
Edith Cowan University Edith Cowan University

Research Online Research Online

Theses: Doctorates and Masters Theses

2007

The solution of traffic signal timing by using traffic intensity The solution of traffic signal timing by using traffic intensity

estimation and fuzzy logic estimation and fuzzy logic

Paothai Vonglao
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses

 Part of the Engineering Commons

Recommended Citation Recommended Citation
Vonglao, P. (2007). The solution of traffic signal timing by using traffic intensity estimation and fuzzy
logic. https://ro.ecu.edu.au/theses/50

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses/50

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online @ ECU

https://core.ac.uk/display/41539275?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses?utm_source=ro.ecu.edu.au%2Ftheses%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.ecu.edu.au%2Ftheses%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses/50

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose

of your own research or study.

The University does not authorize you to copy, communicate or

otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following:

 Copyright owners are entitled to take legal action against persons
who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement. Where the reproduction of such material is

done without attribution of authorship, with false attribution of

authorship or the authorship is treated in a derogatory manner,

this may be a breach of the author’s moral rights contained in Part

IX of the Copyright Act 1968 (Cth).

 Courts have the power to impose a wide range of civil and criminal

sanctions for infringement of copyright, infringement of moral

rights and other offences under the Copyright Act 1968 (Cth).

Higher penalties may apply, and higher damages may be awarded,

for offences and infringements involving the conversion of material

into digital or electronic form.

i

THE SOLUTION OF TRAFFIC SIGNAL TIMING BY USING TRAFFIC

INTENSITY ESTIMATION AND FUZZY LOGIC

By

Paothai Vonglao

A dissertation submitted to the School of Engineering and Mathematics,

Faculty of Computing, Health & Science of

Edith Cowan University, Western Australia,

In Partial Fulfilment of the Requirements for the degree

DOCTOR OF PHILOSOPHY

Faculty of Computing, Health and Science

Edith Cowan University

July 2007

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

iii

ABSTRACT

This study aims at calculating the traffic signal timing that suits traffic intensity at

intersections studied in the inner city of Ubon Rachathani Provice, Thailand. The mixed

models between maximum likelihood estimation and Bayesian inference are presented

to estimate traffic intensity. A queuing system is used to generate the performance of

traffic flow. A fuzzy logic system is applied to calculate the optimal length of each

phase of the cycle. The fortran language is used to produce the computer program for

computation. The algorithm of the computer programming is based on EM algorithm,

Markov Chain Monte Carlo algorithm, queuing generation and fuzzy logic. The output

of traffic signal timing from the fuzzy controller are longer than the traffic signal timing

from the conventional controller. Cost function is used to evaluate the efficiency of the

traffic controller. The result of the evaluation shows that fuzzy controller is more

efficient than a conventional controller.

iv

DECLARATION

I certify that this thesis does not, to the best of my knowledge and belief:

(i) incorporate without acknowledgment any material previously submitted for a

degree or diploma in any institution of higher education.

(ii) contain any material previously published or written by another person except

where due reference is made in the text; or

(iii) contain any defamatory material.

I also grant permission for the Library at Edith Cowan University to make duplicate

copies of my thesis as required.

Signature: Date :

 Paothai Vonglao

v

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my supervisor,

Dr. David Mcdougall and associate supervisor, Dr Jim Cross for their considerable

support and encouragement. Without their kind assistance and guidance, this study

would have never been accomplished. My deepest thanks go to Rajabhat

Ubonratchathani University, for providing a partial scholarship for my study. Special

thanks go to Dr. Chompunoot Morachat for her proof reading and for correcting my

English and to Ajarn Chamlong Wongprasert for his kind assistance on computer

operation. Also I would like to thank my colleagues for their kind assistance and

contributions and encouragement. Personally, I thank my family, my wife and my son

for their love, patience, kind understanding, and cooperation which contribute most to

the completion of my dissertation.

vi

 TABLE OF CONTENTS

Chapter 1 Introduction

1.1 The background of traffic signal timing 12

1.2 The background of traffic problem in Ubon Rachathani 14

1.3 The traffic control and traffic signal timing in Ubon Rachathani 15

 Municipality

1.4 The background for estimation of traffic signal timing 16

1.5 The actual intersections studied 17

1.6 The outcomes and the organisation of the thesis 18

1.7 Objectiv 18

1.8 The expected outcomes 18

Chapter 2 Background to Research

2.1 Fuzzy logic systems 19

2.2 The traffic intensities estimation based on maximum likelihood 40

 estimation

2.3 The traffic intensities estimation based on Bayesian inference 52

2.4 The traffic intensities estimation based on a mixture of 68

 maximum likelihood and Bayesian inference

2.5 Queuing system theory 70

2.6 Queuing generation 81

2.7 The evaluation Function 82

Chapter 3 Research Methodology

 3.1 The conceptual research 84

 3.2 The input process methodology 85

 3.3 The fuzzy system process methodology 101

 3.4 The output process methodology 115

vii

Chapter 4 Input and Analysis

 4.1 The data collection 118

 4.2 The algorithm to simulate random variable 119

 4.3 Data algorithm analysis 123

 4.4 The computer program in the Fortran language 126

Chapter 5 Result of the Study

 5.1 The number of cars on each direct route 129

 5.2 The performance of traffic flow 129

 5.3 The controller performance comparison 146

Chapter 6 Conclusion and Discussion

 6.1 Conclusion 151

 6.2 Discussion 154

References 157

Appendix 164

8

Tables

Table 4.1 Table of the number of cars at 18 positions for 20 days 118

Table 5.1 Rate of car on each direct route(SD) per a second from 129

 estimation.

Table 5.2 Pattern of traffic flow during each phase at Uboncharearnsri 131

 intersection based on fuzzy logic controller

Table 5.3 Pattern of traffic flow during each phase at Clock Hall 133

 intersection based on fuzzy logic controller

Table 5.4 Pattern of traffic flow during each phase at Chonlapratan 135

 intersection based on fuzzy logic controller

Table 5.5 Pattern of traffic flow during each phase at Airport intersection 136

 based on fuzzy logic controller

Table 5.6 Pattern of traffic flow during each phase at Uboncharearnsri 137

 intersection based on conventional control

Table 5.7 Pattern of traffic flow during each phase at Clock Hall intersection 140

 based on conventional controller

Table 5.8 Pattern of traffic flow during each phase at Chonlapratan intersection 142

 Based on conventional controller

Table 5.9 Pattern of traffic flow during each phase at Airport intersection 144

 Based on conventional controller.

9

Figures

Figure 1.1 Diagram of traffic network studied 17

Figure 2.1 Membership functions of three fuzzy sets, namely, 27

 “slow”, “medium”, and “fast” for the speed of the car

 (Wang, 1994, p. 10)

Figure 2.2 Min-Max-Gravity method (Kandel & Langholz, 1994, p. 277) 31

Figure 2.3 Product-sum-gravity method (Kandel & Langholz, 1994, p. 281) 33

Figure 2.4 Comparison of result from the min-max and product-sum method 34

 (Kandel&Langholz, 1994, p.283)

Figure 2.5 Membership function of fuzzy sets M,G and L 36

 (Teodorovic & Vukadinovic, 1998, p.97)

Figure 2.6 Membership function of number 37

 of cars behind green light (Kelsey & Bisset, 1993, p.266)

Figure 2.7 Membership function of number 38

 of cars behind red light (Kelsey & Bisset, 1993, p.267)

Figure 2.8 Membership function of length of current cycle 38

 (Kelsey & Bisset, 1993, p.267)

Figure 2.9 Membership function of change (Kelsey & Bisset, 1993, p. 267) 39

Figure 3.1 Conceptual map (Adapted from Wang, 1994, p. 6) 84

Figure 3.2 Diagram of traffic network consisting of the four intersections A, B, 86

 C and D with car flow from E, F,G, H and I

Figure 3.3 Diagram to present the flow phases at Uboncharearnsri intersection 89

Figure 3.4 Diagram to present the flow phases at Clock Hall intersection 90

Figure 3.5 Diagram to presenting the flow phases at Chonlaprathan intersection 91

Figure 3.6 Diagram to present the flow phases at Airport intersection 92

Figure 3.7 The membership function form for fuzzy set “zero” 102

 (Adapted from Kelsey & Bisset, 1993, p. 266 and Teodorovic&

 Vukadinovc, 1998, p.51)

Figure 3.8 The membership function form for fuzzy set “low” 102

 (Adapted from Kelsey&Bisset, 1993, p. 266 and Teodorovic&

 Vukadinovc, 1998, p.51)

10

Figure 3.9 The membership function form for fuzzy set “medium” 103

 (Adapted from Kelsey & Bisset, 1993, P.266 and Teodorovic&

 Vukadinovc, 1998, p.51)

Figure 3.10 The membership function form for fuzzy set “high” 103

 (Adapted from Kelsey&Bisset, 1993, p. 266 and Teodorovic&

 Vukadinovc, 1998, p. 51)

Figure 3.11 The membership function form for fuzzy set “zero” 104

 (Adapted from Kelsey & Bisset, 1993, p.267 and Teodorovic&

 Vukadinovc, 1998, p. 51)

Figure 3.12 The membership function form for fuzzy set “low” 104

 (Adapted from Kelsey & Bisset, 1993, p.267 and Teodorovic&

 Vukadinovc, 1998, p. 51)

Figure 3.13 The membership function form for fuzzy set “medium” 105

 (Adapted from Kelsey & Bisset, 1993, p. 267 and Teodorovic&

 Vukadinovc, 1998, p. 51)

Figure 3.14 The membership function form for fuzzy set “high” 105

 (Adapted from Kelsey & Bisset, 1993, p. 267 and Teodorovic&

 Vukadinovc, 1998, p. 51)

Figure 3.15 The membership function form for fuzzy set “short” 106

 (Adapted from Kelsey & Bisset, 1993, p. 267 and Teodorovic&

 Vukadinovc, 1998, p. 51)

Figure 3.16 The membership function form for fuzzy set “medium” 107

 (Adapted from Kelsey&Bisset, 1993, p. 267 and Teodorovic&

 Vukadinovc, 1998, p. 51)

Figure 3.17 The membership function form for fuzzy set “long” 107

 (Adapted from Kelsey&Bisset, 1993, p. 267 and Teodorovic&

 Vukadinovc, 1998, p. 51)

Figure 3.18 The membership function form of 1G (Adapted from Kelsey & 112

 Bisset, 1993, p. 267)

Figure 3.19 The membership function form of 2G (Adapted from Kelsey & 113

 Bisset, 1993, p. 267)

Figure 3.20 The membership function form of 3G (Adapted from Kelsey & 113

 Bisset, 1993, p. 267)

11

Figure 3.21 The membership function form of 4G (Adapted from Kelsey & 114

 Bisset, 1993, p. 267)

Figure 3.22 The membership function form of G5 (Adapted from Kelsey & 114

 Bisset, 1993, p. 267)

Figure 4.1 Diagram of 18 positions to count the cars 119

 that pass direct link

Figure 5.1 Controller performance comparison 147

 at Uboncharearnsri intersection.

Figure 5.2 Controller performance comparison 148

 at Clock Hall intersection

Figure 5.3 Controller performance comparison 149

 at Chonlaplatan intersection.

Figure 5.4 Controller performance comparison 150

 at Airport intersection.

 12

Chapter 1

Introduction

1.1 The background of traffic signal timing

The changes to social structures resulting from technology in both positive and negative

ways have brought us advantages and disadvantages at the same time. The negative

aspect of the changes introduces an important problem, the traffic problem. The

seriousness of the problem depends on the size of the community. That is, the larger the

city, the more serious and complex a problem we will face. Moreover, the longer we let

the problem go unsolved for longer and longer, the problem will become more and more

serious.

Part of the traffic problem is congestion at intersections that is caused by various

factors. One important factor that impacts on traffic at intersections is the length of each

phase in the cycle of the traffic signal. It may not be appropriate and may not be suitable

for traffic pattern parameters such as volume of vehicles, queue length, delay, speed and

so on. It is a worldwide problem. Rice Square in Worcester is one example

(Kotsopoulos, 1999). Moreover, there is poor timing on traffic signals in cities such as

Atlanta (Ledford, 2002). On the other hand if the traffic flow is saturated, the optimal

signal length based on Webster’s formulation is not available (Lan, 2004). Finally the

example of the congestion at intersections in Bangkok is well known. The modern Bus

Rapid Transit (BRT) alone cannot solve the traffic problems in Bangkok

(Jaiimsin,2004). To try to improve the situation, road transport will be integrated with

other modes of transport, including the conventional bus network, skytrain, subway, rail

and ferries in 2006, according to the transit plan.

As mentioned above, one reason for traffic jams is that traffic signal timing is often not

suitable for traffic control at the intersection in real time. So the concerned traffic office

needs to optimize traffic signal timing to solve the traffic congestion at intersections.

Engineers behind the federally funded Traffic Signal System Improvement Program in

Denver (Hsiao-Ching & Denver, 1998) have worked over the past 10 years to ease

metro-area traffic congestion by coordinating and adjusting the timing of traffic signals

on major streets. There are many papers that propose methods to improve traffic signal

timing. All of the methods use a similar process, based on observed traffic data input at

 13

intersections, such as volume, pattern of traffic, number of cars going straight or turning

right, delay, queue length, speed, density, and so on. The data input is used according to

the individual method. The results from the method can be used to control traffic at

intersections. The relevant papers are considered below.

Traffic Adaptive Control is a useful method (Jaqannathan & Khan, 2001) that could

optimize traffic signal timing to fit with traffic volume. The results from the method

consist of three components, cycle length, phase length and offset that can be used to

efficiently control traffic. The software that is used to find traffic signal timing is

SYNCHRO. It is composed of capacity analysis, coordination, and actuated signal

modeling. This software provides a detailed summary report on capacity, level of

service, volumes, timing, queue length, blocking problems, delay, fuel consumption and

emission level.

Dynamic Intersection Signal Control Optimization is an another method (Lo & Chow,

2004) that can be used to control traffic flow at intersections. It is based on the entire

fundamental diagram of traffic flow. The input data consists of time-variant traffic

patterns and the method derives a dynamic timing plan, useful to decrease delays at

intersections.

Traffic Signal Retiming is another process that can optimize traffic signal length at

intersections (Sunkari, 2004). This includes development of new signal timing

parameters, phasing sequence and traffic control strategy improvements.

In addition to the three papers above, many authors propose methodology to improve

traffic signal timing and traffic control at intersections. Lan (2004) proposes a new

formulation to find the optimal traffic signal length when traffic flows become

saturated. Leonard et al. (1998) suggest traffic signal timing based on five basic signal

timing policies: minimizing delay, minimizing stopping, minimizing fuel consumption,

maximizing coordination, and baseline.

Mathematical methods have often been used. Schutter (2002) looks at the mathematical

programming problem of designing optimal switching schemes and an optimal

switching sequence for signal controlled intersections. The results decrease queue and

waiting time. Yi, Xin & Zhao (2001) implement a general speed-density relationship in

 14

a dynamic queue length estimation model, leading to the development of a general

mathematical formulation for intersection queue length studies that can be used to

control traffic at intersections. On the other hand Lee, Messer, Oh, & Lee (2004)

propose a rule to control traffic at intersections, based on allowing the green light to

show if any individual vehicle, pedestrian or cyclist queue, measured at regular intervals

and averaged over the peak hour, is at least four, or if the sum of the individual vehicle,

pedestrian and cyclist queues, measured anywhere within the intersection, exceeds six.

And finally a similar idea is proposed by Rakha & Zhang (2004) as evaluation of

Transit Signal Priority(TSP). In general TSP provides benefits to transit vehicles that

receive priority, but TSP has a marginal system wide impact for low traffic demand. On

the other hand the system wide impact of TSP is directly proportional to the frequency

of transit vehicles.

All of the above show that there are global concerns about traffic signal timing, and the

output of the studies are useful in controlling traffic at intersections. Although there are

many methods to improve traffic signal timing as previously mentioned, the lack of

coordination could result in inefficient traffic flow. (Hsiao-Ching & Denver, 1998)

1.2 The background of the traffic problem in Ubon Rachathani

Ubon Rachathani, as the big city in the northeast of Thailand, has the 5th rank in area

and the 4th in population in Thailand. It is now one of the traffic jam problem cities as

well. The problem is not as serious as in Bangkok. However, if there is no attempt to

solve the traffic problem, Ubon Rachathani will be soon face the same problems as

Bangkok. The traffic jam problem in Ubon Rachthani is caused by the increasing

number of cars (Engineering Faculty of Songkhla Nakarin University: 1999) and the

lack of observance of traffic regulations. Parking at prohibited spots, double parking

and other infringements are common. In addition, part of the traffic problem is that

traffic congestion at intersections is caused by the design of traffic signals.

Control at intersections is pre-timed or fixed time, and the length of each phase in

cycles is not suitable for the traffic intensity.(Ubon Rachathani Municipality, 2001)

 15

1.3 The traffic control and traffic signal timing in Ubon Rachathani

 Municipality

In the Ubon Ratchathani Municipality, there are 48 intersections and 5 crossroads with

signals. The traffic signals at each intersection are controlled in isolation by setting the

pre-timed or fixed-time cycle. However a traffic policeman can adjust the timing to suit

traffic intensity. On the other hand the office that is responsible for traffic control in the

municipality has set the length of each phase in the cycle, or the length of green light in

the cycles, to control traffic at intersections as follow: (Ubon Rachathani Municipality,

2004).

 1) The traffic signal timing at intersections of the main road, Chayangkoon Road,

 that bears heavy traffic in the rush hour:

 1.1) From 05.30 – 06.30 in the morning:

 The length of the green light (phase length) on the main road is 20 seconds.

 The length of the green light (phase length) on the sub road is 15 seconds.

 1.2) From 0 6.30 – 09.30 in the morning

 The length of the green light (phase length) on the main road is 25 seconds.

 The length of the green light (phase length) on the sub road is 20 seconds.

 1.3) From 0 9.30 – 15.30 in the afternoon:

 The length of the green light (phase length) on the main road is 20 seconds.

 The length of the green light (phase length) on the sub road is 15 seconds.

 1.4) From 15.30 – 17.30 in the afternoon

 The length of the green light (phase length) on the main road is 25 seconds.

 The length of the green light (phase length) on the sub road is 20 seconds.

 1.5) From 17.30 – 23.00 in the evening

 The length of the green light (phase length) on the main road is 20 seconds.

 The length of the green light (phase length) on the sub road is 15 seconds.

 1.6) From 23.00 – 05.30 in the morning

 The length of the green light (phase length) on the main road is 20 seconds.

 The length of the green light (phase length) on the sub road is 15 seconds.

 16

2) The traffic signal timing at intersections on the subroads, except Chayangkoon

Road.

 2.1) From 05.30 – 22.00 in the afternoon

 The length of the green light (phase length) on the main road is 20 seconds.

 The length of the green light (phase length) on the sub road is 15 seconds.

 2.2) From 22.00 – 05.30 in the morning:

 The amber blink is provided on the main road.

 The red blink is provided on the sub road.

1.4 The background for estimation of traffic signal timing

Traffic signal controllers at intersections are divided into four types, based on their

potential, as follows:

1) Pre-timed or fixed time traffic signal control. They offer fixed length for

each phase of a cycle.

2) Semi-actuated traffic signals control. They offer flexible length for each

phase in cycles, to match the number of cars from the sub road by using a

detector. Whenever there are lots of cars on the main road, the controller will

let the cars run, while the cars in the sub road have to wait until the numbers

of waiting cars reach a specified number and then they will be allowed to go.

3) Fully-actuated traffic signals control, These allow all vehicles from any

direction to pass the intersection by choosing a cycle length that is

appropriate for the number of cars, by using a detector.

4) Volume density traffic signals control. They count the number of cars by

using the detector and then the information is sent to the central computer in

order to control the traffic flow of the whole traffic network. Moreover, the

control gives priority to emergency vehicles, such as ambulances.

However, Ubon Rachathani Municipality still uses the old technology of pre-timed

traffic signal control to control traffic flow at intersections. Based on the limitation of

the control, one way to improve the efficiency of traffic signal control is to improve

traffic signal timing identification in each phase of the cycle.

 17

This study proposes an alternative method to calculate suitable lengths for each phase in

the cycle for a given traffic intensity. The statistical and mathematical methodology is

used to identify the optimal length of each phase, to decrease delay and queue of traffic

flow at the intersections studied.

1.5 The actual intersections studied

This study focuses on the main traffic network in the inner city of Ubon Rachathani that

is composed of four intersections: Uboncharearnsri Intersection, Clock Hall

Intersection, Chonlaprathan Intersection and Airport Intersection. The study will be

limited to part of the rush hour, namely 8.00-8.30 am. A diagram of the traffic network

is given below:

 A : Uboncharearnsri Intersection B : Airport Intersecrtion

 C : Chonlaprathan Intersection D : Clock Hall Intersection

 Figure 1.1 Diagram of traffic network studied

 A

 B C

 D

 18

1.6 The outcomes and the organisation of the thesis

The outcomes of the thesis will give advice to traffic policeman to adjust the suitable

signal time for controlling the traffic at the studied intersection. The organisation of the

thesis is composed of six principal components as follows:

 1. Introduction

 2. Discussing the theory background

 3. Research methodology

 4. Input and analysis

 5. Result of the study

 6. Conclusion and discussion

1.7 Objectives

 To calculate the optimal traffic signal timing during the given period

(08.00-08.30 am)around intersections in Uboncharearnsri, Airport, Chonlaprathan, and

Clock Hall of Ubon Ratchathani metropolitan area.

1.8 The Expected Outcomes

1) To derive a method to calculate the traffic signal timing at targeted

intersections during rush hour.

2) To get to know the traffic signal timing that is relevant to the number of vehicles at

the targeted intersections.

The statistical estimation, maximum likelihood and Bayesian inferrence, and the fuzzy

logic system were used to find the expected outcomes.

 19

Chapter 2

Background to Research

2.1 Fuzzy logic systems

2.1.1 General background

Fuzzy logic was first developed in 1965 by Lotfi A. Zadeh, Professor Emeritus,

Computer Science Division, University of California-Berkeley. Fuzzy logic uses three

primary elements: fuzzy sets, the membership function and production rules.

Applications of fuzzy logic occur in three primary categories: consumer products,

industrial/commercial systems and decision support systems.(Glenn, 1994)

David (1992) describes the components of a fuzzy controller. Toshinori & Yashvant

(1994) present a fuzzy system composed of fuzzy set, logic, algorithms, and control.

Implementation of the fuzzy control is suitable for a problem that is described in

approximate form and that requires a complicated mathematical model to explain the

behavior of the model. A fuzzy system can be applied to various subjects.

2.1.2 Applications of fuzzy systems

In Soud & Kazemian (2004), Usage Parameter Control (UPC) is the

process that provides support for quality of service across a heterogeneous system. They

propose a novel form of the Usage Parameter Control(UPC) by using a Fuzzy Logic

Controller (FLC) to measure the rate of individual network flow to actively manage link

utilization. The results obtained significantly improve upon the best service of the

system.

Abdel-Aty & Abdelwahab (2004) study the effectiveness of methods to predict driver

injury severity as a result of a crash. Fuzzy adaptive resonance is one method. The study

shows a fuzzy adaptive resonance has an accuracy of 70.6 percent.

 20

Masalonis & Parasuraman (2003) apply fuzzy signal detection techniques, which

combine fuzzy logic and conventional signal detection theory, to empirical data. The

object of the application is to detect aircraft incidents in air traffic control. The results

illustrate the potential of fuzzy signal detection theory to provide a more complete

picture of performance in aircraft incident detection.

Adeli & Jiang (2003) study zone capacity, which cannot be described by any

mathematical function because it is a complicated function of a large number of

interacting variables. They propose a novel adaptive neuro-fuzzy logic model for

estimation of the freeway work zone capacity. Comparisons with two empirical

equations demonstrate that the new model in general provides a more accurate estimate

of the work zone capacity, especially when the data for factors impacting the work zone

capacity are only partially available.

Kikuchi & Tanaka (2003) use a fuzzy rule based on a simulation process to examine

how the presence of vehicles equipped with an Adaptive Cruise Control System

(ACCS) affects stability and safety of a flow consisting of both ACCS and non-ACCS

vehicles.

Ramasamy & Selladurai (2004) propose the use of fuzzy logic in quality function

deployment. The deployment is a proven tool used to develop process and product, and

translates the voice of a customer into engineering characteristics and then prioritises

the characteristic based on a customer’s requirements. Fuzzy logic is useful to define the

relationship between the characteristic and customer attributes.

Kirawanich & O'Connell (2004) describe a system that uses fuzzy logic to control the

semiconductor switches in the switch-mode of active power line conditioners. The

simulations and measurements show that the system can significantly improve line

current total harmonic distortion and power factor during both steady-state and transient

operating conditions.

Fisher (2004) mentions the importance of fuzzy logic used to improve the potential of

computers to think like fuzzy-thinking people, instead of like purely logical machines.

 21

In addition the article, claims fuzzy logic has been used to control subway trains,

elevators, washing machines, microwave ovens, and cars. Another really important use

for fuzzy logic is in robots.

Stewart, Cheraghi, & Malzahn (2004) use fuzzy Bayesian methodology in a fuzzy

defect avoidance system. The system is used to reduce the amount of scrap and rework

activity in a product process in industry. This method can be used to provide continuous

opportunities for defect avoidance.

Harb & Smadi (2004) present the idea of using the fuzzy logic concept for controlling

chaotic behavior in systems. The fuzzy control is useful because there is no

mathematical model available for the system and the control can produce nonlinear

control that can be developed empirically.

Beynon, Pee, & Tang (2004) point out that fuzzy set theory has evolved into a valuable

addition to traditional techniques, such as regression and decision tree models, for

decision analysis conducted under conditions of vagueness and ambiguity. They apply a

fuzzy decision tree approach to a problem involving typical accounting data. The results

show that fuzzy logic enables a decision-maker to gain additional insights into the

relationship between firm characteristics and audit fees, through human subjective

judgment expressed in linguistic terms.

Zhang & Tam (2004) present an incorporation of discrete-event simulation and fuzzy

logic to model uncertainties in a construction process. The fuzzy set is used to model

the uncertain demand in linguistic terms. The fuzzy rule base is built to control the

activities. The activity duration is generated through the fuzzy logic reasoning.

Through the application of the fuzzy construction simulation system, an illustrative

example is presented to demonstrate the effect of considering these uncertainties on the

productivity.

Cho & Yi (2004) propose the use of a fuzzy logic controller in vehicle dynamics to

control the vehicle trajectory when the driver suddenly depresses the brake pedal under

critical conditions. The function of the fuzzy controller is to control each brake and

works to compensate for the trajectory error on the split - road conditions to maintain

the desired trajectory.

 22

2.1.3 Applications of fuzzy logic for traffic control.

The previous section illustrates the wide use of fuzzy logic for control and decision in

any system. This section concentrate on the use of fuzzy logic for traffic control. There

are seven relevant papers.

Zhenyang (2004) discusses a model to control traffic flow at intersections by using

fuzzy logic control. The model is designed with a four-level fuzzy logic controller to

estimate relative traffic intensities in competing approaches to intersections. The

estimator is then used to determine whether a leading or lagging signal phase should be

selected or terminated for each approach. On the other hand the researcher creates a

dynamic traffic signal left-turn phase control system, and implements the four-level

fuzzy logic control model to optimize signal operations at intersections. The resulting

system is on efficient tool for reducing intersection traffic delay.

Ande (1996) creates a model to control traffic flow at intersections by using fuzzy logic.

The model is adaptive, using actual traffic intensities by means of standard input traffic

flow parameters, which are measured by a loop detector. The results of the study show

the model is more efficient than the conventional traffic controls such as pre-timed

controllers or even semi-actuated controllers based on heavy traffic conditions.

Enid (1999) designs a fuzzy logic based traffic controller for an arterial street. The

controller can adjust the timing parameters on-line based on the current traffic

conditions. The strategy of fuzzy logic based control consists of a local controller at

each intersection and a global controller that communicates with all the local

controllers. The object of these controllers is to optimize traffic signal timing at

coordinate intersections. . Simulations showed significant improvements on the average

time in queue, the average queue length, and the average travel time, when compared to

coordinated pre-timed and semi-actuated controllers.

Seongho (1994) developed the Advanced Traffic Management Systems (ATMS) to

improve traffic signal control at intersections. Fuzzy logic is used for a real-time traffic

adaptive signal control scheme in the systems. The results of the study show that the

ATMS framework will lead to real-time adjustment of the traffic control signals,

resulting in significant reduction in traffic congestion.

 23

Adeli & Karim (2000) presents fuzzy logic in a new multi-paradigm intelligent system

approach to solve traffic problems that are disrupted by traffic incidents. The approach

uses advanced signal processing, pattern recognition and classification techniques.

Lee, Krammes&Yen (1998) use a fuzzy logic based incident detection algorithm for a

traffic network. The model is used to detect traffic incidents, any problems on the street

surface that require the attention of an operator or result in an operator formulating a

response, (such as lane blockages). The algorithm feeds an incident report such as the

time, location, and severity of the incident to the system’s optimization manager, which

uses that information to determine the appropriate traffic signal control strategy.

Cabrera & Ivan (2000) create a methodology to design traffic signal controls based on

fuzzy logic control. There are many applications that use fuzzy logic to control traffic

flow at intersections but there is no uniform design procedure. So they propose the

design to help people, not familiar with fuzzy logic control, to apply the method for

traffic signal control. The designed fuzzy controller uses existing traffic detectors to

measure the number of vehicles at the intersection and decides how to change the traffic

signals in order to minimize the average delay of vehicles. Simulation results show that

traffic controllers developed with the proposed methodology reduce a average delay of

vehicles at intersections compared with conventional traffic control strategies.

2.1.4 The concept of a fuzzy logic system

Wang (1994) presents the common concept of a fuzzy logic system. The system

consists of fuzzy concepts and fuzzy logic. The fuzzy concepts involve fuzzy sets ,

linguistic variables and so on. The fuzzy logic is the process that is used to infer the

parameter of a system based on incorporated numerical information and an expert’s

knowledge. For most engineering systems, there are two important information sources:

a sensor which provides numerical measurements of variables, and human experts who

provide linguistic instructions and descriptions about the system. The information from

sensors is called numerical information and the information from human experts is

called linguistic information. To apply information to a variety of control, signal

processing, and communication problems and to analyse their performance, it is

necessary to develop a collection of methods which can effectively combine numerical

and linguistic information into the engineering systems. An adaptive fuzzy logic system

 24

is such a tool. The system is defined as a fuzzy logic system that is constructed from a

set of fuzzy IF-THEN rules using fuzzy logic principles, and a training algorithm that

adjusts the parameters of the fuzzy logic system based on numerical information. In

other words adaptive fuzzy systems can be viewed as fuzzy logic systems whose rules

are automatically generated through training. The strategy of an adaptive fuzzy logic

system for combining numerical and linguistic information is based on the construction

of an initial fuzzy logic system by using linguistic information. Then the parameters of

the system are adjusted based on numerical information. An additional strategy is to use

numerical information and linguistic information to construct two separate fuzzy logic

systems. Then the final fuzzy logic system is the average of the two systems.

Definition 1 Linguistic variable (intuitive) : A linguistic variable is a variable

that can take either a word in natural language (for example small, fast and so on) or a

number as its values.

Definition 2 Linguistic variable (formal): A Linguistic variable is

characterized by a quintuple ()()SGUxTx ,,,, in which x is the name of variable; ()xT

is the term set of x , that is, the set of names of linguistic values of x with each value

being a fuzzy set defined on U ; G is a syntactic rule for generating the name of values

of x ; and S is a semantic rule for associating each value with its meaning.

Definition 3 Fuzzy set: Let U be a collection of objects, for example,
nRU = , usually called the universe of discourse. A fuzzy set F in U is characterized

by a membership function []1,0: →UFµ , with ()uFµ representing the grade of

membership of Uu ∈ in the fuzzy set F . A fuzzy set may viewed as a generalization of

the concept of an ordinary set whose membership function only takes two values { }1,0 .

The most, popular fuzzy logic systems may be classified into three types: pure

fuzzy logic systems, Takagi and Sugeno’s fuzzy systems, and fuzzy logic systems with

fuzzifier and defuzzifier. These are briefly described in the next three subsections.

 25

1) Pure fuzzy logic system

The pure fuzzy logic system is conceptualised as two components, a fuzzy rule base and

a fuzzy inference engine. The fuzzy rule base consists of a collection of fuzzy

IF-THEN rules, and the fuzzy inference engine is used to determine a mapping from a

fuzzy set in the input universe of discourse nRU ⊂ to fuzzy sets in the output universe

of discourse RV ⊂ , which is based on fuzzy logic principles. The fuzzy rule base is

composed of M rules, of the following form:

 ()jL : IF 1x is jF1 and K and nx is j
nF THEN y is jG

Here j
iF and jG are fuzzy sets, () Uxxxx n ∈= ,,, 21 K and Vy ∈ are input and output

linguistic variables, respectively, and j = 1 , 2 , … , M . i = 1, 2,…, n .These fuzzy IF-

THEN rules provide a convenient framework to incorporate a human expert’s

knowledge. In other words each fuzzy rule, ()jR is fuzzy set jj
n

jj GFFF →××× K21

in the product space VU × . The most commonly used fuzzy logic principle in fuzzy

inference engines is the so-called sup-star composition. Specifically, let /A be an

arbitrary fuzzy set in U ; that is, A/ is the input to the pure fuzzy logic system. Then the

output determined by each fuzzy rule, ()jR , is a fuzzy set ()jRA o/ in V whose

membership function is

)],(*)([sup)(
...1

/)(/ yxxy jj
n

jj GFFAUxRA →××∈= µµµ
o

where the “∗ ” operator is “min” or “product” and Aµ represents the membership

function of the fuzzy set A. The final output of the pure fuzzy logic system is the fuzzy

set),,,()()2()1(/ MRRRA Ko in V which has membership function:

 () ())](...,),([)()(/)2(/)1(1)2(1/ ,,,(
yyMaxy MM RARARARRRA oooKo

µµµµ =

2) Takagi and Sugeno’s fuzzy system

Takagi and Sugeno use the following fuzzy rule :

 ()jL : IF x1 is jF1 and Kand xn is j
nF THEN n

j
n

jjjj xcxcxccy +++= K22110

Here j
iF are fuzzy sets; j

ic are real-value of parameters; jy is the system output due to

rule ()jL , and j = 1 , 2 , M,K . For a real-value input vector ()nxxxx ,,, 21 K= , the

output ()xy of Takagi and Sugeno’s fuzzy system is a weighted average of the :,sy j

 26

 =)(xy
∑

∑

=

=
M

j

j

M

j

jj

w

yw

1

1

where the weight jw of rule L(j) for the input is calculated as

 ∏
=

=
n

i
iF

j xw l
i

1

)(µ

3) Fuzzy logic systems with Fuzzifier and Defuzzifier

A fuzzy logic system with fuzzifier and defuzzifier is a pure fuzzy logic system which

adds a fuzzifier to the input and a defuzzifier to the output. The fuzzifier maps crisp

points(numeric values) in U to fuzzy sets in U , and the defuzzifier maps fuzzy sets in

V to crisp points(numeric values) in V . The fuzzy inference engines are the same as

those in pure fuzzy logic systems. Such a fuzzy logic system consists of four

components.

3.1) Fuzzifier

The fuzzifier performs a mapping from a crisp point),,,(21 nxxxx K= into a fuzzy set

/A in U . The mapping is commonly called a membership function. A membership

function is a curve that defines how each crisp point in the input space is mapped to a

membership value between 0 and 1. The membership function is usually one of the

following:

 1) Singleton fuzzifier: A/ is a fuzzy singleton with support x , that is,)(/
/ xAµ =1

for xx =/ and 0)(/
1 =xAµ for all other Ux ∈/ with xx ≠/

 2) Nonsingleton fuzzifier: 1)(/ =xAµ and)(/
/ xAµ decreases from 1 as /x moves

away from x . The nonsingleton fuzzifier may be useful if the inputs are corrupted by

noise. The function itself can be an arbitrary curve whose shape suits the expert from

the point of view of simplicity, convenience, speed, and efficiency.

The fuzzy logic toolbox includes 11 built-in membership function types. These 11

functions are, in turn, built from several basic functions: piecewise linear functions, the

 27

Gaussian distribution function, the sigmoid curve; quadratic and cubic polynomial

curves. The most commonly used functional forms are triangular, trapezoid and

Gaussian which are ways to determine the parameters in)(/
/ xAµ based on measured

data. The simplest membership functions are formed using straight lines. Of these, the

simplest is the triangular membership function; it is nothing more than a collection of

three points forming a triangle. The trapezoidal membership function has a flat top and

really is just a truncated triangular curve. These straight line membership functions have

the advantage of simplicity. Two membership functions can be built on the Gaussian

distribution curve: a simple Gaussian curve and a two-sided composite of two different

Gaussian curves. Gaussian membership function have the advantage of being smooth

and nonzero at all point.

Figure 3.1 shows the membership functions of three fuzzy sets, namely, “slow”,

“medium”, and “fast” for the linguistic variable “the speed of the car”. In this example,

the universe of discourse is all possible speeds of the car; that is

[]max,0 VU = , where maxV is the maximum speed of the car.

Figure 2.1 Membership functions of three fuzzy sets, namely, “slow”, “medium”, and

“fast” for the speed of the car (Wang, 1994, p. 10)

 28

3.2) Fuzzy rule base

A fuzzy rule base consists of a collection of fuzzy IF-THEN rules in the following form:

 ()jL : IF 1x is jF1 and K and nx is j
nF , THEN y is jG

Here j
iF and jG are fuzzy sets in Ui ⊂ R and V R⊂ , respectively, and

),...,,(21 nxxxx = , nUUUx ×××∈ K21 and Vy ∈ are linguistic variables. Let n be

the number of fuzzy set j
iF ; that is, ni ,,2,1 K= and M be the number of fuzzy

IF-THEN rules in the rule base; that is, Mj ,,2,1 K= . x and y are the input and

output of the fuzzy logic system, respectively. The fuzzy rule is derived from asking

human experts and using training algorithms based on measured data. The membership

functions for the fuzzy sets are determined in two ways depending upon where the rules

come from. If the rules are provided by human experts, then the membership functions

should be specified by the experts because these functions are an integrated part of the

expert’s knowledge. If the rules are determined by numerical data, then the first task is

to determine the functional forms for /
iF

µ and /Gµ .The most commonly used functional

forms are Gaussian, triangular, and trapezoid.

