
Edith Cowan University Edith Cowan University

Research Online Research Online

Theses : Honours Theses

2000

Voice Command Controller Voice Command Controller

Hoang Nghia Nguyen
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses_hons

 Part of the Signal Processing Commons

Recommended Citation Recommended Citation
Nguyen, H. N. (2000). Voice Command Controller. https://ro.ecu.edu.au/theses_hons/874

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses_hons/874

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses_hons
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses_hons?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F874&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F874&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses_hons/874

 Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose

of your own research or study.

The University does not authorize you to copy, communicate or

otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following:

 Copyright owners are entitled to take legal action against persons

who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement.

 A court may impose penalties and award damages in relation to

offences and infringements relating to copyright material. Higher

penalties may apply, and higher damages may be awarded, for

offences and infringements involving the conversion of material

into digital or electronic form.

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

Voice Command Controller

VOICE COMMAND CONTROLLER

Hoang Nghia Nguyen

Faculty of Communications, Heath and Science
Edith Cowan University

Western Australia

Date of submission:

II

Voice Command Controller 111

Acknowledgments

l would like to take this opportunity to express my sincere thanks and gratitude to my

supervisor Dr. Daryoush Habibi for his endless support and guidance throughout the

course of this project and my undergraduate study. l particularly thank him for his

kindness, encouragement, without that this project will not be possible.

Many thanks to Mr. LamS. Phung for his suggestions in designing of this project and

giving time, effort to review this thesis.

l wish to thank Utrak surveillant company for providing related technical documents,

equipment and has assisted me in making PCBs for this project.

Finally, l would like to all lectures in Engineering faculty, whom has been giving me

generously of their time, help and expertise throughout my undergraduate study.

Voice Command Controller iv

Abstract

Signal processing technology has been strongly developed and it has attracted interest

from scientists and engineers around the world from the last decade. Speech synthesis

and speech recognition are particular topic in the field that have been widely used and

developed in many different area such as business, controlling, education and

entertainment.

The project's main objective is to study and develop an application program with the

Speech SDK through design and implementation ofTele-Control system based on the

commercial product of National Semiconductor: Carrier-Current Transceiver (LM

1893) and Speech development kit (Speech SDK4.0) from Microsoft Corporation.

The project is suitable to be used in restricted areas where space, wiring, decoration

and signal interference are issues of concerned.

Speech SDK is an interesting and useful tool in helping develop a Voice application

programs. In this project, the user can use voice command interact with the control

program to control a remote device.

In conjunction with hardware modification, extra function can be added to the

program such as controlling camera, video capture and position control buttons on the

environment map, the project will be suitable for security purposes.

Voice Command Controller v

DECLARATION

I certify that this thesis does not, to the best of my knowledge and belief

(i) incorporate without acknowledgement any material previously

submitted for a degree or diploma in any institution of higher

education;

(ii) contain any material previously published or wrillen by another

person except where due reference is made in the text; or

(iii) contain any defamatory material.

Signature

D 0 -la! ate, __ _j.!_. _;;{J<-,,Li-'"LW-1~2z' £.(lli02LO.L ___ _

Voice Command Controller vi

Table of contents

VOICE COMMAND CONTROLLER. n

ACKNOWLEI>GMENTS .. IIJ

ABSTRACT ... IV

TABLE OF CONTENTS ... VI

PART I

Ll
1.2

1.3

1.4

PART2

2.1

GENERAL INTRODUCTION .. 1-2

Over\1ieu' ... 1-2

Background and Moti\•ation ... 1-2

Ailns .. 1-3

Thesis outline .. 1-4

INTRODUCTION TO THE LMI893 AND SPEECH SDK4.0 TECHNOLOGIES .. 2-5

The LM-1893 Current Transceiver ... l-5

2.1.1 Theory of operation ... 2-5

2.1.2 Main Features .. 2-6

2.1.3 LM 1893 application design considerations 2-7

gj Power line impedance and attenuation ... 2-7

lU Thermal Considerations .. 2-8

£..} Data Encoding ... 2-8

2.2 ActiveX control: Speech SDK4. 0 .. 2-9

2.2.1 Introduction ... 2-9

2.2.2 Overview of Speech engines ... 2-1 0

l!..} Speech recognition .. 2-10

Q_) Text to Speech (TTS) .. 2-14

2.2.3 Introduction to Microsoft Speech development Kit (Speech SDK4.0)

2-16

PART3

3.1

3.2

l!..} High-Level SAP! .. 2-18

lU Low level SAPI ... 2-21

CIRCUITS DESIGN AND SOFTWARE DEVELOPMENT3-22

Project specification and analvsis .. 3-22

Hardware design. .. J-23

Voice Command Controller vii

Main contro/transmitter ... J-23

'1'rans1n itlcr Circuit .. 3-25

Modulation and Transmitter scction .. J-25

l'he Encoder scction .. J-26

£_) Computer intcrllu:c section .. .3-28

Qj Telephone interface section3-28

3.-1 lf1e Receiver .. J-30

3.4.1 Receiver circuit ... 3-31

~ Receiver and Demodulation .. 3-31

hJ l)ecodcr circuits .. 3-32

£..} Switching circuit ... 3-34

gj Power Supply circuit ... 3-35

3.5 Sotill1are design ... 3-36

sJ Main program structurc ... 3-36

l!.} The Set-up Options '"b routine .. 3-38

£....} Main Control interface sub-routine ... 3-40

gj Monitoring Control Event Sub-routine .. .3-42

!<..} Send Control signal sub-routine .. .3-43

f.l Telephony Control sub-routine (through modem) 3-46

gJ Telephone line sub routine (usinu: built-in hardware interface) 3-48

hJ Idle time detel:tion sub routine .. J-50

U Synchronisation of voice recognition and Voice synthesis (apply for

half duplex sound card) .. .3-51

pART 4 IMPLEMENTATION AND TESTING4-53

4.1 Software implementation .. 4-53

4.1.1 Object s in VB Visual Basic .. .4-53

4.1.2 Main Program functions .. .4-54

!!.} Initialise Speech En&ines4-54

l!.} Create Voice Menu Command4-56

£..} Do Speaking ... _4-57

gj Recognise Command4-57

4.2 Hardware implementation .. 4-59

4.2. I Prototyping4-59

4.2.2 PCB design .. .4-59

Voice Command Controller viii

4.2.3 Circuit construction ... 4-60

4.2.4 Testing4-61

ll1 Visual inspectinn: .. .4-61

llJ Power Supnly test:4-61

U Testing Computer interface: .. .4-61

Qj Serial to parallel converter and Encoder functions: A-61

£!..) Modulation function ... 4-62

[l Override thnetion4-62

gj Final Testing ... 4-63

-1.3 Problems encountered and solutions .. 4-63

4.3.1 Problems in designing and development of hardware: 4-63

4.3.2 With designing Control program4-64

PART 5 CONCLUSIONS .. 5-65

5.1 Recommendalions of applications and further directions 5-66

5.1.1 Applications .. 5-66

5.1.2 Further directions5-66

APPENDIX .. S-68

Voice Command Controller 1-2

Part 1 General introduction

1. 1 Overview

Signal processing technology has been strongly developed and it has attracted interest

from scientists and engineers around the world from the last decade. Speech synthesis

and speech recognition are particular topics in the field that have been widely used

and developed in many different areas such as business, controlling and

entertainment.

There have been various techniques of using Voice applications in controlling like

using Speech processor, PCs based control, or pre~record and access voice data from

EEPROM. In this project, we design and implement a PC-based Voice Command

Control, which allows electrical devices to be controlled remotely. The project

employs the speech development kit (Speech SDK) developed by Microsoft and the

Carrier Current Transceiver LM 1893 designed by National Semiconductor.

1.2 Background and Motivation

I have worked in electronics industry in repairing and installation of various audio

communication and controlling pwducts. However, the lack of knowledge in

Communication engineering and Computer programming have r.estricted my

understanding of the products in ways such as: How they are designed? How the

hardware and software interact with each other to make such smart products? How to

define which ftmctions should be designed and in what way to implement them? This

project gives an opportunity to apply my knowledge in designing a particular

application and to overcome the above limits.

Thousands of control circuits have been designed and implemented usmg

technologies such as radio frequency, infrared, optical cable. Each method has its

strengths and weaknesses in term of transmission range, cost, complexity, and signal

interference. One of the techniques is sending control signals to the main line, which

is attractive because of its low cost and its suitabiJity in areas where signal

interference, wiring, space and decoration are important issues. In this project, we will

use this technique to implement a remote control circuit that uses the electronic device

Carrier Current Transceiver LMI893.

Voice Command Controller 1-3

1.3 Aims

The principal aim of this project is to design and implement a Telc-Control system

using the Carrier-Current Transceiver (LM 1893) from National Semiconductor and

the speech development kit (Speech SDK 4.0) from Microsoft.

The main tasks of the project are:

• Firstly, study the architecture, characteristics of the LM 1893 and its operation.

• Secondly, we'll explore the features of the Speech SDK 4.0 and learn how to use

these features in this project.

• Thirdly, design and implement a simpie Tele-Control netwmk using existing main

power line as the communication medium.

• Then, design a computer-based control interfaces usmg Visual Basic and

implement with voice synthesis and voice recognition methods studied in tasks 1

and2

• Finally, implement the designed circuit and test it.

Voice Command Controller 1-4

1.4 Thesis outline

This thesis is organised into four parts:

Part 1: General introduction. This part provides an introduction to the project,

and describes the main tasks in design and development of the project.

Part 2: The LM 1893 (current transceiver) and Speech SDK. This part explores

the characteristics and features of the electronics devices LM 1893 and Speech

synthesis/ recognition technique from Microsoft Speech Development kit, and

from that shows how those features can be implemented in this project.

Part 3: Circuit design and program control interface. It contains the project's

requirement and analysis, project block module functions, circuit design and the

program flow~chart, program modules.

Part 4: Implementing and testing. This part describes the implementation of the

circuit, program simulation and testing the complete project. In addition a

description is provided on the problems arising throughout the project.

Part 5: summarises what has been achieved in this project. Concluding

remarks, recommend applications of the project and further research directions

be also proposed in this part.

Voice Command Controller 2-5

Part2 Introduction to the LM1893 and Speech SDK4.0 technologies

This project involves both hardware and software implementation and its

characteristic are df.ifined by the two main components: the LM 1893 Carrier current

Transceiver for hardware, and the Speech SDK.4.0 for the software. In this part we

will study the characteristic, operations and features of these two components, and

discuss how they can be applied in this project.

2.1 The LM-1893 Current Transceiver

Designed by the National Semiconductor, the LM-1893 Carrier Current Transceiver

main purpose is to allow analogy data to be transmitted and received between remote

location over the main power line as a transmission medium. Thus this device serves

as a power line interface for half-duplex communication of any digital data stream

generated from any digital source such as computer or micro-controller regardless of

how those data are encoded.

The following discusses in detail the features and characteristics of this device.

2. 1. 1 Theory of operation

According National Semiconductor Technical data (1989), the LM-1893 can be set to

operate at two different modes: Transmit (1X) or Receive (RX) through a simple

hardware configuration.

In the TX mode, the binary data stream from the source is fed to the input of the LM-

1893, and is then modulated using FSK (Frequency Shift Keying) at a carrier

frequency from 50 Hz to 300 kHz on the line. Whilst in the transmit mode, the

baseband data generates a signal to drive the current control oscillator and the

differential attenuator which deliver a current sinusoid though the Automatic level

Control (ALC) current output amplifier with the gain of200.

The high current modulated signal at the carrier I/0 develops a voltage swing on the

resonance tank circuit proportional to the line impedance and then passed through the

coupling transform to the main power line. If large line impedance that causes an

excessive output voltage level, the ALC will shunt the current away from the output

amplifier hence holding the output signal constantly within the amplifier compliance

limit. The amplifier is stable with a load of any magnitude or phase angle.

Voice Command Controller 2-6

When operating in the receiver mode, the TX sections arc disabled. From the coupling

circuit, the modulated signal produces a voltage swing in the tank circuit, swinging

about the positive supply to drive the Carrier 1/0 receiver input. The balanced input

limiter amplifier removes the DC offset. The limiter also performs as the line

attenuation.

The differential demodulated output signal from the phase detector, containing AC

and DC data signal, noise, large carrier frequency component, passes through a low

pass filter to drive the offset cancel circuit differentially. The data signal is then

delivered by the comparator, passing through the impulse noise filter to remove noi~c

spikes that might be in the data signal before sending it to the external decoder cirntit.

The offset cancelling circuit works by insuring that the fixed ± 50m V signal ddivered

to the comparator is centred around OmV-comparator switch point. Whenever the

comparator signal plus the DC offset and noise moves outside the matched

±50mVvoltage "window11 of the offset cancel circuit, it adjusts it<; DC correction

voltage in serries with the differential signal to force the sir-1al back into the
11window".

2.1.2 Main Features

From the above operation, the LM 1893 has a number of featlll'es and advantage as

follows:

• It provides a very good nmse rejection. Noise ts filtered out along the

demodulation process.

• It allows the user to select impulse noise filtering by changing the relevant

component value according to the requirement.

• The LM 1893 can be set to work at different modulation frequencies ranging from

50 Hz to 300kHz. However, the range of the signal that can propagate along the

transmission medium is dependant on the line attenuation, which implies that it is

also dependant on the signal frequency. For the highest range of propagation, the

recommend frequency is about 125 kHz.

• The data signal can be sent at a rate up to 4.8 kBaud or 2,400 Hz. From the point

of view of the perfonnance of the LM 1893, the lower the maximum data

Voice Command Controller 7.-7

transmission rate, the better it will be for the modulation and demodulation

processes.

• The LM 1893 can be used to drive any available conventional power line a• the

transmission medium without extra external wiring.

2.1.3 LM 1893 application design considerations

a) Power line impedance and attenl!ation

An application designed using LM 1893 requires an estimate Jf tht: lowest expected

line impedance Z J. encountered for the mo5t efficient transmitter-to-line coupling,

line impedance should be measured and Z r. limits fixed to a given confidence level.

(National Semiconductor)

100

-Cl -w ..
:z c
0

~
! 10
w :z
:I ~ ~
I -MIH
j

N A

1
50 100 150 200 250 300

fa-CARRIER FREQUENCY !kHz)

Figure 2-1 Measured of line impedance range for residential and commercial

power line

The above figure is the data drawn from the research of Nicholson and Malark, a

limited sanapling of Z, during the LM 1893 design on the residential and commercial

power line.

From the Data sheet of the LM 1893, the total line attenuation that allows from full

signal to limiting sensitivity is about 70 dB. A test on the cable has I 00 Ohms

characteristic impedance, 125 kHz carrier frequency gives a measured result of 7dB

of attenuation for 50 m of signal propagation with I 0 Ohms termination. Hence, in

order to increase the communication range, matching line impedance and filter

Voice Command Controller 2-8

network should be taken into account to reduce signal power loss due to attfmuation

and prevents noise from polluting the power line.

b) Thermal Considerations

To get maximum range of signal propagation, the signal placed on the line must be as

large as possible. The chip power dissipation, and the maximum junction temperature

(Tr) limit this. The falling output power at elevated T1 allows a more optimal output

power: a high power at low T1 and lower power at high T1 for the chip self

protection. However, the worst-case condition may occur within the ambient

temperature limit Tu = 85° C, the value of Tj may exceed the maximum Junction

temperature (T1 max= 150°C). The proper design and measurement of T1 will keep

the operation normally under worse case condition

c) Data Encoding

I

Figure 2~2. A simple encoded datn packet, generated by the transmit controller

(National Semiconductor, LM1893 Data sheet)

In the LM\893 reference data book has discussed the Data Encoding scheme as

follows:

The first 0 to 2 bits of the data transmitted may be lost whilst the receiver

settles to the DC bias point required for the given transmitter/ receiver pair

carrier frequency. Hence, with proper data encoding will tolerate the lost bits

and correct communkation.

A system consists of many transceivers ;bat normally listen to the line at all

times, waiting for a transmission that directs one or more of the receivers to

operate. If any receiver finds its address in the transmitted data packet, further

actim such as handshaking with the transmitter is initiated. The receiver may

comnumicate with the transmitter, via re-transmission, that it has received the

Voice Command Controller 2-9

data, waiting for acknowledgment before acting according to the received

command. Error detection and correcting codes may be employed throughout.

The transmitter must have the capability to rc~transmit after the time if no

response from the receiver is heard (under the assumption that the receiver

does not detect its address due to noise or line collision). (National

Semiconductor, Linear Circuit, p 5-154)

Fig. 2-2 is an example of a simple transmission data packet. The 8 bits preamble

allows the receiver biasing with enough bits left over, which allows the receiver

controller to detect the synchronous bit that signal the start of a transmission. If there

is no transmission for sometime, the receiver simply needs to note that a data

transition has occurred and begin its watch for a synchronous bit.

The receiver uses the synchronous bit to signal that the address and data immediately

following. The address data is then tested against itself. If the address is correct, the

received data will be loFtded. In case the address is not correct, the controller returns

to the state of watching the incoming data for its address. The signal detection,

address load and checking mechanism should be fast enough to minimise the time

spend in loops after being false-triggering. If the controller detects an error, it should

resume watching the LM 1893's data out for transmission, the next bit will be shifted

in and the process repeated.

2.2 ActiveX control: Speech SDK4.0

2.2.1 Introduction

Today, adding speech to the application is no longer need special hardware and

software. Writing a Voice command-Enable Win32 or Web application is a fairy

routine task. The key change to this is the fast development in technology and effort

made in recent years for signal processing such as speech synthesis and voice

recognition. Several leading vendors have promoted third party development for

speech-base application, moving away from vertical integration to a licensing model.

Many vendors offer their own Software Development Kit (SDK), which requires the

developer and end user have the appropriate engine software present on their

platform.

Voice Command Controller 2-10

Speech recognition engines have features varying amongst systems and the decision

to which engine to work with depends on the needs of the applkation as well as its

environment.

2.2.2 Overview of Speech engines

a) Speech recognition

A Speech recognition engine is a software program that converts a digital audio

signal into recognition speech. The engine allows the programmer to write

applications that can treat the voice as an input device.

First, the sound is captured by the sound card through a microphone and then is

converted into a more manageable format. The converter translates the stream of

amplitudes that form the digital sound wave into its frequency components. The basic

challenge is to extract the meaningful sound infonnation from the raw audio data. The

next stage is the identification of phonemes, the elementary sounds that are the

building blocks of words. Each frequency component of the sound is mapped to a

specific phoneme. This process actually finishes the conversion from sounds to

sentences. The final step is to analyse the string. A grammar, the list of words known

to the program, lets the engine associate sets of phonemes with particular words.

Figure 2-3. Speech Recognition engine

Voice Command Controller 2-11

Chaint Inc (1999, p3) has described that most speech-recognition engines can be

categorised by the way in which they perform the following basic tasks:

l. Word separation or Speaking mode.

2. Enrollment or Speaker dependence.

3. Matching technique

4. Vocabulary type and size.

• Word separation: is the degree of isolation between words required for the

engine to recognise a word.

Speech-recognition engines typically require one of the following types of verbal

input to detect words:

Discrete speech: Every word must be isolated by a pause before and after the

word, usually about a quarter of a second for the engine to recognise it.

Discrete speech recognition requires much less processing than word-spotting

or continuous speech, but it is less user-friendly.

Word-spotting. A series of words may be spoken in a continuous utterance,

but the engine recognises only one word or phrase. For example, if a word

spotting engine listens for the word "time" and the user says: "Tell me the

time" or "Time to go,t' the engine recognises only the word "time."

Word spotting is used when a limited number of commands or answers are

expected from the user and the way that the user speaks the commands is

either unpredictable or unimportant

Continuous speech: The engine encounters a continuous utterance with no

pauses between words, but it can recognise the spoken words.

Continuous speech recognition is the best technology from a useability

standpoint, because it is the most natural speaking style for human beings.

However, it is the most computational intensive because identifying the

beginning and ending of words is difficult, much like reading printed text

without spaces or punctuation.

• Enrollment I Speaker dependence: The degree to which the engine is restricted to

a particular speaker.

Voice Command Controller 2-12

~po..·ech-recognition engines may require training to recognise speech well for a

particular speaker, or they may be able to adapt to a greater or lesser extent. Engines

can be grouped into these categories:

Speaker-dependent: The engine requires the user to train it to recognise his

or her voice. A speaker-dependent system require providing the user's speech

sample and is trained to recognise the speech patterns of a particular user so it

can only be reliable by recognising commands spoken by the person who

trained it.

Training usually involves speaking a series of pre-selected phrases. Each new

speaker must perform the same training.

Speaker-dependent engines work without training, but their accuracy usually

starts below 95 percent and does not improve until the user completes the

training. This technique takes the least amount of processing, but it is

frustrating for most users because the training is tedious, taking anywhere

from five minutes to several hours.

Speaker-adaptive: The engine trains itself to recognise the user's voice whilst

the user performs ordinary tasks. Accuracy usually starts at about 90 percent,

but rises to more acceptable levels after a few hours of use.

Two considerations must be taken into account with speaker-adaptive

technology. First, the user must somehow inform the engine when it makes a

mistake so that it does not learn based on the mistake. Second, even though

recognition improves for the individual user, other people who try to use the

system will get higher error rates until they have used the system for a whilst.

Speaker-independent: Speaker- independent system in contrast does not

require infmmation about the speaker, so that anyone ~an speak to the

application. With the myriad variations between speakers and so their accent,

the speech engine can be trained to improve performance.

The engine starts with accuracy above 95 percent for most users (those who

speak without accents). Almost all speaker-independent engines have training

or adaptive abilities that improve their accuracy by a few more percentage

points, but they do not require the use of such training.

Voice Command Controller 2-13

• Matching technique: is the method that speech engine uses to match a detected

word to known words in its vocabulary.

Speech-recognition engines match a detected word to a known word using one of

these techniques:

Whole-word matching: The engine compares the incoming digital-audio

signal against a pre-recorded template of the word. This technique takes much

less processing than sub-word matching, but it requires that the user (or

someone) prerecord every word that will be recognised -sometimes several

hundred thousand words. Whole-word templates also require large amounts of

storage (between 50 and 512 bytes per word) and are practical only if the

recognition vocabulary is known when the application is developed.

Sub-word matching: The engine looks for sub-words, usually phonemes aml

then performs further pattern recognition on those. This technique takes more

processing than whole-word matching, but it requires much less storage

(between 5 and 20 bytes per word). In addition, the pronunciation of the word

can be guessed from English text without requiring the user to speak the word

beforehand.

• Vocabulary type and size: is the number of words that the engine searches to

match a word.

Vocabulary type and size is which allows the developer to create application specific

vocabulary and language model. Small vocabularies consist of 50 words or less, and

are applicable for controlling computer functions using spoken command. Large

vocabularies are used for dictation purpose.

Speech-recognition engines typically support several different sizes of vocabulary.

