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CYBER EFFECTS SIMULATION ONTOLOGY 
 

LT Kent O’Sullivan, Dr Benjamin Turnbull 

Australian Centre for Cyber Security, University of New South Wales, Canberra, Australia 

kent.osullivan@defence.gov.au, b.turnbull@adfa.edu.au 

 

Abstract  
Cyber resilience is characterised by an ability to understand and adapt to changing network conditions, 

including cyber attacks. Cyber resilience may be characterised by an effects-based approach to missions or 

processes. One of the fundamental preconditions underpinning cyber resilience is an accurate representation of 

current network and machine states and what missions they are supporting. This research outlines the need for 

an ontological network representation, drawing on existing literature and implementations in the domain. This 

work then introduces an open-source ontological representation for modelling cyber assets for the purposes of 

Computer Network Defence. This representation encompasses computers, network connectivity, users, software, 

vulnerabilities and exploits and aims for interoperability with related representations in common use. The utility 

of this work is highlighted against a functional use-case depicting a realistic operational network and mission. 

Finally, a future research direction is defined.  
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Disclaimer  
The views expressed are the authors’ and not necessarily those of the Australian Army or the Department of 

Defence. The Commonwealth of Australia will not be legally responsible in contract, tort or otherwise for any 

statement made in this publication. 

INTRODUCTION 

On the modern battlefield, the integrity of the cyber systems supporting operations is paramount. A commander 

who requires precision fires to support mission objectives relies heavily on their networked Command, Control, 

Communications, Computing, Intelligence, Surveillance and Reconnaissance (C4ISR) capabilities to deliver 

these effects. Compromise of these systems by an opposing force will deny a commander unimpeded use of their 

capabilities and lead to probable mission failure. Understanding the interrelation of these systems with the 

physical and human systems of the battlespace is essential to developing an understanding of their potential 

vulnerabilities and developing resilience strategies. The effect of a cyber attack is nuanced, and its impact on 

assets and capabilities is often not immediately apparent against mission objectives. We seek to address these 

challenges with this work.  

BACKGROUND 

The Australian Army's Future Land Warfare Report (MSP-A, 2014b) describes a future where militaries will 

require that future conflict is “waged by information technology enabled forces in land, sea, air, space and 

cyberspace" (MSP-A, 2014a, p8). Militaries will “use modern information technology to link sensors, weapons 

systems, commanders and their personnel in a networked environment” (MSP-A, 2012, p60). Globally, 

militaries are developing cyber doctrine (JSDO, 2013) scoping the offensive use of cyber capabilities -the  

United States Army has even integrated proformas for Computer Network Attack and Cyber Effect requests, and 

Cyberspace Operations Mission Task orders into doctrine (USA, 2013). 

The new digital networked battlespace presents a paradox. To operate effectively in this future environment, 

military forces are exploiting C4ISR networks to provide unprecedented levels of command and control 

(Ormrod 2014a). A military force’s reliance on these systems to operate effectively can quickly become 

dependence and bring vulnerability (Ormrod, 2014b). The British identify networked C2 as a key enabler of their 

ability to effectively conduct manoeuvre warfare (DJFCD, 2012). The US Army also recognises this paradox 

(DJFCD, 2012, p.v) and identify that their superior networked C2 capabilities are a likely target for enemy forces 

seeking to disrupt their command and control and neutralise their technological advantage (USATDC, 2014).  
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The significance of this exposure creates an imperative to investigate means to prevent cyber attacks from 

occurring and plan for disaster recovery, preparing for the probability of operating in an information degraded 

environment (Scott, 2013). Understanding these problems and preparing for their eventuality is working towards 

creating organisational cyber resilience. Cyber resilience is premised on: 

The current philosophy of trying to keep the adversaries out, or the assumption that they will be 

detected if they get through the first line of defense, is no longer valid. Given the sophistication, 

adaptiveness, and persistence of cyber threats, we can no longer assume that we can completely defend 

against intruders and must change our mindset to assume some degree of adversary success and be 

prepared to “fight through” cyber attacks to ensure mission success even in a degraded or contested 

environment (Goldman, McQuaid, Piccotto, 2011, p1). 