3.3) Fuzzy inference engine

In a fuzzy inference engine, fuzzy logic principles are used to combine the fuzzy

IF-THEN rules in the fuzzy rule base in a mapping from fuzzy sets in

nUUUU ×××= K21 to a fuzzy set in V . The fuzzy IF-THEN rule can be interpreted

in a number of ways. For simplicity, we denote AFFF j
n

jj =×× K21 and BG =/ , and

the rule is denoted by BA → . Some commonly used interpretations for the fuzzy IF-

THEN rule are as follows:

 1) Mini-operation rule of fuzzy implication:

 { })(),(min),(yxyx BABA µµµ =→

 2) Product-operation rule of fuzzy implication:

)()(),(yxyx BABA µµµ =→

 3) Arithmetic rule of fuzzy implication:

 { })()(1,1min),(yxyx BABA µµµ +−=→

 4) Maxmin rule of fuzzy implication:

 29

 []{ })(1,)(),(minmax),(xyxyx ABABA µµµµ −=→

 5) Boolean rule of fuzzy implication:

 { })(),(1max),(yxyx BABA µµµ −=→

 6) Goguen’s rule of fuzzy implication:







>

≤
=→)()(,

)(
)(

)()(,1
),(yx

x
y

yx
yx

BA
A

B

BA

BA µµ
µ
µ

µµ
µ

where)()(
1

xx j
n

j FFA ××
=

K
µµ is defined either according to the min-operation rule:

 { })(,),(min)(
2121

1 nFFFFFF
xxx j

n
jjj

n
jj µµµµ K

K
=

×××

or according to the product-operation rule:

 () () () ()nFFFFFF
xxxx j

n
jjj

n
jj µµµµ ⋅⋅⋅=

×××
K

K 21
2121

3.4) Defuzzifier

The defuzzifier performs a mapping from fuzzy sets in V to crisp points

Vy ∈ . There are three common choices of this mapping:

 1) The maximum defuzzifier, defined as

))((suparg / yy BVy µ∈= ;

 2) The center average defuzzifier, defined as

∑

∑

=

−

=

−−

= M

j

j
B

M

j

j
B

j

y

yy
y

j

j

1

1

))((

))((

µ

µ
 , jy − is the center of the fuzzy set jG and

 3) The modified center average defuzzifier, defined as

∑

∑

=

−

=

−−

= M

j

jj
B

M

j

jj
B

j

y

yy
y

l

l

1

1

)/)((

)/)((

δµ

δµ
 , jδ is a parameter characterizing the shape of)(yjGµ

2.1.5 Method of fuzzy logic control

Kandel & Langholz, (1994) present at least two methods of fuzzy logic control as

follows:

 30

1) Min-Max-Gravity method

The fuzzy logic controllers are based on the fuzzy reasoning method called “min-max-

gravity method “ by Mamdani (1977). The rules used for this method are as follows:

 Rule 1: IF 1x is 1
1F and K and nx is 1

nF THEN y is 1G ,

 Rule 2: IF 1x is 2
1F and K and nx is 2

nF THEN y is 2G ,

 M M

 Rule M: IF 1x is MF1 and Kand nx is M
nF THEN y is MG ,

 Fact : //
2

/
1 ,,, nxxx K

 --

 Consequence: /G

Here j
iF is a fuzzy set in set U , RU ⊂ : and jG is fuzzy set in V , RV ⊂ : and

n
n Rxxx ∈),,,(//

2
/
1 K . Mjni ,,2,1;,2,1 KK ==

For simplicity, we let AFFF j
n

jj =×× K21 and BG j = , and each rule is then denoted

as BA → . This is defined by

)](),(,),(min[),,(121
1

yxxxxx jj
n

j GnFFnBA µµµµ KK =→

The inference result /
jG infered from the fact of //

2
/
1 ,,, nxxx K and fuzzy rule BA → is

given by

 ())](),(,),(min[)(//
2

/
1

21
/ yxxxy jj

n
jj

j GnFFFG µµµµµ K= .

The final consequence /G is defined by

)](),(max[)(//
1

/ yyy
nGGG

µµµ K= .

The representative point y/ for the resulting fuzzy set /G is obtained as the center of

gravity of /G , that is

∫
∫=

dyy

dyyy
y

G

G

)(

)(

/

//

µ

µ
 , where ∫ dyyG)(/µ is the area of fuzzy set /G .

The process of the Min-Max-gravity method can be shown by figure 3.2 as follows:

 31

1
1F a

/
1x

/
2F

/
2x

b
1G

/
1G

2
1F

/
1x /

2x

2
2F

2G

/
2G

/
2

/
1

/ GGG ∪=

/y

Figure 2.2 Min-Max-Gravity method (Kandel & Langholz, 1994, p.277)

 32

2) Product-sum-gravity method

This section outlines the method of fuzzy reasoning called the product-sum-gravity

method, which replaces min by the algebraic product, and max by the sum in the max-

min-gravity method. The consequence G/ for the product-sum-gravity method is

obtained as follows.

Firstly, consider the multiple fuzzy reasoning form.

 Rule 1: IF 1x is 1
1F and K and nx is 1

nF THEN y is 1G ,

 Rule 2: IF 1x is 2
1F and K and nx is 2

nF THEN y is 2G ,

 M M

 Rule M: IF 1x is MF1 and Kand nx is M
nF THEN y is MG ,

 Fact : //
2

/
1 ,,, nxxx K

 --

 Consequence: /G

The inference result /
jG from the fact //

2
/
1 ,,, nxxx K and the fuzzy rule j is given by:

)()()()()(//
2

/
1 /

21
/ yxxxy

ln
ll

j
GnFFFG µµµµµ ⋅⋅= K .

The consequence G/ is defined by

)()()(//
1

/ yyy
MGGG

µµµ ++= K .

The representative point /y of /G is obtained by using the centre of gravity method.

The centre of gravity /y of /G is described below.

Let jy be the centre of gravity of the inference result /
jG and jS be the area of /

jG

in Figure 3.3 Then jy is defined as :

j

G

G

G
i S

dyyy

dyy

dyyy
y j

j

j ∫
∫

∫ ⋅
=

⋅
=

)(

)(

)(/

/

/ µ

µ

µ
 .

The centre of gravity /y of the final consequence /
jG is given by

∑

∑

∫
∫

∫
∫

=

=

′

′
⋅

=
++

++
=

⋅
=′

M

j
j

M

j
jj

GG

GG

G

G

S

yS

dyyy

dyyyy

dyy

dyyy
y

M

M

1

1

)](...)([

)](...)([

)(

)(

//
1

//
1

µµ

µµ

µ

µ

The product-sum-gravity method is illustrated in figure 2.3

 33

)(1
1

xFµ

)(/
11

1
xFµ

)(1
2

xFµ

)(/
21

2
xFµ

)(
1

yGµ

)()(/
2

/
1 1

2
1
1

xx
FF

µµ ⋅

)(/
1

yGµ

)(2
1

xFµ

)(/
12

1
x

F
µ

)(2
2

xFµ

)(/
22

2
xFµ

)(
2

yGµ

)()(/
2

/
1 2

2
2

1
xx FF µµ ⋅

)(/
2

yGµ

)()()(/
2

/
1

/ yyy GGG µµµ +=

iG /
iG

iS

ih

iy
/y

Figure 2.3 Product-sum-gravity method (Kandel & Langholz,1994, p.281-282)

 34

1

0

1

0

1

0

1

0

1x
a

1y b

ab

0x

0x

0x

0x

0y

0y

0y

0y

y
y

b−1

b−1

b

()ba −1

()ba−1

()()ba −− 11

a

()a−1

()a−1

/y /y

Output Fuzzy set

The final consequence

Input fuzzy set

Rule 1

Rule 2

Rule 3

Rule 4

min-max
product-sum

 Figure 2.4 Comparison of result from the min-max and product-sum method

 (Kendel & Langholz, 1994, p. 283)

As indicated by Teodorovic & Vukadinovic (1998), Pappis & Mamdani (1977)

attempted to solve the problem of controlling an isolated signalized intersection by

using a fuzzy logic system. They introduce four fuzzy (linguistic) variables.

 T : The time that has lapsed since the last light changed at the intersection,

 A : The number of vehicles from the priority direction that have passed through

the green light during the considered time period,

 Q : The number of vehicles waiting in line on the one-way street that does not

have priority, and

 35

 E : The length of time to the next light change.

Fuzzy variables T , A, and Q are input variables whose values determine the value of

output variable E. Fuzzy variable A could be assigned the value “many” vehicles, “more

than several” vehicles, “few” vehicles, and so on. Fuzzy variable Q could be assigned

similar values. Variables T and E are assigned as “very short”, “short”, “medium” time

and so on. Pappis and Mamdani also use fuzzy sets such as “any” number of vehicles,

“more than” and “less than”. The grade of membership of every element belonging to

fuzzy “any” equals 1.

In addition Pappis & Mamdani (1977) propose triangle and trapezoidal forms for the

curve of the membership function of a fuzzy set. They also describe an approach to find

membership values. For example, consider a fuzzy set M, where a element *x of set M

has the largest grade of membership in set M. Let G be the fuzzy set “greater than M”.

Let L be fuzzy set “less than M”. The membership functions of fuzzy sets L and G can

be defined as follow:





>−
≤

=
∗

∗

xxx
xx

x
M

G ,)(1
,0

)(
µ

µ





≥
<−

=
∗

∗

xx
xxx

x M
L ,0

,)(1
)(

µ
µ

 36

1

0

L G

M

*x x

Figure 2.5 Membership function of fuzzy sets M,G and L

 (Teodorovic & Vukadinovic, 1998, p. 97)

The algorithm to control traffic at an isolated intersection proposed by Pappis and

Mamdani (1977) uses rules of the following type:

Rule 1: IF T is very short and A is greater than none and Q is any, THEN E is very

short.

Rule 2: IF T is short and A is greater than few and Q is less than very small, THEN E is

short.

Rule 3: IF T is medium and A is greater than few and Q is less than very small, THEN

E is medium.

Rule 4: IF T is long and A is greater than medium and Q is less than very small, THEN

E is long.

Rule 5: IF T is very long and A is greater than many and Q is less than very small,

THEN E is very long.

The values of fuzzy variable E represent the extension of time to allow a vehicle to pass

the intersection. The extensions given to the system were between 1 and 10 seconds.

Every 10 seconds a different set of five rules is used to make the decision on the length

of time to the next light change at the intersection. The min-max-gravity method is used

 37

to find the value of the fuzzy variable E based on numerical values t, a, and q for the

input variables T, A, and Q respectively.

Kelsey & Bisset (1993) present the simulation of traffic flow and control by using

Takagi and Sugeno’s fuzzy system. Simulation output can be compared with the output

from conventional methods. There are four fuzzy variables in the fuzzy controller.

 G : The average density of traffic behind the green light,

 R : The average density of traffic behind the red light,

 L : The length of the current cycle time, and

 C : The index to decide whether to change the state of the light or remain in the

 same state.

Fuzzy variables G , R, and L are input variables whose values determine the value of

output variable C. Fuzzy variable G could be assigned the values “Zero” vehicle, “Low”

vehicles, “Medium” vehicles, and “High” vehicles. Fuzzy variable R could be assigned

similar values. Variables L could be assigned values “Short” time, “Medium” time and

“Long” time. There are four membership functions describing the densities of traffic at

green and red lights, and three membership functions describing the length of the

current cycle time.

The membership functions are shown in Figure 2.6-2.8 as follows:

Figure 2.6 Membership function of number of cars behind green light

 (Kelsey & Bisset, 1993, p. 266)

 38

Figure 2.7 Membership function of number of cars behind red light

 (Kelsey & Bisset,1993, p. 267)

Figure 2.8 Membership function of length of current cycle

 (Kelsey & Bisset, 1993, p. 267)

 39

Fuzzy variable C is the output variable whose values are “No change”, “Probably no

change”, “Maybe change”, “Probably yes change” and “Change”. The membership

function of the values represents a degree of a binary value, 1 being yes and 0 being no,

as shown in Figure 2.9

 Figure 2.9 Membership function of change (Kelsey & Bisset, 1993, p. 267)

Kelsey & Bisset (1993) also present the fuzzy rule which maps the combination of the

inputs to the output to decide whether to change the light. The fuzzy controller

presented uses 26 different fuzzy rules as follows:

 1. IF green is zero and red is zero THEN change is no.

2. IF green is zero and red is low THEN change is yes.

3. IF green is zero and red is medium THEN change is yes.

4. IF green is zero and red is high THEN change is yes.

5. IF red is zero THEN change is no.

6. IF green is low and red is low THEN change is no.

7. IF green is medium and red is medium THEN change is no.

8. IF green is high and red is high THEN change is no.

9. IF green is low and red is medium and time is short THEN change is

maybe.

10. IF green is low and red is medium and time is medium THEN change is

probably yes.

11. IF green is low and red is medium and time is long THEN change is yes.

12. IF green is low and red is high and time is short THEN change probably no.

 40

13. IF green is low and red is high and time is medium THEN change is may

be.

14. IF green is low and red is high and time is long THEN change is probably

yes.

15. IF green is medium and red is low and time is short THEN change is

probably no.

16. IF green is medium and red is low and time is medium THEN change is

probably no.

17. IF green is medium and red is low and time is long THEN change is

maybe.

18. IF green is medium and red is high and time is short THEN change is

maybe.

19. IF green is medium and red is high and time is medium THEN change

probably Yes.

20. IF green is medium and red is high and time is long THEN change is yes.

21. IF green is high and red is low and time is short THEN change is maybe.

22. IF green is high and red is low and time is medium THEN change probably

yes.

23. IF green is high and red is low and time is long THEN change is yes.

24. IF green is high and red is medium and time is short THEN change is

probably no.

25. IF green is high and red is medium and time is medium THEN change is

probably no.

 26.IF green is high and red is medium and time is long THEN change is

 maybe.

2.2 The traffic intensities estimation based on the maximum likelihood

 estimation

2.2.1 Maximum likelihood estimation

Maximum likelihood estimation is a method that is used to estimate the

 parameters of a distribution, or estimate performance of a model . Bera & Bilias (2002)

states that the statistical expert who provided the analytical foundation of maximum

likelihood estimation is Fisher (1922). He also studied the efficiency of maximum

 41

likelihood estimation relative to moment estimation proposed by Karl Pearson’s (1894)

moment estimation.

 Abutaled & Papaioannou (2000) propose maximum likelihood estimation to estimate

time-varying parameters in time series models. The result of this approach is then

applied to the Athens Stock Exchange Index. Chan & McAleer (2002) use maximum

likelihood estimation to investigate the properties of two models of time series, the

Smooth Transition Autoregressive (STAR) model and the Smooth Transition

Autoregressive Generalized Autoregressive Conditional Heteroscedasticity (STAR-

GARCH) model based on finite samples. These numerical results are used as a guide in

empirical research, with an application to Standard and Poor's Composite 500 Index

returns for alternative STAR-GARCH models.

The likelihood function of a continuous-time diffusion is observed only at discrete

dates, and is not computable. Ait-Sahalia (2002) explicitly constructs a sequence of

closed-form functions that converges to the true likelihood function, and the estimator

also converges to the true maximum likelihood. Eqorov, Li, & Xu (2003) extend the

same method to the time-inhomogeneous case, and prove that this approximation

converges to the true likelihood function and yields consistent parameter estimates.

Maximum likelihood estimation can be applied in business management and

econometrics, for estimation of default correlations between variables in management of

loan portfolios (Demey, Jean-Frederic, Roget, & Poncalli, 2004) for example. The

estimation overcomes problems such as scarce data and small sample biases.

Deschamps (1998) uses full maximum likelihood estimation to estimate parameters in a

dynamic demand model. Durtham, Gallant, Ait-Sahalia, & Brandt (2002) propose

maximum likelihood estimation to provide a convenient way to describe the dynamics

of economic and financial data. O'Loughlin & Coenders (2004) present the maximum

likelihood approach as advantageous over the partial least square method in estimation

of customer performance. Porter (2002) mentions the use of maximum likelihood in

econometrics model estimation, the conditional information matrix variance estimator is

usually avoided in choosing a method for estimating the variance of the estimator. The

author proposes a simulation method to estimate the variance. Swann (2002)

demonstrates a method that can be used to examine a more complicated econometric

model.

 42

Frehlich & Sharman (2005) use maximum likelihood estimation to estimate the

performance of pulsed coherent Doppler radar in estimating aircraft trailing wake

vortices. The estimation provides accurate detection and tracking of the key vortex

parameters for a simple vortex model.

Fridman & Harris (1998) develop maximum likelihood estimation to analyze stochastic

volatility models. The study shows that the method matches the performance of the best

estimation tools currently in use.

Ghitany & Al-Awadhi (2002) propose maximum likelihood to estimate the parameters

of Burr XII distribution. The study shown that the estimators are strongly consistent

with the true values of parameters.

Gill (2004) uses maximum likelihood estimation to estimate the canonical parameter of

an exponential family that gradually begins to drift from its initial value at an unknown

change point.

Herring & Ibrahim (2002) introduce maximum likelihood estimation to estimate a

random effects cure rate model based on development of the Expectation Maximization

(EM) algorithm, and efficient Gibbs sampling. The EM algorithm is also applied by

Karlis (2001) to estimate the performance of mixed Poisson regression models based on

a real data set concerning crime data from Greece.

Karlis (2003) describe an EM algorithm for maximum likelihood estimation to estimate

parameters of the multivariate Poisson distribution model Kim & Taylor (1995) develop

a modification of the restricted EM algorithm to estimate linear restriction parameters.

Ning-Zhong, Zneng (2005) extend the restricted EM algorithm to estimate the

inequality restrictions parameter. Hunter & Lange (2004) claim the EM algorithm is the

most effective algorithm for maximum likelihood estimation. In biomedical research,

maximum likelihood is used by Lee & Shi (2001) to estimate the performance of the

latent variable model. However every EM algorithm is a special case of the more

general class of Method of Moment (MM) optimization algorithms,as is shown by

Hunter & Lange (2004). The paper explains the principle of MM algorithms and

includes numerous examples to illustrate the concept of the algorithm.

 43

Hsiao, Pesaran, & Tahmiscioqlu (2002) apply a transformed likelihood estimation to

estimate fixed effects dynamic panel data models. The study shows that the properties

of maximum likelihood estimation are better than the linear generalized method of

moment estimation.

Jewell (2004) uses maximum likelihood estimation to estimate a series of ordered

multinomial parameters. The results are then applied to estimation of a survival

distribution. Jonker (2003) proposes maximum likelihood estimation to estimate the life

length of people who were born in the seventeenth or eighteenth century in England.

Chen & Ibrahim (2001) propose maximum likelihood estimation to estimate the

parameter for a novel class of semi-parametric survival models.

Keats, Lawrence, & Wang (1997) present a Fortran program based on point and interval

maximum likelihood estimation to estimate the parameters of the Weibull distribution.

Kotz, Kozubowski, & Podqorski (2002) use maximum likelihood to estimate the

parameters of a univariate asymmetric Laplace distribution for all situations.

Lynch, Nkouka, Huebschmann, & Guldin (2003) use maximum likelihood estimation to

estimate parameters for a range of specified probability densities in a logistic equation,

where traditional estimation techniques for logistic models cannot be used. On the other

hand Horton & Laird (2001) present a new method for maximum likelihood estimation

of logistic regression models with incomplete covariate data where auxiliary

information is available.

Milescu, Akk, & Sachs (2005) describe maximum likelihood estimation to estimate

parameters of rate constants from macroscopic ion channel data for a kinetic model.

Milligan (2003) use maximum likelihood estimation to quantify the

statistical performance of the traditional maximum likelihood estimator in relatedness

between individuals in genetics and population biology.

Miranda & Rui (1997) introduce an efficient numerical algorithm

for computing the full information maximum likelihood estimators of the nonlinear

rational expectations asset pricing model. The study show that the maximum likelihood

estimator is more efficient than the method of moments estimator.

 44

Rous, Jewell, & Brown (2004) use a full information maximum

likelihood estimation procedure to estimate the relationship between birth-weight and

prenatal care. The data is collected from the state of Texas, and the result shows the

effect of mothers with less healthy fetuses making more prenatal care visits, known as

adverse selection in prenatal care.

Scheike & Martinussen (2004) present maximum likelihood to estimate the parameters

of interest for case-cohort sampling that aims to reducing the data sampling and costs of

large cohort studies. The estimation is found by a simple EM algorithm that is easy to

implement.

Yu & Wong (2005) propose a special modification of maximum likelihood estimation

to estimate parameters in a linear regression model when the error distribution is

unknown. The study shows that the special estimation is consistent, and can be applied

to engineering data.

Ellson (1993) suggests that maximum likelihood estimation is one method to learn

about the parameters of a population based on the characteristics of a sample. The

parameter estimator that we find by maximum likelihood estimation maximizes the joint

probability function of a sample we obtain from random sampling. The details of

maximum likelihood estimation procedure are as follows.

Let X be a random variable which has a normal distribution with known parameter,
2σ (variance of population) and unknown parameter, µ (mean of population). Our

goal is to estimate the population mean by maximum likelihood estimation. First we

need take a random sample with n size. Let ()nXXX ,,, 21 K be the sample. Random

sampling produces independent identically distributed (iid) random variables with joint

probability density as follows:

 ∏
=

=
n

i
in xfxxxL

1
21)(),,...,,(µ

 = ∏
=

−−n

i

ix
1

2

2

2
)

2
)(

exp(
2

1
σ

µ

πσ

Taking the natural logarithm of both sides of the equation we get the loglikelihood

function :

 45

 ∏
=

−−
=

n

i

i
n

xxxxL
1

2

2

221)
2

)(
exp(

2
1ln),,...,,(ln

σ
µ

πσ
µ

 = ∑
=








 −−n

i

ix
1

2

2

2
)

2
)(

exp(
2

1ln
σ

µ

πσ

 = ∑
=

−−−
n

i
ixn

1

2
2

2)(
2

1)2(ln µ
σ

πσ

Note that the value of loglikelihood function is dependent only on the term

∑
=

−−
n

i
ix

1

2)(µ . We ignore all the constants in the equation because they are not needed

to maximize the function. So the estimator of µ that maximizes the likelihood function

is computed by calculus as follows:

 ∑∑
==

−=







−−

∂
∂ n

i
i

n

i
i nxx

11

2 22)(µµ
µ

Let ∑
=

=−
n

i
i nx

1
022 µ

So the maximum likelihood estimate
n

x
n

i
i∑

== 1µ

In the same way let X be a vector of c-dimensional Poisson random variable.

 X ()cXXX ,,, 21 K=

)(~ jj PoissonX λ ; j = 1,2,…,c. independent.

 λ = ()cλλλ ,...,, 21

 X ()λPoisson~

Let us estimate λ by using maximum likelihood estimation. First we need to take a

random sample with n size. Let () () ()()nXXX ,,, 21 K be the sample. As before these are

independent identically distributed (iid) random variables.

Here ()1X = () () ()()11
2

1
1 ,,, cXXX K

 ()2X = () ()()22
2

2
1 ,,, cXXX K

 M M

 ()nX = () () ()()n
c

nn XXX ,,, 21 K

!
)exp(

)()(
)(

)(

i
j

x
jji

j x
xf

i
jλλ ⋅−

=

 46

The joint probability distribution of () () ()()nXXX ,,, 21 K is as follow:

 L () () ()()nxxx ,,, 21 K ∏
=

=
n

i
f

1

()()ix

 ∏
=

⋅−
=

n

i
i

x

x

i

1
)(!
)exp(

)(

λλ

 Lln ∏
=

⋅−
=

n

i
i

x
n

x
xx

i

1
)(

)()1(

!
)exp(ln),...,(

)(

λλ

 = n− ∑ ∑
= =

−+
n

i

n

i

ii xx
1 1

)()(!ln)ln(λλ

λ∂
∂

∴
),...,(ln)()1(nxxL

+−= n ()∑
=

n

i

ix
1

1
λ

Let 0),...,(ln)()1(

=
∂

∂
λ

nxxL

 n− () 01
1

=+ ∑
=

n

i

ix
λ

So the solution for maximum likelihood estimation is λ =
n
1 ∑

=

n

i

ix
1

)(

or λ = 






 ∑ ∑ ∑
= = =

n

i

n

i

n

i

i
c

ii x
n

x
n

x
n 1 1 1

)()(
2

)(
1

1,,1,1
K

Let X be a vector of c-dimensional random variable

 Y be a vector of r-dimensional random variable

 X = ()cXXX ,,, 21 K

 Y ()rYYY ,,, 21 K=

 ()iX = () () ()()/
21 ,,, i

c
ii XXX K

 ()iY () () ()()/
21 ,,, i

r
ii YYY K= ni ,,2,1; K=

 A : rxc matrix

Using maximum likelihood estimation as in the previous section, we can estimate λ

given () ()ii AXY = with the likelihood equation in vector notation that can be

expressed :

 =λ
n
1 ∑

=

n

i
E

1

() () ()][iii AXYX =

 47

2.2.2 EM algorithm for maximum likelihood estimation

Kim & Taylor (1995) suggest that the EM algorithm is one of the most powerful

algorithms for maximum likelihood estimation in an incomplete data problem. In the

EM algorithm it is usually necessary to find the conditional distribution in the E step,

then use standard maximum likelihood estimation for the complete data problem in the

M step. Let x = ()nxxx ,,, 21 K be an observation vector and λ be a cx1 parameter

vector of interest. Let f ()λx be the known probability density of x indexed by the

unknown parameter λ . Denote the log-likelihood of n observations by l ()xλ . If

there are no restrictions on the parameter, a fast and popular algorithm for

maximizing l ()xλ is the Newton-Raphson algorithm. The score function and the

information matrix for the Newton-Raphson algorithm are given by

λ

λ
∂

∂
=

)|(xlSU and
λ

λ
2

2)|(
∂

∂
−=

xlIU

where UI is assumed to be positive definite. So an unrestricted maximum likelihood

estimate of λ is a solution of a set of iterations given by

 U1. 0←i ; choose a starting value for λ , denoted by ()0Uλ .

 U2. UUiUiUiU SI 1
)()()1(][−

+ +← λλλ , where US and UI are evaluated at)(lUλ .

Stop if)(iUλ has converged.

 U3.];[)()1()1(iUiUiU λλλ ++ ← 1+← ii go to U2.

In U2,][)()1(iUiU λλ + denotes the ()1+i th term in the Newton-Raphson sequence for

the unrestricted problem obtained by taking one Newton-Raphson step from)(iUλ .

Now suppose there are r linearly independent restrictions on the parameter λ, such as

 λAY =

Here A is the known rxc matrix defining the restrictions, with rank ()A = r < c ; and

Y is a known rx1 vector. We use the Lagrange multiplier method to derive an

algorithm to find the restricted maximum likelihood estimation. When the Lagrange

multiplier method is used to incorporate the restrictions, the restricted log-likelihood is

given by

 l () =θλ ,x l () (),/ λθλ AYx −−

 48

 where θ),...,,(21 rθθθ= are the Lagrange multipliers. When θ is given , the procedure

for maximization of the restricted log-likelihood l ()θλ ,x is the same as the

unrestricted maximization in U1-U3. A simple adaptation of the Newton-Raphson

iteration scheme leads to the restricted solution. The score function and the information

matrix for the restricted log-likelihood can be expressed as

 θ
λ

θλ /),|(ASxlS UR +=
∂

∂
= and UR IxlI =

∂
∂

−=
λ

θλ
2

2),|(
.

From the relationship of the score functions and information matrices between the

unrestricted and restricted problems, we can easily verify that the Lagrange multiplier is

a function of the unrestricted solution and the unrestricted information matrix. A

sequence ,...,,)2()1()0(RRR λλλ for the restricted problem is obtained by the following

algorithm:

 R1. 0←i choose a starting value , ()0Rλ .

 R2. Calculate][)()1(iRiU λλ + from U2 for the unrestricted problem.

 R3. Calculate)1(+iRλ for the restricted problem from the following equation:

]),[()(][)()1(
1/1/1

)()1()1(iRiUUUiRiUiR AYAAIAI λλλλλ +
−−−

++ −+=

where UI are evaluated at)(iRλ . Stop if)(iRλ has converged.

 R4. 1+← ii , go to R2

From R3, it is clear that each member of the sequence for the restricted problem is

easily obtained in each iteration by using the unrestricted solution and information

matrix.

2.2.3 Estimating source-destination traffic intensity from link data

Vardi (1996) estimate source - destination traffic intensities from link data based on

maximum likelihood estimation and the sample moments approach. The method is

presented below.

Consider a network system that contains n nodes. Any two nodes are fixed; one as the

source, and the other as the destination, and they are called source-destination pairs

(SD), or direct routes. The target is a traffic intensity estimator between two nodes. This

network system is composed of c = n (n-1) SD, and we call the direct route that has no

 49

nodes between source and destination a direct link. The number of direct links in this

network system are r (r ≤ c).

Let ()k
jX be the number of vehicles for direct route j at measurement period k .

 We assume that

 () ()j
k

j PoissonX λ~ ; Kkcj ,,2,1;,,2,1 KK == . independent.

 ()kX is the number of vehicles in vector form for the direct route.

 () =kX () () ()()/
21 ,,, k

c
kk XXX K

 ()k
iY is the number of vehicles that are observed from direct link i at measurement

 period k.

 ()kY is the number of vehicles in vector form for direct links.

 () =kY () () ()()/
21 ,,, k

r
kk YYY K

Let A be the rxc routing matrix for this network. The matrix A is a zero-one matrix

whose rows correspond to the direct link; its columns correspond to direct routes, and

its entry, ija is 1 or 0 according to whether link i does or does not belong to the direct

path of the SD pair j . So we derive the relation between ()kY and ()kX in equation

form as

 () ();kk AXY = Kk ,,2,1 K=

Our goal is to estimate ≡λ ()/
21 ,,, cλλλ K from () () ()kYYY ,,, 21 K based on

maximum likelihood estimation and sample moments.

The likelihood equations in vector notation can be expressed as

 =λ
K
1 ∑

=

K

k
E

1

() () ()][kkk AXYX = (2.1)

The EM algorithm can be used to search for the solution of equation (2.1), and the EM

algorithm, in vector notation , is

 ()1+nλ E= () () () ()],,,[21 nkYYYX λK K,2,1, =n

(() 00 >λ , arbitrary). due to of the linearity of E and independence across k’s ,

 ()1+nλ =
K
1 []∑

=

k

k

nkk YX
1

)()()(,| λΕ K,2,1, =n

 50

The trouble with this iteration formula is that the summands E ()λ,YX (superscripts

ignored for simplicity) are extremely hard to calculate as they require finding all the

solutions in natural numbers of AXY = .

Approximation of Y =
K
1 ()∑

=

K

k

kY
1

is possible when k is large as Y is approximates a

multivariate normal distribution.

 ~Y ,(λAN r
1−K)/AAΛ , ()λΛ diag= ,

So the log-likelihood of Y is

 l () −−= /log AAΛλ K () () ()λλ AYAAAY −−
−1//

Λ (2.2)

The maximum likelihood estimation (MLE) based on this approximation would seek to

maximize l ()λ subject to the constraints 0≥iλ , i = 1, .c,K When K is large, the

second term is the dominant term in (2.2), and suggests

0minarg ≥λ K () () ()λΛλ AYAAAY −−
−1// as a reasonable large-sample substitute for

the MLE. Note that this is a weighted least square with positive constraints and with

weighted values depending on λ , which can be estimated by the sample covariance

matrix of the sY , .

The approximate normal distribution of Y is completely determined by the mean

vector, λA , and covariance matrix, /AAΛ , of Y . Thus we can equate the sample’s first

and second moment to their theoretical values to obtain a linear (in λ) system of the

following estimating equations :

 ∑
=

==
c

l
jijii aYY

1
)(ˆ λΕ , i = 1 , 2 , … , r

and ∑ ∑
=

′′′ =−=
k

c

j
jliijiii

kk
iii aaYYYY

K
YYVOC

1

)()(1),(ˆ
/ λ , 1 rii ≤′≤≤ .

These are ()
2

3+rr linear equations that can be written in vector notation as

 







S
Y

 = 







B
A

λ (2.3)

Here S is the sample covariance matrix stretched out as a vector of length ()
2

1+rr

 /iiS = ∑ −
k

ii
k

i
k

i YYYY
K //

)()(1

 51

B is an () crr
×

+
2

1 matrix with rows indexed by ()/, ii , 1 rii ≤′≤≤ , to match the

indexing of S , with the ()/, ii th row of B as the element – wise product of row i and

row i/ of the matrix A .

Here, suppose that all the constants on left side of (2.3) are strictly positive and that B

has no rows of zeros. Then, because all of the entries of A and B are nonnegative and

() 0,
/// >SY and λ is constrained to be > 0, equation (2.3) is of the general from of a

LININPOS (Linear inverse positive) problem, the EM algorithm will be used to

“solve” it .The canonical form of the EM iteration for solving the LININPOS problem is

that λAY = is

 jλ ←
∑

=

r

i
ij

j

a
1

λ
∑

∑=

=

r

i
c

k
kik

iij

a

Ya

1

1

λ
 ; cj ,,2,1 K= (2.4)

If the linear system is given in a block form as

 







S
Y

 = 







B
A

λ ,

where A is rxc , Y is rx1 , S is mx1 (indexed as r+1 ,…, r+m) and B is mxc

(rows indexed as r+1 ,…,r+m) , then (4) becomes

 jλ ←
∑∑
+

+==

+
mr

ri
ij

r

i
ij

j

ba
11

λ



















+ ∑
∑

∑
∑

+

+=
+

=

=

=

mr

ri
r

k
kik

iij
r

i
c

k
kik

iij

b

Sb

a

Ya

1
1

1

1

1

λλ
.

Also, Vardi (1996) presents the steps of the simulation process to estimate traffic

intensity by using Maximum likelihood based on the EM algorithm as follows:

Step 1 Let =λ ()cλλλ ,,, 21 K be ‘daily transmission’ rate;

Step 2 Generate daily data on direct links for k days :
()1Y () () ()()11

2
1

1 ,,, rYYY K≡

() ≡2Y () () ()()22
2

2
1 ,,, rYYY K

 M M
() ≡kY () () ()()k

r
kk YYY ,,, 21 K , then

 52

Calculate Y =
K
1 ∑

=

k

i

kY
1

)(,

and sample covariance matrix, S , where

 /iiS = K
1 ∑ −

k
ii

k
i

k
i YYYY '

)(
'

)(;

Step 3 Estimate λ̂ /
21)ˆ,...,ˆ,ˆ(cλλλ= based on applied algorithm

 jλ ←
∑∑
+

+==

+
mr

ri
ij

r

i
ij

j

ba
11

λ



















+ ∑
∑

∑
∑

+

+=
+

=

=

=

mr

ri
r

k
kik

iij
r

i
c

k
kik

iij

b

Sb

a

Ya

1
1

1

1

1

λλ
;

 Step 4 Go to step 2 to estimate λ̂ m time to get)()2()1(ˆ,...,ˆ,ˆ mλλλ ; and

 Step 5 Calculate mean vector; ∑
=

=
m

k

k

m 1

)(ˆ1ˆ λλ and covariance matrix based on m

estimations then we get λ̂ which is the unbiased estimator of λ , route count.

2.3 The traffic intensities estimation based on Bayesian inference

2.3.1 The Bayesian approach

Moore (1997) agrees that Bayesian method are increasingly important to
infer parameters. Bayesian inference is a process that can be used to infer interesting

parameters. The main idea of the Bayesian approach according to VerevKa & Parasyuk

(2002) consists of sequential calculations of a posterior probability distribution function

of the parameter, based on some collection of associated evidence by using Bayes’

theorem. Carin, Stern & Rubin (1995) present that posterior distribution is complicate

model so it is difficult to directly sampling from the posterior distribution. The

indirectly method to sampling when it is very hard to finding distribution function is

Gibbs sampling. Casella & George (1992) support the meaning of Gibbs sampling as a

technique for generating random variables from a distribution indirectly, without having

to calculate the density distribution fuction. Additional Gibbs sampling is based only on

elementary properties of Markov Chains.

 53

Erkanli, Soyer, & Costello (1999) use Baysian inference and model selection for a

prevalente estimation to estimate the interesting parameter. They generate random

variable from distribution by using Markov Chain Monte Carlo method. Geweke (1989)

develop the method for the systematic application of Monte Carlo integration to

sampling for Bayesian inference in econometric model. In addition Jensen (2004)

proposes Baysian inference to estimate the parameter for the integration model. He also

uses Markov Chain Monte Carlo method to generate random variable from posterior

distribution function for the tractional order of the integration model. According to

Carin, Stern & Rubin (1995) two effective methods that can be used to generate random

variables in Markov chain Monte Carlo method are Metropolis-Hasting and Gibb

sampler. Liu & Sabatti (2000) comment that although Monte Carlo methods have

frequently been applied with success in Bayesian inference, indiscriminate use of

Markov chain Monte Carlo method leads to unsatisfactory performances in numerous

applications. They propose a generalized version of the Gibbs sampler that is based on

conditional moves along the traces of groups of transformations in the sample space.The

sampler provides a framework encompassing a class of recently proposed tricks such as

parameter expansion and reparameterisation.

Blackwell (2003) uses fully Bayesian inference based on hybrid Markov chain Monte

Carlo methods, with a mixture of Gibbs sampler and the Metropolis-Hasting algorithm

to infer a parameter of the certain radio-tracking model.

Haqqer, Janss, Kadarmideen & Stranzinger (2004)use Bayesian inference to study the

parameters of a mixed inheritance model. The Gibbs sampler is used to sample values

of the important random variables that are of concern in the inference model such as,

body weight and average egg weight. The sequential sampling deliver a random walk

that converges to its posterior distribution which helps understanding of the model.

Fouqere & Kamionka (2003) use Bayesian inference procedures for the continuous time

mover-stayer model. The Gibbs sampler algorithm is applied to estimate proportions of

stayers and functions of these parameters.

Chen, Ibrahim & Lipsitz (2002) propose Bayesian inference for missing data with a

novel class of semi parametric survival models. The study delivers an informative class

of joint prior distributions for the regression coefficients and the parameters arising

from the covariate distribution. It is useful in recovering information on the missing

 54

covariates. Chopin & Pelqrin (2004) use Bayesian inference on the switching regression

model based on the hidden Markov method. The study delivers a joint estimation of the

parameter and the number of regimes. Corander & Villani (2004) consider Bayesian

inference for the dimensionality in the multivariate reduced rank regression framework.

The inference deliver a closed form approximation to the posterior distribution of the

dimensionality proven.

Dunson & Herring (2003) propose Bayesian inference for testing the predictor in a Cox

model. The inference is use to test null hypothesis that present no difference between an

ordered category predictor with an order restricted. The null hypothesis is versus

alternative hypothesis that present a monotone increase across level of the predictor. On

the other hand in biomedical studies, usually interest in assessing the association

between one or more ordered categorical predictor and outcome variable. Duson &

Neelon (2003) propose a general Bayesian approach for inference on order-constrained

parameters in generalized linear models. The output from the Gibbs sampler is used for

assessing ordered trends.

Geweke, Gowrisankaran, & Town (2003) develop the new economic method based on

Bayesian inference to infer hospital quality in a model. A dependent variable in the

model is mortality rates and an independent variable is hospital admission. The study

finds the smallest and largest hospitals to be of the highest quality.

Huelsenbeck, Ronguist, Nielsen, & Bollback (2001) propose Bayesian inference for a

phylogeny model. The study finds a new perspective to a number of outstanding issues

in evolutionary biology, including the analysis of large phylogenetic trees and complex

evolutionary models and the detection of the footprint of natural selection in DNA

sequences.

Kleiberqen (2004) proposes Bayesian inference to explain a nested regression model.

The study obtained the prior and posterior probability that can be used to represent the

nested model. Odejar & McNulty (2001) develop Bayesian methods to estimate the

parameter of a stochastic switching regression model. Markov Chain Monte Carlo

methods, data augmentation, and Gibbs sampling are used to facilitate estimation of the

posterior means. Paiqe & Butler (2001) develope and approximate marginal Bayesian

inference for neural network models. The study describes the method in the context of

 55

two nonlinear datasets that involve univariate and multivariate nonlinear regression

models.

Lazar (2003) compares empirical likelihood tests and Bayesian inference. The study

shows that empirical likelihood tests have many of the same asymptotic properties as

those derived from parametric likelihoods. This leads naturally to the possibility of

using empirical likelihood as the basis for Bayesian inference. Nair, Tang & Xu,(2001)

propose Bayesian inference for three important mixture problems in quality and

reliability instead of the traditional, maximum likelihood approach in situations where

the large-sample normal approximation is not adequate.

Liu & Lawrence (1999) propose full Bayesian inference to infer the parameter in the

bioinformatics method. Bayesian inference is use to assign probabilities for all possible

values of all unknown variables in a problem in the form of a posterior distribution. The

study show that information from the posterior distribution can be achieved for most

bioinformatics method that use dynamic programming.

Martin (2003) present an integrated set of Bayesian tools for heterogeneous event

counts model, and compares the method with the traditional approach.

Rovers et al.(2005) focuses on the debate concerning Bayesian inference approach. The

issue of the debate involves comparison the posterior distribution that is calculated from

Bayes’ theorem with the posterior distribution from empirically measure. Their trial was

undertaken based on prior and posterior belief among surgeons. The results showed

that the trial had a little or no impact on the beliefs of the surgeons, that is, the mean the

posterior belief did not adjust to the extent that was expected according to Bayes'

theorem.

Oh, Choi & Kim (2003) apply Bayesian inference to the latent class model. The study

consists of parameter estimation and selection of an appropriate number of classes. The

Gibbs sampler is used to generate the random variable from a posterior distribution of

unknown parameters. Output from the Gibbs sampler is used to estimate the parameter

and select an appropriate number of classes.

Pasquale, Barone, Sebstiani & Stander (2004) develop Bayesian inference, by means of

Markov chain Monte Carlo algorithms, for dynamic magnetic resonance images of the

 56

breast. The results show the potential of the methodology to extract useful information

from acquired dynamic magnetic resonance imaging data about tumour morphology and

internal pathophysiological features.

