
Edith Cowan University Edith Cowan University

Research Online Research Online

Australian Digital Forensics Conference Conferences, Symposia and Campus Events

2015

Towards a standardised strategy to collect and distribute Towards a standardised strategy to collect and distribute

application software artifacts application software artifacts

Thomas Laurenson
thomas@thomaslaurenson.com

Stephen MacDonell
University of Otago., stephen.macdonell@otago.ac.nz

Hank Wolfe
University of Otago, hank.wolfe@otago.ac.nz

Follow this and additional works at: https://ro.ecu.edu.au/adf

 Part of the Information Security Commons

Recommended Citation Recommended Citation
Laurenson, T., MacDonell, S., & Wolfe, H. (2015). Towards a standardised strategy to collect and distribute
application software artifacts. DOI: https://doi.org/10.4225/75/57b3f5cffb889

DOI: 10.4225/75/57b3f5cffb889
13th Australian Digital Forensics Conference, held from the 30 November – 2 December, 2015 (pp. 54-61), Edith
Cowan University Joondalup Campus, Perth, Western Australia.
This Conference Proceeding is posted at Research Online.
https://ro.ecu.edu.au/adf/149

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online @ ECU

https://core.ac.uk/display/41538799?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.ecu.edu.au/
https://ro.ecu.edu.au/adf
https://ro.ecu.edu.au/conference
https://ro.ecu.edu.au/adf?utm_source=ro.ecu.edu.au%2Fadf%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ro.ecu.edu.au%2Fadf%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.4225/75/57b3f5cffb889
https://doi.org/10.4225/75/57b3f5cffb889

TOWARDS A STANDARDISED STRATEGY TO COLLECT AND

DISTRIBUTE APPLICATION SOFTWARE ARTIFACTS

Thomas Laurenson, Stephen MacDonell, Hank Wolfe

Department of Information Science, School of Business, University of Otago.

thomas@thomaslaurenson.com, [stephen.macdonell, hank.wolfe]@otago.ac.nz

Abstract
Reference sets contain known content that are used to identify relevant or filter irrelevant content. Application

profiles are a type of reference set that contain digital artifacts associated with application software. An

application profile can be compared against a target data set to identify relevant evidence of application usage in

a variety of investigation scenarios. The research objective is to design and implement a standardised strategy to

collect and distribute application software artifacts using application profiles. An advanced technique for

creating application profiles was designed using a formalised differential analysis strategy. The design was

implemented in a live differential forensic analysis tool, LiveDiff, to automate and simplify data collection. A

storage mechanism was designed based on a previously standardised forensic data abstraction. The design was

implemented in a new data abstraction, Application Profile XML (APXML), to provide storage, distribution and

automated processing of collected artifacts.

Keywords

Differential analysis, application profiles, reverse engineering, application software, Digital Forensic XML

INTRODUCTION

Application software are the computer programs that perform specific end-user tasks (e.g., web browsers, word

processors and image editors). Forensic analysis of application software aids digital event reconstruction by

revealing digital artifacts (e.g., file system entries and system configuration information). These artifacts are a

robust source of evidence regarding application software usage in specific scenarios.

Reference sets contain known content usually represented by metadata, which are compared to an investigation

target to identify relevant matches or to perform data reduction. For example, a reference set for a malicious tool

can be compared against a perpetrator’s hard drive to determine the presence of anti-forensic or hacking tools.

Reference sets of application software have a variety of different names: application profile, footprint,

fingerprint and signature. The term application profile is used in this paper.

Authoring application profiles involves system-level reverse engineering. Past researchers have reverse

engineered a wide variety of applications to aid digital investigations. For example, the instant messaging

application Digsby (Yasin & Abulaish, 2013), the cloud storage client Dropbox (Quick & Choo, 2013) and anti-

forensic tools (Geiger & Cranor, 2006). In these studies the following method was carried out: 1) Manual

analysis using a variety of reverse engineering techniques and tools; 2) Documentation of the analysis method

and findings; and 3) Sharing of knowledge (usually via academic publication). This technique poses a variety of

challenges for both researchers and practitioners.

