Edith Cowan University
Research Online

Theses : Honours Theses

1998

Vector Geometry and Applications to Three-Dimensional
Computer Graphics

Rory Morrison
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses_hons

b Part of the Graphics and Human Computer Interfaces Commons

Recommended Citation
Morrison, R. (1998). Vector Geometry and Applications to Three-Dimensional Computer Graphics.
https://ro.ecu.edu.au/theses_hons/1013

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses_hons/1013

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses_hons
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses_hons?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F1013&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F1013&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses_hons/1013

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose
of your own research or study.

The University does not authorize you to copy, communicate or
otherwise make available electronically to any other person any
copyright material contained on this site.

You are reminded of the following:

e Copyright owners are entitled to take legal action against persons
who infringe their copyright.

e A reproduction of material that is protected by copyright may be a
copyright infringement. Where the reproduction of such material is
done without attribution of authorship, with false attribution of
authorship or the authorship is treated in a derogatory manner,
this may be a breach of the author’s moral rights contained in Part
IX of the Copyright Act 1968 (Cth).

e Courts have the power to impose a wide range of civil and criminal
sanctions for infringement of copyright, infringement of moral
rights and other offences under the Copyright Act 1968 (Cth).
Higher penalties may apply, and higher damages may be awarded,
for offences and infringements involving the conversion of material
into digital or electronic form.

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

Vector Geometry and Applications to Three-Dimensional
Computer Graphics

A Thesis Submitted to the
Faculty of Science and Technology
Edith Cowan University
Perth Western Australia

by Rory Morrison

in Partial Fulfilment of the
Requirements for the Degree of

Bachelor of Science (Mathematics) Honours

August 1998

EDITH COWAN UNIVERSITY
LIBRARY

Table of Contents

Chapter
Abstract
Declaration
Acknowledgements
1. Introduction
1.1 Background to the Study
1.2 An Introduction to Ray Tracing
1.3 Significance of the Study
1.4 Purpose of the Project
2. Mathematical Framework and Preliminaries
2.1 Coordinate Spaces
2.2 Vectors
2.3 Homogeneous Coordinates
2.4 Elementary Euclidean Transformations
2.5 Defining Elements of a Scene
3. Ray Tracing and Ray Casting — Mathematical Discussion
3.1 Specification of the Problem World
3.2 Specifying the View Plane
3.3 Definition of the Rays
3.4 Projection Methods

3.5 Ray — Surface Intersections

1t

Page
vi
vii

viil

16
22
23
26
29
33

39

4. Representations of Surfaces
4.0 Guide to the Treatment of Surfaces
4.1 Quadric Surfaces
4.2 Tori
4.3 Composite Surfaces of Revolution
4.4 Swept Surfaces
4.5 Parametric Curves
4.6 Parametric Surfaces
5. Ilumination Models and Shading of Surfaces
5.1 Model Notation
5.2 Mechanisms of Light Transport
5.3 Application of Optical Models to Ray Tracing
5.4 Mlumination Model
5.5 Surface Detail
5.6 Approximation of a Smooth Surface through Phong Shading
6. Other Methods Of Image Generation
6.0 Review of Notation
6.1 Parallel Projection
6.2 Perspective Projection
6.3 Implications of Projecting on to the View Plane
6.4 Gouraud Shading
7. Conclusion
8. References

8.1 Bibliography

iv

44

44

49

63

64

68

72

94

99

99

100

106

114

117

121

123

124

125

127

129

129

131

133

133

8.2 Some Other Relevant Matenal
9. Appendices
Appendix 1. Examples
Appendix 2: Guide to Excel Routines for Parametric Curves and Surfaces
Appendix 2a: Data used for Examples. ..

Appendix 2b: Examples of Parametric Curves and Surfaces

136

136

170

186

189

vi

Abstract

The mathematics behind algorithms involved in generating three-dimensional images on
a computer has stemmed from the analysis of the processes of sight and vision. These
processes have been modeled to provide methods of visualising three-dimensional data

sets. The applications of such visualisations are varied.

This project will study some of the mathematics that is used in three-dimensional

graphics applications.

vil

Declaration

I certify that this thesis does not incorporate without acknowledgement any material
previously submitted for a degree or diploma in any institution of higher education; and
that to the best of my knowledge and belief that it does not contain any material
previously published or written by another person except where due reference is made

in the text.