Blackwell (2001) proposes Bayesian inference for an inhomogeneous Poisson point

process. The Markov chain Monte Carlo approach is applied in the point of observation

process. The results of the study can be applied to modeling the territories of clans of

badgers. Roberts, Papaspiliopoulos, & Dellaportas (2004) develop Markov chain Monte

Carlo methodology for Bayesian inference for non-Gaussian Ornstein-Uhlenbeck

stochastic volatility processes. The Metropolis-Hastings algorithms is used to generate

the point process and model parameter.

Piles, Gianola, Varona & Blasco (2003) present Bayesian implementation via Markov

chain Monte Carlo method for a cross-sectional trait model. The study contains a

hierarchical model and a cross-sectional assessment. The hierarchical model is used to

infer the parameters of joint distribution fucntion that provides distribution of a

longitudinal trait. Basu, Banerjee, & Sen (2000) apply Markov chain Monte Carlo

method in Bayesian inference to infer Cohen's kappa coefficient, a widely popular

measure for chance-corrected nominal scale agreement between two rates.

Carey, Baker, & Platt (2001) use the Gibbs sampler for Bayesian inference to infer the

minimum protective antibody concentration, a quantity of great interest in the study of

immune responses to infectious pathogens. Wang, He & Sun (2005) presents

capture-recapture methods using Bayesian inference. The method is used to estimate the

total number of people with a certain disease in a certain research area. Several lists

with information about patients are used as input and the results are useful in

epidemiology. Waqner & Gill (2005) point out that the classical statistical inference

approach in public administration is defective and should be replaced. They support

Bayesian inference as better suited for structuring scientific research into administrative

questions due to overt assumptions, flexible parametric forms, systematic inclusion of

prior knowledge, and rigorous sensitivity analysis.

Carlin & Louis (1996) state that inferential statistics used with Bayesian approach on

the basis of targeted population parameters estimation can be applicable to the observed

data which is y ()nyyy ,,, K21= . This application can be done by taking the likelihood

 57

function of y when specifying the vector of unknown parameter θ),,(kθθ K1= . Such

likelihood function is actually represented by f ()θy . For Bayesian approach θ refers

to a random vector with the prior distribution function as π ()ηθ , when η is a vector of

hyperparameters(the parameter of θ). This allows the application of distribution

function of θ to be more appropriate expressed as

 p ()ηθ ,y =
()
()

()
()

() ()
() ()∫∫

==
θηθπθ

ηθπθ

θηθ

ηθ

η

ηθ

dyf
yf

dyp
yp

yp
yp

,

,,

The integral in the denominator is sometimes written as m ()ηy , the marginal

distribution of the data y given value of the hyperparameter η . The reformed

p function is taken as a posterior distribution function which is used to estimate θ .

Because of η is constant, it is not repeated in the condition of posterior distribution

function. It is therefore represented in a simpler form p)(yθ . The posterior mean of

random variable θ in posterior distribution function is a weighted average of prior

mean and observed data with inversely proportional weights to the corresponding

variances. Also, the posterior variance is smaller than that of prior variance and variance

of random variable of the likelihood function. As seen, inferential statistics Bayesian

depending on the posterior distribution function is a more accurate means in parameter

estimation θ .

Given a sample of n independent observations, the likelihood function

f ()θy is ()∏
=

n

i
iyf

1

θ . One can proceed with the posterior distribution, p ()ηθ ,y .

Evaluating this expression may be simpler if we can find a statistic S ()y which is

sufficient for θ , that is, for which f ()θy h= ()y g S(())θy . Let S () sy = then

 p ()yθ =
∫ θθπθ

θπθ

dyf

yf

)()(

)()(

 =
∫ θθπθ

θπθ

dySgyh

ySgyh

)())(()(

)())(()(

 =
)(

)()(
sm

sg θπθ

 = p ()sθ

 58

By suppressing the dependence of the prior on the known value of η , p ()yθ may be

expressed in the convenient shorthand

 p ()∝yθ f ()θy π ()θ

Bayes’ theorem may also be used sequentially: suppose we have two independently

collected samples of data, 1y and 2y . Then

 p ()21 , yyθ ∝ f ()θ21 , yy π ()θ

 = 2f ()θ2y 1f ()θ1y π ()θ

 ∝ 2f ()θ2y p ()1yθ

That is, we can obtain the posterior for the full dataset ()21 yy , by first finding

p ()1yθ and then treating it as the prior for the second portion of the data 2y .

In case the appropriate value of η is not known or uncertain Bayesian inference

approach will takeη as a random variable with prior distribution function as)(ηh .

Posterior distribution function calculation of θ can therefore be done by also

marginalizing over η ,

 p ()yθ =
)(
),(

yp
yp θ

 =
∫∫
∫

θηηθ

ηηθ

ddyp

dyp

),,(

),,(

 =
∫∫
∫

θηηθθ

ηηθθ

ddpyf

dpyf

),()(

),()(

 =
∫∫
∫

θηηηθπθ

ηηηθπθ

ddhyf

dhyf

)()()(

)()()(

Implementation of the Bayesian approach as indicated in the previous subsection

depends on a willingness to assign probability distributions not only to data variables

like Y , but also to parameter like θ . Typically, these distributions are specified based

on information accumulated from past studies, or the opinions of subject-area experts.

In choosing a prior belonging to a specific distributional family p ()ηθ , some choices

may be more convenient computationally than others. In particular, it may be possible

to select a member of that family which is conjugate to the likelihood f ()θy , that is,

 59

one that leads to a posterior distribution p ()yθ belonging to the same distributional

family as the prior. For example, let Y be a Poisson random variable with likelihood

function ,

)(θyf =
!y

e yθθ−

 , K,2,1=y , 0>θ .

To apply a Bayesian analysis we require a prior distribution for θ having support on

the positive real line. A reasonably flexible choice is provided by the Gamma

distribution,

)(θπ =
α

β
θ

α

βαΓ
θ

)(

1
−

− e , 0,0,0 >>> βαθ

Using Bayes’ Theorem to obtain the posterior density, we have

)(yp θ ∝)()(θπθyf

 ∝))((1 β
θ

αθ θθ
−

−− ee y

 =
)11(

1 β
θ

αθ
+−

−+ ey

So the posterior)(yp θ is proportional to Gamma distribution with parameters

// βα and . The parameters are defined by αα += y/ and 1/)11(−+=
β

β .

2.3.2 Markov chain simulation

With a complicated posterior distribution model, it is difficult to directly sample from

the posterior distribution. The Markov chain simulation method will be used for running

a Markov chain of simulated values whose stationary distribution provides the target

posterior distribution,)(yp θ . The idea of Markov chain simulation is to simulate a

random walk in the space of θ which converges to a stationary distribution that is the

joint posterior distribution,)(yp θ . There are many clever methods that have been

devised for constructing and sampling from transitions for arbitrary posterior

distributions. The Metropolis-Hastings algorithm is a general term for a family of

Markov chain simulation methods that are useful for drawing samples from Bayesian

posterior distributions. There are two commonly –used special cases, the Metropolis

algorithm and the Gibbs sampler.

 60

1) The Metropolis algorithm

Given a target distribution)(yp θ that can be computed up to a normalizing

constant, the Metropolis algorithm creates a sequence of random points

),,(21 Kθθ whose distributions converge to the target distribution. Each sequence can

be considered a random walk whose stationary distribution is)(yp θ . The algorithm

proceeds as follows.

 1. Draw a starting point 0θ , for which ,0)(0 >yp θ from a starting distribution

)(0 θp .

 2. For t = 1, 2, K

 a) Sample a candidate point *θ from a jumping distribution at time t,

).(1* −t
tJ θθ The jumping distribution must be symmetric; that is,

)()(abtbat JJ θθθθ = for all ,, ba θθ and t.

b) Calculate the ratio of density,

)(

)(
1

*

yp
yp

r t −=
θ

θ

c) Set





=
− otherwise

ryprobabilitwith
t

t
1

*)1,min(
θ

θ
θ

Given the current value 1t−θ , the Markov chain transition distribution,),(1−tt
tT θθ is

thus a mixture of the jumping distribution,),(1−tt
tJ θθ and a point mass at 1−= tt θθ .

The Metropolis-Hastings algorithm generalizes the basic Metropolis algorithm

presented above in two ways. First, the jumping rules tJ need no longer be symmetric;

that is, there is no requirement that)()(abtbat JJ θθθθ ≡ . Second, to correct for the

asymmetry in the jumping rule, the ratio r is replace by a ratio of importance ratios:

)(/)(

)(/)(
*11

1*

θθθ

θθ
−−

−

=
t

t
t

t
t

Jyp

Jyp
r

)()(

)()(
1*1

1

−−

−

⋅

⋅
=

t
t

t

t
t

Jyp

Jyp

θθθ

θθθ

 61

2) The Gibbs sampler

Casella & George (1992) illustrate the Gibbs sampler as a method that effectively

generates a sample)(~,,1 xfXX mK without requiring ()xf . By simulating a large

enough sample, the mean, variance, or any other characteristic of ()xf can be

calculated to the desired degree of accuracy. To understand the working of the Gibbs

sampler, consider the two-variable case. Starting with a pair of random variables

()YX , , the Gibbs sampler generates a sample from ()xf by sampling instead from the

conditional distributions)(yxf and)(xyf . This is done by generating a “Gibbs

sequence” of random variables.

 ///
2

/
2

/
1

/
1

/
0

/
0 ,,,,,,,, kk XYXYXYXY K

The initial value /
0

/
0 yY = is specified, and the rest of the sequence is obtained

iteratively by alternately generating values from

)(~

)(~
///

1

///

jjj

jjj

xXyfY

yYxfX

=

=

+

The distribution of /
kX converges to the true marginal distribution of X as ∞→k .

Thus, for k large enough, the final observation, namely //
kk xX = , is effectively a sample

point from ()xf . The convergence in the distribution of the Gibbs sequence can be

exploited in a variety of ways to obtain an approximate sample from ()xf . For

example, Gelfand and Smith (1990) suggest generating m independent Gibbs sequences

of length k, and then using the final value of /
kX from each sequence, if k is chosen

large enough, this yields an approximate iid sample),,(1 mXX K from ()xf .

Gibbs sampling can be used to estimate the density itself by averaging the final

conditional densities from each Gibb sequence. From the Gibbs sequence, just as the

values //
kk xX = yield a realization of)(~,,1 xfXX mK , the values //

kk yY = yield a

realization of)(~,,1 yfYY mK . Moreover, the average of the conditional densities

)(//
kk yYxf = will be a close approximation to ()xf , and we can estimate ()xf with

m

yxf
xf

m

i
i∑

== 1

)(
)(ˆ

 62

In the three variables case we would like to calculate the marginal distribution f(x) in the

problem with random variables YX , and Z . The Gibbs sampler would sample

iteratively from

),(~

),(~

),(~

/
1

/
1

///
1

/////
1

/////

+++

+

==

==

==

jjjjj

jjjjj

jjjjj

yYxXzfZ

zZxXyfY

zZyYxfX

The iteration scheme as above produces a Gibbs sequence

 ////
2

/
2

/
1

/
1

/
1

/
0

/
0

/
0 ,,,,,,,,,,, kkk XZYZYXZYXZY K

with the property that, for large k, /
k

/
k xX = is effectively a sample point from f(x).

In fact, a defining characteristic of the Gibbs sampler is that it always uses the full set of

univariate conditionals to define the iterative.

On the other hand Carlin & Louis (1996) briefly present, a particular Markov chain

algorithm that has been found useful in many multidimensional problems. This is

alternating conditional sampling, also called the Gibbs sampler, which is defined in

terms of sub-vectors of θ . Suppose the parameter vector θ has been divided in to d

components or sub-vectors, θ),,(d1 θθ= K . Each iteration of the Gibbs sampler cycles

through the sub-vectors of θ , drawing each subset conditional on the value of all the

others. There are thus d steps in iteration t. At each iteration t, an ordering of the d sub-

vectors of θ is chosen and, in turn, each t
jθ is sampled from the conditional distribution

given all the other components of θ :

 t
jp θ(),1 yt

j
−

−θ

where 1−
−
t

jθ represents all the components of θ , except for jθ , at their current values:

 1−
−
t

jθ),,,,,(11
111

−−
+−= t

d
t
j

t
j

t θθθθ KK

Thus, each sub-vector jθ is updated conditional on the latest value of θ for the other

components, which are the iterated t values for components already updated and the

iterated t-1 values for the others.

There is, of course, no fully satisfactory method for drawing simulations in general, but

the following approach is often successful for simulating from posterior distributions in

the hierarchical models that arise in Bayesian statistics.

 63

Step 1. Create an approximate posterior density based on the joint or marginal modes.

Draw a sample from the approximate distribution and use iterative sampling to sample

about 10 draws of the parameter vector. If approximate distributions are multimodal,

several draws are generally needed in the region of each mode that has nontrivial mass.

Step 2. Using these as starting points, run independent parallel sequences of an

iterative simulation such as the Gibbs sampler or Metropolis algorithm.

Step 3. Run the iterative simulation until approximate convergence appears to have

been reached, in the sense that the statistic R̂ is near 1 for each scalar estimand of

interest. This will take hundreds of iterations, at least. Here R̂ is defined below

For each scalar estimand ϕ , we label the draws from J parallel sequences of length n

as ijϕ (i = 1 , 2 , … , n ; j = 1 , 2 , … , j) and we compute B and W, the between and

within-sequence variances :

 B = ∑
=

−
−

J

j
jj

n
1

2
...)(

1
ϕϕ , where ∑

=

=
n

i
ijj n 1

.
1

ϕϕ , ∑
=

=
j

i
jj 1

...
1

ϕϕ

 W = ∑
=

J

j
js

J 1

21 , where ∑
=

−
−

=
n

i
jijj n

s
1

2
.

2)(
1

1
ϕϕ

We can estimate)var(yϕ , the marginal posterior variance of estimand, by a weighted

average of W and B , namely

 B
n

W
n

ny 11)(râv +
−

=+ ϕ and
W

yR)/(râvˆ ϕ+

=

Step 4. If R̂ is near 1 for all scalar estimands of interest, summarize inference about

the posterior distribution by treating the set of all iterates from the second half of the

simulated sequences as an identically distributed sample from the target distribution.

Step 5. Compare the posterior inferences from the Markov chain simulation to the

approximate distribution used to start the simulation. If they are not close with respect

to locations and approximate distribution shape, check for error before believing that the

Markov chain simulation has produced a better answer.

2.3.3 Applied Bayesian approach to infer traffic count on network traffic

Tebaldi & West (1998) study Bayesian inference on network traffic using link count

data. The purpose of their study similar to Vardi’s (1996) work, was to estimate traffic

intensity from source to destination in a network system. The starting point of the study,

 64

and assumptions about symbol and network structures, are the same as Vardi's method.

But traffic intensity estimation is different.

Consider a fixed network of n nodes, arbitrarily labeled A, B, C,… .

Let a = (i ,j) represent the direct route from originating node i to destination node j. If

the direct route has no node between node i and node j , we call it a direct link. There

are c = n(n-1) direct routes, and r direct links in the network. Let aX be the traffic

count on the direct route a. Let s = (i, j) represent direct link from node i to node j ,

and sY be the traffic count on the direct link s.Then based on the observed traffic

counts on direct link , Y = ()/
21 ,,, rYYY K ; we are interested in inferring the traffic

count on direct route, X = ()/
21 ,,, cXXX K . Note that the number of direct links r

is typically smaller than the number of direct routes c. Following Vardi (1996), Y and

X are related through the rxc routing matrix. A =][,asA , where 1, =asA if the direct

link ‘s’ belongs to the direct route ‘a’ through the net work , and

0, =asA otherwise . We have the defining identity:

 AXY = (2.5)

Our goal is to infer X when we know Y . To solve this problem we must compute

and summarize the posterior distribution p ()YX for all route counts X given the

observed link count Y to be tied together with the deterministic expression (2.5) that

implies Y given X .This requires a model for the prior distribution, p ()X .

 ()aa PoissonX λ~ independently over a.

Let the Poisson rate be Λ = { }cλλ ,,1 K . The prior specification is completed by a

prior for Λ, the starting point for analysis is determining a joint model:

 p () =Λ,X ()⋅Λp ()∏
=

−
c

a
aa

X
a Xa

1

!/exp λλ (2.6)

Given the prior (2.6), the observed link count Y is now conditioned to deliver the

required posterior p ()YX Λ, . Naturally, posterior computations are analytically

difficult in any other than trivial and quite unrealistic networks, what is needed are

iterative MCMC (Markov Chain Monte Carlo) simulation methods. Consider in

particular Gibbs sampling, in which we iteratively resample from conditional posteriors

for elements of the X and Λ variables.

 65

First, consider simulation of Λ . We note that

 p () ≡YX ,Λ p () =XΛ ∏
=

c

a 1

p ()aa Xλ

The components consist of the form of the prior density)(ap λ multiplied by the

gamma form arising in the Poisson-based likelihood function. Thus by employing

conditional X , we can easily simulate new Λ values as a set of independent draws

from the implied univariate posterior. If)(ap λ is gamma, or a mixture of gammas,

then these draws are trivially made from the corresponding gamma or mixture gamma

posteriors.

Now we try to simulate X based on the conditional posterior p ()YX ,Λ , viewing Λ

as fixed. Our data Y are in form of linear constraints , AXY = on the route count

vector X , so that conditioning must be performed directly, algebraically, rather than via

the usual application of Bayes’ theorem. On the other hand we do not need to simulate

iX for i = 1, 2, …, c , but only simulate iX for i = r+1, r+2, …, c via the usual

application of Bayes’ theorem then directly evaluate iX for i = 1, 2, …, r based on

algebra . The following result, which is simply an algebraic deduction from the network

structure and defined relation (2.5) among the traffic counts, is the key to ensuring

inferential development.

Tebaldi & West (1998) prove that, in the network model AXY = , if A is of full rank r.

then we can reorder the columns of A so that the revised routing matrix has the form

],[21 AAA = (2.7)

where 1A is a nonsingular rxr matrix. Also, similarly reordering the elements of the X

vector and conformably partitioning as],[/
2

/
1

/ XXX = it follows that

 ()22
1

11 XAYAX −= − (2.8)

From the result of the theorem, the posterior p ()YX ,Λ is concentrated in a subspace

of dimension c-r defined by the partition (2.7) of the routing matrix. Having reordered

the column of A to the form (2.7), this posterior has the form

 p ()YX ,Λ = p ()YXX ,,21 Λ p ()YX ,2 Λ

where p ()YXX ,,21 Λ is degenerate at ()22
1

11 XAYAX −= − and with

 2X = /
1),,(cr XX K+

 66

 1X = /
1),,(rXX K are defined as earlier

 and p ()∝YX ,2 Λ ∏
=

c

a a

X
a

X

a

1 !
λ

 (2.9)

which is over the support defined by aX 0≥ for a = 1, 2, c,K . This is simply the

expression of product of independent Poisson priors for the iX constrained by the

identity (2.5) rewritten in the form (2.8). The utility of this expression is in delivering

the set of complete conditional posteriors for elements of the 2X vector to form part of

the iterative simulation approach to posterior analysis. Consider each elements Xi of

2X (i = r+1 ,…,c) and write iX −,2 for the remaining elements. Then, simply by

inspection of (9) we see that the conditional distribution p iX(),,,2 YX i Λ− is

 p iX(),,,2 YX i Λ− ∝ ∏
=

r

a a

X
a

i

X
i

XX

ai

1 !!
λλ

 (2.10)

That is over the support defined by 0≥iX and 0≥aX for each a = r+1 , …, c; this

holds for each i = r+1, .c,K

Identifying the support of (2.10) requires the study of the linear constraints on Xi

defined by aX 0≥ for all elements Xa of ()22
1

11 XAYAX −= − . Given i in

r+1,…,c, this implies a set of linear constraints as functions of the conditioning values

of iX −,2 and Y . The resulting constraints are the form of ii dX ≥ or ii eX ≤ ,where

the values id and ie are functions of the conditioning value of iX −,2 and Y . Hence,

together with 0≥iX , we obtain a set of at most r+1 constraints on iX . By directly

evaluating these constraints and identifying their intersection, we may deduce the range

of iX over which (2.10) is nonzero, and hence we identify the unnormalized

conditional posterior distribution.

Iterative simulation of full posterior p ()YX Λ, is now enabled as follow:

Step 1. Fix starting values of the route counts X

Step 2. Draw sample value of the rate Λ = { }cλλ ,,1 K from c conditionally

independent posterior distributions

 p () ≡YX ,Λ p () =XΛ ∏
=

c

a 1

p ()aa Xλ

where p ()aa Xλ is gamma distributions that for aλ having shape parameter 1+aX and

scale parameter 1

 67

Step 3. Condition these values of Λ , simulate a new X vector by sequencing through

i = r+1, r+2, … , c ., and at each step sample a new Xi from

 p iX(),,,2 YX i Λ− ∝ ∏
=

r

a a

X
a

i

X
i

XX

ai

1 !!
λλ

with conditioning elements iX −,2 set at their most recent sampled values.

Step 4. Reevaluate each step 1X based upon step 3 as follow:

 ()22
1

11 XAYAX −= − as a function of most recently sampled elements of 2X

Step 5. Return to step 2 and iterate.

The sampling step in step 3 appears to require evaluation of the support (10). Sampling

may be performed directly, treating (10) as a simple multinomial distribution on this

relevant range. Indirect but very much more efficient simulation methods are based on

embedding Metropolis-Hastings steps within the Gibbs sampling framework. Here the

candidate value of the iX is generated at each stage from suitable proposed

distributions such the uniform distribution, and accepted or rejected according to the

usual Metropolis-Hastings acceptance probabilities. Specifically, we assume a specified

and fixed proposal distribution with probability mass function)(ii Xq for each element

Xi in step 3 . A candidate value *
iX is drawn from)(⋅iq and accepted with probability

 







)()(
)()(

,1min *

*

iiii

iiii

XqXp
XqXp

where iX is the current, most recently sampled value and)(⋅ip is the unnormalized

conditional posterior in equation (2.10). From the structure of network equations in

(2.5), it is possible to identify bounds on each iX so that a suitable range for the

proposal distribution can be computed. For element aX given aX −,2 , aX of 2X ,

aX = 0 is a gross lower bound whatever the values in X2,-a . For an upper bound,









−≤ ∑
≠aj

jijiia XAYX min , where the index i run over the set of links whose counts

include aX ; that is, those links i for 1=ijA . Then, based on the specified bounds, the

implied vector 1X is recomputed and checked for feasibility; that is, nonnegative value.

If any element of 1X is negative, the trial value of aX is either incremented, in

searching for the lower bound on its range, or decremented, in searching for the upper

 68

bound. This process terminates and delivers the resulting bounds once the 1X vector

has r nonnegative entries.

2.4 The traffic intensities estimation based on a mixture of

 maximum likelihood and Bayesian inference

This section proposes a new method to estimate traffic intensities. The method uses

maximum likelihood estimation to estimate the parameters, the mean population of

traffic intensity on direct routes. Then let the estimators and the observed count on

direct links to infer the unobserved traffic count on direct routes bases on Bayesian

inference.

Let traffic count notation following Vardi (1997), be as follows:

 λ : mean population vector on direct route.

 λ =],...,,[21 cλλλ

 X : Traffic intensities vector on direct route.

 X = ()cXXX ,,, 21 K , ()ii PoissonX λ~

 Y : Traffic intensities vector on direct link.

 Y ()rYYY ,,, 21 K=

 A : Routing matrix.

 ()kY : Traffic intensities vector on direct link at measurement period K.

 ()kY () () ()()k
r

kk YYY ,,, 21 K=

 Y ()rYYY ,,, 21 K=

 iY
K

Y
K

k

k
i∑

== 1

)(

The equation that presents the relation between X and Y is:

 AXY =

Expected value of the equation is λAY =

The canonical form of the EM iteration for solving the equation is

 jλ ←
∑

=

r

i
ij

j

a
1

λ
∑

∑=

=

r

i
c

k
kik

iij

a

Ya

1

1

λ
 cj ,,2,1; K=

 69

Our goal is to infer X given λ and Y based on the posterior distribution of X given

λ and Y , p ()yx ,λ . Here π is the prior distribution function of X .

Consider; p ()yx ,λ ∝ f ()xy,λ π ()x

 = 2f ()xy 1f ()xλ π ()x

 ∝ 2f ()xy p ()λx

where 2f ()xy is degenerate at AXY = and

 p ()λx α ∏
=

c

i i

x
i

x

i

1 !
λ

In conclusion, the mixed method to infer X given Y and λ is firstly to estimate λ

based on EM iteration. Then use Marcov Chain simulation and the Gibb sampling

algorithm to obtain X from p ()λx . Finally evaluate Y by the equation

 AXY =

Iterative simulation of full posterior p ()yx ,λ adapted from Vardi (1996) and

Tebaldi&West (1998) is now possible as follow:

 Step 1 Let λ =],...,,[21 cλλλ be the daily transmission rate

 Step 2 Generate daily data on direct links for day K

 ()1Y = () () ()()11
2

1
1 ,,, rYYY K

 ()2Y = () () ()()22
2

2
1 ,,, rYYY K

 ()3Y = () () ()()33
2

3
1 ,,, rYYY K

 M

 ()KY = () () ()()K
r

KK YYY ,,, 21 K

 Calculate iY
K

Y
K

k

k
i∑

== 1

)(

 Step 3 Estimate λ̂)ˆ,...,ˆ,ˆ(21 cλλλ= based on applied algorithm

 ←jλ
∑

=

r

i
ij

j

a
1

λ
∑

∑=

=

r

i
c

k
kik

iij

a

Ya

1

1

λ
 cj ,,2,1; K=

 Step 4 Go to step 2 to estimate λ̂ m times so we derive

)()2()1(ˆ,...,ˆ,ˆ mλλλ

 70

 Step 5 Calculate mean vector
m

m

k

k∑
== 1

)(ˆ
ˆ

λ
λ

 Step 6 Draw starting values of the route counts X from the Poisson distribution

with the parameter from step 5

 Step 7 Draw sample value of rate λ),...,,(21 cλλλ= from c conditionally

independent posterior distribution

 p ()xλ = ∏
=

c

i
ii xp

1

)(λ

where)(ii xp λ is gamma distribution with shape parameter 1+ix and scale parameter 1

 Step 8 Conditioning on these value of λ simulate new X vector by sequencing

through i = 1,2,…,c. and at each step sampling new iX from

 p () ∝λix ∏
=

c

a a

x
a

i

i

xx

a

1 !!
λλ

 Step 9 Base on step 8 at each step Y is evaluated via

 AXY =
 Step 10 Return to step 7 and iterate.

2.5 Queuing system theory

Gorney (1979) is a useful source for queuing for giving theory terminology. There are

four general types of queue: single facility single queue systems, single queue multi

facility systems, multi queue single facility systems and multi queue multi facility

systems. Ament (1980) applies queuing theory to bank service to the benefits of both

bank customers and personnel. The benefits consist of decreased customer throughput

time, better use of all existing equipment, improved customer relations, and reduction

of teller numbers. Ross & Shanthikumar (2005) study a modem bank with two streams

of arriving customers. Drekic & Woolford (2005) analyze a singer-server preemptive

priority queuing model with low priority balking customers. Fakinos (1982) provides

the limiting probability distribution for the number of customers waiting in single server

queue and for customers arrival.

Zhu & Zhang (2004) consider a queue model with two types of customers that consist

of positive and negative customers. The management of supply chains and

 71

manufacturing systems is an important issue. Liu, Liu, & Yao (2004) look at of the

inventory cost. Queuing theory is used to develop an efficient procedure to minimize

the overall inventory. Kerbache & Smith (2004) develop a queuing system for the

supply chain in manufacturing firms. The study shows that the approach is a very useful

tool to analyze congestion problems and to evaluate the performance of the network.

Yang, Lee, Chen & Chen (2005) propose a queuing network model for machine time

interference. Sarkar & Zangwill (1992) study a cyclic queue system that has one server

and n nodes, where each node has its own distinct type of customers that arrive from the

outside. The study extends to permit special nodes.

Aquilar-Iqartua, Postiqo-Boix, & Garcia-Haro (2002) apply queuing theory to a high

speed network. Brown, Gans, Mandelbaum & Sakov (2005) develop queuing for a call

center in which agents provide telephone-based services, to decease delay in telephone

queues.

Cruz, MacGreqor & Queiroz (2005) analyze queuing and develop algorithms to

compute the optimal capacity allocation in a service system. Halachmi (1978) utilizes

the technique of embedded Markov chains for queuing systems.

Chen (2004) develops performance measures in finite capacity queuing by using fuzzy

logic that is widely used in finite capacity queuing models. Maqlaras & Mieqhem

(2005) present an approach based on a fluid-model to control a multi product queuing

system. The benefit of the approach is construction of scheduling and multi-product

admission policies for lead time control. Takine (2005) applies a continuous-time

Markov chain for single server queues with several customer classes.

Das & Levinson (2004) use queuing analysis to treat traffic flow parameters such as

flow, density and speed. Their study area is on Interstate 94 in the Minneapolis St. Paul

metro. In addition Omari, Masaeid & Shawabkah (2004)

develop a delay model based on data selection that comes from different cities in

Jordan. The study show that the random arrivals, random services, and a single service

channel queuing delay model (M/M/1) is also validated using the field delay data, and it

was found that it estimates delay with high variability, especially for high delay ranges.

Fu, Hu, & Naqi (1995) apply two techniques, perturbation analysis and the likelihood

ratio method, to a single queue system with non identical multiple servers in a traffic

system. Rolls, Michailidis, & Hernandez-Campos (2005) apply several queuing metrics

 72

to provide a network traffic trace through trace-driven queuing. Cheng & Allam (1992)

present knowledge of the delay and queuing processes of vehicles that pass along minor

road to deliver timing that is suitable for traffic flow for traffic controlled

intersections. Cruz, Smith & Medeiros (2005) develops a discrete-event digital

simulation model to study performance of queuing in traffic flow. The study shows that

the simulation model is an effective and insightful tool. Mahmoud & Araby (1999)

develop a dynamic macroscopic traffic simulation model to respond to high-density and

low-density traffic flows. Dewees (1979) develop a traffic simulation model to produce

new estimates of congestion costs on specific streets during the morning rush hour. Ellis

& Durgee (1982) present an engineering approach for Voice network designers to

decide whether queuing or route-advance or forcing user retrials are appropriate

selections for a particular network. Nam & Drew (1998) use the principle of traffic

dynamic analyze freeway traffic flows. They use the fundamental concept of

conservation to analysis queuing and discharging mechanisms.

Kleinrock (1976) presents the essence of queuing theory as of the characterization of the

arrival time, the service time and the evaluation of their effect on queuing phenomena .

Additionally, Vivanichkool (1995) extends the knowledge of queuing using a queuing

system consisting of: customers who are waiting in queue and customers who are

receiving service. The number of elements at any time in the system are the number of

customers in the queue plus the number of customers being serviced. The characteristics

of queue models are : interarrival time distribution, service time distribution, number of

servers, service regulation and maximum elements that the system permits.

2.5.1 Notation in queuing

The important notation used in the queuing system are as follows:

 n : the number of elements in the system,

)(tpn : probability that the transient system has n elements at time t based

 on the assumption that the system starts at t = 0,

 np : probability that the steady system has n elements,

 λ : rate of arrival, number of elements that arrive at the system per

 unit of time,

 73

 µ : rate of departure, number of elements that depart the system per a

 unit of time,

 C : number of servers,

 ρ : utilization factor ,
µ
λ

ρ = , 10 <≤ ρ

C
ρ : utility factor of C servers,

 ()tW : probability density distribution function (pdf) for wait time,

 sW : wait time for an element in the system,

 qW : wait time for an element in the queue,

 sL : expected number of elements in the system, and

 qL : expected number of element in the queue.

The relation between sqs LWW ,, and qL can be shown by equations as:

 sL = SWλ ,

 qL = qWλ ,

 qW =
µ
1

−sW ,

 qWλ =
µ
λ

λ −sW ,

 qL = ρ−sL .

2.5.2 Arrival distribution

Based on the assumption that the arrival rate is λ per a unit of time and that there are

no elements in the system at time 0=t , the probabilities ()tpn and ()htpn + , the

probable change of the system between time t and t+h falls in to two cases as follows:

 Case 1. For 0>n , there are n elements in the system at ht + if ,

 a) there are n elements at time t and no element arrives in length

 h or,

 b) there are 1−n elements at time t and there is one element arriving

 in length h.

 Case 2. For 0=n , there are no elements at time t and time t+h and there are

 74

 no elements in length h.

 Based on the two cases equations are derived as follows:

 0)()1)(()(1 >+−≅+ − nforhtphtphtp nnn λλ

)1)(()(00 htphtp λ−≅+

 So)()(
)()(

1 tptp
h

tphtp
nn

nn
−+−≅

−+
λλ

 and)(
)()(

0
00 tp

h
tphtp

λ−≅
−+

 Let limit h trend to 0

)()(
)()(

lim 10
tptp

h
tphtp

nn
nn

h −→
+−=

−+
λλ

)(
)()(

lim 0
00

0
tp

h
tphtp

h
λ−=

−+
→

that is)()()(1 tptptp
dt
d

nnn −+−= λλ

 and)()(00 tptp
dt
d

λ−=

∴
!

)()(
n

ettp
tn

n

λλ −

= K,2,1,0=n

The proof above illustrates that the arrival distribution is the Poisson distribution with

mean tλ and variance tλ .

2.5.3 Interarrival time distribution

Interarrival time is the interval time between two sequent arrivals. Let the arrival

distribution be a Poisson distribution. Interarrival time distribution will be considered as

follows:

 Let ()tf , 0>t be inter-arrival time distribution function, and

 ()tF be cumulative distribution function of ()tf , so

 ∫= µµ dftF)()(

No element arrives in interval (0,t); this means that the inter-arrival time is longer than t,

that is

 ∫
∞

=
t

duuftp)()(0

 75

 = 1 - ∫
t

df
0

)(µµ

 = 1 – ()tF

 tetp λ−=)(0Q

)(1 tFe t −=∴ −λ

Differentiating ()tF by t , derive ()tf as follows:

 ()xf =




≤
>−

00
0

t
te tλλ

The proof above illustrates that the interarrival time distribution is exponential with

mean
λ
1 and variance 2

1
λ

2.5.4 Departure distribution

Based on the assumption that: there are N element in the system at time 0=t and

there are no element arrival at the system, rate of departure is µ per a unit of time.

Probability of no element departing the system is equal to hµ−1 , so

)1)(()(htphtp nn µ−≅+ ; Nn =

 htphtphp nnn µµ)()1)(()1(1++−≅+ ; Nn <<0

 htptphp µ)(1)()1(100 +⋅≅+ ; 0=n

)(
)()(

lim
0

tp
h

tphtp
n

nn

h
µ−=

−+
→

 ; Nn =

)()(
)()(

lim 10
tptp

h
tphtp

nn
nn

h +→
+−=

−+
µµ ; Nn <<0

)(
)()(

lim 0
00

0
tp

h
tphtp

h
µ−=

−+
→

 ; 0=n

 So)()(tptp
dt
d

nn µ−= ; Nn =

)()()(1 tptptp
dt
d

nnn ++−= µµ ; Nn <<0

)()(10 tptp
dt
d

µ−= ; 0=n

The result from the equations above are as follows:

 76

)!(

)()(
nN
ettp

tnN

n −
=

−− µµ ; Nn ,,2,1 K=

 ∑
=

−=
N

n
n tptp

1
0)(1)(

This illustrates that the departure distribution is a truncated Poisson distribution.

2.5.5 Service time distribution

Let ()tg be the probability distribution function of service time, notice that probability

of no service in interval time, ()T,0 will equal the probability of no element departing

the system at the same time, so

 P (service time Tt >) = P(no element depart system between T)

or ∫ −==−
T

T
N eTPdttg

0

)()(1 µ

Therefore ∫ −−=
T

Tedttg
0

1)(µ

Differentiation of both two sides of equation gives:





≤
>

=
−

00
0

)(
t

te
tg

utµ

This illustrates that the service time distribution is exponential with mean
µ
1 and

variance 2

1
µ

.

2.5.6 Queuing model

Let A/B/S denote the queuing model that consists of S servers, interarrival time

distribution A and service time distribution B. Particular choices of A and B are as

follows:

 M : Exponential distribution,

 Er : r-stage Erlangian distribution,

 HR : R-stage Hyperexponential distribution,

 D : Deterministic distribution, and

 G : General

 77

An important queuing model is described in the next section.

1) The M/M/1 Queue

The characteristic of this model are :

1) Interarrival time distribution is exponential ;

2) Service time distribution is exponential ;

3) There is only one server;

4) Service regulation is first come, first served; and

5) Indefinite number of elements.

Probability of n>0 in the system at time t+h is approximated by the summation of

probabilities as follows:

1) The probability of n elements in the system at time t, and no element arrival,

and no element departing in length h, is approximated by

 { })1)(1()(hhtpn µλ −−

2) The probability of n elements in the system at time t, and no element arrival,

and one element departing in length h, is approximated by

 { }))(()(hhtpn µλ

3) The probability of n-1 elements in the system at time t, and one element

arrival, and no element departing in length h, is approximated by,

 { })1)(()(1 hhtpn µλ −−

4) The probability of n+1 elements in the system at time t, and no element arrival,

and one element departing in length h, is approximated by,

))(1)((1 hhtpn µλ−+

So ≅+)(htpn { })1)(1()(hhtpn µλ −− + { }))(()(hhtpn µλ + { }))(()(hhtpn µλ +

 { })1)(()(1 hhtpn µλ −−

Since h2 converges to zero,

 { }))(())((1)()(11 htphtphhtphtp nnnn µλµλ +− ++−−≅+

In the same way when n = 0

 { }))(()1)(()1)()((1)1()()(10100 htphtphhtphtphtp µλλµλ +−=−+⋅−≅+

)()()()(
)()(

lim 110
tptptp

h
tphtp

nnn
nn

h
µλµλ +−+=

−+
+−→

 ; 0>n

)()(
)()(

lim 10
00

0
tptp

h
tphtp

h
µλ +−=

−+
→

 ; 0=n

 78

 So)(tp
dt
d

n)()()()(11 tptptp nnn µλµλ +−+= +−

)()()(100 tptptp
dt
d

µλ +−=

For steady system, ∞→t when µλ < , that is

 1<=
µ
λ

ρ

When nnn ptpandtp
dt
dt →→∞→)(0)(, , K,2,1,0=n

 010 =+− pp µλ ; 0=n

 0)(11 =+−+ +− nnn ppp µλµλ ; 0>n

The difference equation results in the target distribution as follows:

 n
np ρρ)1(−= ; K,2,1,0=n

The distribution is a geometric distribution with mean and variance as follows:

 ()nE =
ρ

ρ
−1

 ()nVar = 2)1(ρ
ρ

−

The geometric mean illustrates the important characteristic of queuing system as

follows:

ρ

ρ
−

==
1

)(nELS

ρ

ρ
µ
λ

−
=−=

1

2

Sq LL

)1(

1
ρµλ −

== S
S

L
W

)1(ρµ

ρ
λ −

== q
q

L
W

µ
λ

−= 10P

n

n PP 







=

µ
λ

0

 79

2) The M/G/1 Queue

The characteristic of this model is composed of :

1) Interarrival time distribution which is Exponential distribution;

2) Service time distribution that is general distribution;

3) Only one capacity;

4) Service regulation which is first come, first served; and

5) Indefinite number of element.

In this case we need to know mean and variance of departing distribution, assume that

the mean is equal µ , the variance is equal 2σ . Mean of service time is equal
µ
1 and

variance of service time is equal 2σ . The important characteristic of queue system is as

follows:

 1<=
µ
λ

ρ

 ρ−= 10P

)1(2

222

ρ
ρρλ

−
+

=qL

λ

q
q

L
W =

µ
1

+= qq WW

3) The M/M/S Queue

The characteristic of this model is composed of :

1) Interarrival distribution which is Exponential distribution;

2) Service time distribution which is Exponential distribution with mean

µ
1 ;

3) m servers;

4) Service regulation which is first come, first served; and

5) Indefinite number of element.

 80

Assume that there are S service capacities, and each capacity has one server. Service

rate of each capacity is equal µ , so the mean of all capacities is equal µµ nn = when

Sn ≤ , if Sn ≥ and all capacities are maximum service, µ=µ Sn and λλ =n .





