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2. Abstract 

A number of occupations involve performing sustained and divided attention tasks. These 

tasks are often susceptible to the effects of cognitive fatigue, resulting in poorer performance 

and increasing the likelihood of human error. Previous research indicates that those who 

regularly play action video games have superior performance on cognitive tests that are 

related to sustained attention and divided attention. However, few studies have investigated 

how performance on these tasks change as a result of increasing time-on-task and cognitive 

fatigue. This thesis reports three studies that were designed to investigate this issue. 

Study 1 (Chapter 3) compared the divided attention performance of video game 

players (VGPs) and non-video game players (NVGPs) on the NASA Multi-Attribute Task 

Battery (version 2; MATB-II) before and after completing a 60-minute sustained attention 

task. Study 2 (Chapter 4) investigated whether divided attention and sustained attention could 

be improved from action video-game training. In Study 2, NVGPs from Study 1 were 

provided with 10 hours of either variable-priority training or fixed-emphasis training on an 

action video-game over four weeks. Participants completed a post-test using the cognitive 

tasks from Study 1, and returned for a three-month follow-up. Study 3 (Chapter 5) explored 

whether the cognitive benefits from action video game playing demonstrated in previous 

studies could be observed in real-world scenarios, such as driving. In Study 3, VGPs and 

NVGPs spent two hours in a driving simulator whilst their driving performance and eye-

movements were recorded.  

The main findings of this thesis reveal that VGPs experience similar levels of 

cognitive fatigue as NVGPs. In Study 1, the sustained attention performance of both VGPs 

and NVGPs declined by similar amounts, and in Study 3, when driving in a simulator, both 

VGPs and NVGPs made significantly more traffic violations as they became fatigued. 

Combined, these results demonstrate that both VGPs and NVGPs are equally susceptible to 
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the effects of cognitive fatigue. Despite this, there remain advantages to regularly playing 

action video games. In Study 1, VGPs were significantly better at multitasking on the 

MATB-II compared to the NVGPs. Further, VGPs also demonstrated superior multitasking 

when driving, as they made significantly fewer traffic violations compared to NVGPs when 

not fatigued. VGPs demonstrated eye-movements similar to those of expert drivers; however, 

this did not result in any difference in performance between the two groups. There was also 

some evidence of a positive effect of video game training, although there was no advantage 

of one training technique over the other. In Study 2, participants experienced the effects of 

cognitive fatigue to a lesser extent after video game training than compared to before 

training. Further, there was a significant improvement in multitasking performance after 

video game training, though as participants continued improving even at the three-month 

follow up test, it is unknown whether this was due to the video game training or due to 

practice effects on the MATB-II. 

Overall, despite improvements in sustained and divided attention performance from 

regular action video game playing or training, VGPs and trained-NVGPs are just as 

susceptible to the effects of cognitive fatigue as NVGPs. 
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7. Introduction 

Living and working in today’s technology-driven world often requires individuals to 

perform multiple tasks simultaneously, of increasing complexity, and for long durations 

(Gartenberg, Breslow, McCurry, & Trafton, 2013; Gaspar et al., 2013; Hambrick, Oswald, 

Darowski, Rench, & Brou, 2010; Hubal, Mitroff, Cain, Scott, & DeWitt, 2010; Rosenberg, 

Noonan, DeGutis, & Esterman, 2013). Sustained and divided attention is a critical part of 

human performance in a range of occupations, including, but not limited to, pilots, air traffic 

controllers, power plant operators, long-distance drivers, security surveillance operators, 

military commanders, unmanned aircraft vehicle operators, and electronic warfare tacticians 

(Chiappe, Conger, Liao, Caldwell, & Vu, 2013; Durso & Sethumadhavan, 2008; Feltman, 

2014; Finomore, Matthews, Shaw, & Warm, 2009; Gartenberg et al., 2013; Hubal et al., 

2010; Warm, Matthews, & Finomore, 2008; Warm, Parasuraman, & Matthews, 2008). 

Performing any task, whether it be mental or physical, for an extended period of time, 

can lead to fatigue, resulting in an increase in the difficulty of maintaining an adequate level 

of performance, and will eventually result in decreased performance and an increased 

likelihood of human error (Ackerman, 2011; Guastello et al., 2013; Lal & Craig, 2001; Van 

Dongen, Belenky, & Krueger, 2011). Further, when individuals are cognitively fatigued, they 

find it difficult to assess their current level of performance and to predict how their 

performance is going to be affected as their level of fatigue increases (Lorist & Faber, 2011). 

From the above list of occupations, it is easy to imagine the serious consequences that could, 

and do, occur should an individual become fatigued and not perform at an adequate level 

(Finomore, Shaw, Warm, Matthews, & Boles, 2013; Gunzelmann, Moore, Gluck, Van 

Dongen, & Dinges, 2011; Lim et al., 2012; Pattyn, Neyt, Henderickx, & Soetens, 2008; Van 

Dongen et al., 2011). Therefore, it is important to understand the factors involved in attaining 

optimum human performance and to implement procedures (for example, personnel 
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screening, assessment, or training interventions) to ensure that individuals are able to resist 

the effects of cognitive fatigue in order to maintain an adequately high level task performance 

for the required period of time. 

Previous research has found that those who regularly play (or those who are trained 

on) action video games, and in particular first-person shooter (FPS) video games, 

demonstrate improved performance in a range of cognitive areas, including those areas that 

are most often used when performing sustained attention (Boot, Kramer, Simons, Fabiani, & 

Gratton, 2008; Castel, Pratt, & Drummond, 2005; Dye, Green, & Bavelier, 2009b; C. S. 

Green & Bavelier, 2003, 2006b, 2007; Hubert-Wallander, Green, Sugarman, & Bavelier, 

2011; T. N. Schmidt, Teo, Szalma, Hancock, & Hancock, 2012), and divided attention tasks 

(Chiappe et al., 2013; Dye, Green, & Bavelier, 2009a; Gaspar et al., 2013; Hambrick et al., 

2010; Kearney, 2005). Action video games contain features that relate closely to well-known 

training principles (Chiappe et al., 2013); for example, instant feedback of performance, 

variability of training (Healy, Schneider, & Bourne Jr, 2012), motivated and focused 

learning, and increasing levels of difficulty (C. S. Green, Li, & Bavelier, 2009). Together, 

these features provide a possible medium through which to improve people’s divided and 

sustained attention performance (Pavlas, Rosen, Fiore, & Salas, 2008). However, whilst there 

is a theoretical basis for the hypothesis that playing action video games can improve 

sustained attention and divided attention performance, there is currently little research on the 

topic, and none that explicitly focuses on cognitive fatigue.  

The present thesis has three primary research aims; firstly, to determine whether 

regular action video game players (VGPs) demonstrate superior sustained attention and 

divided attention performance and experience less cognitive fatigue compared to non-video 

game players (NVGPs); secondly, to determine a causal relationship between playing action 

video games, improvements in sustained attention and divided attention performance, and 
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reduced cognitive fatigue, and thirdly; to determine whether VGPs also outperform NVGPs 

on, and experience reduced levels of cognitive fatigue during, real-world tasks requiring 

sustained and divided attention, such as driving.  
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1. Chapter 1: Fatigue 

For such a common phenomenon, fatigue is difficult to define (van der Linden, 2011). 

Outside of the scientific community, fatigue can be described as being synonymous with 

feeling tired, exhausted, weary, and sleepy. It is often considered to be due to prolonged 

periods of mental or physical work, or sickness (Ackerman, 2011; Manning, Rash, LeDuc, 

Noback, & McKeon, 2004; van der Linden, 2011), and is widely considered to play the main 

role in declining task performance (Earle, Hockey, Earle, & Clough, 2015).  

However, fatigue is a complex state involving changes in behaviour (cognitive and 

physical), can be affected by a number of external factors (task difficulty and time 

performing a task) as well as internal factors (motivation and emotion), and does not always 

result in performance decrements, thus making it difficult to define in scientific terms 

(Matthews, 2011; van der Linden, 2011). In fact, many researchers simply state that “fatigue 

is a complex phenomenon that is difficult to define precisely” (Brown, 1994, p. 298) or 

instead create custom definitions for their own studies (Phillips, 2015). Thus, the term 

fatigue, and the different types of fatigue, have been loosely and inconsistently used for many 

years, lack concrete definitions, as well as a singularly accepted theory of fatigue’s origins 

and functions (Hockey, 2011, 2013; Lal & Craig, 2001; van der Linden, 2011).  

Fatigue is commonly considered to be the transitory state between being awake and 

being asleep (Lal & Craig, 2001), and the prevailing view is that it is caused by a lack of 

energy (Hockey, 2013). However, Balkin and Wesensten (2011) suggested that the best 

definition was given by Fischler (1999), who stated that “fatigue is the decline in 

performance that occurs in any prolonged or repeated task” (p. 131), and this is in fact 

identical to one of the original views of fatigue (Bartlett, 1953; Gawron, French, & Funke, 

2001). However, this definition is actually that of the fatigue effect or time-on-task effect 

(van der Hulst, Meijman, & Rothengatter, 2001), and is not actually a definition of the state 
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of fatigue itself. 

More recently, Phillips (2015) conducted a review of the existing definitions of 

fatigue and found that these definitions ranged from broad overviews, encompassing 

experimental, physiological and performance aspects to narrow descriptions focusing 

specifically on one or two of these areas. The benefits and shortcomings of these different 

approaches were evaluated, and integrated into a new “whole definition” of fatigue: 

Fatigue is a suboptimal psychophysiological condition caused by exertion. The degree 
and dimensional character of the condition depends on the form, dynamics and 
context of exertion. The context of exertion is described by the value and meaning of 
performance to the individual; rest and sleep history; circadian effects; psychosocial 
factors spanning work and home life; individual traits; diet; health, fitness and other 
individual states; and environmental conditions. The fatigue condition results in 
changes in strategies or resource use such that original levels of mental processing or 
physical activity are maintained or reduced. (p. 53) 
 

Here, exertion is defined as “mental processing or physical performance requiring directed 

effort” (p. 53), and the forms of exertion refers to either the mental processing or physical 

performance required to complete a task or tasks in different contexts, for example in simple 

or complex tasks, or active or passive tasks, that are performed over a long or short time 

(Phillips, 2015). This description of exertion in terms of mental processing matches closely to 

that of mental workload, “the degree of information processing capacity that is expended 

during task performance”, which is often studied in conjunction with cognitive fatigue and in 

particular sustained attention (Warm, Parasuraman, et al., 2008, p. 433).  

The varying definitions of fatigue are understandable as there are different categories 

of fatigue, and researchers have given different weights to these different aspects in their own 

interpretations (Hockey, 2013). However, it is accepted that fatigue can be categorised as 

either acute or chronic (van der Linden, 2011); active or passive (Desmond & Hancock, 

2001); objective or subjective (Kanfer, 2011); and cognitive or physical (Atchley, Chan, & 

Gregersen, 2014). Whilst the focus of this thesis is primarily on acute, active, objective, 
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cognitive fatigue, there will be a brief discussion of the other categories in the following 

sections as it is important to understand fatigue as a “whole”. 

1.1 Cognitive Fatigue 

Cognitive fatigue is an unfamiliar term in psychology, and is a relatively new field of 

study (Matthews, 2011). In the psychological literature cognitive fatigue can also be referred 

to as mental fatigue, whilst in the medical literature it is often referred to as central fatigue 

(Gawron et al., 2001; van der Linden, 2011). Cognitive fatigue has many conceptual overlaps 

with other states such as motivation and boredom (Hockey, 2013; Lal & Craig, 2001). Thus, 

not only does this contribute to the difficulty in developing a unifying definition and theory 

of fatigue but it makes it difficult to identify fatigue as the principle variable in experimental 

situations (Hockey, 2013). 

As previously mentioned, the prevailing view of cognitive fatigue is that it is a lack of 

energy or mental resources due to performing tasks with a high workload. However, this is 

known to be an oversimplification, as individuals may become aware of their level of fatigue 

and initiate strategies to overcome the associated performance decline (Brown, 2001; Saxby, 

Matthews, Warm, Hitchcock, & Neubauer, 2013). In addition, Hockey (2011, 2013) argued 

that this view was inaccurate and that the current understanding of cognitive fatigue has been 

hindered by two main assumptions; first, that fatigue is due to a loss of energy or resources, 

and second, that fatigue is a negative state and an unavoidable consequence of performing 

work. Whilst a resource view of fatigue may be a useful explanation of physical fatigue, as 

there are clear limits within human biology, for example limitations in the ability of the 

cardio-vascular system to transport oxygen and glucose to the muscles, for cognitive fatigue, 

the resource metaphor may not provide a completely appropriate explanation (Hockey, 2013; 

Matthews, 2000). Instead, Hockey proposed that cognitive fatigue is an adaptive state, with 

the function of controlling and managing motivation and behaviour. Thus, rather than 
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cognitive fatigue simply being a state of feeling tired due to depleted energy or cognitive 

resources, the feeling of fatigue is a state of awareness of the energy cost of the current 

task(s) being performed and of the potential need to focus on other neglected or alternate 

goals or activities. This perspective was initially proposed over one hundred years ago by 

Thorndike (1900), who stated that, 

Feelings of fatigue, such as they were, were not measures of mental inability 
... We can feel mentally fatigued without being so, that the feelings described 
above serve as a sign to us to stop working long before our actual ability to 
work has suffered any important decrease. (p. 481) 
 

This reinterpretation of cognitive fatigue has been reiterated by others (Bartley & Chute, 

1947), but has since been somewhat neglected in the scientific literature (Hockey, 2013). 

However, this view of cognitive fatigue is beginning to receive more interest (for example 

Boksem & Tops, 2008; Kool, McGuire, Rosen, & Botvinick, 2010; Kurzban, Duckworth, 

Kable, & Myers, 2013). Cognitive fatigue is therefore believed not to be the “inability to do 

work but rather a lack of desire” (Hockey, 2013, p. 9) or resistance, to continue performing 

the current task (Earle et al., 2015). As such, it serves as a protective, self-regulating, 

adaptive function aimed at maintaining a balance between performing multiple tasks, by 

reappraising the mental resource costs and benefits of each, and allowing other behaviours to 

contend for motivational control (Bartley & Chute, 1947; Hockey, 2013; Kanfer, 2011). If an 

individual performs a task that has a high cost and low benefits, the function of fatigue will 

decide whether to compensate for the reduced mental resources by applying more effort to 

the task, or will alter performance goals to use fewer mental resources, or a combination of 

both (Balkin & Wesensten, 2011; Hockey, 1997; Smith, 2011). If the individual is unable to 

switch to a different task that has lower costs and higher benefits, they will become 

increasingly fatigued. This often occurs when tasks are driven by external rather than internal 

motivation, for example when at work, as a higher level of effort is required to perform an 

unenjoyable task when faced with more desirable alternative tasks, such as play (Hockey, 
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2011, 2013). In addition, if the individual is unable to switch tasks, they may re-evaluate the 

costs and benefits of the task’s subcomponents and may adjust their performance strategy in 

order to conserve resources, for example, by focussing on speed instead of accuracy (Lorist & 

Faber, 2011; Matthews, 2000; van der Hulst et al., 2001; van der Linden, 2011). 

1.1.1 Acute and Chronic fatigue. 

Cognitive fatigue can be divided into two types, acute or chronic (van der Linden, 

2011). The focus of this paper is on acute cognitive fatigue, which is categorised as being a 

temporary state, which is relatively easy to recover from. Cognitive fatigue can often be 

induced by performing cognitively complex tasks for extended periods of time, and can be 

relieved by stopping the current task and resting, or switching to a different task. Human 

factors research focusses on acute cognitive fatigue as it is often related to poor performance 

and safety concerns. Chronic cognitive fatigue however, is characterised by lacking in quick 

recovery and is thus longer lasting than acute fatigue. It is a symptom of psychological and 

somatic disorders, including chronic fatigue syndrome and depression, rather than a symptom 

of mental exertion (van der Linden, 2011). 

1.1.2 Active and Passive fatigue. 

Fatigue that is associated with high cognitive workload or demands is referred to as 

active fatigue, while passive fatigue is the result of performing tasks requiring low cognitive 

workload or that are monotonous (Desmond & Hancock, 2001). Both may induce similar 

subjective responses related to fatigue, for example, tiredness and reduced task engagement 

(Philip et al., 2005), however, differences in subjective responses occur when assessed at a 

multidimensional level (Matthews, Szalma, Panganiban, Neubauer, & Warm, 2013).  

1.1.3 Subjective fatigue. 

Not everybody experiences and reports fatigue in the same way, nor do people 

experience the same level of fatigue (if any) under the same circumstances (Guastello et al., 
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2013). It has been proposed that this unobservable experience of subjective fatigue consists of 

two stages (Hockey, 2013). First, an awareness of the increasing cognitive cost of performing 

a certain task experienced as a mild cognitive discomfort, and second, either the change in 

behaviour needed to maintain an adequate level of performance, or increasing cognitive effort 

if the behaviour cannot be changed (Balkin & Wesensten, 2011; Hockey, 2013; Kanfer, 2011; 

Thorndike, 1900). Subjective feelings of fatigue, such as statements of aversion to 

performing a task, inability to concentrate, physical complaints (Ackerman, 2011), and 

frustration and discomfort (Hockey, 2013), often occur prior to any observable changes in 

objective measures of fatigue, such as increased reactions times and decreased performance 

accuracy. Thus, it is often the case that performance decrements due to fatiguing conditions 

are not always observed. This is because individuals may become aware of their fatigue and 

as a result implement compensatory strategies in balancing the costs and benefits of 

performing the task, allowing them to avoid any actual performance decrement before they 

occur (Bartley & Chute, 1947; Hockey, 1997; van der Linden, 2011). In addition, there are 

different strategies that individuals can use which would mask any effect of fatigue when 

group data is analysed. For example, half of a group may favour speed over accuracy, while 

the other half favour accuracy of speed. The overall result of the group would therefore not 

reveal any effect of fatigue on performance (van der Linden, 2011). 

The experience of fatigue for an individual is not always consistent even whilst 

performing the same task, as attention can fluctuate over time, either due to fatigue, boredom, 

distraction (Rosenberg et al., 2013) or differing types or levels of motivation (van der Hulst et 

al., 2001). Often, these subjective differences are overlooked due to the tendency to only 

examine mean effects, rather than inter-individual variability and individual patterns of 

performance over time (Ackerman, 2011). It is generally agreed however, that as time 

increases, so too do subjective levels of fatigue (Hockey, 2013; Kanfer, 2011). 
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1.1.4 Objective fatigue. 

There are a number of objective measures that can be used to assess performance 

decrements due to fatigue (Ackerman, 2011). The typical finding is that cognitive fatigue 

results in increased reaction times, increased response variability, and decreased response 

accuracy (Ackerman, 2011; Guastello et al., 2013; Hockey, 2013), and these will be the 

measures used in the following studies. Other measures, which fall beyond the scope of this 

thesis, include measuring physiological symptoms of cognitive fatigue such as declines in 

brain functioning as measured by event-related brain potentials (Kato, Endo, Kobayakawa, 

Kato, & Kitazaki, 2011), and increased blood pressure and stress hormones (van der Linden, 

2011). 

1.2 Related Factors 

Identifying fatigue as the principle variable in experimental situations is difficult to do 

as it has many causes and many symptoms (Hockey, 2013). Cognitive fatigue is related to 

physical fatigue, boredom, motivation, inherent personality traits, task difficulty, and time 

spent performing the task. However, the relationship between fatigue and these factors is not 

always clear, and individuals do not all respond the same to the effects of fatigue. Some 

people may experience a performance decrement over time, whilst others may experience 

improvements in performance, analogous to physical exercise and “getting warmed up” 

(Guastello et al., 2013, p. 4). In addition, increased time-on-task can result in improved, 

rather than declining performance, due to practice and learning (Ackerman, Calderwood, & 

Conklin, 2012). Further, switching tasks can alleviate fatigue, but only when the switch is 

intrinsically motivated. If the individual is forced to switch tasks, this can tax working 

memory and cognitive resources (Guastello et al., 2012; Rubinstein, Meyer, & Evans, 2001), 

resulting in increased levels of fatigue. The following section will highlight some of the 

overlapping factors associated with cognitive fatigue. 
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1.2.1 Physical fatigue. 

Whilst physical fatigue and cognitive fatigue are often discussed separately, they are 

by no means unrelated. As the name suggest, physical fatigue occurs within the body and 

results in impaired co-ordination, feelings of physical discomfort, and a reduced ability to 

produce force or power (Barker & Nussbaum, 2011; Lal & Craig, 2001). The resource theory 

metaphor can be used to explain physical fatigue as there are clear limits within human 

biology, for example limitations in the ability of the cardio-vascular system to transport 

oxygen and glucose to the muscles (Hockey, 2013; Matthews, 2000). Thus, when these 

physical limitations are reached, and resources are depleted, physical fatigue occurs. Physical 

fatigue consists of two components, peripheral and central. Peripheral fatigue refers to 

metabolic changes in the muscles, eventually leading to a decreased capacity of the muscles 

to exert force. Central fatigue refers to changes in the neuronal control of motor behaviour, 

which can be affected by work demands and motivation (Barker & Nussbaum, 2011; 

Zijdewind, van Duinen, Zielman, & Lorist, 2006). Thus, changes in cognitive fatigue can 

impact physical fatigue and vice versa (Barker & Nussbaum, 2011). 

1.2.2 Motivation. 

Motivation is often used in the definition of cognitive fatigue (van der Linden, 2011), 

and is heavily related to cognitive fatigue in two key ways. Firstly, the level of fatigue 

experienced differs depending on whether the task being performed is intrinsically or 

extrinsically motivating (van der Hulst et al., 2001). It has long been known that when tasks 

are intrinsically motivating, performing them requires little effort and are therefore not 

fatiguing (Hockey, 2011; Thorndike, 1900). Secondly, declined motivation is a symptom of 

fatigue and is experienced as an unwillingness to continue performing the task (van der 

Linden, 2011). However, motivation is differentiated from fatigue in that it is not influenced 

solely by previous levels of activity or rest (Soames-Job & Dalziel, 2001). In addition, it is 
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possible to be motivated to perform a task, but be either physically or cognitive unable to, due 

to fatigue (van der Linden, 2011), or vice versa whereby the individual stops performing a 

task because they are not motivated despite not being fatigued (Soames-Job & Dalziel, 2001). 

1.2.3 Boredom. 

Boredom occurs due to under-stimulation and from tasks requiring low levels of 

cognitive demands (Bartley & Chute, 1947) such as performing tasks that are simple and 

highly repetitive (Hockey, 2013). Whilst fatigue and boredom often occur together and can 

have similar effects on performance (Hockey, 2013), fatigue is not a necessary and sufficient 

prerequisite of boredom. For example, it is possible to be well rested but still experience 

boredom whilst performing a repetitive task (Cummings, Mastracchio, Thornburg, & 

Mkrtchyan, 2013). To further complicate the matter, the terms boredom and passive fatigue 

are often used interchangeably depending on the particular field of study. Passive fatigue is 

used in human factors/ergonomics fields whilst boredom is used in education and 

organisational settings. However, regardless of the field of study, the underlying feature of 

these areas of research is that under stimulation or low levels of cognitive workload leads to 

deterioration in task performance (Jackson, Kleitman, & Aidman, 2014).  

1.2.4 Personality. 

Cognitive fatigue is associated with many factors including stable personality traits 

and how individuals manage task demands and workload (Matthews, 2011). It is believed 

that cognitive fatigue and its self-regulatory processes can be affected by differences in 

personality and motivational traits (Kanfer, 2011). Some stable traits may be associated with 

fatigue proneness, or a vulnerability to the effects of fatigue (Matthews, 2011). Of the five 

personality traits, conscientiousness has been found to be the most related to fatigue, as it 

suggests that individuals who score highly, commit more energy to work-related activities 

(Matthews, 2011). However, reinforcement sensitivity theory suggests that fatigue is also 
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related to extraversion. This theory proposes that extraverts are more prone to positive affect, 

that is, more easily generate excited emotions, and thus they experience lower fatigue (Corr, 

2009). Further, Ackerman and Kanfer (2009) have found that higher levels of subjective 

cognitive fatigue are reported by those who score highly on levels of neuroticism-related 

traits. 

1.3 Cognitive Fatigue and Executive Control  

Cognitive fatigue was initially thought to be the result of depleted cognitive resources. 

However, after a review of the literature, Hockey (2013) proposed that cognitive fatigue is 

rather an adaptive mechanism, with the function of controlling and managing motivation and 

behaviour, and is therefore connected to executive functions. Executive functions are 

regulatory processes that control human information processing and play a vital role when 

presented with novel situations, for example in problem solving (Lorist & Faber, 2011; 

Schmorrow et al., 2012). They are higher-order cognitive control processes that organise and 

control lower-level cognitive functions according to the individual’s goals. They are used 

when goals need to be prioritised, when irrelevant stimuli need to be ignored, when automatic 

responses need to be overruled, and when information needs to remain active in memory for 

extended durations (van der Linden, 2011). When executive functions are adjusted to 

maintain cognitive resources, there is a decline in performance, for example as irrelevant 

stimuli are responded to and automatic responses are not withheld. However, performance 

decrements on tasks that tax executive control functions are not always observed (van der 

Linden, 2011). In order to prevent fatigue from affecting task performance, there are a 

number of different strategies (controlled by executive functions) that individuals may 

implement (Hockey, 1997). For example, individuals may choose to make speed-accuracy 

trade-offs; focus on the primary task and ignore/reduce attention to secondary tasks; or 

expend more effort and attempt to overrule the desire to stop performing the current task (van 
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der Linden, 2011). The regulatory processes controlled by executive functions require a high 

degree of mental effort, and over time, this amount of effort increases, resulting in a reduction 

in the efficiency of these functions, and an associated reduction in performance, known as the 

fatigue effect (Earle et al., 2015; Lorist & Faber, 2011; Lorist et al., 2000; van der Linden, 

2011; van der Linden, Frese, & Meijman, 2003).  

1.4 The Fatigue / Time-on-task Effect 

As previously discussed, fatigue is difficult to define. To avoid this issue, it is often 

operationalised and expressed in terms of the fatigue effect or time-on-task effect (Stern, 

Boyer, & Schroeder, 1994). Put simply, the time-on-task effect is a reduction in task 

performance (typically increased reaction times and/or increased number of errors) as time 

spent performing the task increases. However, it has been suggested that changes in reaction 

time variability should also be analysed, as although the time-on-task effect is often seen in 

aggregate data it is not consistently seen in individual results (Van Dongen et al., 2011). 

In addition, the time-on-task effect is often investigated in relation to the vigilance (or 

sustained attention) decrement (Davies & Parasuraman, 1982; Gunzelmann et al., 2011), 

which is considered to be the most robust effect of cognitive fatigue (Dinges, 1995). Similar 

to the time-on-task effect, the vigilance decrement is also characterised by increasing reaction 

times and decreasing detection accuracy (Davies & Parasuraman, 1982; Helton & Russel, 

2011). More specifically however, the vigilance performance decrement is usually complete 

after 20 to 35 minutes performing the task (See, Howe, Warm, & Dember, 1995).  

Whilst the terms ‘vigilance’ and ‘sustained attention’ are often used interchangeably 

(Finomore et al., 2013; Pattyn et al., 2008; Rosenberg et al., 2013), for the purpose of this 

thesis, ‘vigilance’ will be used when referring to the performance decrement as observed 

whilst performing vigilance tasks, whilst ‘sustained attention’ will be used to refer to the 

broader cognitive process of directing and maintaining attention on a task for an extended 
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period of time, regardless of the type and duration of task being performed. 

1.4.1 Sustained attention & vigilance. 

Sustained attention is the ability to maintain one's focus of attention and remain alert 

for long periods of time in order to accurately and quickly respond to stimulus changes 

(Larue, Rakotonirainy, & Pettit, 2010; Rosenberg et al., 2013; Scerbo, 1998; Warm, 

Parasuraman, et al., 2008). An increased ability to sustain attention protects the individual 

from performance declines due to fatigue or distraction (Clayton, Yeung, & Cohen, 2015). 

The main focus of sustained attention research has been on the vigilance decrement (Helton 

& Russell, 2012; Scerbo, 1998; Warm, Parasuraman, et al., 2008). A typical vigilance task 

measures the speed and accuracy of participants’ responses to infrequent and unpredictable 

stimuli (Rosenberg et al., 2013). For example, participants must monitor a blank computer 

screen and respond as fast as possible when a target appears. The vigilance decrement 

typically takes 20 to 35 minutes to complete, with the majority of this loss occurring within 

15 minutes of onset of the task (Rosenberg et al., 2013; See et al., 1995; Teichner, 1974), 

however, this may be reduced to as little as 5 minutes depending on the demand 

characteristics of the task (Caggiano & Parasuraman, 2004; Helton et al., 2007; See et al., 

1995). 

There are two main families of theories that attempt to explain the cause of the 

vigilance decrement (Dillard et al., 2014; Helton & Russell, 2012). Currently, the resource 

theory (Fisk & Scerbo, 1987; Fisk & Schneider, 1981; Kahneman, 1973; Parasuraman & 

Davies, 1977; C. D. Wickens, 1984) is the dominant model, and is based on the premise that 

there is a limited amount of cognitive resources available at any point in time (Dillard et al., 

2014). It proposes that as vigilance tasks are difficult and mentally taxing, over time, 

cognitive resources are drained, resulting in poorer vigilance performance (Helton & Russell, 

2012). In opposition are the theories that propose that the vigilance decrement is due to 
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under-stimulation and boredom, resulting in disengagement from the task and thus poorer 

performance, and consists of the under-load (Frankmann & Adams, 1962; Heilman, 1995; 

Loeb & Alluisi, 1977; Welford, 1968) and mind-wandering theories (Robertson, Manly, 

Andrade, Baddeley, & Yiend, 1997). However, based on a review of literature, it has been 

found that neither the resource theory, nor its opponents, can adequately account for all 

findings related to the vigilance decrement (Thomson, Besner, & Smilek, 2015). 

Similarly to cognitive fatigue, it has been proposed that the vigilance decrement is due 

to reduced executive functioning, rather than a lack of cognitive resources (Thomson et al., 

2015). Thomson et al. (2015) suggested that performing vigilance tasks taxes executive 

functions, as these functions control the ability to ignore irrelevant stimuli and inhibit 

automatic responses. Over time, as executive functions become taxed, insufficient amounts of 

attentional resources are allocated towards the task, resulting in deteriorating vigilance 

performance. As such, it is possible that individuals with greater executive control will be 

better able to direct the required attentional resources towards the vigilance task, resulting in 

better performance over a longer period of time (Thomson et al., 2015).  

1.4.2 Vigilance tasks. 

A disadvantage of traditional vigilance tasks is that the occurrences of the target 

stimuli are infrequent, and therefore so too are participants’ responses. It is thus not possible 

to accurately measure fluctuations in accuracy or reaction time on a moment-to-moment basis 

(Rosenberg et al., 2013). To account for the inability to measure moment-to-moment reaction 

times, there are sub-types of vigilance tasks, referred to as not-X Continuous Performance 

Tasks (not-X CPTs), as well as the Sustained Attention to Response Task (SART), that 

require participants to respond to frequent non-target stimuli, and to withhold responses to the 

rare target stimuli (Larue et al., 2010; Rosenberg et al., 2013). Thus, these tasks can measure 

a greater number of reactions as well as determine the pattern of reaction times that precede 
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and predict errors. However, not-X CPTs are not without limitations. For one, vigilance 

decrements are not consistently found with not-X CPTs in healthy adult populations 

(Rosenberg et al., 2013), and sometimes vigilance performance improves, rather than 

deteriorates, over the course of the task (Helton, Kern, & Walker, 2009). Thus, it has been 

argued that not-X CPTs may not accurately assess the vigilance decrement (Helton & 

Russell, 2011; Rosenberg et al., 2013). However, one possible explanation for these findings 

is that the abrupt visual onset of each stimulus captures participants’ attention, and thus cues 

the participant to respond to the stimuli, resulting in more consistent performance over time 

(Esterman, Noonan, Rosenberg, & DeGutis, 2012; Rosenberg et al., 2013). Therefore, to 

account for the abrupt onset of stimuli, Esterman et al. (2012) developed a gradual-onset 

Continuous Performance Task (gradCPT) in which stimuli are presented in gradual 

transitions rather than with abrupt onsets, and found that this task was able to successfully tax 

participants’ ability to sustain attention.  

