encountered 

in understanding it. 

 Background 

Dorothy, a professionally qualified mathematics teacher in her early 20s had fewer than five 

years of teaching experience. Her qualification of National Certificate in Education (NCE), 

majoring in mathematics and integrated science, is the minimum professional qualification and 

is obtained after three years of post-secondary training in a college of education. Dorothy 

taught mathematics to JS 1 and 2 students in a co-educational, private secondary school 

located in a suburb within Ojo Educational zone. Each of her JS 1 classes had fewer than 30 

students whose ages were between 10 and 12 years.    

Pre-Intervention Beliefs and Practice 

Beliefs 

Dorothy’s responses and self-ratings on the initial questionnaire suggested that she had more 

of a traditional view of mathematics and how it is learnt. For example, she indicated that every 

lesson she taught included note writing, worked examples and problem-solving by individual 

students. Only in a few lessons did her students identify key words or symbols contained in the 

questions.  At the same time, Dorothy agreed with statements like: students do not like to ask 

questions in the class; mathematics is mainly calculations; and, mathematics consists of rules 

and procedures. She also believed that students could learn effectively mathematics, especially 

algebra, if they possessed the “ability to interpret questions,. .form equations from the 

question.. and solve the problem” (Initial questionnaire). Dorothy reported that the lack of 

instructional materials hindered her ability to teach mathematics effectively.  

Some constructivist beliefs were also indicated in her responses. For example, Dorothy 

expressed disagreement with statements such as: not all students can learn mathematics; and, 

if a teacher does not tell students how to solve questions they will make mistakes, even though 

she agreed with the statement, students’ mathematics background is often weak. Dorothy 
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believed that all mathematical content was connected and that students should know this. 

During the professional learning workshop discussions, she mentioned that,” we should let 

them know that there is continuity in mathematics” (PL workshop, 29/3/11). By this she meant 

that JS 1 mathematics was just a ‘link in the chain’ and that students should be told that their 

primary mathematics knowledge was foundational and not to be discarded.  

Also reflected in the initial questionnaire were high self-efficacy ratings about Dorothy’s ability 

to use questions and discussions to manage talk in the classroom. These ratings were matched 

by her confidence to teach algebra, a very high self-confidence about knowledge of algebra 

and an eight out of ten rating for her students’ engagement level.  With regard to teaching and 

learning algebra, Dorothy agreed there are rules in algebra that students have to learn though 

they find algebra difficult and that she found it easier to teach word problems rather than 

those with mainly symbolic representation.   

Key Finding 7.1 
Prior to the intervention, Dorothy was very self-confident about her knowledge of algebra and 
the use of questions in teaching. She indicated a mainly traditional view of mathematics and 
teaching, and that she found it easier to teach word problems than symbolic questions. 

 

Practice                                           

One double and two single algebra lessons given by Dorothy were observed by the Researcher 

before the professional learning program, and specific activities that occurred every two 

minutes were recorded (See sample in Appendix 18). The general pattern was that as Dorothy 

explained the concept the students listened and then she wrote notes and worked an example 

of a problem on the blackboard, asking students questions during the process. The students 

then copied the notes and the worked example into their note books. More examples were 

shown, with one or two students given the opportunity to work out the solution on the board, 

and then she explained the solution process. Following this was individual class work and 

Dorothy went around checking and giving individual student feedback on some of their 

solutions. Dorothy then wrote the correct solution on the blackboard accompanied with more 

explanations, the students copied it into their notebooks and sometimes she gave homework 

before she closed the lesson.  The activities that occurred most frequently were: teacher 

explaining ideas/concepts, students listening and copying notes, and the teacher asking 

questions.  

Students’ knowledge of mathematical vocabulary was important to Dorothy and when she 

explained a new word, like coefficient, she related its importance to mathematical literacy.  
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There are some words that are very common and we use them in 
mathematics, like coefficient. After this class now, when you will be doing 
other topics in mathematics, we will be referring to coefficients. We 
expect you to know it now and you will now be transferring this 
knowledge to other topics when it comes to that time. So make sure you 
get it now. (Lesson observation, 22/3/2011) 

Dorothy appeared to connect new words with a broader future use so that the students would 

know its importance and usefulness in mathematical communications. She explained the 

meaning of words such as algebra, simplify and equation.  

Ball et al. (2008) noted that mathematical knowledge for teaching includes teachers’ correct 

use of terms and notations. Although Dorothy identified and corrected some students’ 

misconceptions about conjoining terms, she herself did not seem to be aware of some of the 

misconceptions about the letter as an object or label. In a lesson, she explained that “the 

letters in algebra stand for something. You will understand it better when we attach the 

number to something”. Building on this explanation, she simplified 7t – 3t. 

Dorothy: What should we attach t to? 

A student: Table 

Dorothy: Table; you have a table before you. Seven tables minus three 
tables; you know the normal interpretation is seven tables take away 
three tables. We don’t want to use tables now but t. What will be our 
answer?  

Another student: 4t (Lesson observation, 22/3/11) 

The misconception was observed in another lesson and the names of students used as 

illustrations have been replaced with pseudonyms. 

Dorothy: You are all familiar with plantains. How many of you eat 
plantains? 

All the students raise their hands up. 

 Dorothy: Curtis is having four plantains and Pauline is having three 
plantains. Altogether, how many plantains? 

Students’ joint response: Seven plantains 

Dorothy: We can write this in algebraic form using p to denote plantain. If 
p represents plantain, Curtis is having four plantains and Pauline is having 
three plantains. If you want to use p to represent plantains, then we can 
say Curtis is having four p instead of writing plantain. That means we are 
using letter p to represent plantain. Pauline is having three p which stands 
for three plantains. Now, altogether how many plantains are they having? 

Students’ joint response: Seven plantains.  
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Dorothy: Similarly in algebra, we can have four p plus three p, and what 
will it give you? 

Students’ joint response: Seven p  

Dorothy: It’s still the same thing. It is similar to you adding your plantains 
together….. to understand  problems in algebra is to connect it to 
something around you. Once you connect it to something around you, it 
will be easy for you to understand. (Lesson observation, 24/3/11)    

 

                Figure 7.1:  Dorothy’s board writings 

The observed classes lend support to a traditional teaching approach indicated in Key Finding 

7.1 and portrays some incorrect usage of the algebraic letter. 

Key Finding 7.2 
Before the professional learning program, Dorothy’s classroom teaching involved a large 
proportion of teacher talk and explanation.  She explained the meaning of new mathematical 
terms to her students and was observed using the letter as shorthand and as an object during 
teaching. 

Post-intervention Beliefs and Practice 

Beliefs 

Following the intervention, Dorothy seemed to believe that her algebra knowledge was 

limited. In the final questionnaire on completion of the PL program, she wrote that a “teacher 

should be trained in the discipline (mathematics) and should be vast in knowledge” in order to 

teach mathematics effectively.  Dorothy’s confidence ratings about her knowledge of algebra 

and that of students’ algebra misconceptions dropped also.  This change appeared consistent 

with a slight decline in her strength of agreement with questionnaire statements:  My rich 

knowledge of mathematics helps me ask the right questions to develop mathematics ideas 

through discussion; and, My rich knowledge of mathematics helps me to respond appropriately 
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to students’ answers to my questions. Dorothy’s initial agreement with I find it easier to teach 

algebra word problems than those with symbolic notations changed to a disagreement in the 

final questionnaire. 

At the end of the teaching period following the professional learning program, Dorothy’s 

beliefs still reflected a general high self-efficacy for managing classroom talk through questions 

and discussions; however, her position on some traditional beliefs appeared to have changed. 

For example, her prior strong agreement with, Students’ don’t like to ask questions in the class 

became a strong disagreement. Dorothy indicated that every lesson she taught, students were 

asked to identify what they understood from the blackboard questions and how they planned 

to solve them.  Her survey response also indicated an increase in her reported use of: having 

students reading aloud the question; and, asking students to identify key words and symbols in 

the question.  

Key Finding 7.3 
After the professional learning, Dorothy’s reported beliefs suggest a reduced self-confidence 
about her knowledge of algebra, students’ algebra misconceptions and the use of questioning. 
She disagreed with her initial views about word problems being easier to teach and students 
not wanting to ask questions. 

 

Dorothy believed that language is very important in the teaching and learning of mathematics 

and should be seen to relate to real-life contexts. While sharing algebra teaching experiences 

with other teachers on the third day of the PL workshop, she said that “language is not isolated 

but transferred to other life activities”. Dorothy described how she helped her students relate 

new words they encountered in mathematics and word problems to real-life. 

 Once you know you are using the word for the first time with that set of 
students, you should explain the meaning, so that when next you want to 
use the word, you ask them…explained to you a few weeks ago. 
Sometimes we assume that they know the meaning of it and the word can 
be strange to them. I had to explain the meaning …if it is something they 
can relate to their day to day life. For example,… So I told them, 
henceforth, I want you to be using that word when you are 
communicating at home, so that it will become part of you and when you 
get to the senior….you will still come across…..so they will become 
familiar with it. (PL workshop, 6/7/11) 

Her knowledge of her students’ ability appeared to determine the extent of the content that 

Dorothy taught them.  For example, she considered that there was too much content for the JS 

1 students in the scheme of work.  
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To me, it’s too much. We introduce it to them in JS1, the collection of 
terms, like terms, use of brackets,..I skip it but it’s in our scheme of work. 
So many things at once….I did not teach my students ……they will not 
understand anything. (PL workshop, 6/7/11) 

Key Finding 7.4 
Dorothy recognised the importance of English and mathematical language to word problems 
and its application to other real world situations after the PL. However, she believed that too 
many new terms were being introduced in the JS 1 scheme of work. 

      

Practice                                    

After the professional learning, Dorothy was observed by the Researcher three times, 

consisting of one double and two single lessons, over a six-week period. Specific activities that 

occurred within a two-minute interval were recorded and the most frequent activities were: 

teacher explaining, teacher use of questions, students asking questions, and explaining. After 

an initial explanation of the concept, Dorothy wrote an example to be solved on the board, 

read it aloud, and asked further questions to direct the students’ thinking.  

She often asked students to guess the unknown value or used a symbol to represent the 

unknown value, or both were used before generalizing with the algebraic letter when solving 

word problems.  The guessed values are substituted into the question and checked for 

correctness before she reverted to the algebraic letter as the unknown value. Dorothy wrote, 

What number will you multiply by three; add two and the final answer will be 11? After 

ascertaining the second suggestion of three was correct, the unknown number was replaced 

by a box before she continued. 

Dorothy: What sign is between the three and the box? 

Student 1: Multiplication 

Dorothy (replaces the box with x): Can you tell me what is standing in the 
place of the box now? 

Student 2: A letter, x 

Dorothy: Our aim is to determine the value of the letter that we used the 
box to represent. That is, what number has now been replaced with that 
letter x.   

Another student is then called to complete the computation.  (Lesson 
observation, 24/5/2011) 

Dorothy was careful and wanted her students to interpret and translate word problems 

correctly.  The students were to solve, I added seven to a certain number and the result is 

thirteen, what is the number? She noticed that most of the students’ transformations were of 

the form 7 + x = 13, and commented.  
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The question says, I added seven to a certain number, not that a certain 
number was added to seven. Though she is correct with the answer, but I 
want it to be put in a correct way. You must interpret your question 
correctly. You are able to get the same answer because you have the 
addition sign here. But if you have the subtraction, it is not going to give 
you the same answer.  (Lesson observation, 5/4/11) 

Dorothy wanted the students to write the transformation as x + 7=13 and for them to carefully 

read and understand the word problem because of the operational signs that may be involved 

within the context of the problem, not just to select the data haphazardly. 

 Dorothy adapted some of the Newman questions in her lessons and expressed concern about 

the importance of correct interpretation of word problems. For example, after writing the 

question, when a certain number is added to ten, the result is twenty five. What is the number? 

She read it aloud and then continued: 

Dorothy: Two things are important. The first thing is you interpret the 
problem; the second thing is you solve. First step is you denote the 
number with a letter.  Let that letter represent the number. Listen 
everybody, pay attention. We want to interpret what we have here. It 
means we have ten and a certain number was added. In other words, 
what do I add to ten to get 25? I don’t want to write a certain number in 
words. What can I write instead? 

Students: A letter 

Dorothy: Denote the number with a letter. What letter do we use? 

Student 1: n 
Dorothy: (writes n) is added means what? 

Many students: plus 

Dorothy: The result is what you get, the answer you get when you equate 
it (writes 10 + n = 25). What do we do to have only the letter on one side? 
What number will you add to 10 in order to get 25? I know you will tell me 
the answer is 15 but I want you work it. (She calls a student) What can 
you do to both sides in order to get the certain number alone on this 
side? 

Student 2: Subtract ten from both sides 

Dorothy then called another student to the board to complete the 
process, write the answer and explain to the class. (Lesson observation, 
24/5/11) 

Key Finding 7.5 
Dorothy was observed using the letter as a quantity after the professional learning. She tried 
to ensure that the students correctly interpreted and transformed word problems. More 
students were involved in asking and answering questions in the class.  
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Changes in Dorothy’s Beliefs and Practice 

There was some change in the type and frequency of questions asked by Dorothy in class with 

more concern that students should correctly understand and interpret questions. She taught 

with a mainly traditional approach but emphasised correct understanding and interpretation 

of algebra questions; students’ engagement through questions was observed to increase.  She 

wrote that mathematical talk “helps to identify areas of students’ difficulties and 

misconceptions and promotes students understanding” (Final Questionnaire). Dorothy’s use of 

the Newman questions did not often include students reading aloud the algebra question to 

be solved, as she did the reading most times.  

A realization of the important fact that the algebraic letter is a quantity and not an object, and 

teaching this, seems to be an ongoing challenge for Dorothy, in that she still made errors 

herself.  She described what happened during one of the lessons that the Researcher did not 

observe. 

 We were told not to use the fruit salad approach…you now tell them x 
and y represent quantities and these quantities can be the same in some 
instances.  They asked a question like…in some instances, x can be two, y 
can be two. So if the two of them are of the same quantity, they should 
be able to be added together. They will ask questions like that and that’s 
why I was forced to still use that fruit salad when teaching them. I just had 
to tell them …At that junction, myself I was confused. (PL, 6/7/11) 

Since the knowledge that the letter was a quantity and not an object was something that was 

new to Dorothy, she still erred while attempting to help her students understand the variable 

concept.   

Key Finding 7.6 
The development of Dorothy’s knowledge of teaching with the letter as a quantity is ongoing. 
She nevertheless has developed some awareness that a letter as an object is a misconception. 
She also used some of the Newman questions in her lessons.  

 

 Students’ Algebra Pre-test Performance 

All of the students in one of Dorothy’s JS 1 classes completed the algebra pre-intervention test, 

which comprised 15 questions containing nine word problems and six mainly symbolic 

questions. Each correct working and response was scored one point, giving a maximum of 15 

points on the test. The highest total score was eight, obtained by one person, while half of the 

students answered only one question correctly. Tables 7.1 and 7.2 present the performance of 

the students generally and on each question respectively.  
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Table 7.1: Dorothy’s students’ pre-test total score (n=26) 

                                                 Total score on pre-test /15  

 0 1 2 3 4 5 6 7 8 

Number of 
students 

5 13 4 2 1 0 0 0 1 

Per cent 19.2 50.0 15.4 7.7 3.8 0.0 0.0 0.0 3.8 

 

About 85% of the students correctly answered no more than two of the 15 questions while 

only one person correctly answered one-third of the questions.   

Table 7.2: Number of Dorothy’s students with correct answers in each pre-test question (n=26) 

                                   Question  format 

                Symbolic                                     Worded  

Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Number of 
students 

0 9 3 7 1 0 7 4 4 1 2 0 0 0 1 

Total                                                         20/156                                                  19/234 

 

There were 39 correct responses out of a total of 390 (15x26) possible correct responses. This 

represents a 10% overall success in the pre-test comprised of 12.8% success rate on symbolic 

questions and 8.2% on word problems. The question with the highest number of correct 

answers required the simplification of an algebra expression, while the most correctly 

answered word problem did not require any mathematical operation. 

Key Finding 7.7 
Pre-test results showed that 85% of Dorothy’s students correctly answered no more than two 
questions. There was a 10% overall success rate comprising 12.8% on the symbolic questions 
and 8.2% on the word problems.  

           

 Students’ Pre-test Newman Interview Results 

Since the focus of the study was not the students’ scores, but identifying the difficulties they 

encountered and why the mistakes were made, Newman’s (1983b) language-based interview 

protocol was used to identify the cause of the initial error made by the students. Dorothy 

selected four students (with codes S1, S2, S3 and S4) who were interviewed by the Researcher 

on all questions they wrongly answered. After completing the Newman interview protocol, 

further questions were asked in some cases based on the students’ responses to obtain more 

information. 

Two of these four students gave no correct answers and the other two only gave one correct 

answer each the second time they completed the test as required by the Newman protocol.  
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As a result of this, two students were interviewed on the 15 questions and the remaining two 

students were each interviewed on 14 questions.  Although the focus of the study was on 

word problems, the symbolic questions provided a basis for comparison of students’ language-

based errors and algebra misconceptions.  Of the 58 incorrect responses, 45% were 

comprehension errors and 24% were transformation errors. More comprehension errors were 

identified with word problems while more transformation errors were identified with symbolic 

questions. (See Table 7.3) 

Table 7.3: Per cent of error types made by Dorothy’s students’ on the algebra pre-test (n=4) 

Initial error           Question representation   

Symbolic   Word   All questions 

Per cent  Per cent  Per cent 

Reading   9.1   0   3.4 
Comprehension 13.6  63.9  44.8 
Transformation  40.9  13.9  24.1 
Process skills 18.2   8.3  12.1 
Encoding   0   2.8   1.7 
Carelessness  18.2  11.1  13.8 

 

There was a difference in the error pattern when the question representation was considered. 

The students had more transformation errors (41%) than process skills (18%) and 

comprehension (14%) errors on the symbolic questions, unlike in the case of the word 

problems where there were more of comprehension errors (64%) than transformation (14%) 

and process skills (8%) errors. More students progressed through the comprehension step 

successfully on symbolic problems, so that they were able to attempt the transformation step 

and had the opportunity to make transformation errors. 

Key Finding 7.8 
The Newman error analysis of Dorothy’s students’ pre-test wrong responses showed that 45% 
of the errors were comprehension-related and 24% were transformation-related. 
Comprehension errors (64%) were most common on the word problems while transformation 
errors (41%) were most common with the symbolic questions.  

 

The questions were analysed on the basis of the text-format, that is, the six questions that are 

mainly symbolic and the nine questions that are word problems. The set of questions are first 

stated and then followed by a description of the students’ responses to the interview 

questions as it relates to the language-based errors and algebra misconceptions.  
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Symbolic Questions: 1-6  

 
1. Simplify  as far as possible 1 + x + x 
2. Simplify  as far as possible 3m + 5n + 4m + 6n  
3. y× y × y = .............. 
4. Find the value of x: 7x = 21 
5. Find the value of x: 2x – 2 = 10 
6. Find the value of x: 21x =7 

 

                           Figure 7.2:  Symbolic pre-test questions  

Questions 1 and 2 examined the  students’ use of the knowledge of the algebraic letter as a 

quantity, knowledge of addition of like terms, and the knowledge that the final answer may be 

an expression which cannot be ‘gathered together’ /conjoined.  Half of the six errors that 

occurred during the interview were transformation errors:   

S1:  1 plus x plus x will be 1x plus 1x plus 1x,  

S4:  1 plus x plus x equals 1x because it has two x’s so we take one of 
them, 

S4:  Because m and n shows two times, so we write m and n; assuming it 
is only m that shows, we will write only it. So three plus five plus four plus 
six equal 18mn (Student interview, 25/3/11) 

Question 3, being syntactic in nature, investigated the student’s ability to use the 

multiplication operator to write the answer as a product and not a sum. Two students had 

reading errors and read the multiplication sign as the alphabet letter x leading to the solutions 

of 3y2x, and x2y3 , after wrong operations with addition and multiplication respectively. The 

other two students (S1 and S4) said “put one in front of y” and said 1y x 1y x 1y equals 3y. This 

is an algebra misconception that occurs when the terms are incorrectly added instead of 

multiplied (MacGregor, 1997). 

 

 

                          Figure 7.3:  Dorothy’s students’ (S1 – S3) workings on Question 3 

 

Questions 4 to 6 required knowledge of the concept of equality and how to balance an 

equation in order to obtain a specific unknown value. A quarter of the 12 errors were 

comprehension-related and half were transformational.  One student said the meaning of 

value was “plus” and two of them did not understand Question 6. In an effort to transform, 

S1  S2   S3    
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three students detached the letter from the coefficient in Question 5, while in Question 6, the 

idea of a bigger divisor seemed impossible to two students. These were expressed in the 

students’ replies to the Newman interview question: How will you find an answer to this 

question?  

S1: we will add the two’s to get four then 10 minus four,  

S3: we say 10 – two equals eight, then eight divide two equals four;  

S2: we cannot say that 21 should divide seven. No, we can’t say seven 
divided 21, so we say 21 divide seven to give us three…If I don’t do it like 
this, I can never get the answer. (Student interview, 25/3/11) 

The most common error types were transformation (9), process skills (4) and carelessness (4). 

These data are summarised in Table 7.4.   

Table 7.4: Dorothy’s students’ responses and initial errors on pre-symbolic questions (n=4) 

Questions                      Students’ responses to six symbolic questions  

Correct                                                                                            Incorrect   

                                           Initial error cause  

 R C T P E CE Total  

1 -  - - 2  1 - 1  4 
2 2  - - 1 - - 1  2 
3 -  2 - - 2 - -  4 
4 -  - - 1 1 - 2  4 
5 -  - 1 3 - - -  4 
6  -  - 2 2 - - -  4 
Overall  2  2 3 9 4  4 22 

R – Reading, C – Comprehension, T – Transformation, P  - Process skills, E – Encoding, CE - 

Careless  

 

Key Finding 7.9 
The transformation and process skill errors made by Dorothy’s students in the pre-test 
symbolic questions appear to result from misconceptions about the letter as a moveable 
object, the letter having a unit value, a confusion of product and sum, and an inability to use a 
larger divisor or balance an equation. 

 

The students’ responses and the errors identified on the nine word problems are described 

below.  
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Worded Questions: 7-15  

 
7. Sola has x bananas and Peju has p bananas.  Peter counts the number of bananas each 

of them have and finds they are the same.  Sola said you could write this as x=p, but 
Peju said that x and p are different letters and so cannot be the same. Who do you 
think is correct? 

8. Mary has x oranges and Bisi has four more oranges than Mary. How many oranges 
does Bisi have? 

9. A basket costs eight naira and a bag costs c naira more than the basket. How much 
does the bag cost? 

10. What is the number that is five less than x? 
11. There is  a   b number of sweets in a packet. A girl has two packets of sweets and gives 

her friend six sweets. How many sweets does she have remaining? 
12. If d is the number of dogs and c is the number of cats, write in algebra: There are four 

more dogs than cats.    
13. Write in algebra: There are three more caps than hats. 
14. Write in algebra: There are twice as many pencils as biros (let p be the number of 

pencils and b be the number of biros). 
15. If s is the number of students and t is the number of tables, write in algebra: There are 

three students for every table. 
 

Figure 7.4:  Worded pre-test questions 

Generally, comprehension was a greater problem with the word problems. 

To solve Question 7, the students only required the knowledge of the letter as a quantity 

because the question did not involve any mathematical operation. Three students viewed the 

letter literally as a member of the alphabet instead of a quantity.  One student (S2) in 

particular had an additional view of alphabetical ordering. He initially said “since Sola has x and 

Peju has p, we can say x is equal to p. So we can say they are the same”. After thinking for 

about five seconds, he continued 

 I think it’s true what Peju said because they are different alphabets. If x=x, 
then we say they are equal. There are still some letters between x and p. 
(Student interview, 25/3/11) 

With Questions 8 and 9, the word ‘more’ has to be transformed to the additive operator and 

the given quantities added to obtain ‘x +4 oranges’ and ‘8+c naira’ respectively, which are 

expressions. There were three comprehension and three transformation errors. 

Comprehension errors occurred on questions 8 and 9 as shown in the students’ statements: 

 S2: we have known the number of Bisi’s, then we are looking for Mary’s 
own. 

 S1: BIsi has 4 oranges, Mary has x oranges.   

 S1: they told us the amount of the basket but they did not tell us the 
amount of the bag. (Student interview, 25/3/11) 
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 One student did not know what to do after correctly explaining the two questions, while 

another (S1) transformed the word ‘more’ in Question 9 as subtraction and said, “If the basket 

cost 8 naira, then the bag will cost 8-c”.  This was after correctly stating the meaning of the 

question. The Researcher asked “Why did you subtract?” and the response was “Because it is 

more”.  The encoding error occurred when a student (S3) said “the answer is 4 plus x oranges” 

but went ahead to write 4+x =4x (the conjoining error). (Student interview, 25/3/11) 

 

 

 

 

                         Figure 7.5:  Dorothy’s students’ (S1 – S3) on workings  on Question 8   

Question 10 and 11 involved using subtraction and the algebraic letter in different ways. 

Question 10 required transforming the word ‘less’ into subtraction to generate ‘x-5’ as the 

answer. None of the students gave the correct answer but two of them said it was four. All of 

them had comprehension errors and expressed the meaning of ‘less’ to be: “lower than” or 

“we look for a number that is not more than five”. Two students explained further: 

 S2: it means the number that is below. There are many numbers that are 
below but I don’t know the particular one we are to put in this place. 

S1: We have too much of numbers that can be there. (Student interview, 
25/3/11) 

 The responses indicated their inability to use a letter as a specific unknown value and an 

inability to use the letter as a generalized number (Kuchemann, 1981). With Question 11, 

initial errors of ignoring one packet of sweets were rectified by two students while another 

multiplied the two ‘b’s’ instead of adding them. 

Questions 12 to 15 required generating a relationship between two quantities expressed in the 

form of an equation. Some of these questions were similar to some questions in a Nigerian JS 1 

textbook commonly used nationwide. None of the students appeared to have understood any 

of the questions and there were no correct answers. They could not explain the meaning of 

the word ‘algebra’, and the general meanings the students gave for questions were of the 

form: “we are to look for the number of dogs” and “we are to find the number of caps” which 

indicated that only one object was being considered by the students. The second object was 

ignored in most cases and the students’ solutions were mainly expressions involving one of the 

S1         S2    

S3   
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variables (also known as pro-numerals) paired with the given quantity close to it in the 

question. A student (S3) who attempted an explanation using both objects in Question 15 said 

“we are to look for the number of students sitting on the whole table” (Student interview, 

25/3/11). 