Signature

viii

Acknowledgements

Many thanks go to my supervisor Geoff Comber, whose guidance, enthusiasm and
encouragement, not to mention proof reading skills, went a long way to making this
experience a rewarding one. Thanks also to Louise Claxton, who makes many of my

other experiences rewarding too.

1. Introduction

1.1 Background and Significance
Computer graphics applications seek to generate images by processing data that is in
part provided by a user. Frequently this data may represent three-dimensional spaces
and may be thought of as a problem world or scene, which the user desires to exist as a

visual communication.

In any visual communication of a given problem world, be it a photograph, artist’s
impression or computer generated image, it is the position from which the world is to be
viewed that determines that communication. Typically, this viewing location, the
camera or eye, is a point within the world, perhaps even within an object in that world.
From this point the world is viewed through a view plane that facilitates the description

of the third dimension in only two dimensions by means of projection.

Conventional theory dictates that it is the light within an environment that is received by
the eye and interpreted as vision. Not surprisingly then, computer graphics applications
aim to communicate visually by applying models simulating the behaviour of light and

its interaction with the surfaces of an environment.

1.2 An Introduction to Ray Tracing
The modelling of light in an environment centres around the idea that a light source
emits particles called photons. These carry energy that is perceived as a colour, should
such a photon strike the eye. The path of a photon is assumed to be a straight line
through space, and is referred to as a light ray. This may change direction as the light

ray collides with or passes through different media in the environment. By identifying

all the light sources present, one could trace the light rays of all photons as they interact
with an environment and identify those that are going to strike the eye, and hence
generate an image based on the colours received. However, this method is an
impractical solution to the image generation problem, since any one light source could
emit millions of photons (per unit time), in all directions, filling the environment
volume with rays, most of which would eventually have to be discarded for any given

viewing location.

A more practical approach is found by identifying the potential paths that light could
take to reach a given location (the eye). By placing a view plane in the problem world,
a limited number of rays originating at the eye can be cast ‘backwards’ through this
plane into the problem world. Determining the colour of such a ray involves examining
the colour-and the illumination of any surfaces that it strikes. This process is known as
ray tracing. The theory behind ray tracing provides a general solution to the image

generation problem, and will be examined in some detail in this project.

1.3 Significance of the Study
Generating computer graphics, which represent three-dimensional data, highlights the
role of the computer as a principal tool in the visualisation process, the application of
which can be seen in many areas, ranging from heavy industry to forms of
entertainment. More recent developments in this field have centred on the extension
and refinement of the application of existing principles. In particular, the rendering of
non-visual data has seen much attention, computer images being used to aid

understanding of data through visualisation.

1.4 Purpose of the Project
This project studies some of the mathematics behind the processes used to create images
and effects that are now in evidence in many visually communicative media. It will
consider contemporary three-dimensional graphics engines, both those designed for
speed and interactivity, and those designed for detail and clarity; and it will present

some of the mathematical principles involved.

2. Mathematical Framework and Preliminaries

The primary motivation for the following sections is to introduce the notation that will
be employed in the rest of this project, and some of the mathematical concepts that are

used to describe methods by which a problem world, or environment may be viewed.

2.1 Coordinate Spaces
Euclidean space is used to describe and understand the three dimensions of the world
around us. We interpret size, length, angles and volumes according to Euclidean
geometry, for it is the geometry that we are most familiar with (so much so that the

word ‘geometry’ alone is commonly understood to refer to Euclidean geometry).

A point in Euclidean 3-space may be described by the coordinate triple (x, y, z), where

the coordinates represent distances of the point from the various coordinate planes.

Figure 2.1.
Right-handed coordinate
system.

This project will use a right-handed coordinate system. The choice of a right-handed or
left-handed system is arbitrary as a simple transformation exists to switch between the

systems:

0
0

O e O

1
TRHS(—)LHS =0
0 -1

2.2 Vectors
This section introduces the notation that will be used to describe vectors, and

summarises the vector operations that will be employed through the course of this

project.

2.2.1 Notation.
The following alternative notation will be used to describe a vector:

a
={bi=[a,b,c]’ =ai+bj+ck
C

where i, j, k are unit vectors in the directions of the principal axes. Although
unconventional, the commas will sometimes be used in the horizontal matrix to assist

readability.

