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ABSTRACT 

This study aims at calculating the traffic signal timing that suits traffic intensity at 

intersections studied in the inner city of Ubon Rachathani Provice, Thailand. The mixed 

models between maximum likelihood estimation and Bayesian inference are presented 

to estimate traffic intensity. A queuing system is used to generate the performance of 

traffic flow. A fuzzy logic system is applied to calculate the optimal length of each 

phase of the cycle. The fortran language is used to produce the computer program for 

computation. The algorithm of the computer programming is based on EM algorithm, 

Markov Chain Monte Carlo algorithm, queuing generation and fuzzy logic. The output 

of traffic signal timing from the fuzzy controller are longer than the traffic signal timing 

from the conventional controller. Cost function is used to evaluate the efficiency of the 

traffic controller. The result of the evaluation shows that fuzzy controller is more 

efficient than a conventional controller.  
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Chapter 1 

Introduction 
 

1.1  The background of traffic signal timing 
 

The changes to social structures resulting from technology in both positive and negative 

ways have brought us advantages and disadvantages at the same time. The negative 

aspect of the changes introduces an important problem, the traffic problem. The 

seriousness of the problem depends on the size of the community. That is, the larger  the 

city, the more serious and complex a problem we will face. Moreover, the longer we let 

the problem go unsolved for longer and longer, the problem will become more and more 

serious. 

 

Part of the traffic problem is congestion at intersections that is caused by various 

factors. One important factor that impacts on traffic at intersections is the length of each 

phase in the cycle of the traffic signal. It may not be appropriate and may not be suitable 

for traffic pattern parameters such as volume of vehicles, queue length, delay, speed and 

so on. It is a worldwide problem. Rice Square in Worcester is one example 

(Kotsopoulos, 1999). Moreover, there is poor timing on traffic signals in cities such as 

Atlanta (Ledford, 2002). On the other hand if the traffic flow is saturated, the optimal 

signal length based on Webster’s formulation is not available (Lan, 2004). Finally the 

example of the congestion at intersections  in Bangkok is well known. The modern Bus 

Rapid Transit (BRT) alone cannot solve the traffic problems in Bangkok 

(Jaiimsin,2004). To try to improve the situation, road transport will be integrated with 

other modes of transport, including the conventional bus network, skytrain, subway, rail 

and ferries in 2006, according to the transit plan. 

 

As mentioned above, one reason for traffic jams is that traffic signal timing is often not 

suitable for traffic control at the intersection in real time. So the concerned traffic office 

needs to optimize traffic signal timing to solve the traffic congestion at intersections. 

Engineers behind the federally funded Traffic Signal System Improvement Program in 

Denver (Hsiao-Ching & Denver, 1998) have worked over the past 10 years to ease 

metro-area traffic congestion by coordinating and adjusting the timing of traffic signals 

on major streets. There are many papers that propose methods to improve traffic signal 

timing. All of the methods use a similar process, based on observed traffic data input at 
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intersections, such as volume, pattern of traffic, number of cars going straight or turning 

right, delay, queue length, speed, density, and so on. The data input is used according to 

the individual method. The results from the method can be used to control traffic at 

intersections. The relevant papers are  considered below. 

 

Traffic Adaptive Control is a useful method (Jaqannathan & Khan, 2001) that could 

optimize traffic signal timing to fit with traffic volume. The results from the method 

consist of three components, cycle length, phase length and offset that can be used to 

efficiently control traffic. The software that is used to find traffic signal timing is 

SYNCHRO. It is composed of capacity analysis, coordination, and actuated signal 

modeling. This software provides a detailed summary report on capacity, level of 

service, volumes, timing, queue length, blocking problems, delay, fuel consumption and 

emission level. 

 

Dynamic Intersection Signal Control Optimization is an another method (Lo & Chow, 

2004) that can be used to control traffic flow at intersections. It is based on the entire 

fundamental diagram of traffic flow. The input data consists of time-variant traffic 

patterns and the method derives a dynamic timing plan, useful to decrease delays at 

intersections. 

 

Traffic Signal Retiming is another process that can optimize traffic signal length at 

intersections (Sunkari, 2004). This includes development of new signal timing 

parameters, phasing sequence and traffic control strategy improvements. 

 

In addition to the three papers above, many authors propose methodology to improve 

traffic signal timing and traffic control at intersections. Lan (2004) proposes a new 

formulation to find the optimal traffic signal length when traffic flows become 

saturated. Leonard et al. (1998) suggest traffic signal timing based on five basic signal 

timing policies: minimizing delay, minimizing stopping, minimizing fuel consumption, 

maximizing coordination, and baseline. 

 

Mathematical methods have often been used. Schutter (2002) looks at the mathematical 

programming problem of designing optimal switching schemes and an optimal 

switching sequence for signal controlled intersections. The results decrease queue and 

waiting time. Yi, Xin & Zhao (2001) implement a general speed-density relationship in 
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a dynamic queue length estimation model, leading to the development of a general 

mathematical formulation for intersection queue length studies that can be used to 

control traffic at intersections. On the other hand Lee, Messer, Oh, & Lee (2004) 

propose a rule to control traffic at intersections, based on allowing the green light to 

show if any individual vehicle, pedestrian or cyclist queue, measured at regular intervals 

and averaged over the peak hour, is at least four, or if the sum of the individual vehicle, 

pedestrian and cyclist queues, measured anywhere within the intersection, exceeds six. 

And finally a similar idea is proposed by Rakha & Zhang (2004) as evaluation of 

Transit Signal Priority(TSP). In general TSP provides benefits to transit vehicles that 

receive priority, but TSP has a marginal system wide impact for low traffic demand.  On 

the other hand the system wide impact of TSP is directly proportional to the frequency 

of transit vehicles. 

 

All of the above show that there are global concerns about traffic signal timing, and the 

output of the studies are useful in controlling traffic at intersections.  Although there are 

many methods to improve traffic signal timing as previously mentioned, the lack of 

coordination could result in inefficient traffic flow. (Hsiao-Ching & Denver, 1998)  

 

1.2 The background of the traffic problem in Ubon Rachathani 
 

Ubon Rachathani, as the big city in the northeast of Thailand, has the 5th rank in area 

and the 4th in population in Thailand. It is now one of the traffic jam problem cities as 

well. The problem is not as serious as in Bangkok. However, if there is no attempt to 

solve the traffic problem, Ubon Rachathani will be soon face the same problems as 

Bangkok. The traffic jam problem in Ubon Rachthani is caused by the increasing 

number of cars (Engineering Faculty of Songkhla Nakarin University: 1999) and the 

lack of observance of traffic regulations. Parking at prohibited spots, double parking 

and  other infringements are common. In addition, part of the traffic problem is that 

traffic congestion at intersections is caused by the design of traffic signals. 

Control at intersections is pre-timed or fixed time, and the length of each phase in 

cycles is not suitable for the traffic intensity.(Ubon Rachathani Municipality, 2001)     
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1.3  The traffic control and traffic signal timing in Ubon Rachathani  

 Municipality 

 

In the Ubon Ratchathani Municipality, there are 48 intersections and 5 crossroads with 

signals. The traffic signals at each intersection are controlled in isolation by setting the 

pre-timed or fixed-time cycle. However a traffic policeman can adjust the timing to suit 

traffic intensity. On the other hand the office that is responsible for traffic control in the 

municipality has set  the length of each phase in the cycle, or the length of green light in 

the cycles, to control traffic at intersections as follow: ( Ubon Rachathani Municipality, 

2004).     

      1)  The traffic signal timing at intersections of the main road, Chayangkoon Road, 

            that bears heavy traffic in the rush hour: 

       1.1) From 05.30 – 06.30 in the morning: 

             The length of the green light (phase length) on the main road is 20 seconds. 

             The length of the green light (phase length) on the sub road is 15 seconds. 

      1.2) From 0 6.30 – 09.30 in the morning 

             The length of the green light (phase length) on the main road is 25 seconds. 

             The length of the green light (phase length) on the sub road is 20 seconds. 

      1.3) From 0 9.30 – 15.30 in the afternoon: 

            The length of the green light (phase length)  on the main road is 20 seconds. 

            The length of the green light (phase length)  on the sub road is 15 seconds. 

     1.4) From 15.30 – 17.30 in the afternoon 

            The length of the green light (phase length)  on the main road is 25 seconds. 

            The length of the green light (phase length) on the sub road is 20 seconds. 

     1.5) From 17.30 – 23.00 in the evening 

           The length of the green light (phase length) on the main road is 20 seconds. 

           The length of the green light (phase length) on the sub road is 15 seconds.    

     1.6) From 23.00 – 05.30 in the morning 

           The length of the green light (phase length)  on the main road is 20 seconds. 

           The length of the green light (phase length) on the sub road is 15 seconds. 
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2) The traffic signal timing at intersections on the subroads, except Chayangkoon 

Road. 

   2.1)  From 05.30 – 22.00 in the afternoon 

           The length of the green light (phase length)  on the main road is 20 seconds. 

           The length of the green light (phase length) on the sub road is 15 seconds. 

   2.2) From 22.00 – 05.30 in the morning: 

           The amber blink is provided on the main road. 

           The red blink is provided on the sub road. 

              

1.4  The background for estimation of traffic signal timing  
 

Traffic signal controllers at intersections are divided into four types, based on their 

potential, as follows:  

1) Pre-timed or fixed time traffic signal control. They offer fixed length for 

each phase of a cycle. 

2) Semi-actuated traffic signals control. They offer flexible length for each 

phase in cycles, to match the number of cars from the sub road by using a 

detector. Whenever there are lots of cars on the main road, the controller will 

let the cars run, while the cars in the sub road  have to wait until the numbers 

of waiting cars reach a specified number and then they will be allowed to go. 

3) Fully-actuated traffic signals control, These allow all vehicles from any 

direction to pass the intersection by choosing a cycle length that is 

appropriate for the number of cars, by using a detector. 

4) Volume density traffic signals control. They count the number of cars by 

using the detector and then the information is sent to the central computer  in 

order to control the traffic flow of the whole traffic network. Moreover, the 

control gives priority to emergency vehicles, such as ambulances. 

 

However, Ubon Rachathani Municipality still uses the old technology of pre-timed 

traffic signal control to control traffic flow at intersections. Based on the limitation of 

the control, one way to improve the efficiency of traffic signal control is to improve 

traffic signal timing identification in each phase of the cycle. 
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This study proposes an alternative method to calculate suitable lengths for each phase in 

the cycle for a given traffic intensity. The statistical and mathematical methodology is 

used to identify the optimal length of each phase, to decrease delay and queue of traffic 

flow at the intersections studied.      

 

1.5  The actual intersections studied 
 

This study focuses on the main traffic network in the inner city of Ubon Rachathani that 

is composed of four intersections: Uboncharearnsri Intersection, Clock Hall 

Intersection, Chonlaprathan Intersection and Airport Intersection. The study will be 

limited to part of the rush hour, namely 8.00-8.30 am. A diagram of the traffic network 

is given below: 

                     

 
  

 A : Uboncharearnsri Intersection                 B : Airport Intersecrtion 

  C : Chonlaprathan Intersection                    D : Clock Hall Intersection 

 

                          Figure 1.1  Diagram of traffic network studied                       

 

 

 

 

 A 

 B  C 

 D 
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1.6 The outcomes and the organisation of the thesis 
        

The outcomes of the thesis will give advice to traffic policeman to adjust the suitable 

signal time for controlling the traffic at the studied intersection. The organisation of the 

thesis is composed of six principal components as follows: 

       1. Introduction 

       2. Discussing the theory background 

       3. Research methodology 

      4. Input and analysis 

       5. Result of the study 

       6. Conclusion and discussion 

 

1.7   Objectives  
 

 To calculate the optimal traffic signal timing during the given period   

(08.00-08.30 am)around intersections in Uboncharearnsri, Airport, Chonlaprathan, and 

Clock Hall of Ubon Ratchathani metropolitan area. 

 

1.8  The Expected Outcomes 

 
1)   To derive a method to calculate the traffic signal timing at targeted  

intersections during rush hour. 

2)   To get to know the traffic signal timing that is relevant to the number of vehicles at 

the targeted intersections. 

 

The statistical estimation, maximum likelihood and Bayesian inferrence, and the fuzzy 

logic system were used to find the expected outcomes. 
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Chapter 2 

Background to Research 

 

2.1  Fuzzy logic systems 
 

2.1.1 General background 

Fuzzy logic was first developed in 1965 by Lotfi A. Zadeh, Professor Emeritus, 

Computer Science Division, University of California-Berkeley. Fuzzy logic uses three 

primary elements: fuzzy sets, the membership function and production rules.  

Applications of fuzzy logic occur in three primary categories: consumer products, 

industrial/commercial systems and decision support systems.(Glenn, 1994)  

 

David (1992) describes the components of a fuzzy controller. Toshinori & Yashvant 

(1994) present a fuzzy system composed of fuzzy set, logic, algorithms, and control. 

Implementation of the fuzzy control is suitable for a problem that is described in 

approximate form and that requires a complicated mathematical model to explain the 

behavior of the model. A fuzzy system can be applied to various subjects. 

          

2.1.2 Applications of fuzzy systems 

 

In  Soud & Kazemian (2004), Usage Parameter Control (UPC) is the 

process that provides support for quality of service across a heterogeneous system. They 

propose a novel form of the Usage Parameter Control(UPC) by using a Fuzzy Logic 

Controller (FLC) to measure the rate of individual network flow to actively manage link 

utilization. The results obtained significantly improve upon the best service of the 

system.  

 

Abdel-Aty & Abdelwahab (2004) study the effectiveness of methods  to predict driver 

injury severity as a result of a crash. Fuzzy adaptive resonance is one method. The study 

shows a fuzzy adaptive resonance has an accuracy of 70.6 percent. 
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Masalonis & Parasuraman (2003) apply fuzzy signal detection techniques, which 

combine fuzzy logic and conventional signal detection theory, to empirical data. The 

object of the application is to detect aircraft incidents in air traffic control. The results 

illustrate the potential of fuzzy signal detection theory to provide a more complete 

picture of performance in aircraft incident detection.  

 

Adeli & Jiang (2003) study zone capacity, which cannot be described by any 

mathematical function because it is a complicated function of a large number of 

interacting variables. They propose a novel adaptive neuro-fuzzy logic model for 

estimation of the freeway work zone capacity.   Comparisons with two empirical 

equations demonstrate that the new model in general provides a more accurate estimate 

of the work zone capacity, especially when the data for factors impacting the work zone 

capacity are only partially available. 

 

Kikuchi & Tanaka (2003) use a fuzzy rule based on a simulation process to examine 

how the presence of vehicles equipped with an Adaptive Cruise Control System 

(ACCS) affects stability and safety of a flow consisting of both ACCS and non-ACCS 

vehicles.  

 

Ramasamy & Selladurai (2004) propose the use of fuzzy logic in quality function 

deployment. The deployment is a proven tool used to develop process and product, and 

translates the voice of a customer into engineering characteristics and then prioritises 

the characteristic based on a customer’s requirements. Fuzzy logic is useful to define the 

relationship between the characteristic and customer attributes.    

 

Kirawanich & O'Connell (2004) describe a system that uses fuzzy logic to control the 

semiconductor switches in the switch-mode of active power line conditioners. The 

simulations and measurements show that the system can significantly improve line 

current total harmonic distortion and power factor during both steady-state and transient 

operating conditions. 

 

Fisher (2004) mentions the importance of fuzzy logic used to improve the potential of 

computers to think like fuzzy-thinking people, instead of like purely logical machines. 
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In addition the article, claims fuzzy logic has been used to control subway trains, 

elevators, washing machines, microwave ovens, and cars. Another really important use 

for fuzzy logic is in robots. 

 

Stewart, Cheraghi, & Malzahn (2004) use fuzzy Bayesian methodology in a fuzzy 

defect avoidance system. The system is used to reduce the amount of scrap and rework 

activity in a product process in industry. This method can be used to provide continuous 

opportunities for defect avoidance. 

 

Harb & Smadi (2004) present the idea of using the fuzzy logic concept for controlling 

chaotic behavior in systems. The fuzzy control is useful because there is no 

mathematical model available for the system and the control can produce nonlinear 

control that can be developed empirically.   

 

Beynon, Pee, & Tang (2004) point out that fuzzy set theory has evolved into a valuable 

addition to traditional techniques, such as regression and decision tree models, for 

decision analysis conducted under conditions of vagueness and ambiguity. They apply a 

fuzzy decision tree approach to a problem involving typical accounting data. The results 

show that fuzzy logic enables a decision-maker to gain additional insights into the 

relationship between firm characteristics and audit fees, through human subjective 

judgment expressed in linguistic terms.  

 

Zhang & Tam (2004) present an incorporation of discrete-event simulation and fuzzy 

logic to model uncertainties in a construction process. The fuzzy set is used to model 

the uncertain demand in linguistic terms. The fuzzy rule base is built to control the 

activities. The activity duration is generated through the fuzzy logic reasoning.   

Through the application of the fuzzy construction simulation system, an illustrative 

example is presented to demonstrate the effect of considering these uncertainties on the 

productivity. 

 

Cho & Yi (2004) propose the use of a fuzzy logic controller in vehicle dynamics to 

control the vehicle trajectory when the driver suddenly depresses the brake pedal under 

critical conditions. The function of the fuzzy controller is to control each brake and 

works to compensate for the trajectory error on the split - road conditions to maintain 

the desired trajectory.         
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2.1.3 Applications of fuzzy logic for traffic control. 

 

The previous section illustrates the wide use of fuzzy logic for control and decision in 

any system. This section concentrate on the use of fuzzy logic for traffic control. There 

are seven relevant papers. 

 

Zhenyang (2004) discusses a model to control traffic flow at intersections by using 

fuzzy logic control. The model is designed with a four-level fuzzy logic controller to 

estimate relative traffic intensities in competing approaches to intersections. The 

estimator is then used to determine whether a leading or lagging signal phase should be 

selected or terminated for each approach. On the other hand the researcher creates a 

dynamic traffic signal left-turn phase control system, and implements the four-level 

fuzzy logic control model to optimize signal operations at intersections. The resulting 

system is on efficient tool for reducing intersection traffic delay.  

 

Ande (1996) creates a model to control traffic flow at intersections by using fuzzy logic. 

The model is adaptive, using actual traffic intensities by means of standard input traffic 

flow parameters, which are measured by a loop detector. The results of the study show 

the model is more efficient than the conventional traffic controls such as pre-timed 

controllers or even semi-actuated controllers based on heavy traffic conditions.   

 

Enid (1999) designs a fuzzy logic based traffic controller for an arterial street. The 

controller can adjust the timing parameters on-line based on the current traffic 

conditions. The strategy of fuzzy logic based control consists of a local controller at 

each intersection and a global controller that communicates with all the local 

controllers. The object of these controllers is to optimize traffic signal timing at 

coordinate intersections. . Simulations showed significant improvements on the average 

time in queue, the average queue length, and the average travel time, when compared to 

coordinated pre-timed and semi-actuated controllers. 

 

Seongho (1994) developed the Advanced Traffic Management Systems (ATMS) to 

improve traffic signal control at intersections. Fuzzy logic is used for a real-time traffic 

adaptive signal control scheme in the systems. The results of the study show that the 

ATMS framework will lead to real-time adjustment of the traffic control signals, 

resulting in significant reduction in traffic congestion. 
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Adeli & Karim (2000) presents fuzzy logic in a new multi-paradigm intelligent system 

approach to solve traffic problems that are disrupted by traffic incidents. The approach 

uses advanced signal processing, pattern recognition and classification techniques.   

 

Lee, Krammes&Yen (1998) use a fuzzy logic based incident detection algorithm for a 

traffic network. The model is used to detect traffic incidents, any problems on the street 

surface that require the attention of an operator or result in an operator formulating a 

response, (such as lane blockages). The algorithm feeds an incident report such as the 

time, location, and severity of the incident to the system’s optimization manager, which 

uses that information to determine the appropriate traffic signal control strategy.  

 

Cabrera & Ivan (2000) create a methodology to design traffic signal controls based on 

fuzzy logic control. There are many applications that use fuzzy logic to control traffic 

flow at intersections but there is no uniform design procedure. So they propose the 

design to help people, not familiar with fuzzy logic control, to apply the method for 

traffic signal control. The designed fuzzy controller uses existing traffic detectors to 

measure the number of vehicles at the intersection and decides how to change the traffic 

signals in order to minimize the average delay of vehicles. Simulation results show that 

traffic controllers developed with the proposed methodology reduce a average delay of 

vehicles at intersections compared with conventional traffic control strategies. 

 

2.1.4 The concept of a fuzzy logic system 

 

Wang (1994) presents the common concept of a fuzzy logic system. The system 

consists of fuzzy concepts and fuzzy logic. The fuzzy concepts involve fuzzy sets , 

linguistic variables and so on. The fuzzy logic is the process that is used to infer the 

parameter of a system based on incorporated numerical information and  an expert’s 

knowledge. For most engineering systems, there are two important information sources: 

a sensor which provides numerical measurements of variables, and human experts who 

provide linguistic instructions and descriptions about the system. The information from 

sensors is called numerical information and the information from human experts is 

called linguistic information.  To apply information to a variety of control, signal 

processing, and communication problems and to analyse their performance, it is 

necessary to develop a collection of methods which can effectively combine numerical 

and linguistic information into the engineering systems. An adaptive fuzzy logic system 
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is such a tool. The system is defined as a fuzzy logic system that is constructed from a 

set of fuzzy IF-THEN rules using fuzzy logic principles, and a training algorithm that 

adjusts the parameters of the fuzzy logic system based on numerical information. In 

other words adaptive fuzzy systems can be viewed as fuzzy logic systems whose rules 

are automatically generated through training. The strategy of an adaptive fuzzy logic 

system for combining numerical and linguistic information is based on the construction 

of an initial fuzzy logic system by using linguistic information. Then the parameters of 

the system are adjusted based on numerical information. An additional strategy is to use 

numerical information and linguistic information to construct two separate fuzzy logic 

systems. Then the final fuzzy logic system is the average of the two systems.   

 

Definition 1  Linguistic variable (intuitive) : A linguistic variable is a variable  

that can take either a word in natural language (for example  small, fast and so on) or a 

number as its values. 

 

Definition 2  Linguistic variable (formal): A  Linguistic variable is  

characterized by a quintuple ( )( )SGUxTx ,,,,  in which x  is the name of variable; ( )xT  

is the term set of x , that is, the set of names of linguistic values of x  with each value 

being a fuzzy set defined on U ; G  is a syntactic rule for generating the name of values 

of x ; and S  is a semantic rule for associating each value with its meaning.   

 

Definition 3  Fuzzy set: Let U  be a collection of objects, for example, 
nRU = , usually called the universe of discourse. A fuzzy set F  in U  is characterized 

by a membership function [ ]1,0: →UFµ , with ( )uFµ  representing the grade of 

membership of Uu ∈  in the fuzzy set F . A fuzzy set may viewed as a generalization of 

the concept of an ordinary set whose membership function only takes two values { }1,0 .  

 

The most, popular fuzzy logic systems may be classified into three types: pure 

fuzzy logic systems, Takagi and Sugeno’s fuzzy systems, and fuzzy logic systems with 

fuzzifier and defuzzifier. These are briefly described in the next three subsections. 
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1) Pure fuzzy logic system      

The pure fuzzy logic system is conceptualised as two components, a fuzzy rule base and 

a fuzzy inference engine. The fuzzy rule base consists of a collection of fuzzy  

IF-THEN rules, and the fuzzy inference engine is used to determine a mapping from a 

fuzzy set in the input universe of discourse nRU ⊂  to fuzzy sets in the output universe 

of discourse RV ⊂ , which is based on fuzzy logic principles. The fuzzy rule base is 

composed of M rules, of the following form: 

                   ( )jL    :   IF 1x  is jF1     and  K  and   nx  is  j
nF    THEN  y   is jG  

Here j
iF  and jG   are fuzzy sets, ( ) Uxxxx n ∈= ,,, 21 K  and Vy ∈  are input and output 

linguistic variables, respectively, and j  = 1 , 2 , … , M .  i  = 1, 2,…, n  .These fuzzy IF-

THEN rules provide a convenient framework to incorporate a human  expert’s 

knowledge. In other words each fuzzy rule, ( )jR  is fuzzy set  jj
n

jj GFFF →××× K21  

in the product space VU × . The most commonly used fuzzy logic principle in fuzzy 

inference engines is the so-called sup-star composition. Specifically, let /A  be an 

arbitrary fuzzy set in U ; that is, A/ is the input to the pure fuzzy logic system. Then the 

output determined by each fuzzy rule, ( )jR , is a fuzzy set  ( )jRA o/   in V  whose 

membership function is 

              )],(*)([sup)(
...1

/)(/ yxxy jj
n

jj GFFAUxRA →××∈= µµµ
o

 

where  the “∗ ” operator is “min” or “product”  and Aµ  represents the membership 

function of the fuzzy set A. The final output of the pure fuzzy logic system is the fuzzy 

set  ),,,( )()2()1(/ MRRRA Ko  in V which has membership function: 

                   ( ) ( ) )](...,),([)( )(/)2(/)1(1)2(1/ ,,,(
yyMaxy MM RARARARRRA oooKo

µµµµ =  

 

2) Takagi and Sugeno’s fuzzy system 

 

Takagi and Sugeno use the following fuzzy rule : 

  ( )jL  :  IF  x1 is jF1  and Kand xn is j
nF  THEN    n

j
n

jjjj xcxcxccy +++= K22110  

Here j
iF  are fuzzy sets; j

ic  are real-value of parameters; jy  is the system output due to 

rule ( )jL  , and j  = 1 , 2 , M,K . For a real-value input vector ( )nxxxx ,,, 21 K= , the 

output  ( )xy  of Takagi and Sugeno’s fuzzy system is a weighted average of the :,sy j    
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where the weight jw  of rule L(j) for the input is calculated as       
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3)  Fuzzy logic systems with Fuzzifier and Defuzzifier                        

 

A fuzzy logic system with fuzzifier and defuzzifier is a pure fuzzy logic system which 

adds a fuzzifier to the input and a defuzzifier to the output. The fuzzifier maps crisp 

points(numeric values) in U to fuzzy sets in U , and the defuzzifier maps fuzzy sets in 

V  to crisp points(numeric values) in V . The fuzzy inference engines are the same as 

those in pure fuzzy logic systems. Such a fuzzy logic system consists of four 

components.  

 

3.1)  Fuzzifier  

 

The fuzzifier performs a mapping from a crisp point ),,,( 21 nxxxx K= into a fuzzy set 

/A  in U . The mapping is commonly called a membership function. A membership 

function is a curve that defines how each crisp point in the input space is mapped to a 

membership value between 0 and 1. The membership function is usually one of the 

following: 

       1)  Singleton fuzzifier: A/ is a fuzzy singleton with support x , that is, )( /
/ xAµ =1 

for  xx =/   and 0)( /
1 =xAµ    for all other Ux ∈/  with xx ≠/  

       2)  Nonsingleton fuzzifier: 1)(/ =xAµ   and  )( /
/ xAµ decreases from 1 as /x   moves 

away from x  . The nonsingleton fuzzifier  may be useful if the inputs are corrupted by 

noise. The function itself can be an arbitrary curve whose shape suits the expert from 

the point of view of simplicity, convenience, speed, and efficiency.  

 

The fuzzy logic toolbox includes 11 built-in membership function types. These 11 

functions are, in turn, built from several basic functions: piecewise linear functions, the 
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Gaussian distribution function, the sigmoid curve; quadratic and cubic polynomial 

curves. The most commonly used functional forms are triangular, trapezoid and 

Gaussian  which are ways to determine the parameters in )( /
/ xAµ  based on measured 

data.  The simplest membership functions are formed using straight lines. Of these, the 

simplest is the triangular membership function; it is nothing more than a collection of 

three points forming a triangle. The trapezoidal membership function has a flat top and 

really is just a truncated triangular curve. These straight line membership functions have 

the advantage of simplicity. Two membership functions can be built on the Gaussian 

distribution curve: a simple Gaussian curve and a two-sided composite of two different 

Gaussian curves. Gaussian membership function have the advantage of being smooth 

and nonzero at all point.   

 

Figure 3.1 shows the membership functions of three fuzzy sets, namely, “slow”, 

“medium”, and “fast” for the linguistic variable “the speed of the car”. In this example, 

the universe of discourse is all possible speeds of the car; that is  

[ ]max,0 VU = , where maxV  is the maximum speed of the car. 

 
Figure 2.1 Membership functions of three fuzzy sets, namely, “slow”, “medium”, and    

“fast” for the speed of the car (Wang, 1994, p. 10) 
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3.2 ) Fuzzy rule base          

 

A fuzzy rule base consists of a collection of fuzzy IF-THEN rules in the following form: 

              ( )jL   :  IF  1x  is jF1   and K  and  nx   is j
nF  , THEN  y  is jG  

Here  j
iF  and jG are fuzzy sets in Ui ⊂  R and  V R⊂ , respectively,  and  

),...,,( 21 nxxxx = , nUUUx ×××∈ K21    and  Vy ∈  are linguistic variables. Let n be 

the number of fuzzy set j
iF ; that is, ni ,,2,1 K=   and M be the number of fuzzy  

IF-THEN rules in the rule base; that is, Mj ,,2,1 K=  .  x  and y  are the input and 

output of the fuzzy logic system, respectively. The fuzzy rule is derived from asking 

human experts and using training algorithms based on measured data. The membership 

functions for the fuzzy sets are determined in two ways depending upon where the rules 

come from. If the rules are provided by human experts, then the membership functions 

should be specified by the experts because these functions are an integrated part of the 

expert’s knowledge. If the rules are determined by numerical data, then the first task is 

to determine the functional forms for /
iF

µ and  /Gµ .The most commonly used functional 

forms are Gaussian, triangular, and trapezoid. 

 

 
3.3 ) Fuzzy inference engine 

 

In a fuzzy inference engine, fuzzy logic principles are used to combine the fuzzy  

IF-THEN  rules in the fuzzy rule base in a mapping from fuzzy sets in 

nUUUU ×××= K21   to a fuzzy set in V . The fuzzy IF-THEN rule can be interpreted 

in a number of ways. For simplicity, we denote AFFF j
n

jj =×× K21    and BG =/ , and 

the rule is denoted by BA →  . Some commonly used interpretations for the fuzzy IF-

THEN rule are as follows: 

          1 ) Mini-operation rule of fuzzy implication: 

                       { })(),(min),( yxyx BABA µµµ =→  

          2 ) Product-operation rule of fuzzy implication: 

                       )()(),( yxyx BABA µµµ =→  

       3 ) Arithmetic rule of fuzzy implication: 

                       { })()(1,1min),( yxyx BABA µµµ +−=→  

         4 ) Maxmin rule of fuzzy implication: 
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         [ ]{ })(1,)(),(minmax),( xyxyx ABABA µµµµ −=→  

         5 ) Boolean rule of fuzzy implication: 

         { })(),(1max),( yxyx BABA µµµ −=→   

         6 ) Goguen’s rule of fuzzy implication: 

         






>

≤
=→ )()(,

)(
)(

)()(,1
),( yx

x
y

yx
yx

BA
A

B

BA

BA µµ
µ
µ

µµ
µ  

where )()(
1

xx j
n

j FFA ××
=

K
µµ   is defined either according to the min-operation rule: 

         { })(,),(min)(
2121

1 nFFFFFF
xxx j

n
jjj

n
jj µµµµ K

K
=

×××
 

or according to the product-operation rule: 

         ( ) ( ) ( ) ( )nFFFFFF
xxxx j

n
jjj

n
jj µµµµ ⋅⋅⋅=

×××
K

K 21
2121

 

 

3.4 ) Defuzzifier 

 

The defuzzifier performs a mapping from fuzzy sets in V  to crisp points 

Vy ∈ . There are three common choices of this mapping: 

                         1) The maximum defuzzifier, defined as 

           ))((suparg / yy BVy µ∈= ; 

                         2) The center average defuzzifier, defined as 
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        ,  jy −  is the center of the fuzzy set jG and                        

                        3) The modified center average defuzzifier, defined as 
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   , jδ  is a parameter characterizing the shape of )( yjGµ  

 
2.1.5 Method of fuzzy logic control 

 

Kandel & Langholz, (1994) present at least two methods of fuzzy logic control as 

follows: 
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1) Min-Max-Gravity method 

 

The fuzzy logic controllers are based on the fuzzy reasoning method called “min-max-

gravity method “ by  Mamdani (1977). The rules used for this method are as follows: 

 

                 Rule 1:  IF 1x  is 1
1F  and K  and  nx  is 1

nF    THEN  y  is 1G , 

                 Rule 2:  IF 1x  is 2
1F and K  and  nx  is 2

nF     THEN y  is 2G , 

                    M                                                                   M  

                Rule M:   IF 1x  is MF1  and Kand nx  is M
nF      THEN y  is MG , 

                           Fact :         //
2

/
1 ,,, nxxx K  

   ------------------------------------------------------------------------------ 

               Consequence:                                                                              /G  

 

Here  j
iF  is a fuzzy set in set U , RU ⊂ : and  jG  is fuzzy set in V  , RV ⊂ : and 

n
n Rxxx ∈),,,( //

2
/
1 K .  Mjni ,,2,1;,2,1 KK ==  

For simplicity, we let AFFF j
n

jj =×× K21    and BG j = , and each rule is then denoted 

as BA → . This is defined by  

                  )](),(,),(min[),,( 121
1

yxxxxx jj
n

j GnFFnBA µµµµ KK =→  

The inference result  /
jG  infered from the fact of //

2
/
1 ,,, nxxx K  and fuzzy rule BA → is 

given by 

                  ( ) )](),(,),(min[)( //
2

/
1

21
/ yxxxy jj

n
jj

j GnFFFG µµµµµ K= . 

The final consequence /G  is defined by 

                  )](),(max[)( //
1

/ yyy
nGGG

µµµ K= . 

The representative point  y/ for the resulting fuzzy set  /G  is obtained as the center of 

gravity of /G  , that is 

                   
∫
∫=

dyy

dyyy
y

G

G

)(

)(

/

//

µ

µ
  , where ∫ dyyG )(/µ  is the area of fuzzy set /G  . 

The process of the Min-Max-gravity method can be shown by figure 3.2 as follows: 
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Figure 2.2 Min-Max-Gravity method ( Kandel & Langholz, 1994, p.277)                                               
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2) Product-sum-gravity method 

 

This section outlines the method of fuzzy reasoning called the product-sum-gravity 

method, which replaces min by the algebraic product, and max by the sum in the max-

min-gravity method. The consequence G/ for the product-sum-gravity method is 

obtained as follows. 

Firstly, consider the multiple fuzzy reasoning form. 

                 Rule 1:  IF 1x  is 1
1F  and K  and  nx  is 1

nF    THEN   y  is 1G , 

                 Rule 2:  IF 1x  is 2
1F and K  and  nx  is 2

nF     THEN  y is 2G , 

                    M                                                                   M  

                Rule M:   IF 1x  is MF1  and Kand nx  is M
nF      THEN y is MG , 

                           Fact :         //
2

/
1 ,,, nxxx K  

   ------------------------------------------------------------------------------ 

               Consequence:                                                                              /G  

The inference result /
jG  from the fact  //

2
/
1 ,,, nxxx K  and the fuzzy rule j  is given by: 

                          )()()()()( //
2

/
1 /

21
/ yxxxy

ln
ll

j
GnFFFG µµµµµ ⋅⋅= K . 

The consequence G/  is defined by 

                          )()()( //
1

/ yyy
MGGG

µµµ ++= K . 

The representative point  /y  of /G  is obtained by using the centre of gravity method. 

The centre of gravity /y    of  /G   is described below.     

Let  jy  be the centre of gravity of the inference result  /
jG  and jS  be the area of /

jG   

in Figure 3.3   Then  jy  is defined as : 

                            
j
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The centre of gravity /y  of the final consequence /
jG  is given by                  
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The product-sum-gravity method is illustrated in figure 2.3   
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Figure 2.3 Product-sum-gravity method (Kandel & Langholz,1994, p.281-282)  

  

 

 

 

 

 

 

 

 

 

 

 



 34 

                                                    
1

0

1

0

1

0

1

0

1x
a

1y b

ab

0x

0x

0x

0x

0y

0y

0y

0y

y
y

b−1

b−1

b

( )ba −1

( )ba−1

( )( )ba −− 11

a

( )a−1

( )a−1

/y /y

Output Fuzzy set        

The final consequence

Input fuzzy set

Rule 1

Rule 2

Rule 3

Rule 4  

min-max      
product-sum      

                                     
 Figure 2.4 Comparison of result from the min-max and product-sum method  

                   (Kendel & Langholz, 1994, p. 283) 

 

As indicated by Teodorovic & Vukadinovic (1998), Pappis & Mamdani (1977) 

attempted to solve the problem of controlling an isolated signalized intersection by 

using a fuzzy logic system. They introduce four fuzzy (linguistic) variables. 