Table 7.5 presents the summary of the identified initial errors on the nine word problems. The 

most common errors types were comprehension (23), transformation (5) and careless errors 

(4). 

Table 7.5: Dorothy’s students’ responses and initial errors on pre- word problems (n=4) 

Questions                        Number of responses to  worded questions  

Correct                                                                                            Incorrect   

                                           Initial error cause  

 R C T P E CE Total  

7  -  -  - - 3  - 1  4 
8 -  -  2 1 - 1   4 
9 -  -  1 2 - - 1  4 
10 -  -  4 - - - -  4 
11 -  -  -  2 - - 2  4 
12 -  -  4 - - - -  4 
13  -  -  4 - - - -  4 
14 -  -  4 - - - -  4 
15 -  -  4 - - - -  4 
Overall  -  - 23 5 3 1 4 36 

R-Reading, C-Comprehension, T-Transformation, P-Process skills, E- Encoding, CE-Careless 

Key Finding 7.10 
Comprehension errors on the pre-test word problems occurred with the meaning of the word 
‘algebra’, and the  mathematical interpretation of the words ‘more’ and ‘less’. None of the 
students understood the meaning of the four questions that had two pro-numerals; all the 
meanings given were limited to finding the total quantity of one of the pro-numerals. 
Transformation and process skill errors resulted from misconceptions of the algebraic letter as 
a specific unknown value or as an alphabet, and that different letters cannot have the same 
value. 

Students’ Algebra Post-test Performance 

After a six-week teaching period, a post-test was administered to the class. It was similar and 

parallel to the pre-test except that names, quantities, letters and the numbering of the 

questions differed. Care was taken to ensure place values were left intact, that is, one-digit 

quantities in the pre-test remained one-digit in the post-test. The exact pre-test questions 

were not used because some of the students had become familiar with them through the 

Newman interview process. Too much familiarity might intervene in the true assessment of 

the students’ understanding of the questions.  
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In the post-test, 57.6% of the students scored a total of three or more and the Wilcoxon signed 

rank test showed that there was a significant improvement (z = -3.518) in the students’ general 

performance though the mean score was still low. The total of 75 correct responses in the 

class represented 19.2% success, an increase of 9.2% over the pre-test overall success rate. 

There were more correct answers for the symbolic questions than the word problems. Tables 

7.6 and 7.7 present the details. 

Table 7.6: Dorothy’s students’ post-test total score (n=26) 

                   Total score on post-test/15         Pre-test         Post-test 

 1 2 3 4 5 6  Mean SD   Mean  SD 

Number of 
students 

4 7 6 7 1 1  1.50* 1.655  2.88* 1.306 

Per cent 15.4 26.9 23.1 26.9 3.8 3.8  
*Wilcoxon Signed ranks, p<.01 

The lowest post-test score was one, in contrast to the pre-test where five students scored 

zero. 

Table 7.7: Number of Dorothy’s students with correct answers in pre- and post-test question 
(n=26) 

                      Question number and representation format 

                 Symbolic                                     Worded  

Question 1 2   3  4 5 6 7 8 9 10 11 12 13 14 15 

Pre-test                

Number of students 2 9 16 16 7 0 9 4 4  3  4  0  0  0  1 

Total correct answers                 50/156                                   25/234 

Post-test   

Number of students 0 9   3   7 1 0 7 4 4 1 2 0 0 0 1 

Total correct answers                                                           20/156                                           19/234 

 

The 19.2% success comprised 32.1% of the 50 correct responses on symbolic questions and 

10.7% of the 25 correct responses on word problems. Questions 3 and 4 had the highest 

number of correct answers but in the pre-test it was Question 2 that was answered correctly 

most often. The easiest word problem remained question 7 which did not require any 

mathematical operation.  No correct response was given on most questions having two pro-

numerals or requiring inverse operation with a larger divisor. 

Key Finding 7.11 
There was significant improvement and a 19.2% overall success rate in Dorothy’s students’ 
general post-test performance. Success on word problems and symbolic questions increased 
to 10.7% and 32.1% respectively.  
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Students’ Post-test Newman Interview Results 

Two of the four students gave four and three correct answers respectively and the other two 

students had two and one correct answer each. This totalled 50 wrong answers, consisting of 

18 (38%) from symbolic questions and 32 (64%) from word problems. (See Table 7.8)  

Table 7.8: Per cent of error types made by Dorothy’s students’ on the algebra post-test (n=4) 

Initial error                   Question format  All  questions 

     Symbolic   Worded    

Per cent  Per cent  Per cent 

Reading    5.6    0    2.0 
Comprehension    5.6  28.1  20.0 
Transformation 38.9  37.5  38.0 
Process skills 44.4  34.4  38.0 
Encoding    5.6    0    2.0 
Carelessness    0     0    0 

 

The comprehension errors reduced to a 20% proportion of all the errors on the post-test. 

Transformation and process skill errors were the most common error types on both question 

formats, since greater comprehension successes than on the pre-test created more 

opportunities for students to move beyond the level of understanding the sense of the 

questions. The process skill errors were slightly more common (44%) than the transformation 

errors (39%) on the symbolic questions, while with the word problems there was an almost 

equal proportion of transformation and process skill errors. 

Key Finding 7.12 
Dorothy’s students post-test interview responses showed fewer comprehension errors than 
that of the pre-test and there was an equal proportion (38%) of transformation and processing 
errors. The most common errors made on symbolic questions were process skill errors (44%), 
and transformation errors (38%) were the most common word problems. 

 

A description of the students’ errors on each of the symbolic and worded questions follows.  

 Symbolic Questions: 1-6 

 
1. Simplify  as far as possible 1 + y + y 
2. Simplify  as far as possible 4z + 3p + 7z + 2p  
3. m× m × m = .............. 
4. Find the value of x: 6x = 24 
5. Solve for x: 5x – 5 = 20 
6. Solve for x: 24x =6 

 

                        Figure 7.6:  Symbolic post-test questions  



146 
 

Questions 1 and 2 required the students’ knowledge of the letter as a quantity, familiarity with 

the addition of like terms, and the knowledge that the final answer may be an expression 

which cannot be ‘gathered together’. In answering the questions, four of the seven mistakes 

made by students were process skill errors that related to using the letter as a moveable 

object and ‘closing’ the expression.  For example, in Question 1 a student (S2) ‘closed’ the 

expression to get 1yy instead of 1 +2y because “the last terms are the same”. Another student 

(S4) was asked by the Researcher why he picked one ‘z’ and one ‘p’ to appear in the final 

answer for the second question; his reply was “because the z appears twice, the p appears 

twice so you pick one”.  (Student interview, 2/7/11) 

Only one student (S2) had a wrong answer to question 3 which was caused by a reading error. 

He read the multiplication sign as the alphabetical x and wrote ‘mmmxx’ as the final answer 

instead of m3. 

Questions 4 to 6 required knowledge of the concept of equality and how to balance an 

equation in order to obtain a specific unknown value. Six of the 10 mistakes made on this set 

of questions were transformation errors and the remaining four were process errors. Kieran 

(1992) has already noted that children see the equal sign as a directive to sum or find the total. 

All the students still used the letter as an object that is detachable from its coefficient in 

question 5 in order to balance the equation and to find the value of the letter. The Researcher 

asked two students (S2 and S3) why they detached the letter and subtracted in question 5. 

They said “if you don’t subtract, you can’t get it. Subtract five from each that’s there and let x 

stand on its own” and “because x is here, then you add it”. So the two fives were subtracted to 

isolate the letter,  leaving ‘x’ on one side, while on the other side the integer five was also 

utilized to operate on 20 indicating that the two parts were different (Student interview, 

2/7/11). 

 

 

 

 

 

 

                              Figure 7.7:  Dorothy’s students’ workings on Question 5  

S1                           S3                

S2 S4             
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 The multiplicative inverse required to correctly answer question 6 was not used. Two students 

(S3 and S1) seemed to believe a bigger divisor could not be used and reverted to answering it 

in the form of question 4.  Their reasons were “because 24 comes before six” and “six is 

smaller, 24 is bigger than six” (Student interview, 2/7/11). 

A summarised data of the students’ errors is presented in Table 7.9. The most common error 

types were process skills (8) and transformation (7) errors. 

Table 7.9: Dorothy’s students’ responses and initial errors on post-test symbolic questions 
(n=4) 

Questions                              Number of students’ responses  

Correct                                                                                            Incorrect   

                                           Initial error cause  

 R C T P E CE Total  

1 -  - 1 -  3 - -   4 
2 1  - - 1 1 1 -   3 
3 3  1 - - - - -   1 
4 2  - - 1 1 - -   2 
5 -  - - 2 2 - -   4 
6  -  - - 3 1 - -   4 
Overall  6  1 1 7 8 1 - 18 

R-Reading, C-Comprehension, T-Transformation, P-Process skills, E- Encoding, CE-Careless  

 

Key Finding 7.13 
Newman interviews with Dorothy’s students on the symbolic post-test questions showed that 
the use of the letter as a detachable object, the inability to operate with a larger divisor and 
the use of the equal sign as a prompt to sum up were still evident as misconceptions. There 
was a reduction in reading and comprehension errors and no careless errors were identified. 
 

 

A description of the nine worded post-test questions, the four interviewed students’ responses 

and the error analysis is offered next. 
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Worded Questions: 7-15 

 
 

7. Sola has y bananas and Peju has x bananas.  Peter counts the number of bananas each 
of them have and finds they are the same.  Sola said you could write this as y=x, but 
Peju said that y and x are different letters and so cannot be the same. Who do you 
think is correct? 

8. Mary has m oranges and Bisi has three more oranges than Mary. How many oranges 
does Bisi have? 

9. A ball costs ten naira and a shirt costs y naira more than the ball. How much does the 
shirt cost? 

10. What is the number that is four less than x? 
11. There is  a   x number of pencils in a packet. A girl has three packets of pencils and 

gives her friend six pencils. How many pencils does she have remaining? 
12. If p is the number of plates and c is the number of cups, write in algebra: There are 

four more plates than cups.    
13. Write in algebra: There are five more goats than dogs. 
14. Write in algebra: There are twice as many books as pens (let b be the number of books 

and p be the number of pens). 
15. If b is the number of boys and g is the number of girls, write in algebra: There are three 

boys for every girl. 
 

Figure 7.8: Worded post-test questions  

To solve Question 7, the students required only the knowledge of the letter as a quantity 

without the need for any mathematical operation. Three students still viewed the letter 

literally as an alphabetical entity instead of a quantity, with their pattern of response being 

“they have the same number but they don’t have the same letter”. The Researcher asked one 

of them (S3): “What letter should be here (pointing to x) for you to say they are the same”? His 

reply was “y” (Student interview, 2/7/11). 

With Questions 8 and 9, the given quantities have to be added to get ‘m +3 oranges’ and ‘10+y 

naira’ respectively, which are expressions. All the four students had wrong answers and six of 

the errors were evenly divided between transformation and process errors. The 

transformation errors were mostly on question 8 and seemed to relate to operating with the 

letter as two students (S1 and S2) wrote “3-m” as the answer while admitting that Bisi has 

more toys. The three process errors were seen on question 9 and generally related to the 

students ‘closing’ the expression as 10y. When a student (S1) was asked by the Researcher: 

“Why not leave it as 10 plus y”? He replied “because the addition of these two is 10y” (Student 

interview, 2/7/11). Once more, this is a conjoining error.  

 Question 10 required transforming the word ‘less’ into subtraction to generate ‘x-4’ as the 

answer. None of the students gave the correct answer but gave replies like: “they’ve not given 

us the number, so x will be the final answer” and “4x - 4”.  A student was still seeing ‘less’ as a 
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position and when the Researcher reframed the question as “what is the number that is four 

less than 10”, the reply was “like one is less than 10, up to nine” (Student interview, 2/7/11). 

 

 

                              Figure 7.9: Dorothy’s students’ workings on Question 10 

Half of the students did not understand Questions 12 to 15 and a few of them had 

transformation errors. Their lack of understanding of the questions reflected in their responses 

when asked “What is the question asking you to do?” The general meaning that the students 

gave to the questions still referred to the finding of the quantity of an item, instead of 

establishing a relationship between the two quantities of items (pro-numerals) given. For 

example: “we are to find the number of plates”; “we are asked to look for the amount of 

cups”; “we are not to solve anything” and “to look for the exact answer” (Student interview, 

2/7/11). 

In answering Question 13 where no letter was given, one of them (S2) said “in short form in 

algebraic process, we use g for goats, d for dog”.  Interestingly, despite the fact that questions 

12 to 14 stated the letter as a quantity, all of the students referred and used the letters as 

labels for objects in all of the questions. Three students admitted there were more boys than 

girls in Question 15 but two of them still did not understand it. 

S1: Boys are three, so we can guess that girls are three. That will be three 
boys for three girls 

S2: Three boys for each girl. Assuming they did not say three boys for each 
girl, the boys are more already. (Student interview, 2/7/11) 

 

 

 

 

 

                                            

                                        Figure 7.10: Dorothy’s students’ workings on Question 15 

S1      S2       S3        

S1            S2      

S3                S4                                 
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The only student (S4) who answered a question correctly, question 15, was asked why it was 

not replicated with the other questions. The reply was “I have an idea for this one because I 

am a girl”. It is not clear if she really understood the process involved in arriving at the 

solution. 

Data on the students’ errors is summarised in Table 7.10. The most common errors were 

transformation (12), process skills (11) and comprehension (9) errors. 

Table 7.10: Dorothy’s students’ responses and initial errors in post-test word problems (n=4) 

Questions                                  Students’ responses to  word questions  

Correct                                                                                            Incorrect   

                                           Initial error cause  

 R C T P E CE Total  

7 1  - - - 3  - - 3 
8 -  - - 3 1 -  4 
9 -  - - 1 3 - - 4 
10 -  - 1 1 2 - - 4 
11 2  - - 2 - - - 2 
12 -  - 3 1 - - - 4 
13  -  - 2 1 1 - - 4 
14 -  - 1 2 1 - - 4 
15 1  - 2 1 - - - 3 
Overall  4  - 9 12 11 - - 32 

R-Reading, C-Comprehension, T-Transformation, P-Process skills, E- Encoding, CE-Careless 

Key Finding 7.14 
Dorothy’s students’ post –test word problem errors stem from the misconception of the letter 
as: an alphabet, a specific value, a label or object, and the ‘closing’ of expressions.   Some 
students were still unable to give a correct meaning to some of the questions having two pro-
numerals.  Three students transformed ‘more’ and ‘less’ with a sense of ordering. 

Changes in Dorothy’s Students’ Performance and Error Types 

One of the research purposes is to examine the impact of the intervention on students’ 

success with algebra problem solving. To do this, the number of correct problem solutions, the 

general performances of the class, and identified causes of initial errors before and after the 

intervention were compared. A significant improvement in general performance was obtained 

(KF 7.11). Figure 7.11 presents the pattern. 
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Figure 7.11: Dorothy’s students’ pre- and post-test performance 

The number of correct answers given by the four interviewed students increased from two to 

10. Initially, comprehension was the greatest difficulty, but as facility in this improved, the 

students progressed; opportunities previously not present paved way for transformation and 

process skill errors to emerge, and they jointly became the greatest difficulties. Table 7.11 

illustrates this.  

Table 7.11: Per cent of Dorothy’s students’ errors before and after intervention (n=4) 

                                   Per cent error 

Error type Pre-test    Post-test    

Reading    2.4    2.0 
Comprehension  44.8  20.0 
Transformation  24.1  38.0 
Process skills 12.1  38.0 
Encoding     1.7    2.0 
Carelessness  13.8    0.0 

 

There was a 13.8% reduction in the total number of errors the students made, and 

transformation and process skill errors jointly accounted for 76% of the errors from an initial 

36%. The graph below (Figure 7.12) shows the pattern of errors on the pre- and post-tests 

both generally and in relation to the text formats.  
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Figure 7.12: Distribution of errors on Dorothy’s students’ pre- and post-test  

On the post-test, there was a 55% reduction in the proportion of comprehension errors, with a 

similar pattern found on the symbolic and word questions. With a better understanding of the 

questions, students were able to engage with more mathematical transformation and 

processing activities.  No careless errors were identified from the four students interviewed on 

the post-test. 

Key Finding 7.15 
In Dorothy’s class overall, symbolic and word problem success rate increased by 9.2%, 19.3% 
and 2.5% respectively on the post-test. The frequency of comprehension errors reduced by 
55% and there were consequently increases in transformation and process skill errors.   

 

Summary  

Dorothy’s initial portrait was one of a teacher with traditional beliefs, high self-efficacy in the 

use of questions and high self-confidence about her knowledge of algebra and its teaching. 

These high ratings slightly reduced after the intervention. Prior to the professional learning 

intervention, Dorothy was unaware that the use of a letter as shorthand or an object was a 

misconception.  Her students had exhibited difficulties in understanding and solving algebra 

questions. Post-intervention class observations indicated more students asking questions and 

participating in problem solving as she placed emphasis on correct interpretation of word 

problems and the use of a letter as a quantity. 
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The overall performance of Dorothy’s class in the post-test was still low even though there was 

a significant improvement and a 9.1% increase in rate of success.  The four students 

interviewed jointly had a 55% reduction in comprehension errors on the post –test. This 

reduction led to increases in transformation and processing errors that in themselves were 

largely due to students’ misconceptions about the algebraic letter, expressions and equations.  

The next two chapters are case studies of teachers who taught larger classes within the public 

school system. 
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CHAPTER EIGHT: CASE STUDY THREE – JAMIE’S CLASS 

In this chapter, an analysis of the teacher’s beliefs, knowledge and practice before and after 

the professional learning intervention, and changes observed, are given. Following this, the 

students’ general algebra performance and the Newman error analysis before and after the 

intervention period, and identified changes, are described. Direct statements taken from the 

initial or final questionnaire are written in italics.  

Background 

Jamie (pseudonym), a male in his early 30s, was very enthusiastic about participating in the 

study.  A holder of the National Certificate in Education, the minimum Nigerian professional 

teaching qualification, Jamie’s subject disciplines are mathematics and integrated Science. He 

had been teaching mathematics for between six and 10 years but had had fewer than five 

years of Year 7 teaching experience. Situated in a suburb in Ojo Educational zone, Jamie’s 

school, a public one, has a large population because most parents want their children in 

schools that are close to their homes. Jamie’s eight Year 7 mathematics classes each have an 

average class size of 70 students, between 10 and 12 years old.  

  Pre-Intervention Beliefs and Practice 

Beliefs 

Three things Jamie wrote in the initial questionnaire that constituted challenges to his 

effective teaching of mathematics were: an unconducive teaching environment, inadequate 

teaching aids and teaching methods. Jamie believed that availability of teaching aids and 

teacher guides was necessary for mathematics teaching.  

On initial questionnaire statements that related to asking and responding to questions, and 

students’ classroom engagement, Jamie generally had high self-efficacy ratings. However, he 

rated his students’ engagement level to be six out of ten and disagreed with statements in the 

questionnaire that suggested that he was effective with asking questions that enhance the 

purpose of the lesson or encourage students to ask questions.  

Responses given in the questionnaire suggest that Jamie had a traditional belief and approach 

to mathematics, its teaching and learning. For example, he agreed with statements such as:  

Mathematics is mainly calculations, If a teacher does not tell students how to solve questions 

they will make mistakes, Not all students can learn mathematics and students do not like to ask 

questions in the class. While Jamie admitted that he chose to teach mathematics, he strongly 
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disagreed with the statement, I always enjoy my mathematics teaching. Jamie’s indicated daily 

teaching approaches included writing notes, working examples on the board and problem-

solving by individual students.  

Jamie was very confident about his knowledge of algebra but he indicated that he found 

symbolic problems easier to teach than word problems. From the six beginning algebra 

questions that he was asked to rank in the initial questionnaire, the two word problems had 

the highest difficulty ranks. The three questions requiring inverse operations were consistently 

ranked higher than questions not requiring them.  

Key Finding 8.1 
Before the intervention, Jamie believed that the unconducive environment, inadequate 
teaching aids, and methods all impeded his teaching effectiveness. His self-ratings suggested 
that he had traditional beliefs about mathematics and its teaching-learning process while he 
was confident about his ability to manage mathematical talk. Jamie did not enjoy his 
teaching. 

 

Practice 

Jamie’s teaching approaches were mainly traditional. His classes started with a revision of the 

previous lesson, followed by explanations of the concept to be taught. The concept was 

explained as Jamie worked through a few examples while the students listened and copied the 

notes into their exercise books. In the two single lessons that were observed, the most 

frequent activities were: the teacher explaining ideas, students listening and copying notes and 

the teacher asking questions (See sample in Appendix 19). 

Note writing was very important to Jamie. He believed it aided the students’ understanding 

and mentioned this belief in the class.  

I am giving you these notes so you can easily remember all my explanations. 
You have to read them at home….These notes are very important, so that 
when you go through them at home you can easily remember…That’s why I 
give you notes, so you can understand. (Lesson observation, 23/3/11) 

I will give you notes, so that when you read them at home you’ll quickly 
understand all what we are saying…it is very important. (Lesson observation, 
25/3/11) 

An example of Jamie’s problem solving is transcribed below. The students were being taught 

how to write a word problem in algebra. Jamie wrote on the board, Decrease y by nine. 

Jamie: This decrease y by nine, who can tell me what it means? I want you 
to change it into a mathematical form. How many of you can solve this? 
(One person raised his hand) It is only one person. What do you mean by 
decrease? 
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Many students: Reduce 

Jamie: Now, if I put it as reduce y by nine, how many of you can write it 
mathematically? (A few more hands went up) Tell me what it means 
mathematically: decrease y by nine 

Different students: Nine over y, nine minus y 

Jamie: Look at it, decrease y by what? 

Students: Nine 

Jamie: All of you know the meaning of decrease, reduce, which is the 
same thing as minus. I’m now telling you, decrease y by nine, which 
means (writes) y – 9. That is, the value of y, (Is one, said a student in a low 
voice) reduce it by nine. It simply means y-9. Decrease is ‘reduce’.  (Lesson 
observation, 25/3/11) 

After telling the students the answer, Jamie moved to another example and the students 

continued listening. He was not observed using the letter as an object.  

Key Finding 8. 2 
Prior to the professional learning, Jamie displayed a traditional approach to the teaching-
learning process and teacher-talk occupied a large proportion of the observed lessons. 
Student engagement was minimal and he firmly believed that note taking aids 
understanding. 

 

 Post-Intervention Beliefs and Practice 

Beliefs 

By the end of the intervention period, Jamie’s beliefs appeared to have become more 

language-conscious and sensitive. In the final questionnaire, completed after the intervention 

period, he wrote as characteristics of effective mathematics teaching, “the use of familiar 

words” and “simple explanation of mathematical language”.  Similarly, Jamie believed that 

students may learn mathematics effectively through a teacher’s “use of revoicing” and leading 

students to pronounce “potentially difficult and new words” (Final Teacher Questionnaire).   

Jamie’s self-ratings reflected improved effectiveness with his ability to ask questions which 

enhance the purpose of the lesson, and his ability to encourage students to ask questions. 

Although ratings of Jamie’s students’ engagement level increased to eight out of 10, there was 

a drop in his self-assessment as to his ability to engage students’ interest in algebra, involve 

most students in class discussions and handle discussions on word problems. Jamie reported 

reduced confidence also with planning lessons based on knowledge of students’ 

misconceptions. 
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Whilst many of Jamie’s beliefs remained traditional, he indicated some change in teaching 

satisfaction and approaches. For example: note writing now occurred in a few lessons, whole 

class discussion was used in most lessons, and students read the questions aloud in more 

lessons. Jamie also agreed strongly with the statement, I always enjoy my mathematics 

teaching, which he had previously disagreed with. With regard to algebra teaching, Jamie 

agreed that word problems were easier to teach than symbolic questions; a position he 

disagreed with before the professional learning period.  

Key Finding 8.3 
After the intervention period, language-based approaches were identified by Jamie as 
ways to effectively teach and learn mathematics. There was a reduction in his self-
assessment on engaging students’ interest, managing discussions on word problems and 
knowledge of students’ algebra misconceptions. Teaching enjoyment now existed, 
students’ engagement increased and there was improved effectiveness with using 
mathematical talk and encouraging students to ask questions. 

 

Practice 

Following the professional learning, Jamie’s classes (observed three times) had a reduced 

proportion of teacher-talk, more questions were asked, and some of Newman’s interview 

questions were used in an adapted form. More students were involved in the learning process 

but no grouped or paired work was observed. The most frequent lesson activities observed 

were: the teacher asking questions, the teacher using language-based approaches, students 

listening and the teacher explaining.  

Jamie encouraged his students to discover the key words in a word problem and tried to 

engage more students in the problem-solving process. Some adaptation of the Newman 

strategies was used but he often read the question aloud after writing it on the board. The 

following transcript illustrates how after writing on the board, Jamie algebraically solved the 

question: When a number is multiplied by five, the result is 20. What is the number?  

Jamie (reads): When a number is multiplied by five, the result is 

Students (many voices): Twenty 

Jamie: The result is twenty. What is the number? if you remember, locate 
the keyword. Which means that you look for the number, and you 
represent the number with what? 

Students (many voices): A variable 

Jamie: It can be x, it can be y, it can be t, it can be any variable. Then you 
look for the keywords – multiplied and result. So let’s get a solution. The 
number you think of is what? 

Students (many voices): x 
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Jamie: So, let the number be x. Now what is the next stage? (Calls two 
students) 

First student: x times five 

Second student: Multiply 

Jamie: The number is multiplied by what? 

Third student: Five 

Jamie: The result is… What do you mean by this, ‘result’? 

Students (many voices): Answer 

Jamie: And what do you mean by that? 

Students (some voices): Equal to 

Jamie: So we now say, five multiplied by x (writing 5x) is 

Students (many voices): 20 

Jamie (writing): So 5x = 20   

 Students (some voices): 20 divided by five 

Jamie: So the final answer is what?  

Students (many voices): Four 

Jamie: The important thing is that you should be able to translate your 
words: multiply and result. (Lesson observation, 4/4/11) 

He wrote the final answer, x = 4, before proceeding to write another question on the board. 

  Changes in Jamie’s Beliefs and Practice 

Jamie’s teaching practice had become less teacher-dominating with more student involvement 

and reduced note-writing, although he still had many traditional beliefs about mathematics 

teaching and learning. He seemed to have more awareness about the importance of language 

in the class. In the final questionnaire, Jamie’s response to the question Why is mathematical 

talk important in the teaching and learning of algebra word problems? was that it will 

“encourage students in engagement and learning new vocabulary as it occurs in the class”. 