The United States Air Force extends this approach and actively advocates for the need to contextualise the 

impact of cyber attack from a mission perspective, stating: 

The time has come to think of cyberspace in a new light; not only must we defend against any attack, 

we must be able to “fight through” any attack, accomplish our missions and retain the ability to 

respond–thus giving us mission assurance in the face of future attacks or other disruptions (USAFSC, 

2009, p4). 

One of the first prerequisites of a “fight through [approach to cyber resilience is] ...to map USAF network to 

USAF missions with end-to-end forensics approach” (USAFC, 2009, p11). Work related to these documents, if 

any, is not in the public domain. Consequently, there is little research that adequately models the cyber domain 

from a mission assurance and security impact perspective.  

Planning For A Resilient Future 

There are a near-infinite number of possible scenarios for which a resilient organisation must prepare. A futures 

view of developing resilience requires decision makers to consider the possibilities, enumerate the plausibilities 

and deduce the probable issues that they will encounter, enabling the decision maker  to determine what actions 

need to be taken to guide their organisation towards a preferable future state (Hajkowicz, 2015). Anticipating 

problems and developing contingencies increases resilience.  

Computer networks and cyberattacks interact with the battlefield and decision makers as a collection of 

inextricably linked systems of systems. The complexity of the systems, issues of system to decision maker trust, 

the inherent uncertainty of complex interactions and the resulting emergent phenomena intersect to form a 

wicked problem for decision makers (Ormrod, 2014b), making the enumeration of futures extremely 

challenging.  

To understand the complexities of these systems, we must clearly identify the entities, properties and 

relationships of the systems. To achieve this, we apply a network approach. Philosophically, networks are simply 

a collection of concepts with defined interrelations. Complex systems are are collections of entities that interact - 

fitting the network model. The benefit of applying a defined network structure to deconstruct complexity is that 

it formalises the representation and enables analysts to validate the Emergent Phenomena of the network. 

Emergent Phenomena are collective behaviours observed in network interactions. These phenomena offer the 

best window of insight into possible futures. The generation of phenomena is highly dependent on the 

underlying network structure (Caldarelli, Catanazro 2012). We have elected to use ontological structures to 

reliably represent the complex systems of cyber-physical-cognitive interaction on the battlefield as networks.  

An ontology is an explicit specification of a shared conceptualization (Gruber, 1995). It is a unifying framework 

that unites multiple viewpoints facilitate problem solving (Uschold, Gruninger, 1996). A ‘strong’ ontology is 

judged by its real-world semantics, use of logical axioms and machine readability (Obrst, 2010). They are built 

by collecting and integrating numerous subject-predicate-object triples. Each triple should define a single fact 

within the ontology. The effectiveness of this triple to represent only a single fact reflects the triple’s semantic 

strength. In the context of the big data problems associated with modelling complex systems of systems a 

semantically strong ontology will optimise searching, promote automation and efficiency of scale.  

The Cyber Simulation Terrain (CST) proposed in this paper is the explicit definition of the concepts, properties 

and relationships of the complex system that is organisational cyber-infrastructure. It is a component of the 

Cyber Effects Simulation Ontology (CSEO) - an effort to model the effects that cyber attacks have on a 

computer system as part of a larger, more complex interconnection of systems. The transparent semantic strength 

of the CESO and CST will permit validation of observed emergent phenomena, enhancing the credibility of 

simulations modelling the interactions of cyber effects on land forces in combat enabling future organisational 

shaping towards resilience.  
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RELATED WORK 

Representation of computer networks to facilitate analysis of vulnerabilities, attack vectors and mission-node 

criticality has a long history. Initially work was focused on graphing approaches to the problem (Phillips, Swiler 

1998; Swiler, Phillips, Ellis 2001; Sheyner, et. al, 2002), utilising probabilistic statistical models to deduce 

current and future states and attack paths. Limitations of scalability and fidelity contributed to supersession by 

information fusion approaches. These approaches seek to efficiently exploit data collected by intrusion detection 

sensors to generate probabilistic models of likely attack vectors and future network states. The INFERD (Sudit 

et. al, 2006) and ECCARS (Sudit, Stotz, Holender, 2005) models were among the first major steps to achieving 

an effective information fusion solution.  