           T  :  The time that has lapsed since the last light changed at the intersection, 

           A  :  The number of vehicles from the priority direction that have passed through 

the green light during the considered time period, 

           Q :   The number of vehicles waiting in line on the one-way street that does not 

have priority, and 
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           E :   The length of time to the next light change. 

Fuzzy variables T , A, and Q are input variables whose values determine the value of 

output variable E. Fuzzy variable A could be assigned the value “many” vehicles, “more 

than several” vehicles, “few” vehicles, and so on. Fuzzy variable Q could be assigned 

similar values. Variables T and E are assigned as “very short”, “short”, “medium” time 

and so on. Pappis and Mamdani also use fuzzy sets such as “any” number of vehicles, 

“more than” and “less than”. The grade of membership of every element belonging to 

fuzzy “any” equals 1.  

 

In addition Pappis & Mamdani (1977) propose triangle and trapezoidal forms for the 

curve of the membership function of a fuzzy set. They also describe an approach to find 

membership values. For example, consider a fuzzy set M, where a element *x  of set M 

has the largest grade of membership in set M. Let G be the fuzzy set “greater than M”. 

Let L be fuzzy set “less than M”. The membership functions of fuzzy sets L and G can 

be defined as follow: 
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Figure 2.5 Membership function of fuzzy sets  M,G  and  L    

                  (Teodorovic & Vukadinovic, 1998, p. 97) 

 

The algorithm to control traffic at an isolated intersection proposed by Pappis and 

Mamdani (1977) uses rules of the following type: 

 

Rule 1: IF T is very short and A is greater than none and Q is any, THEN E is very 

short. 

Rule 2: IF T is short and A is greater than few and Q is less than very small, THEN E is 

short.  

Rule 3: IF T is medium and A is greater than few and Q is less than very small, THEN 

E is medium. 

Rule 4: IF T is long and A is greater than medium and Q is less than very small, THEN 

E is long.  

Rule 5: IF T is very long and A is greater than many and Q is less than very small, 

THEN E is very long. 

 

The values of fuzzy variable E represent the extension of time to allow a vehicle to pass 

the intersection. The extensions given to the system were between 1 and 10 seconds. 

Every 10 seconds a different set of five rules is used to make the decision on the length 

of time to the next light change at the intersection. The min-max-gravity method is used 
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to find the value of the fuzzy variable E based on numerical values t, a, and q for the 

input variables T, A, and Q respectively. 

 

Kelsey & Bisset ( 1993 )  present the simulation of traffic flow and control by using 

Takagi and Sugeno’s fuzzy system. Simulation output can be compared with the output 

from conventional methods. There are four fuzzy variables in the fuzzy controller. 

   G  :  The average density of traffic behind the green light, 

   R  :  The average density of traffic behind the red light, 

   L  :   The length of the current cycle time, and      

   C :    The index to decide whether to change the state of the light or remain in the   

            same state. 

Fuzzy variables G , R, and L are input variables whose values determine the value of 

output variable C. Fuzzy variable G could be assigned the values “Zero” vehicle, “Low” 

vehicles, “Medium” vehicles, and “High” vehicles. Fuzzy variable R could be assigned 

similar values. Variables L could be assigned values “Short” time, “Medium” time and 

“Long” time. There are four membership functions describing the densities of traffic at 

green and red lights, and three membership functions describing the length of the 

current cycle time. 

The membership functions are shown in Figure 2.6-2.8 as follows: 

 

 
Figure 2.6 Membership function of number of cars behind green light  

                 (Kelsey & Bisset, 1993, p. 266) 
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Figure 2.7 Membership function of number of cars behind red light  

                  (Kelsey & Bisset,1993, p. 267) 

 

 
 

Figure 2.8 Membership function of length of current cycle  

                  (Kelsey & Bisset, 1993, p. 267)      
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Fuzzy variable C is the output variable whose values are “No change”, “Probably no 

change”, “Maybe change”, “Probably yes change” and “Change”. The membership 

function of the values represents a degree of a binary value, 1 being yes and 0 being no, 

as shown in Figure 2.9 

 

 

 
  Figure 2.9 Membership function of change (Kelsey & Bisset, 1993, p. 267)       

 

Kelsey & Bisset (1993) also present the fuzzy rule which maps the combination of the 

inputs to the output to decide whether to change the light. The fuzzy controller 

presented uses 26 different fuzzy rules as follows: 

              1.   IF green is zero and red is zero THEN change is no. 

2. IF green is zero and red is low THEN change is yes. 

3. IF green is zero and red is medium THEN change is yes. 

4. IF green is zero and red is high THEN change is yes. 

5. IF red is zero THEN change is no. 

6. IF green is low and red is low THEN change is no. 

7. IF green is medium and red is medium THEN change is no. 

8. IF green is high and red is high THEN change is no. 

9. IF green is low and red is medium and time is short THEN change is 

maybe. 

10. IF green is low and red is medium and time is medium THEN change is 

probably yes. 

11. IF green is low and red is medium and time is long THEN change is yes. 

12. IF green is low and red is high and time is short THEN change probably no.  
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13. IF green is low and red is high and time is medium THEN change is may 

be. 

14. IF green is low and red is high and time is long THEN change is probably 

yes. 

15. IF green is medium and red is low and time is short THEN change is 

probably no. 

16. IF green is medium and red is low and time is medium THEN change is 

probably no. 

17. IF green is medium and red is low and time is long THEN change is 

maybe. 

18. IF green is medium and red is high and time is short THEN change is 

maybe. 

19. IF green is medium and red is high and time is medium THEN change 

probably Yes. 

20. IF green is medium and red is high and time is long THEN change is yes. 

21. IF green is high and red is low and time is short THEN change is maybe. 

22. IF green is high and red is low and time is medium THEN change probably 

yes. 

23. IF green is high and red is low and time is long THEN change is yes. 

24. IF green is high and red is medium and time is short THEN change is 

probably no. 

25. IF green is high and red is medium and time is medium THEN change is 

probably no. 

              26.IF green is high and red is medium and time is long THEN change is 

                    maybe. 

    

2.2 The traffic intensities estimation based on the maximum likelihood 

       estimation       
      

2.2.1  Maximum likelihood estimation 

 

Maximum likelihood estimation is a method that is used to estimate the 

 parameters of a distribution, or estimate performance of a model . Bera & Bilias (2002) 

states that the statistical expert who provided the analytical foundation of maximum 

likelihood estimation is Fisher (1922). He also studied the efficiency of maximum 
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likelihood estimation relative to moment estimation proposed by Karl Pearson’s (1894) 

moment estimation.  

 

 Abutaled & Papaioannou (2000) propose maximum likelihood estimation to estimate 

time-varying parameters in time series models. The result of this approach is then 

applied to the Athens Stock Exchange Index. Chan & McAleer ( 2002) use maximum 

likelihood estimation to investigate the properties of two models of time series, the 

Smooth Transition Autoregressive (STAR) model and the Smooth Transition 

Autoregressive Generalized Autoregressive Conditional Heteroscedasticity (STAR-

GARCH) model based on finite samples. These numerical results are used as a guide in 

empirical research, with an application to Standard and Poor's Composite 500 Index 

returns for alternative STAR-GARCH models. 

 

The likelihood function of a continuous-time diffusion is observed only at discrete 

dates, and is not computable. Ait-Sahalia (2002) explicitly constructs a sequence of 

closed-form functions that converges to the true likelihood function, and the estimator 

also converges to the true maximum likelihood. Eqorov, Li, & Xu (2003) extend the 

same method to the time-inhomogeneous case, and prove that this approximation 

converges to the true likelihood function and yields consistent parameter estimates. 

 

Maximum likelihood estimation can be applied in business management and 

econometrics, for estimation of default correlations between variables in management of 

loan portfolios (Demey, Jean-Frederic, Roget, & Poncalli, 2004) for example. The 

estimation overcomes problems such as scarce data and small sample biases. 

Deschamps (1998) uses full maximum likelihood estimation to estimate parameters in a 

dynamic demand model. Durtham, Gallant, Ait-Sahalia, & Brandt (2002) propose 

maximum likelihood estimation to provide a convenient way to describe the dynamics 

of economic and financial data. O'Loughlin & Coenders (2004) present the maximum 

likelihood approach as advantageous over the partial least square method in estimation 

of customer performance. Porter (2002) mentions the use of maximum likelihood in 

econometrics model estimation, the conditional information matrix variance estimator is 

usually avoided in choosing a method for estimating the variance of the estimator. The 

author proposes a simulation method to estimate the variance.  Swann (2002) 

demonstrates a method that can be used to examine a more complicated econometric 

model.          
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Frehlich & Sharman (2005) use maximum likelihood estimation to estimate the 

performance of pulsed coherent Doppler radar in estimating aircraft trailing wake 

vortices. The estimation provides accurate detection and tracking of the key vortex 

parameters for a simple vortex model.  

 

Fridman & Harris (1998) develop maximum likelihood estimation to analyze stochastic 

volatility models. The study shows that the method matches the performance of the best 

estimation tools currently in use. 

 

Ghitany & Al-Awadhi (2002) propose maximum likelihood to estimate the parameters 

of Burr XII distribution. The study shown that the estimators are strongly consistent 

with the true values of parameters. 

 

Gill (2004) uses maximum likelihood estimation to estimate the canonical parameter of 

an exponential family that gradually begins to drift from its initial value at an unknown 

change point.     

 

Herring & Ibrahim (2002) introduce maximum likelihood estimation to estimate a 

random effects cure rate model based on development of the Expectation Maximization 

( EM) algorithm,  and efficient Gibbs sampling. The EM algorithm is also applied by 

Karlis (2001) to estimate the performance of mixed Poisson regression models based on 

a real data set concerning crime data from Greece. 

 

Karlis (2003) describe an EM algorithm for maximum likelihood estimation to estimate 

parameters of the multivariate Poisson distribution model Kim & Taylor (1995) develop 

a modification of the restricted EM algorithm to estimate linear restriction parameters. 

Ning-Zhong, Zneng (2005) extend the restricted EM algorithm to estimate the 

inequality restrictions parameter.  Hunter & Lange (2004) claim the EM algorithm is the 

most effective algorithm for maximum likelihood estimation. In biomedical research, 

maximum likelihood is used by Lee & Shi (2001) to estimate the performance of the 

latent variable model. However every EM algorithm is a special case of the more 

general class of Method of Moment (MM) optimization algorithms,as is shown by 

Hunter & Lange (2004). The paper explains the principle of MM algorithms and 

includes numerous examples to illustrate the concept of the algorithm.  
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Hsiao, Pesaran, & Tahmiscioqlu (2002) apply a transformed likelihood estimation to 

estimate fixed effects dynamic panel data models. The study shows that the properties 

of maximum likelihood estimation are better than the linear generalized method of 

moment estimation. 

 

Jewell (2004) uses maximum likelihood estimation to estimate a series of ordered 

multinomial parameters. The results are then applied to estimation of a survival 

distribution. Jonker (2003) proposes maximum likelihood estimation to estimate the life 

length of people who were born in the seventeenth or eighteenth century in England. 

Chen & Ibrahim (2001) propose maximum likelihood estimation to estimate the 

parameter for a novel class of semi-parametric survival models. 

 

Keats, Lawrence, & Wang (1997) present a Fortran program based on point and interval 

maximum likelihood estimation to estimate the parameters of the Weibull distribution. 

Kotz, Kozubowski, & Podqorski (2002) use maximum likelihood to estimate the 

parameters of a univariate asymmetric Laplace distribution for all situations. 

 

Lynch, Nkouka, Huebschmann, & Guldin (2003) use maximum likelihood estimation to 

estimate parameters for a range of specified probability densities in a logistic equation, 

where traditional estimation techniques for logistic models cannot be used. On the other 

hand Horton & Laird (2001) present a new method for maximum likelihood estimation 

of logistic regression models with incomplete covariate data where auxiliary 

information is available.  

  

Milescu, Akk, & Sachs (2005) describe maximum likelihood estimation to estimate 

parameters of rate constants from macroscopic ion channel data for a kinetic model.  

 

Milligan (2003) use maximum likelihood estimation to quantify the  

statistical performance of the traditional maximum likelihood estimator in relatedness 

between individuals in genetics and population biology.   

 

Miranda & Rui (1997) introduce an efficient numerical algorithm  

for computing the full information maximum likelihood estimators of the nonlinear 

rational expectations asset pricing model. The study show that the maximum likelihood 

estimator is more efficient than the method of moments estimator.  



 44 

Rous, Jewell, & Brown (2004) use a full information maximum  

likelihood estimation procedure to estimate the relationship between birth-weight and 

prenatal care. The data is collected from the state of Texas, and the result shows  the 

effect of mothers with less healthy fetuses making more prenatal care visits, known as 

adverse selection in prenatal care. 

 

Scheike & Martinussen (2004) present maximum likelihood to estimate the parameters 

of interest for case-cohort sampling that aims to reducing the data sampling and costs of 

large cohort studies. The estimation is found by a simple EM algorithm that is easy to 

implement. 

 

Yu & Wong (2005) propose a special modification of maximum likelihood estimation 

to estimate parameters in a linear regression model when the error distribution is 

unknown. The study shows that the special estimation is consistent, and can be applied 

to engineering data. 

 

Ellson (1993) suggests that maximum likelihood estimation is one method to learn 

about the parameters of a population based on the characteristics of a sample. The  

parameter estimator that we find by maximum likelihood estimation maximizes the joint 

probability function of a sample we obtain from random sampling. The details of 

maximum likelihood estimation procedure are as follows. 

 

Let X  be a random variable which has a normal distribution with known parameter, 
2σ   (variance of population) and unknown parameter, µ  ( mean of population). Our 

goal is to estimate the population mean by maximum likelihood estimation. First we 

need take a random sample with n size. Let ( )nXXX ,,, 21 K  be the sample. Random 

sampling produces independent identically distributed  (iid) random variables with joint 

probability density as follows: 
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Taking the natural logarithm of both sides of the equation we get the loglikelihood 

function : 
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Note that the value of loglikelihood function is dependent only on the term 

∑
=

−−
n

i
ix

1

2)( µ . We ignore all the constants in the equation because they are not needed 

to maximize the function. So the estimator of µ  that maximizes the likelihood function 

is computed by calculus as follows: 
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So the maximum likelihood estimate   
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In the same way let X  be a vector of c-dimensional Poisson random variable. 

                             X   ( )cXXX ,,, 21 K=  

                               )(~ jj PoissonX λ  ; j = 1,2,…,c.  independent. 

                                λ    =   ( )cλλλ ,...,, 21     

                               X   ( )λPoisson~    

Let us estimate λ  by using maximum likelihood estimation. First we need to take a 

random sample with n size. Let ( ) ( ) ( )( )nXXX ,,, 21 K  be the sample. As before these are 

independent identically distributed (iid) random variables. 

Here        ( )1X  =  ( ) ( ) ( )( )11
2

1
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The joint probability distribution of ( ) ( ) ( )( )nXXX ,,, 21 K   is as follow:       
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Let                X   be a vector of c-dimensional random variable 

                      Y  be a vector of r-dimensional random variable   

                     X   = ( )cXXX ,,, 21 K      

                      Y  ( )rYYY ,,, 21 K=  

                    ( )iX  = ( ) ( ) ( )( )/
21 ,,, i

c
ii XXX K  

                   ( )iY  ( ) ( ) ( )( )/
21 ,,, i

r
ii YYY K=     ni ,,2,1; K=  

                      A   :  rxc matrix  

Using maximum likelihood estimation as in the previous section, we can estimate λ   

given ( ) ( )ii AXY =   with the likelihood equation in vector notation that can be 

expressed : 
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2.2.2  EM algorithm for maximum likelihood estimation         

         

Kim & Taylor (1995) suggest that the EM algorithm is one of the most powerful 

algorithms for maximum likelihood estimation in an incomplete data problem. In the 

EM algorithm it is usually necessary to find the conditional distribution in the E step, 

then use standard maximum likelihood estimation for the complete data problem in the 

M step. Let x  = ( )nxxx ,,, 21 K  be an observation vector and λ  be  a cx1 parameter 

vector of interest. Let  f ( )λx  be the known  probability density of x  indexed by the 

unknown parameter λ  . Denote the log-likelihood of  n  observations by l ( )xλ . If 

there are no restrictions on the parameter, a fast and popular algorithm for 

maximizing l ( )xλ  is the Newton-Raphson algorithm. The score function and the  

information matrix for the Newton-Raphson algorithm are given by             

                     
λ

λ
∂

∂
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)|( xlSU     and     
λ

λ
2

2 )|(
∂

∂
−=

xlIU  

where UI  is assumed to be positive definite. So an unrestricted maximum likelihood 

estimate of λ  is a solution of a set of iterations given by 

          U1.  0←i   ;  choose a starting value for λ  , denoted by ( )0Uλ . 

          U2.  UUiUiUiU SI 1
)()()1( ][ −

+ +← λλλ ,  where US  and UI  are evaluated at  )(lUλ .      

Stop if  )(iUλ   has converged. 

          U3.   ];[ )()1()1( iUiUiU λλλ ++ ← 1+← ii  go to U2. 

In U2,  ][ )()1( iUiU λλ +     denotes the ( )1+i  th term in the Newton-Raphson sequence for 

the unrestricted problem obtained by taking one Newton-Raphson step from )(iUλ . 

Now suppose there are  r linearly independent restrictions on the parameter λ, such as  

                                         λAY =  

Here A  is the known  rxc matrix defining the restrictions, with rank ( )A  =  r < c ; and 

Y  is a known  rx1 vector. We use the Lagrange multiplier method to derive an 

algorithm to find the restricted maximum likelihood estimation. When the Lagrange 

multiplier method is used to incorporate the restrictions, the restricted log-likelihood is 

given by 

                              l ( ) =θλ ,x l ( ) ( ),/ λθλ AYx −−  
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 where θ  ),...,,( 21 rθθθ= are the Lagrange multipliers. When θ  is given , the procedure 

for maximization of the restricted log-likelihood l ( )θλ ,x   is the same as  the 

unrestricted maximization in  U1-U3. A simple adaptation of the Newton-Raphson 

iteration scheme leads to the restricted solution. The score function and the information 

matrix for the restricted log-likelihood can be expressed as 

               θ
λ

θλ /),|( ASxlS UR +=
∂

∂
=    and   UR IxlI =

∂
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λ

θλ
2

2 ),|(
. 

From the relationship of the score functions and information matrices between the 

unrestricted and restricted problems, we can easily verify that the Lagrange multiplier is 

a function of the unrestricted solution and the unrestricted information matrix.  A 

sequence  ,...,, )2()1()0( RRR λλλ   for the restricted problem is obtained by the following 

algorithm: 

       R1.   0←i   choose a starting value , ( )0Rλ . 

       R2.   Calculate ][ )()1( iRiU λλ +     from U2  for the unrestricted problem. 

       R3.    Calculate )1( +iRλ   for the restricted problem from the following equation: 

                ]),[()(][ )()1(
1/1/1

)()1()1( iRiUUUiRiUiR AYAAIAI λλλλλ +
−−−

++ −+=  

where UI  are evaluated at  )(iRλ . Stop if )(iRλ  has converged. 

       R4.   1+← ii  , go to R2 

From R3, it is clear that each member of the sequence for the restricted problem is 

easily obtained in each iteration by using the unrestricted solution and information 

matrix. 

 

2.2.3 Estimating source-destination traffic intensity from link data 

 

Vardi (1996)  estimate  source - destination traffic intensities from link data based on 

maximum likelihood estimation and the sample moments approach. The method is 

presented below. 

 

Consider a network system that contains n nodes. Any two nodes are fixed; one as the 

source, and the other as the destination, and they are called source-destination pairs 

(SD), or direct routes. The target is a traffic intensity estimator between two nodes. This 

network system is composed of c = n (n-1) SD, and we call the direct route that has no 
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nodes between source and destination a direct link. The number of direct links in this 

network system are r ( r ≤  c). 

 

Let ( )k
jX   be the number of vehicles for direct route j at measurement period  k . 

 We assume that  

     ( ) ( )j
k

j PoissonX λ~  ; Kkcj ,,2,1;,,2,1 KK == . independent. 

     ( )kX      is the number of vehicles in vector form for the direct route. 

     ( ) =kX  ( ) ( ) ( )( )/
21 ,,, k

c
kk XXX K   

     ( )k
iY  is the number of vehicles that are observed from direct link i   at measurement  

             period  k.    

    ( )kY   is the number of vehicles in vector form for direct links. 

    ( ) =kY    ( ) ( ) ( )( )/
21 ,,, k

r
kk YYY K      

 

Let A  be the rxc routing matrix for this network. The matrix A  is a zero-one matrix 

whose rows correspond to the direct link; its columns correspond to direct routes, and 

its entry, ija  is 1 or 0 according to whether link i  does or does not belong to the direct 

path of the SD pair j . So we derive the relation between ( )kY    and  ( )kX   in equation 

form as  

                                    ( ) ( );kk AXY =         Kk ,,2,1 K=                        

Our goal is to estimate ≡λ ( )/
21 ,,, cλλλ K    from  ( ) ( ) ( )kYYY ,,, 21 K based on 

maximum likelihood estimation and sample moments. 

The likelihood equations in vector notation can be expressed as 
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The EM algorithm can be used to search for the solution of equation (2.1), and the EM 

algorithm, in vector notation , is 

                               ( )1+nλ  E= ( ) ( ) ( ) ( ) ],,,[ 21 nkYYYX λK   K,2,1, =n  

( ( ) 00 >λ , arbitrary ). due to of the linearity of E  and independence across k’s ,  
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The trouble with this iteration formula is that the summands E ( )λ,YX  (superscripts 

ignored for simplicity ) are extremely hard to calculate as they require finding all the 

solutions in natural numbers of  AXY =  . 

Approximation of  Y =
K
1 ( )∑

=

K

k

kY
1

is possible when k is large as Y  is approximates a 

multivariate normal distribution. 

        ~Y  ,( λAN r
1−K )/AAΛ  ,  ( )λΛ diag=         ,  

So the log-likelihood of Y   is  

      l ( ) −−= /log AAΛλ K ( ) ( ) ( )λλ AYAAAY −−
−1//

Λ                                       (2.2) 

The maximum likelihood estimation (MLE) based on this approximation would seek to 

maximize l ( )λ  subject to the constraints 0≥iλ , i = 1, .c,K  When K is large, the 

second term is the dominant term in (2.2), and suggests   

0minarg ≥λ  K ( ) ( ) ( )λΛλ AYAAAY −−
−1//  as a reasonable large-sample substitute for 

the MLE. Note that this is a weighted least square with positive constraints and with 

weighted values depending on λ , which can be estimated by the sample covariance 

matrix of the sY , . 

 

The approximate normal distribution of Y  is completely determined by the mean 

vector, λA , and covariance matrix, /AAΛ , of Y . Thus we can equate the sample’s first 

and second moment to their theoretical values to obtain a linear (in λ ) system of the 

following estimating equations : 
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Here S  is the sample covariance matrix stretched out as a vector of length ( )
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B  is an  ( ) crr
×

+
2

1    matrix with rows indexed by ( )/, ii  ,  1 rii ≤′≤≤ , to match the 

indexing of  S , with the ( )/, ii  th row of B as the element – wise product of row i and 

row i/ of the matrix A . 

 

Here, suppose that all the constants on left side of (2.3) are strictly positive and that B  

has no rows of zeros. Then, because all of the entries of A  and B  are nonnegative and  

( ) 0,
/// >SY  and λ  is constrained to be > 0, equation (2.3) is of  the general from of a 

LININPOS ( Linear inverse positive ) problem, the EM algorithm will be used to 

“solve” it .The canonical form of the EM iteration for solving the LININPOS problem is 

that  λAY =   is 

 

                                    jλ   ←   
∑

=

r

i
ij

j

a
1

λ
∑

∑=

=

r

i
c

k
kik

iij

a

Ya

1

1

λ
   ; cj ,,2,1 K=                            (2.4) 

If  the linear system is given in a block form as 
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where A  is rxc , Y is   rx1 ,  S  is  mx1  ( indexed as r+1 ,…, r+m ) and B   is  mxc  

( rows indexed as r+1 ,…,r+m ) , then  (4)  becomes  
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Also, Vardi (1996) presents the steps of the simulation process to estimate traffic 

intensity by using Maximum likelihood based on the EM algorithm  as follows: 

Step 1  Let  =λ ( )cλλλ ,,, 21 K   be   ‘daily transmission’ rate; 

Step 2  Generate daily data on direct links for k days : 
( )1Y ( ) ( ) ( )( )11

2
1

1 ,,, rYYY K≡  

( ) ≡2Y ( ) ( ) ( )( )22
2

2
1 ,,, rYYY K     

 M                          M  
( ) ≡kY ( ) ( ) ( )( )k

r
kk YYY ,,, 21 K   , then  
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Calculate       Y    =    
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=
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and sample covariance matrix, S , where 
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Step 3  Estimate   λ̂   /
21 )ˆ,...,ˆ,ˆ( cλλλ=  based on applied algorithm 
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           Step 4  Go to step 2 to estimate λ̂  m time to get )()2()1( ˆ,...,ˆ,ˆ mλλλ ; and 

           Step 5  Calculate mean vector; ∑
=

=
m

k

k

m 1

)(ˆ1ˆ λλ  and covariance matrix based on   m 

estimations then we get λ̂  which is the unbiased estimator of λ , route count. 

 

2.3  The traffic intensities estimation based on Bayesian inference  
         

2.3.1 The Bayesian approach 

 

Moore (1997) agrees that Bayesian method are increasingly important to  
infer parameters. Bayesian inference is a process that can be used to infer interesting 

parameters. The main idea of the Bayesian approach according to VerevKa & Parasyuk 

(2002) consists of sequential calculations of a posterior probability distribution function 

of the parameter, based on some collection of associated evidence by using Bayes’ 

theorem. Carin, Stern & Rubin (1995) present that posterior distribution is complicate 

model so it is difficult to directly sampling from the posterior distribution. The 

indirectly method to sampling when it is very hard to finding distribution function is 

Gibbs sampling. Casella & George (1992) support the meaning of Gibbs sampling as a 

technique for generating random variables from a distribution indirectly, without having 

to calculate the density distribution fuction. Additional Gibbs sampling is based only on 

elementary properties of Markov Chains. 
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Erkanli, Soyer, & Costello (1999) use Baysian inference and model selection for a 

prevalente estimation to estimate the interesting parameter. They generate random 

variable from distribution by using Markov Chain Monte Carlo method. Geweke (1989) 

develop the method for the systematic application of Monte Carlo integration to 

sampling for Bayesian inference in econometric model. In addition  Jensen (2004) 

proposes Baysian inference to estimate the parameter for the integration model. He also 

uses Markov Chain Monte Carlo method to generate random variable from posterior 

distribution function for the tractional order of the integration model. According to 

Carin, Stern & Rubin (1995) two effective methods that can be used to generate random 

variables in Markov chain Monte Carlo method are Metropolis-Hasting and Gibb 

sampler. Liu & Sabatti (2000) comment that although Monte Carlo methods have 

frequently been applied with success in Bayesian inference, indiscriminate use of 

Markov chain Monte Carlo method leads to unsatisfactory performances in numerous 

applications. They propose a generalized version of the Gibbs sampler that is based on 

conditional moves along the traces of groups of transformations in the sample space.The 

sampler provides a framework encompassing a class of recently proposed tricks such as 

parameter expansion and reparameterisation.  

 

Blackwell (2003) uses fully Bayesian inference based on hybrid Markov chain Monte 

Carlo methods, with a mixture of Gibbs sampler and the Metropolis-Hasting algorithm 

to infer a parameter of the certain radio-tracking model.  

 

Haqqer, Janss, Kadarmideen & Stranzinger (2004)use Bayesian inference to study  the 

parameters of a mixed inheritance model. The Gibbs sampler is used to sample values 

of the important random variables that are of concern in the inference model such as, 

body weight and average egg weight. The sequential sampling deliver a random walk 

that converges to its posterior distribution which helps understanding of the model. 

Fouqere & Kamionka (2003) use Bayesian inference procedures for the continuous time 

mover-stayer model. The Gibbs sampler algorithm is applied to estimate proportions of 

stayers and functions of these parameters. 

 

Chen, Ibrahim & Lipsitz (2002) propose Bayesian inference for missing data with a 

novel class of semi parametric survival models. The study delivers an informative class 

of joint prior distributions for the regression coefficients and the parameters arising 

from the covariate distribution. It is useful in recovering information on the missing 
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covariates. Chopin & Pelqrin (2004) use Bayesian inference on the switching regression 

model based on the hidden Markov method. The study delivers a joint estimation of the 

parameter and the number of regimes.  Corander & Villani (2004) consider Bayesian 

inference for  the dimensionality in the multivariate reduced rank regression framework. 

The inference deliver a closed form approximation to the posterior distribution of the  

dimensionality proven. 

 

Dunson & Herring (2003) propose Bayesian inference for testing the predictor in a Cox 

model. The inference is use to test null hypothesis that present no difference between an 

ordered category predictor with an order restricted. The null hypothesis is versus 

alternative hypothesis that present a monotone increase across level of the predictor. On 

the other hand in biomedical studies, usually interest in assessing the association 

between one or more ordered categorical predictor and outcome variable. Duson & 

Neelon (2003) propose a general Bayesian approach for inference on order-constrained 

parameters in generalized linear models. The output from the Gibbs sampler is used for 

assessing ordered trends. 

 

Geweke, Gowrisankaran, & Town (2003) develop the new economic method based on 

Bayesian inference to infer hospital quality in a model. A dependent variable in the 

model is mortality rates and an independent variable is hospital admission. The study  

finds the smallest and largest hospitals to be of the highest quality. 

 

Huelsenbeck, Ronguist, Nielsen, & Bollback (2001) propose Bayesian inference for a 

phylogeny model. The study finds a new perspective to a number of outstanding issues 

in evolutionary biology, including the analysis of large phylogenetic trees and complex 

evolutionary models and the detection of the footprint of natural selection in DNA 

sequences. 

 

Kleiberqen (2004) proposes Bayesian inference to explain a nested regression model. 

The study obtained the prior and posterior probability that can be used to represent the 

nested model. Odejar & McNulty (2001) develop Bayesian methods to estimate the 

parameter of a stochastic switching regression model. Markov Chain Monte Carlo 

methods, data augmentation, and Gibbs sampling are used to facilitate estimation of the 

posterior means. Paiqe & Butler (2001) develope and approximate marginal Bayesian 

inference for neural network models. The study describes the method in the context of 
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two nonlinear datasets that involve univariate and multivariate nonlinear regression 

models. 

 

Lazar (2003) compares empirical likelihood tests and Bayesian inference. The study 

shows that empirical likelihood tests have many of the same asymptotic properties as 

those derived from parametric likelihoods. This leads naturally to the possibility of 

using empirical likelihood as the basis for Bayesian inference. Nair, Tang & Xu,(2001) 

propose Bayesian inference for three important mixture problems in quality and 

reliability instead of the traditional, maximum likelihood approach in situations where 

the large-sample normal approximation is not adequate. 

 

Liu & Lawrence (1999) propose full Bayesian inference to infer the parameter in the 

bioinformatics method. Bayesian inference is use to assign probabilities for all possible 

values of all unknown variables in a problem in the form of a posterior distribution. The 

study show that information from the posterior distribution can be achieved for most 

bioinformatics method that use dynamic programming.  

Martin (2003) present an integrated set of Bayesian tools for heterogeneous event 

counts model, and compares the method with the traditional approach. 

 

Rovers et al.(2005) focuses on the debate concerning Bayesian inference approach. The 

issue of the debate involves comparison the posterior distribution that is calculated from 

Bayes’ theorem with the posterior distribution from empirically measure. Their trial was 

undertaken based on prior and posterior belief among  surgeons. The results showed 

that the trial had a little or no impact on the beliefs of the surgeons, that is, the mean the 

posterior belief did not adjust to the extent that was expected according to Bayes' 

theorem.  

 

Oh, Choi & Kim (2003) apply Bayesian inference to the latent class model. The study 

consists of parameter estimation and selection of an appropriate number of classes. The 

Gibbs sampler is used to generate the random variable from a posterior distribution of 

unknown parameters. Output from the Gibbs sampler is used to estimate the parameter 

and select an appropriate number of classes.     

 

Pasquale, Barone, Sebstiani & Stander (2004) develop Bayesian inference, by means of 

Markov chain Monte Carlo algorithms, for dynamic magnetic  resonance images of the 
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breast. The results show the potential of the methodology to extract useful information 

from acquired dynamic magnetic resonance imaging data about tumour morphology and 

internal pathophysiological features. 

 

Blackwell (2001) proposes Bayesian inference for an inhomogeneous Poisson point 

process. The Markov chain Monte Carlo approach is applied in the point of observation 

process. The results of the study can be applied to modeling the territories of clans of 

badgers. Roberts, Papaspiliopoulos, & Dellaportas (2004) develop Markov chain Monte 

Carlo methodology for Bayesian inference for non-Gaussian Ornstein-Uhlenbeck 

stochastic volatility processes. The Metropolis-Hastings algorithms is used to generate 

the point process and model parameter. 

 

Piles, Gianola, Varona & Blasco (2003) present Bayesian implementation via Markov 

chain Monte Carlo method for a cross-sectional trait model. The study contains a 

hierarchical model and a cross-sectional assessment. The hierarchical model is used to 

infer the parameters of joint distribution fucntion that provides distribution of a 

longitudinal trait. Basu, Banerjee, & Sen (2000) apply Markov chain Monte Carlo 

method in Bayesian inference to infer Cohen's kappa coefficient, a widely popular 

measure for chance-corrected nominal scale agreement between two rates. 

 

Carey, Baker, & Platt (2001) use the Gibbs sampler for Bayesian inference to infer the 

minimum protective antibody concentration, a quantity of great interest in the study of 

immune responses to infectious pathogens. Wang, He & Sun (2005) presents  

capture-recapture methods using Bayesian inference. The method is used to estimate the 

total number of people with a certain disease in a certain research area. Several lists 

with information about patients are used as input and the results are useful in 

epidemiology. Waqner & Gill (2005) point out that the classical statistical inference 

approach in public administration is defective and should be replaced. They support 

Bayesian inference as better suited for structuring scientific research into administrative 

questions due to overt assumptions, flexible parametric forms, systematic inclusion of 

prior knowledge, and rigorous sensitivity analysis. 

 

Carlin & Louis (1996) state that inferential statistics used with Bayesian approach on 

the basis of targeted population parameters estimation can be applicable to the observed 

data which is y ( )nyyy ,,, K21= . This application can be done by taking the likelihood 
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function of y  when specifying the vector of unknown parameter θ ),,( kθθ K1= . Such 

likelihood function is actually represented by f ( )θy . For Bayesian approach θ  refers 

to a random vector with the prior distribution function as π ( )ηθ , when η is a vector of 

hyperparameters(the parameter of θ ). This allows the application of distribution 

function of θ  to be more appropriate expressed as 

                             p ( )ηθ ,y    =  
( )
( )

( )
( )

( ) ( )
( ) ( )∫∫

==
θηθπθ

ηθπθ

θηθ

ηθ

η

ηθ

dyf
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dyp
yp

yp
yp

,

,,
  

The integral in the denominator is sometimes written as m ( )ηy , the marginal 

distribution of the data y  given value of the hyperparameter η . The reformed 

p function is taken as a posterior distribution function which is used to estimate θ . 

Because of η  is constant, it is not repeated in the condition of posterior distribution 

function. It is therefore represented in a simpler form p )( yθ . The posterior mean of 

random variable θ  in posterior distribution function is a weighted average of prior 

mean and observed data with inversely proportional weights to the corresponding 

variances. Also, the posterior variance is smaller than that of prior variance and variance 

of random variable of the likelihood function. As seen, inferential statistics Bayesian 

depending on the posterior distribution function is a more accurate means in parameter 

estimation θ . 

 

Given a sample of n independent observations, the likelihood function   

f ( )θy  is ( )∏
=

n

i
iyf

1

θ . One can proceed with the posterior distribution, p ( )ηθ ,y .  

Evaluating this expression may be simpler if we can find a statistic S ( )y  which is 

sufficient for θ , that is, for which f ( )θy  h= ( )y g S( ( ) )θy . Let  S ( ) sy =  then   

                     p ( )yθ     =    
∫ θθπθ

θπθ
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By suppressing the dependence of the prior on the known value of η ,  p ( )yθ  may be 

expressed in the convenient shorthand 

                         p ( )∝yθ  f ( )θy π ( )θ  

Bayes’ theorem may also be used sequentially: suppose we have two independently 

collected samples of data, 1y  and 2y . Then 

                         p ( )21 , yyθ       ∝    f ( )θ21 , yy π ( )θ        

                                                  =   2f ( )θ2y 1f ( )θ1y  π ( )θ    

                                                 ∝   2f ( )θ2y p ( )1yθ       

That is, we can obtain the posterior for the full dataset ( )21 yy ,   by first finding  

p ( )1yθ  and then treating it as the prior for the second portion of the data 2y .  