 Jamie was not observed asking his students to read aloud the entire question, and wrote in 

the final questionnaire that the difficulties he had had with the Newman strategy were the 

students’  “reading of the question” and “translation”. He emphasized identifying keywords 

and had started using more questions during teaching.     
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Key Finding 8.4 
After the professional learning, Jamie used more questions and adapted some of Newman’s 
strategies in his teaching. There was a reduction of teacher-talk and more student involvement 
and language-based approaches observed in his classes.  

     Students’ Algebra Pre-test Performance 

After three classroom observations, Jamie’s students completed the 15 algebra questions 

which comprised six symbolic and nine word problems. Each correct answer was scored one 

point, giving a maximum total score of 15 points. The general performance was poor with 

95.4% of the students giving no more than two correct answers. The highest total score, 

obtained by three students was four; no student gave up to a-third correct responses. Table 

8.1 presents the result. 

Table 8.1: Jamie’s students’ pre-test total score (n=54) 

          Total score on pre-test /15  

 0 1 2 3 4 
Number  of students 18 26 7 0 3 
Per cent 33.3 48.1 13.0 0.0 5.6 

 

More correct responses were given to the symbolic questions than the worded questions. 

There were 52 correct responses out of a possible (54x15) 810 correct responses, representing 

a 6.42% overall success rate. This comprised of 11.42% on symbolic questions and 3.8% on 

word problems. (See Table 8.2) 

Table 8.2: Number of Jamie’s students with correct answers in each pre-test question (n=54) 

                             Question number and representation format 

                 Symbolic                                     Worded  

Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Number of 
students 

3 26 1 7 0 0 11 0 3 1 0 0 0 0 0 

Total                          37/324                                          15/486 

 

For half of the questions, there were no correct responses. The easiest symbolic questions 

required the simplification of an algebraic expression while the easiest word problem required 

only the knowledge that the algebraic letter is a quantity. 

Key Finding 8.5 
Almost all (94%) Jamie’s students gave no more than two correct answers on the pre-test. The 
pre-test overall success rate was 6.42%, comprised of 11.42% on symbolic questions and 3.8% 
on word problems. 
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What difficulties did the students have that gave rise to these incorrect responses? The next 

section examines the four students’ incorrect responses and identifies the initial cause of error 

using the Newman error analysis.         

Students’ Pre-test Newman Interview Results 

Following the test, Jamie chose four students (given codes S1, S2, S3, and S4) to be interviewed 

by the Researcher; there were no criteria used for selection to the Researcher’s knowledge. It 

is likely that more able students would have been selected rather than a random sample. As 

required by the Newman error analysis interview protocol, these students completed the test 

again before the Researcher interviewed them on wrongly answered questions. Two students 

gave no correct answers while the other two gave one and two correct answers respectively.  

Comprehension and transformation errors were in the majority and accounted for 61.4% and 

21.1% respectively of all the errors. Comprehension was the most common error type, 

irrespective of the question text format. Table 8.3 presents the data. 

Table 8.3: Per cent of error types made by Jamie’s students’ on the algebra pre-test (n=4) 

               Question representation   

  Symbolic    Word   All questions 

Initial error Per cent  Per cent   Per cent 

Reading    4.6     -    1.8 
Comprehension 50.0  68.6  61.4 
Transformation  22.7  20.0  21.1 
Process skills 22.7    8.6  14.0 
Encoding      -        -    - 
Carelessness      -        2.9    1.8 

 

On the symbolic questions, half of the errors made were comprehension errors, a higher 

proportion than on the transformation (23%) and process skills (23%) errors. Comprehension 

errors were the most common errors made on the word problems, followed by transformation 

(20%) errors. The students’ inability to understand the questions prevented them from 

progressing beyond the comprehension stage on many of their responses. 

Key Finding 8.6 
The Newman error analysis of Jamie’s students’ incorrect pre-test responses showed that 
comprehension (61.4%) and transformation (21.1%) errors were the most common errors.  
Comprehension errors were most common on both symbolic (50%) and word problems (69%). 

 

The error analysis is reported under the two question representation forms, symbolic and 

worded questions.  Each set of questions is stated, followed by a brief on the underlying 

concepts and then an analysis of the students’ responses to individual questions is given.  
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Symbolic Questions: 1-6 

 
1. Simplify  as far as possible 1 + x + x 
2. Simplify  as far as possible 3m + 5n + 4m + 6n  
3. y× y × y = .............. 
4. Find the value of x: 7x = 21 
5. Find the value of x: 2x – 2 = 10 
6. Find the value of x: 21x =7 

 

                          Figure 8.1: Symbolic pre-test questions 

Questions 1 and 2 required the simplification of expressions using the knowledge that unlike 

terms cannot be conjoined and that the algebraic letter is a quantity not an object. 

Comprehension errors accounted for four of the seven errors identified on these questions. 

The students’ typical response was that ‘simplify’ means “we should plus, add it together”, 

while then going on to add the visible numbers while ignoring the algebraic letter. This 

generated responses such as: 

S2: 1 plus x plus x, the answer is 1 

S1: 3 plus 5 plus 4 plus 6, it will be 18.  (Student interview, 28/3/11) 

The other students processed the expression by conjoining terms or using the letter as a 

detachable object. 

S3: x plus x will give x2, so we now say 1 plus x2  will be 1x2   because of 
these two x’s, we cannot say 1x. 

S4: you add all of them then after you put m and n…18mn (Student 
interview, 28/3/11) 

Question 3 required the students to differentiate between writing the answer as a product and 

as a sum. A student read the multiplication sign as an alphabet to obtain “yxyxy” as the final 

answer. The two other errors identified were mistakes due to processing the letter as a specific 

value or without any function. 

S4: Two times two times two equals eight 

S2: because we have nothing else to do, everything here is y (Student 
interview, 28/3/11) 

Questions 4 to 6 examined the students’ knowledge of equations, the use of the equality sign 

and their ability to balance equations. None of the students gave correct answers to this set of 

questions; seven of the errors were comprehension errors and four transformation errors. 

Questions 4 and 6 had more of comprehension errors, while Question 5 had more of 

transformation errors. Some of the students gave wrong or had no response for the meaning 

of ‘value’, while some did not see any difference between Questions 4 and 6.    
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S2: the value is times, when they tell us to times something 

S3: This question [6] is the same thing as number [4]. They are the same 
but put 21 in the back and seven in the back of the other one. (Student 
interview, 28/3/11) 

Question 5 errors arose from an inability to carry out inverse operations needed to balance the 

equation and using the letter as an object.  

S3: we move the term to the other side, it becomes plus 2x – 2. The minus 
will not go away. If …it is meaningless in front so 10 + 2x = 12x so 12x – 2 = 
10x. The answer is 10x. 

S1: 2 in 10 will give us 5, that is, 2 divided by 5 is giving us 5. The answer is 
5x. 

S4: 2 times 5 equals 10, then x – 5, x is 10. (Student interview, 28/3/11) 

 

 

 

 

 

                              

                     Figure 8.2: Jamie’s students’ (S1, S3 and S4) workings on Question 5 

The summary of the initial cause of errors is presented in Table 8.4. The most common error 

types were comprehension (11), transformation (5) and process skill (5) errors. 

Table 8.4: Students’ responses and initial errors on pre-test symbolic questions (n=4) 

Questions                      Students’ responses to six symbolic questions  

Correct                                                                                            Incorrect   

                                           Initial error cause  

 R C T P E CE Total  

Symbolic           
1 -  -   2 - 2 - -   4 
2  1  -   2 1 - - -   3 
3 1  1   - - 2 - -   3 
4 -  -   3 - 1 - -   4 
5  -  -   1 3 - - -   4 
6 -  -   3 1 - - -   4 
Overall  2  1 11 5 5 - - 22 

R- Reading, C- Comprehension, T -Transformation, P- Process skills, E- Encoding, CE – 

Carelessness 

 

S1           S3                

S4   
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Key Finding 8.7 
Comprehension errors by Jamie’s students on pre-symbolic questions related mainly to the 
meaning of ‘simplify’ and ‘value’.  Algebraic misconceptions identified with transformation and 
processing errors were: the use of the letter as a detachable object, as a specific value, 
conjoining of terms and an inability to perform inverse operations. 

 

The error analysis of the word problems follows and is presented in a similar pattern, that is, 

the questions are stated followed by a description of the students’ responses to each of the 

nine questions. 

Worded Questions: 7-15 

 
 

7. Sola has x bananas and Peju has p bananas.  Peter counts the number of bananas each 
of them have and finds they are the same.  Sola said you could write this as x=p, but 
Peju said that x and p are different letters and so cannot be the same. Who do you 
think is correct? 

8. Mary has x oranges and Bisi has four more oranges than Mary. How many oranges 
does Bisi have? 

9. A basket costs eight naira and a bag costs c naira more than the basket. How much 
does the bag cost? 

10. What is the number that is five less than x? 
11. There is  a   b number of sweets in a packet. A girl has two packets of sweets and gives 

her friend six sweets. How many sweets does she have remaining? 
12. If d is the number of dogs and c is the number of cats, write in algebra: There are four 

more dogs than cats.    
13. Write in algebra: There are three more caps than hats. 
14. Write in algebra: There are twice as many pencils as biros (let p be the number of 

pencils and b be the number of biros). 
15. If s is the number of students and t is the number of tables, write in algebra: There are 

three students for every table. 
 

Figure 8.3: Worded pre-test questions 

Question 7 required the knowledge of the letter as a quantity. The letter was perceived as a 

member of the alphabet by two students.  

S3: x and p are not the same. Had it been x and x, and p and p, I will say 
that x has its own sign and p has its own, then I will say Sola is right. ….x 
and p are not the same thing because they are different alphabets. 
(Student interview, 28/3/11) 

Questions 8 and 9 tested the students’ ability to interpret ‘more’ as requiring the additive and 

not the multiplicative operator. There were four comprehension and two transformation 

errors.  

S3: Bisi has four, Mary does not have anything 

S1: to find how many oranges does Mary have 
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S2: more means much; the basket cost is more than the bag (Student 
interview, 28/3/11)            

In an effort to transform ‘more’ in Question 9, S1 multiplied saying “we should use times”. 

Questions 10 and 11 required the use of the subtractive operator in establishing an expression 

that signifies the relationship between the algebraic letter and the given quantities. There 

were five transformation errors identified and the remaining two were comprehension errors. 

All of the students used specific values to transform the algebraic letter and obtained specific 

answers to Question 11. Interestingly, three of the students assumed that one packet 

contained 12 sweets.  

S3: I don’t know how many is in a packet but I’ll say that 24 is for two 
packets of sweets 

S2: The remaining one packet, he shared into two and gave is friend six, so 
remains half. The sweet remaining will be one packet and half. (Student 
interview, 28/3/11) 

 

 

 

 

 

 

           

 

                 Figure 8.4: Jamie’s students’ (S1 – S4) workings on Question 11 

Three students simply did not understand Question 10 and responded with variations of S1’s 

response,  “I have no idea of what it is asking for” while S4 said  ‘less’ meant “the number 

lower than x” (Student interview, 28/3/11). 

None of the students explained correct meanings for Questions 12 to 15. This set of questions 

required the construction of equations which showed a relationship between the quantities of 

the two items in each question. Some students gave no responses or said they did not 

understand what algebra meant, while the others felt they were supposed to find the number 

of one of the items.  Samples of such responses were: 

S1: I don’t understand what is meant by ‘write in algebra’ 

S1                 S2                                        

S3                      S4  
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S2: I don’t understand about algebra 

S3: to find the number of cats. They’ve given us the number of dogs 

S4: to look for the number of students (Student interview, 28/3/11) 

The Researcher had to ask a student (S3) who seemed concerned about his inability to proceed 

with solving Question 13 “What is it that is making it difficult or disturbing you from finding an 

answer?” His response was, “There is no number in these hats for me to know that the cap is 

more than the hats” (Student interview, 28/3/11). 

A summary of all the initial causes of errors made by the students is presented in Table 8.5. 

The most common error types were: Comprehension (24) and Transformation (7) errors. 

Table 8.5: Jamie’s students’ responses and initial errors on pre-test word problems (n=4) 

Questions                                   Number of  responses to  worded questions  

Correct                                                                                            Incorrect   

                                           Initial error cause  

 R C T P E CE Total  

7  1  -   1 - 2  - -   3 
 8 -  -   2 1 - - 1   4 
9 -  -   2 1 1 - -   4 
10  -  -   3 1 - - -   4 
11  -  -   - 4 - - -   4 
12 -  -   4 - - - -   4 
13  -  -   4 - - - -   4 
14 -  -   4 - - - -   4 
15 -  -   4 - - - -   4 
Overall  1  - 24 7 3 - 1 35 

R- Reading, C- Comprehension, T -Transformation, P- Process skills, E- Encoding, CE - 

Carelessness 

Key Finding 8.8 
Jamie’s students did not know the meaning of algebra, they and were unable to explain 
relationships between two pronumerals, instead referring to just one pronumeral. 
Understanding the mathematical interpretation of ’more’ and ‘less’ was a challenge as well. 
Algebraic misconceptions identified were, using the algebraic letter as an alphabet, as a 
specific value, or simply ignoring the letter. 

 

Students’ Post-test Performance 

After a six-week teaching period, Jamie’s class completed a post-test that was parallel to the 

pre-test. Both tests were similar in terms of the question context and underlying concepts and 

only differed in the names of people and items, and quantities used. Care was taken to ensure 

that the one-digit and two-digit quantities remained as one-digit and two-digit quantities 

respectively on both tests. The aim was to reduce the students’ familiarity with the questions 

without losing the similarity in context and pre-requisite concepts (Chinen, 2008).  
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 This section presents Jamie’s students’ post-test scores and their performances in the two 

question text formats. An overall significant improvement (z = -3.771) was found despite the 

fact that the overall performance stayed low. Table 8.6 presents the data. 

Table 8.6: Jamie’s students’ post-test total score (n=54) 

              Total score on post-test /15      Pre-test        Post-test 

 0 1 2 3 4 5 6 Mean SD   Mean  SD 

Number of 
students 

16 23 6 3 1 4 1 0.96* .99  1.37* 1.53 

Per cent 29.6 42.6 11.1 5.6 1.9 7.4 1.9 

    *Wilcoxon Signed Ranks, p<.05 

Nine students correctly answered three or more questions in the post-test in contrast to three 

students in the pre-test.  The total of 74 correct responses out of a possible 810 correct 

responses represents a 9.1% overall success rate on the post-test in comparison to 6.4% on the 

pre-test.  More correct responses were obtained on the symbolic questions than on the word 

problems. (See Table 8.7) 

Table 8.7: Number of Jamie’s students with correct answers in post-test questions (n=54) 

                                  Question number and representation format 

                 Symbolic                                     Worded  

Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Post-test                

Number of 
students 

3 24 7 11 8 2 11 2 5 1 0 0 0 0 0 

Total                         55/324                                           19/486 

Pre-test   

Number of 
students 

3 26 1 7 0 0 11 0 3 1 0 0 0 0 0 

Total                          37/324                                          15/486 

 

Students’ success rate on symbolic questions was 17% while that of word problems was 3.9%. 

There remained no correct responses on all of the questions that involved the construction of 

equations with two pro-numerals. The easiest symbolic and word problems remained at the 

same proportion as that obtained in the pre-test, that is, requiring the simplification of an 

expression and recognition of an algebraic letter as a quantity. 

Key Finding 8.9 
Jamie’s students’ post-test performance improved significantly and they had an overall success 
rate of 9.1% which comprised 12% success on symbolic questions and 3.9% success on word 
problems. There were no correct answers for the four questions having two pro-numerals.  
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Students’ Post-test Newman Interview Results 

The four students earlier interviewed by the Researcher on the pre-test were interviewed on 

wrongly answered questions using the Newman protocol. The information provided evidence 

for identifying the successes and difficulties students were having after the intervention. One 

student did not give any correct answer to any question, while six, three and two correct 

answers were given by the other three students respectively. Each of comprehension and 

process skill errors accounted for about one-third of the 49 wrong responses. The four 

students had more errors on word problems than the symbolic questions, and the pattern of 

errors varied with the text of the question. Table 8.8 presents the data. 

Table 8.8: Per cent of error types made by Jamie’s students’ on the algebra post-test (n=4) 

Initial error                            Question format    All  questions 

 Symbolic    Worded    

Per cent  Per cent  Per cent 

Reading    0    0    0 
Comprehension  15.8  46.7  34.7 
Transformation 21.1  30.0  26.5 
Process skills 52.6  20.0  32.7 
Encoding    5.3    0    2.0 
Carelessness    5.3    3.3    4.1 

 

Comprehension errors (35%) were fewer than that for the pre-test and they were the most 

common error type. Greater success on the post-test allowed for more of processing (33%) 

and transformation (27%) errors. With the symbolic questions, the students’ greater success 

with comprehension resulted in process skills error (53%) as the most common error. There 

was progress beyond the comprehension and transformation performance strategies, which 

provided an avenue for mathematical processing of the questions and more opportunities to 

use algebraic concepts. Comprehension errors (46.7%) were the most common errors (47%) on 

the word problems. 

Key Finding 8.10 
Jamie’s students made less comprehension errors on the post-test than on the pre-test and 
the most common errors types were comprehension (35%) and process skill (33%) errors. 
Processing errors (53%) were the most common error type made on symbolic questions, while 
comprehension errors (47%) were the most common error type made with word problems.  

 

The initial cause of error on each wrongly answered question was determined by the 

interviewed student’s response.  A description of the Newman error analysis done is presented 

in two sections namely, the symbolic questions (Questions 1-6) and the word problems 
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(Questions 7-15).  The questions are stated, followed by a description of students’ errors 

together with transcripts and a summary table. 

 Symbolic Questions: 1-6 

 
1. Simplify  as far as possible 1 + y + y 
2. Simplify  as far as possible 4z + 3p + 7z + 2p  
3. m × m × m = .............. 
4. Find the value of x: 6x = 24 
5. Solve for x: 5x – 5 = 20 
6. Solve for x: 24x =6 

 

                            Figure 8.5: Symbolic post-test questions 

Four out of the six errors on Questions 1 and 2 were process –based with three of them 

occurring on Question 1. The students processed the question with the letter used as a 

detachable object and found a product instead of sum. 

S1: because there are two y’s here, I can’t write 1 + y + y again. So, I now 
remove one y from here and add it to the one and say 1 + y  

S1: everything will be 17, so the answer is 17 + z + p 

S2: 1 + 1y + 1y = 3y 

S3: that will be 1 + y2 (Student interview, 1/7/11) 

S4 transformed the algebraic letter as having a fixed unit value, saying, “because one is there 

and I have to use one to represent this y, so 1 + 1 + 1 =3” (Student interview, 1/7/11) 

Two processing and one encoding error were identified as initial cause of errors on Question 3. 

One student processed with a random response giving the letter a specific value, and the other 

used a faulty algorithm arising from a confusion of product with sum.  

S4: I’ll pick two, so 2 x 2 x 2 that is eight 

S2: We must in any letter that is in m, we add one making 1m. So 1m x 1m 
x 1m equals 3m. (Student interview, 1/7/11) 

A student (S1) said the correct answer “m raised to power three” but wrote it wrongly as “m3”.  

Four processing and three comprehension errors were identified on Questions 4 to 6. Two 

students, after reading these correctly, did not seem to have an understanding of the word  

‘value’ and multiplied.  

S2: we should find the value of x, are looking for multiplication, 6 x 4 = 24, 
so 24 x 6 = 144.  
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S4: they said we should find the value of the times, so 24 x 6 = 144 
(Student interview, 1/7/11) 

Processing errors arose from an inability to carry out the inverse operations with a larger 

divisor as the students attempted to balance the equations.  

S1: six divided by 24 is equal to 4 

S3: you cannot say six in 24, you now say 24 divided by six (Student 
interview, 1/7/11) 

 

 

 

 

 

 

 

 

                               Figure 8.6: Jamie’s students’ (S1 – S4) workings on Question 6 

The most common error types were processing (10), transformation (4) and comprehension 

(3) errors. The error analysis data is summarised in Table 8.9. 

Table 8.9: Jamie’s students’ responses and initial errors on post-test symbolic questions (n=4) 

Questions                      Students’ responses to six mainly symbolic questions  

Correct                                                                                            Incorrect   

                                           Initial error cause  

 R C T P E CE Total  

Symbolic           
1 -  - - 1    3 - -   4 
2  2  - - 1   1 - -   2 
3 1  - - -   2 1 -   3 
4 -  - 1 -   2 - 1   4 
5  2  - - 1   1 - -   2 
6  -  - 2 1   1 - -   4 
Overall  5  - 3 4 10 1 1 19 

R- Reading, C- Comprehension, T -Transformation, P- Process skills, E- Encoding, CE – 

Carelessness 

 

 

 

S1  S2   

S3      S4   
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Key Finding 8.11 
Processing errors by Jamie’s students on the post-symbolic questions resulted from an inability 
to carry out inverse operations with a bigger divisor, using the letter as a detachable object, 
and always giving the letter a specific value. The letter was also transformed as a fixed value of 
one. Some students misunderstood ‘value’ to mean multiplication.  

 

The students’ responses were analysed to determine the type of errors that  were made on 

the nine post-test word questions. The questions are stated and the information is presented 

next. 

Worded Questions: 7-15 

 
 

7. Sola has y bananas and Peju has x bananas.  Peter counts the number of bananas each 
of them have and finds they are the same.  Sola said you could write this as y=x, but 
Peju said that y and x are different letters and so cannot be the same. Who do you 
think is correct? 

8. Mary has m oranges and Bisi has three more oranges than Mary. How many oranges 
does Bisi have? 

9. A ball costs ten naira and a shirt costs y naira more than the ball. How much does the 
shirt cost? 

10. What is the number that is four less than x? 
11. There is  a   x number of pencils in a packet. A girl has three packets of pencils and 

gives her friend six pencils. How many pencils does she have remaining? 
12. If p is the number of plates and c is the number of cups, write in algebra: There are 

four more plates than cups.    
13. Write in algebra: There are five more goats than dogs. 
14. Write in algebra: There are twice as many books as pens (let b be the number of books 

and p be the number of pens). 
15. If b is the number of boys and g is the number of girls, write in algebra: There are three 

boys for every girl. 
 

Figure 8.7: Worded post-test questions 

Two of the students processed the letter in Question 7 as an alphabet instead of a quantity. 

Their responses were explained by S4, “y and x are different letters”  (Student interview, 

1/7/11). 

The three wrong answers on Questions 8 and 9 were processing errors that resulted from the 

students’ conjoining of terms and the random choice of specific values for the letter.  

S2: we should use one like this with them, plus three, so 1m +3 = 4m 

S4: I’ll say three plus two. This three. So I picked two representing m; and 
then adding them, so Bisi has five oranges. 

S4: I will put 10 plus two, 10 + 2 = 12. The two is for the y (Student 
interview, 1/7/11) 
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Five of the eight errors on Questions 10 and 11 were transformation errors and three of them 

occurred on Question 10. Three students (S1, S2, S3) understood ‘less’ in the question to refer 

to “the number smaller than x”,  but were unable to correctly transform it to the subtractive 

form. While one student transformed it as addition, another chose a specific number and the 

third had no understanding of what to do next. On Question 11, two students were unable to 

link the items within the problem context while transforming. 

S1: the five is the one she gave her to her friend, the x is – there is a x number of 

pencil. My answer is five times x. 

S3: the three packets minus the five plus x.  (Student interview, 1/7/11) 

S3 then went on to write 5 – 3 = x = 2 + x and the Researcher later asked why three minus five 

was written as five minus three. The reply was “because 3 – 5 will not give us two. It is 

impossible”. (Student interview, 1/7/11) 

No correct answers were given to Questions 12 to 15 and non-comprehension accounted for 

75% of the errors. Some responses indicated that the students did not understand the 

question, or thought that they were to find the quantity of one of the items.  

S2: I don’t know 

S4: they say we should look for the number of goats.  

Other responses identified a progression to the recognition of the two items, but with a belief 

that the second quantity was not given.  

S1: they are only giving us the number of plates; they did not give us the 
number of cups 

S4: they gave us the number that is for the boys, that is three; we do not 
know the number that is representing the girls. 

For a few questions that were successfully understood, the students translated literally as they 

attempted the transformation step and generated expressions as answers.  

S3: The 4 will represent the plates while c represents the cups. Then went 
on to obtain 4 + c as answer 

S1: here they gave us 3 boys for every girl, so my answer is 3 + g, 3 for the 
boys and g for the girls. (Student interview, 1/7/11) 

The most common error types were comprehension (14), transformation (9) and process skills 

(6) errors. The summary of all the post-symbolic errors is presented in Table 8.10.  
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Table 8.10: Jamie’s students’ responses and initial errors in post-test word problems (n=4) 

Questions                                  Students’ responses to  word questions  

Correct                                                                                            Incorrect   

                                           Initial error cause  

 R C T P E CE Total  

7  1  -   - - 2  - 1   3 
8  2  -   - - 2 - -   2 
9 3  -   - - 1 - -   1 
10  -  -   1 3 - - -   4 
11  -  -   1 2 1 - -   4 
12 -  -   3 1 - - -   4 
13  -  -   3 1 - - -   4 
14 -  -   3 1 - - -   4 
15 -  -   3 1 - - -   4 
Overall  6  - 14 9 6 - 1 30 

R- Reading, C- Comprehension, T -Transformation, P- Process skills, E- Encoding, CE - 

Carelessness 

Key Finding 8.12 
The majority (86%) of the comprehension errors were on word problems that required 
construction of equations using two pronumerals. Responses were based on the recognition 
of one pronumeral, or two pro-numerals with a specific quantity for one of them. 
Transformation attempts yielded literal translations. Algebraic misconceptions of the letter as 
an alphabet and as a specific value were identified. The students were unable to transform 
‘less’ into the subtractive form.  

  

 Change in Jamie’s Students’ Performances and Error Types 

There was a significant improvement in students’ overall post-test performance although it 

was still low and the success rate only increased by 2.7%. The success rate on symbolic 

questions increased with 5.6%, while on word problems the increase was 0.8%. Figure 8.5 

shows the pattern. 

 

Figure 8.8: Jamie’s students’ performance on the pre- and post-tests 
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There was a change in the number and types of errors that the four students showed before 

and after the intervention, and a better understanding of the questions, which resulted in a 

43.5% decrease in the number of identified comprehension errors. Table 8.11 presents the 

information.  