Vocabulary size does not represent the total number of words that a given engine can

recognise. Instead, it determines the number of words that the engine can recognise

accurately in a given state, which is defined, by the word or words that are spoken

before the current point in time. For example, if an engine is l',tening for "Tell me the

time," "Tell me the day," and "What year is it?" and the user has already said "tell,"

rrme," and "the," the current state has these two words: "time11 and "day."

Speech-recognition engines support these vocabulary sizes:

Voice Command Controller 2-14
-------- ---

Small vocabulnry: The engine can accurately recognise about 50 dif!Crcnt

words in a given state. Although many small~vocabulary engines can exceed

this number, larger numbers of words significantly reduce the recognition

accuracy and increase the computation load. Small-vocabulary engines arc

acceptnble for command and control, but not for dictation.

Medium vocabulary: The engine can accurately recognise about 1000

different ·vords in a given state. Medium-vocabulary engines are good for

natural language command and control or data entry.

Large vocabulary: The engine can recognise several thousand words in a

given state. A large-vocabulary engine requires much more computation than

small-vocabulary engine, but the large vocabulary is necessary for dictation.

b) Text to Speech (TIS)

A speech synthesis engine is a software program that converts word into a digital

audio signal (Microsoft MSDN library, 1999). The speech synthesis engine does that

by converting words to phonetic and prosodic symbols. The prosodic symbols are

codes that the synthesis engbe uses to control the speech, emphasis of the synthesised

speech by making them louder or longer, or giving them a higher pitch. Other words

may be de-emphasised. Without word emphasis, or 11prosodi', the result is a

monotone voice that sounds like a robotic.

The TIS engine does basically the reverse of what the SR and the DSR engines do.

Its input is plain ASCII text, and its output is a mono, 8-bit, II kHz audio formats and

is described as Pulse Code Modulation (PCM). PCM is a commonly used method to

obtain a digital representation of an analog voice signal. A PCM bit stream is

composed of a sequence of numbers that are samples of the voice amplitude. As

mentioned earlier, a basic element in any speech- related engine is the phoneme. A

phoneme is an atomic unit of sound that can be used to form words. The programmer

can identifY a spoken language by looking at the set of its phonemes. The TIS engine

provides a way to convert from a string to its phoneme-based representation and then

to an audible sound. The sound then can be played through a computer's speakers or

saved to disk as a W A V file.

Voice Command Controller 2-15

A tcxHo-spccch engine translates text or phonemes into audible sound in one of

several ways, either by synthesis or by di-phonc concatenation.

Concatenated Word. Although Concatenated Word systems arc really synthesisers,

these are one of the most commonly used text-to-speech systems around. In 2:

concatenated word engine, the application designer provides recordings for phrast"s

and individual words. The engine pastes the recordings together to speak out a

sentence or phrase. If the programmer use voice-mail then he will hear one of these

engines speaking, "[You have] (three] [new messages]." The engine has recordings

for "You have", all of the digits, and "new messages".

Synthesis: A text-to-speech engine that uses synthesis generates sounds like those

created by the human vocal cords and applies various filters to simulate throat length,

mouth cavity, lip shape, and tongue position. The voice produced by current synthesis

technology tends to sound less human than a voice produced by diphone

concatenation, but according to Microsoft, it is possible to obtain different qualities of

voice by changing a few parameters.

Diphone Concatenation: A text-to-speech engine that uses diphone concatenation

links short digital-audio segments together and performs inter-segment smoothing to

produce a continuous sound. Each diphone consists of two phonemes, one that leads

into the sound and one that finishes the sound. For example, the word 11hello" consists

of these phonemes: h eh I re. The corresponding diphones are si/ence-h h-eh eh-1 I-re

re-si/ence.

Diphones are acquired by recording many hours of a human voice and identifYing the

beginning, ending of phonemes. Although this technique can produce a more realistic

voice, it takes a considerable amount of work to create a new voice and the voice is

not localisable because the phonemes are specific to the speaker's language.

Voice Command Controller

Pltll ASCII
Tnt

Abbreviation
and acronym

database

Word
emphasis

rules

Pronunciation
dtctlonary

~t'j
IL-.

PhOneme-to
sound

database

Figure 2-4. Text-to-Speech Engine

2-16

2.2.3 Introduction to Microsoft Speech development Kit

(Speech SDK4.0)

As speech has become more feasible on average PCs, vendors have been developing

and promoting their speech engines. Even though they all support similar

functionality, each speech engine has its own specific features and proprietary API. In

designing a speech application, the developer has to decide which engine to use and

probably have to rewrite the program substantially to use the other API.

The Microsoft Speech API is an attempt to correct this problem. By promoting an

industry-standard programming interface for speech.

The Speech API allows writing Win32-based applications (for Windows 95 or

Windows NT) that use speech recognition and text-to-speech. The API is specified as

a collection of OLE Component Object Model (COM) objects. Using OLE makes

speech readily available to developers writing in Visual Basic, C/C++, or any other

programming language that can access OLE objects directly or through automation.

With other Windows Open Services Architecture (WOSA) services, the Speech API

is intended as a standard interface that application developers and engine vendors

alike can code to. Programmers can write applications without worrying about which

engine to use, engine vendors can get instant compatibility with all speech

applications, and users gain the freedom to choose whichever speech engine meets

their budget and performance requirements

Microsoft has discussed in the Speech SDK reference manual, the Speech API offers

two levels of access: high-level objects designed to make implementation easy, and

Voice Command Controller 2-17

low-level objects that offer total control but requires more work. In the high-level

objects, they just call the low-level objects to do the work (the low-level objects arc

provided by the speech engine vendor). When the application uses the low-level API,

it's talking directly to the third-party code, bypassing Microsoft code completely.

Third-party
low-level
API

Figure 2-5 , relationship between high and low level API

The Speech API consists of four basics engines: Speech recognition (SR), Dictation

Speech recognition (DSR), Text-to Speech (TIS) and Telephony.

The Speech API is implemented as a series of Component Object Model (COM)

interfaces.

As discussed before, the SAP! model is divided into two distinct levels:

• High-level SAPI-This level provides basic speech services in the form of

command-and-control speech recogniti.on and text-to-speech output.

• Low-level SAPI-This level provides detailed access to all speech services,

including direct interfaces to control dialogs and manipulation of both speech

recognition (SR) and text-to-speech (TIS) behaviour attributes.

Michael C. Amundsen (SAP!, TAP! developer's, 1999) and Microsoft (Speech SDK

manual) have shown that each of these two levels of SAP! services has its own set of

objects and methods. In the following section, we will discuss the high-level SAP! as

it is used to implement the software part of the project. The high-level SAP! is chosen

because of the project' s time constrain (The High-level SAPI allows less developing

Voice Command Controller 2-18

time compare to the Low-level SAP/), however it provided enough methods and

properties that satisfied the requirement of this type of project.

a) High-Level SAP I

The high-level SAPI provides access to basic forms of speech recognition and text-to

speech services. This is ideal for providing voice-activated menus, command-buttons,

and so on. It is also sufficient for basic rendering of text into speech.

The high-level SAP! interface has two top-level objects, one for voice command

services: Speech Recognition (SR), and one for voice text services Text-To-Speech

(TIS).

Voice Commands and Voice Text provide access to the Speech API's high-level

shared interfaces. These interfaces are somewhat more limited, and perhaps slower,

than the Direct APis, but provide automatic resource and memory (out-of-process)

sharing between voice applications.

Voice Command

The Voice Command object is used to provide speech recognition services. It is useful

for providing simple command, and control speech services such as implementing

menu options, activating command buttons, and issuing other simple operating system

commands.

The Voice Command object has one child object and one collection object. The child

object is the Voice Menu object and the collection object is a collection of enumerated

menu objects.

The Voice Command object supports three interfaces:

• The Voice Command interface

• The Attributes interface

• The Dialogs interface

The Voice Command interface is used to enumerate, create, and delete voice menu

objects. This interface is also used to register an application to use the SR engine. An

additional method defined for the Voice Command interface is the Mimic method. It

Voice Command Controller 2-19

-----·----------------

supplies a voice-aware application with the cquivalt:nt of a spoken voice command,

causes the command engine to act as if the recogniscr has hcard the command.

The Attributes interface is used to set and retrieve a number of basic parameters that

control the behaviour of the voice command system. The programmer can enable or

disable voice commands, detect wave-in-audio device, adjust input gain, establish the

SRmode.

The Voice Menu object is the only child object of the Voice Command object. It is

used to allow applications to define, add, and delete voice commands in a menu. The

programmer can also use the Voice Menu object to activate and deactivate menus and!

optionally, to provide a training dialog box for the menu.

The voice menu collection object contains a set of all menu objects defined in the

voice command database. Microsoft SAPI defines functions to select and copy menu

collections for use by the voice command speech engine.

Voice Text

The SAPI model defines a basic text-to~speech service called voice text. This service

has only one object-the Voice Text object. The Voice Text object supports three

interfaces:

• The Voice Text interface

• The Attributes interface

• The Dialogs interface

The Voice Text interface is the primary interface of the TTS portion of the high-level

SAPI model. The Voice Text interface provides a set method to start, pause, resume,

fast-forward, rewind, and stop the TIS engine whilst it is speaking text.

The Attribute interface provides access to settings that control the basic behaviour of

the TIS engine. For example, the programmer can use the Attributes interface to set

the audio device to be used, set the playback speed (in words per minute), and tum the

speech services on and off. If the TTS engine supports it, the programmer can also use

the Attributes interface to select the TIS speaking mode. The TIS speaking mode

Voice Command Controller 2-20

usually refers to a prcdclined set of voices, each having its own character or style (for

example, male, female, child, adult, and so on).

The Dialogs interface can be used to allow users the ability to set and retrieve

information regarding the TfS engine. Microsofi docs not detcnninc the exact

contents and layout of the dialog boxes but by the rrs engine developer.

Dialog Name Description

About Box
Use to display the dialog box that identifies the TIS engine and shows

'ts copyright information.

Can be used to offer the speaker the opportunity to alter the

Lexicon Dialog pronunciation lexicon, including altering the phonetic spelling o

roublesome words, or adding or deleting personal vocabul:uy files.

<.-an be used to display general information about the TIS engine.

General Dialog
Examples might be controlling the speed at which the text will be read,

the character of the voice that will be used for playback, and other use

preferences as supported by the TIS engine.

Can be used to offer the user the ability to alter the pronunciation o

Key words in the lexicon. For example, the TIS engine that ships with

ranslate Dialog Microsoft Voice has a special entry that forces the speech engine to

xpress all occurrences of "TTS" as "text to speech," instead of just

eciting the letters "T-T-S.t'

Table l The Voice Text dialog boxes.

Voice Command Controller 2-21

b) Low level SAI'I

DSR

Direct Speech Recognition (DSR) is the process that converts sounds into strings

whilst the user is speaking. DSR nr:cds a large vocabulary that exists in contcxt. 1\

context-free grammar dctincs a spccilic set of \vords. whilst an in-context grammar

involves a virtually endless list of words. Therefore. DSR needs more processing

power than SR. Recognising speech involves many variables. from the speaker's \·oicc

and accent to the type application. There arc two types of dictation-based recognition:

discrete and continuous. The Speech SDK 4.0 supports continuous dictation. the more

sophisticated form. In discrete dictation. the application has a defined vocabulary of

recognisable words, and the user must pause for a few milliseconds between words

when speaking. This limitation doesn't exist in continuous dictation, where the end of

a word need not be clearly indicated by a pause. This means much more work for the

engine, necessitating high optimisation and computing power for good results.

TEL

Telephony applications are applications that are accessed via the telephone rather than

locally over the PC. A GUI application may also support telephony features although

Ute user interface deigns for the two interaction mechanisms arc significantly

different. Many GUI applications support telephony because of the flexibility that a

long-distance connection to the PC provides. Telephony applications use the same

speech recognition engines used for Command and Control speech recognition. and

the same text-to-speech engines used on the PC.

TEL applications use objects called "telephony controls" that work like the

constituent controls of a dialog box. A telephony application is composed of questions

and answers exchanged between the application and its users. Each of these fragments

of conversation occurs under the supervision of a telephony control.

The Telephony control implements an interface to allow voice synthesis, vmce

recognition, wave synthesis, and DTMF on single or multi-line voice telephone

deyices.

Voice Command Controller 3-22

Part 3 Circuits design and software development

This part will focuses on the design of the project in both hardware and software.

Firstly, the details project's requirements, and the system blocks functions will be

defined. Secondly, for each corresponding block function, design the details of

electronics circuits for each function, and they then are added together to complete the

system. Finally, in this part we will construct the program flowchart, which is used for

software implementation.

3. 1 Project specification and analysis

As introduced in the first part, the purposes of the project are to control electrical

devices remotely using the LM 1893 Carrier-Current transceiver, which takes the

main power line as its communication medium, and it will let the user to control the

devices directly or indirectly through telephone network.

For any communication or control system, error may occur in transmission as the

result of noise, in this project data encoder/ decoder will be used to detect the

corrupted data at the receiver.

The program interface sends the control/ data signal through the parallel port, as the

serial port will be used for interface with voice modem. Besides that, the unused pins

of the parallel port can be used for future implementation.

The project should complement with the Australia electrical standard AS 3000.

The program interface should provide sufficient functions and basic help system.

The project specifications can be summarised as follows:

• Use main power line for transmission medium.

• Provide error protection for data transmission.

• Data and control signals are send through the PCs parallel port.

• Voice telephony command can be accessed through modem.

• Provide sufficient control functions, program user interface and help

system.

Voice Command Controller 3-23

3.2 Hardware design

There are large number of remote control circuits that have been designed and

developed using different techniques and methods of transmitting control signal such

as RF, twister wire, friber optic, IF, etc. Transmitting the control signal or data

through the main power line is not a new idea. The Passenger Intercom installed on

the train is an example, this project is just one amongst various ways of implementing

this idea.

The fundamental requirement for any communication system is involved at least two

parties, which are referred as a transmitter unit and one or more receiver unit. There

are no exceptions for this project, it must have a transmitter to ~end the control signal

and a receiver to get and executes the received command. In this case, the process at

the receiver is just simply to perfonn a switching function to control the power to the

controlled devices.

3. 3 Main control transmitter

According to the project specifications, the main control transmitter consists of a

transmitting unit for data, a computer interface unit to receive the signal from the PC

and a Data encoder unit for error protection. In here, a telephone interface unit is

added to provide flexibility in telephony control such we can activate the control

through modem or the built in telephone interface module. In addition, a power

supply unit is also necessary for all the electronic devices in the whole circuit. Thus,

in total the transmitter has five main parts: a computer interface, a telephone interface,

a data encoder, and a main transmitting unit. The operation of the transmitter is as

follows:

The computer interface unit is responsible for receiving the incoming serial data

stream from the program control. The data signal is then converted into a suitable

fonnat and sent to the encoder unit.

At the encoder unit, the infonnation signal will be encoded and serially sent to the

transmitting unit.

The trmsmitting unit is represented by the LM 1893 Carrier current transceiver.

Encoded infonnation from the encoder is used to generate FSK modulated signal

Voice Command Controller 3-24

about 125kHz carrier. After be amplified, the modulated information is then passed

through the coupling transform on to the power line.

The telephone interface converts the analog signal of the incoming ring to the digital

form suitable for recognised by the program. The program control constantly monitors

the incoming ring signal from the telephone interface. If the signal is detected and

after a certain predefined number of ring, the line will be connected by the off-hook

signal sending from the control program. It then can detect voice command via

telephone line and is done by extracting and transferring the audio signal between the

sonnd card and the telephone. Fig. 3.1 summarises the transmitter basic block

functions and the position of each block in sequence.

L Main power lines

N I
E I I

• + •
' .

' !

i I I i I I

I ,_,, .. ~ J ModulaUcm and mnln
transmittino

I~
'

~ I ' J -
.

I Telophooo

I interfacing

I
j j D I Serial data encOtlad

i I

r m-_I Computer '
Interlacing

I

Encoder

Computer baso control

Transmitter

'---

Figure 3-l. Transmitter block functions

Voice Command Controller 3-25

3.3.1 Transmitter Circuit

a) Modulation and Transmitter section

The module is designed base on the LM 1893 CCT, with the central modulation

frequency is Fo = 125 KHz set by the capacitor C3 (560pF) and resistor RIO (5.6

KQ). From the technical data sheet, the LM 1893 can be operated with the

frequencies ranging from 50 KHz to 300 KHz. I have decided to select 125 KHz as

the carrier frequency for two reasons: First, it is safer to work with a middle range

rather than at the boundaries. Second, recommendations and application testing

designed provided by the manufacture are done based on the above selected

frequency.

R9 (IOKn) and C4 (IOOnF) are used to control the dynamic characteristics of the

transmitter output envelope. Their value are not critical and given by the manufacture.

These two components act as an Automatic level Control (ACL) and are functions of

loaded coupling transform tank Q. RIB (5.6KQ), line impulse noise.

Capacitor C8 (33nF) and the coupling transformer (T2) together construct a tank

circuit. The tank resonant frequency Fq must be correct to allow passage of

transmitter signal to the line. The value of C8 can be obtained from the following

equation:

C8= I
(27rFo) LI

(L I is the inductance of the transformer' primary)

C2 (!OnF) and R8 (3.3KQ) are components of the Phase Lock Loop (PLL) loop filter,

which remove some of the noise and most of 2Fo components present in the

demodulated differential output voltage signal from the phase detector. Their values

affect the PLL capture range, loop bandwidth, damping and capture time. The data

sheet supplied the graphs of the relationship of they value versus the carrier

frequencies, hence these values can be obtained graphically.

RIS (4.70) acts as a voltage divider with Dl, absorbing transient energy that attempts

to pull the Carrier input above 44Volts.

Voice Command Controller 3-26

C9 and ClO both have value of220 nF/220V, and they primary function is to block

the power line voltage from the coupling T2's line side winding. In addition, together

with the T2's line side winding, they comprise u LC highpass filter.

The tank transform (TI) serves as isolation and matches the power line impedance

and so produces maximum carrier signal coupled to the main line. For 125 KHz

carrier frequency. a transformer with tum ratio N=7 .07, L 1 = 49uF is used as required

from technical data of the LM 1893.

MODlJUaTON &MAIN CARRIER

Figure 3-2 Main Carrier

b) The Encoder section

Serialol3h from
r~nco4er

The serial binary data from the computer interface is converted to parallel form by the

shift register MC 74164 (8 bit serial to parallel converter). The parallel data at the

output of the shift register is then fed to the Encoder MC 145026 (Form of Encoder

and Decoder Pair CMOS MC 145026/ MC 145027. Motorola Semiconductor

Technical data)

The MC 145026 encodes nine lines of information and serially sends this information

upon receipt of transmit enable signal (TE pin). Pin A9/D9 of the device is grounded

as there are only 8 bits data coming from the shift register. In the circuit, the TE input

is grounded to make the encoder transmit data continuously.

Each data bit is encoded into two data pulses. A logic zero (0) is encoded as two

consecutive short pulses, a logic one (1) as two consecutive long pluses. During

Voice Command Controller 3-27

transmission, the MC 145026 will output two identical data words, and between them,

no signal is sent for three data periods.

The capacitor Cl (5.1 nF) and resistors R5 (50Kf.l), R6 (IOOKQ) define the timing for

the device with the oscillation frequency of 1.71 KHz. We can use other value of

frequency of oscillation, but a good match between the Encoder and Decoder must be

ensured.

The data encoded from the MC 145026 at its output pin (pin 15) is then sent to the

Modulation/ transmitter section (pin 17 ofLM 1893). A pulse up resistor R7 (4.7 KQ)

is used to ensure the data in its digital level. Fig. 3~3 below is the circuit diagram of

the Encoder section.

I'T' Seriill datil lt~'e<~m frem PCs

~l ~
"'R hrterf3ee

I! ~ •• ~16~ ~
u

... '0,
CIOIC1C10'CYC1CY

0
I

-
mmm ~0~0 ' "' '<C

f7
K7 0

~ u u

~ ~ " ~ 0 u

ol ' - ~ 0 -
Encoded d;;rf:;~ t11 pin 17

~ L
oiLM 1U:I

fooK, j:Cl ~.
"'

ENCODER

Figure 3-3 The Encoder circuit

Voice Command Controller 3-28

c) Computer interface section

Provided isolation between the computer-based controller and the transmitter, this

section consists of two opto-couplers H II G I (High Voltage Darlington Output),

which get the data signals and clock from the program via the parallel interface 25-

pin, O-shell connector. The values of resistors Rl, R2, R3 and R4 serve as current

limiting to the devices. The current transfer of H II G I is typically I OmA

.._ n COMPUTER INTERFACING vee

To DD1 Rl U4
l rn+ B + ... c

To PCs GND E
To DBO IU A

"'' lOOR I "" l rn+ B + lK
-'- ... c R3

E ,,..,, lK

T~ Encotler ' 7

Figure 3-4 Computer interface circuits

d) Telephone interface section

The telephone interface circuit consists of a bridge rectifier diode and a SV zener

diode 06 IN-4748, which convert SOAC Volts of the Ring signal from telephone line

(Ring and Tip) to low level 5 Volts DC. The zener diode is also using to protect the

circuit from voltage spikes. An opto-coupler 4N35 (UI) will then detect the DC level,

converts it to digital form, and sends to the computer monitor program via parallel

cable DB-25.

The circuit is protected against voltage spikes or transients by a metal oxide varistor.

A low pass filter is form by a I ~F capacitor Cl3, which attenuates any substantial

AC voice signals to prevent varistor from placing an excessive load on speech signal.

The 6.8 KQ resistor R4 helped to dissipate power away from the rest of the circuit.

When the program detects the incoming ring signal and after a certain number of rings

defined by the user, the computer sends an off-hook signal to the U7, which is also an

opto-coupler. The output U7 in turn drives the transistor, hence provides a complete

path for the relay RL I and the telephone is brought to the answer mode.

Voice Command Controller

T• P• OND

Ql

"' DC33?

Lt0

- '"
'"'---rt-r-~'"""

•
m

D>

"' '

Dl

""
~I~ --fo-

-Q.sm
Figure 3~5 Telephone interface circuits.

3-29

In the speech circuit, a 600 Ohms: 600 Ohms isolation line transformer (T3) is used

(Stephen J.Bigelow, 1983) to provide audio transfer whilst still maintain the

impedance matching level between the telephone line and the sound card. . In

addition, two IOV zener diodes 1N4733 are connected in a back-to-hack configuration

across the line for transient protection purpose.

Fig. 3-6 below is the simple speech circuit. It should be noted that, the speech circuit

is required to get Austel permitted before it can connect to the phone line according to

Australia Telecommunication law.

