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ABSTRACT

This study aims at calculating the traffic signal timing that suits traffic intensity at
intersections studied in the inner city of Ubon Rachathani Provice, Thailand. The mixed
models between maximum likelihood estimation and Bayesian inference are presented
to estimate traffic intensity. A queuing system is used to generate the performance of
traffic flow. A fuzzy logic system is applied to calculate the optimal length of each
phase of the cycle. The fortran language is used to produce the computer program for
computation. The algorithm of the computer programming is based on EM algorithm,
Markov Chain Monte Carlo algorithm, queuing generation and fuzzy logic. The output
of traffic signal timing from the fuzzy controller are longer than the traffic signal timing
from the conventional controller. Cost function is used to evaluate the efficiency of the
traffic controller. The result of the evaluation shows that fuzzy controller is more

efficient than a conventional controller.
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Chapter 1

I ntr oduction

1.1 The background of traffic signal timing

The changes to social structures resulting from technology in both positive and negative
ways have brought us advantages and disadvantages at the same time. The negative
aspect of the changes introduces an important problem, the traffic problem. The
seriousness of the problem depends on the size of the community. That is, the larger the
city, the more serious and complex a problem we will face. Moreover, the longer we let
the problem go unsolved for longer and longer, the problem will become more and more

Serious.

Part of the traffic problem is congestion at intersections that is caused by various
factors. One important factor that impacts on traffic at intersections is the length of each
phase in the cycle of the traffic signal. It may not be appropriate and may not be suitable
for traffic pattern parameters such as volume of vehicles, queue length, delay, speed and
so on. It isaworldwide problem. Rice Square in Worcester is one example
(Kotsopoulos, 1999). Moreover, there is poor timing on traffic signals in cities such as
Atlanta (Ledford, 2002). On the other hand if the traffic flow is saturated, the optimal
signal length based on Webster’s formulation is not available (Lan, 2004). Finally the
example of the congestion at intersections in Bangkok iswell known. The modern Bus
Rapid Transit (BRT) aone cannot solve the traffic problems in Bangkok
(Jaiimsin,2004). To try to improve the situation, road transport will be integrated with
other modes of transport, including the conventional bus network, skytrain, subway, rail
and ferries in 2006, according to the transit plan.

As mentioned above, one reason for traffic jams is that traffic signal timing is often not
suitable for traffic control at the intersection in real time. So the concerned traffic office
needs to optimize traffic signal timing to solve the traffic congestion at intersections.
Engineers behind the federally funded Traffic Signal System I mprovement Program in
Denver (Hsiao-Ching & Denver, 1998) have worked over the past 10 years to ease
metro-areatraffic congestion by coordinating and adjusting the timing of traffic signals
on major streets. There are many papers that propose methods to improve traffic signal
timing. All of the methods use a similar process, based on observed traffic data input at
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intersections, such as volume, pattern of traffic, number of cars going straight or turning
right, delay, queue length, speed, density, and so on. The datainput is used according to
the individual method. The results from the method can be used to control traffic at

intersections. The relevant papers are considered below.

Traffic Adaptive Control is a useful method (Jagannathan & Khan, 2001) that could
optimize traffic signal timing to fit with traffic volume. The results from the method
consist of three components, cycle length, phase length and offset that can be used to
efficiently control traffic. The software that is used to find traffic signal timing is
SYNCHRO. It is composed of capacity analysis, coordination, and actuated signal
modeling. This software provides a detailed summary report on capacity, level of
service, volumes, timing, queue length, blocking problems, delay, fuel consumption and

emission level.

Dynamic Intersection Signal Control Optimization is an another method (Lo & Chow,
2004) that can be used to control traffic flow at intersections. It is based on the entire
fundamental diagram of traffic flow. The input data consists of time-variant traffic
patterns and the method derives a dynamic timing plan, useful to decrease delays at

intersections.

Traffic Signal Retiming is another process that can optimize traffic signal length at
intersections (Sunkari, 2004). This includes development of new signal timing

parameters, phasing sequence and traffic control strategy improvements.

In addition to the three papers above, many authors propose methodology to improve
traffic signal timing and traffic control at intersections. Lan (2004) proposes a new
formulation to find the optimal traffic signal length when traffic flows become
saturated. Leonard et al. (1998) suggest traffic signal timing based on five basic signal
timing policies: minimizing delay, minimizing stopping, minimizing fuel consumption,

maximizing coordination, and baseline.

Mathematical methods have often been used. Schutter (2002) looks at the mathematical
programming problem of designing optimal switching schemes and an optimal
switching sequence for signal controlled intersections. The results decrease queue and

waiting time. Yi, Xin & Zhao (2001) implement a general speed-density relationship in
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adynamic queue length estimation model, leading to the development of a general
mathematical formulation for intersection queue length studies that can be used to
control traffic at intersections. On the other hand Lee, Messer, Oh, & Lee (2004)
propose arule to control traffic at intersections, based on allowing the green light to
show if any individual vehicle, pedestrian or cyclist queue, measured at regular intervals
and averaged over the peak hour, is at least four, or if the sum of the individual vehicle,
pedestrian and cyclist queues, measured anywhere within the intersection, exceeds six.
And finally asimilar idea is proposed by Rakha & Zhang (2004) as evaluation of
Transit Signal Priority(TSP). In general TSP provides benefitsto transit vehicles that
receive priority, but TSP has a marginal system wide impact for low traffic demand. On
the other hand the system wide impact of TSP is directly proportional to the frequency
of transit vehicles.

All of the above show that there are global concerns about traffic signal timing, and the
output of the studies are useful in controlling traffic at intersections. Although there are
many methods to improve traffic signal timing as previously mentioned, the lack of
coordination could result in inefficient traffic flow. (Hsiao-Ching & Denver, 1998)

1.2 The background of the traffic problem in Ubon Rachathani

Ubon Rachathani, as the big city in the northeast of Thailand, has the 5" rank in area
and the 4™ in population in Thailand. It is now one of the traffic jam problem cities as
well. The problem is not as serious as in Bangkok. However, if there is no attempt to
solve the traffic problem, Ubon Rachathani will be soon face the same problems as
Bangkok. The traffic jam problem in Ubon Rachthani is caused by the increasing
number of cars (Engineering Faculty of Songkhla Nakarin University: 1999) and the
lack of observance of traffic regulations. Parking at prohibited spots, double parking
and other infringements are common. In addition, part of the traffic problem is that
traffic congestion at intersections is caused by the design of traffic signals.

Control at intersections is pre-timed or fixed time, and the length of each phase in
cyclesis not suitable for the traffic intensity.(Ubon Rachathani Municipality, 2001)

14



1.3 Thetraffic control and traffic signal timing in Ubon Rachathani

Municipality

In the Ubon Ratchathani Municipality, there are 48 intersections and 5 crossroads with
signals. The traffic signals at each intersection are controlled in isolation by setting the
pre-timed or fixed-time cycle. However atraffic policeman can adjust the timing to suit
traffic intensity. On the other hand the office that is responsible for traffic control in the
municipality has set the length of each phase in the cycle, or the length of green light in
the cycles, to control traffic at intersections as follow: ( Ubon Rachathani Municipality,
2004).

1) Thetraffic signal timing at intersections of the main road, Chayangkoon Road,
that bears heavy traffic in the rush hour:

1.1) From 05.30 — 06.30 in the morning:
The length of the green light (phase length) on the main road is 20 seconds.

The length of the green light (phase length) on the sub road is 15 seconds.

1.2) From 0 6.30 — 09.30 in the morning
The length of the green light (phase length) on the main road is 25 seconds.

The length of the green light (phase length) on the sub road is 20 seconds.

1.3) From 0 9.30 — 15.30 in the afternoon:
The length of the green light (phase length) on the main road is 20 seconds.

The length of the green light (phase length) on the sub road is 15 seconds.

1.4) From 15.30 — 17.30 in the afternoon
The length of the green light (phase length) on the main road is 25 seconds.

The length of the green light (phase length) on the sub road is 20 seconds.

1.5) From 17.30 —23.00 in the evening
The length of the green light (phase length) on the main road is 20 seconds.

The length of the green light (phase length) on the sub road is 15 seconds.

1.6) From 23.00 —05.30 in the morning
The length of the green light (phase length) on the main road is 20 seconds.

The length of the green light (phase length) on the sub road is 15 seconds.

15



2) Thetraffic signal timing at intersections on the subroads, except Chayangkoon
Road.
2.1) From 05.30 — 22.00 in the afternoon
The length of the green light (phase length) on the main road is 20 seconds.

The length of the green light (phase length) on the sub road is 15 seconds.

2.2) From 22.00 — 05.30 in the morning:
The amber blink is provided on the main road.

Thered blink is provided on the sub road.

1.4 The background for estimation of traffic signal timing

Traffic signal controllers at intersections are divided into four types, based on their
potential, as follows:
1) Pre-timed or fixed time traffic signal control. They offer fixed length for
each phase of acycle.
2) Semi-actuated traffic signals control. They offer flexible length for each
phase in cycles, to match the number of cars from the sub road by using a
detector. Whenever there are lots of cars on the main road, the controller will
let the cars run, while the carsin the sub road have to wait until the numbers
of waiting cars reach a specified number and then they will be allowed to go.
3) Fully-actuated traffic signals control, These allow all vehicles from any
direction to pass the intersection by choosing a cycle length that is
appropriate for the number of cars, by using a detector.
4) Volume density traffic signals control. They count the number of cars by
using the detector and then the information is sent to the central computer in
order to control the traffic flow of the whole traffic network. Moreover, the

control gives priority to emergency vehicles, such as ambulances.

However, Ubon Rachathani Municipality still uses the old technology of pre-timed
traffic signal control to control traffic flow at intersections. Based on the limitation of
the control, one way to improve the efficiency of traffic signal control isto improve

traffic signal timing identification in each phase of the cycle.
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This study proposes an alternative method to calculate suitable lengths for each phase in
the cycle for agiven traffic intensity. The statistical and mathematical methodology is
used to identify the optimal length of each phase, to decrease delay and queue of traffic
flow at the intersections studied.

1.5 The actual intersections studied

This study focuses on the main traffic network in the inner city of Ubon Rachathani that
is composed of four intersections; Uboncharearnsri Intersection, Clock Hall
Intersection, Chonlaprathan Intersection and Airport Intersection. The study will be
limited to part of the rush hour, namely 8.00-8.30 am. A diagram of the traffic network

is given below:
B C
A D
A : Uboncharearnsri Intersection B : Airport Intersecrtion
C : Chonlaprathan Intersection D : Clock Hall Intersection

Figure 1.1 Diagram of traffic network studied
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1.6 The outcomes and the organisation of the thesis

The outcomes of the thesis will give advice to traffic policeman to adjust the suitable
signal time for controlling the traffic at the studied intersection. The organisation of the
thesis is composed of six principal components as follows:

1. Introduction

2. Discussing the theory background

3. Research methodology

4. Input and analysis

5. Result of the study

6. Conclusion and discussion

1.7 Objectives

To calculate the optimal traffic signal timing during the given period
(08.00-08.30 am)around intersections in Uboncharearnsri, Airport, Chonlaprathan, and
Clock Hall of Ubon Ratchathani metropolitan area.

1.8 The Expected Outcomes

1) To derive amethod to calculate the traffic signal timing at targeted
intersections during rush hour.
2) To get to know thetraffic signal timing that is relevant to the number of vehicles at

the targeted intersections.

The statistical estimation, maximum likelihood and Bayesian inferrence, and the fuzzy

logic system were used to find the expected outcomes.
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Chapter 2

Background to Research

2.1 Fuzzy logic systems

2.1.1 General background

Fuzzy logic was first developed in 1965 by Lotfi A. Zadeh, Professor Emeritus,
Computer Science Division, University of California-Berkeley. Fuzzy logic uses three
primary elements: fuzzy sets, the membership function and production rules.
Applications of fuzzy logic occur in three primary categories. consumer products,
industrial/commercial systems and decision support systems.(Glenn, 1994)

David (1992) describes the components of afuzzy controller. Toshinori & Y ashvant
(1994) present a fuzzy system composed of fuzzy set, logic, algorithms, and control.
I mplementation of the fuzzy control is suitable for a problem that is described in
approximate form and that requires a complicated mathematical model to explain the
behavior of the model. A fuzzy system can be applied to various subjects.

2.1.2 Applications of fuzzy systems

In Soud & Kazemian (2004), Usage Parameter Control (UPC) isthe

process that provides support for quality of service across a heterogeneous system. They
propose anovel form of the Usage Parameter Control(UPC) by using a Fuzzy Logic
Controller (FLC) to measure the rate of individual network flow to actively manage link
utilization. The results obtained significantly improve upon the best service of the

system.

Abdel-Aty & Abdelwahab (2004) study the effectiveness of methods to predict driver
injury severity as aresult of a crash. Fuzzy adaptive resonance is one method. The study

shows a fuzzy adaptive resonance has an accuracy of 70.6 percent.
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Masalonis & Parasuraman (2003) apply fuzzy signal detection techniques, which
combine fuzzy logic and conventional signal detection theory, to empirical data. The
object of the application isto detect aircraft incidents in air traffic control. The results
illustrate the potential of fuzzy signal detection theory to provide a more complete
picture of performance in aircraft incident detection.

Adeli & Jiang (2003) study zone capacity, which cannot be described by any
mathematical function because it is a complicated function of a large number of
interacting variables. They propose a novel adaptive neuro-fuzzy logic model for
estimation of the freeway work zone capacity. Comparisons with two empirical
equations demonstrate that the new model in general provides a more accurate estimate
of the work zone capacity, especially when the data for factors impacting the work zone

capacity are only partially available.

Kikuchi & Tanaka (2003) use a fuzzy rule based on a simulation process to examine
how the presence of vehicles equipped with an Adaptive Cruise Control System
(ACCYS) affects stability and safety of a flow consisting of both ACCS and non-ACCS

vehicles.

Ramasamy & Selladurai (2004) propose the use of fuzzy logic in quality function
deployment. The deployment is a proven tool used to develop process and product, and
translates the voice of a customer into engineering characteristics and then prioritises
the characteristic based on a customer’ s requirements. Fuzzy logic is useful to define the
relationship between the characteristic and customer attributes.

Kirawanich & O'Connell (2004) describe a system that uses fuzzy logic to control the
semiconductor switches in the switch-mode of active power line conditioners. The
simulations and measurements show that the system can significantly improve line
current total harmonic distortion and power factor during both steady-state and transient

operating conditions.

Fisher (2004) mentions the importance of fuzzy logic used to improve the potential of
computers to think like fuzzy-thinking people, instead of like purely logical machines.

20



In addition the article, claims fuzzy logic has been used to control subway trains,
elevators, washing machines, microwave ovens, and cars. Another really important use

for fuzzy logic isin robots.

Stewart, Cheraghi, & Malzahn (2004) use fuzzy Bayesian methodology in a fuzzy
defect avoidance system. The system is used to reduce the amount of scrap and rework
activity in aproduct process in industry. This method can be used to provide continuous

opportunities for defect avoidance.

Harb & Smadi (2004) present the idea of using the fuzzy logic concept for controlling
chaotic behavior in systems. The fuzzy control is useful because there is no
mathematical model available for the system and the control can produce nonlinear
control that can be developed empirically.

Beynon, Pee, & Tang (2004) point out that fuzzy set theory has evolved into a valuable
addition to traditional techniques, such as regression and decision tree models, for
decision analysis conducted under conditions of vagueness and ambiguity. They apply a
fuzzy decision tree approach to a problem involving typical accounting data. The results
show that fuzzy logic enables a decision-maker to gain additional insights into the
relationship between firm characteristics and audit fees, through human subjective

judgment expressed in linguistic terms.

Zhang & Tam (2004) present an incorporation of discrete-event simulation and fuzzy
logic to model uncertainties in a construction process. The fuzzy set is used to model
the uncertain demand in linguistic terms. The fuzzy rule base is built to control the
activities. The activity duration is generated through the fuzzy logic reasoning.
Through the application of the fuzzy construction simulation system, an illustrative
example is presented to demonstrate the effect of considering these uncertainties on the

productivity.

Cho & Yi (2004) propose the use of afuzzy logic controller in vehicle dynamics to
control the vehicle trgjectory when the driver suddenly depresses the brake pedal under
critical conditions. The function of the fuzzy controller isto control each brake and
works to compensate for the trajectory error on the split - road conditions to maintain

the desired trajectory.
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2.1.3 Applications of fuzzy logic for traffic control.

The previous section illustrates the wide use of fuzzy logic for control and decision in
any system. This section concentrate on the use of fuzzy logic for traffic control. There
are seven relevant papers.

Zhenyang (2004) discusses a model to control traffic flow at intersections by using
fuzzy logic control. The model is designed with a four-level fuzzy logic controller to
estimate relative traffic intensities in competing approaches to intersections. The
estimator is then used to determine whether a leading or lagging signal phase should be
selected or terminated for each approach. On the other hand the researcher creates a
dynamic traffic signal left-turn phase control system, and implements the four-level
fuzzy logic control model to optimize signal operations at intersections. The resulting
system is on efficient tool for reducing intersection traffic delay.

Ande (1996) creates amodel to control traffic flow at intersections by using fuzzy logic.
The model is adaptive, using actual traffic intensities by means of standard input traffic
flow parameters, which are measured by a loop detector. The results of the study show
the model is more efficient than the conventional traffic controls such as pre-timed

controllers or even semi-actuated controllers based on heavy traffic conditions.

Enid (1999) designs a fuzzy logic based traffic controller for an arterial street. The
controller can adjust the timing parameters on-line based on the current traffic
conditions. The strategy of fuzzy logic based control consists of a local controller at
each intersection and a global controller that communicates with all the local
controllers. The object of these controllers isto optimize traffic signal timing at
coordinate intersections. . Simulations showed significant improvements on the average
time in queue, the average queue length, and the average travel time, when compared to
coordinated pre-timed and semi-actuated controllers.

Seongho (1994) developed the Advanced Traffic Management Systems (ATMS) to
improve traffic signal control at intersections. Fuzzy logic is used for areal-time traffic
adaptive signal control scheme in the systems. The results of the study show that the
ATMS framework will lead to real-time adjustment of the traffic control signals,

resulting in significant reduction in traffic congestion.
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Adeli & Karim (2000) presents fuzzy logic in a new multi-paradigm intelligent system
approach to solve traffic problems that are disrupted by traffic incidents. The approach

uses advanced signal processing, pattern recognition and classification techniques.

Lee, Krammes& Y en (1998) use a fuzzy logic based incident detection algorithm for a
traffic network. The model is used to detect traffic incidents, any problems on the street
surface that require the attention of an operator or result in an operator formulating a
response, (such as lane blockages). The algorithm feeds an incident report such asthe
time, location, and severity of the incident to the system’ s optimization manager, which
uses that information to determine the appropriate traffic signal control strategy.

Cabrera & Ivan (2000) create a methodology to design traffic signal controls based on
fuzzy logic control. There are many applications that use fuzzy logic to control traffic
flow at intersections but there is no uniform design procedure. So they propose the
design to help people, not familiar with fuzzy logic control, to apply the method for
traffic signal control. The designed fuzzy controller uses existing traffic detectorsto
measure the number of vehicles at the intersection and decides how to change the traffic
signals in order to minimize the average delay of vehicles. Simulation results show that
traffic controllers developed with the proposed methodology reduce a average delay of
vehicles at intersections compared with conventional traffic control strategies.

2.1.4 The concept of afuzzy logic system

Wang (1994) presents the common concept of a fuzzy logic system. The system
consists of fuzzy concepts and fuzzy logic. The fuzzy concepts involve fuzzy sets,
linguistic variables and so on. The fuzzy logic is the process that is used to infer the
parameter of a system based on incorporated numerical information and an expert’s
knowledge. For most engineering systems, there are two important information sources:
a sensor which provides numerical measurements of variables, and human experts who
provide linguistic instructions and descriptions about the system. The information from
sensors is called numerical information and the information from human experts is
called linguistic information. To apply information to a variety of control, signal
processing, and communication problems and to analyse their performance, it is
necessary to develop a collection of methods which can effectively combine numerical

and linguistic information into the engineering systems. An adaptive fuzzy logic system
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issuch atool. The system is defined as a fuzzy logic system that is constructed from a
set of fuzzy IF-THEN rules using fuzzy logic principles, and atraining algorithm that
adjusts the parameters of the fuzzy logic system based on numerical information. In
other words adaptive fuzzy systems can be viewed as fuzzy logic systems whose rules
are automatically generated through training. The strategy of an adaptive fuzzy logic
system for combining numerical and linguistic information is based on the construction
of an initial fuzzy logic system by using linguistic information. Then the parameters of
the system are adjusted based on numerical information. An additional strategy isto use
numerical information and linguistic information to construct two separate fuzzy logic
systems. Then the final fuzzy logic system is the average of the two systems.

Definition 1 Linguistic variable (intuitive) : A linguistic variable isavariable
that can take either aword in natural language (for example small, fast and so on) or a

number as its values.

Definition 2 Linguistic variable (formal): A Linguistic variableis

characterized by aquintuple (x, T(x),U,G, S) inwhich x isthe name of variable; T(x)
istheterm set of x, that is, the set of names of linguistic values of x with each value
being afuzzy set defined on U ; G isasyntactic rule for generating the name of values

of x;and S isasemantic rule for associating each value with its meaning.

Definition 3 Fuzzy set: Let U be a collection of objects, for example,

U =R", usually called the universe of discourse. A fuzzy set F in U is characterized
by a membership function m. :U ® [0,1], with m. (u) representing the grade of
membership of uT U inthe fuzzy set F . A fuzzy set may viewed as a generalization of

the concept of an ordinary set whose membership function only takes two values {0]} :
The most, popular fuzzy logic systems may be classified into three types. pure

fuzzy logic systems, Takagi and Sugeno’s fuzzy systems, and fuzzy logic systems with
fuzzifier and defuzzifier. These are briefly described in the next three subsections.
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1) Purefuzzy logic system

The pure fuzzy logic system is conceptualised as two components, a fuzzy rule base and
afuzzy inference engine. The fuzzy rule base consists of a collection of fuzzy

IF-THEN rules, and the fuzzy inference engine is used to determine a mapping from a

fuzzy set in the input universe of discourse U | R" to fuzzy sets in the output universe
of discourse V I R, which is based on fuzzy logic principles. The fuzzy rule base is
composed of M rules, of the following form:

LW : IFxisF' and ~and x, is F/ THEN y isG!
Here F' and G’ arefuzzy sets, x = (x,,x,,K,x, )1 U and yi V areinput and output
linguistic variables, respectively,and j =1,2,... , M. i =1,2,...,n .These fuzzy IF-
THEN rules provide a convenient framework to incorporate a human expert’s
knowledge. In other words each fuzzy rule, R isfuzzy set F/” F;" K F) ® G/
in the product space U “ V . The most commonly used fuzzy logic principle in fuzzy

inference engines is the so-called sup-star composition. Specifically, let A’ be an

arbitrary fuzzy set in U ; that is, A’ isthe input to the pure fuzzy logic system. Then the
output determined by each fuzzy rule, RV isafuzzy set A’ 0 R inV whose

membership functionis
mA/OR(i) (y) = stz(T U [mA/ (l() * rrl:li' L Fni®Gi (l(’ y)]
where the“*” operator is“min” or “product” and m, represents the membership

function of the fuzzy set A. The final output of the pure fuzzy logic system is the fuzzy
st A 0(RY,R? K,R™) inV which has membership function:

mAIO(R(1>,R(2),K,R(M) (y) = Ma)<[mA10R(1) (y)’ mAIOR(Z) Tt mAIOR(M) (y)]

2) Takagi and Sugeno’sfuzzy system

Takagi and Sugeno use the following fuzzy rule:

LY 1 IF x.is F, and ~and x,is FJ THEN y’ =c} +c/x +clx, K+cix,
Here F.) arefuzzy sets, ¢! arerea-value of parameters; y' isthe system output dueto
rule LY, and ] =1,2, K,M . For ared-value input vector x = (><1,x2,K,xn),the

output y(x) of Takagi and Sugeno’s fuzzy system is aweighted average of the y''s:
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where the weight w’ of rule LY for the input is calculated as

8
w’ :,C_)m:.' (%)

3) Fuzzy logic systemswith Fuzzifier and Defuzzifier

A fuzzy logic system with fuzzifier and defuzzifier is a pure fuzzy logic system which
adds a fuzzifier to the input and a defuzzifier to the output. The fuzzifier maps crisp
points(numeric values) in U to fuzzy setsin U , and the defuzzifier maps fuzzy setsin
V to crigp points(numeric values) in V . The fuzzy inference engines are the same as
those in pure fuzzy logic systems. Such a fuzzy logic system consists of four

components.
3.1) Fuzzfier

The fuzzifier performs a mapping from acrisp point x = (x;, X,,K, x) into afuzzy set

A in U . The mapping is commonly called a membership function. A membership
function is a curve that defines how each crisp point in the input space is mapped to a
membership value between 0 and 1. The membership function is usually one of the

following:

1) Singleton fuzzifier: Al is afuzzy singleton with support x, that is, m,, (x) =1
for x' =x and m,(x')=0 foral other x'T U with x' * x

2) Nonsingleton fuzzifier: m, (x) =1 and m, (x') decreases from 1 as X' moves

away from x . The nonsingleton fuzzifier may be useful if the inputs are corrupted by

noise. The function itself can be an arbitrary curve whose shape suits the expert from

the point of view of simplicity, convenience, speed, and efficiency.

The fuzzy logic toolbox includes 11 built-in membership function types. These 11

functions are, in turn, built from several basic functions: piecewise linear functions, the
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Gaussian distribution function, the sigmoid curve; quadratic and cubic polynomial

curves. The most commonly used functional forms are triangular, trapezoid and
Gaussian which are ways to determine the parametersin m,, (x') based on measured

data. The simplest membership functions are formed using straight lines. Of these, the
simplest is the triangular membership function; it is nothing more than a collection of
three points forming atriangle. The trapezoidal membership function has a flat top and
really isjust atruncated triangular curve. These straight line membership functions have
the advantage of simplicity. Two membership functions can be built on the Gaussian
distribution curve: a simple Gaussian curve and a two-sided composite of two different
Gaussian curves. Gaussian membership function have the advantage of being smooth

and nonzero at all point.

Figure 3.1 shows the membership functions of three fuzzy sets, namely, “slow”,
“medium”, and “fast” for the linguistic variable “the speed of the car”. In this example,
the universe of discourse is all possible speeds of the car; that is

U =[oV,,] whereV,, isthe maximum speed of the car.

slow medium fast

Speed (mph)

Figure 2.1 Membership functions of three fuzzy sets, namely, “slow”, “medium”, and
“fast” for the speed of the car (Wang, 1994, p. 10)
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3.2) Fuzzy rule base

A fuzzy rule base consists of a collection of fuzzy IF-THEN rules in the following form:
LY :IF x isF/ and ~ and x_is FJ,THEN vy is G!

Here F' and G'arefuzzy setsinU; | Rand V I R, respectively, and

X= (X, Xy %), X1 U;”"U,” K'U, and y1 V arelinguistic variables. Let n be

the number of fuzzy set F'; that is, i =1,2,K,n and M be the number of fuzzy

IF-THEN rulesintherule basg; that is, j =1,2,K,M . x and y aretheinput and

output of the fuzzy logic system, respectively. The fuzzy rule is derived from asking
human experts and using training algorithms based on measured data. The membership
functions for the fuzzy sets are determined in two ways depending upon where the rules
come from. If the rules are provided by human experts, then the membership functions
should be specified by the experts because these functions are an integrated part of the
expert’s knowledge. If the rules are determined by numerical data, then the first task is

to determine the functional forms for m_, and m,, .The most commonly used functional

forms are Gaussian, triangular, and trapezoid.

3.3) Fuzzy inference engine

In afuzzy inference engine, fuzzy logic principles are used to combine the fuzzy
IF-THEN rulesin the fuzzy rule base in a mapping from fuzzy setsin
U=U,"U,” K U, toafuzzy setinV . Thefuzzy IF-THEN rule can be interpreted
in anumber of ways. For simplicity, wedenote F' * FJ K" F) =A and G’ =B, and
therule isdenoted by A ® B . Some commonly used interpretations for the fuzzy | F-
THEN rule are asfollows:
1) Mini-operation rule of fuzzy implication:
M o (X, ¥) = min{m, (x), m; ()}
2) Product-operation rule of fuzzy implication:
My g (X Y) = M, ()M, (y)
3) Arithmetic rule of fuzzy implication:
Muo o (X,¥) = min{LL- m, () + m, ()}
4) Maxmin rule of fuzzy implication:
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Mye 5 (X, Y) = max{min[m, (x), m, (y)]1- m, (x)}
5) Boolean rule of fuzzy implication:
My s (X, Y) = max{1- m, (x),m, ()}

6 ) Goguen's rule of fuzzy implication:

.}. 1 My (X) £ mg (y)
Mes(XY) =i m (y)
'm0 My (X) > My (y)

where m, (X) =m.;., .., (X) isdefined either according to the min-operation rule:
M- (9 = mindy, (0),m, Komy (x,)f
or according to the product-operation rule:

ML e ikl (l() =m, ()ﬁ)m]:zn (Xz)«m]:ni (Xn)
3.4) Defuzzifier

The defuzzifier performs a mapping from fuzzy setsin V to crisp points

y1 V . There are three common choices of this mapping:
1) The maximum defuzzifier, defined as
y=agsup,, (M, (y)) ;

2) The center average defuzzifier, defined as

M . .
ay'm,(y")
j=1 . .
y=- ¥ - , 'y ! isthe center of the fuzzy set G’ and
a (m, (y"))
j=1
3) The modified center average defuzzifier, defined as
avy'm(yd)
y= "1M , d’ isaparameter characterizing the shape of m,; (y)

a(m, (y'yd’

j=1
2.1.5 Method of fuzzy logic control

Kandel & Langholz, (1994) present at least two methods of fuzzy logic control as
follows:
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1) Min-Max-Gravity method

The fuzzy logic controllers are based on the fuzzy reasoning method called *“ min-max-
gravity method “ by Mamdani (1977). The rules used for this method are as follows:

Rulel: IF x is F! and ~ and x, is F} THEN vy is G,
Rule2: IF x, is F?and ~ and x,isF? THEN y is G2,

M M
RuleM: IF x is F™ and mand x, isF" THEN vy is G",

Fact : x!, %}, K, x!

Consequence; G’

Here F/'isafuzzysetinset U,U 1 R:and G' isfuzzysetinV ,V I R:and
(X, X%, K, x)T R". i=12,Kn;, j=12K,M
For smplicity, welet F/~ FJ K" FJ = A and G’ =B, and each rule is then denoted
as A® B. Thisisdefined by

Myg g (X1, %, KX, ) = minfm; (), K, m; (%), my; (Y)]
The inferenceresult G; infered from the fact of x;,x},K, X, and fuzzy rule A® Bis
given by

m,, (y) = minfm,, (), m, ()R, m, 06),my, (1.
The final consequence G’ is defined by

m, (y) = max{m, (y),Km, (y)].
The representative point y for the resulting fuzzy set G’ is obtained as the center of
gravity of G’ , that is

J = ova (y)dy

O (V)dy

The process of the Min-Max-gravity method can be shown by figure 3.2 as follows:

, where ¢m, (y)dy istheareaof fuzzy set G' .
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Figure 2.2 Min-Max-Gravity method ( Kandel & Langholz, 1994, p.277)
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2) Product-sum-gravity method

This section outlines the method of fuzzy reasoning called the product-sum-gravity
method, which replaces min by the algebraic product, and max by the sum in the max-
min-gravity method. The consequence G’ for the product-sum-gravity method is
obtained as follows.

Firstly, consider the multiple fuzzy reasoning form.
Rulel: IF x is F! and ~ and x, is F; THEN vy isG',
Rule2: IF x, is F?and ~ and x, is F? THEN yis G?,
M M
RuleM: IF x is F™ and mand x, isF" THENyis G",
Fact : x!, %}, K, x!

Consequence; G/

The inference result G| fromthe fact x{,x;,IK,x, and the fuzzy rule j isgiven by:

m, () = M, () xm, () Ky, () X, ().
The consequence G’ is defined by
my (y) =m, (y) +K+m, (y).
The representative point 'y’ of G’ is obtained by using the centre of gravity method.
The centre of gravity y' of G’ isdescribed below.
Let y, bethe centre of gravity of the inferenceresult G| and S; betheareaof G|

inFigure 3.3 Then vy, isdefined as:

oy (dy gy, (v)dy
g, (Vdy s

The centre of gravity y’ of thefinal consequence G| is given by
¥
\ N S xy.
oo OO Oy )+t my (dy DS
N M
O(Ndy  gmy, (Y) +...+m, (Y)ldy as

The product-sum-gravity method isillustrated in figure 2.3



A A A
™o | M m, (y)
M ()M, 06),
my )
0 0 g
A A A
| meo | mo ,|mw
M (%),
m () m (x))
. M) e,
0 0
G -G
N h My () =M () +m, ()
5
/ >
Y, y

Figure 2.3 Product-sum-gravity method (Kandel & Langholz,1994, p.281-282)
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Figure 2.4 Comparison of result from the min-max and product-sum method
(Kendel & Langholz, 1994, p. 283)

Asindicated by Teodorovic & Vukadinovic (1998), Pappis & Mamdani (1977)
attempted to solve the problem of controlling an isolated signalized intersection by
using a fuzzy logic system. They introduce four fuzzy (linguistic) variables.

T : Thetimethat has lapsed since the last light changed at the intersection,

A : The number of vehicles from the priority direction that have passed through
the green light during the considered time period,

Q: Thenumber of vehicles waiting in line on the one-way street that does not

have priority, and



E: Thelength of time to the next light change.
Fuzzy variables T , A, and Q are input variables whose values determine the value of
output variable E. Fuzzy variable A could be assigned the value “many” vehicles, “more
than several” vehicles, “few” vehicles, and so on. Fuzzy variable Q could be assigned
similar values. Variables T and E are assigned as “very short”, “short”, “medium” time
and so on. Pappis and Mamdani also use fuzzy sets such as “any” number of vehicles,
“more than” and “less than”. The grade of membership of every element belonging to

fuzzy “any” equals 1.

In addition Pappis & Mamdani (1977) propose triangle and trapezoidal forms for the
curve of the membership function of afuzzy set. They also describe an approach to find
membership values. For example, consider a fuzzy set M, where aelement x* of set M
has the largest grade of membership in set M. Let G be the fuzzy set “greater than M”.
Let L befuzzy set “lessthan M”. The membership functions of fuzzy setsL and G can
be defined as follow:

M) = | 0 ,X£X
il- (x)  ,x>Xx
_11-m, () x<x

m (x) L0 xex
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Figure 2.5 Membership function of fuzzy sets M,G and L
(Teodorovic & Vukadinovic, 1998, p. 97)

The algorithm to control traffic at an isolated intersection proposed by Pappis and

Mamdani (1977) uses rules of the following type:

Rule 1: IF T isvery short and A is greater than none and Q isany, THEN E isvery
short.

Rule 2: IF T isshort and A is greater than few and Q is less than very small, THEN E is
short.

Rule 3: IF T ismedium and A is greater than few and Q is less than very small, THEN
E is medium.

Rule4: IF T islong and A is greater than medium and Q is less than very small, THEN
Eislong.

Rule5: IF T isvery long and A is greater than many and Q is less than very small,
THEN E isvery long.

The values of fuzzy variable E represent the extension of time to allow a vehicle to pass
the intersection. The extensions given to the system were between 1 and 10 seconds.
Every 10 seconds a different set of five rulesis used to make the decision on the length

of time to the next light change at the intersection. The min-max-gravity method is used
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to find the value of the fuzzy variable E based on numerical valuest, a, and q for the
input variables T, A, and Q respectively.

Kelsey & Bisset ( 1993) present the simulation of traffic flow and control by using
Takagi and Sugeno’s fuzzy system. Simulation output can be compared with the output
from conventional methods. There are four fuzzy variables in the fuzzy controller.

G : The average density of traffic behind the green light,

R : The average density of traffic behind the red light,

L : Thelength of the current cycle time, and

C: Theindex to decide whether to change the state of the light or remain in the

same state.