≥
≤≤

=
SnS

Snn
n µ

µ
µ

0

 K,2,1,0=n

Since µλ S> , so means of arrival rate is less than the maximum of service rate.

 0P =

∑
−

= −
⋅










+








1

0 1

1
!!

1

S

n

Sn

S
Sn

µ
λ

µ
λ

µ
λ

 nP =















≥⋅









≤≤⋅









−
SnP

SS

SnP
n

Sn

n

,
!

0,
!

0

0

µ
λ

µ
λ

Sµ

λ
ρ =

 qL = 2

0

)1(! ρ

ρ
µ
λ

−










S

P
S

 qW =
λ

qL

 sW =
µ
1

+qW

 sL =
µ
λ

µ
λ +=+ qq LW)1(

4) G/G/1 for The heavy –traffic approximation

Kleinrock (1976) applied the G/G/1 queue for the heavy-traffic approximation when

1≅ρ . The wait time distribution is an approximation exponential distribution with the

mean given as follows:

 81

()

()tW

ytyW

ba

ba

ρ
σσ

σσ
ρ

−
+

≅









⋅

+
−

−−≅

12

)1(2exp1)(

22

22

where ,1;
λµ

λ
ρ == t

 2
aσ : variance of interarrival time; and

 2
bσ : variance of service time

2.6 Queuing generation

Consider a queuing system (Banks, Carson, Nelsun, &Nicol ,2001) over a period of

time T , and ()tL denote the number of customers in the system at time t.

 Let iT denote the total time during []T,0 in which the system contained

 exactly i customers.

We can estimate the number of customers in the system over a period of time T at any

time t by L̂ , the time-weighted-average number.

T

iT
L i

i∑
∞

== 1ˆ

Since the total area under the function ()tL can be decomposed into rectangles of height

i and length iT

 ∫=
T

dttL
T

L
0

)(1ˆ

 L→ as ∞→T

Here L is the long-run time-average number in the system.

 ()tLQ denotes the number of customers waiting in line(queue)

 Q
iT denotes the total time during []T,0 in which exactly i customers are

 waiting in the queue.

We can estimate the number of customers waiting in the queue from time 0 to time T

by QL̂ , the observed time-average number of customers waiting in the queue as

follows:

 82

 ∑
∞

=

=
0

ˆ
i

Q
iQ iTL

 = dttL
T

T

Q)(1

0
∫

 QL→ as ∞→T

Here QL is the long-run time-average number of customers waiting in the queue.

In queuing simulation over a period of time T , we can record iW , the wait time that

customer i spends in the system during []T,0 , for Ni ,,2,1 K= . The average time spent

in the system per customer is called the average system time. The formula to compute

average system time is given by :

 Ŵ =
N

W
N

i
i∑

=1

For a stable system, as ∞→N

 WW →ˆ

Here W is called the long-run average system time.

In addition, we specially consider the time that customer i spends in the queue. Let Q
iW

denote the total time that customer i spends waiting in the queue. We can compute the

observed average time is spent in the queue (called delay) by the formula:

N

W
W

N

i

Q
i

Q

∑
== 1ˆ

 QW→ , as ∞→N

Here QW is the long-run average per customer.

2.7 The evaluation function

The evaluation of the effectiveness of the traffic control at the intersection is generally

based on the delay or wait time which is known as the ‘wait mean’. It is obtained by the

calculation of the combined time of each car spent on its wait time at the red light

divided by the total number waiting cars. As a consequence, the longer the wait mean

the less effective is the traffic control. However, wait mean should not be the only

indicator to judge the effectiveness of the traffic control; the number of cars moving in

 83

and out of the intersection including drive mean should also be taken into account to

evaluate the effectiveness. This is supported by the model of Kelsey & Bisset (1993)

presenting a cost function that consist of such factors to evaluate traffic flow

performance. The value of the function will be used to evaluate the performance of

traffic flow under fuzzy controller against the conventional controller. The lower the

cost function the better the performance.

 Cost =

mean
in

out

mean

Drive
Car
Car
Wait









⋅100

Waitmean : The average waiting time in seconds that all cars spend behind the

 red light.

Drivemean : The average time in seconds that all cars spend behind the green light.

Carout : The number of cars that are exiting the intersection.

Carin : The number of cars that are entering the intersection.

 84

Chapter 3

Research Methodology

3.1 The conceptual research

To calculate the optimal length of the traffic signal on each phase of the cycle, firstly we

need to estimate traffic intensity that arrives and departs at the intersections and the

length of the current cycle time based on statistical methods. These estimators are crisp

inputs for fuzzy logic control. Then crisp outputs are produced by using the process of

fuzzy logic control. The crisp output is the degree of traffic signal change for each

phase. Finally the optimal length of traffic signal is the period of time between the

connective change points. This concept can be conceptualized as shown below:

 Figure 3.1 Conceptual map(Adapted from Wang, 1994, p. 6)

 Traffic estimator
- arrival of cars
- departure of cars
- current time

Fuzzy Rule
Base

Fuzzy
Inference

Engine

Defuzzifier

Degree of change
on each phase

 Fuzzy sets in U

Fuzzy sets in V

Fuzzy system

x in U

y in V

Fuzzifier

 85

3.2 The input process methodology

There are three important inputs consisting of: the number of cars passing the green

light, the number of cars stopping behind the red light and length of the current cycle

time. To estimate the value of these inputs, we need to study traffic at the actual

intersections, and use statistical methods to estimate the number of cars and the length

of current cycle time.

3.2.1 Traffic control at actual intersections studied

1) Traffic network studied

The optimal traffic signal light time was studied at four important intersections in the

inner city of Ubon Rachathani Province consisting of : Uboncharearnsri , Clock Hall,

Chonlaprathan , and Airport intersections. The network diagram representing the four

intersections is shown as Figure 3.2

 86

 H I

 G B C

 A D

 E

 F

 Figure 3.2 Diagram of traffic network consisting of the four intersections A, B, C

 and D with car flow from E, F,G, H and I

 87

According to Vardi’s notation (1996), there are 72 source-destination pairs (SD), made

up of 54 direct routes and 18 direct links.

 The 54 direct routes are as follows;

CDAAC →→≡ EDAAE →→≡ GBAAG →→≡

HBAAH →→≡ ICDAAI →→→≡ ABCCA →→≡

ADEEA →→≡ ABGGA →→≡ ABHHA →→≡

ADCIIA →→→≡ DCBED →→≡ EDCBBE →→→≡

FABBF →→≡ ICBBI →→≡ BADDB →→≡

BADEEB →→→≡ BAFFB →→≡ BCIIB →→≡

EDCCE →→≡ FABCCF →→→≡ GBCCG →→≡

HBCCH →→≡ CDEEC →→≡ CDAFFC →→→≡

CBGGC →→≡ CBHHC →→≡ FADDF →→≡

GBCDDG →→→≡ HBCDDH →→→≡ ICDDI →→≡

DAFFD →→≡ DCBGGD →→→≡ DABHHD →→→≡

DCIID →→≡ FADEEF →→→≡ GBAFFG →→→≡

EDCIIE →→→≡ HBAFFH →→→≡ FABGGF →→→≡

FABHHF →→→≡ FADCIIF →→→→≡ HBGGH →→≡

ICBGGI →→→≡ GBHHG →→≡ GBCIIG →→→≡

ICBHHI →→→≡ HBCIIH →→→≡ EDAFFE →→→≡

 ICDEEI →→→≡

 HBADEEH →→→→≡

 EDCBGGE →→→→≡

 EDCBHHE →→→→≡

 ICDAFFI →→→→≡

 GBADEEG →→→→≡

 88

 The 18 direct links are as follows:

BAAB →≡ ABBA →≡ CBBC →≡

BCCB →≡ DCCD →≡ CDDC →≡

DAAD →≡ ADDA →≡ FAAF →≡

AFFA →≡ EDDE →≡ DEED →≡

ICCI →≡ CIIC →≡ HBBH →≡

BHHB →≡ GBBG →≡ BGGB →≡

2) Flow phase of each intersection studied

Flow phase refers to the time length of the green lights which allows the cars to directly

move toward their targeted directions. The phase is in fact counted from the end of the

red light and the start of the ember light. This means that phase stands between the red

and the ember light. Each intersection has different phase form.

The next subsection will present the phase at each intersection by a diagram.

 Let represent cars that pass the green light

 represent cars that stop behind the red light

The diagrams presenting the phases at each intersection are as follows:

 89

2.1) The form of flow phase at Uboncharearnsri intersection

There are three phases at Uboncharearnsri intersection.

Figure 3.3 Diagram to present the flow phases at Uboncharearnsri intersection.

PHASE 2

PHASE 1

PHASE 3

 90

2.2) The form of flow phases at Clock Hall intersection

There are three phases at Clock Hall intersection.

 Figure 3.4 Diagram to present the flow phases at Clock Hall intersection.

PHASE 1 PHASE 2

PHASE 3

 91

2.3) The form of the flow phases at Chonraprathan intersection

There are three phases at Chonraprathan intersection.

Figure 3.5 Diagram to presenting the flow phases at Chonlaprathan intersection

PHASE 1

PHASE 2

PHASE 3

 92

2.3) The form of the flow phases at Airport intersection

There are four phases at Airport intersection :

Figure 3.6 Diagram to present the flow phases at Airport intersection

PHASE 1

PHASE 2

PHASE 3

PHASE 4

 93

3.2.2 Traffic estimation by using mix models

This section presents the statistical method used to estimate the number of cars that

depart from an intersection to other intersections according to a mixture of maximum

likelihood estimation and Bayesian inference. This section also explains the method

used to compute the length of current cycle time.

3.2.2.1 Notation used

Let Xj denote the route count belonging to a direct route , or the number of cars that

depart from specified sources to destination, for j = 1, 2, 3, …, 72 . The details of each

Xj are as follows:

 X1 : the number of cars from source A to destination B

 X2 : the number of cars from source A to destination C

 X3 : the number of cars from source A to destination D

 X4 : the number of cars from source A to destination E

 X5 : the number of cars from source A to destination F

 X6 : the number of cars from source A to destination G

 X7 : the number of cars from source A to destination H

 X8 : the number of cars from source A to destination I

 X9 : the number of cars from source B to destination A

 X10 : the number of cars from source C to destination A

 X11 : the number of cars from source D to destination A

 X12 : the number of cars from source E to destination A

 X13 : the number of cars from source F to destination A

 X14 : the number of cars from source G to destination A

 X15 : the number of cars from source H to destination A

 X16 : the number of cars from source I to destination A

 X17 : the number of cars from source B to destination C

 X18 : the number of cars from source B to destination D

 X19 : the number of cars from source B to destination E

 X20 : the number of cars from source B to destination F

 X21 : the number of cars from source B to destination G

 X22 : the number of cars from source B to destination H

 X23 : the number of cars from source B to destination I

 94

 X24 : the number of cars from source C to destination B

 X25 : the number of cars from source D to destination B

 X26 : the number of cars from source E to destination B

 X27 : the number of cars from source F to destination B

 X28 : the number of cars from source G to destination B

 X29 : the number of cars from source H to destination B

 X30 : the number of cars from source I to destination B

 X31 : the number of cars from source C to destination D

 X32 : the number of cars from source C to destination B

 X33 : the number of cars from source C to destination F

 X34 : the number of cars from source C to destination G

 X35 : the number of cars from source C to destination H

 X36 : the number of cars from source C to destination I

 X37 : the number of cars from source D to destination C

 X38 : the number of cars from source E to destination C

 X39 : the number of cars from source F to destination C

 X40 : the number of cars from source G to destination C

 X41 : the number of cars from source H to destination C

 X42 : the number of cars from source I to destination C

 X43 : the number of cars from source D to destination E

 X44 : the number of cars from source D to destination F

 X45 : the number of cars from source D to destination G

 X46 : the number of cars from source D to destination H

 X47 : the number of cars from source D to destination I

 X48 : the number of cars from source E to destination D

 X49 : the number of cars from source F to destination D

 X50 : the number of cars from source G to destination D

 X51 : the number of cars from source H to destination D

 X52 : the number of cars from source I to destination D

 X53 : the number of cars from source E to destination F

 X54 : the number of cars from source G to destination E

 X55 : the number of cars from source H to destination E

 X56 : the number of cars from source I to destination E

 X57 : the number of cars from source F to destination G

 X58 : the number of cars from source F to destination H

 95

 X59 : the number of cars from source F to destination I

 X60 : the number of cars from source G to destination F

 X61 : the number of cars from source H to destination F

 X62 : the number of cars from source I to destination F

 X63 : the number of cars from source G to destination H

 X64 : the number of cars from source G to destination I

 X65 : the number of cars from source H to destination G

 X66 : the number of cars from source I to destination G

 X67 : the number of cars from source H to destination I

 X68 : the number of cars from source I to destination H

 X69 : the number of cars from source E to destination G

 X70 : the number of cars from source E to destination H

 X71 : the number of cars from source E to destination I

 X72 : the number of cars from source F to destination E

Let X denote the direct route count matrix, X is the row matrix with dimension

1X72 as follows:

 =X []7221 ,,, XXX K

Let Yi denote the route count corresponding to direct link, or the number of cars that

depart from the source to destination, for i = 1, 2, 3, …, 18 . The details of each Yi

are as follows:

 Y1 : the number of cars from source A to destination B

 Y2 : the number of cars from source B to destination A

 Y3 : the number of cars from source B to destination C

 Y4 : the number of cars from source C to destination B

 Y5 : the number of cars from source C to destination D

 Y6 : the number of cars from source D to destination C

 Y7 : the number of cars from source A to destination D

 Y8 : the number of cars from source D to destination A

 Y9 : the number of cars from source A to destination F

 Y10 : the number of cars from source F to destination A

 Y11 : the number of cars from source D to destination E

 Y12 : the number of cars from source E to destination D

 Y13 : the number of cars from source C to destination I

 96

 Y14 : the number of cars from source I to destination C

 Y15 : the number of cars from source B to destination H

 Y16 : the number of cars from source H to destination B

 Y17 : the number of cars from source B to destination G

 Y18 : the number of cars from source G to destination B

Let Y denote the direct link count matrix, Y is the row matrix with dimension 1X18 as

follows:

 =Y []1821 ,,, YYY K

 Let jλ denote the population mean of the number of cars that depart from

source to destination, for j = 1, 2, 3, …, 72 .

 Let λ denote the population mean route count matrix with dimension

721× as follows

 λ =],,,[7221 λλλ K

3.2.2.2 Estimation of route count mean based on the EM

This section presents the statistical method to estimate the route count mean based on

the EM algorithm. Observe Yi at period k in the actual situation, and

Let ()k
jX denote the number of cars for direct route j at measurement period k . We

assume that

 ()k
jX ~ Poisson (jµ) ; 72,2,1 K=j . Kk ,,2,1 K= is independent.

 ()kX is the number of cars in vector form for direct route.

 () =kX () () ()[]/
7221 ,,, kkk XXX K

 ()k
iY is the number of cars that are observed from direct link i

 at measurement period k.

 ()kY is the number of cars in vector form for direct links.

 ()kY = () () ()[]/
1821 ,,, kkk YYY K

Let A denote the 18x72 routing matrix for this network. The matrix A is a zero-one

matrix whose rows correspond to the direct link, its columns correspond to direct routes,

 97

and its entries, ija are 1 or 0 according to whether link i does or does not belong to the

direct path of the SD pair j .

So matrix A is defined by =A][ija

 ija = 1; for (i, j) = (1,1),(1,6),(1,7),(1,25),(1,26),(1,27),(1,57),(1,58),(1,69),(1,70)

(2,9),(2,10),(2,14),(2,15),(2,20),(2,33),(2,51),(2,60),(2,61)(3,17),(3,18),(3,19),(3,23),

(3,40),(3,41),(3,54),(3,55),(3,64),(3,67),(4,10),(4,24),(4,4,30),(4,33),(4,34),(4,35),

(4,46),(4,66),(4,68),(5,16),(5,18),(5,19),(5,31),(5,32),(5,50),(5,52),(5,54),(5,55),(5,56)(5

,62)(6,2),(6,8),(6,37),(6,38),(6,39),(6,45),(6,46),(6,47),(6,59),(6,71)(7,2),(7,3),(7,4),(7,8)

,(7,39),(7,49),(7,51),(7,59),(7,72),(8,11),(8,12),(8,16),(8,25),(8,26),(8,44),(8,53),

(8,62),(8,69),(8,70),(9,5),(9,20),(9,33),(9,44),(9,53),(9,60),(9,61),(9,62)(10,13),

(10,27),(10,39),(10,49),(10,57),(10,58),(10,59),(10,72)(11,4),(11,19),(11,32),(11,43),

(11,55),(11,56),(11,72)(12,12),(12,26),(12,38),(12,53),(12,68),(12,69),(12,70),(12,71),

(13,8),(13,23),(13,36),(13,47),(13,59),(13,64),(13,67),(13,71)(14,16),(14,30),(14,42),

(14,52),(14,56),(14,62),(14,66),(14,68),(15,7),(15,22),(15,35),(15,46),(16,58),(15,63),

(15,68),(15,70),(16,15),(16,29),(16,41),(16,51),(16,55),(16,61),(16,65),(16,67)(17,6),

(17,21),(17,34),(17,57),(17,65),(17,66),(17,69),(18,14),(18,28),(18,40),(18,54),(18,60)(1

8,63),(18,64)

ija = 0; for the other ()ji,

So we derive the relation between ()kY and ()kX in equation form as follow:

 () ()kk AXY = Kk ,,2,1, K=

From the matrix form we can write 18 equations that present Yi and Xj as follow:

 Y1 = X1+X6+X7+X25+X26+X27+X57+X58+X69+X70

 Y2 = X9+X10+X14+X15+X20+X33+X51+X60+X61

 Y3 = X17+X18+X19+X23+X40+X41+X54+X55+X64+X67

 Y4 = X10+X24+X30+X33+X34+X35+X46+X66+X68

 Y5 = X16 +X18+X19+X31+X32+X50+X52+X54+X55+X56+X62

 Y6 = X2+X8 +X37+X38+X39+X45+X46+X47+X59+X71

 Y7 = X2+X3+X4+X8+X39+X49+X51+X59+X72

 Y8 = X11+X12+X16+X25+X26+X44+X53+X62+X69+X70

 Y9 = X5+X20+X33+X44+X53+X66+X61+X62

 Y10 = X13+X27+X39+X49+X57+X58+X59+X72

 Y11 = X4+X19+X32+X43+X55+X56+X72

 Y12 = X12+X26+X38+X53+X68+X69+X70+X71

 Y13 = X8+ X23+X36+X47+X59+X64+X67+X71

 98

 Y14 = X16+ X30+X42+X52+X56+X56+X62+X66+X68

 Y15 = X7+X22+X35+X46+X58+X63+X68+X70

 Y16 = X15+X29+X41+X51+X55+X61+X65+X67

 Y17 = X6+X21+X34+X57+X65+X66+X69

 Y18 = X14+X28+X40+X54+X60+X63+X64

Our goal is to estimate µ = ()7221 ,,, µµµ K from () () ()KYYY ,,, 21 K based on

maximum likelihood estimation and sample moments using the following 7 steps.

Step 1 Let positive refer to the population of number of car passing direct route on

traffic network

 µ =),,,(7221 µµµ K ; arbitrary.

Step 2 Observe daily data on direct links for 20 days from 08:00 – 08:30 am
() ≡1Y () () ()()1

18
1

2
1

1 ,,, YYY K

()2Y ≡ () () ()()2
18

2
2

2
1 YYY ,,, K

 M M
()20Y ≡ () () ()()20

18
20

2
20

1 YYY ,,, K

Calculate

()

20

20

1
∑

== k

k
i

i

Y
Y

Step 3 Estimate µ with µ̂)ˆ,...,ˆ,ˆ(7221 µµµ= based on applied algorithm

 µj ← ∑
∑∑ =

==

18

1
72

1

18

1

i

k
kik

iij

i
ij

j

a

Ya

a µ

µ

Step 4 Generate jX from Poisson distribution with the estimator of parameter

 7221 ,,,;ˆ K=jjµ for 100 days

Step 5 Generate daily data on direct links for 100 days depending on jX in step 4

() ≡1Y () () ()()1
18

1
2

1
1 ,,, YYY K

()2Y ≡ () () ()()2
18

2
2

2
1 YYY ,,, K

 M M
()100Y ≡ () () ()()100

18
100

2
100

1 YYY ,,, K

Calculate

()

100

100

1
∑

== k

k
i

i

Y
Y

 99

Step 6 Go to step 3 to estimate µ 50 times so we get)1(µ̂ ,)2(µ̂ ,…,)50(µ̂

Step 7 Calculate mean vector ; ∑
=

=
50

1

)(ˆ
50
1ˆ

k

kµµ based on 50 estimations then we get µ̂

as the unbiased estimator of µ , route count.

3.2.2.3 Estimation of route count base on Bayesian inference

This section presents the statistical method to estimate route count based on Bayesian

inference. The Bayesian inference use to infer route count jX when we know jλ (from

EM algorithm) and iY (from observation), for i = 1,2, …, 18. j = 1,2,…,72.

From the posterior distribution of X by given λ and Y ;

 p ()yx ,λ ∝ 2f ()xy p ()λx

where 2f ()xy is degenerate at AXY = and

 p ()λx α ∏
=

c

i i

x
i

x

i

1 !
λ

So we can infer the route count, iX by using the Gibb sampler to draw X from

p ()λx , and then evaluate Y by the equation AXY =

The detailed procedure to estimate jX , 72,,2,1 K=j by given jλ and iY ,

18,,2,1 K=i by using the mixure of maximum likelihood and Bayesian inference is

based on seven steps as follows:

 Step 1 Generate 10 vectors X from 72 independent Poisson distributions

with parameter vector µ that has already been estimated based on EM in section 3.2.2.2

 Step 2 Draw sample value of 10 parameter vectors λ from 72 conditionally

independent posterior distributions;)(jj Xp λ is a Gamma distribution with shape

parameter 1+jX and scale parameter 1; 72,,2,1 K=j .

 Step 3 For each parameter vector λ , in iteration t sample a candidate *
jX of

the element of X with priority from conditionally Poisson distribution produces all the

other elements :

 *
jX ~ Poisson(*

jX)1−
−
t

jX ;

Where 1−
−
t

jX represents all the element of X except for jX at their current values:

 1−
−
t

jX =),,,,,(1
72

1
111

−−
+−

tt
j

t
j

t XXXX KK

 100

 set






= − otherwiseX
ryprobabilitwithX

X t
j

jt
j 1

*)1,min(

 r =
)()(
)()(

*1

1*

j
t
j

t
jj

XUXP
XUXP

−

−

 where
!

)(
j

x
j

j x
e

Xp
jj λλ−

= , ()jXU =
!j

x
j

x
e jj µµ−

 Step 4 Directly compute the element of Y by AXY =

 Step 5 Let k
tjX be the draw from 10 parallel sequences of iteration t of

the kth element of X (t =1, 2, …, n ; j = 1, 2, …, 10), compute B and W , the

between and within-sequence variances for each kth:

 ∑
=

−=
10

1

2
...)(

9 j
j XXnB , where ∑

=

=
n

i

k
ijj X

n
X

1
.

1 , ∑
=

=
10

1
... 10

1
i

jXX

 ∑
=

=
10

1

2

10
1

j
jSW , where ∑

=

−
−

=
n

i
j

k
ijj XX

n
S

1

2
.

2)(
1

1 and)1(1ˆ −+= n
W
B

n
R

 Step 6 Return to step 2 and iterate until 1ˆ →R for all kth element.

 Step7 Estimate route count for each direct route by

 ∑
=

=
10

110
1ˆ

j

k
njk XX , k = 1,2, …, 72

 where kX̂ is the estimator of route count for direct route kth

 k
njX is the latest draw for parallel j

3.2.3 Calculation of the length of the current cycle time

This section presents the statistical formula to calculate the length of the current cycle

time on each phase of actual intersections studied. Treat each intersection as a service

system and cars as customers with each phase of the intersection as a server.

As discussion in the previous chapter, interarrival time follows the exponential

distribution. Therefore, we can generate interarrival time from an exponential

distribution. The parameter of the distribution is defined by traffic intensity estimated

from an the mixed model in section 4.2.2. Finally the length of the current cycle time

since the last traffic light change to the moment that any car arrives at the intersection is

 101

the total of all interarrival times of the cars that arrive at the intersection in the current

period.

 Let iC be the ith car that arrive at the intersection,

 iA be interarrival time between iC and 1+iC ,

 jC be the first car after the last traffic light change,

 nC be the car at the moment,

 and L be the length of the current cycle time

So L = ∑
−

=

1n

ji
iA

3.3 The fuzzy system process methodology

This section presents the method to combine the linguistic and numerical information

from the previous input process methodology to derive output, the degree of traffic

light change of each phase. Fuzzy logic systems with fuzzifier and defuzzifier will be

used.

3.3.1 Fuzzifier

The fuzzifier performs a mapping from numerical information input such as number of

cars behind the green light, number of cars behind the red light and the length of the

current cycle time in to a fuzzy set. The number of cars behind the red or the green

lights are assigned to fuzzy set as “zero”, “low”, “medium” and “high”. And the length

of the current cycle time is assigned to fuzzy set as “short”, “medium” and “long”.

Numerical information output , degree of traffic light change are assigned to fuzzy set

as “no”, “probably no” “maybe”, “probably yes” and “yes”. The membership function

of these fuzzy sets are defined below.

3.3.1.1 The membership function of the fuzzy set defined by the number of cars

 behind the green light

Fuzzy sets of the number of cars behind green light are assigned as “zero”, “low”,

“medium”, and “high. The membership function of the fuzzy sets are triangular or

trapezoidal according to the Figure 3.7- 3.10 as follows:

 102

xµ





>
≤≤−

=
1,0

10,1
)(

0

00
0 x

xx
xxµ

Figure 3.7 The membership function form for fuzzy set “zero”

 (Adapted from Kelsey & Bisset, 1993, P. 266 and Teodorovic &

 Vukadinovc, 1998, p. 51)

xµ











>
≤<−

≤<
≤≤

=

3,0
32,3

21,1
10,

)(

0

00

0

00

0

x
xx

x
xx

xxµ

 Figure 3.8 The membership function form for fuzzy set “low”

 (Adapted from Kelsey & Bisset, 1993, P.266 and Teodorovic&

 Vukadinovc, 1998, p. 51)

 103

xµ











≥
<≤−
<≤−

<

=

4,0
43,4
32,2

2,0

)(

0

00

00

0

0

x
xx
xx

x

xxµ

Figure 3.9 The membership function form for fuzzy set “medium”

 (Adapted from Kelsey & Bisset, 1993, P.266 and Teodorovic&

 Vukadinovc, 1998, p. 51)

xµ









≥
<≤−

<
=

4,1
43,3

3,0
)(

0

00

0

0

x
xx

x
xxµ

 Figure 3.10 The membership function form for fuzzy set “high”

 (Adapted from Kelsey&Bisset, 1993, p.266 and Teodorovic&

 Vukadinovc, 1998, p. 51)

 104

3.3.1.2 The membership function of the fuzzy set defined by the number of cars

 behind the red light.

Fuzzy sets of the number of cars behind the red light are assigned as “zero”, “low”,

“medium”, and “high”. The membership function of the fuzzy sets are triangular or

trapezoid according to the Figure 3.11-3.14 as follows:

0 1 2

1

x (cars/second)

xµ





≥
<≤−

=
1,0

10,1
)(

0

00
0 x

xx
xxµ

 Figure 3.11 The membership function form for fuzzy set “zero”

 (Adapted from Kelsey & Bisset, 1993, p. 267 and Teodorovic&

 Vukadinovc, 1998, p. 51)

0 1 2 3 4 5 6

1

x (cars/second)

xµ













≥

<≤−

<≤
<≤

=

6,0

63,
3

2

31,1
10,

)(

0

0
0

0

00

0

x

xx
x
xx

xxµ

 Figure 3.12 The membership function form for fuzzy set “low”

 (Adapted from Kelsey & Bisset, 1993, p. 267 and Teodorovic&

 Vukadinovc, 1998, p. 51)

 105

xµ














≥

<≤−

<≤−

<

=

9,0

96,
3

3

63,1
3

3,0

)(

0

0
0

0
0

0

0

x

xx

xx
x

xxµ

Figure 3.13 The membership function form for fuzzy set “medium”(Adapted from

 Kelsey&Bisset, 1993, p.267 and Teodorovic& Vukadinovc, 1998, p. 51)

xµ












<
≥

<≤−

=
6,0
9,1

96,2
3

)(

0

0

0
0

0

x
x

xx

xxµ

Figure 3.14 The membership function form for fuzzy set “high”(Adapted from

 Kelsey&Bisset, 1993, p.267 and Teodorovic& Vukadinovc, 1998, p. 51)

 106

3.3.1.3 The membership function of the fuzzy set defined by the length of the

 current cycle time

Fuzzy sets of the length of current cycle time are assigned as “short”, “medium” and

“long”. The membership function of the fuzzy sets are trapezoid according to the Figure

3.15-3.17 as follow:

xµ










≥

<≤−

<≤

=

60,0

6030,
30

2

300,1

)(

0

0
0

0

0

x

xx
x

xxµ

Figure 3.15 The membership function form for fuzzy set “short”(Adapted from Kelsey

 & Bisset, 1993, p.267 and Teodorovic & Vukadinovc, 1998, p. 51)

 107

0 10 20 30 40 50 60 70 80 90

1

x (second)

xµ














≥

<≤−

<≤−

<

=

90,0

9060,
30

3

6030,1
30

30,0

)(

0

0
0

0
0

0

0

x

xx

xx
x

xxµ

 Figure 3.16 The membership function form for fuzzy set “medium”(Adapted from

 Kelsey&Bisset, 1993, p.267 and Teodorovic & Vukadinovc, 1998, p. 51)

xµ










≥

<≤−

<

=

90,1

9060,
3
2

20

60,0

)(

0

0
0

0

0

x

xx
x

xxµ

Figure 3.17 The membership function form for fuzzy set “long”(Adapted from

 Kelsey & Bisset, 1993, p. 267 and Teodorovic & Vukadinovc, 1998, p. 51)

 108

3.3.2 Fuzzy rule base

This section provides a list of rules in notation form that govern traffic control at

intersections. The fuzzy rule base consists of a collection of fuzzy IF-THEN rules

according to Kelsey and Bisset’s (1993) fuzzy rules base.

 Let x1 : number of cars that are behind the green light.

 x2 : number of cars that are behind the red light.

 x3 : current of cycle time.

 y : degree of change.

 F1 : fuzzy set for the number of cars behind the green light is zero.

 F2 : fuzzy set for the number of cars behind the green light is low.

 F3 : fuzzy set for the number of cars behind the green light is medium.

 F4 : fuzzy set for the number of cars behind the green light is high.

 F5 : fuzzy set for the number of cars behind the red light is zero.

 F6 : fuzzy set for the number of cars behind the red light is low.

 F7 : fuzzy set for the number of cars behind the red light is medium.

 F8 : fuzzy set for the number of cars behind the red light is high.

 F9 : fuzzy set for length of the current cycle time is short.

 F10 : fuzzy set for length of the current cycle time is medium.

 F11 : fuzzy set for length of the current cycle time is long.

 G1 : fuzzy set for degree of change is no.

 G2 : fuzzy set for degree of change is probably no.

 G3 : fuzzy set for degree of change is maybe.

 G4 : fuzzy set for degree of change is probably yes.

 G5 : fuzzy set for degree of change is yes.

Using to the previous notations, the rule base in notation form are as follows:

 Rule 1 IF x1 is F1 and x2 is F5 THEN y is G1

 Rule 2 IF x1 is F1 and x2 is F6 THEN y is G5

 Rule 3 IF x1 is F1 and x2 is F7 THEN y is G5

 Rule 4 IF x1 is F1 and x2 is F8 THEN y is G5

 Rule 5 IF x1 is F5 THEN y is G1

 Rule 6 IF x1 is F2 and x2 is F6 THEN y is G1

 Rule 7 IF x1 is F3 and x2 is F7 THEN y is G1

 Rule 8 IF x1 is F4 and x2 is F8 THEN y is G1

 109

 Rule 9 IF x1 is F2 and x2 is F7 and x3 is F9 THEN y is G3

 Rule 10 IF x1 is F2 and x2 is F7 and x3 is F10 THEN y is G4

 Rule 11 IF x1 is F2 and x2 is F7 and x3 is F11 THEN y is G5

 Rule 12 IF x1 is F2 and x2 is F8 and x3 is F9 THEN y is G2

 Rule 13 IF x1 is F2 and x2 is F8 and x3 is F10 THEN y is G3

 Rule 14 IF x1 is F2 and x2 is F8 and x3 is F11 THEN y is G4

 Rule 15 IF x1 is F3 and x2 is F6 and x3 is F9 THEN y is G2

 Rule 16 IF x1 is F3 and x2 is F6 and x3 is F10 THEN y is G2

 Rule 17 IF x1 is F3 and x2 is F6 and x3 is F11 THEN y is G3

 Rule 18 IF x1 is F3 and x2 is F8 and x3 is F9 THEN y is G3

 Rule 19 IF x1 is F3 and x2 is F8 and x3 is F11 THEN y is G4

 Rule 20 IF x1 is F3 and x2 is F8 and x3 is F12 THEN y is G5

 Rule 21 IF x1 is F4 and x2 is F6 and x3 is F9 THEN y is G3

 Rule 22 IF x1 is F4 and x2 is F6 and x3 is F10 THEN y is G4

 Rule 23 IF x1 is F4 and x2 is F6 and x3 is F11 THEN y is G5

 Rule 24 IF x1 is F4 and x2 is F7 and x3 is F9 THEN y is G2

 Rule 25 IF x1 is F4 and x2 is F7 and x3 is F10 THEN y is G2

 Rule 26 IF x1 is F4 and x2 is F7 and x3 is F11 THEN y is G3

3.3.3 Fuzzy inference engine

The fuzzy inference engine is used to infer a consequence fuzzy set from the rule base

and facts received from the input process methodology. The product-sum-gravity

method will be used to infer the consequence fuzzy set.

Let the facts of input be as follows:

 /
1x : fact of number of cars behind the green light

 /
2x : fact of number of car behind the red light

 /
3x : fact of the length of the current cycle time

Let /
iG denote the resulting fuzzy set from rule i. The membership function of /

iG is as

follows:

 110

)()()()(
151/

1

/
2

/
1 yxxy GFFG

µµµµ ⋅⋅=

)()()()(
561/

2

/
2

/
1 yxxy GFFG

µµµµ ⋅=

)()()()(
571/

3

/
2

/
1 yxxy GFFG

µµµµ ⋅⋅=

)()()()(
581/

4

/
2

/
1 yxxy GFFG

µµµµ ⋅⋅=

)()()(
15/

5

/
1 yxy GFG

µµµ ⋅=

)()()()(
162/

6

/
2

/
1 yxxy GFFG

µµµµ ⋅⋅=

)()()()(
173/

7

/
2

/
1 yxxy GFFG

µµµµ ⋅⋅=

)()()()(
184/

8

/
2

/
1 yxxy GFFG

µµµµ ⋅⋅=

)()()()(
372/

9

/
2

/
1 yxxy GFFG

µµµµ ⋅⋅=

)()()()()(
41072/

10

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=

)()()()()(
51172/

11

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=

)()()()()(
2982/

12

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=

)()()()()(
31082/

13

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=

)()()()()(
41182/

14

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=

)()()()()(
2963/

15

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=

)()()()()(
21063/

16

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=

)()()()()(
31163/

17

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=

)()()()()(
3983/

18

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=

)()()()()(
41183/

19

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=

)()()()()(
51282/

20

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=

)()()()()(
3964/

21

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=

)()()()()(
41064/

22

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=

)()()()()(
51164/

23

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=

)()()()()(
2974/

24

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=

 111

)()()()()(
21074/

25

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=

)()()()()(
31174/

26

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=

Let /G be the consequence fuzzy set which is infered from the rule base and the

facts. The membership function of /G is defined by

∑
=

=
26

1
)()(//

i
GG yy

i
µµ

3.3.4 Defuzzifier

The defuzzifier performs a mapping from fuzzy set /G to the crisp point, the center of

gravity of /G .

Let iy denote the center of gravity of the inference result /
iG and let Si denote the area

of /
iG as in Figure 3.3 Then iy is defined as :

∫

∫ ⋅
=

dzz

dyyy
y

i

i

G

G
i

)(

)(

/

/

µ

µ

 =
i

G

S

dyyy
i∫ ⋅)(/µ

The leads to the center of gravity /y of the final consequence /G being given by

∫

∫ ⋅
=

dyy

dyyy
y

G

G

)(

)(

/

//

µ

µ

∫
∫

++

++⋅
=

dyyy

dyyy

GG

GG

)](...)([

]...)([

/
26

/
1

/
26

/
1

µµ

µµ

∑

∑

=

=

⋅
= 26

1

26

1

i
i

i
ii

S

yS

In practice, the identification of the center of gravity of /
iG is based on algebraic

calculation . The center of gravity is the horizontal coordinate of the centroid of the area

under the membership function. If the form of membership function is triangular, the

centroid is the intersection of the straight line from each vertex to the middle points of

 112

the corresponding side. The centers of gravity of /
iG are computed in the following

section

1) Identification of center of gravity of 1G

Consider the membership function form of 1G in Figure 3.18

0 0.1

1

 Figure 3.18 The membership function form of 1G

 (Adapted from Kelsey & Bisset, 1993, p. 267)

From Figure 3.18 the center of gravity of 1G is 0.033. And also the center of gravity of
/
iG is 0.033

 033.0=∴ iy for i = 1,5,6,7,9

2) Identification of center of gravity of 2G

Consider the membership function form of 2G in Figure 3.19

 113

0 0.1 0.2 0.3 0.4 0.5

1

Figure 3.19 The membership function form of 2G

 (Adapted from Kelsey & Bisset, 1993, p. 267)

From figure 3.19 center of gravity of /
2G is 0.2 . And also the center of gravity of

2.0G /
i =

 ∴ iy = 0.2 ; i = 12,15,16,25

3) Identification of center of gravity of 3G

Consider the membership function form of 3G in Figure 3.20

 Figure 3.20 The membership function form of 3G

 (Adapted from Kelsey & Bisset, 1993, p. 267)

From figure 3.20 center gravity of 3G is 0.4. And also the center of gravity of /
iG is 0.4

 ∴ iy = 0.4 ; i = 9,13,17,18,21,26

 114

4) Identification of center of gravity of 4G

Consider the membership function form of 4G in Figure 3.21

 Figure 3.21 The membership function form of 4G

 (Adapted from Kelsey & Bisset, 1993, p. 267)

From figure 3.21 center gravity of 4G is 0.6. And also the center of gravity of /
iG is

0.6

 ∴ iy = 0.6 ; i = 10,14,19,22

5) Identification of center of gravity of 5G

Consider the membership function form of 5G in Figure 3.22.

 Figure 3.22 The membership function form of 5G

 (Adapted from Kelsey & Bisset, 1993, p. 267)

 115

From Figure 4.22 the center of gravity of 5G is 0.85. And also the center of gravity

of /
iG is 0.85.

 ∴ yi = 0.85 ; i = 2,3,4,11,20,23

3.4 The output process methodology

This section presents the method to simulate the current cycle time for each phase.

Fuzzy logic control will be used to find the optimal moment that occurs when the

optimal number of cars are behind the red light and the optimal number of cars that pass

the green light. The optimal length on each phase of the cycle is the current cycle time

at the optimal moment. The algorithm of simulation at each intersection is as follows:

Step 1. Let phase 1 of traffic signal cycle be the start phase.

Step 2. Iteratively generate cars and assign each car to each branch of the intersection

based on proportion of cars from the branch that are computed in the input process.

Step 3. Generate interarrival time of each car in step 2 by exponential distribution with

parameter beta.The value of beta is assigned by traffic intensity in the input process.

Step 4. Compute the important parameters of the simulation process, the input of fuzzy

logic system such as:

 /
1x : number of cars that pass the green light.

 /
1x : is computed by counting the number of cars from the branch that are

allowed to pass the intersection by the green light.

 /
2x : number of cars that stop behind the the red light.

 /
2x : is computed by counting the number of cars from the branch that are

prohibited to pass the intersection by the red light.

 /
3x : the current cycle time.

 /
3x is computed by the summation of interarrival time.