 

In case the appropriate value of η  is not known or uncertain Bayesian inference 

approach will takeη as a random variable with prior distribution function as )(ηh . 

Posterior distribution function calculation of θ  can therefore be done by also 

marginalizing over η , 

                          p ( )yθ     =    
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),(

yp
yp θ  
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Implementation of the Bayesian approach as indicated in the previous subsection 

depends on a willingness to assign probability distributions not only to data variables 

like Y  , but also to parameter like θ . Typically, these distributions are specified based 

on information accumulated from past studies, or the opinions of subject-area experts. 

In choosing a prior belonging to a specific distributional family p ( )ηθ , some choices 

may be more convenient computationally than others. In particular, it may be possible 

to select a member of that family which is conjugate to the likelihood f ( )θy , that is, 
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one that leads to a posterior distribution p ( )yθ  belonging to the same distributional 

family as the prior. For example, let Y  be a Poisson random variable with likelihood 

function , 

                        )( θyf    =     
!y

e yθθ−

    ,  K,2,1=y   ,  0>θ  . 

To apply a Bayesian analysis we require a prior distribution for θ   having support on 

the positive real line. A reasonably flexible choice is provided by the Gamma 

distribution, 

                        )(θπ     =   
α

β
θ

α

βαΓ
θ

)(

1
−

− e   ,  0,0,0 >>> βαθ  

Using Bayes’ Theorem to obtain the posterior density, we have 

                        )( yp θ   ∝   )()( θπθyf  

                                     ∝   ))(( 1 β
θ

αθ θθ
−

−− ee y  

                                     =    
)11(

1 β
θ

αθ
+−

−+ ey  

So the posterior )( yp θ is proportional to Gamma distribution with parameters 

// βα and . The parameters are defined by  αα += y/  and 1/ )11( −+=
β

β . 

 

2.3.2  Markov chain simulation 

 

With a complicated posterior distribution model, it is difficult to directly sample from 

the posterior distribution. The Markov chain simulation method will be used for running 

a Markov chain of simulated values whose stationary distribution provides the target 

posterior distribution, )( yp θ . The idea of Markov chain simulation is to simulate a 

random walk in the space of  θ  which converges to a stationary distribution that is the 

joint posterior distribution, )( yp θ . There are many clever methods that have been 

devised for constructing and sampling from transitions for arbitrary posterior 

distributions. The Metropolis-Hastings algorithm is a general term for a family of 

Markov chain simulation methods that are useful for drawing samples from Bayesian 

posterior distributions. There are two commonly –used  special cases, the Metropolis 

algorithm and the Gibbs sampler. 
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1) The Metropolis algorithm 

 

Given a target distribution )( yp θ that can be computed up to a normalizing  

constant, the Metropolis algorithm creates a sequence of random points 

),,( 21 Kθθ whose distributions converge to the target distribution. Each sequence can 

be considered a random walk whose stationary distribution is )( yp θ . The algorithm 

proceeds as follows. 

         1.  Draw a starting point 0θ , for which ,0)( 0 >yp θ  from a starting distribution 

)(0 θp .  

         2.  For  t = 1, 2, K   

               a)  Sample a candidate point  *θ from a jumping distribution at time t,   

                    ).( 1* −t
tJ θθ The jumping distribution must be symmetric; that is,  

                    )()( abtbat JJ θθθθ =  for all  ,, ba θθ and t. 

b) Calculate the ratio of density, 
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Given the current value 1t−θ , the Markov chain transition distribution, ),( 1−tt
tT θθ  is 

thus a mixture of the jumping distribution, ),( 1−tt
tJ θθ and a point mass at 1−= tt θθ . 

The Metropolis-Hastings algorithm generalizes the basic Metropolis algorithm 

presented above in two ways. First, the jumping rules  tJ  need no longer be symmetric; 

that is, there is no requirement that  )()( abtbat JJ θθθθ ≡ . Second, to correct for the 

asymmetry in the jumping rule, the ratio r is replace by a ratio of importance ratios: 

 

                              
)(/)(

)(/)(
*11

1*

θθθ

θθ
−−

−

=
t

t
t

t
t

Jyp

Jyp
r  

                                 
)()(

)()(
1*1

*1*

−−

−

⋅

⋅
=

t
t

t

t
t

Jyp

Jyp

θθθ

θθθ
 



 61 

2) The Gibbs sampler 

 

Casella & George (1992) illustrate the Gibbs sampler as a method that effectively 

generates a sample  )(~,,1 xfXX mK  without requiring ( )xf . By simulating a large 

enough sample, the mean, variance, or any other characteristic of ( )xf  can be 

calculated to the desired degree of accuracy. To understand the working of the Gibbs 

sampler, consider the two-variable case. Starting with a pair of random variables  

( )YX , , the Gibbs sampler generates a sample from ( )xf  by sampling instead from the 

conditional distributions )( yxf and )( xyf . This is done by generating a “Gibbs 

sequence” of random variables. 

                             ///
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/
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/
1

/
0

/
0 ,,,,,,,, kk XYXYXYXY K  

The initial value  /
0

/
0 yY =  is specified, and the rest of the sequence is obtained 

iteratively by alternately generating values from 

                             
)(~

)(~
///

1

///

jjj

jjj

xXyfY

yYxfX

=

=

+

 

The distribution of  /
kX  converges to the true marginal distribution of X  as ∞→k . 

Thus, for k large enough, the final observation, namely //
kk xX = , is effectively a sample 

point from ( )xf . The convergence in the distribution of the Gibbs sequence can be 

exploited in a variety of ways to obtain an approximate sample from ( )xf . For 

example, Gelfand and Smith (1990) suggest generating m independent Gibbs sequences 

of length k, and then using the final value of /
kX from each sequence, if k is chosen 

large enough, this yields an approximate iid sample ),,( 1 mXX K from ( )xf . 

Gibbs sampling can be used to estimate the density itself by averaging the final 

conditional densities from each Gibb sequence. From the Gibbs sequence, just as the 

values //
kk xX = yield a realization of  )(~,,1 xfXX mK , the values  //

kk yY =  yield a 

realization of )(~,,1 yfYY mK . Moreover, the average of the conditional densities 

)( //
kk yYxf =  will be a close approximation to ( )xf , and we can estimate ( )xf  with 
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In the three variables case we would like to calculate the marginal distribution f(x) in the 

problem with random variables YX ,  and Z . The Gibbs sampler would sample 

iteratively from 
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),(~
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The iteration scheme as above produces a Gibbs sequence 
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with the property that, for large k, /
k

/
k xX =  is effectively a sample point from f(x). 

In fact, a defining characteristic of the Gibbs sampler is that it always uses the full set of 

univariate conditionals to define the iterative. 

 

On the other hand Carlin & Louis (1996) briefly present, a particular Markov chain 

algorithm that has been found useful in many multidimensional problems. This is 

alternating conditional sampling, also called the Gibbs sampler, which is defined in 

terms of sub-vectors of θ . Suppose the parameter vector θ  has been divided in to d 

components or sub-vectors, θ ),,( d1 θθ= K . Each iteration of the Gibbs sampler cycles 

through the sub-vectors of θ , drawing each subset conditional on the value of all the 

others. There are thus d steps in iteration t. At each iteration t, an ordering of the d sub-

vectors of θ  is chosen and, in turn, each t
jθ  is sampled from the conditional distribution 

given all the other components of θ : 

                                        t
jp θ( ),1 yt

j
−

−θ               

where 1−
−
t

jθ  represents all the components of θ , except for jθ , at their current values: 

                1−
−
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jθ    ),,,,,( 11
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d
t
j

t
j

t θθθθ KK  

Thus, each sub-vector jθ  is updated conditional on the latest value of θ  for the other 

components, which are the iterated t values for components already updated and the 

iterated t-1 values for the others. 

 

There is, of course, no fully satisfactory method for drawing simulations in general, but 

the following approach is often successful for simulating from posterior distributions in 

the hierarchical models that arise in Bayesian statistics. 
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Step 1. Create an approximate posterior density based on the joint or marginal modes. 

Draw a sample from the approximate distribution and use iterative sampling  to sample 

about 10 draws of the parameter vector. If approximate distributions are multimodal, 

several draws  are generally needed in the region of each mode that has nontrivial mass. 

Step 2. Using these as starting points,  run independent parallel sequences of an 

iterative simulation such as the Gibbs sampler or Metropolis algorithm. 

Step 3. Run the iterative simulation until approximate convergence appears to have 

been reached, in the sense that the statistic R̂     is near  1 for each scalar estimand of 

interest. This will take hundreds of iterations, at least. Here R̂  is defined below  

For each scalar estimand  ϕ , we label the draws from J parallel sequences of length  n 

as ijϕ  ( i  = 1 , 2 , … , n ; j = 1 , 2 , … , j ) and we compute B and W, the between and  

within-sequence variances : 
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We can estimate )var( yϕ , the marginal posterior variance of estimand, by a weighted 

average of W and B , namely 

           B
n

W
n

ny 11)(râv +
−

=+ ϕ   and      
W

yR )/(râvˆ ϕ+

=  

Step 4.  If R̂  is near 1 for all scalar estimands of interest, summarize inference about 

the posterior distribution by treating the set of all iterates from the second half of the 

simulated sequences as an identically distributed sample from the target distribution. 

Step 5. Compare the posterior inferences from the Markov chain simulation to the 

approximate distribution used to start the simulation. If they are not close with respect 

to locations and approximate distribution shape, check for error before believing that the 

Markov chain simulation has produced a better answer. 

 

2.3.3  Applied Bayesian approach to infer traffic count on network traffic 

 

Tebaldi & West  (1998) study  Bayesian inference on network traffic using link count 

data. The purpose of their study similar to Vardi’s (1996) work, was to estimate traffic 

intensity from source to destination in a network system. The starting point of the study, 
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and assumptions about symbol and network structures, are the same as  Vardi's method. 

But traffic intensity estimation is different. 

 

Consider a fixed network of n nodes, arbitrarily labeled A, B, C,… .  

Let a = ( i ,j ) represent the direct route  from originating node i to destination node j. If 

the direct route has no node between node i and node j , we call it a direct link. There 

are  c = n(n-1) direct routes, and r direct links in the network. Let  aX   be the traffic 

count on the direct route a. Let s = (i,  j ) represent  direct link from node i to node j , 

and  sY   be the traffic count on the direct link s.Then based on the observed traffic 

counts on direct link , Y = ( )/
21 ,,, rYYY K     ; we are interested in inferring the traffic 

count on direct route, X  =   ( )/
21 ,,, cXXX K   .  Note that the number of direct links r 

is typically smaller than the number of direct routes c. Following Vardi (1996), Y  and 

X  are related through the rxc routing matrix. A   = ][ ,asA  , where 1, =asA  if the direct 

link  ‘s’  belongs  to the direct  route ‘a’ through the net work , and   

0, =asA   otherwise . We have the defining identity: 

                                           AXY =                                                                          (2.5)         

Our goal is to infer  X   when we know  Y   . To solve this problem we must compute 

and summarize the  posterior distribution p ( )YX  for all route counts X  given the 

observed link count Y  to be tied together with the deterministic expression (2.5) that 

implies Y  given  X  .This requires a model for the prior distribution,  p ( )X .   

                        ( )aa PoissonX λ~   independently over a. 

Let the Poisson rate be  Λ    = { }cλλ ,,1 K  . The prior specification is completed by a 

prior for Λ, the starting point for analysis is  determining a joint model: 

                       p ( ) =Λ,X  ( )⋅Λp ( )∏
=

−
c

a
aa

X
a Xa

1

!/exp λλ                                         (2.6) 

Given the prior (2.6), the observed link count Y  is now conditioned to deliver the 

required posterior p ( )YX Λ, . Naturally, posterior computations are analytically 

difficult in any other than trivial and quite unrealistic networks, what is needed are  

iterative MCMC (Markov Chain Monte Carlo) simulation methods. Consider in 

particular Gibbs sampling, in which we iteratively resample from conditional posteriors 

for elements of the X  and Λ  variables. 
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First, consider simulation of Λ . We note that  

                          p ( ) ≡YX ,Λ p ( ) =XΛ ∏
=

c

a 1

p ( )aa Xλ  

The components consist of the form of the prior density )( ap λ  multiplied by the 

gamma form arising in the Poisson-based likelihood function. Thus by employing 

conditional X , we can easily simulate new Λ  values as a set of independent draws 

from the implied univariate posterior. If  )( ap λ  is gamma, or a mixture of gammas, 

then these draws are trivially made from the corresponding gamma or mixture gamma 

posteriors.  

 

Now we try to simulate X  based on the conditional posterior p ( )YX ,Λ  , viewing Λ  

as fixed. Our data  Y  are in form of linear constraints , AXY =  on the route count 

vector X , so that conditioning must be performed directly, algebraically, rather than via 

the usual application of  Bayes’ theorem. On the other hand we do not need to simulate 

iX   for i = 1, 2, …, c , but only simulate iX  for i =  r+1, r+2, …, c via the usual 

application of Bayes’ theorem then directly evaluate iX  for i = 1, 2, …, r based on 

algebra . The following result, which is simply an algebraic deduction from the network 

structure and defined relation (2.5) among the traffic counts, is the key to ensuring 

inferential development.  

  

Tebaldi & West (1998) prove that, in the network model AXY = , if A  is of full rank r. 

then we can reorder the columns of A  so that the revised routing matrix has the form  

                                    ],[ 21 AAA =                                                                          (2.7) 

where 1A  is a nonsingular rxr matrix. Also, similarly reordering the elements of the X   

vector and conformably partitioning as ],[ /
2

/
1

/ XXX =    it follows that 

                                    ( )22
1

11 XAYAX −= −                                                            (2.8) 

From the result of the theorem, the posterior  p ( )YX ,Λ  is concentrated in a subspace 

of dimension c-r defined by the partition (2.7) of the routing matrix. Having reordered 

the column of A   to the form (2.7), this posterior has the form 

                      p ( )YX ,Λ  = p ( )YXX ,,21 Λ p ( )YX ,2 Λ  

where   p ( )YXX ,,21 Λ  is degenerate at  ( )22
1

11 XAYAX −= −   and with 

                2X    =  /
1 ),,( cr XX K+  
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                1X    =  /
1 ),,( rXX K    are defined as earlier 

 and                 p ( )∝YX ,2 Λ  ∏
=

c

a a

X
a

X

a

1 !
λ

                                                                    (2.9) 

which is over the support defined by aX 0≥  for  a = 1, 2, c,K . This is simply the 

expression of product of independent Poisson priors for the iX  constrained by the 

identity (2.5) rewritten in the form (2.8). The utility of this expression is in delivering 

the set of complete conditional posteriors for elements of the 2X   vector to form part of 

the iterative simulation approach to posterior analysis. Consider each elements Xi  of  

2X  ( i =  r+1 ,…,c ) and write iX −,2   for the remaining elements. Then, simply by 

inspection of (9) we see that the conditional distribution p iX( ),,,2 YX i Λ−  is  

                      p iX( ),,,2 YX i Λ−      ∝      ∏
=

r

a a

X
a

i

X
i

XX

ai

1 !!
λλ

                                       (2.10) 

That is over the support defined by  0≥iX  and  0≥aX   for each   a  =  r+1 , …, c; this 

holds for each i =  r+1, .c,K   

Identifying the support of (2.10) requires the study of the linear constraints on Xi 

defined by aX  0≥  for all elements Xa   of  ( )22
1

11 XAYAX −= − . Given i in    

r+1,…,c, this implies a set of linear constraints as functions of the conditioning values 

of iX −,2  and Y . The resulting constraints are the form of  ii dX ≥   or ii eX ≤  ,where 

the values id  and   ie  are functions of the conditioning value of  iX −,2  and  Y . Hence, 

together with 0≥iX , we obtain a set of at most  r+1 constraints on iX  . By directly 

evaluating these constraints and identifying their intersection, we may deduce the range 

of iX  over which (2.10) is nonzero, and hence we identify the unnormalized 

conditional posterior distribution.     

Iterative simulation of full posterior p ( )YX Λ,  is now enabled as follow: 

Step 1. Fix  starting values of the  route counts X   

Step 2. Draw sample value of the rate Λ  = { }cλλ ,,1 K     from   c  conditionally 

independent posterior distributions 

                          p ( ) ≡YX ,Λ p ( ) =XΛ ∏
=

c

a 1

p ( )aa Xλ  

where p ( )aa Xλ  is gamma distributions that for aλ having shape parameter 1+aX  and 

scale parameter 1 
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Step 3. Condition these values of Λ , simulate a new X  vector by sequencing through  

i = r+1, r+2, … , c ., and at each step sample a new  Xi   from 

                            p iX( ),,,2 YX i Λ−      ∝      ∏
=

r

a a

X
a

i

X
i

XX

ai

1 !!
λλ

   

with conditioning elements  iX −,2    set at their  most recent sampled values. 

Step 4. Reevaluate each step 1X   based upon step 3 as follow: 

 ( )22
1

11 XAYAX −= −  as a function of most recently sampled elements of 2X     

Step 5. Return to step 2 and iterate. 

 

The sampling step in step 3 appears to require evaluation of the support (10). Sampling 

may be performed directly, treating (10) as a simple multinomial distribution on this 

relevant range. Indirect but very much more efficient simulation methods are based on 

embedding Metropolis-Hastings steps within the Gibbs sampling framework. Here the 

candidate value of the iX  is generated at each stage from suitable proposed 

distributions such the uniform distribution, and accepted or rejected according to the 

usual Metropolis-Hastings acceptance probabilities. Specifically, we assume a specified 

and fixed proposal distribution with probability mass function )( ii Xq for each element 

Xi in step 3 . A candidate value *
iX is drawn from )(⋅iq and accepted with probability 

                                       







)()(
)()(

,1min *

*

iiii

iiii

XqXp
XqXp  

where iX  is the current, most recently sampled value and )(⋅ip is the unnormalized 

conditional posterior in equation (2.10). From the structure of network equations in 

(2.5), it is possible to identify bounds on each iX  so that a suitable range for the 

proposal distribution can be computed. For element aX  given aX −,2 , aX  of 2X  ,  

aX  = 0 is a gross lower bound whatever the values in X2,-a . For an upper bound, 









−≤ ∑
≠aj

jijiia XAYX min , where the index i run over the set of links whose counts 

include aX ; that is, those links i for 1=ijA . Then, based on the specified bounds, the 

implied vector 1X  is recomputed and checked for feasibility; that is, nonnegative value. 

If any element of  1X  is negative, the trial value of aX  is either incremented, in 

searching for the lower bound on its range, or decremented, in searching for the upper 
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bound. This process terminates and delivers the resulting bounds once the 1X  vector 

has r nonnegative entries. 

 

2.4 The traffic intensities estimation based on a mixture of  

      maximum likelihood and Bayesian inference 
 

This section proposes a new method to estimate traffic intensities. The method uses 

maximum likelihood estimation to estimate the parameters, the mean population of 

traffic intensity on direct routes. Then let the estimators and the observed count on 

direct links to infer the unobserved traffic count on direct routes bases on Bayesian 

inference. 

 

Let traffic count notation following Vardi (1997), be as follows: 

       λ  :  mean population vector on direct route. 

       λ  = ],...,,[ 21 cλλλ  

       X  :  Traffic intensities vector on direct route. 

       X  = ( )cXXX ,,, 21 K   , ( )ii PoissonX λ~  

       Y  :  Traffic intensities vector on direct link. 

       Y ( )rYYY ,,, 21 K=   

       A  : Routing matrix. 

       ( )kY  : Traffic intensities vector on direct link at measurement period K. 

       ( )kY ( ) ( ) ( )( )k
r

kk YYY ,,, 21 K=  

       Y  ( )rYYY ,,, 21 K=  

                                                       iY      
K

Y
K

k

k
i∑

== 1

)(

 

The equation that presents the relation between  X  and Y  is: 

                                       AXY =   

Expected value of the equation is  λAY =     

The canonical form of the EM iteration for solving the equation is 

                                     jλ ←   
∑

=

r

i
ij

j

a
1

λ
∑

∑=

=

r

i
c

k
kik

iij

a

Ya

1

1

λ
       cj ,,2,1; K=     
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Our goal is to infer X  given λ  and Y   based on the posterior distribution of X  given 

λ   and Y  , p ( )yx ,λ  . Here π  is the prior distribution function of X . 

Consider;          p ( )yx ,λ   ∝  f ( )xy,λ π ( )x  

                                             =    2f ( )xy 1f  ( )xλ π ( )x     

                                            ∝   2f ( )xy p ( )λx       

where 2f ( )xy  is degenerate at   AXY =      and 

                                  p ( )λx   α   ∏
=

c

i i

x
i

x

i

1 !
λ

  

In conclusion, the mixed method to infer  X   given Y  and λ  is firstly to estimate λ  

based on EM iteration. Then use Marcov Chain simulation and the Gibb sampling 

algorithm to obtain X   from  p ( )λx   . Finally evaluate Y  by the equation             

                                            AXY =  

Iterative simulation of full posterior p ( )yx ,λ  adapted from Vardi (1996) and 

Tebaldi&West (1998)  is now possible as follow: 

             Step 1     Let  λ  = ],...,,[ 21 cλλλ  be the daily transmission rate 

        Step 2     Generate daily data on direct links for day K 

                         ( )1Y  = ( ) ( ) ( )( )11
2

1
1 ,,, rYYY K   

                        ( )2Y   = ( ) ( ) ( )( )22
2

2
1 ,,, rYYY K   

                        ( )3Y   = ( ) ( ) ( )( )33
2

3
1 ,,, rYYY K               

                                             M   

                        ( )KY   = ( ) ( ) ( )( )K
r

KK YYY ,,, 21 K  

         Calculate            iY      
K

Y
K

k

k
i∑

== 1

)(

 

         Step 3  Estimate   λ̂ )ˆ,...,ˆ,ˆ( 21 cλλλ=  based on applied algorithm 

                              ←jλ    
∑

=

r

i
ij

j

a
1

λ
∑

∑=

=

r

i
c

k
kik

iij

a

Ya

1

1

λ
  cj ,,2,1; K=     

         Step 4  Go to step 2 to estimate λ̂     m  times so we derive 

                                          )()2()1( ˆ,...,ˆ,ˆ mλλλ  
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          Step 5 Calculate mean vector    
m

m

k

k∑
== 1

)(ˆ
ˆ

λ
λ  

          Step 6 Draw starting values of the route counts X  from the Poisson distribution 

with the parameter from step 5 

          Step 7 Draw sample value of rate   λ ),...,,( 21 cλλλ= from c conditionally 

independent posterior distribution 

                                           p ( )xλ    = ∏
=

c

i
ii xp

1

)(λ  

where )( ii xp λ  is gamma distribution with shape parameter 1+ix  and scale parameter 1 

         Step 8 Conditioning on these value of λ   simulate new X  vector by sequencing 

through i = 1,2,…,c. and  at each step sampling new iX  from 

                                           p ( ) ∝λix  ∏
=

c

a a

x
a

i

i

xx

a

1 !!
λλ

 

 

        Step 9  Base on step 8 at each step Y is evaluated via 

                                                         AXY =    
        Step 10  Return to step 7 and iterate. 

 

2.5 Queuing system theory 
 

Gorney (1979) is a useful source for queuing for giving theory terminology. There are    

four general types of queue: single facility single queue systems, single queue multi 

facility systems, multi queue single facility systems and multi queue multi facility 

systems.  Ament (1980) applies queuing theory to bank service to the benefits of both 

bank customers and  personnel. The benefits consist of  decreased customer throughput 

time,  better use of all existing equipment,  improved customer relations, and  reduction 

of teller numbers. Ross & Shanthikumar (2005) study a modem bank with two streams 

of arriving customers. Drekic & Woolford (2005) analyze a singer-server preemptive 

priority queuing model with low priority balking customers. Fakinos (1982) provides 

the limiting probability distribution for the number of customers waiting in single server 

queue and for customers arrival. 

Zhu & Zhang (2004) consider a queue model with two types of customers that consist 

of positive and negative customers. The management of supply chains and 
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manufacturing systems is an important issue. Liu, Liu, & Yao ( 2004) look at of the 

inventory cost. Queuing theory is used to develop an efficient procedure to minimize 

the overall inventory. Kerbache & Smith (2004) develop a queuing system for the 

supply chain in manufacturing firms. The study shows that the approach is a very useful 

tool to analyze congestion problems and to evaluate the performance of the network. 

Yang, Lee, Chen & Chen (2005) propose a queuing network model for machine time 

interference. Sarkar & Zangwill (1992) study a cyclic queue system that has one server 

and n nodes, where each node has its own distinct type of customers that arrive from the 

outside. The study extends to permit special nodes.  

 

Aquilar-Iqartua, Postiqo-Boix, & Garcia-Haro (2002) apply queuing theory to a high 

speed network. Brown, Gans, Mandelbaum & Sakov (2005) develop queuing for a call 

center in which agents provide telephone-based services, to decease delay in telephone 

queues.  

 

Cruz, MacGreqor & Queiroz (2005) analyze queuing and develop algorithms to 

compute the optimal capacity allocation in a service system. Halachmi (1978) utilizes 

the technique of embedded Markov chains for queuing systems.  

Chen (2004) develops performance measures in finite capacity queuing by using fuzzy 

logic that is widely used in finite capacity queuing models. Maqlaras & Mieqhem 

(2005) present an approach based on a fluid-model to control a multi product queuing 

system. The benefit of the approach is construction of scheduling and multi-product 

admission policies for lead time control. Takine (2005) applies a continuous-time 

Markov chain for single server queues with several customer classes. 

 

Das & Levinson (2004) use queuing analysis to treat traffic flow parameters such as 

flow, density and speed. Their study area is on Interstate 94 in the Minneapolis St. Paul 

metro. In addition Omari, Masaeid & Shawabkah (2004) 

develop a delay model based on data selection that comes from different cities in 

Jordan. The study show that the random arrivals, random services, and a single service 

channel queuing delay model (M/M/1) is also validated using the field delay data, and it 

was found that it estimates delay with high variability, especially for high delay ranges. 

Fu, Hu, & Naqi (1995) apply two techniques, perturbation analysis and  the likelihood 

ratio method, to a single queue system with non identical multiple servers in a traffic 

system. Rolls, Michailidis, & Hernandez-Campos (2005) apply several queuing metrics 
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to provide a network traffic trace through trace-driven queuing. Cheng & Allam (1992) 

present knowledge of the delay and queuing processes of vehicles that pass along minor 

road  to deliver timing that is suitable for traffic flow for traffic  controlled  

intersections. Cruz, Smith & Medeiros (2005) develops a discrete-event digital 

simulation model to study performance of queuing in traffic flow. The study shows that 

the simulation model is an effective and insightful tool. Mahmoud & Araby (1999) 

develop a dynamic macroscopic traffic simulation model to respond to high-density and 

low-density traffic flows. Dewees (1979) develop a traffic simulation model to produce 

new estimates of congestion costs on specific streets during the morning rush hour. Ellis 

& Durgee (1982) present an engineering approach for Voice network designers to 

decide  whether queuing or route-advance or forcing user retrials are appropriate 

selections for a particular network. Nam & Drew (1998) use the principle of traffic 

dynamic analyze freeway traffic flows. They use the fundamental concept of 

conservation to analysis queuing and discharging mechanisms.  

 

Kleinrock (1976) presents the essence of queuing theory as of the characterization of the 

arrival time, the service time and the evaluation of their effect on queuing phenomena . 

Additionally, Vivanichkool (1995) extends the knowledge of queuing using a queuing 

system consisting of: customers who are waiting in queue and customers who are 

receiving service. The number of elements at any time in the system are the number of 

customers in the queue plus the number of customers being serviced. The characteristics 

of queue models are : interarrival time distribution, service time distribution, number of 

servers, service regulation and maximum elements that the system permits. 

 

2.5.1  Notation in queuing 

 

The important notation used in the queuing system are as follows: 

                    n   :     the number of elements in the system, 

              )(tpn  :    probability that the transient system has n elements at time t based   

                             on the assumption that the system starts at  t = 0, 

              np       :     probability that the steady system has n elements, 

 

              λ       :     rate of arrival, number of elements that arrive at the system per  

                             unit of time, 
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              µ      :     rate of departure, number of elements that depart the system per a 

                             unit of time, 

              C       :     number of servers, 

              ρ      :    utilization factor , 
µ
λ

ρ =       ,   10 <≤ ρ   

             
C
ρ     :    utility factor of C  servers, 

             ( )tW  :     probability density distribution function (pdf) for wait time, 

             sW    :    wait time for an element in the system, 

             qW    :    wait time for an element in the queue, 

             sL     :   expected number of elements in the system, and 

             qL      :   expected number of element in the queue. 

The relation between sqs LWW ,,   and qL  can be shown by equations as: 

             sL        =    SWλ , 

             qL      =     qWλ , 

             qW      =     
µ
1

−sW ,  

            qWλ     =    
µ
λ

λ −sW ,  

            qL     =   ρ−sL . 

                 

2.5.2 Arrival  distribution 

 

Based on the assumption that the arrival rate is λ   per a unit of time and that there are  

no elements in the system at time 0=t , the probabilities ( )tpn   and ( )htpn + , the 

probable change of the system between time t and t+h falls in to two cases as follows: 

             Case 1.  For 0>n   , there are n elements in the system at  ht +   if , 

                       a) there are n elements at time t and no element arrives in length  

                            h    or, 

                       b) there are 1−n   elements at time t and there is one element arriving 

                           in length h. 

           

             Case 2.  For 0=n  , there are no elements at time t and time t+h and there are 
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                           no elements in length h. 

            Based on the two cases equations are derived as follows: 

                                0)()1)(()( 1 >+−≅+ − nforhtphtphtp nnn λλ      

                                )1)(()( 00 htphtp λ−≅+  

           So                )()(
)()(

1 tptp
h

tphtp
nn

nn
−+−≅

−+
λλ    

           and              )(
)()(

0
00 tp

h
tphtp

λ−≅
−+

 

 Let  limit  h trend to 0         

                 )()(
)()(

lim 10
tptp

h
tphtp

nn
nn

h −→
+−=

−+
λλ  

)(
)()(

lim 0
00

0
tp

h
tphtp

h
λ−=

−+
→

 

that is    )()()( 1 tptptp
dt
d

nnn −+−= λλ  

 and        )()( 00 tptp
dt
d

λ−=  

∴           
!

)()(
n

ettp
tn

n

λλ −

=            K,2,1,0=n  

The proof above illustrates that the arrival distribution is the Poisson distribution with 

mean tλ  and variance tλ . 

 

2.5.3  Interarrival time distribution 

 

Interarrival time is the interval time between two sequent arrivals. Let the arrival 

distribution be a Poisson distribution. Interarrival time distribution will be considered as 

follows: 

             Let  ( )tf  , 0>t  be inter-arrival time distribution function, and 

                   ( )tF   be cumulative distribution function of  ( )tf , so 

                    ∫= µµ dftF )()(     

No element arrives in interval (0,t); this means that the inter-arrival time is longer than t, 

that is 

                     ∫
∞

=
t

duuftp )()(0  
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                              = 1 - ∫
t

df
0

)( µµ  

                              = 1 – ( )tF  

            tetp λ−=)(0Q  

              )(1 tFe t −=∴ −λ  

Differentiating ( )tF  by t , derive ( )tf  as follows: 

                                             ( )xf   =  




≤
>−

00
0

t
te tλλ

 

The proof above illustrates that the interarrival time distribution is exponential with 

mean 
λ
1  and variance 2

1
λ

 

 

2.5.4  Departure distribution 

 

Based on the assumption that: there are  N  element in the system at time 0=t  and 

there are no element arrival at the system, rate of departure is µ  per a unit of time. 

Probability of no element departing the system is equal to hµ−1 , so 

                       )1)(()( htphtp nn µ−≅+                          ;    Nn =  

                       htphtphp nnn µµ )()1)(()1( 1++−≅+       ;  Nn <<0   

                       htptphp µ)(1)()1( 100 +⋅≅+                   ;   0=n  

)(
)()(

lim
0

tp
h

tphtp
n

nn

h
µ−=

−+
→

                       ;  Nn =  

    )()(
)()(

lim 10
tptp

h
tphtp

nn
nn

h +→
+−=

−+
µµ       ;  Nn <<0            

)(
)()(

lim 0
00

0
tp

h
tphtp

h
µ−=

−+
→

                      ;   0=n  

           So     )()( tptp
dt
d

nn µ−=                                        ; Nn =  

                    )()()( 1 tptptp
dt
d

nnn ++−= µµ                       ;  Nn <<0  

                    )()( 10 tptp
dt
d

µ−=                                       ;    0=n  

The result from the equations above are as follows: 
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)!(

)()(
nN
ettp

tnN

n −
=

−− µµ         ; Nn ,,2,1 K=               

                                ∑
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−=
N

n
n tptp

1
0 )(1)(  

This illustrates that the departure distribution is a truncated Poisson distribution. 

 

2.5.5  Service time distribution 

 

Let ( )tg  be the probability distribution function of service time, notice that probability 

of no service in interval time, ( )T,0  will equal the probability of no element departing 

the system at the same time, so 

                  P ( service time Tt >  )  = P( no element depart system between T ) 

or                           ∫ −==−
T

T
N eTPdttg

0

)()(1 µ   

Therefore                    ∫ −−=
T

Tedttg
0

1)( µ  

Differentiation of both two sides of equation gives:  

                          




≤
>

=
−

00
0

)(
t

te
tg

utµ
 

This illustrates that the service time distribution is exponential with mean 
µ
1   and 

variance 2

1
µ

. 

 

2.5.6 Queuing model 

 

Let  A/B/S denote the queuing model that consists of S servers, interarrival time 

distribution  A and service time distribution B. Particular choices of A and B are as 

follows: 

            M :  Exponential distribution, 

            Er  :  r-stage Erlangian distribution, 

            HR : R-stage Hyperexponential distribution, 

            D : Deterministic distribution, and     

            G : General 



 77 

An important queuing model is described in the next section.        

     

1) The M/M/1 Queue 

   

The characteristic of this model are : 

1) Interarrival time distribution is exponential ; 

2) Service time distribution is exponential ; 

3) There is only one server; 

4) Service regulation is first come, first served; and 

5) Indefinite number of elements. 

Probability of n>0 in the system at time t+h is approximated by the summation of  

probabilities as follows: 

1) The probability of n elements in the system at time t,  and no element arrival, 

and no element departing in length  h, is approximated by 

                                              { })1)(1()( hhtpn µλ −−   

2) The probability of n elements in the system at time t, and no element arrival, 

and one element departing in length h, is approximated by 

                                          { }))(()( hhtpn µλ  

3) The probability of n-1 elements in the system at time t, and one element 

arrival, and no element departing in length h, is approximated by, 

                                         { })1)(()(1 hhtpn µλ −−  

4) The probability of n+1 elements in the system at time t, and no element arrival, 

and one element departing in length h, is approximated by, 

                                         ))(1)((1 hhtpn µλ−+  

So ≅+ )( htpn { })1)(1()( hhtpn µλ −− + { }))(()( hhtpn µλ + { }))(()( hhtpn µλ +   

                         { })1)(()(1 hhtpn µλ −−  

Since h2 converges to zero,  

     { } ))(())((1)()( 11 htphtphhtphtp nnnn µλµλ +− ++−−≅+  

In the same way when n = 0 

     { } ))(()1)(()1)()((1)1()()( 10100 htphtphhtphtphtp µλλµλ +−=−+⋅−≅+  
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     So      )(tp
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d

n  )()()()( 11 tptptp nnn µλµλ +−+= +−  

                )()()( 100 tptptp
dt
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For steady system, ∞→t when µλ < , that is 

                                       1<=
µ
λ

ρ   

When nnn ptpandtp
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dt →→∞→ )(0)(,   , K,2,1,0=n  

                                    010 =+− pp µλ                     ;  0=n           

              0)(11 =+−+ +− nnn ppp µλµλ         ;    0>n            

The difference equation results in the target distribution as follows: 

                             n
np ρρ)1( −=    ;    K,2,1,0=n  

The distribution is a geometric distribution with mean and variance as follows: 

                             ( )nE  = 
ρ

ρ
−1

 

                          ( )nVar  = 2)1( ρ
ρ

−
 

The geometric mean illustrates the important characteristic of queuing system as 

follows: 
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2) The M/G/1 Queue  

 

The characteristic of this model is composed of : 

1) Interarrival time distribution which is Exponential distribution; 

2) Service time distribution that is general distribution; 

3) Only one capacity; 

4) Service regulation which is first come, first served; and 

5)  Indefinite number of element. 