Fuzzy variables G , R, and L are input variables whose values determine the value of
output variable C. Fuzzy variable G could be assigned the values “Zero” vehicle, “Low”
vehicles, “Medium” vehicles, and “High” vehicles. Fuzzy variable R could be assigned
similar values. Variables L could be assigned values “Short” time, “Medium” time and
“Long” time. There are four membership functions describing the densities of traffic at
green and red lights, and three membership functions describing the length of the
current cycle time.

The membership functions are shown in Figure 2.6-2.8 as follows:

H
T T -
Z = Zero
L = Low
M = medium
H = High

\ 4

Number of cars

Figure 2.6 Membership function of number of cars behind green light
(Kelsey & Bisset, 1993, p. 266)
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Figure 2.7 Membership function of number of cars behind red light
(Kelsey & Bisset, 1993, p. 267)
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Figure 2.8 Membership function of length of current cycle
(Kelsey & Bisset, 1993, p. 267)
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Fuzzy variable C is the output variable whose values are “No change”, “Probably no
change’, “Maybe change”, “Probably yes change” and “Change’. The membership
function of the values represents a degree of a binary value, 1 being yes and 0 being no,
as shown in Figure 2.9

A N = No

PN = Probably No
M = maybe

PY = Probably Yes
Y = Yes Y

Degree of Change
0 01 02 03 04 05 06 07 08 09 1.0 g

Figure 2.9 Membership function of change (Kelsey & Bisset, 1993, p. 267)

Kelsey & Bisset (1993) also present the fuzzy rule which maps the combination of the
inputs to the output to decide whether to change the light. The fuzzy controller
presented uses 26 different fuzzy rules as follows:

|F greenis zero and red is zero THEN change is no.

IF greeniszero and red islow THEN change is yes.

IF green is zero and red is medium THEN change is yes.

IF greenis zero and red is high THEN change is yes.

IF red is zero THEN change is no.

IF greenislow and red islow THEN change is no.

IF green is medium and red is medium THEN change is no.

IF green is high and red is high THEN change is no.

© 00 N o g b~ W DN PP

IF green islow and red is medium and time is short THEN change is

maybe.

10. IF greenislow and red is medium and time is medium THEN change is
probably yes.

11. IF greenislow and red is medium and time is long THEN change is yes.

12. IF greenislow and red is high and time is short THEN change probably no.
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13. IF greenislow and red is high and time is medium THEN change is may
be.

14. IF greenislow and red is high and time is long THEN change is probably
yes.

15. IF green is medium and red is low and time is short THEN change is
probably no.

16. IF green is medium and red is low and time is medium THEN change is
probably no.

17. IF green is medium and red is low and time islong THEN change is
maybe.

18. IF green is medium and red is high and time is short THEN change is
maybe.

19. IF green is medium and red is high and time is medium THEN change
probably Yes.

20. IF green is medium and red is high and time is long THEN change is yes.

21. IF greenis high and red is low and time is short THEN change is maybe.

22. IF greenis high and red is low and time is medium THEN change probably
yes.

23. IF greenishigh and red is low and time is long THEN change is yes.

24. |F greenis high and red is medium and time is short THEN change is
probably no.

25. IF greenis high and red is medium and time is medium THEN change is
probably no.

26.1F green is high and red is medium and time is long THEN change is
maybe.

2.2 Thetraffic intensities estimation based on the maximum likelihood

estimation

2.2.1 Maximum likelihood estimation

Maximum likelihood estimation is a method that is used to estimate the

parameters of a distribution, or estimate performance of a model . Bera & Bilias (2002)
statesthat the statistical expert who provided the analytical foundation of maximum
likelihood estimation is Fisher (1922). He also studied the efficiency of maximum
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likelihood estimation relative to moment estimation proposed by Karl Pearson’s (1894)

moment estimation.

Abutaled & Papaioannou (2000) propose maximum likelihood estimation to estimate
time-varying parameters in time series models. The result of this approach is then
applied to the Athens Stock Exchange Index. Chan & McAleer ( 2002) use maximum
likelihood estimation to investigate the properties of two models of time series, the
Smooth Transition Autoregressive (STAR) model and the Smooth Transition
Autoregressive Generalized Autoregressive Conditional Heteroscedasticity (STAR-
GARCH) model based on finite samples. These numerical results are used as aguide in
empirical research, with an application to Standard and Poor's Composite 500 Index
returns for alternative STAR-GARCH models.

The likelihood function of a continuous-time diffusion is observed only at discrete
dates, and is not computable. Ait-Sahalia (2002) explicitly constructs a sequence of
closed-form functions that convergesto the true likelihood function, and the estimator
also converges to the true maximum likelihood. Eqorov, Li, & Xu (2003) extend the
same method to the time-inhomogeneous case, and prove that this approximation

convergesto the true likelihood function and yields consistent parameter estimates.

Maximum likelihood estimation can be applied in business management and
econometrics, for estimation of default correlations between variables in management of
loan portfolios (Demey, Jean-Frederic, Roget, & Poncalli, 2004) for example. The
estimation overcomes problems such as scarce data and small sample biases.
Deschamps (1998) uses full maximum likelihood estimation to estimate parametersin a
dynamic demand model. Durtham, Gallant, Ait-Sahalia, & Brandt (2002) propose
maximum likelihood estimation to provide a convenient way to describe the dynamics
of economic and financial data. O'Loughlin & Coenders (2004) present the maximum
likelihood approach as advantageous over the partial least square method in estimation
of customer performance. Porter (2002) mentions the use of maximum likelihood in
econometrics model estimation, the conditional information matrix variance estimator is
usually avoided in choosing a method for estimating the variance of the estimator. The
author proposes a simulation method to estimate the variance. Swann (2002)
demonstrates a method that can be used to examine a more complicated econometric
model.
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Frehlich & Sharman (2005) use maximum likelihood estimation to estimate the
performance of pulsed coherent Doppler radar in estimating aircraft trailing wake
vortices. The estimation provides accurate detection and tracking of the key vortex
parameters for a simple vortex model.

Fridman & Harris (1998) develop maximum likelihood estimation to analyze stochastic
volatility models. The study shows that the method matches the performance of the best

estimation tools currently in use.

Ghitany & Al-Awadhi (2002) propose maximum likelihood to estimate the parameters
of Burr XII distribution. The study shown that the estimators are srongly consistent
with the true values of parameters.

Gill (2004) uses maximum likelihood estimation to estimate the canonical parameter of
an exponential family that gradually beginsto drift from itsinitial value at an unknown
change point.

Herring & Ibrahim (2002) introduce maximum likelihood estimation to estimate a
random effects cure rate model based on development of the Expectation Maximization
( EM) algorithm, and efficient Gibbs sampling. The EM algorithm is also applied by
Karlis (2001) to estimate the performance of mixed Poisson regression models based on
areal data set concerning crime data from Greece.

Karlis (2003) describe an EM algorithm for maximum likelihood estimation to estimate
parameters of the multivariate Poisson distribution model Kim & Taylor (1995) develop
amodification of the restricted EM agorithm to estimate linear restriction parameters.
Ning-Zhong, Zneng (2005) extend the restricted EM algorithm to estimate the
inequality restrictions parameter. Hunter & Lange (2004) claim the EM algorithm isthe
most effective algorithm for maximum likelihood estimation. In biomedical research,
maximum likelihood is used by Lee & Shi (2001) to estimate the performance of the
latent variable model. However every EM algorithm is a special case of the more
general class of Method of Moment (MM) optimization algorithms,as is shown by
Hunter & Lange (2004). The paper explains the principle of MM algorithms and
includes numerous examples to illustrate the concept of the algorithm.
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Hsiao, Pesaran, & Tahmiscioglu (2002) apply atransformed likelihood estimation to
estimate fixed effects dynamic panel data models. The study shows that the properties
of maximum likelihood estimation are better than the linear generalized method of

moment estimation.

Jewell (2004) uses maximum likelihood estimation to estimate a series of ordered
multinomial parameters. The results are then applied to estimation of a survival
distribution. Jonker (2003) proposes maximum likelihood estimation to estimate the life
length of people who were born in the seventeenth or eighteenth century in England.
Chen & Ibrahim (2001) propose maximum likelihood estimation to estimate the

parameter for anovel class of semi-parametric survival models.

Keats, Lawrence, & Wang (1997) present a Fortran program based on point and interval
maximum likelihood estimation to estimate the parameters of the Weibull distribution.
Kotz, Kozubowski, & Podgorski (2002) use maximum likelihood to estimate the
parameters of a univariate asymmetric Laplace distribution for all situations.

Lynch, Nkouka, Huebschmann, & Guldin (2003) use maximum likelihood estimation to
estimate parameters for a range of specified probability densities in a logistic equation,
where traditional estimation techniques for logistic models cannot be used. On the other
hand Horton & Laird (2001) present a new method for maximum likelihood estimation
of logistic regression models with incomplete covariate data where auxiliary

information is available.

Milescu, Akk, & Sachs (2005) describe maximum likelihood estimation to estimate
parameters of rate constants from macroscopic ion channel data for a kinetic model.

Milligan (2003) use maximum likelihood estimation to quantify the
statistical performance of the traditional maximum likelihood estimator in relatedness
between individuals in genetics and population biology.

Miranda & Rui (1997) introduce an efficient numerical algorithm
for computing the full information maximum likelihood estimators of the nonlinear
rational expectations asset pricing model. The study show that the maximum likelihood

estimator is more efficient than the method of moments estimator.
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Rous, Jewell, & Brown (2004) use afull information maximum

likelihood estimation procedure to estimate the relationship between birth-weight and
prenatal care. The datais collected from the state of Texas, and the result shows the
effect of mothers with less healthy fetuses making more prenatal care visits, known as
adverse selection in prenatal care.

Scheike & Martinussen (2004) present maximum likelihood to estimate the parameters
of interest for case-cohort sampling that aims to reducing the data sampling and costs of
large cohort studies. The estimation is found by a simple EM algorithm that is easy to
implement.

Yu & Wong (2005) propose a special modification of maximum likelihood estimation
to estimate parametersin alinear regression model when the error distributionis
unknown. The study shows that the special estimation is consistent, and can be applied

to engineering data.

Ellson (1993) suggests that maximum likelihood estimation is one method to learn
about the parameters of a population based on the characteristics of a sample. The
parameter estimator that we find by maximum likelihood estimation maximizes the joint
probability function of a sample we obtain from random sampling. The details of
maximum likelihood estimation procedure are as follows.

Let X bearandom variable which has a normal distribution with known parameter,
s # (variance of population) and unknown parameter, i ( mean of population). Our
goal isto estimate the population mean by maximum likelihood estimation. First we
need take a random sample with nsize. Let (X,, X,,K, X ) be the sample. Random

sampling produces independent identically distributed (iid) random variables with joint
probability density as follows:

L(Xy Xy peeey X, M) = 6f(xi)
= O L e

i=1 /2PS 2 2 ?

Taking the natural logarithm of both sides of the equation we get the loglikelihood

function :



INL(X, Xypere X, M) = Iné_}) \/%exp(_ (Xzis-zm)z)
J € 1 - (X - m)z u

= alng exp(
i /2ps 2 25 2 Q

n(nZps )-8 (x - m°
i=1

Note that the value of loglikelihood function is dependent only on the term

- é (x. - m?. Weignore al the constants in the equation because they are not needed

i=1
to maximize the function. So the estimator of n that maximizes the likelihood function

is computed by calculus as follows:

ig' é. (X - m)zg = Zé X - 2nm
img = u i-1
Let Zé. X-2nm = 0
i=1
on
ax
So the maximum likelihood estimate m = i=1
n

In the same way let X be avector of c-dimensional Poisson random variable.
X =(X,X,,K,X,)

X, ~Poisson(l ;) ;j=1,2,...,c. independent.

o= (10,00l ,)

X~ Poisson(l )
Let usestimate | by using maximum likelihood estimation. First we need to take a
random sample with nsize. Let (X @, X @K, X ") be the sample. As before these are
independent identically distributed (iid) random variables.
Hee  X® = (x®,x® K, x®)

X = (xxP K, x?)

! !
X () = (Xl(”)’ Xgn),K, Xéﬂ))
o
f(x) = expC I(?)) ol
x;"!
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The joint probability distribution of (X @, X @ K, X ™) is as follow:

L (x¥ x@ 1k, x™) =) f (x)

i=1

_Aep(-1)4
=0 NOJ
i=1 .
o ) MO
InL (x®,..,x™) = |no%
i=1 X

= -nl +In()g x - § Inx®!
i=1 i=1
fInL(x®,...,x™) 14
1l | =

finL(x®,...,x™)

Let 0

q

-n +lé x" =0

=
So the solution for maximum likelihood estimationis | = ~ a x®
nia
o 1= BA A KGN
en iz Nz i1 @

Let X beavector of c-dimensional random variable

Y be avector of r-dimensional random variable
= (X, X,.K, X,)

Y =MLY KY)

x () = (Xl(i)’xg)’K’Xéi))/

YO =0 v kYO L i=12K,n
A rxc matrix

Using maximum likelihood estimation as in the previous section, we can estimate |

given Y = AX " with the likelihood equation in vector notation that can be
expressed :

Sl
Qo5

E [X(i)ly(i) = AX (i)]

.u‘



2.2.2 EM algorithm for maximum likelihood estimation

Kim & Taylor (1995) suggest that the EM algorithm is one of the most powerful
algorithms for maximum likelihood estimation in an incomplete data problem. In the
EM algorithmit is usually necessary to find the conditional distribution in the E step,
then use standard maximum likelihood estimation for the complete data problem in the

M step. Let x =(x,,X,,K,x, ) bean observation vector and | be acx1 parameter
vector of interest. Let f (x|| ) betheknown probability density of x indexed by the

unknown parameter | . Denotethe log-likelihood of n observations by | (I |x) If

there are no restrictions on the parameter, a fast and popular algorithm for

maximizing| (I |x) is the Newton-Raphson algorithm. The score function and the
information matrix for the Newton-Raphson algorithm are given by

o M1 K IES

an I
U 1-“ U ﬂ2|
where |, isassumed to be positive definite. So an unrestricted maximum likelihood

estimate of | isasolution of aset of iterations given by

Ul i- 0 ; chooseastarting valuefor | , denoted by I .

U2. |yl und = Tug +10 'Sy, where S, and |, areevaluated at | .
Stopif 1, hasconverged.

U3. I iy = ol uylii—~ i+1gotoU2.
InU2, | iyl ye] denotesthe (i +1) th term in the Newton-Raphson sequence for
the unrestricted problem obtained by taking one Newton-Raphson step from |, .

Now suppose there are r linearly independent restrictions on the parameter | , such as
Y = Al

Here A isthe known rxc matrix defining the restrictions, with rank (A) =r<c;and

Y isaknown rx1 vector. We use the Lagrange multiplier method to derive an

algorithm to find the restricted maximum likelihood estimation. When the Lagrange

multiplier method is used to incorporate the redtrictions, the restricted log-likelihood is

given by

(i xa)=1([x)-a'(v- An)
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whereq =(q,,9,,...,q,) are the Lagrange multipliers. When g isgiven, the procedure
for maximization of the restricted log-likelihood | (I |x,q) isthe same as the

unrestricted maximization in U1-U3. A simple adaptation of the Newton-Raphson
iteration scheme leads to the restricted solution. The score function and the information
matrix for the restricted log-likelihood can be expressed as

Sk - Ix.9) S, +Alqg ad Ig=- 10 1 x.a) 2' xd) _ ly.

| 1

From the relationship of the score functions and information matrices between the
unrestricted and restricted problems, we can easily verify that the Lagrange multiplier is
afunction of the unrestricted solution and the unrestricted information matrix. A

sequence | gyl reysl ey~ fOr the restricted problem is obtained by the following
algorithm:
R1. i- O chooseadartingvalue, | ).
R2. Caculate | .y [l gsy] fromU2 for the unrestricted problem.
R3. Calculate | ., for therestricted problem from the following equation:
ooy = oasmll rey]* 1o A (AL AN Y = ALl D),
where |, areevaluated at | ;. Stopif | -, has converged.

R4. i- i+1,goto R2

From R3, it is clear that each member of the sequence for the restricted problem is
easily obtained in each iteration by using the unrestricted solution and information

matrix.
2.2.3 Estimating source-destination traffic intensity from link data

Vardi (1996) estimate source - destination traffic intensities from link data based on
maximum likelihood estimation and the sample moments approach. The method is

presented below.

Consider a network system that contains n nodes. Any two nodes are fixed; one as the
source, and the other asthe destination, and they are called source-destination pairs
(SD), or direct routes. The target is atraffic intensity estimator between two nodes. This
network system is composed of ¢ = n(n-1) SD, and we call the direct route that has no
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nodes between source and destination a direct link. The number of direct linksin this

network systemarer (r£ c).

Let X be the number of vehicles for direct routej at measurement period k.
We assume that
X ~ Poisson(l ) ; j=12,K,c;k =1.2,K,K . independent.
X ¥ isthe number of vehicles in vector form for the direct route.
X © = (x,x¥ K, x®Yf
Y ) is the number of vehicles that are observed from direct link i at measurement
period k.
Y &) is the number of vehicles in vector form for direct links.

y K = (\G(k),Yz(k),K,Y,(k))/

Let A bethe rxc routing matrix for this network. The matrix A is a zero-one matrix
whose rows correspond to the direct link; its columns correspond to direct routes, and
itsentry, a; is1 or 0 according to whether link i does or does not belong to the direct
path of the SD pair j . So we derive the relation between Y and X ®) in equation
formas

Yy =ax®: k=12 K,K
Our goal isto estimate | © (I ,,1,,K,I ) from Y& Y® K Y basedon
maximum likelihood estimation and sample moments.
The likelihood equations in vector notation can be expressed as

| = E Xy ® = Ax ¥ (2.2)

Qo=

1
K

=
Il

1
The EM algorithm can be used to search for the solution of equation (2.1), and the EM

algorithm, in vector notation, is

1) =XV O YO YW 1] n=12K
(1© >0, arbitrary ). dueto of the linearity of E and independence acrossk’s,

k
| (2) = %éE[X"‘HY"‘),I‘”)] n=12,K

k=1
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The trouble with this iteration formulais that the summands E (X|Y,I ) (superscripts

ignored for simplicity ) are extremely hard to calculate as they require finding all the

solutions in natural numbersof Y = AX .

K
)

Approximation of Y :% a Y ¥ispossiblewhenk islargeas Y isapproximatesa
k=1

multivariate normal distribution.
Y~ N, (Al,K*ALA) , L =diag(l)

So the log-likelihood of Y is

1(1)=-logALA'|- K (V- Al ) (ALA')*(V - Al) 2.2)
The maximum likelihood estimation (MLE) based on this approximation would seek to
maximize | (| ) subject to the constraints | , 2 0, i =1,K,c. WhenK islarge, the
second term is the dominant termin (2.2), and suggests
agmin,., K (Y- Al ) (ALA’)'l(V- Al ) as areasonable large-sample substitute for
the MLE. Notethat this is aweighted least square with positive constraints and with
weighted values depending on | , which can be estimated by the sample covariance

matrix of the Y's.

The approximate normal distribution of Y is completely determined by the mean
vector, Al , and covariance matrix, ALA’, of Y . Thus we can equate the sample’s first
and second moment to their theoretical valuesto obtain alinear (in | ) system of the

following estimating equations :

E(V)=Y=aal, , i=1,2,..,r
1=1
and COV(Y,Y )—i° YOY®, VY. =8 aa,l, , 1£iEiEr
il _Kak. i i¢ ||¢_a.1a'ij ¢l j oo :
J:
r(r+3) . . L .
These are > linear equations that can be written in vector notation as
Y éAl
et = equl (23)
éS{i éB
. : : r(r +1)
Here S isthe sample covariance matrix stretched out as a vector of length ———=
1 o Kk Kk Viva
1 K « I I
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B isan r(r2+1), ¢ matrix with rows indexed by (i,i’) , 1£i £i(£r , to match the

indexing of S, with the (i i’ ) th row of B as the element — wise product of row i and

row i’ of the matrix A.

Here, suppose that all the constants on left side of (2.3) are strictly positive and that B
has no rows of zeros. Then, because all of the entriesof A and B are nonnegative and
(\7’ , S’ )/ >0 and | isconstrained to be > 0, equation (2.3) isof the general from of a

LININPOS ( Linear inverse positive ) problem, the EM algorithm will be used to
“solve” it .The canonical form of the EM iteration for solving the LININPOS problem is

that Y = Al is

| g
j o]
I~ ——a

j=12K,c (2.4)

o]

o
ij T a ay
1

a

1

k

Y
S
k=

If the linear system isgiven in ablock form as

_ Ay

e
&4

where A isrxc, Yis rxl, Sis mxl (indexedasr+1,...,r+m)and B is mxc

D:D> D
n_ =Xl
O

(rowsindexed asr+1,...,r+m) , then (4) becomes

‘ 0
| I €4 ;Y + 'sm b S 3
i d rgm ga S a i1 lj
aa+ab JTaal, Tabld.g

i=1 i=r+1 8 k=1 k=1 H

Also, Vardi (1996) presents the steps of the simulation process to estimate traffic
intensity by using Maximum likelihood based on the EM algorithm as follows:
Stepl Let | =(1,,1,,K,l ) be ‘daily transmission rate;
Step 2 Generate daily data on direct links for k days :
y®o (Yl(l),Yz(l),K,Y(l))
y(@ o (Yl(z),YZ(Z),K,Y(Z))
M M
vy (k) o (Yl(k),Yz(k),K,Y(k)) _then

r
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_ k
Calculae Y = % avw,
i=1

and sample covariance matrix, S, where

S, _1 YUYW TV
I K «
Step 3 Estimate | =(I,,1 ,,...,I",)’ based on applied algorithm
¢ 0
| . e 7 rsm ph. S l:|
I i r Jr+m éé- ca” I + é. r+1IJ I lﬁl’
o €iz1 2 i=r+1.2 u
aa,+ab.,A1aaiklk b
i= i=r+1 8 k=1 k=1 H
Step 4 Goto step 2to estimatel mtimetoget 1@, 1@ ... 1™ and
~ 14& ~ . .
Step 5 Calculate mean vector;] =—g | ® and covariance matrix based on m
M=

estimations thenwe get |~ which is the unbiased estimator of | , route count.

2.3 Thetraffic intensities estimation based on Bayesian inference
2.3.1 The Bayesian approach

Moore (1997) agrees that Bayesian method are increasingly important to

infer parameters. Bayesian inference is a process that can be used to infer interesting
parameters. The main idea of the Bayesian approach according to VerevKa & Parasyuk
(2002) consists of sequential calculations of a posterior probability distribution function
of the parameter, based on some collection of associated evidence by using Bayes
theorem. Carin, Stern & Rubin (1995) present that posterior distribution is complicate
model so it is difficult to directly sampling from the posterior distribution. The
indirectly method to sampling when it is very hard to finding distribution function is
Gibbs sampling. Casella & George (1992) support the meaning of Gibbs sampling as a
technique for generating random variables from a distribution indirectly, without having
to calculate the density distribution fuction. Additional Gibbs sampling is based only on
elementary properties of Markov Chains.
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Erkanli, Soyer, & Costello (1999) use Baysian inference and model selection for a
prevalente estimation to estimate the interesting parameter. They generate random
variable from distribution by using Markov Chain Monte Carlo method. Geweke (1989)
develop the method for the systematic application of Monte Carlo integration to
sampling for Bayesian inference in econometric model. In addition Jensen (2004)
proposes Baysian inference to estimate the parameter for the integration model. He also
uses Markov Chain Monte Carlo method to generate random variable from posterior
distribution function for the tractional order of the integration model. According to
Carin, Stern & Rubin (1995) two effective methods that can be used to generate random
variables in Markov chain Monte Carlo method are Metropolis-Hasting and Gibb
sampler. Liu & Sabatti (2000) comment that although Monte Carlo methods have
frequently been applied with success in Bayesian inference, indiscriminate use of
Markov chain Monte Carlo method leads to unsatisfactory performances in numerous
applications. They propose a generalized version of the Gibbs sampler that is based on
conditional moves along the traces of groups of transformations in the sample space. The
sampler provides a framework encompassing a class of recently proposed tricks such as

parameter expansion and reparameterisation.

Blackwell (2003) uses fully Bayesian inference based on hybrid Markov chain Monte
Carlo methods, with a mixture of Gibbs sampler and the Metropolis-Hasting algorithm
to infer a parameter of the certain radio-tracking model.

Hagqger, Janss, Kadarmideen & Stranzinger (2004)use Bayesian inference to study the
parameters of a mixed inheritance model. The Gibbs sampler is used to sample values
of the important random variables that are of concern in the inference model such as,
body weight and average egg weight. The sequential sampling deliver arandom walk
that converges to its posterior distribution which helps understanding of the model.
Fougere & Kamionka (2003) use Bayesian inference procedures for the continuous time
mover-stayer model. The Gibbs sampler algorithm is applied to estimate proportions of
stayers and functions of these parameters.

Chen, Ibrahim & Lipsitz (2002) propose Bayesian inference for missing data with a
novel class of semi parametric survival models. The study delivers an informative class
of joint prior distributions for the regression coefficients and the parameters arising

from the covariate distribution. 1t is useful in recovering information on the missing
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covariates. Chopin & Pelgrin (2004) use Bayesian inference on the switching regression
model based on the hidden Markov method. The study delivers a joint estimation of the
parameter and the number of regimes. Corander & Villani (2004) consider Bayesian
inference for the dimensionality in the multivariate reduced rank regression framework.
The inference deliver a closed form approximation to the posterior distribution of the
dimensionality proven.

Dunson & Herring (2003) propose Bayesian inference for testing the predictor in a Cox
model. The inference is use to test null hypothesis that present no difference between an
ordered category predictor with an order restricted. The null hypothesis is versus
alternative hypothesis that present a monotone increase across level of the predictor. On
the other hand in biomedical studies, usually interest in assessing the association
between one or more ordered categorical predictor and outcome variable. Duson &
Neelon (2003) propose a general Bayesian approach for inference on order-constrained
parameters in generalized linear models. The output from the Gibbs sampler is used for

assessing ordered trends.

Geweke, Gowrisankaran, & Town (2003) develop the new economic method based on
Bayesian inference to infer hospital quality in a model. A dependent variable in the
model is mortality rates and an independent variable is hospital admission. The study
finds the smallest and largest hospitals to be of the highest quality.

Huelsenbeck, Ronguist, Nielsen, & Bollback (2001) propose Bayesian inference for a
phylogeny model. The study finds a new perspective to a number of outstanding issues
in evolutionary biology, including the analysis of large phylogenetic trees and complex
evolutionary models and the detection of the footprint of natural selection in DNA

sequences.

Kleibergen (2004) proposes Bayesian inference to explain a nested regression model.
The study obtained the prior and posterior probability that can be used to represent the
nested model. Odejar & McNulty (2001) develop Bayesian methods to estimate the
parameter of a stochastic switching regression model. Markov Chain Monte Carlo
methods, data augmentation, and Gibbs sampling are used to facilitate estimation of the
posterior means. Paige & Butler (2001) develope and approximate marginal Bayesian

inference for neural network models. The study describes the method in the context of
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two nonlinear datasets that involve univariate and multivariate nonlinear regression

models.

Lazar (2003) compares empirical likelihood tests and Bayesian inference. The study
shows that empirical likelihood tests have many of the same asymptotic properties as
those derived from parametric likelihoods. This leads naturally to the possibility of
using empirical likelihood asthe basis for Bayesian inference. Nair, Tang & Xu,(2001)
propose Bayesian inference for three important mixture problems in quality and
reliability instead of the traditional, maximum likelihood approach in situations where
the large-sample normal approximation is not adequate.

Liu & Lawrence (1999) propose full Bayesian inference to infer the parameter in the
bioinformatics method. Bayesian inference is use to assign probabilities for al possible
values of all unknown variables in a problem in the form of a posterior distribution. The
study show that information from the posterior distribution can be achieved for most
bioinformatics method that use dynamic programming.

Martin (2003) present an integrated set of Bayesian tools for heterogeneous event
counts model, and compares the method with the traditional approach.

Rovers et al.(2005) focuses on the debate concerning Bayesian inference approach. The
issue of the debate involves comparison the posterior distribution that is calculated from
Bayes' theorem with the posterior distribution from empirically measure. Their trial was
undertaken based on prior and posterior belief anong surgeons. The results showed
that the trial had a little or no impact on the beliefs of the surgeons, that is, the mean the
posterior belief did not adjust to the extent that was expected according to Bayes
theorem.

Oh, Choi & Kim (2003) apply Bayesian inference to the latent class model. The study
consists of parameter estimation and selection of an appropriate number of classes. The
Gibbs sampler is used to generate the random variable from a posterior distribution of
unknown parameters. Output from the Gibbs sampler is used to estimate the parameter
and select an appropriate number of classes.

Pasquale, Barone, Sebstiani & Stander (2004) develop Bayesian inference, by means of
Markov chain Monte Carlo agorithms, for dynamic magnetic resonance images of the
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breast. The results show the potential of the methodology to extract useful information
from acquired dynamic magnetic resonance imaging data about tumour morphology and

internal pathophysiological features.

Blackwell (2001) proposes Bayesian inference for an inhomogeneous Poisson point
process. The Markov chain Monte Carlo approach is applied in the point of observation
process. The results of the study can be applied to modeling the territories of clans of
badgers. Roberts, Papaspiliopoulos, & Dellaportas (2004) develop Markov chain Monte
Carlo methodology for Bayesian inference for non-Gaussian Ornstein-Uhlenbeck
stochastic volatility processes. The Metropolis-Hastings algorithms is used to generate

the point process and model parameter.

Piles, Gianola, Varona & Blasco (2003) present Bayesian implementation via Markov
chain Monte Carlo method for a cross-sectional trait model. The study contains a
hierarchical model and a cross-sectional assessment. The hierarchical model is used to
infer the parameters of joint distribution fucntion that provides distribution of a
longitudinal trait. Basu, Banerjee, & Sen (2000) apply Markov chain Monte Carlo
method in Bayesian inference to infer Cohen's kappa coefficient, awidely popular

measure for chance-corrected nominal scale agreement between two rates.

Carey, Baker, & Platt (2001) use the Gibbs sampler for Bayesian inference to infer the
minimum protective antibody concentration, a quantity of great interest in the study of
immune responses to infectious pathogens. Wang, He & Sun (2005) presents
capture-recapture methods using Bayesian inference. The method is used to estimate the
total number of people with a certain disease in a certain research area. Several lists
with information about patients are used as input and the results are useful in
epidemiology. Wagner & Gill (2005) point out that the classical statistical inference
approach in public administration is defective and should be replaced. They support
Bayesian inference as better suited for structuring scientific research into administrative
guestions due to overt assumptions, flexible parametric forms, systematic inclusion of

prior knowledge, and rigorous sensitivity analysis.

Carlin & Louis (1996) date that inferential statistics used with Bayesian approach on
the basis of targeted population parameters estimation can be applicable to the observed
datawhichis y =(y,,y,,K,y, ). This application can be done by taking the likelihood
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function of y when specifying the vector of unknown parameter q = (q,,K,q, ). Such
likelihood function is actually represented by f (y|q ) For Bayesian approach q refers

to arandom vector with the prior distribution function as p (q h ) when h is a vector of

hyperparameters(the parameter of g ). This allows the application of distribution
function of g to be more appropriate expressed as

plv.ah) _ elv.ap) _ flvap@h)
plvh) ~ oplv.ahlda ~ f (vial ah kg

The integral in the denominator is sometimes written as m (y|h ) , the marginal

palyh) =

distribution of the data y given value of the hyperparameter h . The reformed

p function is taken as a posterior distribution function which is used to estimate q .
Because of h isconstant, it is not repeated in the condition of posterior distribution
function. It is therefore represented in asimpler form p (q| y) . The posterior mean of
random variable g in posterior distribution function is aweighted average of prior
mean and observed data with inversely proportional weightsto the corresponding
variances. Also, the posterior variance is smaller than that of prior variance and variance
of random variable of the likelihood function. As seen, inferential statistics Bayesian

depending on the posterior distribution function is a more accurate means in parameter
estimation q .

Given asample of n independent observations, the likelihood function
Y
f (y|q) isO f(yi |q) One can proceed with the posterior distribution, p (q|y,h).
i=1
Evaluating this expression may be simpler if we can find a statistic S (y) whichis
sufficient for q , that is, for which f (y|q) =h (y) g (S (y)|q). Let S (y) = s then

f(ya)p @)
Of (Yo (@)dq

h(y)g(S(y)a)p @)
ch(y)g(S(y)la)p (@)dg

a(sa)p @)
m(s)

plaly) =

= plls)
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By suppressing the dependence of the prior on the known valueof h, p (q| y) may be
expressed in the convenient shorthand
plaly)u f (va)p (@)
Bayes' theorem may also be used sequentially: suppose we have two independently
collected samples of data, y, and y,. Then
pllyy.) w f(vv.a)e @)
= 1,(ysfa) 1, (via) p @)
w f, (v.la) p(aly,)
That is, we can obtain the posterior for the full dataset (y,,y,) by first finding

p (q|y1) and then treating it as the prior for the second portion of the data v, .

In case the appropriate value of h is not known or uncertain Bayesian inference
approach will takeh as arandom variable with prior distribution function as h(h).
Pogterior distribution function calculation of g can therefore be done by also
marginalizing over h ,

p(y.d)
p(y

play) =
op(y.q,h)dh
@ P(y,a,h)dhdq

of (va) p(a,h)dh
@ f (ya)p(a,h)dhdq

oOf () @h)hh)dh
@ (vla)p @h)h(h)dndg

I mplementation of the Bayesian approach as indicated in the previous subsection

depends on awillingness to assign probability distributions not only to data variables
like Y , but also to parameter like q . Typically, these distributions are specified based

on information accumulated from past studies, or the opinions of subject-area experts.
In choosing a prior belonging to a specific distributional family p (q h ) some choices
may be more convenient computationally than others. In particular, it may be possible

to select amember of that family which is conjugate to the likelihood f (yig), thet is,
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one that leads to a posterior distribution p (q| y) belonging to the same distributional

family asthe prior. For example, let Y be a Poisson random variable with likelihood

function,

SN Y
fy) = e; L y=12K , q>0.

To apply a Bayesian analysis we require a prior distribution for g having support on

the positive real line. A reasonably flexible choice is provided by the Gamma
distribution,

-q

a-1.b

q

——— ,9g>0a>0b>0
G(@)b®

p@ =

Using Bayes Theorem to obtain the posterior density, we have

paly) u f(yp@)
h (%)@ e”)

1
'QU*E)

+a-1
yratle

= q
So the posterior p(q|y) is proportional to Gamma distribution with parameters

a’'and b’.Theparametersaredefinedby a’ =y+a and b’ :(1+%)'1.

2.3.2 Markov chain ssimulation

With a complicated posterior distribution model, it is difficult to directly sample from

the pogterior distribution. The Markov chain simulation method will be used for running

aMarkov chain of simulated values whose stationary distribution provides the target
posterior distribution, p(q|y) . The idea of Markov chain simulation isto simulate a
random walk in the space of q which convergesto a stationary distribution that is the
joint posterior distribution, p(q|y) . There are many clever methods that have been
devised for constructing and sampling from transitions for arbitrary posterior
distributions. The Metropolis-Hastings algorithm is a general term for afamily of
Markov chain simulation methods that are useful for drawing samples from Bayesian

posterior distributions. There are two commonly —used special cases, the Metropolis
algorithm and the Gibbs sampler.
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1) TheMetropolisalgorithm

Given atarget distribution p(q|y) that can be computed up to a normalizing
constant, the Metropolis algorithm creates a sequence of random points

(@*,9%,K)whose distributions converge to the target distribution. Each sequence can
be considered a random walk whose stationary distribution is p(g|y) . The algorithm

proceeds as follows.
1. Draw astarting point ¢ °, for which p(q°|y) >0, from a starting distribution

P.(@)-
2. Fort=1,2, ~

a) Sample acandidate point g from a jumping distribution at timet,
J.@[a""*). The jumping distribution must be symmetric; that is
3@,

b) Calculatethe ratio of density,

Op) = Jt(qb|qa) foral q,,q,,andt.

_ p@’ly)
p@"y)

. _1q with probability min(r.,1)
a =i ., .
1 g otherwise

Given the current value q*, the Markov chain transition distribution, T, (q‘|q Y, is
thus a mixture of the jumping distribution, J, (q‘|q “1),and apoint massat q' =q"*.

