
Edith Cowan University Edith Cowan University

Research Online Research Online

Theses : Honours Theses

1998

Vector Geometry and Applications to Three-Dimensional Vector Geometry and Applications to Three-Dimensional

Computer Graphics Computer Graphics

Rory Morrison
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses_hons

 Part of the Graphics and Human Computer Interfaces Commons

Recommended Citation Recommended Citation
Morrison, R. (1998). Vector Geometry and Applications to Three-Dimensional Computer Graphics.
https://ro.ecu.edu.au/theses_hons/1013

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses_hons/1013

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses_hons
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses_hons?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F1013&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F1013&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses_hons/1013

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose

of your own research or study.

The University does not authorize you to copy, communicate or

otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following:

 Copyright owners are entitled to take legal action against persons
who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement. Where the reproduction of such material is

done without attribution of authorship, with false attribution of

authorship or the authorship is treated in a derogatory manner,

this may be a breach of the author’s moral rights contained in Part

IX of the Copyright Act 1968 (Cth).

 Courts have the power to impose a wide range of civil and criminal

sanctions for infringement of copyright, infringement of moral

rights and other offences under the Copyright Act 1968 (Cth).

Higher penalties may apply, and higher damages may be awarded,

for offences and infringements involving the conversion of material

into digital or electronic form.

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

Vector Geometry and Applications to Three-Dimensional
Computer Graphics

A Thesis Submitted to the
Faculty of Science and Technology

Edith Cowan University
Perth Wes tern Australia

by Rory Morrison

in Partial Fulfilment of the
Requirements for the Degree of

Bachelor of Science (Mathematics) Honours

August 1998

EDITH COWAN UNIVERSITY
LIBRARY

Chapter

Abstract

Declaration

Acknowledgements

1. Introduction

1. 1 Background to the Study

Table of Contents

1.2 An Introduction to Ray Tracing

1. 3 Significance of the Study

1.4 Purpose of the Project

2. Mathematical Framework and Preliminaries

2.1 Coordinate Spaces

2.2 Vectors

2.3 Homogeneous Coordinates

2.4 Elementary Euclidean Transformations

2.5 Defining Elements of a Scene

3. Ray Tracing and Ray Casting - Mathematical Discussion

3.1 Specification of the Problem World

3 2 Specifying the View Plane

3.3 Definition of the Rays

3 .4 Projection Methods

3. 5 Ray - Surface Intersections

iii

Page

Vl

Vll

Vlll

1

1

1

2

3

4

4

5

6

7

16

22

23

26

29

33

39

4. Representations of Surfaces

4.0 Guide to the Treatment of Surfaces

4.1 Quadric Surfaces

4.2 Tori

4.3 Composite Surfaces ofRevolution

4 .4 Swept Surfaces

4.5 Parametric Curves

4.6 Parametric Surfaces

5. Illumination Models and Shading of Surfaces

5. I Model Notation

52 Mechanisms of Light Transport

5.3 Application of Optical Models to Ray Tracing

5 A Illumination Model

5 5 Surface Detail

5.6 Approximation of a Smooth Surface through Phong Shading

6. Other Methods Of Image Generation

6.0 Review ofNotation

6 I Parallel Projection

6 2 Perspective Projection

6.3 Implications of Projecting on to the View Plane

6.4 Gouraud Shading

7. Conclusion

8. References

8.1 Bibliography

iv

44

44

49

63

64

68

72

94

99

99

100

106

114

117

121

123

124

125

127

129

129

131

133

133

V

8.2 Some Other Relevant Material 135

9. Appendices 136

Appendix 1: Examples 136

Appendix 2: Guide to Excel Routines for Parametric Curves and Surfaces 170

Appendix 2a: Data used for Examples... 186

Appendix 2b: Examples of Parametric Curves and Surfaces 189

vi

Abstract

The mathematics behind algorithms involved in generating three-dimensional images on

a computer has stemmed from the analysis of the processes of sight and vision. These

processes have been modeled to provide methods of visualising three-dimensional data

sets. The applications of such visualisations are varied.

This project will study some of the mathematics that 1s used m three-dimensional

graphics applications.

vii

Declaration

I certify that this thesis does not incorporate without acknowledgement any material

previously submitted for a degree or diploma in any institution of higher education; and

that to the best of my knowledge and belief that it does not contain any material

previously published or written by another person except where due reference is made

in the text.

Signature

Date :?.L/.~. / .. ~.~---

viii

Acknowledgements

Many thanks go to my supervisor Geoff Comber, whose guidance, enthusiasm and

encouragement, not to mention proof reading skills, went a long way to making this

experience a rewarding one. Thanks also to Louise Claxton, who makes many of my

other experiences rewarding too.

1. Introduction

1.1 Background and Significance

Computer graphics applications seek to generate images by processing data that is in

part provided by a user. Frequently this data may represent three-dimensional spaces

and may be thought of as a problem world or scene, which the user desires to exist as a

visual communication.

In any visual communication of a given problem world, be it a photograph, artist's

impression or computer generated image, it is the position from which the world is to be

viewed that determines that communication. Typically, this viewing location, the

camera or eye, is a point within the world, perhaps even within an object in that world.

From this point the world is viewed through a view plane that facilitates the description

of the third dimension in only two dimensions by means of projection.

Conventional theory dictates that it is the light within an environment that is received by

the eye and interpreted as vision. Not surprisingly then, computer graphics applications

aim to communicate visually by applying models simulating the behaviour of light and

its interaction with the surfaces of an environment.

1.2 An Introduction to Ray Tracing

The modelling of light in an environment centres around the idea that a light source

emits particles called photons. These carry energy that is perceived as a colour, should

such a photon strike the eye. The path of a photon is assumed to be a straight line

through space, and is referred to as a light ray. This may change direction as the light

ray collides with or passes through different media in the environment. By identifying

2

all the light sources present, one could trace the light rays of all photons as they interact

with an environment and identify those that are going to strike the eye, and hence

generate an image based on the colours received. However, this method is an

impractical solution to the image generation problem, since any one light source could

emit millions of photons (per unit time), in all directions, filling the environment

volume with rays, most of which would eventually have to be discarded for any given

viewing location.

A more practical approach is found by identifying the potential paths that light could

take to reach a given location (the eye). By placing a view plane in the problem world,

a limited number of rays originating at the eye can be cast 'backwards' through this

plane into the problem world. Determining the colour of such a ray involves examining

the colour and the illumination of any surfaces that it strikes. This process is known as

ray tracing. The theory behind ray tracing provides a general solution to the image

generation problem, and will be examined in some detail in this project.

1.3 Significance of the Study

Generating computer graphics, which represent three-dimensional data, highlights the

role of the computer as a principal tool in the visualisation process, the application of

which can be seen in many areas, ranging from heavy industry to forms of

entertainment. More recent developments in this field have centred on the extension

and refinement of the application of existing principles. In particular, the rendering of

non-visual data has seen much attention; computer images being used to aid

understanding of data through visualisation.

3

1.4 Purpose of the Project

This project studies some of the mathematics behind the processes used to create images

and effects that are now in evidence in many visually communicative media. It will

consider contemporary three-dimensional graphics engines, both those designed for

speed and interactivity, and those designed for detail and clarity; and it will present

some of the mathematical principles involved.

4

2. Mathematical Framework and Preliminaries

The primary motivation for the following sections is to introduce the notation that will

be employed in the rest of this project, and some of the mathematical concepts that are

used to describe methods by which a problem world, or environment may be viewed.

2.1 Coordinate Spaces

Euclidean space is used to describe and understand the three dimensions of the world

around us. We interpret size, length, angles and volumes according to Euclidean

geometry, for it is the geometry that we are most familiar with (so much so that the

word 'geometry' alone is commonly understood to refer to Euclidean geometry).

A point in Euclidean 3-space may be described by the coordinate triple (x, y, z), where

the coordinates represent distances of the point from the various coordinate planes.

y

z

Figure 2.1.
Right-handed coordinate

system.

5

This project will use a right-handed coordinate system. The choice of a right-handed or

left-handed system is arbitrary as a simple transformation exists to switch between the

systems:

2.2 Vectors

This section introduces the notation that will be used to describe vectors, and

summarises the vector operations that will be employed through the course of this

project.

2.2.1 Notation.

The following alternative notation will be used to describe a vector:

v=[~]=[a,b,c]T =ai+bj+ck

where i, j, k are unit vectors in the directions of the principal axes. Although

unconventional, the commas will sometimes be used in the horizontal matrix to assist

readability.

2.2.2 Euclidean Norm ofa Vector (Magnitude)

2.2.3 Addition and Subtraction.

6

2.2.4 Scaling.

2.2.5 Dot Product

where e is the angle between vo and v1 (If v O • v 1 = 0 the vectors are said to be

orthogonal).

2.2.6 Cross Product.

j k

and llvo xviii= llv ollllv1llsin e

The cross product of any two vectors generates a vector that is orthogonal to both of

those vectors. If we take the two vectors as lying on a plane, then the cross product

defines the normal vector to the plane.

7

2.3 Homogeneous Coordinates

3-space exists as a subset of 4-space, which itself may be described by the coordinates

(X,Y,Z,W). As such, a point (x,y,z) in 3-space is equivalent to the 4-tuple

(X,Y,Z,W) if and only if:

X Y Z
-=X -=y -=z.
w 'w 'w

It is convenient to choose the case for which W =I, allowing (x, y, z) to be written

homogeneously as (x, y, z, 1). Whilst this may seem to be of trivial notational value (we

can already define a complete 3-dimensional problem world using only (x, y, z)), the

use of homogeneous coordinates is useful in certain computations, which will be

detailed below.

2.4 Elementary Euclidean Transformations.

We will be concerned with two types of transformations, those that transform the

coordinate space relative to a fixed coordinate system, and the inverse transformations

that transform the coordinate system itself to another. Generally, the matrix M will be

used to denote transformations of the first type, and M-1 for those of the second type.

y

•P

z

Figure 2.4.a.
Transformation of coordinate

space by M.

z'

z

x'.,,,,,'
/

/../

y

I
I
I
I
I
I
I
I

y'

,>-----------~ X

Figure 2.4.b.
Transformation of coordinate

axes by M-1.

8

The matrix M describes a manipulation of a coordinate space relative to its own axes.

Such transformations will be the standard for this project (as opposed to manipulation of

coordinate axes with a fixed space), and the focus of the following discussion.

2. 4. 1 General Form of a Transformation.

All transformations in this project are stated in the premultiplicative form P' = MP,

where M is the 4 x 4 transformation matrix, and P is the (augmented) column vector

representing the points with homogeneous coordinates (x, y, z, 1).

x' mu m12 mn m14 X

y' m21 m22 m23 m24 y
=

z' m31 m32 m33 m34 z

1 m41 m42 m43 m44 1

i.e. P'= MP

2.4.2 Scaling

Scaling refers to the multiplication of each coordinate by some value:

x'=s x
X

y'=syy

z'=s z z

This is more conveniently represented as the matrix transformation S.

x' sx 0 0 0 X

y' 0 Sy 0 0 y
=

z' 0 0 Sz 0 z

1 0 0 0 1 1

i.e. P'=SP

9

The inverse transformation (restoring the original coordinate values) is intuitively

obvious. The scaling constants of the inverse matrix are simply the reciprocals of those

in the original transformation matrix.

2.4.3 Rotation

The rotation of points and vectors in cartesian 3-space is readily handled by considering

rotations about each axis separately, and then applying each transformation in turn to

the object which is to be rotated.

2.4.3. l Rotation of a point/ vector about the z axis.

In a right-handed coordinate system, a positive rotation about the z axis rotates points on

the x axis towards they axis. The transformation matrix R z is given:

cosB2 - sin ez 0 0

sin ez cosBz 0 0
R = z 0 0 I 0

0 0 0 I

so that P'= RZP

y

z

Figure 2.4.3.1. A positive rotation about the z axis.

10

2.4.3.2 Rotation of a point/ vector about the x axis.

In a right-handed coordinate system, a positive rotation about the x axis rotates point on

they axis towards the z axis. The transformation matrix Rx is given:

1 0 0 0

0 cos(} x sin(} x 0
R = X

0 sin(} x cos(}x 0

0 0 0

so that P'=RxP

z

X

Figure 2.4.3.2. A positive rotation about the x axis.

2.4.3 .3 Rotation of a point/ vector about the y axis.

In a right-handed coordinate system, a positive rotation about the y axis rotates points

on the z axis towards the x axis. The transformation matrix RY is given:

cos BY 0 sin By 0

0 1 0 0
R = y

- sin By 0 cos BY 0

0 0 0

so that P'=R P y

11

X

y

Figure 2.4.3.3. A positive rotation about they axis.

The inverse of a rotation of 8 about an arbitrary axis is a rotation by -8 about the same

axis. For example:

cos(-By) 0 sin(-By) 0 COSBY 0 - sin ey 0

R-1 = 0 1 0 0 0 I 0 0
= y

- sin(-By) 0 cos(-By) 0 sin ey 0 cosey 0

0 0 0 I 0 0 0 1

The reader will note that R ;1 = RJ:. Matrices for which the inverse is equal to the

transpose are known as orthogonal. In practical terms, the property allows an inverse to

be found by exchanging row and column references. This can save on storage space

and speed computations (a second matrix does not need to be computed, instead the

order in which columns and rows are referenced is reversed).

2.4 .4 Translation

The translation of a point is defined by a shift in each of its coordinates:

x'= x+tx

y'=y+ty

z'= z +tz

12

One of the pnmary reasons that homogeneous coordinates are used in computer

graphics computations is they facilitate the representation of translations by matrix

multiplication. The transformation matrix for a translation is

TJ'.
0 0 Ix

1 0 ty

l~ 0 1 I_
-

0 0

so that P'=TP

Again, the inverse matrix is intuitively obvious. To reverse the transformation applied

by T, one would simply apply a translation of the same magnitude in the opposite

direction.

2.4.5 Composite Transformations

Given the ability to rotate and translate a set of points or vectors, it is possible to

position that set anywhere in Cartesian 3-space with the orientation (shape / relative

position of points) of that set intact Whilst one could perform the necessary

transformations one step at a time, it is more compact to describe the whole composite

transformation at once. Simply put, sequential transformation matrices may be

multiplied together to provide a matrix that describes the total transformation. One

must note that the ordering of this action is important, given the non-commutativity of

matrices under multiplication. Whilst some composite transformations do not require

such caution, the general form of a composite transformation is strictly ordered:

If the matrix transformations are applied in the order M 1, M 2 , ... , M 1 , the composite

transformation is defined:

So the process of j transformations:

P'=M 1P

P''=M 2 P'

P"'= M 3P"

pW ~M .p<H>
I

reduces to p< n = MP

13

The inverse of this product is the product of the inverses of the original transformations

in reverse order:

M -1 = M-1M-1 M-:1
I 2 ··· J

This follows from the matrix property that the inverse of a matrix product is the

reversed product of the individual inverses: (AB)"1 = B"1A"1. Moreover, it makes sense

geometrically in that one would invert the individual transformations from last to first to

find the original points / vectors that were transformed.

The use of composite transformations allows a number of more general transformations

to be defined.

2.4.5.1 Scaling from an Arbitrary Point d.

The standard scaling matrix S represents a dilatation with centre at the origin. When we

are concerned with a set of points, for example defining the vertices of an object in 3-

space, we may need to scale from some point represented by d =[dx,dy,dz,I]T, and

14

not the ongm. This can be accomplished by first translating all points so that

d'=[0,0,0,l]T. This transformation is:

0 0 -d
X

0 l 0 -dy
Td =

0 0 1 -d z
0 0 0 l

The points can then be scaled according to the constants sx, Sy, Sz Applying the inverse

translation T; 1 to the scaled points positions them so that their only displacement was

due to the scaling. The complete transformation can be written:

sd = T; 1sTd
0 0 dx sx 0 0 0 0 0 -d

X

0 1 0 dy 0 Sy 0 0 0 1 0 -d y

0 0 1 dz 0 0 sz 0 0 0 1 -d z
0 0 0 0 0 0 1 0 0 0 1

sx 0 0 dx(l-sx)

0 s 0 dy(l-sy)
sd = y

0 0 sz dz (l- Sz)

0 0 0

2.4.5.2 Composite Rotation

The three rotation matrices, Rx, Ry, and R 2 , each perform a rotation about the named

axis. A matrix R can be used to describe a general rotation of coordinate space about an

arbitrary axis through the origin. The order in which the rotations are performed is a

determining factor in the transformation (along with the size of the angles specified),

and, as such, R has no set form and must be computed as a sequence of matrix

multiplications each time it is used.

15

R has the general form:

r11 r12 r13 0

r21 r22 r23 0
R=

T31 T32 T33 0

0 0 0 1

Consider a rotation about an arbitrary axis through the origin:

y

z

Figure 2.4.5.2. Rotation about an arbitrary axis.

The rotation of coordinate space about the arbitrary axis is obtained by a rotation about

they axis, and then about the x axis, and subsequently about the z axis (on which now

lies the arbitrary axis), before two rotations to restore the principal axes to their original

a rotation of - e Y about they axis,

a rotation of ex about the x axis,

a rotation of e z about the z axis,

a rotation of - ex about the x axis and finally,

a rotation of ey about they axis.

A worked example of this type of problem may be found in Appendix 1.

16

2.4.5.3 Rotating About an Axis through an Arbitrary Point d.

The arbitrary axis about which a rotation occurs need not pass through the origin. In

much the same way as was done for the scaling matrix, a point d can be defined through

which the axis of rotation passes, and then:

Rd =Ti1RTd

1 0 0 dx 1 0 0 -dx

0 1 0 dy 0 1 0 -d
Rd= R y

0 0 1 dz 0 0 1 -dz

0 0 0 1 0 0 0 I

2.5 Defining Elements of a Scene.

The goal of a graphics application is to display an internally represented (i.e. stored in

the computer) scene consisting of an array of objects. In this project the term object

refers to a bounded volume, or some part of a surface. The following sections discuss

the various treatments which may be applied to these objects in order to display them.

2.5.1 Object Space.

The concept of object space is a simple one. Rather than define each element of a scene

in the coordinates of that scene (termed world coordinates, usually denoted (x,y, z)),

each element is defined in its own coordinate space (ui, vi, wi). The object may then be

scaled to the appropriate size, rotated to the desired orientation, and translated to the

desired location through the use of the transformation matrices seen in the previous

section.

w

V

object space
z

w

V

y

v'

Figure 2.5.1. Object space.

2.5.2 Basic Mathematics of Object Definition

17

w'

u'

problem world

The processes to be detailed in this project require that the features or elements

comprising a scene be represented mathematically. This mathematical modelling of

such features involves describing their geometry in 3-space. Two broad categories of

geometric model exist (Hanrahan, in Glassner, 1989): the models that are described by

class(fication (i.e. those that are defined implicitly), and those that are described

enumeratively (parametrically).

2 5 .3 Implicit Definitions of Objects

The method of classification defines each element of a scene implicitly, according to a

function of the coordinates of the three space in which it lies. The term implicit is used

because the object itself is not described explicitly by the function, rather the regions of

the three space in which it lies are identified as either being inside the object, outside the

object, or lying on the boundary between these two classifications:

w

V

{
< 0 inside the object

F(u, v, w) = 0 on the surface of the object

> 0 outside of the object

~.,,,_ _____ F(u, v, w) > 0

F(u,v,w)=O

Figure 2.5 .3. Object description using classification of coordinate space.

18

Whilst an implicit definition does not always lend itself to an intuitive visualisation of

the surface it is ideal for use within a ray tracing algorithm, as all ray-surface

intersections can be defined exactly by replacing each variable of F with the equivalent

parametrically defined coordinate of each particular ray, and then solving for the

parameter, as follows.

Given the ray (in object space): r = r0 + tr1 , fort> 0.

The parametric equations of the ray are:

u = u0 + tu 1

v=v0 +tv1

W =Wo +tw,

The intersections of this ray with an object defined by F(u, v, w) = 0 can be found by

solving the following equation fort, and substituting the returned value(s) back into the

parametric equations above:

19

This equation will be abbreviated by pr (t) = 0, where pr (t) is a function of

coordinate values along ray r, which vary with t.

A more detailed discussion about the geometric interpretations of the solutions for this

type of equation will follow in later sections, but generally the first positive intersection

(i.e. corresponding to the value min(t: t > 0)) is the important result.

2.5.4 Explicit Definitions of Objects

Typically elements of a scene that are defined explicitly are expressed as mappings

from a set of parameters to a set of points in 3-space.

V

µ=O
µ=I

coordinate space

11
parameter space

u

w

t-------------11µ
0 1

Figure 2.5.4. Diagrammatic representation of a parameter to point mapping.

To represent a surface, two parameters are required (a single parameter will describe a

curve, three parameters will describe a volume). The coordinates of a point on such a

20

surface S(µ, v) are defined by (u(µ, v), v(µ, v), w(µ, v)), where µ and v are the two

parameters.

The surface, then, is described as the parameters vary independently of each other

through some specified domains. For example, a plane may be described explicitly as:

u uµ UV Uo

forµ, VER.
V =µ vµ +v vv + Vo

w wµ WV Wo

where P is a general point on the plane corresponding to the parameters (µ,v),

P µ and P v are independent vectors parallel to the plane, and PO is some arbitrary fixed

point on the plane.

The intersection of an arbitrary parametric surface such as S(µ, v) with a

parametrically defined ray is not readily found. Mathematically, it is more convenient

to treat the ray or line implicitly as the intersection of two planes, and then substitute the

above parametric definition of each coordinate on the surface into each of the plane

equations. Suppose r = r0 + tr1 is represented as the intersection of the two planes:

aiu + b1 v + Ci w + di = 0 = Fi (u, v, w)

a2U +b2V+C2W +d2 = 0 = F2(U, v, w)

21

The intersection of r with the surface S(µ, v) defined by (u(µ, v), v(µ, v), w(µ, v)) may

now be written

F/ (µ, v) = a1u(µ, v) + b1v(µ, v) + c1w(µ, v) + d1 = 0

F/ (µ, v) = a2u(µ, v) + b2 v(µ, v) + c2 w(µ, v) + d 2 = 0

where each F 5 (µ, v) is a function of the coordinate values of surface S, which vary

withµ and v.

The equations F/ (µ, v) = 0 and F/ (µ, v) = 0 may be solved to provide the parameter

pair (µ, v) of any intersections that the ray makes with the surface. As the ray

parameter t is not used, the first intersection in terms of the direction of the travel of the

ray is not immediately obvious in the event that more than one (real) intersection is

made. The coordinates of each intersection, then, need to be compared to the origin of

the ray to determine this initial intersection.

The conversion of a parametric, explicitly defined element to an implicit one is a

process referred to as implicitization (sic). To find the parameters for a given point on

an implicit surface, the reverse process, is referred to as inversion. Both techniques will

be discussed in the ensuing descriptions of objects and with reference to their usage in

computer graphics applications.

22

3. Ray Tracing and Ray Casting - Mathematical Discussion

Ray tracing identifies the potential paths that light could take about a scene (the problem

world) to reach a given location (the eye). The ray tracing procedure may be described

in broad terms by the following algorithm. The bracketed numbers refer to the section

where the procedure is discussed.

Given the problem world: (3. 1)

select the centre of projection (eye) and the view window. (3.2)

for each pixel in view window;

identify the ray from the centre of projection through that pixel. (3.3, 3.4)

*for each ray;

for each object surface in the problem world;

test for the ray- surface intersection(s), (3.5, 4)

if there is an intersection;

note the ray parameter(s).

identify the first intersection of the ray with the problem world,

identify the point of the first intersection,

compute the normal to the surface at this point of intersection.

for each light source in the problem world; (5)

identify the ray from the point of intersection to the light,

test if the point is obscured from this light.

if the surface is reflective;

cast a secondary ray in the direction of reflection and return to *.

if the surf ace is transparent;

cast a secondary ray in the direction of refraction and return to *.

colour the pixel represented by the ray using illumination model and

information received for reflection and/or transparency rays.