Step 5. Compute degree of change by using information from section 3.3 according to

the following procedure:

 Let iS denote area of /
iG ; i = 1, 2,…,26

 iA denote area of iG ; i = 1, 2, 3, 4, 5

 D denote degree of change

 116

 iy denote the center of gravity of /
iG ; i = 1, 2, …, 26

∑

∑

=

=

⋅
= 26

1

26

1

i
i

i
ii

S

Sy
D

From the figures 3.18-3.22, 1A = 0.05, 2A = 0.2, 3A =0.2, 4A = 0.2 and 5A = 0.15

and

1
/
2

/
11)()(

51
AxxS FF ⋅⋅= µµ

5
/
2

/
12)()(

61
AxxS FF ⋅⋅= µµ

5
/
2

/
13)()(

71
AxxS FF ⋅⋅= µµ

5
/
2

/
14)()(

81
AxxS FF ⋅⋅= µµ

1
/
15)(

5
AxS F ⋅= µ

1
/
2

/
16)()(

62
AxxS FF ⋅⋅= µµ

1
/
2

/
17)()(

73
AxxS FF ⋅⋅= µµ

1
/
2

/
18)()(

84
AxxS FF ⋅⋅= µµ

3
/
2

/
19)()(

72
AxxS FF ⋅⋅= µµ

4
/
3

/
2

/
110)()()(

1072
AxxxS FFF ⋅⋅⋅= µµµ

5
/
3

/
2

/
111)()()(

1172
AxxxS FFF ⋅⋅⋅= µµµ

1
/
3

/
2

/
112)()()(

982
AxxxS FFF ⋅⋅⋅= µµµ

3
/
3

/
2

/
113)()()(

1082
AxxxS FFF ⋅⋅⋅= µµµ

4
/
3

/
2

/
114)()()(

1182
AxxxS FFF ⋅⋅⋅= µµµ

2
/
3

/
2

/
115)()()(

963
AxxxS FFF ⋅⋅⋅= µµµ

3
/
3

/
2

/
117)()()(

1163
AxxxS FFF ⋅⋅⋅= µµµ

3
/
3

/
2

/
118)()()(

983
AxxxS FFF ⋅⋅⋅= µµµ

4
/
3

/
2

/
119)()()(

1183
AxxxS FFF ⋅⋅⋅= µµµ

5
/
3

/
2

/
120)()()(

1282
AxxxS FFF ⋅⋅⋅= µµµ

3
/
3

/
2

/
121)()()(

964
AxxxS FFF ⋅⋅⋅= µµµ

2
/
3

/
2

/
116)()()(

1063
AxxxS FFF ⋅⋅⋅= µµµ

 117

4
/
3

/
2

/
122)()()(

1064
AxxxS FFF ⋅⋅⋅= µµµ

5
/
3F

/
2F

/
1F23 A)x()x()x(S

1164
⋅µ⋅µ⋅µ=

2
/
3

/
2

/
124)()()(

974
AxxxS FFF ⋅⋅⋅= µµµ

2
/
3

/
2

/
125)()()(

1074
AxxxS FFF ⋅⋅⋅= µµµ

3
/
3

/
2

/
126)()()(

1174
AxxxS FFF ⋅⋅⋅= µµµ

Step 7 Generate Bernoulli random variable X , with parameter DP = , degree of

change. If value of the random variable is equal to zero retain the phase then go to step

1.

Step 8 If value of the random variable is equal to 1 then change the previous phase to

the next phase and go to step 2.

Step 9 Iterative until length of time equal 1800 second and covers all intersections.

 118

Chapter 4

Input and Analysis

4.1 The data collection
This section presents the method used to collect data for direct links, namely number of

cars that pass through a direct link in the traffic netwrok studied.

The method starts by assigning the collectors to 18 positions, 45 metres from the

intersection as shown in Figure 4.1. Each collector must count the cars that pass them

during 8.00-8.30 AM for 20 days.

 Y13 Y14

 Y16

 Y15 Y3
Y18

Y14

 Y4

 Y1 Y6

 Y5

 Y2 Y7

 Y12

 Y7

 Y10 Y12

 Y9

 Figure 4.1 Diagram of 18 positions to count the cars that pass direct link

The number of cars that pass a direct link during the 20 days are given below.

 119

Table 4.1 Table of the number of cars at 18 positions for 20 days
DAY Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16 Y17 Y18

1 455 461 145 70 117 413 99 403 144 665 497 359 420 390 419 315 510 406

2 486 535 144 68 142 367 90 358 153 662 562 255 419 435 401 329 508 366

3 418 504 126 79 168 395 137 342 171 749 411 387 414 560 351 276 486 330

4 421 481 146 69 162 371 112 461 174 720 433 344 309 468 327 263 440 402

5 452 514 145 81 149 449 98 423 184 789 581 399 557 480 417 345 464 486

6 423 490 134 82 180 471 100 350 166 757 551 442 451 436 401 275 487 359

7 450 470 140 62 163 414 92 410 150 702 548 338 458 489 396 308 465 316

8 433 525 147 68 123 368 116 445 145 679 408 349 450 441 419 328 478 337

9 415 538 142 85 163 479 143 414 157 804 461 411 509 405 471 317 470 416

10 427 546 129 70 134 463 117 421 162 779 413 339 209 466 204 278 272 411

11 462 528 124 72 194 531 128 415 162 880 494 407 480 531 421 361 436 411

12 438 489 134 83 120 381 134 390 163 822 526 343 350 459 432 317 517 409

13 423 522 131 55 179 446 111 379 164 801 407 357 409 548 401 305 471 320

14 471 522 130 85 175 388 104 435 146 758 555 325 487 481 452 289 483 309

15 410 483 102 69 152 448 122 403 140 698 455 447 435 483 366 328 456 368

16 425 506 153 90 161 423 94 382 131 705 447 373 473 524 353 322 443 333

17 413 512 122 86 159 463 125 478 163 819 459 451 450 510 333 296 477 354

18 452 522 118 91 167 427 96 386 179 684 486 350 433 518 338 373 485 370

19 410 545 130 91 182 405 112 394 168 768 412 356 460 496 354 387 483 403

20 464 512 183 68 178 524 187 420 124 502 488 430 430 498 348 317 477 414

The number of cars from Table 4.1 will be used to estimate traffic counts for all direct

routes.

4.2 The algorithm to simulate random variables

Rubinstein (1981) illustrates the algorithm to simulate random variable

based on its distribution. The important algorithms that are needed for the study are as

follows.

4.2.1 The algorithm to generate random number

There are many methods to generate random numbers, such as the mid-square method,

congruent metnods and so on, but the algorithm used to generate random numbers for

this study is as follows.

1. Set arbitrary number, I

2.
773,127

IK ←

 120

3. KKII ⋅−−⋅← 2836)773,127(807,16

4. If 0<I , deliver 647,483,147,2+= II

5. ()10656612875.4 −= eX

6. II ←

4.2.2 Gamma Distribution

A random variable X has a gamma distribution if its probability

density function (pdf) is defined as








>>∞≤≤=

−
−

,,0

0,0,0,
)()(

1

otherwise

xex
xf

x

βα
αΓβ α

βα

and denoted by),(G βα . One of the most important properties of the gamma

distribution is the reproductive property, which can be successfully used for gamma

generation. Let iX , i = 1, 2, n,K , be a sequence of independent random variables

from),(G i βα . Then ∑
=

=
n

i
iXX

1
 is from),(G βα where ∑

=

=
n

i
i

1
αα . If α is and

integer, say, m=α , a random variable from gamma distribution),(βmG can be

obtained by summing m independent exponential random variables, that is,

 ∏∑
==

−=−=
m

i
i

m

i
i UUX

11
ln)ln(ββ

which is called the Erlang distribution and denoted by Er(m,)β . The algorithm to

generate a random variable from Er(m,β) is as follows:

 1. .0←X

 2. Generate V from exponential distribution with ,1=β exp(1).

 3. VXX +=

 4. IF ,1=α XX β← and deliver X .

 5. .1−← αα

 6. Go to step 2.

 121

4.2.3 Poisson Distribution.

An random variable has a Poisson distribution if its probability distribution function is

equal to

!

)(
x

exf
xλλ−

= , x = 0, 1, 0, >λK

and is denoted by P(λ). It is well known that, if the time intervals between events are

from an exponential distribution with
λ

β
1

= , the number of events occurring in an unit

interval of time is from P(λ).

 Mathematically, it can be written

 ∑ ∑
=

+

=

≤≤
X

i

X

i
ii TT

0

1

0
,1

 where Ti , i = 0, 1, ,1, +XK are from exp(
λ
1). Since Ti = - ,ln1

iU







λ
the

last formula can be written as

 ∑ ∑
=

+

=

−≤≤−
X

i

X

i
ii UU

0

1

0
lnln λ X = 0, 1, K

or ∏ ∏
=

+

=

− ≥≥
X

i

X

i
ii UeU

0

1

0

λ X = 0, 1, K

The following algorithm is written to generate a Poisson distribution:

 1. 1←A

 2. .0←K

 3. Generate random number, UK from interval [0,1]

 4. AUA K←

 5. If λ−< eA , deliver KX = .

 6. .1+← KK

 7. Go to step 3.

4.2.4 Exponential distribution

The exponential distribution is the special case of the Gamma when 1=α , so a random

variable X has an Exponential distribution if its p.d.f. is defined as

 122







>≤⋅=

−

otherwise

xexf

x

,0

0,0,1
)(β

β
β

The algorithm to generate an Exponential random variable with parameter ,β is as

follows:

1. Generate random number, U from interval [0, 1].

2.)ln(UX β−←

4.2.5 Bernoulli distribution

For a random experiment occurring only once and with output success or

failure, let X be equal 1 for success with probability p, and X be 0 for failure with

probability p−1 , X is a Bernoulli random variable if its distribution function is

defined as

 () () 1,0;1 1 =−= − xppxf xx

The algorithm to generate a Bernoulli random variable with parameter p is as follows:

1. Generate random number, U from interval [0, 1].

2. If pU −≤ 1 , deliver 0=X .

3. 1=X .

4.2.6 Uniform distribution

Let X be defined on the interval [a, b], and any value of X occur with

equal probability,
ab −

1 , X is a uniform random variable and its distribution function

is defined by





 ≤≤

−=
otherwise

bxa
abxf

0

,1
)(

The algorithm to generate a Uniform random variable with parameters a and b is as

follows:

1. Generate random number, U

2. ()UabaX −+=

 123

4.3 Data algorithm analysis

To accomplish the research objective, the length of time appropriacy of the traffic

lights, this section presents algorithm analysis steps. This can be done by developing a

computer Fortran language program which is created on the important basis of three

types of algorithms: EM algorithm, Metropolis-Hasting algorithm, in particular, the

Gibbs sampler and Fuzzy logic algorithm. The process is comprised of 23 steps as

follows:

Step 1 Let positive mean population of number of car that travel on direct route on

traffic network

 µ = 721 ,,(µµ L) ; arbitrary.

Step 2 Observe daily data on direct links for 20 days on 08:00 – 08:30 am
() ≡1Y () ()()1

18
1

2
1

1 ,,, YYY K

()2Y ≡ () () ()()2
18

2
2

2
1 YYY ,,, K

 M M

 ()20Y ≡ () () ()()20
18

20
2

20
1 YYY ,,, K

Calculate

()

20

20

1
∑

== k

k
i

i

Y
Y

Step 3 Estimate µ by µ̂ /
7221)ˆ,...,ˆ,ˆ(µµµ= based on applied algorithm

 µ j ← ∑
∑∑ =

==

18

1
72

1

18

1

i

k
kik

iij

i
ij

j

a

Ya

a µ

µ

Step 4 Generate jX from Poisson distribution with parameter 72,,2,1, Kjµ

for 100 day

Step 5 Generate daily data on direct links for 100 days depend on jX in step 4

() ≡1Y () ()()1
18

1
2

1
1 ,,, YYY K

()2Y ≡ () () ()()2
18

2
2

2
1 YYY ,,, K

 M M
()100Y ≡ () () ()()100

18
100

2
100

1 ,,, YYY K

 124

Calculate

()

100

20

1
∑

== k

k
i

i

Y
Y

Step 6 Go to step 3 to calculate µ̂ 50 times to get)1(µ̂ ,)2(µ̂ ,…,)50(µ̂

Step 7 Calculate mean vector ; ∑
=

=
50

1

)(ˆ
50
1ˆ

k

kµµ based on 50 estimations. Then µ̂ is the

unbiased estimator of µ , route count.

Step 8 Generate 10 vectors X from 72 independent Poisson distributions with

parameter vector µ (already estimated from step 7)

Step 9 Draw sample value of 10 parameter vectors λ from 72 conditionally

independent posterior distributions,)(jj Xp λ , that is Gamma distribution with shape

parameter 1+jX and scale parameter 1; 72,,2,1 K=j .

Step 10 For each parameter vector λ at iteration t draw a candidate *
jX from Poisson

distribution function as below.

 *
jX ~ Poisson(*

jX)1−
−
t

jX ;

Where 1−
−
t

jX represents all the element of X except jX , at their current values:

 1−
−
t

jX =),,,,,(1
72

1
111

−−
+−

tt
j

t
j

t XXXX KK

 set






= − otherwiseX
ryprobabilitwithX

X t
j

jt
j 1

*)1,min(

 r =
)()(
)()(

*1

1*

j
t
j

t
jj

XUXP
XUXP

−

−

 where
!

)(
j

x
j

j x
e

XP
jj λλ−

= , ()jXU =
!j

x
j

x
e jj µµ−

 Step 11 Directly compute the element of Y by AXY =

 Step 12 Let k
tjX be the drawn from 10 parallel sequences of iteration t of the kth

element of X ()10,,2,1;,,2,1 KK == jnt , compute B and W , the between and

within-sequence variances for each kth:

 ∑
=

−=
10

1

2
...)(

9 j
j XXnB , where ∑

=

=
n

i

k
ijj X

n
X

1
.

1 , ∑
=

=
10

1
... 10

1
i

jXX

 ∑
=

=
10

1

2

10
1

j
jSW , where ∑

=

−
−

=
n

i
j

k
ijj XX

n
S

1

2
.

2)(
1

1

 125

 and)1(1ˆ −+= n
W
B

n
R

Step 13 Return to step 8 and iterate until 1ˆ →R for all kth element.

Step 14 Estimate route count for each direct route by

 ∑
=

=
10

110
1ˆ

j

k
njk XX , 72,,2,1 K=k

 where kX̂ is the estimator of route count for direct route thk

 k
njX is the latest draw for parallel j

Step 15. Set the start phase of traffic signal cycle.

Step 16. Create cars and find the probability, which is emerged from the calculation of

route counts in Step 14, for each of the created car in order to randomise its moving

from each branch of the intersection.

 Step 17. Generate interarrival time of each car in step 16 by exponential distribution

with parameter beta that is fixed by traffic intensity in the part of input process.

Step 18. Compute the important parameter of simulation process, input of fuzzy logic

system such as:

 /
1x : number of cars that pass the green light.

 /
1x : number of cars from the branch that are allowed to pass the intersection

 by the green light.

 /
2x : number of car that stop behind the red light.

 /
2x : number of cars from the branch that are prohibited passing

 the intersection by the red light.

 /
3x : the current cycle time.

 /
3x : summation of interarrival time.

Step 19. Caculate the value of the cost function, by using information from section 3.4

Step 20 Generate Bernoulli random variable X , with parameter DP = , degree of

change. If value of the random variable is equal zero then go to step 15.

Step 21 If value of the random variable is equal 1 then change the previous phase to the

next phase and go to step 16.

Step 22 Caculate the value of the cost function.

Step 23 Iterate until length of time is complete and all intersections are covered.

 126

4.4 The computer program in the Fortran language

The computer program is composed of a main program and 7 sub-programs.

4.4.1 Main program to estimate traffic intensity by the mixed model.

The main program is used to estimate traffic intensity using the mixed model. The

optimal length of traffic signal lights is also calculated. The program consist of three

parts.

4.4.1.1 Program to estimate traffic intensity by the EM algorithm.

This program takes the traffic intensity from the daily data observations to estimate the

population mean of traffic counts on 72 direct routes. The program reads the input data

that consists of traffic counts on the 18 direct links from daily data observation. Then it

computes the sample mean of the traffic count for 20 days. The sample mean are used to

estimate the population mean based on EM algorithm iteration. Finally the outputs of

the program are populations mean of traffic counts on 72 direct routes.

4.4.1.2 Program to estimate traffic intensity by Gibbs sampler.

The population means estimated in 4.4.1.1 provides important information for this

program. The function of this program is to estimate traffic intensity for 72 direct

routes, given the population means and the data observations. The algorithm for the

program is based on Gibb sampling. The outputs of this program are traffic intensities

on each of the 72 direct routes.

4.4.1.3 Program to calculate optimal length of traffic signal light.

This program is used to calculate optimal length of signal light. The outputs from the

program in 4.4.1.2 are traffic estimators for each of 72 direct routes. The estimators

provide important information for this program that can be used to generate value of

exponential variable. The value of exponential variable is the interarrival time. The

interarrival time is used to define each car that arrives at the intersection. The current

cycle time is also computed by summation of the interarrival times. The traffic intensity

 127

from the program in 4.4.1.2 and the current cycle time are the input data of the fuzzy

logic system. The inputs are used to infer the degree of change for each phase based on

the fuzzy logic system. Finally the degree of change is use to calculate the optimal

length of the signal light.

4.4.2 Sub-Program

The sub-programs are designed to support the main program when the main program

needs to compute the same object many times. There are 7 sub-program as follows:

4.4.2.1 Sub-Program to define any car belonging to each branch of road.

The function of this sub-program is to define any car belonging to each branch of the

road at the intersection. The sub-program firstly generates random number. The random

number is then separated to each branch based on the proportional traffic intensity in

4.4.1.2. Finally any car can be defined to belong to a particular branch by the random

number. The technique of this program is branch index generation. The branch index is

fixed by random number that are separated based on the proportional traffic intensity .

4.4.2.2 Sub-Program to generate an exponential random variable.

The function of this program is to generate an exponential random variable. The value

of the variable is the interarrival time. This program supports the main program in

4.4.1.3 .

4.4.2.3 Sub-Program to generate a gamma random variable.

The function of this program is to generate a gamma random variable. The value of the

variable is the population mean of traffic intensity. This program support the main

program in 4.4.1.2 .

4.4.2.4 Sub-Program to generate a Poisson random variable.

The function of this program is to generate a Poisson random variable. The value of the

variable is the number of cars. This program support the main program in 4.4.1.1 .

 128

 4.4.2.5 Sub-Program to generate a Bernoulie random variable.

The function of this program is to generate a Bernoulie random variable. The value of

the variable is the decision index to decide whether to choose something or not based on

its probability. So this program supports the main program in 4.4.1.2 and sub-program

4.4.2.1

4.4.2.6 Sub-Program to generate a random number.

The function of this program is to generate a random number. The value of random

number is used to generate a random variable from any distribution. So this program

supports the sub-program in 4.4.2.2-4.4.2.5

4.4.2.7 Sub-Program for fuzzy logic controller

The function of this program is to compute the degree of change in each phase based on

the fuzzy logic system. The input of this program comes from the main program in

4.4.1.2 and 4.4.1.3

 129

 Chapter 5

Results of the Study

5.1 The number of cars on each direct route

There are 72 source-destination pairs (SD). The software estimated the number of cars

on each SD by mixure of maximum likelihood and Baysian estimation. The output are

shown in Table 5.1.

Table 5.1 Rate of cars on each SD (per second) from estimation.

SD. NO. SD. NO. SD. NO. SD. NO. SD. NO. SD. NO.
X1 2.183 X13 0.032 X25 2.476 X37 0.02 X49 2.208 X61 0.038
X2 0.062 X14 0.005 X26 2.551 X38 0.017 X50 2.187 X62 0.055
X3 2.228 X15 0.088 X27 0.163 X39 0.06 X51 1.917 X63 0.022
X4 0.018 X16 0.043 X28 2.168 X40 2.267 X52 0.02 X64 2.047
X5 0.035 X17 0.015 X29 0.040 X41 2.18 X53 2.415 X65 0.02
X6 2.1 X18 0.023 X30 0.023 X42 0.017 X54 0.023 X66 2.248
X7 2.668 X19 0.015 X31 0.278 X43 0.012 X55 0.025 X67 2.072
X8 1.873 X20 0.052 X32 0.067 X44 0.015 X56 0.075 X68 0.328
X9 0.016 X21 0.01 X33 0.032 X45 0.33 X57 0.038 X69 0.02
X10 0.023 X22 0.055 X34 0.08 X46 0.052 X58 0.052 X70 0.045
X11 0.35 X23 0.035 X35 0.133 X47 0.032 X59 0.113 X71 0.052
X12 0.0267 X24 0.035 X36 0.042 X48 0.032 X60 0.097 X72 0.027

Note: SD. denote direct route.
 No. denote rate of cars belong SD.

From Table 5.1 shows the rate of cars on direct links rather than the rate on direct

routes.

5.2 The performance of traffic flow

The computer program generated the important parameters of traffic flow performance

under the fuzzy logic controller and conventional controller.The parameters were the

length of each phase, the number of cars behind the green light and the red light. The

outputs of the parameters are shown in Table 5.2-5.9. To understand the numbers in

each column, the No. green and No. red, are definded as follows:

1) No. Green denotes the number of cars behind the green light.

2) No. Red denotes the number of cars behind the red light.

 130

3) The first number of No.Green is the number of cars stopping behind the red light at

 pre-phase includes the other cars moving past the green light in the first group at

 the current phase. .

4) The second number of No. Green is the order of the last car that moves to pass the

 green light or the number of all cars that pass green light at the current phase.

5) The first number of No. Red is the number of cars that stop behind the red light at

 pre-phase and still stop behind the red light including the other cars behind the red

 light in the first group at the current phase.

6) The second number of No. Red is the order of the last car behind the red light

 or the number of all cars that stop behind the red light at the current phase.

 The criterion of length is defined as follows:

 Less than 35 seconds indicates that the length is short

 Between 35-70 seconds indicates that the length is moderate

 Greater than 70 seconds indicates that the length is long

According to the criterion of length it is assumed that the average car uses 1 second to

pass the intersection behind the green light. The criterion of No. Green and No. Red are

defined in terms of length as follows:

 Less than 35 cars show that No. Green or No. Red are few.

 Between 35-70 cars show that No. Green or No. Red are moderate.

 Greater than 70 cars show as No. Green or No. Red are many.

5.2.1 The performance of traffic flow based on fuzzy logic controller

The computer program generated the parameters of traffic flow performance for the

fuzzy controller. The outputs of the parameters are shown as in Table 5.2-5.5

 131

Table 5.2 Pattern of traffic flow during each phase at Uboncharearnsri intersection

 Based on fuzzy logic controller.

Cycle Phase No. Green No.Red Length(sec)

 1 0 2-2 0.37

1 2 4-5 1-1 1.67

 3 0 3-3 0.36

 1 4-4 1-4 3.53

2 2 5-7 1-1 1.33

 3 2-3 1-1 1.32

 1 1-2 2-5 1.62

3 2 7-8 0-1 2.14

 3 2-2 1-1 1.39

 1 1-1 2-2 2.54

4 2 4-4 1-1 1.52

 3 1-1 2-2 1.79

 1 4-5 0-1 1.92

5 2 2-3 1-1 2.04

 3 0 3-3 1.64

 1 3-6 2-6 3.8

6 2 7-11 1-3 4.38

 3 0 5-5 0.47

 1 4-5 3-9 3.16

7 2 10-11 1-1 1.70

 3 0 3-3 0.69

 1 4-4 1-6 7.17

8 2 6-90 2-63 87.54

 3 21-36 44-73 31.49

 1 61-80 14-64 47.61

9 2 54-130 12-75 73.90

 3 28-53 49-101 45.18

 1 74-93 29-83 52.12

10 2 69-139 16-67 69.262

 3 28-53 49-101 45.18

 132

 1 65-107 25-105 60.55

11 2 94-185 13-81 76.65

 3 32-71 51-114 59.47

 1 82-131 34-135 72.47

12 2 121-168 16-57 62.32

 3 29-45 30-75 38.88

 1 48-69 29-75 39.50

13 2 64-122 13-66 68.77

 3 34-53 34-89 45.16

 1 56-80 35-86 45.23

14 2 79-129 9-46 52.88

 3 16-40 32-67 35.21

 1 47-81 22-75 47.05

15 2 62-122 15-64 67.15

 3 28-49 38-90 42.06

 1 57-88 35-94 49.08

16 2 91-160 5-56 61.53

 3 22-45 36-74 42.03

 1 49-70 27-80 39.81

17 2 72-104 10-23 28.82

 3 11-23 14-37 20.22

 1 24-34 15-39 21.43

18 2 36-58 5-17 21.66

 3 10-18 9-23 22.50

 1 18-23 7-26 14.63

19 2 23-98 5-63 66.82

 3 23-40 42-82 36.18

20 1 62-82 22-80 46.64

 2 72-114 10-40 46.78

Average

Standardeviation

 6441.53=X

S = 51.5316

8814.44=X

S = 38.7495

 022.36=X

 S = 26.4409

Table 5.2 shows that the average of the number of cars behind the green light and the

red light on each phase are respectively 54 and 49 cars. The average of the optimal

 133

length on each phase is 36.022 seconds. The optimal length of each phase in early

cycles (cycle 1-cycle 7) is very short. For late cycles (cycle 8 and later) the optimal

length of each phase is moderate. The optimal length of phase 2 seems longer than the

others. There are a few cars behind both the green and the red light in the early cycles.

However, there are moderate numbers of the cars behind both the green and the red

lights at the late cycles. In detail of cycle 1 (see Figure 4.3), each figure shows that there

are no cars behind the green light and there are 2 cars behind the red light on phase 1 so

it should be used only 0.37 seconds on this phase.

On phase 2 of cycle 1, 2 cars from phase 1 including the other 2 cars pass the green

light and the last car that passes the green light on this phase is the 5th ; the number of

all cars that pass the green light on this phase are 5 cars while 1 car stops behind the red

light. This phase uses only 1.67 secconds. On phase 3 of cycle 1, 1 car from phase 2

still stops behind the red light and there are no other cars passing the green light while

there are the other 2 cars behind the red light; the number of all cars behind the red light

on this phase are 3 cars. The phase uses 0.35 seconds. The describtion of the other

cycles are similar to the description of cycle 1 in which the number of cars on the

current phase are impacted by the number of cars on the

pre- phase.

Table 5.3 Pattern of traffic flow during each phase at Clock Hall intersection based on
 fuzzy logic controller.

Cycle Phase No. Green No. Red Length(sec)
 1 0 2-2 0.19
1 2 3-5 1-9 6.53
 3 0 11-11 4.15
 1 11-62 2-50 57.24
2 2 44-121 8-109 91.63
 3 16-16 95-102 22.01
 1 99-151 5-65 67.96
3 2 61-85 6-57 62.34
 3 10-10 49-52 11.80
 1 51-60 3-10 12.67
4 2 10-21 2-15 22.29
 3 2-2 15-17 12.49
 1 17-17 2-2 2.93
5 2 1-1 3-3 1.63
 3 2-2 3-4 15.14
 1 4-8 2-2 3.4
6 2 3-3 1-2 2.734
 3 1-1 3-3 11.96

 134

 1 3-5 2-2 2.97
7 2 2-5 2-8 9.29
 3 2-2 8-8 8.69
 1 8-8 2-2 4.32
8 2 1-8 3-16 19.95
 3 2-3 16-19 14.46
 1 16-79 5-62 66.38
9 2 56-128 8-101 85.91
 3 18-18 85-93 22.02
 1 89-95 6-10 13.68

10 2 10-43 2-57 79.68
 3 8-10 51-67 42.51
 1 62-91 7-39 47.97

11 2 35-59 6-35 46.59
 3 10-11 27-32 17.03
 1 31-39 3-15 24.41

12 2 14-72 3-67 79.91
 3 8-8 61-61 9.65
 1 60-78 3-17 22.37

13 2 18-116 1-144 128.44
 3 14-14 132-140 18.05
 1 134-226 8-88 80.05

14 2 82-149 8-89 80.01
 3 13-13 78-93 44.34
 1 85-165 10-92 81.43

15 2 82-130 12-63 73.69
 3 19-19 46-51 22.64
 1 49-128 4-89 81.10

16 2 81-160 10-101 86.23
 3 24-25 79-97 31.11
 1 88-170 11-70 17.15

17 2 - - -
 3 - - -

Average

Standardeviation

 9184.53=X

S = 59.9992

8163.47=X

S = 40.7455

 1454.36=X

 S = 32.6769

Table 5.3 shows that the average of the number of cars behind the green light and the

red light on each phase are respectively 54 and 48 cars. The average of the optimal

length on each phase is 36.1454 seconds. There is an instability in the performance of

traffic flow at early cycle (cycle 1-cycle 8). At cycle 1, there are a few cars behind the

green and the red light and very short optimal length. For cycle 2 and cycle 3, the most

number of cars behind the green light are many but the most number of cars behind the

red light and the optimal length are moderate. The performance of traffic flow at cycle

4-cycle 8 is the same as the performance at cycle 1. At late cycles

 135

(cycle 9 and beyond), the most optimal lengths are long. The most number of cars

behind the green and red light are many. In detail of cycle 1 (see Figure 4.4), each figure

shows that there are no cars behind the green light and there are 2 cars behind the red

light on phase 1 so it should be used only 0.19 seconds on this phase.

On phase 2 of cycle 1, 2 cars from phase 1 including another one pass the green light

and the last car passing the green light on this phase is the 5th; the number of all cars that

pass the green light on this phase are 5 cars while 9 cars stop behind the red light. The

phase uses 6.53 secconds. On phase 3 of cycle 1, 9 cars from phase 2 still stop behind

the red light and there are no other cars passing the green light while there are the other

2 cars are behind the red light; the number of all cars that behind the red light on this

phase are 11 cars. The phase uses 4.15 seconds. The description of the other cycles are

similar to the description of cycle 1 in which the numbers of cars on the current phase

are impacted by the number of cars on the pre- phase.

Table 5.4 Pattern of traffic flow during each phase at Chonlaprathan intersection
 based on fuzzy logic controller.

Cycle Phase No. Green No. Red Length(sec)
 1 0 2-2 1.48
1 2 3-3 1-1 1.18
 3 1-1 2-2 0.75
 1 0 4-4 2.21
2 2 4-4 2-5 3.61
 3 2-3 5-8 2.41
 1 5-26 5-35 15.78
3 2 22-167 15-196 129.63
 3 107-195 91-273 109.33
 1 178-288 97-357 161.24
4 2 246-449 113-386 213.46
 3 254-409 134-481 229.39
 1 280-456 203-628 255.56
5 2 441-720 189-611 337.61
 3 399-685 214-826 383.23

Average

Standardeviation

 33.120=X

S = 200.7387

2121.131=X

S = 219.3564

 3625.68=X

 S = 104.167

Table 5.4 shows that the average of the number of cars behind the green light and the

red light on each phase are respectively 120 and 131 cars. The average of the optimal

length on each phase is 68.3625 seconds. There are only five cycles during a specified

time. There are a few cars and very short optimal lengths on all phases at cycle 1 and

 136

cycle 2. For cycle 3,4 and 5 there are many cars behind the green and the red lights,

while the optimal length is very long on all phases. In detail of cycle 1,

(see Figure 4.5) each figure shows that there are no cars behind the green light and there

are 2 cars behind the red light on phase 1 so it should be used only 1.48 seconds for this

phase. On phase 2 of cycle 1, 2 cars from phase 1 include another one passing the green

linght; the number of all cars that pass the green light on this phase are 3 cars while 1

car stops behind the red light. The phase use 1.18 secconds. On phase 3 of cycle 1, 1 car

from phase 2 passes the green light while there are 2 cars behind the red light; the

number of all cars behind the red light on this phase are 2 cars. The phase uses 0.75

seconds. The describtion of other cycles are similar to the description of cycle 1 in

which the number of cars on the current phase are impacted by the number of cars on

the pre phase.

Table 5.5 Pattern of traffic flow during each phase at Airport intersection from
 fuzzy logic controller.

Cycle Phase No. Green No. Red Length(sec)
 1 0 2-2 0.64
1 2 1-6 3-16 6.05
 3 5-10 13-20 7.52
 4 12-16 10-28 10.27
 1 17-41 13-60 39.69
2 2 26-78 36-166 91.71
 3 51-73 117-183 41.39
 4 94-146 91-215 82.64
 1 119-167 98-259 93.96
3 2 106-198 155-453 166.36
 3 193-274 262-504 153.67
 4 256-381 250-594 213.85
 1 289-412 307-675 230.63
4 2 347-586 330-997 413.64
 3 396-560 603-1164 313.46

 4 - - -
Average

Standardeviation
 6579.92=X

S = 153.865

3421.154=X

S = 281.2448

 1001.60=X

 S = 94.7208

Table 5.5 shows that the average of the number of cars behind the green light and the

red light on each phase are respectively 93 and 154 cars. The average of the optimal

length on each phase is 60.1001 seconds. there are only four cycles during the specified

time. There are a few cars and very short optimal length on all phases at cycles 1. For

cycles 2,3 and 4 there are many cars behind the green and the red lights, while the

optimal length is very long on most phases. In detail of cycle 1

 137

(see Figure 4.6), each figure shows that there are no car behind the green light and there

are 2 cars behind the red light on phase 1 so it should be used only 0.64 seconds for this

phase.

On phase 2 of cycle 1, there are 6 cars passing the green light , the number of all cars

that pass the green light on this phase is 6 cars while 2 cars from phase 1 still stop

behind the red light including another one; the number of all cars that stop behind the

red light on this phase are 16 cars. The phase uses 6.05 secconds. On phase 3 of cycle 1,

5 cars from 16 cars on phase 2 pass the green light and the last car that passes the green

light on this phase is the 10th; the number of all cars that pass the green light on this

phase is 10 cars while the 11 cars from 16 cars on phase 2 still stop behind the red light,

including the other 2 cars are also behind the red light; the number of all cars behind

the red light on this phase are 20 cars. The phase uses 7.52 seconds. On phase 4 of cycle

1, 12 cars from the 20 cars on phase 3 pass the green light and the last cars that pass the

green light on this phase is the 16th; the number of all cars behind the green light on this

phase are 16 cars. There are 8 cars from 20 cars on phase 3 still stopping behind the red

light include the other 2 cars; the number of the all cars behind the red light on this

phase are 28 cars. The phase uses 10.27 seconds. The description of the other cycles are

similar to the description of cycle 1 in which the number of cars on the current phase are

impacted by the number of cars on the

pre- phase.

5.2.2 The performance of traffic flow based on conventional
 controller

The computer program generated the parameters of traffic flow performance for the

conventional controller. The outputs of the parameters are shown as Table 5.6-5.9

Table 5.6 Pattern of traffic flow during each phase at Uboncharearnsri intersection
 based on conventional control.

Cycle Phase No. Green No. Red Length(sec)
 1 0-11 2-30 20
1 2 28-56 4-20 25
 3 4-20 18-36 25
 1 26-35 12-29 20
2 2 24-47 4-28 25
 3 12-30 18-55 25
 1 31-41 26-37 20
3 2 36-55 3-16 25
 3 7-19 11-39 25

 138

 1 21-31 20-40 20
4 2 38-63 4-21 25
 3 7-27 16-52 25
 1 37-51 17-44 20
5 2 39-66 7-24 25
 3 14-27 12-28 25
 1 20-31 10-34 20
6 2 30-53 6-27 25
 3 11-25 18-42 25
 1 28-42 16-36 20
7 2 37-56 1-22 25
 3 9-18 15-51 25
 1 30-40 23-55 20
8 2 52-79 5-30 25
 3 9-22 23-47 25
 1 32-43 17-48 20
9 2 46-69 4-34 25
 3 16-34 20-60 25
 1 36-52 26-42 20

10 2 35-59 9-24 25
 3 13-24 13-43 25
 1 25-40 20-49 20

11 2 48-77 3-32 25
 3 12-25 22-47 25
 1 36-46 13-35 20

12 2 35-48 2-15 25
 3 8-20 9-41 25
 1 18-32 25-49 20

13 2 45-63 6-25 25
 3 13-28 14-42 25
 1 22-31 22-40 20

14 2 35-51 7-30 25
 3 15-27 17-58 25
 1 32-41 28-46 20

15 2 43-67 5-24 25
 3 10-23 16-43 25
 1 29-39 16-36 20

16 2 33-59 5-24 25
 3 11-29 15-41 25
 1 27-42 16-43 20

17 2 37-56 8-31 25
 3 13-25 20-48 25
 1 37-42 13-30 20

18 2 24-54 8-25 25
 3 11-22 16-46 25
 1 25-35 23-50 20

19 2 52-82 0-19 25
 3 4-47 17-58 25
 1 37-45 23-46 20

20 2 42-71 6-27 25

 139

20 3 12-24 17-27 25
 1 28-35 21-44 20

21 2 40-70 6-23 25
 3 10-23 15-38 25
 1 27-34 13-39 20

22 2 40-72 1-16 25
 3 4-18 14-41 25
 1 26-31 17-36 20

23 2 32-49 6-24 25
 3 12-26 14-42 25
 1 23-37 21-57 20

24 2 52-75 7-30 25
 3 12-22 20-56 25
 1 36-42 22-46 20

25 2 42-68 6-22 25
 3 10-24 14-36 25
 1 23-33 15-30 20

26 2 - - 25
 3 - - 25

Average

Standardeviation
 7895.41=X

S = 17.554

8553.36=X

S = 11.4108

Table 5.6 shows that the average of the number of cars behind the green light and the

red light on each phase are respectively 42 and 37 cars. The number of cars behind the

green and the red lights on most phases are moderate. In detail of cycle 1 (see Figure

4.3), each figure shows that there are 11 cars behind the green light and there are 30 cars

behind the red light on phase 1, it uses 20 seconds for this phase. On phase 2 of cycle 1,

28 cars from 30 cars on phase 1 pass the green light and the last car that passes the

green light on this phase is the 56th; the number of all cars that pass the green light on

this phase is 56 cars while 2 cars from 30 cars on phase 1 still stop behind the red light

including the other 2 cars; the last car behind the red light on this phase is the 20th so

that the number of all cars stopping behind the red light on this phase is 20 cars.The

phase use 25 secconds. On phase 3 of cycle 1, 4 cars from the 20 cars on phase 2 pass

the green light and the last car that passes the green light is the 20th ; so the number of

all cars passing the green light on this phase is 20. There are 16 cars from the 20 cars on

phase 2 still stopping behind the red light including the other 2 cars are also behind the

red linght on this phase; the number of all cars behind the red light on this phase are 36

cars. The phase uses 25 seconds. The description of other cycles are similar to the

description of cycle 1 in which the number of car on the current phase are impacted by

the number of car on the pre-phase.

 140

Table 5.7 Pattern of traffic flow during each phase at Clock Hall intersection
 based on conventional controller.