Table 8.11: Per cent of Jamie’s students’ errors before and after intervention (n=4) 

                   Per cent error                        

Error type Pre-test    Post-test 

Reading    0    0 
Comprehension  61.4   34.7 
Transformation 21.1  26.5 
Process skills 14.0  32.7 
Encoding    0     2.0 
Carelessness   1.8    4.1 

 

With increased understanding, the opportunities to transform and mathematically process the 

questions became available to the students. Ability to participate in these activities led to 

transformation and processing errors to jointly account for 59.2% of all post-test errors from 

an initial 35.1%. There were also some changes in error type when the text format was 

considered. Figure 8.9 shows the pattern. 

 

 

Figure 8.9: Distribution of errors on Jamie’s students’ pre- and post-tests 

 

Key Finding 8.13 
Jamie’s students’ overall success increased by 2.7%; success on symbolic and word problems 
increased by 5.6% and 0.8% respectively. The frequency of comprehension errors decreased by 
43.5% and there were consequent increases in transformation and processing errors.  
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Summary 

Before the professional learning, Jamie was a traditional teacher who was very confident 

about his ability to use questions and manage discussions but did not enjoy his teaching. A firm 

believer in note-writing, he believed that word problems and questions involving inverse 

operations with divisions were difficult for students to answer.  After the intervention period, 

Jamie’s students had become more engaged in the classroom as he used more language-based 

approaches and more questioning during his teaching. Jamie also had started to enjoy his 

mathematics teaching more.  

Algebraic misconceptions however remained, although they had slightly reduced in number. 

The most common misconceptions still evident were: using the algebraic letter as a detachable 

object, as an alphabet, with a specific value or ignoring it; conjoining of terms, inability to use a 

larger divisor; or perform inverse operations. The students still had difficulties transforming 

‘less’ into the subtractive operator, working with two pronumerals and constructing equations. 
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CHAPTER NINE: CASE STUDY FOUR – STEPHEN’S CLASS 

Background 

A male in his late 30s, with more than 10 years of mathematics teaching experience, Stephen 

(pseudonym) taught six classes of JS 1 students (10 to 12 years) with an average of 75 students 

in each of the classes. He taught in a public school that had a large student population; it was 

located in a suburban area of Ojo educational zone. Stephen had fewer than five years of 

experience teaching JS 1 mathematics. He holds a degree in mathematics education and also 

the National Certificate in Education (NCE), which is a three-year post-secondary Nigerian 

teaching qualification.   

Pre-Intervention Beliefs and Practice 

Beliefs 

Stephen wrote in the initial questionnaire that he completed prior to the professional learning 

that his effective teaching of mathematics was constrained by inadequate facilities and the 

large class sizes. He believed that effective teaching was characterised by the availability of 

teaching aids, and a conducive learning environment where the teacher used “student-centred 

approaches” to help students to learn. 

Prior to the professional learning, Stephen’s responses suggested that he had a traditional 

belief about mathematics and the teaching- learning process. He agreed with statements on 

the initial questionnaire such as: Mathematics is mainly calculations; Mathematics consists of 

rules and procedure; Students don’t like asking questions;  and A teacher has to tell students 

how to solve problems so that they don’t make mistakes.  Stephen indicated that his daily 

lesson activities included writing notes, working examples for students and individual problem 

solving. Despite Stephen’s indication of a high level of self-efficacy in the use of questioning, he 

rated his students’ classroom engagement to be four out of ten and indicated that he enjoyed 

his teaching. 

Stephen expressed that he found it easier to teach symbolic questions than word problems 

and he was very confident about his knowledge of algebra and the use of different algebra 

teaching strategies. Stephen believed word problems were the most difficult tasks for 

students, and more especially those requiring inverse operations.  
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Key Finding 9.1 
Before the professional learning, Stephen believed his challenges to effective mathematics 
teaching were his large class sizes and inadequate facilities. He had traditional beliefs about 
the teaching and learning, a high self-efficacy in the use of questioning and confidence about 
algebra knowledge and strategies. Stephen rated his class engagement level as four out of ten.   

 

Practice 

Two single lessons taught by Stephen were observed before the professional learning 

workshop and they were traditional in approach. HIs classes started with a review of the 

previous lesson followed by an explanation of the day’s lesson, and then Stephen wrote notes 

on the board which his students copied. Using a written question as an example, Stephen then 

explained the solution process as he worked it out on the board. The students were asked if 

they had had any questions. In most cases there were none, and then Stephen explained the 

solution again. After copying the worked example, the students listened as Stephen explained 

the workings for one or two more examples. Many of the questions that he asked, he himself 

answered.  Individual class work on similar questions followed, before Stephen explained how 

to find the answer to the question(s) and closed the lesson with homework sometimes given.  

The most frequent lesson activities were: teacher explaining, students listening, students 

copying notes, and teacher asking questions. (See sample in Appendix 20) 

Stephen was observed using the letter as a moveable object. To compute t + t + t, he 

explained,  

When the three letters are having a coefficient of one, one, one, the 
coefficients are what we first of all add together, giving us 1 + 1 + 1 

Students: Three 

Stephen: All letters are common, so you just pick one of it and put it at 
the side, and that will become what? 

Students: 3t (Lesson observation, 23/3/2011) 

Stephen’s explanations also suggest that he used the letter as a label and that he did the 

thinking for the students during problem solving. He solved the question” Ojo is two years 

older than Peju. How old is Ojo?” 

Stephen: You have to solve the question by interpreting the statement. 
They’ve already given us that Ojo is older than Peju by two years but 
Peju’s age is not given. We know that Peju’s age is not given. We don’t 
know the age of Peju. So what do we do? We find the number that will 
indicate the age of what? 

Students: Peju 

Stephen: So who can tell me what we use to indicate the age of Peju? 
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Many voices: A letter 

Stephen: A letter which is known as a variable to indicate the age of Peju. 
So let Peju be what? X. Let Peju be x, that’s for Peju…we are going to add 
the two years. ..the age of Peju plus that which Ojo is older with, so Ojo’s 
age is now x + 2. (Lesson observation, 23/3/11)                                                          

While discussing on the second day of the professional learning program, Stephen’s comment 

suggested that he was unaware of the misconception of the algebraic letter as a label.  

Since yesterday, I’ve been thinking of it, using a variable to represent a 
quantity instead of an object. But for the students to understand better in 
a simple way like ‘cup’ stands for ‘c’, that is why we teachers like to use 
the letter. (PL workshop, 30/3/11) 

 

Key Finding 9.2 
Stephen’s teaching before the professional learning had more of teacher-talk 
while students listened and copied notes. He was observed using the algebraic 
letter as a quantity but was unaware that it was not a label or object. 

 

Post –Intervention Beliefs and Practice 

Beliefs 

In the final questionnaire completed after the intervention period, Stephen’s responses 

showed that his confidence with the use of some language-based approaches had increased. 

His confidence ratings on class discussions and the ability to develop algebra vocabulary and 

explain algebra concepts had increased. Stephen also indicated whole-class discussion and 

students reading aloud of questions as activities performed in every lesson, while note-writing 

and working blackboard examples were no longer daily lesson activities. Stephen’s rating of his 

students’ classroom engagement level improved from four to six out of ten, although he 

reiterated his belief that effective mathematics teaching required a conducive learning 

environment. (Final Questionnaire)   

Stephen wrote in the final questionnaire that mathematical talk was important because it 

helped to debunk the notion of algebra being “tough”. The most significant gains from the PL 

workshop for Stephen were: the knowledge that misconceptions could be a reason for 

students’ algebra failure, and “how to teach algebra in a very simple and understanding way”. 

This belief appeared to be buttressed by Stephen’s written view that an understanding of 

students’ misconceptions enabled him to realize students’ lack of familiarity with commonly 

used algebra terms. (Final Questionnaire) 
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Key Finding 9.3 
After the intervention period, Stephen’s ratings on confidence in using language-based 
approaches and his students’ classroom engagement had increased.  Stephen had increased 
awareness of students’ algebra misconceptions and believed that mathematical talk could help 
clarify them.  

 

Practice 

More explanations happened in Stephen’s three classes that were observed after the 

professional learning. The lessons started with Stephen’s review of the previous lesson 

followed by an explanation of the day’s lesson and then he wrote a question on the board. 

Stephen often read the question aloud and identified the keywords before working out the 

answer using the students’ responses to his questions. Stephen then explained the solution 

process, responded to any student’s question before writing further examples on the board. 

Different students were called to answer Stephen’s questions as he worked the examples. An 

explanation by him on the problem-solving process followed after the final answer was found. 

The most frequent lesson activities observed were: the teacher explaining, the teacher asking 

questions, students listening and students copying.  

Stephen tried to adapt the Newman steps in his class. A question written on the board was: 

Two plus a certain number is equal to twenty. What is the number?   

Stephen: You have to be able to understand and interpret the question. 
(Reads the question aloud) What do we do first? First thing is to find the 
certain number. What do we use as our certain number?  

Student 1: Letter m 

Stephen: (Writes) let the certain number be n. What do we do next? 

Student 2: We add 

Stephen: The certain number is added to what? 

Student 2: Two 

Stephen: (Writes 2 +m) our certain number is given what letter? 

Student 3: m 

Stephen: Is equal to 20, it means the result is equal to 20. (Writes 2 + m = 
20) So the statement can come in different ways but the interpretation 
will give you the same answer. 

Student 4: Why is the two in the front?  

Stephen: It is two plus a certain number, not a certain number plus two 
but the answer is the same thing. (Lesson observation, 20/5/11) 
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After writing the equation, Stephen explained how the students would balance the equation 

by subtracting two from both sides and obtained the final answer of 18. Stephen read the 

questions often by himself, and the use of a letter as an object was not observed in any of his 

classes. Many of the students seated towards the back of the classroom could not fully 

participate in the discussions, and the large number of students limited his physical movement 

around the entire classroom. 

Changes in Stephen’s Beliefs and Practice 

After the PL, Stephen’s classes remained largely traditional but he used more questions and 

involved more students in the problem-solving process. An understanding that students may 

not be familiar with mathematical vocabulary appeared to be reflected in his focus on 

interpretation during teaching.  He had increased confidence in algebra knowledge and the use 

of language-based approaches.  

 

Key Finding 9.4 
After the professional learning, Stephen used more questions and explanations; more students 
were engaged in the problem-solving process. He was seen adapting the Newman questions in 
his class.  

   

Students’ Algebra Pre-test Performance 

After three (a double and two single lessons) classroom observations, Stephen’s students 

completed the 15 algebra questions containing six symbolic and nine word problems. Each 

correct answer was scored one point, giving a maximum total score of 15 points. The general 

performance was poor with 92.6% of the students giving no more than two correct answers. 

The highest total score was five, obtained by one student. Table 9.1 presents the result. 

Table 9.1: Stephen’s students’ pre-test total score (n=67) 

          Total score on pre-test /15   

 0 1 2 3 4 5 
Number  of students 31 26 5 4 - 1 
Per cent 46.3 38.8 7.5 6.0 - 1.5 

 

More correct responses were given to the symbolic questions than the worded questions. 

There were 53 correct responses out of a possible (67x15) 1005 correct responses 

representing a 5.3% overall success rate. This comprised 10.7% on symbolic questions and 

1.7% on word problems. (See Table 9.2) 



182 
 

Table 9.2: Number of Stephen’s students with correct answers in each pre-test question (n=67) 

                             Question number and representation format 

                 Symbolic                                     Worded  

Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Number of 
students 

3 17 2 18 3 0 5 3 1 0 1 0 0 0 0 

Total                          43/402                                          10/603 

 

For half of the questions, there were no correct responses. The two easiest symbolic 

questions, having about the same number of correct responses, required simplifying an 

expression and finding a specific value in a given equation. The easiest word problem did not 

require any mathematical operation, only the knowledge that the algebraic letter is a quantity. 

 

Key Finding 9.5 
Almost all of the students (92.6%) in Stephen’s class did not answer more than two pre-test 
questions correctly. The overall success rate was 5.3% comprising 10.7% on symbolic questions 
and 1.7% on the word problems. 

 

What difficulties did the students have that gave rise to these incorrect responses? The next 

section addressed this question using the Newman error analysis procedure to examine the 

students’ incorrect responses and identify the initial cause of error.         

Students’ Pre-test Newman Interview Results 

Following the test, Stephen chose four students (given codes S1, S2, S3, and S4) to be 

interviewed by the Researcher; to the Researcher’s knowledge there were no specific criteria 

used for selection.  It is likely that more able students would have been selected rather than a 

random sample. This set of students completed the test again and their scripts were marked 

before the Researcher interviewed them on wrongly answered questions using the Newman 

error analysis interview protocol.  

After completing the test the second time as required by the Newman protocol, two of the 

students correctly answered only one question each while the other two gave no correct 

answer to any the questions. Almost half (48.3%) of the errors were comprehension errors and 

it remained the most common error irrespective of the question format. The students’ inability 

to understand the questions prevented them from progressing further than the 

comprehension performance strategy for many of the questions. Table 9.3 presents the data.  
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Table 9.3: Per cent of error types made by Stephen’s students’ on the algebra pre-test (n=4) 

            Question representation   

  Symbolic    Word   All questions 

Initial error Per cent  Per cent  Per cent 

Reading   8.3    0    3.4 
Comprehension 41.7  52.9  48.3 
Transformation  29.2  23.5  25.9 
Process skills 16.7  17.7  17.2 
Encoding   0    0    0 
Carelessness   4.2    5.9    5.2 

 

The students made more comprehension errors (48%) than transformation (26%) and process 

skills (17%) errors. On the symbolic questions, comprehension errors (42%) were more than 

transformation (29%) and process skills (17%) errors. Similarly, on the word problems 

comprehension errors (53%) were higher in number than transformation (24%) and process 

skills (18%) errors.  

Key Finding 9.6 
The Newman error analysis of Stephen’s students’ incorrect pre-test responses showed that 
48% were comprehension errors and 26% were transformation errors. Comprehension errors 
were the most common error types on both word (53%) and symbolic (42%) questions. 

 

The error analysis interview is here reported using the two question formats, symbolic and 

worded questions.  The set of questions is first stated, followed by a brief explanation of the 

underlying concepts and an analysis of the students’ responses to individual questions.  

Symbolic Questions: 1-6 

 
1. Simplify  as far as possible 1 + x + x 
2. Simplify  as far as possible 3m + 5n + 4m + 6n  
3. y× y × y = .............. 
4. Find the value of x: 7x = 21 
5. Find the value of x: 2x – 2 = 10 
6. Find the value of x: 21x =7 

 

                          Figure 9.1: Symbolic pre-test questions 

Questions 1 and 2 required the simplification of expressions using the knowledge that unlike 

terms cannot be conjoined and that the letter is a quantity, not an object. None of the four 

students correctly answered the two questions and seven of the eight errors were 

transformation-based. The algebraic letter was either transformed to one, or used as a 

detachable object.  



184 
 

S1: This x will change to one because there is no other number standing 
with it. So we are going to add it together, equals three. 

S4: the coefficient of any letter in algebra is one. So we say one plus one 
plus one, then later put the x.  

S2: I’ll say 3 + 5 + 4 + 6, the answer it gives us; we choose one m and one 
n. 

S3: First, we add the numbers, 3+5+4+6, and then the m and the n, we put 
it. (Student interview, 25/3/11) 

    

                         

                                                                 

                                                                                                                                                                                                    

 

                       Figure 9.2: Stephen’s students’ (S1 - S4) workings on Question 1 

Question 3 required the students to write the answer as a product not a sum. A student (S2) 

read the multiplication sign as an alphabet and counted the number of y’s to obtain “3x” as the 

final answer. The remaining three errors identified were mistakes due to processing with the 

sum instead of product and using the letter as a fixed value of one.  

S1: This y will change to one because there is no number beside it; this 
times will change to plus also. 

S3: The y represents 1; we say 1 x 1 x 1 = 1. We will now put the y at the 
back to get 1y. 

S4: The coefficient of any number in algebra is one, so 1 x 1 x 1 = 1. 
(Student interview, 25/3/11) 

                                                                                                  

                 Figure 9.3: Stephen’s student’s (S1) working on Questions 3 

Questions 4 to 6 examined the students’ knowledge of equations, the use of the equality sign 

and their ability to balance equations. None of the students gave correct answers to this set of 

questions, with 10 of the 12 errors being comprehension errors. Two students (S1 and S2) did 

not respond when asked for the meaning of ‘value’ while the answers given by the other two 

indicated that they did not understand the questions. One student wrongly read the algebraic 

letter ‘x’ in Question 5 as “two times minus two equals 10”.  (Student interview, 25/3/11)  

The summary of the initial cause of errors is presented in Table 9.4. The most common error 

types were comprehension (10), transformation (7) and process skill (4) errors. 

S3  S4  

S1

 
 

S1
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Table 9.4: Stephen’s students’ responses and initial errors on pre-test symbolic questions (n=4) 

Questions                      Students’ responses to six symbolic questions  

Correct                                                                                            Incorrect   

                                           Initial error cause  

 R C T P E CE Total  

Symbolic           
1 -  - - 3 1 - -   4 
2  -  - - 4 - - -   4 
3 -  1 - - 3 - -   4 
4 -  -   3 - - - 1   4 
5  -  1   3 - - - -   4 
6  -  -   4 - - - -   4 
Overall  -  2 10 7 4 - 1 24 

R- Reading, C- Comprehension, T -Transformation, P- Process skills, E- Encoding, CE - 

Carelessness 

Key Finding 9.7 
All the comprehension errors (42%) occurred on the pre-symbolic equation questions; 
Stephen’s students either had no understanding of the meaning of ‘value’ or what they were 
to do when addressing questions 4 to 6.  Algebraic misconceptions identified with 
transformation and processing errors were the use of the letter as a detachable object, as a 
fixed value of one, and, confusing product and sum. 

 

The error analysis of the word problems follows and it is presented in a similar pattern, that is, 

the questions are stated followed by a description of the students’ responses to each of the 

nine questions. 

Worded Questions: 7-15 

 
7. Sola has x bananas and Peju has p bananas.  Peter counts the number of bananas each 

of them have and finds they are the same.  Sola said you could write this as x=p, but 
Peju said that x and p are different letters and so cannot be the same. Who do you 
think is correct? 

8. Mary has x oranges and Bisi has four more oranges than Mary. How many oranges 
does Bisi have? 

9. A basket costs eight naira and a bag costs c naira more than the basket. How much 
does the bag cost? 

10. What is the number that is five less than x? 
11. There is  a   b number of sweets in a packet. A girl has two packets of sweets and gives 

her friend six sweets. How many sweets does she have remaining? 
12. If d is the number of dogs and c is the number of cats, write in algebra: There are four 

more dogs than cats.    
13. Write in algebra: There are three more caps than hats. 
14. Write in algebra: There are twice as many pencils as biros (let p be the number of 

pencils and b be the number of biros). 
15. If s is the number of students and t is the number of tables, write in algebra: There are 

three students for every table. 
 

Figure 9.4:  Worded pre-test questions 
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Question 7 required the knowledge of the letter as a quantity only, without any mathematical 

operations. The letter was perceived as an alphabet by the four students with a typical 

response of “x and p are different letters”. (Student interview, 25/3/11) 

Questions 8 and 9 tested the students’ ability to interpret ‘more’ as requiring the additive 

operator, not multiplication. There were two transformation, two processing and two careless 

errors. An example for each of these error type follows respectively. 

S4: Let x represent the number of oranges Mary has and four represent 
the number of oranges Bisi has more. Since they did not give us Mary’s 
own, Bisi’s is x - 4.  

S2: It is eight plus c equals 8c. 

S1: Mary has four oranges and Bisi has four more. We are going to use 
four oranges. We want to find how many does Bisi has. (Paused and 
reflected for a few seconds before he continued) Mary’s oranges is x 
oranges and Bisi has four more oranges…..Bisi’s oranges is 4 + x. (Student 
interview, 25/3/11) 

Questions 10 and 11 required the use of the subtractive operator in establishing an expression 

that signifies the relationship between the algebraic letter and the given quantities. There 

were more comprehension errors with Question 10 and more transformation errors on 

Question 11. Two students (S1 and S3) understood Question 10 as “we look for a number that 

is not more than five”, and said “4” was the answer. One student (S1) transformed the ‘x’ as 

one and obtained zero as the answer. The students’ transformation of Question 11 suggested 

that they just picked the quantities without relating them to each other.  

S1: The number of sweets is equal to six. Let b represent the number of 
sweets remaining, so it is 6 – b. 

S2: That is b + 2 + 6. 

S4: We will put the sweets together, so what we get is the number of 
sweets in a packet. 2 + 6 = 8. (Student interview, 25/3/11) 

                     

 

 

 

                              Figure 9.5: Stephen’s students’ working (S1, S2) on Question 10 

None of the students gave correct meanings to Questions 12 to 15, which required the 

construction of equations to show a relationship between the quantities of the two items in 

                                        

S1                                                                   S2 
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each question. Three students did not understand what it meant to write in algebra, or felt 

they were supposed to find the number of one of the items.  Samples of such responses were: 

S1: The question says there are four more dogs than cats, so we should 
find the number of cats. 

S3: I don’t understand how to write it in algebra. 

S2: algebra means when an answer is true or false, to work it in algebra, 
we say p +b +2. 

S3: They say we should find the number of caps. (Student interview, 
25/3/11) 

One student (S4) correctly attempted to transform Question 13 saying, “let the number of caps 

be p, and let the number of hats be q”, but was unable to progress beyond the generated 

representations (Student interview, 25/3/11). 

A summary of all the initial causes of errors made by the students is presented in Table 9.5. 

The most common error types were: Comprehension (18), Transformation (8) and Process skill 

(6) errors. 

Table 9.5: Stephen’s students’ responses and initial errors on pre-test word problems (n=4) 

Questions                                   Number of  responses to  worded questions  

Correct                                                                                            Incorrect   

                                           Initial error cause  

 R C T P E CE Total  

7  -  - - - 4  - -   4 
8  1  - - 1 1 - 1   3 
9 1  - - 1 1 - 1   3 
10  -  -   3 1 - - -   4 
11  -  -   1 3 - - -   4 
12 -  -   4 - - - -   4 
13  -  -   3 1 - - -   4 
14 -  -   3 1 - - -   4 
15 -  -   4 - - - -   4 
Overall  2  - 18 8 6 - 2 34 

R- Reading, C- Comprehension, T -Transformation, P- Process skills, E- Encoding, CE – 

Carelessness 

 

Key Finding 9.8 
Stephen’s students had no knowledge of the meaning of algebra and were unable to explain 
relationships between two pro-numerals. Instead, they gave the answer of one pro-numeral. 
Understanding the mathematical interpretation of ‘less’ posed a challenge as well. Algebraic 
misconceptions identified were using the algebraic letter as an alphabet or as a specific value. 
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 Students’ Post-test Performance 

After the teaching period Stephen’s class completed a post-test that was parallel to the pre-

test in order to examine the impact of the intervention on the students’ performances, which 

was the main concern of one of the research questions. The post-test was similar in terms of 

the question contexts and underlying concepts; the difference was in the names of items and 

quantities used. This was to reduce the students’ familiarity with the questions. Care was 

taken to ensure that the one-digit and two-digit quantities remained as one-digit and two-digit 

quantities respectively on both tests.  

This section presents the post-test general results and students’ performance on the two 

question formats used. There was no improvement in performance. Table 9.6 presents the 

data. 

Table 9.6: Stephen’s students’ post-test total score (n=67) 

              Total score on post-test /15  Pre-test      Post-test 

 0 1 2 3 4 5 Mean SD   Mean  SD 

Number of 
students 

35 21 8 2 1 0 0.79 .993  0.70 .905 

Per cent 52.2 31.3 11.9 3.0 1.5 0.0 

 

The students’ post-test mean score was lower than that of the pre-test. The total of 47 correct 

responses out of a possible 1,005 correct responses represents a 4.7% success rate on the 

post-test.  More correct responses were obtained on the symbolic questions than on the word 

problems. (See Table 9.7) 

Table 9.7: Number of Stephen’s students with correct answers in pre- and post-test questions 
(n=67) 

                                  Question number and representation format 

                 Symbolic                                     Worded  

Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

                                                                           Post-test 

Number of 
students 

2 13 3 13 8 0 4 1 1 0 0 1 1 0 0 

Total                         39/402                                           8/603 

                                                                            Pre-test 

Number of 
students 

3 17 2 18 3 0 5 3 1 0 1 0 0 0 0 

Total                        43/402                                          10/603 

 

Students’ success rate on symbolic questions was 10%, while on word problems it was 1.3%. 

There were only two correct responses from the four questions that involved the construction 
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of equations using two pronumerals. The easiest symbolic and word problem questions also 

remained the same as seen in the pre-test, that is, simplification of an algebraic expression and 

finding a specific unknown in a linear equation, and the recognition of an algebraic letter as a 

quantity. 

Key Finding 9.9 
There was no improvement in Stephen’s students’ post-test performance. The overall success 
rate was 4.7% which comprised 10% success on symbolic questions and 1.3% success on word 
problems. 

 

Students’ Post-test Newman Interview Results 

The four students earlier interviewed by the Researcher on the pre-test were interviewed on 

the wrongly answered questions using the Newman interview protocol. The information 

provided evidence for identifying successes and difficulties that the students were still having 

after the intervention. In their second attempt on the post-test questions, one student did not 

give any correct answer to any of the questions, while one, six and two correct answers were 

given by the other three students respectively. Transformation (59%) and processing (26%) 

errors were the most common error types and there were fewer comprehension (15%) errors. 

The four students still made more errors on word problems than the symbolic questions. Table 

9.8 presents the data. 

Table 9.8: Per cent of error types made by Stephen’s students’ on the algebra post-test (n=4) 

Initial error                  Question format   All  questions 

Symbolic    Worded    

Per cent  Per cent  Per cent 

Reading    0   0    0 
Comprehension  21.1   9.4  13.7 
Transformation 52.6  62.5  58.8 
Process skills 26.3  25.0  25.5 
Encoding    0   0    0 
Carelessness    0   3.1    2.0 

 

Transformation errors were the most common error types in both text formats, followed by 

the process skills error. There were more comprehension errors on the symbolic questions 

(21%) than on the word problems (9%). With many questions, the students were able to 

progress further than the comprehension stage with greater success than on the pre-test, and 

this gave them an avenue to transform and process the questions and more opportunities to 

use algebraic concepts.  
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Key Finding 9.10 
On the post-test interview, Stephen’s students’ made fewer comprehension errors than on the 
pre-test and the most common errors made on the post-test were transformation (59%) and 
process skill (25%) errors. Transformation errors were the most common error type on both 
symbolic questions (53%) and word problems (63%).  

 

The initial cause of error on each wrongly answered question was determined by the 

interviewed student’s responses.  A description of the Newman error analysis is presented in 

two sections, the symbolic questions (Questions 1-6) and the word problems (Questions 7-15).  

The questions are stated, followed by a description of students’ errors with transcripts and a 

summary table. 