In addition to the above types, vigilance tasks can also be classified as being 

successive or simultaneous (Davies & Parasuraman, 1982; Finomore et al., 2009). In 

simultaneous vigilance tasks, all of the information needed to make a decision is presented, 

and thus a comparative judgement must be made. In successive vigilance tasks, absolute 

judgements must be made, comparing the currently presented stimuli with a target retained in 

their memory (Davies & Parasuraman, 1982; Finomore et al., 2009). Therefore, successive 

judgement vigilance tasks place a greater demand on attentional resources and working 

memory than simultaneous judgement tasks (Finomore et al., 2009; Shaw et al., 2010). 

Accuracy of responses on a vigilance task can be influenced by either perceptual 

sensitivity or the individual’s decision criterion (Davies & Parasuraman, 1982). Signal 

detection theory is therefore used assess vigilance performance accuracy as it takes these 

factors into consideration. Sensitivity (d') measures how well the signal (target) can be 
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detected from the noise (non-targets). When d' is close to zero, targets are difficult to detect 

and when it is large they are easy to detect. Typically, participants have little to no control 

over signal detectability as it is mostly influenced by the way the stimuli are created in the 

experimental design (e.g. size of stimulus). Signal detectability is also influenced by the 

physiology involved in the detection process (T. D. Wickens, 2001). The response criterion 

(c, also referred to as λcentred) represents the amount of evidence needed by the observer in 

order to classify a stimulus as a target. When the evidence is greater than the response 

criterion level, the observer classifies the stimulus as a target, and when it is below, it is 

classified as noise. Criterion levels however, are controlled by the individual, as this is a 

representation of their response strategy/bias. The response criterion is a representation of the 

amount of evidence needed by the participant for them to determine whether a stimulus is a 

signal (target) or noise (non-target); if the evidence is above the response criterion level, the 

stimulus is classified as a signal. Thus, decreasing criterion levels indicate an increased 

propensity to respond to a stimulus (less evidence is needed), resulting in more correct 

responses but also more false alarm errors (T. D. Wickens, 2001). 

1.4.3 Reducing the effects of fatigue. 

A number of solutions have been proposed to reduce the performance decrements 

produced by fatigue-inducing tasks in varying domains. The simplest and most effective 

solution is to increase the number of personnel, resulting in shorter work schedules (Miller, 

Matsangas, & Shattuck, 2008) and allowing individuals to stop when they become fatigued 

(Atchley et al., 2014). However, this solution is not always possible, for example long-

distance flying or driving, where the number of personnel is limited. Other methods include 

screening personnel to identify those likely to perform well on sustained attention tasks, 

providing training to personnel to assist in reducing the cognitive demands of the required 

task, and designing tasks in such a way as to reduce the cognitive demands (Miller et al., 
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2008). For example, in human-computer interaction systems it has been found that providing 

knowledge of results is beneficial in providing a buffer against the effects of cognitive fatigue 

(Ackerman, 2011; T. N. Schmidt et al., 2012). 

In addition, individuals often employ their own methods in an attempt to relieve their 

sense of fatigue. For example, whilst driving they may turn on the radio or roll down the 

window (Atchley et al., 2014). Other more novel interventions have also been used as a 

counter-measure to performance deficits caused by cognitive fatigue. For example, 

researchers have found that intermittently presenting pleasant odours to participants resulted 

in significantly faster reaction times compared to those in the control condition (Kato et al., 

2011). 

Vigilance training has also been used in an attempt to improve sustained attention 

performance. In a study by Parasuraman and Giambra (1991), participants completed twenty 

30-minute vigilance tasks over a period of two to three weeks. It was found that overall, 

practice reduced the vigilance decrement, however, training did not eliminate it. In addition, 

Ariga and Lleras (2011) were able to reduce the vigilance decrement in participants by 

providing brief and rare mental breaks. However, Helton and Russell (2012) were unable to 

replicate these results. It has also been found that motivation may affect vigilance 

performance. In a study by Szalma and Hancock (2006), participants were provided with the 

illusion that they were able to choose between a supposedly easy or hard vigilance task. 

Participants who were offered their choice showed improved performance in target detection 

compared to those who were given the opposite of their choice.  

One solution for reducing the effects of cognitive fatigue that has been largely ignored 

is that of assessing the cognitive abilities of personnel. Researchers have generally ignored 

individual differences in sustained attention, as vigilance tasks lack intellectual content and 

are therefore not affected by variations in cognitive ability (Shaw et al., 2010). However, it is 
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believed that the primary source of cognitive fatigue is the demand placed on executive 

functions by cognitively demanding tasks (Guastello et al., 2013; Logie, 2011). Further, there 

is evidence that the vigilance decrement is also related to executive functions (Thomson et 

al., 2015). Therefore, this would suggest that individuals who have superior executive 

functions would not be as susceptible to the effects of cognitive fatigue, as they would be 

better able sustain their attention whilst performing complex tasks for extended periods of 

time. Accordingly, it should follow that individuals who perform well on tests of executive 

functioning (for example, tests of divided attention and multitasking) should also be resilient 

to the effects of cognitive fatigue.  

Previous research has found that those who regularly play (or those who are trained 

on) action video games, and in particular FPS video games, demonstrate improved 

performance in a range of cognitive areas, including those areas that are most often used 

when performing sustained attention (Boot et al., 2008; Castel et al., 2005; Dye et al., 2009b; 

C. S. Green & Bavelier, 2003, 2006b, 2007; Hubert-Wallander, Green, Sugarman, et al., 

2011; T. N. Schmidt et al., 2012), and divided attention tasks (Chiappe et al., 2013; Dye et 

al., 2009a; Gaspar et al., 2013; Hambrick et al., 2010; Kearney, 2005). Action video games 

contain features that relate closely to well-known training principles (Chiappe et al., 2013); 

for example, instant feedback of performance, variability of training (Healy et al., 2012), 

motivated and focused learning, and increasing levels of difficulty (C. S. Green et al., 2009). 

Together, these features provide a possible medium through which to improve people’s 

divided and sustained attention performance (Pavlas et al., 2008). However, whilst there is a 

theoretical basis for the hypothesis that playing action video games can improve sustained 

attention and divided attention performance, there is currently little research on the topic, and 

none that explicitly focuses on cognitive fatigue.  
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2. Chapter 2: Video Games 

Over the past four decades, video games have become increasingly popular, replacing 

more traditional forms of leisure activities (Connolly, Boyle, MacArthur, Hainey, & Boyle, 

2012), and this is set to continue as new games, platforms, and technologies are released 

(Colzato, van der Wildenberg, Zmigrod, & Hommel, 2013; Connolly et al., 2012). This 

growth in the video game industry has led to increasing interest in the effects of playing video 

games on individuals, and in particular the influence of violent games on aggressive 

behaviour (Colzato, van Leeuwen, van der Wildenberg, & Hommel, 2010; Ferguson, 2007). 

Accordingly, a debate has arisen in the research literature concerning the impact of playing 

violent video games on individuals’ behaviour. However, a discussion of this issue is beyond 

the scope of this proposal, and the reader is referred to Ferguson (2010) for an in-depth 

discussion of the moral panic, public debate, and sociological and historical context 

surrounding violent video games. 

Just as interest in the negative behavioural impacts of video games has grown, so too 

has research into the positive cognitive effects of playing video games (Colzato et al., 2013; 

Dye et al., 2009b; Ferguson, 2007; Karle, Watter, & Shedden, 2010). Although research into 

the cognitive effects of video game playing began over three decades ago (Lowery & Knirk, 

1982; Spence & Feng, 2010), there has been a recent increase in research in the last decade 

(Dye et al., 2009b; Karle et al., 2010), particularly focussing on first-person shooter games (a 

sub-type of action video games), since the seminal paper by C. S. Green and Bavelier (2003) .  

In their study, C. S. Green and Bavelier (2003) compared the performance of VGPs 

and NVGPs in areas of selective attention, capacity of attention, and attention in time. A 

training experiment was also conducted in which NVGPs played either an FPS game Medal 

of Honor, or a non-FPS game Tetris, for one hour, for 10 consecutive days. It was found that 

VGPs performed better in all of the areas of attention compared to NVGPs, and the NVGPs 



COGNITIVE FATIGUE & VIDEO GAMES 22 

trained on the FPS game performed better than the NVGPs trained on the non-FPS game. 

These results suggest that FPS game playing and training increases attentional capacity, 

improves the spatial distribution of attention, and enhances attentional flexibility. 

Video games have developed from simple tasks of basic skill and ability, to being 

completely immersive experiences. In particular, FPS games require the player to develop an 

adaptive mindset in order to successfully complete complex, and demanding tasks (Colzato et 

al., 2013; C. S. Green & Bavelier, 2006a; Murphy & Spencer, 2009). A typical FPS game 

involves controlling the movements of the player’s character, aiming and firing at other 

players whilst avoiding being hit oneself, and monitoring health status and ammunition 

supplies, all simultaneously and in a time pressure situation (Kearney, 2005). These tasks 

thus require rapid responses to visual and auditory events, discriminating between relevant 

and irrelevant stimuli, tracking multiple objects, and continuous switching between numerous 

subtasks (Castel et al., 2005; Colzato et al., 2010; C. S. Green & Bavelier, 2006b, 2006c; 

Hubert-Wallander, Green, Sugarman, et al., 2011; Oei & Patterson, 2015). In addition to this, 

video games are goal directed and players receive instantaneous feedback (Greenfield, 1994), 

for example, through receiving rewards for accurately and quickly processing and responding 

to the relevant information, or consequences for allowing irrelevant information to interfere 

with their task or failing to respond to stimuli (Dye et al., 2009b; C. S. Green & Bavelier, 

2006b). 

Subsequent studies have replicated and extended upon the findings of C. S. Green and 

Bavelier (2003), demonstrating that regular players of FPS video games display superior 

performance in a range of visual and cognitive skills compared to non-players (Barlett, 

Anderson, & Swing, 2009; Bavelier, Green, Pouget, & Schrater, 2012; Castel et al., 2005; 

Clark, Fleck, & Mitroff, 2011; Connolly et al., 2012; Dye et al., 2009b; Ferguson, 2007; 

Hubert-Wallander, Green, & Bavelier, 2011).  
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2.1 Cognitive Improvements 

Playing FPS video games has been shown to improve individuals’ visuospatial 

cognitive abilities in selective attention, allocation of attention, and attention in time (Boot et 

al., 2008; Hubert-Wallander, Green, & Bavelier, 2011), as well as sustained attention (Dye et 

al., 2009b) and divided attention (Chiappe et al., 2013).  

2.1.1 Selective attention. 

Selective attention is the ability to direct attentional resources to certain areas within 

the visual field in order to detect target stimuli, often whilst ignoring irrelevant stimuli. 

2.1.1.1 Useful (Functional) field of view. 

A common task for assessing selective attention is the Useful Field of View task, 

developed by Ball and colleagues (Ball, Beard, Roenker, Miller, & Griggs, 1988; Ball & 

Owsley, 1993). In this task, a small target stimulus is briefly presented at a random location 

on a screen followed by a mask to remove after-images, and participants must then identify 

where the target stimulus appeared. The task measures an individual’s ability to direct their 

attention towards an area of space. (Myers, Ball, Kalina, Roth, & Goode, 2000). 

Video game players often outperform NVGPs in the Useful Field of View task (Feng, 

Spence, & Pratt, 2007; C. S. Green & Bavelier, 2006b), and this benefit is also generalised to 

areas of the visual field that extend beyond those of normal video game play (C. S. Green & 

Bavelier, 2003). Further, NVGPs who have been trained on an action video game for 10 

hours (Feng et al., 2007; C. S. Green & Bavelier, 2003) and 30 hours (C. S. Green & 

Bavelier, 2006b) showed significant improvements in performance. This improvement was 

also maintained at a follow-up approximately 5 months later (Feng et al., 2007).  

2.1.1.2 Swimmer task. 

The “swimmer task” also measures an individual’s ability to spatially allocate 

attentional resources. In this task, developed by West, Stevens, Pun, and Pratt (2008), 
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participants must search for a non-moving target amongst a large group of oscillating targets 

or ‘swimmers’. West et al. (2008) found that VGPs outperformed NVGPs, in that VGPs were 

more accurate (higher detections and lower miss rates) across a range of visual fields, under 

both high and low workloads. 

Taken together, the results from the Useful Field of View task and the Swimmer task 

suggest that action video game playing improves visuospatial attention. However, not all 

studies examining the visuospatial attention of VGPs and NVGPs have found significant 

differences between the two groups (Boot et al., 2008; Murphy & Spencer, 2009). 

Boot et al. (2008) compared VGPs and NVGPs on a number of cognitive tasks, 

including the Useful Field of View task, that assessed visual and attentional ability, spatial 

processing and memory, and executive control. It was found that although VGPs performed 

better at the task than NVGPs, the difference was not significant. Further, NVGPs who 

received training on an FPS game did not show a significant improvement compared to those 

who received training on Tetris, or who received no video game training. It should be noted 

that the study contained small sample sizes when comparing VGPs (n = 11) and NVGPs (n = 

10), however, when comparing different video game training conditions sample sizes were 

larger and ranged from 19 to 23 participants. Interestingly though, C. S. Green and Bavelier 

(2003) were able to find significant differences between 8 VGPs and 8 NVGPs. Boot et al. 

(2008) attempted to replicate the study and results of C. S. Green and Bavelier (2003) and 

therefore used the same FPS game. Therefore, one possibility for the disparity between 

findings may be due to the video game player recruiting criteria (Hubert-Wallander, Green, & 

Bavelier, 2011). Boot et al. (2008) required participants to have played any type of video 

game for seven or more hours per week for the past two years to be classified as VGPs, 

whilst other studies have required participants to have played specifically action video games, 

for at least 4 to 5 hours per week (C. S. Green & Bavelier, 2003; Hubert-Wallander, Green, & 
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Bavelier, 2011). 

2.1.2 Capacity of attention. 

Capacity of attention refers to the number of objects in the visual field that one can 

direct their attention towards. 

2.1.2.1 Enumeration. 

In the enumeration task (Trick & Pylyshyn, 1993, 1994), multiple identical objects are 

briefly flashed on a screen and participants must report the number of objects presented as 

accurately and quickly as possible. When one to four objects are presented, participants are 

able to report the number of objects without counting, and their responses are quick, accurate, 

and predominantly automatic. The process responsible for these responses is termed 

subitising. As the number of objects increases beyond this range, accuracy decreases and 

reaction times increase, and this slower process is termed enumeration (Hubert-Wallander, 

Green, & Bavelier, 2011). C. S. Green and Bavelier (2003; 2006c) found that VGPs’ 

enumeration performance was significantly greater than NVGPs, in that VGPs were able to 

identify the number of objects more accurately and faster for an increasing number of objects 

compared to NVGPs. Both groups displayed equal subitising reaction times, however, VGPs’ 

subitising accuracy was higher than NVGPs’, suggesting that VGPs have enhanced visual 

short-term memory. Both studies included a training paradigm in which participants 

completed 10 hours of an FPS game (C. S. Green & Bavelier, 2006c, experiment two) and 

found that action video game training significantly improved participants’ attention capacity. 

However, Boot et al. (2008) was unable to replicate these results. It was found that video 

game players performed faster and more accurately than NVGPs, however the difference did 

not reach significance, and there was no difference between the video game training 

conditions. 
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2.1.2.2 Multiple object tracking. 

The capacity of attention can also be measured through the use of a multiple object 

tracking task (Pylyshyn & Storm, 1988). In this task, a number of motionless target and non-

target objects are presented. The objects begin to move randomly about the screen, and it is 

the participant’s task to track the target objects. After a certain period of time the objects 

become motionless and all objects are made to look identical. The participant must indicate 

whether a selected object was a target or non-target (Hubert-Wallander, Green, & Bavelier, 

2011). 

C. S. Green and Bavelier (2006c, experiment four) found that VGPs outperformed 

NVGPs in accurately detecting whether objects were targets or non-targets. Further, after 30 

hours of video game training (C. S. Green & Bavelier, 2006c, experiment five), those who 

played the FPS video game showed a significant improvement in multiple object tracking 

performance, whilst those who received the control (Tetris) did not. Boot et al. (2008) also 

found that VGPs outperformed NVGPs in a multiple object tracking task. Video game 

players were able to track and identify with 100% accuracy, three target objects moving at 

significantly higher speeds compared to NVGPs. However, there were no significant 

improvements in NVGPs who received 21.5 hours of video game training. 

Video game players’ superior enumeration and multiple object tracking performance 

suggests that playing FPS games enhances the speed at which individuals can update visual 

working memory, thus increasing the number of objects that can be viewed and tracked (C. S. 

Green & Bavelier, 2006c). 

2.1.3 Attention in time. 

Attention in time refers to how attention is allocated within a period of time in order 

to accurately and quickly process consecutive stimuli. 
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2.1.3.1 Attentional blink. 

The attentional blink task (Raymond, Shapiro, & Arnell, 1992) measures an 

individual’s ability to direct their attention in time. In this task, a primary target is presented, 

followed by a secondary target a few hundredths of a second later. Participants often fail to 

report seeing the secondary target, due to an attentional ‘blink’ (Hubert-Wallander, Green, & 

Bavelier, 2011). C. S. Green and Bavelier (2003) found that VGPs performed better at 

detecting the second target than NVGPs, thus demonstrating a shorter attentional blink. Due 

to the design of the task, the authors also determined that VGPs had superior task-switching 

abilities. These results suggest that VGPs have an enhanced ability to process information 

over time, however it is unclear whether this was due to faster processing, or the ability to 

maintain multiple attentional windows simultaneously. Boot et al. (2008) were unable to 

replicate the findings of C. S. Green and Bavelier (2003), however this may have been due to 

differences in the design of the task in the two studies, thus reducing the ability to observe 

any group differences. 

2.2 Video games and Executive Control 

The assessment of visual and attentional cognitive abilities often involves the 

completion of repetitive computer tasks involving simple stimuli. These tasks are quite 

dissimilar to FPS games, which are visually complex and require fast responses to novel 

stimuli, thus highlighting the fact that skills learned from video game playing have far 

transferability to other skills (Bavelier et al., 2012). Recently, it has been suggested that 

playing FPS games does not develop the specific skills that have been previously measured in 

laboratory settings, but rather that they develop the ability to quickly learn how to perform 

new tasks (Bavelier et al., 2012; C. S. Green, Pouget, & Bavelier, 2010). 

The prevailing view is that action video game playing improves the skill referred to as 

‘learning to learn’ (Bavelier et al., 2012; Dobrowolski, Hanusz, Sobczyk, Skorko, & 
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Wiatrow, 2015). The primary mechanism of learning is the improvement of the probability of 

making a correct decision based on the limited amount of data/information provided 

(Bavelier et al., 2012). This notion, referred to as probabilistic inference or ‘learning to learn’ 

(Harlow, 1949), is argued to be the unitary mechanism that accounts for video game players’ 

improvements in the wide range of cognitive abilities (Bavelier et al., 2012; Bisoglio, 

Michaels, Mervis, & Ashinoff, 2014; C. S. Green et al., 2010), as all the studies in which 

VGPs outperform NVGPs use tasks that require participants to “make a decision based on a 

limited amount of noisy data” (Bavelier et al., 2012, p. 399). Thus, it is argued that playing 

video games improves the general mechanisms involved in learning and the ability to control 

top-down attentional processes, which leads to improvements in unrelated cognitive tests 

(Appelbaum, Cain, Darling, & Mitroff, 2013; Bavelier et al., 2012; Dobrowolski et al., 2015). 

In addition, executive functions play a crucial role in learning to learn (Bisoglio et al., 2014), 

as they control the processes involved in changing one’s behaviour (making a decision) when 

the situation demands it (new information is provided) (Andrews & Murphy, 2006).  

Due to mixed findings in the video game literature, whether or not action video game 

enhance an underlying cognitive mechanism remains debateable (Strobach, Frensch, & 

Schubert, 2012). Oei and Patterson (2014) have critiqued the ‘learning to learn’ hypothesis 

and have highlighted a number of limitations of this view. Firstly, it is unknown whether the 

ability of learning to learn is an improvement specific to action video games or whether it can 

be improved from other video game genres (Oei & Patterson, 2014), as many genres share 

similar gameplay mechanics (Dobrowolski et al., 2015). Secondly, it is not clear which tasks 

can and cannot be improved through action video game playing, and thirdly, whilst there is 

evidence that probabilistic inference can account for improvements in a visual perceptual 

task, there is a lack of evidence that it can account for the other types of tasks on which VGPs 

show improvements (Oei & Patterson, 2014). 
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Despite these limitations, evidence continues to emerge supporting the hypothesis that 

action video game playing improves executive control skills (Appelbaum et al., 2013; 

Strobach et al., 2012). As previously discussed in Section 1.4.1, executive control can be 

assessed through analysing performance on sustained attention tasks (Thomson et al., 2015). 

However, executive control is typically assessed using tasks that require divided attention, for 

example in dual-task (Strobach et al., 2012) multitasking paradigms (Boot et al., 2008; Cain, 

Landau, & Shimamura, 2012; Hambrick et al., 2010). 

2.2.1 Sustained Attention. 

Executive control plays a crucial role when performing vigilance tasks as these 

functions control processes involved in ignoring irrelevant stimuli and overruling automatic 

responses (Lorist & Faber, 2011). Dye et al. (2009b) compared sustained attention (vigilance) 

performance of VGPs and NVGPs, using the Test of Variables of Attention. The test is 21.6 

minutes long and requires participants to respond to shapes when they appear in target 

locations and withhold responses to shapes appearing in other locations. It includes two test 

conditions, one where targets are infrequent (test of sustained attention), and one where 

targets are more frequent that non-targets (test of impulsivity). The authors classified VGPs 

as people who played action video games 5 hours or more per week in the previous year. 

They found that, for both segments of the test, VGPs were significantly faster than NVGPs, 

and that there was no significant difference in accuracy between the two groups, indicating 

that VGPs did not make a speed/accuracy trade-off. This provides further evidence that VGPs 

may be more resistant to the effects of cognitive fatigue than NVGPs. However, performance 

over time was not analysed (Dye et al., 2009b), and the test is too short to induce fatigue or a 

vigilance decrement, thus the difference in the effect of reduced executive control and 

increased cognitive fatigue on sustained attention performance between VGPs and NVGPs 

remains unexplored. 
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2.2.2 Divided Attention. 

Executive control skills are important in multitasking situations as these skills allow 

the processing of complex situations, for example, when needing to perform differing tasks 

simultaneously, or rapidly switching between multiple tasks (Strobach et al., 2012). 

Individuals with FPS game experience have been shown to be able to multitask better than 

those without such experience (Chiappe et al., 2013). In a study by Kearney (2005), NVGPs 

completed 2 hours of training on either the FPS game Counter-Strike, or the puzzle game 

Tetris. Participants also completed 5 minutes of SynWin before and after training. SynWin is a 

PC-based multiple-task battery that includes a simple memory task, an arithmetic 

computation task, a visual monitoring task, and an auditory monitoring task, all presented 

simultaneously. Results indicated that participants trained with the FPS game for 2 hours 

showed a significantly greater improvement in multitasking ability compared to those who 

received non-FPS training (Kearney, 2005). 

In another study using SynWin, it was found that video game experience was 

positively correlated with effective multitasking strategies (Hambrick et al., 2010). Effective 

multitasking strategies were calculated by correlating the total SynWin score with the 

response probabilities (individuals’ tendency to stay on one task or switch to another). Thus, 

video game experience was a significant predictor of effective multitasking strategies that 

allowed for superior multitasking performance (Hambrick et al., 2010). 

Multitasking has also been assessed using the Multi-Attribute Task Battery (MATB) 

(Chiappe et al., 2013; Hambrick et al., 2010). The MATB was originally developed by 

researchers at the National Aeronautics and Space Administration (NASA, Comstock & 

Arnegard, 1992) to test human performance and human/automation interaction. It consists of 

two primary tasks (Tracking and Resource Management) that require constant monitoring, 

and two secondary tasks (System Monitoring and Communications) that are performed 
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intermittently. 

In one study that utilised the MATB to examine the effect of action video game 

training on divided attention performance (Chiappe et al., 2013), one group of NVGPs played 

a range of action video games for a minimum of 5 hours per week for 10 weeks, whilst the 

control group did not play any video games. It was found that those that completed more 

video games showed the greatest improvements. However, action video game training only 

resulted in improved performance (faster responses and fewer errors) on the secondary tasks, 

with no reduction in performance on the primary tasks. Overall, there were no differences 

between the groups in performance on the primary tasks. These results suggest that video 

game playing increases both visual and auditory attention capacity, and it is this increased 

capacity that allowed the video game players to perform better at the secondary tasks without 

affecting performance on the primary tasks (Chiappe et al., 2013). 

Currently, whether or not there is an underlying cognitive mechanism that transfers 

improved video game performance to other tasks is uncertain (Boot et al., 2008; Strobach et 

al., 2012). This is not surprising as not all studies find transfer effects between FPS video 

game playing and single (Murphy & Spencer, 2009; van Ravenzwaaij, Boekel, Forstmann, 

Ratcliff, & Wagenmakers, 2014) or dual-task cognitive tests (Donohue, James, Eslick, & 

Mitroff, 2012). It has been highlighted in the previous sections that there are some 

inconsistent findings within video game research. Further, it has been noted by others (see 

Boot, Blakely, & Simons, 2011; Kristjánsson, 2013) that methodological shortcomings limit 

the conclusions of the literature. These issues are discussed in the following section. 

2.3 Methodological Limitations of Video Game Research 

Research investigating the effects of video game playing on cognitive abilities must 

be interpreted with caution, as not all studies find significant differences in cognitive abilities 

between VGPs and NVGPs (Unsworth et al., 2015). Video game studies, particularly those 
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with training paradigms, are limited by potential methodological flaws that can occur in all 

research with clinical trials and experiments that focus on expertise (Boot et al., 2011). These 

issues include, but are not limited to, recruitment methods, comparable control conditions, 

and recruitment criteria (Boot et al., 2011; Dobrowolski et al., 2015; C. S. Green, Strobach, & 

Schubert, 2013; Unsworth et al., 2015). 

2.3.1 Recruitment. 

Nearly all studies comparing VGPs and NVGPs specifically recruit for either group, 

or fail to report how recruitment occurred (Boot et al., 2011). The belief that one should 

perform well in a task can positively influence ones performance on that task (Langer, Djikic, 

Pirson, Madenci, & Donohue, 2010). Thus, if a VGP is aware that they have been recruited 

because of their experience with video games, and then the experiment requires the 

completion of a video game, or video-game-like task, they will be more motivated to perform 

well, compared to NVGPs who would have no reason to be as motivated (Boot et al., 2011). 

Therefore, it will be more likely that VGPs will perform even better than expected, increasing 

the likelihood of finding a significant difference between the two groups. Although this 

methodological limitation does not account for differences between novices and experts, and 

may be negligible on its own, it is possible that when combined with other methodological 

limitations, or when effects are small, that the potential of finding a significant difference is 

increased.  

Further, simply comparing VGPs and NVGPs is not enough to conclude that playing 

video games is the cause of any differences. It is possible that VGPs possessed specific 

cognitive abilities that allowed them to perform well at video games, and because they were 

good at these games they continued to play them (Adams & Mayer, 2012). Therefore, to 

account for this possibility, training studies are used (Bavelier et al., 2012), however, this 

raises the potential issue of implementing an effective control condition. 
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2.3.2 Control condition. 

In clinical trials it is important to have a comparable control or placebo group, and the 

same is necessary in training studies (Boot et al., 2011). However, if a video game training 

condition was compared to a non-active control condition, then any improvement in the video 

game conditions could be the result of a placebo effect or any number of other non-

experimental effects such as the Hawthorne effect (participants’ performance increases due to 

receiving attention from the experimenter) (C. S. Green et al., 2009). Fortunately, many video 

game training studies have used an active control condition, for example an FPS game 

compared with a non-FPS game (Boot et al., 2011). However, choosing an appropriate 

control condition is a complex issue. There is no standard accepted taxonomy of video game 

genres (Connolly et al., 2012), and games often differ within each genre (Spence & Feng, 

2010). Unfortunately, the majority of game training studies assume that providing, for 

example, a slower-paced puzzle game like Tetris is an adequate control video game when 

comparing to a fast-paced action FPS game. Boot et al. (2011) suggest that participants’ 

perceptions vary as to the benefits of different games in improving different cognitive 

abilities. Therefore, the experiment remains subject to a placebo effect whereby participants 

have no reason to believe that training in a control condition would improve their 

performance on the experimental measure.  

2.3.3 Definition of action video game players. 

As previously mentioned, there is no standard definition for each video game genre 

(Connolly et al., 2012), and games vary widely within each genre (Spence & Feng, 2010). As 

such, what is considered to be an ‘action’ video game is debatable (Oei & Patterson, 2015). 

Within this genre exist a wide range of types, requiring differing levels of perceptual and 

cognitive skills (Latham, Patston, & Tippett, 2013a; Oei & Patterson, 2015), and it has been 

suggested that this lack of concrete categorisation is a contributing factor to the inconsistent 
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results in the video game literature (Bisoglio et al., 2014). In addition, although the focus of 

research has typically been on FPS video games, VGPs rarely only play one sub-genre of 

video game (Dobrowolski et al., 2015), thus complicating the interpretation of results.  

In addition to there being no standard definition of an action video game, there is no 

standard definition of what constitutes a video game player. The criteria for a participant to 

be classed as a VGP has ranged from playing video games 2 hours per week for the previous 

6 months (Donohue, Woldorff, & Mitroff, 2010) to playing more than 7 hours per week for 

the previous 2 years (Boot et al., 2008). However, some studies have attempted covert 

recruitment as suggested by Boot et al. (2011), and thus defined VGPs and NVGPs after 

receiving responses to video game history questionnaires (Bailey, 2009), resulting in further 

inconsistencies. 

A further limitation concerning the definition of video game players is the use of the 

term expert. Studies often refer to VGPs as experts, rather than as those with more video 

game experience (Andrews & Murphy, 2006; Boot et al., 2008; Karle et al., 2010; Zhang, 

Shen, Luo, Su, & Wang, 2009). Although the process of becoming an expert may require 

many hours of practice (VanDeventer & White, 2002), it is not sufficient criteria for being 

considered an expert. Most psychologists agree that experts display superior performance 

than novices, as measured by speed, accuracy and/or efficiency (Speelman, 1998). Thus, 

expertise is based on the results of performance, not the amount of time spent performing. 

Therefore, as the majority of research studies use self-report questionnaire to determine group 

classification, VGPs should not be referred to as experts (Latham, Patston, & Tippett, 2013). 

In addition, the use of self-report measures fails to take into consideration differences 

between VGPs (Unsworth et al., 2015). There is likely to be a larger range of video game 

experience in the VGP group, whilst most NVGPs will be similar in the experience. For 

example, a participant who has recently purchased a new console and/or game and has been 
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playing regularly for the past six months will be considered equal to a participant who has 

been playing regularly for the past 10 years (Latham et al., 2013a; Unsworth et al., 2015). 
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3. Chapter 3: Study 1 - Video Game Experience and Resistance to Cognitive Fatigue 

Sustained attention, the ability to maintain attentional focus and remain alert for long 

periods of time, and divided attention, the ability to perform two or more tasks 

simultaneously (Matthews, 2000), play crucial roles in human performance in a range of 

occupations (e.g. pilots, unmanned vehicle operators, air traffic controllers, power plant 

operators, long-distance drivers, and security surveillance operators) (Chiappe et al., 2013; 

Durso & Sethumadhavan, 2008; Finomore et al., 2009; Gartenberg et al., 2013; Hubal et al., 

2010; Warm, Matthews, et al., 2008; Warm, Parasuraman, et al., 2008). Performing such 

complex cognitive tasks for long periods of time can result in cognitive/mental fatigue, which 

can lead to reduced task performance and an increased likelihood of error (Ackerman, 2011; 

Guastello et al., 2013; Lal & Craig, 2001; Van Dongen et al., 2011). This decline in task 

performance over time is known as the fatigue effect or the time-on-task effect (Van Dongen 

et al., 2011).  