Cycle Phase No. Green No. Red Length(sec)
 1 0-23 2-18 20

1 2 17-40 3-29 25
 3 4-4 27-33 25
 1 32-44 3-17 20

2 2 14-34 5-27 25
 3 8-8 21-34 25
 1 31-49 5-21 20

3 2 20-46 3-39 25
 3 4-4 37-46 25
 1 40-59 8-32 20

4 2 31-50 3-25 25
 3 3-4 24-36 25
 1 29-52 9-26 20

5 2 24-34 4-24 25
 3 5-5 21-28 25
 1 27-46 3-16 20

6 2 16-24 2-16 25
 3 3-3 15-22 25
 1 17-36 7-16 20

7 2 13-18 5-18 25
 3 7-7 13-23 25
 1 17-38 8-23 20

8 2 24-45 1-31 25
 3 2-4 31-44 25
 1 38-52 8-25 20

9 2 22-38 5-32 25
 3 6-6 28-40 25
 1 36-51 6-25 20

10 2 23-42 4-25 25
 3 8-8 19-30 25
 1 24-35 8-17 20

11 2 16-33 3-29 25
 3 4-4 27-32 25
 1 30-35 4-4 20

12 2 12-22 4-34 25
 3 7-8 29-39 25
 1 33-48 8-27 20

13 2 24-41 5-28 25
 3 7-7 23-28 25
 1 26-33 4-14 20

14 2 12-26 5-18 25
 3 4-5 16-33 25
 1 25-45 10-33 20

15 2 33-48 2-17 25
 3 3-5 16-35 25
 1 28-29 9-15 20

16 2 14-29 3-26 25

 141

16 3 2-3 26-39 25
 1 35-52 6-22 20

17 2 22-42 2-38 25
 3 4-6 36-41 25
 1 40-58 3-20 20

18 2 16-42 6-37 25
 3 6-6 33-46 25
 1 37-51 11-33 20

19 2 31-47 4-33 25
 3 7-7 28-35 25
 1 33-62 4-27 20

20 2 28-53 1-29 25
 3 1-2 30-40 25
 1 34-51 8-29 20

21 2 28-46 3-28 25
 3 3-3 27-38 25
 1 33-53 7-27 20

22 2 26-53 3-32 25
 3 4-5 30-41 25
 1 36-47 7-27 20

23 2 26-43 3-29 25
 3 6-6 25-43 25
 1 37-52 8-28 20

24 2 25-39 5-18 25
 3 7-7 13-24 25

Average
Standarderviation

 0417.30=X
S = 19.5358

5278.28=X
 S = 8.617

From Table 5.7 shows that the average of the number of that behind the green light and

the red light on each phase are respectively 30 and 29 cars. the number of cars behind

the green and the red light on most phases are moderate. In detail of cycle 1 (see Figure

4.4), each figure shows that there are 23 cars passing the green light and there are 18

cars stopping behind the red light; it uses 20 seconds on this phase. On phase 2 of cycle

1, 17 cars from 18 cars on phase 1 pass the green linght and the last car that passes the

green light on this phase is the 40th; the number of all cars that pass the green light on

this phase is 40 cars while 1 car from 18 cars on phase 1 still stop behind the red light

including the other 2 cars. The last car that stops behind the red light on this phase is the

29th; so that the number of all cars that stop behind the red light on this phase is 29

cars.The phase uses 25 secconds. On phase 3 of cycle 1, there are only 4 cars from 29

cars on phase 2 passing the green light while there are 25 cars from the 29 cars on phase

2 still stopping behind the red light including the other 2 cars; the number of all cars

stopping behind the red light on this phase are 33 cars. The phase uses 25 seconds. The

description of the other cycles are similar to the description of cycle 1 in which the

 142

number of cars on the current phase are impacted by the number of cars on the pre-

phase.

Table 5.8 Pattern of traffic flow during each phase at Chonlaprathan intersection
 based on conventional controller.

Cycle Phase No. Green No. Red Length(sec)
 1 0-16 2-32 20

1 2 20-50 14-49 25
 3 29-44 22-58 25
 1 33-55 27-70 20

2 2 52-84 20-57 25
 3 41-57 18-61 25
 1 32-48 31-66 20

3 2 48-66 20-61 25
 3 40-61 23-63 25
 1 42-58 23-52 20

4 2 40-61 14-58 25
 3 34-47 26-75 25
 1 41-53 36-69 20

5 2 53-74 18-51 25
 3 34-52 19-55 25
 1 34-49 23-55 20

6 2 37-64 20-53 25
 3 37-51 18-55 25
 1 35-47 22-47 20

7 2 39-65 10-35 25
 3 18-30 19-63 25
 1 35-53 30-64 20

8 2 47-73 19-51 25
 3 37-56 16-53 25
 1 29-37 26-56 20

9 2 36-56 23-60 25
 3 38-55 24-64 25
 1 33-54 33-70 20

10 2 52-74 20-45 25
 3 34-49 13-43 25
 1 24-35 21-45 20

11 2 34-55 13-40 25
 3 29-42 13-47 25
 1 30-46 19-51 20

12 2 39-70 14-50 25
 3 32-50 20-50 25
 1 33-47 19-58 20

13 2 40-66 20-60 25
 3 45-62 17-50 25
 1 29-40 23-47 20

14 2 36-61 13-54 25
 3 37-54 19-58 25

 143

 1 37-48 23-53 20
15 2 41-65 14-56 25
 3 36-57 22-64 25
 1 42-51 24-59 20

16 2 47-69 14-52 25
 3 24-45 30-68 25
 1 45-58 25-57 20

17 2 44-67 15-49 25
 3 33-45 18-48 25
 1 27-42 23-53 20

18 2 36-67 17-54 25
 3 34-54 22-53 25
 1 35-49 20-37 20

19 2 33-45 6-34 25
 3 23-41 13-42 25
 1 33-39 21-47 20

20 2 27-53 12-45 25
 3 26-41 21-50 25
 1 33-46 19-55 20

21 2 47-69 10-43 25
 3 24-35 21-58 25
 1 44-79 12-56 20

22 2 40-58 18-56 25
 3 40-58 18-56 25
 1 35-46 23-67 20

23 2 45-66 24-55 25
 3 45-62 22-60 25
 1 43-56 19-58 20

24 2 38-57 22-56 25
 3 43-60 15-49 25
 1 30-40 21-52 20

25 2 40-64 14-41 25
 3 28-43 15-55 25
 1 30-43 27-69 20

26 2 - -
 3 - -

Average
Standarderviation

 75.53=X
 S = 11.786

0526.54=X
 S = 8.7115

Table 5.8 shows that the average of the number of cars behind the green light and the

red light on each phase are 54 cars.The number of cars behind the green and the red

light on all phases are moderate. In detail of cycle 1 (see Figure 4.5), each figure shows

that there are 16 cars passing the green light and there are 32 cars stopping behind the

red light, it uses 20 seconds for this phase. On phase 2 of cycle 1, 20 cars from 32 cars

on phase 1 pass the green light , the number of all cars that pass the green light on this

phase are 50 cars. There are 12 cars from the 32 cars on phase 1 still stopping behind

the red light including the other 2 cars.The last cars that stops behind the red light on

 144

this phase is 49th, so that the number of all cars that stop behind the red light on this

phase are 49 cars. The phase uses 25 secconds. On phase 3 of cycle 1, 29 cars from 49

cars on phase 2 passing the green light, the last car that passes the green light on this

pase is 44th , so that the number of all cars that pass the green light on this phase are 44

cars. There are 20 cars from 49 cars on phase 2 still stopping behind the red light

including the other 2 cars, the number of all cars that stop behind the red light on this

phase are 58 cars. The phase uses 25 seconds. The description of other cycles are

similar to the description of cycle 1 in which the number of cars on the current phase are

impacted by the number of cars on the

 pre-phase.

Table 5.9 Pattern of traffic flow during each phase at Airport intersection
 based on conventional controller.

Cycle Phase No. Green No. Red Length(sec)
 1 0-17 2-45 25

1 2 13-18 34-61 20
 3 24-28 39-76 20
 4 35-54 43-81 25
 1 38-52 45-83 25

2 2 52-57 33-62 20
 3 23-33 41-60 20
 4 37-51 25-67 25
 1 31-47 38-79 25

3 2 39-47 42-71 20
 3 36-45 37-78 20
 4 39-55 41-69 25
 1 39-53 32-75 25

4 2 27-39 50-79 20
 3 40-54 41-73 20
 4 47-56 28-72 25
 1 34-47 40-78 25

5 2 37-49 43-87 20
 3 38-51 51-86 20
 4 45-64 43-77 25
 1 44-59 35-84 25

6 2 37-49 49-85 20
 3 41-52 46-74 20
 4 41-57 35-80 25
 1 37-47 45-83 25

7 2 38-48 47-73 20
 3 40-49 35-66 20
 4 42-57 26-69 25
 1 28-39 43-79 25

8 2 40-51 41-74 20
 3 44-48 32-68 20

 145

8 4 42-50 38-76 25
 1 38-54 40-92 25

9 2 43-49 51-88 20
 3 37-42 53-91 20
 4 49-56 44-85 25
 1 34-48 53-89 25

10 2 50-55 41-80 20
 3 34-38 48-72 20
 4 44-59 30-82 25
 1 39-52 45-87 25

11 2 46-54 43-74 20
 3 39-43 37-75 20
 4 37-54 40-76 25
 1 34-51 44-90 25

12 2 43-52 49-74 20
 3 34-38 42-75 20
 4 44-60 33-72 25
 1 30-44 44-72 25

13 2 44-54 33-69 20
 3 28-37 43-72 20
 4 40-54 34-81 25
 1 43-55 40-96 25

14 2 56-71 42-81 25
 3 43-54 40-74 20
 4 43-62 33-64 20
 1 33-46 33-69 25

15 2 35-45 36-66 20
 3 29-36 39-66 20
 4 39-49 29-75 25
 1 31-39 46-82 25

16 2 37-49 47-73 20
 3 41-51 34-69 20
 4 35-46 36-72 25
 1 35-41 39-75 25

17 2 40-54 37-87 20
 3 34-49 55-88 20
 4 46-56 44-84 25
 1 53-65 33-81 25

18 2 39-50 44-79 20
 3 29-41 52-96 20
 4 60-84 38-74 25
 1 34-51 42-86 25

19 2 41-54 47-82 20
 3 44-51 40-78 20
 4 43-57 37-72 25
 1 39-54 35-75 25

20 2 36-45 41-71 20
 3 37-48 36-64 20

Average
Standarderviation

 6203.46=X
 S = 9.7261

519.76=X
 S = 8.7616

 146

From Table 5.9 shows that the average of the number of cars behind the green light and

the red light on each phase are respectively 47 and 77 cars. The number of cars behind

the green and the red light on all phases are moderate. In detail of cycle 1

(see Figure 4.6), each figure shows that there are 17 cars behind the green light and

there are 45 cars behind the red light on phase 1; it uses 25 seconds for this phase. On

phase 2 of cycle 1, there are 13 cars from 45 cars on phase 1 passing the green light ,

the number of all cars passing the green light on this phase is 18 cars while 32 cars from

45 cars on phase 1 still stop behind the red light including the other 2 cars , the number

of all cars stopping behind the red light on this phase is 61 cars. The phase uses 20

secconds. On phase 3 of cycle 1, 24 cars from 61 cars on phase 2 passing the green

light and the last car passing the green light on this phase is the 28th, the number of all

cars passing the green light on this phase is 28 cars. There are 37 cars from 61 cars on

phase 2 still stopping behind the red light including the other 2 cars, the number of all

cars that behind the red light on this phase are 76 cars. The phase uses 20 seconds. On

phase 4 of cycle 1, 35 cars from 76 cars on phase 3 passing the green light and the last

cars passing the green light on this phase is the 54th, the number of all cars behind the

green light on this phase are 54 cars. There are 41 cars from 76 cars on phase 3 still

stopping behind the red light including the another 2 cars; the number all cars that

behind the red light on this phase is 81 cars. The phase uses 25 seconds. The description

of the other cycles are similar to the description of cycle 1 in which the number of cars

on the current phase are impacted by the number of cars on the pre phase.

5.3 The controller performance comparison

The cost function provides a means of comparing the traffic flow performance of the

fuzzy controller against the conventional controller. The lower the cost function is the

better the perfomance. The controller performance comparisons are as illustrated in

Figures 5.1-5.4 .

 147

Figure 5.1 Controller performance comparison at Uboncharearnsri intersection.

Figure 5.1 shows that on average, the cost function based on the fuzzy controller is

lower than the cost function based on the conventional controller.

0

0.02

0.04

0.06

0.08

 0.10

0.12

Cost

Fuzzy controller Conventional controller

Time (second) 1,800

 148

Figure 5.2 Controller performance comparison at Clock Hall intersection.

Figure 5.2 shows that on average, the cost function based on the fuzzy controller is

lower than the cost function based on the conventional controller.

0
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

Fuzzy controller Conventional controller

Time (second) 1,800

Cost

 149

Figure 5.3 Controller performance comparison at Chonlaprathan intersection.

Figure 5.3 shows that on average, the cost function based on the fuzzy controller is

lower than the cost function based on the conventional controller.

0

0.02

0.04

0.06

0.08

 0.10

0.12

0.14

Fuzzy controller Conventional controller

Cost

Time (second)
1,800

 150

Figure 5.4 Controller performance comparison at Airport intersection.

Figure 5.4 shows that on average, the cost function based on the fuzzy controller is

lower than the cost function based on the conventional controller.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Fuzzy controller Conventional controller

Cost

Time (second)
1,800

 151

Chapter 6

Conclusion and Discussion

 6.1 Conclusion

This study aims at computing the optimal lengths of traffic signal lights on each phase

of four intersections in the inner city of Ubon rachathani Province namely

Uboncharearnsri , Clock Hall , Chonlaprathan and Airport intersections. The expected

outcomes consist of the method to calculate the traffic signal timing at the targeted

intersections during rush hour and the traffic signal timing that is relevant to the number

of vehicles at the intersections.

To estimate the number of cars that arrive at or depart from the intersections, the study

uses a mixed model of maximum likelihood (Vardi, 1996) and Bayesian inference

(Tebaldi & West, 1998). The process started with a survey at the intersections of the

traffic system under study path. Let each intersection be a node and treat the traffic

system as a network. The path that connects any two nodes was called a direct route and

a direct link that refers to the path that have no nodes between the two ends. There are

72 direct routes and 18 direct links in the network. This enables the researcher to

observe the number of cars passing on any direct link but not on the direct route.

A relation between the number of cars passing on a direct link and direct route are

presented by an equation as follows:

 AXY =
 Y : direct link vector

 X : direct route vector

 A : routing matrix

In the process of data collection, the number of cars were observed on 20 days and the

EM iteration was used to solve the equation to estimate the mean ()λ of the number of

cars on all links. Now knowing Y and λ from observation and EM iteration, the next

step was to estimate X . Bayesian inference was used to achieve the goal; the illustrated

distribution is as follows:

 p ()λ,yx

 152

The Gibbs sampler (Casella & George,1992) is used to establish the algorithm of the

software to generate X , and support starting point of the algorithm with the mean ()λ .

As previously mentioned the study mixed the two methods of EM iteration and the

Gibbs sampler to estimate the number of cars on all links.

The statistical inference shows the number of cars behind the green light and behind the

red light. In addition, queuing system theory is used to generate the length of current

cycle time.The length derived from summation of interarrival time. The interarrival time

is generated from an exponential distribution.

The outputs from the estimation, the number of cars behind the green light, the number

of cars behind the red light and the length of current cycle time are used as the fact for a

Fuzzy logic system that consists of four components.

1. Fuzzyfier

2. Fuzzy rule based

3. Fuzzy inference engine, and

 4. Defuzzifier

The Fuzzyfier component defines membership values of Fuzzy sets according to Kelsey

and Bisset (1993), and also the rule based in the Fuzzy rule base component that are

composed of 26 rules, which are different from those of rules based on Pappis and

Mamdani (1977) who use a set of five rules in their fuzzy logic system.

The Fuzzy inference engine component is based on the product-sum-gravity method

presented by Kandel and Langholz (1994). It was used to combine the Fuzzy rules in

the fuzzy rules base into a mapping from fuzzy set to fuzzy set . The Defuzzifier

component, is based on the center average defuzzifier that was presented by Kandel and

Langholz (1994) and is used to perform a mapping from fuzzy set to crisp point.

The crisp point from fuzzy logic is the degree of change. The degree of change has a

value between 0 to 1. If the degree of change converges to 0 then the state of the light

(phase) remain the same, whereas the state will change to next state if the degree

converges to 1.

 153

 From the conclusion, as previously mentioned, we can generate traffic flow in a certain

time. The traffic flow is composed of the number of cars behind the green light and the

number of cars behind the red light at the current moment of time. In addition, the

estimation delivers the length of the current cycle time. Finally the optimal length of

each phase of the cycle is the length of current cycle time.

The traffic flow outputs under fuzzy controller at each intersections are different. At

Uboncharearnsri intersection, it is found that the optimal length of each phase at early

cycles (cycle 1-cycle 7) is very short. At late cycles (cycle 8 and beyond) the optimal

length of each phase is moderate. The optimal length of phase 2 is likely to be longer

than the others. There are few cars behind both the green light and the red light in the

early cycle. There is a moderate number of cars behind both the green light and the red

light in the late cycle.

At Clock Hall intersection, the traffic flow outputs at early cycles (cycle 1-cycle 8) is

found to be not stable. At cycle 1, there are a few cars behind both the green and the red

light. In addition, the optimal length is very short. For cycle 2 and cycle 3, the number

of cars and the optimal length are moderate. The traffic flow outputs at cycle 4-cycle 8

is just the same as the cycle 1. At late cycles (cycle 9 and beyond), the most optimal

lengths are long. The most number of cars behind the green and red light are found

many.

For Chonlaprathan intersection, there are only five cycles during the specified time.

There are a few cars and very short optimal length on all phases at cycle 1 and cycle 2.

For cycle 3,4 and 5 there are many cars behind the green and the red light, and the

optimal length is very long on all phases. The traffic flow at Airport intersection is

similar to that at Chonlaprathan intersection.

For the traffic flow under the conventional controller, the length of traffic lights on each

phase of all cycles are fixed. The results at all intersections are similar; the number of

cars are moderate and there are approximate 22 cycles on specific period of time.

This study employs the cost function to evaluate the traffic flow. The cost function

involves the average of wait time and drive time, the number of cars exiting and

entering the intersection. The efficiency of a traffic controller can be judged from the

 154

value of the cost function. The lower the cost function the better performance of the

controller.

The comparison of controller performances shows that cost function under the

suggested traffic controller is lower than the cost function from conventional controller.

This shows that the output of the comparison illustrating the fuzzy controller is more

efficient than the conventional controller.

6.2 Discussion

From the literature review, there are many ways to attempt to solve traffic problems.

This study concentrates on solving a part of the traffic problem, congestion at

intersection. The study accords with these of many authors such as Kotsopoulos (1999),

Lan (2002) and so on. A major factor that influences traffic congestion is poor timing.

The study improves traffic signal timing at intersections by using mathematical and

statistical methods similar to those of Schutter’s study (2002) and Yi, Xin and Zhao’s

study (2001). Fuzzy logic is applied in a way similar to the work of many authors such

as Zhenyang’s study (2004), Ande’study (1996), Edid’s study (1999),Seongho’s study

(1994), Adeli and Karim’s study (2000) , Lee, Krammes and Yen’s study (1998) and

Cabrera and Ivan’s study (2000). The present study ignored the development for the

software or hardware of traffic signals. The study did not use high technology tools

because of these high cost and the traffic control was unavailable for traffic control in

the area of study. The main contribution of the study is the provision of an alternative

means to improve the suitable signal timing for traffic controller at the intersections

studied by using the optimal length computed by using computer programming by the

Fortran language which the police and authorities can apply to solve the traffic

problems. The algorithm of computer programming is based on EM algorithm and the

Gibbs sample in Markov Chain Monte Carlo, in which demonstrated on many articles

such as Herring and Ibrahim (2002), Karlis (2003), Kim and Taylor (1995), Lee and Shi

(2001), Carlin, Stern, and Rubin (1995) and so on. The objective of the algorithms is to

estimate traffic intensity based on the coordination of the idea of Vardi (1996) and

Tebaldi and West (1998). Moreover the study applied queuing theory to identify

waiting time, length of queue and the length of the current cycle time similar to the

work done by Cheng and Allam (1992), Cruz, Smith and Mediros (2005), Dewees

(1979), Das and Levinson (2004), and Omari,Masaeid and Shawaeid (2004). Queuing

 155

application in such report papers is mainly based on simulation that is different from

this study in that this study only applied queuing to generate interarrival time to

calculate waiting time and queue length and the length of the current cycle time. This

study also applied fuzzy logic system for traffic control similar to the work of many

authors such as Zhenyang’ study (2004), Ande;s study (1996), Enid’s study (1999),

Cabrera and Ivan’ study (2000) and so on. Fuzzy logic system designs the algorithm of

decision process. The algorithm was designed to change traffic intensity estimator and

the length of the current cycle time to degree of change just the same as of the study

done by Kelsey and Bisset (1993). The degree of change decided whether to change the

state of the traffic light or remain in the same state. In addition, the algorithm was

dependent upon an expert traffic control and the membership function that need to be

adapted with the observation data (Wang,1994).

The likelihood of the output of traffic flow performance under fuzzy controller at Ubon

Charernsri intersection and the performance at Clock Hall intersection derived from the

two intersections are close to each other. Additionally, these intersections are in the

same traffic environment. The optimal length of traffic signal light on each phase of the

late cycles are moderate, because the number of cars that exit and enter the intersections

are moderate. This is likely because there are a few cars that exit and enter the

intersections at the early cycles, the optimal length of traffic signal light are very short.

The traffic flow performance at Airport and Chonlaprathan intersection gave a similar

result in both the number of cars and optimal length of traffic signal light due to their

proximity. The optimal length of traffic signal light on all phases is likely to be very

long because the Airport intersection has more traffic congestion than the others

whereas Chonlaprathan intersection has fewer cars than the others.

Theoretically, the fuzzy logic application to control traffic signal light in other research

reports was based on the simulation and the controller installed on the equipment of

traffic signal controller differentiated this study from the previous studied. Such

difference is that the output from this study do not apply to control traffic flow at the

moment. Instead, the process needs data collection and computation by computer

programming and then apply traffic timing to control in the next time.

 156

Interestingly, the evaluation by using cost function generation shows that the procedure

of this study is very helpful to decrease waiting time and queue length as done by other

methods that use high technology equipment.

Summing up, this study presents the mixed method between maximum likelihood

estimation and Bayesian estimation to estimate the number of cars that pass all links in

the studied traffic system. Moreover this study also let the estimator in the fuzzy logic

system to infer the optimal length on each phase at each intersection. The problem and

obstacles of this study is that the observation is probably incorrect in some situations,

and the study does not cover the improvement of the optimum length in the real

situation. Another problem is that this study independently calculated the optimal length

at each intersection which may not correspond to the real situation. The future study

should link data between each intersection to calculate the optimal length.

 157

References

Abdel-Aty, M. A., & Abdelwahab, H. T. (2004). Predicting injury severity levels in
traffic crashes: A modeling comparison. Journal of Transportation Engineering,
130(2), 204.

Abutaled, A. S., & Papaioannou, M. G. (2000). Maximum likelihood estimation of
time-varying parameters: An application to the athens stock exchange index.
Applied, 32(10), 1323.

Adeli, H., & Jiang, X. (2003). Neuro-fuzzy logic model for freeway work zone capacity
estimation. Journal of Transportation Engineering, 129(5), 484.

Adeli, H., & Karim, A. (2000). Fuzzy-wavelet rbfnn model for freeway incident
detection. Journal of Transportation Engineering, 126(6), 464.

Ait-Sahalia, Y. (2002). Maximum likelihood estimation of discretely sampled
diffusions: A closed-form approximation approach. Econometrica, 70(1), 223.

Ament, J. M. (1980). Change a queue system from passive to active. Industrial
Engineering, 12(4), 40.

Ande, M. M. (1996). Design of fuzzy logic based adaptive traffic signal controller.
University of Nevada, Las Vegas, Las Vegas.

Aquilar-Iqartua, M., Postiqo-Boix, M., & Garcia-Haro, J. (2002). Atm inverse
multiplexing. Fundamentals and markovian single-server queue analysis for
performance evaluation and validation purposes. Telecommunication Systems,
21(1), 103.

Banks, J., Carson, J.S., Nelson, B.L., & Nicol, D. M. (2001). Discrete-event system
simulation. New Jersey: Prentice-hall.

Basu, S., Banerjee, M., & Sen, A. (2000). Bayesian inference for kappa from single and
multiple studies. Bioinformatics, 56(2), 577.

Bera, A. K., & Bilias, Y. (2002). The mm, me, ml el, ef and gmm approaches to
estimation: A synthesis. Journal of Applied Econometrics, 107(1,2), 51.

Beynon, M. J., Pee, M. J., & Tang, Y.-C. (2004). The application of fuzzy decision tree
analysis in an exposition of the antecedents of audit fees. Omega, 32(3), 231.

Blackwell, P. (2001). Bayesian inference for a random tessellation process. Biometrics,
57(2), 502.

Blackwell, P. G. (2003). Bayesian inference for markov processes with diffusion and
discrete components. Biometrika, 90(3), 613.

Brown, L., Gans, N., Mandelbaum, A., & Sakov, A. (2005). Statistical analysis of a
telephone call center: A queueing-science perspective. Journal of American
Statistical Association, 100(469), 36.

Cabrera, G., & Ivan, L. (2000). A methodology to design traffic signal controllers based
on fuzzy logic. A methodology to design traffic signal controllers based on fuzzy
logic, Puerto Rico.

Carey, V., Baker, C., & Platt, R. (2001). Bayesian inference on protective antibody
levels using case-control data. Biometrics, 57(1), 135.

Carlin, B. P., & Louis, T. A. (1996). Bayes and empirical Bayes methods for data
analysis. London: Chapman & Hall.

Casella, G., & George, E.I. (1992) Explaining the Gibbs sampler. The American
Statistician, 46, 167-174.

Chan, F., & McAleer, M. (2002). Maximum likelihood estimation of star and star-garch
models: Theory and monte carlo evidence. Journal of Applied Econometrics,
17(5), 509.

 158

Chen, M., & Ibrahim, J. (2001). Maximum likelihood methods for cure rate models with
missing covariates. Biometrics, 57(1), 43.

Chen, M.-H., G.Ibrahim, J., & R.Lipsitz, S. (2002). Bayesian methods for missing
covariates in cure rate models. Lifetime Data Analysis, 8(2), 117.

Chen, S.-P. (2004). Parametric nonlinear programming for analyzing fuzzy queues with
finite capacity. European Journal of Operational Research, 157(2), 429.

Cheng, T. C. E., & Allam, S. (1992). A review of stochastic modeling of delay and
capacity at unsignalized priority intersections. European Journal of Operational
Research, 60(3), 247.

Cho, H., & Yi, S.-J. (2004). Vehicle trajectory control using the fuzzy logic controller.
Journal of automobile engineering, 218(1), 21.

Chopin, N., & Pelqrin, F. (2004). Bayesian inference and state number determination
for hidden markov models: An application to the information content of the
yield curve about inflation. Journal of Econometrics, 123(2), 327.

Corander, J., & Villani, M. (2004). Bayesian assessment of dimensionality in reduced
rank regression. Statistica Neerlandica, 58(3), 255.

Cruz, F. R. B., MacGreqor, J., & Queiroz, D. C. (2005a). Service and capacity
allocation in m/g/c/c state-dependent queuing networks. Computer & Operations
Research, 32(6), 1545.

Cruz, F. R. B., Smith, J. M., & Medeiros, R. O. (2005b). An m/g/c/c state-dependent
network simulation model. Computer & Operations Research, 32(4), 919.

Das, S., & Levinson, D. (2004). Queuing and statistical analysis of freeway bottleneck
formation. Journal of Transportation Engineering, 130(6), 787.

David, w. (1992). How to design fuzzy logic controllers. Machine Design, 64(23), 92.
Demey, P., Jean-Frederic, Roget, C., & Poncalli, T. (2004). Maximum likelihood

estimate of default correlations. Risk, 17(11), 104.
Deschamps, P. J. (1998). Full maximum likelihood estimation of dynamic demand

models. Journal of Applied Econometrics, 82(2), 335.
Dewees, D. N. (1979). Estimating the time cost of highway congestion. Econometrica,

47(6), 1499.
Drekic, S., & Woolford, D. G. (2005). A preemptive priority queue with balking.

European Journal of Operational Research, 164(2), 387.
Dunson, D., & Herring, A. (2003). Bayesian inferences in the cox model for order-

restricted hypotheses. Biometrics, 59(4), 916.
Durtham, G. B., Gallant, A. R., Ait-Sahalia, Y., & Brandt, M. W. (2002). Numerical

techniques for maximum likelihood estimation of continuous-time diffusion
processes / comment. Journal of Business & Economic, 20(3), 297.

Duson, D., & Neelon, B. (2003). Bayesian inference on order-constrained parameters in
generalized linear models. Bioinformatics, 59(2), 286.

Ellis, R. L., & Durgee, D. H. (1982). Coupling queuing with route-advance (part 1).
Telephony, 202(19), 34.

Ellson, S. R., (1993). Maximum likelihood estimation logic and practice. United state of
America: Sage publication.

Enid, M. M. (1999). Fuzzy logic-based control and coordination of traffic signals along
an arterial street. University of Puerto Rico, Mayaguez (Puerto Rico).

Eqorov, A. V., Li, H., & Xu, Y. (2003). Maximum likelihood estimation of time-
inhomogeneous diffusions. Journal of Econometrics, 114(1), 107.

Erkanli, A., Soyer, R., & Costello, E. (1999). Bayesian inference for prevalence in
longitudinal two-phase studies. Biometrics, 55(4), 1145.

Fakinos, D. (1982). The expected remaining service time in a single server queue.
Operations Research, 30(5), 1014.

Fisher, D. (2004). Teaching machines to think fuzzy. The technology teacher, 64(2), 13.

 159

Fouqere, D., & Kamionka, T. (2003). Bayesian inference for the mover-stayer model in
continuous time with an application to labour market transition data. Journal of
Applied Econometrics, 18(6), 697.

Frehlich, R., & Sharman, R. (2005). Maximum likelihood estimates of vortex
parameters from simulated coherent doppler lidar data. Journal of Atmospheric
and Oceanic Technology, 22(2), 117.

Fridman, M., & Harris, L. (1998). A maximum likelihood approach for non-gaussian
stochastic volatility models. Journal of Business & Economic Statistics, 16(3),
284.

Fu, M. C., Hu, J.-Q., & Naqi, R. (1995). Comparison of gradient estimation techniques
for queues with non-identical servers. Computers & Operations Research, 22(7),
715.

Gelfand, A.E., & Smith, A.F.M. (1990). Sampling-Based approaches to calculating
marginal densities. Journal of the American Statistical Association, 85, (398-
409)

Geweke, J. (1989). Baysian inference in econometric models using monte carlo
integration. Econometrica, 57(6), 1317.

Geweke, J., Gowrisankaran, G., & Town, R. J. (2003). Bayesian inference for hospital
quality in a selection model. Econometrica, 71(4), 1215.

Ghitany, M. E., & Al-Awadhi, S. (2002). Maximum likelihood estimation of burr xii
distribution parameters under random censoring. Journal of Applied Statistics,
29(7), 955.

Gill, R. (2004). Maximum likelihood estimation in generalized broken-line regress. The
Canadian Journal of Statistics, 32(3), 227.

Glenn, A. (1994). Fuzzy logic: What it is; what it does; what it can do. Production,
106(10), 38.

Gorney, L. (1979). Queuing theory, the science of wait control part 2: System types
 gorney, len. Byte. Peterborough: May 1979.Vol.4, iss. 5; pg. 176. Byte, 4(5),

176.
Halachmi, B. (1978). The fokker-planck equation as an approximating formula for the

g/m/k queing system. Computers & Operations Research, 5(3), 179.
Hagger, C., Janss, L., Kadarmideen, H., & Stranzinger, G. (2004). Bayesian inference

on major loci in related multigeneration selection lines of laying hens. Poultry
Science, 83(12), 1932.

Harb, A. M., & Smadi, I. A. (2004). On fuzzy control of chaotic systems. Journal of
vibration and control, 10(7), 979.

Herring, A. H., & Ibrahim, J. G. (2002). Maximum likelihood estimation in random
effects cure rate models with nonignorable missing covariates. Biostatistics,
3(3), 387.

Horton, N., & Laird, N. (2001). Maximum likelihood analysis of logistic regression
models with incomplete covariate data and auxiliary information. Biometrics,
57(1), 34.

Hsiao-Ching, & Denver, C. (1998, Nov 17). Moving, moving, moving traffic-signal
timing plan makes inroads; [rockies edition]. Denver Post, p. F.07.

Hsiao, C., Pesaran, M. H., & Tahmiscioqlu, A. K. (2002). Maximum likelihood
estimation of fixed effects dynamic panel data models covering short time
periods. Journal of Applied Econometrics, 109(1), 107.

Huelsenbeck, J. P., Ronguist, F., Nielsen, R., & Bollback, J. P. (2001). Bayesian
inference of phylogeny and its impact on evolutionary biology. Science,
294(5550), 2310.

Hunter, D. R., & lange, K. (2004). A tutorial on mm algorithms. The American
Statistician, 58(1), 30.

 160

Jaiimsin, A. (2004, Nov 29). Overhauled mass transit system for bangkok to include
rapid routes. Knight Ridder Tribune Business New, p. 1.

Jaqannathan, R., & Khan, A. M. (2001). Methodology for the assessment of traffic
adaptive control systems. Institue of Transportation Engineers.ITE Journal,
71(6), 28.

Jensen, M. J. (2004). Semiparametric bayesian inference of long-memory stochastic
volatility models. Journal ot Time Series Analysis, 25(6), 895.

Jewell, N. P. (2004). Maximum likelihood estimation of ordered multinomial
parameters. Biostatistics, 5(2), 291.

Jonker, M. A. (2003). Maximum likelihood estimation of life-span based on censored
and passively registered historical data. Lifetime Data Analysis, 9(1), 35.

Kendel, A., & Langholz, G. (1994). Fuzzy control systems. United State of America:
CRC Press.

Karlis, D. (2001). A general em approach for maximum likelihood estimation in mixed
poisson regression models. Statistica Modelling, 1(4), 305.

Karlis, D. (2003). An em algorithm for multivariate poisson distribution and related
models. Journal of Applied Statistics, 30(1), 63.

Keats, J. B., Lawrence, F. P., & Wang, F. K. (1997). Weibull maximum likelihood
parameter estimates with censored data. Journal of Quality Technology, 29(1),
105.

Kelsey, R. L., & Bisset, K. R. (1993). Simulation of traffic flow and control using fuzzy
and conventional methods. In M. Jamshidi (Ed.), Fuzzy and control

 (pp. 262-278). New Jersey: Prentrice-Hall.
Kerbache, L., & Smith, J. M. (2004). Queueing networks and the topological design of

supply chain systems. Interational journal of Production Economics, 91(3), 251.
Kikuchi, S., & Tanaka, N. U. M. (2003). Impacts of shorter perception-reaction time of

adapted cruise controlled vehicles on traffic flow and safety. Journal of
Transportation Engineering, 129(146), 146.

Kim, D., & Taylor, J. M. G. (1995). The restricted em algorithm for maximum
likelihood estimation under linear restrictions on the parameters. Journal of
American Statistical Association, 90(430), 708-715.

Kirawanich, P., & O'Connell, R. M. (2004). Fuzzy logic control of an active power line
conditioner. IEEE Trasactions on power electronics, 19(6), 1574.

Kleiberqen, F. (2004). Invariant bayesian inference in regression models that is robust
against the jeffreys-lindley's paradox. Journal of Econometrics, 123(2), 227.

Kleinrock, L. (1976). Queuing systems. United State of America: John Wiley & Son.
Kotsopoulos, N. (1999, Jul 2 1999). Signal upgrade at rice square smoothes 4-street

traffic flow; [final edition]. Telegram&Gazette, p. B.1.
Kotz, S., Kozubowski, T. J., & Podqorski, K. (2002). Maximum likelihood estimation

of asymmetric laplace parameters. Annals of the Institute of Statistical
Mathematics, 54(4), 816.

Lan, C.-J. (2004). New optimal cycle length formulation for pretimed signals at isolated
intersections. Journal of Transportation Engineering, 130(5), 637.

Lazar, N. A. (2003). Bayesian empirical likelihood. Biometrika, 90(2), 319.
Ledford, J. (2002). Well-timed signals cut delays, fuel use; [home edition]. The Atlanta

Journal-Constitution, C.2.
Lee, S., Krammes, R. A., & Yen, J. (1998). Fuzzy-logic-based incident detection for

signalized diamond interchanges. Transportation Research Part C.
Lee, S., Messer, C. J., Oh, Y., & lee, C. (2004). Assessment of three simulation models

for diamond interchange analysis. Journal of Transportation Engineering,
130(3), 304.

 161

Lee, S., & Shi, J. (2001). Maximum likelihood estimation of two-level latent variable
models with mixed continuous and polytomous data. Biometrics, 57(3), 787.

Leonard, D, J., Rodegerdts, & A, L. (1998). Comparison of alternate signal timing
policies. Journal of Transportation Engineering, 124(6), 510.

Liu, J., & Sabatti, C. (2000). Generalised gibbs sampler and multigrid monte carlo for
bayesian computation. Biometrika, 87(2), 353.

Liu, J. S., & Lawrence, C. E. (1999). Bayesian inference on biopolymer models.
Bioinformatics, 15(1), 38.

Liu, L., Liu, X., & Yao, D. D. (2004). Analysis and optimization of a multistage
inventory-queue system. Management Science, 50(3), 365.

Lo, H. K., & Chow, A. H. F. (2004). Control strategies for oversaturated traffic. Journal
of Transportation Engineering, 130(4), 466.

Lynch, T. B., Nkouka, J., Huebschmann, M. M., & Guldin, J. M. (2003). Maximum
likelihood estimation for predicting the probability of obtaining variable
shortleaf pine regeneration densities. Forest Science, 49(4), 577.

Mahmoud, M. E.-D., & EL-Araby, K. (1999). A robust dynamic highway traffic
simulation model. Computers & Industrial Engineering, 37(1,2), 189.

Maqlaras, C., & Mieqhem, J. A. V. (2005). Queueing systems with leadtime constraints:
A fluid-model approach for admission and sequencing control. European
Journal of Operation Research, 167(1), 179.

Mamdani, E.H. (1974) Applications of fuzzy algorithms for control of a simple dynamic
Plant. Proc. of IEEE,121, (1585-1588)

Martin, A. D. (2003). Bayesian inference for heterogeneous event counts. Sociological
Methods and Research, 32(1), 30.

Masalonis, A. J., & Parasuraman, R. (2003). Fuzzy signal detection theory: Analysis of
human and machine performance in air traffic control, and analytic
considerations. Ergonomics, 46(11), 1045.

Milescu, L. S., Akk, G., & Sachs, F. (2005). Maximum likelihood estimation of ion
channel kinetics from macroscopic currents. Biophysical Journal, 88(4), 2494.

Milligan, B. G. (2003). Maximum-likelihood estimation of relatedness. Genetics,
163(3), 1153.

Miranda, M. J., & Rui, X. (1997). Maximum likelihood estimation of the nonlinear
rational expectations asset pricing model. Journal of Economic Dynamics &
Control, 21(8,9), 1493.

Moore, D. S. (1997). Bayes for beginners? Some reasons to hesitate. The American
Statistician, 51(3), 254.

Nair, V. N., Tang, B., & Xu, L.-A. (2001). Bayesian inference for some mixture
problems in quality and reliability. Journal of Quality Technology, 33(1), 16.

Nam, D. H., & R., D. D. (1998). Analyzing freeway traffic under congestion: Traffic
dynamics approach. Journal of Transportation Engineering, 124(3), 208.

Ning-Zhong, Zneng, S.-R., & Guo, J. (2005). The restricted em algorithm under
inequality restrictions on the parameters. Journal of Multivariate Analysis,
92(1), 53.

O'Loughlin, C., & Coenders, G. (2004). Estimation of the european customer
satisfaction index: Maximum likelihood versus partial least squares. Application
to postal services. Total Quality Management & Business Excellence, 15(9,10),
1231.

Odejar, M. A. E., & S.McNulty, M. (2001). Bayesian analysis of the stochastic
switching regression model using markov chain monte carlo methods.
Computational Economics, 17(2-3), 265.

 162

Oh, M.-S., Choi, J. W., & Kim, D.-G. (2003). Bayesian inference and model selection
in latent class logit models with parameter constraints: An application to market
segmentation. Journal of Applied Statistics, 30(2), 191.

Paiqe, R. L., & Butler, R. W. (2001). Bayesian inference in neural networks.
Biometrika, 88(3), 623.

Pasquale, F., Barone, P., Sebstiani, G., & Stander, J. (2004). Bayesian analysis of
dynamic magnetic resonance breast images. Applied Statistics, 53(3), 475.

Piles, M., Gianola, D., Varona, L., & Blasco, A. (2003). Bayesian inference about
parameters of a longitudinal trajectory when selection operates on a correlated
trait1. Journal of Animal Science, 81(11), 2714.

Porter, J. (2002). Efficiency of covariance matrix estimators for maximum likelihood
estimation. Journal of Business & Econometrics Statistics, 20(3), 431.

Rakha, H., & Zhang, Y. (2004). Sensitive analysis of transit signal priority impacts on
operation of a signalized intersection. Journal of Transportation Engineering,
130(6), 796.