1) Reverse engineering techniques lack standardisation: Researchers lack a systematic approach

compounded by the fact that there are no standard set of tools, no tool automation and results that are

unable to be shared (Garfinkel, 2010). Present research is a stand-alone endeavour with minimal

technology advances.

2) Challenges incorporating multiple evidence sources: Reference sets are primarily comprised of

metadata that represent data files (Roussev, 2010). However, most application software stores

configuration information in the Windows Registry (Morgan, 2008). There are currently no methods to

store and process multiple evidence sources in a single application profile.

3) Application profile generation time: Modern applications are regularly patched and updated, which

means that maintaining a reference set for every software version is becoming less feasible (Roussev,

2011). Research has attempted to solve this using small block forensics (Garfinkel et al., 2010) and

similarity digests (Roussev & Quates, 2012). A different solution would be to improve the speed and

simplicity of data collection to enable rapid application profile creation. This would also increase

application code coverage.

54

A standardised and automated approach would address these problems. Firstly, an automated live data collection

method would streamline application profile generation. Secondly, a standardised data abstraction would

facilitate the storage, distribution and automated processing of application software artifacts.

This paper outlines background material covering the theory and frameworks implemented in the proposed

system design. A formalised process to identify application software artifacts is presented covering potential

evidence sources, a data collection method, data collection procedure and a differential analysis strategy. A data

abstraction suitable for application profile distribution is designed that specifies a structure, classification

scheme, inclusion of pertinent metadata properties and standardisation using an Extensible Markup Language

(XML) schema. Finally, a conclusion including future research areas is presented.

BACKGROUND: THEORY AND FRAMEWORKS

Previous researchers have advanced reference sets to improve data abstraction functionality, developed reverse

engineering techniques and incorporated applicable evidence sources, which will now be discussed.

Digital Forensics XML

Digital Forensics XML (DFXML) is an XML language designed to represent forensic information. Garfinkel

(2009) developed the fiwalk tool to automate disk image processing by extracting file system metadata and

populating a DFXML document. A Python API (dfxml.py) provides investigators with an object orientated

approach to write simple automated scripts (Garfinkel, 2012). DFXML was extended by Nelson (2012) to

include Windows Registry entries. Nelson et al. (2014) then formalised the DFXML language using an XML

schema to provide document validation. A revised Python API (Objects.py) was implemented which

provides mutative object properties and DFXML schema adherence.

Differential Analysis

Differential forensic analysis is a standardised strategy to reverse engineer application software. It compares and

reports the differences between two objects. Garfinkel et al. (2012) formalised a general differential forensic

analysis strategy which reports the differences between any two kinds of digital artifacts; for example, two hard

drives. The general strategy is:

𝐴
 𝑅
→ 𝐵

Garfinkel et al., (2012) stated that “if A and B are disk images and the examiner is evaluating the installation

footprint of a new application, then R might be a list of files and registry entries that are created or changed”.

The output from differential forensic analysis can be used to construct an application profile by determining

system-level changes using differential analysis. Garfinkel et al. (2012) released two differential analysis tools:

1) idifference.py compares two disk images and reports the file system differences; and 2)

rdifference.py compares two Windows Registry hive files and reports the differences. Both tools use

DFXML to perform post-mortem differencing. In contrast, Regshot is a live differential analysis tool that

determines file system and Registry changes by comparing snapshots on a running system (Carvey, 2011).

Application Software Life Cycle

Each application has a life cycle that follows a chronological path including phases such as installation,

execution, and uninstallation. During each phase of the application life cycle, digital artifacts are created,

modified and/or removed. For example, when installing an application, various folders, files, and configuration

settings are created. When uninstalling an application, these are removed but residual information may remain.

Figure 1 displays a high-level overview of the application life cycle.

Figure 1: High-level overview of the application life cycle (Source: Figure adapted from Davis et al., (2006).

55

DATA GENERATION: AUTHORING APPLICATION PROFILES

This section outlines an overview of the proposed system to identify application software artifacts on a live

operating system by implementing differential analysis. The sources of application software evidence, a data

collection method and a novel technique to include efficient data file hashing is specified. A formalised

differencing strategy and a scalable procedure for application life cycle recreation are also outlined.