It has previously been shown that those who regularly play (or those who are trained 

on) first-person shooter (FPS) action video games demonstrate improved performance in a 

range of cognitive areas, including those used when performing sustained attention (Boot et 

al., 2008; Castel et al., 2005; Dye et al., 2009b; C. S. Green & Bavelier, 2003, 2006b, 2007; 

Hubert-Wallander, Green, Sugarman, et al., 2011; T. N. Schmidt et al., 2012), and divided 

attention tasks (Chiappe et al., 2013; Dye et al., 2009a; Gaspar et al., 2013; Hambrick et al., 

2010; Kearney, 2005). Action video games include features such as instant feedback of 

performance, variability of training (Healy et al., 2012), motivated and focused learning, and 

increasing levels of difficulty (C. S. Green et al., 2009), which all relate closely to well-

known training principles (Chiappe et al., 2013). Thus, it is possible that these features 

provide a medium through which to improve people’s divided and sustained attention 

performance (Pavlas et al., 2008). However, although the hypothesis that playing action video 
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games can improve sustained attention and divided attention performance is supported in 

theory, there is currently little research on the topic, and none that explicitly focuses on 

cognitive fatigue. Thus, the purpose of this research study was to investigate whether action 

video game players (VGPs) were more resilient to the effects of cognitive fatigue compared 

to non-video game players (NVGPs), as measured by sustained attention and divided 

attention task performance. 

Initially, cognitive fatigue was considered to be the outcome of depleted cognitive 

resources. However, after reviewing the literature, Hockey (2013) proposed that cognitive 

fatigue is instead an adaptive mechanism, with the function of controlling and managing 

motivation and behaviour, and is therefore connected to executive functions. As previously 

discussion in Section 1.3, executive functions are higher-order cognitive control processes 

that organise and control lower-level cognitive functions according to the individual’s goals 

(van der Linden, 2011). They are used when irrelevant stimuli need to be ignored, when 

automatic responses need to be overruled, and when information needs to remain active in 

memory for extended durations (van der Linden, 2011). Over time, the amount of mental 

effort required in using executive control to perform these tasks increases, resulting in a 

reduction in the efficiency of these functions, and thus the occurrence of the fatigue effect 

(Earle et al., 2015; Lorist & Faber, 2011; Lorist et al., 2000; van der Linden, 2011; van der 

Linden et al., 2003). 

Executive control is typically assessed using tasks that require attention to be 

switched between two or more different tasks (Boot et al., 2008; Cain et al., 2012; Hambrick 

et al., 2010). Previous research has examined divided attention performance using 

multitasking paradigms (Chiappe et al., 2013; Hambrick et al., 2010), for example the Multi-

Attribute Task Battery (MATB). The MATB was originally developed by researchers at the 

National Aeronautics and Space Administration (NASA, Comstock & Arnegard, 1992) to test 
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human performance and human/automation interaction. It consists of two primary tasks 

(Tracking and Resource Management) that require constant monitoring, and two secondary 

tasks (System Monitoring and Communications) that are performed intermittently. 

Chiappe et al. (2013) used the MATB to examine the effect of action video game 

training on divided attention performance. In their study, one group of NVGPs played a range 

of action video games for a minimum of 5 hours per week for 10 weeks, whilst the control 

group did not play any video games. It was found that action video game training resulted in 

improved performance (faster responses and fewer errors) on the secondary tasks, with no 

reduction in performance on the primary tasks. Although participants spent 90 minutes on the 

MATB, only the last 30 minutes were used in the analysis, and thus any effect of cognitive 

fatigue on divided attention performance could not be examined. However, this study does 

add to the existing evidence (Bavelier et al., 2012; Cain et al., 2012; Hambrick et al., 2010; 

Kearney, 2005) that video game playing can lead to improved multitasking abilities and thus 

superior executive functioning, compared to NVGPs. 

The fatigue effect can also be measured through the vigilance decrement, which is 

characterised by increasing reaction times and/or decreasing detection accuracy on a 

vigilance task that typically occurs after 20 to 35 minutes performing the task (Buck, 1966; 

Hancock, 2013; Helton & Russell, 2012; Mackworth, 1948; See et al., 1995). Currently, the 

resource theory (Fisk & Scerbo, 1987; Fisk & Schneider, 1981; Kahneman, 1973; 

Parasuraman & Davies, 1977; C. D. Wickens, 1984) is the dominant model used to explain 

the vigilance decrement (Helton & Russell, 2012). However, neither the resource theory view 

of vigilance, nor its opponents, the under-load (Frankmann & Adams, 1962; Heilman, 1995; 

Loeb & Alluisi, 1977; Welford, 1968) and mind-wandering theories (Robertson et al., 1997), 

can adequately account for all findings related to the vigilance decrement. Instead, similar to 

cognitive fatigue, it has been proposed that the vigilance decrement is due to reduced 
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executive functioning, rather than a lack of cognitive resources (Thomson et al., 2015). 

Thomson et al. (2015) proposed that performing vigilance tasks taxes executive 

functions, as these functions control the ability to ignore irrelevant stimuli and inhibit 

automatic responses Over time, as executive functions become taxed, an insufficient amount 

of attentional resources are allocated towards the task, resulting in deteriorating vigilance 

performance. It is therefore possible that individuals with greater executive control will be 

better able to direct the required attentional resources towards the vigilance task, resulting in 

improved performance over a longer period of time (Thomson et al., 2015).  

Dye et al. (2009b) compared sustained attention (vigilance) performance of VGPs and 

NVGPs, using the Test of Variables of Attention. The test is 21.6 minutes long and requires 

participants to respond to shapes when they appear in target locations and withhold responses 

to shapes appearing in other locations. It includes two test conditions, one where targets are 

infrequent (test of sustained attention), and one where targets are more frequent that non-

targets (test of impulsivity). The authors classified VGPs as people who played action video 

games 5 hours or more per week in the previous year. They found that, for both segments of 

the test, VGPs were significantly faster than NVGPs, and that there was no significant 

difference in accuracy between the two groups, indicating that VGPs did not make a 

speed/accuracy trade-off. This provides further evidence that VGPs may be more resistant to 

the effects of cognitive fatigue than NVGPs. However, performance over time was not 

analysed (Dye et al., 2009b), and the test is too short to induce fatigue or a vigilance 

decrement, thus the difference in the effect of cognitive fatigue on sustained attention 

performance between VGPs and NVGPs remains unexplored. 

3.1 The present study 

In the present study, the effects of cognitive fatigue on VGPs and NVGPs were 

compared. Cognitive fatigue was induced by time-on-task, with participants completing a 
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gradual-onset Continuous Performance Task (gradCPT) for 60 minutes. Time-on-task is a 

common method of inducing fatigue (Lorist et al., 2000), and often involves completing 

continuous vigilance tasks (Xiao et al., 2015). 

The continuous-performance design was chosen because it measures moment-to-

moment fluctuations in reaction times and accuracy, requiring participants to respond to 

frequent non-target stimuli and to withhold responses to the rare target stimuli (Esterman et 

al., 2012; Larue et al., 2010; Rosenberg et al., 2013). Although the vigilance decrement has 

not been consistently found using this design (Helton et al., 2009; Rosenberg et al., 2013), 

Esterman et al. (2012) found that using gradual-onset stimuli in a continuous performance 

task, rather than abrupt-onset stimuli, successfully taxes the ability to sustain attention. In the 

present study, stimuli gradually transitioned from the inter-stimulus mask (‘X’) into the 

stimulus (a random number between 1 and 9) and back into the inter-stimulus mask. 

Performance accuracy on the gradCPT was measured according to signal detection 

theory using sensitivity (d') and response criterion (c, also referred to as λcentred) (T. D. 

Wickens, 2001). Sensitivity measures how well the signal (target) can be detected from the 

noise (non-targets). When d' is close to zero, targets are difficult to detect and when it is large 

they are easy to detect. Typically, participants have little to no control over signal 

detectability as it is mostly influenced by the way the stimuli are created in the experimental 

design (e.g. size of stimulus). Signal detectability is also influenced by the physiology 

involved in the detection process (T. D. Wickens, 2001). In the current experiment the 

presentation of the stimuli remained consistent throughout the experiment, thus any reduction 

in sensitivity levels is a result of cognitive fatigue. The response criterion (c) represents the 

amount of evidence needed by the observer in order to classify a stimulus as a target. When 

the evidence is greater than the response criterion level, the observer classifies the stimulus as 

a target, and when it is below, it is classified as noise. Response criterion levels however, are 
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controlled by the individual, as this is a representation of their response strategy/bias. The 

response criterion is a representation of the amount of evidence needed by the participant for 

them to determine whether a stimulus is a signal (target) or noise (non-target); if the evidence 

is above the response criterion level, the stimulus is classified as a signal. Thus, decreasing 

response criterion levels indicate an increased propensity to respond to a stimulus (less 

evidence is needed), resulting in more correct responses but also more false alarm errors (T. 

D. Wickens, 2001). 

Participants also completed a 20-minute version of the updated MATB (MATB-II) 

prior to, and after the gradCPT task. Comparing task performance when rested and fatigued is 

a common method of assessing the effects of fatigue (Chaiken et al., 2011). Performance on 

the first MATB-II session provided an initial measure of executive function for VGPs and 

NVGPs and any decline in MATB-II performance between the first and second MATB-II 

sessions is therefore attributed to cognitive fatigue. 

At the end of the second MATB-II session, participants played the FPS video game 

Unreal Tournament 2004 by Atari, on a computer. Previous research has classified 

participants as ‘video game experts’ based purely on self-report measures of how often they 

play (Latham, Patston, & Tippett, 2013b) and although the process of becoming an expert 

may require many hours of practice (VanDeventer & White, 2002), it is not sufficient criteria 

for being considered an expert. Experts are individuals who display superior performance 

compared to novices, as measured by speed, accuracy and/or efficiency (Speelman, 1998). 

Although it has been previously suggested (Latham et al., 2013b; Towne, Ericsson, & 

Sumner, 2014; Wang, Richard, & Schmular, 2014), there is a lack of research that uses 

objective measures to classify participants as either VGPs or NVGPs, and many authors often 

use the argument that doing so is impractical (Gobet et al., 2014). To maintain consistency 

with previous research, a self-report questionnaire was also used to classify participants as 
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VGPs or NVGPs in conjunction with participants’ video game performance.  

3.2 Hypotheses 

Previous research has shown that VGPs outperform NVGPs on short vigilance tests 

(Dye et al., 2009b), and that they demonstrate superior performance on tasks related to 

sustained attention (Boot et al., 2008; Castel et al., 2005; C. S. Green & Bavelier, 2003, 

2006b, 2007; Hubert-Wallander, Green, Sugarman, et al., 2011; T. N. Schmidt et al., 2012). 

Therefore it was predicted that VGPs would perform better than NVGPs on all measures of 

the gradCPT. Due to the vigilance decrement, it was expected that performance for both 

groups would decline as time-on-task increases. However, it was hypothesised that the 

decline would be greater for NVGPs than VGPs. 

Video game experience has been shown to improve divided attention performance 

(Chiappe et al., 2013). Therefore, it was hypothesised that VGPs would perform better than 

NVGPs on both the first and second sessions of the MATB-II. Due to the time-on-task effect 

and being fatigued from the gradCPT, it was expected that MATB-II performance for both 

groups would decline from session 1 to session 2. However, it was predicted that VGPs 

would experience a smaller reduction compared to NVGPs. The MATB-II also includes the 

Workload Rating Scale (WRS), a measure of subjective workload. It was predicted that as 

VGPs should perform better in the MATB-II, then they should also experience lower levels 

of subjective workload. 

3.3 Method 

This study received approval from the Edith Cowan University Human Research Ethics 

Committee. 

3.3.1 Participants. 

Forty-seven individuals were recruited from Edith Cowan University, Western 

Australia, through announcements in undergraduate classes, flyers, and word-of-mouth. 
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Three participants withdrew from the study and therefore their data was not used. All 

participants went into a draw to win one of two $50 gift cards. Two participants were over the 

age of 60 years and therefore their data was removed in order to avoid a potential age 

confound. In addition, one of these participants reported to be a VGP, however was 

considered to be a NVGP based on their video game performance. The removal of these 

participants resulted in data for 42 participants being used in the present study.  

To maintain consistency with previous research, participants were classified as VGPs 

if they reported playing FPS games for 4 or more hours per week, for a minimum of 1 hour 

each time, over the previous 6 months. Participants were also asked to specify which video 

games (of any genre) they most commonly played as well as the video game genre and 

platform (see Appendix A). After completing the cognitive tests, participants practiced the 

video game for 2 minutes on ‘novice’ difficulty and then completed three 5-minute games on 

‘expert’ difficulty. Performance was calculated by subtracting the number of deaths from the 

number of kills and averaging over the three games. Participants who were classified as 

VGPs based on their self-report measure all scored above 0, indicating that they killed the 

enemy target more times than they themselves were killed. In addition, there were seven 

participants who scored above 0 but did not meet the self-report VGP criteria. However, upon 

further investigation, it was found that these individuals did report to playing FPS games for 

less than 4 hours per week and/or reported to playing other action video games (e.g. racing, 

3rd person shooter games) for 4 or more hours per week over the previous 6 months, and so 

they were also classified as VGPs. Thus, all participants who scored above 0 in Unreal 

Tournament 2004 reported playing action video games for 4 or more hours per week over the 

previous 6 months, and all participants who scored below 0 reported playing no video games 

of any genre. To confirm group allocation, a between-groups t-test was conducted on Unreal 

Tournament 2004 performance. There was a significant difference in Unreal Tournament 
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2004 (UT2004 score) between those classified as VGPs and those classified as NVPGs, t(40) 

= 13.86, p < .001 (see Table 3.1).  

Table 3.1 Participants’ demographic details and video game performance 
Table 3.1 

Participants’ demographic details and video game performance 

 Sex Age (years) UT2004 score 

Group Male Female Mean SD Mean SD 

VGP 15 3 26.50 7.33 6.39 3.35 

NVGP 5 19 37.92 11.28 -8.40 3.48 

 

3.3.2 Tasks. 

3.3.2.1 Sustained attention (gradCPT). 

The gradCPT was created using the E-Prime 2.0 software. In the gradCPT task, 

participants were required to respond (press the spacebar) to the numbers ‘1’ through to ‘9’, 

except for the number ‘4’ (the target). There were a total of 2400 stimuli, with the target 

occurring 480 times (probability of occurrence of 0.2). The stimuli were presented 

individually, fading in and out at the centre of the computer monitor. The stimuli were 

separated by an inter-stimulus mask (‘X’) that also faded in and out. The duration of the 

transition from inter-stimulus mask to the next stimulus (and vice versa) was 500ms, and 

each stimulus was presented at 100% opacity for 500ms before beginning the transition back 

to the inter-stimulus mask. The stimuli were presented in size 72.5 Arial font, on a 20-inch 

computer monitor. 

The gradCPT was divided into ten 6-minute periods, each consisting of 240 trials. 

Reaction times (RT) were collapsed to mean values that were used for the analysis. In 

addition, the standard deviations of RTs for each period were used to analyse the variability 

of the raw reaction times. Reaction times were measured from stimulus onset, that is, from 
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when the inter-stimulus mask (‘X’) began the gradual transition into the numbered stimulus. 

Thus, a reaction time between 150ms and 500ms indicated a response that occurred when the 

inter-stimulus symbol was transitioning into the stimulus, a reaction time between 500ms and 

1000ms indicated a response that occurred when the stimulus was at 100% opacity, and a 

reaction time between 1000ms and 1500ms indicated a response that occurred when the 

stimulus was transitioning into the following inter-stimulus mask. Response times less than 

150ms were considered anticipatory and were therefore labelled as errors. 

3.3.2.2 Divided attention (MATB-II). 

The tasks in the current version of the MATB, the revised MATB (MATB-II), are 

approximations of those in a flight-deck, consisting of two primary tasks; tracking and fuel 

management; and two secondary tasks, systems monitoring and a communication task (see 

Figure 3.1). 

Figure 3.1 The on-screen display of the revised Multi-Attribute Task Battery (MATB-II). 

 

Figure 3.1. The on-screen display of the revised Multi-Attribute Task Battery (MATB-II). 
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The tracking task requires the participant to use a computer joystick to keep the 

reticule in the centre of the square of the cross-hairs. The fuel management task requires the 

participant to turn the eight pumps ‘on’ or ‘off’ in order to maintain them as closely as 

possible to a pre-determined level. Occasionally, a pump will ‘fail’ and become unusable for 

a set period of time. Thus, the participant must determine how to best re-direct the fuel. In the 

systems monitoring task, the participant must monitor two lights and four dials. For the lights 

task, participants are required to keep one light on, and another light off. For the dial task, 

participants must reset a dial if it is fluctuating outside of a specified range. The 

communications task requires participants to respond to the call-sign “NASA-504” and alter 

one button and one dial setting to match that of an audio message, and to ignore messages for 

other call-signs. 

Each MATB-II session was designed to include the same number of events so as to 

maintain task difficulty between sessions. For the System Monitoring task, participants had to 

respond within a 10-second time limit, and for the Communications task there was a 30-

second time limit. The Tracking task remained in the ‘manual’ setting for the entire duration.  

While the MATB-II produces data on 21 measures, however, in keeping with methods 

used by Chiappe et al. (2013) only eight were used in the analysis, as these did not suffer 

from range restrictions, and are commonly reported in previous studies (Caldwell & 

Ramspott, 1998; Singh, Tiwari, & Singh, 2010). The Communications task consisted of two 

measures, mean reaction time (seconds) of correct responses and accuracy of correct 

responses. The Tracking task consisted of one measure, the root mean squared deviation 

(RMSD) of the distance (in pixels) of the reticule of the joystick to the centre of the target 

location. The Resource Management task consisted of one measure, the mean deviation of the 

fuel level in Tanks A and B, from the target level of 2500 units. The System Monitoring task 

was separated between the Light task and the Scale task. Each of these consisted of two 
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measures, mean reaction time (seconds) of correct responses and accuracy of correct 

responses. For the Tracking and Resource Management tasks, low values indicate better 

performance. 

The MATB-II also includes a Workload Rating Scale (WRS) that is completed at the 

end of the session and was analysed separately to the eight MATB-II performance measures. 

The WRS is based on the NASA-TLX (Hart & Staveland, 1988) and consists of six subscales 

of workload: mental demand, physical demand, temporal demand, (subjective level of) 

performance, effort, and frustration. All subscales are measured on a 100-point scale, and 

each is measured from ‘low’ to ‘high’ except for the performance subscale which was 

reversed because a low rating of subjective performance is an indication of high workload. 

3.3.3 Procedure. 

After receiving an information letter (Appendix B) and signing the consent form 

(Appendix C), participants were instructed on how to perform the MATB-II. Participants 

were shown an image of the MATB-II and provided with verbal instructions on each of the 

four tasks. Participants then completed a 5-minute practice version of the task whilst the 

experimenter provided directions and assistance and answered any questions. Upon 

completion, the experimenter left the room and the participant completed the first 20-minute 

MATB-II session on their own. 

The experimenter then provided instructions on how to complete the gradCPT, and 

informed the participants that they should respond as quickly and accurately as possible. 

Participants then completed a 1-minute practice version of the gradCPT while the 

experimenter ensured that they were attempting to respond correctly. The experimenter left 

the room whilst participants completed the 60-minute version of the task. Upon completion, 

the experimenter then initiated the second MATB-II session. No further practice was 

provided, however the experimenter answered any questions participants had about 
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performing the task. 

At the completion of the second MATB-II session, participants were allowed to take a 

short break before returning and playing the FPS game Unreal Tournament 2004. Similar to 

the other tasks, participants were shown an image of the game and provided verbal 

instruction on the controls and how to play. They then practiced the game for 2 minutes, 

before completing three 5-minute games. All verbal instructions for all tasks, including the 

video game, were scripted to ensure the same instructions were provided to all participants 

regardless of video game experience. 

3.4 Results 

3.4.1 Sustained attention. 

A doubly-multivariate profile analysis was initially conducted on the four measures of 

sustained attention performance (reaction time, reaction time variability, sensitivity, response 

criterion), with post hoc tests conducted as required. 

Profile analysis is a multivariate alternative to the repeated-measures ANOVA. A 

popular extension of the profile analysis is the doubly-multivariate profile analysis, which is 

used when multiple dependent variables are measured at multiple time points (Tabachnick & 

Fidell, 2007). In profile analysis, parallelism is the multivariate alternative to the univariate 

test of interaction. When two or more profiles are parallel there is no interaction, that is, 

differences between the groups are constant across the levels of the dependent variable. The 

test for equality of levels (or equality of groups) is the multivariate alternative to the 

univariate between-subjects test. The flatness of profiles test (or test for equality of levels) is 

the multivariate alternative to the univariate within-subjects test (Tabachnick & Fidell, 2007).  

3.4.1.1 Doubly-multivariate Profile Analysis. 

A 2 (group) x 10 (period) doubly-multivariate profile analysis was conducted on the 

sustained attention performance of VGPs and NVGPs using the four measures: reaction time, 
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reaction time variability, sensitivity (d’), and response criterion (c). The group by period 

interaction (deviation from parallelism) was not significant, V = 0.81, F(36, 5) = 0.59, p = 

.839, partial η2 = .81. The equality of levels test was significant, indicating a difference in 

sustained attention performance between VGPs and NVGPs, V = 0.27, F(4, 37) = 3.33, p = 

.020, partial η2 = .27. For the flatness test, there was no significant change in performance 

over time (difference between periods), V = 0.92, F(36, 5) = 1.59, p = .321, partial η2 = .92. 

Each of the four measures was analysed individually to determine on which measures 

the VGPs and NVGPs differed.  

3.4.1.2 Reaction time. 

The reaction time (RT) profiles of the VGPs and NVGPs , seen in Figure 3.1, did not 

deviate significantly from parallelism, V = 0.26, F(9, 32) = 1.25, p = .301, partial η2 = .26. 

Figure 3.2 Mean reaction times (ms) of correct responses across periods 

 
Figure 3.2. Mean reaction times (ms) of correct responses across periods. Error bars represent 

±1 standard error. 

 
For the equality of levels test, when reaction times were averaged over all periods, 
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there was no significant difference between VGP (M = 469.84ms, SE = 15.85) and NVGP (M 

= 490.06ms, SE = 13.73), F(1, 40) = 0.93, p = .341, partial η2 = .02. 

For the flatness test, when averaged over groups, there was no significant difference 

between periods, indicating no deviation from flatness, V = 0.27, F(9, 32) = 1.28, p = .285, 

partial η2 = .27. 

3.4.1.2.1 VGP. 

Mauchly’s test of sphericity was conducted on the RT of VGPs. The assumption of 

sphericity was violated, χ2(44) = 82.68, p = .001, therefore the degrees of freedom were 

corrected using the Greenhouse-Geisser estimates of sphericity (ε = 0.495). The results 

showed that there was no significant effect of period, F(4.46, 75.75) = 7.43, p = .580, partial 

η2 = .04. 

3.4.1.2.2 NVGP. 

Mauchly’s test of sphericity was conducted on the RT of NVGPs. The assumption of 

sphericity was violated, χ2(44) = 104.39, p < .001, therefore the degrees of freedom were 

corrected using the Greenhouse-Geisser estimates of sphericity (ε = 0.442). The results 

showed that there was no significant effect of period, F(3.98, 91.47) = 1.47, p = .219, partial 

η2 = .06. 

3.4.1.3 Reaction time variability (Standard deviation). 

The profiles of reaction time variability for VGPs and NVGPs, seen in Figure 3.2, 

were parallel, V = 0.13, F(9, 32) = 0.54, p = .836, partial η2 = .13. 

For the equality of levels test, when variability of reaction times were combined over 

all periods, there was no significant difference between VGPs (M = 90.89, SE = 6.46) and 

NVGPs (M = 93.92, SE = 5.59), F(1, 40) = 0.13, p = .725, partial η2 = .003. 

For the flatness test, when combined over groups, there was a significant difference 

between periods, indicating a significant deviation from flatness, V = 0.489, F(9, 32) = 3.41, 
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p = .005, partial η2 = .49.  

Post hoc tests were conducted to examine the differences between periods within each 

of the groups. 

Figure 3.3 Variability of raw reaction times (standard deviation units) across periods 

 
 

Figure 3.3. Variability of raw reaction times (standard deviation units) across periods. Error 

bars represent ±1 standard error. 

 
3.4.1.3.1 VGP. 

Mauchly’s test of sphericity was conducted on the reaction time variability (SD) of 

VGPs. The assumption of sphericity was violated, χ2(44) = 73.67, p = .005, therefore the 

degrees of freedom were corrected using the Greenhouse-Geisser estimates of sphericity (ε = 

0.52). The results showed that there was a significant effect of period, F(4.67, 79.35) = 3.03, 

p = .017, partial η2 = .15, and a significant linear trend, F(1, 17) = 9.78, p = .006, partial η2 = 

.37.  
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3.4.1.3.2 NVGP. 

Mauchly’s test of sphericity was conducted on the reaction time variability (SD) of 

NVGPs. The assumption of sphericity was violated, χ2(44) = 68.80, p = .012, therefore the 

degrees of freedom were corrected using the Greenhouse-Geisser estimates of sphericity (ε = 

0.58). The results showed that there was a significant effect of period, F(5.24, 120.49) = 3.99, 

p = .002, partial η2 = .15, and a significant linear trend, F(1, 23) = 17.57, p < .001, partial η2 = 

.43. 

3.4.1.4 Sensitivity. 

The profiles of sensitivity of VGPs and NVGPs, seen in Figure 3.3, were parallel, V = 

0.08, F(9, 32) = 0.37, p = .967, partial η2 = .08. 

For the equality of levels test, when d' values were combined over all periods, there 

was no significant difference between VGPs (M = 3.95, SE = 0.21) and NVGPs (M = 4.46, 

SE = 0.19), F(1, 40) = 3.27, p = .078, partial η2 = .08. 

For the flatness test, when combined over groups, the difference in sensitivity 

between periods was significant, V = 0.58, F(9, 32) = 4.85, p < .001, partial η2 = .58.  
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Figure 3.4 Sensitivity levels across periods 

 
Figure 3.4. Sensitivity levels across periods. Error bars represent ±1 standard error. 

 
3.4.1.4.1 VGP. 

Mauchly’s test of sphericity was conducted on the sensitivity levels of VGPs. The 

assumption of sphericity was violated, χ2(44) = 99.74, p < .001, therefore the degrees of 

freedom were corrected using the Greenhouse-Geisser estimates of sphericity (ε = 0.487). 

The results showed that there was a significant effect of period, F(4.39, 74.57) = 2.53, p = 

.042, partial η2 = .13, and a significant linear trend, F(1, 17) = 8.65, p = .009, partial η2 = .34.  

3.4.1.4.2 NVGP. 

Mauchly’s test of sphericity was conducted on the sensitivity levels of NVGPs. The 

assumption of sphericity was not violated, χ2(44) = 48.34, p = .323. The results showed that 

there was a significant effect of period, F(9, 207) = 3.84, p < .001, partial η2 = .14, and a 

significant linear trend, F(1, 23) = 10.42, p = .004, partial η2 = .31, as well as a significant 

quadratic trend, F(1, 23) = 7.01, p = .014, partial η2 = .23.  
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3.4.1.5 Response Criterion. 

The profiles of response criterion levels of VGPs and NVGPs, seen in Figure 3.4, 

were parallel, V = 0.097, F(9, 32) = 0.38, p = .936, partial η2 = .10. 

For the equality of levels test, when c values were combined over all periods, the 

difference between VGPs (M = 1.05, SE = 0.08) and NVGPs (M = 0.96, SE = 0.07) was not 

significant, F(1, 40) = 0.734, p = .397, partial η2 = .02. 

For the flatness test, when combined over groups, the difference in the response 

criterion between periods was significant, indicating a deviation from flatness, V = 0.45, F(9, 

32) = 2.89, p = .013, partial η2 = .45. 

Figure 3.5 Criterion levels across periods 

 
Figure 3.5. Criterion levels across periods. Error bars represent ±1 standard error. 

3.4.1.5.1 VGP. 

Mauchly’s test of sphericity was conducted on the criterion levels of VGPs. The 

assumption of sphericity was violated, χ2(44) = 74.298, p = .005, therefore the degrees of 

freedom were corrected using the Greenhouse-Geisser estimates of sphericity (ε = 0.578). 
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The results showed that there was a significant effect of period, F(5.21, 88.48) = 2.83, p = 

.019, partial η2 = .14, and a significant linear trend, F(1, 17) = 9.29, p = .007, partial η2 = .35.  

3.4.1.5.2 NVGP. 

Mauchly’s test of sphericity was conducted on the criterion levels of NVGPs. The 

assumption of sphericity was violated, χ2(44) = 65.57, p = .023, therefore the degrees of 

freedom were corrected using the Greenhouse-Geisser estimates of sphericity (ε = 0.653). 

The results showed that there was a significant effect of period, F(5.87, 135.107) = 2.07, p = 

.04, partial η2 = .08, and a significant linear trend, F(1, 23) = 5.78, p = .025, partial η2 = .20.  

3.4.2 Divided attention. 

In session 1, there were two missing cases (2 NVGPs) in Communications task RT, 

and two missing cases (1 NVGP; 1 VGP) in System monitoring Scales task RT. In session 2, 

there was one missing case (1 NVGP) in Communications task RT and one missing case (1 

VGP) in System monitoring Scales task RT. Missing values in RT measures indicate that 

these participants did not respond to any of the events, or in the case of the communications 

task, they may have selected the radio and frequency but did not click on the ‘Enter’ button to 

record their answer. The missing values were replaced with the mean value of each 

participant’s respective group.  

A 2 (group) x 2 (session) doubly-multivariate profile analysis was conducted on the 

eight measures (see Table 2) of MATB-II performance. The group by session interaction 

(deviation from parallelism) was not significant, V = 0.17, F(8, 33) = 0.85, p = .563, partial η2 

= .17. The equality of levels test was significant, indicating a difference in divided attention 

performance between VGPs and NVGPs, V = 0.36, F(8, 33) = 2.31, p = .044, partial η2 = .36. 

For the flatness test, there was a significant change in performance between sessions, V = 

0.63, F(8, 33) = 6.98, p < .001, partial η2 = .63. 

To examine whether VGPs have superior executive functioning compared to NVGPs, 
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a MANOVA was conducted using performance on the first MATB-II session. Box’s test of 

equality of covariances was significant, F(36, 4520.03) = 1.84, p = .002. The result of the 

MANOVA revealed no significant difference in performance between the two groups, V = 

0.31, F(8, 33) = 1.84, p = .104, η2 = .31. However, univariate results were analysed as it is 

possible that the different groups may have chosen to focus on particular sub-tasks at the 

expense of performance on the remaining tasks. 

Levene’s test of equality of variances was only significant for communication task 

accuracy and the tracking task (ps < .05). Video game players performed better on all 

measures compared to NVGPs. However, there was only a significant difference between the 

two groups on three of the eight MATB-II measures (see Table 3.2). 

Table 3.2 Session 1 MATB-II sub-task performance 

 

 

Table 3.2 

Session 1 MATB-II sub-task performance 

Task Measure VGP (SD) NVGP (SD) ANOVA 

Communications 
RT 3.40 (1.47) 3.55 (1.38) F(1, 40) = 0.11, p = 0.739 

Accuracy 0.97 (0.03) 0.90 (0.14) F(1, 40) = 4.89, p = .033 

Resource 

Management 
Mean 376.02 (387.33) 558.74 (363.38) F(1, 40) = 2.46, p = .125 

Tracking RMSD 34.43 (7.89) 42.30 (14.74) F(1, 40) = 4.20, p = .047 

System 

Monitoring - 

Lights 

RT 2.73 (0.66) 3.25 (0.97) F(1, 40) = 3.89, p = .056 

Accuracy 0.83 (0.15) 0.76 (0.19) F(1, 40) = 1.86, p = .180 

System 

Monitoring - 

Scales 

RT 4.01 (0.76) 4.66 (0.70) F(1, 40) = 8.196, p = .007 

Accuracy 0.66 (0.27) 0.64 (0.19) F(1, 40) = .13, p = .724 

RT = Reaction time; RMSD = Root Mean Standard Deviation 
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An additional MANOVA was conducted using only data from session 2 of the 

MATB-II. Box’s test of equality of covariances was not significant, F(36, 4520.03) = 1.38, p 

= .067. The result of the MANOVA revealed a significant difference in performance between 

the two groups, V = 0.41, F(8, 33) = 2.80, p = .017, η2 = .41. Univariate results were analysed 

to determine which tasks the groups differed on. 

Levene’s test of equality of variances was non-significant for tasks (ps > .05). VGPs 

performed equal to or better than NVGPs on all tasks. However, there was only a significant 

difference between the two groups on three of the eight MATB-II measures (see Table 3.3). 