TANDI evolved from similar ideas, choosing to isolate the logical network topology from the predictive model 

(Holsopple, Yang, Sudit, 2006). Independent topology or ‘terrain’ models are a core feature of many of the 

subsequent information fusion approaches. VTAC (Argauer 2008), FuSIA (Holsopple, Yang, 2008), CAMUS 

(Goodall, D’Amico, Kopylec, 2009) and the High-Level Information Fusion for Tracking and Projection of 

Multistage Cyber Attacks (Yang et. al, 2009) all utilised independent terrain models. 

Independent terrain models are also used in mission impact analysis as part of the CSIM (Jakobson, 2011a; 

Jakobson 2011b; Jakobson 2013). They have been influential on the development of the Cyber-ARGUS 

framework that models the command and control impacts of cyber attacks (Barreto 2012; Barreto 2014) and the 

modelling of cyber situational awareness (Machado, Barreto, Yano, 2013; Machado, Yano 2014). It has 

demonstrated utility in supporting cyber attack simulation, present in the CyberSim Modular Cyber Attack 

Simulator (Moskal et. al, 2013), MASS (Moskal et. al, 2014) and CASCADES (Wheeler, 2014; Kreider, 2015).  

All of these approaches have evolved out of the independent Cyber-Virtual Terrain model that was put forward 

by Fava et. al (2007). Their paper applied an independent terrain model to complex multistage cyber attacks. The 

catalyst for the development of independent terrain models, however, is the Virtual Terrain (VT) model 

(Holsopple et. al, 2008). The VT model encapsulates the Cyber Virtual Terrain and defines the core elements of 

terrain models that endure across its evolutions.  

The VT core evolved in the Virtual Terrain version 2 (VT.2) to include the capacity to represent incomplete 

network information, include a more accurate depiction of internet connectivity and represent routers exclusively 

as traversal nodes. (Moskal et. al, 2013; Moskal et. al, 2014). The most recent iteration of the VT is the Dynamic 

Virtual Terrain (DVT) (Wheeler, 2014). Like VT.2, the DVT is intended to support cyber-attack simulations. 

The DVT is a significant revision of the VT and VT.2. Its key aim is to facilitate the simulation of Moving 

Target Network Defence Measures (MTNDM) such as IP address hopping and port hopping. The Cyber Terrain 

(CT) developed by Jakobson in 2011 (Jakobson 2011a; 2011b) has evolved from the original VT to support 

mission planning and resilience building.  

Each of these terrains was assessed for their suitability for inclusion into the CESO. However, lack of publicly 

available schema has prevented a detailed suitability analysis. Based on the publicly available information, a 

consistent issue is a lack of granularity. CVT, VT, VT.2 and DVT simplify representation at the cost of fidelity. 

The mapping of nodal interdependencies by the VT family of models is not sufficient to realistically represent 

the network. CT maps the dependencies in a granular manner but then abstracts much of the nodal detail that 

makes the VT family of models useful. DVT has stepped further away from reality, centralising many functions 

of the network - modifying and abstracting the terrain structure to represent MTNDMs. Existing terrain models 

also do not address the actual flow of information across the network, sessional communication between nodes, 

wireless as its own use-case, data spill or virtualisation.  

The CST adopts the CT approach to dependency mapping with the philosophy of the VT family of terrains - 

gearing towards the simulation of cyber attacks. It will do this at greater levels of granularity and maximise 

interoperability with linked efforts such as the MITRE standards and the Structured Threat Information 

eXpression (STIX) (Barnum, 2012). The semantic strength of this ontological structure will enable validation of 

results generated by simulations and analysis, maximising the efficacy of the predicted future states it represents.  

THE CYBER SIMULATION TERRAIN  

The purpose of the CST is to accurately model the assets and systems across a computer network. The 

representation must be generic enough to encompass corporate networks also extensible enough to model 

bespoke and operational systems. Modelling a computer network has several benefits; a comparison between 

network sensors and predefined models allow for rogue and masquerading device detection, an understanding of 

impact from hypothetical scenarios across realistic infrastructure, allows for a greater and immediate 

understanding of the impact of a cyber-security incident, and to understand the impact of a cyber-security 
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incident on business processes or missions. Finally, a detailed computer and network model can be used for 

research-based simulation.  

Although government publicly advocates endpoint protection (Australian Signals Directorate, 2012) and there 

are multiple commercial implementations (FireEye; CYLANCE; Bromium; SentinelOne; Bit9; EMC 2015), 

most of the benefits of these tools relate to blocking infection, reporting endpoint state and patch status, and 

remote forensic acquisition. There is little work on modelling the network state and shape over time against 

known states. Changes to the expected behaviour of objects or network shape, caused by misconfiguration, 

device masquerading or rogue devices, can be easily detected through comparisons to models representing the 

predefined ‘normal’ network.  