System Design Overview

The Regshot tool provides an efficient live system snapshot and comparison implementation but lacks

sufficient reporting detail and file hashing capability. In contrast, the idifference.py and

rdifference.py tools provide exceptionally detailed metadata reports but lack efficiency due to post-

mortem analysis (Garfinkel et al., 2012). Combining both approaches would simplify application profile

generation and to achieve this the system would require the following functionality:

1) A portable Windows tool to execute on a live system

2) Support to process file system and Windows Registry entries

3) Automated interface to ease application profile generation

4) Inclusion of cryptographic hashing for data files

5) Output to a standardised XML data abstraction

Application Software Evidence Sources

Application software creates, modifies and/or removes a variety of digital artifacts on an operating system. When

investigating application software usage on a Microsoft Windows operating system the majority of digital

artifacts of forensic interest are file system and system configuration information. Therefore, the following

evidence sources should be included in an application profile: 1) File system entries (directories and data files);

and 2) Windows Registry entries (keys and values).

Data Collection Method

The system design requirements specify support for a portable Windows tool to process file system and Registry

entries. A new live differential forensic analysis tool, named LiveDiff, was authored base on the Regshot

software. The fileshot.c and regshot.c source code files provide the functionality to snapshot the local

file system and Registry and perform differencing (Regshot, 2015). The specified Regshot source code files

were used as the foundation for the LiveDiff tool. However, numerous modifications and additional code

were essential to implement the required functionality.

File system data collection is achieved by performing a snapshot of the system drive (usually C:\) whereas

Registry data collection is accomplished by performing a snapshot of the HKEY_LOCAL_MACHINE (HKLM)

and HKEY_USERS (HKU) Registry hives. This incorporates the SAM, SECURITY, SOFTWARE, SYSTEM

and NTUSER.DAT hive files. Each snapshot is stored in a C data structure (SNAPSHOT). Table 1 displays the

implemented data structures used to store digital artifact information. In addition to the listed properties in Table

1 each structure retains a pointer to associated father, brother and/or sub structure.

Digital artifact Structure name Properties

Data file FILECONTENT File name, size, write time, access time,

hash value and attribute

Directory FILECONTENT Directory name, size, write time, access

time and attribute

Registry key KEYCONTENT Key name, modified time

Registry value VALUECONTENT Value name, type, data and data size

Table 1: Overview of data structures used for different application software artifacts.

After performing two snapshots, a comparison is made to determine the system changes that have occurred. To

accomplish this, a differential analysis strategy is required.

Inclusion of Cryptographic Hashing for Data Files

Roussev (2010) states that cryptographic file hashing is commonly used in digital investigations to identify data

files that are exactly the same. Therefore, an application profile requires that data files must have an

accompanying hash value to aid data file matching against a target data set. However, hashing every data file on

a target system is computational inefficient, especially when performing live data collection.

56

A novel method was designed and implemented to perform selected file hashing. Before data collection is

performed, an initial system snapshot is collected and used to create a blacklist of known files. The blacklist is

stored in memory using a prefix tree (trie) data structure which is populated using the full path of all data files

from the initial snapshot. The prefix tree provides an ordered tree data structure to provide fast string indexing.

When performing subsequent system snapshots (i.e., data collection), the file path of data files are queried

against the prefix tree, if no match is found the data file is hashed using the Secure Hash Algorithm version 1

(SHA-1). This implementation results in only new files of forensic interest being hashed.

Differential Analysis Strategy

The proposed differencing algorithm is implemented based on the general differential forensic analysis strategy

specified by Garfinkel et al. (2012). The differencing algorithm can be expressed as:

𝑆𝑛𝑎𝑝𝑠ℎ𝑜𝑡1
 𝑅
→ 𝑆𝑛𝑎𝑝𝑠ℎ𝑜𝑡2

Snapshot1 is the system state before an application life cycle phase is conducted (e.g., application installation).

Snapshot2 is the system state after an application life cycle phase is conducted. The two snapshots are then

compared (R) and the created, changed, modified and/or removed digital artifacts are reported. Figure 2 displays

the algorithm used for file system entry correlation between snapshots (FC refers to FILECONTENT structures).

Figure 2: Differential analysis strategy for file system entries.