Table 3.3 Session 2 MATB-II sub-task performance 

 

3.4.3 Workload Rating Scale (WRS). 

A doubly-multivariate profile analysis was conducted on the raw responses to the 

WRS. The group by session interaction (deviation from parallelism) was not significant, V = 

Table 3.3 

Session 2 MATB-II sub-task performance 

Task Measure VGP (SD) NVGP (SD) ANOVA 

Communications 
RT 2.76 (1.51) 3.29 (1.41) F(1, 40) = 2.88, p = .249 

Accuracy 0.98 (0.30) 0.96 (0.94) F(1, 40) = 0.003, p = .453 

Resource 

Management 
Mean 259.11 (171.44) 394.31 (237.78) F(1, 40) = 4.18, p = .048 

Tracking RMSD 30.16 (5.51) 36.16 (9.85) F(1, 40) = 6.41, p = .015 

System 

Monitoring: 

Lights 

RT 2.50 (0.55) 3.05 (0.60) F(1, 40) = 9.39, p = .004 

Accuracy 0.89 (0.10) 0.89 (0.10) F(1, 40) = 0.002, p = .960 

System 

Monitoring: 

Scales 

RT 3.68 (0.92) 4.16 (0.86) F(1, 40) = 2.96, p = .093 

Accuracy 0.74 (0.23) 0.78 (0.14) F(1, 40) = 0.65, p = .424 

RT = Reaction time; RMSD = Root-Mean-Square Deviation 
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0.09, F(6, 35) = 0.54, p = .75, partial η2 = .09. The equality of levels test was not significant, 

indicating no difference in subjective workload between VGPs and NVGPs, V = 0.27, F(6, 

35) = 2.12, p = .075, partial η2 = .27. For the flatness test, there was a significant change in 

subjective workload between sessions, V = 0.37, F(6, 35) = 3.38, p = .01, partial η2 = .37. 

Inspection of the data revealed that both groups had lower scores on all measures in 

the second session compared to the first, matching the pattern of MATB-II performance. To 

determine whether there were any initial differences in workload a MANOVA was conducted 

using responses from the first MATB-II session. Box’s test of equality of covariances was not 

significant, F(21, 4926.67) = 1.17, p = .272. The result of the MANOVA revealed a 

significant difference in workload rating between the two groups, V = 0.33, F(6, 35) = 2.88, p 

= .022, partial η2 = .31. Univariate results were analysed to determine on which sub-scales 

the groups differed. Levene’s test of equality of variances was non-significant for all of the 

sub-scales (ps > .05). There was a significant difference in subjective workload ratings 

between the VGPs and NVGPs on only one of the six sub-scales (see Table 3.4). 

Table 3.4 Session 1 WRS results 

 

A MANOVA was also conducted using only responses from the second MATB-II 

session. Box’s test of equality of covariances was not significant, F(21, 4926.67) = .081, p = 

Table 3.4 

Session 1 WRS results 

Sub-scale VGP (SD) NVGP (SD) ANOVA 

Mental 70.61 (17.11) 76.29 (17.61) F(1, 40) = 1.10, p = .301 

Physical 38.83 (19.45) 32.92 (27.15) F(1, 40) = 0.62, p = .437 

Temporal 57.83 (21.72) 61.38 (23.52) F(1, 40) = 0.25, p = .621 

Performance 32.22 (17.49) 58.75 (23.98) F(1, 40) = 15.71, p < .001 

Effort 65.06 (17.91) 70.29 (19.78) F(1, 40) = 0.78, p = .383 

Frustration 35.94 (18.86) 48.71 (27.45) F(1, 40) = 2.87, p = .098 
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.711. The result of the MANOVA revealed no significant difference in workload rating 

between the two groups, V = 0.17, F(6, 35) = 1.21, p = .322, partial η2 = .17. Univariate 

results were analysed to determine if groups differed on any of the individual sub-scales. 

Levene’s test of equality of variances was not significant for all of the sub-scales (ps > .05). 

The only significant difference between the groups was on the Performance sub-scale (see 

Table 3.5).  

Table 3.5 Session 2 WRS results 
 

 

 

 

 

 

 

 

 

3.5 Discussion 

Overall, the results of the present study demonstrate that there is no difference in the 

levels of cognitive fatigue experienced between VGPs and NVGPs. The results of 

performance on the sustained attention task revealed that both groups experienced similar 

reductions in performance as time-on-task increased. In addition, from the results of the 

divided attention task it is not possible to determine whether participants experienced 

cognitive fatigue from session 1 to session 2 as the performance of both groups improved, 

possibly due to practice/learning effects.  

The doubly-multivariate profile analysis revealed that there was a significant 

difference between groups on the gradCPT, and that there was no significant change over 

Table 3.5 

Session 2 WRS results 

Sub-scale VGP (SD) NVGP (SD) ANOVA 

Mental 63.36 (20.93) 65.54 (19.18) F(1, 40) = 0.12, p = .731 

Physical 37.00 (18.72) 31.83 (23.04) F(1, 40) = 0.61, p = .441 

Temporal 54.83 (20.26) 56.29 (21.59) F(1, 40) = 0.049, p = .825 

Performance 26.44 (20.41) 46.67 (28.19) F(1, 40) = 6.64, p = .014 

Effort 55.00 (23.50) 60.79 (22.96) F(1, 40) = 0.64, p = .428 

Frustration 31.72 (21.09) 34.96 (26.43) F(1, 40) = 0.18, p = .672 
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time. However, individual profile analyses were conducted on each of the four measures from 

the gradCPT and revealed no significant difference in performance between the groups on 

any of the measures. As the between-group difference only occurred at the multivariate level, 

this suggests that the difference in performance between VGPs and NVGPs is detectable only 

when a combination of the sustained attention performance measures are analysed together. 

In addition, both groups exhibited a significant decline in sustained attention performance 

over time on the reaction time variability, sensitivity, and response criterion measures. The 

non-significant effect of time in the doubly-multivariate profile analysis was likely due to the 

non-significant effect on reaction time masking the significant effect of time on the other 

three variables. 

The similarity of sustained attention performance, when measured at the univariate 

level, between the VGPs and NVGPs is in contrast to previous research in this area. In 

particular, when Dye et al. (2009b) compared sustained attention performance, not only were 

VGPs significantly faster than NVGPs, their reaction times were so fast that their responses 

were initially considered to be anticipatory (less than 200ms). It was noted though that VGPs’ 

responses were nearly always correct and thus these fast responses were considered to be 

‘real’ responses. Thus, in the present study it is surprising that VGPs did not at least have 

significantly faster reaction times than NVGPs. However, there is increasing evidence that 

the effects of playing action video games on improving cognitive abilities may have been 

over estimated in the literature (Unsworth et al., 2015) and that research in this area suffers 

from a number of different methodological limitations (Boot et al., 2011; Gobet et al., 2014). 

Therefore the current univariate results add to the existing evidence (Irons, Remington, & 

McLean, 2011; Murphy & Spencer, 2009; van Ravenzwaaij et al., 2014) that action video 

games do not enhance cognitive abilities involved with performance in sustained attention 

tasks. However, as evidenced from the present study, it is important that measures of 
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cognitive performance are also analysed at a multivariate level to provide a more in-depth 

exploration of the phenomena.  

The decline in sustained attention performance over time is consistent with results in 

the previous research. Both VGPs and NVGPs experienced significant reductions in 

performance on all measures except for reaction time. As time-on-task increased, reaction 

time variability increased, sensitivity levels decreased, and response criterion levels 

decreased. These results are all consistent with the previous research on the time-on-task 

effect and the effects of fatigue, however, the decline in performance did not stop after 30 

minutes as has been demonstrated by previous research on the vigilance decrement (Buck, 

1966; Hancock, 2013; Helton & Russell, 2012; Mackworth, 1948; See et al., 1995). Instead, 

there were significant linear trends for both groups in reaction time variability, sensitivity, 

and response criterion levels that persisted beyond 30 minutes on the task. It is suggested for 

future research that any investigation of sustained attention and the vigilance decrement 

should be at least 30 minutes in duration, and that sustained attention performance needs to 

be examined over the entire duration of the task. 

Accuracy in sustained attention performance was assessed with signal detection 

theory, using d' (sensitivity) and c (response criterion) (T. D. Wickens, 2001). Decreasing 

sensitivity levels indicate a decreased ability to detect the signal (targets) from the noise (non-

targets). Signal detectability is influenced by the way the stimuli are created in the 

experimental design and by the physiology involved in the detection process (T. D. Wickens, 

2001). In the current experiment, as the presentation of the stimuli remained consistent 

throughout the experiment, any changes in sensitivity were a result of fatigued sustained 

attention processes. 

Response criterion levels are controlled by the individual, as this is a representation of 

their response strategy/bias (T. D. Wickens, 2001). The response criterion is a representation 
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of the amount of evidence needed by the participant for them to determine whether a stimulus 

is a signal or noise; if the evidence is above the response criterion level, the stimulus is 

considered to be a signal. Decreasing response criterion levels therefore indicates an 

increased propensity to respond to stimuli (as less evidence is needed), resulting in more 

correct responses but also more false alarm errors (T. D. Wickens, 2001). Therefore, as time-

on-task increased, participants compensated for this reduced ability to detect signals by 

lowering their response criterion and making more responses, inadvertently resulting in more 

false alarm responses. This adjustment in response behaviour, as a result of fatigue, supports 

the work of others (Hancock, 2013; Hockey, 2013; Thomson et al., 2015) who have proposed 

that being cognitively fatigued results in adaptive behaviour aimed at maintaining optimal 

task performance. 

As discussed previously, sustained attention tasks are effective measures of executive 

control as these tasks require ignoring irrelevant stimuli and inhibiting automatic responses 

(Thomson et al., 2015). It was therefore hypothesised that those with greater executive 

control would be better at performing these tasks as they would be more efficient at 

controlling attention, allowing them to perform better for longer. Overall, VGPs exhibited 

better sustained attention compared to NVGPs at the multivariate level, suggesting that they 

have superior executive control. However despite this, from the non-significant interaction 

effect in the doubly-multivariate profile analysis, and the significant effect of time in the 

univariate tests, it can be concluded that both VGPs and NVGPs are equally susceptible to the 

time-on-task effect and cognitive fatigue. 

With regards to divided attention performance, there was no evidence of participants 

experiencing cognitive fatigue over the two sessions of the MATB-II. In fact, both VGPs and 

NVGPs significantly improved in performance from session 1 to session 2. This can be 

attributed to a learning effect, and is a methodological issue rather than a theoretical one. This 
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is further supported by the doubly multivariate profile analysis on WRS scores that revealed a 

significant decline in subjective workload from session 1 to session 2. It is possible that the 

cognitive fatigue induced from the gradCPT task did impact MATB-II performance but that 

the practice effect was so large that it overcame any fatigue-related performance decline. 

However, this conclusion cannot be confirmed by the data available from the present study. 

Future studies investigating fatigue should use tasks on which optimal performance can be 

achieved in a short period of time in a practice trial, or to use tasks in which all participants 

are already proficient, as these will be more likely to show greater increases in fatigue 

(Ackerman, 2011). 

Session 1 of the MATB-II was examined to assess differences in the two groups’ 

initial level of executive functioning/control before they became fatigued. Multivariate 

analysis revealed that there was no significant difference between the groups, however 

univariate results were analysed as it was possible that groups may have varied in which sub-

tasks they focussed on. VGPs performed better than NVGPs on all measures, but at the 

univariate level, differences on only three of the eight measures were significant. VGPs 

performed significantly better than NVGPs on the Tracking task, Communications accuracy, 

and System monitoring – Scale reaction time. VGPs’ superior performance on the Tracking 

task is not surprising as this task required controlling a joystick, a device often used in 

computer-based video games. The other two measures, Communications accuracy, and 

System monitoring – Scale reaction time, are considered to be secondary tasks on the MATB-

II, although it should be noted that no distinction was made to participants. 

The fact that VGPs performed better on the secondary tasks is theoretically 

significant. This finding supports those of Chiappe et al. (2013), who found that video game 

training significantly improved performance on the secondary tasks without sacrificing 

performance on the primary tasks. One explanation for this is that VGPs required less 
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attentional resources to perform the primary tasks and were therefore able to focus on the 

secondary tasks. Although this is a significant point, it should be noted that one of the 

primary tasks was the Tracking task, and this is a potential confound for the current study. 

Thus, as VGPs were already familiar with controlling the joystick from playing video games, 

they were able to direct more cognitive resources to performing the secondary tasks. This is 

supported by the finding that VGPs performed significantly better than NVGPs on the 

Tracking task in both sessions of the MATB-II. All NVGPs reported that they were 

unfamiliar with using the joystick and it is likely that this required most of their attention 

whilst performing the task, especially as the joystick target was located in the centre of the 

screen, making it the primary visual focus. It is suggested that future research should use the 

option already available in MATB-II to turn off the Tracking task in order to remove any 

potential confounds. 

Interestingly, the MANOVA of MATB-II performance in session 1 revealed no 

significant difference between the two groups, whilst in session 2 there was a significant 

difference. Although not related to fatigue, these results indicate that VGPs may be faster 

learners than NVGPs. Bavelier et al. (2012) proposed that the main advantage of regular 

action video game playing is an increased ability, referred to as ‘learning to learn’. Although 

both groups demonstrated significant improvements from session 1 to session 2, VGPs 

performed significantly better than NVGPs in session 2. However, these results from session 

2 should be interpreted cautiously; the confound of the Tracking task remains; VGPs were 

only significantly better on three of the eight measures (including the Tracking task); and the 

group x session interaction of the doubly multivariate profile analysis was not significant, 

indicating that both groups experienced similar learning effects.  

Most research in the video game field classifies VGP experts as individuals who have 

played approximately 4 hours of action video games per week over the previous 6 months. As 
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previously discussed, this is an inadequate criterion for classifying individuals as ‘experts’. In 

addition, there is no evidence that playing video games for this amount of time is sufficient to 

become an expert (Latham et al., 2013a). The present study used video game performance in 

conjunction with self-report measures to classify participants as either VGPs or NVGPs. 

Importantly, when participants were only grouped according to the amount of action video 

game experience they had, there was a significant difference in video game performance 

between the two groups. Thus, this is the first study to provide statistical evidence to support 

the use of self-report measures in classifying individuals as either VGPs or NVGPs. Whilst 

further investigation is needed into the specific requirements of becoming a video game 

expert, research that only uses self-report measures to classify participants should not be 

discounted, on the proviso that VGPs are referred to as having more ‘video game experience’, 

rather than as ‘video game experts’.  

The present study is not without its limitations. As discussed above, it was difficult to 

recruit participants who solely played first-person shooter video games, thus the conclusions 

drawn here are in relation to the broader category of action video games. The lack of 

significant differences between VGPs and NVGPs may be due to the possibility that not all 

action video games induce the same cognitive benefits as FPS games. Investigation of this 

possibility however, is still in its early stages (Oei & Patterson, 2015). In addition, there were 

large differences between the groups with regards to age and sex, and so these variables are 

possible confounds to the between group differences, and thus the current results should be 

interpreted with caution. 

In conclusion, action video game players experienced similar levels of cognitive 

fatigue compared to non-video game players. Although VGPs demonstrated superior 

sustained attention performance compared to non-video game players at the multivariate 

level, the performance of both groups significantly declined over time. In addition, VGPs 
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were significantly better at multitasking compared to NVGPs and appeared to be faster 

learners. Finally, the results of the present study reveal that although action video game 

experience improves sustained attention and divided attention performance, it does not assist 

with resisting the effects of cognitive fatigue.   
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4. Chapter 4: Study 2 – Video Game Training and Cognitive Fatigue 

The results from the previous study demonstrate that individuals with a greater 

amount of action video game experience perform better on sustained attention and divided 

attention tasks. However, whilst there may be an association between playing action video 

games and improved sustained and divided attention skills, a causal relationship cannot be 

established from the current results. For example, there remains the possibility that 

individuals who have superior sustained and divided attention skills are attracted to action 

video games and therefore perform well at them (Adams & Mayer, 2012). Therefore, to 

determine whether playing action video games is the cause of superior performance on 

sustained and divided attention tasks, as demonstrated by VGPs in the previous study, a 

training study was conducted. 

A number of studies have trained NVGPs on action video games to determine the 

causal benefits (Boot et al., 2011; Oei & Patterson, 2014). For example, NVGPs trained on 

action video games showed improved cognitive and perceptual abilities compared to NVGPs 

trained on non-action video games (e.g. C. S. Green & Bavelier, 2003; Wu & Spence, 2013). 

Many of the cognitive benefits of playing action video games that have been found when 

comparing VGPs and NVGPs are also replicated in training studies comparing action and 

non-action video games (Oei & Patterson, 2015), including, multiple object tracking (C. S. 

Green & Bavelier, 2006c; Oei & Patterson, 2015), target detection (Feng et al., 2007; C. S. 

Green & Bavelier, 2003), and attentional switching (C. S. Green & Bavelier, 2003; Oei & 

Patterson, 2013). Despite this, results of action video game training studies have not always 

been consistent. For example, Green and Bavelier (2003) provided NVGPs with 10 hours of 

FPS video game training and found that performance on the UFOV task improved 

significantly more compared to non-action training. However, Boot et al. (2008) was unable 

to find similar results, even when 21.5 hours of training were provided. In addition, the 



COGNITIVE FATIGUE & VIDEO GAMES 68 

results found by C. S. Green and Bavelier (2006c, experiment two), that action video game 

training significantly improved attention capacity, could not be replicated (Boot et al., 2008). 

Similarly, van Ravenzwaaij et al. (2014) found no difference in the speed of information 

processing between individuals who received 20 hours of action video game training, 

cognitive training, or who received no training at all. 

The following section outlines some of the limitations within the video game training 

literature that may account for these inconsistent results. 

4.1 Methodological Limitations of Video Game Training Studies 

Action video game training studies experience a number of limitations, some of which 

were discussed in Section 2.3. For example, just as action VGPs may expect to perform better 

than NVGPs due to the similarity between action video games and the cognitive tests used, so 

too can individuals who receive the action video game training when compared to those who 

receive the non-action video game training (Boot, 2015; C. S. Green & Bavelier, 2015). More 

specific to training studies though, is the inconsistent design of video game training methods 

themselves. 

4.1.1 Duration. 

Apart from often having incomparable control training groups (e.g. FPS games 

compared to non-FPS games such as Tetris and The Sims, see Section 2.3.2), training studies 

have varied widely in the number of training sessions, and the total duration of training 

provided (Boot et al., 2011). Training has ranged from 10 hours (five 2-hour sessions) to 50 

hours (maximum 2-hours per day, maximum 10-hours per week, for no more than 12 weeks) 

(C. S. Green & Bavelier, 2012, 2015). Thus, due to these inconsistencies, it is not surprising 

that some studies have found differences in training conditions, whilst others have not. 

However, it may not simply be the varying duration of training lengths differentiating these 

findings. van Ravenzwaaij et al. (2014) found no difference in moving dot task performance, 
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and lexical decision task performance between participants trained on an FPS game and those 

trained on a non-FPS game for 10 hours. This conclusion was inconsistent with earlier studies 

that provided 10 hours of action video game training (Feng et al., 2007; C. S. Green & 

Bavelier, 2003). Thus, van Ravenzwaaij et al. (2014) conducted a replication experiment, and 

increased the total training duration to 20 hours, increased the number of participants, 

increased the number of trials, and a third condition was added in which participants 

completed no video game training. Despite these changes however, there continued to be no 

significant difference between training conditions on task performance (van Ravenzwaaij et 

al., 2014). 

Although this study found no effect of action video game training, other studies using 

shorter durations have found such effects (Feng et al., 2007; C. S. Green & Bavelier, 2003), 

with improvements being maintained approximately five months later (Feng et al., 2007). 

When learning new tasks, the nature of practice or training is just as important as the amount 

(Voss et al., 2012). Therefore, it is possible that other aspects of training, for example, the 

difficulty of the training task, and the type of training provided, may be creating inconsistent 

results between studies. 

4.1.2 Difficulty. 

A characteristic that is implicit in nearly every video game is the gradual increase in 

task difficulty that occurs as the player progresses through the game (C. S. Green & Bavelier, 

2008). In video game training studies, this increase in task difficulty may be manipulated by 

the experimenters (C. S. Green & Bavelier, 2006b, 2006c, 2007; C. S. Green et al., 2010), 

controlled by the natural progression of the video game (Boot et al., 2008), or is not 

mentioned in the experimental procedure (e.g., C. S. Green & Bavelier, 2006c, experiment 2; 

C. S. Green, Sugarman, Medford, Klobusicky, & Bavelier, 2012). Further, whether difficulty 

level does or does not increase with player progression is a significant issue, as video game 
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performance is dependent on the relationship between the challenges of the game and the 

skill of the player (Jin, 2012). Participants may lose motivation and become bored when a 

task is too easy, resulting in a decline in performance. Conversely, if a task is too complex, it 

may induce anxiety and frustration, and thus the player will be unable to complete the task. It 

is important that the difficulty of the task matches the player’s skills and continues to provide 

a challenge as the player’s abilities develop (Jin, 2012). As this feature is inherent in most, 

but not all, video games, and the rate of difficulty-increase varies from game to game, this 

also further complicates the issue when comparing video game training studies, and when 

comparing training on action and non-action video games 

4.1.3 Training Strategies. 

 One variable that has yet to be explored in modern action video game training studies 

is the use of differing training strategies. Although practicing a task will surely improve 

performance at it, specific training strategies can be more effective at increasing learning, 

improving retention of newly learnt skills, and broadening the transfer of training (Gopher, 

Kramer, Wiegmann, & Kirlik, 2007; Lee, Boot, et al., 2012; R. A. Schmidt & Bjork, 1992), 

as they require different brain processes that are related to learning (Voss et al., 2012). 

A common method of training, and the one that is invariably used in action video 

game training studies, is that of whole-task training. In whole-task training, the full task is 

performed, resulting in practicing all sub-tasks simultaneously. In comparison, part-task 

training involves practicing sub-tasks in isolation from the full task (Lee, Boot, et al., 2012). 

Each of these methods has its advantages and disadvantages. Whole-task training allows for 

participants to learn how sub-tasks work together in the context of the full task, however, 

complex tasks can be overwhelming whilst participants are beginning to learn. In 

comparison, part-task training allows for complex tasks to be broken down into sub-tasks and 

practiced, however, participants do not gain the opportunity to learn how to integrate the sub-
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tasks together in the context of the full task (Lee, Boot, et al., 2012).  

An alternative to the above training techniques is to use variable priority training 

(VPT), which has the advantages of both types of training whilst minimising the 

disadvantages. In VPT, individuals practice the full task whilst focusing on improving a 

particular sub-task at different times. This allows participants to concentrate on improving 

subtasks, which are manageable, but also to learn how the subtasks fit together within the 

broader context of the task (Lee, Boot, et al., 2012). In addition, it well established in the 

field of skill acquisition that training techniques that are variable, promote cognitive 

flexibility, and that avoid task-specific mastery can lead to greater levels of learning as well 

as broader transfer (Baniqued et al., 2013; Kramer, Larish, & Strayer, 1995; R. A. Schmidt & 

Bjork, 1992). 

Training regimes that focus on variable and sub-part training result in greater 

improvements in learning when compared to traditional repetitive practice regimes (Bisoglio 

et al., 2014; C. S. Green & Bavelier, 2008; Prakash et al., 2012; R. A. Schmidt & Bjork, 

1992). By varying the stimuli, the structure and representations of important features that 

need to be focussed on during that task are strengthened, and attentional resources are more 

efficiently allocated (Bavelier et al., 2012; Bisoglio et al., 2014; C. S. Green & Bavelier, 

2008). Variable priority training also emphasises cognitive flexibility and thus leads to 

superior learning (Erickson et al., 2010; Lee, Boot, et al., 2012; Lee, Voss, et al., 2012; 

Mourany, 2011; Prakash et al., 2012; Voss et al., 2012). It improves not only the learning and 

retention of the skills, but enhances the transferability of these skills to other tasks (Voss et 

al., 2012). VPT is particularly useful when learning how to perform tasks that require 

simultaneous performance and coordination of multiple sub-tasks (Boot et al., 2010; Gopher 

et al., 2007). This has been shown in studies examining dual-task performance (Kramer et al., 

1995), as well as in more complex video game-like tasks (Boot et al., 2010; Fabiani et al., 
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1989; Gopher, Weil, & Siegel, 1989).  

Most of the evidence for the use of variable priority training in video games comes 

from studies using Space Fortress (Lee, Boot, et al., 2012). It has previously been found that 

on this basic non-action video game, participants who receive VPT show greater 

improvements in performance compared to those who receive fixed emphasis training (FET), 

in which there is no emphasis or priority given to sub-tasks (Lee, Boot, et al., 2012; Voss et 

al., 2012). This game was designed by cognitive psychologists through the Learning 

Strategies Initiative (Donchin, 1989) to examine the effectiveness of different training 

techniques in enhancing skill acquisition (Fabiani et al., 1989; Gopher et al., 1989; Prakash et 

al., 2012). As part of the initiative, different strategies were compared: fixed emphasis 

training (FET), which is the most common mode of training, where the entire task is 

repeatedly practiced; part-task training; and variable priority training. 

It has repeatedly been shown that those who receive VPT perform better overall, 

demonstrate faster learning, reach a higher level of game mastery (Boot et al., 2010; Fabiani 

et al., 1989; Gopher & Donchin, 1986), and demonstrate superior multitasking performance 

(Kramer et al., 1995), compared to those who receive FET (Prakash et al., 2012; Voss et al., 

2012). In addition, improvements in Space Fortress, brought about from VPT, have been 

shown to transfer to tasks requiring similar skills (Voss et al., 2012). There are a number of 

possible explanations as to how VPT increases the transfer of learning (Boot et al., 2010). 

VPT consists of a number of features that are known to improve learning, for example 

increased training variability and the use of feedback (Gopher et al., 2007; R. A. Schmidt & 

Bjork, 1992). However, it may also be because VPT encourages participants to explore and 

engage in different strategies, allowing for them to develop a more complete representation of 

the task and its components (Boot et al., 2010). However, this does not necessarily explain 

the transfer of improvements to other tasks. Boot et al. (2010) suggested that this transfer 
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comes about from the participant learning the value of exploring and trying different 

strategies, and that this is then applied when performing novel tasks. Alternatively, VPT may 

assist in the development of executive control due to the need to monitor and adjust cognitive 

resources during training (Gopher, Well, & Bareket, 1994; Kramer et al., 1995). 

4.2 The present study 

It has previously been suggested that to effectively enhance an individual's perceptual 

and cognitive abilities, variable priority training on modern action video games should be 

used, rather than fixed emphasis training. However, to date, there has been no investigation of 

this possibility (Boot et al., 2010; Boot et al., 2008). Whilst Space Fortress is not an FPS 

game, to achieve the best performance, similar sub-tasks are required, such as, controlling the 

movement of a spaceship (character) and the speed and accuracy of shooting at a fortress 

(enemy) target. In terms of cognitive demands, similar to action FPS games, Space Fortress 

requires high levels of executive control, memory, and visual attention (Blumen, Gopher, 

Steinerman, & Stern, 2010; Boot et al., 2010). Therefore, it is hypothesised that the results of 

the present study will match those of studies using Space Fortress, in that those who receive 

VPT on an action video game will learn the game faster and demonstrate superior 

performance compared to those who receive FET. In addition, the results of the previous 

study (Chapter 3) provide evidence that playing action video games improves executive 

functioning. Variable priority training has been shown to assist with the development of 

executive control and thus the broad transfer of improved skills. Therefore, it is hypothesised 

that training on an action video game will improve participants’ executive functioning, which 

will be evidenced by improvements in sustained and divided attention performance, and that 

this transfer will be greater for those who receive variable priority training, compared to those 

who receive fixed emphasis training. 

Further, there has been little research investigating whether cognitive improvements 
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from action video game training are retained after training has finished. Fortunately, Feng et 

al. (2007) were able to re-test all of their participants approximately five months (16-24 

weeks) after completing training, although this was not originally planned, and found that 

participants who received action video game training either retained or improved their level 

of performance from initial post-test to follow-up test. However, their results are confounded 

as some participants continued playing video games after the training phase had ceased. The 

present study included a follow-up test three months after the post-test session, and 

participants were asked to not play any video games during that time. It was hypothesised 

that both groups would retain improved sustained and divided attention performance from 

post-test to follow-up test. However, there is currently not enough previous evidence to 

enable predictions as to whether one type of training will allow for greater retention of 

improved performance compared to the other.  

In addition, video game, vigilance, and multitasking performance of participants was 

compared to the performance of the VGPs from Study 1 (Chapter 3), in order to determine 

how similar the NVGPs after training were to the VGPs. It was hypothesised that the VGPs 

would have higher levels of performance than the NVGPs after training, as the VGPs would 

have been playing video games for years, whilst the NVGPs would have only been playing 

for a few weeks. 

4.3 Method 

This study received approval from the Edith Cowan University Human Research 

Ethics Committee. 

4.3.1 Participants. 

Participants were recruited from the list of non-video-game players that participated 

in Study 1 (Chapter 3). Of those 24 NVGPs, six females and one male participated in the 

present study. An attempt was made to match participants between groups according to their 
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age, sex, and Unreal Tournament 2004 performance from Study 1. Due to the unequal group 

sizes, and to remove the potential confound of sex, the male participants’ data was removed 

from the analysis. Table 4.1 provides the demographic information for the remaining 

participants. 

Table 4.1 Participants’ demographic details and video game performance 

Table 4.1. 

Participants’ demographic details and video game performance 

Variable Priority Training (VPT) Fixed Emphasis Training (FET) 

Subject  Age UT2004 score Subject Age UT2004 score 

1 45 -11.6 2 49 -10.6 

3 58 -12.3 4 58 -9.6 

5 29 -8.6 6 39 -7 

 

Participants were entered into a raffle with the chance to win one of two $50 gift cards 

provided by the ECU Cognition Research Group, and were also entered into a raffle to win 

one of two $500 gift cards. Participants also received a $20 gift-card when they returned for 

the three-month follow-up test. 

4.3.2 Tasks and Measures. 

Participants completed the same tasks as in Study 1 (Chapter 3, see Section 3.3.2). 

Performance on the action video game Unreal Tournament 2004 was calculated by 

subtracting the number of deaths from the number of kills. This was then averaged over the 

number of trials, either 10 trials during the training phase, or three trials during the testing 

sessions. Performance on the gradCPT was assessed by measuring reaction times and 

reaction time variability (standard deviation) (see Section 3.3.2.1), and sensitivity (d’) and 

criterion (c) levels (see Section 3.1). Performance on the MATB-II was assessed by 

measuring performance on eight measures and participants also completed the Workload 
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Rating Scale (WRS) as part of the MATB-II (see Section 3.3.2.2). 

4.3.3 Design. 

Study 1 (Chapter 3) was the pre-training test for the present experiment. After four 

weeks of video game training (ten 1-hour sessions), participants repeated the cognitive tests 

as outlined in Study 1. The only difference was that participants completed different versions 

of the MATB-II compared to the ones they completed in Study 1. The experimenter had 

created four versions, therefore in the post-test participants completed the two versions that 

they had not performed in Study 1. Participants were asked to come back for follow-up 

testing three months after their post-test session. The follow-up test was identical to that of 

Study 1, including the versions of the MATB-II that participants completed. Thus, a direct 

comparison could be made between performance on the pre-test and the follow-up test. It was 

assumed that there would be no memory of the initial versions of the MATB-II tasks that 

were completed in the pre-training session for two reasons; firstly, participants did not know 

that they would be completing exactly the same versions of the tasks; and secondly, it would 

be approximately 4-months since they had performed these particular versions, making it 

highly unlikely that their performance would be affected by any memory of the order in 

which the sub-tasks of the MATB-II would be presented.  

4.3.4 Training. 

During the training phase, participants completed ten 1-hour video game sessions. 

Each 60-minute video game training session consisted of ten 6-minute trials. Participants 

were pseudo-randomly assigned to either the VPT or the FET group (see Section 4.3.1). 

Participants who were assigned to the FET group were instructed to perform their best 

(maximise number of kills whilst minimising number of deaths) for all of the trials in all of 

the sessions. Those who were assigned to the VPT group were instructed to focus on one of 

five different variables in each trial. Thus, in each 60-minute session, participants practiced 
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each variable twice. The five variables were: (1) to obtain all of the weapons, obtain full 

ammunition for each weapon, obtain maximum health, and obtain full adrenaline; (2) to use 

each of the different weapons, and their two different firing options, and determine what the 

button-combo is for full adrenaline; (3) to evade the enemy target for as long as possible (die 

as few times as possible); (4) to attack the enemy target and kill them as many times as 

possible; (5) a combination of the previous four variables. 