The Metropolis-Hastings algorithm generalizes the basic Metropolis algorithm
presented above in two ways. First, the jumping rules J, need no longer be symmetric;

that is, there is no requirement that J, (g,

d,) ° J,(0,d.) - Second, to correct for the

asymmetry in the jumping rule, the ratio r is replace by aratio of importance ratios:

o p@’|y)/Jd.@"™)
p@"|y)/3.@"a")

p@’|V) <,@""a")
y)xJ,@fa")

p@"*
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2) TheGibbssampler

Casella & George (1992) illustrate the Gibbs sampler as a method that effectively
generatesasample X,,K, X, ~ f(x) without requiring f(x). By simulating alarge
enough sample, the mean, variance, or any other characteristic of f (x) can be
calculated to the desired degree of accuracy. To understand the working of the Gibbs
sampler, consider the two-variable case. Starting with a pair of random variables
(X,Y), the Gibbs sampler generates a sample from f(x) by sampling instead from the
conditional distributions f(x|y) and f(y|x) . Thisisdone by generating a“Gibbs
sequence” of random variables.

Yo, XY XY X KLY X
Theinitial value Y, =y, is specified, and the rest of the sequence is obtained
iteratively by alternately generating values from

Xj = f({Y/ =y))

Y/~ F(YX] = X))
The distribution of X converges to the true marginal distribution of X ask ® ¥ .
Thus, for k large enough, the final observation, namely X, = x/ , is effectively a sample
point from f(x). The convergence in the distribution of the Gibbs sequence can be
exploited in a variety of ways to obtain an approximate sample from f(x). For
example, Gelfand and Smith (1990) suggest generating m independent Gibbs sequences
of length k, and then using the final value of X from each sequence, if k is chosen
large enough, this yields an approximate iid sample (X,,K, X, ) from f(x).

Gibbs sampling can be used to estimate the density itself by averaging the final
conditional densities from each Gibb sequence. From the Gibbs sequence, just asthe

values X, = x| yield arealizationof X,,K,X_~ f(x),thevalues Y/ =y, yielda
realization of Y,,K,Y_ ~ f(y). Moreover, the average of the conditional densities

f (XY, = yi) will be aclose approximationto f (x), and we can estimate f(x) with

Qos

& f(xy)

f(x):'T

Il
iy
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In the three variablescasewe would like to calculate the marginal distribution f(x) in the
problem with random variables X,Y and Z . The Gibbs sampler would sample
iteratively from

X|~t(Y/ =y}.Z] =2))

Y.~ f(YX] =x,2Z] =2))

Zj ~ FE@X] = XY =y
The iteration scheme as above produces a Gibbs sequence

Y,z XYzl XYz KLYz X

with the property that, for large k, X| = x| iseffectively a sample point from f(x).
In fact, a defining characteristic of the Gibbs sampler isthat it aways uses the full set of

univariate conditionals to define the iterative.

On the other hand Carlin & Louis (1996) briefly present, a particular Markov chain
algorithm that has been found useful in many multidimensional problems. Thisis
alternating conditional sampling, also called the Gibbs sampler, which is defined in
terms of sub-vectorsof q . Suppose the parameter vector g has been divided into d

components or sub-vectors, q = (q,,K,q,) . Each iteration of the Gibbs sampler cycles

through the sub-vectors of q , drawing each subset conditional on the value of all the

others. There arethus d stepsin iteration t. At each iteration t, an ordering of the d sub-

vectorsof q ischosenand, inturn, each q; is sampled from the conditional distribution
given all the other components of q :
p@;| a7y
where q_"j1 represents all the components of ¢, except for g;, a their current values:
9 =(.K.aj..050.Kag)
Thus, each sub-vector q; is updated conditional on the latest value of g for the other

components, which are the iterated t values for components already updated and the
iterated t-1 values for the others.

There s, of course, no fully satisfactory method for drawing simulations in general, but

the following approach is often successful for simulating from posterior distributionsin
the hierarchical models that arise in Bayesian statistics.
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Step 1. Creste an approximate posterior density based on the joint or marginal modes.
Draw a sample from the approximate distribution and use iterative sampling to sample
about 10 draws of the parameter vector. If approximate distributions are multimodal,
several draws are generally needed in the region of each mode that has nontrivial mass.
Step 2. Using these as starting points, run independent parallel sequences of an
iterative simulation such as the Gibbs sampler or Metropolis algorithm.

Step 3. Run the iterative simulation until approximate convergence appears to have
been reached, in the sense that the statistic \/E isnear 1 for each scalar estimand of

interest. Thiswill take hundreds of iterations, at least. Here \/E is defined below
For each scalar estimand | , we label the draws from J parallel sequences of length n

asj; (i=1,2,..,n;j=1,2,...,]) and we compute B and W, the between and

within-sequence variances :

n d . 14, . 1d _
B= —a(,-i) where [, ==Qi, .i_=-ai,
-1 niz J i=1
14 2 1 & . o\
W= =-gs° , where s°"=— .
Jja:.lj J n'].,a:;_(lj JJ)

We can estimate var(j |y) , the marginal posterior variance of estimand, by aweighted

average of W and B , namely

PRI W P S U= )

Step 4. If \/E is near 1 for all scalar estimands of interest, summarize inference about
the posterior distribution by treating the set of all iterates from the second half of the
simulated sequences as an identically distributed sample from the target distribution.
Step 5. Compare the posterior inferences from the Markov chain simulation to the
approximate distribution used to start the simulation. If they are not close with respect
to locations and approximate distribution shape, check for error before believing that the
Markov chain simulation has produced a better answer.

2.3.3 Applied Bayesian approach to infer traffic count on network traffic

Tebaldi & West (1998) sudy Bayesian inference on network traffic using link count
data. The purpose of their study similar to Vardi’s (1996) work, was to estimate traffic

intensity from source to destination in a network system. The starting point of the study,
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and assumptions about symbol and network structures, arethe same as Vardi's method.
But traffic intensity estimation is different.

Consider afixed network of n nodes, arbitrarily labeled A, B, C,... .

Leta=(i,j) represent the direct route from originating node i to destination nodej. If
the direct route has no node between node i and node j , we call it adirect link. There
are ¢ =n(n-1) direct routes, and r direct links in the network. Let X, bethetraffic
count on the direct routea. Let s= (i, j) represent direct link from nodei to nodej ,
and Y, bethe traffic count on the direct link s.Then based on the observed traffic

countson direct link, Y = (Y,,Y,,K,Y.) ; weareinterested in inferring the traffic

count on direct route, X = (X,,X,,K,X_) . Notethat the number of direct linksr
istypically smaller than the number of direct routes c. Following Vardi (1996), Y and
X arerelated through the rxc routing matrix. A =[A,,] , where A, =1 if the direct
link ‘s’ belongs tothedirect route‘a through the net work , and
A, . =0 otherwise. We have the defining identity:

Y = AX (2.5)
Our godl istoinfer X whenweknow Y . To solve this problem we must compute
and summarize the pogerior distribution p (X|Y) for all route counts X given the
observed link count Y to be tied together with the deterministic expression (2.5) that
implies Y given X .Thisreguires amodel for the prior distribution, p (X)

X, ~ Poisson(l ,) independently over a.

Let the Poissonratebe L ={l,,K,I .} . The prior specification is completed by a
prior for L, the starting point for analysisis determining ajoint model:

p (X,L)= p{L)x1 2 expl- 1,)/ %, (26)

a=1
Given the prior (2.6), the observed link count Y isnow conditioned to deliver the
required posterior p (X L |Y) Naturally, posterior computations are analytically

difficult in any other than trivial and quite unrealistic networks, what is needed are
iterative MCMC (Markov Chain Monte Carlo) smulation methods. Consider in
particular Gibbs sampling, in which we iteratively resample from conditional posteriors
for elements of the X and L variables.



First, consider simulation of L . We note that
pLix¥)e pLx)=0 pl.x.)
a=1

The components consist of the form of the prior density  p(l ,) multiplied by the

gamma form arising in the Poisson-based likelihood function. Thus by employing
conditional X , we can easily simulate new L values as a set of independent draws

from the implied univariate posterior. If p(l ,) isgamma, or amixture of gammas,

then these draws are trivially made from the corresponding gamma or mixture gamma

posteriors.

Now wetry to smulate X based on the conditional posterior p (X|L ,Y) , viewing L

asfixed. Our data Y arein form of linear constraints, Y = AX on the route count
vector X , sothat conditioning must be performed directly, algebraically, rather than via
the usual application of Bayes' theorem. On the other hand we do not need to simulate
X, fori=1,2, ..., c,butonly smulate X; fori= r+l,r+2, ..., cviathe usual
application of Bayes' theorem then directly evaluate X, fori=1, 2, ..., r based on

algebra. The following result, which is simply an algebraic deduction from the network
structure and defined relation (2.5) among the traffic counts, is the key to ensuring
inferential development.

Tebaldi & West (1998) prove that, in the network model Y = AX , if A isof full rankr.
then we can reorder the columns of A so that the revised routing matrix has the form

A=[A,A,] 27)
where A isanonsingular rxr matrix. Also, smilarly reordering the elements of the X
vector and conformably partitioning as X' =[X/,X}] it follows that

X, =AY - AX,) (2.8)
From the result of the theorem, the posterior p (X|L ,Y) is concentrated in a subspace

of dimension c-r defined by the partition (2.7) of the routing matrix. Having reordered
the column of A to theform (2.7), this posterior has the form

p(X|L,Y) = p (X X,.L,Y) p (X,[L,Y)
where p (X,X,,L,Y) isdegenerateat X, = A;*(Y - A,X,) and with

X, = (X,.,,K X))

r+l?
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X, = (X,,K,X,)" aredefined as earlier

<
and p(X,JL.Y)u O

(2.9)

which is over the support defined by X, 3 0 for a=1, 2, K,c. Thisissimply the
expression of product of independent Poisson priors for the X. constrained by the
identity (2.5) rewritten in the form (2.8). The utility of this expression isin delivering
the set of complete conditional posteriors for elements of the X, vector to form part of

the iterative simulation approach to posterior analysis. Consider each elements X; of

X, (i=r+l,...,c)andwrite X, ; for the remaining elements. Then, simply by

inspection of (9) we see that the conditional distribution p (X;| X,_;,L,Y) is

|

P9
X | X,..,LY —
p( || 2,-1 ) u XIS:)lxal

X
[ e

(2.10)

That is over the support defined by X, 3 0 and X, 3 0 foreach a = r+1, ..., c; this
holds for eachi = r+1,K,c.

| dentifying the support of (2.10) requires the study of the linear constraints on X;
defined by X, 3 O for al elementsX, of X, = A’*(Y - A,X,). Giveniin

r+1,...,c, thisimplies a set of linear constraints as functions of the conditioning values
of X, ; and Y . Theresulting constraints arethe formof X, 3 d; or X, £e ,where

thevalues d; and e arefunctions of the conditioning valueof X, , and Y . Hence,

together with X, 3 0, weobtain aset of at most r+1 constraintson X. . By directly

evaluating these constraints and identifying their intersection, we may deduce the range

of X. over which (2.10) is nonzero, and hence we identify the unnormalized
conditional posterior distribution.
Iterative simulation of full posterior p (X L |Y) is now enabled as follow:

Step 1. Fix starting values of the route counts X
Step 2. Draw sample value of therate L = {I ,,K,I .} from c conditionally

independent posterior distributions
pLxY)e pLx)=0 pl.x.)
a=l

where p (I a|Xa) is gamma distributions that for | ,having shape parameter X, +1 and

scale parameter 1
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Step 3. Condition these values of L , smulate anew X vector by sequencing through
i=r+l,r+2, ..., c., and a each step sampleanew X; from

(X, X,.0L.Y) TEL
p (X Sk, H ——032
2 X! X,

with conditioning elements X, ; set at their most recent sampled values.
Step 4. Reevaluate each step X, based upon step 3 asfollow:

X, =AY - A,X,) asafunction of most recently sampled elements of X,

Step 5. Returnto step 2 and iterate.

The sampling step in step 3 appearsto require evaluation of the support (10). Sampling
may be performed directly, treating (10) as a simple multinomial distribution on this
relevant range. Indirect but very much more efficient simulation methods are based on
embedding Metropolis-Hastings steps within the Gibbs sampling framework. Here the
candidate value of the X. is generated at each stage from suitable proposed
distributions such the uniform distribution, and accepted or rejected according to the
usual Metropolis-Hastings acceptance probabilities. Specifically, we assume a specified
and fixed proposal distribution with probability mass function g, (X, ) for each element

Xi instep 3. A candidate value X isdrawn from g, (3 and accepted with probability

€ p(X))g (X;)u
i (X )a, (X 4

where X. isthe current, most recently sampled value and p. (3 is the unnormalized

conditional posterior in equation (2.10). From the structure of network equationsin

(2.5), it is possible to identify bounds on each X. so that a suitable range for the

proposal distribution can be computed. For element X, given X X, of X, ,

2,-a?

X, =0isagross lower bound whatever the values in X, _.a . For an upper bound,

i U

X, Emin (Y, - a A ng, where the index i run over the set of links whose counts
) jra

include X ; that is, thoselinksi for A, =1. Then, based on the specified bounds, the

implied vector X, isrecomputed and checked for feasibility; that is, nonnegative value.
If any element of X, isnegétive, thetrial value of X, iseither incremented, in

searching for the lower bound on its range, or decremented, in searching for the upper
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bound. This process terminates and delivers the resulting bounds once the X, vector

has r nonnegative entries.

2.4 The traffic intensities estimation based on a mixtur e of

maximum likelihood and Bayesian inference

This section proposes a new method to estimate traffic intensities. The method uses
maximum likelihood estimation to estimate the parameters, the mean population of
traffic intensity on direct routes. Then let the estimators and the observed count on

direct links to infer the unobserved traffic count on direct routes bases on Bayesian

inference.

Let traffic count notation following Vardi (1997), be as follows:
| : mean population vector on direct route.
=110, ]

X : Traffic intensities vector on direct route.
X = (X, X,,K,X,.) , X, ~ Poisson(l ;)

Y : Traffic intensities vector on direct link.
Y =(V.Y, KY,)

A : Routing matrix.

Y &) Traffic intensities vector on direct link at measurement period K.

K
é v
? — k=1
' K
The equation that presentsthe relation between X and Y is:

Y = AX
Expected value of the equationis Y = Al
The canonical form of the EM iteration for solving the equation is

| rooay,
i 9 j i
Ij—. a—
a 7 3a,l
ij a il
k=1

1=12K,c

Qo-

.u‘
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Our godl istoinfer X given | and Y based on the pogterior distribution of X given
| andY , p (x|| ,y) . Here p isthe prior distribution function of X .

Consider; p(x,y) w f(.yx)p (x)
= ) 1 (e W
& 100 p (K1)
where f, (yx) isdegenerateat Y = AX  and

p(x)) a é?%

In conclusion, the mixed method to infer X given Y and | isfirstly to estimate |
based on EM iteration. Then use Marcov Chain simulation and the Gibb sampling
algorithmto obtain X from p (x|| ) . Finally evaluate Y by the equation
Y = AX
Iterative simulation of full posterior p (x|| ,y) adapted from Vardi (1996) and
Tebaldi& West (1998) is now possible as follow:
Stepl Let | =[I,l,,..,l.] bethedaily transmission rate
Step 2 Generate daily data on direct links for day K
v = (v v K, Y®)
v = (v v K v@)
YO = (0 v8 K v)

Calculate Y =K

Step 3 Estimate | =(I,,1,,...,|".) based on applied algorithm

I Y,

I - . i=12Kc
o] i-1 8
a aij a aikl k
i=1 k=1

Step 4 Go to step 2 to estimate " m times so we derive

ROERE) “(m)
(IR I
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g | G0
Step 5 Calculate meanvector | =

Step 6 Draw garting values of the route counts X from the Poisson distribution
with the parameter from step 5

Step 7 Draw sample value of rate | =(I ,,1 ,,...,I ) from c conditionally

independent posterior distribution
S
p(x) =)
i=1

where p(l ;|x) is gamma distribution with shape parameter x, +1 and scale parameter 1

Step 8 Conditioning on these value of | simulate new X vector by sequencing

throughi=1,2,...,c. and at each step sampling new X, from

[
x|l — 2
p(,| Ju xi!S:)1 X!
Step 9 Baseon step 8 at each step Y is evaluated via
Y = AX
Step 10 Returnto step 7 and iterate.

2.5 Queuing system theory

Gorney (1979) is a useful source for queuing for giving theory terminology. There are
four general types of queue: single facility single queue systems, single queue multi
facility systems, multi queue single facility systems and multi queue multi facility
systems. Ament (1980) applies queuing theory to bank service to the benefits of both
bank customersand personnel. The benefits consist of decreased customer throughput
time, better use of all existing equipment, improved customer relations, and reduction
of teller numbers. Ross & Shanthikumar (2005) study a modem bank with two streams
of arriving customers. Drekic & Woolford (2005) analyze a singer-server preemptive
priority queuing model with low priority balking customers. Fakinos (1982) provides
the limiting probability distribution for the number of customers waiting in single server
gueue and for customers arrival.

Zhu & Zhang (2004) consider a queue model with two types of customers that consist
of positive and negative customers. The management of supply chains and
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manufacturing systems is an important issue. Liu, Liu, & Yao ( 2004) look at of the
inventory cost. Queuing theory is used to develop an efficient procedure to minimize
the overall inventory. Kerbache & Smith (2004) develop a queuing system for the
supply chain in manufacturing firms. The study shows that the approach is a very useful
tool to analyze congestion problems and to evaluate the performance of the network.
Yang, Lee, Chen & Chen (2005) propose a queuing network model for machine time
interference. Sarkar & Zangwill (1992) study a cyclic queue system that has one server
and n nodes, where each node has its own distinct type of customers that arrive from the
outside. The study extends to permit special nodes.

Aquilar-lgartua, Postiqo-Boix, & Garcia-Haro (2002) apply queuing theory to a high
speed network. Brown, Gans, Mandelbaum & Sakov (2005) develop queuing for a call
center in which agents provide telephone-based services, to decease delay in telephone

queues.

Cruz, MacGregor & Queiroz (2005) analyze queuing and develop algorithms to
compute the optimal capacity allocation in a service system. Halachmi (1978) utilizes
the technique of embedded Markov chains for queuing systems.

Chen (2004) develops performance measures in finite capacity queuing by using fuzzy
logic that iswidely used in finite capacity queuing models. Maglaras & Mieghem
(2005) present an approach based on a fluid-model to control a multi product queuing
system. The benefit of the approach is construction of scheduling and multi-product
admission policies for lead time control. Takine (2005) applies a continuous-time
Markov chain for single server queues with several customer classes.

Das & Levinson (2004) use queuing analysis to tresat traffic flow parameters such as
flow, density and speed. Their study areais on Interstate 94 in the Minneapolis St. Paul
metro. In addition Omari, Masaeid & Shawabkah (2004)

develop a delay model based on data selection that comes from different citiesin
Jordan. The study show that the random arrivals, random services, and a single service
channel queuing delay model (M/M/1) is also validated using the field delay data, and it
was found that it estimates delay with high variability, especially for high delay ranges.
Fu, Hu, & Nagi (1995) apply two techniques, perturbation analysisand the likelihood
ratio method, to a single queue system with non identical multiple serversin atraffic

system. Rolls, Michailidis, & Hernandez-Campos (2005) apply several queuing metrics
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to provide a network traffic trace through trace-driven queuing. Cheng & Allam (1992)
present knowledge of the delay and queuing processes of vehicles that pass along minor
road to deliver timing that is suitable for traffic flow for traffic controlled
intersections. Cruz, Smith & Medeiros (2005) develops a discrete-event digital
simulation model to study performance of queuing in traffic flow. The study shows that
the simulation model is an effective and insightful tool. Mahmoud & Araby (1999)
develop a dynamic macroscopic traffic simulation model to respond to high-density and
low-density traffic flows. Dewees (1979) develop atraffic simulation model to produce
new estimates of congestion costs on specific streets during the morning rush hour. Ellis
& Durgee (1982) present an engineering approach for Voice network designers to
decide whether queuing or route-advance or forcing user retrials are appropriate
selections for a particular network. Nam & Drew (1998) use the principle of traffic
dynamic analyze freeway traffic flows. They use the fundamental concept of

conservation to analysis queuing and discharging mechanisms.

Kleinrock (1976) presents the essence of queuing theory as of the characterization of the
arrival time, the service time and the evaluation of their effect on queuing phenomena .
Additionally, Vivanichkool (1995) extends the knowledge of queuing using a queuing
system consisting of: customers who are waiting in queue and customers who are
receiving service. The number of elements at any time in the system are the number of
customers in the queue plus the number of customers being serviced. The characteristics
of queue models are : interarrival time distribution, service time distribution, number of

servers, service regulation and maximum elements that the system permits.

2.5.1 Notation in queuing

The important notation used in the queuing system are as follows:
n : thenumber of elementsin the system,
p,(t) : probability that the transient system has n elements at timet based
on the assumption that the system startsat t =0,
p, : probability that the steady system has n elements,

I . rateof arrival, number of elementsthat arrive at the system per

unit of time,
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nm: rateof departure, number of elements that depart the system per a

unit of time,
C © number of servers,
r : utilizationfactor,r:I— , 0Er <1
m

utility factor of C servers,

W(t) :  probability density distribution function (pdf) for wait time,
W, : wait time for an element in the system,

W, : wait time for an element in the queue,

L, : expected number of elementsin the system, and

L, : expected number of element in the queue.

The relation between W,,W,, L, and L, can be shown by equations as:

L, = IW;,
L, = IWq,
W, = Ws-i,
m
IWq = IWS-I—,
m
L = L.-r

2.5.2 Arrival distribution

Based on the assumption that the arrival rateis |  per aunit of time and that there are
no elements in the system at time t = 0, the probabilities p, (t) and p,(t+h), the
probable change of the system between timet and t+h fallsin to two cases as follows:
Casel. For n>0 ,therearenelementsinthesystemat t+h if,
a) there are n elements at time t and no element arrives in length
h or,
b) thereare n- 1 elementsat time t and there is one element arriving
in length h.

Case 2. For n=0 , there are no dements at time t and time t+h and there are
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no elementsin length h.
Based on the two cases equations are derived as follows:

p.(t+h) @p,(t)@- I h)+p I h for n>0
P, (t +h) @p, (t)(L- | h)

P, (t+h)- p, ()
h

Po (t + h) - Po (t)
h

Let limit htrendto O
i Pt 1) - PV

So

@ 1p,(t) +1 p,.,(t)

and

@ 1p, (1)

=- I pn (t) +I pn-l(t)

h® 0 h
; po(t+h)' po(t)__
lim ™ =-1py(t)

thetis < p,(=-1p,0)+1 Py,

d
and E Po (t) =-1py(t)
nA-lt
\ p.(t) =% n=012,K

The proof above illustrates that the arrival distribution is the Poisson distribution with

mean | t and variance | t.
2.5.3 Interarrival timedistribution

Interarrival time is the interval time between two sequent arrivals. Let the arrival
distribution be a Poisson distribution. Interarrival time distribution will be considered as
follows:

Let f(t),t>0 beinter-arrival time distribution function, and

F(t) becumulative distribution functionof f(t), so
F(t)=¢ f (m)dm

No element arrives in interval (0,t); this means that the inter-arrival time is longer thanft,
that is

Po (1) = Of (U)du
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t
=1- Of (mdm
0
=1-F(t)
Q p(t)= et
\ e't=1- F(t)
Differentiating F(t) by t, derive f(t) asfollows:

N -t
f(X) _ %le t>0

i 0 t£0

The proof above illustrates that the interarrival time distribution is exponential with

1 . 1
mean — and variance Tz

2.5.4 Departuredistribution

Based on the assumption that: there are N element in the system at time t =0 and

there are no element arrival at the system, rate of departure is m per a unit of time.

Probability of no element departing the systemisequal to 1- nmh, 0

p,(t+h) @p,(t)L- nh) : n=N
p,(d+h) @p,(t)A- M) +p,(t)mh  ; 0<n<N
Po(1+h) @p, (t) X+ p,(t)rh © n=0

lim =-np,(t) , n=N

P, (t+h) - p, ()
h

Ihl@r)T(]) - npn(t) + npn+1(t) ! 0< n< N

lim po(t+h)' po(t) -

pa(t+h)- p,(t) _
h

h® 0 h P, (1) » n=0
o Lp.®=-mp,@) n=N
dt n n ]
d — .
E pn(t) - npn(t)+rrpn+1(t) ' 0<n<N
9 oty =-mp, ) . n=0
dt 0 rrpl ’

The result from the equations above are as follows:
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_(m)™ e N
pn(t)—w 'n=12,K,N

Po(t) =1- & P, ()

n=1

Thisillustrates that the departure distribution is a truncated Poisson distribution.

2.5.5 Servicetimedistribution

Let g(t) be the probability distribution function of service time, notice that probability

of no service in interval time, (O,T) will equal the probability of no element departing

the system at the same time, so

P (servicetimet>T ) =P(no element depart system between T)

T

or 1- Cp(t)dt =P (T) =™
0
.

Therefore pt)dt =1- ™
0

Differentiation of both two sides of equation gives:

(t)_Ine'“‘ t>0
=i
J i 0 t£0
Thisillustrates that the service time distribution is exponential with mean — and
m
variancei
7

2.5.6 Queuing model

Let A/B/S denote the queuing model that consists of S servers, interarrival time
distribution A and service time distribution B. Particular choices of A and B are as
follows:

M : Exponential distribution,

E; : r-stage Erlangian distribution,

Hr : R-stage Hyperexponential distribution,

D : Deterministic distribution, and

G: General



An important queuing model is described in the next section.
1) The M/M/1 Queue

The characteristic of this model are:
1) Interarrival time distribution is exponential ;
2) Service time distribution is exponential ;
3) Thereisonly one server;
4) Service regulation is first come, first served; and
5) Indefinite number of elements.
Probability of n>0 in the system at time t+h is approximated by the summation of
probabilities as follows:
1) The probability of n elements in the system at time t, and no element arrival,
and no element departing in length h, is approximated by
P, (t{(- 1 M@~ mh)}
2) The probability of n elementsin the system at time t, and no element arrival,
and one element departing in length h, is approximated by

p. (0{( h(nh)}

3) The probability of n-1 elementsin the system at time t, and one element
arrival, and no element departing in length h, is approximated by,

Py, ({1 WL i}
4) The probability of n+1 elements in the system at time t, and no element arrival,
and one element departing in length h, is approximated by,

Do (- | N)(h)
So p, (t+h) @p, (O{@- I - m)}+ p, @0 ()} + p, ({1 h(h)}+
P, ®{( D)@~ mh)}

Since h? converges to zero,

p.(t+h) @p,({L- I h- mh}+p_ ()1 h) + p,., (O)(h)
In the same way whenn =20

Po(t +h) @p, (D{(L- | h)>a}+ p, (t)(mh)(L- | h) = p, (t)(L- | h) + p, (t)(rrh)

i Pa(t+h) - P (1)

h® 0 h

=1p, O +m,,®- (1 +mp,(t) ; n>0

lim
h® 0

po(t+h:]- Po (1) = -1 py(t) +mp,(t) ; n=0

77



d
P ) =Ip,.,@®+m,,(t)- (I +mp, ()
d _
E po(t) =-1 po(t) + npl(t)
For steady system, t ® ¥ when | <, that is

r :|—<1

m
When t ® ¥, %pn(t)®0 and p,(t)® p, ,n=012K
-1 pp+p, =0 , n=0
Ipn-1+npn+1_(| +m)pn:0 , n>0

The difference egquation results in the target distribution as follows:
p,=@-r)" ; n=012,K
The distribution is a geometric distribution with mean and variance as follows:

r

E(n) = s

o
T (@-r)?

The geometric mean illustrates the important characteristic of queuing system as

Var (n)

follows:
L.=E(n)=——
S 1-r
I r?
L =L.- —=
TS M 1-r
L
WS:_S: 1
| ml- r)
L
Wq:_q: r
| ml- r)
|
P0:]_-_
p=p&?
Mg
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2) TheM/G/1Queue

The characteristic of this model is composed of :
1) Interarrival time distribution which is Exponential distribution;
2) Servicetime distribution that is general distribution;
3) Only one capacity;
4) Serviceregulation whichisfirst come, first served; and
5) Indefinite number of element.
In this case we need to know mean and variance of departing distribution, assume that

. . . . 1
the meanisequal i , the varianceisequal s . Mean of servicetime is equal p and

variance of servicetime isequal s 2. The important characteristic of queue systemis as

follows:

3) The M/M/S Queue

The characteristic of this model is composed of :
1) Interarrival distribution which is Exponential distribution;
2) Servicetime distribution which is Exponential distribution with mean
1

m

3) mservers;
4) Serviceregulation which isfirst come, first served; and

5) Indefinite number of element.
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Assume that there are S service capacities, and each capacity has one server. Service

rate of each capacity is equal I, so the mean of all capacities is equal m, = nm when

nE£S, if n3 S and all capacities are maximum service, m, =Smand | | =1

_inm O0£n£S
™M= gn nss
n=012,K

Since | > 91, 0 means of arrival rate is less than the maximum of service rate.

=
11
=
+
3k

ml_
I
=
+
=l
3|~

4) G/G/1 for The heavy —traffic approximation

Kleinrock (1976) applied the G/G/1 queue for the heavy-traffic approximation when
r €1. Thewait time distribution is an approximation exponential distribution with the

mean given as follows:
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® 2t(l-r)_ 0
€ szesz U

2 2

a+sb

waS: )

W(y) @l- exp

I -1
where 1 =—; t=—,
m I
s 2 : variance of interarrival time; and
s? : variance of servicetime

2.6 Queuing gener ation

Consider a queuing system ( Banks, Carson, Nelsun, &Nicol ,2001) over a period of
time T , and L(t) denote the number of customersin the system at time t.
Let T, denotethetotal time during [0, T] in which the system contained

exactly i customers.

We can estimate the number of customers in the system over aperiod of time T a any

timet by L, the time-weighted-average number.

iT,

- Qox

1

T

Since the total area under the function L(t) can be decomposed into rectangles of height

i andlength T

[
|

%g‘j_(t)dt

® L as T® ¥

Here L isthelong-runtime-average number in the system.
L, (t) denotesthe number of customers waiting in line(queue)
T° denotesthe total time during [0,T] inwhich exactly i customersare
waiting in the queue.
We can estimate the number of customers waiting in the queue fromtime 0 totime T
by I:Q , the observed time-average number of customers waiting in the queue as

follows:
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~ 3.
L= aiT?®

i=0
17
= 7 gj_Q (t)dt
® L, as T® ¥
Here L, isthelong-runtime-average number of customers waiting in the queue.
In queuing simulation over a period of time T, we can record W. , the wait time that
customer i spends in the system during [0,T], for i =1,2,K, N . The average time spent

in the system per customer is called the average system time. The formulato compute

average systemtimeisgiven by :

W,

Qo=

A

W o= A

1

N

For agablesystem,as N ® ¥
W® W
Here W is called the long-run average system time.
In addition, we specially consider the time that customer i spends in the queue. Let W

denote the total time that customer i spends waiting in the queue. We can compute the

observed average time is spent in the queue (called delay) by the formula:
4w
W — =l
N N
®W, , aa N® ¥

Here W, isthelong-run average per customer.

2.7 The evaluation function

The evaluation of the effectiveness of the traffic control at the intersection is generally
based on the delay or wait time which is known as the ‘wait mean’. It is obtained by the
calculation of the combined time of each car spent on its wait time at the red light
divided by the total number waiting cars. As a consequence, the longer the wait mean
the less effective is the traffic control. However, wait mean should not be the only
indicator to judge the effectiveness of the traffic control; the number of cars moving in
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and out of the intersection including drive mean should also be taken into account to
evaluate the effectiveness. Thisis supported by the model of Kelsey & Bisset ( 1993)
presenting a cost function that consist of such factorsto evaluate traffic flow
performance. The value of the function will be used to evaluate the performance of
traffic flow under fuzzy controller against the conventional controller. The lower the
cost function the better the performance.

Wait
Cogt = e

&ar 0 .
——3Drive, .,
C:a'rin /]

100 >‘g

Waitnean : The average waiting time in seconds that all cars spend behind the
red light.

Drivenen : The average time in seconds that all cars spend behind the green light.

Caroe  : Thenumber of carsthat are exiting the intersection.
Carin : The number of carsthat are entering the intersection.
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Chapter 3
Resear ch M ethodology

3.1 The conceptual research

To calculate the optimal length of the traffic signal on each phase of the cycle, firstly we
need to estimate traffic intensity that arrives and departs at the intersections and the
length of the current cycle time based on statistical methods. These estimators are crisp
inputs for fuzzy logic control. Then crisp outputs are produced by using the process of
fuzzy logic control. The crisp output isthe degree of traffic signal change for each
phase. Finally the optimal length of traffic signal is the period of time between the

connective change points. This concept can be conceptualized as shown below:

Traffic estimator
- arrival of cars
- departureof cars

- current time
X in U
Fuzzy setsin U M
Fuzzifier 4
N
<
A\ 4 \Q
Fuzzy Fuzzy Rule =
Inference < Base 3
Engine
Defuzzifier
Fuzzy setsinV
y in Vv

Degree of change
on each phase

Figure 3.1 Conceptual map( Adapted from Wang, 1994, p. 6)



3.2 Theinput process methodol ogy

There are three important inputs consisting of: the number of cars passing the green
light, the number of cars stopping behind the red light and length of the current cycle
time. To estimate the value of these inputs, we need to sudy traffic at the actual
intersections, and use statistical methods to estimate the number of cars and the length

of current cycle time.

3.2.1 Traffic control at actual intersections studied

1) Traffic network studied

The optimal traffic signal light time was studied at four important intersections in the
inner city of Ubon Rachathani Province consisting of : Uboncharearnsri , Clock Hall,

Chonlaprathan , and Airport intersections. The network diagram representing the four
intersections is shown as Figure 3.2
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A A
H I
v v
e >
G B C
«—— «
A A
v v
A D
A
E
v
F

Figure 3.2 Diagram of traffic network consisting of the four intersections A, B, C
and D with car flow fromE, F,G, H and |
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According to Vardi’ s notation (1996), there are 72 source-destination pairs (SD), made

up of 54 direct routes and 18 direct links.

AC©
AHP
EAO
IA°
BF©
EB°
CE°
CHo©
GC©
DG°
FD°
ID°
|E°
HF°
Glo

Hi©

The 54 direct routes are as follows;

A®D® C
A® B® H
E®RD® A
l® C® D® A
B® A® F
E®RD® A® B
C®D®E
C®B® H
G® B® C

D®RC®B® G

F® A® D
|® C® D

l® C® D® E

H® B® A® F

G®B® C® |
H® B® C® |

AE®°
Al°
GA°®°

ED®
BI©
FBO

CFo
EC®
HCo
DH©

GD°
EF°
FH°
IFo
HG®
IHe

El°

EHo

GE®

HE®

Flo

EG®

A® D® E AG®°
A®D® C® | CA®°
G®B® A HA®°
B® C® D BE®°
B® C® | DB°
F®RA® B IB°
C®B® A® F CG®°
E®RD®C FCe°
H® B® C DF°
D® C® B® H Di°
G® B® C® D HD®°
ERD® A® F FG°
F®RA® B® H GF°
|® C®R D® A® F GH®°
H® B® G 1G°
l® C® B® H FE°
E®RD® C® |

ERD® A® B® H
GRB®C® D® E

H® B®RC® D® E
FRA®RD® C® |

ERD® A® B® G

A® B® G
C® B® A
H® B® A
B®C® D® E
D® A® B
|® C® B
C®B®G
F®RA®D®C
D® A® F
D® C® |
H® B® A® D
F®RA®RB® G
GRB® A® F
G®B® H

l® C® B® G
F®RA®RD®E
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The 18 direct links are as follows;

AB° A® B BA° B® A BC° B® C
CB°® C® B Ch° C® D DC° D® C
AD° A® D DA° D® A AF° A®F
FA° F® A DE° D® E ED°® E® D
Cl° C® | IC° 1® C BH° B® H
HB°® H® B BG° B® G GB° G® B

2) Flow phase of each intersection studied

Flow phase refers to the time length of the green lights which allows the carsto directly
move toward their targeted directions. The phase is in fact counted from the end of the
red light and the start of the ember light. This means that phase stands between the red
and the ember light. Each intersection has different phase form.