A comprehensive cyber security model can also be used to test hypotheses against a network for impact analysis. 

An example of this was the announcement of the OpenSSL Heartbleed vulnerability (Codenomicon, 2015). 

Immediately after its publication and public disclosure, there was little understanding of the impact of the 

exploitable vulnerability across the network. In some cases, it took several days for providers to fully appreciate 

the effects to internal systems, operations and data. A network model allows for new vulnerabilities and exploits 

to be tested against a particular network system to determine immediate impacts and ongoing leverage points. 

These can be injected into the model and their impact tested without endangering an operational environment. 

The CST is designed to accomplish these aims.  

The CST Schema is open source and available at: 

https://github.com/AustralianCentreforCyberSecurity/Cyber-Simulation-Terrain  

Public availability makes the ontology unique in that it is available for critique and analysis. The repository also 

contains several use-cases that highlight its intended use. The schema has been implemented using the Resource 

Description Framework (RDF) (RDF Working Group, 2014a) Turtle (TTL) (RDF Working Group 2014b) syntax 

with minimal elements of the Ontology Web Language (OWL) (OWL Working Group, 2012). Queries are 

performed using the Sparql Protocol And Rdf Query Language (SPARQL) (SPARQL Working Group, 2015). 

The CST Schema has been designed to achieve granularity in content and structure in representation. Figure 1 

depicts the schema. The blue nodes represent the concepts or objects in the ontology. The red represent 

properties (will be leaf nodes) and relationships (will be traversal nodes). The visualisations in this paper were 

created using the easyRDF converter (Humfrey, 2015) and the RDFGravity Visualisation Tool (Goyal, 

Westenhaler, 2015). 

Schema 

The CST is an interconnection of nodes. Nodes can be specialised as computers, routers, IDS sensors or Domain 

Controllers. Nodes connect to Subnetworks through a Network Interface Controller (NIC) (including wireless 

and virtual nodes). Computer MAC and IP addresses are associated with their NIC, permitting the representation 

of a computer belonging to multiple physical, virtual and wireless networks via multiple interfaces. Subnetworks 

connect to each other and the internet through a router. A router will have defined routes that control the traffic 

flow across the network between subnets. The internetwork is the network of routers - a conceptual addition that 

assists in modelling the interconnection of subnets.  

Computers will have associated software and services. These concepts are arranged hierarchically in a similar 

manner to the Virtual Terrain service tree concept. Computers are associated with an installed version of 

software. That installed version will be associated with a parent software type class to facilitate categorisation 

and querying. The more granular relationships are to the service that software projects when running on the 

computer and any known vulnerabilities associated with a piece of software. Zero-days are represented as an 

exploit related to a vulnerability, but will have no links to a CVE or other published vulnerability. Software 

versions are associated with their CPE ID (MITRE, 2015a), vulnerabilities with their CVE identifier (Martin, 

2001) and weakness types are associated with a CWE (MITRE 2015b) number. Metrics of criticality and 

exploitability associated with vulnerabilities utilise the CVSS (FIRST CVSS SIG, 2015) scores. The intention of 

integration with these standards is to leverage the existing resources, maximise the interoperability of the CST 

with the wider CESO as one of the modules. The vulnerability association is also the interface with the ‘red 

team’ elements of the CESO, an abridged implementation of STIX, also aims to leverage existing work and 

maximising interoperability.  
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Figure 1 - CST Schema 

 

Installed software runs either local or remote services. Local services run internally to the node, and remote 

services project their Service Name, Port Number and Protocol to the NIC connected to their computer forming 

an implicit host-based firewall - if a service has a port open on the network card, it is assumed to be listening. If 

it is not listening it will not be shown. Services also have an associated privilege level. These privilege levels 

map to the privilege levels associated with users. If a user has a privilege level that matches the service, they can 

interact with it. Users can be associated with a computer either locally or as part of a domain. Local users can 

access only a computer with which they have an explicit link. Domain users belong to a domain that can have 

multiple member computers. Domain users can access any computer in a domain to which they are 

authenticated. Domains have a domain controller that connects to a single subnet but can control domains across 

multiple subnets. There can be multiple domains per subnet and multiple domains per computer, allowing us to 

represent a user who might have a secret and an unclassified domain account on the same computer and 

accounting for data-spill use-cases. Users are owners of their data. Data is stored locally on computers on a disk. 