In the first training session, the variables were presented in the order listed above, and 

then repeated, as this order follows a natural progression of learning the different aspects of a 

novel video game, beginning with the easiest task and becoming more complex. For the 

remaining nine sessions, participants were presented with the five variables in a randomised 

order, followed by the five variables in another randomised order. A list of nine different 

variable presentation orders was made. Participants completed a different variable 

presentation order each training session, and these were randomised for each participant. 

4.3.5 Procedure. 

The procedure of the pre-training, post-training, and three-month follow-up sessions 

was identical to that of Study 1 (Chapter 3). The procedure for the training phase is presented 

below. 

Upon arrival at the laboratory for the first training session, participants read through 

an information letter (Appendix D) and signed a consent form (Appendix E). The 

experimenter then explained the structure of the training sessions. All instructions were read 

from a script to ensure that the instructions given were consistent between participants. The 

only difference between the groups was that the experimenter explained the five different 

variable priority tasks to the VPT group. Participants also received a sheet instructing them 

on what to do for each variable (Appendix F). Participants were not informed that there were 

two different training groups. 
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After receiving instructions about the experiment, participants watched a five-minute 

tutorial video, which was included as part of the video game, explaining the video game in 

greater detail than in the pre-training session. During the pre-training session (Study 1), the 

purpose of playing the video game was to assess participants’ video game ability and in turn, 

use this to group them as either VGPs or NVGPs. Thus, it was not necessary to teach 

participants about all of the intricacies of the video game, and doing so would have reduced 

any difference between VGPs and NVGPs. However, as the purpose of the present study was 

to teach the NVGPs how to play the game and improve video game performance, it was 

necessary for them to learn about all aspects of the game. 

After watching the video, participants completed the 10 six-minute video game trials. 

At the end of each six-minute trial, the video game presented participants with the number of 

enemies they killed and the number of times they had died, and participants recorded these 

numbers. Participants’ video game play was also recorded using a video screen-capture 

program. This allowed the experimenter to watch a video recording of the video game and to 

confirm that participants recorded their performance correctly. 

In each game trial, there was one enemy. The difficulty of the enemy was set at 

‘Experienced’ for the first trial, and it was set to auto-adjust for the subsequent game trials. 

Thus, if participants performed well, the difficulty of the enemy would increase, and vice 

versa. The purpose of this was to ensure that participants did not become too bored or too 

overwhelmed, as this would have affected their motivation and thus their level of 

performance (Jin, 2012). 

In order to maintain participants’ level of motivation over the four weeks of training, 

at the beginning of each training session, participants were presented with a graph displaying 

their previous performance and encouraged to try to improve on this score. 

At the completion of the last training session, participants were asked to return for the 
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post-training sessions as soon as was convenient. At the completion of the post-training 

session, participants were informed that they would be contacted in approximately three-

months to return for a follow-up session.  

4.4 Results 

Participants completed the 10 training sessions in, on average, 4.5 weeks (M = 31.50 

days, SD = 8.83). There was a delay of 6.17 days (SD = 7.11) between the final training 

session and the post-test. Participants returned for the follow-up test, on average, 3.5 months 

after the post-test (M = 107.68 days, SD = 33.28). 

4.4.1 Method of Analysis. 

Due to the small sample size of the study traditional and non-traditional methods were 

used to analyse the video game and gradCPT performance data. Specifically, multilevel linear 

modelling was used. Multilevel models incorporate both fixed effect parameters and random 

effects (Bates, 2010). Fixed effect parameters or factors are the independent variables under 

investigation in the experiment, are constant over all individuals in the sample and are the 

source of the systematic variability in the outcome. In multilevel modelling, random effects 

or factors are components of the predictor or independent variable in which a random subset 

of levels are sampled from a larger population. In the following analysis, subjects and 

measures of time (period of watch on the gradCPT, day, and testing session) are random 

factors because responses are grouped according to individual participants and time, which 

are random subsets of their respective populations. As such, the overall means for each 

subject and measure of time were estimated as ‘random intercepts’ while the amount of 

variation on the fixed effects across subjects and measure of time were estimated as ‘random 

slopes’. Thus, it is assumed that all subjects perform differently on each fixed effect, and that 

each subject’s performance changes differently over time. 

Within this framework, significance values are not used, instead, models are 
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compared with each other to determine which one was the best at predicting the outcome 

variable. In the present study, the Akaike Information Criteria (AIC) was used to compare 

models and which model received higher support by the data. The AIC takes into account the 

goodness of fit of the model (i.e. the log-likelihood of the model) and penalises for each 

parameter added to the model; the lower the AIC the better the model. To determine 

differences of strengths between models, the interpretation of information criterion scores by 

Raftery (1995) were used. Differences between 0 and 2 indicate no real difference between 

the models; between 2 and 6 indicate positive evidence in favour of the model with the lower 

AIC; between 6 and 10 indicates strong evidence in favour of the model with the lower AIC; 

and differences greater than 10 indicate very strong evidence in favour of the model with the 

lower AIC. The process of creating models and including or removing parameters is 

described in the following subsections for each variable measured. 

4.4.2 Video game performance during training. 

4.4.2.1. Traditional Analysis. 

A 2 (training technique) x 10 (day) mixed-design ANOVA was conducted on the 

mean video game performance for each day of training. There was a significant difference in 

performance  between the days of training, F(9, 36) = 7.19, p < .001, partial η2 = .64. The 

trend was significantly linear, F(1, 4) = 27.74, p = .006, partial η2 = .87, and significantly 

quadratic, F(1, 4) = 65.74, p - .001, partial η2 = .94 (see Figure 4.1). 

There was no significant difference in performance between the two training 

techniques (VPT: M = -0.99, SE = 0.64; FET: M = -1.66, SE = 0.64), F(1,4) = 0.54, p = .502, 

partial η2 = .12. In addition, there was no significant interaction between training technique 

and days of training on video game performance, F(9, 36) = 1.00, p = .457, partial η2 = .20. 

Pairwise comparisons revealed that there was a significant difference in video game 

performance between day 1 and days 5, 7, 8, 9, and 10 (ps < .05). No other comparisons were 
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significant. 

Figure 4.1 Unreal Tournament 2004 (UT2004) performance during training 

 
 
Figure 4.1. Unreal Tournament 2004 (UT2004) performance during training. Error bars 

represent ±1 standard error. 

 
4.4.2.2 Multilevel Modelling. 

Table 4.2 provides the parameter estimates and fit statistics of the models created to 

estimate video game performance during the training phase of the experiment. 
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Table 4.2.  

Model output for the fixed and random factors of Unreal Tournament 2004 performance during training 

Model 1 2 3 
Parameters Estimate Std. Error Estimate Std. Error Estimate Std. Error 

Fixed Effects 
(Intercept) -1.33 0.43 -0.99 0.64 -2.90 0.70 
Training Technique - - -0.66 0.90 - - 
Training Day - - - - 0.29 0.06 

 Variance Std. Dev. Variance Std. Dev. Variance Std. Dev. 
Random Effects 

Subject (Intercept) 0.95 0.97 1.06 1.03 2.55 1.60 
      Training Day - - - - 0.01 0.11 
Residual 1.60 1.26 1.60 1.26 0.77 0.88 

Fit Statistics 
Deviance 208.91 208.46 168.93 
AIC 214.77 214.62 185.37 

Table 4.2 Model output for the fixed and random factors of Unreal Tournament 2004 performance during training 
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Model 1 is a null model that only takes into account variability in video game 

performance between individuals. When a model including age as a fixed effect was 

compared to the null model, there was no evidence that it was a better estimate of video game 

performance than the null model, therefore age was not included in subsequent models.  

Models 2 and 3 included training technique and training day as fixed effects, 

respectively. Model 3 also included the effect of training day on each individual as a random 

effect. The AIC of Model 2 was lower than that of the null model, however the difference 

between them was less than two, indicating that adding training technique to the model did 

not improve its ability to estimate video game performance. Model 3 had the lowest AIC. The 

difference in AIC between the null model and Model 3 was greater than 10, indicating that 

there was very strong evidence in favour of Model 3 as the best estimate of video game 

performance. The coefficient of training day was positive, indicating that video game 

performance increased as the number of training days increased  

4.4.3 Video game performance during testing sessions. 

4.4.3.1 Traditional Analysis. 

A 2 (training technique) x 3 (test session) mixed-design ANOVA was conducted on 

the mean video game performance for each test session. Mauchly’s test indicated that the 

assumption of sphericity had not been violated, χ2(2) = 1.60, p = .450. Levene’s test of 

equality of variances was not significant for any of the three test sessions (ps > .05). 

The was a significant difference in video game performance between test sessions 

(Session 1: M = -9.94, SE = 0.83; Session 2: M = -0.39, SE = 1.51; Session 3: M = 0.94, SE = 

2.08), F(2, 8) = 48.88, p < .001, partial η2 = .92. The trend was significantly linear, F(1, 4) = 

58.92, p = .002 partial η2 = .94, and significantly quadratic, F(1,4) = 25.77, p = .007, partial 

η2 = .87 (see Figure 4.2). 

There was no significant difference in video game performance between the two 
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training techniques, F(1, 4) = 0.17, p = .703, partial η2 = .04. In addition, there was no 

significant interaction between training technique and test session on video game 

performance, F(2, 8) = 2.33, p = .159, partial η2 = .37. 

Pairwise comparisons revealed that there was a significant difference in video game 

performance between test sessions 1 and 2 (p = .001), and between sessions 1 and 3 (p = 

.005). There was no significant difference between session 2 and session 3 (p = 1.00). 

Figure 4.2 Unreal Tournament 2004 (UT2004) performance during testing 

 
 
Figure 4.2. Unreal Tournament 2004 (UT2004) performance during testing. Error bars 

represent ±1 standard error. 

 
4.4.3.2 Multilevel Modelling. 

Table 4.3 provides the parameter estimates and fit statistics of the models created to 

estimate video game performance during the testing phases of the experiment. 
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Table 4.3.  

Model output for the fixed and random factors of Unreal Tournament 2004 performance during testing 

Model 1 2 3 
Parameters Estimate Std. Error Estimate Std. Error Estimate Std. Error 

Fixed Effects 
(Intercept) -2.98 1.22 -2.56 1.91 -9.94 1.22 
Training Technique - - -0.85 2.70 - - 
Testing Session: Post-test - - - - 10.00 1.65 
Testing Session: Follow-up test - - - - 10.89 2.01 

 Variance Std. Dev. Variance Std. Dev. Variance Std. Dev. 
Random Effects 

Subject (Intercept) 3.33 1.83 5.31 2.30 1.46 1.21 
      Testing Session - - - - 0.01 0.11 
Residual 50.77 7.13 50.77 7.13 22.57 4.75 

Fit Statistics 
Deviance 367.10 367.26 327.23 
AIC 370.87 369.04 339.66 

Table 4.3 Model output for the fixed and random factors of Unreal Tournament 2004 performance during testing 
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Model 1 is a null model that only takes into account variability in video game 

performance between individuals. When a model including age as a fixed effect was 

compared to the null model, there was no evidence that it was a better estimate of video game 

performance than the null model, therefore age was not included in subsequent models.  

Models 2 and 3 included training technique and testing session as fixed effects, 

respectively. Model 3 also included the effect of testing session on each individual as a 

random effect. Of these two models, Model 3 had the lowest AIC. The AIC of Model 2 was 

lower than that of the null model, however the difference between them was less than two, 

indicating that adding training technique to the model did not improve its ability to estimate 

video game performance. The difference in AIC between the null model and Model 3 was 

greater than 10, indicating that there was very strong evidence in favour of Model 3 as the 

best estimate of video game performance. The coefficients of testing sessions were positive, 

indicating that video game performance increased from pre-test to post-test, and from pre-test 

to three-month follow-up test.  

4.4.4 Sustained Attention. 

The results of the traditional multivariate analysis are presented below, whilst the 

follow-up univariate tests for each of the four measures are presented in the following 

subsections along with the corresponding multilevel linear modelling results.  

A 2 (training technique) x (testing session) x 10 (period of watch) Multiple Analysis 

of Variance (MANOVA) was conducted on the four measures of sustained attention; reaction 

time, reaction time variability, sensitivity levels, and criterion levels.  

Box’s Test of Equality of Covariances could not be computed. Mauchly’s test of 

sphericity could only be conducted for testing session, and was not significant for all four 

measures (ps > .05). 

There was no significant difference between testing sessions V = 0.72, F(8, 12) = 
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0.84, p = .585, partial η2 = .36. The difference between periods of watch was not significant, 

V = 1.09, F(36, 144) = 1.49, p = .052, partial η2 = .27. There was no significant difference 

between training techniques, V = 0.86, F(4, 1) = 1.52, p = .538, partial η2 = .86. The 

interaction between testing session and training technique was not significant, V = 0.72, F(8, 

12) = 0.84, p = .588, partial η2 = .36. The interaction between period of watch and training 

technique was not significant, V = 0.72, F(36, 144) = 0.88, p = .670, partial η2 = .18. The 

interaction between testing sessions and period of watch was not significant, V = 0.94, F(72, 

288) = 1.23, p = .119, partial η2 = .24. The three-way interaction between testing session, 

period of watch, and training technique, was not significant, V = 0.87, F(72, 288) = 1.11, p = 

.266, partial η2 = .22. 

4.4.4.1 Reaction Time. 

4.4.4.1.1 Traditional analysis. 

Results of the univariate analysis on RT reveal that there was no significant difference 

between testing sessions, F(2, 8) = 2.95, p = .110, partial η2 = .43. There was no significant 

difference between periods of watch, F(9, 36) = 1.05, p = .423, partial η2 = .21. There was no 

significant difference between training techniques, F(1, 4) = 0.09, p = .775, partial η2 = .02 

(see Figure 4.3). 

There was no significant interaction between testing session and training technique, 

F(2, 8) = 0.53, p = .608, partial η2 = .12. There was no significant interaction between periods 

of watch and training technique, F(9, 36) = 1.15, p = .354, partial η2 = .22. There was no 

significant interaction between testing session and period of watch, F(18, 72) = 1.54, p = 

.101, partial η2 = .28. The three-way interaction between testing session, period of watch, and 

training technique, was not significant, F(18, 72) = 1.57, p = .092, partial η2 = .28. 
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Figure 4.3 Reaction time (RT) on gradCPT 

 

Figure 4.3. Reaction time (RT) on gradCPT at pre-test, post-test, and three-month follow-up test (left to right). Error bars represent ±1 standard 

error. 
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4.4.4.1.2 Multilevel Modelling. 

Table 4.4 provides the parameter estimates and fit statistics of the models created to 

estimate reaction time (RT) on the gradCPT. 
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Table 4.4 Model output for the fixed and random effects estimating reaction times 

Table 4.4. 

Model output for the fixed and random effects estimating reaction times 

Model 1 2 3 4 
Parameters Estimate Std. Error Estimate Std. Error Estimate Std. Error Estimate Std. Error 

Fixed Effects 
(Intercept) 483.09 13.49 497.93 47.04 473.81 14.17 488.18 16.03 
Training Technique - - -9.89 29.75 - - - - 
Period of watch - - - - 1.69 0.64 - - 
Testing Session: Post-test - - - - - - 12.38 20.90 
Testing Session: Follow-up test - - - - - - -27.45 16.98 
Training Technique X Period of watch - - - - - - - - 
Training Technique X Post-test - - - - - - - - 
Training Technique X Follow-up test - - - - - - - - 
Period of watch X Post-test - - - - - - - - 
Period of watch X Follow-up test - - - - - - - - 
 Variance Std. Dev. Variance Std. Dev. Variance Std. Dev. Variance Std. Dev. 

Random Effects 
Subject (intercept) 1090.00 33.01 1326.00 36.41 1195.83 34.58 1537.00 39.21 
      Period of watch - - - - 2.24 1.50 - - 
      Testing Session: Post-test - - - - - - 2611.00 51.10 
      Testing Session: Follow-up test - - - - - - 1721.00 41.48 
Residual 10593.00 102.92 10593 102.92 10553.94 102.73 9869.00 99.34 
Fit Statistics 
Deviance 427020.70 427020.90 426905.20 424579.70 
AIC 427019.70 427013 426909.30 424578.90 
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Table 4.4 continued 

Model 5 6 7 8 
Parameters Estimate Std. Error Estimate Std. Error Estimate Std. Error Estimate Std. Error 

Fixed Effects 
(Intercept) 487.92 47.19 497.71 46.98 478.94 15.71 484.29 45.30 
Training Technique -9.41 29.74 -6.35 29.06 1.69 0.66 -3.56 28.00 
Period of watch 1.69 0.64 - - - - 1.69 0.66 
Testing Session: Post-test - - 12.38 20.9 12.34 20.91 12.34 20.91 
Testing Session: Follow-up test - - -27.45 16.99 -27.53 16.99 -27.53 16.99 
Training Technique X Period of watch - - - - - - - - 
Training Technique X Post-test - - - - - - - - 
Training Technique X Follow-up test - - - - - - - - 
Period of watch X Post-test - - - - - - - - 
Period of watch X Follow-up test - - - - - - - - 
 Variance Std. Dev. Variance Std. Dev. Variance Std. Dev. Variance Std. Dev. 

Random Effects 
Subject (intercept) 1411.08 37.56 1842.00 42.92 1470.47 38.35 1723.27 41.51 
      Period of watch 2.24 1.50 - - 2.43 1.56 2.43 1.56 
      Testing Session: Post-test - - 2611.00 51.10 2612.37 51.11 2613.08 51.12 
      Testing Session: Follow-up test - - 1721.00 41.48 1721.71 41.49 1722.28 41.50 
Residual 10553.94 102.73 9869.00 99.34 9829.08 99.14 9829.10 99.14 
Fit Statistics 
Deviance 426905.40 424579.90 424436.60 424436.90 
AIC 426902.60 424572.40 424447.10 424440.70 
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Table 4.4. continued 

Model 9 10 11 12 
Parameters Estimate Std. Error Estimate Std. Error Estimate Std. Error Estimate Std. Error 

Fixed Effects 
(Intercept) 489.74 47.97 468.19 55.23 471.68 45.37 455.31 55.29 
Training Technique -7.20 29.84 7.17 34.95 -3.72 28.03 7.20 34.96 
Period of watch 1.45 0.92 1.69 0.66 4.04 0.71 4.04 0.71 
Testing Session: Post-test 12.34 20.91 49.15 60.46 26.09 21.05 63.02 60.33 
Testing Session: Follow-up test -27.53 16.99 9.89 56.42 -2.74 17.15 34.69 56.39 
Training Technique X Period of watch 0.16 0.43 - - - - - - 
Training Technique X Post-test - - -24.54 37.73 - - -24.62 37.61 
Training Technique X Follow-up test - - -24.95 35.68 - - -24.95 35.63 
Period of watch X Post-test - - - - -2.52 0.45 -2.52 0.45 
Period of watch X Follow-up test - - - - -4.52 0.45 -4.52 0.45 
 Variance Std. Dev. Variance Std. Dev. Variance Std. Dev. Variance Std. Dev. 

Random Effects 
Subject (intercept) 1780.09 42.19 1824.86 42.72 1725.06 41.53 1824.92 41.72 
      Period of watch 2.39 1.55 2.40 1.55 2.44 1.56 2.42 1.55 
      Testing Session: Post-test 2612.73 51.12 2698.66 51.95 2611.39 51.1 2694.35 51.91 
      Testing Session: Follow-up test 1722.26 41.5 1903.31 43.93 1719.12 41.46 1898.61 43.57 
Residual 9829.33 99.14 9829.32 99.14 9801.45 99.00 9801.67 99.00 
Fit Statistics 
Deviance 424436.80 424436.60 424335.60 424335.30 
AIC 424442.50 424429.90 424343.30 424332.40 
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Model 1 is a null model that only takes into account variability in RT between 

individuals. When a model including age as a fixed effect was compared to the null model, 

there was no evidence that it was a better estimate of RT than the null model, therefore age 

was not included in subsequent models.  

Models 2, 3, and 4 included training technique, period of watch, and testing session as 

fixed effects, respectively. Models 3 and 4 also included the effect of period of watch and 

testing session, on each individual as random effects, respectively. All three models had AICs 

lower than the null models, and differences greater than 2, therefore the fixed effects were 

kept for subsequent models. 

Models 5, 6, and 7 each included two of three main fixed effects, and Model 8 

included all three of the main fixed effects together. Of these four models, Model 8 had the 

lowest AIC, and the difference in AICs when compared to the other three models was at least 

greater than 6, indicating that it was the better of the four models.  

Models 9, 10, and 11 included all three of the fixed effects together, and each model 

included one two-way interaction between two of the three fixed effects. These three models 

were then compared to Model 8 to determine if adding an interaction improved the ability to 

estimate RT. The AIC of Model 9 was greater than that of Model 8, indicating that the model 

with the interaction between training technique and period of watch was less supported by the 

data than the model without the interaction, therefore, this interaction was not included in 

subsequent models. The AICs of models 10 and 11 were both lower than the AIC of Model 8, 

and the differences were greater than 10, therefore both fixed effect interactions were kept for 

the subsequent model. 

Model 12 included the three main fixed effects, as well as the interaction of training 

technique and testing session, and the interaction of period of watch and testing session. 

When compared to Models 10 and 11, Model 12 had the lowest AIC, and the difference was 
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greater than 10, indicating that there was very strong evidence in favour of Model 12 as the 

best estimate of RT. 

In Model 12, the coefficient of training technique is positive, indicating that overall, 

the FET group had longer RT. However, due to the large standard error, the ability of training 

technique to predict RT should be interpreted cautiously. The coefficient of period of watch 

was positive, indicating that RT increased as period of watch increased. The coefficients of 

testing sessions were positive, indicating that RT increased from pre-test to post-test, and 

from pre-test to three-month follow-up test. However, due to the large standard errors, the 

ability of testing session to predict RT should be interpreted cautiously. 

The coefficient of the training technique x post-test interaction was negative 

indicating that the difference in RT between pre-test and post-test was greater for the VPT 

group than the FET group. However, inspection of the means reveals that RT of the VPT got 

longer, whilst the RT of the FET group got shorter. The coefficient of the training technique x 

three-month follow-up test interaction was negative indicating that RT for both groups in the 

follow-up test were shorter than in the pre-test. However, due to the large standard errors, the 

ability of these interactions to predict RT should be interpreted cautiously. 

The coefficients of the period of watch by testing session interactions were negative 

indicating that the change in RT over period of watch was greater in the pre-test compared to 

both the post-test and three-month follow-up test. Inspection of Figure 4.3 reveals that RT 

increased in the pre-test and post-test while in the three-month follow-up test, RTs were 

shorter, and there was either a small decrease or no change in RT over periods of watch. 

4.4.4.2 Reaction time variability (Standard deviation). 

4.4.4.2.1 Traditional analysis. 

Results of the univariate analysis on reaction time variability (standard deviation) 

reveal that there was a significant difference between testing sessions, F(2, 8) = 4.55, p = 
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.048, partial η2 = .53, however, none of the post hoc pairwise comparisons were significant 

(pre-test: M = 96.50, SE = 10.21; post-test: M = 101.53, SE = 11.43; follow-up test: M = 

71.51, SE = 4.55; ps > .05) (see Figure 4.4). 

There was no significant difference between periods of watch, F(9, 36) = 2.03, p = 

.065, partial η2 = .34. There was no significant difference between training techniques, F(1, 

4) = 0.05, p = .839, partial η2 = .01. 

There was no significant interaction between testing session and training technique, 

F(2, 8) = 1.02, p = .404, partial η2 = .20. There was no significant interaction between periods 

of watch and training technique, F(9, 36) = 0.68, p = .723, partial η2 = .15. There was no 

significant interaction between testing session and period of watch, F(18, 72) = 1.46, p = 

.133, partial η2 = .27. The three-way interaction between testing session, period of watch, and 

training technique, was not significant, F(18, 72) = 1.16, p = .320, partial η2 = .22.
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Figure 4.4 Reaction time variability (SD) on gradCPT 

 

Figure 4.4. Reaction time variability (SD) on gradCPT at pre-test, post-test, and three-month follow-up test (left to right). Error bars represent ±1 

standard error. 
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4.4.4.2.2 Multilevel modelling. 

Table 4.5 provides the parameter estimates and fit statistics of the models created to 

estimate reaction time variability (standard deviation; SD) on the gradCPT.
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Table 4.5 Model output for the fixed and random effects estimating reaction time variability 

Table 4.5 

Model output for the fixed and random effects estimating reaction time variability 

Model 1 2 3 4 
Parameters Estimate Std. Error Estimate Std. Error Estimate Std. Error Estimate Std. Error 

Fixed Effects 
(Intercept) 89.85 6.19 88.35 9.73 78.60 6.14 96.50 10.16 
Training Technique - - 2.99 13.76 - - - - 
Period of watch - - - - 2.05 0.74 - - 
Testing Session: Post-test - - - - - - 5.03 11.60 
Testing Session: Follow-up test - - - - - - -24.99 10.36 
Training Technique X Period of watch - - - - - - - - 
Training Technique X Post-test - - - - - - - - 
Training Technique X Follow-up test - - - - - - - - 
Period of watch X Post-test - - - - - - - - 
Period of watch X Follow-up test - - - - - - - - 
Training Technique X Period of watch 
      X Post-test - - - - - - - - 
Training Technique X Period of watch 
      X Follow-up test - - - - - - - - 
 Variance Std. Dev. Variance Std. Dev. Variance Std. Dev. Variance Std. Dev. 

Random Effects 
Subject (intercept) 205.10 14.32 259.20 16.10 115.48 10.75 579.80 24.08 
      Period of watch - - - - 0.43 0.66 - - 
      Testing Session: Post-test - - - - - - 728.00 26.98 
      Testing Session: Follow-up test - - - - - - 564.90 23.77 
Residual 744.10 27.28 744.10 27.28 - - 396.50 19.91 
Fit Statistics 
Deviance 1713.38 1713.64 1704.12 1623.42 
AIC 1713.90 1708.87 1709.53 1625.81 
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Table 4.5 continued 

Model 5 6 7 8 
Parameters Estimate Std. Error Estimate Std. Error Estimate Std. Error Estimate Std. Error 

Fixed Effects 
(Intercept) 79.00 9.35 101.70 12.40 85.25 8.36 90.64 10.26 
Training Technique -0.80 12.97 -10.39 9.01 - - -10.78 8.26 
Period of watch 2.05 0.74 - - 2.05 0.75 2.05 0.68 
Testing Session: Post-test - - 5.03 11.60 5.03 11.64 5.03 11.84 
Testing Session: Follow-up test - -24.99 10.36 -24.99 10.36 -24.99 10.29 
Training Technique X Period of watch - - - - - - - - 
Training Technique X Post-test - - - - - - - - 
Training Technique X Follow-up test - - - - - - - - 
Period of watch X Post-test - - - - - - - - 
Period of watch X Follow-up test - - - - - - - - 
Training Technique X Period of watch 
      X Post-test - - - - - - - - 
Training Technique X Period of watch 
      X Follow-up test - - - - - - - - 
 Variance Std. Dev. Variance Std. Dev. Variance Std. Dev. Variance Std. Dev. 

Random Effects 
Subject (intercept) 161.55 12.71 760.60 27.58 342.90 18.52 451.80 21.26 
      Period of watch 0.37 0.61 - - 2.01 1.42 1.39 1.18 
      Testing Session: Post-test - - 728.00 26.98 743.97 27.28 771.13 27.77 
      Testing Session: Follow-up test - - 564.90 23.77 575.47 23.99 565.70 23.78 
Residual 709.77 26.64 396.50 19.91 343.52 18.53 349.53 18.70 
Fit Statistics 
Deviance 1704.42 1622.66 1600.11 1601.29 
AIC 1704.68 1620.79 1611.98 1609.20 
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Table 4.5 continued 

Model 9 10 11 12 
Parameters Estimate Std. Error Estimate Std. Error Estimate Std. Error Estimate Std. Error 

Fixed Effects 
(Intercept) 90.89 10.44 79.88 12.14 83.30 11.04 78.74 11.68 
Training Technique -11.27 8.12 10.74 17.06 -11.08 7.89 13.03 16.52 
Period of watch 1.96 0.98 2.05 0.74 3.41 1.01 1.42 0.94 
Testing Session: Post-test 5.03 11.62 10.00 15.13 9.82 13.25 15.67 17.15 
Testing Session: Follow-up test -24.99 10.37 -13.03 12.17 -7.31 12.16 -10.27 12.47 
Training Technique X Period of watch 0.18 1.22 - - - - 1.25 1.33 
Training Technique X Post-test - - -9.94 19.15 - - -21.29 24.26 
Training Technique X Follow-up test - - -23.92 16.57 - - -29.45 17.63 
Period of watch X Post-test - - - - -0.87 1.16 - - 
Period of watch X Follow-up test - - - - -3.21 1.16 - - 
Training Technique X Period of watch 
      X Post-test - - - - - - - - 
Training Technique X Period of watch 
      X Follow-up test - - - - - - - - 
 Variance Std. Dev. Variance Std. Dev. Variance Std. Dev. Variance Std. Dev. 

Random Effects 
Subject (intercept) 478.33 21.87 371.02 19.26 483.87 22.00 331.23 18.20 
      Period of watch 2.20 1.48 1.91 1.38 2.06 1.44 1.23 1.11 
      Testing Session: Post-test 741.70 27.23 754.20 27.46 745.22 27.30 812.24 28.50 
      Testing Session: Follow-up test 576.14 24.00 407.55 20.19 578.44 24.05 395.99 19.90 
Residual 344.33 18.56 344.15 18.55 330.16 18.17 351.40 18.75 
Fit Statistics 
Deviance 1598.88 1597.13 1590.62 1598.74 
AIC 1606.64 1594.07 1598.69 1595.30 



COGNITIVE FATIGUE & VIDEO GAMES 101 

Table 4.5 continued 

Model 13 14 15 16 
Parameters Estimate Std. Error Estimate Std. Error Estimate Std. Error Estimate Std. Error 

Fixed Effects 
(Intercept) 83.41 11.04 72.46 12.65 71.25 12.73 76.99 13.24 
Training Technique -11.29 8.02 10.60 16.99 13.03 17.23 1.544 18.73 
Period of watch 3.32 1.18 3.41 0.995 2.78 1.27 1.74 1.43 
Testing Session: Post-test 9.82 13.25 14.70 16.39 20.46 17.93 12.28 19.02 
Testing Session: Follow-up test -7.31 12.17 4.62 13.73 7.41 14.17 -1.64 15.53 
Training Technique X Period of watch 0.18 1.21 - - 1.25 1.52 3.34 2.02 
Training Technique X Post-test - - -9.76 19.06 -21.29 23.70 -4.90 26.90 
Training Technique X Follow-up test - - -23.86 16.57 -29.45 17.91 -11.34 21.96 
Period of watch X Post-test -0.87 1.16 -0.87 1.16 -0.87 1.16 0.62 1.63 
Period of watch X Follow-up test -3.20 1.16 -3.21 1.16 -3.21 1.16 -1.57 1.63 
Training Technique X Period of watch 
      X Post-test - - - - - - -2.98 2.31 
Training Technique X Period of watch 
      X Follow-up test - - - - - - -3.29 2.31 
 Variance Std. Dev. Variance Std. Dev. Variance Std. Dev. Variance Std. Dev. 

Random Effects 
Subject (intercept) 479.47 21.90 371.92 19.29 371.66 19.28 371.74 19.28 
      Period of watch 2.21 1.49 1.93 1.39 2.12 1.46 2.12 1.46 
      Testing Session: Post-test 744.15 27.28 756.81 27.51 776.54 27.87 776.73 27.87 
      Testing Session: Follow-up test 578.70 24.06 410.18 20.25 414.79 20.37 414.99 20.37 
Residual 331.37 18.20 331.20 18.20 331.38 18.20 330.41 18.18 
Fit Statistics 
Deviance 1590.70 1588.83 1588.14 1585.53 
AIC 1598.53 1585.96 1583.62 1579.41 
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Model 1 is a null model that only takes into account variability in SD between 

individuals. When a model including age as a fixed effect was compared to the null model, 

there was no evidence that it was a better estimate of SD than the null model, therefore age 

was not included in subsequent models.  

Models 2, 3, and 4 included training technique, period of watch, and testing session as 

fixed effects, respectively. Models 3 and 4 also included the effect of period of watch and 

testing session, on each individual as random effects, respectively. All three models had AICs 

lower than the null models, and differences greater than 2, therefore the fixed effects were 

kept for subsequent models. 