222 Euclidean Norm of a Vector (Magnitude)

“"0“:” [ag,89,¢01" ”:\/m
2.2.3 Addition and Subtraction.

a, a, a, fa
Voxvy=|by |2 b |=|by £b |=(a, xa))i+ (b, £b)j+(cy £k

T o ¢y e

2.2.4 Scaling.
a ka,
kvy=k| by |=| kb, |=kayi+kb,j+ kc,k
Co ke,
2.2.5 Dot Product.
as | |9

VoV, =| by |o| by |=agay +byb, + ¢y :||v0||"v1Hcos€

Co | LG
where 6 is the angle between vy and v; (If v, v, =0 the vectors are said to be

orthogonal).

2.2.6 Cross Product.

a b, ¢
Vox vy =-vixve=lay b | =(be —biey)i+(ac, —ayq)j + (agh, — aby)k
i j Kk
and ”vo X vlu = ||v0||||v1“sin o

The cross product of any two vectors generates a vector that is orthogonal to both of
those vectors. If we take the two vectors as lying on a plane, then the cross product

defines the normal vector to the plane.

2.3 Homogeneous Coordinates
3-space exists as a subset of 4-space, which itself may be described by the coordinates
(X,Y,Z,W). As such, a point (x,y,z) in 3-space is equivalent to the 4-tuple

(X,Y,Z,W) if and only if:

It is convenient to choose the case for which W =1, allowing (x,y,z) to be written
homogeneously as (x,y,z,1). Whilst this may seem to be of trivial notational value (we
can already define a complete 3-dimensional problem world using only (x,y,z)), the

use of homogeneous coordinates is useful in certain computations, which will be

detailed below.

2.4 Elementary Euclidean Transformations.
We will be concerned with two types of transformations, those that transform the
coordinate space relative to a fixed coordinate system, and the inverse transformations

that transform the coordinate system itself to another. Generally, the matrix M will be

used to denote transformations of the first type, and M~ for those of the second type.

o P

Figure 2.4.a. Figure 2.4.b.
Transformation of coordinate Transformation of coordinate
space by M. axes by M.

The matrix M describes a manipulation of a coordinate space relative to its own axes.
Such transformations will be the standard for this project (as opposed to manipulation of

coordinate axes with a fixed space), and the focus of the following discussion.

2.4.1 General Form of a Transformation.
All transformations in this project are stated in the premultiplicative form P'=MP,
where M is the 4 x4 transformation matrix, and P is the (augmented) column vector

representing the points with homogeneous coordinates (x, y, z,1).

x] [my my my mMTﬂ
y _ My My Myy My || Y
z' My My My My, || Z
L1] |my My myy my || 1]

242 Scaling

Scaling refers to the multiplication of each coordinate by some value:

xX'=s x
L

Yy =5,y
z'=s.z

x' s, 0 0 Of«x
Y9 |0 s, 0 Ofy
z' 0 0 s, 0O}z
1 0 0 0 11

The inverse transformation (restoring the original coordinate values) is intuitively
obvious. The scaling constants of the inverse matrix are simply the reciprocals of those

in the original transformation matrix.

2.43 Rotation
The rotation of points and vectors in cartesian 3-space 1s readily handled by considering
rotations about each axis separately, and then applying each transformation in turn to

the object which is to be rotated.

2.4.3.1 Rotation of a point / vector about the z axis.
In a right-handed coordinate system, a positive rotation about the z axis rotates points on

the x axis towards the y axis. The transformation matrix R, is given:

cosf, —sin6,

‘ 0 0
0 0
sothat P'=R,P

0

sinf, cosf, O
- 1
0

_—0 O O

Figure 2.4.3.1. A positive rotation about the z axis.

10

2.4.3.2 Rotation of a point / vector about the x axis.
In a right-handed coordinate system, a positive rotation about the x axis rotates point on

the y axis towards the z axis. The transformation matrix R is given:

1 0 0
0 cos@, -—sind,
R, =)
0 sin@, cosf,
0 0 0
sothat P'=R_P

_—0 OO

Figure 2.4.3.2. A positive rotation about the x axis.

2.4.3.3 Rotation of a point / vector about the y axis.
In a right-handed coordinate system, a positive rotation about the y axis rotates points

on the z axis towards the x axis. The transformation matrix R is given:

cosf, 0 snf, O
0 1 0 0
R, = .
—-sind, 0 cosf, O
0 0 0 i

sothat P'= RyP

11

Figure 2.4.3.3. A positive rotation about the y axis.