In this case we need to know mean and variance of departing distribution, assume that 

the mean is equal µ  , the variance is equal 2σ . Mean of service time is equal 
µ
1  and 

variance of service time is equal 2σ . The important characteristic of queue system is as 

follows: 

                                1<=
µ
λ

ρ  

                                ρ−= 10P  

                                
)1(2

222
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ρρλ
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=qL  

                                
λ

q
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µ
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+= qq WW  

 

3) The M/M/S Queue   

 

The characteristic of this model is composed of : 

1) Interarrival distribution which is Exponential distribution; 

2) Service time distribution which is Exponential distribution with mean 

µ
1 ; 

3) m servers; 

4) Service regulation which is first come, first served; and 

5) Indefinite number of element. 
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Assume that there are S  service capacities, and each capacity has one server. Service 

rate of each capacity is equal µ , so the mean of all capacities is equal µµ nn =  when  

Sn ≤ ,  if Sn ≥  and all capacities are maximum service, µ=µ Sn  and λλ =n  . 
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Since µλ S> , so means of arrival rate is less than the maximum of service rate.  
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4) G/G/1  for The heavy –traffic approximation 

 

Kleinrock (1976) applied the G/G/1 queue for the heavy-traffic approximation when 

1≅ρ . The wait time distribution is an approximation exponential distribution with the 

mean given as follows: 
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where      ,1;
λµ

λ
ρ == t    

                  2
aσ   :   variance of interarrival time; and 

                 2
bσ    :   variance of service time 

 

2.6 Queuing generation  
 

Consider a queuing system ( Banks, Carson, Nelsun, &Nicol ,2001) over a period of 

time T  , and ( )tL  denote the number of customers in the system at time t. 

               Let iT    denote the total time during [ ]T,0  in which the system contained  

                           exactly i customers. 

We can estimate the number of customers in the system over a period of time T  at any 

time t by L̂ , the time-weighted-average number. 

                                   
T

iT
L i

i∑
∞

== 1ˆ  

Since the total area under the function ( )tL  can be decomposed into rectangles of height  

i   and length  iT  

                                   ∫=
T

dttL
T

L
0

)(1ˆ   

                                           L→            as   ∞→T  

 

Here  L   is the long-run time-average number in the system. 

                 ( )tLQ  denotes the number of customers waiting in line(queue) 

               Q
iT    denotes the total time during [ ]T,0  in which exactly i  customers are  

                       waiting in the queue.    

We can estimate the number of customers waiting in the queue from time 0  to time T  

by QL̂  , the observed time-average number of customers waiting in the queue as 

follows: 
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                                          QL→          as   ∞→T  

Here QL     is the long-run time-average number of customers waiting in the queue. 

In queuing simulation over a period of time T , we can record iW   , the wait time that 

customer i  spends in the system during [ ]T,0 , for Ni ,,2,1 K= . The average time spent 

in the system per customer is called the average system time. The formula to compute 

average system time is given by : 

                                      Ŵ    =    
N

W
N

i
i∑

=1  

For a stable system, as  ∞→N  

                                        WW →ˆ  

Here W is called the long-run average system time. 

In addition, we specially consider the time that customer i spends in the queue. Let Q
iW    

denote the total time that customer i spends waiting in the queue. We can compute the 

observed average time is spent in the queue (called delay) by the formula: 

                           
N

W
W

N

i

Q
i

Q

∑
== 1ˆ   

                               QW→     ,   as  ∞→N                                                          

Here  QW   is the long-run  average per customer. 

 

2.7 The evaluation function 

 
The evaluation of the effectiveness of the traffic control at the intersection is generally 

based on the delay or wait time which is known as the ‘wait mean’. It is obtained by the 

calculation of the combined time of each car spent on its wait time at the red light 

divided by the total number waiting cars. As a consequence, the longer the wait mean 

the less effective is the traffic control. However, wait mean should not be the only 

indicator to judge the effectiveness of the traffic control; the number of cars moving in 
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and out of the intersection including drive mean should also be taken into account to 

evaluate the  effectiveness. This is supported by the model of Kelsey & Bisset ( 1993 ) 

presenting a cost function that consist of such factors to evaluate traffic flow 

performance. The value of the function will be used to evaluate the performance of 

traffic flow under fuzzy controller against the conventional controller. The lower the 

cost function the better the performance.  

 

                     Cost   =    

mean
in

out

mean

Drive
Car
Car
Wait









⋅100

 

Waitmean  :  The average waiting time in seconds that all cars spend behind the  

                   red light. 

Drivemean :  The average time in seconds that all cars spend behind the green light. 

Carout       :  The number of cars that are exiting the intersection. 

Carin         : The number of cars that are entering the intersection. 
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Chapter 3 

Research Methodology 

 

3.1 The conceptual research 
                 

To calculate the optimal length of the traffic signal on each phase of the cycle, firstly we 

need to estimate traffic intensity that arrives and departs at the intersections and the 

length of the current cycle time based on statistical methods. These estimators are crisp 

inputs for fuzzy logic control. Then crisp outputs are produced by using the process of 

fuzzy logic control.  The crisp output is the degree of traffic signal change for each 

phase. Finally the optimal length of traffic signal is the period of time between the 

connective change points. This concept can be conceptualized as shown below:    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                  

    Figure 3.1 Conceptual map( Adapted from Wang, 1994, p. 6) 
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3.2 The input process methodology  
 

There are three important inputs consisting of: the number of cars passing the green 

light, the number of cars stopping behind the red light and length of the current cycle 

time. To estimate the value of these inputs, we need to study traffic at the actual 

intersections, and use statistical methods to estimate the number of cars and the length 

of current cycle time. 

 

3.2.1 Traffic control at actual intersections studied 

 

1)  Traffic network studied 

 

The optimal traffic signal light time was studied at four important intersections in the 

inner city of Ubon Rachathani Province consisting of : Uboncharearnsri , Clock Hall, 

Chonlaprathan , and Airport intersections. The network diagram representing the four 

intersections is shown as Figure 3.2 
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      Figure 3.2  Diagram of traffic network consisting of the four intersections A, B, C  

                         and D with car flow from E, F,G, H and I            
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According to Vardi’s notation (1996), there are 72 source-destination pairs (SD), made 

up of 54 direct routes and 18 direct links. 

                  The 54 direct routes are as follows; 

CDAAC →→≡                EDAAE →→≡                  GBAAG →→≡       

HBAAH →→≡                ICDAAI →→→≡            ABCCA →→≡  

ADEEA →→≡                ABGGA →→≡                  ABHHA →→≡   

ADCIIA →→→≡         DCBED →→≡                   EDCBBE →→→≡  

FABBF →→≡                 ICBBI →→≡                     BADDB →→≡  

BADEEB →→→≡       BAFFB →→≡                   BCIIB →→≡  

EDCCE →→≡               FABCCF →→→≡           GBCCG →→≡  

HBCCH →→≡               CDEEC →→≡                   CDAFFC →→→≡  

CBGGC →→≡               CBHHC →→≡                   FADDF →→≡  

GBCDDG →→→≡      HBCDDH →→→≡          ICDDI →→≡  

DAFFD →→≡               DCBGGD →→→≡          DABHHD →→→≡  

DCIID →→≡                  FADEEF →→→≡           GBAFFG →→→≡   

EDCIIE →→→≡          HBAFFH →→→≡         FABGGF →→→≡                                 

FABHHF →→→≡        FADCIIF →→→→≡   HBGGH →→≡                                

ICBGGI →→→≡         GBHHG →→≡                  GBCIIG →→→≡                  

ICBHHI →→→≡         HBCIIH →→→≡             EDAFFE →→→≡  

                                               ICDEEI →→→≡                      

                                               HBADEEH →→→→≡                                   

                                               EDCBGGE →→→→≡  

                                               EDCBHHE →→→→≡  

                                               ICDAFFI →→→→≡    

                                               GBADEEG →→→→≡  
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 The 18 direct links are as follows: 

BAAB →≡               ABBA →≡                 CBBC →≡  

BCCB →≡               DCCD →≡                  CDDC →≡  

DAAD →≡              ADDA →≡                 FAAF →≡  

AFFA →≡                EDDE →≡                  DEED →≡  

ICCI →≡                  CIIC →≡                     HBBH →≡  

BHHB →≡           GBBG →≡                   BGGB →≡  

 

2) Flow phase of each intersection studied 

 

Flow phase refers to the time length of the green lights which allows the cars to directly 

move toward their targeted directions. The phase is in fact counted from the end of the 

red light and the start of the ember light. This means that phase stands between the red 

and the ember light. Each intersection has different phase form.  

 

The next subsection will present the phase at each intersection by a diagram. 

               Let                              represent cars that pass the green light 

                                                  represent cars that stop behind the red light 

 

The diagrams presenting the phases at each intersection are as follows:                                    
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2.1) The form of flow phase at Uboncharearnsri intersection 

There are three phases at Uboncharearnsri intersection.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Diagram to present the flow phases at Uboncharearnsri  intersection. 
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2.2) The form of flow phases at Clock Hall intersection 

There are three phases at Clock Hall intersection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

             Figure 3.4  Diagram to present the flow phases at Clock Hall intersection. 
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2.3) The form of the flow phases at Chonraprathan intersection 

There are three phases at Chonraprathan intersection.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Diagram to presenting the flow phases at Chonlaprathan  intersection 
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2.3) The form of the flow phases at Airport intersection 

There are four phases at Airport intersection  : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6  Diagram to present the flow phases at Airport intersection  
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3.2.2 Traffic estimation by using mix models 

 

This section presents the statistical method used to estimate the number of cars that 

depart from an intersection to other intersections according to a mixture of maximum 

likelihood estimation and Bayesian inference. This section also explains the method 

used to compute the length of current cycle time.  

 

3.2.2.1  Notation used  

 

Let  Xj denote the route count belonging to a direct route , or  the number of cars that 

depart from specified sources to destination, for  j  =  1, 2, 3, …, 72 . The details of each 

Xj  are as follows:   

                      X1 : the number of cars from source A to destination B  

                      X2 : the number of cars from source A to destination C 

                      X3 : the number of cars from source A to destination D 

                      X4 : the number of cars from source A to destination E 

                      X5 : the number of cars from source A to destination F 

                      X6 : the number of cars from source A to destination G 

                      X7 : the number of cars from source A to destination H 

                      X8 : the number of cars from source A to destination I 

                      X9 : the number of cars from source B to destination A 

                      X10 : the number of cars from source C to destination A 

                      X11 : the number of cars from source D to destination A 

                      X12 : the number of cars from source E to destination A 

                                X13 : the number of cars from source F to destination A 

                      X14 : the number of cars from source G to destination A 

                      X15 : the number of cars from source H to destination A 

                      X16 : the number of cars from source I to destination A 

                      X17 : the number of cars from source B to destination C 

                      X18 : the number of cars from source B to destination D 

                      X19 : the number of cars from source B to destination E 

                      X20 : the number of cars from source B to destination F 

                      X21 : the number of cars from source B to destination G 

                      X22 : the number of cars from source B to destination H 

                      X23 : the number of cars from source B to destination I 
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                     X24 : the number of cars from source C to destination B 

                     X25 : the number of cars from source D to destination B 

                     X26 : the number of cars from source E to destination B 

                     X27 : the number of cars from source F to destination B 

                     X28 : the number of cars from source G to destination B 

                     X29 : the number of cars from source H to destination B 

                     X30 : the number of cars from source I to destination B 

                     X31 : the number of cars from source C to destination D 

                     X32 : the number of cars from source C to destination B 

                     X33 : the number of cars from source C to destination F 

                     X34 : the number of cars from source C to destination G 

                     X35 : the number of cars from source C to destination H 

                     X36 : the number of cars from source C to destination I 

                     X37 : the number of cars from source D to destination C 

                     X38 : the number of cars from source E to destination C 

                     X39 : the number of cars from source F to destination C 

                     X40 : the number of cars from source G to destination C 

                     X41 : the number of cars from source H to destination C 

                     X42 : the number of cars from source I to destination C 

                     X43 : the number of cars from source D to destination E 

                     X44 : the number of cars from source D to destination F 

                     X45 : the number of cars from source D to destination G 

                    X46 : the number of cars from source D to destination H 

                    X47 : the number of cars from source D to destination I 

                    X48 : the number of cars from source E to destination D 

                    X49 : the number of cars from source F to destination D 

                    X50 : the number of cars from source G to destination D 

                    X51 : the number of cars from source H to destination D 

                    X52 : the number of cars from source I to destination D 

                    X53 : the number of cars from source E to destination F 

                    X54 : the number of cars from source G to destination E 

                    X55 : the number of cars from source H to destination E 

                    X56 : the number of cars from source I to destination E 

                    X57 : the number of cars from source F to destination G 

                    X58 : the number of cars from source F to destination H 
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             X59 : the number of cars from source F to destination I 

             X60 : the number of cars from source G to destination F 

             X61 : the number of cars from source H to destination F 

             X62 : the number of cars from source I to destination F 

             X63 : the number of cars from source G to destination H 

             X64 : the number of cars from source G to destination I 

             X65 : the number of cars from source H to destination G 

             X66 : the number of cars from source I to destination G 

             X67 : the number of cars from source H to destination I 

             X68 : the number of cars from source I to destination H 

             X69 : the number of cars from source E to destination G 

             X70 : the number of cars from source E to destination H 

             X71 : the number of cars from source E to destination I 

             X72 : the number of cars from source F to destination E 

 

Let  X   denote the direct route count matrix,  X  is the row matrix with dimension 

1X72 as follows: 

                                        =X  [ ]7221 ,,, XXX K   

Let  Yi denote the route count corresponding to direct link, or the number of cars that 

depart from the  source to destination, for  i  =  1, 2, 3, …, 18 . The details of each Yi  

are as follows:   

 

                      Y1 : the number of cars from source A to destination B  

                      Y2 : the number of cars from source B to destination A 

                      Y3 : the number of cars from source B to destination C 

                      Y4 : the number of cars from source C to destination B 

                      Y5 : the number of cars from source C to destination D 

                      Y6 : the number of cars from source D to destination C 

                      Y7 : the number of cars from source A to destination D 

                      Y8 : the number of cars from source D to destination A 

                      Y9 : the number of cars from source A to destination F 

                      Y10 : the number of cars from source F to destination A 

                      Y11 : the number of cars from source D to destination E 

                      Y12 : the number of cars from source E to destination D 

                             Y13 : the number of cars from source C to destination I 
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                      Y14 : the number of cars from source I to destination C 

                      Y15 : the number of cars from source B to destination H 

                      Y16 : the number of cars from source H to destination B 

                      Y17 : the number of cars from source B to destination G 

                      Y18 : the number of cars from source G to destination B 

 

Let Y  denote the direct link count matrix, Y  is the row matrix with dimension 1X18 as 

follows: 

                                  =Y [ ]1821 ,,, YYY K  

                     Let jλ  denote the population mean of the number of cars that depart from 

source to destination, for  j  =  1, 2, 3, …, 72 . 

                     Let  λ   denote the population mean route count matrix with dimension 

721×  as follows 

                                λ   =  ],,,[ 7221 λλλ K                               

 

3.2.2.2  Estimation of route count mean based on the EM 

 

This section presents the statistical method to estimate the route count mean based on 

the EM algorithm. Observe Yi at period k in the actual situation, and 

  

Let   ( )k
jX  denote the number of cars for direct route j at measurement period   k   . We 

assume that  

                     ( )k
jX  ~  Poisson ( jµ ) ; 72,2,1 K=j . Kk ,,2,1 K=   is independent. 

                     ( )kX   is the number of cars in vector form for direct route. 

                     ( ) =kX  ( ) ( ) ( )[ ]/
7221 ,,, kkk XXX K    

                      ( )k
iY     is the number of cars that are observed from direct link  i  

                                at measurement period  k.    

                     ( )kY   is the number of cars in vector form for direct links. 

                     ( )kY   =  ( ) ( ) ( )[ ]/
1821 ,,, kkk YYY K    

 

Let A  denote the 18x72 routing matrix for this network. The matrix A  is a zero-one 

matrix whose rows correspond to the direct link, its columns correspond to direct routes, 
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and its entries, ija  are 1 or 0 according to whether link i  does or does not belong to the 

direct path of the SD pair j .  

So matrix A  is defined by      =A ][ ija  

 ija   =  1; for  (i, j) =  (1,1),(1,6),(1,7),(1,25),(1,26),(1,27),(1,57),(1,58),(1,69),(1,70)  

(2,9),(2,10),(2,14),(2,15),(2,20),(2,33),(2,51),(2,60),(2,61)(3,17),(3,18),(3,19),(3,23), 

(3,40),(3,41),(3,54),(3,55),(3,64),(3,67),(4,10),(4,24),(4,4,30),(4,33),(4,34),(4,35), 

(4,46),(4,66),(4,68),(5,16),(5,18),(5,19),(5,31),(5,32),(5,50),(5,52),(5,54),(5,55),(5,56)(5

,62)(6,2),(6,8),(6,37),(6,38),(6,39),(6,45),(6,46),(6,47),(6,59),(6,71)(7,2),(7,3),(7,4),(7,8)

,(7,39),(7,49),(7,51),(7,59),(7,72),(8,11),(8,12),(8,16),(8,25),(8,26),(8,44),(8,53), 

(8,62),(8,69),(8,70),(9,5),(9,20),(9,33),(9,44),(9,53),(9,60),(9,61),(9,62)(10,13), 

(10,27),(10,39),(10,49),(10,57),(10,58),(10,59),(10,72)(11,4),(11,19),(11,32),(11,43), 

(11,55),(11,56),(11,72)(12,12),(12,26),(12,38),(12,53),(12,68),(12,69),(12,70),(12,71), 

(13,8),(13,23),(13,36),(13,47),(13,59),(13,64),(13,67),(13,71)(14,16),(14,30),(14,42), 

(14,52),(14,56),(14,62),(14,66),(14,68),(15,7),(15,22),(15,35),(15,46),(16,58),(15,63), 

(15,68),(15,70),(16,15),(16,29),(16,41),(16,51),(16,55),(16,61),(16,65),(16,67)(17,6), 

(17,21),(17,34),(17,57),(17,65),(17,66),(17,69),(18,14),(18,28),(18,40),(18,54),(18,60)(1

8,63),(18,64) 

ija   =  0; for  the other ( )ji,  

So we derive the relation between ( )kY    and  ( )kX   in equation form as follow:  

                                     ( ) ( )kk AXY =            Kk ,,2,1, K=  

From the matrix form we can write 18 equations that present Yi and Xj  as follow: 

               Y1    =    X1+X6+X7+X25+X26+X27+X57+X58+X69+X70 

               Y2    =    X9+X10+X14+X15+X20+X33+X51+X60+X61 

               Y3    =    X17+X18+X19+X23+X40+X41+X54+X55+X64+X67 

               Y4    =    X10+X24+X30+X33+X34+X35+X46+X66+X68 

               Y5    =    X16 +X18+X19+X31+X32+X50+X52+X54+X55+X56+X62 

               Y6    =    X2+X8 +X37+X38+X39+X45+X46+X47+X59+X71 

               Y7    =    X2+X3+X4+X8+X39+X49+X51+X59+X72 

               Y8    =    X11+X12+X16+X25+X26+X44+X53+X62+X69+X70 

               Y9    =    X5+X20+X33+X44+X53+X66+X61+X62 

               Y10    =    X13+X27+X39+X49+X57+X58+X59+X72 

               Y11    =    X4+X19+X32+X43+X55+X56+X72 

               Y12    =    X12+X26+X38+X53+X68+X69+X70+X71 

               Y13    =    X8+ X23+X36+X47+X59+X64+X67+X71 
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               Y14    =    X16+ X30+X42+X52+X56+X56+X62+X66+X68 

               Y15    =    X7+X22+X35+X46+X58+X63+X68+X70 

               Y16    =    X15+X29+X41+X51+X55+X61+X65+X67 

               Y17    =    X6+X21+X34+X57+X65+X66+X69 

               Y18    =    X14+X28+X40+X54+X60+X63+X64 

Our goal is to estimate   µ  = ( )7221 ,,, µµµ K  from  ( ) ( ) ( )KYYY ,,, 21 K based on 

maximum likelihood estimation and sample moments using the following 7 steps. 

Step 1 Let positive refer to the population of number of car passing direct route on 

traffic network 

           µ  = ),,,( 7221 µµµ K       ; arbitrary. 

Step 2  Observe  daily data on direct links for 20 days from 08:00 – 08:30 am   
( ) ≡1Y  ( ) ( ) ( )( )1

18
1

2
1

1 ,,, YYY K       

( )2Y ≡ ( ) ( ) ( )( )2
18

2
2

2
1 YYY ,,, K   

 M                          M  
( )20Y ≡ ( ) ( ) ( )( )20

18
20

2
20

1 YYY ,,, K    

Calculate          

( )

20

20

1
∑

== k

k
i

i

Y
Y  

Step 3  Estimate µ   with  µ̂ )ˆ,...,ˆ,ˆ( 7221 µµµ=  based on applied algorithm 

                  µj  ←  ∑
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Step 4 Generate jX   from Poisson distribution with the estimator of parameter  

           7221 ,,,;ˆ K=jjµ    for 100 days 

Step 5 Generate daily data on direct links for 100 days depending on jX  in step 4 

( ) ≡1Y  ( ) ( ) ( )( )1
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Step 6  Go to step 3 to estimate µ  50 times so we get )1(µ̂ , )2(µ̂ ,…, )50(µ̂  

Step 7 Calculate mean vector ; ∑
=

=
50

1

)(ˆ
50
1ˆ

k

kµµ  based on   50 estimations then we get µ̂  

as the unbiased estimator of µ , route count. 

  

3.2.2.3   Estimation of route count base on Bayesian inference  

 

This section presents the statistical method to estimate route count based on Bayesian 

inference. The Bayesian inference use to infer route count  jX   when we know jλ (from 

EM algorithm) and iY  (from observation), for  i = 1,2, …, 18.  j = 1,2,…,72. 

From the posterior distribution of  X  by given λ  and  Y  ; 

                         p ( )yx ,λ   ∝  2f ( )xy p ( )λx                                  

where 2f ( )xy  is degenerate at   AXY =      and 

                                  p ( )λx   α   ∏
=

c

i i

x
i

x

i

1 !
λ

  

So we can infer the route count, iX  by using the Gibb sampler to draw X  from 

p ( )λx , and then evaluate Y  by the equation   AXY =   

The detailed procedure to estimate jX ,  72,,2,1 K=j   by given jλ  and iY  , 

18,,2,1 K=i  by using the mixure of maximum likelihood and Bayesian inference is 

based on seven steps as follows: 

                Step 1  Generate 10 vectors  X  from 72 independent Poisson distributions 

with parameter vector µ  that has already been estimated based on EM in section 3.2.2.2 

                Step 2  Draw sample value of 10  parameter vectors λ  from 72 conditionally 

independent posterior distributions; )( jj Xp λ  is a Gamma distribution with shape 

parameter 1+jX  and scale parameter 1; 72,,2,1 K=j . 

               Step 3 For each parameter vector λ , in iteration t  sample a candidate *
jX  of 

the element of X  with priority from conditionally Poisson distribution produces all the 

other elements : 

                         *
jX    ~    Poisson( *

jX )1−
−
t

jX     ;   

Where 1−
−
t

jX  represents all the element of X  except for jX  at their current values: 

                  1−
−
t

jX  =   ),,,,,( 1
72

1
111

−−
+−

tt
j

t
j

t XXXX KK  
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                set    






= − otherwiseX
ryprobabilitwithX

X t
j

jt
j 1

* )1,min(
      

                                           r    =   
)()(
)()(

*1

1*

j
t
j

t
jj

XUXP
XUXP

−

−

   

                   where        
!

)(
j

x
j

j x
e

Xp
jj λλ−

=     ,   ( )jXU   = 
!j

x
j

x
e jj µµ−

 

                    Step 4  Directly compute the element of Y   by AXY =  

                    Step 5  Let  k
tjX   be the draw from 10 parallel sequences of iteration t of 

the  kth element of  X   ( t =1, 2, …, n ; j = 1, 2, …, 10), compute B  and W , the 

between and within-sequence variances for each kth:                                        

       ∑
=

−=
10

1

2
... )(

9 j
j XXnB  ,  where  ∑

=

=
n

i

k
ijj X

n
X

1
.

1     ,  ∑
=

=
10

1
... 10

1
i

jXX  

       ∑
=

=
10

1

2

10
1

j
jSW        ,  where    ∑

=

−
−

=
n

i
j

k
ijj XX

n
S

1

2
.

2 )(
1

1  and     )1(1ˆ −+= n
W
B

n
R  

                     Step 6  Return to step 2 and iterate until 1ˆ →R  for all kth element. 

                    

                     Step7  Estimate route count for each direct route by 

                                ∑
=

=
10

110
1ˆ

j

k
njk XX     , k = 1,2, …, 72 

                          where kX̂  is the estimator of route count for direct route kth                                   

                                    k
njX  is the latest draw for parallel j 

  

3.2.3  Calculation of the length of the current cycle time  

 

This section presents the statistical formula to calculate the length of the current cycle 

time on each phase of actual intersections studied. Treat each intersection as a service 

system and cars as customers with each phase of the intersection as a server.  

As discussion in the previous chapter, interarrival time follows the exponential 

distribution. Therefore, we can generate interarrival time from an exponential 

distribution. The parameter of the distribution is defined by traffic intensity estimated 

from an the mixed model in section 4.2.2. Finally the length of the current cycle time 

since the last traffic light change to the moment that any car arrives at the intersection is 
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the total of all interarrival times of the cars that arrive at the intersection in the current 

period. 

                       Let       iC    be the ith  car that arrive at the intersection, 

                                  iA     be interarrival time between iC   and 1+iC , 

                                        jC    be the first car after the last traffic light change, 

                                  nC    be the car at the moment, 

              and               L     be the length of the current cycle time       

So                           L    =   ∑
−

=

1n

ji
iA           

             

3.3 The fuzzy system process methodology 
 

This section presents the method to combine the linguistic and numerical information 

from  the previous input process methodology to derive output, the degree of traffic 

light change of each phase. Fuzzy logic systems with fuzzifier and defuzzifier will be 

used. 

 

3.3.1 Fuzzifier   

 

The fuzzifier  performs a mapping from numerical information input such as number of 

cars behind the green light, number of cars behind the red light and the length of the 

current cycle time in to a fuzzy set. The number of cars behind the red or the green 

lights are assigned to fuzzy set as “zero”, “low”, “medium” and “high”. And the length 

of the current cycle time is assigned to fuzzy set as “short”, “medium” and  “long”.  

Numerical information output , degree of traffic light change are assigned to fuzzy set 

as “no”, “probably no” “maybe”,  “probably yes” and “yes”. The membership function 

of these fuzzy sets are defined below.                                             

 

3.3.1.1  The membership function of the fuzzy set defined by the number of cars 

               behind the green light 

  

Fuzzy sets of the number of cars behind green light are assigned as “zero”, “low”, 

“medium”, and “high. The membership function of the fuzzy sets are triangular or 

trapezoidal according to the Figure 3.7- 3.10 as follows: 
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Figure 3.7  The membership function form for fuzzy set “zero” 

                   (Adapted from Kelsey & Bisset, 1993, P. 266 and Teodorovic &  

                    Vukadinovc, 1998, p. 51) 
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          Figure 3.8  The membership function form for fuzzy set “low” 

                            (Adapted from Kelsey & Bisset, 1993, P.266 and Teodorovic&                             

                                   Vukadinovc, 1998, p. 51) 
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Figure 3.9  The membership  function form for fuzzy set “medium” 

                            (Adapted from Kelsey & Bisset, 1993, P.266 and Teodorovic&                             

                      Vukadinovc, 1998, p. 51) 
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    Figure 3.10  The membership function form for fuzzy set “high” 

                         (Adapted from Kelsey&Bisset, 1993, p.266 and Teodorovic&                             

                               Vukadinovc, 1998, p. 51) 

 

 

 

 
 



 104

3.3.1.2  The membership function of the fuzzy set defined by the number of cars 

              behind the red light. 

Fuzzy sets of the number of cars behind the red light are assigned as “zero”, “low”, 

“medium”, and “high”. The membership function of the fuzzy sets are triangular or 

trapezoid according to the Figure 3.11-3.14 as follows: 

0 1 2

1

x (cars/second)

xµ
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00
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xx
xxµ      

    Figure 3.11  The membership function form for fuzzy set “zero” 

                          (Adapted from Kelsey & Bisset, 1993, p. 267 and Teodorovic&                             

                                Vukadinovc, 1998, p. 51) 
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    Figure 3.12  The membership function form for fuzzy set “low” 

                         (Adapted from Kelsey & Bisset, 1993, p. 267 and Teodorovic&                             

                               Vukadinovc, 1998, p. 51 )                                
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Figure 3.13 The membership function form for fuzzy set “medium”(Adapted from  

                    Kelsey&Bisset, 1993, p.267 and Teodorovic& Vukadinovc, 1998, p. 51) 
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Figure 3.14  The membership function form for fuzzy set “high”(Adapted from 

                      Kelsey&Bisset, 1993, p.267 and Teodorovic& Vukadinovc, 1998, p. 51) 
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3.3.1.3 The membership function of the fuzzy set defined by the length of the 

            current cycle time 

 

Fuzzy sets of the length of current cycle time are assigned as “short”, “medium” and 

“long”. The membership function of the fuzzy sets are trapezoid according to the Figure 

3.15-3.17 as follow: 
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Figure 3.15  The membership function form for fuzzy set “short”(Adapted from Kelsey  

                     & Bisset, 1993, p.267 and Teodorovic & Vukadinovc, 1998, p. 51) 
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 Figure 3.16  The membership function form for fuzzy set “medium”(Adapted from  

                       Kelsey&Bisset, 1993, p.267 and Teodorovic & Vukadinovc, 1998, p. 51) 

xµ

 
                    

                                      










≥

<≤−

<

=

90,1

9060,
3
2

20

60,0

)(

0

0
0

0

0

x

xx
x

xxµ  

Figure 3.17  The membership function form for fuzzy set “long”(Adapted from  

                      Kelsey & Bisset, 1993, p. 267 and Teodorovic & Vukadinovc, 1998, p. 51) 
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3.3.2 Fuzzy rule base 

 

This section provides a list of rules in notation form that govern traffic control at 

intersections. The fuzzy rule base consists of a collection of fuzzy IF-THEN rules 

according to Kelsey and Bisset’s (1993)  fuzzy rules base.               

 

  Let          x1 :   number of cars that are  behind the green light. 

                 x2 :   number of cars that are behind the red light. 

                 x3 :   current of cycle time. 

                 y :    degree of change.   

                 F1 : fuzzy set for the number of cars behind the green light is zero. 

                 F2 : fuzzy set for the number of cars behind the green light is low.  

                 F3 : fuzzy set for the number of cars behind the green light is medium. 

                 F4 : fuzzy set for the number of cars behind the green light is high. 

                 F5 : fuzzy set for the number of cars behind the red light is zero. 

                 F6 : fuzzy set for the number of cars behind the red light is low. 

                 F7 : fuzzy set for the number of cars behind the red light is medium. 

                 F8 : fuzzy set for the number of cars behind the red light is high. 

                 F9 : fuzzy set for length of the current cycle time is short. 

                 F10 : fuzzy set for length of the current cycle time is medium. 

                 F11 : fuzzy set for length of the current cycle time is long. 

                 G1 : fuzzy set for degree of change is no. 

                 G2 : fuzzy set for degree of change is probably no. 

                 G3 : fuzzy set for degree of change is maybe. 

                 G4 : fuzzy set for degree of change is probably yes. 

                 G5 : fuzzy set for degree of change is yes.     

Using to the previous notations, the rule base in notation form are as follows:  

                  Rule 1  IF x1 is F1 and x2 is F5  THEN y is G1 

                  Rule 2  IF x1 is F1 and x2 is F6  THEN y is G5 

                  Rule 3  IF x1 is F1 and x2 is F7 THEN y is G5 

                  Rule 4  IF x1 is F1 and x2 is F8 THEN y is G5 

                  Rule 5  IF x1 is F5 THEN y is G1 

                  Rule 6  IF x1 is F2 and x2 is F6  THEN y is G1 

                  Rule 7  IF x1 is F3 and x2 is F7 THEN y is G1 

                  Rule 8  IF x1 is F4 and x2 is F8 THEN y is G1 
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                  Rule 9  IF x1 is F2 and x2 is F7 and x3 is F9 THEN y is G3 

                  Rule 10  IF x1 is F2 and x2 is F7 and x3 is F10 THEN y is G4 

                  Rule 11  IF x1 is F2 and x2 is F7 and x3 is F11 THEN y is G5 

                  Rule 12  IF x1 is F2 and x2 is F8 and x3 is F9 THEN y is G2 

                  Rule 13  IF x1 is F2 and x2 is F8 and x3 is F10 THEN y is G3 

                  Rule 14  IF x1 is F2 and x2 is F8 and x3 is F11 THEN y is G4 

                  Rule 15  IF x1 is F3 and x2 is F6 and x3 is F9 THEN y is G2 

                  Rule 16  IF x1 is F3 and x2 is F6 and x3 is F10 THEN y is G2 

                  Rule 17  IF x1 is F3 and x2 is F6 and x3 is F11 THEN y is G3 

                  Rule 18  IF x1 is F3 and x2 is F8 and x3 is F9 THEN y is G3 

                  Rule 19  IF x1 is F3 and x2 is F8 and x3 is F11 THEN y is G4 

                  Rule 20  IF x1 is F3 and x2 is F8 and x3 is F12 THEN y is G5 

                  Rule 21  IF x1 is F4 and x2 is F6 and x3 is F9 THEN y is G3 

                  Rule 22  IF x1 is F4 and x2 is F6 and x3 is F10 THEN y is G4 

                  Rule 23  IF x1 is F4 and x2 is F6 and x3 is F11 THEN y is G5 

                  Rule 24  IF x1 is F4 and x2 is F7 and x3 is F9 THEN y is G2 

                  Rule 25  IF x1 is F4 and x2 is F7 and x3 is F10 THEN y is G2 

                  Rule 26  IF x1 is F4 and x2 is F7 and x3 is F11 THEN y is G3 

              

3.3.3  Fuzzy inference engine 

 

The fuzzy inference engine is used to infer a consequence fuzzy set from the rule base 

and facts  received from the input process methodology. The product-sum-gravity 

method will be used to infer the consequence fuzzy set. 

  

Let the facts of input be as follows: 

              /
1x  : fact of number of cars behind the green light  

              /
2x  : fact of number of car behind the red light 

              /
3x  :  fact of the length of the current cycle time 

Let  /
iG  denote the resulting fuzzy set from rule i. The membership function of /

iG is as 

follows:  

 

 



 110

)()()()(
151/

1

/
2

/
1 yxxy GFFG

µµµµ ⋅⋅=  

)()()()(
561/

2

/
2

/
1 yxxy GFFG

µµµµ ⋅=  

)()()()(
571/

3

/
2

/
1 yxxy GFFG

µµµµ ⋅⋅=  

)()()()(
581/

4

/
2

/
1 yxxy GFFG

µµµµ ⋅⋅=  

)()()(
15/

5

/
1 yxy GFG

µµµ ⋅=  

)()()()(
162/

6

/
2

/
1 yxxy GFFG

µµµµ ⋅⋅=  

)()()()(
173/

7

/
2

/
1 yxxy GFFG

µµµµ ⋅⋅=  

)()()()(
184/

8

/
2

/
1 yxxy GFFG

µµµµ ⋅⋅=  

)()()()(
372/

9

/
2

/
1 yxxy GFFG

µµµµ ⋅⋅=  

)()()()()(
41072/

10

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=  

)()()()()(
51172/

11

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=  

)()()()()(
2982/

12

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=  

)()()()()(
31082/

13

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=  

)()()()()(
41182/

14

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=  

)()()()()(
2963/

15

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=  

)()()()()(
21063/

16

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=  

)()()()()(
31163/

17

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=  

)()()()()(
3983/

18

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=  

)()()()()(
41183/

19

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=  

)()()()()(
51282/

20

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=  

)()()()()(
3964/

21

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=  

)()()()()(
41064/

22

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=  

)()()()()(
51164/

23

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=  

)()()()()(
2974/

24

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=  



 111

)()()()()(
21074/

25

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=  

)()()()()(
31174/

26

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=  

 

Let     /G   be the consequence fuzzy set which is infered from the rule base and the 

facts. The membership function of /G  is defined by 
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3.3.4 Defuzzifier 

 

The defuzzifier performs a mapping from fuzzy set /G  to the crisp point, the center of 

gravity of  /G .  