,11 to Rind Tip ~3 I
~
rn'

Jl~ ~ ""
.._;I~ P""l

~
i;:oD8

.Q

"tr,,,.
11'4733

Figure 3-6 Speech circuits

Voice Command Controller 3-30

3.4 The Receiver

The receiver has a carrier detect and demodulation unit in order to pick the designed

signal, and demodulates the signal to its original form. A decoder section is then

required for translating the encoded signal fed from the demodulation unit. The

correct and suitable command signal from the decoder will then drive the control

circuitry, in this case is a control-switching unit. Similar to the transmitter circuits, the

receiver also needs a power supply to provide power necessary to operate the

electronic and electrical devices in the whole circuit. All together, there are four main

parts, which exist in the receiver: A main carrier detection and demodulation unit, a

decoder unit, a control switching and finally a power supply unit.

The receiver circuit can be designed quickly by re-configured the modulation and

transmitting part of the transmitter (pin 5 of the LM 1893) then modify the rest with

suitable devices.

L

N

Main power lines

E I I
' ' ' ... l ...
i i ----1- .. ---- ----- --- . ---~
~---t-·--- ------

I
~]IL~- --~-- ---~~=r···-·r_·_'"-'"_tslgnals-----------~

,
1

Powar Supply I . ' . Carlllr Signa racel'/lng
I anddamodulallf1\l

I

1_LDomo~"'"~ ""''dolo

··.·. I r----- I

B~=El' , ... ~ .,,, ~~------.~,\oa;i -··_"" .. ~
Receiver

Figure 3~ 7 The Receiver and control circuitry

Voice Command Controller 3-31

3.4. 1 Receiver circuit

a) Receiver and Demodulation

This circuit is the same as the modulation circuit discussed in the transmitter, the

differences are the LM 1893 is now set in recciviug mode, and its operation is reverse

to that of the transmitter.

In receiving mode, the Tx /Rx pin (Pin 5) has been held low, so that the transmitting

section of the chip is being disabled.

The high pass filter selects the signal from the controller. The filter consisting of the

two capacitors C9 and C 10, the transformer Tl and the bandpass filter that make up of

CS and Tl. As the result, only the carrier signal and the band-limited noise are

allowed to pass. These filters also attenuate heavily the 240 V AC and the transient

spike energy. The signal is fed into the Carrier 110 receiver input (Pin 10). In side the

LMI893, the balanced Norton-limiter amplifier removes DC offsets, attenuates line

frequency, performs as a bandpass filter and limits the signal to drive the Phase Lock

loop (PLL) phase detector.

The output signal from the phase detector containing AC and DC data signal, noise,

system DC offset and other frequency components passes through a RC lowpass filter

and finally through an impulse noise filter to produce serial data at the open collector

output data out (Pin 12).

The capacitor C2 (10 nF) and resistor RS (3.3 Kn) have been chosen as components

of the (PLL) loop filter that removes some of the noise and the most of the 2FO

components present in the demodulated differential output voltage signal from the

phase detector. According to the Technical data of the LM 1893, they affect the PLL

capture range, loop bandwidth, damping, and capture time. Because the PLL has an

inherent loop pole due to the integrator action of the JCO (via C3), the loop pole set

by C2 and the zero set by RS gives the loop filter a classical 2nd-order response.

Capacitor C5 (100 nF) stores a voltage corresponding to a correction factor required

to cancel the phase detector differential output DC offsets.

The resistor R7 (4.7 KQ) is the pull-up resistor is sized to supply adequate pull-up

voltage whilst preserving adequate output low current drive.

Voice Command Controller 3-32

~----,
r---------~ ~··~--~~~

ALCSTABt. r--?...
100 c:APl ~j'f::::L=~_j; 1COCJ.Pl 0

"''
Z!Htl S.6V f-.-!!- ,----

!IT MT I:±J']'ll~, .. -=~2 BIT EASE,_ r._::
"•

fL- DA'TOUT

1 LMLmA

PLL flL 'T::l!-.:i'!:::=='-J PUnLTli-

T'Llfi'Z f-;'c,-------.
01!. TrH f--!!-

Figure 3-8 Receive and Demodulation circuits

b) Decoder circuits

The main component in the decoding unit is a MC1450]7 decoder IC, which is in

pairs with the MC145026 encoder used in the transmitter.

The operation of the MC145027 decoder is as follows: the MC145027 receives the

serial data form the output of the de-modulator (LM 1893), which are encoded by the

~1~":145026, outputs the received data if it is valid.

Motorola (Communication Devices, 1993) has discussed that the transmitted data

(consisting of two identical data words) are examined bit by bit during reception by

the decoder.

The first five digits are assumed to be address bits, and if the received address

matches the local address (set by Dipswitch SWI) AI through AS (Pin I - 5) of the

decoder. The next four data bits are stored in an internal register but not transferred to

the output data latch.

As the second encoded word is received, the address must again match. If the match

occurs, the new data bits are now checked against the previous stored data in the

register. If the four bits data match, the data is transferred to the output data latch by

Valid Transmission signal (VT at pin! I) and remains until new incoming data

replaces it. In the mean time, the VT output (pin II) is set to high, and remains high

until an error is received or no signal is received for four data periods.

Voice Command Controller 3-33

The resistor pack (4.7 K, type Plastic DIP) is for current limiting purpose between the

Local Address (SWl) and the decoder.

The values of components attached to the MC 145027 arc available from the technical

data of the device in form of look-up table, with different of oscillation frequencies.

The resistor R5 (50 K) and C I (0.02 uF) together determine whether the narrow pulse

or wide pulse has been received. The resistor R6 (200K) and C 13 (I OOnF) are for

detecting both ends of a received word and end of a transmission.

To Switchin1 clra11it

Control d;~ti1 from
DemooiiiiiOiltlon elre11lt

0

~ ~
,, 0 ,

DECODER

..............

~ G s
" 0 •

Figure 3-9 The Decoder circuits

Voice Command Controller 3-34

c) Switching circuit

The first bit of the data output from the Decoder (pin 15 of MC 145027) is a control

bit. (bit 6 in the information data stream) and connected to the relay unit via switch

SW2 to control the operation of the transistor Ql (BC 337). The input Neutral line of

the main plug is connected directly to the Neutral of the output main socket. The input

main Livewire is connected to the Livewire output of the main socket via the Main

Relay.

Logic I or 0 of the control bit will trigger Q I, which in turn controls the Close /Open

state of the main relay. A Led (D4) attached to the circuit indicates the status On /Off

of the switching unit. The present of the diode D5 (IN4848 small signal diode) at the

collector of Ql is used to claim back the EMF generated by the main relay that may

cause oscillation in the control circuit.

The switch SW2 can be set to Override mode, and in this mode the Livewire line of

the main plug is directly connected to the Live output of the main socket, bypass the

control of the controlling program.

1
SWITCHING CIRCUIRT r.... '!-""

"""' 6 --~-c~LAY-SPDT~~to E

? tS *;in Ql '

" (DD337 _

--o(wsPDT lK. ~ ""' Ove.n'i. e IWiic h

Oenirelll!lnlll

' 7
frj deeeder

Figure 3-10. Switching circuits

Voice Command Controller .1-.15
~---------·-···---·~····-··· --··

ct) Power Supply circuit

The power supply unit consists of a thermally protected main transformer Tl that

converted 240V AC into 12V AC (rms value). 1\ bridge rectifier BRI and capacitor

Cll convert the AC into 18 VDC used to power up the LM 181J3. Capacitor Cl2

(IOOnF) is used to improve the filtering and to eliminate possihlc noise signals that

may present in the conductor. Other electronic devices in the circuit an.: po\Vcrcd hy a

SV DC derived from a voltage regulator US (LM7805).

Wirings and cables add inductance to the power source. This means that the power

supply cannot respond quickly to high, transient power requirement. To solve this

problem, decoupling capacitors are added at the key points in the circuits so that

transient power can be drawn from them rather than directly from the power supply.

The decoupling capacitor also reduces high frequency noise present in the power line.

The value of the decoupling capacitor widely chosen is 100 nF and normally placed

between the power and ground pins of all integrate-circuit devices.

Tl 5VvtC

~
U5

---, MC1805T
I

""' •lv 3

f--
ffi - :cu =m t:' 410u lOOn ~'<''· •• 240V.l8V ~

~
,. , Dl
'-:}ED

Fn111 mil in
p•wl!r line +

Figure 3-1 L Power Sup~ly circuits

Voice Command Controller 3-36

3.5 Software design

The planning stage associated with any problem is probably the most important part

of the solution. The program algorithm is a planning the solution, consists of series

step~by-step instructions that produce results to solve problem, it also easily to

translated in any different programming language. In this part, we will discuss and

develop of the program algorithm for the project control interface and gr"phically

represent it in the form of flow-charts.

a) Main program structure

The program consists of two levels in the module structure chart. The first level has

four sub-programs namely: User login, Main Control, Configuration, and Help

system.

For security purpose, the User login sub is designed so that it allows only authorised

person can gain access into the program. Furthermore, only person who has master

key can manipulate the user-access authorisation database.

The Configuration module contains a number second level sub-programs, in which

they will let the user to edit the Devices database and setting up options such as: select

different voice response, set volume, number of ring before answer a phone call and

change control mod between Direct-control and Voice telephony-control.

The Help-system is designed and compiled separately with the program but is called

by the main program. The purpose of the help system is that it provides information

about the Tele-Control program likes how to do the configuration, setting up the

controller, etc. The Help system contains information about the Speech SDK, some

basic step in programming with Speech SDK, example programs, and the Tele

Control hardware details.

The Main control is the heart of the program. It controls device by sending control

data to the controller via parallel port, performs speech synthesis I recognition and

responses to the command from the user.

Voice Command Controller J-37

In the case of telephony control mode is select, the main control will constantly

monitoring the telephone line and responses to the caller aflcr a certain number of ring

pre-defined by the user. An answering machine will be activated if the caller is

unauthorised to access the pwgram, and in this case the message from the caller will

be recorded in separate directory. The program can contain a large number of

messages, and it is depended on the system capacity.

Main tete-controller

I program

I
J

~ ~
I Main control I Configuration I I Help system I I User log·i~

I I
l Edit database \I Speech setup II T:~~r~~e l

I
I Modem II Audio line I

monitoring monitoring

I I I I
Send control Do phone- I Do Speaking II Get & Show I ~;and \ signal call message e

1 l
In/ Out Get number
win32

Figure 3-12. Main program structure chart

Voice Command Controller 3-38

b) The Set-up Options sub routine

This sub-routine when called will display a user interface in form of Tab strips panel.

It allows the user to select 4 difference control dialogs such as:

• Edit Device database: This lets the user to change the Device's name dynamically

to the database.

• Select program voice response/ volume: Through this control dialog, the user can

select difference program's voice responses and volume of the speaker.

• Control Mode dialog: In this dialog, telephony-control mode or direct control

mode is either selected

If the telephony-control mode is chosen, the communication and control will be

done through voice modem. In case of the Direct-control mode, the user can gives

command control via microphone or mouse click. Telephony-control can also be

set in this mode, but in this case, the audio card is used instead of Voice modem.

Fig. 3-13 is the flowchart of the Set-up Options sub routine. The program will

response to the new setting, which is done by the user right after exiting the set-up

dialogs. Even if the devices' names are changed, the new name of the corresponding

device should be recognised by the program when the device's name is heard. This is

done by re-created, and loads a new command menu into memory used by the voice

recognition engine.

Voice Command Controller

'
~--•-----.
'

I
Open database for

editing

L~---

• (7
\ Updating data base 1,

Done?

y.,

.-------"----~

. !
i Open form for setting: 1

1
Voice/ Volume/ Testir7;J!

; I
I Update speech engine. I
1 Update volume level i
L·-·--------~

3-39

y.,

,--------" -·
iOpen form for setting:
:Nuber of ring/ Change
; control mode

'
·----~-----.
i ' ! . Change mode ' 1
1 • I ,
--------- --------'-'

Done?

... ----ye.-----"
I

C-1~, End)
- __/

Figure 3-13 Set-up Options sub routine

No

Voice Command Controller 3-40

c) Main Control interface sub-routine

The Main-control interface only allows controlling 16 devices, for practical purposes

it can be designed to control up to 32 devices by setting 5 bits address ofthe receivers.

On the program control-interface, devices to be controlled are represented by their

nametags with the On/ Off control buttons and its status such as time-on, time-off.

The user can interact directly with the program via the mouse click event as well as

using voice command.

The status of each device shall be updated and displayed when command is executed.

This is done by extracting information from memory and placed in the corresponding

device's position. The program continuously monitors and a response to the command

events as long as it is executed. Before returns to the system, the program releases the

resources used from memory, specially the speech engine. (Fig.0-14)

Voice Command Controller

' '.

Start
'··

•
Initialise

•
Create& load

Command Menu

.• ,_l' ___ -- --

Display main
c.ontrol panel

'···· . --

... ---------;
' _y ___ _

~ Monitoring control ·
event

r-··

i '
! Set devices status ~

I
~- ---- .. ,__ ________ ,

'

' No

~>---- .. -------
,~~

y,

i ·-Refeas:-s·peiicfi---,
I engine I Release ,
L _____ me!'!!£!)' _____ j

(~L,
~~

Figure 3-14 Main Control interface sub-routine

3-41

Voice Command Controller 3-42

d) Monitoring Control Event Sub-routine

The main functions of this sub-routine are monitoring and responses to the control

events occur during program execution such as: the On/ Off buttons arc clicked or the

Voice Recognition engine has heard commands.

In the case of the control button is clicked, a serial bit data stream will be send

through the LPTI port without confinning with the user. But for the case of using

voice command, when the program hears the command, before executes the command

this sub-routine will verifY it with the user. The previous command heard will be

discard if the user said "No" or another command has heard by the engine. Because of

the limiting of the speech recognition technique, quality of hardware support and

users speaking in manner that cause speech recognition makes mistakes, so that

confirming command is necessary for any application which using voice command,

particularly in the case for destructive or irreversible command such as "Fonnat disk"

After executes the control evens, status of the device is also updated and displayed as

applied bold fonnatting on the text of the last control event and t.l-te time of occurrent

will be displayed in 'red' if the corresponding device is set active.

The flowchart of the 'Monitoring Control Event' Sub-routine is shown in Fig. 3-15

below.

Voice Command Controller

c~;~0
~-~-- --~--~-~-~---~~~-----·------~

On/Off button is
click?

Send control
data to LPT1

Voice Prompt device
status

Indicate device status

Exit

--·No--
Is command is

heard?

[
-J~

Comfirm
rmmand control

Command
confirmed?

Voice prompt:
command abort

No

Figure 3-15 Monitoring Control Event sub-routine

e) Send Control signal sub-routine

3-43

This sub-routine will be executed when called from the Control-Even sub-routine.

When executes, first it gets the index of the device to be controlled and translates to 8

bits binary number represent for the controlled device. Depends on the control event,

bit 6 in the data stream, which is the control bit is set to either zero (0) or one (1)

according to the Off or On demand of the Control event.

Although, the parallel port is used for communicating, but only three (3) bits data and

one (I) status bit of the port are actually used for monitoring and controlling. The

Voice Command Controller 3-44

signals arc sent serially through the port form the program at DBO with the clock

signal at DB 1 to shift register (74LS 164) of the hardware interlace.

For telephony control mode, pin 13 of the port is used to indicate the select condition;

here it is used to detect the ring signal on the telephone line. The voltage level on this

pin will be pulled low for every incoming ring signal from the phone tine. After a

certain ring, the Off-hook signal is send from the program to the controller via pin

DB2 of the port. The phone line will be on-line as long as the voltage level at DB2 is

in high state. The status of the line now is monitored by another sub-routine called

'Monitoring Telephone line'.

Both two control-modes use the same function to send the control signal. The

difference here is in the telephony-control mode, the program uses of pin DB2 and

SLCT (pin 13) of the port to monitors the telephone's line and get the voice

commands. The flowchart of this sub-routine is shown in fig. 3.8

Digital signal can be easily send out through the Parallel port with the help of a dll

function called In-Out32.dll.

Voice Command Controller

Start

I •
i Get device's index

'f_ -

Convert to binary

i

//"
Y /In voice control

- es-----...
1 "- mode

'

' I
~-'---· ~---''---

i Set DB2 high
' i L__ __ T _________ .I

i

Tum device
on?

' No

C)

Set DB21ow i

(\
ves~V

(' .
\)

•

3-45

Set control bit 6 low Set control bit 6 high

Send data

- -- - ____ 'f_ --

Send dock s'1gnal

"' r -"----\
Exit ·

\..__ _____ .. ------

I .,. __ _

No

Figure 3-16 Send Control signal sub-routine

Voice Command Controller 3-46

f) Telephony Control sub-routine (through modem)

There are two difference telephony control methods in this project, one operates based

on the built-in telephone interface circt1it and the other uses voice modem. Fig. 3-16 is

the illustration of the Telephony control sub-routine using modem.

By using modem as the telephone interface it allows the program performs more

functions, which arc provided by Win32 API (Win32 Application Programmer

Interface) and TAP! (Telephony Application Programmer Interface).

When this type of control mode is selected, the program will invoke an API function

Cai/Dialog and starts to listening to the attached phone line through communication

port via modem. A dialog box also brings up for the user to stop the application or

monitor the line is in used. This dialog box does not return until the user decides to

stop monitoring by pressing the associate button.

After a certain number of rings, the Off-hook signal will be sent out and the line is

connected. As illustrated in fig. 3-17, a message is sent to the caller and requires

providing password.

If the program detects an incorrect password or a silent message after thirty seconds,

another voice prompt asking the caller to leave message. The program now works just

like a normal answering machine. The user can play back the message from the pop

up directory. This is automatically created and display when selects this type of

control mode.

In case the control program detects a correct password, first the program will report

all the device status and then waiting for the command from the caller. The caller will

be asked to verify correct command recognised by the program before execution. The

phone line will be disconnected if the program detects thirty seconds idle time. The

idle time is defined as the silent duration starting from the end of utterance.

Voice Command Controller

i
No

'
'

: --------No----·-
1

IPr~~p~-~~-~~~~,ct- :
L message ' ---r- -

; __ ._ _____ _

play message :
folder j

-----·-------- , __ ;

' ' 1 Start '
',_)

• • /,/"--..._
' ·-, __

y,.

L -·

Call API Dialog

•
•

line monitoring

/--_
,---Y••--- --<~ Detect ring ~>--

,------~------, ~-/
. I

Prompt gel password !
_ _j

Correct password >----Yes----,

---- --------···
i Enter Control program. '
:Report devices status
'------- -----

_______, ____ -----
- "------- ''

Monitoring Voice
command

No

;
No

' /' .
_y,. __ -</ Recogni~ ___ j

j ~ommand,......-/

,------ --, ---/
I Confirm Command j

I

I --·--l __ ~nd Control signal]
l_ ~_:___ -- -----

Figure 3-17 Telephony Control sub-routine (using modem)

3-47

Voice Command Controller 3-48

g) Telephone line sub routine (using built-in hardware interface)

This sub routine is basically similar to the one described in 3.37, but in here the

communication takes place via a built-in hardware interface module and the audio

card. However, I have decided to limit it performance functions such as: request

password, record caller message, accepting DTMF signal. This is because to

providing such functions, large number of codes will be added to the program, and

requires more computer resources and time to develop.

This routine is an experiment of using an ActiveX user control component of the

Visual Basic program. A complete telephone line monitoring is built as a single

control component. The user can monitors, disconnects the line when it is set to be

active.

The program has preset values of number-of-ring before answer and idle time

duration, but they can be set to a suitable value during program execution.

Voice Command Contfoller 3-4'!
-------------------~------ ·-----·

No

.. -..

- --Yes-

No

,------ ------ "-- --

Disconnect line.

Start

• •
Phone Control

enable

Connect line

..
•

"'

Promt and Monitoring
Voice command

•
" Idle more than
user preset time/

/ -

'"
•

Initialise

• •
Display phone

monitoring dialog and
Monitoring line status

•
/Detect user preset

number of nng _ '--

No

//Command
recognised

Ya"
v

Confirm Command

•
Command~

_Confirmed?

•

..

---- - ----- · Send Control signal

No

No

Figure 3-18 Telephone line sub routine (using built-in hardware interface)

Voice Command Controller 3-50

h) Idle time detection sub routine

Idle~tirne detection is one of the functions of the Telephone line monitoring ActivcX

component. When active, this sub routine will continuously check if there is a

message sent from the main program about the start or end of the utterance, which is

detected by the Voice Command API.

A time counter is used for measuring the idle state length in seconds. Whenever the

utterance starts, the counter will be reset to zero, and starts to count up if the end of

utterance is detected. At the set point, the program sends an off hook signal to

disconnect the line. During the counting state, if the start of the utterance is detected,

the counter then is reset immediately and the whole process is repeated.

,--,
~· Start
............. ~.,.....-_/

initialise ;
·------------- __________ j

'
' -. --------H---·--------

' ' I ,-__________ _
!
! ! Monitoring line status

~---------,------------

/_)''-
Detectsta~

utterance?

'" ~---"----1

! Reset counter I

i
No

~.I
No-~etect end o~_i

~~
'
'"

1
----'-- --,

1

Start counter 1

r------=-~.r·---

t-<c:u(=~
~county

I
'" I

[~isco~:~-;;~,J ---,
r'~
~d__:

Figure 3-19 Idle-time detection sub routine

Voice Command Controller 3-51

i) Synchronisation of voice recognition and Voice synthesis (apply for half

duplex sound card)

The speech recognition and speech synthesis share together the same speech engine.

Therefore, an application cannot speak and listen to the command at the same time.

For system, which is installed a full-duplex sound card; there is no need to be

concerned about synchronising between recognition and synthesis of the speech APis.

However, if the systems have installed half-duplex audio cards, synchronising the two

above must be taken into account when developing voice application programs. This

constrains is used to cause problems whilst designing this program, the system will

crash easily just by simple mistake. This is quite difficult to avoid in case of

development large, complex applications and lack of experience.

In fig. 3.14 below, the process of speech recognition and synthesis is a closed loop.

When the synthesiser method is activated, the recogniser needs to be de-activated and

vice versa They can be set to activate or de-activate through their properties

".Deactivate(Menu)' or ". Activate(Menu)'. When either of them is set de-activate,

they stop listening or speaking and release the sound card and system resource. If a

method is called and the corresponding recogniser/ synthesiser has not yet been

activated, an error is generated.

Synchronising the voice recognition and voice synthesis is better be done by using

their Events such as .SpeakingDone() •• SpeakingStart(), .CommandRecognise()

It is found that whenever the error is generated even through by some other causes,

there certainly is a corruptions in system resource, reset the system is necessary in this

case and better than try to end the running tasks via the Ctr-Alt-Del.

Voice Command Controller

' ' y,,
I

/
Start

)

•
Initialise engines

I •
Prompt Welcome
message

to!,

•
iDe-activate voice
',synthesis engine.
!Activate voice
;recognition engine

--- ·-------------,

---""'--- ~0 / ., '

~7 ___ _j

' y,,
··-----"-----
i Deactivate Voice
; recognition engine
·!Activate Voice
!synthesis engine ______ j

, ______ .. ,____ -----..,

, Start Speaking I
L-·--,--·----·

I r--------:
L ~s k' --d---.._? !'
----~~---~

Figure 3-20 Synchronisations of voice recognition and Voice synthesis

3-52

Voice Command Controller 4-53

Part 4 Implementation and testing

4. 1 Software implementation

4. 1. 1 Objects in VB Visual Basic

Visual Basic provides the fastest and easiest way to create applications for Windows

environmental it has a complete set of tools to simplify rapid application

development.