The inverse of a rotation of 6 about an arbitrary axis is a rotation by -6 about the same

axis. For example:

cos(-6,) 0 sin(-6,) 0 cos, 0 -sinf, O

4 0 1 0 0 3 0 1 0 0
Yo -sin(-6,) 0 cos(-6,) O - sind, 0 cosd, O
0 0 0 1 0 0 0 1

The reader will note that R;] = RJT,. Matrices for which the inverse is equal to the

transpose are known as orthogonal. In practical terms, the property allows an inverse to
be found by exchanging row and column references. This can save on storage space
and speed computations (a second matrix does not need to be computed, instead the

order in which columns and rows are referenced is reversed).

2.4.4 Translation
The translation of a point is defined by a shift in each of its coordinates:

x'=x+1,
y':y+ty

‘=z 41,

12

One of the primary reasons that homogeneous coordinates are used in computer
graphics computations is they facilitate the representation of translations by matrix

multiplication. The transformation matrix for a translation is:

o O O~

o O = O

o -~ O O
~

sothat P'=TP

Again, the inverse matrix is intuitively obvious. To reverse the transformation applied
by T, one would simply apply a translation of the same magnitude in the opposite

direction.

245 Composite Transformations
Given the ability to rotate and translate a set of points or vectors, it is possible to
position that set anywhere in Cartesian 3-space with the orientation (shape / relative
position of points) of that set intact. Whilst one could perform the necessary
transformations one step at a time, it is more compact to describe the whole composite
transformation at once. Simply put, sequential transformation matrices may be
multiplied together to provide a matrix that describes the total transformation. One
must note that the ordering of this action is important, given the non-commutativity of
matrices under multiplication. Whilst some composite transformations do not require

such caution, the general form of a composite transformation is strictly ordered:

13

If the matrix transformations are applied in the order M;,M,,,..., M, the composite
transformation is defined:
M = M] . .M2M1

So the process of j transformations:

P'=M,P
P'=M,P
ll!=M3PH
P(f) :.M »P(f—l)
7

reducesto P!’ =MP
The inverse of this product is the product of the inverses of the original transformations
in reverse order:
M~ =M™, M
This follows from the matrix property that the inverse of a matrix product is the
reversed product of the individual inverses: (AB)' = B'A™'. Moreover, it makes sense

geometrically in that one would invert the individual transformations from last to first to

find the original points / vectors that were transformed.

The use of composite transformations allows a number of more general transformations

to be defined.

2.4.5.1 Scaling from an Arbitrary Point d.
The standard scaling matrix S represents a dilatation with centre at the origin. When we

are concerned with a set of points, for example defining the vertices of an object in 3-

space, we may need to scale from some point represented by d =[d,.d y,dz,l]T, and

14

not the origin. This can be accomplished by first translating all points so that

d'=[0,0,0,1]" . This transformation is:

100 -d,
01 0 -d,

Td:
00 1 —d,
0 0 0 1

The points can then be scaled according to the constants sy, sy, s,. Applying the inverse
translation T' to the scaled points positions them so that their only displacement was

due to the scaling. The complete transformation can be written:

S, = T;'ST,
1 0 0 d,|[s, 0 0 0][1 0 0 -4,
|01 0d,jj0 s, 0 0)0 1 0 -d,
001 d,||0 0 s, 0fj0 0 1 -d,
000 1(0 0 0 1/[0 00 1

2.4.5.2 Composite Rotation

The three rotation matrices, R,,R,,and R,, each perform a rotation about the named

axis. A matrix R can be used to describe a general rotation of coordinate space about an
arbitrary axis through the origin. The order in which the rotations are performed is a
determining factor in the transformation (along with the size of the angles specified),
and, as such, R has no set form and must be computed as a sequence of matrix

multiplications each time it is used.

15

R has the general form:

1 ha I3
V1 Ty Ty
R=

B3y I3y I3z

— O O O

Consider a rotation about an arbitrary axis through the origin:

Figure 2.4.5.2. Rotation about an arbitrary axis.

The rotation of coordinate space about the arbitrary axis is obtained by a rotation about
the y axis, and then about the x axis, and subsequently about the z axis (on which now

lies the arbitrary axis), before two rotations to restore the principal axes to their original
position. Thatis R=R,R,R,RIR}:

a rotation of — @ 5 about the y axis,

a rotation of 6, about the x axis,

a rotation of €, about the z axis,

a rotation of — &, about the x axis and finally,

a rotation of 6, about the y axis.