 

Let  iy  denote the center of gravity of the inference result  /
iG  and let Si denote the area 

of /
iG  as in Figure 3.3 Then  iy  is defined as : 
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The leads to the center of gravity  /y  of the final consequence  /G  being given by 
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In practice, the identification of the center of gravity of /
iG  is based on algebraic 

calculation . The center of gravity is the horizontal coordinate of the centroid of the area 

under the membership function. If the form of  membership function is triangular, the 

centroid is the intersection of the straight line from each vertex to the middle points of 
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the corresponding side. The centers of gravity of  /
iG  are computed in the following 

section 

 

1) Identification of center of gravity of 1G  

Consider the membership function form of 1G   in Figure 3.18 

0 0.1

1

 
 

                Figure 3.18  The membership function form of 1G  

                                     (Adapted from Kelsey & Bisset, 1993, p. 267) 

 

From Figure 3.18  the center of gravity of 1G  is  0.033. And also the center of gravity of 
/
iG  is  0.033 

        033.0=∴ iy   for  i = 1,5,6,7,9 

 

2) Identification of center of gravity of  2G       

Consider the membership function form of   2G  in Figure 3.19  
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Figure 3.19 The membership function form of 2G   

                   (Adapted from Kelsey & Bisset, 1993, p. 267) 

From figure 3.19 center of gravity of /
2G  is 0.2 . And also the center of gravity of 

2.0G /
i =  

                        ∴   iy    =  0.2 ;  i  =   12,15,16,25 

 

3) Identification of center of gravity of  3G       

Consider the membership function form of   3G  in Figure 3.20  

 
     

                    Figure 3.20  The membership function form of 3G  

                                          (Adapted from Kelsey & Bisset, 1993, p. 267) 

From figure 3.20 center gravity of 3G  is 0.4. And also the center of gravity of /
iG  is 0.4 

                    ∴     iy   =  0.4  ;   i  =  9,13,17,18,21,26 
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4)  Identification of center of gravity of  4G       

Consider the membership function form of  4G  in Figure 3.21  

 
        

                    Figure 3.21  The membership function form of 4G  

                                          (Adapted from Kelsey & Bisset, 1993, p. 267) 

From figure 3.21 center gravity of 4G   is  0.6. And also the center of gravity of /
iG   is 

0.6 

                   ∴        iy    =  0.6   ; i  =  10,14,19,22      

 

5)  Identification of center of gravity of 5G  

Consider the membership function form of 5G  in Figure 3.22.  

  
                                              

                       Figure 3.22  The membership function form of 5G  

                                            (Adapted from Kelsey & Bisset, 1993, p. 267) 
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From Figure 4.22  the center of gravity of  5G  is  0.85. And also the center of  gravity 

of /
iG  is 0.85. 

                   ∴        yi   =  0.85   ; i  =  2,3,4,11,20,23 

 

3.4 The output process methodology 
 

This section presents the method to simulate the current cycle time for each phase. 

Fuzzy logic control will be used to find the optimal moment that occurs when the 

optimal number of cars are behind the red light and the optimal number of cars that pass 

the green light. The optimal length on each phase of the cycle is the current cycle time 

at the optimal moment. The algorithm of simulation at each intersection is as follows: 

Step 1. Let phase 1 of traffic signal cycle be the start phase. 

Step 2. Iteratively generate cars and assign each car to each branch of the intersection 

based on proportion of cars from the branch that are computed in the input process. 

Step 3. Generate interarrival time of each car in step 2 by exponential distribution with 

parameter beta.The value of beta is assigned by traffic intensity in the input process. 

Step 4. Compute the important parameters of the simulation process, the input of fuzzy 

logic system such as: 

 

            /
1x  : number of cars that pass the green light. 

            /
1x  : is computed by counting the number of cars from the branch that are 

allowed to pass the intersection by the green light. 

            /
2x  : number of cars that stop behind the the red light. 

            /
2x  : is computed by counting the number of cars from the branch that are 

prohibited to pass the intersection by the red light. 

           /
3x  : the current cycle time. 

           /
3x   is computed by the summation of interarrival time. 

Step 5. Compute degree of change by using information from section 3.3 according to 

the following procedure:   

 

              Let           iS     denote area of /
iG      ;   i = 1, 2,…,26 

                              iA     denote area of   iG     ;  i   = 1, 2, 3, 4, 5  

                               D    denote degree of change 
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                               iy     denote the center of gravity of /
iG  ; i  =  1, 2, …, 26 
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From the figures 3.18-3.22, 1A   = 0.05,  2A  = 0.2,  3A   =0.2, 4A   = 0.2 and 5A  = 0.15 

and 
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Step 7  Generate Bernoulli random variable X , with parameter DP = , degree of 

change. If value of the random variable is equal to zero retain the phase then go to step 

1. 

Step 8  If value of the random variable is equal to 1 then change the previous phase to 

the next phase and go to step 2. 

Step 9 Iterative until length of time equal 1800 second and covers all intersections.         
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Chapter 4  

Input and Analysis 
 

4.1 The data collection 
This section presents the method used to collect data for direct links, namely number of  

cars that pass through a direct link in the traffic netwrok studied. 

The method starts by assigning the collectors to 18 positions, 45 metres from the  

intersection  as shown in Figure 4.1. Each collector must count the cars that pass them 

during 8.00-8.30 AM for 20 days. 

 

                                                                                          Y13                                Y14 

                                                                    Y16 

                                  Y15                                                             Y3                             
Y18                                                               

 

                                       

Y14 

                                                             Y4 

                       Y1                                                                  Y6 

 

                                                                                                                                Y5 

                                                         Y2                                       Y7 

                                           

                                                                                                                                       

                                          

                                                                                                                             Y12                 

                                                                 Y7 

                    Y10                                                                        Y12 

                                                                                                                                      

                                                        Y9 

                                                                                                                                      

       Figure 4.1  Diagram of 18 positions to count the cars that pass direct link 

             

The number of cars that pass a direct link during the 20 days are given below. 
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Table 4.1 Table of the number of cars at 18 positions for 20 days 
DAY Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16 Y17 Y18 

1 455 461 145 70 117 413 99 403 144 665 497 359 420 390 419 315 510 406 

2 486 535 144 68 142 367 90 358 153 662 562 255 419 435 401 329 508 366 

3 418 504 126 79 168 395 137 342 171 749 411 387 414 560 351 276 486 330 

4 421 481 146 69 162 371 112 461 174 720 433 344 309 468 327 263 440 402 

5 452 514 145 81 149 449 98 423 184 789 581 399 557 480 417 345 464 486 

6 423 490 134 82 180 471 100 350 166 757 551 442 451 436 401 275 487 359 

7 450 470 140 62 163 414 92 410 150 702 548 338 458 489 396 308 465 316 

8 433 525 147 68 123 368 116 445 145 679 408 349 450 441 419 328 478 337 

9 415 538 142 85 163 479 143 414 157 804 461 411 509 405 471 317 470 416 

10 427 546 129 70 134 463 117 421 162 779 413 339 209 466 204 278 272 411 

11 462 528 124 72 194 531 128 415 162 880 494 407 480 531 421 361 436 411 

12 438 489 134 83 120 381 134 390 163 822 526 343 350 459 432 317 517 409 

13 423 522 131 55 179 446 111 379 164 801 407 357 409 548 401 305 471 320 

14 471 522 130 85 175 388 104 435 146 758 555 325 487 481 452 289 483 309 

15 410 483 102 69 152 448 122 403 140 698 455 447 435 483 366 328 456 368 

16 425 506 153 90 161 423 94 382 131 705 447 373 473 524 353 322 443 333 

17 413 512 122 86 159 463 125 478 163 819 459 451 450 510 333 296 477 354 

18 452 522 118 91 167 427 96 386 179 684 486 350 433 518 338 373 485 370 

19 410 545 130 91 182 405 112 394 168 768 412 356 460 496 354 387 483 403 

20 464 512 183 68 178 524 187 420 124 502 488 430 430 498 348 317 477 414 

 

The number of cars from Table 4.1 will be used to estimate traffic counts for all direct 

routes. 

 

4.2 The algorithm to simulate random variables 
 

Rubinstein (1981) illustrates the algorithm to simulate random variable  

based on its distribution. The important algorithms that are needed for the study  are  as 

follows. 

 

4.2.1 The algorithm to generate random number 

 

There are many methods to generate random numbers, such as the mid-square method, 

congruent metnods and so on, but the algorithm used to generate random numbers for 

this study is as follows. 

1. Set arbitrary number, I  

2. 
773,127

IK ←   
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3. KKII ⋅−−⋅← 2836)773,127(807,16  

4. If  0<I  , deliver 647,483,147,2+= II  

5. ( )10656612875.4 −= eX  

6. II ←  

 

4.2.2 Gamma Distribution 

 

A random variable X has a gamma distribution if its probability  

density function ( pdf) is defined as 

 

                    







>>∞≤≤=

−
−

,,0

0,0,0,
)()(

1

otherwise

xex
xf

x

βα
αΓβ α

βα

  

and denoted by ),(G βα . One of the most important properties of the gamma 

distribution is the reproductive property, which can be successfully used for gamma 

generation. Let iX  , i = 1, 2, n,K , be a sequence of independent random variables 

from ),(G i βα . Then ∑
=

=
n

i
iXX

1
 is from  ),(G βα  where  ∑

=

=
n

i
i

1
αα . If α  is and 

integer, say, m=α , a random variable from gamma distribution ),( βmG can be 

obtained by summing m independent exponential random variables, that is, 

                   ∏∑
==

−=−=
m

i
i

m

i
i UUX

11
ln)ln( ββ   

which is called the Erlang distribution and denoted by Er(m, )β . The algorithm to 

generate a random variable from Er(m,β ) is as follows: 

 

                         1.     .0←X   

                         2.  Generate V from exponential distribution with ,1=β  exp(1). 

                         3.   VXX +=  

                         4.   IF ,1=α  XX β←  and deliver X . 

                         5.    .1−← αα  

                         6.    Go to step 2. 

 

 



 121

4.2.3  Poisson Distribution. 

 

An random variable  has a Poisson distribution if its probability distribution function is 

equal to 

                             
!

)(
x

exf
xλλ−

=     ,  x = 0, 1, 0, >λK  

and is denoted by P( λ ). It is well known that, if the time intervals between events are 

from an exponential distribution with 
λ

β
1

= , the number of events occurring in an unit 

interval of time is from P( λ ). 

                   Mathematically, it can be written 

                    ∑ ∑
=

+

=

≤≤
X

i

X

i
ii TT

0

1

0
,1  

                   where Ti , i = 0, 1, ,1, +XK  are from exp(
λ
1 ). Since Ti = - ,ln1
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



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last formula can be written as 
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i
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lnln λ                 X   =  0, 1, K  

or                  ∏ ∏
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+

=

− ≥≥
X

i

X

i
ii UeU

0

1

0

λ                       X   =  0, 1, K  

The following algorithm is written to generate a Poisson distribution: 

                     1.  1←A    

                     2.   .0←K  

                     3. Generate random number, UK from  interval [0,1] 

                     4.  AUA K←  

                     5.  If λ−< eA , deliver KX = . 

                     6.  .1+← KK  

                     7.  Go to step 3.  

 

4.2.4  Exponential distribution 

 

The exponential distribution is the special case of the Gamma when 1=α , so a random 

variable X has an Exponential distribution if its p.d.f. is defined as 
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The algorithm to generate an Exponential random variable with parameter ,β  is as 

follows: 

1. Generate random number, U  from interval [ 0, 1]. 

2. )ln(UX β−←  

 

4.2.5 Bernoulli distribution 

 

For a random experiment occurring only once and with output  success or  

failure, let  X  be equal 1 for success with probability p, and X  be  0 for failure with 

probability p−1 , X  is a Bernoulli random variable if its distribution function is 

defined as 

                        ( ) ( ) 1,0;1 1 =−= − xppxf xx     

The algorithm to generate a Bernoulli random variable with parameter p is as follows: 

1. Generate random number, U from interval [ 0, 1]. 

2. If  pU −≤ 1 , deliver 0=X . 

3. 1=X . 

 

4.2.6  Uniform distribution 

 

Let  X  be defined on the interval [ a, b], and any value of  X   occur with  

equal probability, 
ab −

1 , X  is a uniform random variable and its distribution function 

is defined by 

                               




 ≤≤

−=
otherwise

bxa
abxf

0

,1
)(  

The algorithm to generate a Uniform random variable with parameters a and b is as 

follows: 

1. Generate random number, U 

2. ( )UabaX −+=  
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4.3  Data algorithm analysis 
 

To accomplish the research objective, the length of time appropriacy of the traffic 

lights, this section presents algorithm analysis steps. This can be done by developing a 

computer Fortran language program which is created on the important basis of three 

types of algorithms: EM algorithm, Metropolis-Hasting algorithm, in particular, the 

Gibbs sampler and Fuzzy logic algorithm. The process is comprised of 23 steps as 

follows: 

Step 1 Let positive mean population of number of car that travel on direct route on 

traffic network 

           µ =  721 ,,( µµ L  ) ; arbitrary. 

Step 2  Observe daily data on direct links for 20 days on 08:00 – 08:30 am   
( ) ≡1Y  ( ) ( )( )1

18
1

2
1

1 ,,, YYY K       

( )2Y ≡ ( ) ( ) ( )( )2
18

2
2

2
1 YYY ,,, K   

 M                          M  

                   ( )20Y ≡ ( ) ( ) ( )( )20
18

20
2

20
1 YYY ,,, K    

Calculate          
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1
∑

== k
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i
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Y
Y  

 

Step 3  Estimate µ   by  µ̂ /
7221 )ˆ,...,ˆ,ˆ( µµµ=  based on applied algorithm 

                  µ j  ←  ∑
∑∑ =

==

18

1
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ij

j

a

Ya

a µ
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Step 4 Generate jX   from Poisson distribution with parameter 72,,2,1, Kjµ  

for 100 day 

Step 5  Generate daily data on direct links for 100 days depend on jX  in step 4 

( ) ≡1Y  ( ) ( )( )1
18

1
2

1
1 ,,, YYY K       

( )2Y ≡ ( ) ( ) ( )( )2
18

2
2

2
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 M                          M  
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Calculate          

( )

100
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1
∑

== k

k
i

i

Y
Y  

Step 6  Go to step 3 to calculate µ̂  50 times to get )1(µ̂ , )2(µ̂ ,…, )50(µ̂  

Step 7 Calculate mean vector ; ∑
=

=
50

1

)(ˆ
50
1ˆ

k

kµµ  based on   50 estimations. Then µ̂  is the 

unbiased estimator of µ , route count. 

Step 8 Generate 10 vectors X  from 72 independent Poisson distributions with 

parameter vector µ  (already estimated from step 7) 

Step 9  Draw sample value of 10  parameter vectors λ  from 72 conditionally 

independent posterior distributions, )( jj Xp λ , that is Gamma distribution with shape 

parameter 1+jX  and scale parameter 1; 72,,2,1 K=j . 

Step 10 For each parameter vector λ  at iteration t  draw a candidate *
jX  from Poisson 

distribution function as below. 

                         *
jX    ~    Poisson( *

jX )1−
−
t

jX      ;   

Where 1−
−
t

jX  represents all the element of X  except jX , at their current values: 
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 Step 11 Directly compute the element of Y   by AXY =  

 Step 12  Let  k
tjX   be the drawn from 10 parallel sequences of iteration t of the  kth 

element of  X  ( )10,,2,1;,,2,1 KK == jnt  , compute B  and W , the between and 

within-sequence variances for each kth:                          
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           and     )1(1ˆ −+= n
W
B

n
R  

Step 13  Return to step 8 and iterate until 1ˆ →R  for all kth element. 

Step 14  Estimate route count for each direct route by 

                                ∑
=

=
10

110
1ˆ

j

k
njk XX     , 72,,2,1 K=k  

                          where kX̂  is the estimator of route count for direct route thk                                    

                                    k
njX  is the latest draw for parallel j  

Step 15. Set the start phase of traffic signal cycle. 

Step 16. Create cars and find the probability, which is emerged from the calculation of 

route counts in Step 14, for each of the created car in order to randomise its moving 

from each branch of the intersection. 

 Step 17. Generate interarrival time of each car in step 16 by exponential distribution 

with parameter beta that is fixed by traffic intensity in the part of input process. 

Step 18. Compute the important parameter of simulation process, input of fuzzy logic 

system such as: 

            /
1x  : number of cars that pass the green light. 

            /
1x  : number of cars from the branch that are allowed to pass the intersection  

                   by the green light. 

            /
2x  : number of car that stop behind the red light. 

            /
2x  : number of cars from the branch that are prohibited passing 

                    the intersection by the red light. 

           /
3x  : the current cycle time. 

           /
3x  : summation of interarrival time. 

Step 19. Caculate the value of the cost function, by using information from section 3.4  

Step 20  Generate Bernoulli random variable X , with parameter DP = , degree of 

change. If value of the random variable is equal zero then go to step 15. 

Step 21  If value of the random variable is equal 1 then change the previous phase to the 

next phase and go to step 16. 

Step 22  Caculate the value of the cost function. 

Step 23 Iterate until length of time is complete and all intersections are covered.       
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4.4 The computer program in the Fortran language   
 

The computer program is composed of a main program and 7 sub-programs. 

 

4.4.1 Main program to estimate traffic intensity by the mixed model. 

 

The main program is used to estimate traffic intensity using the mixed model. The 

optimal length of traffic signal lights is also calculated. The program consist of three 

parts. 

 

4.4.1.1 Program to estimate traffic intensity by the EM algorithm. 

 

This program takes the traffic intensity from the daily data observations to estimate the 

population mean of traffic counts on 72 direct routes. The program reads the  input data 

that consists of traffic counts on the 18 direct links from daily data observation. Then it 

computes the sample mean of the traffic count for 20 days. The sample mean are used to 

estimate the population mean based on EM algorithm iteration. Finally the outputs of  

the program are populations mean of traffic counts on 72 direct routes. 

 

4.4.1.2 Program to estimate traffic intensity by Gibbs sampler. 

 

The population means estimated in 4.4.1.1 provides important information for this 

program. The function of this program is to estimate traffic intensity for 72 direct 

routes, given the population means and the data observations. The algorithm for the 

program is based on Gibb sampling. The outputs of this program are traffic intensities 

on each of the 72 direct routes. 

  

4.4.1.3 Program to calculate optimal length of traffic signal light. 

 

This program is used to calculate optimal length of signal light. The outputs from the 

program in 4.4.1.2 are traffic estimators for each of 72 direct routes. The estimators 

provide important information for this program that can be used to generate value of 

exponential variable. The value of exponential variable is the interarrival time. The 

interarrival time is used to define each car that arrives at the intersection. The current 

cycle time is also computed by summation of the interarrival times. The traffic intensity 
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from the program in 4.4.1.2 and the current cycle time are the input data of the fuzzy 

logic system. The inputs are used to infer the degree of change for each phase based on 

the fuzzy logic system. Finally the degree of change is use to calculate the optimal 

length of the signal light.  

 

4.4.2 Sub-Program 

 

The sub-programs are designed to support the main program when the main program 

needs to compute the same object many times. There are 7 sub-program as follows: 

 

4.4.2.1 Sub-Program to define any car belonging to each branch of road. 

 

The function of this sub-program is to define any car belonging to each branch of the 

road at the intersection. The sub-program firstly generates random number. The random 

number is then separated to each branch based on the proportional traffic intensity in 

4.4.1.2. Finally any car can be defined to belong to a particular branch by the random 

number. The technique of this program is branch index generation. The branch index is 

fixed by random number that are separated based on the proportional traffic intensity . 

 

4.4.2.2 Sub-Program to generate an exponential random variable. 

 

The function of this program is to generate an exponential random variable. The value 

of the variable is the interarrival time. This program supports the main program in 

4.4.1.3 . 

 

4.4.2.3 Sub-Program to generate a gamma random variable. 

 

The function of this program is to generate a gamma random variable. The value of the 

variable is the population mean of traffic intensity. This program support the main 

program in 4.4.1.2 . 

 

4.4.2.4 Sub-Program to generate a Poisson random variable. 

 

The function of this program is to generate a Poisson random variable. The value of the 

variable is the number of cars. This program support the main program in 4.4.1.1 . 
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 4.4.2.5 Sub-Program to generate a Bernoulie random variable. 

 

The function of this program is to generate a Bernoulie random variable. The value of 

the variable is the decision index to decide whether to choose something or not based on 

its probability. So this program supports the main program in 4.4.1.2 and sub-program 

4.4.2.1 

 

4.4.2.6 Sub-Program to generate a random number. 

 

The function of this program is to generate a random number. The value of random 

number is used to generate a random variable from any distribution. So this program 

supports the sub-program in 4.4.2.2-4.4.2.5  

 

4.4.2.7 Sub-Program for fuzzy logic controller 

 

The function of this program is to compute the degree of change in each phase based on 

the fuzzy logic system. The input of this program comes from the main program in 

4.4.1.2 and 4.4.1.3  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 129

                               Chapter 5 

Results of the Study 
         

 
5.1 The number of cars on each direct route 

 
There are 72 source-destination pairs (SD). The software estimated the number of cars 

on each SD by mixure of maximum likelihood and Baysian estimation. The output are 

shown in Table 5.1.      

 

Table 5.1 Rate of cars on each SD (per second) from estimation. 

 
SD. NO. SD. NO. SD. NO. SD. NO. SD. NO. SD. NO. 
X1 2.183 X13 0.032 X25 2.476 X37 0.02 X49 2.208 X61 0.038 
X2 0.062 X14 0.005 X26 2.551 X38 0.017 X50 2.187 X62 0.055 
X3 2.228 X15 0.088 X27 0.163 X39 0.06 X51 1.917 X63 0.022 
X4 0.018 X16 0.043 X28 2.168 X40 2.267 X52 0.02 X64 2.047 
X5 0.035 X17 0.015 X29 0.040 X41 2.18 X53 2.415 X65 0.02 
X6 2.1 X18 0.023 X30 0.023 X42 0.017 X54 0.023 X66 2.248 
X7 2.668 X19 0.015 X31 0.278 X43 0.012 X55 0.025 X67 2.072 
X8 1.873 X20 0.052 X32 0.067 X44 0.015 X56 0.075 X68 0.328 
X9 0.016 X21 0.01 X33 0.032 X45 0.33 X57 0.038 X69 0.02 
X10 0.023 X22 0.055 X34 0.08 X46 0.052 X58 0.052 X70 0.045 
X11 0.35 X23 0.035 X35 0.133 X47 0.032 X59 0.113 X71 0.052 
X12 0.0267 X24 0.035 X36 0.042 X48 0.032 X60 0.097 X72 0.027 
 
Note: SD. denote direct route.  
          No. denote rate of cars belong SD.  
 

From Table 5.1 shows the rate of cars on direct links rather than the rate on direct 

routes. 

   
5.2 The performance of traffic flow 
 
The computer program generated the important parameters of traffic flow performance 

under the fuzzy logic controller and conventional controller.The parameters were the 

length of each phase, the number of cars behind the green light and the red light. The 

outputs of the parameters are shown in Table 5.2-5.9. To understand the numbers in 

each column,  the No. green and No. red, are definded as follows: 

1)  No. Green denotes the number of cars behind the green light. 

2)  No. Red denotes the number of cars behind the red light. 
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3) The first number of No.Green is the number of cars stopping behind the red light at 

     pre-phase includes the other cars moving past the green light in the first group at 

     the current phase.     . 

4) The second number of No. Green is the order of the last car that moves to pass the 

     green light or the number of all cars that pass green light at the current phase. 

5) The first number of No. Red is the number of cars that stop behind the red light at 

     pre-phase and still stop behind the red light including the other cars behind the red 

     light in the first group at the current phase. 

6) The second number of No. Red is the order of the last car behind the red light 

    or the number of all cars that stop behind the red light at the current phase.   

 

 The criterion of length is defined as follows: 

                               Less than      35    seconds indicates that the length is short 

                               Between     35-70 seconds indicates that the length is moderate 

                               Greater than  70    seconds indicates that the length is long 

 

According to the criterion of length it is assumed that the average car uses 1 second to 

pass the intersection behind the green light. The criterion of No. Green and No. Red are 

defined in terms of length as follows: 

                             Less than      35   cars show that No. Green or No. Red are few. 

                             Between     35-70  cars show that No. Green or No. Red are moderate. 

                             Greater than  70 cars show as No. Green or No. Red are many. 

 

5.2.1 The performance of traffic flow based on fuzzy logic controller 
 
The computer program generated the parameters of traffic flow performance for the 

fuzzy controller. The outputs of the parameters are shown as in Table 5.2-5.5 
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Table 5.2 Pattern of traffic flow during each phase at Uboncharearnsri intersection  

                 Based on fuzzy logic controller.  

 

Cycle Phase No. Green No.Red Length(sec) 

 1 0 2-2 0.37 

1 2 4-5 1-1 1.67 

 3 0 3-3 0.36 

 1 4-4 1-4 3.53 

2 2 5-7 1-1 1.33 

 3 2-3 1-1 1.32 

 1 1-2 2-5 1.62 

3 2 7-8 0-1 2.14 

 3 2-2 1-1 1.39 

 1 1-1 2-2 2.54 

4 2 4-4 1-1 1.52 

 3 1-1 2-2 1.79 

 1 4-5 0-1 1.92 

5 2 2-3 1-1 2.04 

 3 0 3-3 1.64 

 1 3-6 2-6 3.8 

6 2 7-11 1-3 4.38 

 3 0 5-5 0.47 

 1 4-5 3-9 3.16 

7 2 10-11 1-1 1.70 

 3 0 3-3 0.69 

 1 4-4 1-6 7.17 

8 2 6-90 2-63 87.54 

 3 21-36 44-73 31.49 

 1 61-80 14-64 47.61 

9 2 54-130 12-75 73.90 

 3 28-53 49-101 45.18 

 1 74-93 29-83 52.12 

10 2 69-139 16-67 69.262 

 3 28-53 49-101 45.18 
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 1 65-107 25-105 60.55 

11 2 94-185 13-81 76.65 

 3 32-71 51-114 59.47 

 1 82-131 34-135 72.47 

12 2 121-168 16-57 62.32 

 3 29-45 30-75 38.88 

 1 48-69 29-75 39.50 

13 2 64-122 13-66 68.77 

 3 34-53 34-89 45.16 

 1 56-80 35-86 45.23 

14 2 79-129 9-46 52.88 

 3 16-40 32-67 35.21 

 1 47-81 22-75 47.05 

15 2 62-122 15-64 67.15 

 3 28-49 38-90 42.06 

 1 57-88 35-94 49.08 

16 2 91-160 5-56 61.53 

 3 22-45 36-74 42.03 

 1 49-70 27-80 39.81 

17 2 72-104 10-23 28.82 

 3 11-23 14-37 20.22 

 1 24-34 15-39 21.43 

18 2 36-58 5-17 21.66 

 3 10-18 9-23 22.50 

 1 18-23 7-26 14.63 

19 2 23-98 5-63 66.82 

 3 23-40 42-82 36.18 

20 1 62-82 22-80 46.64 

 2 72-114 10-40 46.78 

Average 

Standardeviation 

 6441.53=X  

S = 51.5316 

8814.44=X  

S = 38.7495 

   022.36=X  

     S = 26.4409 

 

Table 5.2 shows that the average of  the number of cars behind the green light and the 

red light on each phase are respectively 54 and 49 cars. The average of the optimal 
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length on each phase is 36.022 seconds. The optimal length of each phase in early 

cycles (cycle 1-cycle 7)  is very short. For late cycles (cycle 8 and later) the optimal 

length of each phase is moderate. The optimal length of phase 2 seems longer than the 

others. There are a few cars behind both the green and the red light in the early cycles. 

However, there are moderate numbers of the cars behind both the green and the red 

lights at the late cycles. In detail of cycle 1 (see Figure 4.3), each figure shows that there 

are no cars behind the green light and there are 2 cars behind the red light on phase 1 so 

it should be used only 0.37 seconds on this phase.  

 

On phase 2 of cycle 1, 2 cars from phase 1 including the  other 2 cars pass the green 

light and the last car that passes the green light on this phase is the 5th ; the number of 

all cars that pass the green light on this phase are 5 cars while 1 car stops behind the red 

light. This phase uses only 1.67 secconds. On phase 3 of cycle 1,  1 car from phase 2 

still stops behind the red light and there are no other cars passing the green light while 

there are the other 2 cars behind the red light; the number of all cars behind the red light 

on this phase are 3 cars. The phase uses 0.35 seconds. The describtion of the other 

cycles are  similar to the description of cycle 1 in which the number of cars on the 

current phase are impacted by the number of cars on the  

pre- phase.   

 
Table 5.3  Pattern of traffic flow during each phase at Clock Hall intersection based on 
                 fuzzy logic controller.  
 

Cycle Phase No. Green No. Red Length(sec) 
 1 0 2-2 0.19 
1 2 3-5 1-9 6.53 
 3 0 11-11 4.15 
 1 11-62 2-50 57.24 
2 2 44-121 8-109 91.63 
 3 16-16 95-102 22.01 
 1 99-151 5-65 67.96 
3 2 61-85 6-57 62.34 
 3 10-10 49-52 11.80 
 1 51-60 3-10 12.67 
4 2 10-21 2-15 22.29 
 3 2-2 15-17 12.49 
 1 17-17 2-2 2.93 
5 2 1-1 3-3 1.63 
 3 2-2 3-4 15.14 
 1 4-8 2-2 3.4 
6 2 3-3 1-2 2.734 
 3 1-1 3-3 11.96 
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 1 3-5 2-2 2.97 
7 2 2-5 2-8 9.29 
 3 2-2 8-8 8.69 
 1 8-8 2-2 4.32 
8 2 1-8 3-16 19.95 
 3 2-3 16-19 14.46 
 1 16-79 5-62 66.38 
9 2 56-128 8-101 85.91 
 3 18-18 85-93 22.02 
 1 89-95 6-10 13.68 

10 2 10-43 2-57 79.68 
 3 8-10 51-67 42.51 
 1 62-91 7-39 47.97 

11 2 35-59 6-35 46.59 
 3 10-11 27-32 17.03 
 1 31-39 3-15 24.41 

12 2 14-72 3-67 79.91 
 3 8-8 61-61 9.65 
 1 60-78 3-17 22.37 

13 2 18-116 1-144 128.44 
 3 14-14 132-140 18.05 
 1 134-226 8-88 80.05 

14 2 82-149 8-89 80.01 
 3 13-13 78-93 44.34 
 1 85-165 10-92 81.43 

15 2 82-130 12-63 73.69 
 3 19-19 46-51 22.64 
 1 49-128 4-89 81.10 

16 2 81-160 10-101 86.23 
 3 24-25 79-97 31.11 
 1 88-170 11-70 17.15 

17 2 - - - 
 3 - - - 

Average 

Standardeviation 

 9184.53=X  

S = 59.9992 

8163.47=X  

S = 40.7455 

   1454.36=X  

     S = 32.6769 

 
Table 5.3  shows that the average of  the number of cars behind the green light and the 

red light on each phase are respectively 54 and 48 cars. The average of the optimal 

length on each phase is 36.1454 seconds. There is an instability in the performance of 

traffic flow at early cycle (cycle 1-cycle 8).  At cycle 1, there are a few cars behind the 

green and the red light and very short optimal length. For cycle 2 and cycle 3, the most 

number of cars behind the green light are many but the most number of cars behind the 

red light and the optimal length are moderate. The performance of traffic flow at cycle 

4-cycle 8 is the same as the performance at cycle 1. At late cycles  
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( cycle 9 and beyond), the most optimal lengths are long. The most number of cars 

behind the green and red light are many. In detail of cycle 1 (see Figure 4.4), each figure 

shows that there are no cars behind the green light and there are 2 cars behind the red 

light on phase 1 so it should be used only 0.19 seconds on this phase.  

 

On phase 2 of cycle 1, 2 cars from phase 1 including another one pass the green light 

and the last car passing the green light on this phase is the 5th; the number of all cars that 

pass the green light on this phase are 5 cars while 9 cars stop behind the red light. The 

phase uses 6.53 secconds. On phase 3 of cycle 1,  9 cars from phase 2 still stop behind 

the red light and there are no other cars passing the green light while there are the other 

2 cars are behind the red light; the number of all cars that behind the red light on this 

phase are 11 cars. The phase uses 4.15 seconds. The description of the other cycles are 

similar to the description of cycle 1 in which the numbers of cars on the current phase 

are impacted by the number of cars on the pre- phase.   

 
Table 5.4  Pattern of traffic flow during each phase at Chonlaprathan intersection  
                 based on fuzzy logic controller.  
 

Cycle Phase No. Green No. Red Length(sec) 
 1 0 2-2 1.48 
1 2 3-3 1-1 1.18 
 3 1-1 2-2 0.75 
 1 0 4-4 2.21 
2 2 4-4 2-5 3.61 
 3 2-3 5-8 2.41 
 1 5-26 5-35 15.78 
3 2 22-167 15-196 129.63 
 3 107-195 91-273 109.33 
 1 178-288 97-357 161.24 
4 2 246-449 113-386 213.46 
 3 254-409 134-481 229.39 
 1 280-456 203-628 255.56 
5 2 441-720 189-611 337.61 
 3 399-685 214-826 383.23 

Average 

Standardeviation 

 33.120=X  

S = 200.7387 

2121.131=X  

S = 219.3564 

   3625.68=X    

     S = 104.167 

 

Table 5.4 shows that the average of  the number of cars behind the green light and the 

red light on each phase are respectively 120 and 131 cars. The average of the optimal 

length on each phase is 68.3625 seconds. There are only five cycles during a specified 

time. There are a few cars and very short optimal lengths on all phases at cycle 1 and 
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cycle 2. For cycle 3,4 and 5 there are many cars behind the green and the red lights, 

while the optimal length is very long on all phases. In detail of cycle 1,  

(see Figure 4.5) each figure shows that there are no cars behind the green light and there 

are 2 cars behind the red light on phase 1 so it should be used only 1.48 seconds for this 

phase. On phase 2 of cycle 1, 2 cars from phase 1 include another one passing the green 

linght; the number of all cars that pass the green light on this phase are 3 cars while 1 

car stops behind the red light. The phase use 1.18 secconds. On phase 3 of cycle 1, 1 car 

from phase 2 passes the green light while there are 2 cars behind the red light; the 

number of all cars behind the red light on this phase are 2 cars. The phase uses 0.75 

seconds. The describtion of other cycles are similar to the description of cycle 1 in 

which the number of cars on the current phase are impacted by the number of cars on 

the pre phase. 

 
Table 5.5  Pattern of traffic flow during each phase at Airport intersection from 
                 fuzzy logic controller. 
 

Cycle Phase No. Green No. Red Length(sec) 
 1 0 2-2 0.64 
1 2 1-6 3-16 6.05 
 3 5-10 13-20 7.52 
 4 12-16 10-28 10.27 
 1 17-41 13-60 39.69 
2 2 26-78 36-166 91.71 
 3 51-73 117-183 41.39 
 4 94-146 91-215 82.64 
 1 119-167 98-259 93.96 
3 2 106-198 155-453 166.36 
 3 193-274 262-504 153.67 
 4 256-381 250-594 213.85 
 1 289-412 307-675 230.63 
4 2 347-586 330-997 413.64 
 3 396-560 603-1164 313.46 

 4 - - - 
Average 

Standardeviation 
 6579.92=X  

S = 153.865 

3421.154=X  

S = 281.2448 

  1001.60=X    

     S = 94.7208 

 
Table 5.5 shows that the average of the number of cars behind the green light and the 

red light on each phase are respectively 93 and 154 cars. The average of the optimal 

length on each phase is 60.1001 seconds. there are only four cycles during the specified 

time. There are a few cars and very short optimal length on all phases at cycles 1. For 

cycles 2,3 and 4 there are many cars behind the green and the red lights, while the 

optimal length is very long on most phases. In detail of cycle 1  
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(see Figure 4.6), each figure shows that there are no car behind the green light and there 

are 2 cars behind the red light on phase 1 so it should be used only 0.64 seconds for this 

phase.  

 

On phase 2 of cycle 1, there are 6 cars passing the green light , the number of all cars 

that pass the green light on this phase is 6 cars while  2 cars from phase 1 still stop 

behind the red light including another one; the number of all cars that stop behind the 

red light on this phase are 16 cars. The phase uses 6.05 secconds. On phase 3 of cycle 1, 

5 cars from 16 cars on phase 2 pass the green light and the last car that passes the green 

light on this phase is the 10th; the number of all cars that pass the green light on this 

phase is 10 cars while the 11 cars from 16 cars on phase 2 still stop behind the red light, 

including the other 2 cars are also behind the red light; the number of all cars  behind 

the red light on this phase are 20 cars. The phase uses 7.52 seconds. On phase 4 of cycle 

1, 12 cars from the 20 cars on phase 3 pass the green light and the last cars that pass the 

green light on this phase is the 16th; the number of all cars behind the green light on this 

phase are 16 cars. There are 8 cars from 20 cars on phase 3 still stopping behind the red 

light include the other 2 cars; the number of the all cars behind the red light on this 

phase are 28 cars. The phase uses 10.27 seconds. The description of the other cycles are 

similar to the description of cycle 1 in which the number of cars on the current phase are 

impacted by the number of cars on the  

pre- phase. 

 
5.2.2 The performance of traffic flow based on conventional  
          controller 
 
The computer program generated the parameters of traffic flow performance for the 

conventional controller. The outputs of the parameters are shown as Table 5.6-5.9 

Table 5.6  Pattern of traffic flow during each phase at Uboncharearnsri intersection  
                  based on conventional control.  
 