The differencing algorithm for Registry entries (keys and values) follows a very similar differential analysis

strategy. However, differencing of Registry values is performed in an embedded loop after two matching

Registry keys are discovered. All entries deemed new, changed, modified or deleted by the differencing

algorithm are added to a data structure (RESULTS) which can be later processed and reported to the

investigator.

Data Collection Procedure

LiveDiff was intentionally implemented as a console application to reduce user interaction and provided an

automated data collection process for faster and simpler tool operation. Figure 3 displays the method used to

achieve automated application profile generation using the LiveDiff tool.

57

Enter application life
cycle phase
(e.g., install)

Data collection:
Snapshot1

Perform application
life cycle phase

(e.g., install
application)

Data collection:
Snapshot2

Perform differential
analysis and output

results

Delete Snapshot1.
Copy Snapshot2 to

Snapshot1

Enter application life
cycle phase

(e.g., execute)

Execute LiveDiff.exe:
Enter application name

and version

Finished
Perform another

application life cycle
phase?

NOYES

Figure 3: High-level overview of the LiveDiff data collection procedure.

The data collection procedure is a simple automated procedure that requires minimal user interaction. The user is

prompted to enter the application name and version number. For each life cycle phase the user must: 1) Enter the

life cycle state; 2) Press enter to collect Snapshot1; 3) Perform the application life cycle phase (e.g., install the

application); 4) Press enter to collect Snapshot2. Differencing is performed and results reported by appending

populated DFXML objects to an output file. The user can select to continue profile generation and perform

another life cycle phase, or finish the scanning process. If an additional life cycle phase is requested by the user,

Snapshot1 is deleted and Snapshot2 is copied to Snapshot1. This increases application profile generation speed

by removing the requirement to recollect the first snapshot. All results obtained from snapshot comparison are

populated into a specifically designed XML data abstraction that is discussed in the following section.

DATA ABSTRACTION: DISTRIBUTING APPLICATION PROFILES

A standardised and effective data abstraction would aid in creating and distributing application profiles. The data

abstraction requires the functionality to store, distribute and automate processing of a variety of digital artifact

types and provide sufficient information to classify application software artifacts.

Data Abstraction Structure

A suitable data abstraction has the following requirements:

1) Conforms to existing digital forensic requirements (e.g., evidence integrity)

2) Functionality to document file system and Registry entries

3) Standardised, extensible and open design

DFXML was selected as it conforms to the specified requirements. Thus, a new data abstraction, Application

Profile XML (APXML), was designed based on the DFXML standardised data abstraction. Figure 4 displays a

skeleton example of the proposed APXML structure.

Figure 4: Example of the Application Profile XML (APXML) structure.

<?xml version='1.0' encoding='UTF-16' ?>

<apxml version="'1.0.0'"

 xmlns="https://github.com/thomaslaurenson/apxml_schema"

 xmlns:dc="http://purl.org/dc/elements/1.1/"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:delta="http://www.forensicswiki.org/wiki/Forensic_Disk_Differencing">

 <metadata/>

 <creator/>

 <install>

 <!-- DFXML FileObjects -->

 <!-- RegXML CellObjects -->

 </install>

 <execute>

 <!-- DFXML FileObjects -->

 <!-- RegXML CellObjects -->

 </execute>

 <uninstall>

 <!-- DFXML FileObjects -->

 <!-- RegXML CellObjects -->

 </uninstall>

</apxml>

58

A well-formed XML document must contain one root XML element (tag) (Yergeau et al., 2004). The APXML

root element is defined using an apxml tag. Namespace attributes are recommended by the XML specification

for uniquely named XML elements, therefore, the root element specifies an XML schema that was created based

on the specifications of this research. The following Uniform Resource Identifier (URI) specifies the APXML

namespace: https://github.com/thomaslaurenson/apxml_schema The schema provides

compliance to the unique element naming conventions in an APXML document. A number of additional XML

namespaces are required as an APXML document includes DFXML FileObject entries, RegXML

CellObject entries, DFXML delta annotations (to describe FileObject and CellObject differencing

states) and XML Dublin Core to annotate the XML document.