The above algorithm is by no means an extensive representation of the ray tracing

process, but serves as an introduction to the concepts. Further additions and extensions

23

will be noted if they have a substantial mathematical basis. The stated algorithm is also

without reference to any form of optimisation techniques, which are essential if an

implementation is to be rendered practical. Whilst the implementation of the algorithm

is not a concern of this project, the structure described provides a framework for the

discussion of the mathematics involved in generating images of three dimensional

scenes.

3.1 Specification of the Problem World.

The method of construction of the problem world will vary greatly between

applications, however the presence of some starting world coordinate system is an

initial inclusion to all of these. If the application were for visualisation of existing

(three dimensional or volumetric) data, then some coordinate system would already be

specified by the sampling process. Whether or not this coordinate system would be

used during the ray-tracing process is an arbitrary decision, as it is convenient to re­

specify the problem world anyway in terms of the position and angle from which it is to

be viewed before ray tracing from that orientation.

Choosing to discuss further points with reference to an object coordinate system

(u, v, w), we now consider the placement of objects, surfaces, and other data sets in the

problem world, facilitated by the Euclidean transformations discussed in section 2.4.

For each object, surface or data set i to be placed in the problem world (x,y,z) we can

specify the required transformation by matrix Mi:

24

X U

y V
=M;

z w

1 1

R; = Til,>RTdCr>
s u 0 0 0

S; = Tdls>
0 s 0 0

V

TdCs> ,
0 0 SW 0

0 0 0 1

1 0 0 tu
0 1 0 tv

T;=
0 0 1 tw

0 0 0 1

R is the composite rotation matrix for object i (see section 2.4.5.2). Both the scaling

and rotation transformations have been specified for operations about a particular point

d(s) and d(r) respectively (see section 2.4.5.1 and 2.4.5.3), although a careful

specification of object coordinates when defining object space could obviate the need

for some of these transformations.

We position the object i in the problem world by using M; to transform the object

space with respect to the coordinate axes u, v and w, and label the resulting coordinates

(x,y, z) instead of (u, v, w).

25

w'
v'

V V

y

u
Mi~

XU u'

object space
z

problem world w w

Figure 3 .1. Positioning of object i in the problem world.

The specific ordering of the composition of M (a rotation followed by a scaling and

then the translation to the desired location in the problem world) is a necessity not of a

mathematical nature, but of a practical one for the programmer. The manual

construction of a problem world through the manipulation of a number of objects and

surfaces is simplified somewhat by defining relative scale and orientation (rotation)

before the translation to the final location. The ordering of the scaling and rotation

operations themselves is of less importance; it might be more precise when using some

graphical interface to rotate a larger unscaled object than a minuscule one, but this is of

no matter to the internal (representation on the computer) construction of the matrix M.

It is noted here that while we may consider the rotation and translation of an object not

to affect its shape, scaling can produce alterations in shape. If the scaling constants Su,

Sv, and Sw are not equal then the object can be distorted. For example, a sphere scaled

with su > sv = s w becomes an ellipsoid. These effects may be put to good use in

extending the number of shapes available to the construction.

26

With the problem world in place we can begin to examine its representation in only two

dimensions, that is on a view plane.

3.2 Specifying the Viewplane.

The viewplane is the plane through which the observer views the problem world. On

this plane a view window is defined (which itself is often referred to as the viewplane,

but will not be so in this project), which is a coordinate representation of the boundaries

of the intended output. One can consider a rectangle of transparent material in front of

them as an analogy to the role of this window.

problem world
view window

• eye

Figure 3.2. A view window in a problem world, illustrating the analogy drawn to a

rectangle of transparent material.

The window is divided into a regular grid, the number of divisions determining the

resolution of the final image. When making this choice of resolution consideration

would be given to the resolution of the output (screen or printer), the desired level of

detail in the image and the desired speed of the output

27

3.2.1 Definition ofViewplane Space.

Typically the viewplane exists in its own coordinate space, with its normal running

along one of the axes of that space. The position of the viewer is also indicated in this

space. Most frequently the coordinates are labelled (u, v, n), with the viewplane unit

normal defined as n = [O, 0, -1] for a right-handed system (and n = [O, 0, 1] for a left­

handed system). A typical view system construction would see the centre of the view

window located at (0, 0,-1) and bounding vertices

(-a,b,-1), (a,b,-1), (a,-b,-1) and (-a,-b,-1), with the viewer location at

(0, 0, 0). Variations on this will be discussed in the subsequent sections.

V

(-a, b,-1)

n

.---------. (a, b, - 1)
":f .··

(a,-b,-1)

Figure 3.2.1.1. Specification of the view window.

Resolution is defined horizontally and vertically by the constants g and h (i.e. a g x h

array of pixels), the central position (and name) of each pixel denoted (i,j), where

0 s i :5 g -1, and O :5 j :5 h - 1, for the i, j E rtJ. Non-central positions on pixels such as

pixel boundaries (used for the purpose of increasing the sampling of the problem world)

can be referred to in terms of (i, j) where - 0.5 s i s g - 0.5, and - 0. 5 s j sh - 0.5, for

i,j E IR.

28

(O,h-1) (g-1, h-1)

(a,b,k) (-a,b,k)
I \

I \

-#--(i,j)
I I
\ I

(a,-b,k) (-a, - b,k)

(0,0) (g-1, 0)

Figure 3 .2.1.2 The pixels on the view window.

3.2.2 Pixel to Coordinate Mapping.

The relationship between the view system coordinates (u, v, n) and the view window

pixel references (i, j) can be described by the one to one mapping V: (i, j) ~ (u, v, n).

This mapping is defined by the resolution (g x h) and the size (2a x 2b) of the view

window and by the orientation of the view plane in the view system. The following

expresses this relationship. For a view window with centre (0, 0, k) and bounding

vertices (-a,b,k), (a,b,k), (a,-b,k), (-a,-b,k), describing a resolution of gxh, it

is easily shown that:

V:

u ~ f' ;' -I J
V= {2\+1 _1)
n=k

- 0.5 sis (g-0.5)
for i,J ER

-0.5 ~ j ~ (h-0.5)
(3.2.2)

where V generates (u, v, n), the view system coordinates of the point on the view

window pixel (i, j) (window coordinates on a pixel (i, j) vary for

[(i-0.5),(i+0.5)] and [(J-05),(j+0.5)]). A worked example of this mapprng 1s

provided in Appendix 1 (Example 3.2.2).

29

The view system may be placed into the problem world usmg a composite matrix

transformation, V T, Sv R,, according to the position and orientation from which the

world is to be viewed. Having stated the above, the task of defining rays can begin. It

is noted here that the inverse transformation v- 1 applied to all world coordinates (i e,

all objects and surfaces would be associated with the matrix v- 11\1 1 , where 1\11 is object

i's transformation matrix) would effectively describe the problem world relative to the

viewer.

3.3 Definition of the Rays.

The goal of the ray tracing application is to colour the pixels of the view window. This

is accomplished by casting one or more rays through each pixel The definition of each

of these rays is presented as follows.

3.3.1 General Form of a Ray.

Explicit definition r = r0 + tr1 , where

r0 = [x0 , y 0 , z 0]T is the vector indicating the point where the ray begins,

r = [x1 , y 1 , z1]T is the unit vector in the direction of the ray,
I / 1 1 1

\)Xr~+yt+zr~

/ is the parameter explicitly defining points along the ray

The benefits of using a unit vector for rr stem from an application of the dot product

Recall that v O • v 1 = llv O 11 llv i II cos B . If both v O and v 1 are unit vectors, then the cosine

of the angle between the two is v O • v 1. This simplification can save much

30

computational effort. Furthermore, if all rays are expressed in terms of unit vectors,

then the parameter t can be considered a uniform measure of the distance from the eye.

For t: -oo < t < oo, the formula for r describes a line. For the purposes of intersecting

the ray with explicitly defined surfaces and objects, it is useful to have an implicit

definition of this line. Such a definition is given in terms of the intersection of two

planes, the implicitization of which we now explain.

The problem requires the definition of two planes on which the ray represented by

vector r = r0 + tr1 lies. Any point p on a plane can be defined by its relationship to

coplanar point po and the normal vector Dptane by (p - p O) • (n plane) = 0 . The point

r0 may be substituted for po in this example. The normal vector to the plane may be

found using the cross product of any two coplanar vectors. r1 describes one such

vector, and since we seek any two planes that intersect along r1 , the choice of the other

vector (for each plane) is an arbitrary one. We will make use of the vectors normal to

r1 , which are infinite in number, but three of which are simply defined as follows.

Given r1 = [x1, y 1 , z1 f three normal vectors are defined:

and

31

All of these are clearly orthogonal to r1. The subscript of each normal refers to the axis

to which it is also normal. Note that the opposites of each of these vectors could also be

used, but would not provide any extra implicit definitions as -I could be factored out,

carried through the following equations, and divided away at the end.

The cross product of each of these vectors with the ray direction vector rt defines a

vector normal to a plane on which rt lies, thus n plane/: ::: rt x n 1:, 11 plane 1 = r 1 x n1 , and

nplane i = rt x n1 . These planes are described by all vectors p for which p • nplane = 0,

where p itself can be represented as the vector difference between any point [x, y, z]T on

that plane and a given point on the plane, in this case r0 = [x 0 , Yo, z0]T. So we have,

for the plane containing Dk

[x - Xo,Y- Yo, z - Zo]T • 11planck = 0

[x - x0 , y - y 0 , z - z O]T • (rt x 11 k) = 0

[x-x0 ,y-y0 ,z-z0]T • ([xr,yi,zt]T x[yt,-xt,O]T)=O

[x-x0 ,y-y0 ,z-z0 l • [xtzr,y 1zr,-x; - ;)]T =0

[(x - x0)(x t z t) + (y - y O)(y t z t) + (z - z O)(- x; - y;)] ::: 0

This has the form ax+ by+ cz + d::: 0, the implicit form of a plane. By similar

expansions:

[X-Xo,Y-Yo,Z-Zo]T • nplane; =0

[x-x0 ,y-y0 ,z-zul • ([x 1 ,yr,ztl x[-z 1 ,0,xrl)=O

[X-Xo,Y-Yo,z-zo]T • [xtYt,-x; -z;,ytzt]T =0

and

[X-Xo,Y-Yo,Z-zo]T • nplanei =0

[x-x0,y- y 0,z-z0]T • ([x,,y,,z 1 l "[O,z,,-y1]T)=O

[x-xu,Y-Yo,Z-zo]T • [-yr2 -z12,x,y,,xrz1]T =0

32

(3 3.1.3)

The set of points that satisfy any two of the equations (3.3.1.1), (3.3.1.2) or (3.3.1.3) lie

on the line describing the path of the ray r = r0 + tr1 . See Example 3 .3.1 in Appendix I

for a worked example.

3.3.2 Labelling of the Rays.
"

N o,v that the general form of a ray in three-space has been identified, the form of a ray

in the ray tracing problem can be stated. The set of primary rays passing through the

viev.: windov: is labelled according to an intersecting pixel (i, .J): e.g r = r0 + tr,

becomes ri,J = r~·1 + tr;·1 . As such r;·1 is defined as the (normalised) direction vector

from r~·_; to the view system coordinates (u, v, n) corresponding to the pixel (i, j).

Recalling the mapping V: (i, j) ~ (u, v, n) (3.2.2), we can express r;·1 in the form:

ri,J = [Vu(i,j),Vv(i,j),Vn(i,j)]T -r~·J

r ll[Vu(i,j),V\(i,j),Vn(i,J)]T -r~·./11'

giving us the general ray:

(3.3 2)

33

The ray is, then, defined by its point of origin and the pixel it passes through, according

to some mapping V. Using the equations of (3.2.2), the above equation (3.3.2) can be

expanded to:

{[{~-1H¥-1),k1-,:·1 J

H2i ;1-1H\+ 1-1),k1-,:·' J

Implicit definitions can be obtained in a manner similar to that demonstrated in the

previous section.

Armed with the above definition of a ray in general terms, the discussion will now tum

to specific ray equations and their applications.

3.4 Projection Methods.

The process of creating a two-dimensional image based on three-dimensional data is

referred to as projection. The rays employed in a ray tracing algorithm describe the path

of projection of a finite number of points in the problem world onto the view plane (the

rays are referred to as projectors). By giving the sets of rays different paths a number of

different types of projections may be obtained.

3.4.1 Parallel Projection.

Parallel projection refers to the use of projectors that are all parallel. As such, there is

no single observer location when dealing with a parallel projection, rather we assume

that all rays pass through the view window parallel to one another and, hence, all start at

different points, defined for each by the pixel coordinates. The typical (orthographic)

34

parallel projection has rays that are in the same direction as the normal to the view

window, that is r, = [O, 0, - l]T, which begin from points on the uv plane with u and v

equivalent to those on the view window.

n
(i,j)

view window

Figure 3 .4.1.1. Rays and view window of orthographic projection.

The equation for these rays may be written explicitly:

The implicit definition is intuitive; the rays are described by the intersection of the

planes:

(2i + 1 J (2) + 1) u=a g-1 and v=b -h--1

35

Parallel projections can be used to obtain side, front and back elevation views of an

object I problem world as well as plan (top) views, through particular placements of the

viewing system in that world.

An oblique projection can be performed by displacing the points of origin of rays

defined under an orthogonal projection, whilst still passing the rays through their

defining pixels. As such, the projectors remain parallel, but this direction of projection

is now defined in the more general sense r1 = [Vu (i, j), Vv (i, j), Vn (i, j)]T - r~'1 by any

one (i, j). Denoting the displacement by [c,d,e]T, the new vectors can be stated:

. . . . ri,J
r',l = r',l + 1_r _

0 llr? 11
ii [Vu(i,j),Vv(i,j),Vn(i,j)]T -r~,J = r '· + t-:-------------
0 ll[Vu(i,j),Vv(i,j),Vn(i,j)]T -r~'jll

=[{2i;l-l)+c,{2\+1 _1)+d,e]T
1H2i;l-}(2jt-1}k]' -[{2i;1-1)+c,{\+I _I)+d,e]T]

+--=---------------------------=c-
H2it-}(2jt-1).k1T -[{2i;1-1) +c,b(\+ 1 -l)+d,e]T]

r',.I =[a ---1 +c,b ---1 +d,e] + [-c,-d,k-e]T ·· (2i+l) (2)+1) T t
g h ~c2+d2+(k-e)2

36

view window

Figure 3 .4.1.2. Rays and view window of oblique projection.

Note that the direction of these projectors is independent of the pixels through which

they pass, and is simply a function of the displacement of the origins. Implicit

formulations may be found by applying two of the equations (3.3.1.1), (3.3.1.2) or

(3.3.1.3), as identified in section 3.3.1.

Traditional ray tracing does not usually feature parallel projections, simply because the

typical goal has been to attain visual realism, which is not provided for by parallel

methods. However parallel projection fits well within the framework of ray tracing and

so has been included here. An example may be found in Appendix 1 (Example 3.4.1).

3 .4 .2 Perspective Projections.

The perspective projection is the typical means by which ray tracing is accomplished.

Mimicking the process of vision (though only to a certain extent, as it is better thought

of as mimicking a pinhole camera model (Glassner. 1989, p. 2)), only one ray origin is

defined per image, named the centre of perspectivity, or the eye. Casting rays outward

through each pixel on the view window from this point generates the perspective effect

37

by which we gauge relative distance from our eyes. Typically this initial point, r0 , is

placed at the origin (0, 0, 0). The directions of the rays, then, are defined in terms of the

pixels through which thev each pass

z,j z,;
i,.i - z,j rt - rt

r - ro + t JJr; IJ - ro + t llr;·.1JJ

Wu (i,)), vv (i,)), vn (i, j)]T - ro = r0 + t------------
JJWu (t, ;), vv (t, ;), vn (i' ;)]T - ro II

= [O, 0, O]T

+ . 2 • 2 [[a[2i;J-J}{2Jhl '-J),k]T -[0,0,0]TJ

a'(21; I -1) + b'(2Jh 11_ _ ,) +k'

r

view window

Figure 3 .4.2.1. Rays and view window of perspective projection.

Placing r0 at a point other than the origin (for the viewing system with the view window

centred at (0, 0, k)) will generate various effects, which may be desirable in the

presentation of the image.

38

Moving the centre of perspectivity to (c, d, e), the following ray definitions apply:

Again, the implicit form of the above may be found using two of the equations (3 .3. I. I),

(3.3.1.2) or (3.3.1.3).

(i,/} ri,/ = ~ +[c d e]T +tri,J , 0 , , t

r0 + [c, d, e]T !"', ~:=:::~---.----~
I
I
I
I
I
I
I

view window

Figure 3.4.2.2. Rays and view window of alternative perspective projection.

Appendix I includes an example of a perspective projection (Example 3.4.2).

39

3.4.3 Other Projection Methods.

There are other methods of projection that may be adapted for use in computer graphics

algorithms. The parallel and perspective methods are classed as linear projections

(because of the behaviour of the rays). Non-linear projections may be used to mimic

various camera lens types, such as .fisheye and omnimax. Such variations can be

achieved by making the parameter t a function of pixel position (i, J), defining ray

origins according to (i, j) but not ray direction (for example, rather than one point as

the eye, a circle through which various rays pass is defined), or by defining curved paths

for rays.

3.5 Ray - Surface Intersections.

Ray tracing is principally concerned with ray - surface intersections, as rays are cast out

into the problem world to return information about the various surfaces that they strike.

Given that there are two broad methods to define an object, through classification

(implicitly) or through enumeration (explicitly), there are two broad types of ray -

surface intersection. For an implicitly defined surface F(u, v, w) = 0, an explicitly

defined ray r = r0 + tr, is used to replace the coordinates in F with parametric

expressions in t. Alternatively, an explicit surface (u(µ, v), v(µ, v), w(µ, v)) is

intersected with an implicitly defined ray (the intersection of two implicitly defined

planes).

Intersection testing and computation for a general ray tracing scene 1s processor

intensive. In any given scene, a ray needs to be tested against all surfaces for a potential

intersection (the use of object hierarchies to restrict these searches is not within the

scope and aim of this project). Once all objects have been tested, then and only then

l
i
.\

40

may the first intersection of that ·backwards' ray with the problem world be identified

Mathematically, there is little one can do to enhance the process beyond placing a

primitive bounding volume about a particular surface and testing for an intersection

with that. If no intersection is returned then a potentially complex surface-ray equation

is not required to be solved.

3.5.1 Rays defined in object spaces.

The ray-surface intersection computation generally takes place in object coordinate

space. This may seem an odd choice after defining in Section 3 .2.1 a matrix

M 1 = T1 S 1 R 1 to transform every object or surface i into some position and orientation

in the problem world, but a ray is merely a line in three-space, and is transformed

relatively simply from its vector form to any object or surface space by the inverse

object transformation matrix:

(3 5 11)

Furthermore, recall from Section 3.2.2 that the ray is defined in view system space,

which is related to the problem world according to some transformation:

(3.512)

n

n'
\'

,,.1' y

v=}
v'

view system space z problem world

Figure 3.5. l. The placement of the view system in the problem world using

transformation V

41

To work in object space the ray first needs to be expressed in the problem world

coordinates, and so is first transformed by V = Tv S \' Rv . It must be noted here that,

because of the definition of the ray, caution must be exercised during this

transformation. Whilst the origin component of the ray r0 is transformed, the direction

component r1 should not be subjected to a translation transformation (the direction of a

vector should be invariant under translation). Thus, for any ray r = r0 + tr1 , using

(3.5.l.l) and (3.5 12) yeilds:

Ul R- 1s-1T-1T S R ro = i i i v v vro

=M;1vr0

and

u> R-1s-1s R rt = i 1 v vr1

= R:-1s-1r-1T r-:1T s R
I I I I \ V \ vrt

= M;1Ti T;1Vr1

so that

<1> l\1-1v M-1T T-1v r = ro + I i I v r1 where r(i) is the ray in object i space

42

Example 3. 5 .1 in Appendix I illustrates a transformation matrix V for a particular

positioning of the viewplane in the problem world.

3. 5 .2 Interpretation of intersections.

Using ru> explicitly to find any ray-surface intersections will provide solutions in terms

of parameter t. Finding the . intersection of an explicitly defined surface with an

implicitly defined ray provides the parameter pair(s) (µ, v)j, which corresponds to a

point in space on the ray (and surface). Given one coordinate value from such a point,

the parameter t can be computed. The following is an interpretation of the possible

values oft.

Positive solutions: Intersections in the path of the ray.

Negative solutions: Intersections 'behind' the origin of the ray.

niin(t: t > 0): The nearest intersection to the origin of the ray.

One solution: The intersection occurs on a point of tangency.

Complex solution: The ray does not intersect the given object.

For a ray tracing application the solution corresponding to the least positive value oft is

of the most significance. It represents the first point on that surface which the ray

would hit, assuming there are no objects in front of it. Testing for all objects we can

state the first intersection of the ray with the problem world (at i*) as follows:

i* = min(ti : ti > 0) for all objects i.

Having found the nearest point of intersection (assuming that there was an intersection)

of a ray with the elements in the problem world, the ray tracing procedure can begin the

process of implementing optical effects and this will be detailed in Chapter 5. Chapter 4

43

examines many of the objects and surfaces that are frequently rendered using ray

tracers, beginning with primitive objects and progressing through to parametric

representations of surfaces.

44

4. Representations of Surfaces.

This section will elaborate on the general representation of surfaces implicitly

(F(x,y,z)=O) and explicitly (S(µ,v)) by considering a number of particular surface

and object definitions. The following section re-iterates the requirements that a ray

tracing algorithm requires of such objects, and provides a guide to the content of

subsequent sections.

4.0 Guide to the Treatment of Surfaces.

4.0. l General Discussion of the Particular Surface.

Any special properties or usage of a particular type of surface will be noted.

4.0.2 The Mathematical Representation of the Surface.

As stated before, there are two broad types of surface representation, implicit and

explicit. Whilst the choice of representation is an arbitrary one from a mathematical

perspective, when both are readily definable, a programmer would choose the

representation more suitable for coding - with issues such as storage capacity, speed of

use and accuracy of results (once coded) influencing their choice. For some surfaces

though, the representation will be limited to either implicit or explicit only, as the other

definition may be impractical, even mathematically.

Recall that an implicit surface is a definition by classification, the function F(x, y, z)

describing some region in space for which F(x, y, z) = 0 is the boundary or surface;

where F(x,y,z)<O refers to the interior; and F(x,y,z)>O the points (x,y,z) exterior

to this region (F is also known as a point-membership classification function). For

45

example, the sphere u 2 + v 2 + w 2 = 1 is such an example as it can be represented by

u 2 + v 2 + w 2 -1 = O. Implicit definitions are generally used in computer graphics

applications to describe simpler, 'regular' surfaces.

Recall too that S(µ, v): (u(µ, v), v(µ, v), w(µ, v)) is an enumerative description, or

explicit representation, of a surface. For example, the same sphere can be described

parametrically:

[: l = [~!- µ~ COSY]

w J ~1- µ 2 sin v

for - 1 :S µ :S 1 and O :S v :S 2.1r

Explicit definitions exist for many of the implicit functions that will be discussed below,

and they (the former) will be included in the discussion as the explicit definition may on

occasion require pre-computation of some quantities useful to a graphics program (for

example, the surface normal).