The "Visual" part refers to the method used to create the graphical user interface

(GUI). Rather than writing numerous lines of code to describe the appearance and

location of interface elements, you simply add pre-built objects into place on screen.

The "Basic" part refers to the BASIC (Beginners All-Purpose Symbolic Instruction

Code) language, a language used by more programmers than any other language in

the history of computing (Microsoft's MSDN Library, 1999). Visual Basic has

evolved from the original BASIC language and now contains several hundred

statements, functions, and key words, many of which relate directly to the Windows

GUI. The objects in visual basic are:

• Forms: Fonns are objects that expose properties, which define their appearance;

methods define their behaviour; events define their interaction with the user. By

setting the properties of the form and writing Visual Basic code to respond to its

events, the programmer customises the object to meet the requirements of an

application.

• Controls: Controls are objects that are contained within form objects. Each type of

control has its own set of properties, methods and events that make it suitable for a

particular purpose. Some of the controls, the programmer can use in an

applications are best suited for entering or displaying text. Other controls allow

access other applications and process data as if the remote application is part of

the program code.

• Object Arrays: is a group of the same type of control or form sharing the same

name and events.

Voice Command Controller 4-54

• System objects: Visual Basic provides several special objects that arc neither

fom1s nor controls. These include the Menu, Clipboard, Debug, Screen and Printer

object. Each of these objects allows the programmer to access some underlying

capability in Windows. These objects can also have properties and methods

associated with them.

• Properties, Methods, Events: Visual Basic forms and controls are objects,

which expose their own properties, methods and events.

Properties can be thought of as an object's attributes.

Methods are very much like regular language statements, but they act directly on

an object. Each method may have one or more arguments detailing specifically

how the method will operate, eg. ObjectName.MethodName [arguments]

Events are predefined VB procedures and can be as its responses when the user or

program code performs some action on a control. Each control has its own unique

set of events. Each event reacts to a different action.

4. 1. 2 Main Program functions

Having described about Speech SDK and Visual Basic program, in this section, we

will focus and discuss on implementing Voice command in VB plus some of the main

program's functions by code examples such as: Send control signal, Get number,

Monitoring telephone line. Refer to Appendix I for complete program coding.

a) Initialise Speech Engines

Listing 4b.l Initialise Speech engines and Load Main control GUI. (Abstracted)

'**
'Sub-procedure name: MD!Form_Load
'Purposes: Loads Main control interfaces, and initialises engines.
'Function called: LoadNewDoc, Menu_Create, SetVol(volCtrl.IMaximum,

Speech Sayit.
'Corrupted Global variables: none
'Input: LoadResStrings
'Output: Menu Files
'**

Private Sub MDIForm_LoadO
Dimi%

IdleTCounts = 0

Voice Command Controller

LoadRcsStrings Me

engine= TcxtToSpccch.Find("Mfg=Microsoft;Gcndcr=l; Style=4"
'Select the engine, SAP/ style. This is .\ynonymous with
'doing TextToSpeecii.CurrentMotle =engine

TextToSpeech.Select engine

'Open the mixer with devicelD 0.
rc = mixerOpen(hmixer, 0, 0, 0, 0)

lf((MMSYSERR_NOERROR <> rc)) Then
MsgBox 11 Couldn't open the mixer. 11

Exit Sub
End If

' Get the waveout volume control
OK= GetVolumeControl(hmixer, _
mixer line_ componenttype _ dst_ speakers, _
mixercontrol_controltype_ volume,_
vo!Ctrl)

Call SetVol(volCtrl.!Maximum /2)
Call LoadNewDoc

'Initialise Voice command engine
Vcommand.initialized = 1

'Create Voice command menu
Call Menu_ Create(gMyMenu)

'Engine must be enable and command menu must be activated
Vcommand.Enabled = I
Vcommand.Activate gMyMenu

End Sub

Discussion

4-55

The main tasks of this Sub-procedure are to create System file Menu, selects and

initialises speech recognition and speech synthesis engines used when the program is

executed.

The program's pull down menu is assigned at run time and done by loading the

corresponding data string stored in 'Resource String' to each sub-menu.

The Text-to speech engine is select by create an object to handle the object passed

from the method TextToSpeech.Find(RankList). This object is represented the

engine found by the above method, it is then selected by the method

TextToSpeech.Select engine ans used by the program.

Voice Command Controller 4-56
------·----

The string "Vcommnnd.initialized = I" is usc Lo initialise the Speech Recognition

engine, which loads the engine into memory.

However, in order to usc the Voice command, a Voice menu object must be created

and activated to represent a voice menu for this application. This is done through two

function calls: create menu by Call Mcnu_Crcatc(gMyMenu), then activate it by

Vcommand.Activatc (gMyMenu).

Detecting the existing of Audio device interface is also importance, as the program is

designed mainly based on the use of Audio Interface. In the above example, this is

detected by method mixerOpen(), if an error returned by the method this mean the

program can not detect the Audio device in the user system.

b) Create Voice Menu Command

Listing 4b.2 Create Voice Menu Command

'**
'Function name: Menu Create
'Purposes: Create voice command menu from the database.
1Fw1ction called: None
'Corrupted Global variables: none
11nput: Device Database, field 11 device name11

•

'Output: gMenu (Voice command menu for the program control)
!**
Sub Menu_ Create(gMyMenu As Long)
Dim X%

gMyMenu ~ fMainForna.Vcommand.MenuCreate(App.EXEName, "state!", 4)
fMainForm.Data.Recordset.MoveFirst I

ForX%~0Tol7

fMainFonn.Vcommand.AddCommand gMyMenu, 1,_
fMainFonn.Data.Recordset.Fields(11Device_Name 11

), "when you say 11+ _
fMainForm.Data.Recordset.Fields(11Device Name11

),
11 listen listn, 0, nu

MainForm.Data.Recordset.MoveNext
Next X%

End Sub

Discussion

This function creates a voice menu for the Voice Command, and is done by the use of

the Voice Command Control property 'V command.MenuCrcatc(Applicalion. flag)'.

Voice Command Controller 4-57

Devices' name, which have been stored in the Devices database arc extracted and

added to the list of command strings in the Voice menu data base one after another.

Thus if the Voice recognition engine has heard the command, which matched one in

the command set in the Voice menu, an event will occur and the program then can

take an appropriate action.

The Voice menu must be activated before using Command-recognise to issue an event

control, if not an error will be generated and the system may be 11 crashedn.

c) Do Speaking

Listing 4b.3 Synthesis text

'**
'Function name: Speech_ Say It
'Purposes: Synthesise text string.
'Function called: None
'Corrupted Global variables: none
'Input: String
'Output: Spoken words
'**
Sub Speech_Saylt (By Val szValue As String)

fMainFonn.TextToSpeech.Speak szValue

End Sub

Discussion

This is the simplest function used in the program and consisting only one line of code.

The Voice Text property 'TextToSpeech.Speak (string)' takes the string value from

the calling program and just translates that to the audible sound.

In using half-duplex audio card, detecting Speaking Start and End of the Speech

synthesis must be done in order to synchronise both the Speech recognition and

Speech synthesis.

d) Recognise Command

Listing 4b.4 Command recognition

'**
'Procedure name: V command_ CommandRecognize

Voice Command Controller 4-58

'Purposes: Gencrutes Event.
'Function called: Specch_Saylt, Control
'Corrupted Global variables: S 'Device Index detected by this procedure
'Input: Command 'heard from user
'Output: Audible sound
'**~*************************
Private Sub Vcommand_CommandRccognizc(ByVaiiD As Long, By Val CmdName
As String, By Val Flags As Long, By Val Action As String, By Val NumLists As Long,
By Val ListValues As String, By Val Command As String)

Dset =False
Heard= False

With frmDocument
Fori%=0To 17 'compare with 18 command in voice menu

Select Case Command

Case .DevName(i).Caption:

If i <= 15 Then ' index of device from 0 to 15
s = i

Call Speech_ Sayit("You selected device name 11 &
.DevName(i).Caption & 11 yes or no ?")
Heard= True

Elself(i = 16) Then 'invisible command string in database: 11 Yes, _
'No"

End If

Dset =True
Heard= True

Call Speech_Sayit("Heard Command")
Call Control(S, Dset)

End Select
Nexti%

End With

End Sub

Discussion

If Heard= False Then
Call Speech_Saylt("Piease! Try again")

End If

This procedure enables the program to respond to the user's command when the

recognition engine heard and recognised a spoken phrase. This is done by using

Voice Command Controller 4-59

CommandRccognisc (..)property. This property creates an event when a command is

recogmscd from the assigned command set.

When the device's name is recognised as defined from the data set, the program must

first request verification from the user before processing the command by calling the

Control () function. In the above procedure, the heard command will be repeated by

confirm with the user via Yes/ No command string.

Identify the recognised command can be done via other parameters such as use the

data in Action (a stdng parameter that contains action data to accompany the

recognised command, and are application specific), or the identifier ID (Identifier of

the command that is recognised). But in this case, these parameters can not reflects

the name of the device to be controlled.

4.2 Hardware implementation

Like many other practical projects, implementation of hardware required to go

through number of steps from initial stage as construct and testing prototype circuit to

testing and modification final assembly circuit. This section will explain and discuss

the processes of implementing the hardware as part of the project.

4.2. 1 Prototyping

This is the initial and also an important step of the process implementing the designed

circuit.

Partial functions of the circuits are built and functional test on the Pre-drill prototype

boards such as: decoupling circuit, serial to parallel converter, encoder, switching

circuit. A few modifications are made and updated on the schematic diagram.

4.2.2 PCB design

After testing and update the circuits, PCB now can be designed and made. The PCB

art works are done using software package named Prate! Design System version 3.5.

The following are steps of designing the PCBs:

• Step I: Create schematic diagram from the schematic editor package. At this

stage, wiring and connection between components must be made. Assign

components Footprint, which is PCB patterns for the component and will be used

for Net List generation. As the PCB Design package has a reference library with

Voice Command Controller 4-60

components' pattern setting based on industriul standards. The names or the

patterns in the PCB library arc referred as the Footprint for the selected

component on the schematic diagram. For example, resistors used on the circuit

have power rating of 0.25W; the pattern in the PCB library AXIAL 0.3 can be

used as Footprint for them.

• Step2: Create Net List

The Net list is an ASCII text file in the Protei format. The typical Net list format

includes descriptions of parts, such as the designator and package type combined

with the pin~to-pin connections that define each net.

o Step3: Loading Net List on the PCB design and create PCB artwork.

Few jumpers and wire links are made on the PCB, as there are few crossing

connections as single-sided boards are used. The physical layout of the components

is arranged according to their group functions for easy testing purpose.

Conductor consideration: due to dielectric breakdown. A 1.8mm conductor's width

applies for the high voltage from the main power line, 0.3mm conductors widths are

for all other low voltage and digital signals activities.

4.2.3 Circuit construction

To produce a functional circuit, individual components are assembling on the PCB

and soldered component leads to the etched copper conductors.

For easy managing in soldering the components to the board, the lower profile

components such as resistors, diodes are assembled first and then the IC and so on.

Transformer is placed last and firmly on the board and check polarity before soldered

as if remove the transform, it will require much more heat to the soldered leads than

other components and that may damage the pads.

The 25 pins "D" type chassis mounted connector is connected to eight pins female

tenninal connectors and two telephone-socket wires.

Final checking the construction circuit is carried on. There are two important steps:

Firstly, to ensure there is no dry joint, solder joint or wrong component oriented and

position.

Voice Command Controller 4-61

Secondly. continuity tests thoroughly and ensures no short circuit on the voltage

supply.

4.2.4 Testing

As most of the project's functions have been prototyped and tested at the initial stage

of the design process (which are the Computer interface, Serial to Parallel converter,

Encoder, Power supply, and the Switching circuit) before construction takes place. At

this stage, the circuit functions must be tested as a whole system rather than being

isolated and tested individually. The following is the testing procedure:

a) Visual inspection:

Before supply power to the circuits, final visual inspection is done to ensure

components have been correctly assembled on boards, no short circuit on the PCB

design, nor solder bridge.

b) Power Supply test:

After visual inspection, the Transmitter is power up. Voltage level at the output of the

regulator and individual IC at its power-input pin is checked if a +Svolts supply

presented. The voltage at pin 15 of the LM 1893 must be 18 volts.

c) Testing Computer interface:

A communication cable is connected to the PC with the simple control program,

which designed for testing purpose.

Digital signal is sent to the controller periodically. The voltage levels at pin 4 of IC4,

IC8, ICI, IC7 are observed with the use of a digital Oscilloscope to check if the De

coupling circuit working in correct manner.

d) Serial to parallel converter and Encoder functions:

The output of the IC4 (represent the Clock signal) and the output of!C8 (is a Control

Data) are fed to the shift register. The test-program now needs to send data only one

bit at a time.

The output of the 74LS164 (Qo to Q7) is checked to see if the data correctly shifted.

There is problem at this stage due to this device does not working as specified in the

Voice Command Controller 4-62

data sheet provided. A small modification is made on the circuit to reduce lhc supply

voltage to this device.

The Encoder output signal at pin 15 is also captured on the oscilloscope. If the device

function correctly, the encoded data on the screen of the oscilloscope will be a string

of short pulses and longer pulses depend on the digits at the input of the device. The

short pulse represents for the encoded logic zero, and the longer pulse represents for

the encoded of logic on I.

e) Modulation function

This test is done following the procedure provided by the manufacture.

First, trim Fo by putting the chip in the TX mode, setting a logical high data input,

and measuring the TX high frequency, 1.022 * Fo. Adjust R 0 on pin 18 for F ~

1.022Fo ~ 127,750 Hz.

Second, the line transformer is tuned. The chip is placed in the TX mode, a resistive

line load is connected to disable the ALC by reducing tank voltage swing below its

limit. FSK data is then passed through the tank so that the tank envelope may be

adjusted for equal amplitude for high and low data frequency by adjusting the slug in

the isolation transformer T2.

This test is also repeated on the receiver circuits, and the LMI893 of the receiver need

to be set in transmit mode (PinS at logic high) in order to carrier the test.

f) Override function

By switch the SW2 to override position, the relay on the receiver circuit must be

energised and the LED 4 should be turned on, which means the relay is functioning.

Voice Command Controller 4-63

g) Final Testing

In the final test, both the Controller and Receiver arc plugged in to the main sockets

and the control program is executed.

The control data need to be sent periodically to the Controller during the final test. In

order the system to work, the two wavcfonns, one at the output of the encoder of the

controller and one at the decoder of the receiver :~ho•Jid be exactly the same. This is

done by tunning the slug in the coupling transfom1 of both the transmitter and

receiver. At certain point of adjustment, the two wavefOnns arc identical and the relay

will be energised if the address sent from the Controller matches with the local

address of the Receiver.

4.3 Problems encountered and solutions

There are quite few problems occurred over the period of design and implementing

the project:

4.3.1 Problems in designing and development of hardware:

Some of component values derived from the technical data are not available from

suppliers, such as 50 K resistors. 5,100 pF. Therefore, we have to find what available

and can be used from the supplier and modified the circuit. For example, to achieve

50 K resistor, two I 00 K resistors must placed in parallel.

The PCB is not good in quality, so that few pads and tracks are damage when modify

and change components on the PCB.

During testing phase, it is found that the shift register (74LSI64) does not work with

the 5vo!ts supply specified from the technical data. Even through, this circuit has been

prototyped, tested separately and working fine with supply voltage from the parallel

port. The controller is then modified, a variable resistor is added to the circuit and

adjusted the supply voltage to the 74LS 164 down to about 4.2 volts. This is also done

on the IC4 (opto-coup!ing device), which provided clock signal to the 74LS164.

A I OK resistors pull-up is added to the circuit to between the Encoder and Modulator

in the Controller and between the Decoder and Demodulator at the Receiver to

provide adequate pull-up current drive for the encoded data.

Voice Command Controller 4-64

4.3.2 With designing Control program

Designing the program is the most difficult and troublesome part of the project

implementation. This is because of some reasons as follows:

I. Not satisfied the requirement of using the Speech SDK package in term of

knowledge, such as C++, experience with COM (Component Object Model),

Object Linking and Embedding (OLE), and understanding Win32 application

programming interface (API).

2. Not known programming in Visual Basic before start the project.

3. There has been no textbook found or documents available discuss about the

Speech SDK, the only one we could use here is the manual provided with the

SDK. Microsoft has an On-line help MSDN library, however the document is also

a manual and wrote for Visual C++ refe~ence.

System often crashes during development phase, and the main reason ts mtss

synchronisation between the speech recognition and speech synthesis engine. The

speech engine functions will not work after the program is reloaded if previously exit

the program does not completely unload the engine and there is no error indicated.

Voice Command Controller 5-65

PartS Conclusions

This project has been carried out under the supervision of Dr Daryoush Habibi. The

principal aims of this project are to design and implement a PC-based voice

command control system, which allows electrical devices to be controlled remotely.

The system allows the use of voice command as well as standard input devices such

as PC mouse and keyboard. The project employs the speech development kit (Speech

SDK) developed by Microsoft and the Carrier Current Transceiver LM 1893 designed

by National Semiconductor.

The project is motivated by the fact that many existing controlling circuits

suffer from limits such as cable length and signal interference. LM 1893

Carrier Current Transceiver is an attractive device that can be used to

overcome such limits by using the existing main power line as

communication medium In addition, systems that accept voice commands

have become increasingly popular in areas such as telephone banking,

passenger intercom on trains and voice mail. Microsoft Speech SDK 4.0 is a

progranuning toolkit for speech synthesis and recognition that has been

widely used in anticipation that user interface using speech will soon be

intergrated into PC environments. Speech recognition is an essential component

of any application that requires hands-free operation; it also can provide an alternative

to the keyboard for users who are unable or prefer not to use one. Users with

repetitive-stress injuries or those who cannot type may use speech recognition as the

sole means of controlling the computer.

The Speech SDK contains six ActiveX controls for speech recognition, dictation,

speech synthesis, and telephon, which can be used in Visual Basic applications. Voice

Commands and Voice Text provide high-level interfaces to the speech engine. These

interfaces are somewhat limited slower than the direct AP!s. Howeve, they provide

automatic resource (e.g. memory) allocation and out-of-process sharing between

voice applications.

Voice Command Controller 5-66

The Telephony Application Programming lntetface (TAP!) is one of the most

significant Speech APis. The telephony API model is designed to provide an abstract

layer for access to all telephony services across Windows platforms. The aim ofTAPI

is to allow programmers to write applications that work regardless of the physical

telephone medium available to the PCs. Applications written using TAP! to gain

direct access to telephone-line services work the same on analog or digital phone

lines.

Applications that use TAP! can generate a full set of dialling tones and flash-hook

functions (like that of the simple analog handset found in most homes), and can also

communicate with sophisticated multi-line digital desktop terminals used in high-tech

offices.

5. 1 Recommendations of applications and further directions

5. 1. 1 Applications

The system allows the user to control remote electrical devices by entering voice

commands. These commands are interpreted by the program into control signals,

which are then sent to the remote devices through power line. As a result, the system

is useful in domestic settings, particularly for those having difficulty with movement

such as the elderly or disable. The system is also suitable for industrial applications

such. as building energy management or where wiring, decoration and high signal

interference are issues of concern.

5.1.2 Furtherdirections

At this stage, control can be carried out in one direction. Extra time-switching circuits

can be added to both the Controller and the Receiver to reverse their function so that

two~way communications are possible. This is simple if only two parties are involved,

but in the case of multiple transmitters and one receiver, timing and identifYing the

message source can be difficult.

Voice Command Controller 5-67

The LM 1893 is designed for use with low line impedance, and the carrier input and

output are tied together on the same pin (pin 1 0). Furthermore, the coupling transform

serves as a filter for incoming signals. Effected by these factors, matching impedance

between system and the line is uncertain. The signal power loss due to mismatch will

be varied depending on the type and condition of the line. Increasing the transmission

range can be accomplished by the use of repeater.

The LM 1893 can be replaced by another device of the same familyLM 2893, which

allows matching impedance on both transmitter and receiver to increase transmission

range and receiver sensitivity as this device has separate receive/ transmit paths.

The software component is currently a working protope. However, Visual Basic code

can be optimised further to enable more efficient use of system resources. In

conjunction with hardware modifications, extra functions can be added to the program

such as controlling camera, video capture and displaying device locations on a map.

The system will then be suitable for security applications.

Telephony API provides much more functions than what has been used in the project.

Running on powerful PCs, the program can be implemented as a PBX server or a

digital answering machine, whilst still remain its main control functions. This

approach is promising because of the high cost of PBX and digital answering

machines.

Voice Command Controller 5-68

Appendix

Appendix 1: Tools and equipment used

Equipment

l. Soldering station.