Cycle Phase No. Green No. Red Length(sec) 
 1 0-11 2-30 20 
1 2 28-56 4-20 25 
 3 4-20 18-36 25 
 1 26-35 12-29 20 
2 2 24-47 4-28 25 
 3 12-30 18-55 25 
 1 31-41 26-37 20 
3 2 36-55 3-16 25 
 3 7-19 11-39 25 
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 1 21-31 20-40 20 
4 2 38-63 4-21 25 
 3 7-27 16-52 25 
 1 37-51 17-44 20 
5 2 39-66 7-24 25 
 3 14-27 12-28 25 
 1 20-31 10-34 20 
6 2 30-53 6-27 25 
 3 11-25 18-42 25 
 1 28-42 16-36 20 
7 2 37-56 1-22 25 
 3 9-18 15-51 25 
 1 30-40 23-55 20 
8 2 52-79 5-30 25 
 3 9-22 23-47 25 
 1 32-43 17-48 20 
9 2 46-69 4-34 25 
 3 16-34 20-60 25 
 1 36-52 26-42 20 

10 2 35-59 9-24 25 
 3 13-24 13-43 25 
 1 25-40 20-49 20 

11 2 48-77 3-32 25 
 3 12-25 22-47 25 
 1 36-46 13-35 20 

12 2 35-48 2-15 25 
 3 8-20 9-41 25 
 1 18-32 25-49 20 

13 2 45-63 6-25 25 
 3 13-28 14-42 25 
 1 22-31 22-40 20 

14 2 35-51 7-30 25 
 3 15-27 17-58 25 
 1 32-41 28-46 20 

15 2 43-67 5-24 25 
 3 10-23 16-43 25 
 1 29-39 16-36 20 

16 2 33-59 5-24 25 
 3 11-29 15-41 25 
 1 27-42 16-43 20 

17 2 37-56 8-31 25 
 3 13-25 20-48 25 
 1 37-42 13-30 20 

18 2 24-54 8-25 25 
 3 11-22 16-46 25 
 1 25-35 23-50 20 

19 2 52-82 0-19 25 
 3 4-47 17-58 25 
 1 37-45 23-46 20 

20 2 42-71 6-27 25 
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20 3 12-24 17-27 25 
 1 28-35 21-44 20 

21 2 40-70 6-23 25 
 3 10-23 15-38 25 
 1 27-34 13-39 20 

22 2 40-72 1-16 25 
 3 4-18 14-41 25 
 1 26-31 17-36 20 

23 2 32-49 6-24 25 
 3 12-26 14-42 25 
 1 23-37 21-57 20 

24 2 52-75 7-30 25 
 3 12-22 20-56 25 
 1 36-42 22-46 20 

25 2 42-68 6-22 25 
 3 10-24 14-36 25 
 1 23-33 15-30 20 

26 2 - - 25 
 3 - - 25 

Average 

Standardeviation 
 7895.41=X  

S = 17.554 

8553.36=X  

S = 11.4108 

   

 
Table 5.6 shows that the average of  the number of cars behind the green light and the 

red light on each phase are respectively 42 and 37 cars. The number of cars behind the 

green and the red lights on most phases are moderate. In detail of cycle 1 (see Figure 

4.3), each figure shows that there are 11 cars behind the green light and there are 30 cars 

behind the red light on phase 1, it uses 20 seconds for this phase. On phase 2 of cycle 1,  

28 cars from 30 cars on phase 1 pass the green light and the last car that passes the 

green light on this phase is the 56th; the number of all cars that pass the green light on 

this phase is 56 cars while 2 cars from 30 cars on phase 1 still  stop behind the red light 

including the other 2 cars; the last car behind the red light on this phase is the 20th so 

that the number of all cars stopping behind the red light on this phase is 20 cars.The 

phase use 25 secconds. On phase 3 of cycle 1, 4 cars from the 20 cars on phase 2 pass 

the green light and the last car that passes the green light is the 20th ; so the number of 

all cars passing the green light on this phase is 20. There are 16 cars from the 20 cars on 

phase 2 still stopping behind the red light including the other 2 cars are also behind the 

red linght on this phase; the number of all cars behind the red light on this phase are 36 

cars. The phase uses 25 seconds. The description of other cycles are similar to the 

description of cycle 1 in which the number of car on the current phase are impacted by 

the number of car on the pre-phase.   
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Table 5.7  Pattern of traffic flow during each phase at Clock Hall intersection  
                 based on conventional controller.  
 

Cycle Phase No. Green No. Red Length(sec) 
 1 0-23 2-18 20 

1 2 17-40 3-29 25 
 3 4-4 27-33 25 
 1 32-44 3-17 20 

2 2 14-34 5-27 25 
 3 8-8 21-34 25 
 1 31-49 5-21 20 

3 2 20-46 3-39 25 
 3 4-4 37-46 25 
 1 40-59 8-32 20 

4 2 31-50 3-25 25 
 3 3-4 24-36 25 
 1 29-52 9-26 20 

5 2 24-34 4-24 25 
 3 5-5 21-28 25 
 1 27-46 3-16 20 

6 2 16-24 2-16 25 
 3 3-3 15-22 25 
 1 17-36 7-16 20 

7 2 13-18 5-18 25 
 3 7-7 13-23 25 
 1 17-38 8-23 20 

8 2 24-45 1-31 25 
 3 2-4 31-44 25 
 1 38-52 8-25 20 

9 2 22-38 5-32 25 
 3 6-6 28-40 25 
 1 36-51 6-25 20 

10 2 23-42 4-25 25 
 3 8-8 19-30 25 
 1 24-35 8-17 20 

11 2 16-33 3-29 25 
 3 4-4 27-32 25 
 1 30-35 4-4 20 

12 2 12-22 4-34 25 
 3 7-8 29-39 25 
 1 33-48 8-27 20 

13 2 24-41 5-28 25 
 3 7-7 23-28 25 
 1 26-33 4-14 20 

14 2 12-26 5-18 25 
 3 4-5 16-33 25 
 1 25-45 10-33 20 

15 2 33-48 2-17 25 
 3 3-5 16-35 25 
 1 28-29 9-15 20 

16 2 14-29 3-26 25 
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16 3 2-3 26-39 25 
 1 35-52 6-22 20 

17 2 22-42 2-38 25 
 3 4-6 36-41 25 
 1 40-58 3-20 20 

18 2 16-42 6-37 25 
 3 6-6 33-46 25 
 1 37-51 11-33 20 

19 2 31-47 4-33 25 
 3 7-7 28-35 25 
 1 33-62 4-27 20 

20 2 28-53 1-29 25 
 3 1-2 30-40 25 
 1 34-51 8-29 20 

21 2 28-46 3-28 25 
 3 3-3 27-38 25 
 1 33-53 7-27 20 

22 2 26-53 3-32 25 
 3 4-5 30-41 25 
 1 36-47 7-27 20 

23 2 26-43 3-29 25 
 3 6-6 25-43 25 
 1 37-52 8-28 20 

24 2 25-39 5-18 25 
 3 7-7 13-24 25 

Average 
Standarderviation 

 0417.30=X  
S  =  19.5358 

5278.28=X  
 S = 8.617 

 

 

From Table 5.7 shows that the average of  the number of  that behind the green light and 

the red light on each phase are respectively 30 and 29 cars.  the number of cars behind 

the green and the red light on most phases are moderate. In detail of cycle 1 (see Figure 

4.4), each figure shows that there are 23 cars passing the green light and there are 18 

cars stopping behind the red light; it uses 20 seconds on this phase. On phase 2 of cycle 

1, 17 cars from 18 cars on phase 1 pass the green linght and the last car that passes the 

green light on this phase is the 40th; the number of all cars that pass the green light on 

this phase is 40 cars while 1 car from 18 cars on phase 1 still stop behind the red light 

including the other 2 cars. The last car that stops behind the red light on this phase is the 

29th; so that the number of all cars that stop behind the red light on this phase is 29 

cars.The phase uses 25 secconds. On phase 3 of cycle 1, there are only 4 cars from 29 

cars on phase 2 passing the green light while there are 25 cars from the 29 cars on phase 

2 still stopping behind the red light including the other 2 cars; the number of all cars 

stopping behind the red light on this phase are 33 cars. The phase uses 25 seconds. The 

description of the other cycles are similar to the description of cycle 1 in which the 
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number of cars on the current phase are impacted by the number of cars on the pre-

phase.   

 
Table 5.8  Pattern of traffic flow during each phase at Chonlaprathan intersection 
                 based on conventional controller.  
 

Cycle Phase No. Green No. Red Length(sec) 
 1 0-16 2-32 20 

1 2 20-50 14-49 25 
 3 29-44 22-58 25 
 1 33-55 27-70 20 

2 2 52-84 20-57 25 
 3 41-57 18-61 25 
 1 32-48 31-66 20 

3 2 48-66 20-61 25 
 3 40-61 23-63 25 
 1 42-58 23-52 20 

4 2 40-61 14-58 25 
 3 34-47 26-75 25 
 1 41-53 36-69 20 

5 2 53-74 18-51 25 
 3 34-52 19-55 25 
 1 34-49 23-55 20 

6 2 37-64 20-53 25 
 3 37-51 18-55 25 
 1 35-47 22-47 20 

7 2 39-65 10-35 25 
 3 18-30 19-63 25 
 1 35-53 30-64 20 

8 2 47-73 19-51 25 
 3 37-56 16-53 25 
 1 29-37 26-56 20 

9 2 36-56 23-60 25 
 3 38-55 24-64 25 
 1 33-54 33-70 20 

10 2 52-74 20-45 25 
 3 34-49 13-43 25 
 1 24-35 21-45 20 

11 2 34-55 13-40 25 
 3 29-42 13-47 25 
 1 30-46 19-51 20 

12 2 39-70 14-50 25 
 3 32-50 20-50 25 
 1 33-47 19-58 20 

13 2 40-66 20-60 25 
 3 45-62 17-50 25 
 1 29-40 23-47 20 

14 2 36-61 13-54 25 
 3 37-54 19-58 25 
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 1 37-48 23-53 20 
15 2 41-65 14-56 25 
 3 36-57 22-64 25 
 1 42-51 24-59 20 

16 2 47-69 14-52 25 
 3 24-45 30-68 25 
 1 45-58 25-57 20 

17 2 44-67 15-49 25 
 3 33-45 18-48 25 
 1 27-42 23-53 20 

18 2 36-67 17-54 25 
 3 34-54 22-53 25 
 1 35-49 20-37 20 

19 2 33-45 6-34 25 
 3 23-41 13-42 25 
 1 33-39 21-47 20 

20 2 27-53 12-45 25 
 3 26-41 21-50 25 
 1 33-46 19-55 20 

21 2 47-69 10-43 25 
 3 24-35 21-58 25 
 1 44-79 12-56 20 

22 2 40-58 18-56 25 
 3 40-58 18-56 25 
 1 35-46 23-67 20 

23 2 45-66 24-55 25 
 3 45-62 22-60 25 
 1 43-56 19-58 20 

24 2 38-57 22-56 25 
 3 43-60 15-49 25 
 1 30-40 21-52 20 

25 2 40-64 14-41 25 
 3 28-43 15-55 25 
 1 30-43 27-69 20 

26 2 - -  
 3 - -  

Average 
Standarderviation 

 75.53=X  
  S = 11.786  

0526.54=X  
  S = 8.7115 

 

 
Table 5.8 shows that the average of  the number of cars behind the green light and the 

red light on each phase are 54 cars.The number of cars behind the green and the red 

light on all phases are moderate. In detail of cycle 1 (see Figure 4.5), each figure shows 

that there are 16 cars passing the green light and there are 32 cars stopping behind the 

red light, it uses 20 seconds for this phase. On phase 2 of cycle 1,  20 cars from 32 cars 

on phase 1 pass the green light , the number of all cars that pass the green light on this 

phase are 50 cars. There are 12 cars from the 32 cars on phase 1 still stopping behind 

the red light including the other 2 cars.The last cars that stops behind the red light on 
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this phase is 49th, so that the number of all cars that stop behind the red light on this 

phase are 49 cars. The phase uses 25 secconds. On phase 3 of cycle 1,  29 cars from  49 

cars on phase 2 passing the green light, the last car that passes the green light on this 

pase is 44th , so that the number of all cars that pass the green light on this phase are 44 

cars.  There are 20 cars from 49 cars on phase 2 still stopping behind the red light 

including the other 2 cars, the number of all cars that stop behind the red light on this 

phase are 58 cars. The phase uses 25 seconds. The description of other cycles are 

similar to the description of cycle 1 in which the number of cars on the current phase are 

impacted by the number of cars on the 

 pre-phase. 

 
Table 5.9  Pattern of traffic flow during each phase at Airport intersection  
                 based on conventional controller.  
 

Cycle Phase No. Green No. Red Length(sec) 
 1 0-17 2-45 25 

1 2 13-18 34-61 20 
 3 24-28 39-76 20 
 4 35-54 43-81 25 
 1 38-52 45-83 25 

2 2 52-57 33-62 20 
 3 23-33 41-60 20 
 4 37-51 25-67 25 
 1 31-47 38-79 25 

3 2 39-47 42-71 20 
 3 36-45 37-78 20 
 4 39-55 41-69 25 
 1 39-53 32-75 25 

4 2 27-39 50-79 20 
 3 40-54 41-73 20 
 4 47-56 28-72 25 
 1 34-47 40-78 25 

5 2 37-49 43-87 20 
 3 38-51 51-86 20 
 4 45-64 43-77 25 
 1 44-59 35-84 25 

6 2 37-49 49-85 20 
 3 41-52 46-74 20 
 4 41-57 35-80 25 
 1 37-47 45-83 25 

7 2 38-48 47-73 20 
 3 40-49 35-66 20 
 4 42-57 26-69 25 
 1 28-39 43-79 25 

8 2 40-51 41-74 20 
 3 44-48 32-68 20 
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8 4 42-50 38-76 25 
 1 38-54 40-92 25 

9 2 43-49 51-88 20 
 3 37-42 53-91 20 
 4 49-56 44-85 25 
 1 34-48 53-89 25 

10 2 50-55 41-80 20 
 3 34-38 48-72 20 
 4 44-59 30-82 25 
 1 39-52 45-87 25 

11 2 46-54 43-74 20 
 3 39-43 37-75 20 
 4 37-54 40-76 25 
 1 34-51 44-90 25 

12 2 43-52 49-74 20 
 3 34-38 42-75 20 
 4 44-60 33-72 25 
 1 30-44 44-72 25 

13 2 44-54 33-69 20 
 3 28-37 43-72 20 
 4 40-54 34-81 25 
 1 43-55 40-96 25 

14 2 56-71 42-81 25 
 3 43-54 40-74 20 
 4 43-62 33-64 20 
 1 33-46 33-69 25 

15 2 35-45 36-66 20 
 3 29-36 39-66 20 
 4 39-49 29-75 25 
 1 31-39 46-82 25 

16 2 37-49 47-73 20 
 3 41-51 34-69 20 
 4 35-46 36-72 25 
 1 35-41 39-75 25 

17 2 40-54 37-87 20 
 3 34-49 55-88 20 
 4 46-56 44-84 25 
 1 53-65 33-81 25 

18 2 39-50 44-79 20 
 3 29-41 52-96 20 
 4 60-84 38-74 25 
 1 34-51 42-86 25 

19 2 41-54 47-82 20 
 3 44-51 40-78 20 
 4 43-57 37-72 25 
 1 39-54 35-75 25 

20 2 36-45 41-71 20 
 3 37-48 36-64 20 

Average 
Standarderviation 

 6203.46=X  
  S = 9.7261 

519.76=X  
 S = 8.7616 
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From Table 5.9  shows that the average of  the number of cars behind the green light and 

the red light on each phase are respectively 47 and 77 cars. The number of cars behind 

the green and the red light on all phases are moderate. In detail of cycle 1  

(see Figure 4.6), each figure shows that there are 17 cars behind the green light and 

there are 45 cars behind the red light on phase 1; it uses 25 seconds for this phase. On 

phase 2 of cycle 1, there are 13 cars from  45 cars on phase 1 passing the green light , 

the number of all cars passing the green light on this phase is 18 cars while 32 cars from 

45 cars on phase 1 still stop behind the red light including the other 2 cars , the number 

of all cars stopping behind the red light on this phase is 61 cars. The phase uses 20 

secconds. On phase 3 of cycle 1,  24 cars from 61 cars on phase 2 passing the green 

light and the last car passing the green light on this phase is the 28th, the number of all 

cars passing the green light on this phase is 28 cars. There are 37 cars from 61 cars on 

phase 2 still stopping behind the red light including the other 2 cars, the number of all 

cars that behind the red light on this phase are 76 cars. The phase uses 20 seconds. On 

phase 4 of cycle 1, 35 cars from 76 cars on phase 3  passing the green light and the last 

cars passing the green light on this phase is the 54th, the number of all cars behind the 

green light on this phase are 54 cars. There are  41 cars from 76 cars on phase 3 still 

stopping behind the red light including the another 2 cars; the number all cars that 

behind the red light on this phase is 81 cars. The phase uses 25 seconds. The description 

of the other cycles are similar to the description of cycle 1 in which the number of cars 

on the current phase are impacted by the number of cars on the pre phase. 

 

5.3 The controller performance comparison 
 

The cost function provides a means of comparing the traffic flow performance of the 

fuzzy controller against the conventional controller. The lower the cost function is the 

better the perfomance. The controller performance comparisons are as illustrated in 

Figures 5.1-5.4 . 
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Figure 5.1  Controller performance comparison at Uboncharearnsri intersection.  
 
Figure 5.1 shows that on average, the cost function based on the fuzzy controller is 

lower than the cost function based on the conventional controller. 
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Figure 5.2  Controller performance comparison at Clock Hall intersection.  
 
Figure 5.2 shows that on average, the cost function based on the fuzzy controller is 

lower than the cost function based on the conventional controller. 
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Figure 5.3  Controller performance comparison at Chonlaprathan intersection.  
 
Figure 5.3 shows that on average, the cost function based on the fuzzy controller is 

lower than the cost function based on the conventional controller. 
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Figure 5.4  Controller performance comparison at Airport intersection.  
 
Figure 5.4 shows that on average, the cost function based on the fuzzy controller is 

lower than the cost function based on the conventional controller. 
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Chapter 6 

Conclusion and Discussion 
 

 6.1  Conclusion 
 

This study aims at computing the optimal lengths of traffic signal lights on each phase 

of four intersections in the inner city of Ubon rachathani Province namely 

Uboncharearnsri , Clock Hall , Chonlaprathan and Airport intersections. The expected 

outcomes consist of the method to calculate the traffic signal timing at the targeted 

intersections during rush hour and the traffic signal timing that is relevant to the number 

of vehicles at the intersections.   

 

To estimate the number of cars that arrive at or depart from the intersections, the study 

uses a mixed model of maximum likelihood (Vardi, 1996) and Bayesian inference 

(Tebaldi & West, 1998). The process started with a survey at the intersections of the 

traffic system under study path. Let each intersection be a node and treat the traffic 

system as a network. The path that connects any two nodes was called a direct route and 

a direct link that refers to the path that have no nodes between the two ends. There are 

72 direct routes and 18 direct links in the network. This enables the researcher to 

observe the number of cars passing on any direct link but not on the direct route.  

 

A relation between the number of cars passing on a direct link and direct route are 

presented by an equation as follows: 

                                       AXY =  
                  Y   :  direct link vector 

                 X   :  direct route vector 

                 A   :  routing matrix 

 

In the process of data collection, the number of cars were observed on 20 days and the 

EM iteration was used to solve the equation to estimate the mean ( )λ  of the number of 

cars on all links. Now knowing Y  and λ  from observation and EM iteration, the next 

step was to estimate X . Bayesian inference was used to achieve the goal; the illustrated 

distribution is as follows: 

                                         p ( )λ,yx  
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The Gibbs sampler (Casella & George,1992) is used to establish the algorithm of the 

software to generate  X , and support starting point of the algorithm with the mean ( )λ . 

As previously mentioned the study mixed the two methods of EM iteration and the 

Gibbs sampler to estimate the number of cars on all links.     

 

The statistical inference shows the number of cars behind the green light and behind the 

red light. In addition, queuing system theory is used to generate the length of current 

cycle time.The length derived from summation of interarrival time. The interarrival time 

is generated from an exponential distribution.    

 

The outputs from the estimation, the number of cars behind the green light, the number 

of cars behind the red light and the length of current cycle time are used as the fact for a 

Fuzzy logic system that consists of four components. 

1. Fuzzyfier 

2. Fuzzy rule based  

3. Fuzzy inference engine, and 

                 4.    Defuzzifier 

 

The Fuzzyfier component defines membership values of Fuzzy sets according to Kelsey 

and Bisset (1993), and also the rule based in the Fuzzy rule base component that are 

composed of  26 rules, which are different from those of rules based on Pappis and 

Mamdani (1977) who use a set of five rules in their fuzzy logic system.  

 

The Fuzzy inference engine component is based on the product-sum-gravity method 

presented by Kandel and Langholz (1994). It was used to combine the Fuzzy rules in 

the fuzzy rules base into a mapping from fuzzy set to fuzzy set . The Defuzzifier 

component, is based on the center average defuzzifier that was presented by Kandel and 

Langholz (1994) and is used to perform a mapping from fuzzy set to crisp point. 

 

The  crisp point from fuzzy logic is the degree of change. The degree of change has a 

value between 0 to 1. If the degree of change converges to 0 then the state of the light 

(phase) remain the same, whereas the state will change to next state if the degree 

converges to 1.  
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 From the conclusion, as previously mentioned, we can generate traffic flow in a certain 

time. The traffic flow is composed of the number of cars behind the green light and the 

number of cars behind the red light at the current moment of time. In addition, the 

estimation delivers the length of the current cycle time. Finally the optimal length of 

each phase of the cycle is the length of current cycle time. 

 

The traffic flow outputs under fuzzy controller at each intersections are different. At 

Uboncharearnsri intersection, it is found that the optimal length of each phase at early 

cycles (cycle 1-cycle 7)  is very short. At late cycles (cycle 8 and beyond) the optimal 

length of each phase is moderate. The optimal length of phase 2 is likely to be longer 

than the others. There are few cars behind both the green light and the red light in the 

early cycle. There is a moderate number of cars behind both the green light and the red 

light in the late cycle.  

 

At Clock Hall intersection, the traffic flow outputs at early cycles (cycle 1-cycle 8) is 

found to be not stable. At cycle 1, there are a few cars behind both the green and the red 

light. In addition, the optimal length is very short. For cycle 2 and cycle 3, the number 

of cars and the optimal length are moderate. The traffic flow outputs at cycle 4-cycle 8 

is just the same as the cycle 1. At late cycles (cycle 9 and beyond), the most optimal 

lengths are long. The most number of cars behind the green and red light are found 

many. 

 

For Chonlaprathan intersection, there are only five cycles during the specified time. 

There are a few cars and very short optimal length on all phases at cycle 1 and cycle 2. 

For cycle 3,4 and 5 there are many cars behind the green and the red light, and the 

optimal length is very long on all phases. The traffic flow at Airport intersection is 

similar to that at Chonlaprathan intersection. 

 

For the traffic flow under the conventional controller, the length of traffic lights on each 

phase of all cycles are fixed. The results at all intersections are similar; the number of 

cars are moderate and there are approximate 22 cycles on specific period of time.  

      

This study employs the cost function to evaluate the traffic flow. The cost function 

involves the average of wait time and drive time, the number of cars exiting and 

entering the intersection. The efficiency of a traffic controller can be judged from the 
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value of the cost function. The lower the cost function the better performance of the 

controller. 

 

The comparison of controller performances shows that cost function under the 

suggested traffic controller is lower than the cost function from conventional controller. 

This shows that the output of the comparison illustrating the fuzzy controller is more 

efficient than the conventional controller. 

 

6.2 Discussion    
 

From the literature review, there are many ways to attempt to solve traffic problems. 

This study concentrates on solving a part of the traffic problem, congestion at 

intersection. The study accords with these of many authors such as Kotsopoulos (1999),  

Lan (2002) and so on. A major factor that influences traffic congestion is poor timing. 

The study improves traffic signal timing at intersections by using mathematical and 

statistical methods similar to those of Schutter’s study (2002) and Yi, Xin and Zhao’s 

study (2001). Fuzzy logic is applied in a way similar to the work of many authors such 

as Zhenyang’s study (2004), Ande’study (1996), Edid’s study (1999),Seongho’s study 

(1994), Adeli and Karim’s study (2000) , Lee, Krammes and Yen’s study (1998) and 

Cabrera and Ivan’s study (2000). The present study ignored the development for the 

software or hardware of traffic signals. The study did not use high technology tools 

because of these high cost and the traffic control was unavailable for traffic control in 

the area of study. The main contribution of the study is the provision of an alternative 

means to improve the suitable signal timing for traffic controller at the intersections 

studied by using the optimal length computed by using computer programming by the 

Fortran language which the police and authorities can apply to solve the traffic 

problems. The algorithm of computer programming is based on EM algorithm and the 

Gibbs sample in Markov Chain Monte Carlo, in which demonstrated on many articles 

such as Herring and Ibrahim (2002), Karlis (2003), Kim and Taylor (1995), Lee and Shi 

(2001),  Carlin, Stern, and Rubin (1995) and so on. The objective of the algorithms is to 

estimate traffic intensity based on the coordination of the idea of Vardi (1996) and 

Tebaldi and West (1998). Moreover  the study applied queuing theory to identify 

waiting time, length of queue and the length of the current cycle time similar to the 

work done by Cheng and Allam (1992), Cruz, Smith and Mediros (2005), Dewees 

(1979), Das and Levinson (2004), and Omari,Masaeid and Shawaeid (2004). Queuing 
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application in such report papers is mainly based on simulation that is different from 

this study in that this study only applied queuing to generate interarrival time to 

calculate waiting time and queue length and the length of the current cycle time. This 

study also applied fuzzy logic system for traffic control similar to the work of many 

authors such as Zhenyang’ study (2004), Ande;s study (1996), Enid’s study (1999), 

Cabrera and Ivan’ study (2000) and so on. Fuzzy logic system designs the algorithm of 

decision process. The algorithm was designed to change traffic intensity estimator and 

the length of the current cycle time to degree of change just the same as of the study 

done by Kelsey and Bisset (1993). The degree of change decided whether to change the 

state of the traffic light or remain in the same state. In addition, the algorithm was 

dependent upon an expert traffic control and the membership function that need to be 

adapted with the observation data (Wang,1994).  

 

The likelihood of the output of traffic flow performance under fuzzy controller at Ubon 

Charernsri intersection and the performance at Clock Hall intersection derived from the 

two intersections are close to each other. Additionally, these intersections are in the 

same traffic environment. The optimal length of traffic signal light on each phase of the 

late cycles are moderate, because the number of cars that exit and enter the intersections 

are moderate. This is likely because there are a few cars that exit and enter the 

intersections at the early cycles, the optimal length of traffic signal light are very short. 

 

The traffic flow performance at Airport and Chonlaprathan intersection gave a similar 

result in both the number of cars and optimal length of traffic signal light due to their 

proximity. The optimal length of traffic signal light on all phases is likely to be very 

long because the Airport intersection has more traffic congestion than the others 

whereas Chonlaprathan intersection has fewer cars than the others.    

 

Theoretically, the fuzzy logic application to control traffic signal light in other research 

reports was based on the simulation and the controller installed on the equipment of 

traffic signal controller differentiated this study from the previous studied. Such 

difference is that the output from this study do not apply to control traffic flow at the 

moment. Instead, the process needs data collection and computation by computer 

programming and then apply traffic timing to control in the next time.  
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Interestingly, the evaluation by using cost function generation shows that the procedure 

of this study is very helpful to decrease waiting time and queue length as done by other 

methods that use high technology equipment. 

            

Summing up, this study presents the mixed method between maximum likelihood 

estimation and Bayesian estimation to estimate the number of cars that pass all links in 

the studied traffic system. Moreover this study also let the estimator in the fuzzy logic 

system to infer the optimal length on each phase at each intersection. The problem and 

obstacles of this study is that the observation is probably incorrect in some situations, 

and the study does not cover the improvement of the optimum length in the real 

situation. Another problem is that this study independently calculated the optimal length 

at each intersection which may not correspond to the real situation. The future study 

should link data between each intersection to calculate the optimal length.    
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The flowchart for main program 
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gys=0

d1=0

d1=d1+1

rv=d1
rk=k1
rn=n1

rmean=y bar(k1)/30

call subroutine poiss

gy(k1)=XP
gys=gys+gy(k1)

d1=100

bar(k1)=gys/100

no

yes

1 4 5

1 4 5
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rmeanp(i)<103 rmean=ram(t,i,j)

rmeanp(i)>103 rmean=103

5 4 3 1 2

5 4 3 1

yes

yes

no

end if

no

call sub routine poiss

x3(t,i,j)=xp

t>1
al=int(also(x3(t-1,i,j))+1

be=1
X=0

call subroutine gamma

ram(t,i,j) = x
rmean = ram(t,i,j)

yes

2

no

9

9
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5 4 3 2 1

5 4 3

x<103

x>103

end if

call subroutine poiss

x3(t,i,j) = xp 

end if

rmean = ram(t,i,j)

mean =103

run = 1

mf = int(x3(t,i,j))

m = 0

1

yes

no

yes

no

9

9
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5 4 3 1 2

run=run*ram(t,i,j)/m

m = mf
no

yes

uml(t,i,j)=run/2.718**ram(t,i,j)

p=(u(t,i,j)*umu(t,i,j))/(rlo(t,i,j)*uml(t,i,j))

p<1

5 4 3 1

1p ≥

end if

un = 1

un = 0

un = 1

call subroutine ber

un = x

yes

yes

no

no

x3(t,i,j)=x3(t,i,j)

x3(t,i,j)=x3(t-1,i,j)

6 7

no

no

yes

yes

9

9
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5 4 3 1 6 7

end if

i = 72
no

yes

x3(t,1,j) = x3(t,1,j)+x3(t,6,j)+...+x3(t,26,j)
x3(t,9,j) = x3(t,9,j)+x3(t,10,j)+...+x3(t,15,j)

x3(t,60,j) = x3(t,14,j)+x3(t,28,j)+…+x3(t,64,j)

j = 10

t = 1

t = s

time = t

i = 0

M

no

yes

yes

no

1 9

9
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t = s

i = 0

i = i+1

sum1 = 0

j = 0

j = j+1

sum1=sum1+x3(t,i,j)

j = 10
no

1
2

1

ir=0

ir=ir+1

1.001)(r(ir)0.999)(r(ir) >∨<

no

yes

9
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in = in+1

p1=rinten(11)/(rinten(11)+rinten(9)+rinten(13))
p2=rinten(9)/(rinten(11)+rinten(9)+rinten(13))

p3=(0.38*rinten(13))/(rinten(11)+rinten(9)+rinten(13))
p4=(0.62*rinten(13))/(rinten(11)+rinten(9)+rinten(13))

call subroutine allocate

que = q

que = 1 beta = 1/rink(11)

call subroutine expo

a(in)=bx

gn = gn+1

13

1 2

yes

no

3
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1 23

sumg = sumg+1

j = 0

j = j+1

sumg = sumg+a(j)

j = in

driv(in)=sumg

cut(in)=0

beta=1/rlink(9)que = 2

1 23

no

yes

no

4

yes
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1 23

call subroutine expo

a(in)=bx

rc2 = rc2+1

scut = 0

j = 0

j = j+1

scut = scut+a(j)

4

41 23

j = in
no

yes
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41 23

driv(in) = 0

cut(in) = scut

beta=1/(0.38*rlink(13))que = 3

call subroutine expo

a(in)=bx

rc3 = rc3+1

scut = 0

j = 0

213 4

yes

no
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213 4

rc4=rc4+1

scut = 0

j = 0

j = j+1

scut=scut+a(j)

i = in

driv(in)=0

cut(in)=scut

213 4

no

yes
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213 4

5 13 6

end if

rang1=rang1+a(in)

rang=rang+a(in)

i1-o1 = 1

delay=0
drive=0

k1 = 0

k1 = k1+1

cut(k1) = 0 sumwa(k1) = 0

yes

no

yes

no
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5 13 6

cut(k1)>0 sumwa(k1)=rang1-cut(k1)

end if

delay=delay+sumwa(k1)
drive=drive+driv(k1)

k1 = in

drive=drive+add*a(o1+1)

redn=rc2+rc3+rc4

g=2*gn/rang1

red=6*redn/rang1

13

yes

no

yes

no
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13

wait=rang1

drive1=cdrive+drive

delay1=cdelay+delay

redn1=credn+redn

gn1=cgn+gn

cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

call subroutine fuzzy

13

degree=mu
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13 24

rj1=j1

3 4 1 5

p1=rinten(11)/(rinten(11)+rinten(9)+rinten(13))

p2=rinten(9)/(rinten(11)+rinten(9)+rinten(13))

p3=(0.38*rinten(13))/(rinten(11)+rinten(9)+rinten(13))

p4=(0.62*rinten(13))/(rinten(11)+rinten(9)+rinten(13))

call subroutine allocate

que=q

que=2 beta=1/rlink(9)

call subroutine expo

a(in)=bx

2

yes

no
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3 4 1 5 2

gn=gn+1

sumg=0

j=0

j=j+1

sumg=sumg+a(j)

j=in

driv(in)=sumg

cut(in)=0

3 4 1 5 2

no

yes

6
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3 4 1 5 267

j=in

driv(in)=sumg

cut(in)=0

rc1=rc1+1que=1

beta=1/rlink(11)

call subroutine expo

a(in)=bx

scut=0

3 4 1 8 26

no

yes

yes

no
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3 4 1 8 26

j=0

j=j+1

scut=scut+a(j)

j=in

driv(in)=0

cut(in)=scut

rc3=rc3+1que=3

beta=1/(0.38*rlink(13))

3 4 1 8 26

no

yes

yes

no
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3 4 1 8 26

call subroutine expo

a(in)=bx

scut=0

j=0

j=j+1

scut=scut+a(j)

j=in

driv(in)=0

3 4 1 8 26

yes

no
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3 4 1 8 26

end if

rang=rang+a(in)

rang2=rang2+a(in)

j1-i1=1

k1=0
delay=0
drive=0

k1=0

k1=k1+1

cut(in)=scut

3 4 1 2

yes

no

5
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3 4 1 2

g=3*gn/rang2

red=6*redn/rang2

wait=rang2

drive1=cdrive+drive

delay1=cdelay+delay

redn1=credn+redn

gn1=cgn+gn

cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

3 4 1 2
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 208
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3 1 54 62

3 1 54 62

j=j+1

scut=scut+a(j)

j=in

driv(in)=0

cut(in)=scut

rc1=rc1+1

beta=1/rlink(11)

call subroutine expo

que=1

yes

no

yes

no

 
 