4.0.3 The Representation of the Surface Normal.

The surface normal, the vector pointing in the direction m which the surface is

considered to be 'facing', is readily defined for an implicit surface. Given F(x, y, z),

the normal vector to the surface defined by F(x, y, z) = 0 is given by the vector:

46

The computation of a normal vector to a parametric surface is more involved. Such a

vector is expressed as the cross product (section 2.2.6) of two vectors in the plane that is

tangential to the surface at the point for which the normal is required. These vectors

may be described using the first partial derivatives of the parametric function

S (µ, v) : (u(µ, v), v(µ, v), w(µ, v)) with respect to each parameter (µ, v) . So the normal

vector can be stated:

D = [au(µ, V)' fJv(µ, V)' ow(µ, V)]T x[ou(µ, v)' fJv(µ, V)' ow(µ, v)]T
aµ aµ aµ av av av

The normal vector is used extensively in the shading and illumination of surfaces in the

problem world, and its usage will be discussed more thoroughly in Chapter 5, which

deals specifically with that area of the image generation process.

A preliminary note is made here about the direction of the normal. The cross product is

such that for any vectors p and q, p x q = -q x p . Given that the choice of tangential

plane vector order is an arbitrary one (it could be considered standard to use first the

derivative with respect to the first parameter alphabetically speaking), the resulting

normal vector really has two directions that may be considered, one opposite to the

other. The choice of which to use is based on the use of the normal. For the purpose of

shading and illumination, the normal of a surface at a point of intersection with a ray is

said to be the vector through points with the same function classification (i.e. either

F < 0 or F > 0) as the ray had 'just' before it intersected. In other words if the ray

came from outside of the object, then the normal used in shading computations points to

the outside or away from the object. Conversely, a ray that is passing through the

47

interior of an object to make a particular intersection defines a normal pointing inwards.

A simple algorithm exists, which can be used generally, to identify the normal to be

used:

if rt •D > 0 then;

n = (-1) * n: reverse the direction of the normal (fig. 4.0.3 b).

else the direction of the normal is correct (fig. 4.0.3 a).

where rt is the direction of the ray rand n is the normal.

i(
8>-

2

rt• n <0

Figure 4.0.3 a.

n

i(
8<-

2
rt. n > 0

Figure 4.0.3 b.

4.0.4 The Intersection of a Ray with the Surface.

The discussion of each surface will provide a simplification of the equations used to

intersect a ray with that surface. Recall that the general form of a ray intersection with

an implicit surface is as follows.

For an implicit surface: F(u, v, w) = 0,

{
u =u 0 + tu 1

and the explicitly defined ray r = r0 + tr, ~ v = v0 + tv1

W=Wo +tw1

then the intersection is given: F(u 0 + tu" v0 + tv1 , w0 + tw,) = 0

48

which we abbreviate to F .. (t) = 0, where pr (t) is a function of coordinate values along

ray r, which vary with t. The ray equation can be solved for t, thus providing the

position of any intersections.

When rays are cast at parametric surfaces, the intersections are obtained as follows.

Treating the ray implicitly as the intersection of two planes

r = r O + tr, becomes
A1u+B1v+C1w+D1 =O=Fi(u,v,w)

A2u+B2v+C2w+D2 =O=F2 (u,v,w)

using methods detailed in section 3. 3 .1.

The intersection with the surface S(µ, v) defined by (u(µ, v), v(µ, v), w(µ, v)) may be

written:

F1s (µ, v) = A1u(µ, v) + B1v(µ, v) + C\ w(µ, v) + D1 = 0

Ff(µ, v) = A2u(µ, v) + B2 v(µ, v) + C\ w(µ, v) + D2 = 0

where each F s (µ, v) is a function of the surface parameters µ and v. These equations

may be solved to provide the parameter pair (µ, v) of any intersections of the ray with

the surface.

49

Note that the general form of a ray r = r0 + trr will be used in most instances, in spite of

specific forms already defined for particular projection methods (section 3.4), which

may have common usage. The reasoning behind this is that not all rays that are tested in

a ray tracing algorithm originate at the eye and pass through the view window. For

example, secondary rays cast from points of intersection are based on the direction of

the surface normal and the intersecting ray.

4.0.5 Behaviour of Surfaces under Transformations.

Whilst in many cases it will be possible to apply some transformation to a given surface

directly, this project will not consider such treatments for any surfaces to be ray traced.

Rather, the intended transformation matrix is inverted and applied to any rays against

which this object is to be tested, and the computations are performed in the object space.

It is convenient to test for intersections in this manner because the rays are more simply

transformed than the surfaces. Still, the principle of the above is the same as that of

transforming a surface and comparing it to a ray that is in its original form. This would

provide an avenue for predicting and checking results.

4. 1 Quadric Surfaces

Many so called geometric primitives, as referred to in the computer graphics literature,

fall into the family of quadric surfaces. Planes, spheres, cylinders and cones, amongst

others, are quadric surfaces. The general implicit equation for such a surface is:

F(x, y, z) = ax 2 + by2 + cz 2 + 2dxy + 2eyz + 2/xz + 2gx + 2hy + 2jz + k = 0

This can be expressed in the following matrix form:

50

F(x,y, z) = PTQP = 0

X a d f g

where: P =
y

and Q=
d b e h

z f e C j

1 g h j k

This family of surfaces possesses many properties that make the surfaces attractive for

use in graphics applications (Foley, et al. 1994, pg. 357). The two main properties that

make quadrics particularly popular in ray tracing are the ease of computation of the

surface normal, and the fact that an intersection with a ray can be found by simply

solving a quadratic equation.

Given a ray of the form r = r0 + tr1 , the intersection with the quadric F can be written

rTQr=[r0 +tr1f Q[r0 +tr1]

TQ TQ TQ 2 TQ =~ ~+% ~+~ ~+t~ ~

=rlQr0 +2tr1TQr0 +t 2r1TQr1 as rlQr1 =r1TQr0

so that

This equation is a quadratic in t, and hence can be solved using the quadratic formula to

give:

-rtTQro ±J(r?Qro)2 -(r1TQr1)(roTQro)
t=~~~~~~~~~~~~~~~

rtTQrr

51

The normal to a quadric surface is found through taking the first derivative of F with

respect to each variable:

n=[aF aF aF]T
ax'ay'az

soif F(x,y,z)=ax2 +by2 +cz 2 +2dxy+2eyz+2jxz+2gx+2hy+2jz+k,

l2ax + 2dy + 2/z + 2gj
then n = 2by + 2dx + 2ez + 2h

2cz + 2ey + 2fx + 2 j

To conclude the summary of the quadric surfaces, it is noted here that a quadric surface

can be transformed by the composite transformation (4 x 4) matrix M according to the

following (Foley, et al. 1994, pg 357):

This property would facilitate placing quadric surfaces directly into the problem world,

and even into view space. However, as stated before, the use of transformations will be

kept to the manipulation of the ray equations.

4.1.1 Planes

The implicit definition of a plane can be written using the quadratic form:

0 0 0 g X

F(x,y,z)=PTQP=O, where Q=
0 0 0 h y

and P=
0 0 0 j z

g h j k 1

2gx + 2hy + 2 jz + k = 0

52

The normal to this plane is given by n = [2g,2h,2j]T. The unit normal is given by

A 1 h ']T n= [g, ,J
Jg2 +h2 + J2

Should a parametric representation of the above plane be sought, one can refer to the

following. For any point (x, y, z) on the plane 2gx + 2hy + 2 jz + k = 0 , a position

vector P = [x, y, z] T can be expressed such that:

Po is some arbitrary point on the plane from which all P can be described by moving in

the directions of P µ and P v, Po may be defined as a point on one of the principal axes,

by setting two variables to zero and solving for the remaining one: e.g., on the z axis

k .
P0 = [0,0,- 2}T. P µ and Pv may be any two vectors orthogonal to n = [2g,2h,2J{, for

which P µ 1:: kP v. For example, P µ and P v could be chosen from the three vectors

[h,-g,O]T' [- j,O, g]\ [O, j,-h]T.

To illustrate, a parametric representation for the plane 2x + 4y - 3z + 2 = 0 is

2 T T 3 T P=[0,0,-] +µ[2,-1,0] +v[-,0,1] ,forµ,vER.
3 2

The solution to a ray-plane intersection is obtained without the need for the quadratic

formula. The implicit form of the plane is:

2gx + 2hy + 2jz + k = 0

When we substitute the ray equation into this we get:

2g(x0 + lxr) + 2h(y0 + 1Yr) + 2j(z0 + tzr) + k = 0

2(gx0 + hy0 + jz0) + k = -2t(gxr + hyt + Jzr)

gx0 + hy0 + jz0 + k/2
t = ---------

gxt +hyr + Jzr

. f= -(D•fo +k/2)
1.e.

53

There is no solution if the ray is parallel to the plane (and hence orthogonal to the

plane's normal), as the denominator in the expression fort is zero.

4.1.2 Faceted Surfaces.

A method of surface construction is to specify a set of bounded planes or facets that

together describe the desired surface. For example, the surface of a cube could be

described by a set of six facets. The positioning of facets relative to each other is best

accomplished by identifying the vertices of the surface, and then noting the vertices

common to each facet. These facets, each represented by a set of vertices, may be

treated as bounded planes and used in image generation techniques.

It is convenient to subdivide each facet into triangles to simplify its representation

mathematically. A triangle can be described parametrically much in the same way a

plane was in the previous section, except that constraints are applied to the parameters.

Consider the triangle defined by position vectors Po, P1 and P2

with its tail at the origin of the local coordinate space, and hence 'points' to a single

54

coordinate (a corner of the triangle). For any point (x, y, z) on this triangle, a position

vector P = [x, y, z]T may be expressed:

P = PO + µP µ + vP v

where P µ = P1 - PO, P v = P 2 - PO, and µ 2: 0, v 2: 0, µ + v ~ 1 . A normal to this

triangular facet is n = (P1 - P0) x (P2 - P0).

' ' ' ' ' ' ' ' ' '

P = PO + µP µ + vP v

' ' ' ', p
I

Figure 4.1.2.1. Representation of a Triangular Facet. Note that for simplicity, the

position vectors of the corners are not drawn.

When testing for an intersection of a ray with a facet, the ray can be implicitized into the

intersection of two planes (as discussed in section 3 .3 .1) and then the parametric facet

coordinates substituted into the two equations. A solution (if any) would be in terms of

µ and v, which could then be directly compared to the bounding conditions stated above

to see whether the ray intersected the facet.

Alternatively, the facet plane could be represented implicitly as Ax+ By+ Cz + D = 0,

where A, Band C, respectively, are the x, y and z components of n and D is found by

D =-Ax-By -Cz and using the coordinates of any one of the facet's vertices. The

55

intersection would be found with an explicitly defined.ray, in terms of the ray parameter

t, and hence the intersection coordinates would have to be computed and substituted into

the parametric equation for the facet to determine whether the intersection was within

the bounds of the facet. Examples 4.1.2, 4.1.2.1 and 4.1.2.2 in Appendix 1 provide

worked examples of the intersection of a ray with a facet.

In some instances, the use of quadrilaterals may be considered as an alternative to

triangles. A point on the quadrilateral PoP1P2P3, labelled either clockwise or

position vector P = [x, y, z f :

where O ~ µ ~ 1, and O ~ v ~ 1 (Burger & Gillies, 1989. pg. 412).

The normal to this surface is n = (P1 - PO) x (P 2 - PO) or the cross product of vectors

joining any two of the vertices. Computations to find intersections with rays are carried

out as with triangles, although are more complicated because a mixed term with the

product of the facet parametersµ and vis involved.

4.1.3 Spheres.

The equation of a sphere with radius 1 and centred at the origin may be written in

quadratic form:

F(x,y, z) = PTQP = 0

56

1 0 0 0 X

0 1 0 0 y
where Q= and P=

0 0 1 0 z

0 0 0 -1 1

which is equivalent to

x 2 + y 2 +z 2 -1=0

y

1

-1

Figure 4.1.3. The sphere x 2 + y 2 + z 2 -1 = O.

The normal to this surface, given by n = [:, : , : f, 1s n = [2x, 2y,2zfr. The

unit normal is n = [x, y, z] T , as expected for a point on a unit sphere (the normal is the

vector from the origin to that point).

57

The intersection of the sphere x 2 + y 2 + z 2 -1 = 0 with the ray r = r0 + tr1 (already

assumed to have already been transformed by the inverse of the sphere's own

transformation matrix Msphere) may be found by solving the quadratic equation:

(xo +tx1)2 +(yo +ry1)2 +(zo +tz1)2 -1=0

t2 (x/ + Y12 + Z12) + 2t(xoxr + YoYr + zozr) + (x5 + Y5 + z5)- l = 0

Two solutions fort would indicate that the ray passes through the sphere (see Example

4.1.3, Appendix 1). The ray is said to touch the sphere tangentially when t has only one

solution, and typically this occurrence is ignored by the ray tracing algorithm. No

solutions are returned when the ray does not intersect the surface.

Spheres are members of the subset of quadrics named the quadrics of revolution. The

general form of the equations for these surfaces is ax2 + by 2 + cz 2 + 2jz + k = 0, for

a= b . The cross section made by the plane z = 0 is a circle of the form

x 2 + y 2 + k/a = 0. Cylinders, cones and paraboloids are other examples of this type of

surface. The following sections refer to examples where a= b = I , on the

understanding that a scaling matrix S (section 2.4.2) could be applied subsequent to

their definition to provide shapes where a and b have values other than 1.

4.1.4 Cylinders.

The equation of an infinite cylinder with radius 1 and centred about the z axis may be

written in general quadratic form:

F(x,y, z) = PTQP = 0

58

1 0 0 0 X

0 1 0 0 y
where Q= and P=

0 0 0 0 z

0 0 0 -1 1

which is equivalent to

x 2 + y 2 -1=0 (4.1.4)

z

X

Figure 4.1.4. The cylinder x 2 + y 2 -1 = 0.

The normal to this surface, given by n = [oF , oF , oF f, is n = [2x, 2y, of. The unit
ox 8y oz

normal, n = [x, y, O]T, is as expected for a point on a the surface of an unbounded

cylinder (the normal is the vector from the corresponding point on the z axis, with

position vector [0,0, z]T, to the point indicated by[x,y, z]T).

..

59

The intersection of a cylinder x 2 + y 2 -1 = 0 with a parametrically defined ray can be

found via substitution:

(xo +txr) 2 +(Yo +tyr) 2 -1=0

f 2 (x; + y;)+2t(xoxt + YoY1)+(x5 + Y5)-1=0

This equation can be solved using the quadratic formula. Solutions for t can be

interpreted in a similar manner to the case for the sphere: two solutions indicating a ray

passing through the cylinder, one solution for a ray that tangentially touches the surface

and no solutions for a ray that has no intersection with the cylinder.

It would be unusual to use many infinite cylinders in the construction of the problem

world, rather each cylinder would be of a certain length and perhaps capped with two

circular discs at the ends. We may define a finite cylinder, by the following:

x 2 + y 2 -1=0

Oszsl

The choice to limit z in this manner is an arbitrary one, and relies on the scaling

component in the transformation matrix Mi to achieve varying degrees of width and

height (which would be reflected in the components of r = r0 + tr1 before the

computation of the intersection). Under these limits, the solutions providing the

intersections of the cylinder with a ray may take on new meaning. Two intersections

with z components out of the domain O s z s 1 would mean that the ray does not come

into contact with the finite cylinder, whilst two intersections with the infinite cylinder,

60

one of which is in the stated domain, would indicate that the ray enters or exits through

one of the capping surfaces. Example 4.1.4 illustrates this numerically (Appendix 1).

4.1.5 Cones.

The equation of an infinite cone with semi-vertical angle 1f/4 is:

F(x,y, z) = PTQP = 0

1 0 0 0 X

0 1 0 0 y
where Q= and P=

0 0 -1 0 z

0 0 0 0 1

which is equivalent to x2 + y2 -z2 =0

z

Figure 4.1.5.1. The cone x2 + y 2 - z2 = O.

1 h. .c'. • b [aF aF aF 1T • [2 2 2 1T h The norma tot 1s sunace, given y n = -, -, - , 1s n = x, y,- z . T e
ax 8y az

. I . ~ 1 []T umt norma 1s n = ~ x,y, - z .
x2 + y2 + z2

61

The coordinates of a parametrically defined ray may be substituted into the equation of

a cone to provide its points of intersection (if any) with that surface (see Example 4.1.5

in Appendix 1):

using r = r0 +tr,, the expression for the cone x2 + y 2 - z 2 = 0 becomes:

(xo + tx,)2 + (Yo + ty1)2 - (z0 + tz,)2 = 0

t 2 (x; + y; - z;) + 2t(x0 x, + Yo Ye - z0z1) + (x5 + y~ - z~) = 0

As with cylinders, an infinite cone may be unsuitable in the construction of a problem

world, and so it may be bounded as required. Bounding the cone at z = 0 provides the

familiar pointed end (at which the normal vector n is undefined), and at z = ±1 a

'bottom' to the cone. Choosing to restrict both z boundaries to values higher (or lower)

than O provides a truncated cone, without the pointed end, as illustrated below.

Figure 4.1.5.2. A truncated cone (or 'bucket').

4.1.6 Paraboloids and Hyperboloids

Consider the paraboloid:

x2 + y 2 -z = 0

which may be written in the quadratic form:

62

1 0 0 0
X

0 1 0 0

F(x, y, z) = pT QP = 0, where Q =
y

0 0 0
1 and P=

2 z

0 0
1

0 1
2

The normal to this paraboloid is n = [2x, 2y,-l]T. The intersection of this surface with

a ray is found as follows:

x 2 + y 2 -z=O

(Xo +t:xr) 2 +(Yo +tyr) 2 -(zo +tzr)=O

t 2 (Xr2 + Yr2)+t(2XoXr +2YoYr -z1)+(x5 + yJ-zo)=O

A circular hyperboloid may be expressed in quadratic form; such as

F(x,y, z) = PTQP = 0

1 0 0 0 X

0 1 0 0 y
where Q= and P =

0 0 1 0 z

0 0 0 +l 1

which is equivalent to

x2 +y 2 -z 2 +1=0 (4.1.6.1)

A hyperboloid of one sheet, without discontinuities, is represented by the equation

x2 + y 2 -z 2 -1=0 (4.1.6.2)

whereas x2 + y 2 - z 2 + 1 = 0 refers to a discontinuous hyperboloid, which is not

defined between the planes z = 1 and z = -1 . The normal to the surface defined by

(4.1.6.1) is n = [2x, 2y,-2z]T.

The intersection of this surface with a ray r = r0 + trr is found as follows:

x2 + y 2 + z + 1 = 0

(x0 +txr)2 +(y0 +tyr) 2 +(z0 +tzr)+l=O

t 2 (x1
2 + y;) + t(2x0 x1 + 2y0 yt + Z 1) + (x6 + Y6 + z0) + 1 = 0

t 2 (x; + y;)+t(2x0 x1 +2y0 y 1 +z1)+(x6 + Y6 +z0)-1=0,foronesheet.

t 2 (x; + y;)+t(2x0 x1 +2y0y 1 +z1)+(x6 + Y6 +z0)+1=0,fortwosheets.

63

A paraboloid or hyperboloid may be bounded in much the same way as described for a

cone or cylinder.

4.2 Tori.

A torus, or doughnut ring, is generated by rotating a circle about a line which lies in the

plane of the circle, but does not intersect it. The implicit equation for a torus is based on

the radius r of the circle rotated and on the radius s of the revolution (which is taken to

be the distance from the centre of the circle to the axis of revolution). By describing a

second circle that is the mirror image of the first in the given line a cross section of the

torus is defined. For example, if the two circles lie on the xz plane, they are described

by: (x - s)2 + z 2 = r 2 and (x + s) 2 + z 2 = r 2 . The equation for the cross section is

obtained by multiplying the two equations together (once each is rearranged in the form

F(x,z)=O):

which expands to:

(4.2.1)

64

z

X

Figure 4.2. Cross section of a torus.

Equation (4.2.1) implicitly describes the points on the two circles on the xz plane. The

torus is obtained by the rotating of the circles about the z axis. The equation of the torus

is found by replacing x2 in (4.2.1) with (x2 + y2), yielding:

(x2 + y2)2 -2s2(x2 + y2)+s4 +2(z2 -r2)(x2 + y2 +s2)+(z4 -2r2z2 +r4)=0

which can be simplified:

(4.2.2)

Equation (4.2.2) represents a torus with radius of revolutions (measured to the centre of

the band) and of band radius r. As one would expect, the equation is a quartic,

indicating that it can have up to four intersections with any one line. Intersecting the

ray r = r0 + tr1 with the torus provides an equation in terms of parameter t of the form:

Fr(t)=at 4 +bt 3 +ct 2 +dt+e=O,

65

The normal to the surface at any point may be found by partial differentiation of the

implicit formula (4.2.2):

[
4x(x2 + y 2 +z 2 -r2 -s2)]

n = 4y(x2 + y2 + z2 - r2 - s2)

4z(x2 + y2 +z2 -r2 +s2)

See Appendix 1 for an example of a ray-torus intersection problem with surface normal

computation (Example 4.2).

4.3 Composite Surfaces of Revolution.

The above method for generating the torus by the revolution of the cross sections about

an axis can be applied generally to other curves defined in the same plane (the uw

plane). Suppose these curves are labelled 1, 2, ... , j. By rearranging the equation of

each in the form Fi (u, w) = 0, we can form the equation implicitly representing all

points on the composite cross section:

j

F(u,w)= fIFi(u,w)=O
i=l

The representation for the surface of revolution (the revolution of the composite

boundaries about thew axis) is then given by substitution of ~u 2 + v2 for u:

f1Fi(~u 2 +v 2 ,w)=O
i=l

For example, consider the construction of an infinite cylinder of radius 1, with its axis

along the z axis. On the xz plane the two edges of this can be described by the lines

66

x = -1 and x = 1, or equivalently: x + 1 = 0 and x -1 = 0. The composite function is

then:

The cylinder is defined:

2

F(x,z)= I]F:(x,z)=O
i=l

(x + l)(x -1) = 0

x 2 -1 = 0

[IFi(~x 2 + y 2 ,z}=O
i=l

(~x2 + y2)2 -1=0

x 2 + y 2 -1 = 0

which agrees with equation (4.1.4).

Similarly consider the construction of a single sheet hyperboloid. On the xz plane the

cross section can be described by x 2 = z2 + 1, and by - x 2 = z2 + 1. The composite

function is then:

The hyperboloid is defined:

which agrees with (4.1.6).

(x- ~)(x + .[;2;i) = 0

x2 - (z 2 + 1) = 0

[IF;(~x 2 +y2 ,z)=0
i=l

(~x2 + y2)2 -(z2 +1)=0

x 2 + y 2 -z2 -1=0

67

These surfaces may be combined once they have been defined in the above form, or

alternatively the same effect can be achieved from the combined set of component

curves on the uw plane. Consider the following bounded cylinder of radius one, capped

by a paraboloid touching the origin and by the plane z = -1.

z

X = -1 x=l

_____________ ..__~~-+-~~--',-------------
-1 : z=-1

I
I
I

Figure 4. 3 .1. Composite Surface of Revolution.

The composite surface consists of the paraboloid x2 + y 2 - z = 0; the cylinder

x2 + y 2 -1 = 0; and the plane z + 1 = 0. The expression for the surface as a whole can

be written:

(x 2 + y 2 - z)(x 2 + y 2 - l)(z + 1) = 0 (4.3.1)

The same result is achieved when the curves z = x2 z = -1 x = 1 and x = -1 are , ' '

combined, and then ~x 2 + y 2 substituted for x.

68

Substituting the ray coordinate equations into (4.3 .1) yields an equation from which

parameter values of t can be obtained for points of intersection. The surface normal

may be obtained by partial differentiation.