The next subsection will present the phase at each intersection by a diagram.
Let » represent carsthat passthe green light
_ _ _ _, represent carsthat stop behind the red light

The diagrams presenting the phases at each intersection are as follows:
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2.1) Theform of flow phase at Uboncharearnsri intersection
There are three phases at Uboncharearnsri intersection.

PHASE 1
A 7L
7|l
: I
| |
L
: O 7777222222222
-
—
|
D¢
%
A
Al Z
N PHASE 2
| %
\ P pus e — »
7
\/\/\ NN,
A b |
|
-7
00
|:| v
%
A
A
PHASE 3

Figure 3.3 Diagram to present the flow phases at Uboncharearnsri intersection.
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2.2) Theform of flow phasesat Clock Hall intersection
There are three phases at Clock Hall intersection.

PHASE 1

Gz

Figure 3.4 Diagram to present the flow phases at Clock Hall intersection.
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2.3) Theform of the flow phases at Chonraprathan intersection
There are three phases at Chonraprathan intersection.

PHASE 1

»
»

AR
Inm

PHASE 2

L]
L]
-
I
!

|

/

> ——

*
|

I

I

I

I

I

I

|

|
\
\

\

AN
«——— =

AN

PHASE 3

———

L]
]
|
|
Y———F
I
/

qd—————— ——

A

LI
AN

Figure 3.5 Diagram to presenting the flow phases at Chonlaprathan intersection



2.3) Theform of the flow phasesat Airport intersection
There are four phases at Airport intersection :

»

V2722227200 0000000000000

PHASE 2
0000000 \
¢ —_-— —— :___:|
PHASE 3 \ %ﬂ
L]
i
$
PHASE 4

d—
<«

i
\
I
\
|
!
|
|
v

00, =
NN

&
<«

Figure 3.6 Diagram to present the flow phases at Airport intersection
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3.2.2 Traffic estimation by using mix models
This section presents the statistical method used to estimate the number of cars that
depart from an intersection to other intersections according to a mixture of maximum

likelihood estimation and Bayesian inference. This section also explains the method

used to compute the length of current cycle time.

3.2.2.1 Notation used

Let X denote the route count belonging to a direct route, or the number of cars that

depart from specified sourcesto destination, for j = 1,2, 3, ..., 72. The details of each

X; are as follows:

X1 : the number of cars from source A to destination B
X3 : the number of cars from source A to destination C
X3 : the number of cars from source A to destination D
X4 : the number of cars from source A to destination E
Xs : the number of cars from source A to destination F
Xe : the number of cars from source A to destination G
X7 : the number of cars from source A to destination H
Xsg : the number of cars from source A to destination |
Xg : the number of cars from source B to destination A
X1 : the number of cars from source C to destination A
X11 : the number of cars from source D to destination A
X12 : the number of cars from source E to destination A
X13 : the number of carsfrom source F to destination A
X14 : the number of cars from source G to destination A
X5 : the number of cars from source H to destination A
X6 : the number of cars from source | to destination A
X17 : the number of cars from source B to destination C
X1g : the number of cars from source B to destination D
X19 : the number of cars from source B to destination E
X2 : the number of cars from source B to destination F
X21 : the number of cars from source B to destination G
X2 : the number of cars from source B to destination H

Xo3 1 the number of cars from source B to destination |

93



Xog -
Xos -
Xog -
Xo7:
Xog -
Xog -
Xs30:
X1 :
X3!
Xa3:
Xz :
X35 -
: the number of cars from source C to destination |
Xa7:
Xsg -
X3 :
Xag0:
Xa:
X
Xa3':
X -
X5 -
Xas -
X7 -
Xas -
Xag -
Xs0 -
Xs1 -
Xsp -
Xs3 !
Xsy -
Xss -
: the number of cars from source | to destination E
Xs7 -
Xsg -

the number of cars from source C to destination B
the number of cars from source D to destination B
the number of cars from source E to destination B
the number of cars from source F to destination B
the number of cars from source G to destination B
the number of cars from source H to destination B
the number of cars from source| to destination B

the number of cars from source C to destination D
the number of cars from source C to destination B
the number of cars from source C to destination F
the number of cars from source C to destination G
the number of cars from source C to destination H

the number of cars from source D to destination C
the number of cars from source E to destination C
the number of cars from source F to destination C
the number of cars from source G to destination C
the number of cars from source H to destination C
the number of cars from source | to destination C
the number of cars from source D to destination E
the number of cars from source D to destination F
the number of cars from source D to destination G
the number of cars from source D to destination H
the number of cars from source D to destination |
the number of cars from source E to destination D
the number of cars from source F to destination D
the number of cars from source G to destination D
the number of cars from source H to destination D
the number of cars from source | to destination D
the number of cars from source E to destination F
the number of cars from source G to destination E

the number of cars from source H to destination E

the number of cars from source F to destination G

the number of cars from source F to destination H

94



Xsg : the number of cars from source F to destination |
Xeo : the number of cars from source G to destination F
Xe1 : the number of cars from source H to destination F
Xe2 : the number of cars from source | to destination F
Xe3 : the number of cars from source G to destination H
Xea : the number of cars from source G to destination |
Xes : the number of cars from source H to destination G
Xes : the number of cars from source | to destination G
Xe7 : the number of cars from source H to destination |
Xes : the number of cars from source | to destination H
Xeo : the number of cars from source E to destination G
X70 : the number of cars from source E to destination H
X71 : the number of cars from source E to destination |
X72 : the number of cars from source F to destination E

Let X denotethe direct route count matrix, X isthe row matrix with dimension
1X72 asfollows:

X = [X,, X,,K, X,
Let Y, denotethe route count corresponding to direct link, or the number of cars that
depart from the sourceto destination, for i = 1,2, 3, ..., 18. The details of each Y;

are asfollows:

Y1 : the number of cars from source A to destination B
Y2 : the number of cars from source B to destination A
Y 3 : the number of cars from source B to destination C
Y 4 : the number of cars from source C to destination B
Y5 : the number of cars from source C to destination D
Y6 : the number of cars from source D to destination C
Y7 : the number of cars from source A to destination D
Y s : the number of cars from source D to destination A
Y ¢ : the number of cars from source A to destination F
Y 10 : the number of cars from source F to destination A
Y 11 : the number of cars from source D to destination E
Y 12 : the number of cars from source E to destination D
Y 13 : the number of cars from source C to destination |



Y 14 : the number of cars from source | to destination C
Y 15 : the number of cars from source B to destination H
Y 16 : the number of cars from source H to destination B
Y 17 : the number of cars from source B to destination G
Y 15 : the number of cars from source G to destination B

Let Y denotethe direct link count matrix, Y isthe row matrix with dimension 1X18 as
follows:
Y =[Y,Y, K, Y
Let | ; denote the population mean of the number of cars that depart from

sourceto destination, for j = 1,2,3,...,72.
Let | denotethe population mean route count matrix with dimension

1" 72 asfollows
=10, K ]

3.2.2.2 Estimation of route count mean based on the EM

This section presents the statistical method to estimate the route count mean based on
the EM algorithm. Observe Y; at period k in the actual situation, and

Let XJ(") denote the number of cars for direct route j at measurement period k . We
assume that

X ~ Poisson (m.) ; j =12,K72. k=12,K,K isindependent.

X ) js the number of carsin vector form for direct route.

x 1) =[x x k x ]

Y isthe number of carsthat are observed from direct link i

at measurement period K.

Y &) isthe number of carsin vector form for direct links.

vy (k) = \G(k),Yz(k),K,Ylgk)]/

Let A denotethe 18x72 routing matrix for this network. The matrix A isazero-one

matrix whose rows correspond to the direct link, its columns correspond to direct routes,

96



and itsentries, a; are 1 or 0 according to whether link i does or does not belong to the
direct path of the SD pair | .

Somatrix A isdefinedby  A=[a]

a; = L for (i,)) = (1,1),(1,6),(1,7),(1,25),(1,26),(1,27),(1,57),(1,58),(1,69),(1,70)

(2,)9),(2,10),(2,14),(2,15),(2,20),(2,33),(2,51),(2,60),(2,61)(3,17),(3,18),(3,19),(3,23),
(3,40),(3,41),(3,54),(3,55),(3,64),(3,67),(4,10),(4,24),(4,4,30),(4,33),(4,34),(4,35),
(4,46),(4,66),(4,68),(5,16),(5,18),(5,19),(5,31).(5,32).(5.50),(5.52),(5,54).(5,55),(5,56) (5
62)(6,2),(6,8),(6,37),(6,38),(6,39),(6,45),(6,46),(6,47),(6,59),(6,71)(7,2).(7,3).(7,4),(7.8)
(7,39),(7,49),(7,51),(7,59),(7,72),(8.11),(8,12),(8,16),(8,25),(8,26) (8,44) (853),
(8,62),(8,69),(8,70),(9,5),(9,20),(9,33) (9,44),(9,53),(9,60),(9,61),(9,62)(10,13),
(10,27),(10,39),(10,49),(10,57),(10,58),(10,59),(10,72)(11,4),(11,19),(11,32),(11,43),
(11,55),(11,56),(11,72)(12,12) (12, 26),(12,38),(12,53),(12,68),(12,69),(12,70),(12,71),
(13,8),(13.23),(13,36),(13,47),(13,59),(13,64) (13,67),(13,71)(14,16),(14,30)(14,42),
(14,52),(14,56),(14,62) (14,66),(14,68),(15,7),(15,22),(15,35),(15,46),(16,58),(15,63),
(15,68),(15,70),(16,15),(16,29),(16,41),(16,51),(16,55),(16,61),(16,65),(16,67)(17.6),
(17,21),(17,34) (17,57),(17,65),(17,66),(17,69),(18,14) (18,28),(18,40),(18,54),(18,60)(1
8,63),(18,64)
a, = 0;for theother (i, )
So we derive the relation between Y and X ®) in equation form as follow:

Yy = ax () k=12K,K

From the matrix form we can write 18 equations that present Y; and X; as follow:

Y1 = Xpt+XetX7+ X5+ X6+ X 27+ X 57+ X 58+ X9+ X 70
Y2 = XgtXiotX14+X15+X 20+ X33+ X 51+ X601+ X1

Y3 = XurtXig+ X1+ X o3+ X a0+ X 41+ X 54+ X5+ X st X7
Ya = Xio+tXoat+Xz0+ X33+ X34+ X35+ X 46+ X661 Xes

Y5 = Xip +X18+X19+X31+ X350+ X 50+ X 52+ X 54+ X 55+ X 56+ X62
Yo = Xot+Xg+X37+X3g+X39+ X5+ X e+ X 47+ Xs9+X71
Y7 = XotXz+Xg+Xg+Xz9+X a9+ Xs1+Xs0+X 72

Yg = Xu+Xp+Xie+Xos+X26+X 24+ X3+ X621+ Xe9+X 70
Yo = Xs+XootXss+XastXsz+XestXe1+Xe2

Yio = XiztXortXge+Xag+Xsr+XsgtXsetX72

Y = Xg+Xp9+ Xzt Xzt Xss+Xse+X72

Y2 = XptXoetXsst+Xsz+XestXegtX70tX71

Yiz = Xgt XogtXaetXa7+Xs9+Xes+Xer+X71
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Yia = Xiet Xzt Xap+Xso+Xs6+Xs56+Xe2+Xe6+Xe68

Yis = X7+Xpot+Xgs+XaetXsg+Xest+XestX70
Yie = XistXogtXa1+Xs1+Xss+Xe1+XestXe7
Yiz = XetXo1+Xast+Xs7+Xes+Xes+X 69

Yig = XuatXogtXaotXss+XeotXestXes

Our goal isto estimate = (m, m,,K,m,,) from Y@ v K Y®) based on

maximum likelihood estimation and sample moments using the following 7 steps.
Step 1 Let positive refer to the population of number of car passing direct route on
traffic network

m=>mm,Km,) ;arbitrary.
Step 2 Observe daily data on direct links for 20 days from 08:00 — 08:30 am
vWo (v vk v)
v (Do (\Q(Z),YZ(Z),K,\QS))
M M
v @)o (Yl(ZO)!YZ(ZO)!K!YngO))

Yi(k)

Qo

Calculate Y =+
20

Step 3 Estimate m with m=(m,m,,...,M,) based on applied algorithm

LM oE ay,
J 18 J7
=1
aaul aa1kn]<
i=1 k=1

Step 4 Generate X; from Poisson distribution with the estimator of parameter
m; j=12K,72 for 100 days
Step 5 Generate daily data on direct links for 100 days depending on X ; in step 4
vWo (v v K v)
vy (2o (\Q(Z),YZ(Z),K,\QS))
M M
vy (190) 0 (Yl(loo),Yz(loo),K,Ylgoo))

Yi(k)

Qog

Calculate Y =2
100
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Step 6 Go to step 3to estimate m 50 times so we get M® , M2 ..., M
_ 50 _
Step 7 Calculate mean vector ; m= 1 a M based on 50 estimations then we get M

k=1

as the unbiased estimator of n, route count.

3.2.2.3 Estimation of route count base on Bayesian inference

This section presents the statistical method to estimate route count based on Bayesian
inference. The Bayesian inference use to infer route count X; whenweknow | ; (from
EM algorithm) and Y. (from observation), for i=1,2,...,18. j=1,2,...,72.
From the posterior distributionof X bygiven| and Y ;

p(xiy) u £ (x)p(xI)
where f, (yx) isdegenerateat Y =AX  and

p (1) a é%

So we can infer the route count, X, by using the Gibb sampler to draw X from
p (X! ), and then evaluate Y by the equation Y = AX
The detailed procedureto estimate X, j=12,K,72 bygiven| ; and; ,
i =1,2,K 18 by using the mixure of maximum likelihood and Bayesian inference is

based on seven steps as follows:
Step 1 Generate 10 vectors X from 72 independent Poisson distributions
with parameter vector Ir that has already been estimated based on EM in section 3.2.2.2

Step 2 Draw sample value of 10 parameter vectors | from 72 conditionally
independent posterior distributions; p(l j|X ;) isaGammadistribution with shape
parameter X, +1 and scale parameter 1; j =1,2,K,72.

Step 3 For each parameter vector | , initerationt sample a candidate X’; of

the element of X with priority from conditionally Poisson distribution produces all the

other elements:
Xj ~ Poisson( X;[X5)

]

Where X" represents all the element of X except for X, at their current values:

XU = (XK X, X

j j+1

K, X%
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i X,  with probability min(r,1)

I
set Xt: 1 Jt-l i
X otherwise
_ POXUXTY
P(X}'l)U(Xj)
el e m
where p(X;) = | : U(Xj) = |
X1 X

i it

Step 4 Directly compute theelement of Y by Y = AX
Step 5 Let Xt;‘ be the draw from 10 parallel sequences of iteration t of
the k" elementof X (t=1,2 ...,n;j=1 2, ..., 10), compute B and W, the

between and within-sequence variances for each k™:

B="4 (X -X)?, where X =24 x* , x =14 %
974 ! o Tonin T 100G !
10 1 n _ ~
w=18 S? , whee S’=——§ (Xf- X,)* and R=1(E+n- D
10 5 n-175 ' nw

Step 6 Return to step 2 and iterate until \/E ® 1 for all K™ element.

Step7 Estimate route count for each direct route by
- 1

10
X, =—3a3 X k=12 .. 72
k 1013:.1 nj

where X . isthe estimator of route count for direct route k"

k
X

isthe latest draw for parallel |

3.2.3 Calculation of the length of the current cycletime

This section presents the statistical formulato calculate the length of the current cycle
time on each phase of actual intersections studied. Treat each intersection as a service
system and cars as customers with each phase of the intersection as a server.

As discussion in the previous chapter, interarrival time follows the exponential
distribution. Therefore, we can generate interarrival time from an exponential
distribution. The parameter of the distribution is defined by traffic intensity estimated
from an the mixed model in section 4.2.2. Finally the length of the current cycle time
since the last traffic light change to the moment that any car arrives at the intersection is
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thetotal of all interarrival times of the carsthat arrive at the intersection in the current

period.
Let C, bethei™ car that arrive at the intersection,
A beinterarrival time between C. and C,,,
C, bethefirst car after the last traffic light change,
C, bethecar a the moment,
and L bethelength of the current cycle time
So L = &a
i=]

3.3 The fuzzy system process methodology

This section presents the method to combine the linguistic and numerical information
from the previous input process methodology to derive output, the degree of traffic
light change of each phase. Fuzzy logic systems with fuzzifier and defuzzifier will be
used.

3.3.1 Fuzzifier

The fuzzifier performs a mapping from numerical information input such as number of
cars behind the green light, number of cars behind the red light and the length of the
current cycle time in to afuzzy set. The number of cars behind the red or the green
lights are assigned to fuzzy set as“zero”, “low”, “medium” and “high”. And the length
of the current cycle time is assigned to fuzzy set as “short”, “medium” and “long”.
Numerical information output , degree of traffic light change are assigned to fuzzy set
as“no”, “probably no” “maybe’, “probably yes’ and “yes’. The membership function
of these fuzzy sets are defined below.

3.3.1.1 The membership function of the fuzzy set defined by the number of cars
behind the green light

Fuzzy sets of the number of cars behind green light are assigned as “zero”, “low”,
“medium”, and “high. The membership function of the fuzzy sets are triangular or

trapezoidal according to the Figure 3.7- 3.10 as follows:
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0 1 x (cars/second)

1-x, , OEXx,£1
0 , x>1
Figure 3.7 The membership function form for fuzzy set “zero”
(Adapted fromKelsey & Bisset, 1993, P. 266 and Teodorovic &
Vukadinovc, 1998, p. 51)

mx(xo)=i

A
m
1
0 1 2 3 4 5  x(cars/second)
i X, , 0EX£1
'r
T 1 , 1<x,E2
m (%) =1

i3 % . 2<X%E£3
f 0 , x>3

Figure 3.8 The membership function form for fuzzy set “low”
(Adapted from Kelsey & Bisset, 1993, P.266 and Teodorovic&
Vukadinovc, 1998, p. 51)
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_\><3

\ 4

0O 1 2 3 4 5  x(cars/second)

i 0 , %<2
i
X-2 , 2E£x,<3
X, =
nl(( 0) .:.4- Xy , 3£ Xy <4
{ 0 , x,34

Figure 3.9 The membership function form for fuzzy set “medium”

(Adapted from Kelsey & Bisseat, 1993, P.266 and Teodorovic&
Vukadinovc, 1998, p. 51)

A
m
1
0 1 2 3 4 x(cars/second)'
L0, %<3
rT1<(Xo):%xo'3 , 3E X <4
11, x34

Figure 3.10 The membership function form for fuzzy set “high”

(Adapted from Kelsey& Bisset, 1993, p.266 and Teodorovic&
Vukadinovc, 1998, p. 51)
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3.3.1.2 The membership function of the fuzzy set defined by the number of cars
behind thered light.

Fuzzy sets of the number of cars behind the red light are assigned as “zero”, “low”,

“medium”, and “high”. The membership function of the fuzzy sets are triangular or

trapezoid according to the Figure 3.11-3.14 asfollows:

A

m

1

0o 1 2 X (cars/second)
_il-x, , 0£x,<1

nl(xo)—% 0 ’ Xo31

Figure 3.11 The membership function form for fuzzy set “zero”
(Adapted from Kelsey & Bisset, 1993, p. 267 and Teodorovic&
Vukadinovc, 1998, p. 51)

A

m
1

0 1 2 3 4 5 6x(cassecond)

i

P01, 1£x,<3
MO, % 3y <

. 3

10, %36

Figure 3.12 The membership function form for fuzzy set “low”
(Adapted from Kelsey & Bisset, 1993, p. 267 and Teodorovic&
Vukadinovc, 1998, p. 51)
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o 1 2 3 4 5 6 7 8 9 x (cars/second§
i 0 , %<3
:
i % _q , 3EX,<6
m (%) = I X

13- 3 6£ X, <9

|

i 0 , %239

Figure 3.13 The membership function form for fuzzy set “medium” (Adapted from

Kelsey& Bisset, 1993, p.267 and Teodorovic& Vukadinovc, 1998, p. 51)

w

.

O 1 2 3 4 5 6 7 8 9 x(cars/second)

:ﬁz . BEX, <9
+ 3
|
nL(Xo)=.i. 1, %39
|
$ 0 , %<6

Figure 3.14 The membership function form for fuzzy set “high” (Adapted from
Kelsey& Bisset, 1993, p.267 and Teodorovic& Vukadinove, 1998, p. 51)
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3.3.1.3 The member ship function of the fuzzy set defined by thelength of the

current cycletime

Fuzzy sets of the length of current cycle time are assigned as “short”, “medium” and

“long”. The membership function of the fuzzy sets are trapezoid according to the Figure

3.15-3.17 asfollow:

0O 10 20 30 40 50 60 70

i 1, 0£x,<30

:|: XO
=i2- —, 30£x,<60
nL(Xo) _I_ 30 X

I 0, X360

v

x (second)

Figure 3.15 The membership function form for fuzzy set “short” (Adapted from Kelsey
& Bisset, 1993, p.267 and Teodorovic & Vukadinovc, 1998, p. 51)
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\ 4

0O 10 20 30 40 50 60 70 80 90 x (second)
i 0, x,<30
:
f—-1, 30£Xx,<60
i3- %0 60£x, <90
i 0, X%,%90
Figure 3.16 The membership function form for fuzzy set “medium” (Adapted from
Kelsey& Bisset, 1993, p.267 and Teodorovic & Vukadinovc, 1998, p. 51)

|-
Ll

0O 10 20 30 40 50 60 70 80 90 x(second)

i 0, X, <60
:|:X0 2
X,)={—-—=, 60£x,<90
nL( o) _:_20 3 0
f 1, x,3%90

Figure 3.17 The membership function form for fuzzy set “long” (Adapted from
Kelsey & Bisset, 1993, p. 267 and Teodorovic & Vukadinovc, 1998, p. 51)
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3.3.2 Fuzzy rule base

This section provides a list of rules in notation form that govern traffic control at

intersections. The fuzzy rule base consists of a collection of fuzzy IF-THEN rules
according to Kelsey and Bisset’s (1993) fuzzy rules base.

Let X1 :

X2 .

X3

Fi:
F:
: fuzzy set for the number of cars behind the green light is medium.
Fag:
F:
Fs:
F:

Fs
Fo

Fio:
Fi1:
Gy
Gy
Gs:
Gy

Gs

number of carsthat are behind the green light.
number of carsthat are behind the red light.
current of cycletime.
degree of change.
fuzzy set for the number of cars behind the green light is zero.

fuzzy set for the number of cars behind the green light is low.

fuzzy set for the number of cars behind the green light is high.
fuzzy set for the number of cars behind the red light is zero.
fuzzy set for the number of cars behind the red light is low.
fuzzy set for the number of cars behind the red light is medium.

: fuzzy set for the number of cars behind the red light is high.

: fuzzy set for length of the current cycle time is short.

fuzzy set for length of the current cycle time is medium.
fuzzy set for length of the current cycle time is long.
fuzzy set for degree of change is no.

fuzzy set for degree of change is probably no.

fuzzy set for degree of change is maybe.

fuzzy set for degree of change is probably yes.

: fuzzy set for degree of change is yes.

Using to the previous notations, the rule base in notation form are as follows:

Rulel IFx;isFiand Xz isFs THEN yisG;
Rule2 IFx;isFiand Xz isFs THEN y isGs
Rule3 IFx;isFiand Xz isF, THEN y isGs
Rule4 IFx;isFiand Xz isFg THEN y isGs
Rule5 IFx;isFs THEN y is G

Rule6 IFx;isF,and xzisFs THEN yisG;
Rule7 IFx;isFzand Xz isF, THEN y isG;
Rule8 IFx;isFsand Xz isFs THEN y is G
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Rule9 IFx;isF, and Xz isF7 and X3 isFg THEN vy isGs

Rule 10 IFx;isF,and x isF; and X3 isFio THEN y is Gy
Rule1l IFx;isF,and xz isF; and xz isFi; THEN y isGs
Rule12 IFx;isF,and x; isFg and x3 isFg THEN y is G,
Rule 13 IF x; isF; and x; isFg and X3 isFio THEN y is G
Rule 14 IFx;isF,and xz isFgand X3 isFi; THEN y is Gy
Rule 15 IF x; isFsand x; isFs and X3 isFg THEN y is G,
Rule 16 IF x; isFsand x; isFs and X3 isFio THEN y is G,
Rule 17 IF x; isFsand x; isFs and X3 isFi; THEN y is G3
Rule 18 IF x; isFsand x; isFg and X3 isFg THEN y is G
Rule19 IF x;isFsand x; isFg and x3 isFi; THEN y is Gy
Rule 20 IF x; isFsand x; isFg and x3 isFi2 THEN y isGs
Rule21 IFx;isF,and x; isFg and X3 isFg THEN y is G
Rule22 IF x; isF4and x; isFs and X3 isFio THEN y is Gy
Rule 23 IF x; isF,and xz isFs and X3 isFi; THEN y isGs
Rule24 IFx;isF,and x; isF; and X3 isFg THEN y is G,
Rule25 IFx;isF,and xz isF; and X3 isFio THEN y is G,
Rule 26 IFx;isF,and x isF; and Xz isFi; THEN y isGs

3.3.3 Fuzzy inference engine

The fuzzy inference engine is used to infer a consequence fuzzy set from the rule base
and facts received from the input process methodology. The product-sum-gravity
method will be used to infer the consequence fuzzy set.

Let the facts of input be as follows:

X, : fact of number of cars behind the green light

X, : fact of number of car behind the red light

X, : fact of the length of the current cycle time

Let G’ denote the resulting fuzzy set from rule i. The membership function of G/ isas

follows:
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m,, (y) = m, () X (%) X (y)

m,, (y) = m, () xm (x;)my, (y)

my, (y) = me (%)) XM (%) X, (V)

my, () = me (%) xm (x3) X, (y)

my, (y) = m, () X, (y)

m,, () = me, 04) X, (%) xm, (Y)

m,, () =My (%)) xm, (X;) xm, (y)

m,, (¥) = m, (4) 2, (%) xm (Y)

m,, (y) = m, 04) 2, (%;) Xms, (¥)

my, () = m, () XM, () xmy, (%) g, (y)
my, () =M, 0¢) e (x3) xmy (%) xm (y)
my, () = m, () xm, (x3) X, (%) X, (y)
my, () = m, () Xm, (%) Xme (%) X, (¥)
my, () = m, () M (x3) my, (%) X, (y)
my, (¥) = me (%)) X (%) xm (x3)>xm, (y)
my, () = me, () xm (x3) Xmy, (%) >, (y)
m, (y) = m, () XMy, (%5) XMy, (%3) Xmy (Y)
my, () = m, () Xm (%) Xm, (%) Xm (y)
my, (¥) =M, 04) X, () Xme, (%) s, (Y)
my, (¥) = m, ) My, () A, (%) g (y)
my, () =My, (%)) Xm, (%) XM, (%) xm (y)
m, (y) = m, () xm, (%) XM, () X, (Y)
my, (¥) =M, 0) XMy, () X (%) X (y)

m, (y) = m, () Xm, (%) X (x3)xm, (¥)

110



m, (y) = m, () XM, (%) Xme, (%) X, (Y)

my, (y) = m, () XM, (%) X1 (%) Xms, (¥)

Let G’ bethe consequence fuzzy set which is infered from the rule base and the
facts. The membership function of G’ is defined by

my () =a m, (¥)

3.3.4 Defuzzifier

The defuzzifier performs a mapping from fuzzy set G’ to the crisp point, the center of

gravity of G’.

Let y. denotethe center of gravity of the inferenceresult G/ and let S denote the area

of G/ asinFigure3.3 Then vy, isdefined as:

o>, (y)dy
oM (Ddz

oY, (y)dy
S

The leads to the center of gravity y' of the final consequence G’ being given by

y = oy, (y)dy

om (Y)dy
— (‘)y"{mel/(Y)+...+mG£e]dy _ Ié:-lsu XY
_ QM (W) +. 4 my, (V)dy gs,

i=1
In practice, the identification of the center of gravity of G/ is based on algebraic

calculation . The center of gravity is the horizontal coordinate of the centroid of the area
under the membership function. If the form of membership function is triangular, the
centroid is the intersection of the straight line from each vertex to the middle points of
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the corresponding side. The centers of gravity of G/ are computed in the following

section

1) ldentification of center of gravity of G,

Consider the membership function formof G, inFigure 3.18

A

\ 4

Figure 3.18 The membership function form of G,
(Adapted from Kelsey & Bisset, 1993, p. 267)

From Figure 3.18 the center of gravity of G, is 0.033. And also the center of gravity of
G/ is 0.033

\ y. =0.033 for i=1,5,6,7,9

2) Identification of center of gravity of G,

Consider the membership function formof G, in Figure 3.19
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\ 4

0O 01 02 03 04 05

Figure 3.19 The membership function formof G,
(Adapted from Kelsey & Bisset, 1993, p. 267)

From figure 3.19 center of gravity of G is0.2. And also the center of gravity of
G =02
\ y, =02;i= 121516,25

3) ldentification of center of gravity of G,

Consider the membership function formof G, inFigure 3.20

A

\ 4

0O 01 02 03 04 05 06 0.7

Figure 3.20 The membership function form of G,
(Adapted from Kelsey & Bisset, 1993, p. 267)
From figure 3.20 center gravity of G, is0.4. And also the center of gravity of G/ is0.4

\ y. =04 ; i = 91317182126
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4) Identification of center of gravity of G,

Consider the membership function formof G, in Figure 3.21

A

v

0O 01 02 03 04 05 06 07 08 09

Figure 3.21 The membership function formof G,
(Adapted from Kelsey & Bisset, 1993, p. 267)
From figure 3.21 center gravity of G, is 0.6. And also the center of gravity of G/ is

0.6
\ y, = 06 ;i = 10,14,19,22

5) ldentification of center of gravity of G,

Consider the membership function form of G, in Figure 3.22.

A

\ 4

0O 01 02 03 04 05 06 07 08 09 1

Figure 3.22 The membership function form of G,

(Adapted from Kelsey & Bisset, 1993, p. 267)
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From Figure 4.22 the center of gravity of G, is 0.85. And also the center of gravity

of G/ is0.85.
\ yi =085 ;i = 234,11,20,23

3.4 The output process methodol ogy

This section presents the method to simulate the current cycle time for each phase.
Fuzzy logic control will be used to find the optimal moment that occurs when the
optimal number of cars are behind the red light and the optimal number of carsthat pass
the green light. The optimal length on each phase of the cycle isthe current cycle time
at the optimal moment. The algorithm of simulation at each intersection is as follows:
Step 1. Let phase 1 of traffic signal cycle be the start phase.

Step 2. Iteratively generate cars and assign each car to each branch of the intersection
based on proportion of cars from the branch that are computed in the input process.
Step 3. Generate interarrival time of each car in step 2 by exponential distribution with
parameter beta. The value of beta is assigned by traffic intensity in the input process.
Step 4. Compute the important parameters of the simulation process, the input of fuzzy
logic system such as:

x! : number of carsthat passthe green light.

x! . is computed by counting the number of cars from the branch that are

allowed to pass the intersection by the green light.

X, : number of carsthat stop behind the the red light.

X, . is computed by counting the number of cars from the branch that are

prohibited to pass the intersection by the red light.

X, : the current cycle time.

X, is computed by the summation of interarrival time.

Step 5. Compute degree of change by using information from section 3.3 according to
the following procedure:

Let S dencteareaof G/ ; i=1,2...,26
A denoteareaof G ;i =1,23,4,5
D denote degree of change
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y, denotethe center of gravityof G’ ;i = 1,2, ...,26

26
o

ays
D = i=1

%
as

i=1
Fromthe figures 3.18-3.22, A =0.05, A, =02, A, =0.2, A, =0.2and A, =0.15

and

S =M, (X)) MM, (%;) XA

S, =m, () XM (%) XA,

Sy =m (%) Mg, (%;) XAy

S, =m, () XM, (%) XA,

S, =m (%) XA

Se =My, () XM, (%) XA

S, =m, () XM, (X5) ¥A

S = m, () XM (X5) %A

S, =m, () XM, (%) XA,

S =M, () XM (X)) XM (x3) %A,
Sy = M, () XM, (%) XMy (%) XA,
S, =M, () XM (X5) XM (X3) XA
S =M (X)) XM (%) XM (X5) %A,
Sk =M, () XM (X5) XM (%5) XA,
Sis = M, () XM, (%) XM (%) XA,

Sie = M (X)) XM (X3) Xm_(X3) XA,
Sy = m (%) XM (X5) XM (X5) %A,

Sis = M, () XM () XML (X3) %A,
Sie = M, (X)) WM (%) XML (%5) XA,
Sy =M, (%)) XM (%) XML (%5) XA,

S, =m, (%) AT (X3) AT (X5) XA,
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S, =M, (%) XM (%) XM (X5) XA,

Sy =M (x3) AT (x3) A, (X5) A4

Sy =m, (%) AT, (X3) AT, (X5) %A,

S, =M, (%) XM (0G) XM (%5) XA,

Sy = M, () XM, (%) XMy, (X3) XA,

Step 7 Generate Bernoulli random variable X, with parameter P = D, degree of
change. If value of the random variable is equal to zero retain the phase then go to step
1

Step 8 If value of the random variable is equal to 1 then change the previous phase to

the next phase and go to step 2.
Step 9 Iterative until length of time equal 1800 second and covers all intersections.
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Chapter 4
Input and Analysis

4.1 The data collection

This section presents the method used to collect data for direct links, namely number of
cars that pass through a direct link in the traffic netwrok studied.

The method starts by assigning the collectorsto 18 positions, 45 metres from the
intersection as shown in Figure 4.1. Each collector must count the cars that pass them
during 8.00-8.30 AM for 20 days.

A A
Y13 Y14
Y16
Y1s Y3
Y s v v
_— > >
‘ :
Y 14
A A
Y4
Y1 Ye
Ys
Y2 Y7
v v
< Y12
A
Y7
Y10 Y12
Yo
v

Figure4.1 Diagram of 18 positionsto count the cars that pass direct link

The number of carsthat pass adirect link during the 20 days are given below.
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Table 4.1 Table of the number of cars at 18 positions for 20 days

DAY | Y, Y2 | Ys | Ya| Ys | Ys Y7 | Ys Yo | Yio | Yiu | Yo | Yizs | Yia | Y5 | Yis | Yz | Y8
1 455 | 461 | 145 | 70 | 117 | 413 | 99 | 403 | 144 | 665 | 497 | 359 | 420 | 390 | 419 | 315 | 510 | 406
2 486 | 535 | 144 | 68 | 142 | 367 | 90 | 358 | 153 | 662 | 562 | 255 | 419 | 435 | 401 | 329 | 508 | 366
3 418 | 504 | 126 | 79 | 168 | 395 | 137 | 342 | 171 | 749 | 411 | 387 | 414 | 560 | 351 | 276 | 486 | 330
4 421 | 481 | 146 | 69 | 162 | 371 | 112 | 461 | 174 | 720 | 433 | 344 | 309 | 468 | 327 | 263 | 440 | 402
5 452 | 514 | 145 | 81 | 149 | 449 | 98 | 423 | 184 | 789 | 581 | 399 | 557 | 480 | 417 | 345 | 464 | 486
6 423 | 490 | 134 | 82 | 180 | 471 | 100 | 350 | 166 | 757 | 551 | 442 | 451 | 436 | 401 | 275 | 487 | 359
7 450 | 470 | 140 | 62 | 163 | 414 | 92 | 410 | 150 | 702 | 548 | 338 | 458 | 489 | 396 | 308 | 465 | 316
8 433 | 525 | 147 | 68 | 123 | 368 | 116 | 445 | 145 | 679 | 408 | 349 | 450 | 441 | 419 | 328 | 478 | 337
9 415 | 538 | 142 | 85 | 163 | 479 | 143 | 414 | 157 | 804 | 461 | 411 | 509 | 405 | 471 | 317 | 470 | 416
10 427 | 546 | 129 | 70 | 134 | 463 | 117 | 421 | 162 | 779 | 413 | 339 | 209 | 466 | 204 | 278 | 272 | 411
11 462 | 528 | 124 | 72 | 194 | 531 | 128 | 415 | 162 | 880 | 494 | 407 | 480 | 531 | 421 | 361 | 436 | 411
12 438 | 489 | 134 | 83 | 120 | 381 | 134 | 390 | 163 | 822 | 526 | 343 | 350 | 459 | 432 | 317 | 517 | 409
13 423 | 522 | 131 | 55 | 179 | 446 | 111 | 379 | 164 | 801 | 407 | 357 | 409 | 548 | 401 | 305 | 471 | 320
14 471 | 522 | 130 | 85 | 175 | 388 | 104 | 435 | 146 | 758 | 555 | 325 | 487 | 481 | 452 | 289 | 483 | 309
15 410 | 483 | 102 | 69 | 152 | 448 | 122 | 403 | 140 | 698 | 455 | 447 | 435 | 483 | 366 | 328 | 456 | 368
16 425 | 506 | 153 | 90 | 161 | 423 | 94 | 382 | 131 | 705 | 447 | 373 | 473 | 524 | 353 | 322 | 443 | 333
17 413 | 512 | 122 | 86 | 159 | 463 | 125 | 478 | 163 | 819 | 459 | 451 | 450 | 510 | 333 | 296 | 477 | 354
18 452 | 522 | 118 | 91 | 167 | 427 | 96 | 386 | 179 | 684 | 486 | 350 | 433 | 518 | 338 | 373 | 485 | 370
19 410 | 545 | 130 | 91 | 182 | 405 | 112 | 394 | 168 | 768 | 412 | 356 | 460 | 496 | 354 | 387 | 483 | 403
20 464 | 512 | 183 | 68 | 178 | 524 | 187 | 420 | 124 | 502 | 488 | 430 | 430 | 498 | 348 | 317 | 477 | 414

The number of cars from Table 4.1 will be used to estimate traffic counts for all direct

routes.