 212

3 1 54 62

3 1 54

a(in)=bx

scut=0

j=0

j=j+1

scut=scut+a(j)

j=in

driv(in)=0
cut(in)=scut

end if
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3 1 54

rang3=rang3+a(in)
rang=rang+a(in)

o1-j1=1

k1=0
delay=0
drive=0

3 1 56

k1=0

k1=k1+1

cut(k1)=0

cut(k1)>0

sumwa(k1)=0

sumwa(k1)=rang3-cut(k1)

end if

yes

yes

no

no

7

yes

no
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3 1 567

delay=delay+sumwa(k1)
drive=drive+driv(k1)

k1=in

drive=drive+add*a(j1+1)

redn=rc1+rc2

g=3*gn/rang3
red=6*redn/rang3

wait=rang3
drive1=cdrive+drive

delay1=cdelay+delay
redn1=credn+redn

gn1=cgn+gn

cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

call subroutine fuzzy

3 1 57

no

yes
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3 1 57

degree=mu

degree=1

ub3(d1)=wait

d1=d1+1

rang>1800

i1=o1
gn=rc1
add=rc1

cdrive=drive1
cdelay=delay1
credn=redn1

cgn=gn1
rc=0
in=0

rc3=0
rc4=0

rang1=0

51

no

yes

yes

no
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51

e1=1
i1=0
g=0

gn=0
o1=0
rc2=0
rc3=0

rang1=0
rang=0

in=0

i1=i1+1

ri1=i1
in=in+1
rin=in

p1=rinten(3)/(rinten(3)+rinten(31)+rinten(48))
p2=rinten(31)/(rinten(3)+rinten(31)+rinten(48))
p3=rinten(48)/(rinten(3)+rinten(31)+rinten(48))

p4=0

call subroutine allocate

2 1
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2 1 4 3

j=in

driv(in)=sumg
cut(in)=0

2 1 5 3

rc2=rc2+1que=2

beta=1/rlink(31)

call subroutine expo

a(in)=bx
scut=0

j=0

j=j+1

no

yes

6
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2 1 5 3

scut=scut+a(j)

j=in

driv(in)=0
cut(in)=scut

6

2 1 3 6

yes

no

que=3 rc3=rc3+1
yes

no

beta=1/rlink(48)

call subroutine expo

a(in)=bx
scut=0

j=0
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2 1 3 6

2 1

j=j+1

scut=scut+a(j)

j=in

driv(in)=0
cut(in)=scut

end if

rang1=rang1+a(in)
rang=rang+a(in)

i1-o1=1

drive=0
delay=0

yes

no

no

yes
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1800wait ≥
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3 1 4

f1=1
z1=1

gn=rc2
add=rc2

cdrive=drive1
cdelay=delay1
credn=redn1

cgn=gn1
rc1=0

rang2=0
j1=i1
in=0

j1=j1+1

rj1=j1
in=in+1

p1=rinten(3)/(rinten(3)+rinten(31)+rinten(48))
p2=rinten(31)/(rinten(3)+rinten(31)+rinten(48))
p3=rinten(48)/(rinten(3)+rinten(31)+rinten(48))

p4=0

call subroutine allocate

que=2

3 1 45
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3 18 4

3 18 4

k1=k1+1

cut(k1)=0

cut(k1)>0

end if

sumwa(k1)=rang1-cut(k1)

sumwa(k1)=0

yes

yes

no

no

delay=delay+sumwa(k1)
drive=drive+driv(k1)

k1=in
no

yes

drive=drive+add*a(i1+1)

redn=rc1+rc3
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3 18 4

3 1 4

delay2=delay/redn

g=4*gn/rang2
red=6*redn/rang2

wait=rang2
drive1=cdrive+drive

delay1=cdelay+delay
redn1=credn+redn

gn1=cgn+gn

cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

wait>25

ch2(f1)=wait
f1=f1+1

rang>1800

yes

no

yes

no

gn=rc3
add=rc3

cdrive=drive1
cdelay=delay1
credn=redn1

cgn=gn1
rc2=0

rang3=0
o1=0
in=0
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3 1 4

3 1 4

o1=o1+1

in=in+1

p1=rinten(3)/(rinten(3)+rinten(31)+rinten(48))
p2=rinten(31)/(rinten(3)+rinten(31)+rinten(48))
p3=rinten(48)/(rinten(3)+rinten(31)+rinten(48))

p4=0

5

call subroutine allocate

que=q

que=3 gn=gn+1

beta=1/rlink(48)

call subroutine expo

yes

no

6
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3 1 45 6 7

3 1 45 6 7

que=2 rc2=rc2+1
yes

no

beta=rlink(31)

a(in)=bx

j=0

j=j+1

scut=scut+a(j)

call subroutine expo

scut=0

8
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1800wait ≥
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1

h1=1
y1=1
ai=1
i1=0
o1=0
rc1=0
rc3=0

rang=0
rang1=0

gn=0
in=0

i1=i1+1
ri1=i1

in=in+1

p1=rinten(42)/(rinten(42)+rinten(17)+rinten(37))
p2=rinten(17)/(rinten(42)+rinten(17)+rinten(37))
p3=rinten(37)/(rinten(42)+rinten(17)+rinten(37))

p4=0

call subroutine allocate

que=q

que=2 gn=gn+1
yes

no

beta=1/rlink(17)

1 23
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 241

 
 
 



 242

1

1

cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

degree=mu

call subroutine fuzzy

degree=1
no

yes

cp1(h1)=wait

h1=h1+1

rang>1800

7

yes

no

10

10
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1 723

1 725

j=in
no

driv(in)=sumg
cut(in)=0

yes

que=1 rc1=rc1+1
yes

no

4

beta=1/rlink(42)

call subroutine expo

a(in)=bx
scut=0

j=0

j=j+1

10

10
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1 7

1

rang>1800

3

yes

no

gn=rc1
add=rc1

cdrive=drive1
cdelay=delay1
credn=redn1

cgn=gn1
rc3=0

rang3=0
in=0
o1=j1

o1=o1+1

in=in+1

p1=rinten(42)/(rinten(42)+rinten(17)+rinten(37))
p2=rinten(17)/(rinten(42)+rinten(17)+rinten(37))
p3=rinten(37)/(rinten(42)+rinten(17)+rinten(37))

p4=0

call subroutine allocate

que=q

10

10
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1 3

1 3

que=1 gn=gn+1

beta=1/rlink(42)

call subroutine expo

yes

no

a(in)=bx

sumg=0

j=j+1

sumg=sumg+a(j)

j=0

2410

10
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driv(in)=0
cut(in)=scut

end if

j=in

yes

no

rang=rang+a(in)
rang3=rang3+a(in)

1 327 5

scut=scut+a(j)

1 32

o1-j1=1

delay=0
drive=0

k1=0

yes

no

10

10
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 259

15 2

driv(in)=0
cut(in)=scut

j=in

yes

no

j=j+1

scut=scut+a(j)

4

15 2 4

que=3 rc3=rc3+1

beta=1/rlink(24)

call subroutine expo

yes

no

a(in)=bx
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15 2 4

15 2 4

driv(in)=0
cut(in)=scut

j=in

yes

no

j=j+1

scut=scut+a(j)

scut=scut+a(j)

j=0

que=1 rc1=rc1+1

beta=1/rlink(28)

yes

no
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15 2 4

j=0

call subroutine expo

a(in)=bx
scut=0

15

driv(in)=0
cut(in)=scut

j=in

yes

no

end if

scut=scut+a(j)

j=j+1

 
 



 262

15

15

rang=rang+a(in)
rang1=rang1+a(in)

i1-s1=1

delay=0
drive=0

k1=0

yes

no

cut(k1)=0

cut(k1)>0

end if

sumwa(k1)=rang1-cut(k1)

sumwa(k1)=0

yes

yes

no

no

k1=k1+1

2
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15 2

15

delay=delay+sumwa(k1)
drive=drive+driv(k1)

k1=in

drive=drive+add*a(s1+1)

redn=rc1+rc2+rc3

yes

no

delay1=delay/redn
g=2*gn/rang1

red=3*redn/rang1
wait=rang1

drive1=cdrive+drive
delay1=cdelay+delay

redn1=credn+redn
gn1=cgn+gn

cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

call subroutine fuzzy
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13 2 4 5

13 2 4 5

call subroutine expo

j=0

a(in)=bx
scut=0

driv(in)=0
cut(in)=scut

j=in

yes

no

scut=scut+a(j)

j=j+1

que=3 rc3=rc3+1
yes

no
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 269
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13 2

call subroutine fuzzy

degree=1

yes

no

degree=mu

ap2(c1)=wait

c1=c1+1

13

yes

no

v1=1
gn=rc3
add=rc3

cdrive=drive1
cdelay=delay1
credn=redn1

cgn=gn1
rc1=0
o1=j1

rang3=0
in=0

1800rang ≥

4
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13 45 7 6

13 45 7 6

beta=1/rlink(1)

call subroutine expo

a(in)=bx

j=0

j=in

yes

no

scut=scut+a(j)

j=j+1

scut=0
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1800rang ≥
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13

13

s1=s1+1

in=in+1

p1=rinten(28)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))
p2=rinten(29)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))
p3=rinten(24)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))
p4=rinten(1)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))

call subroutine allocate

que=q

4

que=2 gn=gn+1
yes

no

beta=1/rlink(29)

call subroutine expo

2
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13 4 2

13 4 2

j=0

a(in)=bx
sumg=0

j=in

yes

no

sumg=sumg+a(j)

j=j+1

driv(in)=sumg

cut(in)=0

que=3 rc3=rc3+1
yes

no

5
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13 4 2 5

13 4 2 5

que=1 rc1=rc1+1
yes

no

beta=1/rlink(28)

call subroutine expo

j=0

a(in)=bx
scut=0

j=in

yes

no

scut=scut+a(j)

j=j+1
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13 4 2 56

13 4

j=in

yes

no

driv(in)=0

cut(in)=scut

end if

rang4=rang4+a(in)

s1-o1=1

delay=0

yes

no

rang=rang+a(in)
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1800rang ≥
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The flowchart for subprogram 
1)  Subroutine for allocate car to each  branch 

start

subroutine allocate(p1,p2,p3,p4,q,ix)

rn=unif(ix)

rn<P1 q=1

q=2

yes

yes

no

P2)P1(rnP1)(rn +<∧≥

q=3
yes

no

P3)P2P1(rnP2)P1(rn ++<∧+≥

q=4
yes

no

P3P2P1rn ++≥

end if

return

end
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2)  Subroutine for generate exponential random variable 
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3) Subroutine for generate gamma random variable 
start

Subroutine gamma

common ix,al,be,x,xp,rmean,min,xmax,xu,g,re,w1,l1,p

rn=unif(ix)

v=-be*alog(rn)

x=x+v

al=1al=al-1

x=x

return

end

yes

no
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4) Subroutine for generate poisson random variable 
start

subroutine poiss

common ix,ial,be,x,xp,rmean,min,xmax,xu,g,re,w1,l1,p

xp=0

a=2.718**(-rmean)

s=1

rn=unif(ix)

s=s*rn

s-a<0 return end

xp=xp+1
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5) Subroutine for generate bernoulie random variable 
 

rrrn ≤
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6) Function for generate random number 
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7) Subroutine for fuzzy logic system 
 

0g1g ≥∧≤

1g2g ≥∧≤

0g1g ≥∧≤

2g3g ≥∧≤
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2g3g >∧≤

2g ≤

3g4g >∧≤
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3g4g ≥∧<

4g ≥

0red1red ≥∧<

1red ≥

0red1red ≥∧<

1red3red ≥∧<
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3red6red ≥∧<

6red ≥

3red <

3red6red ≥∧<

6red9red ≥∧<

9red ≥
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6red <

6red9red ≥∧<

9red ≥

30wait0 <≤

60wait ≥

60wait30 <≤
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30wait <

60wait30 <≤

90wait ≥

90wait60 <≤

60wait <

90wait60 <≤

90wait ≥
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C**************************************************** 

C                            1.  Main Program 

C**************************************************** 

      common ix,al,be,x,xp,rmean,min,xmax,xu,g,re,w1,rl1,p1,p2,p3,p4 

     &beta,bx,p,q 

      dimension ybar(18),ram(5000,72,10),isum(72),ia(18,72), 

     &rmu(72),rmar(18),x2(100,72),iy(100,18),ramda(50,72),da(72), 

     &X3(5000,72,10),max(18),z(30),w(72),b(72),r(72),rl(4,4),x1(72), 

     &uml(5000,72,10),umu(5000,72,10),rlo(5000,72,10),rinten(72), 

     &u(5000,72,10),jy(20,18),count(72),rlink(72),ib(18,72),dan(72) 

     &,ymin(72),ymax(72),ax(72),an(72),gy(72),w1(1000),ub1(100), 

     &a(1000),para(50,72),rmeanp(72),ub2(100),ub3(100),ch1(100), 

     &ch2(100),ch3(100),cp1(100),cp2(100),cp3(100),ap1(100), 

     &ap2(100),ap3(100),ap4(100),bar(72),ymean(72),ramd(72), 

     &wase(1000),driv(500),cut(500),sumwa(500) 

c**************************************************** 

c   1.1 Program for estimate traffic intensity by EM algorithm  

c**************************************************** 

c    The program read the observe daily data on direct link  

c     for 20 day 

      open(5,file='input.dat',status='old') 

      open(6,file='output.out',status='new') 

      do 10 i=1,18 

10    read(5,15)(ia(i,j),j=1,72) 

15    format(72i1) 

      do 20 m=1,20 

20    read(5,25)(iy(m,n),n=1,18) 

25    format(18i3) 

      do 21 i=1,20 

      do 21 j=1,18 

21    jy(i,j)=iy(i,j)/30 

      ix=45673874 

5     do 35 j=1,18 

      sumy=0 
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      do 40 i=1,20 

      sumy=sumy+iy(i,j) 

40    continue 

                     c   The program calculate     

( )

20

20

1
∑

== k

k
i

i

Y
Y  

      ybar(j)=sumy/20 

      ymean(j)=ybar(j)/30 

35    continue 

      ix=45673874 

      do 30 i=1,72 

      x=0.0 

      al=80.0 

      be=2.0 

      zi=i 

                           ri=i  

                   c     The program let positive mean population of number of cars 

                   c      that travel on direct route on traffic network 

       c    µ =  721 ,,( µµ L  ) ; arbitrary. 

      call gamma 

      rmu(i)=x 

30    continue 

      rmu(1)=ybar(1)/30 

      rmu(3)=ybar(7)/30 

      rmu(5)=ybar(9)/30 

      rmu(9)=ybar(2)/30 

      rmu(11)=ybar(8)/30 

      rmu(13)=ybar(10)/30 

      rmu(17)=ybar(3)/30 

      rmu(21)=ybar(17)/30 

      rmu(22)=ybar(15)/30 

      rmu(24)=ybar(4)/30 

      rmu(28)=ybar(18)/30 

      rmu(29)=ybar(16)/30 

      rmu(31)=ybar(5)/30 
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      rmu(36)=ybar(13)/30 

      rmu(37)=ybar(6)/30 

      rmu(42)=ybar(14)/30 

      rmu(43)=ybar(11)/30 

      rmu(48)=ybar(12)/30 

                    c    The program generate daily data on direct links for 100 days  

c    ( ) ≡1Y  ( ) ( )( )1
18

1
2

1
1 ,,, YYY K       

c    ( )2Y ≡ ( ) ( ) ( )( )2
18

2
2

2
1 YYY ,,, K   

c    M                          M  

c    ( )100Y ≡ ( ) ( ) ( )( )100
18

100
2

100
1 ,,, YYY K    

                     c     Calculate          

( )

100

20

1
∑

== k

k
i

i

Y
Y  

      do 600 n1=1,50 

      do 605 k1=1,18 

      gys=0 

                     c    The program generate jX   from Poisson distribution  

                     c    with parameter 72,,2,1, Kjµ  for 100 day 

      do 610 l1=1,100 

      rv=l1 

      rk=k1 

      rn=n1 

      rmean=ybar(k1)/30 

      call poiss 

      gy(k1)=xp 

      gys=gys+gy(k1) 

610   continue 

      bar(k1)=gys/100 

605   continue 
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                    c    The program calculate µ   by  µ̂ /
7221 )ˆ,...,ˆ,ˆ( µµµ=  based on  

                    c     applied algorithm 

                  µ j  ←  ∑
∑∑ =

==

18

1
72

1

18

1

i

k
kik

iij

i
ij

j

a

Ya

a µ

µ
 

      do 45 j=1,72 

      isuma=0 

      do 50 i=1,18 

50    isuma=isuma+ia(i,j) 

      isum(j)=isuma 

45    continue 

      do 615 t1=1,1000 

      do 55 i=1,18 

      sumar=0 

      do 60 j=1,72 

      ri=i 

      rj=j 

      rt=t1 

60    sumar=sumar+ia(i,j)*rmu(j) 

      rmar(i)=sumar 

55    continue 

      do 65 j=1,72 

      sumd=0 

      sumtest=0 

      do 70 i=1,18 

      rj=j 

      ri=i 

      ratio=bar(i)/rmar(i) 

      rmuti=ia(i,j)*ratio 

      sumtest=sumtest+rmuti 

70      devide=sumtest/isum(j) 

      ramda(t1,j)=rmu(j)*devide 
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c   The program calculate µ̂  50 times to get )1(µ̂ , )2(µ̂ ,…, )50(µ̂  

      para(n1,j)=ramda(t1,j) 

      rmu(j)=ramda(t1,j) 

65    continue 

615   continue 

600   continue 

      do 620 j1=1,72 

      sump=0 

      rj=j1 

      do 625 n1=1,50 

      sump=sump+para(n1,j1) 

625   continue 

                     c   The program calculate mean vector ; ∑
=

=
50

1

)(ˆ
50
1ˆ

k

kµµ  based  

                     c    on   50 estimations. Then µ̂  is the unbiased estimator of µ , 

                     c    route count. 

      rmeanp(j1)=sump/50 

c**************************************************** 

c  1.2  Program for estimate traffic intensity by Gibb sampling 

c**************************************************** 

      t=0.0 

      s=0.0 

105   t=t+1.0 

      s=s+1.0 

                    c    The program generate 10 vectors X  from 72 independent 

                    c     Poisson distributions with parameter vector µ   

      do 111 j=1,10 

      do 110 i=1,72 

      rj=j 

      ri=i 

      if(t.eq.1.0)then 

      ram(t,i,j)=rmeanp(i) 

      x3(t-1,i,j)=rmeanp(i) 

      if(rmeanp(i).le.103)then 
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      rmean=ram(t,i,j) 

      else if(rmeanp(i).gt.103)then 

      rmean=103 

      end if 

      call poiss 

      x3(t,i,j)=xp 

      else if(t.gt.1)then    

 c    The program draw sample value of 10  parameter vectors λ   

 c     from 72 conditionally independent posterior distributions,   

 c    )( jj Xp λ , that is Gamma distribution with shape parameter  

 c    1+jX  and scale parameter 1; 72,,2,1 K=j . 

      al=int(abs(x3(t-1,i,j))+1) 

      be=1.0 

      x=0.0 

      call gamma 

      ram(t,i,j)=x 

      rmean=ram(t,i,j) 

      if(x.le.103)then 

      rmean=ram(t,i,j) 

      else if(x.gt.103)then 

      rmean=103 

      end if 

      call poiss 

      x3(t,i,j)=xp 

      end if 

                     c     The program draw a candidate *
jX  from Poisson distribution 

                     c      function For each parameter vector λ  at iterationt as below. 

                     c     *
jX    ~    Poisson( *

jX )1−
−
t

jX      ;   

                     c     Where 1−
−
t

jX  represents all the element of X  except jX , at their   

                     c      current values: 

                     c     1−
−
t

jX  =   ),,,,,( 1
72

1
111

−−
+−

tt
j

t
j

t XXXX KK  

                      c     set    






= − otherwiseX
ryprobabilitwithX

X t
j

jt
j 1

* )1,min(
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                      c                  r   =   
)()(
)()(

*1

1*

j
t
j

t
jj

XUXP
XUXP

−

−

   

                      c      where        
!

)(
j

x
j

j x
e

XP
jj λλ−

=     ,    ( )jXU  = 
!j

x
j

x
e jj µµ−

 

      run=1.0 

      mf=int(x3(t,i,j)) 

      do 175 m=1,mf 

175   run=run*rmeanp(i)/m 

      u(t,i,j)=run/2.718**rmeanp(i) 

      if(t.gt.1)go to 172 

      n=0 

      k=0 

      umu(t,i,j)=1.0 

      rlo(t,i,j)=1 

      go to 173 

172   rlo(t,i,j)=u(t-1,i,j) 

      umu(t,i,j)=uml(t-1,i,j) 

173   n=0 

      ifact=1    

      run=1.0 

      mf=int(x3(t,i,j)) 

      do 176 m=1,mf 

176   run=run*ram(t,i,j)/m 

      uml(t,i,j)=run/2.718**ram(t,i,j) 

      p=(u(t,i,j)*umu(t,i,j))/(rlo(t,i,j)*uml(t,i,j)) 

      if(p.ge.1)then 

      un=1 

      else if(p.lt.1)then 

      call ber(p,x,ix) 

      un=x 

      end if 

      if(un.eq.1)then 

      x3(t,i,j)=x3(t,i,j) 

      else if(un.eq.0) then 
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      x3(t,i,j)=x3(t-1,i,j) 

      end if 

110   continue 

 c      The program directly compute the element of Y   by AXY =  

      x3(t,1,j)=x3(t,1,j)+x3(t,6,j)+x3(t,25,j)+x3(t,26,j) 

     &+x3(t,27,j)+x3(t,57,j)+x3(t,58,j)+x3(t,69,j)+x3(t,70,j)  

      x3(t,9,j)=x3(t,9,j)+x3(t,10,j)+x3(t,14,j)+x3(t,15,j)+ 

     &x3(t,20,j)+x3(t,33,j)+x3(t,51,j)+x3(t,60,j)+x3(t,61,j) 

      x3(t,17,j)=x3(t,17,j)+x3(t,18,j)+x3(t,19,j)+x3(t,23,j)+ 

     &x3(t,40,j)+x3(t,41,j)+x3(t,54,j)-x3(t,55,j)+x3(t,64,j)+ 

     &x3(t,67,j) 

      x3(t,24,j)=x3(t,10,j)+x3(t,24,j)+x3(t,30,j)+x3(t,33,j)+ 

     &x3(t,34,j)+x3(t,35,j)+x3(t,46,j)+x3(t,66,j)+x3(t,68,j) 

      x3(t,31,j)=x3(t,16,j)+x3(t,18,j)+x3(t,19,j)+x3(t,31,j)+ 

     &x3(t,32,j)+x3(t,50,j)+x3(t,52,j)+x3(t,54,j)+x3(t,55,j)+ 

     &x3(t,56,j)+x3(t,62,j) 

      x3(t,37,j)=x3(t,2,j)+x3(t,8,j)+x3(t,37,j)+x3(t,38,j)+ 

     &x3(t,39,j)+x3(t,45,j)+x3(t,46,j)+x3(t,47,j)+x3(t,59,j)+ 

     &x3(t,71,j) 

      x3(t,3,j)=x3(t,2,j)+x3(t,3,j)+x3(t,4,j)+x3(t,8,j)+ 

     &x3(t,39,j)+x3(t,49,j)+x3(t,51,j)+x3(t,59,j)+x3(t,72,j) 

      x3(t,11,j)=x3(t,11,j)+x3(t,12,j)+x3(t,16,j)+x3(t,26,j)+ 

     &x3(t,44,j)+x3(t,53,j)+x3(t,62,j)+x3(t,69,j)+x3(t,70,j) 

      x3(t,5,j)=x3(t,5,j)+x3(t,20,j)+x3(t,33,j)+x3(t,44,j)+ 

     &x3(t,53,j)+x3(t,66,j)+x3(t,61,j)+x3(t,62,j) 

      x3(t,13,j)=x3(t,13,j)+x3(t,27,j)+x3(t,39,j)+x3(t,49,j)+ 

     &x3(t,57,j)+x3(t,58,j)+x3(t,72,j) 

      x3(t,43,j)=x3(t,4,j)+x3(t,19,j)+x3(t,32,j)+x3(t,43,j)+ 

     &x3(t,55,j)+x3(t,56,j)+x3(t,72,j) 

      x3(t,48,j)=x3(t,12,j)+x3(t,26,j)+x3(t,38,j)+x3(t,53,j)+ 

     &x3(t,68,j)+x3(t,69,j)+x3(t,70,j)+x3(t,71,j) 

      x3(t,36,j)=x3(t,8,j)+x3(t,23,j)+x3(t,36,j)+x3(t,47,j)+ 

     &x3(t,59,j)+x3(t,64,j)+x3(t,67,j)+x3(t,71,j) 

      x3(t,42,j)=x3(t,16,j)+x3(t,30,j)+x3(t,42,j)+x3(t,52,j)+ 

     &x3(t,56,j)+x3(t,62,j)+x3(t,66,j)+x3(t,68,j) 
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      x3(t,22,j)=x3(t,7,j)+x3(t,22,j)+x3(t,35,j)+x3(t,46,j)+ 

     &x3(t,58,j)+x3(t,63,j)+x3(t,68,j)+x3(t,70,j) 

      x3(t,29,j)=x3(t,15,j)+x3(t,29,j)+x3(t,41,j)+x3(t,51,j)+ 

     &x3(t,55,j)+x3(t,61,j)+x3(t,65,j)+x3(t,65,j)+x3(t,67,j) 

      x3(t,21,j)=x3(t,6,j)+x3(t,21,j)+x3(t,34,j)+x3(t,57,j)+ 

     &x3(t,65,j)+x3(t,66,j)+x3(t,69,j) 

      x3(t,28,j)=x3(t,14,j)+x3(t,28,j)+x3(t,40,j)+x3(t,54,j)+ 

     &x3(t,60,j)+x3(t,63,j)+x3(t,64,j) 

111   continue 

      if(t.eq.1.0) go to 105 

                     c     The program let  k
tjX   be the drawn from 10 parallel sequences  

                     c     of iteration t of the  kth element of  X     

                     c     ( )10,,2,1;,,2,1 KK == jnt  , compute B  and W , the between  

                     c     and within-sequence variances for each kth:           

                     c       ∑
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                      c       and     )1(1ˆ −+= n
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      t=s 

      time=t 

      do 215 i=1,72 

      sb=0 

      ssb=0 

      ss=0 

      do 220 j=1,10 

      sw=0 

      ssw=0 

      do 225 t=1,time 

      sw=sw+x3(t,i,j) 

225   ssw=ssw+x3(t,i,j)**2 

      w(j)=(t*ssw-sw**2)/t*(t-1) 

      sb=sb+sw/t 
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      ssb=ssb+(sw/t)**2 

220   ss=ss+w(j) 

      w(i)=ss/10 

      b(i)=(t/9)*(ssb-sb**2/10) 

 

215   r(i)=sqrt((b(i)/w(i)+t-1)/t) 

      t=s  

c    The program iterate until 1ˆ →R  for all kth element. 

      do 221 ir=1,72 

      if((r(ir).le.0.999.or.r(ir).ge.1.001) goto 105 

221   continue 

                     c    The program calculate route count for each direct route by 

                     c           ∑
=

=
10

110
1ˆ

j

k
njk XX     , 72,,2,1 K=k  

                     c      where kX̂  is the estimator of route count for direct route thk                                    

                     c              k
njX  is the latest draw for parallel j  

222   do 226 i=1,72 

      sum1=0 

      do 231 j=1,10 

231   sum1=sum1+x3(t,i,j) 

      rlink(i)=sum1/600 

      rinten(i)=1800*rlink(i) 

226   continue 

      write(6,311)rlink(1),rlink(2),rlink(3),rlink(4),rlink(5),rlink(6) 

      write(6,3122)rlink(7),rlink(8),rlink(9),rlink(10),rlink(11), 

     &rlink(12) 

      write(6,314)rlink(13),rlink(14),rlink(15),rlink(16),rlink(17), 

     &rlink(18) 

      write(6,316)rlink(19),rlink(20),rlink(21),rlink(22),rlink(23), 

     &rlink(24) 

      write(6,3137)rlink(25),rlink(26),rlink(27),rlink(28),rlink(29), 

     &rlink(30) 

      write(6,3118)rlink(31),rlink(32),rlink(33),rlink(34),rlink(35), 

     &rlink(36) 



 314

      write(6,3119)rlink(37),rlink(38),rlink(39),rlink(40),rlink(41), 

     &rlink(42) 

      write(6,3111)rlink(43),rlink(44),rlink(45),rlink(46),rlink(47), 

     &rlink(48) 

      write(6,3112)rlink(49),rlink(50),rlink(51),rlink(52),rlink(53), 

     &rlink(54) 

      write(6,3114)rlink(55),rlink(56),rlink(57),rlink(58),rlink(59), 

     &rlink(60) 

      write(6,3116)rlink(61),rlink(62),rlink(63),rlink(64),rlink(65), 

     &rlink(66) 

      write(6,3127)rlink(67),rlink(68),rlink(69),rlink(70),rlink(71), 

     &rlink(72) 

311     format(6f10.4) 

3122    format(6f10.4) 

314     format(6f10.4) 

316     format(6f10.4) 

3137    format(6f10.4) 

3118    format(6f10.4) 

3119    format(6f10.4) 

3111    format(6f10.4) 

3112    format(6f10.4) 

3114    format(6f10.4) 

3116    format(6f10.4) 

3127    format(6f10.4) 

c**************************************** 

c     1.3  Program for calculate optimal length 

c**************************************** 

c    The program set the start phase of traffic signal cycle at the  

c    intersection. 

      t1=1 

      c1=1 

      d1=1 

      i1=0 

      gn=0 

      o1=0 
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      rc2=0 

      rc3=0 

      rc4=0 

      in=0 

      rang=0 

      rang1=0 

650   i1=i1+1 

      ri1=i1 

      in=in+1 

c    The program create cars and find the probability, which is  

c    emerged from the calculation of route counts , for each  

c    of the created car in order to randomise its moving from each  

c    branch of the intersection. 

      p1=rinten(11)/(rinten(11)+rinten(9)+rinten(13)) 

      p2=rinten(9)/(rinten(11)+rinten(9)+rinten(13)) 

      p3=(0.38*rinten(13))/(rinten(11)+rinten(9)+rinten(13)) 

      p4=(0.62*rinten(13))/(rinten(11)+rinten(9)+rinten(13)) 

      call allocate(p1,p2,p3,p4,q,ix) 

      que=q 

      if(que.eq.1)then 

      beta=1/rlink(11) 

                      c     The program generate interarrival time of each car by   

                      c      exponential distribution with parameter beta that is fixed by  

                      c      traffic intensity in the part of input process. 

      call expo(beta,bx,ix) 

      a(in)=bx 

      gn=gn+1 

      sumg=0 

                     c     The program compute the important parameter of simulation   

                     c    process, input of fuzzy logic system such as: 

                     c    /
1x  : number of cars that pass the green light. 

                     c   /
1x  : number of cars from the branch that are allowed to pass the  

                     c           intersection by the green light. 

                     c   /
2x  : number of car that stop behind the red light. 



 316

                     c   /
2x  : number of cars from the branch that are prohibited passing 

                     c        the intersection by the red light. 

                     c  /
3x  : the current cycle time. 

                     c  /
3x   : summation of interarrival time. 

      do 4 j=1,in 

      sumg=sumg+a(j) 

4     continue 

      driv(in)=sumg 

      cut(in)=0 

      else if(que.eq.2)then 

      beta=1/rlink(9) 

      call expo(beta,bx,ix) 

      a(in)=bx 

      rc2=rc2+1 

      scut=0 

      do 1 j=1,in 

      scut=scut+a(j) 

1     continue 

      driv(in)=0 

      cut(in)=scut 

      else if(que.eq.3)then 

      beta=1/(0.38*rlink(13)) 

      call expo(beta,bx,ix) 

      a(in)=bx 

      rc3=rc3+1 

      scut=0 

      do 2 j=1,in 

      scut=scut+a(j) 

2     continue 

      driv(in)=0 

      cut(in)=scut 

      else if(que.eq.4)then 

      beta=1/(0.62*rlink(13)) 

      call expo(beta,bx,ix) 
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      a(in)=bx 

      rc4=rc4+1 

      scut=0 

      do 3 j=1,in 

      scut=scut+a(j) 

3     continue 

      driv(in)=0 

      cut(in)=scut 

      end if 

      rang1=rang1+a(in) 

      rang=rang+a(in) 

      if(i1-o1.eq.1)go to 650 

      delay=0 

      drive=0 

      do 6 k1=1,in 

      if(cut(k1).eq.0)then 

      sumwa(k1)=0 

      else if(cut(k1).gt.0)then 

      sumwa(k1)=rang1-cut(k1) 

      end if 

      delay=delay+sumwa(k1) 

      drive=drive+driv(k1) 

6     continue  

      drive=drive+add*a(o1+1)  

645   redn=rc2+rc3+rc4 

      g=2*gn/rang1 

      red=6*redn/rang1 

      wait=rang1 

      drive1=cdrive+drive 

      delay1=cdelay+delay 

      redn1=credn+redn 

      gn1=cgn+gn 

                    c     The program caculate the value of the cost function. 

      cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1) 

                    c     The program calculate degree of change by using  
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                    c      fuzzy logic system. 

      call fuzzy(g,red,wait,mu) 

      degree=mu 

      if(degree.eq.1) go to 655 

      go to 650 

c    The program iterate until length of time is complete and all  

c     intersections are covered.          

655   ub1(t1)=wait 

      t1=t1+1 

      if(rang.gt.1800) go to 730 

      gn=rc2+rc4 

      add=rc2+rc4 

      cdrive=drive1 

      cdelay=delay1 

      credn=redn1 

      cgn=gn1 

      rc1=0 

      in=0 

      rang2=0 

      j1=i1 

660   j1=j1+1 

      in=in+1 

      rj1=j1 

      p1=rinten(11)/(rinten(11)+rinten(9)+rinten(13)) 

      p2=rinten(9)/(rinten(11)+rinten(9)+rinten(13)) 

      p3=(0.38*rinten(13))/(rinten(11)+rinten(9)+rinten(13)) 

      p4=(0.62*rinten(13))/(rinten(11)+rinten(9)+rinten(13)) 

      call allocate(p1,p2,p3,p4,q,ix) 

      que=q 

      if(que.eq.2)then 

      beta=1/rlink(9) 

      call expo(beta,bx,ix) 

      a(in)=bx 

      gn=gn+1 

      sumg=0 
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      do 8 j=1,in 

      sumg=sumg+a(j) 

8     continue 

      driv(in)=sumg 

      cut(in)=0 

      else if(que.eq.4) then 

      beta=1/(0.62*rlink(13)) 

      call expo(beta,bx,ix) 

      a(in)=bx 

      gn=gn+1 

      sumg=0 

      do 9 j=1,in 

      sumg=sumg+a(j) 

9     continue 

      driv(in)=sumg 

      cut(in)=0 

      else if(que.eq.1)then 

      rc1=rc1+1 

      beta=1/rlink(11) 

      call expo(beta,bx,ix) 

      a(in)=bx 

      scut=0 

      do 11 j=1,in 

      scut=scut+a(j) 

11    continue 

      driv(in)=0 

      cut(in)=scut 

      else if (que.eq.3)then 

      rc3=rc3+1 

      beta=1/(0.38*rlink(13)) 

      call expo(beta,bx,ix) 

      a(in)=bx 

      scut=0 

      do 31 j=1,in 

      scut=scut+a(j) 
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31    continue 

      driv(in)=0 

      cut(in)=scut 

      end if 

      rang=rang+a(in) 

      rang2=rang2+a(in) 

      if(j1-i1.eq.1)go to 660 

      k1=0 

      delay=0 

      drive=0 

      do 12 k1=1,in 

      if(cut(k1).eq.0)then 

      sumwa(k1)=0 

      else if(cut(k1).gt.0)then 

      sumwa(k1)=rang2-cut(k1) 

      end if 

      delay=delay+sumwa(k1) 

      drive=drive+driv(k1) 

12     continue   

      drive=drive+add*a(i1+1) 

680   redn=rc1+rc3 

      g=3*gn/rang2 

      red=6*redn/rang2 

      wait=rang2 

      drive1=cdrive+drive 

      delay1=cdelay+delay 

      redn1=credn+redn 

      gn1=cgn+gn 

      cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1) 

      call fuzzy(g,red,wait,mu) 

      degree=mu 

      if(degree.eq.1) go to 664 

      go to 660 

664   ub2(c1)=wait 

      c1=c1+1 
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      if(rang.gt.1800) go to 730 

      gn=rc3 

      add=rc3 

      cdrive=drive1 

      cdelay=delay1 

      credn=redn1 

      cgn=gn1 

      rc2=0 

      in=0 

      rang3=0 

      o1=j1 

685   o1=o1+1 

      in=in+1 

      p1=rinten(11)/(rinten(11)+rinten(9)+rinten(13)) 

      p2=rinten(9)/(rinten(11)+rinten(9)+rinten(13)) 

      p3=(0.38*rinten(13))/(rinten(11)+rinten(9)+rinten(13)) 

      p4=(0.62*rinten(13))/(rinten(11)+rinten(9)+rinten(13)) 

      call allocate(p1,p2,p3,p4,q,ix) 

      que=q 

      if(que.eq.3) then 

      beta=1/(0.38*rlink(13)) 

      call expo(beta,bx,ix) 

      a(in)=bx 

      gn=gn+1 

      sumg=0 

      do 14 j=1,in 

      sumg=sumg+a(j) 

14    continue 

      driv(in)=sumg 

      cut(in)=0 

      else if(que.eq.4) then 

      beta=1/(0.62*rlink(13)) 

      call expo(beta,bx,ix) 

      a(in)=bx 

      gn=gn+1 
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      sumg=0 

      do 17 j=1,in 

      sumg=sumg+a(j) 

17    continue 

      driv(in)=sumg 

      cut(in)=0 

      else if(que.eq.2) then 

      rc2=rc2+1 

      beta=1/rlink(9) 

      call expo(beta,bx,ix) 

      a(in)=bx 

      scut=0 

      do 18 j=1,in 

      scut=scut+a(j) 

18    continue 

      driv(in)=0 

      cut(in)=scut 

      else if(que.eq.1)then 

      rc1=rc1+1 

      beta=1/rlink(11) 

      call expo(beta,bx,ix) 

      a(in)=bx 

      scut=0 

      do 19 j=1,in 

      scut=scut+a(j) 

19    continue 

      driv(in)=0 

      cut(in)=scut 

      end if 

      rang3=rang3+a(in) 

      rang=rang+a(in) 

      if(o1-j1.eq.1)go to 685  

      k1=0 

      delay=0 

      drive=0 
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      do 32 k1=1,in 

      if(cut(k1).eq.0)then 

      sumwa(k1)=0 

      else if(cut(k1).gt.0)then 

      sumwa(k1)=rang3-cut(k1) 

      end if 

      delay=delay+sumwa(k1) 

      drive=drive+driv(k1) 

32    continue   

      drive=drive+add*a(j1+1) 