When generating surfaces with the above method, it is important to note the practical

implications of the required computations. The equations generated for such a surface

can be of too high an order to allow straightforward computation of intersections with a

ray (bearing in mind that in all likelihood, many rays will need to be tested for

intersections with the surface) hence making ray tracing computationally expensive.

Should the complexity of the calculations become too great, one can limit the definition

of the composite surface, and treat it as separate surfaces of lower orders.

A bounding volume may be defined in addition to, or as an alternative to, the above

strategy, against which rays are tested prior to intersection with the full surface. For

example, the infinite cylinder used in the above bounded the entire surface. Rays that

did not intersect with the cylinder would certainly not intersect the surface in question,

and so could be deleted from further computations. Furthermore, all rays with two

intersections with the cylinder, having z components of either both greater than one or

both less than minus one, could be removed, a test which is simply performed.

4.4 Swept Surfaces.

Whereas surfaces of revolution were generated by revolving an arbitrary curve about an

axis, swept surfaces, in their simplest forms, are described by translating a planar curve

along an axis. For example, a cylinder was generated by the complete revolution of a

straight line about an axis running parallel to it. The same form may also be described

69

by sweeping along that axis a circle lying on the plane perpendicular to the axis. More

complex shapes can be obtained through sweeping a curve, or volume, along some

arbitrary path in three-space, described by a number of parameters. The following

sections, however, will look at the surfaces generated by sweeping a planar curve

through some distance along the axis perpendicular to the plane, and more particularly,

the intersection of such surfaces with a ray in their object space.

4.4.1 Cylindrical Sweeps.

A cylindrical sweep (named so because the method can be used to describe a cylinder)

simply augments a third variable to the definition of a planar curve, which facilitates the

definition of the curve on an infinite number of planes parallel to that on which the

curve was described. For example, the coordinate pair (u(s), w(s)) representing the

parametric curve on the uw plane becomes the triple (u(s), k, w(s)), where a::; k::; b for

some a and b.

V

w
(u(s),k, w(s))

(u(s), w(s))

w

Figure 4.4.1. A cylindrical sweep for a::; k::; b of a parametric curve.

..

70

When computing the ray-surface intersection in object space, the ray r = r0 + tr1 can be

projected on to the plane of the curve (for example the uw plane) by omitting the ray

coordinate corresponding to the axis of the sweep (v). If the ray is required in its

implicit form, it is described by the single two-dimensional line equation:

Once the intersection(s), if any, in 2-space is found, the value of the third (omitted)

coordinate is obtained for this intersection via the ray parameter t. By comparing the

value of the third coordinate to the range of the sweep (a s; k ::s: b) we can determine

whether the ray actually intersects with the swept surface, or whether it passes above or

below.

The normal to the surface is parallel to the plane of the curve (i.e., has a value of O for

the component representing a direction parallel to the sweep axis}, and is defined by

taking the first partial derivatives of the curve. For example, for a curve swept along the

v axis:

n = [iJu(s) 0 aw.(s)J
as ' ' as

A swept surf ace may be bounded by planes at either end, much in the same way the

surfaces of revolution were previously.

71

4.4.2 Cone Sweeps.

A cone sweep is similar to a cylinder sweep, but scales the curve for which it is defined

in proportion to the value of the variable which it augments. For example, the

coordinate pair (u(s), w(s)) representing the parametric curve on the uw plane becomes

the triple (Jklu(s),k,Jkjw(s)), whereas ks b.

V

(lkju(s), k, jkjw(s))

w

Figure 4.4.2. A cone sweep for asks b.

The intersection with the ray r = r0 + tr1 may be found in a manner depending on the

form of the original curve. Once an intersection is found it may then be compared to the

range of the sweep ask s b to decide if the ray passes above, below or through the

swept surface.

J

72

4.5 Parametric Curves.

Consider a smooth object, sampled or approximated, and stored as a set of points

defined as vertices describing a polygon mesh. Many applications in the design field

require that from such a set of points a smooth curve be drawn, as the output often is to

model the real world, in which many objects and surfaces are smooth. This section will

discuss methods that enable such a curve to be defined, one that either interpolates

(passes through) the given data, or provides some reasonable approximation to the given

data.

Smooth surface,
with sampled

points.

Polygon mesh,
using points as

vertices.

Figure 4.5. Polygon mesh approximation to a smooth surface.

The reader is reminded that whilst this project seeks to examme some of the

mathematics behind such techniques, the issue of the practicality of any implementation

is of key concern to the extent of the discussion of a technique. The common goal is to

generate smooth, user-definable curves and surfaces, but this is not irrespective of the

speed and the usefulness of the method employed to do so. In particular, techniques

that interpolate the given points are generally computationally expensive and in some

instances subject to unwanted effects in between points; thus extended discussion will

be reserved for more suitable methods, beginning with two-dimensional curves.

73

A preliminary note is made here with regard to use of examples in the following

discussion. Because these curves and surfaces will be described explicitly, examples

that would generate a point alone or a series of points would have little illustrative

value. Typically, one would need to evaluate the expression describing the curve or

surface at many different values of the parameter to begin understanding the nature of

the shape being created, and within this discussion there is little room for such lengthy

procedures. Instead the reader is referred to Appendix 2 for information regarding the

Microsoft Excel workbooks on the disks included with this report. These workbooks

examine some of the parametric curves and surfaces that are to be discussed, and allow

manipulation of their defining features. Appendix 2b includes some output from these

programs for a more speedy, if less dynamic reference.

4.5.1 Piecewise Linear Curves.

A very rudimentary approximation of a smooth curve is through the piecewise use of

line segments between the points (xi ,y;) sampled from it. A function can be written,

providing n line segments joining n + l points:

P(x)=

(_Y_n-_l _-_Y_n Jx + Y n-1 -(Y n-1 - Y n Jxn-1, Xn-1 ~ X ~ Xn
xn-1 - xn xn-1 - xn

74

y

~--------------------x

Figure 4. 5 .1. Piecewise linear interpolation.

We may choose to write this parametrically as:

This may be more concisely represented by:

where O ~ ti s 1, and i -1, ... , n. Note that the parameters ti could be replaced by the

solitary t, defining each curve segment at the same time.

Generally, as the number of sample points is increased, so too does the accuracy of the

approximation. However this requires more storage space and moreover the method

quickly becomes unwieldy and inefficient. Furthermore, while adjacent line segments

are joined, adjacent slopes are generally not equal, limiting the extent to which we can

accept the method as one that provides a suitable approximation of a smooth, non-linear

curve. By increasing the order of the functions defining the curve segments, and forcing

•

75

the equality of slopes at the joins, acceptable approximations suitable for use m

computer graphics applications can be obtained.

4.5.2 Continuity between Curve Segments.

Before any further discussion about the use of curve segments, a notational point is

made regarding the continuity of the functions that will be dealt with. Consider the

parametric curve segment Q; (t) of degree n:

[x(t)] r
Q/t)= =C;~n

y(t)

C; is a 2 x (n + 1) matrix, describing the coefficients of the functions for curve segment

i. If Q; (1) = Qi+1 (0), that is the curve segments join at point (x;, yi), then the curve is

said to have geometric continuity (Foley et al. 1994, p. 330). This is denoted G0.

Furthermore, if Q;' (1) = hQi+1' (0) then the curve is said to have G1 continuity. This

implies that the tangent vectors of each curve at the join are scalar multiples of each

other, indicating that the curve is smooth (at least geometrically speaking) at that join.

Generally, a curve is said to be Gn continuous at the join between segments i and i + l if

Q;n} (1) = hQ;:i (0).

As a side note, should the curve segments be such that Q;n} (1) = Q~;i (0) at join i then

at this point on the curve is said to have en parametric continuity. This is useful for the

purposes of animation, where the curve may describe a path of movement, to ensure

smooth movement between frames. Clearly, en implies Gn continuity (for the case

where h = l).

76

4.5.3 The de Casteljau algorithm.

Consider the four points P0 , P1, P2 , and P3 . The piecewise linear interpolation is given

by:

[x(t)] [(xi - xi-l) xi-1]['] . Qi (t) = = , where 1 = I, 2, 3.
y(t) (Y; -Yz-1) Yz-1 1

y

0

P2 ,....._ ___ _
t

1
-1----------------x

Figure 4.5.3.1 Piecewise linear interpolation of four points.

The de Casteljau algorithm (formulated by Paul de Casteljau in 1959) provides a

method for defining a smooth curve which interpolates end points, and which tends

towards the intermediate points. Consider a second piecewise linear interpolation

performed on the points (x1 (t), y 1 (t)), (x2 (t), y 2 (t)), and (x3 (t), y 3 (t)). The resulting

curves may be written (by expanding the notation such that a superscript refers to the

level of linear interpolation):

Q(l) (t) = [x(t)] = [<x~1l (t)- xf1l (t)) x}1l (t)J[t]
1 y(t) (y~1) (t) - y}1) (t)) y}1) (t) 1

and: Q(Zl t = [x(t)] = [<xJ1) (t)- x?) (t)) x~1) (t)J[t]
2 () y(t) (yj1l(t)- y~1)(t)) y~1)(t) 1

y ~ P.
~----- -------- 2

11 ••••• •••••••n"l'rn.
,'

I
I

I
I

I

I•" . , .. ,. ,_. ,.
i"

P. /
0

-+----------------+ X

Figure 4.5.3.2 Detail of second linear interpolation.

77

0

1

A third linear interpolation may be performed on the points generated from the second

interpolation (and so on if more points are available). The recursive nature of this

process may be expressed as follows:

Q~r) (/) = I = 1+1 I [
x(r) (t)] [(x<r-l) (t)- x<r-l) (t))

yy> (t) (yt~l) (t) - yf-l) (t))
x?-1

> (t)][t]
yf-1> (t) 1

or, more succinctly,

xf > (t) = (1- t)xf-1> (t) + 1xt~1> (t)

yy> (t) = (1- t)yy-l) (t) + 1Yt~1> (t)

, for
r=l, ... ,n

i = l, ... ,n- r + I

· Q(r) (} _ (l }Q(r-1) (} Q(r-1) (} h Q(O) (} _ p _ []T 1. e. i t - - t ; t + t i+I t , w ere ; t - ;-i - xi-l • Y;-i

The above notational abbreviation will be utilised throughout the rest of this discussion.

The de Casteljau algorithm may be used to describe a smooth curve of degree n for

n + I points. However, for the purpose of computer graphics, and in particular,

applications running at speed, functions of high degree are infrequently used, given the

computational expenses they incur. Such costs must be weighed against the usefulness

78

of the function for, as we have seen, a function of degree n = 1 provides little more than

a piecewise linear approximation to the curve that might be sought. The computer

graphics literature suggests that a curve of degree n = 3, Q~3> (t) for example, is the

most suitable compromise (Foley et al. 1994, p. 329). Cubic curves will be examined

throughout this section in some detail given they are the ones most commonly used.

4.5.4 Bezier Curves.

The cubic Bezier curve is a popular choice of parametrically defined curve, and is used

extensively in CAD applications. Each Bezier curve segment may be specified using

four control points PO, P1 , P 2 , and P 3 , two denoting the start and finish of the curve

segment, and a further two, each of which lie on a line tangential to the curve at the its

end points. The cubic Bezier curve, which will be denoted QB (t), may be generated

using the de Casteljau algorithm:

Q}r) (t) = (I - t)Qv-•> (t) + tQ~:;1> (t)' where Q~O) (t) = PH

QB {t) = Q~3) (t)

= o - t)QV> <t) + tQ~~~ (t)

= (1- t){{l - t)Qf1> (t) + tQ}~1 (t)) + t((I - t)Q}~1 (t) + tQ~~2 (t))

= (1- t) 2 Q~l) (t) + 2t(I - t)Q~~. (t) + t2Q~~2 (t)

= (I - t) 3 Qf> (t) + 3t(l - t) 2 Q~~~ (t) + 3t 2 (I - t)Q~~~ (t) + t 3Q~~~ (t)

QB(t)={l-t)3 P0 +3t(l-t)2P1 +3t2(1-t)P2 +t3 P3

Using matrix notation we obtain:

79

(1- t)3

QB (t) = [Po pl P2 P3]
3t(l - t) 2

3t 2(l-t)
t3

-1 3 -3 I t3

= [Po P3]
3 -6 3 0 t2

pl P2
-3 3 0 0 t

1 0 0 0 1

QB (t) = GBMB ~3 ,2 t 1]T

where G is referred to as the geometry matrix, and contains the control points for the

particular curve segment, while M is referred to as a basis matrix for the particular type

of curve (in this case MB is a Bezier curve basis matrix). This notation is adopted from

Foley et al. (1994, p. 331).

y

P2 ..
' ' ' ' ' ' ' ' ' ~

~
~

-+---------------- X

Figure 4.5.4.1 Cubic Bezier curve.

The product MB ~3 t 2 t 1f provides the weights of the points of GB, often

referred to as the blending functions. By plotting the values of each polynomial in

BB (t) = MB ~3 t 2 t } r, we can gain an insight into the behaviour of the curve

80

QB (t) before plotting it. It is noted that the blending functions BB (t) of the Bezier

curve are called the Bernstein polynomials, and they have the general form:

These polynomials have properties that makes the use of Bezier curves attractive in

computer graphics applications. Primarily, for any given n, the sum of all nth degree

Bernstein polynomials is one. This is proved as follows (Farin, 1988. pg. 38):

n n [n: "IB(n,j,t)= I . t 1 (l-tt- 1 =(t+(l-t)t =l
/=0 7=0 j

Secondly, each polynomial is non-negative. As such, we can think of these polynomials

as providing a weighted average of coordinates of the points to which they are applied.

Bezier curves, then, may be considered to always lie within a convex hull, defined by

the control points. A curve is said to have the convex hull property if it is contained

entirely with the convex boundary of its control points. Foley et al. liken this boundary

to a 'rubber band' stretched around the points: any 'interior' points are not considered

part of this boundary (1994, p. 338). Mathematically it could be defined as the

boundary of the union of all triangles defined by triples of the control points. Whilst the

three-dimensional comparison will be made later when dealing with Bezier surfaces, it

is clear already that this property would be useful in defining a bounding volume in ray

tracing applications.

Figure 4.5.4.2. The convex hull property. The union of triangles principle is

exemplified on the left, whilst the 'rubber band' effect is demonstrated in

the diagram on the right.

81

Bezier curve segments are joined by allocating points Pk_3 , Pk-z, Pk_1, Pk for some k to

a curve segment QB 1_1(t), and points Pk>Pk+i,Pk+z,Pk+J to the following curve

segment QB; (t) . G0 continuity is automatically assured between the curves since, by

definition, they interpolate start and end points. To attain G1 continuity at the join Pk,

the points Pk_1, Pk> Pk+l must be collinear, or algebraically: (Pk-l - Pk)= h(Pk - Pk+d

for some h. If h = 1, C1 continuity is attained. By joining curve segments in this

manner, much scope is provided for design and application. In general, a piecewise

defined cubic Bezier curve QB (t) of s segments requires 3s + 1 control points, and

interpolates points Pk> where k = 0, 3, 6, ... ,s.

I.

I
I

I
I

pl ,,
I

I
I

• ' ' ' ' ' ' ' ' ' ' ' •

I
I

I.

P4 ,,

I

I
I

I
I

I

\

Ps \
•--...;;.-=--=------~- \. Ps --.

P7

Figure 4.5.4.3. Bezier curve segments joined with: G0 continuity at P3 ,

and G 1 continuity at P6 .

4.5.5 Hermite Curves.

82

The intermediate control points, Pk+I and Pk+2 of a Bezier curve starting at Pk specify

the tangent to the curve at its start and end points, Pk and Pk+3 , respectively. The

Hermite curve is based on the same principle, but rather than explicitly state the

intermediate control points, they are inferred by the slope of the tangents that they

make. The following matrix formulation applies:

2 -3 0 1 t3

QH (t) = [Po H3]
-2 3 0 0 ,2

P3 Ho
1 -2 1 0 t

1 -1 0 0 1

QH(t) = GHMH ~3 12 t 1)1"

where H O = [~ox] and H 3 = [~3 x] in which h0 x and h3 x are the x components and
Oy 3y

h0 Y and h3 Y are the y components of the slopes of the tangent to Q H (t) at PO and P3

83

respectively. As with the case of the Bezier curves, the blending functions given by

BH(t)=MH~ 3 t 2 t if may be referred to in order to anticipate the behaviour of

the curve.

y

11 I
I

I

Bo/
I

I
I

I
I.

-+-----------------+X

Figure 4.5.5. Hermite curve.

Having previously detailed the mechanics of the Bezier curve, the specification of the

Hermite curve using explicit control points is a logical extension of the discussion of

cubic parametric curves. By allocating phantom intermediate control points

P1' = P0 + B 0 / j and P2 '= P3 - B 3 / k, we can compare the two types of curve.

Restating Q H (t) :

2 - 3 0 I t 3

2 3 0 0 t 2

I -2 I O t

I -1 0 0 I

The effect of B 0 and H 3 is equivalent to using the pair of phantom intermediate points

84

1 0 -j 0 2 -3 0 1 t3

0 0 j 0 -2 3 0 0 t2
Q~(t) = [P0 P' P' P3] l 2

0 0 0 -k 1 -2 1 0 t

0 1 0 k 1 -1 0 0 1

which we write as

Q~ (t) = G~ (j, k)M 8 ~ 3 t2 t if (4.5.5)

The variables j and k represent the magnitude of the tangent vectors at the start and end

points respectively. It may be shown by a simple matrix multiplication that for

We can adopt (4.5.5) to define a modified Bezier curve Q~ (t):

-}+2 2)-3 -j 1 t3

j -2} j 0 t2
Q~ (t) = [P0 P1 P2 P3]

-k k 0 0 t

k-2 -k+3 0 0 1

which we may write

When the curve is drawn, the values of j and k determine the 'speed' at which the curve

leaves the end points in the direction of the intermediate control points (i.e. the

magnitude of the tangent to the curve). The convex hull property applies to the points

85

4.5.6 Uniform Cubic B-Splines.

The problem of approximating a curve, given only a number of sample points from it, is

one that could be solved using a so called natural cubic spline which interpolates those

points and ensures parametric continuity up to C2 . However, this approach offers little

of the flexibility of Bezier curves since arbitrary alteration of points requires much re­

computation. Uniform cubic B-splines however, do exhibit such local control, at the

expense of the interpolation of any of the data.

Cubic B-splines differ from the previous piecewise curves that we have discussed in

that, rather than the curve being made up of segments QBSi (t) each relying on four

distinct control points P3(i-l), P3(i-l)+l, P3(i-l)+z, P3(i-l)+3 , the curve is defined

progressively by segments defined by consecutive quadruples of control points. This

is more formally written:

AcubicB-splinewith s-2 segments needs s+l control points P0 ,P1, ... , Ps. Each

curve segment QBSi (t) is defined for the parameter t, where t1_ 1 ~ t < t1 , with t0 = 0

and ti - ti-l = 1 (this is a uniform parameter interval and so these splines are often

referred to as such).

j
ij

I

86

The matrix equation for a curve segment of a uniform B-spline is given, for

i = I, ... , s-2:

-1 3 -3 1 (t - t;-l)3

P;+2li
3 -6 0 4 (t-t;-1)2

QBS; (t) = [Pi-I P; P;+1
-3 3 3 1 t - ti-I

1 0 0 0 1

which we can rewrite as

Q88;(t)=G88;M88 [<t-t;_1)3, (t-t;_i) 2 , t-t;_1, if
= GBs;BBs (t - t;-1)

Much can be understood about the behaviour of these curves by examining the blending

functions. By abbreviating (t - t;_1) with t (a notation that will see much use in the

upcoming discussion), the cubic B-spline blending functions are expressed as follows:

Bes(t)=MBs~3 ,2 t 1f
=i[(l-t)3 , 3t3 -6t2 +4, -3t3 +3t 2 +3t+I, t 3f forO~t~l

As for the Bezier curves, the blending functions are non-negative in the domain

O ~ t < I , and sum to one. Therefore the convex hull property applies to cubic uniform

B-spline segments. Similarly, we can also glean information about the continuity of

these curves at the joins or knots (the literature refers to the points Q 8 s; (0), for

i =I, ... , s -1, as knots) by examination of the blending functions. For example, to

demonstrate C2 continuity, we need the second derivative of Q88 (t), and hence the

87

secondderivativeofB88 (t) which is B~J(t)=[l-t, 31-2, -3t+l, tJT. We can

therefore write:

and

G 88;B~J(l)=[P;_1 P; P;+i P;+2][0 1 -2 1JT

= P; - 2P1+1 + P;+2

Gus;+1B~J (0) = [P; Pi+1 Pi+2 P;+3][1 - 2 1 oY
= P; - 2P;+i + P;+2

from which it follows that

Q (2) Q(2)
BS; (1) = BS;+l (0)

indicating C2 continuity.

C1 and c0 continuities can be demonstrated in a similar manner. The continuities C2, C1

and c0 are automatic across all knots, unlike that for the Bezier curves, where the

careful (collinear) positioning of all control points in each segment was necessary.

The following sections look at some extensions to the uniform B-spline.

4.5.6. l P-Splines: Tensioning a spline.

By using modified blending functions the behaviour of a spline near its control points

can be controlled more precisely. Such splines are known as P-splines, and much

research has been carried out in this particular area (Burger, 1989. p. 268). The

blending function presented here is adapted from a P-spline given by Barsky (1983,

from Burger, 1989. p. 269), and features a tension parameter -r that allows the curve to

be pulled towards the control points:

88

2(1- t) 3

1 (8+r)-3(4+r)t 2 +2(3+r)t 3

B ,a (t, r) = 12 + ,,. 3 , for r ?. O .
• 2 + 6t + 3 (2 + T)t 2 - 2(3 + T)t

2t 3

The corresponding basis matrix M ,a is written:

-2 6 -6 2

1 2(3 + r) -3(4+r) 0 8+r
M,a(r)=--

12+r -2(3 + r) 3(2 + r) 6 2

2 0 0 0

At r=O there is no tension, and M,a(O) reduces to MBs· Usage of M,a(r) is the

4.5.6.2 Controlling End Points of a B-Spline.

Since a B-spline does not usually interpolate the control points, the end points of such a

curve are prone to unsatisfactory positioning, and this is of particular concern in a

design application where precision is the goal. However, a number of techniques exist

to curb the sometimes erratic nature of the extremes of a B-spline.

By duplicating the first and last control points PO and P s by defining

P_1 = P0 and Ps+l = Ps respectively, the curve is extended towards them with an extra

curve segment at each end. Furthermore, the slope of these segments approaches that of

the line extending from each of the end points to the corresponding nearest non­

duplicate point (P1 and P5 _ 1). For the discussion we will add a subscript x to the

89

blending function notation so that BBsx denotes the weighting applied to a particular

control point x:

(4.5.6.2)

where for O::;; t::;; 1.
BBS1+1(t)=-3t 3 +3t 2 +3t+l

Now, the curve segments generated by the duplication of the end points (i = 0 and

i=s)canbewrittenusingthefactthat P_1 =P0 and Ps+l =Ps:

and

When the end points P0 and Ps are triplicated by adding yet another pair of additional

points, the new curve segments QBs-i (t) and QBs s (t) interpolate the respective end

points:

The curve segment QBs-i (t) is defined by using (4.5.6.2) for P_ 2 = P_1 P0 and P1 :

from which it follows that

L

90

Similarly, using (4.5.6.2) the curve segment Q88 s(t) is defined for Ps = Ps+l = Ps+2

and ps-1:

from which it follows that

These techniques can be applied anywhere along the curve, but reduce the level of

continuity for each replication performed.