Symbolic Questions: 1-6 

 
1. Simplify  as far as possible 1 + y + y 
2. Simplify  as far as possible 4z + 3p + 7z + 2p  
3. m × m × m = .............. 
4. Find the value of x: 6x = 24 
5. Solve for x: 5x – 5 = 20 
6. Solve for x: 24x =6 

                            Figure 9.6:  Symbolic post-test questions 

No correct answers were given to Questions 1 and 2. Five out of the eight errors concerned 

transformation and the other three were processing errors. Three of the students still 

processed Question 1 using a fixed value of one for the algebraic letter, and all of them 

transformed the algebraic letter as a detachable object in Question 2. 

 

 

 

 

 

               Figure 9.7:  Stephen’s students’ (S1 – S4) working on Question 2 

S1: The coefficient of these two y’s is two. Because there is a one there, so 
we are going to plus them together. So I’ll pick one y (and wrote 1 + 1 + 1 
= 3y). 

S3: the coefficient of each y will be one, so we say 1 + 1 + 1, it will give us 
three. We pick one out of the y’s, so it is 3y.  

S2: It is equal to 16, then put zp, will be 16zp. (Student interview, 2/7/11)                            

S1                          S3                                                                 

      

S2                             S4                                                                                                                                                                                    
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On Question 3, only one student processed the sum instead of the required product.  

S1: The answer is going to be 3m. You pick one m here because they are 
all the same. So you write it as 1 + 1 + 1 = 3, and then put m. (Student 
interview, 2/7/11) 

Four comprehension, five transformation and one processing error were identified on 

Questions 4 to 6. One student (S1) still gave no response to the three questions and was 

unable to continue on any of them but the other students explained that they were to 

“calculate what was x”. While attempting to transform Question 5, the algebraic letter was 

used as a unit value; and with Question 6, the students could not perform inverse operations 

with the larger divisor. 

S4: The coefficient of x is one and 5 x 1 is 5. So I don’t understand it when 
5 minus 5 again will give me 20. 

S3: That 5x – 5 will give us 1x, then coefficient of x will be 1. So 1x = 20. 

S3: 24 divided by 6, it will give us 4. 

S4: I think what we can calculate that can give 24. I’ll say 4. 4 x 6 = 24. 
(Student interview, 2/7/11) 

 

             Figure 9.8:  Stephen’s student’s (S3) working of post-test Question 5 

The most common error types were transformation (10), processing (5) and comprehension 

(4) errors. The analysed data is summarised in Table 9.9. 

Table 9.9: Stephen’s students’ responses and initial errors on post-test symbolic questions 
(n=4) 

Questions                      Students’ responses to six mainly symbolic questions  

Correct                                                                                            Incorrect   

                                           Initial error cause  

 R C T P E CE Total  
Symbolic           
1 -  - -   1  3 - -   4 
2  -  - -   4 - - -   4 
3 3  - -   - 1 - -   1 
4 2  - 2   - - - -   2 
5  -  - 1   2 1 - -   4 
6  -  - 1   3 - - -   4 
Overall  5  - 4 10 5 - - 19 

R- Reading, C- Comprehension, T -Transformation, P- Process skills, E- Encoding, CE - 

Carelessness 
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Key Finding 9.11 
Stephen’s students’ post-symbolic questions errors arose from an inability to carry out inverse 
operations, the use of the letter as a detachable object or with a fixed value of one. One of the 
interviewed students did not understand all the symbolic equation questions nor the meaning 
of ‘value’.  

 

The students’ incorrect responses to the nine post-word questions were analysed. The 

questions are first stated and the information is presented next. 

Worded Questions: 7-15 

 
 

7. Sola has y bananas and Peju has x bananas.  Peter counts the number of bananas each 
of them have and finds they are the same.  Sola said you could write this as y=x, but 
Peju said that y and x are different letters and so cannot be the same. Who do you 
think is correct? 

8. Mary has m oranges and Bisi has three more oranges than Mary. How many oranges 
does Bisi have? 

9. A ball costs ten naira and a shirt costs y naira more than the ball. How much does the 
shirt cost? 

10. What is the number that is four less than x? 
11. There is  a   x number of pencils in a packet. A girl has three packets of pencils and 

gives her friend five pencils. How many pencils does she have remaining? 
12. If p is the number of plates and c is the number of cups, write in algebra: There are 

four more plates than cups.    
13. Write in algebra: There are five more goats than dogs. 
14. Write in algebra: There are twice as many books as pens (let b be the number of books 

and p be the number of pens). 
15. If b is the number of boys and g is the number of girls, write in algebra: There are three 

boys for every girl. 
 

Figure 9.9: Worded post-test questions 

All the four students still processed the letter in Question 7 as an alphabet instead of a 

quantity. Their responses were of the form said by student S2 that “y and x are 

different letters”. (Student interview, 2/7/11) 

The six wrong answers on Questions 8 and 9 consisted of three each of transformation and 

processing errors. They resulted from the students’ transforming ‘more’ as a product or 

division instead of a sum, and the faulty algorithm of ignoring the letter and conjoining terms. 

S1: The only way we can find it is by dividing the y. It is because of this 
‘more than the ball’. 

S2: Three times x equals 3x. 

S1: It will be three toys. 

S4: 10 plus y, and that’s equal to 10y. (Student interview, 2/7/11) 
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Responses to Questions 10 and 11 were all wrong as a result of transformation errors. The 

students transformed the letter as a specific number rather than as a generalized number. The 

students understood ‘less’ to refer to a smaller quantity but were unable to transform it to 

represent subtraction. 

S4: The coefficient of x is one. There is no number less than one. The 
number less than one is zero. 

S2: You use the number in a packet that is, 12. 

The Researcher asked the other two students who did not resort to specific values why they 

could not proceed any further. They responded: 

S1: I cannot get it because I do not know the amount of pencils in a packet. 

S3: This x, x is an unknown number. (Student interview, 2/7/11) 

An inability to transform accounted for nine of the 14 errors identified on Questions 12 to 15. 

The students understood the questions and acknowledged that the two quantities were 

related, and then engaged in literal translations. Examples are: 

S2: 4 x p x c 

S4: b + p + 2 = 2bp 

S3: b = g + 3 

The students wrongly processed by using wrong operations and faulty algorithm.  

S1: number of cups is 4 + c 

S1: Let x represent the number of dogs. So, number of dogs is 5 + x 
(Student interview, 2/7/11) 

   S1                                                            

              

S2                                                                                                                                                       

                  S4                                                                                                                    

   S3                                                                                      

Figure 9.10: Stephen’s students’ (S1 - S4) workings on Questions 14 
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The most common error types were transformation (20) and process skills (8) errors. The 

summary of all the post-symbolic errors is presented in Table 9.10. 

 

Table 9.10: Stephen’s students’ responses and initial errors in post-test word problems (n=4) 

Questions                                  Students’ responses to  word questions  

Correct                                                                                            Incorrect   

                                           Initial error cause  

 R C T P E CE Total  

7  -  - -   - 4  - -   4 
8  1  - -   1 2 - -   3 
9 1  - -   2 1 - -   3  
10  -  - -   4 - - -   4 
11  -  - -   4 - - -   4 
12 1  - 1   1 - - 1   3 
13  1  - 1   2 - - -   3 
14 -  - 1   3 - - -   4 
15 -  - -   3 1 - -   4 
Overall  4  - 3 20 8 - 1 32 

R- Reading, C- Comprehension, T -Transformation, P- Process skills, E- Encoding, CE – 

Carelessness 

 

Key Finding 9.12 
For many of the post-word problem transformations, Stephen’s students viewed the algebraic 
letter as a specific value. They acknowledged and attempted to use the two pro-numerals in 
equation construction but obtained expressions from literal translations. The algebraic letter 
was still regarded as an alphabet. The students were unable to transform ‘more’ and ‘less’ into 
the respective additive and subtractive form.  

  

Change in Stephen’s Students’ Performances and Error Types 

There was no improvement in the students’ overall post-test performance and it remained 

very low. The success rate reduced slightly by 0.6% comprised of 1% on symbolic questions 

and 0.4% on word problems. However, this general pattern contradicted the performance of 

the four interviewed students as their combined correct responses increased from two in the 

pre-test to nine in the post-test. 

There was a change in the proportion and types of initial errors that the four students showed 

before and after the intervention.  In addition to the overall decrease in errors, the students 

were able to understand the questions, which resulted in a 71.6% decrease in the number of 

identified comprehension errors. Table 9.11 presents the information.  
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Table 9.11: Per cent of Stephen’s students’ errors before and after intervention (n=4) 

                                                            Per cent  error  

Error type Pre-test    Post-test 

Reading    3.4    0 
Comprehension  48.3  13.7 
Transformation 25.9    58.8 
Process skills 17.2  25.5 
Encoding    0     0 
Carelessness    5.2    2.0 

 

With increased understanding, the opportunities to transform and mathematically process the 

questions became more available to the students. An ability to participate in these activities 

led to transformation and processing errors, jointly accounting for 84.3% of all the post-test 

errors after an initial 43.1%. The same pattern of change in error type was found when the text 

format was considered. Figure 9.7 shows the pattern. 

 

 

 Figure 9.11:  Distribution of errors on Stephen’s students’ pre- and post-tests 

Key finding 9.13 
There was a 71.6% reduction in the comprehension errors of interviewed students in 
Stephen’s class in the post-test. The general performance of the class reduced slightly by 0.6% 
comprising 1% symbolic and 0.4% word problems.  

Summary 

Stephen professed traditional beliefs about mathematics teaching and learning and his classes 

equally reflected a traditional teaching approach with low student engagement.  Also very 
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confident of his algebra knowledge and teaching before the professional learning, Stephen 

opined that his effectiveness was hindered by the unconducive environment in which he was 

teaching. After the intervention period, Stephen had increased his confidence in using 

language-based approaches, while also recognising that mathematical talk was important for 

identifying misconceptions. He also used more questioning in the class and student classroom 

engagement had increased.  

While general students’ performance did not improve, the four interviewed students had 

fewer comprehension errors. Students’ progression into the transformation and processing 

stages provided an avenue for algebra misconceptions to surface. The most common 

misconceptions still evident were: using the algebraic letter as a detachable object, as an 

alphabet, with a specific value or a fixed value of one; conjoining of terms, inability to use a 

larger divisor or perform inverse operations. The students still had difficulties transforming 

‘less’ into the subtractive operator, and constructing equations from two pronumerals. 
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CHAPTER 10: CROSS-CASE ANALYSIS AND DISCUSSION 

Introduction 

The purpose of this study was to investigate the teaching and learning of word problems in 

Beginning Algebra at the JS1 level and the effect of a professional learning program on JS1 

teachers and their students. The program focused on making teachers more knowledgeable 

about students’ Beginning Algebra misconceptions and language-based approaches in the 

teaching-learning process. The teachers’ beliefs and practice, students’ general algebra test 

performance, and the error analysis of the interviewed students’ incorrect responses were 

examined. 

This chapter presents a cross-case analysis and discussion, drawing on key findings from the 

survey data, professional learning program and the four cases. The analysis and corresponding 

discussion is presented using four themes generated in Chapters 4 to 9. These are the teaching 

context and teachers’ beliefs, knowledge and practice before intervention; the students’ 

general performance and difficulties before the intervention; the impact of the intervention on 

the teachers’ beliefs, knowledge and practice; and, the changes in the students’ general 

performance and difficulties after the intervention.   

Teachers’ Beliefs and Practice before the Intervention  

Challenges of teaching algebra 

About 77% of the 30 survey respondents, including the case study teachers, had between two 

and five years JS1 teaching experience (KF 5.1). This large proportion of ‘new’ teachers may be 

due to growth in the school population resulting from the introduction of the nine-year 

compulsory basic education, or to teachers leaving the profession for more financially 

rewarding non-teaching jobs (Ifamuyiwa, 2008). The large number of beginning teachers at the 

JS1 level may not be sufficiently experienced to handle students’ learning difficulties, which 

require the knowledge of specialized mathematics content (Cady, Meier, & Lubinski, 2006; 

Drageset, 2010; Ormond, 2011c; Tirosh et al., 1998).  

The four case study teachers were all professionally qualified and all except Dorothy were in 

their 30s and had more than five years’ experience of teaching mathematics. Dorothy and Ruth 

taught in private schools while Jamie and Stephen taught in public schools. Jamie’s and 

Stephen’s large class sizes were about twice the number in Dorothy’s and Ruth’s classes (in 

private schools) respectively.  Table 10.1 presents an analysis of the context within which the 

teachers taught, and the challenges they faced.  
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Table 10.1: Profile of the four case-study teachers 

Descriptor  Ruth  Dorothy  Jamie  Stephen  

Mathematics 
teaching 
experience 

6 – 10 years Fewer than 5 years 6 – 10 years 11 – 15 years 

JS 1 teaching 
experience 

2- 5 years 2- 5 years 2-5 years 2- 5 years 

School & class 
size 

Private, 34 Private, 26 Public, 54 Public, 67 

Teaching 
challenges   

Lack of 
instructional 
materials 

Lack of 
instructional 
materials 

Unconducive 
teaching 
environment, lack of 
instructional 
materials, teaching 
methods 

Inadequate 
facilities, large 
classes 

Beliefs about  
effective teaching 
& learning 

Student-centred 
with teacher-
student 
interaction, 
students able to 
correctly solve 
problems   

Students being 
able to correctly 
solve problems  

Availability of 
teaching aids and 
teaching guides  

Availability of 
teaching aids, 
conducive learning 
environment,  
student-centred 
teaching 

 

The large class population (KF 5.2) is not a new observation in Nigerian public schools (Noah et 

al., 2011; Ogunmade, 2005) and it has been asserted that this contributes to students’ poor 

mathematics performances (Igbokwe, 2000).  Noah et al. (2011) also note that teachers tend 

to adopt traditional transmissive strategies to help them to cope with the large class sizes. 

Prior research indicates that large class sizes, students’ lack of interest in mathematics, a lack 

of instructional materials and imperfect pedagogy are the main factors limiting the quality of 

mathematics teaching in Nigeria (Ale, 1981; Igbokwe, 2000). In the initial questionnaire, the 

most commonly mentioned challenges to effective teaching were a lack of instructional 

materials, inadequate facilities, students’ weak mathematical background and large classes (KF 

5.3).  As expected, large classes, inadequate facilities and inappropriate teaching methods 

were the challenges to effective teaching mentioned by Jamie and Stephen, while Ruth and 

Dorothy prioritised a lack of instructional materials (KF 6.1, 7.1, 8.1, 9.1).  Dorothy believed 

that teacher effectiveness echoes in students’ ability to solve problems and Ruth agreed, also 

claiming that a teacher’s approach should involve some engagement with students through 

classroom interaction (KF 6.1, 7.1). The ability to correctly solve problems as an indicator of 

effective learning is strongly related to a belief that mathematics is formal and all about rules 

(Drageset, 2010).  

The weak mathematical background and young entry age of the JS1 students are note-worthy 

challenges that were mentioned in the survey and emphasized by participants during the 
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professional learning program (KF 4.10, 5.3). Arisekola’s (2010) study found that JS 1 public 

school students and primary six private school students had not mastered up to a third of the 

Nigerian primary school mathematics curriculum content. Many students in the private schools 

do not complete the six years needed before moving to the secondary school (Chiaha, 1998). 

Chiaha (1998) suggested that parents’ desire for their children to complete their schooling on 

time contributed to this trend.  Secondary school mathematics builds upon primary 

mathematics, and beginning algebra, in particular, entails a move from operating with specifics 

at the primary level to a more generalized form (Kieran, 1992; Ormond, 2012). Therefore, an 

inadequate knowledge of primary mathematics will lead to struggling students and will impede 

success with beginning algebra (Hiebert & Carpenter, 1992). Interestingly though, despite the 

challenges, only Jamie reported that he did not enjoy his teaching (KF 7. 1).  

Assertion 10.1 
Large class sizes, insufficient instructional materials, a large proportion of beginning 
teachers teaching at the JS 1 level, JS 1 students’ weak knowledge of primary mathematics 
and young entry age of the students are all challenges existing in the beginning algebra 
classroom. These would likely contribute to the use of transmissive strategies and to 
students’ poor performance. The teachers’ stated indices for effective teaching are 
indicators of a traditional teaching approach and view of mathematics. 

Teachers’ prior beliefs and knowledge 

A teacher’s beliefs and understanding of the mathematical content area determines the 

content taught, what is emphasized and what teaching methods are used (Alexandrou-

Leonidou & Philippou, 2005; Beswick, 2007; Hensberry & Jacobbe, 2012). In the past 30 years, 

and especially recently, mathematics education reforms have resulted in a move from 

mathematics being viewed and taught solely as procedural manipulations of numbers resulting 

in knowledge of content, to an enhanced perception that mathematics  is a way of thinking 

about and understanding  relationships which results in knowledge of mathematical processes 

(Australian Association  of Mathematics Teachers, 2006; National Council of Teachers of 

Mathematics, 2000). However, the survey respondents’ views of mathematics were largely 

traditional and procedural. 

The JS 1 teachers believe that word problems are the most difficult type of questions for 

students to answer and almost 60% of the teachers reported that questions having mainly 

symbolic text were easier to teach (KF 5.9). Amongst the case study teachers, only Dorothy, 

who had the least teaching experience, indicated that she found it easier teaching word 

problems rather than the symbolic aspects of algebra (KF 7.2).  The next most difficult type of 

questions was perceived to be those problems requiring inverse operations, and the most 

difficult question was a word problem requiring a multiplicative inverse operation (KF 5.10). 
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Evidence of this belief was strengthened further by the PL teachers’ rating of all the nine word 

problems in the algebra pre-test, regardless of length or context, as being more difficult for 

students to solve than the six symbolic ones (KF 4.1).  Badru’s (2008) study had found out that 

word problems are not a popular form of student assessment by Nigerian mathematics 

teachers.  

Prior to the PL, the 30 teachers who completed the questionnaire were generally very 

confident of their algebra knowledge and rated highly their ability to use teaching strategies 

such as questioning to further mathematical discussions in the classroom; however, they also 

all reported using traditional teaching approaches (KF 5.5, 5.6, 5.7, 5.8). Indicators of a more 

traditional teaching approach are direct instruction, teachers working blackboard examples to 

illustrate the instruction and students practising similar questions (Hensberry & Jacobbe, 

2012). The four case study teachers reported that in every lesson they directly instructed and 

worked examples on the board, and that their students solved questions individually in the 

class. Only Ruth reported that her students during every lesson had also to explain how they 

arrived at answers to given questions. As reported by the teachers, students’ engagement 

levels in Stephen’s and Jamie’s public school classes were lower than those of Dorothy’s and 

Ruth’s students. Jamie, however, admitted that he found it difficult to use questions to enrich 

the purpose of the lesson or to encourage students to ask questions in the class (KF 8.1).  

Assertion 10.2 
The teachers’ very high self-ratings of teaching effectiveness are based on their teaching 
styles which are largely transmissive and traditional. A belief by many of the teachers that 
word problems are difficult to teach and the most difficult questions for students to solve 
may not encourage some teachers to use them often in the class, thus limiting 
opportunities for students to understand beginning algebra. 
The teachers rated student engagement levels lower in the public schools than the private 
schools and this is likely to be due to the larger class sizes and lower literacy levels 
experienced in the former. 

 

The majority of those surveyed believed that the teacher’s role was to give instructions and to 

prevent mistakes (KF 5.9).  Wilson and Cooney (2002) assert that students making errors forms 

part of the learning process, and that it is through the process of correction that students 

construct their own knowledge and gain conceptual understanding. However, a teacher’s 

ability to correct students’ errors is also dependent upon the teacher knowing that an error 

has been made. The research indicates that teachers’ knowledge of students’ misconceptions 

is important for teaching (Chick & Baker, 2005; Welder, 2012). Ruth and many of the survey 

respondents indicated that they had limited knowledge of how to use an understanding of 

students’ misconceptions in lesson planning (KF 5.6, 6.1). The teachers’ ratings of the pre-test 
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questions and the problem-solving activity completed on the first day of the professional 

learning revealed that the teachers were unaware of some algebraic misconceptions, as they 

themselves misconceived the algebraic letter to be an object and exhibited reversal errors (KF 

4.2, 4.3). This would suggest that some teachers might not understand word problems 

themselves, and so may avoid teaching them.  

Despite their traditional beliefs, all four teachers desired that their students would gain a 

conceptual understanding of mathematics. They also reported that they used the native 

language sometimes to explain mathematics to the students. Many of the teachers in the 

survey and during the PL also mentioned that at times they changed to the native language, 

Yoruba, for explanation; although the teachers seemed to believe that the students’ difficulties 

were caused by computational rather than comprehension-related issues (KF 4.4, 4.5, 5.9). The 

use of the native language is not officially allowed in classes other than the first language 

subject lesson, where it is studied as a subject. There is evidence that in different geographical 

locations in Nigeria, when the first language spoken by the majority of the students was used 

to teach mathematics at the upper primary classes, students’ performances improved 

(Adetula, 1989; Ali, 2000). The first language knowledge of the students would likely serve as 

building blocks for the new knowledge which the teacher was attempting to develop through 

English.    

Assertion 10.3 
The professional learning revealed that the teachers had limited knowledge of students’ 
algebra misconceptions, and that they had algebra misconceptions and reversal errors 
themselves. These limitations would prevent them from successfully identifying or 
correcting students with the misconceptions. 
Although the language of instruction is expected to be English, the teachers said that they 
sometimes use the students’ first language to facilitate students’ understanding of the 
mathematical ideas.  

Observed teaching practice prior to the PL 

Classroom observations revealed that teacher explanations dominated the classes of the four 

teachers before the intervention. Hensberry and Jacobbe (2012) note that, “in traditional 

mathematics classrooms, students are not typically encouraged to reflect on the problem 

solving strategies they have used”. However, purposeful class discussions are necessary for 

learning mathematics (Walshaw & Anthony, 2008). Teachers who are not familiar with using 

students’ thinking often ask questions which are intended only to elicit the correct answers 

(Franke et al., 2008). This was evidenced in the case studies. Most of the case study teachers’ 

questions suggested that they were ’doing’ the thinking for the students, as they asked 

students what they were to do next in order to arrive at the answer to a worked question. In 
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Jamie’s and Stephen’s classes, individual students solved the questions written on the board in 

their notebooks without any group discussion (KF 8.2, 9.2). In Dorothy’s and Ruth’s classes, 

one or two students would work the answer on the board, which was a viable strategy for their 

smaller classes. However, their approach differed after such student activity. Dorothy would 

explain afterwards, while Ruth would ask the students to explain what they had done although 

their faulty reasoning were not addressed (KF 6.2, 7.2). Generally, Ruth’s students interacted 

with her more often, while Dorothy spent more time explaining terms and vocabulary to her 

students. In Jamie’s and Stephen’s classes however, student engagement and explanation of 

terms and vocabulary was minimal. As it is known that a teacher influences the mathematical 

literacy and interpretations that students have (Walshaw & Anthony, 2008), this was 

problematic. 

Practice is very much informed by the mathematical knowledge of the teacher. Both teachers 

and students sometimes wrongly use the algebraic letter as a label for a word (Ely & Adams, 

2012). Teachers may have misconceptions that went unnoticed during their pre-service years 

while others might not have been exposed to the content of what they were expected to teach 

the students during their training period. It appears that to make it “easier” to solve word 

problems, the letter was incorrectly taught and used as an object and/or label by Ruth, 

Dorothy and Stephen (KF 6.2, 7.2, 9.2). The concept of the variable as representing a quantity 

is very important in algebra and problem solving, which if misconceived will prevent success in 

higher mathematics. Focussing more on algorithms and computations does not allow for 

students’ understanding of how to solve word problems (Rosales et al., 2012). In all classes 

observed, there was more concentration on the mathematical operations and manipulations 

of symbols involved in the problem-solving process than on thinking and understanding the 

processes involved. 

 

Assertion 10.4 
The observed classroom activities such as teacher talk, student listening and copying notes 
which dominated in lessons would not necessarily help students effectively develop 
mathematical literacies needed for communication, knowledge construction and 
conceptual understanding.  
The instructional approach focused on the manipulations of symbols rather than 
comprehension. 
The algebraic letter was used to represent a word and a label instead of a quantity by 
some teachers, thus passing on to the students their own misconceptions. 
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Students’ General Performance and Difficulties before the Intervention   

Pre-test performance and error frequencies prior to the PL 

While the pre-test performance across all classes was less than 15%, which is disturbing, the 

result within the Nigerian context is not surprising (Arisekola, 2010). However, in spite of this, 

the general performance seems lower than the 19% to 37% success range described in studies 

on algebra in the middle schools in Britain, Australia and America (Booth, 1984; MacGregor & 

Stacey, 1993a; Ryan & Williams, 2007).  

Jamie’s and Stephen’s students from public schools demonstrated a slightly lower 

performance in comparison with the students in private schools (KF 6.7, 7.6, 8.5, 9.5). The 

public schools most often have larger class sizes and students with lower English literacy levels, 

and these factors are likely to negatively impact on students’ understanding and performance 

(Adesoji & Yara, 2007; Chiaha, 1998; Noah et al., 2011). (Figure 10.1) 

 

Figure 10.1: Pre-test performance of the four cases before intervention 

Students from all four case study classes were more successful with symbolic questions than 

with worded questions.  This finding is consistent with the 30 teachers’ beliefs that the 

students would find questions with symbolic text easier to answer, and also with the difficulty 

ratings given by the professional learning program participants (KF 4.1, 5.10). It also appears to 

confirm some of the teachers’ views that they found it easier to teach symbolic algebra than 

word problems (KF 5.9).  

Word problems require “constantly translating words to gain a correct meaning for the 

mathematical context”, and are unlike mathematical symbols which “can be considered as a 

form of shorthand” with often more precise meanings (Newman, 1983a, p. 6). Many Newman 
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studies have revealed that student difficulties occur at the comprehension level (Chinen, 

2008). As in symbolic problems students do not have the English language demands of 

translating a written question into symbolic form, students would be expected to find them 

easier than questions stated in English words.    

The individual teacher’s approach appears to have some bearing on the students’ 

performances, particularly in relation to the different ways that the questions were presented. 

Dorothy emphasized understanding of the word problems and her students fared better than 

the other three classes on such questions. Ruth placed more emphasis on students’ 

engagement and teacher-student classroom interaction, and her students showed a better 

overall performance.  Jamie who emphasized note-taking and Stephen, who taught the largest 

class, both taught in public schools and had lower student performances than students in the 

private schools. This suggests also that the more traditional that the teachers were, or the 

larger the classes were, the lower was the success rate of their students.  