710   redn=rc1+rc2 

      g=3*gn/rang3 

      red=6*redn/rang3 

      wait=rang3 

      drive1=cdrive+drive 

      delay1=cdelay+delay 

      redn1=credn+redn 

      gn1=cgn+gn 

      cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1) 

      call fuzzy(g,red,wait,mu) 

      degree=mu 

      if(degree.eq.1) go to 720 

      go to 685 

720   ub3(d1)=wait 

      d1=d1+1 

      if(rang.gt.1800) go to 730  

      i1=o1 

      gn=rc1 

      add=rc1 

      cdrive=drive1 

      cdelay=delay1 

      credn=redn1 

      cgn=gn1 

      rc=0 

      in=0 
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      rc3=0 

      rc4=0 

      rang1=0 

      go to 650  

730   e1=1 

      i1=0 

      g=0 

      gn=0 

      o1=0 

      rc2=0 

      rc3=0 

      rang1=0 

      rang=0 

      in=0 

735   i1=i1+1 

      ri1=i1 

      in=in+1 

      rin=in 

      p1=rinten(3)/(rinten(3)+rinten(31)+rinten(48)) 

      p2=rinten(31)/(rinten(3)+rinten(31)+rinten(48)) 

      p3=rinten(48)/(rinten(3)+rinten(31)+rinten(48)) 

      p4=0 

      call allocate(p1,p2,p3,p4,q,ix) 

      que=q 

      if(que.eq.1) then 

      gn=gn+1 

      beta=1/rlink(3) 

      call expo(beta,bx,ix) 

      a(in)=bx 

      sumg=0 

      do 121 j=1,in 

      sumg=sumg+a(j) 

121    continue 

      driv(in)=sumg 

      cut(in)=0 
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      else if(que.eq.2) then 

      rc2=rc2+1 

      beta=1/rlink(31)  

      call expo(beta,bx,ix) 

      a(in)=bx 

       scut=0 

      do 24 j=1,in 

      scut=scut+a(j) 

24    continue 

      driv(in)=0 

      cut(in)=scut 

      else if(que.eq.3)then 

      rc3=rc3+1 

      beta=1/rlink(48) 

      call expo(beta,bx,ix) 

      a(in)=bx 

       scut=0 

      do 26 j=1,in 

      scut=scut+a(j) 

26    continue 

      driv(in)=0 

      cut(in)=scut 

      end if 

      rang1=rang1+a(in) 

      rang=rang+a(in) 

      if(i1-o1.eq.1)go to 735 

      drive=0 

      delay=0 

750   w1(k1)=sumw 

      do 36 k1=1,in 

      if(cut(k1).eq.0)then 

      sumwa(k1)=0 

      else if(cut(k1).gt.0)then 

      sumwa(k1)=rang1-cut(k1) 

      end if 
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      delay=delay+sumwa(k1) 

      drive=drive+driv(k1) 

36     continue  

      drive=drive+add*a(o1+1)  

755   redn=rc2+rc3 

      delay1=delay/redn 

      g=4*gn/rang1 

      red=6*redn/rang1 

      wait=rang1 

      drive1=cdrive+drive 

      delay1=cdelay+delay 

      redn1=credn+redn 

      gn1=cgn+gn 

      cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1) 

      if(wait.gt.20)go to 760  

      go to 735 

760   ch1(e1)=wait 

      e1=e1+1 

      if(rang.ge.1800) go to 789  

      f1=1 

      z1=1 

      gn=rc2 

      add=rc2 

      cdrive=drive1 

      cdelay=delay1 

      credn=redn1 

      cgn=gn1 

      rc1=0 

      rang2=0 

      j1=i1 

      in=0 

764   j1=j1+1 

      rj1=j1 

      in=in+1 

      p1=rinten(3)/(rinten(3)+rinten(31)+rinten(48)) 
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      p2=rinten(31)/(rinten(3)+rinten(31)+rinten(48)) 

      p3=rinten(48)/(rinten(3)+rinten(31)+rinten(48)) 

      p4=0 

      call allocate(p1,p2,p3,p4,q,ix) 

      que=q 

      if(que.eq.2) then 

      gn=gn+1 

      beta=1/rlink(31) 

      call expo(beta,bx,ix) 

      a(in)=bx 

      sumg=0 

      do 22 j=1,in 

      sumg=sumg+a(j) 

22    continue 

      driv(in)=sumg 

      cut(in)=0 

      else if(que.eq.1) then 

      rc1=rc1+1 

      beta=1/rlink(3) 

      call expo(beta,bx,ix) 

      a(in)=bx 

       scut=0 

      do 27 j=1,in 

      scut=scut+a(j) 

27    continue 

      driv(in)=0 

      cut(in)=scut 

      else if(que.eq.3)then 

      rc3=rc3+1 

      beta=1/rlink(48) 

      call expo(beta,bx,ix) 

      a(in)=bx 

      scut=0 

      do 127 j=1,in 

      scut=scut+a(j) 
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127    continue 

      driv(in)=0 

      cut(in)=scut 

      end if 

      rang=rang+a(in) 

      rang2=rang2+a(in) 

      if(j1-i1.eq.1)go to 764 

      drive=0 

      delay=0 

      do 46 k1=1,in 

      if(cut(k1).eq.0)then 

      sumwa(k1)=0 

      else if(cut(k1).gt.0)then 

      sumwa(k1)=rang1-cut(k1) 

      end if 

      delay=delay+sumwa(k1) 

      drive=drive+driv(k1) 

46     continue  

      drive=drive+add*a(i1+1)  

780   redn=rc1+rc3 

      delay2=delay/redn 

      g=4*gn/rang2 

      red=6*redn/rang2 

      wait=rang2 

      drive1=cdrive+drive 

      delay1=cdelay+delay 

      redn1=credn+redn 

      gn1=cgn+gn 

      cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1) 

      if(wait.gt.25) go to 785  

      go to 764 

785   ch2(f1)=wait 

      f1=f1+1 

      if(rang.gt.1800) go to 789 

      gn=rc3 
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      add=rc3 

      cdrive=drive1 

      cdelay=delay1 

      credn=redn1 

      cgn=gn1 

      rc2=0 

      rang3=0 

      o1=j1 

      in=0 

790   o1=o1+1 

      in=in+1 

      p1=rinten(3)/(rinten(3)+rinten(31)+rinten(48)) 

      p2=rinten(31)/(rinten(3)+rinten(31)+rinten(48)) 

      p3=rinten(48)/(rinten(3)+rinten(31)+rinten(48)) 

      p4=0 

      call allocate(p1,p2,p3,p4,q,ix) 

      que=q 

      if(que.eq.3) then 

      gn=gn+1 

      beta=rlink(48) 

      call expo(beta,bx,ix) 

      a(in)=bx 

      sumg=0 

      do 123 j=1,in 

      sumg=sumg+a(j) 

123    continue 

      driv(in)=sumg 

      cut(in)=0 

      else if(que.eq.1) then 

      rc1=rc1+1 

      beta=rlink(3) 

      call expo(beta,bx,ix) 

      a(in)=bx 

      scut=0 

      do 28 j=1,in 
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      scut=scut+a(j) 

28    continue 

      driv(in)=0 

      cut(in)=scut 

      else if(que.eq.2)then 

      rc2=rc2+1 

      beta=rlink(31) 

      call expo(beta,bx,ix) 

      a(in)=bx 

       scut=0 

      do 29 j=1,in 

      scut=scut+a(j) 

29    continue 

      driv(in)=0 

      cut(in)=scut 

      end if 

      rang=rang+a(in) 

      rang3=rang3+a(in) 

      if(o1-j1.eq.1)go to 790 

      drive=0 

      delay=0 

      do 56 k1=1,in 

      if(cut(k1).eq.0)then 

      sumwa(k1)=0 

      else if(cut(k1).gt.0)then 

      sumwa(k1)=rang1-cut(k1) 

      end if 

      delay=delay+sumwa(k1) 

      drive=drive+driv(k1) 

56     continue  

      drive=drive+add*a(j1+1)  

809   redn=rc1+rc2 

      delay3=delay/redn 

      g=4*gn/rang3 

      red=6*redn/rang3 
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      wait=rang3 

      drive1=cdrive+drive 

      delay1=cdelay+delay 

      redn1=credn+redn 

      gn1=cgn+gn 

      cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1) 

      if(wait.gt.25)go to 784  

      go to 790 

784   ch3(z1)=wait 

      z1=z1+1 

      if(rang.ge.1800)go to 789 

      i1=o1 

      gn=rc1 

      add=rc1 

      cdrive=drive1 

      cdelay=delay1 

      credn=redn1 

      cgn=gn1 

      rc3=0 

      in=0 

      rang1=0 

      go to 735 

789   h1=1 

      y1=1 

      ai=1 

      i1=0 

      o1=0 

      rc1=0 

      rc3=0 

      rang=0 

      rang1=0 

      gn=0 

      in=0 

794   i1=i1+1 

      ri1=i1 
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      in=in+1 

      p1=rinten(42)/(rinten(42)+rinten(17)+rinten(37)) 

      p2=rinten(17)/(rinten(42)+rinten(17)+rinten(37)) 

      p3=rinten(37)/(rinten(42)+rinten(17)+rinten(37)) 

      p4=0 

      call allocate(p1,p2,p3,p4,q,ix) 

      que=q 

      if(que.eq.2) then 

      gn=gn+1 

      beta=1/rlink(17) 

      call expo(beta,bx,ix) 

      a(in)=bx 

      sumg=0 

      do 61 j=1,in 

      sumg=sumg+a(j) 

61    continue 

      driv(in)=sumg 

      cut(in)=0 

      else if(que.eq.1) then 

      rc1=rc1+1 

      beta=1/rlink(42) 

      call expo(beta,bx,ix) 

      a(in)=bx 

       scut=0 

      do 64 j=1,in 

      scut=scut+a(j) 

64    continue 

      driv(in)=0 

      cut(in)=scut 

      else if(que.eq.3)then 

      rc3=rc3+1 

      beta=1/rlink(37) 

      call expo(beta,bx,ix) 

      a(in)=bx 

       scut=0 
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      do 66 j=1,in 

      scut=scut+a(j) 

66    continue 

      driv(in)=0 

      cut(in)=scut 

      end if 

      rang=rang+a(in) 

      rang1=rang1+a(in) 

      if(i1-o1.eq.1)go to 794 

      drive=0 

      delay=0 

      do 73 k1=1,in 

      if(cut(k1).eq.0)then 

      sumwa(k1)=0 

      else if(cut(k1).gt.0)then 

      sumwa(k1)=rang1-cut(k1) 

      end if 

      delay=delay+sumwa(k1) 

      drive=drive+driv(k1) 

73    continue  

      drive=drive+add*a(o1+1)  

815   redn=rc3+rc1 

      delay1=delay/redn 

      g=2*gn/rang1 

      red=4*redn/rang1 

      wait=rang1 

      drive1=cdrive+drive 

      delay1=cdelay+delay 

      redn1=credn+redn 

      gn1=cgn+gn 

      cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1) 

      call fuzzy(g,red,wait,mu) 

      degree=mu 

      if(degree.eq.1) go to 820 

      go to 794 
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820   cp1(h1)=wait 

      h1=h1+1 

      if(rang.gt.1800)go to 925    

      y1=1 

      gn=rc3 

      add=rc2 

      cdrive=drive1 

      cdelay=delay1 

      credn=redn1 

      cgn=gn1 

      rc2=0 

      rang2=0 

      j1=i1 

      in=0 

825   j1=j1+1 

      rj1=j1 

      in=in+1 

      p1=rinten(42)/(rinten(42)+rinten(17)+rinten(37)) 

      p2=rinten(17)/(rinten(42)+rinten(17)+rinten(37)) 

      p3=rinten(37)/(rinten(42)+rinten(17)+rinten(37)) 

      p4=0 

      call allocate(p1,p2,p3,p4,q,ix) 

      que=q 

      if(que.eq.3) then 

      gn=gn+1 

      beta=1/rlink(37) 

      call expo(beta,bx,ix) 

      a(in)=bx 

      sumg=0 

      do 62 j=1,in 

      sumg=sumg+a(j) 

62    continue 

      driv(in)=sumg 

      cut(in)=0 

      else if(que.eq.1) then 
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      rc1=rc1+1 

      beta=1/rlink(42) 

      call expo(beta,bx,ix) 

      a(in)=bx 

       scut=0 

      do 67 j=1,in 

      scut=scut+a(j) 

67    continue 

      driv(in)=0 

      cut(in)=scut 

      else if(que.eq.2)then 

      rc2=rc2+1 

      beta=1/rlink(17) 

      call expo(beta,bx,ix) 

      a(in)=bx 

      scut=0 

      do 68 j=1,in 

      scut=scut+a(j) 

68    continue 

      driv(in)=0 

      cut(in)=scut 

      end if 

      rang=rang+a(in) 

      rang2=rang2+a(in) 

      if(j1-i1.eq.1)go to 825 

      delay=0 

      drive=0 

      do 74 k1=1,in 

      if(cut(k1).eq.0)then 

      sumwa(k1)=0 

      else if(cut(k1).gt.0)then 

      sumwa(k1)=rang1-cut(k1) 

      end if 

      delay=delay+sumwa(k1) 

      drive=drive+driv(k1) 
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74    continue  

      drive=drive+add*a(i1+1)  

845   redn=rc1+rc2 

      delay2=delay/redn 

      g=2*gn/rang2 

      red=4*redn/rang2 

      wait=rang2 

      drive1=cdrive+drive 

      delay1=cdelay+delay 

      redn1=credn+redn 

      gn1=cgn+gn 

      cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1) 

c      write(6,23)rj1,rang,rang2,gn,redn,cost,degree 

c23    format(7f10.3) 

      call  fuzzy(g,red,wait,mu) 

      degree=mu 

      if(degree.eq.1) go to 850 

      go to 825 

850   cp2(y1)=wait 

      y1=y1+1 

      if(rang.gt.1800)go to 925 

      gn=rc1 

      add=rc1 

      cdrive=drive1 

      cdelay=delay1 

      credn=redn1 

      cgn=gn1 

      rc3=0 

      rang3=0 

      in=0 

      o1=j1 

860   o1=o1+1 

      in=in+1 

      p1=rinten(42)/(rinten(42)+rinten(17)+rinten(37)) 

      p2=rinten(17)/(rinten(42)+rinten(17)+rinten(37)) 
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      p3=rinten(37)/(rinten(42)+rinten(17)+rinten(37)) 

      p4=0 

      call allocate(p1,p2,p3,p4,q,ix) 

      que=q 

      if(que.eq.1) then 

      gn=gn+1 

      beta=1/rlink(42) 

      call expo(beta,bx,ix) 

      a(in)=bx 

      sumg=0 

      do 63 j=1,in 

      sumg=sumg+a(j) 

63    continue 

      driv(in)=sumg 

      cut(in)=0 

      wase(in)=0 

      else if(que.eq.2) then 

      rc2=rc2+1 

      beta=1/rlink(17) 

      call expo(beta,bx,ix) 

      a(in)=bx 

       scut=0 

      do 69 j=1,in 

      scut=scut+a(j) 

69    continue 

      driv(in)=0 

      cut(in)=scut 

      else if (que.eq.3)then 

      rc3=rc3+1 

      beta=1/rlink(37) 

      call expo(beta,bx,ix) 

      a(in)=bx 

       scut=0 

      do 171 j=1,in 

      scut=scut+a(j) 
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171    continue 

      driv(in)=0 

      cut(in)=scut 

      end if 

      rang=rang+a(in) 

      rang3=rang3+a(in) 

      if(o1-j1.eq.1)go to 860 

      delay=0 

      drive=0 

      do 276 k1=1,in 

      if(cut(k1).eq.0)then 

      sumwa(k1)=0 

      else if(cut(k1).gt.0)then 

      sumwa(k1)=rang1-cut(k1) 

      end if 

      delay=delay+sumwa(k1) 

      drive=drive+driv(k1) 

276   continue  

      drive=drive+add*a(j1+1)  

880   redn=rc2+rc3 

      delay3=delay/redn 

      g=2*gn/rang3 

      red=4*redn/rang3 

      wait=rang3 

      drive1=cdrive+drive 

      delay1=cdelay+delay 

      redn1=credn+redn 

      gn1=cgn+gn 

      cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1) 

      call  fuzzy(g,red,wait,mu) 

      degree=mu 

      if(degree.eq.1) go to 885  

      go to 860 

885   cp3(ai)=wait 

      ai=ai+1 
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      if(rang.gt.1800)go to 925  

      gn=rc2 

      add=rc2 

      cdrive=drive1 

      cdelay=delay1 

      credn=redn1 

      cgn=gn1 

      rc1=0 

      in=0 

      rang1=0 

      i1=o1 

      go to 794   

925   b1=1 

      c1=1 

      v1=1 

      xo=1 

      gn=0 

      s1=0 

      i1=0 

      s1=0 

      in=0 

      rc1=0 

      rc2=0 

      rc3=0 

      rang=0 

      rang1=0 

890   i1=i1+1 

      ri1=i1 

      in=in+1 

      p1=rinten(28)/(rinten(28)+rinten(29)+rinten(24)+rinten(1)) 

      p2=rinten(29)/(rinten(28)+rinten(29)+rinten(24)+rinten(1)) 

      p3=rinten(24)/(rinten(28)+rinten(29)+rinten(24)+rinten(1)) 

      p4=rinten(1)/(rinten(28)+rinten(29)+rinten(24)+rinten(1)) 

      call allocate(p1,p2,p3,p4,q,ix) 

      que=q 
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      if(que.eq.4) then 

      gn=gn+1 

      beta=1/rlink(1) 

      call expo(beta,bx,ix) 

      a(in)=bx 

      sumg=0 

      do 71 j=1,in 

      sumg=sumg+a(j) 

71    continue 

      driv(in)=sumg 

      cut(in)=0 

      else if(que.eq.2) then 

      rc2=rc2+1 

      beta=1/rlink(29) 

      call expo(beta,bx,ix) 

      a(in)=bx 

      scut=0 

      do 76 j=1,in 

      scut=scut+a(j) 

76    continue 

      driv(in)=0 

      cut(in)=scut 

      else if(que.eq.3) then 

      rc3=rc3+1 

      beta=1/rlink(24) 

      call expo(beta,bx,ix) 

      a(in)=bx 

      scut=0 

      do 77 j=1,in 

      scut=scut+a(j) 

77    continue 

      driv(in)=0 

      cut(in)=scut 

      else if(que.eq.1)then 

      rc1=rc1+1  



 341

      beta=1/rlink(28) 

      call expo(beta,bx,ix) 

      a(in)=bx 

      scut=0 

      do 78 j=1,in 

      scut=scut+a(j) 

78    continue 

      driv(in)=0 

      cut(in)=scut 

      end if 

      rang=rang+a(in) 

      rang1=rang1+a(in) 

      if(i1-s1.eq.1)go to 890 

      delay=0 

      drive=0 

      do 91 k1=1,in 

      if(cut(k1).eq.0)then 

      sumwa(k1)=0 

      else if(cut(k1).gt.0)then 

      sumwa(k1)=rang1-cut(k1) 

      end if 

      delay=delay+sumwa(k1) 

      drive=drive+driv(k1) 

91     continue  

      drive=drive+add*a(s1+1)  

915   redn=rc1+rc2+rc3 

      delay1=delay/redn 

      g=2*gn/rang1 

      red=3*redn/rang1 

      wait=rang1 

      drive1=cdrive+drive 

      delay1=cdelay+delay 

      redn1=credn+redn 

      gn1=cgn+gn 

      cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1) 
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      call fuzzy(g,red,wait,mu) 

      degree=mu 

      if(degree.eq.1) go to 920  

      go to 890 

920   ap1(b1)=wait 

      b1=b1+1 

      if(rang.gt.1800)go to 1020 

      gn=rc1 

      add=rc1 

      cdrive=drive1 

      cdelay=delay1 

      credn=redn1 

      cgn=gn1 

      rc4=0 

      rang2=0 

      j1=i1 

      in=0 

924   j1=j1+1 

      rj1=j1 

      in=in+1 

      p1=rinten(28)/(rinten(28)+rinten(29)+rinten(24)+rinten(1)) 

      p2=rinten(29)/(rinten(28)+rinten(29)+rinten(24)+rinten(1)) 

      p3=rinten(24)/(rinten(28)+rinten(29)+rinten(24)+rinten(1)) 

      p4=rinten(1)/(rinten(28)+rinten(29)+rinten(24)+rinten(1)) 

      call allocate(p1,p2,p3,p4,q,ix) 

      que=q 

      if(que.eq.1) then 

      gn=gn+1 

      beta=1/rlink(28) 

      call expo(beta,bx,ix) 

      a(in)=bx 

      sumg=0 

      do 72 j=1,in 

      sumg=sumg+a(j) 

72    continue 
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      driv(in)=sumg 

      cut(in)=0 

      else if(que.eq.2) then 

      rc2=rc2+1 

      beta=1/rlink(29) 

      call expo(beta,bx,ix) 

      a(in)=bx 

      scut=0 

      do 79 j=1,in 

      scut=scut+a(j) 

79    continue 

      driv(in)=0 

      cut(in)=scut 

      else if(que.eq.3) then 

      rc3=rc3+1 

      beta=1/rlink(24) 

      call expo(beta,bx,ix) 

      a(in)=bx 

      scut=0 

      do 81 j=1,in 

      scut=scut+a(j) 

81    continue 

      driv(in)=0 

      cut(in)=scut 

      else if(que.eq.4)then  

      rc4=rc4+1 

      beta=1/rlink(1) 

      call expo(beta,bx,ix) 

      a(in)=bx 

      scut=0 

      do 82 j=1,in 

      scut=scut+a(j) 

82    continue 

      driv(in)=0 

      cut(in)=scut 
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      wase(in)=bx 

      end if 

      rang=rang+a(in) 

      rang2=rang2+a(in) 

      if(j1-i1.eq.1)go to 924  

      delay=0 

      drive=0 

      do 92 k1=1,in 

      if(cut(k1).eq.0)then 

      sumwa(k1)=0 

      else if(cut(k1).gt.0)then 

      sumwa(k1)=rang1-cut(k1) 

      end if 

      delay=delay+sumwa(k1) 

      drive=drive+driv(k1) 

92    continue  

      drive=drive+add*a(i1+1)  

945   redn=rc2+rc3+rc4 

      delay2=delay/redn 

      g=3*gn/rang2 

      red=3*redn/rang2 

      wait=rang2 

      drive1=cdrive+drive 

      delay1=cdelay+delay 

      redn1=credn+redn 

      gn1=cgn+gn 

      cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1) 

      call fuzzy(g,red,wait,mu) 

      degree=mu 

      if(degree.eq.1) go to 950  

      go to 924 

950   ap2(c1)=wait 

      c1=c1+1 

      if(rang2.ge.1800)go to 1020 

      v1=1 
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      gn=rc3 

      add=rc3 

      cdrive=drive1 

      cdelay=delay1 

      credn=redn1 

      cgn=gn1 

      rc1=0 

      o1=j1 

      rang3=0 

      in=0 

955   o1=o1+1 

      in=in+1 

      p1=rinten(28)/(rinten(28)+rinten(29)+rinten(24)+rinten(1)) 

      p2=rinten(29)/(rinten(28)+rinten(29)+rinten(24)+rinten(1)) 

      p3=rinten(24)/(rinten(28)+rinten(29)+rinten(24)+rinten(1)) 

      p4=rinten(1)/(rinten(28)+rinten(29)+rinten(24)+rinten(1)) 

      call allocate(p1,p2,p3,p4,q,ix) 

      que=q 

      if(que.eq.3) then 

      gn=gn+1 

      beta=1/rlink(24) 

      call expo(beta,bx,ix) 

      a(in)=bx 

      sumg=0 

      do 273 j=1,in 

      sumg=sumg+a(j) 

273    continue 

      driv(in)=sumg 

      cut(in)=0 

      wase(in)=0 

      else if(que.eq.1) then 

      rc1=rc1+1 

      beta=1/rlink(28) 

      call expo(beta,bx,ix) 

      a(in)=bx 
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      scut=0 

      do 83 j=1,in 

      scut=scut+a(j) 

83    continue 

      driv(in)=0 

      cut(in)=scut 

      else if(que.eq.2) then 

      rc2=rc2+1 

      beta=1/rlink(29) 

      call expo(beta,bx,ix) 

      a(in)=bx 

      scut=0 

      do 84 j=1,in 

      scut=scut+a(j) 

84    continue 

      driv(in)=0 

      cut(in)=scut 

      else if(que.eq.4)then 

      rc4=rc4+1 

      beta=1/rlink(1) 

      call expo(beta,bx,ix) 

      a(in)=bx 

      scut=0 

      do 86 j=1,in 

      scut=scut+a(j) 

86    continue 

      driv(in)=0 

      cut(in)=scut 

      end if 

      rang=rang+a(in) 

      rang3=rang3+a(in) 

      if(o1-j1.eq.1)go to 955  

      delay=0 

      drive=0 

      do 93 k1=1,in 
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      if(cut(k1).eq.0)then 

      sumwa(k1)=0 

      else if(cut(k1).gt.0)then 

      sumwa(k1)=rang1-cut(k1) 

      end if 

      delay=delay+sumwa(k1) 

      drive=drive+driv(k1) 

93    continue  

      drive=drive+add*a(j1+1)  

975   redn=rc1+rc2+rc4 

      delay3=delay/redn 

      g=2*gn/rang3 

      red=3*redn/rang3 

      wait=rang3 

      drive1=cdrive+drive 

      delay1=cdelay+delay 

      redn1=credn+redn 

      gn1=cgn+gn 

      cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1) 

      call fuzzy(g,red,wait,mu) 

      degree=mu 

      if(degree.eq.1) go to 980 

      go to 955 

980   ap3(v1)=wait 

      v1=v1+1 

      if(rang.ge.1800)go to 1020 

      gn=rc2 

      add=rc2 

      cdrive=drive1 

      cdelay=delay1 

      credn=redn1 

      cgn=gn1 

      rc3=0 

      rang4=0 

      s1=o1 
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      in=0 

985   s1=s1+1 

      in=in+1 

      p1=rinten(28)/(rinten(28)+rinten(29)+rinten(24)+rinten(1)) 

      p2=rinten(29)/(rinten(28)+rinten(29)+rinten(24)+rinten(1)) 

      p3=rinten(24)/(rinten(28)+rinten(29)+rinten(24)+rinten(1)) 

      p4=rinten(1)/(rinten(28)+rinten(29)+rinten(24)+rinten(1)) 

      call allocate(p1,p2,p3,p4,q,ix) 

      que=q 

      if(que.eq.2) then 

      gn=gn+1 

      beta=1/rlink(29) 

      call expo(beta,bx,ix) 

      a(in)=bx 

      sumg=0 

      do 174 j=1,in 

      sumg=sumg+a(j) 

174   continue 

      driv(in)=sumg 

      cut(in)=0 

      else if(que.eq.3) then 

      rc3=rc3+1 

      beta=1/rlink(24) 

      call expo(beta,bx,ix) 

      a(in)=bx 

      scut=0 

      do 87 j=1,in 

      scut=scut+a(j) 

87    continue 

      driv(in)=0 

      cut(in)=scut 

      else if(que.eq.1)then 

      rc1=rc1+1 

      beta=1/rlink(28) 

      call expo(beta,bx,ix) 
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      a(in)=bx 

      scut=0 

      do 88 j=1,in 

      scut=scut+a(j) 

88    continue 

      driv(in)=0 

      cut(in)=scut 

      wase(in)=bx 

      else if(que.eq.4)then 

      rc4=rc4+1  

      beta=1/rlink(1) 

      call expo(beta,bx,ix) 

      a(in)=bx 

      scut=0 

      do 89 j=1,in 

      scut=scut+a(j) 

89    continue 

      driv(in)=0 

      cut(in)=scut 

      end if 

      rang=rang+a(in) 

      rang4=rang4+a(in) 

      if(s1-o1.eq.1)go to 985  

      delay=0 

      drive=0 

      do 94 k1=1,in 

      if(cut(k1).eq.0)then 

      sumwa(k1)=0 

      else if(cut(k1).gt.0)then 

      sumwa(k1)=rang1-cut(k1) 

      end if 

      delay=delay+sumwa(k1) 

      drive=drive+driv(k1) 

94    continue  

      drive=drive+add*a(o1+1)  
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1005  redn=rc1+rc3+rc4 

      delay4=delay/redn 

      g=2*gn/rang4 

      red=3*redn/rang4 

      wait=rang4 

      drive1=cdrive+drive 

      delay1=cdelay+delay 

      redn1=credn+redn 

      gn1=cgn+gn 

      cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1) 

c      write(6,43)s1,rang,rang4,gn,redn,cost,degree 

c43    format(7f10.5) 

      call fuzzy(g,red,wait,mu) 

      degree=mu 

      if(degree.eq.1) go to 1010  

      go to 985 

1010  ap4(xo)=wait 

      xo=xo+1 

      if(rang.ge.1800)go to 1020 

      i1=s1 

      gn=rc4 

      add=rc4 

      cdrive=drive1 

      cdelay=delay1 

      credn=redn1 

      cgn=gn1 

      rc2=0 

      in=0 

      rang1=0 

      go to 890          

1020  STOP 

      end  
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c************************************************** 

c                                  2. Sub-Program 

c************************************************** 

c************************************************** 

c              2.1   Subroutine for allocate car to each  branch 

c************************************************** 

      subroutine allocate(p1,p2,p3,p4,q,ix) 

      rn=unif(ix) 

      if(rn.lt.p1) then 

      q=1 

      else if(rn.ge.p1.and.rn.lt.p1+p2) then 

      q=2 

      else if(rn.ge.p1+p2.and.rn.lt.p1+p2+p3) then 

      q=3 

      else if(rn.ge.p1+p2+p3) then 

      q=4 

      end if 

      return 

      end 

c********************************************************* 

c       2.2  Subroutine for generate exponential random variable 

c*********************************************************     

      subroutine expo(beta,bx,ix) 

      rn=unif(ix) 

      bx=-beta*alog(rn) 

      return 

      end 

C**************************************************                                             

C          2.3 Subroutine for generate gamma random variable                                                        

C************************************************** 

      Subroutine gamma 

      common ix,al,be,x,xp,rmean,min,xmax,xu,g,re,w1,l1,p 

555   rn=unif(ix) 

      v=-be*alog(rn) 

      x=x+v 
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      if(al.eq.1)go to 520 

      al=al-1 

      go to 555 

520   x=x 

      return 

      end 

C******************************************************                                                   

C           2.4 Subroutine for generate poisson random variable                                                               

C****************************************************** 

      subroutine poiss 

      common ix,ial,be,x,xp,rmean,min,xmax,xu,g,re,w1,l1,p 

      xp=0.0 

      a=2.718**(-rmean) 

      s=1.0 

4     rn=unif(ix) 

      s=s*rn 

      if(s-a)9,7,7 

7     xp=xp+1.0 

      go to 4 

9     return 

      end 

c************************************************                                              

c        2.5 Subroutine for generate bernoulie random variable         

c************************************************ 

      subroutine ber(p,x,ix) 

      rn=unif(ix) 

      rr=1-p 

      if(rn.le.rr)go to 525 

      X=1.0 

      go to 530 

525   x=0.0 

530    return 

      end 
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c**************************************************                                                 

c        2.6 Function for generate random number                                                       

c************************************************** 

      FUNCTION UNIF(IX) 

      K1=IX/127773 

      IX=16807*(IX-K1*127773)-K1*2836 

      IF(IX.LT.0)IX=IX+2147483647 

      UNIF=IX*4.656612875E-10 

      IX=IX 

      RETURN 

c******************************************************                                                

c             2.8 Subroutine for fuzzy logic system                                                                   

c****************************************************** 

      SUBROUTINE FUZZY(G,RED,WAIT,MU) 

      IX=1234567 

      IF(G.GT.1) THEN  

      GZ=0 

      ELSE IF(G.LE.1.AND.G.GE.0) THEN 

      GZ=1-G 

      END IF 

      IF(G.LE.1.AND.G.GE.0) THEN 

      GL=G 

      ELSE IF(G.LE.2.AND.G.GT.1) THEN 

      GL=1 

      ELSE IF(G.LE.3.AND.G.GT.2) THEN 

      GL=3-G 

      ELSE IF(G.GT.3) THEN 

      GL=0 

      END IF 

      IF(G.LE.2) THEN 

      GM=0 

      ELSE IF(G.LE.3.AND.G.GT.2) THEN 

      GM=G-2 

      ELSE IF(G.LE.4.AND.G.GT.3) THEN 

      GM=4-G 
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      ELSE IF(G.GT.4) THEN 

      GM=0 

      END IF 

      IF(G.LT.3) THEN 

      GH=0 

      ELSE IF(G.LT.4.AND.G.GE.3) THEN 

      GH=G-3 

      ELSE IF(G.GE.4) THEN 

      GH=1 

      END IF 

      IF(RED.LT.1.AND.RED.GE.0) THEN 

      RZ=1-RED 

      ELSE IF(RED.GE.1)THEN 

      RZ=0 

      END IF 

      IF(RED.LT.1.AND.RED.GE.0) THEN 

      RL=RED 

      ELSE IF(RED.LT.3.AND.RED.GE.1) THEN 

      RL=1 

      ELSE IF(RED.LT.6.AND.RED.GE.3) THEN 

      RL=2-RED/3 

      ELSE IF(RED.GE.6) THEN 

      RL=0 

      END IF 

      IF(RED.LT.3) THEN 

      RM=0 

      ELSE IF(RED.LT.6.AND.RED.GE.3) THEN 

      RM=RED/3-1 

      ELSE IF(RED.LT.9.AND.RED.GE.6) THEN 

      RM=3-RED/3 

      ELSE IF(RED.GE.9) THEN 

      RM=0 

      END IF 

      IF(RED.LT.6) THEN 

      RH=0 
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      ELSE IF(RED.LT.9.AND.RED.GE.6) THEN 

      RH=RED/3-2 

      ELSE IF(RED.GE.9) THEN 

      RH=1 

      END IF 

      IF(WAIT.LT.30.AND.WAIT.GE.0) THEN 

      WS=1 

      ELSE IF(WAIT.LT.60.AND.WAIT.GE.30) THEN 

      WS=2-WAIT/30 

      ELSE IF(WAIT.GE.60) THEN 

      WS=0 

      END IF 

      IF(WAIT.LT.30) THEN 

      WM=0 

      ELSE IF(WAIT.LT.60.AND.WAIT.GE.30) THEN 

      WM=WAIT/30-1 

      ELSE IF(WAIT.LT.90.AND.WAIT.GE.60) THEN 

      WM=3-WAIT/30 

      ELSE IF(WAIT.GE.90) THEN 

      WM=0 

      END IF 

      IF(WAIT.LT.60) THEN 

      WL=0 

      ELSE IF(WAIT.LT.90.AND.WAIT.GE.60) THEN 

      WL=WAIT/30-2 

      ELSE IF(WAIT.GE.90) THEN 

      WL=1 

      END IF 

      A1=0.05 

      A2=0.2 

      A3=0.2 

      A4=0.2 

      A5=0.15 

      C1=0.033 

      C2=0.3 
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      C3=0.5 

      C4=0.7 

      C5=0.85 

      S1=GZ*RZ*A1 

      S2=GZ*RL*A5 

      S3=GZ*RM*A5 

      S4=GZ*RH*A5 

      S5=RZ*A1 

      S6=GL*RL*A1 

      S7=GM*RM*A1 

      S8=GH*RH*A1 

      S9=GL*RM*WS*A3 

      S10=GL*RM*WM*A4 

      S11=GL*RM*WL*A5 

      S12=GL*RH*WS*A2 

      S13=GL*RH*WM*A3 

      S14=GL*RH*WL*A4 

      S15=GM*RL*WS*A2 

      S16=GM*RL*WM*A2 

      S17=GM*RL*WL*A3 

      S18=GM*RH*WS*A3 

      S19=GM*RH*WM*A4 

      S20=GM*RH*WL*A5 

      S21=GH*RL*WS*A3 

      S22=GH*RL*WM*A4 

      S23=GH*RL*WL*A5 

      S24=GH*RM*WS*A2 

      S25=GH*RM*WM*A2 

   S26=GH*RM*WL*A3  

UPER=S1*C1+S2*C5+S3*C5+S4*C5+S5*C1+S6*C1+S7*C1+S8*C1&

+S9*C3+S10*C4+S11*C5+S12*C2+S13*C3+S14*C4+S15*C2 

&+S16*C2+S17*C3+S18*C3+S19*C4+S20*C5+S21*C3+S22*C4 

&+S23*C5+S24*C2+S25*C2+S26*C3             

ROWER=S1+S2+S3+S4+S5+S6+S7+S8+S9+S10+S11+S12+S13+S14 

&+S15+S16+S17+S18+S19+S20+S21+S22+S23+S24+S25+S26   
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      RUL=UPER/ROWER 

      P=RUL 

      CALL BER(P,X,ix) 

      MU=X 

      RETURN 

      END  
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