2. Pre-drilled prototype Board

3. Digital Oscilloscope

4. DMM

5. Hand-drill kit

Software tools

l. Visual Basic V6.0

2. HTML compiler

3. Speech SDK 4.0

4. Protei Schematic-Diagram Design

5. Protei PCB design

6. Microsoft FrontPage

Voice Command Controller

Appendix 2: Part lists

Part Cross Reference Report For Receiver

Designator Component Library Reference Sheet

CI
C2
C3
C4
C5
C6
C7
cs
C9
CIO
CII
CI2
CI3
Dl
D2
D3
D4
D5
JPI
JP3
QI
Rl
R2
R3
R5
R6
R7
RS
R9
RIO
RI2
Rl3
RESPI
RLI

Ctc
!On
51'0p
lOOn
lOOn
In
lOOn
33N
220n
220n
470u
lOOn
lOOn
Bridge rectifier diode
TRANZORB SA40
!N4!48

LED
!N4148
HEADER3
HEADER3
NPN
!OOR
!OOR
!K
50K
lOOK
4K7
3K3
!OK
5K6
300R
4R7

RESPACK 4 .7K
RELAY -SPDT

5-69

Voice Command Controller

RL2 RELAY -SPOT
SWI SW DIP-5
Tl
T2 TRANS2
Ul LMI893A
U2 MCI45027
US MC7805T
VRI 5K

Specifications For PCB Receiver

On 3-Jun-2000 at 14:00:18

Components on board 42

Layer Route Pads Tracks Fills Arcs Text

--
Bottom Layer 0 327 6 0 2
Top Overlay 0 216 0 5 83
Bottom Overlay 0 0 0 0 I
Keep Out Layer 0 2 0 0 0
Multi Layer 162 0 0 0 0
--
Total 162

Plated Hole Size Pads Vias

0.6mm (23.622mil)
0.635mm ('~5mil)
0.7112mm (28mil)
0. 762mm (30mil)
0.8128mm (32mil)
1.016mm (40mil)

22 0
I 0

29 0
5 0

104 0
I 0

Total 162 0

Track Width Count

0.2032mm (8mil) 6
0.254mm (I Omil) 227
0.3048mm (12mil) 178
0.42mm (16.535mil) 84
0.854mm (33.622mil) 8
0.86mm (33.858mil) 36
2.4mm (94.488mil) 2
8.2mm (322.835mil) 4

545 6 5 86

5-70

Voice Command Controller 5-71

Total 545

Part Cross Referellce Report For: Tratzsmitter

Designator Component Library ReferenceShect

Cl Ctc
C2 !On
C3 560p
C4 lOOn
C5 lOOn
C6 ln
C7 lOOn
cs 33N
C9 220n
C!O 220n
C!l 470u
C!2 lOOn
Cl3 luF
Cl4 !OOnF
Dl TRANZORB SA40
D2 LED
D3 BR
D4 BR
DS DIODE
D6 ZENER2
D7 LED
D8 4733
D9 4733
Jl CONS
J2 CON2
JP! HEADER3
Plug! Audio plug
Ql BC337
Rl !OOR
t<L !OOR
R3 !K
R4 !K
R5 SOK
R6 lOOK
R7 !OK
R8 3K3
R9 !OK
RIO lK
Rll 4K7

Voice Command Controller 5-72

Rl2 300R
Rl3 5K6
Rl4 IK
Rl5 4.7R
Rl6 IOOR
RLJ RELAY -SPST
Tl 240V-18V
T2 COUPLING TRANSFORMER
T3 COUPLING TRANSFORMER
Ul 4N25
U2 45026
U3 74164
U4 A
US MC7805T
U6 LM1893A
U7 4N25
US 4N25
VRI 5K

Specifications For PCB Transmitter

Layer Route Pads Tracks Fills Arcs Text

--
Top Layer 0 4 0 0 0
Bottom Layer 0 499 21 0 2
Top Overlay 0 312 0 II 114
Multi Layer 209 0 0 0 0

Total 209 815 21 11 116

Total 209

Voice Command Controller

Appendix 3: Project specifications and features

Power dissipation: Transmit mode

Receive mode

Supply voltage:

Operating temperature

Working Frequency

• Features

Use Voice to control remote devices.

1.66W

1.33W

240V

-40 to 85 oC

125KHz

Accept DTMF signals, and voice command from telephone line.

Can control upto 32 devices.

Has function as a telephone answering machine.

Database is updated in runtime.

Allows selecting different voice prompt and speech engine.

The time of last events will be recorded.

• Applications:

Energy management systems

Security and alarm systems.

Home convenience control, appliance control

5-73

Voice Command Controller 5-74

Appendix 4: Selecting some particular components' values for LM 1893

h ••

Block diagram ofthe LM 1893 and Power line interface

Voice Command Controller 5-75

The following table is the summary of components used for the LM I 893 lor the

carrier frequency 125KHz recommended by the manufacture. Positions of

components are shown on the block diagram of the LM 1893 above. Note that for

different carrier frequency, value of components used can be draw directly from

corresponding function diagram provided from the technical data.

Application Information

• Recomm&ndod
Purpose

Effect of making tho component value:
Notes Value Smaller lafiJor

Co 560pF Togethsr, Co and Ao lncroases Fa Decroases Fo :t 5% NPO ~amlc. Use low TC
Ro 6.2kn setiCO F0 . Increases F0 Decroases F0 2 k pot and 5.6 k fixed A.

< 5.6 knot mcommendad. > 7.6 knot rocommended. Poor Fo TO with < 5.6 k Ro.

CF 0.047 p.F PLL loop filter pole Less noise immuno, hlghor More noiso immtme, lower Depending on RF value and
IDATA· more PLL stability. foATA· less PLL stability. Fo, PLL unstable with large

RF 3.3kfi PLL loop filter zoro PLL loss stab!e, allows PLL more stable, allows CF. Sao Apps. Info.~
less CF. Less ringing. more CF. More ringing. and RF valus.s not critical.

Cc 0.22J.'F Couples Fo to line, Low TX line amplitude. Drives lower tino Z. :.:::250 V non-polar. Use 2Cc
Cc and T 1 low-pass Less 60Hz T1 current More 60 Hz T 1 culfant. on hot and neutral lor max.
attenuates 60 Hz. Lass stored chruge. More stored c:harge. line isolation, safety.

Co 0.033JlF Tank matches line Z, Tank Fo up or incroasa Tank Fo down or decrease 100 V nonpolar, low TC, ±10%
bandpass IUters, L ofT 1 for conslant Fo. LofT1 forconstantF0 . High large-signal 0 noodad.

r, u .. isolates lr.,m line, Srnafler L: hicher Fo or Larger L: lower Fo or Optimize for low Fo line
recommended and attenuates Increase Cc; decreased Fo decreaseCc; increased Fo pull with control of Fo TC
XFMR transients... line pull. line pull. and a.

CA 0.1 f!-F ALCpole Noise spikes tum ALC off. Slower ALC responso. R,o~, optional. ALC stable
AA 10ktl ALCmro Less stable ALC. MorG stable ALC. forCA:e:-100_pF.

CL O.o47 .F'F Umlter 50 kHz pole, Higher pole F, more 60Hz Lower pole F, loss 60Hz Arry reasonably low TC cap.
60 Hz rejoc:tlon. rejecL Fo attenuation? reject, more noise 8W. 300 pF guarantees stability.

eM 0.47.f'F Holds RX path Vas Loss noise lmmuno, shorter More noioo immune, longer low leakage ± 20% cap.
Vos hold, faster Vos aqu~ Vos hold, slower Vas aqul- Scale with IDATA-
sit ion, shorter preamble. sition, longor proamblo.

c, 0.047.f'F Rejects short pulses Lees lmpulso reject. Jess Mom impulso reject, mora c1 charge time %bit nom.
like lmpulso noise. delay, more pulse jitlor. delay, loss pulse jitlor. Must be < 1 bit worst-case.

Rc 10kfi Open-col. pull-up Loss available sink l. Loss available source I. Rc~1.5 k!\On 5.6 v

Rz 12kfi 5.6 V Zene-r bias Larger shunt current, Smaller shunt current, 1 <lz<:30 mA recommended.
more chip dissipation. loss v-+- current draw. (Chip power-up needs 5.6 V)

Zr ~44VBV Tranalent clamp Zr failure, hlgllBt series Zr costly, lower series Recommend Zener rated
<60Vpeak A-excess peal(V, Zenor R gives enhaoced for :<:500 W for 1 ms.

and chip damage, transient clamp,
less ruggedness. more ruggedness.

Rr 4.7 fi Ttanslsnt I limit Damage Zr, pull up v+. Excessive TX attenuation. Carbon comp. recommendOO.
Dr ~44VBV Qvor-drlve Clamp Falluro on Transient Co!;jtly IAF 110005 or 1 N5819

"• 180 ll Basobleed Faster, towerTHD Ia. Inadequate turn-off spood. Boost optional. 0 8 F(-3 dB)
Oe PowerNPN Boost gain device EY.cesslve TJ and VsAT· More rugged, but costly. of >200 MH2. Rs > 24 Ohm.
Ro 1.1 .n curmnt satt1n9 A Mom Ia, need higher hre- Loss to, Jowar min. hro. lo=70[(10+RG)IAG] mApp.

Ce ~47p.F Supply bypass Translonts dostroy chip. Loss supply splko. v+ never ovor abs. max.

ZA 5.1V Stop ALC char go Exces-s ALC ALC AX charging ZA optional- 5.1V
In AX mode curran! flow not Inhibited over TJ ± 20% low foakago lype

Voice Command Controller 5-76

Appendix 5: Circuit diagram

!-I
I 1.

I
I

I

I I
' I

i -I
I I
I I

I

•l------JJ
' ' '
' ·~~~~~:::::JJ ' ' =0 I

J!l

" 0
'"
"

~ " =
" ' ~'

'
' ,.

~
II·

~,, __ ,_<a~·"~l,_ __ ~~-~~-~---

~l--1
'~~ ~·h.---

-• _,

'

;

' -;~

I Jt ' ; ,
' ' ' ' ' ' l-~

'

!
' ;:ij

l H
_;: '

<o-VlYII

"

~ •
" !S • "- • > =
" ~
0

~ ' -
<

I
.I
I

lf-j
! 1
I I
I •
• I ! I

1·1
II u

i

I
! I

!-1

I

. . - .. ------- - ----- ··--
··· .. ~-- ___ j_

. . .
l..,I,.J

'

..... ! ..

II·

...
--- i ·_Jl

!

LJ __ :l~

J
I

i
! I
i'l
j I
. I
I I

1.1
I I
• •
I !
I '

I I I

l'===o'====c==::=:::==·-:r .. :· _:_-:=_,~:_::r-.. ---~, =-~ J

Voice Command Controller 5-77

Appendix 6: PCB Artwork

Transmitter PCB Art work (Top view)

Voice Command Controller 5-78

Receiver PCB Art work (Top view)

Voice Command Controller 5-79

Appendix 7: Speech SDK 4.0 (Abstracted)

This appendix contains summary properties of three ActiveX controls using in the

project: Voice Command, Voice Text and Telephony API

• Voice Command control

Properties Descriptions

AutoGainEnable The current automatic gain value for a
Voice Command site

AwakeState The awake state for a Voice Command
site. This property is TRUE .If the site is

awake or FALSE if it is asleep.

CountCommands Returns the number of commands on
menu. Read only.

Device The device identifier of the wave-in audio
device currently used by the Voice

Command site.

Enabled TRUE if speech recognition is enabled
for the site or FALSE if it is disabled.

Must be set to TRUE to enable listening
for the object.

EnableMenu Enables the menu created with
MenuCreate.

hWnd Window handle. Read only.

Initialized Equals 1 if the control has been
initialised, 0 if not.

LastError Result code from the last method or
property invocation. Read only.

MenuCreate Creates a Voice Menu object to represent
a new or existing voice menu for an

application. Read only.

Microphone The name of the microphone used by a
Voice Command site.

Speaker The name of the current speaker tor a

Voice Command Controller 5-80

Voice Command site

Properties Descriptions

SRMode The GUID of the speech recognition
mode used for the site.

Suppress Exceptions When set to 1, exceptions will never
occur.

Threshold The threshold level of the speech
recognition engine used by a Voice

Command site.

Methods Descriptions

Activate Activates a voice menu so that its
commands can be recognised.

AddCommand New commands are added to the end of
the menu

CmdMimic Supplies a voice-aware application.
Causes the command engine to act as if
the recogniser had heard the command.

Deactivate Tells recognizer to stop listening and
release the microphone/sound card

resource.

Enableltem Permanently enables or disables a menu
items.

Genera/Dig Pprovides the user with full access to
engine-specific controls.

GetCommand Retrieves information about a command

LexiconDig Allows the user to display and edit his or
her pronunciation lexicon.

ListGet Retrieves the phrases stored in the current
list (by ListSet) for the selected voice

menu

ListSet Sets the phrases in a list for a voice
command

MenuDelete Deletes a menu from the Voice Menu
database.

ReleaseMenu Releases a voice menu from memory.

Remove Removes the specified commands from
the voice menu.

SetCommand Sets information for a command in either
the global or application specific

command set.

Voice Command Controller 5-81

Methods Descriptions

TrainGeneraiDlg Allows to trains speech recognition
engine, recognition accuracy should be

better for that particular user.

TrainMenuDig Train the engine for the selected menu.

TrainMicDig Trains the speech recognition engine with
training for a microphone

Events Descriptions

AttribChanged Occurs when a site attribute has changed

Clickln Occurs when the user clicks in the
object's icon.

ConunandOther Occurs when a spoken phrase is either
recognised as being from another

appliciltion's command set or is not
recognised

CommandReco gnize Occurs when a spoken phrase is
recognised as being from the application's

command set.

ConunandStart Occurs when recognition processing has
begun for a command.

Interference Occurs when the engine cannot recognise
speech properly for a known reason.

MenuActivate Sent when a menu's activation state is
changed.

UtteranceBegin Occurs when the speech recognition
engine has detected the beginning of an

utterance or sound.

UtteranceEnd Occurs when an utterance is finished.

VUMeter Notifies the application of the current VU
level, which indicates the loudness of the

digital-audio stream.

Voice Command Controller 5-82

Appendix 8: Bibliography

[1] National Semiconductor (1989). Carrier Curent Transceivers LM1893.

Special Pmpose Linear Devices. pp 5.136-5.158, pp. 2.393-2.399

[2] Motorola (1993). Encoder I Decoder MC 145026- MC 145027.

Communications Device Data. pp. 2.461-2.477

[3] Motorola (1995). Modulator/ Demodulator~ Analog Interface !Cs. Vol. 2.

pp. 8.38-8.48.

[4] Microsoft. (!998). Microsoft Speech SDK 4.0. Reference information for

AciveX developer [on line]. Available WWW.http//Microsoft.com

[5] Stephen J. Bigelow. (1992). Electronic speech circuits. Understanding

Telephone Electronics. pp 79-105. SAMS: Prentice Hall Computer Publishing.

[6] R.Villanuci & A. Avtgis & W.F.megow (1986). Electronic Techniques Shop

practices and Construction. Prentice Hall, Inc.

[7] M. Sanderson. (1988). The organization of Electronic System, Power

Suppliers, Control Circuitry. Electronic Devices A Top-Dowm Systems Approach.

pp. 2-!3, pp. 460-490, pp 5!0-56!. . Prentice Hall, Inc

[8] D.E.Taylor. (!972). Attenuators and filters, Transmission Lines. Linear

Circuit Theory. ppl97-254. John Wiley & Sons.

Voice Command Controller 5-81

[9] Ferrel G.Strcmler. (1992). Introduction to Communication Systems. Addison-

Wesley.

[10] Ronald J. Tocci. (1988). Digital Systems Principles and

Applications.Englewood Cliffs. Prentice Hall, Inc

[II] Ronald A.Reis. (1991). Digital Electronics Through Project Analysis. pp 497-

519. Macmillan, Inc.

[12] C.W Davison. (1989). Transmission Lines for Communications. Imdedance

Matching. pp.122-I51. Halsted Press-John Wiley & sons.

[13] Tomi Engdahl. (1998). Telephone line audio inte~face circuits.[online].

Available at http:\\electronics\Circuits\Phones\teleinterface.html

[14] Tomi Engdahl. (1999). Electronics circuit designed. [online]. Available at

http://www.hut.f!IMisc!Electronics/faq/sfnet.harrastus.audio+video/

[15] PC hardware projects page . Available at www.epanorama.net

[16] Dino Esposito. (1999).The Microsoft Speech SDK. [online]. Available at

http://premium.microsoft.com/isapiidevonly/prodinfo/msdnprod/msdnlib.idc?theURL

~imsdn/library/sdkdoc/dnplatf/d21/s17a.htm.

[17] Keith Westley. (1999). Voice Command Enabling Your Software. [online].

Available at http://www.codeguru.com/cgibiniaddpage

[18] Rob Thayer. (1999). Visusl Basic 6 Unleashed -Propfessional Reference

Edition. Sams Publishing.

Voice Command Controller 5-R4

[19] Dan Appleman. (1999).Visual Basic Programmer's Guide to the Win32 APL

Sams Publishing.

[20] B.Potter, Taylor Maxwell, Bryon Scott. (1993). Visual Basic Supperbible.

Secon Edition. The Waite Group, Inc.

[21] Mitch G. Van Thurston, Jr. (1995). Windows 95 Multimedia Programming.

pp. 117-214. M&T Books: MIS Press, Inc

[22] Paul Bonner. (1993). Visual Basic Utilities. Emeryville: Ziff-Davis Press.

[23] Taylor Maxwell, Jeff W., Ronald M. Michael Regelski. (1995). Using Visual

Basic 4. Data Access. pp. 9-279. Que Corporation.

[24] Steven Holzner. (1999). Visual Basic 6, Core Language- Little Black Book.

The Corio lis Group-Technology Press.

[25] Pei An. (1995, Volumn 26, No 3 & 4). Computer Radio Control for Home

Automation. ETI electronics magazine. pp. 57-65

[26] (July 1996). Eleiktor Electronics Magazine. 50 Circuits, Ideas, and Tips.

Signal- Control switch I & II. pp. 89-99.

[27] SAA Wiring Rules. AS 3000-1991. Standards Australia

Voice Command Controller 5-85

Appendix 9: Program coding

Main Form

Public IdleTCounts%

Dim S% 1 command index detected by Voice recognition

Dim Dset As Boolean

Dim Heard As Boolean

Dim t As Integer

Private Declare Sub CopyMemory Lib rrkernel32" Alias
"RtlMoveMemory"

(hpvDest As Any, hpvSource As Any, ByVal cbCopy As Long)

Private Declare Function OSWinHelp% Lib "user32" Alias
"WinHelpA" (ByVal hwnd&, ByVal HelpFile$ 1 ByVal wCornmand%,
dwData As Any)

'**
'Sub-procedure name: MD!Form_Load

'Purposes: Loads Main control interfaces, and initialises engines.

'Function called: LoadNewDoc, Menu_ Create, SetVol(volCtrl.IMaximum,

Speech_Saylt.

'Corrupted Global variables: none

'Input:

'Output:

LoadResStrings

Menu Files

'**
Private Sub MDIForm_Load()

Dim i%

IdleTCounts = 0

LoadResStrings Me

Me.Left = GetSetting(App.Title, "Settings", "Mainr,,-.ft", 1000)

Me.Top = GetSetting(App.Title, "Settings", "MainTop 11
, 1000)

Me.Width c: GetSetting(App.Title, "Settings", "MainWidth",
6500)

Me:Height = GetSetting(App.Title, "Settings", "MainHeight 11
1

6500)

Voice Command Controller 5-86

engine = TextToSpeech. Find ("Mfg=Microsoft; Gender=!; Style=4 or)

Rem Now Select the engine, SAPI style. This is synonymous
with doing TextToSpeechl.CurrentMode = engine

TextToSpeech.Select engine

' Open the mixer with deviceiD 0.

rc = mixerOpen(hmixer, 0, 0, 0, 0)

If ((MMSYSERR_NOERROR <> rc)) Then

MsgBox "Couldn't open the mixer."

Exit Sub

End If

' Get the waveout volume control

OK= GetVo!umeControl(hmixer,

MIXERLINE_COMPONENTTYPE_DST_SPEAKERS,MXXERCONTROL_CONTROLTYPE
VOLUME, vo!Ctrl)

Call SetVol(volCtrl.lMaximum I 2)

Call LoadNewDoc

Vcomrnand.initialized = 1

Call Menu_Create(gMyMenu)

Vcommand.Enabled = 1

Vcommand.Activate gMyMenu

'The following codes will reset the control

For i% = 0 To 15

Reset (i%)

Next i%

Call Speech_Sayit("System Initialization completed.")

End Sub

'**
Private Sub LoadNewDocO

Dim dbname As String

dbname = App.Path & "\Control.mdb"

With Data

.DatabaseName = dbname

.RecordSource = "DEVICES"

Voice Command Controller

.Refresh

End With

frmDocument.Show

End Sub

5-87

'**
Private Sub MD!Form_Unload(Cancel As Integer)

If Me.WindowState <> vbMinimized Then

Savesetting App.Title, "Settings", "MainLeft", Me.Left

SaveSetting App.Title, "Settings 11
,

11 MainTop", Me.Top

Save Setting App. Title, "Settings", "MainWidth",
Me.Width

Save Setting App. Title, "Settings", "MainHeight",
Me.Height

End If

' close the database

With Data

.Recordset.Close

.Database.Close

End With

Vcommand.ReleaseMenu gMyMenu

Unload DlgSetup

Unload frmDocument

Set fMainForm = Nothing

Unload Me

End Sub

'**

Private Sub mnuToo1Database_C1ick()

DevicesDTBase.Show

End Sub

Private Sub mnuToo1Setup_Click()

DlgSetup.Show vbModal, Me

End Sub

'**
'Procedure name: tbTooiBar _ButtonCiick

'Purposes: Access menu functions.

'Function called: None

Voice Command Controller

'Corrupted Global variables: none

'Input:

'Output: Depent on which menu is selected

5-88

'**
Private Sub tbTool.Bar_ButtonClick(ByV.al Button As
MSComCtlLib.Button)

On Error Resume Next

Select Case Button.Key

Case "New"

LoadNewDoc

Case "Save"

mnuFileSave Click

Case ''Print"

mnuFilePrint Click

Case "Find"

'To Do: Add 'Find' button code.

MsgBox "Add 'Find' button code."

Case "Help"

'To Do: Add 'Help' button

MsgBox "Add 'Help' button

End Select

End Sub

Private Sub mnuHelpAbout_Click()

frmAbout.Show vbModal, Me

End Sub

code.

code.

Private Sub mnuHelpSearchForHelpOn __ Click ()

Dim nRet As Integer

"

'if there is no helpfile for this project display a
message to the user

'you can set the HelpFile for your application in the

'Project Properties dialog

If Len(App.HelpFile) = 0 Then

Voice Command Controller 5-89

MsgBox "Unable to dis?lay Help Contents. There is no
Help associated with L.is _project.", vbtnformation,
Me.Caption

Call Speech_Sayit("Unable to display Help Contents. There
is no Help associated with this project.'')

Else

On Error Resume Next

nRet = OSWinHe~p(Me.hwnd, App.HelpFile, 261, 0)

If Err Then

MsgBox Err.Description

Call Speech_Sayit(Err.Description)

End If

End If

End Sub

Private Sub mnuHe1pContents_C1ick()

Dim 'nRet As Integ<:!r

'if there is no helpfile for this project display a message to
'the user

If Len(App.HelpFile) = 0 Then

MsgBox' "Unable to display Help Contents. There is no
Help associated with this project.", vbinformation, Me.Caption

Else

On Error Resume Next

nRet = OSWinHelp(Me.hwnd, App.HelpFile, 3, 0)

If Err Then

MsgBox Err.Oescription

End If

End If

End Sub

Private Sub mnuViewStatu~Bar_Click()

mnuViewStatusBar.Checked ~ Not mnuViewStatusBar.Checked

sbStatusBar.Visible = mnuViewStatusBar.Checked

End Sub

Voice Command Controller

Private Sub mnuViewToolbar_Click()

mnuViewToolbar.Checked = Not mnuViewToolbar.Checked

tbToolBar.Visible = mnuV.iewToolbar.Checked

End Sub

Public Sub mnuFileExit_Click()

Call Exits

End Sub

Private Sub mnuFileSend_Click()

'ToDo: Add 'rnnuFileSend Click' code.

MsgBox "Add 'mnuFileSend Click' cede."

End Sub

Private Sub mnuFilePrint_Click()

On Error Resume Next

If ActiveForm Is Nothin~ Then Bxit Sub

With dlgCornmonDialog

.DialogTitle = "Print"

.Cance!Error = True

.Flags = cdlPDReturnDC + cdlPDNoPageNums

If ActiveForm.rtfText.SelLength = 0 Then

.Flags = .Flags + cdlPDAllPages

Else

Flags = .Flags + cdlPDSelect.ion

End If

ShowPrinter

If Err <> MSComDlg.cdlCancel Then

ActiveForm.rtfText.SelPrint .hDC

End If

End With

End Sub

5-90

Voice Command Controller

Private Sub mnuFil.ePrintPreview_Cl.ick()

'ToDo: Add 'mnuFilePrintPreview Click' code.