Another method by which the end points can be treated is through the specification of

phantom end points, which constrain the curve to pass through P0 and Ps. Labelling

these phantom points P~1 and P;+l the following conditions hold at the respective

parameter values:

Q880 (0)=1/6P~1 +2/3P0 +1/6P1 +P2 (0)=P0

P~1 =2Po -Pi

and similarly:

Whilst the B-spline does not pass through the phantom points, it does begin and end at

the desired locations. Furthermore, the slope at the end of these curves follows the

gradient of the line joining the first two and the last two control points.

91

4.5.6.3 Interpolation Using a Cubic B-Spline.

AB-spline may interpolate a set of control points Pi (for i = 0, ... , s), by describing a set

of s + 3 phantom points that blend at the ends of each curve segment to each of those

control points. Note that there are now s curve segments (numbered O to s - 1 ; one

between successive pairs of control points). For the phantom points denoted by pi*

(i = -1, ... ,s + 1) this can be written:

• • • • Q88i (t) = B8si-l (t)PH + B8si (t)Pi + B8si+l (t)Pi+l + B8si+2 (t)Pi+2 , for i = 0, ... , s -1.

Q8s1 (t) interpolates the control points:

and so

QBso(O)=Po

QBSi (1) = Q 8si+l (0) = Pi+l• for i = 0, ... , s - 2,

QBSs-1 (1) = ps

In defining the end phantom points P~1 and P;+l there is an opportunity to force the

gradient of the curve segments at the end points by talcing the first derivative of

Q88 i (t). The phantom points P~1 and P;+l are defined in relation to user-selected

gradients m O and ms as follows:

and

mo =Quso'(O)

= BBs-i '(O)P~1 + BBso 1 (O)P ~ + Bus 1' (O)P; +Bus/ (O)P;

ms =QBSs-1 1(1)

= Buss-2 '(l)P;_2 + Buss-1 '(l)P;_l + Bus/(l)P; + Buss+1 '(l)P:+1

= -3P;_1 + 3P:+i

92

In summary there are s + 3 unknowns, which are the phantom control points P~1 to

P;+1, and there are s + 3 equations, of which s + 1 are described by the relation

P; = (1/6)P;~1 + (2/3)P; + (l/6)P;:1, for i = 0, ... , s. The other two equations are those

concerning the gradient at the end points as described above. The system of equations

can be solved to determine the phantom control points that will provide a cubic B-spline

curve that interpolates the given control points:

-3 0 3 0 0 0 0 0 p*
-1 mo

1/6 2/3 1/6 0 0 0 0 0 p*
0 Po

0 1/6 2/3 1/6 0 0 0 0 p*
I pl

=

0 0 0 0 1/6 2/3 1/6 0 p;_l ps-1

0 0 0 0 0 1/6 2/3 1/6 p; PS

0 0 0 0 0 -3 0 3 p;+l ms

AG*=G

G* = A-1G

in which A is of order (s + 3) x (s + 3).

93

In implementing this method, the pre-computation of the inverse of A may be

problematic in that it restricts the number of control points available for use. Preferably,

some general iterative method of solution such as Gaussian elimination would be used

instead.

Each interpolating curve segment may be drawn according to:

where G;8 i is the row vector of the ith set of four consecutive elements from G*, i.e.

It is of note that the matrix A is such that, should a particular control point Pi not need

to be interpolated, row i in A can be adjusted so that all entries are O other than a 1 on

the main diagonal. The curve resulting from the phantom points generated by this

matrix no longer interpolates control point i. Similarly, should only one control point)

need to be interpolated, then all rows other than row j have all entries O other than a I on

the main diagonal.

4.5.7 Non-Uniform B-Splines.

Previously, the uniform B-splines discussed were subject to the condition ti - ti-I = 1,

for all segments i = 1, ... , s - 2. This was advantageous in that the entire curve was

defined using the matrix B88 (t) = M 88 [Ct - tH)3 , (t - lz-1)2 , t - tz-1, 1 f for the

blending functions. However, relaxing this condition brings an increased generality to

the formulation can make the spline easier to manipulate The expression of a non­

uniform cubic B-spline is:

94

with recursively defined blending functions:

Without any constraint on the parameter interval ti 5: t 5: ti+l • it is possible to define a

number of knots, or joins, for the same value of ti. An interpolation is thus achieved,

yet without the necessity of incurring a strictly linear function on either side of the knots

which was the case for uniform B-splines (without phantom control points).

Furthermore, extra knots and control points can be added easily to reshape the curve.

4.6 Parametric Surfaces.

A parametric surface may be thought of as a span of parametric curves which vary from

each other according to some second parameter, and at the same time a span of

parametric curves defined by that second parameter, varying from each other according

to the first parameter. Based on the parametric curves discussed previously, the bi­

cubic surfaces generated by Bezier and B-spline curves will now be examined.

95

4.6.1 Properties of the Parametric Bi-Cubic Surface.

The general form of a parametric bi-cubic surface is given by:

S(t, u) = ~1 3 l/2 u 1]MTGM~3 t2 t 1f'
orif S(t, 21) = [x(t, u),y(t, u), z(t, u)Y

x(t, 21) = ~3 212 u 1]MTGXM~ 3 t2 t 1f
y(t, 21) = ~3 2 21 21 1]MTGYM~ 3 t2 t 1f' 0 :s; t, u :s;I.

z(t, 21) = ~3 212 u 1]MTGZM~ 3 t2 t 1f
where: G is the geometry matrix, which contains the control points in each co-ordinate,

M is the basis matrix for the particular curve upon which the surface is based.

The normal to such a surface is simply expressed, given that the vectors tangential to the

surface are readily found through a first partial derivative with respect to each of the

parameters involved. The cross product then yields the normal vector as a bi-quintic

expression (Foley et al. 1994, p. 355):

oS(t, 21) oS(t, u)
D= X

at au
ox(t, u) oy(t, u) oz(t, u)

at at at

n=
ox(t, 21) oy(t,21) oz(t, u)

au au au
i j k

An intersection of a patch with a ray may be defined when the ray is expressed

implicitly as the intersection of two planes (see section 3 .3. I). The alternative would be

to implicitize the bi-cubic patch and intersect it with a parametrically defined ray.

However, Hanrahan (in Glassner, 1989) states that a bi-cubic patch can lead to an

96

implicit surface of degree 18, and so the possibly simpler (in that it 1s simpler to

implicitize a ray than a patch) problem is presented here.

Given the intersection of two planes representing the ray:

a1X + b1y + c 1z + d 1 = 0

a2 x+b2 y+c2 z+d2 =0

The surface's coordinates can then be substituted in:

a1x(t, u) + b1y(t, u) + c1 z(t, u) + d 1 = 0

a2 x(t, u) + b2 y(t, u) + c 2 z(t, u) + d2 = 0

Given the relatively high degree of the polynomials, one would seek to facilitate

bounding volume algorithms prior to pursuing a solution of the above. Fortunately, as

hinted at earlier, parametric bi-cubic surfaces such as the Bezier and B-spline

definitions satisfy the convex hull property, from which a bounding volume is readily

identified. In the two-dimensional case, the 'rubber band' analogy was drawn to

illustrate this. A similar analogy exists for the surface representations, whereby one

can imagine stretching a balloon over the control points to ascertain the points that form

the convex hull, and hence define the facets to test against all incoming rays.

4.6.2 Bezier Surfaces.

The Bezier surface is represented as follows:

97

-1 3 -3 1 P11 P12 P13 P14

3 -6 3 0 P21 P22 P23 P24
where MB= and GB=

-3 3 0 0 P31 P32 P33 P34

1 0 0 0 P41 P42 P43 P44

GB , the geometry matrix for the Bezier surface, is an arrangement of 16 control points

that can be thought of as describing two 'horizontal' Bezier curves

(Pll toP14 and P41 toP44), and two 'vertical' Bezier curves (P11 toP41 and P14 toP44).

As such, the corner entries are all interpolated by the surface.

Bezier surfaces can be joined in a manner similar to their two dimensional counterparts.

The literature (for example, Burger, 1989. p. 268) refers to these separate surfaces to be

joined as patches. G0 continuity is attained simply by making the four control points

along the edge of the join equal. G1 continuity is achieved when the four triplets of

points along an edge (i.e., the edge points and those either side of the edge points) each

exhibit collinearity. C1 continuity is attainable, but perhaps not desirable given the

restrictions it places on points. To underline that observation, consider a patch that is

joined on all four sides to other patches. In this case every single element of GB is

influencing the continuity of at least one of the joins of that patch.

98

4.6.3 B-Spline Surfaces.

A B-spline patch can be written:

-1 3 -3 1

1 3 -6 3 0
where Mu=-

6 -3 0 3 0

1 4 1 0

Note that the effect of the geometry matrix Gus is very different from that of the Bezier

form. Rather than defining a regular 'patchwork' of control points, representing the

individual patches, any size matrix of points will suffice (providing it is at least 4 x 4).

The B-spline surface may then take each particular 4 x 4 matrix, and without any

continuity conditions other than an avoidance of duplicate control points, generate a

patch which is automatically joined to the adjacent patches.

The reader is reminded that examples of curves and surfaces described from Section

4.5.4 through to this point are presented in Appendix 2b. Moreover they are encouraged

to try the Excel workbooks included with this thesis, which were used to generate the

images presented.

99

5. Illumination Models and Shading of Surfaces.

The process of illumination is based in part on the physical behaviour of light in an

environment. However, some illumination models mimic physical laws more closely

than others. Therefore, the following methods should be considered to be

approximations of the applicable physical laws, simply because they have been

developed to provide desirable image quality rather than strictly obey the laws of optics.

5.1 Model Notation.

An illumination model specifies the factors that determine a surface's colour at a given

point (Foley et al. 1994, p. 477). To begin to implement such a model, the term colour

needs to be quantified in some manner. For the purposes of this project, colour will be

described in terms the intensity, I Jc , of light in possibly a number of wavelengths, each

denoted A. , and with no further detail. The colour of a point on a surface, then, may be

described as the net perception of all I Jc for all light that makes its way from that point

to the eye.

The specification of light sources within the environment takes one of two forms. We

may define a point light source, L, from which light of specified wavelength(s) A. and

intensity I AL is emitted, by its location in the problem world (x L, y L , z d. From any

point (x, y, z) in the problem world, the unit vector L indicates the direction to this

light source:

L= [xr -x, Yr -y, Zr -zY
jj[xr -x, Yr -y, Zr -zYjj

100

By placing a point source at infinity, a directional light source is defined. The vector

L = [x L , y L , z L] T /II[x L , y L , z L] T II denotes the direction opposite to that of light rays

from this infinite source.

~l
• point light source at (x L, YL, z L)

1v
directional light source denoted by

vectors in the direction L =[xL,YL,zL]T

Figure 5 .1. Depiction of point and directional light sources.

To evaluate I 2 at a point on a surface, the behaviour of light at that point is studied,

bearing in mind that the only light that will travel towards the eye is to be considered.

Glassner (1989, p. 130) identifies "four mechanisms of light transport" that can be used.

The geometry of these will be detailed in the following section to facilitate the

discussion of the behaviour of light upon striking a surface and its treatment in a ray

tracing algorithm.

5.2 Mechanisms of Light Transport.

5.2.1 Specular Reflection.

Specular reflection is observed when looking at a shiny surface. A perfect specular

reflector would have a mirror-like quality, where each of the incident (incoming) light

rays is reflected in a single direction. In the typical instance though, light rays are

101

reflected in different directions by the surface with varymg degrees of intensity

depending on the quality of the reflector. Whilst this typical case is difficult to apply

because of the inordinate number of post-primary rays that may be cast, approximations

to it exist based on the example of a perfect specular reflector.

The direction of reflected light (from a perfect specular reflector) can be found as

follows (refer to Figure 5.2.1):

~

n

s

Figure 5 .2.1. Perfect specular reflection.

Let S = n cos B - L
and let unit vector R = 11 cos e + S

then R = 211 cose -i,

Now since 11 and L are unit vectors, cosB = 11. L and so:

R = 2n(n. L)- i. (5.2.1)

An worked example of the above can be found in Appendix 1. The computations

regarding the intensity oflight specularly reflected, I], will be discussed in the section

detailing an illumination model Section 5.4.

102

5.2.2 Diffuse Reflection.

Matt surfaces such as chalk provide the best examples of diffuse reflectors. Diffusely

reflected light is reflected away from the surface equally in all directions.

n R

Figure 5.2.2. Perfect diffuse reflection.

The only mathematical principle that need be stated here (without delving too far into

surface physics), is that the intensity of the light diffusely reflected, If , is taken to be

proportional to the cosine of the angle between the vector L and the outward facing

surface normal n :

5.2.3 Specular Transmission.

Transparent surfaces are those which exhibit specular transmission. The surface

represents the boundary between two media through which light travels at different

speeds. According to the theory presented in much of the literature, a phenomenon

known as refraction, or the bending of the path of the light, occurs at such a boundary.

Consider the following:

n

A

L

medium 1: T/i

medium 2: Tfr

T
-n

Figure 5.2.3. Specular transmission. L points towards the light source and T

gives the direction of the transmitted light.

103

Given that T/i is the index of refraction of medium 1 (the speed of light through this

medium relative to the speed of light through a vacuum) and that T/r is the index of

refraction of medium 2, then the relationship between () L and Or can be written:

sin Br T/i
=-=Tfir

sin ()L T/r

This is known as Snell's Law. The vector T, representing the direction of transmission,

will need to be computed in terms of the vectors n and L , and the indices of refraction

for the media on either side of the surface. Consider the following diagram:

104

n

~

-n

Figure 5.2.3 .1. Perfect specular transmission (refraction).

~

The unit vector T may be expressed as:

where S is the unit vector on the surface and in the same plane as n and L . L may be

written:

which gives:

and so:

L = -S sin BL + ii cos BL

S= iicosBL -L
sin BL

~ sin B ~
T= . T (iicosBL -L)-iicosBr

smBL

sin Br .
Rearranging and replacing . with 17 LT :

smBL

Given that ii and L are unit vectors, cos BL and cosBT can be written as follows:

105

cos BL= n. i.
cos Br = J1 - sin 2 Br

= J1 -1Jir (1- COS 2 BL)
I 2 , ~ 2

=\fl-77LT(l-(n•L))

This provides us with the final expression for T:

(5.2.3)

See Example 5.2.3 in Appendix 1 for a numerical illustration of the above.

A phenomenon known as total internal reflection may occur when light passing through

one medium reaches the boundary with a second medium having a smaller refractive

index. Rather than continue at a refracted angle in the next medium, the light is

reflected against the boundary between the two media and continues in the original

medium.

incident light n

R

medium 1: more dense (slower)

~-ll'-~~~~1.--~~~~~~ surface

medium 2: less dense (quicker)

T

Figure 5.2.3.2. Total internal reflection.

106

~

Should equation 5.2.3 yield a complex value for T then total internal reflection is

considered to occur. The critiDal angle, the angle of incidence of a light ray with the

surface below which total internal reflection occurs, may be found by simplifying

I-11zr (1- (n • L) 2) = 0, which gives: sin BL = 17r /77L , which is at least reasonable, as

17r /77L < 1 given that 17L > 77r (light is travelling slower on the side of the light source).

Again, the intensity of light specularly transmitted, I I , will be discussed in Section 5. 4.

5.2.4 Diffuse Transmission.

A translucent material, that allows light to pass through, but colours and scatters it

along the way (making objects behind the material appear indistinct), exhibits diffuse

transmission. Perfect diffuse transmission would scatter light evenly in all directions as

it passed through.

As with the case for diffuse reflection, the intensity of the light diffusely transmitted,

I fr , is taken to be proportional to the cosine of the angle between the vector L and the

outward facing surface normal n .

5.3 Application of Optical Models to Ray Tracing.

Recall that the goal of the illumination model in the ray tracing algorithm is to colour

the pixel through which a particular primary ray was cast into the problem world. Thus

the previous expressions for the behaviour of light when it strikes a surface need to be

restated and put into the context of the ray tracing algorithm, where only information

107

regarding light that is eventually received by the eye (i.e., travelling along a primary

ray) is of concern.

We may consider two sources of colour information for a particular point on a surface.

Primarily, it is the presence of light sources in the problem world that will cast this point

in varying degrees of light or shadow, depending on the positions of these sources

relative to the point on the surface. Should this same point be on a surface that

facilitates either perfect specular reflection or perfect specular transmission, or both,

then we can consider the other positions in the problem world as secondary providers of

colour information. A single secondary ray can be cast in the direction of reflection or

transmission to indicate the direction in which this position lies from the point on the

surface. This secondary ray may be followed in a similar manner to the primary ray that

spawned it.

n T

-n

Figure 5.3.1. Illumination of
point by light sources.

~

n

eye

~

-n

Figure 5.3.2. Casting of
secondary rays for a perfect

specular surface.

R

108

5. 3. 1 Illumination of a Surface at a Point of Intersection.

The extent to which each light source in the problem world lights a particular point is a

function of both the angle of incidence a ray cast from that point strikes the surface, and

the wavelength of the light. The following will provide expressions for the angle of

incidence in terms of the mathematics already identified in the ray tracing process (for

the four modes of light transport). These will be determined with reference to the

position of the viewer. Note that computations will take place in problem world space,

and so the surface normal vector n, previously defined in object space, is transformed

by matrix T;-1M;. Similarly, the direction in which the eye (or origin of the spawned

ray) lies is expressed by the vector -Tv1Vr1 (see section 3.5.1).

5. 3 .1. 1 Illumination by Specular Reflection.

A light source (pointed to by vector i) is not typically located in a manner that allows

the perfect specular reflection to be seen from the viewing position. As such, perfect

specular reflection is oflimited use in an illumination model.

surface normal:
T-IM" ; ;n eye:

-Tv1Vr1

Figure 5 .3 .1.1. Specular reflection in problem world space.

109

In the Phong illumination model an imperfect specular reflector is approximated using

the angle a between the vector pointing towards the viewer and the reflected vector R.

This model assumes that specular reflectance is at a maximum when a = 0, and

decreases sharply as a increases, according to cosn a, where n is some number specific

to the particular surface. This will be used in Section 5.4, but first we need the

following:

using equation (5 .2. l) with unit vector DI ~ r;- l M; ,ill instead of i, , R can be stated
T-1M ~

i in

R=2m(m.i)-i

The cosine of a can now be written:

Example 5.3.1.1 in Appendix 1 illustrates this, for the simplified case without object

space/ view system transformations.

It may also be noted that the cosine of the angle of incidence of the light, () L, is written:

..........,

110

5.3.1.2 Illumination by Specular Transmission.

In much the same way as illumination by perfect specular reflection was limited to one

view point only, so too is illumination by perfect specular transmission. Similarly,

imperfect specular transmission is approximated by finding the angle a between the

actual and ideal incident rays.

surface normal:
T-lM A

i ;D

A

T
medium 1 : 17 ray

~~~~~~-1-~~~~~~ surface 

L 
direction of 

incoming light's 
source 

medium 2: 17L 

Figure 5.3 .1.2. Specular transmission in problem world space. 

Using D1 = -t-'M;DII in place of D, equation (5.2.3) gives the formula for 'f as: 
T-lM A 

I ;D 

where 17 L,ray is the ratio of the indices of refraction 17 L / 17 ray , with the numerator 

referring to the medium through which the light passes to reach the surface. 



111 

Note that T;-1 and Tv1 are the inverse translation matrices for the object space and view 

system space, and are not related to T , which is the vector representing the direction 

that incoming that would follow if it were to be perfectly specularly transmitted. 

With an expression for T in hand, and bearing in mind that the angle made by L with 

the surface may cause total internal reflection, the cosine of a, for use in the Phong 

illumination model, can now be written using cos a= (-Tv1Vr,). T 111Tv1Vr, 11 · 

5.3.1.3 Illumination by Diffuse Reflection and Diffuse Transmission. 

Diffuse light is reflected and transmitted in all directions (which includes the direction 

of the viewer) with an equal intensity, this intensity being proportional to the cosine of 

the angle of incidence: 

surface normal: 
T-lM A 

i ;D 

Figure 5.2.2. Diffuse reflection in problem world space. 



112 

5.3.2 Recursive Ray Tracing. 

Should the surface at a point of intersection with a primary ray have either perfect 

specular reflection or perfect specular transmission qualities, then a secondary ray is 

cast to receive information about the part of problem world that can be seen as a result 

of the reflection or refraction. Should the secondary ray encounter a similar surface, 

then a tertiary ray is cast, hence the term recursive ray tracing. Subsequent rays are 

treated in the same way as rays before them up until some arbitrary threshold for the 

number of rays, or accumulated distance of travel by the light they represent, is reached. 

5.3 .2.1 Definition of a Specularly Reflected Ray. 

r '=R t 

Figure 5.3.2.1. Casting of a subsequent ray due to specular reflection. 

Given the ray - surface intersection at ( x a, ya, z a), the subsequent ray cast to receive 

information about the problem world specularly reflected to this point is defined (in 

problem world space): 

We may obtain an expression for r 1 ' from (5.2.1) by replacing 



which gives 

rt'= R = 2m(m. k) - k. 

See Appendix 1, Example 5.3.2.1 for an application of the above equation. 

5.3.2.2 Definition of a Specularly Transmitted (Refracted) Ray. 

T -1M ~ 
i ;D 

medium 1: 'ff ray 

~~~~~~..::::::.j,.~~~~~~ surface 

medium 2: n ·tcast

Figure 5.3.2.2. Casting of a subsequent ray due to specular transmission.

113

A subsequent ray cast to receive information about the problem world specularly

transmitted to a point ofintersection(xa,Ya,za) is defined (in problem world space):

We may obtain an expression for rr' from (5.2.3) by replacing

which gives

114

in which r, ray,cast is the ratio of the indices of refraction r, ray/ r, cast , with the numerator

referring to the medium through which the light passes to reach the surface. Example

5.3.2.2. in Appendix 1 illustrates the definition of such a ray.

5.4 Illumination Model.

What follows is an example of an illumination model that may be used to generate the

colour information for a particular point on a surf ace. The mathematical content behind

it is quite thin, beyond the already indicated references to the geometry of the behaviour

of light rays. As such, it is included purely for the sake of completeness.

The illumination equation describes the net intensity of light of a particular wavelength

that is evident from the position of the eye. The factors that contribute to this include

the properties (with respect to facilitating optical mechanisms for light of certain

wavelengths) of the surface at which this value is determined; the intensity, colour

(wavelength), and angle of incidence of light illuminating the point; and the angle from

which the surface is viewed.

The notation used is, in part, from Foley et al. (1994, pp. 478-489).

5.4.1 Surface Characteristics.

In this basic model we may identify two variables that influence the illumination of a

surface. A constant k representing the surface's ability to facilitate the mechanics of

light transport at that point (0 s k s 1) is used in conjunction with O A , the surface's

colour component of wavelength 2, to determine the amount of light of that

115

wavelength which enters the calculations. The intensity of illumination then, is based

on these and the intensity and direction of incident light:

A more adaptable model is described by considering that a surface has independent

variables representing its ability to reflect light, both diffusely and specularly, and

transmit light (for which the diffuse case will be addressed separately):

L=JI?+J~+J!
/1.),),),

rr ~ ~] {ks cos n as, if source of L is • in front of surface'1
l,1, =1;,L LkdOJ,1,(n•L) +05;, ~ (5.4.1)

k I cos n a 1 , if source of Lis 'behind the surface'

where I AL is the light source intensity. Note that the diffuse reflection component is

proportional to the angle of incidence of the light, and that the intensity of specular

reflection and transmission components relies on the Phong illumination model, which

considers a, the angle between the direction of perfect specular transport and the

direction from which the surface is viewed.