Similar to the DFXML standard, an APXML document has both metadata and creator elements to document

case provenance. The metadata element documents additional information about an application profile including

the profiled application name and version while the creator element documents information pertaining to the tool

that authored the APXML document and the environment it was executed in. The creator element implemented

in the APXML structure is taken from the DFXML standard (version 1.0). The remainder of the APXML

structure categorises digital artifacts based on the application life cycle phases.

Digital Artifact Classification

A key component of the APXML structure is the classification of digital artifacts to provide application life

cycle information. Each digital artifact is represented by a specific DFXML object. File system entries are

populated in FileObjects and Registry entries are populated in CellObjects. An APXML document

classifies each object using a naming convention to describe life cycle phase association. The APXML structure

outlines four classifications based on the application life cycle: 1) Install; 2) Execute; 3) Uninstall; and 4)

Reboot. Due to the open and extensible design the APXML structure can be extended to include additional life

cycle phases and different naming conventions. Digital artifact classification provides an investigator with

additional information regarding application software usage. For example, installing an application is a different

scenario to that of installing then executing the software for a specific task. Both scenarios provide evidence that

can be used to determine what tasks a perpetrator conducted with an application.

Digital Artifact Metadata Properties

DFXML stores detailed metadata about digital artifacts. However, not all metadata is required in an application

profile. This is because only certain metadata properties would aid digital artifact correlation against a target data

set. For example, the full file system path and corresponding hash value can be used to perform digital artifact

detection. In contrast, partition information and file timestamps would not aid digital artifact correlation as these

values would differ between target systems. Table 2 displays the required metadata properties for directories,

files, Registry keys and values stored by APXML documents.

File System Windows Registry

Directory File Key Value

filename filename cellpath cellpath

meta_type meta_type name_type name_type

alloc_name sha1 alloc data_type

alloc_inode alloc_name data

 alloc_inode alloc

Table 2: Overview of the metadata properties for different digital artifact types stored in an

Application Profile XML document. DFXML Objects.py naming conventions are used.

Each of the metadata properties store different information dependent on the digital artifact type. Table 3

displays the various metadata properties with an accompanying description and examples.

Standardising the Application Profile XML Structure

XML document validation is an important process that ensures correct data structure for tool production or

consumption. The DFXML language was formalised via implementation of an XML schema and validation can

be achieved using the xmllint utility (Nelson et al., 2014). This research adopts the same approach. An XML

schema (apxml.xsd) was created to validate APXML documents to ensure correct production and

consumption of APXML documents. This provides researchers and practitioners with the capability to distribute

reverse engineering results with assurance of document validity and usability.

59

Property Description Example

filename Full file system path Program Files/TrueCrypt/TrueCrypt.exe

meta_type File system entry type 1 = file

 2 = directory

sha1 SHA-1 hash value 7689d038c76bd1df695d295c026961e50e4a62ea

alloc_name File allocation status 1 = allocated

 0 = unallocated

alloc_inode Metadata allocation status 1 = allocated

 0 = unallocated

cellpath Full Registry entry path HKLM/Software/Classes/AppID/TrueCrypt.exe

name_type Registry entry type k = Registry key

 v = Registry value

data_type Registry value data type REG_SZ = Null terminated string

 REG_DWORD = 32-bit number

data Registry value data @C:\Program Files\TrueCrypt\TrueCrypt.exe

alloc Cell allocation status 1 = allocated

 0 = unallocated

Table 3: Summary of the metadata property types used in an Application Profile

XML (APXML) document with a description and examples.

CONCLUSION

This research contributed towards a standardised strategy to collect and distribute application software artifacts.

A new live differential analysis tool was authored, LiveDiff, which simplifies and accelerates the generation

of application profiles using an automated process. An advanced data abstraction, Application Profile XML

(APXML), was designed which incorporates multiple evidence sources into a single document using an accepted

forensic data abstraction format. The data abstraction was standardised using an XML schema. The output of the

research culminates in a system designed based on accepted digital forensic requirements that can aid researchers

and practitioners to reverse engineer, store, distribute and automate processing of application software artifacts.

Forensic analysis of application software is still an active research area that requires additional investigation. The

research conducted would benefit from a practical evaluation covering tool effectiveness and efficiency.