MsgBox "Add 'mnuFilePrintPreview Click' code."

End Sub

Private Sub mnuFileProparties_Click()

'ToDo: Add 'mnuFileProper·:.ies_Click' code.

MsgBox "Add 'mnuFileProperties Cl~ck' code."

End Sub

Private Sub mnuFileSave_Click()

Dim sFile As String

If Left${ActiveForm.Caption, 8) = "Document" Then

With dlgCommonDialog

.DialogTitle = "Save"

.CancelError = False

'ToDo: set the flags and attributes of the common dialog
'control

.Filter= "All Files (*.*) 1*.*''

.ShowSave

If Len(.filenarne) = 0 Then

Exit Sub

End If

sFile = .filename

End With

ActiveForm.rtfText.SaveFile sFile

Else

sFile = ActiveForm.Caption

ActiveForm.rtfText.SaveFile sFile

End If

End Sub

Private Sub mnuFileNew_Click()

'LoadNewooc

End Sub

5-91

Voice Command Controller

Private Sub Timerl_T~er()

IdleTCounts = IdleTCounts + 1

End Sub

'Procedure name: Vcommand CommandOther

'Purposes: Generates Event.

'Function called: Speech_Saylt, Control

'Corrupted Global variables: S 'Device Index detected by this procedure

'Input: Command 'heard from use!'

'Output: Audible sound

'Description: Used to confirm command heard

5-92

'**

Private Sub Vcommand_CommandOther(ByVal CmdName As String,
ByVal command As String)

Select Case Command

Case ""

Call Speech_Sayit{"Comrnand was not recognised. Please say
again"}

Case "Yes"

Call Control{S, Dset)

Call Speech_Sayit ("Heard Command")

End Select

End Sub

'Procedure name: V command_ ConunandRecognize

'Purposes: Generates Event.

'Function called: Speech_Saylt, Control

'Corrupted Global variables: S 'Device Index detected by this procedure

'Input:

'Output:

Command 1heard from user

Audible sound

'**
Private Sub Vcommand_CommandRecognize(ByVal ID As Long, By Val CmdName

As String, ByVal Flags As Long, ByVal Action As String, ByVal
NumLists As Long, ByVal ListValues As String, ByVal Command As
String)

Dset = False

Heard = False

Voice Command Controller

With frmDocument

Fori% ""0 To 17

Select Case Command

Case .DevName(i) .Caption:

If i <= 15 Then

s = i

5-93

Call Speech_Sayit("You selected device name " &
.DevName{i) .Caption & " yes or no ?")

Heard = True

Elseif (i = 16) Then

Dset = True

Heard = True

Call Speech_ Sayit ("Heard Command")

Call Control(S 1 Dset)

End If

End Select

Next i%

End With

If Heard = False Then

Call Speech_Sayit("Please! Try again")

End If

Debug.Print Heard

End Sub

'Procedure name: phonel_DoPhoneCall

'Purposes: Generates Event.

'Function called: GetNurnber,Speech _Say It, Control

'Corrupted Global variables: S 'Device Index detected by this procedure

'Input:

'Output:

Command, DTMF from telephone line 'heard from user

Audible sound, executes Command

'Description: Is the main function of telephone control

Voice Command Controller 5-94

Private Sub phonel_DoPhoneCall(ByVal lineiD As LOWJ)

'This function gets called each time the phone is answered,
for each phone line.

'gecause Telephony supports multiple phone lines, this
function may be called simultaneously

'several times, each version (identified by lineiD) runnjng on
a different thread.

Dim result As Long

Dim size As Long

Dim wave As Long

Dim wavefile() As Byte

Dim filename As String

Dim sPassKey As String

Dim CFirstFour As String

Dim CNextSix As String

Dim CLastFive As String

Dim CExpDate As String

Dim s As String

Dim ss As String

Dim sDTMF As String

Dim Command As String

Dim P As String

On Error Resume Next

size = 0

DlgSetup.toggle = 0

'this line causes a recorded wave file to be used in place
of the text wherever it is spoken.

'{if yo1.1 comment out this line, the text-to-speech engine
will be used instead}

'This feature exists so you can prototype your program
with text-to-speech, then us~

'the wave list editor to do recordings of the string. See
the docs for more details.

phonel.WaveAddFromListString lineiD, "[FromFile] 11 +
vbNewLine + App.Path +

"\hianswer.wav=Hi. We can't come to the phone right
now. Please leave a message at the beep."

Voice Command Controller 5-95

'this is the heart of the program. The prompts are spoken
{or played if the waveadd worked),

'and the callers message is stored in wave. See the docs
for definitions of the settings used.

phone!. Speak li nei D, "Hi. Press one to leave message or two to
enter control mode after the beep. 11

PassKey:

'call our helper routine which gets numbers. See below

S = GetNumber(lineiD, 4, "Please say or enter the four
digit passkey.", _

"What is the passkey?",

"This is a sample. Just make up a
four digit number.",

"This is a sample. Just make up a
four digit number.")

If {S = "") Then

GoTo done

End If

If (S = ''1 2 3 4 '') Or (S = "1 2 3 4 ") Then

phonel.Speak lineiD, "the number you entered are "

phonel.Speak lineiD, S

phonel.Speak lineiD1 "Please enter the device number"

phone!. Speak lir."!ID, 11 The following devices are off"

For i% = 0 To 1

If frmDocument.CmdOff(i%) .FontBold = True Then

phonel.Speak lineiD, "device number"

phonel.Speak lineiD, Str(i%)

'phonel.Speak lineiD, (Labell (i%) .Caption)

MainControl.phonel.Speak lineiD, "is off11

End If

Next i%

phonel.Speak lineiD 1 "The following devices are on 11

For .i..% = 0 To 1

Voice Command Controller

I.f frmDocument.CmdOn(i%) .FontBold = True Then

phonel.Speak lineiD, "device number"

phonel.Speak lineiD, Str(i%)

'phonel.Speak lineiD, (Labell{i%) .Caption)

phonel.Speak lineiD, "is on"

End If

Next i%

SelectControl:

s = "100"

While s <> "*"

5-96

S = GetNumber(lineiD, 2, "Please say or enter the two digit
for di vice nwnber. ",

"What is the number?'',

"" '
"What is the number?.")

If (S = "") Or (S = "*") Then

GoTo done

End If

phonel.Speak lineiD, "the number you select are "

phonel.Speak lineiD, S

phonel.YesNoFromString lineiD, "[Prompts]"+ vbNewLine +

"Main=is this correct?" +
vbNewLine +

+ vbNewLine +

result, P

If (result < 0) Then

GoTo done

Elself (result <> 1) Then

GoTo SelectControl

End If

Command = S

"where=getting first four-"

"(Settings]"+ vbNewLine +

"CanGoBack=l" + vbNewLine,

Voice Command Controller

Select Case Command

Case "0 0 ", "0 0 "
If frmDocument.CmdOn(O) .FontBold = False Then

frmDocument.DON (0)

5-97

phonel.Speak lineiD, (frmDocument.DevName(O) .Caption)

phonel.Speak lineiD, ''is on''

Else!£ frmDocument.CmdOn(D) .FontBold = True Then

frmDocument.DOFF {0)

phone!. Speak lineiD, (frrnDocument. DevName (0) . Caption)

phonel.Speak lineiD, ''is off''

End If

Case '1 0 1 ", "0 1 "
If frmDocument.CrndOn(l) .FontBold = False Then

frmDocument.DON (1)

phonel. Speak lineiD, (frrnDocument. DevName (1) . Caption)

phonel.Speak lineiD, "is on"

Elseif frmDocument.CmdOn{l) .FontBold = True Then

frmDocument.DOFF (1)

phone!. Speak lineiD, (frmDocument. DevName (1) . Caption)

phonel.Speak lineiD, "is off"

End If

Case "0 2 ", "0 2 "
If frmDocument.CmdOn(2) .FontBold = False Then

frmDocument.DON (2)

phonel. Speak lineiD, (frmDocument. DevName (2) . Caption)

phonel.Speak lineiD, "is on"

Elseif frmDocument.CmdOn(2) .FontBold = True Then

frmDocument.DOFF (2)

phonel.Speak lineiD, (frmDocument.DevName(2) .Caption)

phonel.Speak lineiD, "is off"

End If

Case "0 3 ", "0 3 "
If frmDocument.Crnd0n(3) .FontBold = False Then

frmDocument.DON (3)

Voice Command Controller 5-98

phonel.Speak lineiD, (frmDocument.DevName(3) .Caption)

phonel.Speak lineiD, ''is on''

Elself frm0ocument.Cmd0n(3) .FontBold =True Then

frmDocument.DOFF (3)

phonel.Speak lineiD, (frmDocument.DevName(3) .Caption)

phonel.Speak lineiD, ''is off"

End If

Case "0 4 ", 11 0 4 "
If frmDocument.Cmd0n(4} .FontBold = False Then

frmDocument.DON {4)

phone!. Speak lineiD, (frmDocument. DevName (4) . Caption)

phonel.Speak lineiD, ''is on"

Else!£ frmDocurnent.CmdOn(4) .FontBold = True Then

frrnDocument.DOFF (4)

phone!. Speak lineiD, (frmDocument. DevName (4) • Caption)

phone!. Speak lineiD, "is off"

End If

Case "0 5 ", "0 5 "
If frmDocument.CmdOn(S) .FontBold =False Then

frmDocument.DON (5)

phone!. Speak lineiD, (frmDocument. DevName (5) . Caption)

phonel.Speak lineiD, "is on"

Elseif frmDocument.CmdOn(S) .FontBold =True Then

frmDocument.DOFF (5)

phonel. Speak lineiD, (frmDocurnent. DevName (5) • Caption)

phonel.Speak lineiD, "is off"

End If

Case "0 6 ", "0 6 "
If frmDocument.CmdOn(6) .FontBold = False Then

frmDocument.DON (6)

phone!. Speak lineiD, {frmDocument. oevName { 6) . Caption)

phonel.Speak lineiD, "is on"

Elseif frmDocument.CmdOn(6) .FontBold = True Then

frmDocument.DOFF (6)

phone!. Speak lineiD, { frmDocument. DevName { 6) . Captlon)

Voice Command Controller

phonel.Speak lineiD, "is off''

End If

Case "0 7 ", "0 7 "
If frmDocument.CmdOn(7) .FontBold = False Then

frmDocument.DON (7}

5-99

phone!. Speak lineiD, (frmDocument. DevName (7) . Caption)

phonel.Speak lineiD, ''is on''

Elseif frmDocument.CmdOn(7} .FontBold = True Then

frrnDocument.DOFF (7)

phone!. Speak lineiD, (frmDocument. DevName (7) . Caption)

phonel.Speak lineiD, "is off"

End If

Case "0 6 ", "0 8 "
If frmDocument.CmdOn(B) .FontBold = False Then

frmDocument.OON (8)

phone!. Speak lineiD, (frmDocument. DevName (8) . Caption)

phonel.Speak lineiD, "is on"

Elseif frmDocument.CmdOn(B) .FontBold = True Then

frmDocument.DOFF (8)

phone!. Speak lineiD, (frmDocument. DevName (8) . Caption)

phonel.Speak lineiD, "is off''

End If

Case "0 9 ", "0 9 "
If frmOocument.CmdOn(9) .FontBold = False Then

frmDocument.DON (9)

phone!. Speak lineiD, (frmDocument. DevName (9) . Caption)

phonel.Speak lineiD, "is on"

Elseif frmDocument.CmdOn(9) .FontBold = True Then

frmoocument.DOFF (9)

phonel.Speak lineiD, (frmDocument.DevName(9) .Caption)

phonel.Speak lineiD, "is off"

End If

Case 11 1 0 ", "1 0 "
If frmOocument.CmdOn(lO) .FontBold = False Then

Voice Command Controller 5-100

frmDocument.DON (10)

phonel.Speak lineiD, (frmDocument.DevName(lO) .Caption)

phonel.Speak lineiD, "is on"

Elseif frmDocument.CmdOn(lO) .FontBold = True Then

frmDocument.DOFF (10)

phone!. Speak lineiD, (frmDocument. DevName (10) . Caption)

phonel.Speak lineiD, ''is off''

End If

Case "1 1 "1 "1 1 "
If frmDocurnent.CmdOn(ll) .FontBold = False Then

frmDocument.DON (11)

phone!. Speak lineiD, (frmDocument. DevName {11) .Caption)

phonel.Speak lineiD, "is on"

Elseif frmDocument.CmdOn(ll) .FontBold = True Then

frmDocument.DOFF (11)

phonel.Speak lineiO, (frmDocument.DevName{ll) .Caption)

phonel.Speak lineiD, "is off''

End If

Case "1 2 ", "1 2 "
If frmDocument.CmdOn(12) .FontBold = False Then

frmDocument. DON (12)

phone!. Speak lineiD, (frmDocument. DevName (12) . Caption)

phone1.Speak lineiD, "is on"

Elseif frmDocument.Cmd0n(l2) .FontBold =True Then

frmDocument.DOFF (10)

phonel.Speak lineiD, (frmDocument.DevName(l2) .Caption)

phone1. Speak lineiD, "is off"

End If

Case 11 1 3 ", "1 3 "
If frmDocument.CmdOn(13) .FontBold = False Then

frmDocument. DON. (13)

phone1.Speak lineiD, (frmDocument. DevName (13) . Caption)

phonel.Speak lineiD, "is on"

E·lseif frmDocument. cmdOn (13) • FontBold = True T:1en

frmDocurnent.DOFf (13)

Voice Command Controller 5-l 0 I

phonel.Speak lineiD, (frmDocument.DevName{l3) .Caption)

phonel.Speak lineiD, ''is off''

End If

Case "1 4 ", ''1 4 "
If frmDocument.Crnd0n(l4) .FontBold = False Then

frmDocument.DON (14)

phone!. Speak lineiD, (frmDocument. DevName (14) . Caption)

phone!. Speak lineiD, "is on"

Elseif frmDocument.CmdOn(l4) .FontBold =True Then

frmDocument.DOFF (14)

phone!. Speak lineiD, (frrnDocument. OevName (14). Caption)

phonel.Speak lineiD, "is off"

End If

Case "1 5 ", "1 5 "
If frmDocument.CmdOn(lS) .FontBold =False Then

fr.mDocument.DON (15)

phone!. Speak lineiD, (frmDocument. DevName (15) . Caption)

phonel.Speak lineiD, "is on"

Elseif frmDocument.CmdOn{lS) .Fon~Bold = True Then

frmDocument.DOFF {15)

phonel.Speak lineiD, {trmDocument.OevName{lS) .Caption)

phonel.Speak lineiD, ••is ott••

End If

End Select

Wend

Else

GoTo answermachine

answermachine:

phonel.RecordFromString lineiD, "[Prompts]"+ vbNewLine +

"Main=Hi. We can•t come to the
phone .right now. Please leave a message at the beep."+
vbNewLine +

"[Settings]" + vbNewLine + "BetweenUtt=lOOOO" + vbNewLine +

"Initia1But=30000" + vbNewLine + "ReallocBuf=30000" +
vbNewLine + "MaxBut=300000" + vbNewLine +

Voice Command Controller 5-102

"NoAnswerTime=l0 11 + vbNewLine , result, wave, size

If (size <> 0) Then

'The following "casts" the wave to an array (by making a copy
of it} so we can save it out to disk.

ReDim wavefile(size)

CopyMemory wavefile(O), ByVal wave, size

'free the wave as soon as possible so we dent pig up memory

phonel.FreeWave wave

'use the date and time as the filename, and put into the
Messages directory

filename = App.Path + "\Messages" + "\Message left at " +
Format (Now, "hh mm ss AMPM") + " " + Format (Now, " mrrun d
yyyy") + ".wav"

'write the wave data out to disk. you can double click on t 1€

file to play it with sound recorder.

Open filename For Binary Access Write As #1

Put #1, , wavefile

Close #1

End If

End If

'hang up and wait for next call

done:

phonel.Speak lineiD, "goodbye"

Done2:

DlgSetup.toggle = 1

End Sub

'Function name: GetNumber

'Purposes: Generates Event.

'Function called: GetNumber,Speech_Saylt, Control

'Corrupted Global variables: S 'Device Index detected by this procedure

'Input:

'Output:

lineiD,numdigits,grammar string 'heard from user

Received Command in integer format

'Description: Is used to get command from user

Voice Command Controller 5-103

Private Function Getltumber(lineiD As Long, numdigits As
Integer, Main As String, main2 As String, where As String,
help As String) As String

Dim result As Long

Dim S As String

Dim tstr As String

Dim NumGram As String

NumGram = ""

For i = 1 To numdigits

NumGram = NumGram + "<0 .. 9> "" """

Next i

phonel.GrammarFrornString lineiD, "[Prompts]" + vbNewLine + _

"Main=" + Main + vbNewLine +

"Main.2=" + main2 + vbNewLine
+
"Where=" + where + vbNewLine +

"Help=" + help + vbNewL~i1e +

"[DTMFString]" + vbNewLine +

"Count""" + Str(numdigits) +
vbNewLine +

"0=0" + vbNewLine +

"1=1" + vbNewLine +

"2=2" + vbNewLine +

"3=3" + vbNewLine +

"4=4" + vbNewLine +

"5=5" + vbNewLine +

"6=6" + vbNewLine +

"7=7" + vbNewLine +

"8=8" + vbNewLine +

"9=9" + vbNewLine +

"*::::*" + vbNewLine +

"[<MyGrammar>]" + vbNewLine +
11 <MyGrammar>:::: " + NumGram + vbNewLine, result, s

GetNwnber :::: 11
"

Voice Command Controller

tstr "" S

For i = 1 To Len{tstr)

GetNumber = GetNumber + Mid{tstr, i, 1) + " "

Next i

End Function

'Reset or Initialize the Controls all to OFF state

Private Sub Resct(index As Integer)

frmDocument.CmdOff(index) .FontBold "" True

frmDocument.CmdOn(index) .FontBold = False

Call SendControl (index + 1, 0)

End Sub

'procedure name: Vcommand _ UtteranceBegin

5-104

'Purposes; Together with Vcommand _ UtteranceEnd detect idle time on line .

'Function called:

'Corrupted Global variables:

'Input:

'Output:

Audio signal from line

Enent

Private Sub Vcommand_UtteranceBegin()

IdleTCounts = -5

'Tim~::::l.Enabled =False

End Sub

Private Sub V command_ UtteranceEnd()

IdleTCounts ~ 0

Timerl.Enabled =True

End Sub

'procedure name: Control

'Purposes: Executes Command.

'Function called:

'Corrupted Global variables: S%,Dset

'Input:

'Output:

S%,Dset

S%,Dset

Voic3 Command Controller

Private Sub Control(ByVal S%, ByVal Dset As Boolean)

With frmDocument

If Dset ~ True Then

If .CmdOn (S). FontBold = False Then

Call .CmdOn_Click(S)

Dset = False

Elseif .CmdOn(S) .FontBold = True Then

Call .CmdOff_Click{S)

End If

End With

End Sub

Dset = False

End If

• Main Control Interface Form

Dim Y%

Dim t%

Public PCtr_flage%

'Sub-procedure name: CmdOff_ Click

'Purposes: Send OFF signal to LPTI.

'Function called: UpdateCommandRec,SendControl

Speech_ Say It.

'Corrupted Global variables: none

'Input: Device's index

'Output: Control signal to LPTI

Public Sub CmdOff_Click(index As Integer)

Dim RetBVal As Boolean

RetBVal = FindRecord(fMainForrn.Data, index + 1)

LblTime{index).Caption =Time

Call UpdateCommandRec(False)

Call SendControl(index + 1, False)

CrndOff(index) .FontBold =True

CmdOn(index) .FontBold ~ False

1 Set time

5-105

Voice Command Controller 5-l 06

If {Not fMainForm.Data.Recordset.fields{"Sta~us''J) Then
LblTime(index) .ForeColor = vbBlack

If DlgSetup.Check2.Value == 1 Then

Call Speech Sayit(fMainForm.Dat&.Recordset.fields(l) & ''
is'' & fMainForm.Data.Recordset.fields(''status text''))

End If

End Sub

'Sub-procedure name: CmdOn_ Click

'Purposes: Send On signal to LPTI.

'Function called: UpdateCommandRec,SendControl

Speech_Saylt.

'Corrupted Global variables: none

'Input:

'Output:

Device's index

Control signal to LPTl

Public Sub CmdOn_Click(index As Integer)

Dim RetBVal As Boolean

RetBVal = FindRecord(fMainForm.Data, index + 1)

LblTime(index) .Caption= Time

Call UpdateCommandRec{True)

Call SendControl(index + 1, True)

CmdOff(index) .FontBold = False

CmdOn(index) .FontBold = True

• Set time

If {fMainForm.Data.Recordset.fields("Status")) Then
LblTime(index) .ForeColor = vbRed

If DlgSetup.Check2.Value = 1 Then

Call Speech_ Sayit (fMainForm. Data. Record~,et. fields (1) & "

is" & fMainForm.Data.Recordset.fields{"status_text"))

End If

End Sub

Private Sub DevName_Db1Click(index As Integer)

DlgSetup.Show vbModal

End Sub

Private Sub runtop()

' Advance animation one frame.

Y = Y + 1: If Y = 15 Then Y = 0

Voice Command Controller

Picturel.Picture PictureClipl.GraphicCell(Y)

'X = X + 1: If X = 5 Then X = 0

'Picture4.Picture = PictureClip2.GraphicCell(x)

'Forml. Icon = Image! {x). Picture

End Sub

Private Sub runicon()

t = t + 1: If t = 5 Then t = 0

fMainForm.Icon = Imagel(t) .Picture

End Sub

Private Sub Form_Load()

'Call FormLoad

Picturel.Picture = PictureClipl.GraphicCell(O)

fMainForm.Icon = Imagel(O) .Picture

' UserControlll.Flage = 2

End Sub

Private Sub Form_Resize{)

On Error Resume Next

Call FormLoad

End Sub

'Sub-procedure name: DOFF

'Purposes: Send On signal to LPTI.