Ramasamy, N. R., & Selladurai, V. (2004). Fuzzy logic approach to prioritise
engineering characteristics in quality function deployment (fl-qfd). The
international journal of quality & Reliability management, 21(9), 1012.

Roberts, G. O., Papaspiliopoulos, O., & Dellaportas, P. (2004). Bayesian inference for
non-gaussian ornstein-uhlenbeck stochastic volatility processes. Journal of the
Royal Statistical Society. Series B. Statistical Methodology, 66(2), 369.

Rolls, D. A., Michailidis, G., & Hernandez-Campos, F. (2005). Queueing analysis of
network traffic: Methodology and visualization tools. Computer Networks,
48(3), 447.

Ross, A. M., & Shanthikumar, J. G. (2005). Estimating effective capacity in erlang loss
systems under competition. Queueing Systems, 49(1), 23.

Rous, J. J., Jewell, R. T., & Brown, R. W. (2004). The effect of prenatal care on
birthweight: A full-information maximum likelihood approach. Health
Economics, 13(3), 251.

Rovers, M., Vander, W. G., Vander, B. S., Straatman, H., Ingels, K., & Zielhuis, G.
(2005). Bayes' theorem: A negative example of a rct on grommets in children
with glue ear. European Journal of Epidemiology, 20(1), 23.

Rubinstein, R. Y. (1981). Simulation and the Monte Carlo method. United State of
American: John Wiley & Sons.

Sarkar, D., & Zangwill, W. I. (1992). File and work transfers in cyclic queue systems.
Management Science, 38(10), 1510.

Scheike, T. H., & Martinussen, T. (2004). Maximum likelihood estimation for cox's
regression model under case-cohort sampling. Scandinavian Journal of
Statistics, 31(2), 283.

Schutter, B. D. (2002). Optimizing acyclic traffic signal switching sequences through an
extended linear complementarity problem formulation. European Journal of
Operational Research, 139(2), 400.

Seongho, K. (1994). Applications of petri networks and fuzzy logic to advanced traffic
management systems. Polytechnic University, New York.

Soud, D., & Kazemian, H. B. (2004). A fuzzy approach to active usage parameter
control in ieee 802.11b wireless networks. Expert Sytem, 21(5), 269.

Stewart, D., Cheraghi, S., & Malzahn, D. (2004). Fuzzy defect avoidance system (fdas)
for product defect control. Interational journal of production research, 42(16),
3159.

Sunkari, S. (2004). The benefits of retiming traffic signals. 74(4), 26.
Swann, C. A. (2002). Maximum likelihood estimation using parallel computing: An

introduction to mpi. Computational Economics, 19(2), 145.

 163

Takine, T. (2005). Single-server queues with markov-modulated arrivals and service
speed. Queueing Systems, 49(1), 7.

Tebaldi, C., & West, M. (1998). Bayesian inference on network traffic using link count
data. American statistical association journal of American statistical
association, 93, 557-573.

Teodorovic, D., & Vukadinovic, K. (1998). Traffic control and transport plannig.
Massachusetts: Kluwer academic publishers.

Toshinori, M., & Yashvant, J. (1994). Fuzzy systems: An overview. Association for
Computing Machinery. Communications of the ACM, 37(3), 68.

Vardi, Y. (1996). Work tomography: Estimating source-destination traffic intensity
from link data. Journal of American Statistical Association, 91, 365-377.

VerevKa, O. V., & Parasyuk, I. N. (2002). Mathematical fundamentals of constructing
fuzzy bayesian inference techniques. Cybernetics and Systems Analysis, 38(1),
89.

Wang, L.-X. (1994). Fuzzy systems and control. New Jersey: United States of America.
Wang, X., He, C. Z., & Sun, D. (2005). Bayesian inference on the patient population

size given list mismatches. Statistics in Medicine, 24(2), 249.
Waqner, K., & Gill, J. (2005). Bayesian inference in public administration research:

Substantive differences from somewhat different assumptions. Interational
Journal of Public Administration, 28(1,2), 5.

Yang, T., Lee, R.-S., Chen, M.-C., & Chen, P. (2005). Queueing network model for a
single-operator machine interference problem with external operations.
European Journal of Operation Research, 167(1), 163.

Yi, P., Xin, C., & Zhao, Q. (2001). Implementation and field testing of characteristics-
based intersection queue estimation model. Networks and Spatial Economics,
1(1-2), 205.

Yu, Q., & Wong, G. Y. C. (2005). Modified semiparametric maximum likelihood
estimator in linear regression analysis with complete data or right-censored data.
Technometrics, 47(1), 34.

Zhang, H., & Tam, C. (2004). Fuzzy simulation of flexible construction processes.
Interational journal of computer applications in technology, 20(1-3), 15.

Zhenyang, L. (2004). Dynamic left-turn phase optimization using fuzzy logic control.
The University of Tennessee, Tennessee.

Zhu, Y., & Zhang, Z. G. (2004). M/gi/1 queues with services of both positive and
negative customers. Journal of Applied Probability, 41(4), 1157.

 164

Appendix

 165

The flowchart for main program

 166

 167

 168

 169

 170

gys=0

d1=0

d1=d1+1

rv=d1
rk=k1
rn=n1

rmean=y bar(k1)/30

call subroutine poiss

gy(k1)=XP
gys=gys+gy(k1)

d1=100

bar(k1)=gys/100

no

yes

1 4 5

1 4 5

 171

 172

 173

 174

 175

 176

 177

rmeanp(i)<103 rmean=ram(t,i,j)

rmeanp(i)>103 rmean=103

5 4 3 1 2

5 4 3 1

yes

yes

no

end if

no

call sub routine poiss

x3(t,i,j)=xp

t>1
al=int(also(x3(t-1,i,j))+1

be=1
X=0

call subroutine gamma

ram(t,i,j) = x
rmean = ram(t,i,j)

yes

2

no

9

9

 178

5 4 3 2 1

5 4 3

x<103

x>103

end if

call subroutine poiss

x3(t,i,j) = xp

end if

rmean = ram(t,i,j)

mean =103

run = 1

mf = int(x3(t,i,j))

m = 0

1

yes

no

yes

no

9

9

 179

 180

5 4 3 1 2

run=run*ram(t,i,j)/m

m = mf
no

yes

uml(t,i,j)=run/2.718**ram(t,i,j)

p=(u(t,i,j)*umu(t,i,j))/(rlo(t,i,j)*uml(t,i,j))

p<1

5 4 3 1

1p ≥

end if

un = 1

un = 0

un = 1

call subroutine ber

un = x

yes

yes

no

no

x3(t,i,j)=x3(t,i,j)

x3(t,i,j)=x3(t-1,i,j)

6 7

no

no

yes

yes

9

9

 181

5 4 3 1 6 7

end if

i = 72
no

yes

x3(t,1,j) = x3(t,1,j)+x3(t,6,j)+...+x3(t,26,j)
x3(t,9,j) = x3(t,9,j)+x3(t,10,j)+...+x3(t,15,j)

x3(t,60,j) = x3(t,14,j)+x3(t,28,j)+…+x3(t,64,j)

j = 10

t = 1

t = s

time = t

i = 0

M

no

yes

yes

no

1 9

9

 182

 183

 184

t = s

i = 0

i = i+1

sum1 = 0

j = 0

j = j+1

sum1=sum1+x3(t,i,j)

j = 10
no

1
2

1

ir=0

ir=ir+1

1.001)(r(ir)0.999)(r(ir) >∨<

no

yes

9

 185

 186

in = in+1

p1=rinten(11)/(rinten(11)+rinten(9)+rinten(13))
p2=rinten(9)/(rinten(11)+rinten(9)+rinten(13))

p3=(0.38*rinten(13))/(rinten(11)+rinten(9)+rinten(13))
p4=(0.62*rinten(13))/(rinten(11)+rinten(9)+rinten(13))

call subroutine allocate

que = q

que = 1 beta = 1/rink(11)

call subroutine expo

a(in)=bx

gn = gn+1

13

1 2

yes

no

3

 187

1 23

sumg = sumg+1

j = 0

j = j+1

sumg = sumg+a(j)

j = in

driv(in)=sumg

cut(in)=0

beta=1/rlink(9)que = 2

1 23

no

yes

no

4

yes

 188

1 23

call subroutine expo

a(in)=bx

rc2 = rc2+1

scut = 0

j = 0

j = j+1

scut = scut+a(j)

4

41 23

j = in
no

yes

 189

41 23

driv(in) = 0

cut(in) = scut

beta=1/(0.38*rlink(13))que = 3

call subroutine expo

a(in)=bx

rc3 = rc3+1

scut = 0

j = 0

213 4

yes

no

 190

 191

213 4

rc4=rc4+1

scut = 0

j = 0

j = j+1

scut=scut+a(j)

i = in

driv(in)=0

cut(in)=scut

213 4

no

yes

 192

213 4

5 13 6

end if

rang1=rang1+a(in)

rang=rang+a(in)

i1-o1 = 1

delay=0
drive=0

k1 = 0

k1 = k1+1

cut(k1) = 0 sumwa(k1) = 0

yes

no

yes

no

 193

5 13 6

cut(k1)>0 sumwa(k1)=rang1-cut(k1)

end if

delay=delay+sumwa(k1)
drive=drive+driv(k1)

k1 = in

drive=drive+add*a(o1+1)

redn=rc2+rc3+rc4

g=2*gn/rang1

red=6*redn/rang1

13

yes

no

yes

no

 194

13

wait=rang1

drive1=cdrive+drive

delay1=cdelay+delay

redn1=credn+redn

gn1=cgn+gn

cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

call subroutine fuzzy

13

degree=mu

 195

 196

13 24

rj1=j1

3 4 1 5

p1=rinten(11)/(rinten(11)+rinten(9)+rinten(13))

p2=rinten(9)/(rinten(11)+rinten(9)+rinten(13))

p3=(0.38*rinten(13))/(rinten(11)+rinten(9)+rinten(13))

p4=(0.62*rinten(13))/(rinten(11)+rinten(9)+rinten(13))

call subroutine allocate

que=q

que=2 beta=1/rlink(9)

call subroutine expo

a(in)=bx

2

yes

no

 197

3 4 1 5 2

gn=gn+1

sumg=0

j=0

j=j+1

sumg=sumg+a(j)

j=in

driv(in)=sumg

cut(in)=0

3 4 1 5 2

no

yes

6

 198

 199

3 4 1 5 267

j=in

driv(in)=sumg

cut(in)=0

rc1=rc1+1que=1

beta=1/rlink(11)

call subroutine expo

a(in)=bx

scut=0

3 4 1 8 26

no

yes

yes

no

 200

3 4 1 8 26

j=0

j=j+1

scut=scut+a(j)

j=in

driv(in)=0

cut(in)=scut

rc3=rc3+1que=3

beta=1/(0.38*rlink(13))

3 4 1 8 26

no

yes

yes

no

 201

3 4 1 8 26

call subroutine expo

a(in)=bx

scut=0

j=0

j=j+1

scut=scut+a(j)

j=in

driv(in)=0

3 4 1 8 26

yes

no

 202

3 4 1 8 26

end if

rang=rang+a(in)

rang2=rang2+a(in)

j1-i1=1

k1=0
delay=0
drive=0

k1=0

k1=k1+1

cut(in)=scut

3 4 1 2

yes

no

5

 203

 204

3 4 1 2

g=3*gn/rang2

red=6*redn/rang2

wait=rang2

drive1=cdrive+drive

delay1=cdelay+delay

redn1=credn+redn

gn1=cgn+gn

cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

3 4 1 2

 205

 206

 207

 208

 209

 210

 211

3 1 54 62

3 1 54 62

j=j+1

scut=scut+a(j)

j=in

driv(in)=0

cut(in)=scut

rc1=rc1+1

beta=1/rlink(11)

call subroutine expo

que=1

yes

no

yes

no

 212

3 1 54 62

3 1 54

a(in)=bx

scut=0

j=0

j=j+1

scut=scut+a(j)

j=in

driv(in)=0
cut(in)=scut

end if

 213

3 1 54

rang3=rang3+a(in)
rang=rang+a(in)

o1-j1=1

k1=0
delay=0
drive=0

3 1 56

k1=0

k1=k1+1

cut(k1)=0

cut(k1)>0

sumwa(k1)=0

sumwa(k1)=rang3-cut(k1)

end if

yes

yes

no

no

7

yes

no

 214

3 1 567

delay=delay+sumwa(k1)
drive=drive+driv(k1)

k1=in

drive=drive+add*a(j1+1)

redn=rc1+rc2

g=3*gn/rang3
red=6*redn/rang3

wait=rang3
drive1=cdrive+drive

delay1=cdelay+delay
redn1=credn+redn

gn1=cgn+gn

cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

call subroutine fuzzy

3 1 57

no

yes

 215

3 1 57

degree=mu

degree=1

ub3(d1)=wait

d1=d1+1

rang>1800

i1=o1
gn=rc1
add=rc1

cdrive=drive1
cdelay=delay1
credn=redn1

cgn=gn1
rc=0
in=0

rc3=0
rc4=0

rang1=0

51

no

yes

yes

no

 216

51

e1=1
i1=0
g=0

gn=0
o1=0
rc2=0
rc3=0

rang1=0
rang=0

in=0

i1=i1+1

ri1=i1
in=in+1
rin=in

p1=rinten(3)/(rinten(3)+rinten(31)+rinten(48))
p2=rinten(31)/(rinten(3)+rinten(31)+rinten(48))
p3=rinten(48)/(rinten(3)+rinten(31)+rinten(48))

p4=0

call subroutine allocate

2 1

 217

 218

2 1 4 3

j=in

driv(in)=sumg
cut(in)=0

2 1 5 3

rc2=rc2+1que=2

beta=1/rlink(31)

call subroutine expo

a(in)=bx
scut=0

j=0

j=j+1

no

yes

6

 219

2 1 5 3

scut=scut+a(j)

j=in

driv(in)=0
cut(in)=scut

6

2 1 3 6

yes

no

que=3 rc3=rc3+1
yes

no

beta=1/rlink(48)

call subroutine expo

a(in)=bx
scut=0

j=0

 220

2 1 3 6

2 1

j=j+1

scut=scut+a(j)

j=in

driv(in)=0
cut(in)=scut

end if

rang1=rang1+a(in)
rang=rang+a(in)

i1-o1=1

drive=0
delay=0

yes

no

no

yes

 221

 222

1800wait ≥

 223

3 1 4

f1=1
z1=1

gn=rc2
add=rc2

cdrive=drive1
cdelay=delay1
credn=redn1

cgn=gn1
rc1=0

rang2=0
j1=i1
in=0

j1=j1+1

rj1=j1
in=in+1

p1=rinten(3)/(rinten(3)+rinten(31)+rinten(48))
p2=rinten(31)/(rinten(3)+rinten(31)+rinten(48))
p3=rinten(48)/(rinten(3)+rinten(31)+rinten(48))

p4=0

call subroutine allocate

que=2

3 1 45

 224

 225

 226

 227

 228

3 18 4

3 18 4

k1=k1+1

cut(k1)=0

cut(k1)>0

end if

sumwa(k1)=rang1-cut(k1)

sumwa(k1)=0

yes

yes

no

no

delay=delay+sumwa(k1)
drive=drive+driv(k1)

k1=in
no

yes

drive=drive+add*a(i1+1)

redn=rc1+rc3

 229

3 18 4

3 1 4

delay2=delay/redn

g=4*gn/rang2
red=6*redn/rang2

wait=rang2
drive1=cdrive+drive

delay1=cdelay+delay
redn1=credn+redn

gn1=cgn+gn

cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

wait>25

ch2(f1)=wait
f1=f1+1

rang>1800

yes

no

yes

no

gn=rc3
add=rc3

cdrive=drive1
cdelay=delay1
credn=redn1

cgn=gn1
rc2=0

rang3=0
o1=0
in=0

 230

3 1 4

3 1 4

o1=o1+1

in=in+1

p1=rinten(3)/(rinten(3)+rinten(31)+rinten(48))
p2=rinten(31)/(rinten(3)+rinten(31)+rinten(48))
p3=rinten(48)/(rinten(3)+rinten(31)+rinten(48))

p4=0

5

call subroutine allocate

que=q

que=3 gn=gn+1

beta=1/rlink(48)

call subroutine expo

yes

no

6

 231

 232

 233

3 1 45 6 7

3 1 45 6 7

que=2 rc2=rc2+1
yes

no

beta=rlink(31)

a(in)=bx

j=0

j=j+1

scut=scut+a(j)

call subroutine expo

scut=0

8

 234

 235

 236

1800wait ≥

 237

1

h1=1
y1=1
ai=1
i1=0
o1=0
rc1=0
rc3=0

rang=0
rang1=0

gn=0
in=0

i1=i1+1
ri1=i1

in=in+1

p1=rinten(42)/(rinten(42)+rinten(17)+rinten(37))
p2=rinten(17)/(rinten(42)+rinten(17)+rinten(37))
p3=rinten(37)/(rinten(42)+rinten(17)+rinten(37))

p4=0

call subroutine allocate

que=q

que=2 gn=gn+1
yes

no

beta=1/rlink(17)

1 23

 238

 239

 240

 241

 242

1

1

cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

degree=mu

call subroutine fuzzy

degree=1
no

yes

cp1(h1)=wait

h1=h1+1

rang>1800

7

yes

no

10

10

 243

 244

 245

1 723

1 725

j=in
no

driv(in)=sumg
cut(in)=0

yes

que=1 rc1=rc1+1
yes

no

4

beta=1/rlink(42)

call subroutine expo

a(in)=bx
scut=0

j=0

j=j+1

10

10

 246

 247

 248

 249

1 7

1

rang>1800

3

yes

no

gn=rc1
add=rc1

cdrive=drive1
cdelay=delay1
credn=redn1

cgn=gn1
rc3=0

rang3=0
in=0
o1=j1

o1=o1+1

in=in+1

p1=rinten(42)/(rinten(42)+rinten(17)+rinten(37))
p2=rinten(17)/(rinten(42)+rinten(17)+rinten(37))
p3=rinten(37)/(rinten(42)+rinten(17)+rinten(37))

p4=0

call subroutine allocate

que=q

10

10

 250

1 3

1 3

que=1 gn=gn+1

beta=1/rlink(42)

call subroutine expo

yes

no

a(in)=bx

sumg=0

j=j+1

sumg=sumg+a(j)

j=0

2410

10

 251

 252

 253

driv(in)=0
cut(in)=scut

end if

j=in

yes

no

rang=rang+a(in)
rang3=rang3+a(in)

1 327 5

scut=scut+a(j)

1 32

o1-j1=1

delay=0
drive=0

k1=0

yes

no

10

10

 254

 255

 256

 257

 258

 259

15 2

driv(in)=0
cut(in)=scut

j=in

yes

no

j=j+1

scut=scut+a(j)

4

15 2 4

que=3 rc3=rc3+1

beta=1/rlink(24)

call subroutine expo

yes

no

a(in)=bx

 260

15 2 4

15 2 4

driv(in)=0
cut(in)=scut

j=in

yes

no

j=j+1

scut=scut+a(j)

scut=scut+a(j)

j=0

que=1 rc1=rc1+1

beta=1/rlink(28)

yes

no

 261

15 2 4

j=0

call subroutine expo

a(in)=bx
scut=0

15

driv(in)=0
cut(in)=scut

j=in

yes

no

end if

scut=scut+a(j)

j=j+1

 262

15

15

rang=rang+a(in)
rang1=rang1+a(in)

i1-s1=1

delay=0
drive=0

k1=0

yes

no

cut(k1)=0

cut(k1)>0

end if

sumwa(k1)=rang1-cut(k1)

sumwa(k1)=0

yes

yes

no

no

k1=k1+1

2

 263

15 2

15

delay=delay+sumwa(k1)
drive=drive+driv(k1)

k1=in

drive=drive+add*a(s1+1)

redn=rc1+rc2+rc3

yes

no

delay1=delay/redn
g=2*gn/rang1

red=3*redn/rang1
wait=rang1

drive1=cdrive+drive
delay1=cdelay+delay

redn1=credn+redn
gn1=cgn+gn

cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

call subroutine fuzzy

 264

 265

 266

 267

13 2 4 5

13 2 4 5

call subroutine expo

j=0

a(in)=bx
scut=0

driv(in)=0
cut(in)=scut

j=in

yes

no

scut=scut+a(j)

j=j+1

que=3 rc3=rc3+1
yes

no

 268

 269

 270

 271

 272

13 2

call subroutine fuzzy

degree=1

yes

no

degree=mu

ap2(c1)=wait

c1=c1+1

13

yes

no

v1=1
gn=rc3
add=rc3

cdrive=drive1
cdelay=delay1
credn=redn1

cgn=gn1
rc1=0
o1=j1

rang3=0
in=0

1800rang ≥

4

 273

 274

 275

 276

 277

13 45 7 6

13 45 7 6

beta=1/rlink(1)

call subroutine expo

a(in)=bx

j=0

j=in

yes

no

scut=scut+a(j)

j=j+1

scut=0

 278

 279

 280

1800rang ≥

 281

13

13

s1=s1+1

in=in+1

p1=rinten(28)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))
p2=rinten(29)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))
p3=rinten(24)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))
p4=rinten(1)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))

call subroutine allocate

que=q

4

que=2 gn=gn+1
yes

no

beta=1/rlink(29)

call subroutine expo

2

 282

13 4 2

13 4 2

j=0

a(in)=bx
sumg=0

j=in

yes

no

sumg=sumg+a(j)

j=j+1

driv(in)=sumg

cut(in)=0

que=3 rc3=rc3+1
yes

no

5

 283

 284

13 4 2 5

13 4 2 5

que=1 rc1=rc1+1
yes

no

beta=1/rlink(28)

call subroutine expo

j=0

a(in)=bx
scut=0

j=in

yes

no

scut=scut+a(j)

j=j+1

 285

 286

13 4 2 56

13 4

j=in

yes

no

driv(in)=0

cut(in)=scut

end if

rang4=rang4+a(in)

s1-o1=1

delay=0

yes

no

rang=rang+a(in)

 287

 288

 289

1800rang ≥

 290

The flowchart for subprogram
1) Subroutine for allocate car to each branch

start

subroutine allocate(p1,p2,p3,p4,q,ix)

rn=unif(ix)

rn<P1 q=1

q=2

yes

yes

no

P2)P1(rnP1)(rn +<∧≥

q=3
yes

no

P3)P2P1(rnP2)P1(rn ++<∧+≥

q=4
yes

no

P3P2P1rn ++≥

end if

return

end

 291

2) Subroutine for generate exponential random variable

 292

3) Subroutine for generate gamma random variable
start

Subroutine gamma

common ix,al,be,x,xp,rmean,min,xmax,xu,g,re,w1,l1,p

rn=unif(ix)

v=-be*alog(rn)

x=x+v

al=1al=al-1

x=x

return

end

yes

no

 293

4) Subroutine for generate poisson random variable
start

subroutine poiss

common ix,ial,be,x,xp,rmean,min,xmax,xu,g,re,w1,l1,p

xp=0

a=2.718**(-rmean)

s=1

rn=unif(ix)

s=s*rn

s-a<0 return end

xp=xp+1

 294

5) Subroutine for generate bernoulie random variable

rrrn ≤

 295

6) Function for generate random number

 296

7) Subroutine for fuzzy logic system

0g1g ≥∧≤

1g2g ≥∧≤

0g1g ≥∧≤

2g3g ≥∧≤

 297

2g3g >∧≤

2g ≤

3g4g >∧≤

 298

3g4g ≥∧<

4g ≥

0red1red ≥∧<

1red ≥

0red1red ≥∧<

1red3red ≥∧<

 299

3red6red ≥∧<

6red ≥

3red <

3red6red ≥∧<

6red9red ≥∧<

9red ≥

 300

6red <

6red9red ≥∧<

9red ≥

30wait0 <≤

60wait ≥

60wait30 <≤

 301

30wait <

60wait30 <≤

90wait ≥

90wait60 <≤

60wait <

90wait60 <≤

90wait ≥

 302

 303

 304

C**

C 1. Main Program

C**

 common ix,al,be,x,xp,rmean,min,xmax,xu,g,re,w1,rl1,p1,p2,p3,p4

 &beta,bx,p,q

 dimension ybar(18),ram(5000,72,10),isum(72),ia(18,72),

 &rmu(72),rmar(18),x2(100,72),iy(100,18),ramda(50,72),da(72),

 &X3(5000,72,10),max(18),z(30),w(72),b(72),r(72),rl(4,4),x1(72),

 ¨(5000,72,10),umu(5000,72,10),rlo(5000,72,10),rinten(72),

 &u(5000,72,10),jy(20,18),count(72),rlink(72),ib(18,72),dan(72)

 &,ymin(72),ymax(72),ax(72),an(72),gy(72),w1(1000),ub1(100),

 &a(1000),para(50,72),rmeanp(72),ub2(100),ub3(100),ch1(100),

 &ch2(100),ch3(100),cp1(100),cp2(100),cp3(100),ap1(100),

 &ap2(100),ap3(100),ap4(100),bar(72),ymean(72),ramd(72),

 &wase(1000),driv(500),cut(500),sumwa(500)

c**

c 1.1 Program for estimate traffic intensity by EM algorithm

c**

c The program read the observe daily data on direct link

c for 20 day

 open(5,file='input.dat',status='old')

 open(6,file='output.out',status='new')

 do 10 i=1,18

10 read(5,15)(ia(i,j),j=1,72)

15 format(72i1)

 do 20 m=1,20

20 read(5,25)(iy(m,n),n=1,18)

25 format(18i3)

 do 21 i=1,20

 do 21 j=1,18

21 jy(i,j)=iy(i,j)/30

 ix=45673874

5 do 35 j=1,18

 sumy=0

 305

 do 40 i=1,20

 sumy=sumy+iy(i,j)

40 continue

 c The program calculate

()

20

20

1
∑

== k

k
i

i

Y
Y

 ybar(j)=sumy/20

 ymean(j)=ybar(j)/30

35 continue

 ix=45673874

 do 30 i=1,72

 x=0.0

 al=80.0

 be=2.0

 zi=i

 ri=i

 c The program let positive mean population of number of cars

 c that travel on direct route on traffic network

 c µ = 721 ,,(µµ L) ; arbitrary.

 call gamma

 rmu(i)=x

30 continue

 rmu(1)=ybar(1)/30

 rmu(3)=ybar(7)/30

 rmu(5)=ybar(9)/30

 rmu(9)=ybar(2)/30

 rmu(11)=ybar(8)/30

 rmu(13)=ybar(10)/30

 rmu(17)=ybar(3)/30

 rmu(21)=ybar(17)/30

 rmu(22)=ybar(15)/30

 rmu(24)=ybar(4)/30

 rmu(28)=ybar(18)/30

 rmu(29)=ybar(16)/30

 rmu(31)=ybar(5)/30

 306

 rmu(36)=ybar(13)/30

 rmu(37)=ybar(6)/30

 rmu(42)=ybar(14)/30

 rmu(43)=ybar(11)/30

 rmu(48)=ybar(12)/30

 c The program generate daily data on direct links for 100 days

c () ≡1Y () ()()1
18

1
2

1
1 ,,, YYY K

c ()2Y ≡ () () ()()2
18

2
2

2
1 YYY ,,, K

c M M

c ()100Y ≡ () () ()()100
18

100
2

100
1 ,,, YYY K

 c Calculate

()

100

20

1
∑

== k

k
i

i

Y
Y

 do 600 n1=1,50

 do 605 k1=1,18

 gys=0

 c The program generate jX from Poisson distribution

 c with parameter 72,,2,1, Kjµ for 100 day

 do 610 l1=1,100

 rv=l1

 rk=k1

 rn=n1

 rmean=ybar(k1)/30

 call poiss

 gy(k1)=xp

 gys=gys+gy(k1)

610 continue

 bar(k1)=gys/100

605 continue

 307

 c The program calculate µ by µ̂ /
7221)ˆ,...,ˆ,ˆ(µµµ= based on

 c applied algorithm

 µ j ← ∑
∑∑ =

==

18

1
72

1

18

1

i

k
kik

iij

i
ij

j

a

Ya

a µ

µ

 do 45 j=1,72

 isuma=0

 do 50 i=1,18

50 isuma=isuma+ia(i,j)

 isum(j)=isuma

45 continue

 do 615 t1=1,1000

 do 55 i=1,18

 sumar=0

 do 60 j=1,72

 ri=i

 rj=j

 rt=t1

60 sumar=sumar+ia(i,j)*rmu(j)

 rmar(i)=sumar

55 continue

 do 65 j=1,72

 sumd=0

 sumtest=0

 do 70 i=1,18

 rj=j

 ri=i

 ratio=bar(i)/rmar(i)

 rmuti=ia(i,j)*ratio

 sumtest=sumtest+rmuti

70 devide=sumtest/isum(j)

 ramda(t1,j)=rmu(j)*devide

 308

c The program calculate µ̂ 50 times to get)1(µ̂ ,)2(µ̂ ,…,)50(µ̂

 para(n1,j)=ramda(t1,j)

 rmu(j)=ramda(t1,j)

65 continue

615 continue

600 continue

 do 620 j1=1,72

 sump=0

 rj=j1

 do 625 n1=1,50

 sump=sump+para(n1,j1)

625 continue

 c The program calculate mean vector ; ∑
=

=
50

1

)(ˆ
50
1ˆ

k

kµµ based

 c on 50 estimations. Then µ̂ is the unbiased estimator of µ ,

 c route count.

 rmeanp(j1)=sump/50

c**

c 1.2 Program for estimate traffic intensity by Gibb sampling

c**

 t=0.0

 s=0.0

105 t=t+1.0

 s=s+1.0

 c The program generate 10 vectors X from 72 independent

 c Poisson distributions with parameter vector µ

 do 111 j=1,10

 do 110 i=1,72

 rj=j

 ri=i

 if(t.eq.1.0)then

 ram(t,i,j)=rmeanp(i)

 x3(t-1,i,j)=rmeanp(i)

 if(rmeanp(i).le.103)then

 309

 rmean=ram(t,i,j)

 else if(rmeanp(i).gt.103)then

 rmean=103

 end if

 call poiss

 x3(t,i,j)=xp

 else if(t.gt.1)then

 c The program draw sample value of 10 parameter vectors λ

 c from 72 conditionally independent posterior distributions,

 c)(jj Xp λ , that is Gamma distribution with shape parameter

 c 1+jX and scale parameter 1; 72,,2,1 K=j .

 al=int(abs(x3(t-1,i,j))+1)

 be=1.0

 x=0.0

 call gamma

 ram(t,i,j)=x

 rmean=ram(t,i,j)

 if(x.le.103)then

 rmean=ram(t,i,j)

 else if(x.gt.103)then

 rmean=103

 end if

 call poiss

 x3(t,i,j)=xp

 end if

 c The program draw a candidate *
jX from Poisson distribution

 c function For each parameter vector λ at iterationt as below.

 c *
jX ~ Poisson(*

jX)1−
−
t

jX ;

 c Where 1−
−
t

jX represents all the element of X except jX , at their

 c current values:

 c 1−
−
t

jX =),,,,,(1
72

1
111

−−
+−

tt
j

t
j

t XXXX KK

 c set






= − otherwiseX
ryprobabilitwithX

X t
j

jt
j 1

*)1,min(

 310

 c r =
)()(
)()(

*1

1*

j
t
j

t
jj

XUXP
XUXP

−

−

 c where
!

)(
j

x
j

j x
e

XP
jj λλ−

= , ()jXU =
!j

x
j

x
e jj µµ−

 run=1.0

 mf=int(x3(t,i,j))

 do 175 m=1,mf

175 run=run*rmeanp(i)/m

 u(t,i,j)=run/2.718**rmeanp(i)

 if(t.gt.1)go to 172

 n=0

 k=0

 umu(t,i,j)=1.0

 rlo(t,i,j)=1

 go to 173

172 rlo(t,i,j)=u(t-1,i,j)

 umu(t,i,j)=uml(t-1,i,j)

173 n=0

 ifact=1

 run=1.0

 mf=int(x3(t,i,j))

 do 176 m=1,mf

176 run=run*ram(t,i,j)/m

 uml(t,i,j)=run/2.718**ram(t,i,j)

 p=(u(t,i,j)*umu(t,i,j))/(rlo(t,i,j)*uml(t,i,j))

 if(p.ge.1)then

 un=1

 else if(p.lt.1)then

 call ber(p,x,ix)

 un=x

 end if

 if(un.eq.1)then

 x3(t,i,j)=x3(t,i,j)

 else if(un.eq.0) then

 311

 x3(t,i,j)=x3(t-1,i,j)

 end if

110 continue

 c The program directly compute the element of Y by AXY =

 x3(t,1,j)=x3(t,1,j)+x3(t,6,j)+x3(t,25,j)+x3(t,26,j)

 &+x3(t,27,j)+x3(t,57,j)+x3(t,58,j)+x3(t,69,j)+x3(t,70,j)

 x3(t,9,j)=x3(t,9,j)+x3(t,10,j)+x3(t,14,j)+x3(t,15,j)+

 &x3(t,20,j)+x3(t,33,j)+x3(t,51,j)+x3(t,60,j)+x3(t,61,j)

 x3(t,17,j)=x3(t,17,j)+x3(t,18,j)+x3(t,19,j)+x3(t,23,j)+

 &x3(t,40,j)+x3(t,41,j)+x3(t,54,j)-x3(t,55,j)+x3(t,64,j)+

 &x3(t,67,j)

 x3(t,24,j)=x3(t,10,j)+x3(t,24,j)+x3(t,30,j)+x3(t,33,j)+

 &x3(t,34,j)+x3(t,35,j)+x3(t,46,j)+x3(t,66,j)+x3(t,68,j)

 x3(t,31,j)=x3(t,16,j)+x3(t,18,j)+x3(t,19,j)+x3(t,31,j)+

 &x3(t,32,j)+x3(t,50,j)+x3(t,52,j)+x3(t,54,j)+x3(t,55,j)+

 &x3(t,56,j)+x3(t,62,j)

 x3(t,37,j)=x3(t,2,j)+x3(t,8,j)+x3(t,37,j)+x3(t,38,j)+

 &x3(t,39,j)+x3(t,45,j)+x3(t,46,j)+x3(t,47,j)+x3(t,59,j)+

 &x3(t,71,j)

 x3(t,3,j)=x3(t,2,j)+x3(t,3,j)+x3(t,4,j)+x3(t,8,j)+

 &x3(t,39,j)+x3(t,49,j)+x3(t,51,j)+x3(t,59,j)+x3(t,72,j)

 x3(t,11,j)=x3(t,11,j)+x3(t,12,j)+x3(t,16,j)+x3(t,26,j)+

 &x3(t,44,j)+x3(t,53,j)+x3(t,62,j)+x3(t,69,j)+x3(t,70,j)

 x3(t,5,j)=x3(t,5,j)+x3(t,20,j)+x3(t,33,j)+x3(t,44,j)+

 &x3(t,53,j)+x3(t,66,j)+x3(t,61,j)+x3(t,62,j)

 x3(t,13,j)=x3(t,13,j)+x3(t,27,j)+x3(t,39,j)+x3(t,49,j)+

 &x3(t,57,j)+x3(t,58,j)+x3(t,72,j)

 x3(t,43,j)=x3(t,4,j)+x3(t,19,j)+x3(t,32,j)+x3(t,43,j)+

 &x3(t,55,j)+x3(t,56,j)+x3(t,72,j)

 x3(t,48,j)=x3(t,12,j)+x3(t,26,j)+x3(t,38,j)+x3(t,53,j)+

 &x3(t,68,j)+x3(t,69,j)+x3(t,70,j)+x3(t,71,j)

 x3(t,36,j)=x3(t,8,j)+x3(t,23,j)+x3(t,36,j)+x3(t,47,j)+

 &x3(t,59,j)+x3(t,64,j)+x3(t,67,j)+x3(t,71,j)

 x3(t,42,j)=x3(t,16,j)+x3(t,30,j)+x3(t,42,j)+x3(t,52,j)+

 &x3(t,56,j)+x3(t,62,j)+x3(t,66,j)+x3(t,68,j)

 312

 x3(t,22,j)=x3(t,7,j)+x3(t,22,j)+x3(t,35,j)+x3(t,46,j)+

 &x3(t,58,j)+x3(t,63,j)+x3(t,68,j)+x3(t,70,j)

 x3(t,29,j)=x3(t,15,j)+x3(t,29,j)+x3(t,41,j)+x3(t,51,j)+

 &x3(t,55,j)+x3(t,61,j)+x3(t,65,j)+x3(t,65,j)+x3(t,67,j)

 x3(t,21,j)=x3(t,6,j)+x3(t,21,j)+x3(t,34,j)+x3(t,57,j)+

 &x3(t,65,j)+x3(t,66,j)+x3(t,69,j)

 x3(t,28,j)=x3(t,14,j)+x3(t,28,j)+x3(t,40,j)+x3(t,54,j)+

 &x3(t,60,j)+x3(t,63,j)+x3(t,64,j)

111 continue

 if(t.eq.1.0) go to 105

 c The program let k
tjX be the drawn from 10 parallel sequences

 c of iteration t of the kth element of X

 c ()10,,2,1;,,2,1 KK == jnt , compute B and W , the between

 c and within-sequence variances for each kth:

 c ∑
=

−=
10

1

2
...)(

9 j
j XXnB , where ∑

=

=
n

i

k
ijj X

n
X

1
.

1 , ∑
=

=
10

1
... 10

1
i

jXX

 c ∑
=

=
10

1

2

10
1

j
jSW , where ∑

=

−
−

=
n

i
j

k
ijj XX

n
S

1

2
.

2)(
1

1

 c and)1(1ˆ −+= n
W
B

n
R

 t=s

 time=t

 do 215 i=1,72

 sb=0

 ssb=0

 ss=0

 do 220 j=1,10

 sw=0

 ssw=0

 do 225 t=1,time

 sw=sw+x3(t,i,j)

225 ssw=ssw+x3(t,i,j)**2

 w(j)=(t*ssw-sw**2)/t*(t-1)

 sb=sb+sw/t

 313

 ssb=ssb+(sw/t)**2

220 ss=ss+w(j)

 w(i)=ss/10

 b(i)=(t/9)*(ssb-sb**2/10)

215 r(i)=sqrt((b(i)/w(i)+t-1)/t)

 t=s

c The program iterate until 1ˆ →R for all kth element.

 do 221 ir=1,72

 if((r(ir).le.0.999.or.r(ir).ge.1.001) goto 105

221 continue

 c The program calculate route count for each direct route by

 c ∑
=

=
10

110
1ˆ

j

k
njk XX , 72,,2,1 K=k

 c where kX̂ is the estimator of route count for direct route thk

 c k
njX is the latest draw for parallel j

222 do 226 i=1,72

 sum1=0

 do 231 j=1,10

231 sum1=sum1+x3(t,i,j)

 rlink(i)=sum1/600

 rinten(i)=1800*rlink(i)

226 continue

 write(6,311)rlink(1),rlink(2),rlink(3),rlink(4),rlink(5),rlink(6)

 write(6,3122)rlink(7),rlink(8),rlink(9),rlink(10),rlink(11),

 &rlink(12)

 write(6,314)rlink(13),rlink(14),rlink(15),rlink(16),rlink(17),

 &rlink(18)

 write(6,316)rlink(19),rlink(20),rlink(21),rlink(22),rlink(23),

 &rlink(24)

 write(6,3137)rlink(25),rlink(26),rlink(27),rlink(28),rlink(29),

 &rlink(30)

 write(6,3118)rlink(31),rlink(32),rlink(33),rlink(34),rlink(35),

 &rlink(36)

 314

 write(6,3119)rlink(37),rlink(38),rlink(39),rlink(40),rlink(41),

 &rlink(42)

 write(6,3111)rlink(43),rlink(44),rlink(45),rlink(46),rlink(47),

 &rlink(48)

 write(6,3112)rlink(49),rlink(50),rlink(51),rlink(52),rlink(53),

 &rlink(54)

 write(6,3114)rlink(55),rlink(56),rlink(57),rlink(58),rlink(59),

 &rlink(60)

 write(6,3116)rlink(61),rlink(62),rlink(63),rlink(64),rlink(65),

 &rlink(66)

 write(6,3127)rlink(67),rlink(68),rlink(69),rlink(70),rlink(71),

 &rlink(72)

311 format(6f10.4)

3122 format(6f10.4)

314 format(6f10.4)

316 format(6f10.4)

3137 format(6f10.4)

3118 format(6f10.4)

3119 format(6f10.4)

3111 format(6f10.4)

3112 format(6f10.4)

3114 format(6f10.4)

3116 format(6f10.4)

3127 format(6f10.4)

c**

c 1.3 Program for calculate optimal length

c**

c The program set the start phase of traffic signal cycle at the

c intersection.

 t1=1

 c1=1

 d1=1

 i1=0

 gn=0

 o1=0

 315

 rc2=0

 rc3=0

 rc4=0

 in=0

 rang=0

 rang1=0

650 i1=i1+1

 ri1=i1

 in=in+1

c The program create cars and find the probability, which is

c emerged from the calculation of route counts , for each

c of the created car in order to randomise its moving from each

c branch of the intersection.

 p1=rinten(11)/(rinten(11)+rinten(9)+rinten(13))

 p2=rinten(9)/(rinten(11)+rinten(9)+rinten(13))

 p3=(0.38*rinten(13))/(rinten(11)+rinten(9)+rinten(13))

 p4=(0.62*rinten(13))/(rinten(11)+rinten(9)+rinten(13))

 call allocate(p1,p2,p3,p4,q,ix)

 que=q

 if(que.eq.1)then

 beta=1/rlink(11)

 c The program generate interarrival time of each car by

 c exponential distribution with parameter beta that is fixed by

 c traffic intensity in the part of input process.

 call expo(beta,bx,ix)

 a(in)=bx

 gn=gn+1

 sumg=0

 c The program compute the important parameter of simulation

 c process, input of fuzzy logic system such as:

 c /
1x : number of cars that pass the green light.

 c /
1x : number of cars from the branch that are allowed to pass the

 c intersection by the green light.

 c /
2x : number of car that stop behind the red light.