Li and Li (2008, p. 4) have stated, “Students’ learning difficulties can be presented in the form 

of errors”. The students’ problem-solving errors were identified through Newman interviews 

conducted with four students from each class. Before the intervention, comprehension errors 

(46%) were the main cause of the interviewed students’ wrong answers, and when combined 

with transformation errors (27%), it is no surprise that there were few progressions to 

mathematical operations and the subsequent processing errors. About 48% of the students 

were unable to proceed beyond the level of basic understanding of the question and this 

prevented them from moving into the transformational and computational steps of problem 

solving. Table 10.2 below summarizes the initial errors in each of the four case study classes 

(KF 6.8, 7.6, 8.5, 9.6).  

Table 10.2: Per cent of error types in the four case study classes prior to intervention (n=16) 

Error                                   Question representation     

                  Symbolic                        Worded                  All questions 

 R D  J  S  All   R D  J  S  All   R D  J  S  All  

R    0   9   4   8   6    0   0   0   0   0    0   3   2   3   2 

C  24 14 50 42 33  29 64 69 53 54  27 45 61 48 46 

T  29 41 23 29 31  44 14 20 23 25  39 24 21 26 27 

P  35 18 23 17 22  12   8   9 18 12  20 12 14 17 16 

E    0   0   0   0   0    3   3   0   0   1    2   2   0   0   1 

CE 12 18   0   4   8  12 11   3   6   8  12 14   2   5   8 

R – Ruth, D – Dorothy, J –Jamie, S – Stephen;  R- Reading, C – Comprehension, T – 

Transformation, P – Process Skills, E- Encoding, CE - Carelessness 

Comprehension was more of a problem in Jamie’s and Stephen’s public school classes, 

irrespective of the question text representation. The students lacked the special mathematical 
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literacies required to understand the language of mathematics in English. Learning the 

language of mathematics is a pre-requisite for learning mathematics and having success in it 

(Morgan, 2005; Moschkovich, 2005; Oviedo, 2005). Ruth’s class stood out by contrast with 

more of her students understanding the questions. This is likely to be related both to the 

smaller class sizes of the private school and her teaching style, which had some classroom 

interaction.  

Assertion 10. 5 
Before the intervention, few students were able to answer the algebra questions 
correctly and this was most commonly due to comprehension (46%) difficulties. The 
comprehension difficulties were more evident in the public schools, suggesting that they 
had a lower level of the mathematical literacies needed to understand the questions. 
However, there was a better performance on the symbolic questions when compared to 
the word problems in all of the four classes. 

Language problems before the PL 

Both spoken and written language, and algebraic symbolism constitute difficulties faced in 

algebra problem solving (Fearnley-Sander, 2000; Morgan, 2005). 

In Nigeria, English language is the official language of communication and children are taught 

all school subjects in that language from the level of primary four.  Mathematics also has its 

own language, implying that students need to correctly understand both English and 

mathematical  languages in order to make meaning of the question to be solved (Kersaint et 

al., 2009). As would be expected, more language difficulties were identified on the questions 

with word text.  The two issues common to all the cases were the incorrect interpretation of 

‘less’ within the context of Question 10, and problems relating two items having varying 

quantities, needed for Questions 12 to 15 (See Table 10.3). 

Table 10.3: Pre-intervention language errors in the four case studies 

Focus  Question representation (number of students who revealed errors)   

 Usage/Descriptor Ruth Dorothy Jamie Stephen  All  

Word 
meaning 

simplify     S (2)  S (2) 
value   S (1)  S (2)  S (2) S (5) 
algebra   W (4) W (2) W (3) W (9) 

more   W (1) W (2)  W (3) 
less  W (1) W (4) W (1) W (3) W (9) 

Syntax  Relating two objects with 
varying quantities   

W (4) W (4) W (2)  W (4) W (14) 

W- Worded text, S – Symbolic text 

In all of the cases, in Question 10, some students understood ‘less’ to be an ordered position 

such as ‘lower than’ and one of Ruth’s students transformed ‘less’ as division instead of 

subtraction (KF 6.10, 7.9, 8.8, 9.8). The few who used it as a subtraction did so outside the 
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context of the question. The words ‘more’ and ‘less’ have been identified as difficult for 

students to understand mathematically in relation to their context within a story problem 

(MacGregor, 1991; Verschaffel et al., 2000). Ruth’s students had the least difficulties with 

technical terms while Jamie’s students had difficulties with all the terms (KF 8.7, 9.7).  

While acknowledging that the set of questions (Questions 12-15) that relates the number of 

two objects is slightly beyond the skills level of JS1 students, it was revealing to find that 

virtually all the students who attempted to say what the question demanded from them 

referred to only one of the objects, despite ‘seeing’ and acknowledging the presence of two 

objects. The belief in all of the cases was that they were required to find the total number of 

one of the objects (KF 6.10, 7.9, 8.8, 9.8). This brought a new awareness to the Researcher 

because her expectation was that they would have difficulty establishing equivalence in the 

relationship rather than actually focusing on only one object.  

In Knuth et al’s (2005) study, they found that an operational interpretation of the equal sign by 

middle school students resulted in their simply finding the total, whereas a relational 

interpretation revealed knowledge of equality. This implies that the interviewed students were 

likely to have interpreted the questions operationally - seeking the ‘total number of one 

object’ - rather than relationally. The notion of equivalence is dependent on the idea of two 

related objects, so this particular source of misconception was not as evident as expected in 

these cases before the intervention. 

Algebra misconceptions before the PL 

The cross-case analysis of the students’ algebra knowledge is presented based on the 

misconceptions identified in each of the question types, that is, symbolic and word text.  In all 

of the case studies, more misconceptions occurred with the concept of variable than with 

others, and Ruth’s four interviewed students revealed more algebra misconceptions than 

students in the other classes. As explained in this thesis, misconceptions about the variable, 

expressions and equations are common with students as they make the transition from 

arithmetic to Beginning Algebra (Knuth et al., 2005; Russell et al., 2009; Stacey & MacGregor, 

1997). These misconceptions include using the algebraic letter in a variety of ways. These are, 

commonly, the use of a letter as a word or an object, as an alphabetical position, or as a 

specific value (Küchemann, 1981; Rosnick, 1981; Stacey & MacGregor, 1997).  The pre-test 

questions are re-stated in Figure 10.2 for ease of reference during the analysis.   
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1. Simplify  as far as possible 1 + x + x 
2. Simplify  as far as possible 3m + 5n + 4m + 6n  
3. y× y × y = .............. 
4. Find the value of x: 7x = 21 
5. Find the value of x: 2x – 2 = 10 
6. Find the value of x: 21x =7 
7. Sam has x bananas and Peju has p bananas. Peter counts the number of bananas each 

of them have and finds they are the same. Sam said you could write this as x=p, but 
Peju said that x and p are different letters and so cannot be the same. Who do you 
think is correct? 

8. Mary has x oranges and Bisi has four more oranges than Mary. How many oranges 
does Bisi have? 

9. A basket costs eight naira and a bag costs c naira more than the basket. How much 
does the bag cost? 

10. What is the number that is five less than x? 
11. There is  a   b number of sweets in a packet. A girl has two packets of sweets and gives 

her friend six sweets. How many sweets does she have remaining? 
12. If d is the number of dogs and c is the number of cats, write in algebra: There are four 

more dogs than cats.    
13. Write in algebra: There are three more caps than hats. 
14. Write in algebra: There are twice as many pencils as biros (let p be the number of 

pencils and b be the number of biros). 
15. If s is the number of students and t is the number of tables, write in algebra: There 

are three students for every table. 

                         Figure 10.2: Pre-test questions 

Misconceptions that were common to all of the cases were using the algebraic letter as a 

detachable or moveable object, believing it to be a specific known value, or believing that the 

algebraic letters were alphabetically ordered. Table 10.4 summarises the misconceptions 

identified in each of the four cases. 

Table 10.4: Pre-test algebra misconceptions in the four case studies 

Focus      Question text (number of students presenting misconceptions)                                                

             Usage/Descriptor  Ruth  Dorothy   Jamie Stephen  All  

Variable  Detachable or moveable object  S (1) S (3) S (3) S (3) S (10) 

Label/shorthand  W (4) W (3)    W (7) 

Specific known value S (1), 
W (4) 

 
W (2)  

S (1),  
W (4)  

  
W (3) 

S (2), 
W (13) 

Fixed value of one  S (3) S (1)  S (4) S (8) 

Ignored    S (2),  
W (1) 

 S (2), 
W (1) 

Different letters cannot have 
the same value 

W (3) W (3)   W (6) 

Alphabetical ordering  W (3) W (1) W (2) W (4) W (10) 

Expressions  Conjoining of terms S (1)  
W (1) 

 S (1)  
W (2) 

S (2),  
W (3) 

Product-sum confusion S (1)  
W (1) 

S (2)   S (2)  S (5),  
W (1) 

Equation Equal sign as prompt to act S (2)    S (2) 

Unable to do inverse 
operations, use a bigger divisor 
or balance equations  

S (3)  S (2)  S (3)    S (8) 

W- Worded text, S – Symbolic text  
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The misconceptions are now further discussed under appropriate headings. 

Variable 

Letter is an object.  The belief that the algebra letter represented a detachable object in itself 

was evidenced in all of the cases, especially in Questions 1 and 2 which involved simplification 

of expressions (KF 6.9, 7.8, 8.7, 9.7). Instead of the students using the letter to represent the 

number or quantity, they viewed it literally as an object that can be moved at will or detached 

from the coefficient.  That the letter was used as a label for an object or word by Ruth’s and 

Dorothy’s students was not surprising because, from their responses during the professional 

learning, all the teachers themselves seemed unaware of the fact that this was a 

misconception. Some of the teachers had also taught and used it in this way themselves in 

problem solving (KF 6.2, 7.2, 9.2). 

Letter has a specific value.  Many of the 16 students believed that the letter represented a 

specific known value in Questions 3, 10 or 11 (KF 6.10, 7.8, 7.9, 8.8, 8.9, 9.8). This 

misconception is also known as “letter evaluated” (Küchemann, 1981). This belief probably 

derives from primary school teaching where a symbol used in open sentences always has a 

specific value. Students found it difficult to move beyond this to a specific but unknown value 

as an answer. Some of the students appeared to believe that the unknown in Question 11 

must have a value and so selected specific values for ‘x’. For example, S3 in Jamie’s class said, 

“I don’t know how many is in a packet but I’ll say that 24 is for two packets of sweets” (Student 

interview, 28/3/11). The students were unable to move to the notion that the letter could 

represent a generalized number.  

Letter has an alphabetical ordering.  This known misconception (MacGregor & Stacey, 1993a) 

occurred in all of the four cases. The students gave fixed positions to the algebraic letter in 

Question 7 because it was ‘seen’ as one of the 26 alphabetical letters in English Language and 

not as a quantity (KF 6.10, 7.9, 8.8, 9.8). 

Some other misconceptions were more commonly identified in different case studies. In 

Stephen’s and Ruth’s classes, the letter was used as a fixed value of one in Questions 1 and 3 

when there was no visible coefficient (KF 7.8, 9.7). ‘Letter ignored’ is also known as ‘letter not 

used’ (Küchemann, 1981). This particular misconception was observed only in the responses of 

Jamie’s students, who ignored the letter in Questions 2 and 8 (KF 8.8).  Students in Dorothy’s 

and Ruth’s private schools appeared to believe that different letters must also always have 

different values, such as S2 in Ruth’s class who said “they cannot be equal to, but they can be x 

and p” (Student interview, 28/3/11). 
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Expressions 

In addition to the misconception of the letter as a detachable object, as discussed, other 

misconceptions about algebraic expressions occurred on the symbolic questions. The 

confusion between products and sums happens when a student multiplies instead of adding, 

or vice versa (MacGregor & Stacey, 1993a; Ormond, 2012). Students (in all cases except 

Jamie’s) either found the sum of the terms in Question 3 instead of multiplying to arrive at the 

answer, or multiplied terms in Question 1 instead of adding (KF 6.9, 7.8, 9.7). This confusion 

was noticed only in questions that had algebraic terms with a coefficient of one. The tendency 

to ‘close up’, a common misconception with expressions, was identified among Jamie’s and 

Ruth’s students (KF 7.8, 8.7). They gave responses like “1 plus the x gives 1x...”(S1, Ruth’s 

student interview, 28/3/11). 

Equations 

In all of the cases, misconceptions concerning the concept of equations occurred on the 

symbolic questions. It was only in Stephen’s class that no misconceptions were noticed (KF 6.9, 

7.8, 8.7). This said, this could have occurred because some of his students with incorrect 

responses had comprehension difficulty with the word ‘value’ as noted earlier, which 

prevented any further progress.  In the other cases, an inability or reluctance to carry out 

additive or multiplicative inverse operations led to wrong answers, such as in Questions 5 and 

6. For example, S2 in Dorothy’s class said, “No, we can’t say 7 divided by 21, so we say 21 

divide 7 to give us 3” (Student interview, 25/3/11). The multiplicative inverse for Question 6 

would lead to the use of a bigger divisor and ultimately balance the equation. The belief that 

students might find inverse questions difficult was earlier identified also in the teachers’ 

survey (KF 5.10). Discussion about difficulties of students with fractions and inverses abounds 

in the literature (Robinson & LeFevre, 2012).  

 

Assertion 10. 6 
Many of the interviewed students had difficulty understanding the meaning of 
mathematical terms such as ‘less’ and in perceiving correctly a relationship between the 
numbers of two objects. Many algebraic misconceptions about variable, expressions and 
equations were also identified. These difficulties would limit students’ ability to 
generalize mathematics, use various forms of representation and solve algebra problems.  
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Teachers’ Beliefs and Practice after the Intervention 

An effective professional learning program includes collaborative examination of students’ 

work, a focus on content and research-based information about student learning, sufficient 

duration and timespan, feedback, active learning and reflection, and the support of a 

professional community (Ingvarson et al., 2005; Meiers & Buckley, 2010). The intervention 

program focused on algebraic misconceptions and language-based approaches to teaching. 

The teachers participated actively in small groups and joint discussions to examine and reflect 

on students’ solutions to beginning algebra questions, and they individually solved algebra 

word problems. Active learning, discussions and reflections about common algebra 

misconceptions, algebra teaching and language-based approaches were discussed over two 

days. This was followed by six weeks of algebra teaching by the teachers, with the Researcher 

providing support. After the teaching period, a one-day workshop was held to receive 

feedback, reflect on experiences and provide professional support to each other.  

Teachers’ beliefs and knowledge after the PL 

Teacher beliefs about what constitutes effective teaching differed considerably after the 

intervention. While availability of instructional materials was most commonly mentioned as 

the most crucial to effective teaching in the initial questionnaire, this was replaced by good 

communication skills when the final questionnaire was completed by the professional learning 

participants (KF 5.11). The case study teachers’ responses in particular also differed from their 

initial traditional responses concerning availability of instructional materials and students’ 

ability to solve problems correctly. Classroom discussions were now the focus for Ruth, and 

understanding what was said in the classroom was more important to Jamie than before. 

Dorothy’s renewed focus was teacher content knowledge while Stephen showed more 

concern for the teaching environment. These responses suggest that the intervention made 

the teachers more conscious of the importance of language and discourse for effective 

teaching and learning of algebra. 

Changes to teachers’ knowledge and use of students’ algebra misconceptions were observed 

from the teachers’ responses during the professional learning program and in the final 

questionnaire which they completed after the intervention period. Carpenter and Lehrer  

(1999) state that, “teachers need to understand the mathematics they are teaching, and they 

need to understand their own students’ thinking” (p. 30). During the professional learning 

program, the teachers became more aware, identified and corrected errors they made 

themselves in the problem-solving activity, and were able to identify the likely misconceptions 

in some of the students’ algebra solutions (KF 4.6, 4.7). Through the intervention program, the 



211 
 

teachers developed a better understanding of algebra misconceptions about the variable 

(especially that the letter is not an object), expressions and equality, and the need to improve 

their students’ mathematical literacy (KF 5.17, 5.19). The awareness of algebra misconceptions 

( especially that involving the algebraic letter standing for the number of objects and not the 

object in itself)  is crucial to understanding and success in algebra (Ely & Adams, 2012). If 

teachers know this and consciously work towards helping students develop this understanding 

from the beginning, some of the attendant difficulties associated with word problems and 

algebra in general may be alleviated. 

Effective professional learning can bring about awareness, a desire for change and an 

improvement to teaching, yet the price is often some reduction in teacher confidence. The 

impact of the intervention reflected in a drop in the PL teachers’ initial very high self- 

confidence and efficacy ratings on their algebra knowledge (KF 5.12). In the final 

questionnaire, the PL teachers indicated less confidence about their ability to use class 

discussions on word problems or to plan lessons based on the knowledge of students’ 

misconceptions (KF 5.13). The case study teachers also had reduced self-efficacy ratings about 

using mathematical discussions and questions appropriately in the classroom.  It is likely that 

their greater awareness of effective questioning after the PL resulted in lower and more 

realistic evaluation of their self-efficacy (Hackling, Smith, & Murcia, 2011). Only Ruth, who had 

indicated a limitation in this aspect prior to the intervention, reported increased confidence. 

Walshaw (2012) declares that “knowledge of content and knowledge of pedagogy related to 

content, as well as knowledge of students’ thinking, all lead to more effective teaching” (p. 

182). The intervention program provided an opportunity for the teachers to reflect upon their 

beliefs, knowledge and teaching practice. The PL teachers’ written reflections indicated they 

realised that students need to understand the language of mathematics and that teachers 

need to provide opportunities for mathematical discussions before focusing on computations 

and algorithms (KF 5.17). The process of reflection and thinking often marks the beginning of 

change, which over time manifests in practice (Smith, 2012). 

There also appeared to be a better appreciation and understanding of the role of language in 

building conceptual understanding and enhancing students’ problemsolving abilities (KF 4.8). 

Understanding and being able to use the language of mathematics is necessary for the 

successful integration of new knowledge, engaging in mathematical discussions and problem-

solving.  A comparison of the PL teachers’ responses in the two questionnaires showed an 

increase in the use of student activity-based approaches, a slight decline in many approaches 

that are purely teacher-focused, and a 7% increase in their students’ class engagement levels 
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(KF 5.14). It also showed increased confidence in the teachers’ abilities to explain, and to use 

mathematical vocabulary and terms. Dorothy and Ruth now seemed to be of the opinion that 

students were willing to ask questions. This contrasted with the prior belief of all the four 

teachers that students did not like asking questions. 

All of the teachers’ written comments reported gains in content knowledge and knowledge of 

content for teaching (KF 5.19). Although asked to write specifically about the most significant 

gain, both Dorothy and Ruth wrote about their knowledge of the Newman strategies as also 

being useful gains. However, a few teachers in this Nigerian study reported that they had time 

constraints or difficulty with some students who had limited verbal ability (KF 5.18). In 

Australia, Years 7 and 9 teachers reported success with using the Newman strategies as an 

approach, ranking it as the “most preferred strategy” to interpret context-based questions (P. 

White & Anderson, 2012, p. 68).  

 

Assertion 10.7 
After the intervention, teacher beliefs about effective teaching and learning centred on 

classroom discourse, and on ensuring students’ understanding of language, and the 
teachers now prioritised teacher content knowledge. These would improve students’ 
literacy and increase class engagement.  
There were reduced self-efficacy and confidence on some scales like algebra knowledge 
and questioning as teachers made informed and more realistic appraisals of their skills 
after the PL.  
Teachers’ increased knowledge of algebra, algebra misconceptions, and language-based 
teaching approaches would likely result in better teaching, help students understand 
algebra better, and enhance their problem-solving skills.  

 

Teachers’ observed practice after the PL 

Smith (2012, p. 319) argues that “how teachers choose to use professional development 

experiences is key to the impact of the professional development on a teacher’s practice”. In 

the lessons observed after the intervention, the teachers read aloud the questions on most 

occasions and sometimes explained the key words. Ruth’s and Dorothy’s students most often 

suggested how to solve the stated question with increased discussion after suggestions were 

proffered, although Ruth’s classroom was the most interactive. A focus on mathematical 

language in the classroom is important for students’ success with word problems and it has to 

be consciously developed by the teacher (Montague, Krawec, & Sweeney, 2008). Indeed, 

understanding and interpretation of the question became a new focus for Dorothy, Jamie and 

Stephen. Ruth’s practice, on the other hand, seemed to take care of this more through 

student-student interaction, enabling her to turn her attention towards ensuring an 
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understanding of the algebra concept.  Walshaw (2012, p. 185) notes that, “when teachers use 

their knowledge to enhance students’ learning, they are engaged in effective practice”.  

The pattern of observed practice suggested that the teachers were becoming more aware of 

the importance of language and were now involving the students more in the problem-solving 

process. This allowed students to think through the solution process, and provided both the 

teachers and students opportunities to identify and correct misconceptions, rather than the 

teachers doing all of the thinking for them. In thinking through a process, a person 

communicates with him/herself and when speaking that process aloud, a meaning is conveyed 

to which others are able to contribute, leading to a harnessing of ideas that facilitates building 

of knowledge individually and collectively (Sfard, Forman, & Kieran, 2001). Group work was, 

however, not observed in any of the classes. 

 

Assertion 10.8 
After intervention, the teachers’ observed practice shifted slightly more towards ensuring 
students’ conceptual understanding and reasoning, rather than a focus on manipulations 
only. Teacher talk, students listening and copying notes reduced in frequency. There was 
improvement in student engagement, teacher use of questions to draw out the 
mathematical knowledge of students and to identify any misconceptions, and more use of 
language-based approaches. 
The intervention seemed to serve as a platform for the students to ‘see’ mathematics as a 
way of thinking that involves processes built on a prior understanding of the related 
mathematical language and concepts.  

 

Students’ General Performances and Difficulties after the Intervention 

Post-test performance and error frequencies after the PL 

The post-test was completed by the students in week eight of the third and final term for the 

first year of junior secondary school. While the general success rate was below 25%, there was 

significant improvement overall and in all of the classes (except Stephen’s class which 

numbered 67 students). In all of the classes, there was a better performance on the purely 

symbolic questions than on the word problems. Tables 10.5 and 10.6 present the percentage 

and mean score of pre- and post-test correct responses collapsed across the classes, and the 

mean scores for each class. 
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Table 10.5: Per cent of correct answers and mean scores of for pre- and post-test questions 
(n=181) 

Text  Question               Pre-test              Post-test  

   Per cent Mean   Per cent  Mean  

Symbolic   1    4.4 0.04    7.2 0.07 
  2  35.9 0.36  36.5 0.36 

 3    6.6 0.07  21.5 0.22* 

 4  28.7 0.29  35.9 0.36 

 5    3.3 0.03  17.7 0.18* 
  6    0.6 0.01    3.3 0.03* 

All symbolic questions  13.3 0.80  20.4 1.22* 

Worded   7  17.7 0.18  18.2 0.18 
 8    4.4 0.04    8.3 0.08 
 9   6.1 0.06    8.8 0.09 
10   2.2 0.02    3.3 0.03 
11   2.2 0.02    3.3 0.03 
12   0.0 0.00    1.7 0.02 
13   0.0 0.00    0.6 0.01 
14   0.0 0.00    0.6 0.01 
15   1.1 0.01    0.6 0.01 

All worded questions   3.7 0.34    5.0 0.45 

*Wilcoxon Signed Rank test, p<.05 

The z-scores showed that significant Improvements in performance occurred on the symbolic 

questions, and the greatest gain (14.9%) was for Question 3. The most difficult symbolic 

question on both tests was Question 6, Find the value of x: 21x =7, with a fraction as the 

answer while Question 2, Simplify as far as possible 3m + 5n + 4m + 6n, remained the easiest in 

both tests. In both tests, word problems had fewer correct responses but there was a better 

performance on most of them, especially Question 8. The easiest word problem, Question 7, 

examined the misconception of the letter being used with its alphabetic position and did not 

require any mathematical operations; while the most difficult questions, Questions 12 to 15, 

examined their ability to establish equivalence between the numbers of two objects. 

Table 10.6: Pre- and post-test mean scores of the four case studies 

Text                                  Pre- test                                 Post-test  

 R  D J S All  R  D  J S All  

Worded Mean  0.50 0.73 0.28 0.16 0.34 0.88 0.96 0.35 0.12 0.45 

SD 1.108 1.373 .529 .412 .819 1.297 .871 .649 .445 .853 

Symbolic   Mean 1.29 0.77 0.69 0.64 0.80 2.23* 1.92* 1.02* 0.58 1.22* 

SD 1.060 .908 .797 .916 .935 1.082 .977 1.205 .781 1.199 

All  Mean  1.79 1.50 0.96 0.79 1.14 3.12* 2.88* 1.37* 0.70 1.67* 

SD 1.684 1.655 .990 .993 1.303 1.966 1.306 1.533 .905 1.712 

R – Ruth, D – Dorothy, J –Jamie, S – Stephen *Wilcoxon Signed Rank test, p<.01 

After the intervention, the z-scores showed that there were significant improvements in three 

of the classes. The pattern of results remained the same as that obtained in the pre-test: 
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Dorothy’s and Ruth’s students in the private schools reported better performances and higher 

increases in success than Jamie’s and Stephen’s students in the public schools. It should be 

noted that the mean scores for word and symbolic questions in Stephen’s class, with 67 

students, declined. Figure 10.3 presents the comparison. 

 

Figure 10.3: Pre- and post-test performances of the four case study classes 

The trend in better performance on symbolic questions might be attributed to several reasons. 

The teachers had improved understanding of misconceptions about the variable, expressions 

and equations and could assist students more confidently. Questions with symbolic text had a 

lesser requirement for mathematical literacies, so students would be more successful on these 

questions. A study in Cyprus showed that Grade 6 students’ performance in symbolic 

equations was also identified to be better than those concerning word problems (Alexandrou-

Leonidou & Philippou, 2005). Other contributing factors to a lack of success may have been the 

pressure of the considerable JS 1 algebra content that needed to be taught, and students’ 

weak pre-requisite mathematical knowledge. Perhaps the impact of the teachers’ new beliefs, 

knowledge and practice was just unfolding and being established in the class.  

The impact of the intervention was reflected in a change to the type of errors the students 

made. Before the intervention the main error was comprehension and only 52% of the 

students could go further; but after the intervention 79% of the students could continue 

further in the problem-solving process. This was evidenced by a reduction in comprehension 

errors of more than 44% in each case study class. A. White (2008, p. 58) asserts that, “student 

difficulties with the study of algebra include a lack of understanding of variables and formal 

symbolic manipulation and this acts as a barrier to success in mathematics study”. 
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Transformation became the main error after the intervention. Table 10.7 presents a 

comparison of the four cases. 