4.2 The algorithm to simulate random variables

Rubinstein (1981) illustrates the algorithm to simulate random variable
based on its distribution. The important algorithms that are needed for the study are as

follows.
4.2.1 The algorithm to generate random number

There are many methods to generate random numbers, such as the mid-sguare method,
congruent metnods and so on, but the algorithm used to generate random numbers for
this study is as follows.

1. Set arbitrary number, |

I
127,773

-
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| = 16,8075(1 - 127,773K) - 2836:K

3
4. If | <0, deliver | = | +2,147,483,647
5. X =(4.656612875¢- 10)

6

| = |
4.2.2 Gamma Distribution

A random variable X has a gamma distribution if its probability
density function ( pdf) is defined as

OExE¥,a>0b>0
0 ,otherwise,
and denoted by G(a,b) . One of the most important properties of the gamma
distribution is the reproductive property, which can be successfully used for gamma
generation. Let X, ,i=1, 2, K,n, be aseguence of independent random variables
from G(a,,b). Then X = X, isfrom G(a,b) where a =q a, . If a isand

i=1 i=1

integer, say, a =m, arandom variable from gamma distribution G(m, b) can be

obtained by summing m independent exponential random variables, that is,

X =b& (- InU,)=-bInOU,

i=1 i=1
which is called the Erlang distribution and denoted by Er(m,b) . The algorithm to

generate arandom variable from Er(m,b ) is as follows:

1 X = 0.

2. Generate V from exponential distribution with b =1, exp(1).
3. X=X+V

4. IFa =1, X = bX anddeliver X.

5. a- a-1

6. Gotogep?2.
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4.2.3 Poisson Distribution.

An random variable has a Poisson distribution if its probability distribution function is

equal to
e'lx

f(x)= ”

, X=0,1, K, >0

and is denoted by P(I ). It is well known that, if the time intervals between events are
from an exponential distribution with b = Il , the number of events occurring in an unit

interval of timeisfromP(l ).

Mathematically, it can be written

X+1

X
aT£L£QT,

i=0 i=0
. 1, o _ a&lo
where Ti , i = 0, 1,K, X +1, are from exp(l—). Since T; = -QI—TInUi,the
el g

last formula can be written as

X X+1
-any, £1 £-§ Inu, X =01~
i=0 i=0
X ST
or Qu,3e’ 2 QU, X =01~
i=0 i=0

The following algorithm is written to generate a Poisson distribution:
1. A-1
2. K= 0.
3. Generate random number, Uk from interval [0,1]
4. A= U.A

5. If A<e', ddiver X =K.
6. K- K+1.
7. Goto gtep 3.

4.2.4 Exponential distribution

The exponential distribution isthe special case of the Gammawhen a =1, so arandom

variable X has an Exponential distribution if its p.d.f. isdefined as
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1 7
| — b
f(X)=.i.bxe 0£Xx, b>0
1 0 ,otherwise
The algorithm to generate an Exponential random variable with parameter b, is as
follows:

1. Generate random number, U frominterval [ O, 1].
2. X= -b |n(U)

4.2.5 Bernoulli distribution

For arandom experiment occurring only once and with output success or
failure, let X beequal 1 for success with probability p, and X be O for failure with

probability 1- p, X isaBernoulli random variable if its distribution function is
defined as

f(x)=p*@- p); x=01
The algorithm to generate a Bernoulli random variable with parameter p is as follows:

1. Generate random number, U frominterval [ O, 1].
2. If U£1- p,deiver X =0.

3. X=1.
4.2.6 Uniform distribution

Let X bedefined ontheinterval [ a, b], and any value of X occur with
equal probability, bi , X is auniform random variable and its distribution function
- a

is defined by
”@:?B%a aExXED
f 0 otherwise
The algorithm to generate a Uniform random variable with parametersaand b is as
follows:
1. Generate random number, U

2. X=a+(b-au
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4.3 Data algorithm analysis

To accomplish the research objective, the length of time appropriacy of the traffic
lights, this section presents algorithm analysis steps. This can be done by developing a
computer Fortran language program which is created on the important basis of three
types of algorithms: EM algorithm, Metropolis-Hasting algorithm, in particular, the
Gibbs sampler and Fuzzy logic algorithm. The process is comprised of 23 steps as
follows:

Step 1 Let positive mean population of number of car that travel on direct route on
traffic network

m= (m,L,m, ); arbitrary.
Step 2 Observe daily data on direct links for 20 days on 08:00 —08:30 am
vy®o (Yl(l)’Yz(l)’K’Ylt)
vy (2o (\Q(Z),YZ(Z),K,\QS))
M M
v (@)o (\Q(ZO),YZ(ZO),K,\QSO))

Calculate Y =

Step 3 Egtimate m by i = (i}, M,,...,M,)’ based on applied algorithm

m B8 Y
n_j 4 j ] a'lj i

8 z
=

a g —aadm

i=1 k=1

Step 4 Generate X; from Poisson distribution with parameter m ,  1,2,K,72

for 100 day
Step 5 Generate daily data on direct links for 100 days depend on X instep 4

vy®o (Yl(l)aYz(l)!K’Ylt)

v (@o (Yl(z),YZ(Z),K,Yng))

[ [

y (100) 0 (Yl(loo),Yz(loo)’K’Ylgoo))
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Y(k)

Qoy

.u‘

Calculate Y =X
100

Step 6 Go to step 3to calculate 7 50 timesto get M® , M2 ..., M

13 . L = .
— 4 ¥ based on 50 estimations. Then f isthe

k=1

unbiased estimator of ', route count.

Step 7 Calculate mean vector ; m =

Step 8 Generate 10 vectors X from 72 independent Poisson distributions with
parameter vector i (already estimated from step 7)

Step 9 Draw sample value of 10 parameter vectors | from 72 conditionally
independent posterior distributions, p(l ; |X 1), that is Gamma distribution with shape
parameter X, +1 and scale parameter 1, | =12,K,72.

Step 10 For each parameter vector | at iterationt draw acandidate X’; from Poisson

distribution function as below.

Xj ~ Poisson( Xj[X'

]

Where X" represents all the element of X except X, at their current values:

X5 = (XK X XL K XS

]

*

i X with probability min(r,1

]
£ X}'l otherwise
P(X;)U(X}'l)
P(X'"HU (X))

-1 X:
] |
e 'l

where  P(X )=~ . u(x,) =

i it

Step 11 Directly compute the element of Y by Y = AX
Step 12 Let Xt;‘ be the drawn from 10 parallel sequences of iteration t of the k™
elementof X (t=12,K,n; j=12K0),compute B and W, the between and

within-sequence variances for each k™

B="4 (X -X)?, where X =+4 x* , x =14 %
97, o Ponig Y 1075
10 1 & _
w=13 s? , where S? =——§ (X! - X,)?
10 -15% |
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and §:1(2+n- D
n'w

Step 13 Returnto step 8 and iterate until \/E ® 1 for al k™ element.
Step 14 Estimate route count for each direct route by

N

%é L k=12,K,72

where )2,( is the estimator of route count for direct route k™

XX isthe latest draw for parallel j

nJ
Step 15. Set the start phase of traffic signal cycle.
Step 16. Create cars and find the probability, which is emerged from the calculation of
route counts in Step 14, for each of the created car in order to randomise its moving
from each branch of the intersection.
Step 17. Generate interarrival time of each car in step 16 by exponential distribution
with parameter betathat is fixed by traffic intensity in the part of input process.
Step 18. Compute the important parameter of simulation process, input of fuzzy logic

system such as:

x! : number of carsthat passthe green light.

x, : number of cars from the branch that are allowed to pass the intersection
by the green light.

X, : number of car that stop behind the red light.

X, : number of cars from the branch that are prohibited passing
the intersection by the red light.

X, : the current cycle time.

X, : summation of interarrival time.

Step 19. Caculate the value of the cost function, by using information from section 3.4
Step 20 Generate Bernoulli random variable X, with parameter P = D, degree of
change. If value of the random variable is equal zero then go to step 15.

Step 21 If value of the random variable is equal 1 then change the previous phase to the
next phase and go to step 16.

Step 22 Caculate the value of the cost function.

Step 23 Iterate until length of time is complete and all intersections are covered.
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4.4 The computer program in the Fortran language

The computer program is composed of a main program and 7 sub-programs.

4.4.1 Main program to estimate traffic intensity by the mixed model.

The main program is used to estimate traffic intensity using the mixed model. The
optimal length of traffic signal lights is also calculated. The program consist of three

parts.

4.4.1.1 Program to estimate traffic intensity by the EM algorithm.

This program takes the traffic intensity from the daily data observations to estimate the
population mean of traffic counts on 72 direct routes. The program reads the input data
that consists of traffic counts on the 18 direct links from daily data observation. Then it
computes the sample mean of the traffic count for 20 days. The sample mean are used to
estimate the population mean based on EM algorithm iteration. Finally the outputs of
the program are populations mean of traffic counts on 72 direct routes.

4.4.1.2 Program to estimate traffic intensity by Gibbs sampler.

The population means estimated in 4.4.1.1 provides important information for this
program. The function of this program isto estimate traffic intensity for 72 direct
routes, given the population means and the data observations. The algorithm for the
program is based on Gibb sampling. The outputs of this program are traffic intensities

on each of the 72 direct routes.

4.4.1.3 Program to calculate optimal length of traffic signal light.

This program is used to calculate optimal length of signal light. The outputs from the
programin 4.4.1.2 aretraffic estimators for each of 72 direct routes. The estimators
provide important information for this program that can be used to generate value of
exponential variable. The value of exponential variable isthe interarrival time. The
interarrival time is used to define each car that arrives at the intersection. The current
cycle time isalso computed by summation of the interarrival times. The traffic intensity
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from the program in 4.4.1.2 and the current cycle time are the input data of the fuzzy
logic system. The inputs are used to infer the degree of change for each phase based on
the fuzzy logic system. Finally the degree of change is use to calculate the optimal
length of the signal light.

4.4.2 Sub-Program

The sub-programs are designed to support the main program when the main program
needs to compute the same object many times. There are 7 sub-program as follows:

4.4.2.1 Sub-Program to define any car belonging to each branch of road.

The function of this sub-program is to define any car belonging to each branch of the
road at the intersection. The sub-program firstly generates random number. The random
number is then separated to each branch based on the proportional traffic intensity in
4.4.1.2. Finally any car can be defined to belong to a particular branch by the random
number. The technique of this program is branch index generation. The branch index is
fixed by random number that are separated based on the proportional traffic intensity .

4.4.2.2 Sub-Program to generate an exponential random variable.

The function of this program is to generate an exponential random variable. The value
of the variable isthe interarrival time. This program supports the main programin
44.1.3.

4.4.2.3 Sub-Program to generate a gamma random variable.

The function of this program is to generate a gamma random variable. The value of the
variable is the population mean of traffic intensity. This program support the main
programin4.4.1.2 .

4.4.2.4 Sub-Program to generate a Poisson random variable.

The function of this program is to generate a Poisson random variable. The value of the

variable is the number of cars. This program support the main programin 4.4.1.1 .
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4.4.2.5 Sub-Program to generate a Bernoulie random variable.

The function of this program is to generate a Bernoulie random variable. The value of
the variable is the decision index to decide whether to choose something or not based on
its probability. So this program supports the main program in 4.4.1.2 and sub-program
4421

4.4.2.6 Sub-Program to generate a random number.

The function of this program isto generate arandom number. The value of random
number is used to generate a random variable from any distribution. So this program
supportsthe sub-program in 4.4.2.2-4.4.2.5

4.4.2.7 Sub-Program for fuzzy logic controller

The function of this program isto compute the degree of change in each phase based on

the fuzzy logic system. The input of this program comes from the main program in
4.4.1.2and 4.4.1.3
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Chapter 5
Results of the Study

5.1 The number of carson each direct route

There are 72 source-destination pairs (SD). The software estimated the number of cars
on each SD by mixure of maximum likelihood and Baysian estimation. The output are
shownin Table 5.1

Table 5.1 Rate of cars on each SD (per second) from estimation.

SD. | NO. SD. | NO. |SD. |[NO. |SD. | NO. |SD. |NO. |SD. | NO

X1 12183 | X3 | 0032 | X5 | 2476 | X37 | 0.02 | X49 | 2.208 | Xe1 | 0.038

Xo 10062 | X4 | 0.005| Xy | 2551 | X3z | 0.017 | X5 | 2.187 | Xe2 | 0.055

Xz 12228 | X5 | 0.088| X7 | 0.163| X39 | 0.06 | Xs1z | 1.917 | Xe3 | 0.022

Xa 10018 | X6 | 0043 | Xog | 2168 | Xa9 | 2.267 | Xs2 | 0.02 | Xesa | 2.047

Xs 10.035 | X7 | 0.015| X9 | 0.040| X41 | 2.18 | Xsz | 2.415| Xes | 0.02

Xe |21 Xig 1 0.023 | X3 | 0.023 | X42 | 0.017 | Xss4 | 0.023 | Xes | 2.248

X7 12668 | X9 | 0015| X3 | 0278 | X4z | 0.012 | Xs5 | 0.025 | Xe7 | 2.072

Xg |1.873 | X | 0.052| X3 |0.067| X4 | 0.015| Xs6 | 0.075 | Xeg | 0.328

Xo 10016 | Xz | 001 | Xz |0.032] Xs5 | 033 | Xs7 | 0.038 | Xeg | 0.02

X1 [0.023 | X» | 0.055| X34 | 0.08 | X46 | 0.052 | Xsg | 0.052 | X70 | 0.045

X1 |0.35 Xo3 [0.035] X35 [ 0.133 | X47 | 0.032 | X59 | 0.113 | X71 | 0.052

X1 10.0267 | Xo4 | 0.035| X365 | 0.042 | X4 | 0.032 | Xeo | 0.097 | X7 | 0.027

Note: SD. denote direct route.
No. denote rate of cars belong SD.

From Table 5.1 shows the rate of cars on direct links rather than the rate on direct
routes.

5.2 The perfor mance of traffic flow

The computer program generated the important parameters of traffic flow performance
under the fuzzy logic controller and conventional controller.The parameters were the
length of each phase, the number of cars behind the green light and the red light. The
outputs of the parameters are shown in Table 5.2-5.9. To understand the numbersin

each column, the No. green and No. red, are definded as follows:

1) No. Green denotes the number of cars behind the green light.
2) No. Red denotes the number of cars behind the red light.
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3) Thefirst number of No.Green is the number of cars stopping behind the red light at
pre-phase includes the other cars moving past the green light in the first group at
the current phase.

4) The second number of No. Green is the order of the last car that movesto pass the
green light or the number of all cars that pass green light at the current phase.

5) The first number of No. Red is the number of carsthat stop behind the red light at
pre-phase and still stop behind the red light including the other cars behind the red
light in the first group at the current phase.

6) The second number of No. Red is the order of the last car behind the red light

or the number of all carsthat sop behind the red light at the current phase.

The criterion of length is defined as follows:
Lessthan 35 secondsindicatesthat the length is short
Between  35-70 seconds indicates that the length is moderate
Greater than 70 seconds indicates that the length is long

According to the criterion of length it is assumed that the average car uses 1 second to
pass the intersection behind the green light. The criterion of No. Green and No. Red are
defined in terms of length as follows:
Lessthan 35 carsshow that No. Green or No. Red are few.
Between 35-70 carsshow that No. Green or No. Red are moderate.
Greater than 70 cars show as No. Green or No. Red are many.

5.2.1 The performance of traffic flow based on fuzzy logic controller

The computer program generated the parameters of traffic flow performance for the
fuzzy controller. The outputs of the parameters are shown asin Table 5.2-5.5
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Table 5.2 Pattern of traffic flow during each phase at Uboncharearnsri intersection

Based on fuzzy logic controller.

Cycle Phase No. Green No.Red Length(sec)
1 0 2-2 0.37
1 2 4-5 1-1 1.67
3 0 3-3 0.36
1 4-4 1-4 3.53
2 2 57 1-1 1.33
3 2-3 1-1 1.32
1 1-2 2-5 1.62
3 2 7-8 0-1 2.14
3 2-2 1-1 1.39
1 1-1 2-2 254
4 2 4-4 1-1 152
3 1-1 2-2 1.79
1 4-5 0-1 1.92
5 2 2-3 1-1 2.04
3 0 3-3 1.64
1 3-6 2-6 38
6 2 7-11 1-3 4.38
3 0 55 0.47
1 4-5 3-9 3.16
7 2 10-11 1-1 1.70
3 0 3-3 0.69
1 4-4 1-6 7.17
8 2 6-90 2-63 87.54
3 21-36 44-73 31.49
1 61-80 14-64 47.61
9 2 54-130 12-75 73.90
3 28-53 49-101 45.18
1 74-93 29-83 52.12
10 2 69-139 16-67 69.262
3 28-53 49-101 45.18
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1 65-107 25-105 60.55
11 2 94-185 13-81 76.65
3 32-71 51-114 59.47

1 82-131 34-135 72.47

12 2 121-168 16-57 62.32
3 29-45 30-75 38.88

1 48-69 29-75 39.50

13 2 64-122 13-66 68.77
3 34-53 34-89 45.16

1 56-80 35-86 45.23

14 2 79-129 9-46 52.88
3 16-40 32-67 35.21

1 47-81 22-75 47.05

15 2 62-122 15-64 67.15
3 28-49 38-90 42.06

1 57-88 35-94 49.08

16 2 91-160 5-56 61.53
3 22-45 36-74 42.03

1 49-70 27-80 39.81

17 2 72-104 10-23 28.82
3 11-23 14-37 20.22

1 24-34 15-39 21.43

18 2 36-58 5-17 21.66
3 10-18 9-23 22.50

1 18-23 7-26 14.63

19 2 23-98 5-63 66.82
3 23-40 42-82 36.18

20 1 62-82 22-80 46.64
2 72-114 10-40 46.78

Average X =53.6441 | X =44.8814 X =36.022
Standardeviation S=515316 | S=38.7495 S = 26.4409

Table 5.2 shows that the average of the number of cars behind the green light and the

red light on each phase are respectively 54 and 49 cars. The average of the optimal
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length on each phase is 36.022 seconds. The optimal length of each phase in early
cycles (cycle 1-cycle 7) isvery short. For late cycles (cycle 8 and later) the optimal
length of each phase is moderate. The optimal length of phase 2 seems longer than the
others. There are afew cars behind both the green and the red light in the early cycles.
However, there are moderate numbers of the cars behind both the green and the red
lights at the late cycles. In detail of cycle 1 (see Figure 4.3), each figure shows that there
are no cars behind the green light and there are 2 cars behind the red light on phase 1 so
it should be used only 0.37 seconds on this phase.

On phase 2 of cycle 1, 2 cars from phase 1 including the other 2 cars pass the green
light and the last car that passes the green light on this phase is the 5" ; the number of
all carsthat passthe green light on this phase are 5 cars while 1 car stops behind the red
light. This phase uses only 1.67 secconds. On phase 3 of cycle 1, 1 car from phase 2
still stops behind the red light and there are no other cars passing the green light while
there are the other 2 cars behind the red light; the number of all cars behind the red light
on this phase are 3 cars. The phase uses 0.35 seconds. The describtion of the other
cyclesare similar to the description of cycle 1 in which the number of cars on the
current phase are impacted by the number of cars on the

pre- phase.

Table 5.3 Pattern of traffic flow during each phase at Clock Hall intersection based on
fuzzy logic controller.

Cycle Phase No. Green No. Red Length(sec)
1 0 2-2 0.19
1 2 3-5 1-9 6.53
3 0 11-11 4.15
1 11-62 2-50 57.24
2 2 44-121 8-109 91.63
3 16-16 95-102 22.01
1 99-151 5-65 67.96
3 2 61-85 6-57 62.34
3 10-10 49-52 11.80
1 51-60 3-10 12.67
4 2 10-21 2-15 22.29
3 2-2 15-17 12.49
1 17-17 2-2 2.93
5 2 1-1 3-3 1.63
3 2-2 3-4 15.14
1 4-8 2-2 34
6 2 3-3 1-2 2.734
3 1-1 3-3 11.96
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1 35 2-2 2.97
7 2 2-5 2-8 9.29
3 2-2 8-8 8.69
1 8-8 2-2 4.32
8 2 1-8 3-16 19.95
3 2-3 16-19 14.46
1 16-79 5-62 66.38
9 2 56-128 8-101 85.91
3 18-18 85-93 22.02
1 89-95 6-10 13.68
10 2 10-43 2-57 79.68
3 8-10 51-67 4251
1 62-91 7-39 47.97
11 2 35-59 6-35 46.59
3 10-11 27-32 17.03
1 31-39 315 24.41
12 2 14-72 3-67 79.91
3 8-8 61-61 9.65
1 60-78 3-17 22.37
13 2 18-116 1-144 128.44
3 14-14 132-140 18.05
1 134-226 8-88 80.05
14 2 82-149 8-89 80.01
3 13-13 78-93 44.34
1 85-165 10-92 81.43
15 2 82-130 12-63 73.69
3 19-19 46-51 22.64
1 49-128 4-89 81.10
16 2 81-160 10-101 86.23
3 24-25 79-97 3111
1 88-170 11-70 17.15
17 2 - - -
3 - - -
Average X =539184 | X =47.8163 X =36.1454
Standardeviation S=59.9992 S=40.7455 S=232.6769

Table 5.3 showsthat the average of the number of cars behind the green light and the

red light on each phase are respectively 54 and 48 cars. The average of the optimal

length on each phase is 36.1454 seconds. There is an instability in the performance of

traffic flow at early cycle (cycle 1-cycle 8). At cycle 1, there are afew cars behind the

green and the red light and very short optimal length. For cycle 2 and cycle 3, the most

number of cars behind the green light are many but the most number of cars behind the

red light and the optimal length are moderate. The performance of traffic flow at cycle

4-cycle 8 isthe same as the performance at cycle 1. At late cycles

134




( cycle 9 and beyond), the most optimal lengths are long. The most number of cars
behind the green and red light are many. In detail of cycle 1 (see Figure 4.4), each figure
shows that there are no cars behind the green light and there are 2 cars behind the red
light on phase 1 so it should be used only 0.19 seconds on this phase.

On phase 2 of cycle 1, 2 cars from phase 1 including another one pass the green light
and the last car passing the green light on this phase is the 5; the number of all cars that
pass the green light on this phase are 5 cars while 9 cars stop behind the red light. The
phase uses 6.53 secconds. On phase 3 of cycle 1, 9 carsfrom phase 2 still stop behind
the red light and there are no other cars passing the green light while there are the other
2 cars are behind the red light; the number of all carsthat behind the red light on this
phase are 11 cars. The phase uses 4.15 seconds. The description of the other cyclesare
similar to the description of cycle 1 in which the numbers of cars on the current phase
are impacted by the number of cars on the pre- phase.

Table 5.4 Pattern of traffic flow during each phase at Chonlaprathan intersection
based on fuzzy logic controller.

Cycle Phase No. Green No. Red Length(sec)
1 0 2-2 1.48
1 2 33 1-1 1.18
3 1-1 2-2 0.75
1 0 4-4 2.21
2 2 4-4 2-5 3.61
3 2-3 5-8 2.41
1 5-26 5-35 15.78
3 2 22-167 15-196 129.63
3 107-195 91-273 109.33
1 178-288 97-357 161.24
4 2 246-449 113-386 213.46
3 254-409 134-481 229.39
1 280-456 203-628 255.56
5 2 441-720 189-611 337.61
3 399-685 214-826 383.23
Average X =120.33 X =131.2121 X =68.3625
Standardeviation S=200.7387 | S=219.3564 S=104.167

Table 5.4 shows that the average of the number of cars behind the green light and the
red light on each phase are respectively 120 and 131 cars. The average of the optimal
length on each phase is 68.3625 seconds. There are only five cycles during a specified
time. There are afew cars and very short optimal lengths on all phases at cycle 1 and
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cycle 2. For cycle 3,4 and 5 there are many cars behind the green and the red lights,
while the optimal length is very long on all phases. In detail of cycle 1,

(see Figure 4.5) each figure shows that there are no cars behind the green light and there
are 2 cars behind the red light on phase 1 so it should be used only 1.48 seconds for this
phase. On phase 2 of cycle 1, 2 cars from phase 1 include another one passing the green
linght; the number of all carsthat passthe green light on this phase are 3 cars while 1
car stops behind the red light. The phase use 1.18 secconds. On phase 3 of cycle 1, 1 car
from phase 2 passes the green light while there are 2 cars behind the red light; the
number of all cars behind the red light on this phase are 2 cars. The phase uses 0.75
seconds. The describtion of other cycles are similar to the description of cycle 1 in
which the number of cars on the current phase are impacted by the number of cars on

the pre phase.

Table5.5 Pattern of traffic flow during each phase at Airport intersection from
fuzzy logic controller.

Cycle Phase No. Green No. Red Length(sec)
1 0 2-2 0.64
1 2 1-6 3-16 6.05
3 5-10 13-20 7.52
4 12-16 10-28 10.27
1 17-41 13-60 39.69
2 2 26-78 36-166 91.71
3 51-73 117-183 41.39
4 94-146 91-215 82.64
1 119-167 98-259 93.96
3 2 106-198 155-453 166.36
3 193-274 262-504 153.67
4 256-381 250-594 213.85
1 289-412 307-675 230.63
4 2 347-586 330-997 413.64
3 396-560 603-1164 313.46
4 - - -
Average X =926579 | X =154.3421 | X =60.1001
Standardeviation S=153.865 | S=281.2448 S=94.7208

Table 5.5 shows that the average of the number of cars behind the green light and the
red light on each phase are respectively 93 and 154 cars. The average of the optimal
length on each phase is 60.1001 seconds. there are only four cycles during the specified
time. There are afew cars and very short optimal length on all phases at cycles 1. For
cycles 2,3 and 4 there are many cars behind the green and the red lights, while the

optimal length is very long on most phases. In detail of cycle 1
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(see Figure 4.6), each figure shows that there are no car behind the green light and there
are 2 cars behind the red light on phase 1 so it should be used only 0.64 seconds for this

phase.

On phase 2 of cycle 1, there are 6 cars passing the green light , the number of all cars
that pass the green light on this phase is 6 cars while 2 carsfrom phase 1 till stop
behind the red light including another one; the number of all carsthat stop behind the
red light on this phase are 16 cars. The phase uses 6.05 secconds. On phase 3 of cycle 1,
5 carsfrom 16 cars on phase 2 pass the green light and the last car that passes the green
light on this phase is the 10™; the number of all cars that pass the green light on this
phase is 10 cars while the 11 cars from 16 cars on phase 2 still stop behind the red light,
including the other 2 cars are also behind the red light; the number of all cars behind
the red light on this phase are 20 cars. The phase uses 7.52 seconds. On phase 4 of cycle
1, 12 cars from the 20 cars on phase 3 pass the green light and the last carsthat pass the
green light on this phase is the 16™; the number of all cars behind the green light on this
phase are 16 cars. There are 8 cars from 20 cars on phase 3 still stopping behind the red
light include the other 2 cars; the number of the all cars behind the red light on this
phase are 28 cars. The phase uses 10.27 seconds. The description of the other cycles are
similar to the description of cycle 1 in which the number of cars on the current phase are
impacted by the number of carson the

pre- phase.

5.2.2 The performance of traffic flow based on conventional
controller

The computer program generated the parameters of traffic flow performance for the
conventional controller. The outputs of the parameters are shown as Table 5.6-5.9

Table 5.6 Pattern of traffic flow during each phase at Uboncharearnsri intersection
based on conventional control.

Cycle Phase No. Green No. Red Length(sec)
1 0-11 2-30 20
1 2 28-56 4-20 25
3 4-20 18-36 25
1 26-35 12-29 20
2 2 24-47 4-28 25
3 12-30 18-55 25
1 31-41 26-37 20
3 2 36-55 3-16 25
3 7-19 11-39 25
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1 21-31 20-40 20

4 2 38-63 4-21 25
3 7-27 16-52 25

1 37-51 17-44 20

5 2 39-66 7-24 25
3 14-27 12-28 25

1 20-31 10-34 20

6 2 30-53 6-27 25
3 11-25 18-42 25

1 28-42 16-36 20

7 2 37-56 1-22 25
3 9-18 15-51 25

1 30-40 23-55 20

8 2 52-79 5-30 25
3 9-22 23-47 25

1 32-43 17-48 20

9 2 46-69 4-34 25
3 16-34 20-60 25

1 36-52 26-42 20

10 2 35-59 9-24 25
3 13-24 13-43 25

1 25-40 20-49 20

11 2 48-77 3-32 25
3 12-25 22-47 25

1 36-46 13-35 20

12 2 35-48 2-15 25
3 8-20 9-41 25

1 18-32 25-49 20

13 2 45-63 6-25 25
3 13-28 14-42 25

1 22-31 22-40 20

14 2 35-51 7-30 25
3 15-27 17-58 25

1 32-41 28-46 20

15 2 43-67 5-24 25
3 10-23 16-43 25

1 29-39 16-36 20

16 2 33-59 5-24 25
3 11-29 15-41 25

1 27-42 16-43 20

17 2 37-56 8-31 25
3 13-25 20-48 25

1 37-42 13-30 20

18 2 24-54 8-25 25
3 11-22 16-46 25

1 25-35 23-50 20

19 2 52-82 0-19 25
3 4-47 17-58 25

1 37-45 23-46 20

20 2 42-71 6-27 25
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20 3 12-24 17-27 25
1 28-35 21-44 20
21 2 40-70 6-23 25
3 10-23 15-38 25
1 27-34 13-39 20
22 2 40-72 1-16 25
3 4-18 14-41 25
1 26-31 17-36 20
23 2 32-49 6-24 25
3 12-26 14-42 25
1 23-37 21-57 20
24 2 52-75 7-30 25
3 12-22 20-56 25
1 36-42 22-46 20
25 2 42-68 6-22 25
3 10-24 14-36 25
1 23-33 15-30 20
26 2 - - 25
3 - - 25
Average X =41.7895 X =36.8553
Standardeviation S=17.554 S=11.4108

Table 5.6 shows that the average of the number of cars behind the green light and the
red light on each phase are respectively 42 and 37 cars. The number of cars behind the
green and the red lights on most phases are moderate. In detail of cycle 1 (see Figure
4.3), each figure shows that there are 11 cars behind the green light and there are 30 cars
behind the red light on phase 1, it uses 20 seconds for this phase. On phase 2 of cycle 1,
28 cars from 30 cars on phase 1 pass the green light and the last car that passes the
green light on this phase is the 56™; the number of all carsthat pass the green light on
this phase is 56 cars while 2 cars from 30 cars on phase 1 till stop behind the red light
including the other 2 cars; the last car behind the red light on this phase is the 20" so
that the number of all cars stopping behind the red light on this phase is 20 cars. The
phase use 25 secconds. On phase 3 of cycle 1, 4 cars from the 20 cars on phase 2 pass
the green light and the last car that passes the green light is the 20" ; so the number of
all cars passing the green light on this phase is 20. There are 16 cars from the 20 cars on
phase 2 still stopping behind the red light including the other 2 cars are also behind the
red linght on this phase; the number of all cars behind the red light on this phase are 36
cars. The phase uses 25 seconds. The description of other cycles are similar to the
description of cycle 1 in which the number of car on the current phase are impacted by

the number of car on the pre-phase.
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Table 5.7 Pattern of traffic flow during each phase at Clock Hall intersection
based on conventional controller.

Cycle Phase No. Green No. Red Length(sec)
1 0-23 2-18 20
1 2 17-40 3-29 25
3 4-4 27-33 25
1 32-44 3-17 20
2 2 14-34 5-27 25
3 8-8 21-34 25
1 31-49 5-21 20
3 2 20-46 3-39 25
3 4-4 37-46 25
1 40-59 8-32 20
4 2 31-50 3-25 25
3 3-4 24-36 25
1 29-52 9-26 20
5 2 24-34 4-24 25
3 5-5 21-28 25
1 27-46 3-16 20
6 2 16-24 2-16 25
3 3-3 15-22 25
1 17-36 7-16 20
7 2 13-18 5-18 25
3 7-7 13-23 25
1 17-38 8-23 20
8 2 24-45 1-31 25
3 2-4 31-44 25
1 38-52 8-25 20
9 2 22-38 5-32 25
3 6-6 28-40 25
1 36-51 6-25 20
10 2 23-42 4-25 25
3 8-8 19-30 25
1 24-35 8-17 20
11 2 16-33 3-29 25
3 4-4 27-32 25
1 30-35 4-4 20
12 2 12-22 4-34 25
3 7-8 29-39 25
1 33-48 8-27 20
13 2 24-41 5-28 25
3 7-7 23-28 25
1 26-33 4-14 20
14 2 12-26 5-18 25
3 4-5 16-33 25
1 25-45 10-33 20
15 2 33-48 2-17 25
3 3-5 16-35 25
1 28-29 9-15 20
16 2 14-29 3-26 25
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16 3 2-3 26-39 25
1 35-52 6-22 20
17 2 22-42 2-38 25
3 4-6 36-41 25
1 40-58 3-20 20
18 2 16-42 6-37 25
3 6-6 33-46 25
1 37-51 11-33 20
19 2 31-47 4-33 25
3 7-7 28-35 25
1 33-62 4-27 20
20 2 28-53 1-29 25
3 1-2 30-40 25
1 34-51 8-29 20
21 2 28-46 3-28 25
3 3-3 27-38 25
1 33-53 7-27 20
22 2 26-53 3-32 25
3 4-5 30-41 25
1 36-47 7-27 20
23 2 26-43 3-29 25
3 6-6 25-43 25
1 37-52 8-28 20
24 2 25-39 5-18 25
3 7-7 13-24 25
Average X =30.0417 | X =28.5278
Standarderviation S = 19.5358 S=8617

From Table 5.7 shows that the average of the number of that behind the green light and
the red light on each phase are respectively 30 and 29 cars. the number of cars behind
the green and the red light on most phases are moderate. In detail of cycle 1 (see Figure
4.4), each figure shows that there are 23 cars passing the green light and there are 18
cars stopping behind the red light; it uses 20 seconds on this phase. On phase 2 of cycle
1, 17 carsfrom 18 cars on phase 1 pass the green linght and the last car that passes the
green light on this phase is the 40™; the number of all carsthat pass the green light on
this phase is 40 cars while 1 car from 18 cars on phase 1 still stop behind the red light
including the other 2 cars. The last car that stops behind the red light on this phase is the
29™: 50 that the number of all cars that stop behind the red light on this phase is 29
cars.The phase uses 25 secconds. On phase 3 of cycle 1, there are only 4 cars from 29
cars on phase 2 passing the green light while there are 25 cars from the 29 cars on phase
2 still stopping behind the red light including the other 2 cars; the number of all cars
stopping behind the red light on this phase are 33 cars. The phase uses 25 seconds. The
description of the other cycles are similar to the description of cycle 1 in which the
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number of cars on the current phase are impacted by the number of cars on the pre-

phase.

Table 5.8 Pattern of traffic flow during each phase at Chonlaprathan intersection
based on conventional controller.