5.4.2 Light Source Attenuation.

Light source attenuation describes the decrease in light energy when a light source is

moved away from a surface. The expression is a function of the distance d L between

the source and the point that is being illuminated:

where c3 ,c2 , and c1 are constants associated with the light source. Applied to

illumination equation 5.4.1 we obtain:

116

5.4.3 Multiple Light Sources and Shadows.

Multiple light sources are simply accounted for by the summation of the illumination

equations attributable to each for the given point on the surface. However, some

sources may be occluded from that particular point, and as such should not contribute to

the overall equation. Multiple light sources may be modelled as follows:

where m is the number of light sources illuminating the scene, and S1 is the shadow

term, defined as:

{
O, if light source l is obscured

Sz =
1, if light source l is not obscured

5.4.4 Ambient Lighting.

Ambient light is typically considered to be a result of general diffuse interactions not

described by the model, including diffusely transmitted light from light sources that

have been defined, and light from sources external to the problem world (for example,

the sky). Surfaces are illuminated by ambient light of intensity If according to the

term k a (0 :ska :s 1) and their diffuse colour O cJJ,, • The 'complete' illumination

equation can now be described:

117

5.5 Surface Detail.

In the previous discussion each surface was identified as having a single colour

parameter (for each mode of light transport) that was uniform across its entirety. This

section will look at a number of mappings that can add detail to the appearance of a

surface.

5. 5. 1 Texture Mapping.

A texture map is usually, but not necessarily, a two-dimensional, rectangular image that

is to be placed on some surface in the problem world. An example would be a digitised

photograph, stored as a matrix of coloured pixels and indexed by the parameters µ 1 and

vt, to be placed on some facet representing a picture in a frame in the problem world.

For the purposes of ray tracing the texture mapping must be invertible: i.e., given a

point of ray intersection on a textured surface (x,y,z), the corresponding texture space

parameters µ 1 and v I can be found. The following describes the mapping from a

rectangular texture space to an arbitrary quadrilateral PoP1P2P3.

The position vector P=[x,y,z]T of a point on the quadrilateral corresponding to

texture parameters µ 1 and vt is given by a modified version of the equation given on

page 55.

(5.5.1.1)

where O ~ µ 1 ~ I, and O ~ v1 ~I.

118

Note that P is given in terms of a displacement from the first corner P0 . This

displacement is labelled p, where p = P - P0 , which gives:

(5.5.1.2)

where

p = [p x , p y , p z] T

The corresponding texture space parameters can be identified by solving any two of the

three equations represented by equation (5. 5 .1.2). Representing the vector differences

(P1 -P0), (P3 -P0) and (P2 -P3)by a, b, and d respectively, equation (5.5.1.2) is

simplified:

p = µt [(1 - Vt)a + Vt d] + Vt b

= µ 1vi(d - a)+ µta+ v1b

Solving the equations p x and p Y for µ 1 and v 1 , the general inversion is obtained:

- a 2 ± Jai - 4a1a 3
µ 1 = , Os µ 1 s 1

2a1

where a1 =(-ax(dy -ay)+ay(dx -ax))

a 2 = (aybx -axby + px(dy -ay) + Py(dx -ax))

a3 = Pxby - Pybx

. i

' I
1 -----------------: --

' I
I

' ' ' I
' ' I
I
I
I

' ' I __________,. A

0

texture space coordinate space

Figure 5.5.1.1. Texture Mapping to a quadrilateral.

119

As one would expect, the case for which PoP1P2P3 is a parallelogram simplifies the

computations somewhat (a= d):

The general inversion is stated:

As with the specification of faceted surfaces, matters are simplified $Omewhat when

triangles are used:

V t

1 : 0
a<:------------------~--·

(' I ',
' ' ' ',

'

' ' ',
-+-~~~~~~'-+'~----µ/

01
flt

0

texture space

For triangles there are two mappings:

120

coordinate space

where pis the displacement from P0 and q is the displacement from P2 . Both of these

formulations are simply invertible.

Textures can be mapped to any parametrically defined surface. For example, a mapping

to a bi-cubic parametric patch is trivially done through substitution of texture space

parameters for the surface parameters. A mapping to a cylinder would most likely

assign texture space parameter v I to the height of the cylinder, and µ 1 to the angle of

revolution about the cylinder's axis.

121

5.5.1.2 Bump Mapping.

Bump mapping is similar to texture mapping in that detail is added to an otherwise

uniform surface through a mapping to coordinate space. However, rather than map an

array of colours to the surface, an array of surface normal transformations are mapped

that provide variations in the illumination of the surface. For example, bump mapping

can be used to simulate the dimples on a golf ball by altering the surface normal of a

sphere in a regular patterned manner. Whilst the technique brings little to the discussion

of mathematics behind image generation, it is a useful short cut that is commonly

applied.

5.6 Approximation of a Smooth Surface through Phong Shading.

Consider a triangular facet, with normal n, that is defined by vertices which were

sampled from a smooth object. If it is anticipated that a number of rays will intersect

with the facet, the surface normal may be adjusted at the points of intersection, which

will in turn mean that the illumination of the approximated surface is closer to that of

the original form. Phong (197 5) provides a method to accomplish this.

Phong shading linearly interpolates a surface normal according to the (normalised)

vector sum of the normal vectors of that surface and the adjacent surfaces at each vertex

(care must be taken not to sum vertices at a vertex running along a deliberately

discontinuous edge, otherwise unwanted smoothing may occur). More formally the

surface normal is defined as follows.

For the triangular facet Po P1 P2 the approximated surface normal n * at the point

P == P0 + µ(P1 - P0) + v(P2 - P0) is given by:

122

where ni is the unit vector in the direction of ni, the vector sum of the unit normals to

the facets (that we are interested in) meeting at vertex i.

A

/

Figure 5.6. A cube with a 'rounded' edge.

Consider figure 5. 6, where a corner of a cube has been removed in an attempt to

model some sort of curvature. Close to vertex A, one would assume that the Phong

shading method would use the 'average normal' vector n A , which has the same

direction as n A = n a + n b + n d . However, close to vertex B, where rounding is not

wanted (a straight edge is desired), an average normal vector would not be

designated, instead shading on each facet occurring irrespective of the adjacent

facets.

123

6. Other Methods of Image Generation.

A primary inefficiency of the ray tracing algorithm discussed in Chapter 3 is the

arbitrary casting of (at least) one ray through each pixel on the view window. The

method does not consider the construction of the problem world and would be improved

if the direction of each ray cast could be determined by the presence of detail in the

problem world. By considering the positions of vertices and edges in the problem world

we identify not only a means (albeit an over-simplified one, given the depth of research

into the area) of improving the efficiency of the ray tracing algorithm, but also a general

method of two-dimensional image generation.

In Section 3. 4 a number of projection methods were discussed in the definition of the

general form of a ray, without any reference to the problem world into which they were

to be cast. In this section, the special cases of these projection methods will be

considered in which, depending on the method used, rays passing through a number of

vertices in the problem world are cast in order to describe the appropriate image on the

view window.

The resulting image consists of a set of points on the view window, which are then

joined by computer algorithm to define edges, and in turn used to identify facets that

can be shaded. The removal of vertices, edges and facets that are hidden or out of view

from the consideration of the image generation process is a task that can occur before or

during shading of surfaces. There is much literature describing such image generation

processes, and with an almost exclusively computer programming orientation

(especially with regards to the hidden point/ line/ surface removal steps) the associated

124

algorithms will not be discussed in any further detail by this project, except where there

is suitable mathematical content.

6.0 Review of Notation.

The following discussion will look at different types of projection. But first we briefly

remind the reader of some of the notation used in the definition of a view system as

detailed in Section 3.2. The form in which a ray is expressed (Sections 3.3 to 3.4) is also

reviewed.

The axes of the view system are labelled (u, v,n) and view system space is positioned

in the problem world by the transformation V. Hence, when working in view system

space, object coordinates need to be first transformed into problem world coordinates

and then into view system coordinates: this composite transformation is represented by

the matrix product v-1Mi (for object i).

The view plane is defined in view system space (u, v, n) by n = k, with normal vector

n = [O, 0, - If, and the view window as the rectangle with bounding vertices

(-a,b,k), (a,b,k), (a,-b,k) and (-a,-b,k). The 'observer' is typically located at

(0, 0, 0), and 'looks' through a view window lying on the plane k = -1. For the

purposes of the following sections, a point on the view window will not be referred to

by a point on the pixel (i, j) as previously, but rather the point (A, B, k) on the plane of

the window itself will be used. As such, - a :::; A :::; a and - b :::; B :::; b define the points

on the view window. The equation rA,B = r(;·B + tr/·B describes the ray that passes

125

through the view window at the point (A,B, k), where rt·B and r/·B are defined

according to the particular projection method to be used.

As stated throughout Chapter 3, ray traced projection is implemented by tracing the

paths of an arbitrary number of rays through the view window into the problem world.

Now consider that the points of interest in the problem world are already known, and we

wish to examine their projection on to the view plane, more particularly any projections

on to the view window, which also lies in the problem world. The following sections

discuss identifying the point (A,B,k) on the view window for the ray rA,B that passes

through an already identified point in the problem world.

6.1 Parallel Projection.

A parallel projection is defined by a set of rays that have parallel direction vectors, i.e.

have the same vector r1 in each of their equations.

view window

Figure 6.1. Rays and view window of a parallel projection.

126

Recall that a parallel projection is not restricted to the direction of the normal vector to

the view window. This direction is denoted from the point (u, v,n) in the problem

world as rt* = [c, d, e - k]T, where the vector [c, d, e]T represents the displacement of

the origin of a ray that would have passed perpendicularly through the view plane (the

view plane is typically located with centre (0, 0,- k), or by position vector [O, 0, - k]T,

hence the vector addition in r;).

So for any point (u, v,n) in the view space representation of the problem world, the

following equations describe the projection by ray rA,B to the point (A, B, k) on the

view window:

u A -c
A= u + tc (6.1.1)

V = B +t -d 'so: B=v+td (6.1.2)

n k k-e k=n+t(e-k) (6.1.3)

Equation (6.1.3) provides the solution fort when the ray passes through the view plane:

k-n
t=-­

e-k
(6.1.4)

Using result (6.1.4) in (6.1.1) and (6.1.2) we obtain expressions for A and B, which lead

to the matrix representation, L, of the parallel projection operation:

A 1 0
C ck

--- u
e-k e-k

B d dk V 0 1 ---
= e-k e-k

k 0 0 0 k n

1 0 0 0 1 1

[A,B,k,lY =L[u,v,n,lY

127

For example, consider the trivial case where the view plane is located at n = -1, and the

origin of the rays has not been displaced, that is the projection is perpendicular to the

view plane, or c = d = e = 0. L then reduces to:

I 0 0 0

0 1 0 0
L=

0 0 0 -1

0 0 0 1

which means that under this projection [A, B, -1, 1Y = [u, v,-1, 1]1, indicating that the n

term of a point in the (view system representation of) problem world is simply replaced

with k = - l , the n term of the view plane.

6.2 Perspective Projection.

Ray traced perspective projection 1s implemented by tracing the paths of rays

originating from the eye, which is usually denoted at the origin of the view system,

through the view window into the problem world. To find the position (A, B, k) on the

view window passed through by such a vector intersecting point (u, v, n), a comparison

of similar triangles may be used.

(c,d,e)
I
I
I
I
I
I
I • (0,0,0)

_____________ (c,d,k) ----------------------------... (c d n)
: ' '
' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' ' ' '

n '(u, v,n)

view window

Figure 6.2. Rays and view window of a perspective projection.

128

Note that this describes the general perspective projection case, where the eye has been

translated to (c,d,e). What is required is an expression for (A,B,k) in terms of

(u, v,n). By similar triangles (comparison of perpendicular sides):

k-e A-c k-e B-d
~--~- and ~--~~
n-e u-c n-e v-d

Rearranging these in terms of the required variable:

A= (k-e)(u-c) +c and B= (k-e)(v-d) +d (6.2.1)
(n-e) (n-e)

By factoring each right hand side for
1

the perspective projection may be
n-e

expressed in matrix form, R:

A k-e 0 C -ck u

B 1 0 k-e d -dk V

=
k n-e 0 0 k -ek n

W O O 1 -e 1

[A,B,k,1Y =-1-R[u,v,n,lJT
n-e

..

129

Further understanding of the above comes through the consideration of a matrix R •

defined by equation (6.2.1) but without the factoring out the expression 1/(n - e). In

such a case, the fourth entry of the resulting coordinates [A*, B*, k *, W r might not

necessarily be equal to one. Thus, to complete the projection, the coordinates need to be

reverted to the form [A, B, k, 1 Y, by dividing through by W:

[A,B,k,lY =-1 [A*,B*,k*,WY =-1-R*[u,v,n,lY
W n-e

6.3 Implications of Projecting on to the View Plane.

When projecting on to the view plane a number of difficulties emerge that are a result of

attempting to state explicitly the points of interest in a scene. Hidden surface and line

detection is a key area of concern, with mathematical concepts such as identifying

volumes of occlusion behind foreground objects, or viewing volumes that represent the

total space in the problem world that could be seen through the view window.

Whereas the ray tracing method of sampling the problem world for incoming light rays

relied solely on line - surface intersection computations, the above methods require that

if a surface - surface intersection is present and suspected to be visible, it must be

computed and eventually be represented explicitly as a set of points.

6.4 Gouraud Shading.

Once the visible surface algorithms have specified the extent to which each surface is

visible, the process of shading can begin. In the most basic shading routines the entire

130

surface is illuminated using its normal, which produces images with a faceted

appearance.

Since each projected vertex is from some object in the problem world, the colour and

illumination of the surface at each vertex may be computed. The normal at each vertex,

n;, is dependent on the adjoining surfaces' (intended) continuity to the particular

surface being shaded. From Section 5.6:

k

n;=InU),
j=l

where k is the number of facets, with unit normals n(j), each cornered by vertex i, that

are considered contiguous to the facet in question. Using the computed normal, use can

be made of the illumination models of Section 5 to provide an intensity 1,i.; at each

vertex.

Gouraud shading (Gouraud, 1971) linearly interpolates the intensities of the vertices

about a (triangular) facet. The approximated intensity of light on the surface of a

triangular facet Po P1 P2 as a result of this technique at the point

P=P0 +µ(P1 -P0)+v(P2 -P0) is given by:

where µ, v ~ 0 and O :$; µ + v $; I.

It is noted that the Phong illumination model is equally well suited to this task, although

takes more time as the illumination model is run through for each interpolation.

131

7. Conclusion.

It was noted in the introduction that conventional theory dictates that it is the light

within an environment that is received by the eye and interpreted as vision. As such,

computer graphics applications that aim to communicate visually some digitally stored

environment apply models simulating the behaviour and interaction of light with an

environment. The ray tracing algorithm was cited as an implementation of some of

these light behaviour models.

This thesis presented an outline of some the mathematical concepts that find application

in the ray tracing algorithm, one solution to the image generation problem. In

particular, vector geometry was applied to the understanding that incoming light rays

from an environment provide the visual information necessary to render the scene in

two-dimensions. This provided a mathematical framework (the view system) through

which an arbitrary problem world could be viewed.

Whilst the ray tracing algorithm provides an elegant means of image generation, it is a

costly computational procedure. As alluded to in Section 6, the scope for the

optimisation of the basic technique lies with identifying that the procedure essentially

samples the problem world before it. Thus, statistical methods have found much use in

the practical implementation of ray tracing (Glassner, 1989. p. 24). The special case

was presented (Section 6.2) where only the vertices of interest are sampled from the

problem world, using a perspective projection transformation. The reader familiar with

computer graphics will identify this as the core of the method by which the real time

rendering of graphics is accomplished.

132

The content of this thesis could be understood to be representative of a fair proportion

of elementary image generation concepts, certainly all of which have been many times

considered and presented in more detail than shown here. As such this should be

considered to provide at best a mathematical discussion of some computer graphics

topics that are perhaps usually presented with only their implementation in mind.

8. References.

Burger, P., & Gillies, D. (1989). Interactive Computer Graphics. Wokingham,

England: Addison-Wesley.

Phong, Bui-Tuong (1975) Illumination for Computer Generated Images.

Communications of the ACM, 18(6), 3 11-3 17.

133

Farin, G. (1990). Curves and Surfaces for Computer Aided Geometric Design. Boston:

Academic Press.

Foley, J. D., van Dam, A., Feiner, S. K., et al. (1994). Introduction to Computer

Graphics. Reading, Mass.: Addison-Wesley.

Glassner, A. S. (1989). An Introduction to Ray Tracing. London: Academic Press.

Gouraud, H. (1971). Computer Display of Curved Surfaces. IEEE Transactions on

Computers, 20, 623-628.

8.1 Bibliography.

Anton, H. (1991). Elementary Linear Algebra, 6th ed. New York: John Wiley

Farin, G. E. (1995). NURB curves and surfaces: from projective geometry to practical

use. Wellesley, Mass.: AK. Peters.

Foley, J.D., & van Dam, A. (1982). Fundamentals oflnteractive Computer Graphics.

Reading, Mass.: Addison-Wesley.

Foley, J. D., van Dam, A., Feiner, S. K., et al. (1990). Computer Graphics: Principles

and Practice. Reading, Mass.: Addison-Wesley.

134

Gerald, C F, & Wheatley, P O (1994) AJ)plied Numerical Analysis, 5th ed Reading,

Mass.: Addison-Wesley.

Glassner, A S, ED. (1990) Graphics Gems. San Diego, CA Academic Press.

Hall, R. (1989) Illumination and Colour in Computer Generated Imagery. New York

Springer-Verlag.

Hearn, D, & Baker, MP (1996) Computer Graphics (2nd Ed) New JerseT

Prentice Hall.

Hoggar, S. G. (1993). Mathematics for Computer Graphics. Cambridge: Cambridge

University Press.

Newman, W. M, & Sproull, RF. (1978). Principles of Interactive Computer Graphics

2nd ed. New York McGraw-Hill.

Penna, M. A, & Patterson, R (1986) Projective Geometry and its applications to

Computer Graphics New Jersey: Prentice-Hall.

Rogers, D. F., (1985). Procedural Elements for Computer Graphics. New York:

McGraw-Hill.

Salmon & Slater (1987). Computer Graphics Systems and Concepts. Wokingham,

England: Addison-Wesley.

Wylie, C R (1970). Introduction to Projective Geometry. New York: McGraw-Hill.

Young, l W. (1971). Projective Geometry. Chicago: Open Court for The

Mathematical Association of America.

Zobrist, G. W., & Sabharwal, C. (1992). Progress in Computer Graphics Volume 1.

Norwood, NJ: Ablex Publishing Co.

8.2 Some Other Relevant Material.

Karsten, Isakovic (1997). The 30 Engines List[online]. Available WWW:

http://cg.cs.tu-berlin.de/-ki/engines.html

135

Provides a list of 3-d engines for home computers compiled by Isakovic Karsten from Technical
University of Berlin. - for applications both commercial and domestic.

Hammersleys, Tom (1997). Graphics Coding Page[online]. Available WWW:

http://www.users.globalnet.co.uk/-tomh/

Explains some of the mathematics behind some problems commonly faced by amateur graphics
programmers.

Holten-Lund, Hans (1997). Bookmarks[online]. Available WWW:

http://www.id.dtu.dk/-hahl/hotlist.html

A comprehensive list of links to many graphical resources on the internet.

http://www. siggraph. org/

ACM SIGGRAPH {Special Interest Group on Computer Graphics)
"SIGGRAPH is about the exchange of ideas among researchers and technology developers
through our conferences, publications to advance the technology of computer graphics and
interactive techniques."

Spencer, Stephen (1996) ACM SIGGRAPH Online Bibliography Database[online].

Available WWW: http://www.siggraph.org/publications/bibliography/bibliography.html

ACM SIGGRAPH Online Bibliography Database.
This online bibliography database is a collection of over fourteen thousand unique computer
graphics references.

136

APPENDIX 1

Worked Examples.

137

Example 2.4.5.2: Rotation about an arbitrary axis running through the origin.

Consider an anticlockwise rotation of 8 about an arbitrary axis q that runs through the

origin:
y

axis q

z

This example identifies the matrix transformation of the form R = RyRxRzRJR; that

performs the above rotation.

Suppose that the line that is the intersection of the planes z = .fix and y = 2 x lies on

the axis q. This axis may now be described in terms of some rotation of space about the

y axis (by 8 Y) and then about the x axis (by 8 x), which transforms a line running along

the z axis into the areforementioned line along q. Furthermore, the anticlockwise

rotation of 8 z about the z axis prior to the above rotations facilitates the anticlockwise

rotation of 8 about q, if Oz = 8.

138

y
Intersection of

z = Ji x and y = 2 x

z

Given that the line is the intersection of the planes z = Ji x and y = 2 x, the angles 8 Y

and ex can be obtained. Note that the rotation about the x axis is in a clockwise

direction (or from the z axis to they axis), and so the angle 8 x is negative.

X
taney =­

z

Tr
so e =­

y 6

tan (-e X) = J y
x2 + z2

2x
= =1

~x2 + (Ji x)2

Tr
so e =--

x 4

Note that only the solutions in the first octant (in each case) were stated, simply because

these are the angles relevant to the problem. Now, the rotation matrices RY and Rx

can be determined, and subsequently their transposes R; and R; :

COS8y 0 sin ey 0 Ji/2 0 1/2 0

0 0 0 0 1 0 0
Ry= =

- sin ey 0 cosey 0 -1/2 0 Jj/2 0

0 0 0 1 0 0 0 1

1 0 0

0 cosBx - sin Bx
R = X

0 sin Bx cos Bx

0 0 0

0

0
=

0

1

1 0 0 0

0 Ji/2 Ji/2 0

0 - Ji/2 Ji/2 O

0 0 0 1

139

Now, suppose that an anti-clockwise rotation of B = n/2 about q is sought. Then

matrix R 2 is written, using B2 = n/2:

cosBz - sin Bz 0 0 0 -1 0 0

sin Bz cosBz 0 0 1 0 0 0
R = = z

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

Hence the composite transformation R, that rotates coordinate space by B = 1r /2 about

the axis q, on which the intersection of the planes z =.fix and y = 2 x lies, is given:

R=RyRxRzR!R;

0.1250 -0.3624 0.9236 0

0.8624 0.5000 0.0795 0
~

- 0.4906 0.7866 0.3750 0

0 0 0 1

The cube with homogeneous vertices (0, 0, 0, 1), (1, 0, 0, 1), (l, 1, 0, 1), (0, 1, 0, 1),

(0, 0, 1, 1), (1, 0, 1, 1), (1, 1, 1, 1) and (0, 1, 1, 1), represented by the vectors P0 to P7 ,

is transformed by the above transformation (augmenting the vertex vectors):

140

This yields the following set of transformed vertices, represented m (x,y,z)

coordinates:

Rotated PO' Pl' P2' P3' P4' PS' P6' P7'
vertices

X 0.0000 0.1250 -0.2374 -0.3624 0.9236 1.0486 0.6862 0.5612
y 0.0000 0.8624 1.3624 0.5000 0.0795 0.9418 1.4418 0.5795
z 0.0000 -0.4906 0.2960 0.7866 0.3750 -0.1156 0.6710 1.1616

Diagrammatically:

y q y q

P2

P1 % =; I
I
I
I
I
I

X X

z z

where q1 = [_!_, 1, ,J3 f is a point on both the surface of the cube and the axis q about
2 2

which the cube is rotated.

Example 3.2.1: Specification of a View Plane and View Window, for use in

further computations.

V

(-a,b,k) .---~~----.(a,b,k)

(-a, - b, k) (a,-b,k)

n

141

Working in view system space (u, v, n), the view plane that will be featured in the

following examples is n = k = - 3 . The view window will be described by a= 2 and

b=3/2, that is it has the vertices (-2,3/2,-3), (2,3/2,-3), (2,-3/2,-3) and

(-2, - 3/2, - 3). The viewer is located at (0, 0, 0), unless otherwise stated.