Table 10.7: Per cent of students’ pre- and post-correct attempts at each stage in the four case 
study classes (n=16) 

Stage           Pre-intervention                Post-intervention 

R  D   J  S  All   R  D   J  S  All  

All questions 

R  100 97 98 97 98  100 98 100 100 99 

C    73 52 37 49 52    85 78   65   86 78 

T    34 28 16 23 25    40 40   39   27 36 

P    14 16   2   6   9      8      2     6     0   4 

E    12 14   0   6   8      6   0     4      0   2 

CE   12 14   2   5   8      6   0     4     2   3 

Symbolic questions 

R  100 91 96 92 94  100 94 100 100 99 

C   76 77 46 50 61  100 89  84   79 87 

T   47 36 23 21 30    61 50  63   26 49 

P   12 18   0   4   8    15   6  10     0   7 

E   12   0   0   4   8    15   0    5     0   4 

CE  12 18   0   4   8    15   0    5     0   4 

Worded questions 

R  100 100 100 100 100  100 100 100 100 100 

C    71   36   31   47   46    79   72   53   91   74 

T    27   22   11   24   21    32   34   23   28   30 

P    15   14     2     6     9      6     0     3     3     3 

E    12   11     0     6     8      3     0     3     3     2 

CE   12   11     3     6       8        3       0     3     3     2   

R – Ruth, D – Dorothy, J –Jamie, S – Stephen ; R – Reading, C – Comprehension, T – 

Transformation, P – Process Skills, E – Encoding, CE - Carelessness 

After the PL there was more progress into high levels of the procedure, seeing students make 

errors further down the problem solving process. Students from private schools penetrated 

further down the steps than those in the public schools. The most common types of errors 

now differed by question text format, unlike the pre-intervention errors. More transformation 

errors were made on the worded questions and more processing errors on the symbolic text. 

The language-based strategies used by the teachers had resulted in more students 

understanding the literacies of mathematics and having fewer comprehension errors. In 
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Chinen’s (2008) study of Year 9 Australian students concept of time, comprehension errors 

reduced by 27% after a four-week language-based teaching intervention.   

Ruth’s, Dorothy’s and Stephen’s students had more process skill errors on the symbolic 

questions and more transformation errors on the word problems. Jamie’s students were the 

exception; they did not understand the word problems, and were unable to mathematically 

operate the symbolic questions. On the other hand, Stephen’s students remained fixed at the 

transformation stage. The main difficulty with the word problems, Jamie’s students being the 

exception, was transforming them into a mathematical form. This is supported by the research 

that has found that sources of errors in word problems include an inability to translate and a 

failure to correctly use representations (Egodawatte, 2011; Reese, 2007). Reading of the 

question however did not pose a major difficulty to problem solving. 

Since the teachers were just coming to terms with the awareness that the letter is not a label 

or an object, it seems reasonable to expect that students would still have been making 

mistakes in the areas of translation and processing.  

 

Assertion 10.9 
The intervention led to significant improvements in students’ general performance and in 
particular questions with symbolic text.  The use of language-based approaches by the 
teachers resulted in a 44% reduction in the interviewed students’ comprehension 
difficulties, increased literacy and understanding of questions, and more students 
progressing to the use of mathematical transformations and operations. 

 

Language problems after the PL 

There were fewer voiced language difficulties after the intervention. Students’ responses 

suggested that they now understood the words ‘simplify’ and ‘algebra’, despite the fact that 

understanding ‘less’ seemed to remain problematic in all the case studies. As expected, almost 

all the language difficulties were associated with the word problems. Saul (2008, p. 68) 

asserted that students need to move from “numbers to operations” as this turns their 

attention “away from the algorithm….toward the operation implemented by the algorithm”. It 

has been established that ‘more’ and ‘less’ are both difficult terms for many students to 

mathematically interpret within the context of use. Comparisons of these language difficulties 

before and after the intervention are presented in Table 10.8 below. 
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Table 10.8: Pre- and post-test language errors in the four case studies 

Focus                                 Question representation (number of students who revealed errors)  

                                           Pre-intervention                                           Post-intervention 

Usage/    
Descriptor 

R   D  J  S  All  R  D  J   S  All  

Word 
meaning 

simplify    S (2)  S (2)      

value  S (1) S (2) S 
(2) 

S (5)      

algebra   W (4) W (2) W 
(3) 

W (9)      

more   W (1) W (2)  W (3) W 
(1) 

W 
(2) 

  W (2) W (5) 

less  W 
(1) 

W (4) W (1) W 
(3) 

W (9) W 
(3) 

W 
(2) 

W 
(2) 

W (2) W (9) 

Syntax  Relating 
two 
objects 
with 
varying 
quantities   

W 
(4) 

W (4) W (2)  W 
(4) 

W 
(12) 

 W 
(4) 

W 
(2) 

  W (6) 

R – Ruth, D – Dorothy, J –Jamie, S – Stephen ; W- Worded text, S – Symbolic text 

A relationship exists between ‘less’ and division; repeated subtraction yields a solution 

equivalent to division (Ormond, 2012). However, Ruth’s students responded that ‘less’ in 

‘What is the number that is five less than x?’ implied division while some other students 

interpreted ‘less’ in its ordered position of ‘below’ the number. It could be because the word 

‘less’  is interpreted as ‘smaller’ in Yoruba, the dominant first language in Lagos state, that the 

students perceived the question in a comparative form.  

Ruth’s and Stephen’s students’ responses suggested that they understood that a relationship 

existed between the two quantities of items in Questions 12 to 15, which they were required 

to express algebraically. This acceptance was an improvement from before, when the prior 

belief was often that the total quantity of one of the items should be found. A. White (2008, p. 

43) noted that students “stumble when required to think relationally and algebraically”.  

Students also have to develop knowledge that the equal sign concerns equivalence in 

relationships (Knuth et al., 2005). The ability to think relationally develops through exposure to 

problems and situations that encourage its growth, so it is not automatic but has to be learnt.  

Algebra misconceptions after PL 

A. White (2008, p. 57) noted that “student algebraic thinking is often confused or guided by 

serious misconceptions”, and this has been discussed here. Misconceptions about the variable, 

expressions and equality persist in the middle grades and beyond (Knuth et al., 2005; Reese, 

2007; Russell et al., 2009; Stacey & MacGregor, 1997). A misconception may be corrected and 

other errors show up but ability improves when teaching strategies correct the identified 
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misconceptions (Russell et al., 2009). The interviewed students’ prior misconceptions that 

different letters cannot ever have the same value, and that the algebraic letter can be ignored, 

and their confusion between products and sums, appeared to have been at least partly 

remedied. However, some other misconceptions persisted, while some new ones occurred on 

the post-test interview responses. Table 10.9 presents this information across the four case 

studies.  

 Table 10.9: Pre- and post-test algebra misconceptions in the four case studies 

Focu
s  

   
Usage/Descriptor                                                                                         
                                    

         Question text (number of students presenting misconceptions) 

                       Pre- intervention                        Post-intervention 

R  D   J  S   All  R  D   J  S   All  

Varia
ble  

Detachable or 
moveable object 

 S (1) S 
(3) 

S 
(3) 

S 
(3) 

S (10)  S 
(2) 

S (4) S 
(1) 

S 
(4) 

S 
(11) 

Label/shorthand  W (4) W 
(3)  

  W (7) W 
(2)  

W (4)    W 
(6) 

Specific known 
value 

S (1), 
W (4) 

W 
(2)  

S 
(1), 
W 
(4)  

W 
(3) 

S (2), 
W 13) 

W 
(3) 

W (2) S 
(1), 
W 
(1)  

 W 
(2) 

S 
(1), 
W 
(8) 

Fixed value of one  S (3) S 
(1) 

 S 
(4) 

S (8) S 
(1) 

S (1) S 
(1) 

S 
(3) 

S 
(6) 

Ignored    S 
(2), 
W 
(1) 

 S (2), 
W (1) 

    W 
(1) 

W 
(1) 

Different letters 
cannot have the 
same value 

W (3) W 
(3) 

  W (6)       

Alphabetical 
ordering  

W (3) W 
(1) 

W 
(2) 

W 
(4) 

W 
(10) 

W 
(3) 

W (3) W 
(2) 

W 
(4) 

W 
(12) 

Expre
ssion 

Conjoining of 
terms 

S (1) 
W (1) 

 S 
(1) 

 
 W 
(2) 

S (2)  
W (3) 

S  
(1) 

S (1), 
W (2)  

S 
(1) 

 S 
(1) 
W 
(1) 

S 
(4),  
W 
(3) 

Product-sum 
confusion 

S (1) 
W (1) 

S 
(2)  

 S 
(2)  

S (5) 
W (1) 

S 
(1), 
W 
(1) 

S (1)  S 
(1),  
W 
(1) 

S 
(3),  
W 
(2) 

Equa
tion 

Equal sign as 
prompt to act 

S (2)    S (2) S 
(2) 

   S 
(2) 

Unable to do 
inverse 
operations, use a 
bigger divisor or 
balance equations  

S (3)  S 
(2)  

S 
(3)  

  S (8) S 
(3) 

S (2)  S 
(3)  

 S 
(3)  

S 
(11) 

Eq- 
const
ructi
on 

Literal translation 
into expression  

     W 
(2) 

  W 
(2) 

W 
(4)  

W 
(8) 

Specific known  
values for items 

     W 
(2) 

    W 
(2) 

R – Ruth, D – Dorothy, J –Jamie, S – Stephen; W – Worded text, S – Symbolic text 
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The misconceptions are further discussed under appropriate headings. 

Variable 

Fewer students misconceived that the algebraic letter could be ignored or that it was a specific 

known value. The misconception that different letters cannot have the same value was not 

identified in any of the students’ responses. This suggests the intervention slightly improved 

the students’ ability to use the letter in a general form or as a place holder without necessarily 

having a specific known value. The knowledge that the variable can be represented by more 

than one value has been found to increase as children move from Grade 6 to higher grades 

(Knuth et al., 2005).  

The number of students with a misconception that the algebraic letter was an object, a label or 

had an alphabetical ordered position remained about the same after the intervention and 

suggests the misconceptions might have a persistent nature. This is in agreement with 

Clements et al. (1981) and Welder (2012).  

Expressions 

Inappropriate conjoining of terms has been identified as a common misconception in 

Beginning Algebra and occurred even in Year 10 students (Stacey & MacGregor, 1997). The 

number of students with the belief that the answer has to be ‘gathered together’ was minimal 

in each of the case study classes. The students’ common responses about the confusion of 

products and sums were about the same as that which occurred in three classes, except 

Jamie’s, prior to intervention. This appeared to suggest that these misconceptions about 

expressions were not as resistant to change as some of the others.  

Equations 

In all the case study classes, most of the students were unable to calculate the multiplicative 

inverse in the question, Solve for x: 24x =6 (that would result in dividing by 24, a larger divisor 

than 6) and to balance related equations. Inverse operations with multiplication and divisions 

are known to be more difficult than addition and subtraction for children (Verschaffel, Bryant, 

& Torbeyns, 2012).   

Constructions of equation 

The set of word problems requiring equation-construction combines the knowledge of a letter 

as a quantity, the relationship of equality, and differentiating between products and sums.  

Misconceptions in this category were not identified in the pre-test because most of the 

students then did not understand the questions. After the intervention, many of the students 

acknowledged that there was an existing relation between the two quantities of the two 

objects. The knowledge of equivalence and its acceptance is reflected in the solution of 
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problems demanding equality (Knuth et al., 2005). Responses from Dorothy’s students related 

only to the quantity of an item, while Jamie’s students allotted a specific quantity to one of the 

items, seeing the second quantity as invisible or irrelevant. Ruth’s students selected specific 

values for the two items as answers to Questions 12 to 15. 

The process of equation-construction produces various types of errors, including an inability to 

translate, and a failure to correctly use representations and to correctly obtain expressions 

(MacGregor, 1991). Despite the letter being described as representing quantities in three of 

the four questions, in all of the cases studies, the students ‘saw’ and used the letters as labels 

for the words representing the described items/objects. As a result, the sentences were often 

read and interpreted literally, giving rise to literal translations that yielded expressions. 

Assertion 10.10  
Students’ progression beyond comprehending the problem statements allowed students’ 
misconceptions to be revealed in the transformation and processing phases of problem 
solving. There was a reduction in the frequency of misconceptions about the algebraic letter 
as representing a known value and the concept of expressions.  
The misconceptions of the letter as a label or object, or having alphabetical order persisted 
and this would hinder success with algebra problem solving.  

 

Fusing the Research Findings 

The literature concerning students’ algebra misconceptions and language-based teaching 

procedures were employed in a professional learning program in Nigeria to enrich teachers’ 

knowledge, beliefs and practice, and by extension, improve students’ problem-solving abilities 

in Beginning Algebra. The professional learning led to teachers’ increased algebra content 

knowledge, their knowledge of algebra teaching and some changes in beliefs which impacted 

their practice. This in turn resulted in increased student class engagement, students’ 

development of mathematical literacies and improvements in problem-solving.  These are 

illustrated in accompanying diagram (Figure 10.4).                          
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Figure 10.4: Theorising the impact of professional learning       

                     Professional   Learning 

The focus was on teacher knowledge of students’ algebra 

misconceptions and use of language-based teaching approaches to 

facilitate students’ development of mathematical literacies and 

conceptual understanding needed for algebra problem solving. 

Students’ learning outcomes 

Better overall performance and 

on symbolic questions in 

particular. More students 

progressed beyond the 

mathematical literacy level to 

using the concepts and 

performing mathematical 

operations.  

                                    Teachers’ Practice 

There was a greater focus on developing students’ understanding of algebra 

concepts and processes using language-based approaches. 

                      Teachers’ Beliefs 

The PL strengthened teachers’ beliefs that effective 

teaching and learning is characterised by class 

discourse, strong teacher content knowledge and 

good communication skills, and language-based 

approaches.  

                 Teachers’ PCK 

The PL increased  teachers’ algebra content knowledge; 

knowledge of students’ misconceptions; improved use 

of questioning and discussions to enhance 

understanding of problem-solving processes. 

Success with overcoming 

misconceptions 

Greater facility with 

comprehension allowed 

misconceptions to emerge. There 

was reduced frequency of the 

misconception of a letter as a 

specific unknown, conjoining of 

terms and the product/sum 

confusion. Teachers were now 

able to identify conceptual 

difficulties and help students 

better.  

Question 

Comprehension  

Better understanding 

of technical terms, 

questions and 

reduction in 

comprehension 

difficulties. 

Students’ engagement in learning and problem solving 

Students were involved in mathematical discussions and thinking through 

problem-solving process. There was increased engagement with the 

teacher and with each other. 
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CHAPTER ELEVEN: CONCLUSION AND IMPLICATIONS 

Introduction 

Teaching and learning strategies are complex processes that interact 

with one another, suggesting that in-depth, context-specific analyses 

are necessary to fully understand each strategy’s role in enhancing 

student performance (OECD, 2010, p. 9). 

Nigerian students’ poor performances in junior secondary mathematics fuelled the 

Researcher’s desire to look at some complex teaching and learning processes within a 

particular Nigerian setting, and at the impact of a teacher professional learning program on 

both teachers and students.   

Overview 

The purpose of the research was to examine the impact of a professional learning program on 

teachers’ knowledge, beliefs and teaching practice, and on students’ problem-solving success 

in the domain of Beginning Algebra. Before embarking on this research journey, seen through 

the lens of four purposefully selected case study teachers and their classes, the survey 

responses of 30 teachers provided information about the existing teaching and learning 

context (Chapter 5). The professional learning focused on enriching the teachers’ knowledge of 

algebra misconceptions, and on language-based teaching approaches (Chapter 4). The 

professional learning and case study participants were selected from the cohort of 30 

teachers. 

In each case study class, lessons were observed, students completed algebra tests and student 

interviews were conducted before and after the intervention (Chapters 6-9). On completion of 

the intervention period, the professional learning participants completed a second 

questionnaire. The questionnaires and algebra test scores were analysed using the SPSS 

software to calculate descriptive statistics and to determine if changes were significant. The 

students’ interviews were analysed using the Newman error analysis protocol. The teachers’ 

interview responses were coded and categorised, and from these categories themes emerged. 

The themes that emerged from analysing the data were interpreted after drawing on the 

relevant literature and this enabled assertions to be generated in Chapter 10. The findings and 

assertions form the basis of the conclusions to the four research questions.  
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Conclusions 

Research Question 1: How are word problems in JS 1 beginning algebra classes taught prior to 

the intervention? 

This question examines both the societal context within which teaching takes place in Nigeria, 

and the teachers’ knowledge, beliefs and practice about algebra, and about the teaching and 

learning of mathematics.  

There are large class sizes in most Nigerian public schools, many schools have insufficient 

instructional materials, and most of the JS 1 mathematics teachers are beginning teachers 

having fewer than five years of teaching experience (Assertion 10.1). Many of the JS 1 students 

have a weak primary mathematics background, they are very young (less than 12 years in age), 

and there is a considerable amount of algebra content to be learnt at the JS 1 level (Assertion 

10.1). The teachers reported a traditional teaching approach and view of mathematics (formal 

and procedural) with low levels of student engagement in the public schools (Assertion 10.1, 

10.2). The teachers also believed that word problems are difficult to teach and that they are 

the most difficult questions for students to solve, and indicated that students find it easier to 

solve symbolic questions than word problems (Assertion 10.2). Although the language of 

instruction is expected to be English, the teachers said that they sometimes use the students’ 

first language to facilitate students’ understanding of the mathematical ideas (Assertion 10.3).  

The professional learning workshops revealed that the teachers had limited knowledge of 

students’ algebra misconceptions and that some of the teachers exhibited algebra 

misconceptions themselves, especially reversal errors (Assertion 10.3). The teaching practice 

of the case study teachers was focused on students’ knowledge of algorithmic algebra content 

and practice exercises, which were taught in a traditional transmissive style, while students 

most often listened and copied notes with limited engagement (Assertion 10.4). While Ruth’s 

class was the most student-centred and interactive amongst the four case study classes, all 

four teachers demonstrated a didactic form of teaching most of the time, and some of them 

unknowingly used the algebraic letter to represent a word and an object instead of a quantity 

(Assertion 10.4).  

Research Question 2: What difficulties do students in JS 1 experience in solving beginning 

algebra word problems prior to the intervention? 

Students’ general performance in algebra problems was very poor and the main difficulty was 

comprehension of the problem statements. They were unable to understand many of the 

questions because of the subsumed special mathematical language (such as ‘less’), and to 
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understand the complex syntax of questions that asked about the relationship between 

numbers of two objects (ratio) (Assertion 10.5, 10.6). The individual student interviews 

showed that this comprehension difficulty prevented further progress on many of the 

questions into Newman’s transformation and processing stages. There was also a better 

performance on symbolic questions than on word problems; students in private schools 

showed higher mathematical literacy skills and performed better than students in the public 

schools (Assertion 10.5). For some questions in which there was progress beyond 

comprehension into the transformation or the process skills stages, the students exhibited 

various misconceptions about the variable, expressions and equations/equality, and these 

limited their ability to generalize and solve algebra problems (Assertion 10.6).  

Research Question 3: How does the teacher professional learning intervention impact on JS 1 

mathematics teachers’ beliefs, knowledge and algebra teaching practice? 

 After the professional learning intervention, the teachers demonstrated that they had become 

more conscious of the important role of language in communicating and understanding 

mathematics, and that they more easily utilised language-based approaches to improve their 

students’ mathematical literacy and problem-solving abilities (Assertion 10.7). The professional 

learning had initiated a shift from their traditional beliefs, increased their algebra knowledge, 

reduced their self-efficacy ratings and improved their pedagogical content knowledge about 

students’ thinking and algebra misconceptions (Assertion 10.7).  

There was evidence that the four case study teachers’ practices had increased student 

engagement and that they employed questioning more effectively, with the private schools 

having higher engagement levels. The teachers’ increased knowledge of misconceptions 

helped them to identify and correct students’ errors and to start focusing on language 

development and the building of conceptual understanding. The teachers had begun to move 

from a position of doing the ‘thinking and telling’ to assisting students to think for themselves 

(Assertion 10.8).   

Research Question 4: How does the teacher professional learning intervention program impact 

on students’ difficulties and success in solving algebraic word problems? 

There was significant improvement in the students’ general algebra problem-solving ability in 

questions with symbolic text, in three of the case study classes (Assertion 10.9). Students also 

had better success with the word problems, although this was not statistically significant. The 

teachers’ practice appeared to have resulted in better general understanding, and there was a 

reduction in the occurrence of comprehension errors and in some misconceptions about the 
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concept of the variable and algebraic expressions (Assertion 10.9). The students in private 

schools fared better than their counterparts in the public schools, most probably because of 

smaller class sizes and students’ higher levels of English literacy. Stephen’s class, the largest 

with 67 students, was the only class that did not show any general improvements. 

The students’ misconceptions that the letter was an object or had alphabetical order persisted 

despite intervention (Assertion 10.10).  Some misconceptions were partly remedied while 

some others were more resistant. The students had developed stronger mathematical 

literacies, and were then able to better understand questions and move into mathematical 

transformations and processing, which indicated increased conceptual understanding 

(Assertion 10.9, 10.10). Transforming of word problems rather than comprehending the 

problem statement then became the most common difficulty.  

Implications 

Initial teacher education  

The quality of the initial mathematics teacher education can improve if pre-service teachers 

know more about algebra misconceptions (Ledesma, 2011) and language-based approaches. 

The study revealed that there were limitations to some of the teachers’ knowledge and 

practice. Since pre-service teachers are also products of the existing Nigerian school system, 

many of them would likely have these misconceptions themselves. Teacher education that 

provides learning opportunities about algebra misconceptions has the potentials of not only 

exposing and addressing the pre-service teachers’ limitations, but of also increasing the 

likelihood of the correct conceptual knowledge being passed on to their future students.  

Professional learning for in-service teachers 

Having a large number of beginning teachers teaching Beginning Algebra is a challenging 

situation because of these teachers’ limited experience of what students might do and their 

capacity to cope with the naturally occurring challenges of Beginning Algebra students. This 

study showed that appropriately developed and targeted professional learning can have an 

impact on teachers’ knowledge, beliefs and practice, and on students’ algebra success. The 

Beginning Algebra misconceptions about variables and equality that some of the Nigerian 

teachers have themselves, and the language used in classrooms, were addressed during the 

program. The study confirmed research that suggests that providing in-service teachers with 

early professional learning that includes content and examination of students’ work benefits 

the teachers’ practice and their content knowledge, and helps them to develop skills (Hill, 

2009; Krebs, 2005; Meiers & Buckley, 2010).    
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Curricular reforms 

There is a need to reduce the JS 1 algebra content, to change pedagogy and to provide 

assessment that focuses more on understanding than on mastery of algorithms. Students need 

more time to understand Beginning Algebra concepts, and in this study were unable to 

correctly answer many of the questions because they required a deeper level of 

understanding. If students are to use algebra and apply it in the real-world context, then 

assessment at the Beginning Algebra level should expose them to such representations that 

will provide a balance of procedural and conceptual understanding, while also improving their 

mathematical literacy. Although the Nigerian curricular objectives advocate for the 

development of mathematical literacy and an understanding of the mathematical processes, 

the extensive JS 1 algebra content with its emphasis and focus on routine algorithms may 

make teachers more inclined towards “skimming through” the content.  

Class size 

The impact of the intervention was greater in the private schools than in the public schools 

because they had fewer students (<40) in the classes and better literacy skills. This 

comparative study showed, although initially not intended, that class size is a factor that can 

potentially impact the outcome of an intervention. Smaller classes would lead to more 

effective teaching and class management, and improvements in students’ learning success and 

engagement. This study supports Cady et al. (2006) who state that it is very difficult for 

teachers of large classes, like Stephen, to employ pedagogies that employ students’ thinking 

effectively.  

Research 

Knowledge of students’ thinking and misconceptions are critical aspects of a mathematics 

teacher’s pedagogical content knowledge (Ball et al., 2008). Further research into the 

mathematical literacy and algebra misconceptions of pre-service teachers in Nigeria is needed 

to ascertain their general understanding of algebra and to improve their pedagogy. Also it is 

very important to raise their awareness about the importance of mathematical literacy. Similar 

studies in other parts of Nigeria could indicate if the findings are the same or if they differ. 

Original Contributions to the Literature 

The study contributes to the literature on teacher professional development, and shows that 

professional learning can identify limitations in teachers’ knowledge and pedagogy. Limitations 

were found in the Nigerian mathematics teachers’ algebra knowledge and practice which the 

professional learning addressed. The increased teacher knowledge and the use of language-
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based approaches resulted in students’ better success on algebra questions and increased 

student classroom engagement. 

The research contributes to knowledge that students’ mathematical literacy and success in 

algebra problem solving can be improved by using language-based approaches. The modified 

use of Newman’s (1983b) individualised interview procedure in the class, and associated 

research involving the use of the Newman error analysis interview protocol in a West African 

country is innovative and original.  

This research has identified that in Nigeria, students have better success with solving symbolic 

algebra questions than algebra word problems. It also found that in the case of word 

problems, beginning algebra students’ acceptance of relational knowledge (identification of 

two quantities in a relationship) develops after the knowledge and algebraic manipulation of a 

specific single quantity. The challenges and the effectiveness of language-based interventions 

in large classes in comparison to smaller classes were also revealed in this study.  

Final Note  

As this three-year research journey ends, the travails and struggles of the teacher teaching and 

the student learning beginning algebra weighs heavily on my mind, despite more than three 

decades of teaching at the secondary, sixth form and pre-service teacher levels. Because of the 

teachers’ limited algebra teaching PCK, they found it difficult to help students with their 

algebra misconceptions. On the other hand, because of these misconceptions and limited 

mathematical literacy, the students could not achieve much success in algebra. When teachers 

cannot identify or unconsciously reinforce students’ misconceptions, they go unnoticed and 

this gradually results in disillusion and failure in mathematics even as the teachers find it 

increasingly more difficult to help them.  

In going away from this journey, it is with increased awareness that teachers should know 

about these misconceptions, and they themselves should not have these misconceptions if 

they are to assist students who have these natural tendencies to misconceive. Teachers have 

to develop the ability to recognize where their students are in their learning journey and what 

conceptual difficulties they are having. If teachers fail to recognise this, then they cannot help 

the students. Students’ exhibitions of misconceptions are akin to red flags, and teachers 

should seize and utilise such golden moments to help increase students’ conceptual 

understanding. If left uncorrected, such misconceptions may multiply into far more serious 

problems with worded questions in all areas of mathematics and beyond, preventing many 

students from fulfilling life dreams.        
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   Appendix 2:  Principals Consent Form 

 

             Title of Project: The Teaching and Learning of Word Problems in Beginning Algebra 

 

I have read the information above regarding the research and all questions I have asked have 

been answered to my satisfaction. I am aware that I can contact the student, her supervisor or 

the Research Ethics Officer if I have further questions or concerns.  