Cycle Phase No. Green No. Red Length(sec)
1 0-16 2-32 20
1 2 20-50 14-49 25
3 29-44 22-58 25
1 33-55 27-70 20
2 2 52-84 20-57 25
3 41-57 18-61 25
1 32-48 31-66 20
3 2 48-66 20-61 25
3 40-61 23-63 25
1 42-58 23-52 20
4 2 40-61 14-58 25
3 34-47 26-75 25
1 41-53 36-69 20
5 2 53-74 18-51 25
3 34-52 19-55 25
1 34-49 23-55 20
6 2 37-64 20-53 25
3 37-51 18-55 25
1 35-47 22-47 20
7 2 39-65 10-35 25
3 18-30 19-63 25
1 35-53 30-64 20
8 2 47-73 19-51 25
3 37-56 16-53 25
1 29-37 26-56 20
9 2 36-56 23-60 25
3 38-55 24-64 25
1 33-54 33-70 20
10 2 52-74 20-45 25
3 34-49 13-43 25
1 24-35 21-45 20
11 2 34-55 13-40 25
3 29-42 13-47 25
1 30-46 19-51 20
12 2 39-70 14-50 25
3 32-50 20-50 25
1 33-47 19-58 20
13 2 40-66 20-60 25
3 45-62 17-50 25
1 29-40 23-47 20
14 2 36-61 13-54 25
3 37-54 19-58 25
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1 37-48 23-53 20
15 2 41-65 14-56 25
3 36-57 22-64 25
1 42-51 24-59 20
16 2 47-69 14-52 25
3 24-45 30-68 25
1 45-58 25-57 20
17 2 44-67 15-49 25
3 33-45 18-48 25
1 27-42 23-53 20
18 2 36-67 17-54 25
3 34-54 22-53 25
1 35-49 20-37 20
19 2 33-45 6-34 25
3 23-41 13-42 25
1 33-39 21-47 20
20 2 27-53 12-45 25
3 26-41 21-50 25
1 33-46 19-55 20
21 2 47-69 10-43 25
3 24-35 21-58 25
1 44-79 12-56 20
22 2 40-58 18-56 25
3 40-58 18-56 25
1 35-46 23-67 20
23 2 45-66 24-55 25
3 45-62 22-60 25
1 43-56 19-58 20
24 2 38-57 22-56 25
3 43-60 15-49 25
1 30-40 21-52 20
25 2 40-64 14-41 25
3 28-43 15-55 25
1 30-43 27-69 20
26 2 - -
3 - -
Average X =53.75 X =54.0526
Standarderviation S=11.786 S=8.7115

Table 5.8 shows that the average of the number of cars behind the green light and the
red light on each phase are 54 cars.The number of cars behind the green and the red
light on all phases are moderate. In detail of cycle 1 (see Figure 4.5), each figure shows
that there are 16 cars passing the green light and there are 32 cars scopping behind the
red light, it uses 20 seconds for this phase. On phase 2 of cycle 1, 20 carsfrom 32 cars
on phase 1 pass the green light , the number of all carsthat pass the green light on this
phase are 50 cars. There are 12 cars from the 32 cars on phase 1 till stopping behind
the red light including the other 2 cars.The last cars that stops behind the red light on
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this phase is 49", so that the number of all cars that stop behind the red light on this
phase are 49 cars. The phase uses 25 secconds. On phase 3 of cycle 1, 29 carsfrom 49
cars on phase 2 passing the green light, the last car that passes the green light on this
pase is 44™ | so that the number of all carsthat pass the green light on this phase are 44
cars. There are 20 cars from 49 cars on phase 2 still stopping behind the red light
including the other 2 cars, the number of all carsthat stop behind the red light on this
phase are 58 cars. The phase uses 25 seconds. The description of other cycles are
similar to the description of cycle 1 in which the number of cars on the current phase are
impacted by the number of carson the

pre-phase.

Table5.9 Pattern of traffic flow during each phase at Airport intersection
based on conventional controller.

Cycle Phase No. Green No. Red Length(sec)
1 0-17 2-45 25
1 2 13-18 34-61 20
3 24-28 39-76 20
4 35-54 43-81 25
1 38-52 45-83 25
2 2 52-57 33-62 20
3 23-33 41-60 20
4 37-51 25-67 25
1 31-47 38-79 25
3 2 39-47 42-71 20
3 36-45 37-78 20
4 39-55 41-69 25
1 39-53 32-75 25
4 2 27-39 50-79 20
3 40-54 41-73 20
4 47-56 28-72 25
1 34-47 40-78 25
5 2 37-49 43-87 20
3 38-51 51-86 20
4 45-64 43-77 25
1 44-59 35-84 25
6 2 37-49 49-85 20
3 41-52 46-74 20
4 41-57 35-80 25
1 37-47 45-83 25
7 2 38-48 47-73 20
3 40-49 35-66 20
4 42-57 26-69 25
1 28-39 43-79 25
8 2 40-51 41-74 20
3 44-48 32-68 20
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8 4 42-50 38-76 25
1 38-54 40-92 25
9 2 43-49 51-88 20
3 37-42 53-91 20
4 49-56 44-85 25
1 34-48 53-89 25
10 2 50-55 41-80 20
3 34-38 48-72 20
4 44-59 30-82 25
1 39-52 45-87 25
11 2 46-54 43-74 20
3 39-43 37-75 20
4 37-54 40-76 25
1 34-51 44-90 25
12 2 43-52 49-74 20
3 34-38 42-75 20
4 44-60 33-72 25
1 30-44 44-72 25
13 2 44-54 33-69 20
3 28-37 43-72 20
4 40-54 34-81 25
1 43-55 40-96 25
14 2 56-71 42-81 25
3 43-54 40-74 20
4 43-62 33-64 20
1 33-46 33-69 25
15 2 35-45 36-66 20
3 29-36 39-66 20
4 39-49 29-75 25
1 31-39 46-82 25
16 2 37-49 47-73 20
3 41-51 34-69 20
4 35-46 36-72 25
1 35-41 39-75 25
17 2 40-54 37-87 20
3 34-49 55-88 20
4 46-56 44-84 25
1 53-65 33-81 25
18 2 39-50 44-79 20
3 29-41 52-96 20
4 60-84 38-74 25
1 34-51 42-86 25
19 2 41-54 47-82 20
3 44-51 40-78 20
4 43-57 37-72 25
1 39-54 35-75 25
20 2 36-45 41-71 20
3 37-48 36-64 20
Average X =46.6203 | X =76.519
Standarderviation S=9.7261 S=8.7616
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From Table 5.9 showsthat the average of the number of cars behind the green light and
the red light on each phase are respectively 47 and 77 cars. The number of cars behind
the green and the red light on all phases are moderate. In detail of cycle 1

(see Figure 4.6), each figure shows that there are 17 cars behind the green light and
there are 45 cars behind the red light on phase 1; it uses 25 seconds for this phase. On
phase 2 of cycle 1, there are 13 cars from 45 cars on phase 1 passing the green light ,
the number of all cars passing the green light on this phase is 18 cars while 32 cars from
45 carson phase 1 still stop behind the red light including the other 2 cars, the number
of all cars stopping behind the red light on this phase is 61 cars. The phase uses 20
secconds. On phase 3 of cycle 1, 24 carsfrom 61 cars on phase 2 passing the green
light and the last car passing the green light on this phase is the 28", the number of all
cars passing the green light on this phase is 28 cars. There are 37 cars from 61 cars on
phase 2 still stopping behind the red light including the other 2 cars, the number of all
cars that behind the red light on this phase are 76 cars. The phase uses 20 seconds. On
phase 4 of cycle 1, 35 cars from 76 cars on phase 3 passing the green light and the last
cars passing the green light on this phase is the 54", the number of all cars behind the
green light on this phase are 54 cars. There are 41 cars from 76 cars on phase 3 still
stopping behind the red light including the another 2 cars; the number all cars that
behind the red light on this phase is 81 cars. The phase uses 25 seconds. The description
of the other cycles are similar to the description of cycle 1 in which the number of cars
on the current phase are impacted by the number of cars on the pre phase.

5.3 The controller performance comparison

The cost function provides a means of comparing the traffic flow performance of the
fuzzy controller against the conventional controller. The lower the cost function isthe
better the perfomance. The controller performance comparisons are as illustrated in
Figures5.1-5.4.
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Figure5.1 Controller performance comparison at Uboncharearnsri intersection.

Figure 5.1 shows that on average, the cost function based on the fuzzy controller is
lower than the cost function based on the conventional controller.
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Figure5.2 Controller performance comparison at Clock Hall intersection.

Figure 5.2 shows that on average, the cost function based on the fuzzy controller is
lower than the cost function based on the conventional controller.
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Figure 5.3 Controller performance comparison at Chonlaprathan intersection.

Figure 5.3 shows that on average, the cost function based on the fuzzy controller is
lower than the cost function based on the conventional controller.
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Figure 5.4 shows that on average, the cost function based on the fuzzy controller is

lower than the cost function based on the conventional controller.
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Chapter 6

Conclusion and Discussion
6.1 Conclusion

This study aims at computing the optimal lengths of traffic signal lights on each phase
of four intersections in the inner city of Ubon rachathani Province namely
Uboncharearnsri , Clock Hall , Chonlaprathan and Airport intersections. The expected
outcomes consist of the method to calculate the traffic signal timing at the targeted
intersections during rush hour and the traffic signal timing that is relevant to the number
of vehicles at the intersections.

To estimate the number of carsthat arrive at or depart from the intersections, the study
uses a mixed model of maximum likelihood (Vardi, 1996) and Bayesian inference
(Tebaldi & West, 1998). The process started with a survey at the intersections of the
traffic system under study path. Let each intersection be anode and treat the traffic
system as a network. The path that connects any two nodes was called a direct route and
adirect link that refers to the path that have no nodes between the two ends. There are
72 direct routes and 18 direct links in the network. This enables the researcher to

observe the number of cars passing on any direct link but not on the direct route.

A relation between the number of cars passing on adirect link and direct route are
presented by an equation as follows:
Y = AX
Y : direct link vector
X direct route vector

A : routing matrix

In the process of data collection, the number of cars were observed on 20 days and the

EM iteration was used to solve the equation to estimate the mean (| ) of the number of

carson al links. Now knowing Y and | from observation and EM iteration, the next
step wasto estimate X . Bayesian inference was used to achieve the goal; the illustrated
distribution is as follows:

p (4y.!)
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The Gibbs sampler (Casella & George,1992) is used to establish the algorithm of the
software to generate X , and support starting point of the algorithm with the mean(] ).

As previously mentioned the study mixed the two methods of EM iteration and the
Gibbs sampler to estimate the number of carson all links.

The statistical inference shows the number of cars behind the green light and behind the
red light. In addition, queuing system theory is used to generate the length of current
cycle time.The length derived from summation of interarrival time. The interarrival time

is generated from an exponential distribution.

The outputs from the estimation, the number of cars behind the green light, the number
of cars behind the red light and the length of current cycle time are used as the fact for a
Fuzzy logic system that consists of four components.

1. Fuzzyfier

2. Fuzzy rule based

3. Fuzzy inference engine, and

4. Defuzzifier

The Fuzzyfier component defines membership values of Fuzzy sets according to Kelsey
and Bisset (1993), and also the rule based in the Fuzzy rule base component that are
composed of 26 rules, which are different from those of rules based on Pappis and

Mamdani (1977) who use a set of five rulesin their fuzzy logic system.

The Fuzzy inference engine component is based on the product-sum-gravity method
presented by Kandel and Langholz (1994). It was used to combine the Fuzzy rulesin
the fuzzy rules base into a mapping from fuzzy set to fuzzy set . The Defuzzifier
component, is based on the center average defuzzifier that was presented by Kandel and
Langholz (1994) and is used to perform a mapping from fuzzy set to crisp point.

The crisp point from fuzzy logic is the degree of change. The degree of change has a
value between 0 to 1. If the degree of change converges to 0 then the state of the light
(phase) remain the same, whereas the state will change to next state if the degree
convergesto 1.
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From the conclusion, as previously mentioned, we can generate traffic flow in a certain
time. The traffic flow is composed of the number of cars behind the green light and the
number of cars behind the red light at the current moment of time. In addition, the
estimation delivers the length of the current cycle time. Finally the optimal length of

each phase of the cycle is the length of current cycle time.

The traffic flow outputs under fuzzy controller at each intersections are different. At
Uboncharearnsri intersection, it is found that the optimal length of each phase at early
cycles (cycle 1-cycle 7) isvery short. At late cycles (cycle 8 and beyond) the optimal
length of each phase is moderate. The optimal length of phase 2 is likely to be longer
than the others. There are few cars behind both the green light and the red light in the
early cycle. There is a moderate number of cars behind both the green light and the red
light in the late cycle.

At Clock Hall intersection, the traffic flow outputs at early cycles (cycle 1-cycle 8) is
found to be not stable. At cycle 1, there are afew cars behind both the green and the red
light. In addition, the optimal length is very short. For cycle 2 and cycle 3, the number
of cars and the optimal Iength are moderate. The traffic flow outputs at cycle 4-cycle 8
isjust the same as the cycle 1. At late cycles (cycle 9 and beyond), the most optimal
lengths are long. The most number of cars behind the green and red light are found

many.

For Chonlaprathan intersection, there are only five cycles during the specified time.
There are afew cars and very short optimal length on all phases at cycle 1 and cycle 2.
For cycle 3,4 and 5 there are many cars behind the green and the red light, and the
optimal length is very long on all phases. The traffic flow at Airport intersection is

similar to that a Chonlaprathan intersection.

For the traffic flow under the conventional controller, the length of traffic lights on each
phase of all cycles are fixed. Theresults at all intersections are similar; the number of

cars are moderate and there are approximate 22 cycles on specific period of time.

This study employs the cost function to evaluate the traffic flow. The cost function
involves the average of wait time and drive time, the number of cars exiting and

entering the intersection. The efficiency of atraffic controller can be judged from the

153



value of the cost function. The lower the cost function the better performance of the

controller.

The comparison of controller performances shows that cost function under the
suggested traffic controller is lower than the cost function from conventional controller.
This shows that the output of the comparison illustrating the fuzzy controller is more

efficient than the conventional controller.

6.2 Discussion

From the literature review, there are many ways to attempt to solve traffic problems.
This study concentrates on solving a part of the traffic problem, congestion at
intersection. The study accords with these of many authors such as Kotsopoulos (1999),
Lan (2002) and so on. A major factor that influences traffic congestion is poor timing.
The study improves traffic signal timing at intersections by using mathematical and
statistical methods similar to those of Schutter’s study (2002) and Yi, Xin and Zhao’s
study (2001). Fuzzy logic is applied in away similar to the work of many authors such
as Zhenyang’s study (2004), Ande’ study (1996), Edid’s study (1999),Seongho’ s study
(1994), Adeli and Karim’s study (2000) , Lee, Krammes and Y en's study (1998) and
Cabreraand Ivan's study (2000). The present sudy ignored the development for the
software or hardware of traffic signals. The study did not use high technology tools
because of these high cost and the traffic control was unavailable for traffic control in
the area of study. The main contribution of the study is the provision of an alternative
means to improve the suitable signal timing for traffic controller at the intersections
studied by using the optimal length computed by using computer programming by the
Fortran language which the police and authorities can apply to solve the traffic
problems. The algorithm of computer programming is based on EM algorithm and the
Gibbs sample in Markov Chain Monte Carlo, in which demonstrated on many articles
such as Herring and I brahim (2002), Karlis (2003), Kim and Taylor (1995), Lee and Shi
(2001), Carlin, Stern, and Rubin (1995) and so on. The objective of the algorithmsisto
estimate traffic intensity based on the coordination of the idea of Vardi (1996) and
Tebaldi and West (1998). Moreover the study applied queuing theory to identify
waiting time, length of queue and the length of the current cycle time similar to the
work done by Cheng and Allam (1992), Cruz, Smith and Mediros (2005), Dewees
(1979), Das and Levinson (2004), and Omari,Masaeid and Shawaeid (2004). Queuing
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application in such report papersis mainly based on simulation that is different from
this study in that this study only applied queuing to generate interarrival time to
calculate waiting time and queue length and the length of the current cycle time. This
study also applied fuzzy logic system for traffic control similar to the work of many
authors such as Zhenyang' study (2004), Ande;s study (1996), Enid’s study (1999),
Cabreraand Ivan’ study (2000) and so on. Fuzzy logic system designs the algorithm of
decision process. The algorithm was designed to change traffic intensity estimator and
the length of the current cycle time to degree of change just the same as of the study
done by Kelsey and Bisset (1993). The degree of change decided whether to change the
state of the traffic light or remain in the same state. In addition, the algorithm was
dependent upon an expert traffic control and the membership function that need to be
adapted with the observation data (Wang,1994).

The likelihood of the output of traffic flow performance under fuzzy controller at Ubon
Charernsri intersection and the performance at Clock Hall intersection derived from the
two intersections are close to each other. Additionally, these intersections are in the
same traffic environment. The optimal Iength of traffic signal light on each phase of the
late cycles are moderate, because the number of carsthat exit and enter the intersections
are moderate. Thisis likely because there are afew carsthat exit and enter the
intersections at the early cycles, the optimal length of traffic signal light are very short.

The traffic flow performance at Airport and Chonlaprathan intersection gave a similar
result in both the number of cars and optimal length of traffic signal light due to their
proximity. The optimal length of traffic signal light on all phasesiis likely to be very
long because the Airport intersection has more traffic congestion than the others
whereas Chonlaprathan intersection has fewer cars than the others.

Theoretically, the fuzzy logic application to control traffic signal light in other research
reports was based on the simulation and the controller installed on the equipment of
traffic signal controller differentiated this study from the previous studied. Such
difference isthat the output from this study do not apply to control traffic flow at the
moment. Instead, the process needs data collection and computation by computer
programming and then apply traffic timing to control in the next time.
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Interestingly, the evaluation by using cost function generation shows that the procedure
of this study is very helpful to decrease waiting time and queue length as done by other

methods that use high technology equipment.

Summing up, this study presents the mixed method between maximum likelihood
estimation and Bayesian estimation to estimate the number of carsthat passall linksin
the studied traffic system. Moreover this study also let the estimator in the fuzzy logic
system to infer the optimal length on each phase at each intersection. The problem and
obstacles of this study is that the observation is probably incorrect in some situations,
and the study does not cover the improvement of the optimum length in the real
situation. Another problem is that this study independently calculated the optimal length
at each intersection which may not correspond to the real situation. The future study
should link data between each intersection to calculate the optimal length.
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The flowchart for main program

START

i=0

A

i=i+1

read ia(i,j)

m=0
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A

m=m-+1

n=0

read iy(m,n)

i=0

A

i=i+1

j=0
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no

J=j+1

Iy(Lj)=iy(i.j)/30

ix=45673874

j=0

no

Bl

J=j+1

sum y=0

i=0
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i=i+1

sum y=sumy + iy(i’j)

yes

y bar(j)=sum y/20

y mean(j)=y bar(j)/30

no

ix=45673874

i=i+1
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x=0
al=80
be=2

zi=I

yi=i

call subroutine gamma

rmui)=x

no

yes

rmu(1)=y bar(1)/30
rmu(3)=y bar(7)/30
rmu(48)=y bar(12)/30

n1=0

i

n1=n1+1

k1=0

A

k1=k1+1
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gys=0

d1=0

dil=di+1

rv=dl
rk=k1
m=nl

rmean=y bar(k1)/30

call subroutine poiss

Y

gy(k1)=XP
gys=gys+gy(kl)

no

bar(k1)=gys/100
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=0

isuma=0

i=0

no

i=i+1

i sum(j)=i sum a

i sum(j)=i sum a
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t1=t1+1

i=0

A

i=i+1

sum ar=0

j=0

=i+

ri=i
=i
rt=t1

PP vV U9
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sum ar=sum ar + ia(i,j)*rmu(j)

no

rmar(i)=sum ar

j=0

=i+

Y

sum d=0
sum test=0

i=i+1

w
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(o]

no

no

=i
ri=i

Y

ratio=bar(i)/rmar(i)
rmuti=ia(i,j)*ratio
sum test=sum test + rmuti

devide=sum test/| sum(j)

yes

ramda(t1,j)=rmu(j)*devide
para(n1,j)=ramda(t1,j)
rmu(j)=ramda(t1,j)
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j1=j1+1

sum p=0

rj=j1

n1=0

n1=n1+1

sum p=sum p + para(n1+j1)

no

yes

rmean(j1)=sum p/50

t=0
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s=0

A

t=t+1

s=s+1

=0

=i+

i=i+1

=i
ri=

yes

ram(t,l,j)=rmeanp(i)
x3(t-1,1,j)=rmeanp(i)

) ©
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yes

rmeanp(i)<103

yes

rmeanp(i)>103

rmean=ram(t,i,j) —

rmean=103

call sub routine poiss

x3(t,i,j)=xp

yes
t>1

al=int(also(x3(t-1,i,j))+1
be=1
X=0

no

call subroutine gamma

A

ram(t,i,j) = x
rmean = ram(t,i,j)
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rmean = ram(t,i,j)

mean =103

call subroutine poiss

x3(t,i,)) = xp

run=1

mf = int(x3(t,i,j))

>

VAVAU R
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AN

m = m+1

run = run*rmeanp(iyym

u(t,i,j) = run/2.718**rmeanp(i)

n=0
k=0

umut,ij) =1

rlo(t,i,j) =1

>

rlot,i j) = u(t-1,i j)
umutt,i,j) = uml{t-1,i,j)

<

A

n=0
ifact =1
run =1
mf = int(x3(t,i,j)

m = m+1

&
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run=run*ram(t,i,j)/m

no
yes

uml(t,i,j)=run/2.718**ram(t,i,j)

p=(u(t,i,j)*umu(t,i,j))/(rlo(t,i,j)*umi(t,i,j))

5 4 3 2
A A A 4

un=1

call subroutine ber

|

un = X

x3(t,i,j)=x3(t,i,j)

x3(t,1,j)=x3(t-1,i,j)




x3(t,1,j) = x3(t, 1,j)+x3(t,6,j)+...+x3(t,26,j)
x3(t,9,j) = x3(,9,))+x3(t,10,j)+...+x3(t,15,))
]
x3(t,60,j) = x3(t,14,))+x3(t,28,j)+...+x3(t,64,))
no
j=10
yes
yes
t=1
no
t=s
A
time =t
A
i=0
A
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i=i+1

sb=0
ssbh=0
ss=0

=i+

sw=0
ssw=0

t=t+1

sw = sw+x3(t,i,j)

A 4

Nz
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ssw=ssw+x3(t,i,j)**2

W()=(tssw-sw*2)/t*(t-1)

v

sb=sb+swit
ssb=ssb+(swi/t)**2

ss=ss+W(j)

w(i)=ss/10

b(i)=(t/9)* (ssb-sb**2/10)

r(i)=sqrt((b()w(i)+t-1)/t)

A 4

N
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ir=ir+1

r(ir) < 0.999) U (r(ir) > 1.001)

no

i =i+l

A

yes

suml =0

j=j*1

suml=sum1+x3(t,i,j)

no
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rlink(i)=sum1/600

rinten(i)=1800*rlink(j)

no

print rlink(1) to rlink(72)

JEIO=S

=
no g oo
[ =R =R =N o)

i1=i1+1

ri1 =i1
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in=in+1

A

pl=rinten(11)/(rinten(11)+rinten(9)+rinten(13))

p2=rinten(9)/(rinten(11)+rinten(9)+rinten(13))
p3=(0.38*rinten(13))/(rinten(11)+rinten(9)+rinten(13))
p4=(0.62*rinten(13))/(rinten(11)+rinten(9)+rinten(13))

call subroutine allocate

que =4

que=1

no

yes

beta = 1/rink(11)

call subroutine expo

a(in)=bx

gn=gn+l
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sumg = sumg+1

no

que =2

no

j=j*1

sumg = sumg-+a(j)

driv(in)=sumg

cut(in)=0

beta=1/rlink(9)
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call subroutine expo

a(in)=bx

rc2 =rc2+1

scut=0

j=j+1

scut = scut+a(j)

no

yes
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que=3

no

yes

driv(in) =0

cut(in) = scut

l

beta=1/(0.38*rlink(13))

call subroutine expo

i

a(in)=bx

rc3 =rc3+1

l

scut=0
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que = 4

no

yes

no

j=j+1

scut=scut+a(j)

driv(in) =0

cut(in) = scut

beta=1/(0.62*rlink(13))

call subroutine expo

a(in) = bx
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rc4=rc4+1

scut=0

no

j=j+1

scut=scut+a(j)

driv(in)=0

cut(in)=scut
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&

rangl=rangl+a(in)

rang=rang-+a(in)

yes

A

il-0l1=1

delay=0
drive=0

k1l =ki+1

sumwa(kl) =0
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@ B
no

sumwa(kl)=rangl-cut(kl)

lq

o
4

delay=delay+sumwa(k1)
drive=drive+driv(k1)

yes

drive=drive+add*a(ol1+1)

redn=rc2+rc3+rcd

g=2*gn/rangl

l

red=6*redn/rangl
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wait=rangl

drivel=cdrive+drive

delayl=cdelay+delay

rednl=credn+redn

gnl=cgn+gn

cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drivel)

call subroutine fuzzy

degree=mu
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yes

A

degree=1

ub1(t1)=wait

t1=t1+1

yes
rang>1800

no

gn=rc2+rc4
add=rc2+rc4
cdrive=drive1
cdelay=delay1
credn=redn1
cgn=gn1
rc1=0
in=0
rang2=0
j1=i1

jf1=j1+1

in=in+1

VIO
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rjl=jl

pl=rinten(11)/(rinten(11)+rinten(9)+rinten(13))
p2=rinten(9)/(rinten(11)+rinten(9)+rinten(13))
p3=(0.38*rinten(13))/(rinten(11)+rinten(9)+rinten(13))

p4=(0.62*rinten(13))/(rinten(11)+rinten(9)+rinten(13))

call subroutine allocate

que=q

es
que=2 y

no

beta=1/rlink(9)

call subroutine expo

A

a(in)=bx
A A
5 2
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[N

gn=gn+1

sumg=0

j=0

=i+l

i

sumg=sumg-+a(j)

driv(in)=sumg

cut(in)=0

L
<

&
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que=4

no

yes

beta=1/(0.62*rlink(13))

call subroutine expo

a(in)=bx

gn=gn+1

sumg=0

=0

VAV

J=i+1

sumg=sumg-+al(j)

& ©
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que=1

no

no

driv(in)=sumg

cut(in)=0

rcl=rcl+1

beta=1/rlink(11)

l

call subroutine expo

i

a(in)=bx

scut=0
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no

j=0

VL'
que=3 yes rc3=rc3+1

=i+l

scut=scut+a(j)

driv(in)=0

cut(in)=scut

l

beta=1/(0.38*rlink(13))

o ©
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call subroutine expo

a(in)=bx

scut=0

j=0

no

=i+l

scut=scut+a(j)

driv(in)=0
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V\
end if

cut(in)=scut

A

rang=rang-+a(in)

i

rang2=rang2+a(in)

yes

A

jl-i1=1

no

k1=0
delay=0
drive=0

k1=0

v W

k1=k1+1

N
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sumwa(k1)=0

sumwa(k1)=rang2-cut(k1)

delay=delay+sumwa(k1)

drive=drive+driv(k1)

no

drive=drive+add*a(i1+1)

redn=rc1+rc3
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g=3*gn/rang2

red=6*redn/rang2

wait=rang2

l

drivel=cdrive+drive

delayl=cdelay+delay

rednl=credn+redn

i

gnl=cgn+gn

i

cost=(delayl*gnl*(redn+gn))/(100*redn1*gn*drivel)

o W
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call subroutine fuzzy

l

degree=mu

no

degree=1

yes

ub2(c1)=wait

cl1=c1+1

rang>1800

gn=rc3

add=rc3
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cdrive=drive1

cdelay=delay1

credn=redn1

cgh=gn1

rc2=0

rang3=0

o1=j1
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01=01+1

in=in+1

I

p1=rinten(11)/(rinten(11)+rinten(9)+rinten(13))

p2=rinten(9)/(rinten(11)+rinten(9)+rinten(13))
p3=(0.38*rinten(13))/(rinten(11)+rinten(9)+rinten(13))
p4=(0.62*rinten(13))/(rinten(11)+rinten(9)+rinten(13))

call subroutine allocate

que=q

que=3

no

beta=1/(0.38*rlink(13))

call subroutine expo

a(in)=bx
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gn=gn+1

sumg=0

=0

J=i+1

no

sumg=sumg-+al(j)

driv(in)=sumg

cut(in)=0
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que=4 beta=1/(0.62*rlink(13))

no

call subroutine expo

a(in)=bx

gn=gn+1

sumg=0

=0

=i+

sumg=sumg-+a(j)

v v VU W

N
(o]

VA
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3 4 1 7 2
A A
no
yes
driv(in)=sumg
A
cut(in)=0
Y
yes
que=2 P rc2=rc2+1
no l
beta=1/rlink(9)

i

call subroutine expo

v v ©

i

a(in)=bx
scut=0

=0

VA
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=i+l

scut=scut+a(j)

no
yes
driv(in)=0
A
cut(in)=scut
b
que=1 yes rcl=rcl+1

beta=1/rlink(11)

call subroutine expo

T P © O
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a(in)=bx

scut=0

j=0

=i+l

scut=scut+a(j)

driv(in)=0
cut(in)=scut

V\
end if |«
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rang3=rang3+a(in)
rang=rang+a(in)

yes

o0l-1=1

k1=0
delay=0
drive=0

>

k1=0

k1=k1+1

sumwa(k1)=0

sumwa(kl)=rang3-cut(k1)
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o
=

delay=delay+sumwa(k1)
drive=drive+driv(k1)

no

yes

drive=drive+add*a(j1+1)

redn=rcl+rc2

Y

g=3*gn/rang3
red=6*redn/rang3
wait=rang3
drivel=cdrive+drive
delayl=cdelay+delay
rednl=credn+redn
gnl=cgn+gn

[

cost=(delayl*gnl*(redn+gn))/(100*rednl*gn*drivel)

]

call subroutine fuzzy
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no

)

degree=mu

degree=1

yes

ub3(dl)=wait

dl=d1+1

rang>1800

il1=0l
gn=rcl
add=rcl
cdrive=drivel
cdelay=delayl
credn=rednl
cgn=gnl
rc=0
in=0
rc3=0
rc4=0
rang1=0
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A

i1=i1+1

ril=il
in=in+1
rin=in

pl=rinten(3)/(rinten(3)+rinten(31)+rinten(48))

p2=rinten(31)/(rinten(3)+rinten(31)+rinten(48))

p3=rinten(48)/(rinten(3)+rinten(31)+rinten(48))
p4=0

call subroutine allocate
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que=q

que=1

no

yes

gh=gn+1

beta=1/rlink(3)

call subroutine expo

Y

a(in)=bx
sumg=0

j=0

=i+

sumg=sumg-+a(j)

VAV
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driv(in)=sumg

cut(in)=0

Vx
que=2

rc2=rc2+1

beta=1/rlink(31)

call subroutine expo

A

a(in)=bx
scut=0

j=0

=i+t
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que=3

no

scut=scut+a(j)

yes

driv(in)=0

cut(in)=scut

rc3=rc3+1

beta=1/rlink(48)

call subroutine expo

A

a(in)=bx
scut=0

j=0

219



=i+l

scut=scut+a(j)

no

driv(in)=0
cut(in)=scut

Y

end if |«

rangl=rangl+a(in)
rang=rang+a(in)

yes
i1-01=1
no

drive=0
delay=0
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w1(k1)=sumw

k1=0

k1=k1+1

sumwa(k1)=0

sumwa(k1)=rang1-cut(k1)

delay=delay+sumwa(k1)
drive=drive+driv(k1)

yes

221



v

drive=drive+add*a(o1+1)

i

redn=rc2+rc3

i

delay1=delay/redn

g=4*gn/rang1
red=6*redn/rang1
wait=rang1
drive1=cdrive+drive
delay1=cdelay+delay

redn1=credn+redn

gn1=cgn+gn

cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

no
y wait>20

ch1(e1)=wait
el=el1+1

no
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fi=1
z1=1
gn=rc2
add=rc2
cdrive=drivel
cdelay=delayl
credn=rednl
cgn=gnl
rc1=0
rang2=0
j1=i1
in=0

jl=j1+1

rjl=jl
in=in+1

pl=rinten(3)/(rinten(3)+rinten(31)+rinten(48))

p2=rinten(31)/(rinten(3)+rinten(31)+rinten(48))

p3=rinten(48)/(rinten(3)+rinten(31)+rinten(48))
p4=0

call subroutine allocate

]

que=2

| |
VO © |
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no

yes

gh=gn+1

beta=1/rlink(31)

call subroutine expo

Y

a(in)=bx
sumg=0

j=0

=i+

sumg=sumg-+a(j)
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no

driv(in)=sumg

cut(in)=0

rc1=rc1+1

beta=1/rlink(3)

call subroutine expo

A

a(in)=bx
scut=0

j=0

=i+

scut=scut+a(j)

VAVEIVAVAS BB
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no

yes

driv(in)=0

cut(in)=scut

rc3=rc3+1

beta=1/rlink(48)

call subroutine expo

Y

a(in)=bx
scut=0

j=0

=i+

VAVRNVAVAD,
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scut=scut+a(j)

yes

driv(in)=0
cut(in)=scut

V\
EEJ‘ ‘

rang=rang+a(in)
rang2=rang2+a(in)

drive=0
delay=0

k1=0
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kl=k1+1

sumwa(k1)=0

sumwa(kl)=rangl-cut(k1)

delay=delay+sumwa(k1)
drive=drive+driv(k1)

—

<

yes

drive=drive+add*a(i1+1)

i

redn=rcl+rc3
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delay2=delay/redn

v

g=4*gn/rang2
red=6*redn/rang2
wait=rang2
drivel=cdrive+drive
delayl=cdelay+delay
rednl=credn+redn
gnl=cgn+gn

cost=(delayl*gn1*(redn+gn))/(100*rednl*gn*drivel)

no
wait>25

ch2(f1)=wait
f1=f1+1

yes
rang>1800

gn=rc3
add=rc3
cdrive=drivel
cdelay=delayl
credn=rednl
cgn=gnl
rc2=0
rang3=0
01=0
in=0
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0l1=01+1

l

in=in+1

pl=rinten(3)/(rinten(3)+rinten(31)+rinten(48))

p2=rinten(31)/(rinten(3)+rinten(31)+rinten(48))

p3=rinten(48)/(rinten(3)+rinten(31)+rinten(48))
p4=0

call subroutine allocate

que=q
yes
que=3 gn=gn+1
no
beta=1/rlink(48)
call subroutine expo
A A
1 6
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a(in)=bx
scut=0

j=0

=i+

sumg=sumg-+al(j)

driv(in)=sumg

cut(in)=0

que=1 re1=rc1+1

no

ve H wwd
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beta=1/rlink(3)

call subroutine expo

l

a(in)=bx
scut=0

j=0

=i+

scut=scut+a(j)

yes

driv(in)=0
cut(in)=scut
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que=2

no

yes

3

rc2=rc2+1

beta=rlink(31)

call subroutine expo

a(in)=bx

scut=0

j=0

=i+l

scut=scut+a(j)

Y ©U©

VAV
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V\
end if

no

yes

driv(in)=0
cut(in)=scut

>
«

rang=rang+a(in)
rang3=rang3+a(in)

yes

o1-j1=1

drive=0
delay=0

>

k1=0

k1=k1+1

RN
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sumwa(k1)=0

sumwa(k1)=rang1-cut(k1)

delay=delay+sumwa(k1)
drive=drive+driv(k1)

no
yes

drive=drive+add*a(j1+1)

v

redn=rc1+rc2

v

delay3=delay/redn
g=4*gn/rang3
red=6*redn/rang3
wait=rang3
drive1=cdrive+drive
delay1=cdelay+delay
redn1=credn+redn
gn1=cgn+gn
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cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

no

ch3(z1)=wait

z1=z1+1

wait 3 1800

i1=01
gn=rc1
add=rc1
cdrive=drive1
cdelay=delay1
credn=redn1
cgn=gn1
rc3=0
in=0
rang1=0