Models 5, 6, and 7 each included two of three main fixed effects, and Model 8 

included all three of the main fixed effects together. Of these four models, Model 8 had the 

lowest AIC, and the difference in AICs when compared to the other three models was at least 

greater than 2, indicating that it was the better of the four models.  

Models 9, 10, and 11 included all three of the fixed effects together, and each model 

included one two-way interaction between two of the three fixed effects. These three models 

were then compared to Model 8 to determine if adding an interaction improved the ability to 

estimate RT. The AICs of models 9, 10 and 11 were all lower than the AIC of Model 8, and 

the differences were at least greater than 2, therefore each of the three fixed effect 

interactions were kept for subsequent models. 

Models 12, 13 and 14 each included the three main fixed effects, as well as two of the 

three two-way interactions. Model 15 included the three main fixed effects as well as all three 

of the two-way interactions. When compared to Models 12, 13, and 14, Model 15 had the 

lowest AIC, and the difference was at least greater than 2, indicating that there was very 

positive evidence in favour of Model 15 as the better of the four models. 

Model 16 included the same fixed effects as Model 15, as well as the three-way 
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interaction between training technique, period of watch, and testing session. The AIC of 

Model 16 was lower than that of Model 15, and the difference was greater than 2 indicating 

positive evidence in favour of Model 16 being the best estimate of reaction time variability. 

In Model 16, the coefficient of training technique is positive, indicating that the FET 

group had larger RT variability. However, due to the large standard error, the ability of 

training technique to predict RT variability should be interpreted cautiously. The coefficient 

of period of watch was positive, indicating that RT variability increased as period of watch 

increased. The coefficients of testing sessions was positive for the post-test, indicating that 

RT variability was higher than in the pre-test, and the coefficient was negative for the three-

month follow-up test, indicating that RT variability was lower than in pre-test. However, due 

to the large standard errors, the ability of testing session to predict RT variability should be 

interpreted cautiously. 

The coefficient of the training technique x period of watch interaction was positive, 

indicating that the change in RT variability over period of watch was greater for the FET 

group than the VPT group. Inspection of the Figure 4.4 reveals that both groups exhibited 

increases in RT variability, but this was greater for the FET group. 

The coefficient of the training technique x post-test interaction was negative 

indicating that the difference in RT variability from pre-test to post-test was greater for the 

VPT group than the FET group. However inspection of the Figure 4.4 reveals that the RT 

variability of the VPT group increased from pre-test to post-test, whilst the RT variability of 

the FET group decreased from pre-test to post-test. The coefficient of the training technique x 

three-month follow-up test interaction was negative indicating that RT variability for both 

groups was greater in the pre-test compared to the three-month follow-up test. 

The coefficient of the period of watch x post-test interaction was negative indicating 

that the change in RT variability over period of watch was greater in the post-test compared 
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to the pre-test. Inspection of Figure 4.4 reveals that RT variability increased over period of 

watch in both testing sessions. The coefficient of the period of watch x three-month follow-

up test interaction was positive indicating that the change in RT variability over period of 

watch was greater in the pre-test compared to the three-month follow-up test. Inspection of 

the Figure 4.4 reveals that there was a small decrease to no change in RT variability over 

period of watch during the three-month follow-up test. 

The coefficient of the training technique x period of watch x post-test three-way 

interactions was negative. This indicates that the difference in the change in RT variability 

over period of watch between the VPT group and the FET group was greater in the pre-test 

compared to the post-test. Alternatively, the difference in the change in RT variability 

between pre-test and post-test was greater for the VPT than the FET group. Inspection of the 

Figure 4.4 reveals that RT variability of the VPT group increased from pre- to post-test while 

there was little to no change in the FET group from pre- to post-test. 

In addition, the coefficient of the training technique x period of watch x three-month 

follow-up post-test three-way interactions was also negative. This indicates that the 

difference in the change in RT variability over period of watch between the VPT group and 

the FET group was greater in the pre-test compared to the three-month follow-up test. 

4.4.4.3 Sensitivity. 

4.4.4.3.1 Traditional analysis. 

Results of the univariate analysis on sensitivity levels reveal that there was no 

significant difference between testing sessions, F(2, 8) = 3.05, p = .103, partial η2 = .43. 

There was no significant difference between periods of watch, F(9, 36) = 2.05, p = .061, 

partial η2 = .34. There was no significant difference between training techniques, F(1, 4) = 

0.311, p = .607, partial η2 = .07 (see Figure 4.5). 

There was no significant interaction between testing session and training technique, 
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F(2, 8) = 0.07, p = .932, partial η2 = .02. There was no significant interaction between periods 

of watch and training technique, F(9, 36) = 0.44, p = .905, partial η2 = .10. There was no 

significant interaction between testing session and period of watch, F(18, 72) = 1.71, p = 

.057, partial η2 = .30. The three-way interaction between testing session, period of watch, and 

training technique, was not significant, F(18, 72) = 1.41, p = .155, partial η2 = .26. 
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Figure 4.5 Sensitivity levels (d’) on gradCPT 

 

Figure 4.5. Sensitivity levels (d’) on gradCPT at pre-test, post-test, and three-month follow-up test (left to right). Error bars represent ±1 

standard error. 
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4.4.4.3.2 Multilevel Modelling. 

Table 4.6 provides the parameter estimates and fit statistics of the models created to 

estimate sensitivity levels (d’) on the gradCPT. 
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Table 4.6  

Model output for the fixed and random effects estimating sensitivity levels 

Model 1 2 3 4 
Parameters Estimate Std. Error Estimate Std. Error Estimate Std. Error Estimate Std. Error 

Fixed Effects 
(Intercept) 4.62 0.31 4.80 0.47 4.97 0.24 4.42 0.36 
Training Technique - - -0.37 0.66 - - - - 
Period of watch - - - - -0.06 0.04 - - 
Testing Session: Post-test - - - - - - -0.37 0.53 
Testing Session: Follow-up test - - - - - - 0.96 0.38 
 Variance Std. Dev. Variance Std. Dev. Variance Std. Dev. Variance Std. Dev. 

Random Effects 
Subject (intercept) 1090.00 33.01 0.60 0.78 0.15 0.38 0.71 0.84 
      Period of watch - - - - 3.74x10-3 0.06 - - 
      Testing Session: Post-test - - - - - - 1.52 1.23 
      Testing Session: Follow-up test - - - - - - 0.72 0.85 
Residual 1.41 1.19 1.41 1.19 1.35 1.16 0.70 0.84 
Fit Statistics 
Deviance 586.19 586.07 578.42 488.13 
AIC 592.73 593.47 596.08 508.46 
     

Table 4.6 Model output for the fixed and random effects estimating sensitivity levels 
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Model 1 is a null model that only takes into account variability in sensitivity levels 

between individuals. When a model including age as a fixed effect was compared to the null 

model, there was no evidence that it was a better estimate of sensitivity levels than the null 

model, therefore age was not included in subsequent models.  

Models 2, 3, and 4 included training technique, period of watch, and testing session as 

fixed effects, respectively. Models 3 and 4 also included the effect of period of watch and 

testing session, on each individual as random effects, respectively. Models 2 and 3 had AICs 

greater than that of the null model indicating that the model with training technique or period 

of watch received less support by the data than that of the null model. Model 4 had the lowest 

AIC and the difference in AIC between the null model and Model 4 was greater than 10, 

indicating that there was very strong evidence in favour of Model 4 as the best estimate of 

sensitivity levels. The coefficient for the post-test estimate was negative, indicating that 

sensitivity levels were higher in the pre-test than in the post-test. However, due to the large 

standard error this should be interpreted cautiously. The coefficient for the three-month 

follow-up test estimate was positive, indicating that sensitivity levels were higher in the 

follow-up test than in the pre-test. 

4.4.4.4 Criterion. 

4.4.4.4.1 Traditional analysis. 

Results of the univariate analysis on criterion levels reveal that there was no 

significant difference between testing sessions, F(2, 8) = 0.57, p = .589, partial η2 = .12. 

There was no significant difference between periods of watch, F(9, 36) = 1.91, p = .081, 

partial η2 = .32. There was no significant difference between training techniques, F(1, 4) = 

0.74, p = .438, partial η2 = .16 (see Figure 4.6). 

There was no significant interaction between testing session and training technique, 

F(2, 8) = 0.23, p = .803, partial η2 = .05. There was no significant interaction between periods 
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of watch and training technique, F(9, 36) = 1.10, p = .385, partial η2 = .22. There was no 

significant interaction between testing session and period of watch, F(18, 72) = 1.53, p = 

.104, partial η2 = .28. The three-way interaction between testing session, period of watch, and 

training technique, was not significant, F(18, 72) = 1.08, p = .386, partial η2 = .21. 
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Figure 4.6 Criterion levels (c) on gradCPT 

 

Figure 4.6. Criterion levels (c) on gradCPT at pre-test, post-test, and three-month follow-up test (left to right). Error bars represent ±1 standard 

error. 
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4.4.4.4.2 Multilevel Modelling. 

Table 4.7 provides the parameter estimates and fit statistics of the models created to 

estimate criterion levels (c) on the gradCPT. 
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Table 4.7  

Model output for the fixed and random effects estimating criterion levels 

Model 1 2 3 4 
Parameters Estimate Std. Error Estimate Std. Error Estimate Std. Error Estimate Std. Error 

Fixed Effects 
(Intercept) 0.94 0.12 0.84 0.17 1.09 0.15 0.96 0.14 
Training Technique - - 0.21 0.24 - - - - 
Period of watch - - - - -0.03 0.01 - - 
Testing Session: Post-test - - - - - - -0.11 0.11 
Testing Session: Follow-up test - - - - - - 0.06 0.18 
 Variance Std. Dev. Variance Std. Dev. Variance Std. Dev. Variance Std. Dev. 

Random Effects 
Subject (intercept) 1090.00 33.01 0.60 0.78 0.15 0.38 0.71 0.84 
      Period of watch - - - - 7.24x10-5 0.01 - - 
      Testing Session: Post-test - - - - - - 0.04 0.19 
      Testing Session: Follow-up test - - - - - - 0.16 0.40 
Residual 0.19 0.43 0.19 0.43 0.18 0.42 0.15 0.39 
Fit Statistics 
Deviance 222.71 222.02 216.23 200.90 
AIC 231.15 233.41 237.85 228.26 
     

Table 4.7 Model output for the fixed and random effects estimating criterion levels 
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Model 1 is a null model that only takes into account variability in criterion levels 

between individuals. When a model including age as a fixed effect was compared to the null 

model, there was no evidence that it was a better estimate of criterion levels than the null 

model, therefore age was not included in subsequent models.  

Models 2, 3, and 4 included training technique, period of watch, and testing session as 

fixed effects, respectively. Models 3 and 4 also included the effect of period of watch and 

testing session, on each individual as random effects, respectively. Models 2 and 3 had AICs 

greater than that of the null model indicating that the models with training technique or 

period of watch received less support by the data than that of the null model. Model 4 had the 

lowest AIC and the difference in AIC between the null model and Model 4 was greater than 

2, indicating that there was positive evidence in favour of Model 4 as the best estimate of 

criterion levels. The coefficient for the post-test estimate was negative, indicating that 

criterion levels were higher in the pre-test than in the post-test. The coefficient for the three-

month follow-up test estimate was positive, indicating that criterion levels were higher in the 

follow-up test than in the pre-test. However, due to the large standard errors, the ability of the 

testing session to predict criterion levels should be interpreted cautiously. 

4.4.5 Divided Attention. 

4.4.5.1 Missing data. 

In the first MATB-II session of the pre-test (Study 1), there was missing data for one 

participant (VPT group) for both the Communications task RT and System monitoring Scales 

task RT. As this data was collected as part of Study 1 (Chapter 3), the missing values were 

replaced with the mean values of those measures from the NVGP group in Study 1. 

In the first MATB-II session of the post-test, there was missing data for one 

participant (FET group) in the Communications task RT. Due to the small sample size of the 

group, it was considered that the best estimate of the missing data was the average of the 



COGNITIVE FATIGUE & VIDEO GAMES 115 

participants’ other Communications task RT performance over the entire study period, as 

opposed to the mean of the group’s performance for that task, therefore this was used as a 

replacement. 

4.4.5.2 Analysis. 

A 3 (testing session) x 2 (MATB-II session) x 2 (training technique) MANOVA was 

conducted on the eight measures of the MATB-II. 

Mauchly’s test of sphericity was only significant for System Monitoring - Scale RT (p 

=.014) within testing sessions. No other measures were significant (ps > .05). 

There was a significant difference in MATB-II performance between testing sessions, 

V = 1.95, F (16,4) = 9.40, p = .021, partial η2 = .97. There was no significant difference in 

performance between MATB-II sessions, V = .91, F (4,1) = 2.67, p = .426, partial η2 = .91. 

There was no significant difference between training techniques, V = .994, F(4, 1) = 40.43, p 

= .117, η2 = .99. The interaction between testing session and training technique was not 

significant, V = 1.70, F (16,4) = 1.43, p = .397, partial η2 = .85. The interaction between 

MATB-II session and training technique was not significant, V = .60, F (4,1) = 0.37, p = .825, 

partial η2 = .60. The interaction between testing sessions and MATB-II session was not 

significant, V = 1.46, F (16,4) = 0.68, p = .741, partial η2 =.73. The three-way interaction 

between testing session, MATB-II session, and training technique, was significant, V = 1.93, 

F (16,4) = 7.16, p = .035, partial η2 = .97. 

Due to the large number of post hoc analyses, only those that were significant in the 

MANOVA are included here. 

The difference in System Monitoring - Light accuracy performance was significantly 

different between testing sessions, F(2,8) = 17.15, p = .001, partial η2 = .81. Post hoc analysis 

revealed that there was a significant difference between pre-test (M = 0.75, SE = 0.06) and 

post-test (M = 0.86, SE = 0.05), and between pre-test and follow-up test (M = 0.96, SE = 
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0.22) (ps < .05). 

The difference in System Monitoring – Scale RT performance was significantly 

different between testing sessions, F(2,8) = 4.60, p = .047, partial η2 = .54. Post hoc analysis 

revealed that there was a significant difference between pre-test (M = 4.72s, SE = 0.32) and 

post-test (M = 3.96s, SE = 0.35) (p = .001). 

The difference in System Monitoring – Scale accuracy performance was significantly 

different between testing sessions, F(2,8) = 8.96, p = .009, partial η2 = .69. Post hoc analysis 

revealed that there was a significant difference between post-test (M = 0.78, SE = 0.06) and 

follow-up test (M = 0.84, SD = 0.05) (p = .05). 

Due to the significant three-way interaction in the MANOVA, separate 2 (MATB-II 

session) x 3 (testing session) ANOVAs were conducted for each training technique. 

Descriptive statistics for each measure of the MATB-II, for each training technique, for each 

testing session are presented in Table 4.8.
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Table 4.8  

MATB-II sub-task performance across testing sessions 

   Testing Session 
   1 2 3 

  MATB-II 
session 

1 2 1 2 1 2 

Task Measure Training 
Technique Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Communications 
RT 

VPT 3.91 1.33 4.23 2.37 4.90 2.69 3.44 1.34 3.86 2.44 3.27 0.92 
FET 3.44 1.47 3.06 1.62 2.80 1.88 3.76 2.34 2.70 1.31 2.72 1.85 

Acc. 
VPT 0.78 0.24 0.98 0.01 0.98 0.01 0.99 0.01 0.93 0.07 0.97 0.04 
FET 0.91 0.09 0.98 0.01 0.83 0.29 0.99 0.01 0.96 0.01 0.98 0.01 

Resource 
Management Mean 

VPT 761.21 559.41 360.77 200.93 480.48 293.71 395.93 311.56 390.04 244.81 343.74 266.22 
FET 425.57 255.59 369.21 156.65 380.71 146.45 222.58 111.45 320.84 298.04 231.66 155.37 

Tracking RMSD 
VPT 45.68 18.51 42.24 11.09 40.92 5.72 33.10 3.97 35.42 9.63 33.45 10.49 
FET 48.75 11.04 39.78 8.14 42.63 11.31 40.14 6.39 43.16 9.37 36.90 2.86 

System 
Monitoring: 

Lights 

RT 
VPT 3.76 1.19 3.22 0.59 3.32 1.15 3.16 1.77 2.77 1.00 2.84 1.64 
FET 4.13 1.88 3.27 0.75 3.56 1.05 3.30 0.92 2.78 0.48 2.87 0.29 

Acc. 
VPT 0.78 0.20 0.84 0.16 0.95 0.06 0.93 0.12 0.96 0.07 0.99 0.02 
FET 0.58 0.17 0.78 0.05 0.78 0.11 0.78 0.14 0.94 0.06 0.94 0.07 

System 
Monitoring: 

Scales 

RT 
VPT 5.31 0.58 3.86 1.23 3.62 1.14 3.26 0.98 3.51 2.10 3.71 1.67 
FET 4.77 0.63 4.94 0.73 4.56 0.53 4.39 0.82 4.02 0.85 3.92 0.69 

Acc. 
VPT 0.43 0.37 0.75 0.10 0.91 0.08 0.80 0.21 0.78 0.24 0.89 0.10 
FET 0.46 0.11 0.64 0.03 0.71 0.19 0.70 0.12 0.84 0.09 0.85 0.06 

RT = Reaction time; Acc. = Accuracy; SD = Standard Deviation 

Table 4.8 MATB-II sub-task performance across testing sessions
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4.4.5.2.1 Variable Priority Training (VPT). 

Mauchly’s test of sphericity was only significant for RMSD within testing sessions (p 

< .05). No other measures were significant (ps > .05). 

The difference in performance between MATB-II sessions was not significant, V = 

.96, F(2, 1) = 10.83, p = .21, partial η2 = .96. The different between testing sessions was not 

significant, V = 1.83, F(8, 4) = 5.54, p = .058, partial η2 = .92. The interaction between test 

sessions and MATB-II sessions was not significant, V = 1.81, F(8, 4) = 4.82, p = .073, partial 

η2 = .91. 

Despite the non-significant results, univariate results were analysed as it is possible 

that the two groups focussed on different sub-tasks at different times or that the different 

training techniques improved different areas of multitasking. There was no significant 

difference between testing sessions on any of the MATB-II measures. There was a significant 

difference in System Monitoring – Scale RT between the first (M = 4.15s, SE = 0.72) and 

second (M = 3.61s, SE = 0.73) MATB-II sessions, F(1,2) = 24.60, p = .038, partial η2 = .93. 

4.4.5.2.2 Fixed Emphasis Training (FET). 

Mauchly’s test of sphericity was not significant for all MATB-II measures (ps < .05).  

The difference between MATB-II sessions was not significant, V = 0.72, F(2, 1) = 

1.30, p = .527, partial η2 = .72. The difference between testing sessions was not significant, V 

= 1.28, F(8, 4) = 0.90, p = .586, partial η2 = .64. The interaction between testing sessions and 

MATB-II sessions was not significant, V = 0.88, F(8, 4) = 0.39, p = .879, partial η2 = .44. 

Univariate analyses revealed that there was a significant difference in System 

monitoring – Light accuracy between testing sessions, F(2, 4) = 19.24, p = .009, partial η2 = 

.91. There was also a significant difference in System monitoring – Scale accuracy between 

testing sessions, F(2,4 ) = 7.93, p = .041, partial η2 = .80. However, pairwise comparisons for 

both measures between testing sessions were not significant. 
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4.4.6 Workload Rating Scale (WRS). 

A 3 (test session) x 2 (MATB-II session) x 2 (training technique) mixed-design 

MANOVA was conducted on the six WRS items.  

Mauchly’s test of sphericity was not significant for any of the item (ps > .05). There 

was no significant difference in WRS between testing sessions, V = 1.32, F (12,8) = 1.31, p = 

.361, partial η2 = .66. There was no significant difference in WRS between MATB-II 

sessions, V = 0.97, F (4,1) = 6.83, p = .278, partial η2 = .97. There was no significant 

difference between training techniques, V = 0.95, F(4, 1) = 4.73, p = .331, partial η2 = .95. 

The interaction between testing session and training technique was not significant, V = 1.56, 

F (12,8) = 2.35, p = .116, partial η2 = .78. The interaction between MATB-II session and 

training technique was not significant, V = 0.94, F (4,1) = 3.93, p = .359, partial η2 = .94. The 

interaction between testing sessions and MATB-II session was not significant, V = 1.24, F 

(12,8) = 1.09, p = .465, partial η2 = .62. The three-way interaction between testing session, 

MATB-II session, and training technique, was not significant, V = 0.94, F (12, 8) = .588, p 

.803, partial η2 = .47. 

Univariate results were analysed to determine if groups differed on any of the 

individual items. Due to the large number of analyses, only the significant results are 

included here. There was a significant difference between testing sessions on the physical 

item, F(2, 8) = 12.41, p = .004, partial η2 = .76. Pairwise comparisons revealed that there was 

a significant difference between pre-test (M = 54.08, SE = 6.89) and post-test (M = 26.83, SE 

= 6.11) on the physical item (p = .032).  

There was a significant difference between the first MATB-II session (M = 43.89, SE 

= 4.52) and the second (M = 31.83, SE = 3.60) on the performance item, F(2, 8) = 10.60, p = 

.031, partial η2 = .73. The interaction between testing session and MATB-II session was 

significant on the physical item, F(2, 8) = 8.52, p = .01, partial η2 = .68, and the performance 
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item F(2, 8) = 5.44, p = .032, partial η2 = .58. 

4.4.7 Comparison to VGP performance. 

Participants’ performance was compared to the performance of the VGPs from Study 

1 (Chapter 3). Both training groups were combined to ensure a large enough sample size and 

to examine the overall impact of video game training, regardless of training technique. As 

participants’ overall performance at the three-month follow-up was better than the 

performance at post-test, only the three-month follow-up performance was compared to that 

of the VGPs from Study 1. 

4.4.7.1 Video game performance. 

A t-test was conducted comparing the Unreal Tournament 2004 performance of the 

trained NVGPs at the three-month follow-up test to the performance of the VGPs. Levene’s 

test of equality of variances was not significant (p > .05). The trained NVGPs (M = 0.94, SD 

= 4.94) performed significantly worse than the VGPs (M = 6.39, SD = 3.35), t(22) = 3.07, p < 

.006. 

4.4.7.2 Sustained Attention. 

A 10 (period of watch) x 2 (group) MANOVA was conducted, comparing the three-

month follow-up test performance of the trained NVGPs with the performance of the VGPs 

on each of the four vigilance measures. 

At the multivariate level, the difference between the groups was not significant, V = 

0.37, F(4, 19) = 2.77, p = .057, partial η2 = .37. There was no significant difference between 

periods of watch, V = 0.18, F(36, 792) = 1.05, p = .391, partial η2 = .05. There was no 

significant interaction between group and periods of watch, V = 0.14, F(36, 792) = 0.82, p = 

.765, partial η2 = 0.04. Mauchly’s test of sphericity was significant for reaction time, reaction 

time variability, and sensitivity levels (ps > .05), therefore the Greenhouse-Geisser 

adjustment was used for the univariate analyses. At the univariate level, there was no 
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significant difference between periods of watch for any of the four measures of sustained 

attention (ps > .05). In addition, there was no significant interaction between period of watch 

and group for any of the four measures. There was no significant difference between the 

trained NVGPs and the VGPs in reaction times, reaction time variability, or criterion levels 

(ps > .05). However there was a significant difference between trained NVGPs (M = 5.38, SE 

= 0.42) and VGPs (M = 3.95, SE = 0.24) in sensitivity levels, F(1, 22) = 8.85, p = .007, 

partial η2 = .29. 

4.4.7.3 Divided Attention. 

A 2 (MATB-II session) x 2 (group) MANOVA was conducted on the eight measures 

of the MATB-II. 

At the multivariate level there was a significant difference between groups, V = 0.67, 

F(8, 15) = 3.73, p = .014, partial η2 = .67. There was a significant difference between MATB-

II sessions, V = 0.59, F(8, 15) = 2.69, p = .047, partial η2 = .59. The interaction between 

group and MATB-II session was not significant, V = 0.34, F(8, 15) = 0.97, p = .494, partial η2 

= .34. 

Due to the large number of univariate analyses, only those that were significant in the 

MANOVA are included here. In addition, differences between MATB-II sessions was not of 

interest in the current analysis, therefore only differences between groups, and the interaction 

between group and MATB-II session are reported. 

There was a significant difference between the trained NVGP group (M = 0.96, SE = 

0.04) and the VGP group (M = 0.86, SE = 0.02), in System Monitoring– Light accuracy, F(1, 

22) = 4.43, p = .047, partial η2 = .17. There were no other significant differences between 

groups. There was a significant interaction between group and MATB-II session on 

Communication task accuracy, F(1, 22) = 4.92, p = .037, partial η2 = .18. No other 

interactions were significant. 
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4.5 Discussion 

4.5.1 Video game performance. 

Traditional analysis of video game performance during the training phase revealed 

that video game training significantly improved performance. This result is not surprising as 

practicing a task invariably leads to learning and thus improved performance (Boot et al., 

2010; Lee, Boot, et al., 2012). However, contrary to previous studies comparing VPT and 

FET on a video game (Boot et al., 2010), there was no advantage of VPT over FET in 

improving performance. A discussion of possible explanations is provided in Section 4.5.4. 

Due to the small sample size of the study, the results of traditional significance testing 

are limited, therefore non-traditional analyses were also conducted. The results of the 

multilevel linear modelling support those of the traditional analysis. Including the training 

technique factor did not improve the ability of the model to estimate video game performance 

during training, however including training day in the model did. Combined, the results of 

both analyses provide evidence that training on a video game for ten hours over four weeks 

does significantly improve video game performance, however there is no advantage of one 

type of training technique over the other. 

Traditional analysis of video game performance during the testing sessions revealed 

that video game training significantly improved performance and that this improvement was 

maintained at a three-month follow-up test. The results of the post-test confirm those of the 

training phase, that video game training does improve video game performance. However, 

again, there was no significance difference in video game performance between the two 

training techniques. In addition, the results of the multilevel linear modelling support those of 

the traditional analysis. Including the training technique factor did not improve the ability of 

the model to estimate video game performance prior to and after training, however including 

testing sessions in the model did. Combined, the results of both traditional and non-traditional 
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analyses of video game performance during training, and between testing sessions, provides 

evidence that training on a video game improves video game performance, and that this 

improvement is maintained three months later. 

4.5.2 Sustained attention performance. 

Results of the traditional analyses suggest that video game training does not lead to 

improvements in performance on vigilance tasks. At the multivariate levels there were no 

significant effects of training technique, testing session, or period of watch, or the interactions 

between these variables, on the four measures of sustained attention. The lack of differences 

between training techniques are discussed in Section 4.5.4 

The lack of difference between testing sessions is surprising, given the results of 

Study 1 (Chapter 3), which showed that VGPs, when compared to NVGPs, demonstrated 

superior sustained attention. Previous research has shown that video game training can 

improve a range of cognitive and attentional skills that relate to sustained attention. However, 

previous research has only examined the differences in sustained attention performance 

between VGPs and NVGPs and not explored the effect of video game training on improving 

sustained attention performance directly. Therefore it is possible that either more training is 

required, or that sustained attention is not developed by action video games, and that in fact, 

individuals who become VGPs already possess the superior sustained attention skills which 

allow them to perform well on action video games (Adams & Mayer, 2012).  

The difference in performance over periods of watch approached significance, and it 

is likely that this would have been significant with a larger sample. A significant difference in 

performance over periods of watch would be consistent with the results of Study 1 (Chapter 

3) and the research on cognitive fatigue in general , as performing any task for an extended 

period of time will eventually result in decreased performance (Ackerman, 2011; Guastello et 

al., 2013; Lal & Craig, 2001; Van Dongen et al., 2011). As the interaction between period of 
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watch and training technique, and the three-way interaction between period of watch, training 

technique, and testing session were not significant, this suggests that all participants 

experienced similar levels of cognitive fatigue whilst performing the vigilance task, and that 

there was no effect of video game training or training technique on resisting the effects of 

cognitive fatigue. These results support those of Study 1 whereby both VGPs and NVGPs 

experienced similar levels of cognitive fatigue as evidenced by declining sustained attention 

performance over periods of watch. 

However, due to the small sample size, the results of the traditional multivariate 

analyses should be interpreted cautiously. The following sections examine both the traditional 

univariate analyses and the non-traditional analyses of each of the four sustained attention 

measures. 

4.5.2.1 Reaction time. 

Results of the univariate analysis revealed that there was no significant effect of 

testing session, period of watch, or training technique, nor of the interactions between these 

variables, on reaction times in the vigilance task. These results are consistent with those of 

Study 1 (Chapter 3) whereby there was no change in reaction times over periods of watch, 

nor any difference between VGPs and VGPs. It is possible that the lack of change in reaction 

times over time is due to the design of the vigilance task itself. The continuous performance 

design of the vigilance task was chosen as it can measure moment-to-moment fluctuations in 

reaction times. However, due to the length of the task, for ease of analysis, reaction times 

were collapsed into 10 six-minute periods of watch. This process reduces variation and thus 

affects the likelihood of detecting a significant difference between periods. Due to this, 

reaction time variability was also measured, which is discussed further in the next section. It 

is suggested for future investigations of sustained attention and cognitive fatigue, that the 

traditional design of the vigilance task be used for long task durations. 
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Results of the multilevel linear modelling approach revealed that the model that is 

best able to predict RT performance includes the three main effects, training technique, 

period of watch, and testing session, as well as the interaction between training technique and 

test sessions and the interaction between period of watch and testing sessions. Thus, all of 

these effects contribute to accurately estimating RT. However, these should be interpreted 

cautiously due to the large standard errors of most of the estimates. Therefore. only the 

effects with small standard errors are considered here for discussion. The effects with 

relatively low standard errors are period of watch, and the interaction between period of 

watch and testing sessions. Overall, as period of watch increased, so too did reaction times. 

This result is consistent with previous research on the vigilance decrement, the time-on-task 

effect, and research on fatigue in general (Ackerman, 2011; Guastello et al., 2013; Lal & 

Craig, 2001; Van Dongen et al., 2011). This result also demonstrates the advantage of 

multilevel linear modelling over traditional significance testing, as raw reaction times can be 

included in the model, providing a more accurate representation of the relationships between 

the variables.  

The interaction between period of watch and testing sessions reveals that the increase 

in reaction time over period of watch during the task was greater in the pre-test than in the 

post- and follow-up test sessions. This indicates that participants became less fatigued during 

the vigilance task in the post- and follow-up testing sessions than compared to the pre-test. 

Further, this suggests that video game training can improve the ability to sustain attention in 

vigilance tasks, as evidenced by a reduced increase in reaction time as time-on-task increases. 

This is one of the first studies to investigate the relationship between video game training and 

sustained attention performance. Therefore, further research is needed to confirm these 

findings, as the present results only provided preliminary evidence that there is a meaningful 

relationship between these factors. 
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4.5.2.2 Reaction time variability. 

Results of the univariate analysis revealed that there was no significant effect of 

period of watch, or training technique, nor of the interactions between testing session, period 

of watch and training technique, on reaction time variability in the vigilance task. There was 

however, a significant effect of testing session on reaction time variability, although post hoc 

tests were not significant. Inspection of the means reveals that reaction time variability was 

the lowest at the three-month follow-up test, however there was no substantial difference 

between pre-test and post-test. It is unclear why this was the case, it was expected that 

performance would decline after three months without training, however the three-month 

break resulted in improved performance with more consistent reaction time speed. It is 

possible that at the post-test, participants had lost motivation from repeatedly coming to the 

laboratory and that this resulted in poorer performance, whilst three months later, 

participants’ motivation had returned. 

Overall, the results of the traditional analysis indicate that video game training and 

training technique do not affect reaction time variability on vigilance tasks. In addition, 

reaction time variability was not affected by time-on-task. This is inconsistent with the results 

of Study 1 (Chapter 3), and the literature on cognitive fatigue that has found that the decline 

in task performance associated with fatigue is also related to higher levels of response 

variability (Guastello et al., 2013). It is possible that there were increases in reaction time 

variability over periods of watch in some of the testing sessions but that this was masked by 

reductions, or no change, in reaction time variability in other sessions, however if this was the 

case, an interaction between period of watch and testing session would be. 