Resolution is defined horizontally and vertically by the constants g = 640 and h = 480.

(i.e. an 640 x 480 array of pixels), with the central position of each pixel denoted (i,)) ,

where O :s: i :s: 639, and O :s: j :s: 479, for i, j E Z. Non-central positions on pixels such as

pixel boundaries are referred to in terms of (i, j) where i,j E R. Thus, the pixels on the

view window can be shown:

142

(0, 479) (639,479)

(-2,3/2,-3) I \
I \

(2, 3/2, - 3)

-#---- (i, j)

I I
\ I

(-2, - 3/2,-3) (2, - 3/2, - 3)

(0,0) (639, 0)

Example 3.2.2: Pixel to Coordinate Mapping.

The relationship between the view system coordinates (u, v,n) and the view window

pixel references (i, j) can be described by the one to one mapping V: (i,)) ~ (u, v,n),

as follows.

For a view window with centre (0, 0, k) and bounding vertices (-a, b, k), (a, b, k),

(a,-b, k), (-a,-b, k), describing a resolution of (g x h):

V

u={2i;1-1J
v={2jh+l _1)
n=k

Thus, our mapping is stated:

u = 2(2i + 1 - 1)
640

V: v=i(2j+l _1)
2 480

n=-3

- 0. 5 :s; i ~ (g - 0. 5)

-0.5:::;J~(h-0.5)

-0.5:::; i ~ 639.5

-0.5~j:::;479.5

143

For example, the view system coordinates of the centre of the comer pixel (639, 479)

can be written:

u = 2(2(639) + 1 -1) = 639
640 320

v=!(2(479)+1 _ 1)= 479 .
2 480 320

n=-3

so

V: (639 479) ~ (639 479 - 3)
' 320' 320'

Similarly for the bottom left comer of the pixel (0, 0), i.e. i = -0.5 and j = -0.5, the

view system coordinates are:

so

u = 2(2(-0.5) + 1 -1) = -2
640

V =!(2(-0.5) + 1 -l) = _!
2 480 2

n=-3

3
V: (-0.5, -0.5) ~ (-2, - -, - 3)

2

144

Example 3.3.1: The implicitization of a parametric ray.

The trivial case of the implicitization of the parametric ray r = r0 + trt, where:

1 0

r0 = y 0 = 1 and rt = Yr = 0

0 1

will be demonstrated in this example. For a non-trivial example, see Example 4.1.2.

The set of points that describe the intersection of any two of the following three

equations ((3.3.1.1), (3.3.1.2) or (3.3.1.3)) lie on a line describing the path of the ray

Substituting in the values of the variables as indicated by the ray r, into all three

equations for the purpose of the example, yields:

(O)x + (O)y + (O)z + (0) = 0

(O)x + (- l)y + (O)z + (-0 + 0 + 1- 0) = 0

y=l

(-l)x + (O)y + (O)z + (0 + 1- 0 - 0) = 0

x=l

(3.3.1.a)

(3.3.1.b)

(3.3.1.c)

145

(3.3.1.a) provides no additional information, and so the implicit form of the ray r is the

intersection of the planes x = 1 and y =I, which is a result obtainable by simple

inspection of r.

Example 3.4.1: General Parallel Projection.

The following illustrates an oblique projection, performed by displacing the points of

origin of rays defined under an orthogonal projection. Denoting the displacement by

[c, d, e{, the equation for a ray r 1•1 , passing through pixel (i, j) is written:

r 1•1 =[a ---1 +c,b ---1 +d,e] + [-c,-d,k-e]T ·· (2i+l J (2)+1) T f

g h ~c2 +d2 +(k-e)2

Using the view system described in Example 3.2.1 (a= 2, b = 3/2, k = -3, g = 640 and

h = 480) a parallel projection ray passing through the pixel (319, 239) will be defined

for the displacement [1, 0, o{.

(319,239)
r 319,239 _ 319,239 + f - ro rt

r3t9,239 _ [l O O]T
0 ' '

r3t9,239
o r1

view window

146

r3I9,239 = [2(2(319) + 1 -1) + 1, I(2(239) + 1 -1),o]T + t [-1, 0, -3]T
640 2 480 J1 + (-3)2

= [319 __ 1_ o] T + _t_ [- l O _ 3]T
320' 320' Jw ' '

Note that the direction of this ray is simply a function of the displacement of its origin,

and not its pixel position.

Example 3.4.2: General Perspective Projection

A perspective projection with centre of perspectivity or eye displaced by [c, d, e]T has

the equation for a ray ri,J, passing through pixel (i, j) as follows:

Using the view system described in Example 3 .2.1 (a = 2, b = 3/2, k = -3, g = 640 and

h = 480) a perspective projection ray that passes through the pixel (159, 239) will be

defined for the displacement [1, 0, ot

[0, 0, O]T;

[1,0,0]
I

T'

r159,239 = (l O O]T + trI59,239
' , t

view window

147

r1s9,239 = [I, O, O]T + t [-641, __ l_,_ 31T

6412 + 1 320 320
---+9

320

~ [1.0 X 10°, 0, O]T + t[-5.553 X 10-l, - 8.663 X 10-4 , - 8.316 X 10-l]T

Note that scientific notation was used because of the small v component of the ray.

Example 3.5.1: Position of the View System in the Problem World.

To use a ray defined in view system space for the purpose of testing for intersections

with the problem world and determining illuminations, it needs to be expressed in the

problem world coordinate system (x, y, z) by using the transformation V = T v S v R v .

u'
n'

V

....... 11
y

.······

v~

n
z

Of course, this transformation determines what part of the problem world is to be

viewed. For this example, consider that the (unscaled) viewer or eye is to be located at

the problem world coordinates (I 0, 10, 10), and is 'looking' straight at the origin of the

problem world space . The transformation V that orients the view system as described

can be determined as follows:

-

First, a rotation of ()v = ,r/4 of view system space about the v axis,

then a rotation of () u = - 1r / 4 of view system space about the u axis,

and finally a translation of view system space by+ 10 along each axis.

The corresponding matrix Vis found by matrix multiplication, noting that scaling

matrix Sv is an identity matrix as no scaling occurs:

V = TvSv (RvRu)

1 0 0 10 1 0 0 0 cos;r/4 0 sin ,r/4

0 1 0 10 0 cos(-,r/4) - sin(- 1r / 4) 0 0 1 0
=

0 0 1 10 0 sin(-,r/4) cos(-;r/4) 0 - sin ,r/4 0 cos;r/4

0 0 0 1 0 0 0 1 0 0 0

Ji/2 0 Ji/2 10

-1/2 Ji/2 1/2 10
=

-1/2 Ji/2 1/2 10

0 0 0 1

X Ji/2 0 Ji/2 10 u

y -1/2 Ji/2 1/2 10 V

t.e. =
z -1/2 Ji/2 1/2 10 n

1 0 0 0 1 1

148

0

0

0

1

The view can be rotated about the chosen axis on which the viewplane normal lies by

including a rotation about the n axis in view system space before translating (and

scaling).

--

149

Example 4.1.2: Triangular Facet.

Consider the triangular facet, a bounded plane cornered by vertices indicated by

position vectors Po = [I, 0, O]T, pl = [O, 2, O]T and P2 = [O, 0, 1r. The position vector p

to any point on this facet can be defined parametrically as follows:

where

for µ, v ::2'. 0 and µ + v ~ 1 .

Pµ =P1 -P0 =[-1,2,0]T and

Pv =P2 -P0 =[-1,0,l]T

The normal to this parametrically defined surface is obtained using the cross product of

any two linearly independent vectors running parallel to its plane. Two such vectors are

n=Pµ xPv

=[-1,2,0]T x[-1,0,l]T.

= [2, 1, 2]T

Determining the intersection of a planar facet with a ray can be approached in two ways,

either by treating the facet parametrically and the ray implicitly, or the facet implicitly

and the ray parametrically. The following will demonstrate both methods.

150

Example 4.1.2.1: Intersection of a parametrically defined facet with a ray.

Referring to the facet P = P0 + µ[-1, 2, O]T + v[-1, Ol]T where µ, v?. 0 and µ+vs 1,

we can state the individual coordinate equations in (x, y, z) terms:

x=l-µ-v

y=2µ

z=v

(4.1.2.a)

(4.1.2.b)

(4.1.2.c)

Now consider the parametrically defined ray r = [5, 5, 3]T + t[-2, - 2, - l]T. In order to

find the intersection with the parametrically defined facet, the ray needs to be

implicitized. Using equations (3.3.1.1) and (3.3.1.2) from the body of the report, the

implicitization follows:

(3.3.1.1)

2x+ 2y-8z +(-10-10 + 12 + 12) = 0

X + y - 4z + 2 = 0 (4.1.2.d)

4x - 5 y + 2z + (-20 + 20 + 5 + -6) = 0

4x-5y+2z-l=O (4.1.2.e)

The implicit form of the line along the ray, then, is represented implicitly by the

intersection of the planes described by (4.1.2.d) and (4.1.2.e). Substituting (4. l.2.a)­

(4.1.2.c) into these plane equations, the problem is put into the terms of the two

parameters µ and v :

(1 - µ - V) + (2 µ) - 4(V) + 2 = 0

µ-5v +3 = 0 (4.1.2.t)

and

4(1- µ - v)- 5(2µ) + 2(v)-1 = 0

-14µ-2v+3=0

151

(4.1.2.g)

Rearranging (4.1.2.f) to get µ = 5v - 3 and substituting this result into (4.1.2.g), we get

v = 5/8 and subsequently µ = 1/8 . Thus the point of intersection can be found by

evaluating P = P0 + µ[-1, 2, O]T + v[-1, 0 l]T for these parameter values, which yields:

1/4

p = 1/4

5/8

To find the ray parameter value of this intersection, it is simply a matter of solving the

given parametric ray equation for the above point of intersection:

1/4 5 -2

1/4 = 5 +t-2

5/8 3 -1

The solution is provided when t = 19/8.

Example 4.1.2.2: Intersection of a implicitly defined facet with a ray.

Referring agam to the facet P=P0 +µ[-1,2,0]T +v[-1,0,l]T where µ,v?.0 and

µ+vs; 1, and noting that the surface normal is n = [2, 1, 2]T, the implicit form of the

plane of the facet is readily found. In general terms, the plane represented implicitly by

Ax+ By+ Cz + D = 0 has a surface normal n = [A, B, C]T. Thus, we have in this

particular instance:

152

2x + y + 2z + D = 0

The remaining term D is found by substituting a known point from the facet or plane

into equation (4.1.2.h). For example, the vertex P1 = [O, 2, O]T provides us with

D = -2. Thus the implicit representation of the plane on which the facet P0 P1 P 2 lies

is stated:

2x + y + 2z - 2 = 0 (4.2.1.h)

The intersection with the parametrically defined ray r = [5, 5, 3]T + t[-2, - 2, - l]T 1s

provided when the ray coordinates are substituted into (4 .2.1.h)

which gives:

x=5-2t

y = 5-2t

z = 3-t

2(5 - 2t) + (5 - 2t) + 2(3 - t) - 2 = 0

19
t=-

8

which is identical to that obtained for the same ray in Example 4.1.2.1.

153

Example 4.1.3: Intersection of a Parametric Ray with a Sphere.

The unit sphere is defined in (x,y,z) space by the equation x2 + y 2 +z 2 -1=0. To

test for any intersection of a parametrically defined ray with this sphere, one may

substitute the ray coordinates into that equation to obtain an expression in terms of the

ray parameter. The general case is stated:

Fr(t)=(Xo +txr)2 +(Yo +tyr)2 +(zo +tzt)2 -1=0

t 2(x; +y; +z;)+2t(x0 xt +y0 yt +z0 zt)+(xJ +yJ +zJ)-1=0

For the ray r=[5,5,3]T +t[-2,-2,-l]T this becomes 9t 2 -46t+58=0. There are

two solutions:

t =
23

+ ,,fi R; 2.8495, providing the intersection at [-0.6991, - 0.6991, 0.1505]T, and
9

t =
23 -..fi R< 2.2616, providing the intersection at [0.4768, 0.4768, 0.7384]T.

9

The solution for which t R; 2.2616 occurs first in terms of travel of the ray, and would

be the intersection considered by a ray tracing algorithm. The unit normal at this point

is simply n = [x, y, z]T = [0.4768, 0.4768, 0.7384]T.

154

Example 4.1.4: Intersection of a Parametric Ray with a Cylinder.

Consider the cylinder defined by the equation x 2 + y 2 -1 = 0. To test for any

intersection of a parametrically defined ray with this surface, one may substitute the ray

coordinates into the equation to obtain an expression in terms of the ray parameter. The

general case is stated:

Fr(t)=(Xo +t:x1)2 +(Yo +1Y1)2 -1=0

t2(x; + y;) + 2t(x0 x1 + y 0y 1) + (x5 + Y5)-1 = 0

For the ray r = [5, 5, 3]1 + t[-2, - 2, -1]1 this becomes 9t 2
- 461 + 58 = 0. There are

two solutions for the infinite cylinder:

t =
10 + J'2 ~ 2.8536, providing the intersection at [-0.7071, - 0.7071, 0.1464]1, and

4

t = lO-Ji ~ 2.1464, providing the intersection at [0.7071,0.7071,0.8536]1.
4

The solution for which t ~ 2.1464 is the solution occurring first in terms of travel of the

ray, and would be the intersection considered by a ray tracing algorithm. However

consider the finite cylinder, identical to this except that the variable z is bounded within

the range [0,0.5]. The ray no longer strikes the cylinder at this 'first point', rather it

intersects the bounding plane z = 0.5 at [O, 0, 0.5]1 when t = 2.5, and passes through

the shape, exiting at the original point of intersection which has a z value within the

limits set (z = 0.1464).

155

Example 4.1.5: Intersection of a Parametric Ray with a Cone.

The equation int:

denotes the parametric ray coordinate substitution into the equation of an infinite cone

with semi-vertical angle of n/4 whose equation is x
2 + y 2

- z
2 = 0. For the ray

r=[5,5,3]T +t[-2,-2,-l]T this becomes 7t 2 -34t+41=0.

The solutions are simply obtained:

t = 17 +Ji~ 2.6306, providing the intersection at [-0.2612, - 0.2612, 0.3694]T, and
7

t = 17 - Ji ~ 2.2265, providing the intersection at [0.5469, 0.5469, 0.7735t.
7

The intersection at [0.5469, 0.5469, 0.7735]T is the solution occurring first in terms of

travel of the ray. The surface normal at this point is given by

n = [x, y, -z]T = [0.5469, 0.5469, - 0. 7735]T, which provides the unit normal

Il = [0.4571, 0.4571, - 0.6465]T.

156

Example 4.2: Intersection of a Parametric Ray with a Torus.

The following equation is of a torus centred about the origin, with radius of revolution s

and cross-sectional radius r.

(4.2.a)

Again usmg the ray r = [5, 5, 3]1 + t[-2, - 2, -1]1
, the following illustrates the

intersection of this ray with the implicitly defined surface. Consider then, the torus

described when r = 1 and s = 2. (4.2.a) becomes:

Now substituting in to (4.2.b) the following:

x=5-2t

y=5-2t

z = 3-t

we obtain

pr (t) = 8It 4 -828t 3 + 31041 2
- 5064t + 3044 = 0

(4.2.b)

(4.2.c)

To solve for the intersections, of which four are possible in the general case, one may

use an iterative method such as Newton's Method, or attempt to use geometry to

intersect the ray with the cross-section of the torus. Equation (4. 2. c) has 2 solutions,

t = 2.8571 and t = 3.5111, which return points of intersection at

[-0.7144, - 0.7144, 0.1428]1 and [-2.0220, - 2.0220, - 0.5111]1 respectively.

157

The surface normal is given by the partial derivative, with respect to each coordinate, of

(4.2.b):

4x(x 2 + y 2 +z 2 -5)

n= 4y(x 2 + y 2 +z 2 -5)

4z(x 2 + y 2 + z 2 + 3)

The surface unit normal at the 'first' point of intersection, [-0.7144, - 0.7144, 0.1428]\

is then n = [11.3125, 11.3125, 2.3086]T, which gives the unit normal at this point to be

11 = [0.6999, 0.6999, 0.1428]T.

Example 5: Positioning of a point light source over a surface (for the purposes of

following examples regarding illumination topics)

158

This series of examples illustrating some of the concepts discussed in the body of this

project (in Chapter 5) is based on the following:

The surface to be illuminated is the plane y = 1 in problem world space (object space

transformations will be disregarded in this example). The point at which the

illumination will be examined is P0 = [l, 1, l]T, at which the unit normal is denoted as

facing in the direction of the positive y axis, that is n = [O, 1, O]T. Let the surface also be

the boundary between two media with different refractive indices. Medium A, for

which y > 1, has the refractive index 17 A = 1 . Medium B, for which y < 1, has the

refractive index 11s = 4/3.

The point light source is located at (xL,YL,zL)=(l+2..fi.,7,3). Thus from P0 , the

unit vector indicating the direction in which this source lies is

A final consideration is that the viewer of the illumination of the point P0 is located at

(-2, 4, - 2) . Thus, the unit vector representing the direction of the viewer from the

point of interest is

~ 1 1 1 T
k=[-- - --]

J)' J)' J3

159

Example 5.2.1: Determining the direction of perfectly specularly reflected light.

A

A n
R L

______ ..z._ ______ y = 1
(1, 1, 1)

A

Using equation (5.2.1), the unit vector R with direction of that of perfectly specularly

reflected light can be computed:

R = 2n(n. i) - i (5.2.1)

= 2(JJ)[O 1 O]T -[J2 J3 - 1-]T
2 ' ' 2JJ' 2 ' 2JJ

=[- J2_ J3 __ l_]T
2JJ' 2 ' 2JJ

Example 5.2.2: Diffuse reflection (and transmission)

n
L

R R

______ ::.:;.... ______ y = 1
(1, 1, 1)

Diffuse interactions with a surface cause light to be scattered with uniform intensity in

all directions (including those directions through the medium in which the particular

light source is not located, should the surface facilitate transmission of light). The

intensity at which the light is scattered is taken to be proportional to the cosine of the

angle of incidence e . Thus, in this case

160

Given the simplicity of the above statement one would not want to cast too much weight

on any interpretation of it, but effectively the model suggests that the intensity of diffuse

light that any viewer may see from this point due to this particular light source is about

86.6% of what the maximum intensity could be (as n. i::; 1).

Example 5.2.3: Determining the direction of perfectly specularly transmitted

light.

n
A

L

Y > 1: 17A = 1

------~------ y = I

y < 1 : 77B = 4/3

T A

-n

Using equation (5.2.3), the unit vector T with direction of that of perfect specularly

reflected light can be computed:

(5.2.3)

17A 3
where 77 AB = - = - .

17B 4

161

T=[010]T(
3
xJj- 1-

9
[1-(JjJ

2

JJ- 3 [J2 Jj 1]T
' ' 4 2 16 2 4 2Jj ' 2 ' 2Jj

= [O 3Jj -..J55 O]T -[J2_Jj 3Jj Jj]T
' 8 ' 8 ' 8 ' 8

= [- J2_Jj _ Jsm _ Jj]T
8 ' 8 ' 8

The angle the vector T makes with the negative surface normal is provided by the

equation

cose7 =T·(-n)=i'.n

. h .d . h O -1(FsmJ -1(~J wh1c prov1 es us wit r = cos
8

= cos ~ I - 64 .

The sine of this angle is .J9 I 64 = 3 I 8. Note that this is in agreement with Snell's Law,

that states:

sin (Jr 17A
-----'-=
sin(} 17 B

Recall that the angle of incidence was (} = 1r I 6, as its cosine was Jj I 2 . Thus the sine

of this angle is sin (} = 1 I 2. From this and the fact that 77 A = 1 and 77 B = 4 I 3 , Snell's

Law confirms that the angle T makes with the opposite to the surface normal has a sine

of 3/8.

Example 5.3.1.1:

162

Determining the angle between the direction of perfect specular

reflection and the direction of the viewer.

n
R

k
L

--------""------- y = l
(1, 1, 1)

One would expect that a perfect specularly reflected or transmitted light ray seldom

travels in a direction straight towards the viewer. Rather than model the imperfect

specular reflectance of the surface, the contribution of the light source to the

illumination of a surface at a point is taken to be proportional to some function of the

angle a between the 'perfect' ray and the vector pointing towards the viewer. For our

example:

cosa = R. k

Jz fj 1 T 1 1 1 T
=[-- - --] • [-- - --]

2.fj' 2 ' 2.fj fj' fj' fj

4+Jz
=---

6

The function f(a, n) = cosn a provides a suitable means of approximating the

proportion of the original light source intensity reflected (or transmitted) towards the

viewer (Phong, in Foley et al. 1994, p. 485). The variable n distinguishes between

different types of surfaces, with lower values denoting surfaces that scatter light to a

greater extent than those with higher values of n. For our example then, consider the

following proportions returned by f (a, n) for the angle

163

-1(4+../2J R a= cos
6

:::: 0.4456 or 25.53°.

n cosn (0.4456)
1 0.9024
2 0.8143
8 0.4396

100 0.0003

For example when n = 8, the model suggests that 43.96% of the maximum intensity of

light from the particular light source is specularly reflected off the surface in the

direction towards the viewer.

Example 5.3.2.1: Determining the direction of a perfect specular reflection of a ray

cast from the viewer.

n

k

--------------- y = l
(1, 1, 1)

~

Using equation (5.2.1), the unit vector R may be found, the direction in which a

secondary ray r' (representing a perfect specular reflection seen by the viewer) travels.

164

R = 2n(n. k)- k (5.2.1)

The secondary ray r' can be stated as

Example 5.3.2.2:

r'= ro '+trr'

1 T 1 1 1 T
r = [l, 1, 1] + t[Jj , Jj , Jj]

Determining the direction of perfect specular transmission of a

ray cast from the viewer.

n

k

y > l: 17A = l
----------'~----- y = l

-n r '=T t

y < l: 17B = 4/3

Using equation (5.2.3), the unit vector T may be found, the direction in which a

secondary ray r' (representing a perfect specular transmission seen by the viewer)

travels.

(5.2.3)

17A 3
where 77 AB = - = - .

17B 4

165

So the secondary ray r' can be stated as

r' = r0 '+trr'

166

Example 6: Projections of a cube.

The following examples will project the vertices of a cube located in view system space

(u, v, n) on to the view plane. Theses vertices are:

PO Pl P2 P3 P4 PS P6 P7
u 0 3 3 0 0 3 3 0
V 0 0 3 3 0 0 3 3
n -6 -6 -6 -6 -9 -9 -9 -9

V

u

n

Example 6.1: Parallel projection.

Using the following transformation, the set of vertices of the cube will be projected

back on to the view plane, which is defined for n = -3 . The projectors will not be

orthogonal to the view plane, rather they will be defined by the displacement

[c,d,e]T of the origin of a vector passing through the centre of the view window

(0, 0, -1). In this instance, the displacement will be [l, 1, O]T.

167

Using the matrix L

1 0
C ck

e-k e-k

0 1
d dk

L=

e-k e-k
0 0 0 k

0 0 0 1

for c = 1, d = 1, e = 0 and k = -3, the transformation to view window coordinates

(A, B) is written

[A,B,k,IY =L[u,v,n,IY

A 1 0
1

-1 u
3

B 0 1
1

-1 V

= 3
k 0 0 0 -3 n

1 0 0 0 1 1

which yields:

PO Pl P2 P3 P4 PS P6 P7
A 1 4 4 1 2 5 5 2
B 1 1 4 4 2 2 5 5
k -3 -3 -3 -3 -3 -3 -3 -3

Plotting the above in uv space, and joining the vertices on each edge by a line shows

that the transformation provides an oblique image.