N
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hil=1
yl=1
ai=1
i1=0
01=0
rc1=0
rc3=0
rang=0
rang1=0
gn=0
in=0

i1=i1+1
ril=il
in=in+1

A

pl=rinten(42)/(rinten(42)+rinten(17)+rinten(37))

p2=rinten(17)/(rinten(42)+rinten(17)+rinten(37))

p3=rinten(37)/(rinten(42)+rinten(17)+rinten(37))
p4=0

call subroutine allocate

A

que=q
yes
que=2 gn=gn+1
no
A
beta=1/rlink(17)
A A
1 2

237



call subroutine expo

A

a(in)=bx
scut=0

=0

que=1

no

J=i+1

scut=scut+a(j)

yes

driv(in)=sumg

cut(in)=0

rc1=rc1+1
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beta=1/rlink(42)

call subroutine expo

A

a(in)=bx
scut=0

=0

=i+

scut=scut+a(j)

no

yes

driv(in)=0
cut(in)=scut
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&

rang=rang+a(in)

rang1=rang1+a(in)

yes
i1-01=1

no

drive=0
delay=0

k1=0

k1=k1+1

yes

sumwa(k1)=0
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sumwa(k1)=rang1-cut(k1)

delay=delay+sumwa(k1)
drive=drive+driv(k1)

no

drive=drive+add*a(o1+1)

redn=rc3+rc1

delay1=delay/redn

v

g=2*gn/rang1
red=4*redn/rang1
wait=rang1
drive1=cdrive+drive
delay1=cdelay+delay
redn1=credn+redn
gn1=cgn+gn

v

N
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10

cost=(delayl*gni1*(redn+gn))/(100*rednl*gn*drivel)

]

call subroutine fuzzy

>

degree=mu

no

A

@

degree=1

es

na

cpl(hl)=wait

>

hl=h1+1

yes
rang>1800
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10

y1=1
gn=rc3
add=rc2
cdrive=drive1
cdelay=delay1
credn=redn1
cgn=gn1
rc2=0
rang2=0
j1=i1
in=0

jf1=j1+1

f1=j1

L

in=in+1

p1=rinten(42)/(rinten(42)+rinten(17)+rinten(37))

p2=rinten(17)/(rinten(42)+rinten(17)+rinten(37))

p3=rinten(37)/(rinten(42)+rinten(17)+rinten(37))
p4=0

que=q
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10

@

que=3

no

yes

gn=gn+1

beta=1/rlink(37)

call subroutine expo

a(in)=bx

sumg=0

=0

=i+

l

sumg=sumg-+a(j)

|

VAV

&
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10

que=1

3 2
no
yes
driv(in)=sumg
cut(in)=0
yes
rcl=rcl+1

no

beta=1/rlink(42)

call subroutine expo

l

a(in)=bx
scut=0

j=0

=i+l
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yes

V\
end if |«

no

yes

driv(in)=0
cut(in)=scut

rang=rang+a(in)
rang2=rang2+a(in)

j-i1=1

no

delay=0
drive=0

>

k1=0

YO ©

k1=k1+1

:
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sumwa(k1)=0

sumwa(k1)=rang1-cut(k1)

delay=delay+sumwa(k1)
drive=drive+driv(k1)

no
yes

drive=drive+add*a(i1+1)

l

redn=rc1+rc2

i

delay2=delay/redn
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g=2*gn/rang2

red=4*redn/rang2
wait=rang2
drive1=cdrive+drive
delay1=cdelay+delay
redn1=credn+redn
gn1=cgn+gn

cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

call subroutine fuzzy

no

degree=mu

degree=1

cp2(y1)=wait
y1=y1+1
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10

@

yes

rang>1800

no

gn=rcl
add=rcl
cdrive=drivel
cdelay=delayl
credn=rednl
cgn=gnl
rc3=0
rang3=0
in=0
ol=jl

0l=01+1

in=in+1

Y

pl=rinten(42)/(rinten(42)+rinten(17)+rinten(37))

p2=rinten(17)/(rinten(42)+rinten(17)+rinten(37))

p3=rinten(37)/(rinten(42)+rinten(17)+rinten(37))
p4=0

call subroutine allocate

que=q
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10

@

que=1

no

yes

gn=gn+1

beta=1/rlink(42)

call subroutine expo

a(in)=bx

sumg=0

j=0

=i+t

sumg=sumg-+a(j)
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que=2

no

no

yes

yes

driv(in)=sumg

cut(in)=0
wase(in)=0

rc2=rc2+1

beta=1/rlink(17)

call subroutine expo

Y

a(in)=bx
scut=0

j=0

VO © OF

=i+
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@

que=3

no

yes

yes

driv(in)=0

cut(in)=scut

rc3=rc3+1

beta=1/rlink(37)

call subroutine expo

A

a(in)=bx
scut=0

l

j=0

VAV A

=i+
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10

yes

1 7
A
v
end if |«

no

scut=scut+a(j)

driv(in)=0
cut(in)=scut

rang=rang-+a(in)
rang3=rang3+a(in)

Y

o0l-1=1

delay=0
drive=0

k1=0
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A

\ 4

k1=k1+1

sumwa(k1)=0

sumwa(k1)=rang1-cut(k1)

delay=delay+sumwa(k1)

l

drive=drive+driv(k1)

drive=drive+add*a(j1+1)
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redn=rc2+rc3
delay3=delay/redn

g=2*gn/rang3

red=4*redn/rang3
wait=rang3
drive1=cdrive+drive
delay1=cdelay+delay

redn1=credn+redn

gn1=cgn+gn

cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

call subroutine fuzzy

degree=mu

no
degree=1
yes

cp3(ai)=wait
ai=ai+1

rang>1800
no
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10

gn=rc2
add=rc2
cdrive=drive1
cdelay=delay1
credn=redn1
cgh=gn1
rc1=0
in=0
rang1=0
i1=01

A

b1=1
c1=1
v1=1
x0=1
gn=0
s1=0
i1=0

s1=0
in=0
rc1=0
rc2=0
rc3=0
rang=0
rang1=0

i1=i1+1
ri1=i1
in=in+1

LL

p1=rinten(28)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))
p2=rinten(29)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))
p3=rinten(24)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))
p4=rinten(1)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))

lq

call subroutine allocate
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que=q

que=4

no

gn=gn+1

beta=1/rlink(1)

call subroutine expo

A

a(in)=bx
sumg=0

=0

N
w

NN

J=i+1

sumg=sumg-+a(j)
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que=2

yes

no

yes

driv(in)=sumg

cut(in)=0

———— P rc2=rc2+1

no

beta=1/rlink(29)

call subroutine expo

a(in)=bx

sumg=0

=0
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yes
que=3

no

=i+l

scut=scut+a(j)

driv(in)=0
cut(in)=scut

rc3=rc3+1

beta=1/rlink(24)

call subroutine expo

a(in)=bx
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que=1

no

scut=scut+a(j)

j=0

=i+l

scut=scut+a(j)

no

driv(in)=0
cut(in)=scut

rcl=rcl+1

beta=1/rlink(28)
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call subroutine expo

a(in)=bx
scut=0

j=0

=i+l

scut=scut+a(j)

no

driv(in)=0
cut(in)=scut

V\
end if |«
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rang=rang-+a(in)
rangl=rangl+a(in)

yes
i1-s1=1

A

no

delay=0
drive=0

k1=0

k1=k1+1

sumwa(k1)=0

sumwa(kl)=rangl-cut(kl)
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N

delay=delay+sumwa(k1)
drive=drive+driv(k1)

yes

drive=drive+add*a(s1+1)

redn=rc1+rc2+rc3

delayl=delay/redn

g=2*gn/rangl
red=3*redn/rangl
wait=rangl
drivel=cdrive+drive
delayl=cdelay+delay

rednl=credn+redn

gnl=cgn+gn

cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drivel)

call subroutine fuzzy
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)

degree=mu

no
degree=1
yes

ap1(b1)=wait

b1=b1+1

rang>1800

yes

no

gn=rc1
add=rc1
cdrive=drive1
cdelay=delay1
credn=redn1
cgn=gn1
rc4=0
rang2=0
j1=i1
in=0

jf1=j1+1

&

> stop
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in=in+1

I

A

p1=rinten(28)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))
p2=rinten(29)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))
p3=rinten(24)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))
p4=rinten(1)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))

]

v

call subroutine fuzzy

que=q
Y
yes
que=1 . gn=gn+1
no .
beta=1/rlink(28)
A
call subroutine expo
A A
1 4
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yes
que=2

no

a(in)=bx
scut=0

j=0

=i+

no

sumg=sumg-+a(j)

driv(in)=sumg

cut(in)=0

rc2=rc2+1

beta=1/rlink(29)
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call subroutine expo

l

a(in)=bx
scut=0

=0

=i+t

scut=scut+a(j)

no

driv(in)=0

cut(in)=scut

rc3=rc3+1
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beta=1/rlink(24)

call subroutine expo

i

a(in)=bx
scut=0

j=0

no

=i+

scut=scut+a(j)

driv(in)=0

cut(in)=scut

268



que=4

no

yes

rc4=rc4+1

beta=1/rlink(1)

call subroutine expo

i

a(in)=bx
scut=0

j=0

no

=i+

scut=scut+a(j)
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3 2
A A
end if |«

rang=rang+a(in)
rang2=rang2+a(in)

yes
no

delay=0
drive=0

k1=k1+1

yes
sumwa(k1)=0
no
yes
sumwa(k1)=rang1-cut(k1)
no
A

N AN

(o]
o]
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end if |«

rang=rang+a(in)
rang2=rang2+a(in)

no

drive=drive+add*a(i1+1)

redn=rc2+rc3+rc4

delay2=delay/redn
g=3*gn/rang2
red=3*redn/rang2
wait=rang2
drive1=cdrive+drive
delay1=cdelay+delay
redn1=credn+redn
gn1=cgn+gn

L

Y

cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

A

]

A 4

Nz
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call subroutine fuzzy

l

degree=mu
degree=1
yes

ap2(cl)=wait

cl=cl+l

rang 3 1800

vl=1
gn=rc3
add=rc3
cdrive=drivel
cdelay=delayl
credn=rednl
cgn=gnl
rc1=0
ol=j1
rang3=0
in=0
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01=01+1

in=in+1

I

A

p1=rinten(28)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))
p2=rinten(29)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))
p3=rinten(24)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))
p4=rinten(1)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))

]

call subroutine allocate

i

que=q
yes
que=3 gh=gn+1
no
A
beta=1/rlink(24)
A
call subroutine expo
A

N
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que=1

no

a(in)=bx
sumg=0

=0

=i+

no

sumg=sumg-+a(j)

yes

driv(in)=sumg
cut(in)=0
wase(in)=0

yes

rc1=rc1+1

beta=1/rlink(28)

POV U O
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que=2

no

a(in)=bx
scut=0

j=0

=i+

no

scut=scut+a(j)

driv(in)=0
cut(in)=scut

yes
b

rc2=rc2+1

beta=1/rlink(29)

U U©
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call subroutine expo

A

a(in)=bx
scut=0

j=0

J=i+1

scut=scut+a(j)

no
yes
driv(in)=0
cut(in)=scut
Y
yes
que=4 —p rc4=rc4+1
no
A A
7

VA
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[N

beta=1/rlink(1)

l

call subroutine expo

a(in)=bx

scut=0

j=0

=i+l

scut=scut+a(j)
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V\
end if

driv(in)=0
cut(in)=scut

>
«

rang=rang+a(in)
rang3=rang3+a(in)

k1=0

k1=k1+1

no

AV A

sumwa(k1)=0

i 4
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sumwa(k1)=rang1-cut(k1)

delay=delay+sumwa(k1)
drive=drive+driv(k1)

drive=drive+add*a(j1+1)

redn=rc1+rc2+rc4

delay3=delay/redn

v

g=2*gn/rang3
red=3*redn/rang3
wait=rang3
drive1=cdrive+drive
delay1=cdelay+delay
redn1=credn+redn
gn1=cgn+gn

IO 4
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o]

cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

]

call subroutine fuzzy

no

degree=mu

degree=1

ap3(v1)=wait
v1=vi+1

gh=rc2
add=rc2
cdrive=drive1
cdelay=delay1
credn=redn1
cgn=gn1
rc3=0
rang4=0
s1=01
in=0
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sl=s1+1

in=in+1

I

A

pl=rinten(28)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))
p2=rinten(29)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))
p3=rinten(24)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))
p4=rinten(1)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))

]

call subroutine allocate

l

que=q
yes
que=2 gn=gn+1
no
A
beta=1/rlink(29)
A
call subroutine expo
A
1
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a(in)=bx
sumg=0

=0

que=3

VAV

no

=i+l

sumg=sumg-+a(j)

no

driv(in)=sumg

cut(in)=0

rc3=rc3+1

g
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beta=1/rlink(24)

call subroutine expo

i

a(in)=bx
scut=0

j=0

=i+

i

scut=scut+a(j)

yes

driv(in)=0

cut(in)=scut
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que=1

no

yes

rcl=rcl+1

beta=1/rlink(28)

call subroutine expo

i

a(in)=bx
scut=0

j=0

=i+l

i

scut=scut+a(j)
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que=4

no

driv(in)=0
cut(in)=scut
wase(in)=bx

rc4=rc4+1

beta=1/rlink(1)

call subroutine expo

i

a(in)=bx
scut=0

j=0

J=j+1

i

scut=scut+a(j)

Y DU ©
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yes

driv(in)=0

cut(in)=scut

V\
end if

A

rang=rang-+a(in)

rang4=rang4+a(in)

yes
no

delay=0

:
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drive=0

k1=0

k1=k1+1

sumwa(k1)=0

sumwa(k1)=rang1-cut(k1)

delay=delay+sumwa(k1)
drive=drive+driv(k1)

no

yes
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redn=rc1+rc3+rc4
delay4=delay/redn
g=2*gn/rang4
red=3*redn/rang4
wait=rang4
drive1=cdrive+drive
delay1=cdelay+delay
redn1=credn+redn
gn1=cgn+gn

L

Y

cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

]

write s1,rang,rang4,gn,redn,cost,degree

call subroutine fuzzy

degree=mu

no
degree=1

yes

ap4(xo)=wait
X0=x0+1
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rang 3 1800

i1=s1
gn=rc4
add=rc4
cdrive=drive1
cdelay=delay1
credn=redn1
cgn=gn1
rc2=0
in=0
rang1=0

stop
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The flowchart for subprogram

1) Subroutine for allocate car to each branch

start

A

subroutine allocate(p1,p2,p3,p4,q,ix)

v

(m3 P1)U(rn <P1+P2)

(3 P1+P2) U(rn<P1+P2 +P3)

m3 P1+P2+P3

rn=unif(ix)

yes

g=1
yes

a=2
yes

q=3
yes

g=4

v

return

290



2) Subroutine for generate exponential random variable

start

A

subroutine expo(beta,bx,ix)

A

rn=unif(ix)

A

bx=-beta*alog(rn)

A

return

end
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3) Subroutine for generate gamma random variable

@

A

Subroutine gamma

A

common ix,al,be,x,xp,rmean,min,xmax,xu,g,re,w1,l1,p

A

rn=unif(ix)

A

v=-be*alog(rn)

X=X+V

no
al=al-1

yes

X=X

A

return

end
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4) Subroutine for generate poisson random variable

start

A

subroutine poiss

A

common ix,ial,be,x,xp,rmean,min,xmax,xu,g,re,w1,l1,p

xp=0

A

a=2.718**(-rmean)

s=1

A

rn=unif(ix)

S=s*rn

<>

Xp=xp+1

return

end
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5) Subroutine for generate bernoulie random variable

start

Y

subroutine ber(p,x,ix)

x=1

Y

rn=unif(ix)

- return <

x=0

A
stop
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6) Function for generate random number

START

A

FUNCTION UNIF(IX)

A

K1=IX/127773

A

IX=16807*(IX-K1*127773)-K1*2836

no

UNIF=1X*4.656612875E-10

A

IX+2147483647

IX=IX

A

RETURN

A
STOP
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7) Subroutine for fuzzy logic system

start

SUBROUTINE FUZZY(G,RED,WAIT,MU)

[X=1234567
es
y GZ=0 -
es
y GZ=1-G
N yes
g£1Ug2 0 GL=G
yes
GL=1 —»
es
y GL=3-G
A
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yes GL=0
A
yes GM=0
g£3Ug>2 yes GM=G-2
g£4Ug>3 yes GM=4-G
yes GM=0
A
yes GH=0
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red<1Ured? 0

red<1Ured3 0

red<3 Ured3

es
y GH=G-3
es
y GH=1
yes
RZ=1-RED
es
y RZ=0
es
y RL=RED
es
y RL=1
A
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yes

red<6 Ured? 3

red<9Ured3 6

RL=2-RED/3
yes RL=0

A
yes RM=0
yes RM=RED/3-1
yes RM=3-RED/3
yes RM=0
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yes

red<9Ured? 6

0 £ wait <30

30 £ wait <60

wait 3 60

RH=0
yes
RH=RED/3-2
es
y RH=1
es
y WS=1
yes
WS=2-WAIT/30
es
y WS=0
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yes
wait < 30 WM=0
no
yes
30 £ wait <60 WM=WAIT/30-1
no
yes
60 £ wait <90 WM=3-WAIT/30
no
yes
wait 3 90 WM=0
no
end if |«
yes
wait < 60 WL=0
no
yes
60 £ wait <90 WL=WAIT/30-2
no
yes
wait 3 90 WL=1
no
end if |«
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:

A1=0.05
A2=0.2
A3=0.2
A4=0.2

A5=0.15

C1=0.033
C2=0.3
C3=0.5
C4=0.7

C5=0.85

$1=GZ*RZ*A1
82=GZ*RL*A5
83=GZ*RM*AS

S26=GH*|§M*WL*A3

UPER=S1*C1+82*C5+ ... +526*C3

ROWER=81+82+83+ ... +526

RUL=UPER/ROWER

P=RUL
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CALL SUBROUTINE BER(P,X,ix)

l

MU=X

RETURN

END
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C****************************************************

C 1. Main Program

Ok ko koo ko ko ok ok ko ko ok ok ko ko
common ix,al,be,x,xp,rmean,min,xmax,xu,g,re,w1,rl1,p1,p2,p3,p4
&beta,bx,p,q
dimension ybar(18),ram(5000,72,10),isum(72),ia(18,72),
&rmu(72),rmar(18),x2(100,72),iy(100,18),ramda(50,72),da(72),
& X3(5000,72,10),max(18),z(30),w(72),b(72),r(72),rl(4,4) ,x1(72),
& uml(5000,72,10),umu(5000,72,10),rlo(5000,72,10),rinten(72),
&u(5000,72,10),jy(20,18),count(72),rlink(72),ib(18,72),dan(72)
&,ymin(72),ymax(72),ax(72),an(72),9y(72),w1(1000),ub1(100),
&a(1000),para(50,72),rmeanp(72),ub2(100),ub3(100),ch1(100),
&ch2(100),ch3(100),cp1(100),cp2(100),cp3(100),ap1(100),
& ap2(100),ap3(100),ap4(100),bar (72),ymean(72),ramd(72),
& wase(1000),driv(500),cut(500),sumwa(500)

C****************************************************

¢ 1.1 Program for estimate traffic intensity by EM algorithm
R R R I L R Sa e
c Theprogram read the observe daily data on direct link
c for 20 day
open(5,file="input.dat’,status="old")
open(6,file="output.out’,status="new")
do 10i=1,18
10 read(5,15)(ia(i,j),j=1,72)
15 format(72il)
do 20 m=1,20
20 read(5,25)(iy(m,n),n=1,18)
25 format(18i3)
do 21i=1,20
do21j=1,18
21 jy(i.j)=iy(i.j)/30
ix=45673874
5 do35j=1,18
sumy=0
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do 40i=1,20
sumy=sumy+iy(i,j)
40 continue

Qoy
<
=

i
i

c Theprogram calculate Y, = 5

o

ybar(j)=sumy/20
ymean(j)=ybar(j)/30
35 continue

ix=45673874
do 30i=1,72
x=0.0
a=80.0
be=2.0
zi=i
ri=i

c Theprogram let positive mean population of number of cars

c that travel on direct route on traffic network

c m= (m,L,m, ); arbitrary.
call gamma
rmu(i)=x

30 continue

rmu(1)=ybar(1)/30
rmu(3)=ybar(7)/30
rmu(5)=ybar(9)/30
rmu(9)=ybar(2)/30
rmu(11)=ybar(8)/30
rmu(13)=ybar(10)/30
rmu(17)=ybar(3)/30
rmu(21)=ybar(17)/30
rmu(22)=ybar(15)/30
rmu(24)=ybar(4)/30
rmu(28)=ybar(18)/30
rmu(29)=ybar(16)/30
rmu(31)=ybar(5)/30
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rmu(36)=ybar(13)/30
rmu(37)=ybar(6)/30
rmu(42)=ybar(14)/30
rmu(43)=ybar(11)/30
rmu(48)=ybar(12)/30
¢ Theprogram generate daily data on direct linksfor 100 days
c YWo (Yl(l)aYz(l)!K’Ylt)
c YW@o (Yl(z),YZ(Z),K,Yng))
c M M
c Yo (Yl(loo),Yz(loo)’K’Ylgoo))

Y(k)

T Qo

c Calculate Y =
100

do 600 n1=1,50
do 605 k1=1,18
gys=0

c Theprogram generate X; from Poisson distribution
c with parameter m, 12,K,72 for 100 day
do 61011=1,100

rv=I1

rk=k1

rn=nl

rmean=ybar(k1)/30

call poiss

ay(k1)=xp

gys=gys+gy(k1)
610 continue

bar(k1)=gys/100
605 continue
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¢ Theprogram calculate m by @ =(f,M,...,M,)" based on

c

50

45

60

55

70

applied algorithm
m ¥ aY,

] I

mj = I 2
7
a g = aacm

i=1 k=1
do 45 j=1,72
isuma=0
do50i=1,18
isuma=isumatia(i,j)
isum(j)=isuma
continue
do 615 t1=1,1000
do 55i=1,18
sumar=0
do 60 j=1,72
ri=i
M=
r=tl
sumar=sumar+ia(i,j)* rmu(j)
rmar(i)=sumar
continue
do 65)=1,72
sumd=0
sumtest=0
do 70i=1,18
M=
ri=i
ratio=bar(i)/rmar(i)
rmuti=ia(i,j)*ratio
sumtest=sumtest+rmuiti
devide=sumtest/isum(j)
ramda(t1,j)=rmu(j)*devide
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¢ Theprogram calculate i 50 timesto get mM® ,m? ..., M
para(nl,j)=ramda(tl,))
rmu(j)=ramda(t1,))

65 continue

615 continue

600 continue
do 620j1=1,72
sump=0
r=j1
do 625 n1=1,50
sump=sump+para(nl,jl)

625 continue

=~ 123 .
¢ Theprogram calculate mean vector ; m=—g m"* based
k=1

¢ on 50estimations. Then m isthe unbiased estimator of I,

C routecount.
rmeanp(j1)=sump/50

C****************************************************

c 1.2 Program for estimate traffic intensity by Gibb sampling
R R R I L R e e
t=0.0
s=0.0
105 t=t+1.0
s=s+1.0
¢ Theprogram generate 10 vectors X from 72 independent
c Poisson distributionswith parameter vector
do 111 j=1,10
do 110i=1,72
M=
ri=i
if(t.eq.1.0)then
ram(t,i,j)=rmeanp(i)
x3(t-1,i,j)=rmeanp(i)
if(rmeanp(i).le.103)then
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(@)

c

rmean=ram(t,i,j)

else if(rmeanp(i).gt.103)then

rmean=103

end if

call poiss

x3(t,i,))=xp

else if(t.gt.1)then

Theprogram draw sample value of 10 parameter vectors |

from 72 conditionally independent posterior distributions,

p(l ;|X;), that is Gamma distribution with shape parameter
X; +1 and scale parameter 1; | =12,K,72.

a=int(abs(x3(t-1,i,j))+1)
be=1.0

x=0.0

call gamma

ram(t,i,j)=x
rmean=ram(t,i,j)
if(x.le.103)then
rmean=ram(t,i,])
elseif(x.gt.103)then
rmean=103

end if

call poiss

x3(t,i,]))=xp

end if

The program draw a candidate X; from Poisson distribution

function For each parameter vector | at iterationt asbelow.

X: ~ Poisson( X’;|X_"j1) ;

J
Where X_"j1 representsall the element of X except X, at their

current values:

XUt = (XK XS, XK XY

j+l

X with probability min(r,1)

e Xi= [l
X; otherwise

.‘[
1
£
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P(X{)U(X]™)

C r = .l .
P(X U (X;)
el e m
c where  P(X;)= ., U(x)=
xj! xj!

run=1.0

mf=int(x3(t,i,}))

do 175 m=1,mf

175 run=run*rmeanp(i)/m
u(t,i,j)=run/2.718** rmeanp(i)
if(t.gt.1)goto 172
n=0
k=0
umu(t,i,j))=1.0
rlo(t,i,j)=1
goto 173

172 rlo(t,i,j)=u(t-1,i,j)
umu(t,i,j)=uml(t-1,i,j)

173 n=0
ifact=1
run=1.0
mf=int(x3(t,i,}))
do 176 m=1,mf

176 run=run*ram(t,i,j)/m
uml(t,i,j)=run/2.718* *ram(t,i,j)
p=(u(t,i,j)*umu(t,i,j))/(rlo(t,i,j)* umi(t,i,j))
if(p.ge.1)then
un=1
else if(p.It.1)then
call ber(p,x,ix)
un=x
end if
if(un.eq.1)then
x3(t,i,))=x3(t,i,))
else if(un.eq.0) then
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x3(t,i,j)=x3(t-1,i,j)
end if

110 continue

¢ Theprogram directly computetheelement of Y by Y = AX
x3(t,1,))=x3(t,1,j)) +x3(t,6,)) +x3(t,25,)) +x3(t,26,))
& +x3(t,27,))+x3(t,57,))+x3(t,58,)) +x3(t,69,)) +x3(t,70,))
x3(t,9,))=x3(t,9,)) +x3(t,10,j) +x3(t,14,j) +x3(t,15,j) +
&x3(t,20,))+x3(t,33,))+x3(t,51,j) +x3(t,60,)) +x3(t,61,))
x3(t,17,))=x3(t,17,))+x3(t,18,)) +x3(t,19,)) +x3(t,23,)) +
&x3(t,40,))+x3(t,41,))+x3(t,54,))-x3(t,55,)) +x3(t,64,)) +
&x3(t,67,))
x3(t,24,))=x3(t,10,j)+x3(t,24,)) +x3(t,30,)) +x3(t,33,)) +
&X3(t,34,))+x3(t,35,)) +x3(t,46,)) +x3(t,66,)) +x3(t,68,))
x3(t,31,))=x3(t,16,))+x3(t,18,j)+x3(t,19,)) +x3(t,31,j) +
&X3(t,32,))+x3(t,50,))+x3(t,52,)) +x3(t,54,)) +x3(t,55,)) +
&x3(t,56,))+x3(t,62,))
x3(t,37,))=x3(t,2,)) +x3(t,8,)) +x3(t,37,)) +x3(t,38,)) +
&X3(t,39,))+x3(t,45,))+x3(t,46,)) +x3(t,47,j) +x3(t,59,)) +
&x3(t,71,))
x3(t,3,))=x3(t,2,)) +x3(t,3,)) +x3(t,4,)) +x3(t,8,)) +
&X3(t,39,))+x3(t,49,))+x3(t,51,)) +x3(t,59,)) +x3(t,72,))
x3(t,11,))=x3(t,11,))+x3(t,12,j)+x3(t,16,)) +x3(t,26,j) +
&X3(t,44,))+x3(t,53,)) +x3(t,62,)) +x3(t,69,)) +x3(t,70,))
x3(t,5,))=x3(t,5,)) +x3(t,20,j) +x3(t,33,j) +x3(t,44,)) +
&x3(t,53,))+x3(t,66,))+x3(t,61,))+x3(t,62,))
x3(t,13,))=x3(t,13,j)+x3(t,27,)) +x3(t,39,)) +x3(t,49,)) +
&X3(1,57,))+x3(t,58,)) +x3(t,72,))
x3(t,43,))=x3(t,4,))+x3(t,19,)) +x3(t,32,)) +x3(t,43,)) +
&X3(t,55,))+x3(t,56,)) +x3(t,72,))
x3(t,48,))=x3(t,12,))+x3(t,26,j) +x3(t,38,)) +x3(t,53,)) +
&x3(t,68,))+x3(t,69,))+x3(t,70,))+x3(t,71,j)
x3(t,36,))=x3(t,8,)) +x3(t,23,j) +x3(t,36,)) +x3(t,47,j) +
&x3(t,59,))+x3(t,64,))+x3(t,67,))+x3(t,71,j)
x3(t,42,))=x3(t,16,j)+x3(t,30,)) +x3(t,42,j) +x3(t,52,j) +
&x3(t,56,))+x3(t,62,))+x3(t,66,)) +x3(t,68,))
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x3(t,22,))=x3(t,7,))+x3(t,22,j) +x3(t,35,)) +x3(t,46,j) +
&x3(t,58,))+x3(t,63,))+x3(t,68,))+x3(t,70,j)
x3(t,29,))=x3(t,15,)) +x3(t,29,)) +x3(t,41,)) +x3(t,51,)) +
&X3(t,55,))+x3(t,61,))+x3(t,65,)) +x3(t,65,)) +x3(t,67,))
x3(t,21,))=x3(t,6,)) +x3(t,21,)) +x3(t,34,)) +x3(t,57,)) +
&Xx3(t,65,))+x3(t,66,))+x3(t,69,))

x3(t,28,))=x3(t,14,)) +x3(t,28,)) +x3(t,40,)) +x3(t,54,)) +
&x3(t,60,))+x3(t,63,))+x3(t,64,))

111 continue
if(t.eq.1.0) go to 105

¢ Theprogram let Xt;‘ be the drawn from 10 parallel sequences

¢ ofiteration t of the k' element of X
¢ (t=12K,n; j=12K]10),compute B and W, the between

¢ and within-sequence variances for each k™

_ng o S\ 2 - 18 v o 1 _
c B=—a((X,-X)*, where X;==g Xj ,X =—a X,
9 i=1 ' ) ' n._; - 10 o .
10 . B
C W:io sz . Where Sf:ié(xi:f_ Xj)z
10j:1 n'li:l '

c and §:1(2+n- D
n'w

t=s
time=t
do 215i=1,72
sb=0
ssb=0
ss=0
do 220j=1,10
sw=0
ssw=0
do 225 t=1time
sw=sw+x3(t,i,])
225 ssw=ssw+x3(t,i,j)**2
w(j)=(t* ssw-sw**2)/t* (t-1)
sh=sb+swi/t
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ssh=ssh+(sw/t)**2
220 ss=sstw(j)
w(i)=s310
b(i)=(t/9)* (ssb-sb**2/10)

215 r(i)=sgrt((b(i)/w(i)+t-1)/t)
t=s

¢ Theprogram iterateuntil VR ® 1 for all k™ element.
do 221ir=1,72
if((r(ir).1e.0.999.or.r(ir).ge.1.001) goto 105

221 continue

¢ Theprogram calculate route count for each direct route by

N

10
c kzioé  k=12,K,72

C Where )2,( isthe estimator of route count for direct route k"

k
nJ

C isthelatest draw for parallel |

222 do 226i=1,72
sum1=0
do 231j=1,10

231 suml=suml+x3(t,i,j)
rlink(i)=sum1/600
rinten(i)=1800* rlink(i)

226 continue
write(6,311)rlink(1),rlink(2),rlink(3),rlink(4),rlink(5),rlink(6)
write(6,3122)rlink(7),rlink(8),rlink(9),rlink(10),rlink(11),
&rlink(12)
write(6,314)rlink(13),rlink(14),rlink(15),rlink(16),rlink(17),
&rlink(18)
write(6,316)rlink(19),rlink(20),rlink(21),rlink(22),rlink(23),
&rlink(24)
write(6,3137)rlink(25),rlink(26),rlink(27),rlink (28),rlink(29),
&rlink(30)
write(6,3118)rlink(31),rlink(32),rlink(33),rlink(34),rlink(35),
&rlink(36)
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write(6,3119)rlink(37),rlink(38),rlink(39),rlink (40),rlink(41),
&rlink(42)
write(6,3111)rlink(43),rlink(44),rlink(45),rlink (46),rlink(47),
&rlink(48)
write(6,3112)rlink(49),rlink(50),rlink(51),rlink (52),rlink(53),
&rlink(54)
write(6,3114)rlink(55),rlink(56),rlink(57),rlink (58),rlink(59),
&rlink(60)
write(6,3116)rlink(61),rlink(62),rlink(63),rlink(64),rlink(65),
&rlink(66)
write(6,3127)rlink(67),rlink(68),rlink(69),rlink(70),rlink(71),
&rlink(72)

311 format(6f10.4)

3122 format(6f10.4)

314  format(6f10.4)

316 format(6f10.4)

3137 format(6f10.4)

3118 format(6f10.4)

3119 format(6f10.4)

3111 format(6f10.4)

3112 format(6f10.4)

3114 format(6f10.4)

3116 format(6f10.4)

3127 format(6f10.4)

C****************************************

¢ 1.3 Program for calculate optimal length
R R R R I a L
¢ Theprogram set the start phase of traffic signal cycle at the
C intersection.
t1=1
cl=1
di=1
i1=0
gn=0
01=0
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rc2=0
rc3=0
rc4=0
in=0
rang=0
rangl=0

650 i1=i1+1

o O O O

ril=il

in=in+1

The program create carsand find the probability, which is

emerged from the calculation of route counts, for each

of thecreated car in order to randomiseits moving from each

branch of the intersection.

pl=rinten(11)/(rinten(11)+rinten(9)+rinten(13))

p2=rinten(9)/(rinten(11)+rinten(9)+rinten(13))

p3=(0.38*rinten(13))/(rinten(11)+rinten(9)+rinten(13))

p4=(0.62* rinten(13))/(rinten(11)+rinten(9)+rinten(13))

call allocate(pl,p2,p3,p4,q,ix)

que=q

if(que.eg.1)then

beta=1/rlink(11)
Theprogram generateinterarrival time of each car by
exponential distribution with parameter beta that isfixed by
trafficintendity in the part of input process.

call expo(beta,bx,ix)

a(in)=bx

gn=gn+1

sumg=0

The program compute theimportant parameter of simulation

process, input of fuzzy logic system such as:

x! : number of carsthat passthe green light.

x, : number of carsfrom the branch that are allowed to passthe

intersection by the green light.
X, : number of car that stop behind thered light.
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(@)

/

: number of carsfrom the branch that are prohibited passing

the intersection by thered light.