 316

 c /
2x : number of cars from the branch that are prohibited passing

 c the intersection by the red light.

 c /
3x : the current cycle time.

 c /
3x : summation of interarrival time.

 do 4 j=1,in

 sumg=sumg+a(j)

4 continue

 driv(in)=sumg

 cut(in)=0

 else if(que.eq.2)then

 beta=1/rlink(9)

 call expo(beta,bx,ix)

 a(in)=bx

 rc2=rc2+1

 scut=0

 do 1 j=1,in

 scut=scut+a(j)

1 continue

 driv(in)=0

 cut(in)=scut

 else if(que.eq.3)then

 beta=1/(0.38*rlink(13))

 call expo(beta,bx,ix)

 a(in)=bx

 rc3=rc3+1

 scut=0

 do 2 j=1,in

 scut=scut+a(j)

2 continue

 driv(in)=0

 cut(in)=scut

 else if(que.eq.4)then

 beta=1/(0.62*rlink(13))

 call expo(beta,bx,ix)

 317

 a(in)=bx

 rc4=rc4+1

 scut=0

 do 3 j=1,in

 scut=scut+a(j)

3 continue

 driv(in)=0

 cut(in)=scut

 end if

 rang1=rang1+a(in)

 rang=rang+a(in)

 if(i1-o1.eq.1)go to 650

 delay=0

 drive=0

 do 6 k1=1,in

 if(cut(k1).eq.0)then

 sumwa(k1)=0

 else if(cut(k1).gt.0)then

 sumwa(k1)=rang1-cut(k1)

 end if

 delay=delay+sumwa(k1)

 drive=drive+driv(k1)

6 continue

 drive=drive+add*a(o1+1)

645 redn=rc2+rc3+rc4

 g=2*gn/rang1

 red=6*redn/rang1

 wait=rang1

 drive1=cdrive+drive

 delay1=cdelay+delay

 redn1=credn+redn

 gn1=cgn+gn

 c The program caculate the value of the cost function.

 cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

 c The program calculate degree of change by using

 318

 c fuzzy logic system.

 call fuzzy(g,red,wait,mu)

 degree=mu

 if(degree.eq.1) go to 655

 go to 650

c The program iterate until length of time is complete and all

c intersections are covered.

655 ub1(t1)=wait

 t1=t1+1

 if(rang.gt.1800) go to 730

 gn=rc2+rc4

 add=rc2+rc4

 cdrive=drive1

 cdelay=delay1

 credn=redn1

 cgn=gn1

 rc1=0

 in=0

 rang2=0

 j1=i1

660 j1=j1+1

 in=in+1

 rj1=j1

 p1=rinten(11)/(rinten(11)+rinten(9)+rinten(13))

 p2=rinten(9)/(rinten(11)+rinten(9)+rinten(13))

 p3=(0.38*rinten(13))/(rinten(11)+rinten(9)+rinten(13))

 p4=(0.62*rinten(13))/(rinten(11)+rinten(9)+rinten(13))

 call allocate(p1,p2,p3,p4,q,ix)

 que=q

 if(que.eq.2)then

 beta=1/rlink(9)

 call expo(beta,bx,ix)

 a(in)=bx

 gn=gn+1

 sumg=0

 319

 do 8 j=1,in

 sumg=sumg+a(j)

8 continue

 driv(in)=sumg

 cut(in)=0

 else if(que.eq.4) then

 beta=1/(0.62*rlink(13))

 call expo(beta,bx,ix)

 a(in)=bx

 gn=gn+1

 sumg=0

 do 9 j=1,in

 sumg=sumg+a(j)

9 continue

 driv(in)=sumg

 cut(in)=0

 else if(que.eq.1)then

 rc1=rc1+1

 beta=1/rlink(11)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 11 j=1,in

 scut=scut+a(j)

11 continue

 driv(in)=0

 cut(in)=scut

 else if (que.eq.3)then

 rc3=rc3+1

 beta=1/(0.38*rlink(13))

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 31 j=1,in

 scut=scut+a(j)

 320

31 continue

 driv(in)=0

 cut(in)=scut

 end if

 rang=rang+a(in)

 rang2=rang2+a(in)

 if(j1-i1.eq.1)go to 660

 k1=0

 delay=0

 drive=0

 do 12 k1=1,in

 if(cut(k1).eq.0)then

 sumwa(k1)=0

 else if(cut(k1).gt.0)then

 sumwa(k1)=rang2-cut(k1)

 end if

 delay=delay+sumwa(k1)

 drive=drive+driv(k1)

12 continue

 drive=drive+add*a(i1+1)

680 redn=rc1+rc3

 g=3*gn/rang2

 red=6*redn/rang2

 wait=rang2

 drive1=cdrive+drive

 delay1=cdelay+delay

 redn1=credn+redn

 gn1=cgn+gn

 cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

 call fuzzy(g,red,wait,mu)

 degree=mu

 if(degree.eq.1) go to 664

 go to 660

664 ub2(c1)=wait

 c1=c1+1

 321

 if(rang.gt.1800) go to 730

 gn=rc3

 add=rc3

 cdrive=drive1

 cdelay=delay1

 credn=redn1

 cgn=gn1

 rc2=0

 in=0

 rang3=0

 o1=j1

685 o1=o1+1

 in=in+1

 p1=rinten(11)/(rinten(11)+rinten(9)+rinten(13))

 p2=rinten(9)/(rinten(11)+rinten(9)+rinten(13))

 p3=(0.38*rinten(13))/(rinten(11)+rinten(9)+rinten(13))

 p4=(0.62*rinten(13))/(rinten(11)+rinten(9)+rinten(13))

 call allocate(p1,p2,p3,p4,q,ix)

 que=q

 if(que.eq.3) then

 beta=1/(0.38*rlink(13))

 call expo(beta,bx,ix)

 a(in)=bx

 gn=gn+1

 sumg=0

 do 14 j=1,in

 sumg=sumg+a(j)

14 continue

 driv(in)=sumg

 cut(in)=0

 else if(que.eq.4) then

 beta=1/(0.62*rlink(13))

 call expo(beta,bx,ix)

 a(in)=bx

 gn=gn+1

 322

 sumg=0

 do 17 j=1,in

 sumg=sumg+a(j)

17 continue

 driv(in)=sumg

 cut(in)=0

 else if(que.eq.2) then

 rc2=rc2+1

 beta=1/rlink(9)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 18 j=1,in

 scut=scut+a(j)

18 continue

 driv(in)=0

 cut(in)=scut

 else if(que.eq.1)then

 rc1=rc1+1

 beta=1/rlink(11)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 19 j=1,in

 scut=scut+a(j)

19 continue

 driv(in)=0

 cut(in)=scut

 end if

 rang3=rang3+a(in)

 rang=rang+a(in)

 if(o1-j1.eq.1)go to 685

 k1=0

 delay=0

 drive=0

 323

 do 32 k1=1,in

 if(cut(k1).eq.0)then

 sumwa(k1)=0

 else if(cut(k1).gt.0)then

 sumwa(k1)=rang3-cut(k1)

 end if

 delay=delay+sumwa(k1)

 drive=drive+driv(k1)

32 continue

 drive=drive+add*a(j1+1)

710 redn=rc1+rc2

 g=3*gn/rang3

 red=6*redn/rang3

 wait=rang3

 drive1=cdrive+drive

 delay1=cdelay+delay

 redn1=credn+redn

 gn1=cgn+gn

 cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

 call fuzzy(g,red,wait,mu)

 degree=mu

 if(degree.eq.1) go to 720

 go to 685

720 ub3(d1)=wait

 d1=d1+1

 if(rang.gt.1800) go to 730

 i1=o1

 gn=rc1

 add=rc1

 cdrive=drive1

 cdelay=delay1

 credn=redn1

 cgn=gn1

 rc=0

 in=0

 324

 rc3=0

 rc4=0

 rang1=0

 go to 650

730 e1=1

 i1=0

 g=0

 gn=0

 o1=0

 rc2=0

 rc3=0

 rang1=0

 rang=0

 in=0

735 i1=i1+1

 ri1=i1

 in=in+1

 rin=in

 p1=rinten(3)/(rinten(3)+rinten(31)+rinten(48))

 p2=rinten(31)/(rinten(3)+rinten(31)+rinten(48))

 p3=rinten(48)/(rinten(3)+rinten(31)+rinten(48))

 p4=0

 call allocate(p1,p2,p3,p4,q,ix)

 que=q

 if(que.eq.1) then

 gn=gn+1

 beta=1/rlink(3)

 call expo(beta,bx,ix)

 a(in)=bx

 sumg=0

 do 121 j=1,in

 sumg=sumg+a(j)

121 continue

 driv(in)=sumg

 cut(in)=0

 325

 else if(que.eq.2) then

 rc2=rc2+1

 beta=1/rlink(31)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 24 j=1,in

 scut=scut+a(j)

24 continue

 driv(in)=0

 cut(in)=scut

 else if(que.eq.3)then

 rc3=rc3+1

 beta=1/rlink(48)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 26 j=1,in

 scut=scut+a(j)

26 continue

 driv(in)=0

 cut(in)=scut

 end if

 rang1=rang1+a(in)

 rang=rang+a(in)

 if(i1-o1.eq.1)go to 735

 drive=0

 delay=0

750 w1(k1)=sumw

 do 36 k1=1,in

 if(cut(k1).eq.0)then

 sumwa(k1)=0

 else if(cut(k1).gt.0)then

 sumwa(k1)=rang1-cut(k1)

 end if

 326

 delay=delay+sumwa(k1)

 drive=drive+driv(k1)

36 continue

 drive=drive+add*a(o1+1)

755 redn=rc2+rc3

 delay1=delay/redn

 g=4*gn/rang1

 red=6*redn/rang1

 wait=rang1

 drive1=cdrive+drive

 delay1=cdelay+delay

 redn1=credn+redn

 gn1=cgn+gn

 cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

 if(wait.gt.20)go to 760

 go to 735

760 ch1(e1)=wait

 e1=e1+1

 if(rang.ge.1800) go to 789

 f1=1

 z1=1

 gn=rc2

 add=rc2

 cdrive=drive1

 cdelay=delay1

 credn=redn1

 cgn=gn1

 rc1=0

 rang2=0

 j1=i1

 in=0

764 j1=j1+1

 rj1=j1

 in=in+1

 p1=rinten(3)/(rinten(3)+rinten(31)+rinten(48))

 327

 p2=rinten(31)/(rinten(3)+rinten(31)+rinten(48))

 p3=rinten(48)/(rinten(3)+rinten(31)+rinten(48))

 p4=0

 call allocate(p1,p2,p3,p4,q,ix)

 que=q

 if(que.eq.2) then

 gn=gn+1

 beta=1/rlink(31)

 call expo(beta,bx,ix)

 a(in)=bx

 sumg=0

 do 22 j=1,in

 sumg=sumg+a(j)

22 continue

 driv(in)=sumg

 cut(in)=0

 else if(que.eq.1) then

 rc1=rc1+1

 beta=1/rlink(3)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 27 j=1,in

 scut=scut+a(j)

27 continue

 driv(in)=0

 cut(in)=scut

 else if(que.eq.3)then

 rc3=rc3+1

 beta=1/rlink(48)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 127 j=1,in

 scut=scut+a(j)

 328

127 continue

 driv(in)=0

 cut(in)=scut

 end if

 rang=rang+a(in)

 rang2=rang2+a(in)

 if(j1-i1.eq.1)go to 764

 drive=0

 delay=0

 do 46 k1=1,in

 if(cut(k1).eq.0)then

 sumwa(k1)=0

 else if(cut(k1).gt.0)then

 sumwa(k1)=rang1-cut(k1)

 end if

 delay=delay+sumwa(k1)

 drive=drive+driv(k1)

46 continue

 drive=drive+add*a(i1+1)

780 redn=rc1+rc3

 delay2=delay/redn

 g=4*gn/rang2

 red=6*redn/rang2

 wait=rang2

 drive1=cdrive+drive

 delay1=cdelay+delay

 redn1=credn+redn

 gn1=cgn+gn

 cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

 if(wait.gt.25) go to 785

 go to 764

785 ch2(f1)=wait

 f1=f1+1

 if(rang.gt.1800) go to 789

 gn=rc3

 329

 add=rc3

 cdrive=drive1

 cdelay=delay1

 credn=redn1

 cgn=gn1

 rc2=0

 rang3=0

 o1=j1

 in=0

790 o1=o1+1

 in=in+1

 p1=rinten(3)/(rinten(3)+rinten(31)+rinten(48))

 p2=rinten(31)/(rinten(3)+rinten(31)+rinten(48))

 p3=rinten(48)/(rinten(3)+rinten(31)+rinten(48))

 p4=0

 call allocate(p1,p2,p3,p4,q,ix)

 que=q

 if(que.eq.3) then

 gn=gn+1

 beta=rlink(48)

 call expo(beta,bx,ix)

 a(in)=bx

 sumg=0

 do 123 j=1,in

 sumg=sumg+a(j)

123 continue

 driv(in)=sumg

 cut(in)=0

 else if(que.eq.1) then

 rc1=rc1+1

 beta=rlink(3)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 28 j=1,in

 330

 scut=scut+a(j)

28 continue

 driv(in)=0

 cut(in)=scut

 else if(que.eq.2)then

 rc2=rc2+1

 beta=rlink(31)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 29 j=1,in

 scut=scut+a(j)

29 continue

 driv(in)=0

 cut(in)=scut

 end if

 rang=rang+a(in)

 rang3=rang3+a(in)

 if(o1-j1.eq.1)go to 790

 drive=0

 delay=0

 do 56 k1=1,in

 if(cut(k1).eq.0)then

 sumwa(k1)=0

 else if(cut(k1).gt.0)then

 sumwa(k1)=rang1-cut(k1)

 end if

 delay=delay+sumwa(k1)

 drive=drive+driv(k1)

56 continue

 drive=drive+add*a(j1+1)

809 redn=rc1+rc2

 delay3=delay/redn

 g=4*gn/rang3

 red=6*redn/rang3

 331

 wait=rang3

 drive1=cdrive+drive

 delay1=cdelay+delay

 redn1=credn+redn

 gn1=cgn+gn

 cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

 if(wait.gt.25)go to 784

 go to 790

784 ch3(z1)=wait

 z1=z1+1

 if(rang.ge.1800)go to 789

 i1=o1

 gn=rc1

 add=rc1

 cdrive=drive1

 cdelay=delay1

 credn=redn1

 cgn=gn1

 rc3=0

 in=0

 rang1=0

 go to 735

789 h1=1

 y1=1

 ai=1

 i1=0

 o1=0

 rc1=0

 rc3=0

 rang=0

 rang1=0

 gn=0

 in=0

794 i1=i1+1

 ri1=i1

 332

 in=in+1

 p1=rinten(42)/(rinten(42)+rinten(17)+rinten(37))

 p2=rinten(17)/(rinten(42)+rinten(17)+rinten(37))

 p3=rinten(37)/(rinten(42)+rinten(17)+rinten(37))

 p4=0

 call allocate(p1,p2,p3,p4,q,ix)

 que=q

 if(que.eq.2) then

 gn=gn+1

 beta=1/rlink(17)

 call expo(beta,bx,ix)

 a(in)=bx

 sumg=0

 do 61 j=1,in

 sumg=sumg+a(j)

61 continue

 driv(in)=sumg

 cut(in)=0

 else if(que.eq.1) then

 rc1=rc1+1

 beta=1/rlink(42)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 64 j=1,in

 scut=scut+a(j)

64 continue

 driv(in)=0

 cut(in)=scut

 else if(que.eq.3)then

 rc3=rc3+1

 beta=1/rlink(37)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 333

 do 66 j=1,in

 scut=scut+a(j)

66 continue

 driv(in)=0

 cut(in)=scut

 end if

 rang=rang+a(in)

 rang1=rang1+a(in)

 if(i1-o1.eq.1)go to 794

 drive=0

 delay=0

 do 73 k1=1,in

 if(cut(k1).eq.0)then

 sumwa(k1)=0

 else if(cut(k1).gt.0)then

 sumwa(k1)=rang1-cut(k1)

 end if

 delay=delay+sumwa(k1)

 drive=drive+driv(k1)

73 continue

 drive=drive+add*a(o1+1)

815 redn=rc3+rc1

 delay1=delay/redn

 g=2*gn/rang1

 red=4*redn/rang1

 wait=rang1

 drive1=cdrive+drive

 delay1=cdelay+delay

 redn1=credn+redn

 gn1=cgn+gn

 cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

 call fuzzy(g,red,wait,mu)

 degree=mu

 if(degree.eq.1) go to 820

 go to 794

 334

820 cp1(h1)=wait

 h1=h1+1

 if(rang.gt.1800)go to 925

 y1=1

 gn=rc3

 add=rc2

 cdrive=drive1

 cdelay=delay1

 credn=redn1

 cgn=gn1

 rc2=0

 rang2=0

 j1=i1

 in=0

825 j1=j1+1

 rj1=j1

 in=in+1

 p1=rinten(42)/(rinten(42)+rinten(17)+rinten(37))

 p2=rinten(17)/(rinten(42)+rinten(17)+rinten(37))

 p3=rinten(37)/(rinten(42)+rinten(17)+rinten(37))

 p4=0

 call allocate(p1,p2,p3,p4,q,ix)

 que=q

 if(que.eq.3) then

 gn=gn+1

 beta=1/rlink(37)

 call expo(beta,bx,ix)

 a(in)=bx

 sumg=0

 do 62 j=1,in

 sumg=sumg+a(j)

62 continue

 driv(in)=sumg

 cut(in)=0

 else if(que.eq.1) then

 335

 rc1=rc1+1

 beta=1/rlink(42)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 67 j=1,in

 scut=scut+a(j)

67 continue

 driv(in)=0

 cut(in)=scut

 else if(que.eq.2)then

 rc2=rc2+1

 beta=1/rlink(17)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 68 j=1,in

 scut=scut+a(j)

68 continue

 driv(in)=0

 cut(in)=scut

 end if

 rang=rang+a(in)

 rang2=rang2+a(in)

 if(j1-i1.eq.1)go to 825

 delay=0

 drive=0

 do 74 k1=1,in

 if(cut(k1).eq.0)then

 sumwa(k1)=0

 else if(cut(k1).gt.0)then

 sumwa(k1)=rang1-cut(k1)

 end if

 delay=delay+sumwa(k1)

 drive=drive+driv(k1)

 336

74 continue

 drive=drive+add*a(i1+1)

845 redn=rc1+rc2

 delay2=delay/redn

 g=2*gn/rang2

 red=4*redn/rang2

 wait=rang2

 drive1=cdrive+drive

 delay1=cdelay+delay

 redn1=credn+redn

 gn1=cgn+gn

 cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

c write(6,23)rj1,rang,rang2,gn,redn,cost,degree

c23 format(7f10.3)

 call fuzzy(g,red,wait,mu)

 degree=mu

 if(degree.eq.1) go to 850

 go to 825

850 cp2(y1)=wait

 y1=y1+1

 if(rang.gt.1800)go to 925

 gn=rc1

 add=rc1

 cdrive=drive1

 cdelay=delay1

 credn=redn1

 cgn=gn1

 rc3=0

 rang3=0

 in=0

 o1=j1

860 o1=o1+1

 in=in+1

 p1=rinten(42)/(rinten(42)+rinten(17)+rinten(37))

 p2=rinten(17)/(rinten(42)+rinten(17)+rinten(37))

 337

 p3=rinten(37)/(rinten(42)+rinten(17)+rinten(37))

 p4=0

 call allocate(p1,p2,p3,p4,q,ix)

 que=q

 if(que.eq.1) then

 gn=gn+1

 beta=1/rlink(42)

 call expo(beta,bx,ix)

 a(in)=bx

 sumg=0

 do 63 j=1,in

 sumg=sumg+a(j)

63 continue

 driv(in)=sumg

 cut(in)=0

 wase(in)=0

 else if(que.eq.2) then

 rc2=rc2+1

 beta=1/rlink(17)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 69 j=1,in

 scut=scut+a(j)

69 continue

 driv(in)=0

 cut(in)=scut

 else if (que.eq.3)then

 rc3=rc3+1

 beta=1/rlink(37)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 171 j=1,in

 scut=scut+a(j)

 338

171 continue

 driv(in)=0

 cut(in)=scut

 end if

 rang=rang+a(in)

 rang3=rang3+a(in)

 if(o1-j1.eq.1)go to 860

 delay=0

 drive=0

 do 276 k1=1,in

 if(cut(k1).eq.0)then

 sumwa(k1)=0

 else if(cut(k1).gt.0)then

 sumwa(k1)=rang1-cut(k1)

 end if

 delay=delay+sumwa(k1)

 drive=drive+driv(k1)

276 continue

 drive=drive+add*a(j1+1)

880 redn=rc2+rc3

 delay3=delay/redn

 g=2*gn/rang3

 red=4*redn/rang3

 wait=rang3

 drive1=cdrive+drive

 delay1=cdelay+delay

 redn1=credn+redn

 gn1=cgn+gn

 cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

 call fuzzy(g,red,wait,mu)

 degree=mu

 if(degree.eq.1) go to 885

 go to 860

885 cp3(ai)=wait

 ai=ai+1

 339

 if(rang.gt.1800)go to 925

 gn=rc2

 add=rc2

 cdrive=drive1

 cdelay=delay1

 credn=redn1

 cgn=gn1

 rc1=0

 in=0

 rang1=0

 i1=o1

 go to 794

925 b1=1

 c1=1

 v1=1

 xo=1

 gn=0

 s1=0

 i1=0

 s1=0

 in=0

 rc1=0

 rc2=0

 rc3=0

 rang=0

 rang1=0

890 i1=i1+1

 ri1=i1

 in=in+1

 p1=rinten(28)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))

 p2=rinten(29)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))

 p3=rinten(24)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))

 p4=rinten(1)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))

 call allocate(p1,p2,p3,p4,q,ix)

 que=q

 340

 if(que.eq.4) then

 gn=gn+1

 beta=1/rlink(1)

 call expo(beta,bx,ix)

 a(in)=bx

 sumg=0

 do 71 j=1,in

 sumg=sumg+a(j)

71 continue

 driv(in)=sumg

 cut(in)=0

 else if(que.eq.2) then

 rc2=rc2+1

 beta=1/rlink(29)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 76 j=1,in

 scut=scut+a(j)

76 continue

 driv(in)=0

 cut(in)=scut

 else if(que.eq.3) then

 rc3=rc3+1

 beta=1/rlink(24)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 77 j=1,in

 scut=scut+a(j)

77 continue

 driv(in)=0

 cut(in)=scut

 else if(que.eq.1)then

 rc1=rc1+1

 341

 beta=1/rlink(28)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 78 j=1,in

 scut=scut+a(j)

78 continue

 driv(in)=0

 cut(in)=scut

 end if

 rang=rang+a(in)

 rang1=rang1+a(in)

 if(i1-s1.eq.1)go to 890

 delay=0

 drive=0

 do 91 k1=1,in

 if(cut(k1).eq.0)then

 sumwa(k1)=0

 else if(cut(k1).gt.0)then

 sumwa(k1)=rang1-cut(k1)

 end if

 delay=delay+sumwa(k1)

 drive=drive+driv(k1)

91 continue

 drive=drive+add*a(s1+1)

915 redn=rc1+rc2+rc3

 delay1=delay/redn

 g=2*gn/rang1

 red=3*redn/rang1

 wait=rang1

 drive1=cdrive+drive

 delay1=cdelay+delay

 redn1=credn+redn

 gn1=cgn+gn

 cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

 342

 call fuzzy(g,red,wait,mu)

 degree=mu

 if(degree.eq.1) go to 920

 go to 890

920 ap1(b1)=wait

 b1=b1+1

 if(rang.gt.1800)go to 1020

 gn=rc1

 add=rc1

 cdrive=drive1

 cdelay=delay1

 credn=redn1

 cgn=gn1

 rc4=0

 rang2=0

 j1=i1

 in=0

924 j1=j1+1

 rj1=j1

 in=in+1

 p1=rinten(28)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))

 p2=rinten(29)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))

 p3=rinten(24)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))

 p4=rinten(1)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))

 call allocate(p1,p2,p3,p4,q,ix)

 que=q

 if(que.eq.1) then

 gn=gn+1

 beta=1/rlink(28)

 call expo(beta,bx,ix)

 a(in)=bx

 sumg=0

 do 72 j=1,in

 sumg=sumg+a(j)

72 continue

 343

 driv(in)=sumg

 cut(in)=0

 else if(que.eq.2) then

 rc2=rc2+1

 beta=1/rlink(29)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 79 j=1,in

 scut=scut+a(j)

79 continue

 driv(in)=0

 cut(in)=scut

 else if(que.eq.3) then

 rc3=rc3+1

 beta=1/rlink(24)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 81 j=1,in

 scut=scut+a(j)

81 continue

 driv(in)=0

 cut(in)=scut

 else if(que.eq.4)then

 rc4=rc4+1

 beta=1/rlink(1)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 82 j=1,in

 scut=scut+a(j)

82 continue

 driv(in)=0

 cut(in)=scut

 344

 wase(in)=bx

 end if

 rang=rang+a(in)

 rang2=rang2+a(in)

 if(j1-i1.eq.1)go to 924

 delay=0

 drive=0

 do 92 k1=1,in

 if(cut(k1).eq.0)then

 sumwa(k1)=0

 else if(cut(k1).gt.0)then

 sumwa(k1)=rang1-cut(k1)

 end if

 delay=delay+sumwa(k1)

 drive=drive+driv(k1)

92 continue

 drive=drive+add*a(i1+1)

945 redn=rc2+rc3+rc4

 delay2=delay/redn

 g=3*gn/rang2

 red=3*redn/rang2

 wait=rang2

 drive1=cdrive+drive

 delay1=cdelay+delay

 redn1=credn+redn

 gn1=cgn+gn

 cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

 call fuzzy(g,red,wait,mu)

 degree=mu

 if(degree.eq.1) go to 950

 go to 924

950 ap2(c1)=wait

 c1=c1+1

 if(rang2.ge.1800)go to 1020

 v1=1

 345

 gn=rc3

 add=rc3

 cdrive=drive1

 cdelay=delay1

 credn=redn1

 cgn=gn1

 rc1=0

 o1=j1

 rang3=0

 in=0

955 o1=o1+1

 in=in+1

 p1=rinten(28)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))

 p2=rinten(29)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))

 p3=rinten(24)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))

 p4=rinten(1)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))

 call allocate(p1,p2,p3,p4,q,ix)

 que=q

 if(que.eq.3) then

 gn=gn+1

 beta=1/rlink(24)

 call expo(beta,bx,ix)

 a(in)=bx

 sumg=0

 do 273 j=1,in

 sumg=sumg+a(j)

273 continue

 driv(in)=sumg

 cut(in)=0

 wase(in)=0

 else if(que.eq.1) then

 rc1=rc1+1

 beta=1/rlink(28)

 call expo(beta,bx,ix)

 a(in)=bx

 346

 scut=0

 do 83 j=1,in

 scut=scut+a(j)

83 continue

 driv(in)=0

 cut(in)=scut

 else if(que.eq.2) then

 rc2=rc2+1

 beta=1/rlink(29)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 84 j=1,in

 scut=scut+a(j)

84 continue

 driv(in)=0

 cut(in)=scut

 else if(que.eq.4)then

 rc4=rc4+1

 beta=1/rlink(1)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 86 j=1,in

 scut=scut+a(j)

86 continue

 driv(in)=0

 cut(in)=scut

 end if

 rang=rang+a(in)

 rang3=rang3+a(in)

 if(o1-j1.eq.1)go to 955

 delay=0

 drive=0

 do 93 k1=1,in

 347

 if(cut(k1).eq.0)then

 sumwa(k1)=0

 else if(cut(k1).gt.0)then

 sumwa(k1)=rang1-cut(k1)

 end if

 delay=delay+sumwa(k1)

 drive=drive+driv(k1)

93 continue

 drive=drive+add*a(j1+1)

975 redn=rc1+rc2+rc4

 delay3=delay/redn

 g=2*gn/rang3

 red=3*redn/rang3

 wait=rang3

 drive1=cdrive+drive

 delay1=cdelay+delay

 redn1=credn+redn

 gn1=cgn+gn

 cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

 call fuzzy(g,red,wait,mu)

 degree=mu

 if(degree.eq.1) go to 980

 go to 955

980 ap3(v1)=wait

 v1=v1+1

 if(rang.ge.1800)go to 1020

 gn=rc2

 add=rc2

 cdrive=drive1

 cdelay=delay1

 credn=redn1

 cgn=gn1

 rc3=0

 rang4=0

 s1=o1

 348

 in=0

985 s1=s1+1

 in=in+1

 p1=rinten(28)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))

 p2=rinten(29)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))

 p3=rinten(24)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))

 p4=rinten(1)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))

 call allocate(p1,p2,p3,p4,q,ix)

 que=q

 if(que.eq.2) then

 gn=gn+1

 beta=1/rlink(29)

 call expo(beta,bx,ix)

 a(in)=bx

 sumg=0

 do 174 j=1,in

 sumg=sumg+a(j)

174 continue

 driv(in)=sumg

 cut(in)=0

 else if(que.eq.3) then

 rc3=rc3+1

 beta=1/rlink(24)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 87 j=1,in

 scut=scut+a(j)

87 continue

 driv(in)=0

 cut(in)=scut

 else if(que.eq.1)then

 rc1=rc1+1

 beta=1/rlink(28)

 call expo(beta,bx,ix)

 349

 a(in)=bx

 scut=0

 do 88 j=1,in

 scut=scut+a(j)

88 continue

 driv(in)=0

 cut(in)=scut

 wase(in)=bx

 else if(que.eq.4)then

 rc4=rc4+1

 beta=1/rlink(1)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 89 j=1,in

 scut=scut+a(j)

89 continue

 driv(in)=0

 cut(in)=scut

 end if

 rang=rang+a(in)

 rang4=rang4+a(in)

 if(s1-o1.eq.1)go to 985

 delay=0

 drive=0

 do 94 k1=1,in

 if(cut(k1).eq.0)then

 sumwa(k1)=0

 else if(cut(k1).gt.0)then

 sumwa(k1)=rang1-cut(k1)

 end if

 delay=delay+sumwa(k1)

 drive=drive+driv(k1)

94 continue

 drive=drive+add*a(o1+1)

 350

1005 redn=rc1+rc3+rc4

 delay4=delay/redn

 g=2*gn/rang4

 red=3*redn/rang4

 wait=rang4

 drive1=cdrive+drive

 delay1=cdelay+delay

 redn1=credn+redn

 gn1=cgn+gn

 cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

c write(6,43)s1,rang,rang4,gn,redn,cost,degree

c43 format(7f10.5)

 call fuzzy(g,red,wait,mu)

 degree=mu

 if(degree.eq.1) go to 1010

 go to 985

1010 ap4(xo)=wait

 xo=xo+1

 if(rang.ge.1800)go to 1020

 i1=s1

 gn=rc4

 add=rc4

 cdrive=drive1

 cdelay=delay1

 credn=redn1

 cgn=gn1

 rc2=0

 in=0

 rang1=0

 go to 890

1020 STOP

 end

 351

c**

c 2. Sub-Program

c**

c**

c 2.1 Subroutine for allocate car to each branch

c**

 subroutine allocate(p1,p2,p3,p4,q,ix)

 rn=unif(ix)

 if(rn.lt.p1) then

 q=1

 else if(rn.ge.p1.and.rn.lt.p1+p2) then

 q=2

 else if(rn.ge.p1+p2.and.rn.lt.p1+p2+p3) then

 q=3

 else if(rn.ge.p1+p2+p3) then

 q=4

 end if

 return

 end

c***

c 2.2 Subroutine for generate exponential random variable

c***

 subroutine expo(beta,bx,ix)

 rn=unif(ix)

 bx=-beta*alog(rn)

 return

 end

C**

C 2.3 Subroutine for generate gamma random variable

C**

 Subroutine gamma

 common ix,al,be,x,xp,rmean,min,xmax,xu,g,re,w1,l1,p

555 rn=unif(ix)

 v=-be*alog(rn)

 x=x+v

 352

 if(al.eq.1)go to 520

 al=al-1

 go to 555

520 x=x

 return

 end

C**

C 2.4 Subroutine for generate poisson random variable

C**

 subroutine poiss

 common ix,ial,be,x,xp,rmean,min,xmax,xu,g,re,w1,l1,p

 xp=0.0

 a=2.718**(-rmean)

 s=1.0

4 rn=unif(ix)

 s=s*rn

 if(s-a)9,7,7

7 xp=xp+1.0

 go to 4

9 return

 end

c**

c 2.5 Subroutine for generate bernoulie random variable

c**

 subroutine ber(p,x,ix)

 rn=unif(ix)

 rr=1-p

 if(rn.le.rr)go to 525

 X=1.0

 go to 530

525 x=0.0

530 return

 end

 353

c**

c 2.6 Function for generate random number

c**

 FUNCTION UNIF(IX)

 K1=IX/127773

 IX=16807*(IX-K1*127773)-K1*2836

 IF(IX.LT.0)IX=IX+2147483647

 UNIF=IX*4.656612875E-10

 IX=IX

 RETURN

c**

c 2.8 Subroutine for fuzzy logic system

c**

 SUBROUTINE FUZZY(G,RED,WAIT,MU)

 IX=1234567

 IF(G.GT.1) THEN

 GZ=0

 ELSE IF(G.LE.1.AND.G.GE.0) THEN

 GZ=1-G

 END IF

 IF(G.LE.1.AND.G.GE.0) THEN

 GL=G

 ELSE IF(G.LE.2.AND.G.GT.1) THEN

 GL=1

 ELSE IF(G.LE.3.AND.G.GT.2) THEN

 GL=3-G

 ELSE IF(G.GT.3) THEN

 GL=0

 END IF

 IF(G.LE.2) THEN

 GM=0

 ELSE IF(G.LE.3.AND.G.GT.2) THEN

 GM=G-2

 ELSE IF(G.LE.4.AND.G.GT.3) THEN

 GM=4-G

 354

 ELSE IF(G.GT.4) THEN

 GM=0

 END IF

 IF(G.LT.3) THEN

 GH=0

 ELSE IF(G.LT.4.AND.G.GE.3) THEN

 GH=G-3

 ELSE IF(G.GE.4) THEN

 GH=1

 END IF

 IF(RED.LT.1.AND.RED.GE.0) THEN

 RZ=1-RED

 ELSE IF(RED.GE.1)THEN

 RZ=0

 END IF

 IF(RED.LT.1.AND.RED.GE.0) THEN

 RL=RED

 ELSE IF(RED.LT.3.AND.RED.GE.1) THEN

 RL=1

 ELSE IF(RED.LT.6.AND.RED.GE.3) THEN

 RL=2-RED/3

 ELSE IF(RED.GE.6) THEN

 RL=0

 END IF

 IF(RED.LT.3) THEN

 RM=0

 ELSE IF(RED.LT.6.AND.RED.GE.3) THEN

 RM=RED/3-1

 ELSE IF(RED.LT.9.AND.RED.GE.6) THEN

 RM=3-RED/3

 ELSE IF(RED.GE.9) THEN

 RM=0

 END IF

 IF(RED.LT.6) THEN

 RH=0

 355

 ELSE IF(RED.LT.9.AND.RED.GE.6) THEN

 RH=RED/3-2

 ELSE IF(RED.GE.9) THEN

 RH=1

 END IF

 IF(WAIT.LT.30.AND.WAIT.GE.0) THEN

 WS=1

 ELSE IF(WAIT.LT.60.AND.WAIT.GE.30) THEN

 WS=2-WAIT/30

 ELSE IF(WAIT.GE.60) THEN

 WS=0

 END IF

 IF(WAIT.LT.30) THEN

 WM=0

 ELSE IF(WAIT.LT.60.AND.WAIT.GE.30) THEN

 WM=WAIT/30-1

 ELSE IF(WAIT.LT.90.AND.WAIT.GE.60) THEN

 WM=3-WAIT/30

 ELSE IF(WAIT.GE.90) THEN

 WM=0

 END IF

 IF(WAIT.LT.60) THEN

 WL=0

 ELSE IF(WAIT.LT.90.AND.WAIT.GE.60) THEN

 WL=WAIT/30-2

 ELSE IF(WAIT.GE.90) THEN

 WL=1

 END IF

 A1=0.05

 A2=0.2

 A3=0.2

 A4=0.2

 A5=0.15

 C1=0.033

 C2=0.3

 356

 C3=0.5

 C4=0.7

 C5=0.85

 S1=GZ*RZ*A1

 S2=GZ*RL*A5

 S3=GZ*RM*A5

 S4=GZ*RH*A5

 S5=RZ*A1

 S6=GL*RL*A1

 S7=GM*RM*A1

 S8=GH*RH*A1

 S9=GL*RM*WS*A3

 S10=GL*RM*WM*A4

 S11=GL*RM*WL*A5

 S12=GL*RH*WS*A2

 S13=GL*RH*WM*A3

 S14=GL*RH*WL*A4

 S15=GM*RL*WS*A2

 S16=GM*RL*WM*A2

 S17=GM*RL*WL*A3

 S18=GM*RH*WS*A3

 S19=GM*RH*WM*A4

 S20=GM*RH*WL*A5

 S21=GH*RL*WS*A3

 S22=GH*RL*WM*A4

 S23=GH*RL*WL*A5

 S24=GH*RM*WS*A2

 S25=GH*RM*WM*A2

 S26=GH*RM*WL*A3

UPER=S1*C1+S2*C5+S3*C5+S4*C5+S5*C1+S6*C1+S7*C1+S8*C1&

+S9*C3+S10*C4+S11*C5+S12*C2+S13*C3+S14*C4+S15*C2

&+S16*C2+S17*C3+S18*C3+S19*C4+S20*C5+S21*C3+S22*C4

&+S23*C5+S24*C2+S25*C2+S26*C3

ROWER=S1+S2+S3+S4+S5+S6+S7+S8+S9+S10+S11+S12+S13+S14

&+S15+S16+S17+S18+S19+S20+S21+S22+S23+S24+S25+S26

 357

 RUL=UPER/ROWER

 P=RUL

 CALL BER(P,X,ix)

 MU=X

 RETURN

 END

	The solution of traffic signal timing by using traffic intensity estimation and fuzzy logic
	Recommended Citation

	01front_VonglaoP
	02chap1_Vonglao
	03chap2_VonglaoP
	04chap3_VonglaoP
	05chap4_VonglaoP
	06chap5_VonglaoP
	07chap6_VonglaoP
	08reference_VonglaoP
	09appendix1_VonglaoP
	10appendix2_VonglaoP
	11appendix3_VonglaoP