I understand that I may withdraw my school from the research study at any time. 

I understand that no student, teacher, school or district will be named in any reports of this 

research study. 

 

Please tick a box below to indicate your school’s participation in the study. 

 

I give consent for my school to participate in this study 

 

I do not give consent for my school to participate in this study 

 

Name of school: ____________________________________________ 

 

Name of Principal: _____________________________________________________ 

 

Signature:__________________________________                   Date:   ________________ 
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Appendix 3: Consent Form for Teachers  

 

        Title of Project:  Teaching and Learning of Word Problems in Beginning Algebra 

 

I have read the information above regarding the research and all questions I have asked have 

been answered to my satisfaction. I am aware that I can contact the student, her supervisor or 

the Research Ethics Officer if I have further questions or concerns. I understand that I may 

withdraw from the study at any time. 

Please tick the boxes below to indicate your willingness to participate in various aspects of the 

study. 

 

I am willing to complete the initial teacher questionnaire. 

 

I am willing to attend the three days of training workshops, participate in the group discussion 

and complete the second questionnaire. 

 

I am willing to have my algebra class observed, my class to complete the algebra test and for 

four students to be interviewed before and after the workshops. 

 

I agree to having my voice recorded and photographs of mathematics problems solutions 

taken in my class. 

 

I also agree that the research data gathered for this study may be published provided that I, 

my school and Local Education District are not identified. 

 

Participant Name: _____________________________________________________ 

 

Signature:__________________________________                   Date:   ________________ 
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Appendix 4: Mathematics Teacher Initial Questionnaire 

                              MATHEMATICS TEACHERS INITIAL QUESTIONNAIRE (MTIQ) 

This questionnaire has two sections. The first section is intended to gather background 
information about the teacher such as age, teaching qualification and experience.  The second 
section addresses the teaching and learning of mathematics, teacher beliefs, confidence, self-
efficacy, challenges and approaches to the teaching and learning of algebra. Your responses 
will help us better understand the challenges faced by teachers of algebra.   

All information provided will be treated confidentially. 

Please fill in the required information or put a tick in the option detail with which you identify. 

SECTION 1: Background information 

1.1   Gender:    Male                  Female                

1.21   Local Education District:   ______________________________________ 

1.22   Name of School: _____________________________________________ 

1.3   Age (years): 21-25          26-30           31-35           36-40           41-45          46-50           50+   

1.4   Completed years of mathematics teaching experience: 0-1            2-5              6-10              
11-15                    16-20                 20+ 

1.5   Completed years of Basic 7 (JSS1) teaching experience:    0-1             2-5            6-10            
11-15               16-20                20+ 

1.6   Please tick boxes to indicate all of your qualifications:  NCE           B. Ed           B. Sc(Ed)           

           B .Sc             PGDE            M. Ed             M. Sc              Others please specify): ___________  

1.7   Subject Specialities (Combination):       ___________     ____________           

1.8   Please write the name and average class size of each Basic 7 arm you teach in the 
respective boxes       

Name of arm       

 Class size       

 

1.9   Number of mathematics /mathematics teaching workshops, seminars or trainings 
attended in the past 2 years:                   _______________                          

SECTION 2: Please write your answer to these questions in the spaces provided below 

 2.1   What challenges do you face in teaching upper basic mathematics effectively?          

____________________________________________________________________________ 

___________________________________________________________________________ 
       
___________________________________________________________________________ 
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2.2   What do you believe are the characteristics of effective upper basic mathematics 

teaching?    

______________________________________________________________________ 

   ________________________________________________________________________ 
_________________________________________________________________________ 

2.3   What do you believe are the most effective teaching strategies that may help students 
learn mathematics?         
_________________________________________________________________________ 

_________________________________________________________________________ 

 ________________________________________________________________________     

2.4   How do you manage talk in the mathematics classroom? Tick the option you agree with 

for each item.  

Item  
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1 I am effective in establishing a classroom atmosphere in 
which most students feel confident to give their own answers 
to questions. 

     

2 I am effective in asking questions to suit the purpose and flow 
of classroom discussions in mathematics. 

     

3 I am able to respond to students answers in ways that help 
develop an effective discussion of mathematical ideas. 

     

4 My rich knowledge of mathematics helps me ask the right 
questions to develop mathematics ideas through discussion. 

     

5 My rich knowledge of mathematics helps me respond 
appropriately to students’ answers to my questions. 

     

6 I am normally able to respond to students’ answers in ways 
that maintain and promote further discussion of the 
mathematics ideas. 

     

7 I am effective in encouraging and supporting students to  ask 
questions in my mathematics class. 

     

8 I am effective in engaging most students in responding to my 
questions during mathematics discussions. 

     

9 I am able to sustain discussions so that we thoroughly discuss 
the mathematics ideas. 

     

10 I am effective in using questioning to identify students’ prior 
knowledge of mathematics topics. 

     

 

2.5 How confident are you in using these strategies to teach algebra? (Tick a box for each item) 
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co
n
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d
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 N
o

 

co
n

fi
d

en
ce

 

1 Engaging students’ interest in algebra      

2 Managing group activities in algebra      

3  Managing discussions and interpretations of word problems      

4  Explaining algebra concepts      

5        Developing vocabulary and terms needed for learning  algebra      
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6  Assessing children’s learning in algebra      

     
7   

Using  knowledge of students’ misconceptions to plan  algebra 
lessons 

     

8  Involving majority of the students in class discussions/activities      

 

2.6   Please tick the option you agree with for each of the statements below  

Item  

St
ro

n
gl

y 

d
is

ag
re

e
 

D
is

ag
re

e
 

N
o

t 
su

re
 

A
gr

ee
 

St
ro

n
gl

y 

ag
re

e
 

1 Not all students can learn mathematics.      

2 If a teacher does not tell students how to solve questions, 
they will make mistakes. 

     

3 Mathematics is mainly calculations.      

4 Students believe algebra is difficult.      

5 Mathematics consists of rules and procedures.      

6 If I was free to choose, I would not teach mathematics.      

7 Students do not like to ask questions in the class.      

8 Students have to be attentive in a mathematics class.      

9 Students’ mathematics background is often weak.      

10 I always enjoy my mathematics teaching.      

11 There are rules in algebra that students have to learn.      

12 I sometimes use the native language to explain 
mathematical ideas in the class. 

     

13 I find it easier to teach algebraic word problems than those 
with symbolic notations. 

     

 

2.7   Indicate with a tick in the appropriate column how often you use the following 
approaches to teach upper basic algebra 

Item  

Ev
er

y 
le

ss
o

n
 

In
 m

o
st

 

le
ss

o
n

s 

In
 s

o
m

e 

le
ss

o
n

s 
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le
ss

o
n

s 

N
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1 Working examples on the board for students to copy      

2 Whole class discussion of mathematical ideas      

3 Grouping/pairing  students to solve questions  in the 
class 

     

4 Inviting students to explain the working for their answer      

5 Having students solving questions individually      

6 Having students reading aloud the question to be solved      

7 Asking students to identify key words and symbols in the 
question 

     

8 Asking students identify what the question asks us to do      

9 Asking students identify the plan for solving the question      

10 Writing notes on the board for students to copy      

11 Reminding students about the meaning  of a variable      

12 Identifying students’ misconceptions of algebra       

13 Using different types of mathematical representations      

14 Explaining the meaning of equations      
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2.8   Tick a box that indicates your level of confidence about the mathematical knowledge you 
need to teach these topics. 

 Very 
confident 

Confident Okay Limited 
confidence  

Not confident 

Number and numeration      

Basic operations      

Algebraic processes      

Geometry and mensuration      

Everyday statistics      

 

2.9   Please rate the extent to which your students are actively engaged in learning 
mathematics, on the scale below, with a tick in a box.  

      Very  active                                                                                                             Very passive 

10 9 8 7 6 5 4 3 2 1 

 

3.1   Rank the following questions in order of difficulty from 1 being the easiest to 6 as the 

most difficult.                                                                                                                        Rank                                

A.            X 5 = 20. What is           ?                                                             ________ 

B. 5x = 20. What is x?                                                                                 ________ 

C.             X 20 = 5. What is          ?                                                             ________ 

D.    20x = 5. What is x?                                                                               ________                                                                                                                   

E. 5 lots of a certain number is 20. What is the number?                    ________ 

F. Twenty lots of a certain number is five. What is the number?       ________ 

In the space below, please explain why you think children will find questions you ranked as 4, 5 
and 6 difficult. 
 Rank no 4                   
____________________________________________________________________ 
Rank no 5                   
_____________________________________________________________________ 
Rank no 6                  
______________________________________________________________________ 
3.2     Tick a box that indicates your level of interest in attending an algebra workshop 

Very interested     Interested Not interested 
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                     Appendix 5: Mathematics Teacher Final Questionnaire        

                                    MATHEMATICS TEACHERS FINAL QUESTIONNAIRE (MTFQ) 

This final questionnaire focuses on identifying changes in teachers’ knowledge and beliefs 

about mathematics and algebra teaching and learning. 

Please write your answer to these questions in the spaces provided below. 

1.1   What do you believe are the characteristics of effective upper basic mathematics 

teaching?         

_____________________________________________________________________________

_____________________________________________________________________________      

_____________________________________________________________________________ 

1.2   What do you believe are the most effective ways that student may learn mathematics? 

____________________________________________________________________________                   

_____________________________________________________________________________

________________________________________________________________________ 

1.3   How do you manage talk in the mathematics classroom? Tick the option you agree with 

for each item.  

Item  

St
ro

n
gl

y 

D
is

ag
re

e 
 

D
is

ag
re

e 

N
o

t 
su

re
 

A
gr

ee
 

St
ro

n
gl

y 
A

gr
ee

 

1 I am effective in establishing a classroom atmosphere 
in which most students feel confident to give their own 
answers to questions. 

     

2 I am effective in asking questions to suit the purpose 
and flow of classroom discussions in mathematics. 

     

3 I am able to respond to students answers in ways that 
help develop an effective discussion of mathematical 
ideas. 

     

4 My rich knowledge of mathematics helps me ask the 
right questions to develop mathematics ideas through 
discussion. 

     

5 My rich knowledge of mathematics helps me respond 
appropriately to students’ answers to my questions. 

     

6 I am normally able to respond to students’ answers in 
ways that maintain and promote further discussion of 
the mathematics ideas. 

     

7 I am effective in encouraging and supporting students 
to ask questions in my mathematics class. 

     

8 I am effective in engaging most students in responding 
to my questions during mathematics discussions. 

     

9 I am able to sustain discussions so that we thoroughly 
discuss the mathematics ideas. 

     

10 I am effective in using questioning to identify students’ 
prior knowledge of mathematics topics. 
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1.4   How confident are you in using these strategies to teach algebra? (Tick a box for each 

item) 

It
em
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1 Engaging students’ interest in algebra      

2 Managing group activities in algebra      

3  Managing discussions and interpretations of word 
problems 

     

4  Explaining algebra concepts      

5        Developing vocabulary and terms needed for learning  
algebra 

     

6  Assessing children’s learning in algebra      

     
7   

Using  knowledge of students’ misconceptions to plan  
algebra lessons 

     

8  Involving majority of the students in class 
discussions/activities 

     

 

 

1.5   Please tick the option you agree with for each of the statements below  

Item  

St
ro

n
gl

y 
d

is
ag

re
e 

D
is

ag
re

e 

N
o

t 
su

re
 

A
gr

ee
 

St
ro

n
gl

y 
ag

re
e 

1 Not all students can learn mathematics.      

2 If a teacher does not tell students how to solve 
questions, they will make mistakes. 

     

3 Mathematics is mainly calculations.      

4 Students believe algebra is difficult.      

5 Mathematics consists of rules and procedures.      

6 If I was free to choose, I would not teach 
mathematics. 

     

7 Students do not like to ask questions in the class.      

8 Students have to be attentive in a mathematics class.      

9 Students’ mathematics background is often weak.      

10 I always enjoy my mathematics teaching.      

11 There are rules in algebra that students have to learn.      

12 I sometimes use the native language to explain 
mathematical ideas in the class. 

     

13 I find it easier to teach algebraic word problems than 
those with symbolic notations. 
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1.6   Indicate with a tick in the appropriate column how often you use the following 

approaches to teach upper basic algebra 

Item  

Ev
er

y 
le

ss
o

n
 

In
 m

o
st

 
le

ss
o

n
s 

In
 s

o
m

e
 

le
ss
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n
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ss
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N
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1 Working examples on the board for students to 
copy. 

     

2 Whole class discussion of mathematical ideas.      

3 Grouping/pairing students to solve questions in the 
class. 

     

4 Inviting students to explain the working for their 
answer. 

     

5 Having students solving questions individually.      

6 Having students reading aloud the question to be 
solved. 

     

7 Asking students to identify key words and symbols 
in the question. 

     

8 Asking students identify what the question asks us 
to do. 

     

9 Asking students identify the plan for solving the 
question. 

     

10 Writing notes on the board for students to copy.      

11 Reminding students about the meaning of a 
variable. 

     

12 Identifying students’ misconceptions of algebra.       

13 Using different types of mathematical 
representations. 

     

14 Explaining the meaning of equations.      

 

1.7   Tick a box that indicates your level of confidence about the mathematical knowledge you 

need to teach these topics 

 Very 
confident 

Confident Okay Limited 
confidence  

Not 
confident 

Number and numeration      

Basic operations      

Algebraic processes      

Geometry and mensuration      

Everyday statistics      

 

1.8   Please rate the extent to which your students are actively engaged in learning 

mathematics, on the scale below, with a tick in a box.  

Very active and engaged in learning                                                            Very passive in learning 

10 9 8 7 6 5 4 3 2 1 
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1.9   Rank the following questions in order of difficulty from 1 being the least difficult to 6 as 

the most difficult.                                                                                                                   Rank                                             

A.            X 5 = 20. What is           ?                                                              _____ 

B.    5x = 20. What is x?                                                                               _____                                                                                

C.             X 20 = 5. What is         ?                                                               _____    

D. 20x  = 5. What is x?                                                                                 _____ 

E. 5 lots of a certain number is 20. What is the number?                   _____ 

F. Twenty lots of a certain number is five. What is the number?      _____ 

In the space below, please explain why you think children will find questions you ranked as 4, 5 
and 6 difficult. 

 Rank number 4__________________________________________________________ 

Rank number 5 __________________________________________________________ 

Rank number 6 __________________________________________________________ 

2.0   How has an understanding of students’ misconceptions and thinking helped you to teach 
algebra?        
________________________________________________________________________ 

     ________________________________________________________________________ 

     ________________________________________________________________________ 

2.1   Why is mathematical talk important in the teaching and learning of algebraic word 

problems?     

________________________________________________________________________ 

     ________________________________________________________________________ 

    ________________________________________________________________________ 

2.2   What difficulties did you have in using the Newman strategy?   
_______________________________________________________________________ 

   ______________________________________________________________________ 

  _______________________________________________________________________ 

2.3   What is the most significant thing that you gained in this professional learning workshop?   
________________________________________________________________________ 

  ________________________________________________________________________ 

  ________________________________________________________________________ 

2.4   Please write your suggestions to improve the workshop 

______________________________________________________________________ 

  ______________________________________________________________________   

  ______________________________________________________________________ 

2.5   Will you recommend the workshop to other mathematics teachers? (Circle one)   Yes    No    
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Appendix 6: Lesson Observation Sheet 

                                MATHEMATICS CLASSROOM OBSERVATION SCHEDULE (MCOS) 

Teacher:                                                                                  Topic: 

School:                                                                                     Objective: 

Visit Date:                                                                                Time:                                                                                             

Time 
Interval 
(mins) 

                                                         Observed       Activity 
Explaining idea/concept [1], Identifying variable/expression/equality misconception [2], 
identifying key terms and symbols [3], showing understanding that a letter is a quantity [4], 
resisting impulse to “inappropriately gather” terms [5], reading aloud of the question [6], 
reframing question in own words [7], explaining strategy for solving problem [8], finding the value 
of the letter (if applicable) [9], writing the answer [10], individual/paired/group work [11], use of 
questions [12], listening [13], note copying [14]                               

2 
4 
6 
 
8 
 
10 
 
12 
 
14 
 
16 
 
18 
 
20 
 
22 
 
24 
 
26 
 
28 
 
30 
 
32 
 

34 
 
36 
 
38 
 
40 
 

 

Note. S and T are codes used to record tallies for students’ and the teacher respectively.                               
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Appendix 7: Algebra Pre-test Questions 

                                                    Initial Algebra Questions for Basic 7 

Please answer the questions in the space provided after each one. Remember to write how 

you arrive at your answer clearly. 

1. Mary has x oranges and Bisi has four more oranges than Mary. How many oranges 

does Bisi have?   

 

2. Simplify  as far as possible 1 + x + x     

 

3. Write in algebra: There are twice as many pencils as biros (let p be the number of 

pencils and b be the number of biros).  

 

 

4. There is  a   b number of sweets in a packet. A girl has two packets of sweets and gives 

her friend six sweets. How many sweets does she have remaining? 

 

 

5. A basket costs eight naira and a bag costs c naira more than the basket. How much 

does the bag cost?       

 

                

6. If s is the number of students and t is the number of tables, write in algebra: There are 

three students for every table.   

 

 

7. Find the value of x: 7x = 21           

 

8. Simplify  as far as possible 3m + 5n + 4m + 6n     

 

 

9.  y× y × y =  ..........  
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10. If d is the number of dogs and c is the number of cats, write in algebra: There are four 

more dogs than cats.    

 

 

11. Find the value of x: 2x – 2 = 10           

 

     

12. Sola has x bananas and Peju has p bananas.  Peter counts the number of bananas each 

of them have and finds they are the same.  Sola said you could write this as x=p, but 

Peju said that x and p are different letters and so cannot be the same. Who do you 

think is correct?     

 

 

13. Find the value of x: 21x = 7      

 

 

14. What is the number that is five less than x?         

 

  

15. Write in algebra: There are three more caps than hats.    
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Appendix 8: Algebra Post-test Questions 

                                                    Final Algebra Questions for Basic 7 

Please answer the questions in the space provided after each one. Remember to write how 

you arrive at your answer clearly. 

1. A ball costs ten naira and a shirt costs y naira more than the ball. How much 

does the shirt cost?        

 

 

2. Write in algebra: There are five more goats than dogs.      

 

     

3. Mary has m toys and Bisi has three more toys than Mary. How many toys does 

Bisi have?      

 

  

4. Solve for x: 5x – 5 = 20       

 

    

5. Sola has y mangoes and Peju has x mangoes. Peter counts the number of 

mangoes each of them have and finds they are the same. Sola said you could 

write this as y = x, but Peju said that y and x are different letters and so cannot 

be the same. Who do you think is correct?    

 

    

6. Find the value of x: 6x = 24       

 

        

7. If p is the number of plates and c is the number of cups, write in algebra: There 

are four more plates than cups.    

 

8. Solve for x: 24x = 6  
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9.  m× m × m =  .................      

      

10. There is  a  x number of pencils in a packet. A girl has three packets of pencils 

and gives her friend five pencils. How many pencils does she have remaining?      

 

 

 

11. If b is the number of boys and g is the number of girls, write in algebra: There 

are three boys for every girl.  

       

       

12. Simplify  as far as possible 4z + 3p + 7z + 2p 

 

 

13. Write in algebra: There are twice as many books as pens (let b be the number of 

books and p be the number of pens).   

 

 

14. What is the number that is four less than x?   

 

    

15. Simplify  as far as possible 1 + y + y      
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Appendix 9: Newman Interview Protocol 

 

                          Newman Interview   Questions used with Students  

1. Please read the question to me. If you don’t know a word or number, leave it out. 

2. What does this sign/word mean? Tell me, what is the question asking you to do? 

3. Show me how you start finding an answer to this question. 

4. Show me how you work the answer out for this question. Tell me what you are doing 

as you work. 

5. What is your answer? 

 

Source: The Newman Language of Mathematics Kit (1983) 
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Appendix 10: Newman Error Analysis Guideline Sheet 

 

                                           Test Items   
             Newman Error Analysis Guideline (NEAG) 
 
 

Numeric Code: 

Second Attempt  

Answer                   E              C 

                              Error        Correct 

        Strategies     Expected     Response   Pupil  Response  

1 Reading 
recognition 

Please read the 
question to me. If 
you don’t know a 
word or number, 
leave it out 

 Words     E      C  
Reading 
Recognition 
      ( R) Symbols    E      C 

2 Comprehension 

(a) What does this 
sign/word mean? 

 Terms     E          C  
Comprehension 
        ( C ) 

(b)Tell me what the 
question is asking 

you to do. 

 General    E       

3 Transformation 

Tell or show me how 
you start finding an 
answer to this 

question. 

 E               C Transformation   
( T )    

4 Process Skills 
Show me how you 
work the answer out 
for this question. 
Tell me what you 
are doing as you 
work. 

Numerical         Logic  C  
 
Process Skills 
     ( P ) 

RR E 

WO E 

FA E 

FC E 

NR E 

 E 

5 Encoding Ability 

Verbalises correct 
answer but writes it 
down incorrectly 

 Words   E         C  
Encoding Ability  
( E ) Symbols   E       C 

6 Carelessness 

Correctly done  

 E Carelessness 

7 Motivation 

Correctly done 

 E Motivation 

8 Task Form 

Correctly done 

 E Task Form 

Correct  answer:                                                                                                 Initial Error Cause 
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Appendix 11: Newman Diagnostic Profile Sheet 

 

                   Diagnostic Profile Sheet Name 
Class 
Date 

Test items                                    Mathematics Questions 

 
1. Reading 

Recognition 
 
 
 

2.   Comprehension 
 
 
 

3. Transformation 
 
 
 
 

4. Process Skills 
 
 
 
 

5. Encoding Ability 
 
 
 
 

6. Carelessness 
 
 
 

7. Motivation 
 
 

8. Task Form 

                 

                 

                 

                 

                 

                 

                 

                 

(Newman, 1983, Adapted from The Newman Language of Mathematics Kit, p. 123) 
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Appendix 12: Teacher Algebra Rating Sheet 

 

 

How difficult do you think the following questions are for Basic 7 students? Using the rating 

scale below, indicate in the box beside each question the difficulty level you believe is 

appropriate. 

      1 -Very Easy     2 - Easy        3 - Okay 4 - Difficult 5 – Very Difficult 

   

1. Mary has x oranges and Bisi has four more oranges than Mary. How many oranges 

does Bisi have?          

2. Simplify  as far as possible 1 + x + x     

3. Write in algebra: There are twice as many pencils as biros (let p be the number of 

pencils and b be the number of biros).   

4. There is  a   b number of sweets in a packet. A girl has two packets of sweets and 

gives her friend six sweets. How many sweets does she have remaining?  

5. A basket costs eight naira and a bag costs c Naira more than the basket. How much 

does the bag cost?    

6. If s is the number of students and t is the number of tables, write in algebra: There 

are three students for every table.      

7. Find the value of x: 7x = 21             

8. Simplify  as far as possible 3m + 5n + 4m + 6n      

9. y× y × y =   ----------------     

10. If d is the number of dogs and c is the number of cats, write in algebra: There are 

four more dogs than cats.    

11. Find the value of x: 2x – 2 = 10               

12. Sam has x bananas and Polly has p bananas.  Peter counts the number of bananas 

each of them have and finds they are the same.  Sam said you could write this as 

x=p, but Polly said that x and p are different letters and so cannot be the same. Who 

do you think is correct?    

13. Find the value of x: 21x = 7   

14. What is the number that is five less than x?         

15. Write in algebra: There are three more caps than hats.    
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Appendix 13: Focus Group Interview Questions 

 

 

 

1. What difficulties can a student encounter in solving word problems? 

2. Did you notice the occurrence of any of the misconceptions that your class? How did 

you handle it?  

3. Why are variables, expression and equality important in algebra 
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Appendix 14: Per cent of Teachers’ Response on Algebra Questions  

 

                            
Text 

                       Questions Very 
easy 

Easy Okay Difficult Very 
difficult 

   
   

   
   

   
   

Sy
m

b
o

lic
 y× y × y = ..............   53.8 30.8 15.4 0 0 

Find the value of x: 7x = 21 46.2 38.5 15.4 0 0 

Simplify  as far as possible  1 + x + x      15.4 69.2 15.4 0 0 

Simplify  as far as possible 3m + 5n 
+ 4m + 6n     

46.2 15.4 30.8 7.7 0 

Find the value of x: 2x – 2 = 10 30.8 30.8 38.5 0 0 

Find the value of x: 21x =7 23.1  30.8 15.4 23.1  7.7 

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
W

o
rd

  

What is the number that is five less 
than x? 

0 30.8 53.8 15.4 0 

A basket costs eight naira and a 
bag costs c naira more than the 
basket. How much does the bag 
cost?   

0 15.4 53.8 30.8 0 

If d is the number of dogs and c is 
the number of cats, write in 
algebra: There are four more dogs 
than cats.    

7.7 0 69.2 15.4 7.7 

Write in algebra: There are twice as 
many pencils as biros (let p be the 
number of pencils and b be the 
number of biros). 

0 30.8 23.1 46.2 0 

Write in algebra: There are three 
more caps than hats. 

0 15.4 53.8 23.1 7.7 

Mary has x oranges and Bisi has 
four more oranges than Mary. How 
many oranges does Bisi have? 

0 15.4 53.8 15.4 15.4 

There is  a   b number of sweets in 
a packet. A girl has two packets of 
sweets and gives her friend six 
sweets. How many sweets does 
she have remaining? 

7.7 7.7  38.5 30.8 15.4 

If s is the number of students and t 
is the number of tables, write in 
algebra: There are three students 
for every table. 

7.7 0 30.8 38.5 23.1  

Sam has x bananas and Peju has p 
bananas.  Peter counts the number 
of bananas each of them have and 
finds they are the same.  Sam said 
you could write this as x=p, but 
Peju said that x and p are different 
letters and so cannot be the same. 
Who do you think is correct? 

0 15.4 23.1  30.8 30.8 
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Appendix 15: Algebra Slides about Variables 

 

 

 



263 
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267 
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Appendix 16: Algebra slides about equations 
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Appendix 17: Sample of Ruth’s class Lesson Observation Sheet 
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Appendix 18: Sample of Dorothy’s class Lesson Observation Sheet 
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 Appendix 19:  Sample of Jamie’s class Lesson Observation Sheet 
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Appendix 20: Sample of Stephen’s class Lesson Observation Sheet 
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