: thecurrent cycletime,

: summation of interarrival time.

do4j=1,in

sumg=sumg+a(j)

continue

driv(in)=sumg
cut(in)=0

else if(que.eg.2)then
beta=1/rlink(9)

call expo(beta,bx,ix)
a(in)=bx

rc2=rc2+1

scut=0
dolj=1,in
scut=scut+a(j)

continue
driv(in)=0

cut(in)=scut

elseif(que.eg.3)then
beta=1/(0.38*rlink(13))
call expo(beta,bx,ix)
a(in)=bx

rc3=rc3+1

scut=0

do 2j=1,in
scut=scut+a(j)

continue
driv(in)=0

cut(in)=scut

else if(que.eg.4)then
beta=1/(0.62* rlink(13))
call expo(beta,bx,ix)
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a(in)=bx

rcd=rcd+1

scut=0

do 3j=1,in
scut=scut+a(j)

continue

driv(in)=0

cut(in)=scut

end if
rangl=rangl+a(in)
rang=rang+a(in)
if(il-ol.eq.1)go to 650
delay=0

drive=0

do 6 k1=1,in
if(cut(kl1).eg.0)then
sumwa(k1)=0
elseif(cut(k1).gt.0)then
sumwa(k1)=rangl-cut(k1)
end if
delay=delay+sumwa(k1)
drive=drivetdriv(kl)
continue
drive=drivet+add* a(01+1)

645 redn=rc2+rc3+rcd

c

c

g=2*gn/rangl
red=6*redn/rangl
wait=rangl
drivel=cdrivetdrive
delayl=cdelay+delay
rednl=credn+redn
gnl=cgn+gn

The program caculate the value of the cost function.

cost=(delay1* gn1* (redn+gn))/(100* redn1* gn* drivel)

The program calculate degree of change by using
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c fuzzy logic system.
call fuzzy(g,red,wait,mu)
degree=mu
if(degree.eq.1) goto 655
goto 650
¢ Theprogram iterate until length of timeiscomplete and all
C intersectionsare covered.
655 ubl(tl)=wait
t1=t1+1
if(rang.gt.1800) go to 730
gn=rc2+rc4
add=rc2+rc4
cdrive=drivel
cdelay=delayl
credn=rednl
cgn=gnl
rcl=0
in=0
rang2=0
j1=il
660 j1=j1+1
in=in+1
rjl=j1
pl=rinten(11)/(rinten(11)+rinten(9)+rinten(13))
p2=rinten(9)/(rinten(11)+rinten(9)+rinten(13))
p3=(0.38*rinten(13))/(rinten(11)+rinten(9)+rinten(13))
p4=(0.62* rinten(13))/(rinten(11)+rinten(9)+rinten(13))
call allocate(pl,p2,p3,p4,q,ix)
que=q
if(que.eg.2)then
beta=1/rlink(9)
call expo(beta,bx,ix)
a(in)=bx
gn=gn+1

sumg=0
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11

do 8j=1,in

sumg=sumg-+a(j)
continue

driv(in)=sumg

cut(in)=0

else if(que.eg.4) then

beta=1/(0.62*rlink(13))

call expo(beta,bx,ix)

a(in)=bx

gn=gn+1

sumg=0

do9j=1,in

sumg=sumg-+a(j)
continue

driv(in)=sumg

cut(in)=0

else if(que.eg.1)then

rcl=rcl+1

beta=1/rlink(11)

call expo(beta,bx,ix)

a(in)=bx

scut=0

do 11j=1,in

scut=scut+a(j)
continue

driv(in)=0

cut(in)=scut

elseif (que.eq.3)then

rc3=rc3+1

beta=1/(0.38*rlink(13))

call expo(beta,bx,ix)

a(in)=bx

scut=0

do 31j=1,in

scut=scut+a(j)
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31

12

continue
driv(in)=0
cut(in)=scut
end if
rang=rang+a(in)
rang2=rang2-+a(in)
if(j1-i1.eq.1)go to 660
k1=0
delay=0
drive=0
do 12 k1=1,in
if(cut(kl1).eg.0)then
sumwa(k1)=0
elseif(cut(k1).gt.0)then
sumwa(k1)=rang2-cut(k1)
end if
delay=delay+sumwa(k1)
drive=drivetdriv(kl)
continue
drive=drivetadd* a(i1+1)

6380 redn=rcl+rc3

g=3*gn/rang2
red=6*rredn/rang2
wait=rang2
drivel=cdrivetdrive
delayl=cdelay+delay
rednl=credn+redn
gnl=cgn+gn
cost=(delay1* gn1* (redn+gn))/(100* redn1*gn* drivel)
call fuzzy(g,red,wait,mu)
degree=mu
if(degree.eq.1) go to 664
go to 660

664 ub2(cl)=wait

cl=cl+1
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if(rang.gt.1800) go to 730
gn=rc3
add=rc3
cdrive=drivel
cdelay=delayl
credn=rednl
cgn=gnl
rc2=0

in=0

rang3=0
o0l=j1

685 0l1=01+1

14

in=in+1
pl=rinten(11)/(rinten(11)+rinten(9)+rinten(13))
p2=rinten(9)/(rinten(11)+rinten(9)+rinten(13))
p3=(0.38*rinten(13))/(rinten(11)+rinten(9)+rinten(13))
p4=(0.62* rinten(13))/(rinten(11)+rinten(9)+rinten(13))
call allocate(pl,p2,p3,p4,q,ix)
que=q
if(que.eq.3) then
beta=1/(0.38*rlink(13))
call expo(beta,bx,ix)
a(in)=bx
gn=gn+1
sumg=0
do 14 j=1,in
sumg=sumg-+a(j)
continue
driv(in)=sumg
cut(in)=0
else if(que.eg.4) then
beta=1/(0.62* rlink(13))
call expo(beta,bx,ix)
a(in)=bx
gn=gn+1
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17

18

19

sumg=0

do 17 j=1,in

sumg=sumg-+a(j)
continue

driv(in)=sumg

cut(in)=0

else if(que.eg.2) then

rc2=rc2+1

beta=1/rlink(9)

call expo(beta,bx,ix)

a(in)=bx

scut=0

do 18 j=1,in

scut=scut+a(j)
continue

driv(in)=0

cut(in)=scut

else if(que.eg.1)then

rcl=rcl+1

beta=1/rlink(11)

call expo(beta,bx,ix)

a(in)=bx

scut=0

do 19 j=1,in

scut=scut+a(j)
continue

driv(in)=0

cut(in)=scut

end if

rang3=rang3-+a(in)

rang=rang+a(in)

if(ol-j1.eq.1)go to 685

k1=0

delay=0

drive=0



32

do 32 k1=1,in
if(cut(k1).eq.0)then
sumwa(k1)=0
elseif(cut(k1).gt.0)then
sumwa(k1)=rang3-cut(k1)
end if
delay=delay+sumwa(k1)
drive=drivetdriv(kl)
continue
drive=drivet+add* a(j1+1)

710 redn=rcl+rc2

g=3*gn/rang3
red=6*redn/rang3
wait=rang3
drivel=cdrivetdrive
delayl=cdelay+delay
rednl=credn+redn
gnl=cgn+gn
cost=(delay1* gn1* (redn+gn))/(100* redn1*gn* drivel)
call fuzzy(g,red,wait,mu)
degree=mu
if(degree.eq.1) goto 720
goto 685

720 ub3(dl)=wait

d1=di+1
if(rang.gt.1800) go to 730
i1=o0l

gn=rcl

add=rcl

cdrive=drivel
cdelay=delayl
credn=rednl

cgn=gnl

rc=0

in=0
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rc3=0
rc4=0
rangl1=0
goto 650
730 el=1
i1=0
g=0
gn=0
01=0
rc2=0
rc3=0
rangl=0
rang=0
in=0
735 i1=i1+1
ril=il
in=in+1
rin=in
pl=rinten(3)/(rinten(3)+rinten(31)+rinten(48))
p2=rinten(31)/(rinten(3)+rinten(31)+rinten(438))
p3=rinten(48)/(rinten(3)+rinten(31)+rinten(438))
p4=0
call allocate(pl,p2,p3,p4,q,ix)
que=q
if(que.eg.1) then
gn=gn+1
beta=1/rlink(3)
call expo(beta,bx,ix)
a(in)=bx
sumg=0
do 121 j=1,in
sumg=sumg-+a(j)
121 continue
driv(in)=sumg
cut(in)=0
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24

26

else if(que.eg.2) then

rc2=rc2+1

beta=1/rlink(31)

call expo(beta,bx,ix)

a(in)=bx

scut=0

do 24 j=1,in

scut=scut+a(j)
continue

driv(in)=0

cut(in)=scut

else if(que.eg.3)then

rc3=rc3+1

beta=1/rlink(48)

call expo(beta,bx,ix)

a(in)=bx

scut=0

do 26 j=1,in

scut=scut+a(j)
continue

driv(in)=0

cut(in)=scut

end if

rangl=rangl+a(in)

rang=rang+a(in)

if(il-ol.eq.1)go to 735

drive=0

delay=0

750 wl(k1l)=sumw

do 36 k1=1,in
if(cut(kl1).eg.0)then
sumwa(k1)=0
elseif(cut(k1).gt.O)then
sumwa(k1)=rangl-cut(k1)

end if
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delay=delay+sumwa(k1)
drive=drivetdriv(kl)

36 continue
drive=drivetadd* a(01+1)

755 redn=rc2+rc3
delayl=delay/redn
g=4*gn/rangl
red=6*redn/rangl
wait=rangl
drivel=cdrivetdrive
delayl=cdelay+delay
rednl=credn+redn
gnl=cgn+gn
cost=(delay1* gn1* (redn+gn))/(100* redn1*gn* drivel)
if(wait.gt.20)go to 760
goto 735

760 chl(el)=wait
el=el+l
if(rang.ge.1800) go to 789
f1=1
z1=1
gn=rc2
add=rc2
cdrive=drivel
cdelay=delayl
credn=rednl
cgn=gnl
rcl=0
rang2=0
j1=il
in=0

764 j1=j1+1
rjl=j1
in=in+1

pl=rinten(3)/(rinten(3)+rinten(31)+rinten(43))
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22

27

p2=rinten(31)/(rinten(3)+rinten(31)+rinten(48))
p3=rinten(48)/(rinten(3)+rinten(31)+rinten(48))

p4=0

call allocate(pl,p2,p3,p4,q,ix)

que=q

if(que.eg.2) then

gn=gn+1

beta=1/rlink(31)

call expo(beta,bx,ix)

a(in)=bx

sumg=0

do 22 j=1,in

sumg=sumg-+a(j)
continue

driv(in)=sumg

cut(in)=0

else if(que.eg.1) then

rcl=rcl+1

beta=1/rlink(3)

call expo(beta,bx,ix)

a(in)=bx

scut=0

do 27 j=1,in

scut=scut+a(j)
continue

driv(in)=0

cut(in)=scut

elseif(que.eg.3)then

rc3=rc3+1

beta=1/rlink(48)

call expo(beta,bx,ix)

a(in)=bx

scut=0

do 127 j=1,in

scut=scut+a(j)
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127 continue

46

driv(in)=0

cut(in)=scut

end if

rang=rang+a(in)

rang2=rang2-+a(in)

if(j1-il.eq.1)go to 764

drive=0

delay=0

do 46 k1=1,in

if(cut(kl1).eg.0)then

sumwa(k1)=0

elseif(cut(k1).gt.O)then

sumwa(k1)=rangl-cut(k1)

end if

delay=delay+sumwa(k1)

drive=drivetdriv(kl)
continue

drive=drivetadd* a(i1+1)

780 redn=rcl+rc3

delay2=delay/redn
g=4*gn/rang2
red=6*rredn/rang2
wait=rang2
drivel=cdrivetdrive
delayl=cdelay+delay
rednl=credn+redn
gnl=cgn+gn
cost=(delay1* gn1* (redn+gn))/(100* redn1*gn* drivel)
if(wait.gt.25) go to 785
goto 764

785 ch2(f1)=wait

f1=f1+1
if(rang.gt.1800) go to 789
gn=rc3
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add=rc3
cdrive=drivel
cdelay=delayl
credn=rednl
cgn=gnl
rc2=0
rang3=0
o0l=j1
in=0
790 o0l=01+1
in=in+1
pl=rinten(3)/(rinten(3)+rinten(31)+rinten(48))
p2=rinten(31)/(rinten(3)+rinten(31)+rinten(438))
p3=rinten(48)/(rinten(3)+rinten(31)+rinten(48))
p4=0
call allocate(pl,p2,p3,p4,q,ix)
que=q
if(que.eq.3) then
gn=gn+1
beta=rlink(48)
call expo(beta,bx,ix)
a(in)=bx
sumg=0
do 123 j=1,in
sumg=sumg-+a(j)
123 continue
driv(in)=sumg
cut(in)=0
else if(que.eg.1) then
rcl=rcl+1
beta=rlink(3)
call expo(beta,bx,ix)
a(in)=bx
scut=0
do 28 j=1,in
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28

29

56

scut=scut+a(j)
continue

driv(in)=0

cut(in)=scut

else if(que.eg.2)then

rc2=rc2+1

beta=rlink(31)

call expo(beta,bx,ix)

a(in)=bx

scut=0

do 29 j=1,in

scut=scut+a(j)
continue

driv(in)=0

cut(in)=scut

end if

rang=rang+a(in)

rang3=rang3+a(in)

if(ol-j1l.eq.1)goto 790

drive=0

delay=0

do 56 k1=1,in
if(cut(kl1).eg.0)then
sumwa(k1)=0

else if(cut(k1).gt.0)then
sumwa(k1)=rangl-cut(k1)

end if

delay=delay+sumwa(k1)

drive=drivetdriv(kl)

continue

drive=drive+add* a(j1+1)

809 redn=rcl+rc2

delay3=delay/redn
g=4*gn/rang3
red=6*redn/rang3
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wait=rang3
drivel=cdrivetdrive
delayl=cdelay+delay
rednl=credn+redn
gnl=cgn+gn
cost=(delay1* gnl* (redn+gn))/(100* redn1*gn* drivel)
if(wait.gt.25)go to 784
goto 790

784 ch3(zl)=wait
z1=71+1
if(rang.ge.1800)go to 789
i1=o0l
gn=rcl
add=rcl
cdrive=drivel
cdelay=delayl
credn=rednl
cgn=gnl
rc3=0
in=0
rangl=0
goto 735

789 hl=1
yl=1
a=1
i1=0
01=0
rcl=0
rc3=0
rang=0
rangl=0
gn=0
in=0

794 il=i1+1
ril=il
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61

in=in+1
pl=rinten(42)/(rinten(42)+rinten(17)+rinten(37))
p2=rinten(17)/(rinten(42)+rinten(17)+rinten(37))
p3=rinten(37)/(rinten(42)+rinten(17)+rinten(37))
p4=0
cal allocate(pl,p2,p3,p4,q,ix)
que=q
if(que.eg.2) then
gn=gn+1
beta=1/rlink(17)
call expo(beta,bx,ix)
a(in)=bx
sumg=0
do 61 j=1,in
sumg=sumg-+a(j)

continue
driv(in)=sumg
cut(in)=0
else if(que.eg.1) then
rcl=rcl+1
beta=1/rlink(42)
call expo(beta,bx,ix)
a(in)=bx

scut=0
do 64 j=1,in
scut=scut+a(j)

continue
driv(in)=0
cut(in)=scut
elseif(que.eg.3)then
rc3=rc3+1
beta=1/rlink(37)
call expo(beta,bx,ix)
a(in)=bx

scut=0
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do 66 j=1,in
scut=scut+a(j)

66 continue
driv(in)=0
cut(in)=scut
end if
rang=rang+a(in)
rangl=rangl+a(in)
if(il-ol.eq.1)go to 794
drive=0
delay=0
do 73 k1=1,in
if(cut(kl1).eg.0)then
sumwa(k1)=0
elseif(cut(k1).gt.0)then
sumwa(k1)=rangl-cut(k1)
end if
delay=delay+sumwa(k1)
drive=drivetdriv(kl)

73 continue
drive=drivet+add* a(01+1)

815 redn=rc3+rcl
delayl=delay/redn
g=2*gn/rangl
red=4*redn/rangl
wait=rangl
drivel=cdrivetdrive
delayl=cdelay+delay
rednl=credn+redn
gnl=cgn+gn
cost=(delay1* gn1* (redn+gn))/(100* redn1*gn* drivel)
call fuzzy(g,red,wait,mu)
degree=mu
if(degree.eq.1) goto 820
goto 794
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820 cpl(hl)=wait

hl=h1+1
if(rang.gt.1800)go to 925
yl=1

gn=rc3
add=rc2
cdrive=drivel
cdelay=delayl
credn=rednl
cgn=gnl
rc2=0
rang2=0

j1=i1

in=0

825 jl=j1+1

62

rjl=j1
in=in+1
pl=rinten(42)/(rinten(42)+rinten(17)+rinten(37))
p2=rinten(17)/(rinten(42)+rinten(17)+rinten(37))
p3=rinten(37)/(rinten(42)+rinten(17)+rinten(37))
p4=0
call allocate(pl,p2,p3,p4,q,ix)
que=q
if(que.eg.3) then
gn=gn+1
beta=1/rlink(37)
call expo(beta,bx,ix)
a(in)=bx
sumg=0
do 62 j=1,in
sumg=sumg-+a(j)
continue
driv(in)=sumg
cut(in)=0
else if(que.eg.1) then
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rcl=rcl+1

beta=1/rlink(42)

call expo(beta,bx,ix)

a(in)=bx

scut=0

do 67 j=1,in

scut=scut+a(j)
continue

driv(in)=0

cut(in)=scut

else if(que.eg.2)then

rc2=rc2+1

beta=1/rlink(17)

call expo(beta,bx,ix)

a(in)=bx

scut=0

do 68 j=1,in

scut=scut+a(j)
continue

driv(in)=0

cut(in)=scut

end if

rang=rang+a(in)

rang2=rang2-+a(in)

if(j1-i1.eq.1)go to 825

delay=0

drive=0

do 74 k1=1,in

if(cut(kl).eg.0)then

sumwa(k1)=0

elseif(cut(k1).gt.O)then

sumwa(k1)=rangl-cut(k1)

end if

delay=delay+sumwa(k1)

drive=drivetdriv(kl)
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74  continue

drive=drive+add* a(i1+1)

845 redn=rcl+rc2

c

delay2=delay/redn
g=2*gn/rang2
red=4*redn/rang2
wait=rang2
drivel=cdrivetdrive
delayl=cdelay+delay
rednl=credn+redn
gnl=cgn+gn

cost=(delay1* gn1* (redn+gn))/(100* redn1*gn* drivel)

write(6,23)rj1,rang,rang2,gn,redn,cost,degree

c23 format(7f10.3)

call fuzzy(g,red,wait,mu)
degree=mu
if(degree.eq.1) goto 850
goto 825

850 cp2(yl)=wait

yl=yl+1
if(rang.gt.1800)go to 925
gn=rcl
add=rcl
cdrive=drivel
cdelay=delayl
credn=rednl
cgn=gnl
rc3=0
rang3=0

in=0

o0l=j1

860 o0l1=01+1

in=in+1
pl=rinten(42)/(rinten(42)+rinten(17)+rinten(37))
p2=rinten(17)/(rinten(42)+rinten(17)+rinten(37))
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63

69

p3=rinten(37)/(rinten(42)+rinten(17)+rinten(37))

p4=0

call allocate(pl,p2,p3,p4,q,ix)

que=q

if(que.eg.1) then

gn=gn+1

beta=1/rlink(42)

call expo(beta,bx,ix)

a(in)=bx

sumg=0

do 63 j=1,in

sumg=sumg-+a(j)
continue

driv(in)=sumg

cut(in)=0

wase(in)=0

else if(que.eg.2) then

rc2=rc2+1

beta=1/rlink(17)

call expo(beta,bx,ix)

a(in)=bx

scut=0

do 69 j=1,in

scut=scut+a(j)
continue

driv(in)=0

cut(in)=scut

elseif (que.eq.3)then

rc3=rc3+1

beta=1/rlink(37)

call expo(beta,bx,ix)

a(in)=bx

scut=0

do 171j=1,in

scut=scut+a(j)
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171 continue
driv(in)=0
cut(in)=scut
end if
rang=rang+a(in)
rang3=rang3-+a(in)
if(ol-j1.eq.1)go to 860
delay=0
drive=0
do 276 k1=1,in
if(cut(k1).eq.0)then
sumwa(k1)=0
elseif(cut(k1).gt.0O)then
sumwa(k1)=rangl-cut(k1)
end if
delay=delay+sumwa(k1)
drive=drivetdriv(kl)
276 continue
drive=drivet+add* a(j1+1)
880 redn=rc2+rc3
delay3=delay/redn
g=2*gn/rang3
red=4*redn/rang3
wait=rang3
drivel=cdrivetdrive
delayl=cdelay+delay
rednl=credn+redn
gnl=cgn+gn
cost=(delay1* gn1* (redn+gn))/(100* redn1*gn* drivel)
call fuzzy(g,red,wait,mu)
degree=mu
if(degree.eq.1) goto 885
go to 860
885 cp3(ai)=wait

a=ai+1
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if(rang.gt.1800)go to 925
gn=rc2
add=rc2
cdrive=drivel
cdelay=delayl
credn=rednl
cgn=gnl
rcl=0
in=0
rangl=0
i1=01
goto 794

925 bl=1
cl=1
vl=1
xo=1
gn=0
s1=0
i1=0
s1=0
in=0
rcl=0
rc2=0
rc3=0
rang=0
rangl=0

890 il=il+1
ril=il
in=in+1
pl=rinten(28)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))
p2=rinten(29)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))
p3=rinten(24)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))
p4=rinten(1)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))
call allocate(pl,p2,p3,p4,q,ix)

que=q
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71

76

77

if(que.eq.4) then

gn=gn+1

beta=1/rlink(1)

call expo(beta,bx,ix)

a(in)=bx

sumg=0

do 71j=1,in

sumg=sumg-+a(j)
continue

driv(in)=sumg

cut(in)=0

else if(que.eg.2) then

rc2=rc2+1

beta=1/rlink(29)

call expo(beta,bx,ix)

a(in)=bx

scut=0

do 76 j=1,in

scut=scut+a(j)
continue

driv(in)=0

cut(in)=scut

elseif(que.eq.3) then

rc3=rc3+1

beta=1/rlink(24)

call expo(beta,bx,ix)

a(in)=bx

scut=0

do 77 j=1,in

scut=scut+a(j)
continue

driv(in)=0

cut(in)=scut

else if(que.eg.1)then

rcl=rcl+1
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78

91

beta=1/rlink(28)
call expo(beta,bx,ix)
a(in)=bx
scut=0
do 78 j=1,in
scut=scut+a(j)
continue
driv(in)=0
cut(in)=scut
end if
rang=rang+a(in)
rangl=rangl+a(in)
if(i1-sl.eg.1)go to 890
delay=0
drive=0
do 91 k1=1,in
if(cut(k1).eq.0)then
sumwa(k1)=0
elseif(cut(k1).gt.0)then
sumwa(k1)=rangl-cut(k1)
end if
delay=delay+sumwa(k1)
drive=drivetdriv(kl)
continue
drive=drivet+add* a(sl+1)

915 redn=rcl+rc2+rc3

delayl=delay/redn

g=2*gn/rangl

red=3*redn/rangl

wait=rangl

drivel=cdrivetdrive

delayl=cdelay+delay

rednl=credn+redn

gnl=cgn+gn

cost=(delay1* gn1* (redn+gn))/(100* redn1*gn* drivel)
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call fuzzy(g,red,wait,mu)
degree=mu
if(degree.eq.1) goto 920
goto 890
920 apl(bl)=wait
bl=b1+1
if(rang.gt.1800)go to 1020
gn=rcl
add=rcl
cdrive=drivel
cdelay=delayl
credn=rednl
cgn=gnl
rc4=0
rang2=0
j1=il
in=0
924 j1=j1+1
rjl=j1
in=in+1
pl=rinten(28)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))
p2=rinten(29)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))
p3=rinten(24)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))
p4=rinten(1)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))
call allocate(pl,p2,p3,p4,q,ix)
que=q
if(que.eg.1) then
gn=gn+1
beta=1/rlink(28)
call expo(beta,bx,ix)
a(in)=bx
sumg=0
do 72 j=1,in
sumg=sumg-+a(j)
72 continue



79

81

82

driv(in)=sumg

cut(in)=0

else if(que.eg.2) then

rc2=rc2+1

beta=1/rlink(29)

call expo(beta,bx,ix)

a(in)=bx

scut=0

do 79 j=1,in

scut=scut+a(j)
continue

driv(in)=0

cut(in)=scut

elseif(que.eq.3) then

rc3=rc3+1

beta=1/rlink(24)

call expo(beta,bx,ix)

a(in)=bx

scut=0

do 81j=1,in

scut=scut+a(j)
continue

driv(in)=0

cut(in)=scut

else if(que.eg.4)then

rcd=rc4+1

beta=1/rlink(1)

call expo(beta,bx,ix)

a(in)=bx

scut=0

do 82 j=1,in

scut=scut+a(j)
continue

driv(in)=0

cut(in)=scut
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92

wase(in)=bx

end if

rang=rang+a(in)

rang2=rang2-+a(in)

if(j1-i1.eq.1)go to 924

delay=0

drive=0

do 92 k1=1,in

if(cut(kl1).eg.0)then

sumwa(k1)=0

elseif(cut(k1).gt.0)then

sumwa(k1)=rangl-cut(k1)

end if

delay=delay+sumwa(k1)

drive=drivetdriv(kl)
continue

drive=drivetadd* a(i1+1)

945 redn=rc2+rc3+rcd

delay2=delay/redn
g=3*gn/rang2
red=3*redn/rang2
wait=rang2
drivel=cdrivetdrive
delayl=cdelay+delay
rednl=credn+redn
gnl=cgn+gn
cost=(delay1* gn1* (redn+gn))/(100* redn1*gn* drivel)
call fuzzy(g,red,wait,mu)
degree=mu
if(degree.eq.1) goto 950
goto 924

950 ap2(cl)=wait

cl=cl+l
if(rang2.ge.1800)go to 1020
vl=1



gn=rc3
add=rc3
cdrive=drivel
cdelay=delayl
credn=rednl
cgn=gnl
rcl=0
o0l=j1
rang3=0
in=0
955 o0l1=01+1
in=in+1
pl=rinten(28)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))
p2=rinten(29)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))
p3=rinten(24)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))
p4=rinten(1)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))
call allocate(pl,p2,p3,p4,q,ix)
que=q
if(que.eq.3) then
gn=gn+1
beta=1/rlink(24)
call expo(beta,bx,ix)
a(in)=bx
sumg=0
do 273 j=1,in
sumg=sumg-+a(j)
273 continue
driv(in)=sumg
cut(in)=0
wase(in)=0
else if(que.eg.1) then
rcl=rcl+1
beta=1/rlink(28)
call expo(beta,bx,ix)
a(in)=bx
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83

86

scut=0

do 83j=1,in

scut=scut+a(j)
continue

driv(in)=0

cut(in)=scut

else if(que.eg.2) then

rc2=rc2+1

beta=1/rlink(29)

call expo(beta,bx,ix)

a(in)=bx

scut=0

do 84 j=1,in

scut=scut+a(j)
continue

driv(in)=0

cut(in)=scut

else if(que.eg.4)then

rcd=rc4+1

beta=1/rlink(1)

call expo(beta,bx,ix)

a(in)=bx

scut=0

do 86 j=1,in

scut=scut+a(j)
continue

driv(in)=0

cut(in)=scut

end if

rang=rang+a(in)

rang3=rang3-+a(in)

if(ol-j1.eq.1)go to 955

delay=0

drive=0

do 93 k1=1,in



if(cut(k1).eq.0)then
sumwa(k1)=0
elseif(cut(k1).gt.0O)then
sumwa(k1)=rangl-cut(k1)
end if
delay=delay+sumwa(k1)
drive=drivetdriv(kl)

93 continue
drive=drive+add* a(j1+1)

975 redn=rcl+rc2+rc4
delay3=delay/redn
g=2*gn/rang3
red=3*redn/rang3
wait=rang3
drivel=cdrivetdrive
delayl=cdelay+delay
rednl=credn+redn
gnl=cgn+gn
cost=(delay1* gn1* (redn+gn))/(100* redn1*gn* drivel)
call fuzzy(g,red,wait,mu)
degree=mu
if(degree.eq.1) goto 980
goto 955

980 ap3(vl)=wait
vl=vl+l
if(rang.ge.1800)go to 1020
gn=rc2
add=rc2
cdrive=drivel
cdelay=delayl
credn=rednl
cgn=gnl
rc3=0
rang4=0

sl=01



in=0

985 sl=sl1+1

in=in+1
pl=rinten(28)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))
p2=rinten(29)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))
p3=rinten(24)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))
p4=rinten(1)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))
call allocate(pl,p2,p3,p4,q,ix)

que=q

if(que.eg.2) then

gn=gn+1

beta=1/rlink(29)

call expo(beta,bx,ix)

a(in)=bx

sumg=0

do 174 j=1,in

sumg=sumg+a(j)

174 continue

87

driv(in)=sumg

cut(in)=0

elseif(que.eq.3) then

rc3=rc3+1

beta=1/rlink(24)

call expo(beta,bx,ix)

a(in)=bx

scut=0

do 87 j=1,in

scut=scut+a(j)
continue

driv(in)=0

cut(in)=scut

else if(que.eg.1)then

rcl=rcl+1

beta=1/rlink(28)

call expo(beta,bx,ix)
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88

89

94

a(in)=bx
scut=0
do 88j=1,in
scut=scut+a(j)
continue
driv(in)=0
cut(in)=scut
wase(in)=bx
elseif(que.eg.4)then
rcd=rcd+1
beta=1/rlink(1)
call expo(beta,bx,ix)
a(in)=bx
scut=0
do 89j=1,in
scut=scut+a(j)
continue
driv(in)=0
cut(in)=scut
end if
rang=rang+a(in)
rang4=rang4-+a(in)
if(sl-ol.eg.1)go to 985
delay=0
drive=0
do 94 k1=1,in
if(cut(kl1).eg.0)then
sumwa(k1)=0
elseif(cut(k1).gt.0)then
sumwa(k1)=rangl-cut(k1)
end if
delay=delay+sumwa(k1)
drive=drivetdriv(kl)
continue
drive=drivet+add* a(01+1)
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1005 redn=rcl+rc3+rc4

c

delay4=delay/redn

g=2*gn/rang4

red=3*redn/rang4

wait=rang4

drivel=cdrivetdrive

delayl=cdelay+delay

rednl=credn+redn

gnl=cgn+gn

cost=(delay1* gn1* (redn+gn))/(100* redn1*gn* drivel)
write(6,43)s1,rang,rang4,gn,redn,cost,degree

c43 format(7f10.5)

call fuzzy(g,red,wait,mu)
degree=mu
if(degree.eq.1) go to 1010
go to 985

1010 ap4(xo)=wait

X0=Xx0+1
if(rang.ge.1800)go to 1020
i1=s1

gn=rc4
add=rc4
cdrive=drivel
cdelay=delayl
credn=rednl
cgn=gnl
rc2=0

in=0

rangl=0

goto 890

1020 STOP

end
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R R R L LR Ta e
c 2. Sub-Program
R R R L LR Ta e
R R R L LR Ta e
c 2.1 Subroutinefor allocate car to each branch
R R R L IR Ta e

subroutine allocate(pl,p2,p3,p4,q,iX)

rn=unif(ix)

if(rn.It.pl) then

g=1

else if(rn.ge.pl.and.rn.lt.pl+p2) then

g=2

else if(rn.ge.pl+p2.and.rn.lt.pl+p2+p3) then

g=3

else if(rn.ge.pl+p2+p3) then

=4

end if

return

end

C*********************************************************

c 2.2 Subroutinefor generate exponential random variable
KRk ko ko Kk ok ko ko k ok koK ko ko ko ko
subroutine expo(beta,bx,ix)
rn=unif(ix)
bx=-beta*alog(rn)
return
end

C**************************************************

C 2.3 Subroutine for generate gamma random variable
C**************************************************
Subroutine gamma
common ix,al,be,x,xp,rmean,min,xmax,xu,g,rew1,1,p
555  rn=unif(ix)
v=-be*alog(rn)

X=X+V
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if(al.eq.1)go to 520
d=al-1
go to 555
520 x=X
return
end

C******************************************************

C 2.4 Subroutine for generate poisson random variable
Ok ok koo ko ko ok ok ko ok koK ko ko k
subroutine poiss
common ix,ial,be,x,xp,rmean,min,xmax,xu,g,rew1,1,p
xp=0.0
a=2.718**(-rmean)
1.0
4 rn=unif(ix)
s=s‘rn
if(s-a)9,7,7
7  xp=xp+l1l.0
goto 4
9 return
end

C************************************************

c 2.5 Subroutine for generate bernoulie random variable
R R R T T S T e e
subroutine ber(p,X,ix)
rn=unif(ix)
rr=1-p
if(rn.le.rr)go to 525
X=1.0
goto 530
525 x=0.0
530 return
end
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C**************************************************

c 2.6 Function for generate random number

Rk ok ko kR ko ko ko ko
FUNCTION UNIF(IX)
K1=1X/127773
I X=16807* (I1X-K1*127773)-K1* 2836
IF(IX.LT.0)IX=1X+2147483647
UNIF=1X*4.656612875E-10
IX=1X
RETURN

C******************************************************

c 2.8 Subroutine for fuzzy logic system
Rk ko ko ko ko ko ko ko ko ok
SUBROUTINE FUZZY (G,RED,WAIT,MU)
| X=1234567
IF(G.GT.1) THEN
GZ=0
ELSE IF(G.LE.1.AND.G.GE.O) THEN
GZ=1-G
END IF
IF(G.LE.1.AND.G.GE.Q) THEN
GL=G
ELSE IF(G.LE.2.AND.G.GT.1) THEN
GL=1
ELSE IF(G.LE.3.AND.G.GT.2) THEN
GL=3-G
ELSE IF(G.GT.3) THEN
GL=0
END IF
IF(G.LE.2) THEN
GM=0
ELSE IF(G.LE.3.AND.G.GT.2) THEN
GM=G-2
ELSE IF(G.LE.4.AND.G.GT.3) THEN
GM=4-G
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ELSE IF(G.GT.4) THEN

GM=0

END IF

|F(G.LT.3) THEN

GH=0

ELSE IF(G.LT.4.AND.G.GE.3) THEN
GH=G-3

ELSE IF(G.GE.4) THEN

GH=1

END IF

|F(RED.LT.1.AND.RED.GE.0) THEN
RZ=1-RED

ELSE IF(RED.GE.1)THEN

RZ=0

END IF

|F(RED.LT.1.AND.RED.GE.0) THEN
RL=RED

ELSE IF(RED.LT.3.AND.RED.GE.1) THEN
RL=1

ELSE IF(RED.LT.6.AND.RED.GE.3) THEN
RL=2-RED/3

ELSE IF(RED.GE.6) THEN

RL=0

END IF

|F(RED.LT.3) THEN

RM=0

ELSE IF(RED.LT.6.AND.RED.GE.3) THEN
RM=RED/3-1

ELSE IF(RED.LT.9.AND.RED.GE.6) THEN
RM=3-RED/3

ELSE IF(RED.GE.9) THEN

RM=0

END IF

|F(RED.LT.6) THEN

RH=0
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ELSE IF(RED.LT.9.AND.RED.GE.6) THEN
RH=RED/3-2

ELSE IF(RED.GE.9) THEN

RH=1

END IF

|F(WAIT.LT.30.AND.WAIT.GE.0) THEN

ws=1

ELSE IF(WAIT.LT.60.AND.WAIT.GE.30) THEN
WS=2-WAIT/30

ELSE IF(WAIT.GE.60) THEN

WS=0

END IF

|F(WAIT.LT.30) THEN

WM=0

ELSE IF(WAIT.LT.60.AND.WAIT.GE.30) THEN
WM=WAIT/30-1

ELSE IF(WAIT.LT.90.AND.WAIT.GE.60) THEN
WM=3-WAIT/30

ELSE IF(WAIT.GE.90) THEN

WM=0

END IF

|F(WAIT.LT.60) THEN

WL=0

ELSE IF(WAIT.LT.90.AND.WAIT.GE.60) THEN
WL=WAIT/30-2

ELSE IF(WAIT.GE.90) THEN

wL=1

END IF

A1=0.05

A2=0.2

A3=0.2

A4=0.2

A5=0.15

C1=0.033

C2=0.3
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C3=0.5

C4=0.7

C5=0.85

S1=GZ*RZ*A1l

S2=GZ*RL*A5

S3=GZ*RM* A5

HA=GZ*RH*A5

S5=RZ*Al

S6=GL*RL*A1l

S7=GM*RM*A1

S8=GH*RH*A1l

SO=GL*RM*WS*A3

S10=GL*RM*WM* A4

S11=GL*RM*WL*A5

S12=GL*RH*WS* A2

S13=GL*RH*WM* A3

S14=GL*RH*WL*A4

S15=GM*RL*WS*A2

S16=GM*RL*WM* A2

S17=GM*RL*WL*A3

S18=GM*RH*WS* A3

S19=GM*RH*WM* A4

S20=GM*RH*WL* A5

S21=GH*RL*WS* A3

S22=GH*RL*WM* A4

S23=GH*RL*WL*A5

S24=GH*RM*WS* A2

S25=GH*RM*WM* A2

S26=GH*RM*WL*A3

UPER=S1* C1+S2* C5+S3* C5+S4* C5+S5* C1+S6* C1+S7* C1+S8* C1&
+S9* C3+S10* C4+S11* C5+S12* C2+S13* C3+S14* C4+S15* C2
& +S16* C2+S17* C3+S18* C3+S19* C4+S20* C5+S21* C3+S22* C4
& +S23* C5+S24* C2+S25* C2+S26* C3
ROWER=S1+S2+S3+S4+S5+S6+S7+S8+S9+S10+S11+S12+S13+S14
& +S15+S16+S17+S18+S19+S20+S21+S22+S23+S24+S25+S26
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RUL=UPER/ROWER
P=RUL

CALL BER(P,X,iX)
MU=X

RETURN

END
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