'Note: same as CmdOff Click but for using with Telephony control

Public Sub DOFF(index As Integer)

Dim RetBVal As Boolean

RetBVal = FindRecord(fMainForm.Data, index + 1)

Lb!Time{index) .Caption= Time

Call UpdateCommandRec(False)

Call Sendcontrol(index + 1, False)

CmdOff(index).FontBold =True

CrndOn(index) .FontBold = False

' Set time

5-107

Voice Com1 >Md Controller 5-l OH

If (Not fMainFocn.Data.Recordset. field!j{"Status")) '!'hen
LblTime(index) .ForeColor = vbBlack

Call fMainForm.TextToSpeech SpeakingStarted

End Sub

Public Sub DON(index As Integer)

Dim RetBVal As Boolean

RetBVal = FindRecord(fMainForm.Data, index + 1)

Lb!Time (index) .Caption = Time

Call UpdateCommandRec(True)

Call SendControl (index + 1, True)

CmdOff(index) .FontBold = False

CmdOn(index} .FontBold = True

' Set time

If (fMainForrn. Data. Recordset. fields ("Status")) Then
LblTime(index) .Fo~eColor = vbRed

'Call SaveRefeData{fMainForm.Data, index, 7)

End Sub

Private Sub For.m_Un1oad(Cancel As Integer)

Set frmDocument = Nothing

End Sub

Private Sub PhoneCtrMode_Click()

Timer1.Interval = 1000

If PhoneCtrMode.Value = 1 Then

Call Speech_Sayit("Telephone monitoring is enable ")

P monotor.PCtr enable = True

P monotor.Visible = True

PhoneCtrMode.Enabled = False
check box

P monotor.IdleTime = 30

P_monotor.RingSet = 5

P_monotor.P_InputSet = 190

Else

'disable the control

Call Speech _Sayit {"Telephone monitoring is disable")

End If

End Sub

Voice Command Controller

Private Sub Timerl_Timer()

Dim t As Boolean

P monotor.IdleTimeCount = fMainCorm.IdleTCounts

Debug.Print fMainForm.IdleTCounts

If P rnonotor.PCtr enable = False Then

frmDocument.PhoneCtrMode.Value = 0

PhoneCtrMode.Enabled = True

End If

End Sub

Private Sub Timer2_Timer()

If DlgSetup.AnimatCheck = 1 Then

run icon

If DlgSetup.toggle = 1 Then runtop

End If

End Sub

• Set up Form

'Public gMyMenu As Long

Dim click3%, click4%

Dim click!%, click2%

'Public P_flage As Integer

Public toggle%

Option Explicit

Private Sub CancelButton_Click()

Unload Me

End Sub

5-109

Voice Command Controller 5-11 o
--------------------- ... ----
Private Sub CmbVoiceType_Click()

Rem Each time somebody selects a new voice/engine/mode
from the combo box,

Rem select that voice as the active speaker.

fMainrorm.TextToSpeech.CurrentMode =

CmbVoiceType.Listindex + 1

End Sub

Private Sub cmdApply_Click()

fMainForm.Vcommand.ReleaseMenu gMyMenu

fMainForm.Data.Refresh

Call ChangeMode

Call FormLoad

Call Menu_Create(gMyMenu)

fMainFor~.Vcornmand.Enabled = 1

fMainForm.Vcommand.Activate gMyMenu

Call OKButton Click

End Sub

Private Sub Commandl_Click{)

fMainForm.TextToSpeech.Speak TxtTest.Text

End Sub

Private Sub Command2_Click()

'The 'Selection Engines ... ' button

DlgSetup.Visible = False

fMainForm.phonel.ChooseEngineDialog 'this lets the user
set the TTS voice used, as well as the voice engine used.

DlgSetup.Visible = True

End Sub

Private Sub Command3_Click()

Call Vcornmandl.TrainGeneralDlg(Me.hwnd, "TrainEngine")

End Sub

Voice Command Controller

Private Sllb Form_Load{)

Dim X~

Dim dbname As String

dbname "" App.Path & "\Control.mdb"

With Data

.DatabaseNamG = dbnarne

.RecordSource = "DEVICES"

.Refresh

End With

Call Set_Grid(O)

Set tbsOptions.Selecteditem = tbsOptions.Tabs(l)

SldVolurne.Max = 100

SldVolume.Min 0

SldVolume.SmallChange = 1

SldVolume.Value = 50

clickl = 0

click2 = 1

click3 = 0

click4 = 0

End Sub

Private Sub Form_Unload(Cancel As Integer)

Set DlgSetup = Nothing

Unload Me

End Sub

Private Sub GridText_GotFoous()

With GridText

.SelStart = 0

.SelLength = Len(.Text)

End With

End Sub

5-111

Voice Command Controller

Private Sub GridText_KeyDown(KeyCode As Integer, shift As
Integer)

Select Case KeyCode

Exit Sub

Case vbKeyUp

If (MSFlexGrid.Row ~ 1) Then Exit Sub

GridText.Visible = False

MSFlexGrid.Row = MSFlexGrid.Row - 1

Case vbKeyDown

If (MSFlexGrid.Row = 16) Then Exit Sub

GridText.Visible = False

MSFlexGrid.Row = MSFlexGrid.Row + 1

Case vbKeyLeft

If (MSFlexGrid.Col = 1) Then Exit Sub

GridText.Visible = False

Case vbKeyRight

If (MSFlexGrid.Col = MSFlexGrid.Cols - 1) Then

GridText.Visible = False

Case vbKeyEscape

GridText.Visible = False

End Select

End Sub

Private Sub GridText_KeyPress(KeyAscii As Integer)

Dim Tmpstr.$

KeyA~cii = TextBoxKeysFilter("-! '@#$%A&*()-_=+!\/:;,.",
KeyAscii)

Select Case KeyAscii

Case vbKeyReturn

Trnpstr$ = GridText.Text

Call SaveTextBox(Tmpstr$)

KeyAscii = 0

GridText.Visible = False

End Select

End Sub

Private Sub GridText_LostFocus()

5-J I 2

Voice Command Controller

Dim Tmpstr$

Dim NewStr$

If (MSFlexGrid.Col " 1) Then

Tmpstr$ " MSFlexGrid. Text

NewStr$ " GridText. Text

If (Tmpstr$ <> NewStr$) Then

Call SaveTextBox(NewStr$)

End If

End Sub

Exit

Private Sub MSF1exGrid_EnterCell()

Dim CellTop%, CellLeft%

Dim CelHVidth%, Cel!Height%

1 if select col 1 then do nothing

If (MSFlexGrid.Col = 1) Then

GridText.Visible = False

Exit Sub

End If

Select Case MSFlexGrid.Col

Case 1

GridText.Visible = False

Exit Sub

Sub

Case 2:

Case 11:

GridText.MaxLength = 12

GridText.HaxLength = 50

End Select

CellTop% = MSFlexGrid.CellTop

CellLeft% = MSFlexGrid.CellLeft

CellWidth% = MSFlexGrid.CellWidth

CellHeight% = MSFlexGrid.CellHeight

' display the text box

Call ShowTextBox(CellLeft%, CellTop%, CellWidth%,
CellHeight% I

' grap the content of the cell

5-1 13

Voice Command Controller

GridText.Text ~ '''' & MSFlexGrid.Text

End Sub

'Set Setup interface invisible

Private Sub OY~utton_Click()

DlgSetup.Visible = False

End Sub

'Set volumn

Private Sub SldVolurne_Scroll (}

Dim ValSet As Long

Va!Set = {SldVolume.Value * volCtrl.lMaximum) I
SldVolume.Max

Call SetVol(ValSet)

End Sub

'Position frame on tab strip

Private Sub tbsOptions_Cliok()

Select Case tbsOptions.Selecteditem.index

Case 1

SetupType = SetupDeviceType

frameData.Left = 240

frameSpeech.Left = -20000

frarneMisc.Left = -20000

FrarneAni.Left = -20000

Case 2

SetupType = SetupVoiceType

framespeech.Left = 240

frarneData.Left = -20000

frarneMisc.Left = -20000

FrarneAni.Left = -20000

Call SetVoice

Case 3

frarneMisc.Left = 240

5-114

Voice Command Controller

frameData.Left "" -20000

frameSpeech.Left = -20000

FrameAni.Left = -20000

Case 4

FrameAni.Left = 240

frameData.Left = -20000

frameSpeech.Left = -20000

frameMisc.Left = -20000

End Select

End Sub

Private Sub Checkl_Cliok{)

If Checkl.Value = 1 Then

Check2.Value = 0

frmDocurnent.Picturel.Enabled = True

toggle = 1

fMainForm.phonel.initialized = 1

End If

click! = Checkl.Value

click2 = Check2.Value

click3 = Check3.Value

click4 = Check4.Value

End Sub

Private Sub Check2_Click()

If Check2.Value = 1 Then

Checkl.Value = 0

Check3.Value = 0

Check4.Value = 0

frmDocument.Picturel.Enabled = False

End If

click! = Checkl.Value

click2 = Check2.Value

click3 = Check3.Value

click4 = Check4.Value

End Sub

5-115

Voice Command Controller

Private Sub Check3_Click()

End

If Check3.Value ~ 1 Then

Check2.Value ~ 0

Check4.Value 0

Checkl.Value 1

End If

clickl = Check!. Value

click2 = Check2. Value

click3 = Check3.Value

click4 = Check4.Value

Sub

Private Sub Check4_Click()

If Check4.Value = 1 Then

Check2.Value = 0

Checkl.Value = 1

Check3.Value = 0

End If

click! = Checkl.Value

click2 = Check2.Value

click3 = Check3.Value

click4 = Check4.Value

End Sub

'Sub-procedure name: ChangeMode

'Purposes: Change the Control mode.

'Function called: CallDialog, ViewDirectory

'Corrupted Global variables:

'Input:

none

'Output: Phone Control dialog if phone Ctr mode is

5-116

Voice Command Controller 5-117

----------------- -------·---------

Private Sub ChangeMode ()

Dim ring As Lo:lG

clickl Checkl.Value

click2 Check2.Value

click3 " Check3.'Jalue

click4 Check4.Value

If click2 = 1 And click! = 0 Then

frmDocument.Enabled = True

frmDocument.Picturel.Visible = False

Elseif clickl = 1 And click2 = 0 Then

phone

fMainForm.phonel.An~werAfterRings

frmDocument.Enabled = False

Call ViewDirectory

frmDocument.Picturel.Visible = True

ring

If click3 = 1 Then 'And click! = 1 Then

fMainForm.phonel.initialized = 1 'run on emulator

fMainForm.phonel.CallDialog

Checkl.Value = 0

frmDocument.Picturel.Visible = False

frrnDocurnent.Enabled = True

End If

If click4 = 1 Then 'And click! = 1 Then

fMainForm.phonel.initialized = 2 'run on real

fMainForm.phonel.Cal!Dialog

Checkl.Value = 0

frmDocument.Picturel.Visible = False

frmDocument.Enabled = True

End If

End If

End Sub

Voice Command Controller

~ Monitoring Call

Dim ring As Integer

Public counts As Integer

Private Sub Commandl_Click()

frmDocument.CmdOn Click (0)

End Sub

Private Sub Command2_Click()

Out &H378, 0

Delay 1000

Out &H378, 16

End Sub

Private Sub Form_Load()

Let ring = 0

Let counts = 0

Textl.Text = 0

Text2.Text = ""
Timer2.Interval = 1000

Tirnerl.Interval = 1000

Out &H378, 16

Timer2.Enabled = True

En C.: Sub

Private Sub Form_Unload(Cancel As Integer)

Unload Me

End Sub

Private Sub Han;_Up_Click{)

Out &H378, 0

Timer2.Enabled = True

Text2.Text = "Disconnect"

Timerl.Enabled = False

5-118

Voice Command Controller

frmDocument.PhoneCtrMode.Value = 0

Unload Me

frmDocument.Enabled = True

OlgSetup.P_flage = 0

End Sub

Private Sub Timerl_Timer()

' set idle time interval is 30 seconds

Text! = Textl + 1

counts = counts + 1

If (Textl + Str(counts)} = {Text!+ Str(30)) Then

Text2.Text = "Connection time out"

out &H378, o
Timer2.Enabled = True

Timerl.Enabled =False

End If

'DlgSetup.P_flage = 0

End Sub

Private Sub T~er2_Timer{)

Dim P status As Integer

counts = 0

If Textl.Text <> 0 Then

Textl = Text! + 1

End If

P_status = Inp(&H379)

Debug.Print P status

If P status >= 24 Then

ring = ring + 1

Text2.Text = 11 ring" & Str(ring)

End If

'answer call

If ring = 5 Then

5-119

Voice Command Controller

ring = 0

Out &H378, 20 'phone connect

'DlgSetup. P __ flage = 1

Timer2.Enabled = False

Text2.Text = 1111

Timerl.Enabled = True

End If

End Sub

• Data Base Form

Private Canst MARGIN SIZE = 60

' variables for enabling column sort

Private m_iSortCol As Integer

Private m_iSortType As Integer

' variables for column dragging

Private m_bDragOK As Boolean

Private m_iDragCol As Integer

Private xdn As Integer, ydn As Integer

Private Sub Form_ Load ()

Dim i As Integer

Dim j As Integer

Dim m iMaxCol As Integer

Dim wide As Integer

datPrimaryRS.Visible = False

With MSHFlexGridl

.Redraw = False

in Twips

' place the columns in the right order

.ColData(O) = 0

.ColData(l) = 1

.ColData(2) = 2

5-120

Voice Command Controller

.Col Data (7) - 3

. ColDa ta I 3) ~ 4

.Co1Data(4) ~ 5

.Col Data (5) ·- 6

.Col Data (6} ~ 7

.RowHeight(l7) ~ 0

.RowHeight(lB) = 0

' loop to re-order the columns

For i = 0 To .Cols - 1

m iMaxCol = i
value starting from this column

For j = i To .Cols - 1

5-121

' find the highest

If .ColData(j) > .ColData{m_iMaxCol) Then
m iMaxCol = j

Next j

.ColPosition(m_iMaxCol) = 0
with the max value to the left

Next i

' set grid's column widths

.ColWidthiO) ~ 400

. ColWidth I 1) ~ 1800

.Co1Width12) ~ 1200

.Co1Width13) ~ 3200

.Co1Width141 ~ 1500

.ColWidth 15) ~ 1500

.Co1Width16) ~ 1500

. CoHlidth I 7) ~ 1500

' set grid's style

.AllowBigSelection = True

.FillStyle = flexFillRepeat

' make header bold

.Row = 0

.Col ~ 0

.RowSe! = .FixedRows - 1

.ColSel = .Cols - 1

.CellFontBold = True

' move the column

Voice Command Controller 5-122

--

.AllowBigSelection ~ False

.~illStyle ~ flexFillSingle

. Redraw = •rrue

End With

For i% = 0 To 7

wide= wide + MSHFlexGridl.ColWidth{i)

Next i

DevicesDTBase.Width =wide

End Sub

Private Sub Form Un1oad(Cancel As Integer)

Un~oad Me

End Sub

Private Sub MSHFlexGridl_MOusaDown(Button As Integer, shift As
Integer, X As Single, Y As Single)

'---

' code in grid's DragDrop, MouseDown, MouseMove, and MouseUp
events enables column dragging

'---
If MSHFlexGridl.MouseRow <> 0 Then Exit Sub

xdn ~ X

ydn ~ y

m_iDragCol ~ -1 ' clear drag flag

m_bDragOK ~ True

End Sub

Private Sub MSHFlexGridl_MouseMove(Button As Integer, shift As
Integer, X As Single, Y As Single)

'---
' code in grid's DragDrop, MouseDown, MouseMove, and MouseUp
events enables column dragging

'---

Voice Command Controller

' test to see if we should start drag

If Not m __ bDragOK Then Exit Sub

If Button <> 1 Then Exit Sub
wrong button

If m_iDragCol <> -1 Then Exit Sub
already dragging

If Abs(xdn- X) + Abs(ydn- Y) <50 Then Exit Sub
didn't move enough yet

If MSHFlexGridl.MouseRow <> 0 Then Exit Sub
drag header

' if got to here then start the drag

m_iDragCol = MSHFlexGridl.MouseCol

MSHFlexGridl.Drag vbBeginDrag

End Sub

5-123

' must

Private Sub MBHFlexGridl_MouseUp(Button As Integer, shift As
Integer, X As Single, Y As Single)

'---
' code in grid's DragDrop, MouseDown, MouseMove, and MouseUp
events enables column dragging

'---
m_bDragOK = False

End Sub

Private Sub MSHFlexGridl_DblClick{)

'---
' code in grid's DblClick event enables column sorting

'---
Dim i As Integer

1 sort only when a fixed row is clicked

If MSHFlexGridl.MouseRow >= MSHFlexGridl.FixedRows Then
Exit Sub

i = m iSortCol 1 save old column

m iSortCol = MSHFlexGridl.Col

' increment sort type

If i <> m iSortCol Then

set new column

Voice Command Controller 5-124

if clicking on a new column, start with ascending
sort

m_iSortType = 1

Else

if clicking on the same column, toggle between
ascending and descending sort

m_iSortType = m_iSortType + 1

If m_iSortType = 3 Then m_iSortType = 1

End If

DoColumnSort

End Sub

sub DoColumnsort()

' does Exchange-type sort on column m iSortCol

'---
With MSHFlexGridl

.Redraw = False

.Row = 1

.RowSe! = .Rows - 1

.Col = m iSortCol

.Sort = m_iSortType

.Redraw = True

End With

End Sub

Private Sub Form_Resize()

Dim sngButtonTop As Single

Dim sngScaleWidth As Single

Dim sngScaleHeight As Single

On Error GoTo Form Resize Error

With Me

sngScaleWidth = .ScaleWidth

sngScaleHeight = .ScaleHeight

' move Close button to the lower right corner

Voice Command Controller 5-125

With .cmdClose

sngButtonTop = sngScaleHeight- (.Height+ MARGIN SIZE)

.Move sngScaleWidth- (.Width+MARGIN_SIZE),sngButtonTop

End With

.MSHFlexGridl.Move MARGIN_SIZE,

MARGIN_SIZE,

End With

Exit Sub

sngScaleWidth- (2 * MARGIN_SIZE),

sngButtonTop - (2 * MARGIN_SIZE)

Form Resize Error:

' avoid error on negative values

Resume Next

End Sub

Private Sub cmdClose_Click()

Unload Me

End Sub

• Module Send Data to LPT

'Declare Inp and Out for port I/0

Public Declare Function Inp Lib "inpout32.dll"

Alias "Inp32 11 (ByVal PortAddress As Integer) As Byte

Public Declare Sub Out Lib "inpout32.dll"

Alias "Out32" (ByVal PortAddress As Integer, ByVal Value As
Byte)

• Module Update data base

Option Explicit

Function FindReoord(DataSource As Data, Ref As Integer) As
Boolean

With DataSource.Recordset

Voice Command Controller

.MoveFirst

.E'indFirst ("REF=" & Ref)

End With

End Function

'**

' Update the current record by field name

'**

Function UpdateDB(DataSource As Data, FieldName As String,
DataVal As Variant) As Boolean

With DataSource.Recordset

.Edit

.fields{FieldName) .Value ~ DataVal

.Update

End With

End Function

Sub UpdateCommandRec(ValSet As Boolean)

' update fa the current record

Dim sxValue$

Dim RetBVal As Boolean

If {ValSet) Then sxValue$ = "On11

If {Not Va!Set) Then sxValue$ = "Off 11

RetBVal = UpdateDB(fMainForm.Data, "Time", Time}

RetBVal = UpdateDB(fMainForm.Data, "Status", ValSet)

RetBVal = UpdateDB(fMainForm.Data, "status_text",
sxValue$)

End Sub

• Module Load fo~

Sub FormLoad I I

Dim ScreenWidth As Long

Dim ScreenHeight

Dim X%

With frrnDocurnent

As Long

5-126

Voice Command Controller

ScreenWidth = .ScaleWidth - 300

ScreenHeight = .ScaleHeight - 200

5-127

.Framel.Move 10, 8700, frmDocum,mt.Width - 40, 1000

. PhoneCtrMode. Move 220, 9000

.P_monotor.Move 2500, 8900

.DevName(O) .Move 220, 1500, 2500, 350

. DevName (8) .Move (IScreenWidth I 2) + 220), 1500,
2500' 350

.CmdOn(O) .Move .DevName(O) .Width+ 350, 1500

.Cmd0r.(8) .Move ({ScreenWidth I 2) + 220) +
.OevName(B) .Width+ 350, 1500

.CmdOff (0) .Move .CmdOn(O) .Width + .CmdOn(O) .Left+
250, 1500

.CmdOf£(8) .Move .CmdOn\8) .Width + .Cmd0n(8) .Left +
250, 1500

.LblTime(O) .Move .CrndOff(O).Width + .CrndOff(O) .Left+
250, 1500

. Lbl Time (8) .Move . CrndOff I 8 I .lHdth + .CrndOff(B) .Left+
250, 1500

For X% = 1 To 7

.DevName(X%) .Move 220, .DevName(X% - 1) .Top+
(ScreenHeight I 10), 2500, 350

.CmdOn(X%) .Move .DevName(X%) .Width+ 350,
.DevName(X% - 1) .Top+ (ScreenHeight I 10)

.CmdOff(X%) .Move .CmdOn(X%) .Width+
.CmdOn(X%) .Left+ 250, .DevName(X%- 1).Top + (ScreenHeight I
10)

.LblTirne(X%) .Move .CrndOff(X%) .Width+
.CmdOff(X%) .Left + 250, .DevName{X% - 1) .Top + (ScreenHeight I
10)

Next X%

For X% = 9 To 15

.DevName(X%).Move ((ScreenWidth I 2} + 220),
.DevName{X% - 1) .Top + {ScreenHeight I 10}, 2500, 350

.CrndOn(X%) .Move ({ScreenWidth I 2) + 220) +
.DevName(X).Width + 350, .DevName(X% - 1) .Top+ (ScreenHeight
I 10 l

Voice Command Controller 5-128

.CmdOff(X~) .Move .CmdOn(Xt) .Width +
.CmdOn{X~) .Left+ 250, .DevName(X%- 1) .Top+ (ScreenHeight I
10)

.LblTime(X%) .Move .CmdOff(X%) .Width +
.CmdOff(X%) .Left+ 250, .DevName(X% - 1) .Top+ (ScreenHeight I
10)

Next X%

' Load device name from db

fMainForm.Data.Recordset.MoveFirst

For X% = 0 To 17

• DevName (X%) . Caption = u" &

fMainForm. Data. Recordset. fields ("Device_ Name")

fMainForm.Data.Recordset.Edit

If (fMainForm.Data.Recordset.L ::is("Status"))
Then

fMainForm.Data.Recordset.fields("status_text") .Value= "On"

Else

fMainForm. Data. Recordset. fields ("status text") . Value = "Off 11

End If

If
(IsNull (fMainForrn.Data.Recordset.fields ("Time"))) Then

.LblTime(X%) .Caption = Time

Else

.LblTime(X%) .Caption =
fMainForm. Data. Recordset. fields {"Time"} . Value

End If

fMainForm.Data.Recordset.Update

fMainForm.Data.Recordset.MoveNext

Next X%

'For Y% = 16 To 17

.DevNarne(Y%) .Caption= "" &
fMainForm.Data.Recordset.Fields{"Device_Name")