4

Example 6.2:

V

Po

P4 ,__~~~~--i-~~~Ps

4

Perspective Projection.

168

u n -3

Using a perspective transformation, the set of vertices of the cube will be projected on

to the view plane, which is defined for n = -3. The viewer has been displaced from the

origin using[c,d,e]T =[4,1,0f.

Using the matrix R

k-e 0 C -ck

R=-1-
0 k-e d -dk

n-e 0 0 k -ek

0 0 1 -e

for c = 4, d = I, e = 0 and k = -3, the transformation to view window coordinates

(A, B) is written

169

[A,B,k,IJT =R[u,v,n,IY

A -3 0 4 12 u

B I 0 -3 I 3 V

=
k n 0 0 -3 0 n

I 0 0 I 0 I

which yields:

PO Pl P2 P3 P4 P5 P6 P7

A 2 3.5 3.5 2 2.67 3.67 3.67 2.67
B 0.5 0.5 2 2 0.67 0.67 1.67 1.67
k -3 -3 -3 -3 -3 -3 -3 -3

Plotting the above in uv space, and joining the vertices on each edge by a line shows

that the transformation provides a perspective image in two dimensions.

V

2

P4
~....-------t--11 Ps

Po n = -3

'-------------+------------u
2 4

170

APPENDIX 2

Guide to Excel Routines for Parametric Curves and Surfaces.

171

Guide to Excel Routines for Parametric Curves and Surfaces.

Included with this thesis are a number of Microsoft Excel Workbooks that illustrate the

parametric curves and-surfaces detailed in Sections 4.5 and 4.6. The included files are

in Excel version 5.0 / Windows 95 format, and were created on a Pentium 100 with

32Mb RAM, using Excel 97. Macros are used to automate a number of features,

included the selection of the type of curve and the entry of control points for pre-defined

examples. Disabling the macros before opening a file does not render the workbook

useless (curves will still be drawn for control points given manually) but may detract

from the presentation of the concepts.

To use the files simply copy them from the floppy disks included with this thesis into

the directory of choice on a suitable drive (e.g. C:\TEMP), and open them using a

version of Excel no less than 5.0. Alternatively, from Excel open the files from the

floppy disks and save them to an alternative drive.

Included Files:

2d-Curves.xls

2d-Bezier.xls

2d-B-spline.xls

3d-Bezier. xis

3d-B-spline.xls

172

Note on Using Charts Interactively.

In many instances, it is preferable to manipulate the control points visually, rather than

adjust an entry in the appropriate cell. On some of the charts featured in the included

software, the control points have been plotted in addition to the curve which they define,

in order to facilitate the direct manipulation of the shape of the curve. Charts in Excel

are such that data plotted on them can be adjusted directly by using the mouse.

However if the data plotted comes from cells containing functions, each adjustment will

be queried with respect to what variable the user would like to adjust to achieve the

desired change.

To use Excel charts interactively:

1. Select the chart on which you wish to alter data (control points) by performing a

single left mouse button click when the mouse pointer is over some part of the chart.

2. Now carefully place the mouse pointer over some part of the series plot particular to

the data point (control point). That is, if the control points are joined by lines, you

can place the mouse pointer over a part of that line. Otherwise, just place the mouse

pointer over a control point. Perform a SINGLE left click.

3. Pause. Clicking again too soon will bring up a dialogue box allowing you to adjust

the specification of the chart in some way. If this occurs click on 'cancel' in the

dialogue box and continue.

173

4. The data series should be selected (Excel highlights plotted points, but does not

highlight any joining lines). Position the mouse pointer over the control point you

wish to adjust and left click ONCE.

5. Pause. Should you left click again too soon a dialogue box may come up again.

Should this happen, left click 'cancel' on the dialogue box and redo step 4.

6. After about a half a second after the single click, a number of things should happen.

Most noticeably, if the mouse pointer is still over the control point selected, then the

pointer changes from the default arrow to a four headed 'movement arrow'. If the

mouse was moved off the control point after step 4, the default arrow should still be

showing. Positioning the pointer over the selected point again causes the pointer to

change to the four-headed arrow. Secondly, the only data that is highlighted is the

selected point, by a large background square, and the 'previous' point in the series,

by a smaller background square.

7. When the four headed arrow is showing (i.e., the pointer is over the selected control

point) the user can press and hold the left mouse button to pick up the control point.

By moving the mouse, the point can be adjusted either horizontally or vertically.

Diagonal movement is permitted, but the only change registered is the maximum of

the horizontal and vertical displacement. For example, moving the point to a

location up and to the left of its original placement, but more up than left, will only

register a change in terms of the vertical axis.

174

8. Letting go of the left button will drop the point at its new location, and Excel will

adjust the corresponding cell accordingly. Should the cell contain a formula, then

the spreadsheet will query the user as to which variable (cell) they wish to adjust to

achieve their desired value.

9. Once dropped, the same point can be picked up again straight away by returning to

step 7. If another point is to be adjusted, return to step 4, but note that one does not

need to pause (in step 5) to get the movement cursor.

10. Once done moving the points, return to the normal worksheet function by left

clicking on a location other than the chart on that sheet. This action will ensure that

macro buttons (that become inactive when editing a chart on that sheet) are ready to

use. A test for this is to see whether a small, pointing hand appears when the mouse

pointer is passed over the macro button.

Further Notes On Using Chart Interactively.

It may occur that a number of control points that the user is wishing to adjust

interactively are too close together or even on top of each other, preventing accurate

manipulation using only the method described above. There are a number of options

available.

1. The user can use the 'zoom in' function to obtain a clearer view for those

points close together.

175

11. The user can use the left and right cursor keys to cycle through the particular

data series. This is ideal when control points are stacked on each other. By

selecting a point in the same series with the mouse in less congested area,

the user can move along the series by pressing the left or right keys until

they reach the point of congestion. Since with each press of a key they

move either up or down one position in the series, any particular point is

easily highlighted. Then all that needs to be done is to place the mouse

pointer over the highlighted point, which should cause it to change to the

'movement arrow', and move the point as before.

176

Notes on Using the file "2d-Curves.xls".

This workbook generates a single, cubic parametric curve segment, based on four

control points. The parametric curve types featured are Bezier, modified Bezier

(Hermite), B-spline and ~-spline. The workbook serves as a comparison between these

types of curve segment, but does not illustrate the joining of such segments. The

following is a brief description of the options available on important sheets of this

workbook, and a reference to the appropriate sections of the body of this report ..

Sheet: TYPE OF CUR VE

Here the user can choose between the four types of curve:

Bezier (Section 4.5.4)

Modified Bezier or Hermite, for parameters} and k (Section 4.5.5)

B-spline (Section 4.5.6)

~-spline, for the tension parameter tor 1: (Section 4.5.6.1)

Note that when selecting a basis matrix M that uses a parameter value, adjusting the

parameter value will alter the curve as soon as the new value is 'entered'. This involves

actually pressing enter on the keyboard, as merely adjusting the number and leaving the

cursor in that cell has no effect.

The blending functions for each type of curve (Section 4.5.4) can be viewed by clicking

on the appropriate button on this sheet.

177

Sheet: CONTROL POINTS

There are two example sets of control points on this sheet. The control points can be

user defined by manual entry in to the appropriate cells, or by using the chart provided

interactively.

Sheet: Q(t)

This sheet displays the plot of the curve defined by Q(t) =GMT . It is computed for

one hundred parameter values oft, all of which are regularly spaced. Note that the

control points on the plot are interactive.

178

Notes on Using the file "2d-Bezier.xls".

This workbook generates a cubic parametric curve using three Bezier curve segments.

The convex hull property is demonstrated for each segment, and through the use of

control point manipulation, continuities at join points are illustrated. The following is a

brief description of the options available on important sheets of this workbook, and a

reference to the appropriate sections of the body of this report ..

Sheet: TYPE OF CURVE

Here the user can choose between two types of curve:

Bezier (Section 4.5.4)

Modified Bezier or Hermite, for parameters} and k (Section 4.5.5)

Note that when selecting the basis matrix M for the modified Bezier curve, adjusting the

parameter value will alter the curve as soon as the new value is 'entered'. This involves

actually pressing enter on the keyboard, as merely adjusting the number and leaving the

cursor in that cell has no effect. Also note that for j = k = 3 an unmodified Bezier

curve is plotted.

The blending functions for each type of curve (Section 4.5.4) can be viewed by clicking

on the appropriate button on this sheet.

179

Sheet: CONTROL POINTS ~ ',;,~~,,~
'~ ,M,~\: '"

This sheet allows the user to alter the nine control points for the three Bezier curve

segments. Note that the first control points of the second and third segments are

deliberately hidden, to ensure that the equality to the last control point of the preceding

segment in each case is not removed. There are two example sets of control points on

this sheet. Furthermore, the user can adjust the control points either by manual entry to

the appropriate cells, or by using the chart provided.

Two further options are provided. The first, labelled "Linearise: Adjust Join Points"

automatically recomputes control points P3 and P6 as the mid points of the line

segments P2P4 and P5P7 respectively. Thus collinearity between is assured across

these joins and the curve becomes smooth. The second option, "Make Loop", simply

makes P0 and P9 equal, and makes P1P8 collinear.

Finally, the convex hulls of each segment can be viewed by clicking on the following

box:
'·· ' . *~' :,:;:_::;,.

-:;;,, ,·, :»le R:,..."..'::,,'/ tv ~

Sheet: Q(t)

This sheet displays the plot of the curve defined by Q(t) =GMT . It is computed for

one hundred parameter values of t, all of which are regularly spaced. Note that the

control points on the plot are interactive.

180

Notes on Using the file "2d-B-spline.xls".

This workbook generates a cubic parametric curve using seven uniform cubic B-spline

curve segments. By far the most involved workbook, it covers examples of point

replication to increase control at the cost of reduced continuity, the use of phantom end

points to interpolate the first and last control points, the use of phantom control points to

achieve interpolation of control points and the use of f3-splines featuring a tension

parameter.

Sheet: TYPE OF CUR VE

Here the user can choose between two types of curve:

B-spline (Section 4.5.6)

f3-spline, for the tension parameter tor r (Section 4.5.6.1)

Note that when selecting the basis matrix M for the f3-spline, adjusting the parameter

value will alter the curve as soon as the new value is entered, which involves actually

pressing enter on the keyboard, as merely adjusting the number and leaving the cursor

in that cell has no effect. Also note that for r = t = 0 there is no tension and a B-spline

curve is plotted. For t > 0 tension is applied (the curve tends towards the control

points). For -12 < t < 0, the curve moves away from the control points (more erratically

as t tends toward -12). It is recommended that the user does not enter values between

- 11 and -13, to avoid overflow errors (the plot becomes quite useless for these values).

181

Sheet: CONTROL POINTS

This sheet allows the user to alter the ten control points for the seven spline curve

segments. Three examples are provided to illustrate the flexibility of this particular type

of curve. Furthermore, the user can adjust the control points either by manual entry in

to the appropriate cells, or by using the chart provided. The following discusses the

numerous features available on this sheet.

Controlling the End Points of a Spline (Section 4.5.6.2)

1. Duplication and Triplication of End Points.

iii~ii1waiitfulliirtt•1~;~
By clicking on these buttons, a macro makes either the first and second, and ninth and

tenth control points equal, or the first, second and third, and the eighth, ninth and tenth

control points equal. Note that this method differs slightly from that described in the

body of the report as we are not adding additional points, but rather redefining the end

points and utilising the original end points for the purposes of either duplication or

triplication. Still, the effect is the same - the curve is pulled towards the (new) end

points when duplicated and it interpolates it when triplicated. Note that the user can

manually triplicate any point using the table, to check that the curve becomes only c0

continuous.

182

11. The Use of Phantom End Points.

The theory behind the use of phantom end points is that by introducing an extra point at

each end of the curve, the subsequent extra curve segments can be made to interpolate

the original end points. The implementation of phantom end points provided by this

workbook does not introduce any new points, instead it sacrifices the original end points

and so provides interpolation for the second and ninth points, P1 and Pg. Unlike the

implementation of the replication measures identified previously, the phantom end

points can be left 'on' (enabled) so to speak, so that the curve can be modified and still

maintain the interpolation at the points P1 and Pg, until the option is turned 'off'

(disabled). Note that if the user attempts to interactively alter the phantom end points

they will be queried as to what cell they want to adjust to do so, as the location of these

phantom points is a function of the subsequent I previous two control points:

P ~ = 2P 1 - P 2 and P; = 2P g - P 7

Interpolation Using a Cubic B-spline (Section 4.5.6.3)

Using the following matrix, a set of phantom control points can be identified that, when

used to plot a B-sp line (not a ~-spline) provide a curve that interpolates the intended

control points.

183

-3 0 3 0 0 0 0 0 p~l mo

1/6 2/3 1/6 0 0 0 0 0 p*
0 Po

0 1/6 2/3 1/6 0 0 0 0 p*
I P1

=

0 0 0 0 1/6 2/3 1/6 0 p;_l ps-1

0 0 0 0 0 1/6 2/3 1/6 p*
s PS

0 0 0 0 0 -3 0 3 •
Ps+I ms

AG*=G

G* = A-1G

There are a number of things to note here. Primarily this is a ten by ten matrix requiring

inversion (in this case the workbook plots for ten phantom control points, not ten

control points). Excel can perform the computation for us, but a Gaussian elimination is

provided on the sheet INTERP. GAUSSIAN ELIMINATION anyway. Secondly, there

are two gradient requirements for the ends of the curve, m 1 and m 8 . Rather than query

the user further, these are automatically set to be the slopes of the lines between P1 and

Upon pressing the button "Interpolate Control Points", the user is presented with the

sheet INTERPOLATION CONTROL, which is similar to the previous sheet for control

points except that there is a set of phantom points in addition to the given control points,

and a panel of toggles. These toggles enable the user to indicate whether or not the

control point listed above it should be interpolated. An option is also included to

interpolate all or none (should the macro fail / be disabled, the user can go to the sheet

INTERP. GAUSSIAN ELIMINATION and adjust the matrix A for each particular

control point P,. Should P, not need to be interpolated, row i in A can be adjusted so

that all entries are O other than a 1 on the main diagonal. For interpolation of Pi, the

184

main diagonal element of row i should be 2/3, whilst the adjacent entries to the left and

right of this should be 1/6).

Sheet: Q(t) and INTERP. Q(t)

Again, the curve is plotted on these sheets. It should also be pointed out that the

interpolation plot is interactive, which in effect enables the user to have very direct

control over the shape of the curve.

185

Notes on Using the files "3d-Bezier.xls" and "3d-B-spline".

The transition from two-dimensional parametric cubic curves to three-dimensional

parametric bi-cubic surfaces necessitates a simpler form of demonstration, partly due to

the limitations of the plotting capabilities of Excel (we will only be able to plot surfaces

where control just one coordinate, inspite of having the data available to control all

three coordinates) and partly due to the fact that visually manipulating three

dimensional control points is difficult with a two dimensional control device (the

mouse).

The Bezier surface workbook, 3d-Bezier.xls, features three Bezier surface patches

joined in a row, each patch defined by 16 three-dimensional coordinates. The relevant

section in the body of this project is Section 4.6.2. Control points can be manipulated

across all three patches by looking at the same row number in each geometry matrix

simultaneously.

The B-spline surface workbook, 3d-B-spline.xls, features nine surface patches defined

by a six by six coordinate array. Since continuity is automatic across the entire surface,

the user can enter coordinates arbitrarily and produce a smooth surface (except when

points are replicated). Refer to Section 4.6.3. of the project body for more information.

The graphic output provided is limited in that variations in only one coordinate at a time

are shown. The effect is similar to defining each coordinate triple over a plane divided

into a regular grid governing x and z coordinates say, while variable y is freely defined.

186

APPENDIX2A

Data used as Examples in Excel Routines for Parametric Curves and Surfaces.

187

Below is the data stored as examples in each of the workbooks.

2d-Bezier.xls

PO Pl P2 P3 P4 PS P6 P7 pg P9

Eg. I X 5.25 1.25 4 3 1.5 5.5 6.5 7.5 10.5 5.25
y 4 3 2 1.3g 0.75 3 0.63 0 1.25 2.25

Eg. 2 X 3 1.25 1.25 3 3 5 7.5 7.5 11 11
y 3 3 2 2 0.75 3 3 1.25 1.25 2

2d-B-spline.xls

PO Pl P2 P3 P4 PS P6 P7 pg P9

Eg. I X I 1 2 3 6 2 5 6 7 7

y 6 4 3 4 7 7 4 3 4 6

Eg. 2

Eg. 3

3d-Bezier.xls

y=O y=I y=2 y=3 y=4 y=5 y=6 y=7 y=g y=9
x=O 0 3 3 2 0 3 4 5 5 3

z values x=I I 3 3 2 I I 2 3 3 I
x=2 1 3 3 2 1 1 2 3 3 1
x=3 3 5 5 4 3 0 2 3 3 g

188

3d-B-spline.xls

l}'=O lY = 1 l}'=2 lY = 3 lY= 4 y=S
x=O 2 2 4 4 4 0
x=l 2 4 2 2 4 4

z values x=2 4 2 6 2 2 4

x=3 4 2 2 2 2 4

x=4 4 2 2 2 3 2

x=S 0 4 4 2 2 3

189

APPENDIX2B

Plots of Examples in Excel Routines for Parametric Curves and Surfaces.

-

.. ' -
.

-
. -

B
ez

ie
r

C
ur

ve
 S

eg
m

en
ts

.
E

xa
m

pl
e

1.

,
,

....

••

·.'
 :.

.
,

••

.,

•·
 .

.

B
ez

ie
r

C
ur

ve
 S

eg
m

en
ts

.
E

xa
m

pl
e

2.

..

....

.
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

.
·•

- '°

•-
--

--
--

--
--

-~
-~

-....
.....

.
' ·-

B
ez

ie
r

C
ur

ve
 S

eg
m

en
ts

.
E

xa
m

pl
e

2
da

ta
:

'L
in

ea
ri

se
d'

 C
on

tr
ol

 P
oi

nt
s.

•

.,

•-
--

-
-.

 -
--

--
--

--
-
--

--
--

-.
.

--
-

-
-

--
--

--
-•

. -- ·-

B
ez

ie
r

C
ur

ve
 S

eg
m

en
ts

.
E

xa
m

pl
e

2
da

ta
:

•

'L
in

ea
ri

se
d'

 a
nd

 L
oo

pe
d

C
on

tr
ol

 P
oi

nt
s.

•

... --
-.

.
.
.
 -

--
..

..
 -

--
-.

.
.
.
 -

--
.
.
.
 -

--
-.

 :
 ,

 .

B
ez

ie
r

C
ur

ve
 S

eg
m

en
ts

.
E

xa
m

pl
e

2
da

ta
:

C
on

ve
x

H
ul

ls
 o

f S
eg

m
en

ts
 (

un
io

n
o

f t
ri

an
gl

es
)

~--.. -
--~··

··-··
-····

-····
--

.,_,,.. _
__

__
__

__
 .. ~

 --.
4.

 ·-
--

.........
.........

. .,... _
_

 , __ ..
 ~_..

..-..
. -.. .

.... _
._~

-~-

--·-

-·-
--

··
·-"

"'"
''··

··-
..... --

-~-
-··-

-··

··---
·~··

·
 ·-···

·~·~
-·--

·--"
···

... ,._
 ... _, ..

. ~ .. -.
.......

.. --~.
-··~···

.....
-~-

~--
··---

-~

M
od

if
ie

d
B

ez
ie

r
C

ur
ve

 S
eg

m
en

ts
.

I
6

an
d

k
=

 6

E
xa

m
pl

e
2

da
ta

'L

in
ea

ri
se

d'

·-

•

-,

• •

B
-s

pl
in

e
C

ur
ve

 S
eg

m
en

ts
.

E
xa

m
pl

e
1.

• •

•

• •

•

I ~

•

B
-s

p
li

n
e

C
ur

ve
 S

eg
m

en
ts

.
E

xa
m

pl
e

2.

•

•

•

•

-,

•

B
-s

p\
in

e
cu

rv
e

se
gm

en
ts

.

E
xa

m
pl

e
3.

•

•

•

•

•

•

•

•

•

-·
·

...
. -

--
-

-·
·

_ ..
 ,-

--
-·

B
-s

pl
in

e
C

ur
ve

 S
eg

m
en

ts
.

E
xa

m
pl

e
2

da
ta

:
D

up
li

ca
te

 E
nd

 P
oi

nt
s.

•

•

•
•

•

,

B
-s

pl
in

e
C

ur
ve

 S
eg

m
en

ts
.

E
xa

m
pl

e
2

da
ta

:
T

ri
pl

ic
at

e
E

nd
 P

oi
nt

s.

•

•

B
-s

pl
in

e
C

ur
ve

 S
eg

m
en

ts
.

E
xa

m
pl

e
2

da
ta

:
P

ha
nt

om
 E

nd
 P

oi
nt

s.

•

•

•

N

0 -

•

B
-s

pl
in

e
C

ur
ve

 S
eg

m
en

ts
.

E
xa

m
pl

e
2

da
ta

:
In

te
rp

ol
at

io
n

us
in

g
P

ha
nt

om
 P

oi
nt

s.

•

--~-
~~-

--, ..
. -
--

--
-~

N

0 N

•

B
-s

pl
in

e
C

ur
ve

 S
eg

m
en

ts
.

E
xa

m
pl

e
2

da
ta

:
In

te
rp

ol
at

io
n

o
f c

on
tr

ol
 p

oi
nt

s
w

it
h

od
d

la
be

ls
,

us
in

g
P

ha
nt

om
 P

oi
nt

s.

•

•

N

0 w

•

B
et

a-
sp

li
ne

 C
ur

ve
 S

eg
m

en
ts

.
E

xa
m

pl
e

3
da

ta
:

T
en

si
on

=
 5

.

•

~
~
-
-
-
~
~
~
-
,
~
~
~
~
~
~
-
~
~
~
~
~
~
~
~
~
~
~

•

•

•

•

N

0 +'
"

,,.

•

B
et

a-
sp

li
ne

 C
ur

ve
 S

eg
m

en
ts

.
E

xa
m

pl
e

3
da

ta
:

T
en

si
on

=
 1

5.

•

•

• •

•

N

0 V
,

•

B
et

a-
sp

li
ne

 C
ur

ve
 S

eg
m

en
ts

.
E

xa
m

pl
e

3
da

ta
:

T
en

si
on

=
 -

5.

•

•

•

•

•

•

•

•

•

N

0 °'

.~

B
i-

C
ub

ic
 P

ar
am

et
ri

c
B

ez
ie

r
Su

rf
ac

e.

z
va

lu
es

 o
ve

r
re

gu
la

r
gr

id
.

(v
ie

w
 1

)

N

0 -..
.I

B
i-

C
ub

ic
 P

ar
am

et
ri

c
B

ez
ie

r
Su

rf
ac

e.

z
va

lu
es

 o
ve

r
re

gu
la

r
gr

id
.

(v
ie

w
 2

)

.
-·

.

N

0 0
0

B
i-

C
ub

ic
 P

ar
am

et
ri

c
B

-S
pl

in
e

S
ur

fa
ce

.
z

va
lu

es
 o

ve
r

re
gu

la
r

gr
id

.
(v

ie
w

 1
)

N

0 '°

B
i-

C
ub

ic
 P

ar
am

et
ri

c
B

-S
pl

in
e

Su
rf

ac
e.

z

va
lu

es
 o

ve
r

re
gu

la
r

gr
id

.
(v

ie
w

 2
)

N
 - 0

	Vector Geometry and Applications to Three-Dimensional Computer Graphics
	Recommended Citation

	Page 1