Results of the multilevel linear modelling approach revealed that the model that was 

best able to predict reaction time variability includes the three main effects, training 

technique, period of watch, and testing session, as well as the two-way interactions and the 
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three-way interaction between these factors. Thus all parameters were important in predicting 

reaction time variability. However, as discussed previously, large standard errors for the 

estimates of some factors indicate that the model should be interpreted cautiously. The effects 

which had relatively small standard errors were period of watch, and the interaction between 

training technique and period of watch. These reveal that as time increased so too did reaction 

time variability, which is consistent with previous research on fatigue (Guastello et al., 2013), 

but is inconsistent with the results of the traditional analysis. In addition, the interaction 

between period of watch and training technique reveals that the increase in reaction time 

variability was greater for those in the FET group compared to the VPT. This provides further 

evidence as to the advantage of VPT over FET (Prakash et al., 2012; Voss et al., 2012), and 

preliminary evidence that VPT training on an action video game is more beneficial than the 

standard FET in improving the transfer to sustained attention skills. 

4.5.2.3 Performance accuracy: Sensitivity and Criterion levels. 

Results of the univariate analysis revealed that there was no significant effect of 

testing session, period of watch, or training technique, nor of the interactions between these 

variables, on performance accuracy in the vigilance task as measured by sensitivity and 

criterion levels. These results suggest that video game training does not affect response 

accuracy when performing vigilance tasks. This is consistent with results from Study 1 

(Chapter 3) in that VGPs and NVGPs did not differ in sensitivity and criterion levels. 

However, the lack of significant difference between periods of watch is inconsistent with the 

results of Study 1 and with the literature on cognitive fatigue that shows that performance 

accuracy decreases as fatigue increases (Van Dongen et al., 2011). The most likely 

explanation for this is that the lack of significant result is accounted for the large variability in 

accuracy performance. 

Results of the multilevel linear modelling approach revealed the models that best 
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predicted sensitivity and criterion levels only included the testing session fixed effects. This 

provides further evidence that there is no advantage of either training technique in improving 

sustained attention performance. It is surprising that period of watch was not included in the 

best model given the results of the previous study (Chapter 3) where there was a significant 

decline in sensitivity and criterion levels over time. However, this result confirms the 

findings from the traditional analyses. The testing session variable was included in the best 

model, suggesting that there was an effect of video game training on sensitivity and criterion 

levels. However, the relatively large standard errors for both measures indicates a large 

amount of variance, and that the amount video game training provided in the current study is 

not enough to affect sustained attention accuracy. In addition, accuracy is an important factor 

in most video games (i.e. it is important to be able to shoot enemy targets and not friendly 

targets). However, in the video game used in the present study there was only one enemy 

target and no friendly targets. Thus, there was no need for participants to develop higher 

accuracy, in fact it would have been most beneficial for them to react to any stimulus that 

they thought to be the enemy target. 

4.5.3 Divided Attention. 

The results of the MANOVA, at the multivariate level, indicate that MATB-II 

performance improved after video game training. However, there was no difference between 

MATB-II sessions or between training techniques. In addition, none of the two-way 

interactions were significant. Although, the three-way interaction between testing session, 

MATB-II session, and training technique was significant.  

Univariate results were analysed to determine on which MATB-II measures 

performance improved. It was found that of the eight measures, three improved from pre-test 

to post-test or from post-test to follow-up test. Interestingly, all measures were from the 

System monitoring task which is a secondary sub-task of the MATB-II (Chiappe et al., 2013). 
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This result is consistent with the previous study (Chapter 3), and previous research (Chiappe 

et al., 2013), that has found that VGPs performed significantly better on the secondary tasks 

without a trade-off in performance on the primary tasks. This suggests that 10 hours of video 

game training over four weeks improves visual attention, in that more attention is paid to a 

larger visual field, which is consistent with reports that video game training improves 

performance on the Useful (Functional) field of view task (Feng et al., 2007; C. S. Green & 

Bavelier, 2003) (see Section 2.1.1.1).  

The lack of significant difference between the two MATB-II sessions is inconsistent 

with the results of the previous study (Chapter 3). However, inspection of the means of each 

measure indicates that in each testing session, performance improved from the first to second 

MATB-II session. This indicates that the cognitive fatigue induced by performing the 

vigilance task did not affect MATB-II performance, and this is consistent with the previous 

study (Chapter 3). It also provides further support to the suggestion that when measuring 

cognitive fatigue only tasks on which optimal performance can be achieved in a short period 

of time should be used as these will be more likely to show fatigue-related performance 

decrements (Ackerman, 2011). 

4.5.4 Workload Rating Scale (WRS). 

On the WRS, at the multivariate level, no effects or interactions were significant. 

However, similar to previous study (Chapter 3), univariate results were analysed to determine 

if there were any differences on individual measures. There was no significant difference on 

the main measures of workload, however, there were significant differences on the physical 

and subjective performance scales. Physical workload was significantly lower in the pre-test 

compared to the post-test, and participants estimated their performance to be better in the 

second MATB-II sessions compared to the first. The improved estimate of performance is 

consistent with the objective measures of MATB-II performance. It is surprising that physical 
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workload was reduced in the post-test session as the most physical part of the MATB-II was 

controlling the joystick, which requires little physical effort, and there was no corresponding 

significant improvement in the sub-task that required joystick control.  

Overall, although there were no differences between training techniques in MATB-II 

performance, the results do provided evidence that video game training in general can 

improve the performance of secondary tasks when multitasking. However, there appears to be 

no benefit of video game training on improving overall sustained attention performance, and 

that individuals are just as susceptible to the effect of cognitive fatigue after video game 

training as they are beforehand. The lack of significant differences between training 

techniques is discussed in the following section. 

4.5.5 Effect of training technique. 

There are a number of factors that may have resulted in the lack of significant 

differences between the two training techniques. It may be that the instructions and guidance 

given to participants in the VPT group did not differ enough from the FET group to 

distinguish the two as different training techniques. Whilst there is strong theory behind using 

the VPT technique, there is little work on how to practically apply this to different tasks 

outside of Space Fortress. As this is the first study to apply the technique to a commercial 

video game, more research is required in terms of which variables in the game should be 

prioritised and how to assist participants in prioritising these variables whilst playing the 

game. Further, the primary characteristic of VPT is the amount of variability in sub-tasks 

provided during training. Therefore it is possible that including a range of action video games 

for participants to train on, instead of just one, would increase task variability and thus 

increase the transfer of improvements in video game performance to sustained and divide 

attention tasks (Chiappe et al., 2013; C. S. Green et al., 2009). 

In addition, it is possible that more training is required within the four weeks, or in 
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extending the training regime for a longer period. However, from the present data, it can be 

seen that the performance for both groups increased to a similar extent with overlaps in 

performance and no clear advantage to either group, suggesting that this trend would continue 

beyond the tenth training day. Thirdly, and likely the most reasonable explanation as to the 

lack of significant difference between the groups is the small sample size. When sample sizes 

are small, the results are more heavily impacted by individual differences. This is particularly 

relevant in training studies and studies on fatigue where levels of motivation can influence 

performance (Kanfer, 2011; Matthews, 2011). In complex training situations, motivation can 

play a decisive role in the effectiveness of training (Strobach et al., 2012). Whilst participants 

were motivated to improve on their previous performance there may be individual differences 

in pre-disposition of preferred training style that could have affected enjoyment of the task 

and thus motivation to perform well. Previous research has shown that personality factors 

may explain why some people engage in different types of practice more than others 

(Hambrick et al., 2014). Whilst all participants were required to practice for the same amount 

of time, a pre-disposition towards or against their assigned training technique may have 

influenced their motivation to engage in the video game training, and thus affected their 

performance. 

4.5.6 Comparison to VGP performance. 

Participants’ performance at the three-month follow-up test was compared to the 

performance of the VGPs from Study 1 (Chapter 3). Not surprisingly, the video game 

performance of the VGPs was significantly better than that of the trained NVGPs, 

demonstrating that one month of video game training is not enough to turn NVGPs into 

VGPs. However, there were interesting results when analysing sustained and divided 

attention performance. In Study 1, at the multivariate level, there was a significant difference 

between the VGPs and the NVGPs, indicating that VGPs had superior sustained attention. 
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However, in the present study, there was no significant difference between the VGPs and the 

NVGPs, and at the univariate level, trained NVGPs had significantly higher sensitivity levels, 

an indicator of better response accuracy. Thus, there is evidence to suggest that one month of 

action video game training is enough to improve NVGPs’ sustained attention performance to 

be comparable to that of VGPs who have played video games for years. However, these 

results are not conclusive. In Study 1 there were 18 VGPs and 24 NVGPs, whilst in Study 2 

(Chapter 4) there were only 6 trained NVGPs, thus the unequal sample size limits the 

generalisability of the findings. In addition, at the univariate level there are anomalies in the 

results. In the present study, the trained NVGPs had significantly higher sensitivity levels 

compared to the VGPs, despite there being no significant change in the sensitivity levels of 

the NVGPs from pre-test to the three-month follow-up test. Thus it is likely, that individual 

variability influenced the results, in that the trained NVGPs focussed on accuracy during the 

vigilance task. Further, it is also likely that participants were more motivated to perform well 

at the follow-up test as they had committed a substantial amount of time to participating in 

the study. 

Similar results were also found in the multitasking performance. In Study 1 (Chapter 

3), at the multivariate level, VGPs performed significantly better than NVGPs. However, in 

Study 2 (Chapter 4), there was no significant difference in performance between the VGPs 

and the trained NVGPs. Although this improvement in the performance of NVGPs may be 

attributed to action video game training, it is more likely the result of practice effects, as even 

at the three-month follow-up test, participants’ performance on the MATB-II continued to 

improve. 
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5. Chapter 5: Study 3 - Cognitive Fatigue, Video Games, & Driving 

The previous two studies have shown that action video game players, and those who 

receive action video game training demonstrate improved sustained attention and 

multitasking skills. However, these skills have been demonstrated on relatively simple 

computer tasks within the laboratory that have little similarity to real-world tasks. 

Despite the many studies investigating the visuospatial cognitive benefits of action 

video games, there is a lack of research taking the next step of investigating the practical real-

world benefits of these effects (Ferguson, 2014; Latham et al., 2013b). There is emerging 

evidence however, that VGPs are able to apply their superior attentional skills to real-world 

tasks. For example, VGPs make fewer lane deviations whilst driving compared to NVGPs 

(Rupp, McConnell, & Smither, 2015). Motor vehicle driving is a complex task that involves 

executive control, multitasking, and sustaining attention (Desmond & Hancock, 2001; 

Donohue et al., 2012; Mäntylä, Karlsson, & Marklund, 2009; Rupp et al., 2015; Warm, 

Parasuraman, et al., 2008; Watson & Strayer, 2010). Therefore, to extend the results of the 

two previous studies (Chapter 3 & Chapter 4), the effect of video game experience on 

cognitive fatigue whilst driving was investigated. 

5.1 Driving and Fatigue 

It is well known that driving whilst fatigued is dangerous (Saxby et al., 2013). 

Cognitive fatigue occurs when attentional capability is reduced, and this can occur due to 

both active and passive fatigue (Desmond & Hancock, 2001). Passive fatigue is the result of 

under-stimulation, for example when driving on long stretches of straight road, and can lead 

to a decline in vehicle control (Desmond & Hancock, 2001). Active fatigue occurs when 

there is a constant demand on attention resulting in a drain on cognitive resources. Operators 

of all vehicles can be susceptible to active fatigue as they must make continuous adjustments 

to adequately control the vehicle. For example, Fancher (personal communication, 1997, as 
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cited in Desmond & Hancock, 2001) estimated that over 1000 accelerator adjustments are 

made during one hour of driving on a freeway. When taken in combination with other 

adjustments, for example steering wheel control, it is clear that driving for long periods of 

time places a high demand on a driver’s cognitive resources. Over time, attention is reduced 

and fewer vehicle speed and control adjustments are made, potentially resulting in the vehicle 

leaving the road (Desmond & Hancock, 2001). 

5.2 Driving and Video games 

Motor vehicle driving is a complex task that is often investigated when examining the 

real-world consequences of fatigue (Desmond & Hancock, 2001). It places high demands on 

a range of cognitive processes (Mäntylä et al., 2009), and requires individuals to multitask 

and sustain attention for extended periods of time (Larue et al., 2010). As discussed in 

Chapter 2, playing action video games can increase visual attention (C. S. Green & Bavelier, 

2003), speed of visual processing (Dye et al., 2009b), and improves decision making and 

cognitive control (Bailey, West, & Anderson, 2010), all of which are skills and abilities that 

are crucial when driving (Ciceri & Ruscio, 2014).  

One example of this is the finding that VGPs often outperform NVGPs on the Useful 

Field of View (UFOV) task (Feng et al., 2007; C. S. Green & Bavelier, 2006b). As discussed 

in Section 2.1.1, the UFOV task is a common task for assessing selective attention. 

Participants must identify the location of a target that was previously presented and then 

hidden. This task measures the ability to quickly and accurately direct attention towards 

target areas, and it has been shown that those who perform better in the task are less likely to 

have a driving accident (Myers et al., 2000). 

Vehicle driving tasks are also similar to sustained attention tasks and thus findings 

obtained from these studies may be beneficial in understanding driver fatigue (Thiffault & 

Bergeron, 2003). For example, participants that perform well on vigilance tasks may also 
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perform well in long driving situations. Further, identifying individuals that are resilient to 

cognitive fatigue and the vigilance decrement will have practical implications for the 

selection and training of professional drivers (Thiffault & Bergeron, 2003). Therefore, it is 

possible that as VGPs in Study 1 (Chapter 3) demonstrated improved sustained attention 

performance, that they too will also demonstrate improved driving performance when 

compared to NVGPs. 

Despite the complex processes involved in driving, most studies have focussed on 

driving performance in relation to low-level attentional factors, such as visual search, and 

ignored the higher-order cognitive processes of executive functioning (Mäntylä et al., 2009). 

As discussed in Section 1.3, executive functioning involves monitoring and maintaining 

complex goal-directed behaviour through organising and controlling lower-level functions, in 

addition to ignoring irrelevant stimuli, switching attention between multiple locations and 

sensory modalities, all of which are crucial for safe driving (Mäntylä et al., 2009; van der 

Linden, 2011).  

Mäntylä et al. (2009) investigated the simulator driving performance of teenage 

novice drivers and explored whether performance was related to executive functioning and 

video game experience. It was found that individuals with lower executive functioning made 

more errors on the driving simulator task. In addition, their results suggest that skills learned 

from video games can be used to compensate for less efficient working memory functions. 

These findings provide preliminary evidence that video game experience may facilitate 

improvements in driving performance however the authors suggest that future research 

continue to explore the connection between executive control and its relation to video games 

and driving simulator performance (Mäntylä et al., 2009). 

5.3 Measuring Driver Fatigue 

Fatigue is often operationalised as a decline in performance over time (Earle et al., 
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2015; Lorist & Faber, 2011; Lorist et al., 2000; van der Linden, 2011; van der Linden et al., 

2003). However, a linear relationship between task performance and time is not often found, 

and the same is true for driving performance (Gawron et al., 2001). Error patterns may 

change with varying levels of fatigue, and are also affected by other factors such as age, sex, 

and personality (Lal & Craig, 2001; Schleicher, Galley, Briest, & Galley, 2008). Thus, it is 

difficult to use general performance measures as indicators of driver fatigue (Schleicher et al., 

2008). Therefore, in the present study, traffic violations during a simulated drive were 

recorded, in addition to eye-tracking data collected during the drive, and two self-report 

measures of fatigue. 

5.3.1 Traffic violations. 

There are a number of measures of driving performance, for example braking 

response time and accelerator and steering wheel movements. These do not provide the whole 

picture of driver performance, however, as an individual could brake softly and early or brake 

hard and late, with the end result being the same. In addition, there are no agreed-upon 

definitions of the statistics, measures, and values used to assess driving performance. As 

previously mentioned, thousands of accelerator adjustments are made during an hour of 

driving so distinguishing between an adjustment and an overt change is difficult (P. A. Green, 

2012). Further, definitions of changes in behaviour and performance are highly contextual. 

For example, deviation from a lane can be considered to occur when the front tyre touches 

the lane boundary, or when the widest part of the vehicle is over the lane boundary, however, 

issues in measurement arise when lane and vehicle widths vary. In the present study, instead 

of using laboratory measures such as reaction times and accelerator adjustments, more 

realistic measures of performance, that is, the number and severity of traffic violations, were 

used to measure driving performance. 

The software used for the driving simulation was City Car Driving (Enterprise 
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Edition, version 2.1.0; Forward Development, 2012). In this program, driving performance is 

measured by recording traffic violations. Each violation is assigned a score according to its 

severity, for example, a score of 1 (the lowest) is given for driving 10 km/h over the speed 

limit, whilst a score of 10 (the highest) is given for hitting another car or a pedestrian (see 

Appendix G for the full list of violations and scores). 

5.3.2 Eye-tracking. 

Visual scanning is a vital part of driving (Lansdown, 2001), and is negatively affected 

by fatigue (May & Baldwin, 2009), with the lack of visual attention being responsible for a 

large proportion of accidents (Chapman & Underwood, 1998). When individuals become 

fatigued, their visual perception is reduced, and their gaze narrows (Ji, Zhu, & Lan, 2004), 

resulting in reduced peripheral vision (Liu & Wu, 2009). In addition, the number eye-

movements and scanning patterns are reduced (May & Baldwin, 2009). Reduced visual 

scanning may result in important roadside information (e.g. traffic signs, obstacles) being 

missed or their distance from the driver to be miscalculated, resulting in accidents (Liu & 

Wu, 2009). Fortunately, however, visual scanning can be improved with driving experience. 

The visual search strategies of novice drivers are not as flexible or efficient as those 

of experts (Paxion, Galy, & Berthelon, 2014). Novices tend to focus solely on the vehicle 

ahead of them (Crundall, Underwood, & Chapman, 1998), and remain focused on it 

regardless of the driving situation. In addition, the lack of experience also means that novice 

drivers have a lower level of task automation and thus experience a higher mental workload 

whilst driving (Patten, Kircher, Östlund, Nilsson, & Svenson, 2006; Paxion et al., 2014). In 

contrast, experienced drivers exhibit flexible and adaptive search behaviour. This is primarily 

achieved through the widening of their horizontal search (Crundall et al., 1998; Patten et al., 

2006), allowing them to gather and process more information about the situation and to adjust 

their driving behaviour accordingly, resulting in better driving performance (Paxion et al., 
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2014). 

In the present study, participants’ eye-movements were recorded whilst completing 

the driving task. The number of fixations and the length of the fixations on areas of the road 

during the simulated driver were measured. Four areas of interest were selected for 

investigation, close and far, and centre and wide (see Figures 5.1 and 5.2 respectively).  

Figure 5.1 Close and far areas of the road 

 

Figure 5.1. Close (green) and far (red) areas of the road. 

Figure 5.2 Centre and wide areas of the road. 

 

Figure 5.2. Centre (green) and wide (red) areas of the road. 

5.4 The present study 

This compared simulator driving performance of action VGPs and NVGPs over two 

driving sessions, which took approximately two hours to complete. Driving performance was 

measured by the total number of traffic violations made and the total score of those 

violations, and this was compared between the two driving sessions. It was hypothesised that 

because the driving simulator is similar to a video game, VGPs would perform better overall, 

compared to NVGPs. In addition, since VGPs are used to playing video games for long 

periods of time, it was hypothesised that their performance would not decline over time as 

much as that of the NVGPs. 

Participants’ eye-movements were recorded and compared between each driving 
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session. The number of fixations and total duration length of fixations was compared between 

the close and far road areas, and between the centre and wide road areas. Previous research 

on the UFOV shows that VGPs demonstrate an increased visual search area, and it was 

hypothesised that the eye-movement patterns of VGPs would match those of experienced 

drivers. That is, they should look at the far and wide areas of the road more than the close and 

centre areas. In addition, it was hypothesised that the eye-movements of NVGPs would 

become less frequent and narrower over time, as they become fatigued, whilst the eye-

movements of VGPs would not. 

The Samn-Perelli Fatigue Checklist was completed prior to the first driving session 

and after the second driving session to provide a subjective measure of fatigue. It was 

hypothesised that both groups would experience an increase in fatigue from pre-drive to post-

drive, and that NVGPs would report a higher level of fatigue in the post-test. In addition, the 

Driving Fatigue Scale was provided after the second driving session to assess the type and 

severity of fatigue experienced during the driving sessions. It was hypothesised that NVGPs 

would experience greater levels of driver fatigue overall, compared to VGPs, however it is 

unknown whether the different groups would experience different types of fatigue. 

5.5 Method 

This study received approval from the Edith Cowan University Human Research 

Ethics Committee. 

5.5.1 Participants. 

Twenty-two individuals were recruited to partake in the study. One participant 

withdrew due to experiencing motion sickness during the practice phase of the experiment. 

Of the remaining 21 participants, 11 were classified as VGPs (9 males, Mage = 22.72 years, 

SD = 2.05), and 10 were classified as NVGPS (2 males, Mage = 29.60 years, SD = 13.27), 

according to the methods used in Study 1 (Chapter 3). Due to the difficulty of recruiting 
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VGPs who primarily played FPS games, the criterion for being classed as a VGP was 

expanded to include all action video games consistent with Study 1. In addition, as the results 

of Study 1 demonstrated that self-report measures of video game experience was sufficient to 

classify participants as either VGPs or NVGPs, participants’ video game performance was 

not assessed. 

All participants who completed the study received a $20 gift card. They also went into 

the draw to win one of two $50 gift cards (provided by the ECU Cognition Research Group), 

and into the draw to win one $500 gift card. 

5.5.2 Measures. 

In addition to the measures presented in Section 5.3, video game experience, driving 

experience, and two measures of fatigue were analysed. Video game experience was 

measured using a questionnaire similar to that used in Study 1 (Chapter 3; Appendix H). 

Driving experience was measured by the number of years since participants received their car 

licence. 

5.5.2.1 Fatigue checklist. 

The Samn-Perelli Fatigue Checklist (Samn & Perelli, 1982) was presented to 

participants before and after the driving simulation task to determine whether participants 

became fatigued during the task. The scale contains one 7-point item asking participants to 

rate their current mental fatigue (1 = fully alert, wide awake; 2 = very lively, responsive, but 

not at peak; 3 = okay, somewhat fresh; 4 = a little tired, less than fresh; 5 = moderately tired, 

let down; 6 = extremely tired, very difficult to concentrate; 7 = completely exhausted, unable 

to function effectively). 

5.5.2.2 Driving Fatigue Scale. 

The Driving Fatigue Scale (Matthews, Saxby, & Hitchcock, 2008) was used to assess 

how participants felt during the driving task. The scale is a 42-item questionnaire, measuring 
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four categories of fatigue (sub-categories are presented in parentheses); physical fatigue 

(muscular fatigue); tiredness-demotivation (exhaustion-sleepiness, boredom-demotivation); 

cognitive-attentional (confusion/distractibility, performance worries); coping/fatigue 

management (comfort-seeking, self-arousal). Items are rated on a 5-point scale (0 = not very 

much, 5 = very much). 

5.5.3 Materials. 

Eye-movement data was recorded using Tobii Studio (ver 3.2.3) and an X2-60 Tobii 

eye-tracking camera. The software used for the driving simulation was City Car Driving 

(Enterprise Edition, version 2.1.0; Forward Development, 2012). The hardware for the 

driving simulator consisted of a Logitech G27 Force feedback wheel and pedal set that were 

mounted to a Playseat Evolution gaming seat. The driving simulator program was presented 

on three BenQ 23” frameless monitors, with the speakers sitting behind the centre monitor 

(see Figure 5.3). 

Figure 5.3 Set-up of the driving simulator and computer monitors. 

 

Figure 5.3. Set-up of the driving simulator and computer monitors. 
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5.5.4 Procedure. 

Upon arrival at the lab, participants read an information letter (Appendix I), and 

signed a consent form (Appendix J). Participants completed the pre-drive Samn-Perelli 

Fatigue Checklist and sat in the driving simulator chair. The experimenter than calibrated the 

eye-tracker to the participant and initiated the driving simulator software. After the 

experimenter explained the controls and the rules of the simulation software, participants 

completed a practice drive along a pre-determined route through the virtual environment that 

was designed to take approximately 30 minutes to complete. This included driving along a 

track to practice slow speed turning and manoeuvring along a narrow, winding lane. In 

addition, the route included the range of driving environments (e.g. highway, city, country 

roads), and was also populated by the same percentage of motor vehicles and pedestrians, that 

would be on the route in the testing phases. 

After the practice route, participants completed two pre-determined driving routes. To 

create two routes that were of similar length and included similar amounts of time driving in 

different environments, the second route was the reverse of the first route. However, due to 

the design and layout of the roads in the virtual environment, the two routes were not perfect 

mirror copies of each other. For instance, due to one-way streets, some alterations to the route 

were required. Each route took approximately 50 minutes to complete, however it took longer 

if participants drove cautiously or deviated from the route. The order in which the two routes 

were completed was counter-balanced amongst participants. After completing the second 

route, participants filled in the post-drive Samn-Perelli Fatigue Checklist, the Driving Fatigue 

Scale, and the participant questionnaire (Appendix H). 

5.6 Results 

5.6.1 Missing data. 

Fatigue questionnaire data (Samn-Perelli Fatigue Checklist and Driving Fatigue 



COGNITIVE FATIGUE & VIDEO GAMES 143 

Scale) for one participant (female NVGP) was lost due to a technological issue. However, all 

other data collected (driving performance and eye-movements) were available for analysis. 

Driving performance for one participant (female NVGP) was also missing due to a 

technological issue. However, all other data collected (fatigue questionnaires and eye-

movements) were available for analysis. 

Eye-tracking data for two participants (2 female VGPs) were removed from the 

analysis due to low quality of the eye-tracking recording. All other data (fatigue 

questionnaires and driving performance) were available for analysis. Quality of eye-tracking 

recording is calculated by dividing the number of eye-tracking samples that were correctly 

identified by the number of attempts. When both eyes were found during the entire recording, 

quality is 100%, when one eye is found for the entire recording, or both eyes are found for 

half the time, quality is 50%. The quality for both participants was less than 50% (Tobii 

Technology 2012), possibly due to poor calibration or the participant adjusting their sitting 

position beyond the range of the eye-tracker. Of the remaining participants, quality ranged 

from 78% to 94% (M = 88.68%, SD = 4.57). 

5.6.2 Driving experience. 

To ensure that driving experience was not a confound, a between-group t-test was 

conducted on the number of years of driving experience that each group had. Levene’s test 

for equality of variances was significant (p = .002). There was no significant difference in the 

number of years of driving experience between the VGPs (M = 4.76 years, SD = 2.63) and 

the NVGPs (M = 11.73 years, SD = 13.22), t(9.65) = 1.64, p = .134. 

5.6.3 Samn-Perelli Fatigue Checklist. 

A 2 (video game experience group) x 2 (pre- and post-drive) mixed design ANOVA 

was conducted on the Samn-Perelli Fatigue Checklist (Samn & Perelli, 1982). Levene’s test 

of equality of variances was not significant for either pre-drive or post-drive (ps > .05). There 
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was a significant difference in self-reported fatigue ratings between pre-drive (M = 2.59, SE = 

0.24) and post-drive (M = 4.67, SE = 0.22) , F(1, 18) = 61.55, p < .001, partial η2 = .77. There 

was no significant difference in self-reported fatigue ratings between VGPs (M = 3.32, SE = 

0.25) and NVGPs (M = 3.94, SE = 0.28), F(1, 18) = 2.83, p = .110, partial η2 = .14. There 

was no significant interaction, F(1, 18) = 0.52, p = .479, partial η2 = .03 (see Figure 5.4). 

Post hoc analyses were conducted to determine if there was a significant difference 

between VGPs and NVGPs prior to driving in the simulator, as this would have introduced a 

potential confound. The results of the between-group t-test revealed that there was no 

significant difference in fatigue ratings between the VGPs (M = 2.18, SD = 0.87), and the 

NVGPs, (M = 3.00, SD = 1.22) prior to driving, t(18) = 1.74, p = .098. In addition, there was 

no significant difference in fatigue ratings between VGPs (M = 4.46, SD = 1.04) and NVGPs 

(M = 4.89, SD = 0.93) after driving, t(18) = 0.98, p = .336. 

Figure 5.4 Mean fatigue rating on the Samn-Perelli Fatigue checklist 

 
Figure 5.4. Mean fatigue rating on the Samn-Perelli Fatigue checklist. Error bars represent ± 

1 standard error. 
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5.6.4 Driving Fatigue Scale. 

A MANOVA was conducted on the seven sub-categories of the Driving Fatigue Scale 

(Matthews et al., 2008). Box’s test of equality of covariance was significant (p = .001). 

Levene’s test of equality of variances was significant for the confusion and the comfort 

categories (ps < .05). 

At the multivariate level, there was no significant difference between the two groups, 

V = 0.35, F(7, 12) = 0.91, p = .533, partial η2 = .35. Results were also analysed at the 

univariate level to determine if groups differed in the type of fatigue experienced whilst 

driving. There were no significant differences between the two groups in any of the seven 

categories (see Table 5.1). Results were also analysed by grouping the sub-categories into the 

four broader categories (physical fatigue, tiredness-demotivation, cognitive-attentional, 

coping/fatigue management), however as with the previous analysis, there was no significant 

difference between the groups, and are therefore not reported here. 

Table 5.1 Driving Fatigue Scale self-report measures 

 

 

 

 

Table 5.1. 

Driving Fatigue Scale self-report measures 

Sub-category VGP (SD) NVGP (SD) ANOVA 

Muscular 9.27 (3.80) 9.56 (6.50) F(1, 18) = 0.02, p = .905 

Exhaustion 10.55 (6.41) 11.44 (7.52) F(1, 18) = 0.08, p = .776 

Boredom 16.82 (8.66) 17.33 (9.18) F(1, 18) = 0.02, p = .899 

Confusion 15.09 (4.89) 16.22 (8.61) F(1, 18) = 0.14, p = .716 

Performance 15.00 (5.85) 16.00 (6.98) F(1, 18) = 0.12, p = .731 

Comfort 17.82 (4.09) 12.89 (8.36) F(1, 18) = 2.98, p = .101 

Arousal 19.91 (3.81) 17.33 (7.04) F(1, 18) = 1.09, p = .310 
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5.6.5 Driving Performance. 

Driving performance was assessed by measuring the number of traffic violations 

made in each driving session, as well as the total number of points acquired in each session, 

as it is possible to make fewer traffic violations but for these to be of greater severity or to 

have a greater number of minor traffic violations. 

A 2 (video game experience) x 2 (driving session) mixed design ANOVA was 

conducted on the number of traffic violations made by VGPs and NVGPs in each of the two 

driving sessions. Levene’s test of equality of variances was not significant for either session 

(ps > .05). There was a significant difference between the first session (M = 54.75, SE = 4.06) 

and the second session (M = 70.02, SE = 9.02), F(1, 18) = 6.31, p = .022, partial η2 = .26. The 

difference between the VGPs (M = 50.55, SE = 8.45) and the NVGPs (M = 74.22, SE = 9.34) 

was not significant F(1, 18) = 3.53, p = .077, partial η2 = .16. There was no significant 

interaction F(1, 18) = 0.61, p = .447, partial η2 = .03 (see Figure 5.5). 

Post hoc analyses were conducted to determine if there were differences in the 

number of traffic violations between the two groups during individual driving sessions. Two 

between-group t-tests were conducted, one for each driving session. In the first driving 

session, VGPs (M = 45.27, SD = 15.74) made significantly fewer violations than the NVGPs 

(M = 64.22, SD = 20.57), t(18) = 2.34, p = .031. However, in the second sessions there was 

no significant difference between VGPs (M = 55.82, SD = 28.81) and NVGPs (M = 84.22, SD 

= 50.89), t(18) = 1.57, p = .133. 
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Figure 5.5 Number of traffic violations over driving sessions 

 
Figure 5.5. Number of traffic violations over driving sessions. Error bars represent ±1 

standard error. 

 
A 2 (video game experience) x 2 (driving session) mixed design ANOVA was 

conducted on the total violation score of VGPs and NVGPs in each of the two driving 

sessions. Levene’s test of equality of variances was not significant for either session (ps > 

.05). There was a significant difference between the first session (M = 223.02, SE = 16.09) 

and the second session (M = 287.81, SE = 37.79), F(1, 18) = 5.68, p = .028, partial η2 = .24. 

The difference between the VGPs (M = 206.05, SE = 34.43) and the NVGPs (M = 304.78, SE 

= 38.06) was not significant F(1, 18) = 3.70, p = .070, partial η2 = .17. There was no 

significant interaction F(1, 18) = 0.74, p = .400, partial η2 = .04. (see Figure 5.6). 