The disks can be encrypted or unencrypted. If encrypted, a user has to authenticate to access the data.  

 

Intrusion detection and antivirus is implemented at the host level. A host-based signature  IDS is represented as a 

running service on a node. The IDS links to a signature database that will consist of the unique identifiers 

matching vulnerabilities and exploits. The IDS has configurable rules that are a subtype of the software 

configuration concept linked to the installed version of the software. These rules allow the IDS to be ‘tuned’ by 

selecting the signature and action on detection. MTNDMs can be represented in the CST by its linkage to the 

CESO Event Ontology.  

 

 

18



EXAMPLE USE CASE 

The use-case implemented below is drawn from the paper defining the CESO (Ormrod, Turnbull, O’Sullivan, 

In-Press). It depicts the process required for a Joint Fires Team (JFT) to call for Offensive Support (OS), the call 

for fire to be handled by a Joint Fires Communication Centre (JFCC) and have the mission fired by an Artillery 

Battery. Figure 2 visualises the required cyber infrastructure to conduct this task. It does not demonstrate the full 

capabilities of the terrain but is a proof-of-concept of the most commonly used features. 

The use-case depicts three subnetworks connected by routes on the same router - the JFT Network, the JFCC 

Network and the Artillery Battery Network. All computers on these networks are members of the ‘Joint Fires’ 

Domain and are accessible by all authenticated users. Computers are running a mix of local and remote software 

and services (services are fabricated for this use-case). The JFT has Targeting and Request for Fires 

Communications software. They use this to communicate with the JFCC, who use their Mission Control software 

to push the fire mission to the Artillery Battery HQ. The communications between the JFCC and the Artillery 

Battery HQ are encrypted. However, the software that they are using is an older version of OpenSSL that is still 

vulnerable to Heartbleed. The Battery HQ uses their Battery Management Software to push the fire missions to 

individual Artillery Troops who use their Fire Control Software to prosecute the fire mission. 

 
Figure 2 - CST Call for Fire use-case visualisation 

 

In addition to effectively representing this use-case, the CST can also elicit information about the network. 

Figure 3 shows the results of queries run against the use-case. The first query can quickly produce information 

about computer and network attributes. The second query checks for the presence of known vulnerabilities, 
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detecting Heartbleed on the JFCC and Battery HQ computers. Query three then returns all known information 

about the vulnerability. 

 

These are only a small subset of the queries that the CST uses to determine possible, plausible and probable 

futures. The emergent phenomena(potential future state) in this use-case is the potential relationship that an actor 

attacking the network has with the Heartbleed vulnerability. The attacker could compromise the confidentiality 

of that link, use it to intercept communications and learn of the impending fire mission, and warn the targets of 

the fire mission, potentially giving the enemy time to evade or prepare counter-battery fire in response to the 

attack. These fascinating and relevant second and third order effects are not knowable from looking at 

information in isolation. A decision maker who learns that a probable future has their OS capability rendered 

ineffective by an enemy at a time of their choosing will likely wish to take actions (such as patching the 

vulnerability) to move towards a preferable future where their OS capability remains effective.  

 

 
Figure 3 - CST Use-case - SPARQL Query Results  

 

CONCLUSION AND FUTURE WORK 

In this paper we have outlined the requirement and initial implementation of a publicly-available ontological 

schema designed to assist in Cyber Security Research. There are several areas of future work arising from this; 

the highest priority of these being the continual improvement and refinement of the ontological schema. Beyond 

this, it is expected that the ontology will evolve over time as new concepts arise, new network designs emerge, 

and additional information is required. Some of these changes will be minor, and some may require backwards-

incompatible changes. As these occur testing, harnesses and deployments will be updated.  

The biggest area of future work is in the development of systems to populate, reason on and visualise this 

ontology. There are also multiple defined use-cases that require further development. There are precedents for 

the automated detection and ingestion of data sources and several associated challenges (Moir, Dean, 2015; 

Grove et. al, 2013) that will guide these efforts. The first stage of development will be to support automated 

simulation development and analysis.  
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