Vc;ice Command Controller

'Next Yt

End With

End Sub

• Module Load Main MDI form and initialise

5-129

Private Declare Function waveOutGetNumDevs Lib "winmm.dll" ()
As Long

Public Canst SetupDeviceType =

Public Canst SetupVoiceType =

Public Canst MsgBoxMode = 0

Public Canst VoiceMsgMode = 1

Public engine As Long

Public gMyMenu As Long

Public hmixer As Long

Public volCtrl As MIXERCDNTROL

Public micCtrl As MIXERCONTROL

Public rc As Long

Public OK As Boolean

Public val As Long

Public fMainForm As frmMain

Public SetupType As Integer

Public ModeName As String

Public MsgMode As Integer

Sub Main()

Dim fLogin As New frmLogin

Dim i%

' detect sound card

i = waveoutGetNumDevs()

If (i = 0) Then

1

0

voice command handle

mixer handle

' waveout volume control

' microphone volume control

return code

boolean return code

MsgBox "Sound Card not found.", vbinforrnation

Voice Command Controller

End

End If

fLogin.Show vbModal

If Not fLogin.OK Then

'Login Failed so exit app

End

End If

Unload fLogin

frmSplash.Show

frmSplash.Refresh

Set fMainForm = New frmMain

Load fMainForm

Unload frmSplash

fMainForm. Shm1

End Sub

sub LoadResStrings(frm As Form)

On Error Resume Next

Dim obj As Object

Dim fnt As Object

Dim sCtlType As String

Dim nVal As Integer

'set the form's caption

frm.Caption = LoadResString(Cint(frm.Tag))

'set the font

Set fnt = frm.Font

fnt.Narne = LoadResString(20)

fnt.size = Cint{LoadResString(21))

'set the controls' captions using the caption

'property for menu items and the Tag property

'for all other controls

For Each ctl In frm.Controls

5-130

Voice Command Controller

Set ctl.Font ~ fnt

sCtlType = TypeName(ctl)

If sCtlType = "Label" Then

ctl.Caption LoadResString(Cint(ctl.Tag))

Elseif sCtlType = "Menu" Then

ctl.Caption = LoadResString(Cint(ctl.Caption))

Elself sCtlType = "TabStrip" Then

For Each obj In ctl.Tabs

obj.Caption = LoadResString(Cint(obj.Tag))

obj.ToolTipText =
LoadResString(Cint(obj.ToolTipText))

Next

Else!£ sCtlType = "Toolbar" Then

For Each obj In ctl.Buttons

obj.ToolTipText =
LoadResString(Cint(obj.ToolTipText))

Next

Elseif sCtlType = "ListView" Then

For Each obj In ctl.ColumnHeaders

obj.Text = LoadResString{Cint(obj.Tag))

Next

Else

nVal = 0

nVal = Val(ctl.Tag)

5-131

If nVal > 0 Then ctl.Caption = LoadResString(nVal)

nVal = 0

nVal = Val{ctl.ToolTipText)

If nVal > 0 Then ctl.Too!TipText =
LoadResString{nVal)

Next

End Sub

End If

Voice Command Controller 5-132

• Module Send Control Data

Option Explicit

'Declare Inp and Out for port 1/0

Private Declare Function Inp Lib "inpout32.dll" Alias "Inp32"
(ByVal PortAddress As Integer) As Byte

Private Declare Sub Out Lib "inpout32.dll" Alias "Out32"
{ByVal PortAddress As Integer, ByVal Value As Byte)

'***************************************~*********************

Sub Delay(Value As Long)

Do While Value > 0

Value = Value - 1

Loop

End Sub

Sub SendControl(index As Integer, CtrlVal As Boolean}

Dim mask, tim As Integer

ReDim Data{O To 12) As Integer

Dim clock!, clock2 As Integer

Dim i%

Dim P control%

Data(6) ~ 0

'frmDocument.Picturel.Cls

'PMainControl.Picturel.Cls

tim = 1

For i% = 1 To 12

Data(i%) ~ 0

Next i%

clockl ~ 2

clock2 ~ 0

If (CtrlVal) Then Data(6)

For i% = 1 To 5

~ 1

Voice Command Controller

Data(i%} = index Mod 2

mask ~ index \ 2

index = mask

Next i%

Data (0) = 1

Rem send data

If frmDocument.PCtr_flage = 1 Then

P control% = 20

Else: P control% = 0

End If

Out &H378, (0 + P_control%)

Delay (tim)

For i% = 8 To 1 Step -1

Out &H378, (Data(i%} + P_control%)

Delay (30000)

Out &H378, (Data (i%) + (2 + P_control%))

Delay (15000)

Out &H378, (0 + P_control%)

Delay (15000)

'frrnDocument.Picturel.Print Data(i%)

'PMainControl.Picturel.Print Data(i%)

Out &H378, (0 + P_control%)

Next i%

End Sub

• MOdule Provide Set up functions

Option Explicit

Sub Set_Grid(GridType As Integer)

Dim X%

With DlgSetup.MSFlexGrid

5-133

Voice Command Controller

For XI ~ 1 To .Cols - 1

.ColAlignment{X%)

Next X%

flexAlignCenterCenter

Select Case GridType

Case 0

.ColWidth(O) ~ 300

.ColWidth(l) ~ 500

.ColWidth(2) ~ 2200

.RowHeight(17) = 0

.RowHeight(lB) = 0

For X% = 3 To .Cols - 2

.ColWidth(X%) ~ 0

Next X%

Ref

Device Name

.ColWidth(ll) ~ .Width - .ColWidth(O) -
.ColWidth(l) - .ColWidth(2) - 100

case 1

End Select

End With

End Sub

Sub ShowTextBox(Left As Integer, Top As Integer,

Width As Integer, Height As Integer)

With DlgSetup

.GridText.Move Left, Top + 125, Width, Height

.GridText.Visible = True

.GridText.SetFocus

End With

End Sub

Sub DisableTextBox()

DlgSetup.GridText.Visible = False

End Sub

5-134

Voice Command Controller 5-135

Function TextBoxKeysFilter(FieldKey As String, KeyAscii As
Integer) As Integer

Dim Charin$

Charin$ = Chr$(KeyAscii)

If (InStr(FieldKey, Charln$) > 0) Then

TextBoxKeysFilter ~ 0

Else

TextBoxKeysFilter = KeyAscii

End If

End Function

Sub SaveTextBox(DataStr As String)

Dim RetBVal As Boolean

Dim RowRef%

With DlgSetup

RowRef% = .MSFlexGrid.Row

RetBVal = FindRecord(.Data, RowRef%)

.Data.Recordset.Edit

.Data.Recordset.fields(l) .Value = DataStr

.Data.Recordset.Update

.MSFlexGrid.Text = DataStr

End With

End Sub

Sub SetVoice ()

Dim X%

For X% = 1 To fMainForm.TextToSpeech.CountEngines

ModeNarne = fMainForm.TextToSpeech.ModeName(X%)

DlgSetup.CmbVoiceType.Additem ModeName

Next X%

fMainForm.TextToSpeech.Speed = 150

DlgSetup.CmbVoiceType.Listindex =
fMainForm.TextToSpeech.CurrentMode - 1

Voice Command Controller 5-!36

DlgSetup.TxtTest.Text = "The quick brown fox jumps over
the lazy dog."

End Sub

• Module Speech

'Function name: Menu Create

'Purposes: Create voice command menu from the database.

'Function called: None

'Corrupted Global variables: none

'Input:

'Output:
control)

Device Database, field "device name".

gMenu (Voice command menu for the program

Sub Menu_Create{gMyMenu As Long)

Dim X%

gMyMenu = fMainForm.Vcommand.MenuCreate(App.EXEName,
"statel", 4)

fMainForm.Data.Recordset.MoveFirst

For X%= 0 To 17

'fMainForm.Vcommand.AddCommand gMyMenu, 1,
frmDocument. DevName (X%) . Caption, "when you say" +
frmDocument. DevName (X%) . Caption, "listen list", 0, 1111

fMainForm.Vcommand.AddCommand gMyMenu, 1,
fMainForm.Data.Recordset.fields ("Device_Name"), "when you say"
+ fMainForm. Data. Recordset. fields ("Device_ Name") , "listen
list", 0, 11

"

fMainForm.Data.Recordset.MoveNext

Next X%

End Sub

'Function for speech engine to synthesis the

'resource string.

'*************************************

Sub Speech_Sayit(ByVal szValu~ As String)

fMainForm.TextToSpeech.Speak szValue

End Sub

Voice Command Controller 5-137

• Module Set volume functions

Public Canst MMSYSERR NOERROR = 0

Public Canst MAXPNAMELEN = 32

Public Canst MIXER LONG NAME CHARS = 64 -
Public Canst MIXER SHORT NAME CHARS = 16

Public Canst MIXER GETLINEINFOF COMPONENTTYPE = &H3& -
Public Canst MIXER GETCONTROLDETAILSF VALUE "" &HO&

Public canst MIXER GETLINECONTROLSF ONEBYTYPE = &H2&

Public Canst MIXERLINE COMPONENTTYPE DST FIRST = &HO&

Public Canst MIXERLINE COMPONENTTYPE SRC FIRST = &HlOOO&

Public Canst MIXERLINE COMPONENTTYPE DST SPEAKERS =

{MIXERLINE_COMPONENTTYPE_DST_FIRST + 4}

Public Canst MIXERLINE COMPONENTTYPE SRC MICROPHONE =

(MIXERLINE_COMPONENTTYPE_SRC_FIRST + 3)

Public Canst MIXERLINE COMPONENTTYPE SRC LINE =

(MIXERLINE_COMPONENTTYPE_SRC_FIRST + 2)

Public Canst MIXERCONTROL CT CLASS FADER = &HSOOOOOOO

Public Canst MIXERCONTROL CT UNITS UNSIGNED = &H30000

Public Canst MIXERCONTROL CONTROLTYPE FADER =

(MIXERCONTROL_CT_CLASS_FAOER Or

MIXERCONTROL_CT_UNITS_UNSIGNED)

Public Canst MIXERCONTROL CONTROLTYPE VOLUME =
(MIXERCONTROL_CONTROLTYPE_FADER + 1)

Declare Function mixerClose Lib "winnun.dll"

(ByVal hmx As Long) As Long

Declare Function mixerGetControlDetails Lib "winrnm.dll"

Alias "mixerGetcontrolDetailsA"

(ByVal hmxobj As Long,

Voice Command Controller 5-138

Long

pmxcd As MIXERCONTROLOETAILS,

ByVdl fdwDetails As Long) As Long

Declare Function rnixerGetDevCaps Lib "winrrun.dll"

Alias "mixerGetDevCapsA11

{ByVal uMxid As Long, _

ByVal pmxcaps As MIXERCAPS,

ByVal cbmxcaps As Long) As Long

Declare Function mixerGetiD Lib "winmm.dll"

(ByVal hmxobj As Long,

pumxiD As Long,

ByVal fdwid As Long) As Long

Declare Function mixerGetLineControls Lib "winrrun.dll"

Alias "mixerGetLineControlsA"

(ByVal hmxobj As Long, _

pmxlc As MIXERLINECONTROLS,

ByVal fdwControls As Long) As Long

Declare Function mixerGetLineinfo Lib '1winrnm. dll"

Alias "mixerGetLineinfoA"

(ByVal hmxobj As Long,

pmxl As MIXERLINE, _

ByVal fdwinfo As Long) As Long

Declare Function mixerGetNumOevs Lib "winmm.dll" () As

Declare Function mixerMessage Lib "winmm.dll"

(ByVal hmx As Long,

ByVal uMsg As Long,

ByVal dwParaml As Long,

ByVal dwParam2 As Long) As

Declare Function mixerOpen Lib "winmm.dll 11

(phmx As Long,

ByVal uMxid As Long,

Long

Voice Command Controller 5-139

ByVal dwCallback As Long,

ByVal dw!nstance As Long,

ByVal fdwOpen As Long) As Long

Declare Function mixerSetControlOetails Lib "winmm.dll"
(ByVal hmxobj As Long, _pmxcd As MIXERCONTROLDETAILS,

ByVal fdwOetails As Long) As Long

driver

bits

Declare Sub CopyStructFromPtr Lib "kernel32"

Alias "RtlMoveMemory"

(struct As Any,

ByVal ptr As Long, ByVal cb As Long)

Declare Sub CopyPtrFromStruct Lib "kerne132"

Alias "RtlMoveMemory"

(ByVal ptr As Long,

struct As Any,

ByVal cb As Long)

Declare Function GlobalAlloc Lib "kernel32"

{ByVal wFlags As Long,

ByVal dwBytes As Long) As Long

Declare Function GlobalLock Lib "kernel32"

(ByVal hmem As Long) As Long

Declare Function Globa!Free Lib 11 kernel32"

(ByVal hmem As Long) As Long

Type MIXERCAPS

wMid As Integer

wPid As Integer

vDriverVersion As Long

szPname As String * MAXPNAMELEN

fdwSupport As Long

manufacturer id

product id

version of the

product name

mise. support

Voice Command Controller 5-140

cDestinations As Long

destinations

End Type

Type MIXERCONTROL

count of

cbStruct As Long
MIXERCONTROL

size in Byte of

dwControliD As Long
mixer device

dwControlType As Long
MIXERCONTROL CONTROLTYPE xxx

fdwControl As Long
MIXERCONTROL CONTROLF xxx

unique control id for

cMultipleitems As Long if
MIXERCONTROL CONTROLF MULTIPLE set

szShortName As String * MIXER_SHORT NAME CHARS
short name of control

szName As String * MIXER LONG NAME CHARS
long name of control

!Minimum As Long Minimum value

' Obtain a line corresponding to the component type

rc = mixerGetLineinfo(hmixer, mxl,
MIXER_GETLINEINFOF_COMPONENTTYPE)

If (MMSYSERR_NOERROR ~ rc) Then

mxlc.cbStruct = Len(mxlc}

mxlc.dwLineiD = mxl.dwLineiD

mxlc.dwControl = ctrlType

mxlc.cControls ~ 1

mxlc.cbmxctrl = Len(mxc)

1 Allocate a buffer for the control

hmem ~ Globa1Alloc(&H40, Len{mxc))

mxlc.pamxctrl = GlobalLock{hmem)

mxc.cbStruct = Len(mxc)

1 Get the control

rc = mixerGetLineControls(hmixer,

Voice Command Controller

mxlc,

MIXER_GETLINECONTROLSF_ONEBYTYPE)

structure

Len (mxc)

If (MMSYSERR_NOERkOR = rc) Then

GetVolumeControl = True

' Copy the control into the destination

CopyStructFromPtr mxc, mxlc.pamxctrl,

Else

GetVolumeControl = False

End If

GlobalFree {hmem)

Exit Function

End If

GetVolumeControl = False

End Function

Function SetVolumeControl(ByVal hmixer As Long,

rnxc As MIXERCONTROL,

5-141

ByVal volume As Long) As Boolean

'This function sets the value for a volume control.
Returns True if successful

Dim mxcd As MIXERCONTROLDETAILS

Dim val As MIXERCONTROLDETAILS UNSIGNED

rnxcd.item = 0

mxcd.dwControliD = mxc.dt-~ControliD

mxcd.cbStruct = Len(mxcd)

mxcd. cboe·tails = Len (val)

1 Allocate a buffer for the control value buffer

hrnem = Globa1Alloc(&H40, Len(vol))

mxcd.paDetails = GlobalLock(hrnem)

mxcd.cChannels = 1

vol.dwValue =volume

' Copy the data into the control value buffer

CopyPtrFrornStruct mxcd.paDetails, val, Len(vol)

Voice Command Controller

' Set the control value

rc = mixerSetControlDetails{hmixer,

mxcd,

MIXER_SETCONTROLOETAILSF_VALUE)

GlobalFree (hmem)

If (MMSYSERR_NOERROR = rc) Then

SetVolumeControl = True

Else

SetVolumeControl = False

End If

End Function

Sub SetVol(zlvalue As Long)

SetVolumeControl hmixer, vo!Ctrl, zlvalue

End Sub

Sub SetMicVol(zlvalue As Long)

SetVolumeControl b~ixer, micCtrl, zlvalue

End Sub

• Module Show Record Message

Global Canst Modal = 1

Public Sub ViewDirectory()

'This function simply causes the Explorer to display the
Messages directory {and creates it if needed),

5-142

'so each time a new message is recorded, an icon appears that
can be double clicked on.

On Error Resume Next

Dim slash As String

If Right(App.Path, 1) = "\" Then

slash = ""

Else

slash = "\"

End If

mdir = App.Path + slash + "Messages"

Voice Command Controller

MkDir mdir

ChDrive mdir

ChOir mdir

Shell "com.mand.com /c start .. . ' vbMinimizedNoFocus

Shell 11 cmd /c start . '', vbMinimizedNoFocus

End Sub

• Show About dialog

' Reg Key Security Options ...

Canst KEY ALL ACCESS = &H2003F

' Reg Key ROOT Types ...

Canst HKEY LOCAL MACHINE = &H80000002

Canst ERROR SUCCESS = 0

Canst REG SZ = 1
terminated string

Const REG DWORD 4

Unicode nul

' 32-bit number

Canst gREGKEYSYSINFOLOC = "SOFTWARE\Microsoft\Shared Tools
Location"

Canst gREGVALSYSINFOLOC = "MSINFO"

Canst gREGKEYSYSINFO = "SOFTWARE\Microsoft\Shared
Tools \MSINFO"

Canst gREGVALSYSINFO = "PATH"

5-143

Private Declare Function RegOpenKeyEx Lib "advapi32" Alias
11 RegOpenKeyExA'' (ByVal hKey As Long, ByVal lpSubKey As String,
ByVal ulOptions As Long, ByVal samDesired As Long, ByRef
phkResult As Long) As Long

Private Declare Function RegQueryValueEx Lib "advapi32" Alias
"RegQueryValueExA" (ByVal hKey As Long, ByVal lpValueName As
String, ByVal !pReserved As Long, ByRef lpType As Long, ByVal
lpData As String, ByRef lpcbData As Long) As Long

Private Declare Function RegCloseKey Lib "advapi32" (ByVal
hKey As Long) As Long

Voice Command Controller

Private Sub Form_Load()

LoadResStrings Me

lblVersion.Caption = "Version 11 & App.Major & " " &

App.Minor & "." & App.Revision

lblTitle.Caption = App.Title

End Sub

Private Sub cmdSysinfo_Click(}

Call StartSysinfo

End Sub

Private Sub cmdOK_Click(}

Set frmAbout = Nothing

Unload Me

End Sub

Public Sub StartSysinfo()

On Error GoTo SysinfoErr

Dim rc As Long

Dim SysinfoPath As String

' Try To Get System Info Program Path\Name From
Registry ...

If GetKeyValue{HKEY_LOCAL_MACHINE, gREGKEYSYSINF0 1

gREGVALSYSINF0 1 SysinfoPath) Then

' Try To Get System Info Program Path Only From
Registry ...

Else If GetKeyValue {HKEY_.LOCAL_MACHINE,
gREGKEYSYSINFOLOC, gREGVALSYSINFOLOC, SysinfoPath) Then

1 Validate Existance Of Known 32 Bit File
Version

5-144

If (Dir(SysinfoPath & 11 \MSINF032.EXE 11
) <> 1111

)

Then

11 \MSINF032.EXE"
SysinfoPath = SysinfoPath &

' Error- File Can Not Be Found ...

Else

GoTo SysinfoErr

End If

Voice Command Controller

' Error- Registry Entry Can Not Se found ...

Else

GoTo SysinfoErr

End If

Call Shell(Sys!nfoPath, vbNormalFocus)

Exit Sub

SysinfoErr:

MsgBox "System Information Is Unavailable At This
Time", vbOKOnly

End Sub

Public Function GetKeyValue(KeyRoot As Long, KeyName As
St~ing, SubKeyRef As String, ByRef KeyVal As String) As
Boolean

Dim i As Long
Loop Counter

Dim rc As Long
Return Code

Dim hKey As Long
' Handle To An Open Registry Key

Dim hDepth As Long

Dim KeyValType As Long
Data Type Of A Registry Key

Dim tmpVal As String
' Tempory Storage For A Registry Key Value

Dim KeyValSize As Long
1 Size Of Registry Key Variable

'---
' Open RegKey Under KeyRoot {HKEY_LOCAL_MACHINE ... }

'---

5-145

rc = RegOpenKeyEx(KeyRoot, KeyName, 0 1 KEY ALL_ACCESS,
hKey) ' Open Registry Key

If (rc <> ERROR_SUCCESS} Then GoTo GetKeyError
Handle Error .•.

trnpVal ~ String$(1024, 0)
Allocate Variable Space

KeyValSize = 1024
' Mark Variable Size

Voice Command Controller 5-146

'---
' Retrieve Registry Key Value ...

'---
rc = RegQueryValueEx{hKey, SubKeyRef, 0, KcyValType,

tmpVal, KeyValSize} ' Get/Create Key Value

1)

If (rc <> ERROR_SUCCESS) Then GoTo GetKeyError
Handle Errors

trnpVal = VBA.Left(tmpVal, InStr(tmpVal, VBA.Chr{O)) -

'---
' Determine Key Value Type For Conversion ...

'---
Select Case KeyValType

Search Data Types ...

Case REG SZ
String Registry Key Data Type

KeyVal = tmpVal
Copy String Value

Case REG DWORD
Double Word Registry Key Data Type

For i = Len{tmpVal) To 1 Step -1
Convert Each Bit

i, 1)))
KeyVal = KeyVal + Hex {P,sc (Mid (tmpVal,

Build Value Char. By Char.

Next

KeyVal = Format${"&h" + KeyVal}
Convert Double Word To String

End Select

GetKeyValue = True
' Return Success

rc = RegCloseKey(hKey)
Close Registry Key

Exit Function
' Exit

GetKeyError: 1 Cleanup After An Error Has Occured ...

KeyVal = ""
1 Set Return Val To Empty String

Voice Command Controller

GetKeyValue = False
Return Failure

rc = RegCloseKey (hKey).
' Close Registry Key

End Function

• Login function

5-147

Private Declare Function GetUserName Lib "advapi32.dll 11 Alias
"GetUserNameA" (ByVal lpbuffer As String, nSize A-:. Long) As
Long

Public OK As Boolean

Private Sub Form_Load()

Dim sBuffer As String

Dim !Size As Long

LoadResStrings Me

sBuffer = Space$(255)

!Size = Len{sBuffer)

Call GetUserNarne(sBuffer, !Size)

If !Size > 0 Then

txtUserName.Text = Left$(sBuffer, !Size)

Else

txtUserName.Text

End If

End Sub

vbNullString

Private Sub cmdCance1_Click{)

OK = False

Me.Hide

End Sub

Private Sub cmdOK_Click()

'ToDo: create test for correct password

'check for correct password

If txtPassword. Text = '"' Then

OK = True

Voice Command Controller

Me.Hide

Else

MsgBox "Invalid Password, try again!", , "Login"

txtPassword.SetFocus

txtPassword.SelStart = 0

txtPassword.SelLength = Len(txtPassword.Text)

End If

End Sub

5-148

	Voice Command Controller
	Recommended Citation

	tmp.1458263126.pdf.EefOZ