Post hoc analyses were conducted to determine if there were differences in the total 

violation scores between the two groups during individual driving sessions. Two between-

group t-tests were conducted, one for each driving session. In the first driving session, VGPs 

(M = 185.36, SD = 72.88) had a significantly lower total violation score than the NVGPs (M 
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= 260.67, SD = 69.93), t(18) = 2.34, p = .031. However, in the second sessions there was no 

significant difference between VGPs (M = 226.73, SD = 125.30) and NVGPs (M = 348.89, 

SD = 209.75), t(18) = 1.62, p = .123. 

Figure 5.6 Total violation score over driving sessions 

 
Figure 5.6. Total violation score over driving sessions. Error bars represent ±1 standard error. 

 
5.6.6 Eye-tracking. 

Eye-movements of VGPs and NVGPs during the driving the two driving sessions 

were compared. The number of fixations to an area, and the total amount of time fixated in 

that area during each driving session was measured. Two analyses were conducted, one 

compared eye-movements to close and distant areas of the road, and the other compared eye-

movements to the centre and wide areas of the road. 

5.6.6.1 Close vs. Distant. 

A MANOVA was conducted on the total number and total duration of eye-

movements (seconds) of VGPs and NVGPs to close and distant areas of the road between the 
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two driving sessions. Box’s test of equality of covariances was significant (p < .001). 

Levene’s test of equality of variances was not significant (ps > .05). There was no significant 

difference between the two groups, V = 0.14, F(2, 16) = 1.26, p = .309, partial η2 = .14. There 

was a significant difference between the two areas of the road, V = 0.61, F(2, 16) = 12.61, p = 

.001, partial η2 = .61. There was no significant difference between the two driving sessions V 

= 0.13, F(2, 16) = 1.17, p = .337, partial η2 = .13. There was no significant interaction 

between road areas and groups, V = 0.26, F(2, 16) = 2.78, p = .092, partial η2 = .26. There 

was no significant interaction between driving sessions and groups, V = 0.07, F(2, 16) = 0.61, 

p = .555, partial η2 = .07. There was no significant interaction between road area and driving 

session, V = 0.18, F(2, 16) = 1.81, p = .196, partial η2 = .18. The three-way interaction 

between road area, driving session, and group was not significant, V = 0.29, F(2, 16) = 3.33, 

p = .062, partial η2 = .29. 

Univariate tests revealed that the difference in the number of fixations between the 

close (M = 282.49, SE = 44.64) and distant (M = 419.84, SE = 64.36) road areas was not 

significant, F(1, 17) = 4.30, p = .054, partial η2 = .20. The difference in the total duration of 

fixations between the close (M = 123.90s, SE = 17.19) and distant (M = 219.49s, SE = 27.67) 

areas was significant, F(1, 17) = 8.30, p = .001, partial η2 = .33. The three-way interaction 

between road area, driving session, and group was significant for both number of fixations, 

F(1, 17) = 5.52, p = .031, partial η2 = .25, and total fixation duration, F(1, 17) = 7.05, p = 

.017, partial η2 = .29. No other effects or interactions were significant (see Figures 5.7 and 

5.8). 

 



COGNITIVE FATIGUE & VIDEO GAMES 150 

 

 

Figure 5.7 Number of fixations to close area and distant area of road 
 

 

Figure 5.7. Number of fixations to close area (left) and distant area (right) of road. Error bars represent ±1 standard error. 
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Figure 5.8. Total length of fixations to close area (left) and distant area (right) of road. Error bars represent ±1 standard error. 

 

Figure 5.8 Total length of fixations to close area and distant area of road 
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5.6.6.2 Wide vs. Centre. 

A MANOVA was conducted on the total number and total duration of eye-

movements of VGPs and NVGPs to wide and centre areas of the road between the two 

driving sessions. Box’s test of equality of covariances was significant (p = .001). Levene’s 

test of equality of variances was not significant (ps > .05). There was no significant 

difference between the two groups, V = 0.01, F(2, 16) = 0.10, p = .905, partial η2 = .01. There 

was a significant difference between the two areas of the road, V = 0.80, F(2, 16) = 32.60, p < 

.001, partial η2 = .80. There was no significant difference between the two driving sessions V 

= 0.15, F(2, 16) = 1.38, p = .281, partial η2 = .15. There was no significant interaction 

between road areas and groups, V = 0.08, F(2, 16) = 0.74, p = .495, partial η2 = .08. There 

was no significant interaction between driving sessions and groups, V = 0.09, F(2, 16) = 0.83, 

p = .456, partial η2 = .09. There was no significant interaction between road area and driving 

session, V = 0.02, F(2, 16) = 0.15, p = .863, partial η2 = .02. The three-way interaction 

between road area, driving session, and group was not significant, V = 0.07, F(2, 16) = 0.60, 

p = .559, partial η2 = .07. 

Univariate tests revealed that the difference in the number of fixations between the 

wide (M = 1606.82, SE = 67.63) and centre (M = 697.91, SE = 88.15) road areas was 

significant, F(1, 17) = 68.75, p < .001, partial η2 = .80. The difference in the total duration of 

fixations between the wide (M = 922.20s, SE = 65.54) and centre (M = 341.24s, SE = 31.90) 

areas was significant, F(1, 17) = 53.17, p < .001, partial η2 = .76. No other effects or 

interactions were significant (see Figures 5.9 and 5.10).
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Figure 5.9. Number of fixations to wide area (left) and centre area (right) of road. Error bars represent ±1 standard error. 

 

 

Figure 5.9 Number of fixations to wide area  and centre area of road 
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Figure 5.10. Total length of fixations to wide area (left) and centre area (right) of road. Error bars represent ±1 standard error. 

Figure 5.10 Total length of fixations to wide area and centre area of road 
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5.7 Discussion 

Overall, the results of the present study demonstrate the real-world benefits of 

regularly playing action video games. With regards to driving simulator performance, VGPs 

performed significantly better than NVGPs in the initial driving session when they were not 

cognitively fatigued. However, the performance of both groups declined over time due to 

fatigue, so that there was no significant difference between the groups. Driving experience 

was also assessed as this could have been a potential confound affecting performance, 

however, there was no significant difference between the groups. Thus, the significant 

difference in driving performance between the groups in the first driving session can be 

attributed to the differences in action video game experience. The results of the Samn-Perelli 

Fatigue Checklist confirmed that both groups experienced cognitive fatigue as there was a 

significant increase in fatigue ratings from pre-drive to post-drive, however there was no 

significant difference between the groups, indicating that both groups subjectively 

experienced similar levels of fatigue. In addition, there was no difference between the groups 

on the Driving Fatigue Scale, further indicating that both groups experienced similar levels of 

fatigue.  

 Driving performance was measured by the number of traffic violations and the total 

violation score in each driving session. The pattern of results was similar for both measures 

indicating that the number and severity of violations was proportional between sessions and 

groups, that is, participants did not make more violations of lesser severity or fewer violations 

of greater severity between sessions. Video game players made fewer violations and had 

lower violation scores in the first session compared to the NVGPs. However, this difference 

was reduced when participants were fatigued in the second driving session. Thus, there is 

evidence to suggest that both VGPs and NVGPs experience the effects of cognitive fatigue 

similarly. The results of the driving simulator performance in the first session are consistent 
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with that of previous research finding that VGPs are better drivers than NVGPs (Rupp et al., 

2015). Regularly playing action video games improves a range of cognitive abilities such as 

visual attention (C. S. Green & Bavelier, 2003), speed of visual processing (Dye et al., 

2009b), and decision making and cognitive control (Bailey et al., 2010), and this is one of the 

first studies to demonstrate that action video game players can transfer these abilities to real-

world tasks, as demonstrated by superior driving simulator performance compared to 

NVGPs.  

The results of the present study confirm the findings from Study 1 (Chapter 3), both 

VGPs and NVGPS experience similar performance decrements due to cognitive fatigue. At 

the multivariate level, VGPs had superior sustained attention performance compared to 

NVGPs, however their performance declined over time, similar to the performance of the 

NVGPs. In the present study, the driving performance of the VGPs was significantly better 

than that of the NVGPs when they were not fatigued, however, in the second driving session, 

there was no difference between the two groups. Thus, the results demonstrate that although 

action video game experience can improve driving performance, it does not assist with 

resisting the effects of cognitive fatigue.  

As identified in the previous studies (Chapter 3 and 4), when measuring cognitive 

fatigue, only tasks on which optimal performance can be achieved in a short period of time, 

or in which all participants are already proficient, should be used, as learning effects can 

masks fatigue effects (Ackerman, 2011). The results of the present study demonstrate that the 

driving simulator is an ideal task for measuring multitasking and executive control in relation 

to fatigue. On average, participants had 5 to 10 years of driving experience and therefore the 

practice driving session could focus on the participants becoming familiar with the driving 

simulator rather than on driving skills and road rules. Further, the decline in performance 

between the two driving sessions reveals that there was no learning effect, or that participants 
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reached their optimal performance in the practice or first driving session and then 

experienced the effects of fatigue after that. 

In addition to driving performance, eye-movements were also recorded. The number 

of fixations, and total fixation length was measured when participants looked at either the 

close or distant areas of the road, or the wide or centre areas. Both VGPs and NVGPs 

demonstrated eye-movement characteristics of experienced drivers (Crundall et al., 1998; 

Patten et al., 2006), in that there were more fixations on, and longer time spent viewing the 

distant and wide areas of the road, compared to the close and centre areas. Viewing a wider 

area of the road, and looking further ahead allows drivers to process more information and to 

adjust their driving behaviour accordingly, resulting in better driving performance (Paxion et 

al., 2014). Although it was predicted that VGPs would demonstrate this behaviour, it is not 

surprising that NVGPs demonstrated this behaviour too, given the number of years of driving 

experience they had. Further, neither group experienced tunnel vision as a result of fatigue. 

There was no significant change in the number of fixations or time spent looking at either the 

wide or centre areas of the road between the two driving sessions. However, there was a 

significant change over time in the number of fixations and total length of fixations to the 

close and distant areas of the road, and a significant three-way interaction between video 

game experience group, driving session, and road area. Over time, NVGPs looked at the close 

and distant areas of the road less and for shorter periods. Thus, NVGPs were directing their 

attention to other off-road areas as they became fatigued, which is likely the cause of their 

poorer driving performance in the second driving session, as inadequate visual scanning 

inevitably leads to traffic accidents (Underwood, Crundall, & Chapman, 2011). 

Interestingly however, whilst VGPs also looked at the close area of the road less and 

for shorter as they became fatigued, they differed to NVGPs, in that there was an increase in 

the number of fixations and duration of time spent looking at the distant area of the road. 
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Again, this is indicative of experienced driving behaviour, as looking further ahead along the 

road allows the driver to see potential hazards and adapt their behaviour (Paxion et al., 2014). 

Although the results of the current study are encouraging, more research is still 

needed. The present study is only one of a few that have investigated the real-world benefits 

of regular action video game playing, and the only one that has investigated cognitive fatigue. 

However, a causal relationship between action video game playing, driving performance, and 

cognitive fatigue cannot be established from the current results. Future studies should attempt 

to replicate and build on the current study by investigating the effect of action video game 

training on simulated driving performance. 

In conclusion, the results of the present study demonstrate that regular action video 

game players perform better on a driving simulator compared to NVGPs. Regularly playing 

action video games has previously been shown to improve cognitive processes that are 

essential for safe driving (Bailey et al., 2010; Dye et al., 2009b; C. S. Green & Bavelier, 

2003), and the current results demonstrate that these can be transferred to real-world tasks. 

However, VGPs remain as susceptible to the effects of cognitive fatigue as NVGPs.  
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6. Chapter 6: Summary 

The purpose of this thesis was to examine the relationship between action video game 

experience and cognitive fatigue. Cognitive fatigue results in increased difficulty in 

maintaining task performance and increases the likelihood of human error (Ackerman, 2011; 

Guastello et al., 2013; Lal & Craig, 2001; Van Dongen et al., 2011), which can become fatal 

when performing certain tasks or occupations, for example motor vehicle or aircraft control. 

It has previously been found that individuals who regularly play action video games perform 

better than non-video game players on tasks related to sustained and divided attention (Boot 

et al., 2008; Castel et al., 2005; C. S. Green & Bavelier, 2003, 2006b, 2007; Hubert-

Wallander, Green, Sugarman, et al., 2011; T. N. Schmidt et al., 2012), however there has 

been little research investigating this directly. Further, research on the cognitive benefits of 

action video games has been limited by the use of only one training technique. In the field of 

skill acquisition, it is well known that training that is variable and that emphasises cognitive 

flexibility can lead to greater learning (Baniqued et al., 2013; Kramer et al., 1995; R. A. 

Schmidt & Bjork, 1992), however this has not yet been explored with the use of modern 

action video games. Lastly, there are few studies examining the everyday benefits of action 

video game playing and how cognitive fatigue may affect performance on real-world tasks. 

The main findings of this thesis reveal that VGPs experience similar levels of 

cognitive fatigue as NVGPs. In Study 1 (Chapter 3), VGPs and NVGPs were 

indistinguishable by their performance on the vigilance task. Over the 60-minute task, the 

performance of both groups declined by similar amounts, with increases in reaction time 

variability, and decreases in sensitivity and criterion levels. In addition, in Study 3 (Chapter 

5), when driving in a simulator, the performance of both groups declined significantly over 

time, as indicated by more traffic violations and having a higher total violation score. 

Combined, these results demonstrate that both VGPs and NVGPs are equally susceptible to 
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the effects of cognitive fatigue. This is further supported by participants’ self-report measures 

of fatigue, in that both groups experienced similar increases in fatigue after driving in the 

simulator, and both groups reported experiencing similar types of fatigue whilst driving. 

Although VGPs experience similar levels of cognitive fatigue as NVGPs, there 

remain advantages to regularly playing action video games. In Study 1 (Chapter 3), VGPs 

were significantly better at multitasking than the NVGPs. The results revealed that the VGPs 

performed significantly better on the secondary tasks of the MATB-II compared to the 

NVGPs, indicating that VGPs could perform these tasks without sacrificing performance on 

the primary tasks. Although MATB-II performance could not be used to assess the effect of 

cognitive fatigue on multitasking due to practice effects, the results do demonstrate that 

VGPs learned how to perform the MATB-II faster than the NVGPs. In the first MATB-II 

session, there was no significant difference in performance at the multivariate level, however 

in the second session, despite both groups improving, VGPs performed significantly better 

than the NVGPs. Video game players’ superior multitasking skill was also evidenced in 

better driving performance. In Study 3 (Chapter 5), when not fatigued, the driving 

performance of the VGPs was significantly better than that of the NVGPs. The number of 

years of driving experience was also assessed as this may have been a potential confound, 

however, there was no significant difference between the groups, and in fact on average, 

NVGPs had twice as many years’ experience as the VGPs. Thus, the superior driving 

performance of VGPs can be attributed to their experience playing action video games.  

When people are fatigued, visual perception is reduced, gaze narrows (Ji et al., 2004), 

and the peripheral field of view, the number of eye-movements and scanning patterns are 

reduced (Liu & Wu, 2009; May & Baldwin, 2009), potentially leading to hazardous 

consequences when driving. In Study 3 (Chapter 5), participants’ eye-movements were 

recorded to examine whether VGPs and NVGPs had different search patterns and if these 
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changed as they became fatigued. As the NVGPs became fatigued, they looked at the close 

and distant areas of the road less. The VGPs also looked at the close area of the road less as 

they became fatigued, however, the amount of time spent looking at the distant area of the 

road increased. Previous research has shown that VGPs have increased visual attention (C. S. 

Green & Bavelier, 2003), speed of visual processing (Dye et al., 2009b), and increased field 

of view (Feng et al., 2007; C. S. Green & Bavelier, 2006b). Looking further ahead along the 

road is characteristic of experienced driver’s eye-movements, as it allows the driver to 

process more information, adjust their driving behaviour, and avoid potential hazards (Paxion 

et al., 2014). However, this did not result in any difference in performance between the two 

groups when they were fatigued. Thus regularly playing action video games may allow 

individuals to develop visual scanning patterns similar to those of experienced drivers, 

however this does not affect their performance when they are fatigued.  

The above results demonstrate that individuals with a greater amount of action video 

game experience perform better on sustained attention and divided attention tasks. However, 

there remains the possibility that individuals who have superior sustained and divided 

attention skills are attracted to action video games and therefore perform well at them, and so 

these skills are not improved by action video game playing (Adams & Mayer, 2012). 

Therefore, in Study 2 (Chapter 4), the effect of video game training on these measures was 

also investigated. In addition, two types of training were compared, variable priority training 

and fixed emphasis training, to determine which was most effective at improving sustained 

and divided attention performance. Overall, there was no advantage of using one training 

technique over the other when learning to play the video game. Further, there was no 

difference between training techniques on any of the sustained and divided attention 

measures. However, overall there is some evidence to suggest a positive effect of video game 

training. For the vigilance task, the multilevel modelling analyses found an interaction 
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between period of watch and testing session. This revealed that in the pre-training test there 

were increases in reaction times and reaction time variability as time-on-task increased. 

However, in the post-training test, and at the three-month follow-up there was little to no 

increase in reaction times or reaction time variability over time. Thus, participants 

experienced the effects of cognitive fatigue to a lesser extent after video game training than 

compared to before training. In addition, there was a significant improvement in multitasking 

performance after video game training, however, as participants continued to improve on the 

MATB-II even at the three-month follow up test, it is unknown whether the improved 

performance was due to video game training or simply due to practice effects on the test. 

6.1 Implications  

Many occupations require sustained and divided attention where the effects of 

cognitive fatigue can have fatal consequences (e.g. pilots, power plant operators, long-

distance drivers, security surveillance operators, and unmanned aircraft vehicle operators) 

(Chiappe et al., 2013; Durso & Sethumadhavan, 2008; Feltman, 2014; Finomore et al., 2009; 

Gartenberg et al., 2013; Hubal et al., 2010; Warm, Matthews, et al., 2008; Warm, 

Parasuraman, et al., 2008). Therefore, understanding the factors involved in attaining 

optimum human performance, and the ability to maintain this in the face of cognitive fatigue 

is beneficial when implementing personnel screening, assessment, and training for such 

occupations. For example, the MATB-II was designed to replicate the tasks performed by 

aircraft operators (Santiago-Espada, Myer, Latorella, & Comstock, 2011), and has previously 

been used to assess the suitability of VGPs as potential unmanned aerial vehicle (UAV) 

operators (Feltman, 2014). Operators of unmanned-aerial vehicles need to sustain their 

attention for hours at a time (Cummings et al., 2013), as well as operate multiple UAVs 

simultaneously, all of which requires a high level of cognitive skills and the ability to resist 

the effects of cognitive fatigue. Understanding the effects of cognitive fatigue on UAV 
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control has been highlighted as an important issue, as the use of UAVs increases (Wilson, 

Caldwell, & Russell, 2007). The results of the studies reported in this thesis have practical 

implications in this area. Individuals with action video game experience, whether from past 

experience or through training, may be suitable UAV operators, as they demonstrate superior 

multitasking abilities, however, caution must be taken, as they are as susceptible to the effects 

of cognitive fatigue as individuals without video game experience  

The results of this project also have theoretical implications pertaining to the role of 

executive control in cognitive fatigue. Cognitive fatigue is an adaptive mechanism that 

controls and manages motivation and behaviour, and is closely related to executive control 

(Hockey, 2013). The executive functions organise and control lower-level cognitive functions 

according to the individual’s goals. They are particularly involved in sustained attention and 

divided attention tasks, as executive control is needed when goals need to be prioritised, 

when irrelevant stimuli need to be ignored, and when automatic responses need to be 

overruled (van der Linden, 2011). However, performing complex tasks for long durations 

taxes executive control, resulting in a reduction in performance (Earle et al., 2015; Lorist & 

Faber, 2011; Lorist et al., 2000; van der Linden, 2011; van der Linden et al., 2003). 

Therefore, in the present project, it was hypothesised that those with greater executive 

control, that is, the VGPs, would be able to resist the effect of cognitive fatigue. The results 

presented are consistent with previous work (Appelbaum et al., 2013; Strobach et al., 2012), 

demonstrating that VGPs have greater executive control compared to NVGPs, as 

demonstrated by their superior sustained and divided attention performance. However, there 

was limited support for the executive control hypothesis, as the advantage of superior 

executive control did not always transfer to an increased resistance to the effects of cognitive 

fatigue. In Study 1 (Chapter 3), the performance of VGPs and NVGPs declined at a similar 

rate in the vigilance task. These results are consistent with the previous research on the 
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effects of fatigue however they do not support the hypothesis that those with greater 

executive functions will be less affected by cognitive fatigue. Further evidence was provided 

for this in Study 3 (Chapter 5). When participants were not fatigued, VGPs performed 

significantly better than NVGPs. However, the performance of both groups declined over 

time due to fatigue, so that there was no significant difference between the groups. 

In addition to the real world and theoretical implications identified above, the present 

project has also highlighted a number if implications related to the study and analyses of the 

cognitive performance of VGPs. It has been consistently demonstrated that VGPs have 

improved cognitive abilities that are required in performing sustained attention tasks (Boot et 

al., 2008; Castel et al., 2005; Dye et al., 2009b; C. S. Green & Bavelier, 2003, 2006b, 2007; 

Hubert-Wallander, Green, Sugarman, et al., 2011; T. N. Schmidt et al., 2012), and it has been 

found that VGPs have faster reaction times than NVGPs on a vigilance task (Dye et al., 

2009b). In Study 1 (Chapter 3), at the univariate level, there was no significant difference in 

reaction times, reaction time variability, measures of accuracy, or sustained attention 

performance between VGPs and NVGPs. However, it is important to consider all variables in 

the analysis, as at the multivariate level, there was a significant difference in sustained 

attention performance between the groups. This suggests that the difference in performance 

between VGPs and NVGPs is detectable only when a combination of the sustained attention 

performance measures are analysed together. Further evidence of this is provided by the 

results of Study 3 (Chapter 5) measuring driving performance. The driving simulator task 

required participants to sustain their attention for approximately two hours. Successful 

driving performance is the result of a combination of multiple variables as it consists of 

performing multiple sub-tasks simultaneously and places high demands on a range of 

cognitive processes (Desmond & Hancock, 2001; Mäntylä et al., 2009). In this task, VGPs 

performed significantly better than NVGPs in the first driving session, when fatigue was not 
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a factor. Thus, when a combination of factors and variables contribute to task performance, 

they must be analysed in combination. Doing so reveals that VGPs have superior sustained 

attention compared to NVGPs, which is consistent with previous research (Boot et al., 2008; 

Castel et al., 2005; Dye et al., 2009b; C. S. Green & Bavelier, 2003, 2006b, 2007; Hubert-

Wallander, Green, Sugarman, et al., 2011; T. N. Schmidt et al., 2012). 

In addition to the above, this project has also contributed to knowledge on the 

cognitive benefits of action video game playing through the methods used to classify 

participants as either NVGPs or VGPs. Many studies refer to their video game playing 

participants as experts, rather than as those with more experience (Andrews & Murphy, 2006; 

Boot et al., 2008; Karle et al., 2010; Zhang et al., 2009), and while the process of becoming 

an expert in a particular field often requires many hours of practice (VanDeventer & White, 

2002), it is not sufficient criteria for being considered an expert. These studies also use self-

report measures only to classify participants as either VGPs or NVGPs. Study 1 (Chapter 3) 

was the first in the literature to classify participants by using actual video game performance 

measured in the laboratory. The results provide statistical evidence to support the use of self-

report measures in classifying individuals as either VGPs or NVGPs. Thus, the use of self-

report measures of video game experience appears to be sufficient in classifying participants 

as either VGPs or NVGPs, on the proviso that VGPs are referred to as having more ‘video 

game experience’, rather than as ‘video game experts’.  

This project was also the first to investigate the effectiveness of different training 

techniques in improving the cognitive skills associated with action video game playing. 

Practicing a task will undoubtedly result in improved performance, however, specific training 

strategies can be more effective at increasing learning, improving retention of newly learned 

skills, and broadening the transfer of training (Gopher et al., 2007; Lee, Boot, et al., 2012; R. 

A. Schmidt & Bjork, 1992). Variable priority training was chosen in comparison to the 
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conventional fixed emphasis training, as training techniques that are variable, promote 

cognitive flexibility, and that avoid task-specific mastery can lead to greater levels of learning 

as well as broader transfer (Baniqued et al., 2013; Kramer et al., 1995; R. A. Schmidt & 

Bjork, 1992). However, the results of the Study 2 (Chapter 4) did not demonstrate an 

advantage for either training technique. There are a number of possible reasons as to why the 

collected results are inconsistent with those from previous research, and these are discussed 

in the following section. 

6.2 Limitations and future directions 

The results of the current project fill a gap in the literature pertaining to the 

experience of cognitive fatigue by VGPs and NVGPs, however it is not without its 

limitations. Firstly, it was difficult to recruit participants who solely played first-person 

shooter video games. There has been a great deal of interest in this particular genre of video 

game since the seminal paper by C. S. Green and Bavelier (2003), and subsequent work has 

continued this focus. However, in both Study 1 (Chapter 3) and Study 3 (Chapter 5) it was 

necessary to broaden the categorisation of VGPs to include all action video games. Thus 

when comparing findings between studies it is important to determine how VGPs are 

classified. Further, it is possible that not all action video games induce the same cognitive 

benefits as first-person shooter games, and may explain why, inconsistent with previous 

research, that there was no significant differences between VGPs and NVGPs on some 

measures of performance (e.g. initial multitasking performance in Study 1). Therefore, the 

results of Study 1 and Study 3 pertain to the effects of regularly playing action video games, 

not specifically to first-person shooter video games. It is suggested that future work 

investigate differences between the sub-types of action video games. Investigation of this is 

still in its early stages (Oei & Patterson, 2015), and in light of the present results it would be 

beneficial to direct the focus on the potential differences between genres of video games in 
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the development of sustained and divided attention abilities. 

Secondly, Study 2 (Chapter 4) only involved six participants, all of whom were 

female, aged 29 to 58 years. Thus, the results cannot be generalised to the wider population, 

and are also heavily impacted by individual differences (see Section 4.5.4). The results of 

Study 2 are therefore only preliminary with regards to investigating the benefits of different 

training techniques with video games in improving sustained and divided attention. It was 

also highlighted in Study 2 that the efficiency of training improves when it is highly variable. 

By including a range of action video games for participants to train on, instead of just one, 

task variability is increased which may in turn increase the transfer of improvements in video 

game performance to sustained and divided attention tasks (Chiappe et al., 2013; C. S. Green 

et al., 2009). It is therefore suggested for future studies that multiple action video games be 

used when investigating the benefits of variable priority training.  

Thirdly, as with Study 1 (Chapter 3), the results of Study 3 (Chapter 5) do not provide 

evidence for a causal relationship between video game experience and improved driving 

performance. Therefore, future work should train NVGPs on one or more action video games 

to determine whether driving performance can be improved through action video game 

experience. In addition, it has previously been suggested that complex real-world tasks such 

as driving may benefit from variable priority training (Boot et al., 2010). Therefore the 

investigation of the effectiveness of different training techniques with video games, aimed at 

improving sustained and divided attention should be expanded to also include simulator task 

performance in addition to laboratory task measures. Further, it would be interesting to 

investigate whether the visual search patterns of the NVGPs change due to playing these 

video games. The results of Study 3 provide evidence that there are differences in search 

patterns between VGPs and NVGPs, however it is still unclear whether this is due to action 

video game experience or other factors such as driving experience, and whether this can 
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affect driving performance. 

6.3 Conclusion 

The results of this project demonstrate that individuals who regularly play action 

video games have superior sustained attention and divided attention compared to non- video 

game players. These results were found by measuring performance not only in the laboratory 

using vigilance and multitasking tasks, but also through measuring driving performance in a 

simulator. However, despite the improved performance of VGPs compared to NVGPs, both 

groups were equally susceptible to the effects of cognitive fatigue. Over time, both groups 

experienced significant declines in sustained attention, divided attention, and driving 

performance. The results of this thesis also provide further evidence that training on an action 

video game can result in improved sustained and divided attention, and that these 

improvements can remain three months after training ceases. 

The wide range of cognitive benefits of playing action video games, and the superior 

sustained and divided attention ability of VGPs suggests that playing these games improves 

executive functioning, which also controls the adaptive mechanisms associated with 

cognitive fatigue. However, this thesis presents evidence that improved executive control 

does not result in an increased ability to resist the effects of cognitive fatigue. Overall, these 

findings have practical implications for the recruitment and training of personnel in 

occupations that require high levels of cognitive performance and the need to divide and 

sustain attention for extended periods of time. However, whilst video game experience and 

training can improve sustained and divided attention performance, the results reported in this 

thesis demonstrate that it does not improve the ability to resist the effects of cognitive fatigue. 
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8. Appendix A 

Study 1 Questionnaire 

Full name: _________________________________ 

Age: _____________________________________ 

Sex: _____________________________________ 

Contact email: _____________________________ 

Contact phone: _____________________________ 

 

Please list any exercise/sport activities you partake in, and how often: 

            

Do you play video games (including brain-training games)?  YES    /   NO 

If YES:  

On average, have you played first-person shooter games at least 4 times per week for a 

minimum of 60 minutes each time, over the past 6 months?    

YES  /   NO 

How often, over the past 6 months, do you play video games (any genre, including brain-

training games, and if you have Unreal Tournament experience) 

TITLE GENRE CONSOLE Hours per week 
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9. Appendix B 

Study 1 Information Letter 
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10. Appendix C 

Study 1 Consent Form 
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11. Appendix D 

Study 2 Information Letter 
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12. Appendix E 

Study 2 Consent Form 
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13. Appendix F 

Study 2 Variable Priority Training Instructions 

Task Description 

1 
 Get full Health (199) 

 Get full Shield (150) 

 Find the double-damage pick-up 

2 

 Pick up all of the weapons 

 Get full ammunition for each weapon 

 Use the Primary fire (left click) and Secondary 

fire (right click) for each weapon 

3 

 Complete Task 1 and Task 2 whilst evading 

the enemy 

 Try not to die (Pick up health, use dodge and 

jump) 

4 

 Complete Task 1 and Task 2 whilst attacking 

the enemy 

 Try to kill the enemy as many times as 

possible (Use everything at your disposal, i.e. 

weapons, pick-ups ) 

5 

 Complete all tasks 

 Gain full Adrenaline (100) 

 Learn the 3 other secret key combos to unlock 

the Adrenaline bonus 

 E.g. W,W,W,W = speed 
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14. Appendix G 

Study 3 Traffic Violations and Scores 

Violation Description Score 

You are driving more than 10 kph over the speed limit 3 

Driving into the traffic lane without turning the left turn signal. 3 

Driving into the traffic lane without turning the right turn signal. 3 

Left turn signal not used when changing the lanes 3 

Right turn signal not used when changing the lanes 3 

The right turn signal was not on when turning 3 

Turn signal not used 3 

The exit from the ring is allowed only in the left outside lane 3 

The left turn signal was not on when entering the ring. 3 

The left turn signal was not on when leaving the ring. 3 

Unnecessary crossing to the opposite lane 3 

You are driving in the forbidden direction 3 

You are driving more than 20 kph over the speed limit 3 

You are driving in the opposite lane 5 

You are driving more than 40 kph over the speed limit 5 

You are driving on a red light 5 

You have crossed the lane markings into the opposite lane 5 

You haven't yielded to a pedestrian 5 

You've pulled over the roadway 5 

You are driving more than 60 kph over the speed limit 10 

You are driving more than 80 kph over the speed limit 10 

Pedestrian accident 10 

You've had an accident 10 
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15. Appendix H 

Study 3 Questionnaire 

Full name: _________________________________ 

Age: _____________________________________ 

Sex: _____________________________________ 

Contact email: _____________________________ 

Contact phone: _____________________________ 
 

Please list which driver’s licences you hold, how many years you have been driving & any 

other driving experience factors (e.g. work as a courier, taxi driver etc.) 

             

Do you play video games (including brain-training games)?  YES    /   NO 

If YES:  

On average, have you played first-person shooter games at least 4 times per week for a 

minimum of 60 minutes each time, over the past 6 months?    

YES  /   NO 

How often, over the past 6 months, do you play video games (any genre)? 

TITLE GENRE CONSOLE Hours per week 
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16. Appendix I 

Study 3 Information Letter 
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17. Appendix J 

Study 3 Consent Form 

 


	Cognitive fatigue: Exploring the relationship between the fatigue effect and action video-game experience
	Recommended Citation

	Edith Cowan University
	Research Online
	2015

	Cognitive fatigue: Exploring the relationship between the fatigue effect and action video-game experience
	James Brooks
	Recommended Citation