Additional evidence sources could be included in the APXML document including volatile memory information,

document signatures and network traffic signatures. Inclusion of different hashing algorithms (block hashing and

similarity digests) could advance application profile functionality to detect similar but not exact copies of digital

artifacts. All of these future research areas would require expansion of the DFXML standard to document the

specified evidence sources and hashing algorithms.

There are a variety of other research areas involving generating application profiles. Filtering irrelevant digital

artifacts to exclude operating system noise from the data collection phase has yet to be investigated. Alternative

methods for data collection could improve profile generation techniques. For example, performing differential

analysis using virtual machine snapshots taken before and after application software life cycle phases.

Resource Availability

The resources supporting this research have been made publicly available to encourage future research and

development. The LiveDiff tool and APXML schema (apxml.xsd) is available from the authors GitHub

repositories: https://github.com/thomaslaurenson

REFERENCES
Carvey, H. (2011). Windows Registry Forensics: Advanced digital forensic analysis of the windows registry.

Elsevier.

Davis, M., Kennedy, R., Pyles, K., Strickler, A., & Shenoi, S. (2006). Detecting Data Concealment Programs

Using Passive File System Analysis. In Advances in Digital Forensics II (Vol. 222, p. 171-183). Springer

Berlin Heidelberg.

Garfinkel, S. (2009). Automating Disk Forensic Processing with SleuthKit, XML and Python. In Fourth

International IEEE Workshop on Systematic Approaches to Digital Forensic Engineering (p. 73-84).

Garfinkel, S. (2010). Digital forensics research: The next 10 years. Digital Investigation, 7, Supplement, S64-

S73.

60

Garfinkel, S. (2012). Digital forensics XML and the DFXML toolset. Digital Investigation, 8 (3-4), 161-174.

Garfinkel, S., Nelson, A., White, D., & Roussev, V. (2010). Using purpose-built functions and block hashes to

enable small block and sub-file forensics. Digital Investigation, 7 (Supplement), S13-S23.

Garfinkel, S., Nelson, A., & Young, J. (2012). A general strategy for differential forensic analysis. Digital

Investigation, 9 (Supplement), S50-S59.

Geiger, M., & Cranor, L. (2006). Scrubbing stubborn data: An evaluation of counter-forensic privacy tools.

IEEE Security and Privacy, 4 (5), 16-25.

Morgan, T. (2008). Recovering deleted data from the windows registry. Digital Investigation, 5, Supplement,

S33-S41.

Nelson, A. (2012). XML Conversion of the Windows Registry for Forensic Processing and Distribution. In

Advances in Digital Forensics VIII (Vol. 383, p. 51-65). Springer Berlin Heidelberg.

Nelson, A., Steggall, E., & Long, D. (2014). Cooperative mode: Comparative storage metadata verification

applied to the xbox 360. Digital Investigation, 11 (Supplement), S46-S56.

Quick, D., & Choo, K. (2013). Dropbox analysis: Data remnants on user machines. Digital Investigation, 10 (1),

3-18.

Regshot. (2015). regshot - Browse /regshot/1.9.1-beta at SourceForge.net. Retrieved 10 September, 2015, from

http://sourceforge.net/projects/regshot/files/regshot/1.9.1-beta/

Roussev, V. (2010). Data fingerprinting with similarity digests. In Advances in Digital Forensics VI (Vol. 337,

p. 207-226). Springer Berlin Heidelberg.

Roussev, V. (2011). An Evaluation of Forensic Similarity Hashes. Digital Investigation, 8 (Supplement), 34-41.

Roussev, V., & Quates, C. (2012). Content triage with similarity digests: The M57 case study. Digital

Investigation, 9 (Supplement), S60-S68.

Yasin, M., & Abulaish, M. (2013). Digla: A digsby log analysis tool to identify forensic artifacts. Digital

Investigation, 9 (3-4), 222-234.

Yergeau, F., Bray, T., Paoli, J., Sperberg-McQueen, M., & Maler, E. (2004). Extensible Markup Language

(XML) 1.0. W3C Recommendation, 5.

61

	Towards a standardised strategy to collect and distribute application software artifacts
	Recommended Citation

	TOWARDS A STANDARDISED STRATEGY TO COLLECT AND DISTRIBUTE APPLICATION SOFTWARE ARTIFACTS