A worked example of this type of problem may be found in Appendix 1.

16

2.4.5.3 Rotating About an Axis through an Arbitrary Point d.
The arbitrary axis about which a rotation occurs need not pass through the origin. In
much the same way as was done for the scaling matrix, a point d can be defined through

which the axis of rotation passes, and then:

R, = T;'RT,
1 00 d, 1 00 -d,
0104d,| |01 0 -d,
R, = R
00 1 d, 00 1 -d,
000 1 000 1

2.5 Defining Elements of a Scene.
The goal of a graphics application is to display an internally represented (i.e. stored in
the computer) scene consisting of an array of objects. In this project the term object
refers to a bounded volume, or some part of a surface. The following sections discuss

the various treatments which may be applied to these objects in order to display them.

2.5.1 Object Space.
The concept of object space is a simple one. Rather than define each element of a scene
in the coordinates of that scene (termed world coordinates, usually denoted (x,y,z)),
each element is defined in its own coordinate space (u,,v;,w;). The object may then be
scaled to the appropriate size, rotated to the desired orientation, and translated to the

desired location through the use of the transformation matrices seen in the previous

section.

17

!

W
vl
y
A) f

object space problem world

Figure 2.5.1. Object space.

2.5.2 Basic Mathematics of Object Definition
The processes to be detailed in this project require that the features or elements
comprising a scene be represented mathematically. This mathematical modelling of
such features involves describing their geometry in 3-space. Two broad categories of
geometric model exist (Hanrahan, in Glassner, 1989): the models that are described by
classification (1.e. those that are defined implicitly), and those that are described

enumeratively (parametrically).

2.5.3 Implicit Definitions of Objects
The method of classification defines each element of a scene implicitly, according to a
function of the coordinates of the three space in which it lies. The term implicit is used
because the object itself is not described explicitly by the function, rather the regions of
the three space in which it lies are identified as either being inside the object, outside the

object, or lying on the boundary between these two classifications:

18

<0 1nside the object
F(u,v,w)s=0 on the surface of the object
>0 outside of the object

«— F(u,v,w)>0

Vv
F(u,v,w)=0
Fu,v,w)<0
U
w

Figure 2.5.3. Object description using classification of coordinate space.

Whilst an implicit definition does not always lend itself to an intuitive visualisation of
the surface it is ideal for use within a ray tracing algorithm, as all ray-surface
intersections can be defined exactly by replacing each variable of * with the equivalent
parametrically defined coordinate of each particular ray, and then solving for the

parameter, as follows.

Given the ray (in object space): r=r, +r,, fort>0.

The parametric equations of the ray are:

U=ugy +1u,
V=vy, + 1y,
w=w, +w,

The intersections of this ray with an object defined by F(u,v,w)=0 can be found by

solving the following equation for t, and substituting the returned value(s) back into the

parametric equations above:

19

Flug+tu,,vy +tv,,wy +tw,) =0

This equation will be abbreviated by " () =0, where F"(¢) is a function of

coordinate values along ray r, which vary with ¢.

A more detailed discussion about the geometric interpretations of the solutions for this
type of equation will follow in later sections, but generally the first positive intersection

(i.e. corresponding to the value min(7:7 > 0)) is the important result.

2.5.4 Explicit Definitions of Objects
Typically elements of a scene that are defined explicitly are expressed as mappings

from a set of parameters to a set of points in 3-space.

coordinate space

parameter space

Figure 2.5.4. Diagrammatic representation of a parameter to point mapping.

To represent a surface, two parameters are required (a single parameter will describe a

curve, three parameters will describe a volume). The coordinates of a point on such a

20

surface S(u,v)are defined by (u(u,v),v(u,v),w(u,v)), where p and v are the two

parameters.

The surface, then, is described as the parameters vary independently of each other

through some specified domains. For example, a plane may be described explicitly as:

P=yuP, +1P, + P,

u u, u, u,

foru, ve R
ViI=uv, |tvv, [+ Y
w W, w, W

where P is a general point on the plane corresponding to the parameters (u,v),
P, and P, are independent vectors parallel to the plane, and P, is some arbitrary fixed

point on the plane.

The intersection of an arbitrary parametric surface such as S(u,v) with a

parametrically defined ray is not readily found. Mathematically, it is more convenient
to treat the ray or line implicitly as the intersection of two planes, and then substitute the

above parametric definition of each coordinate on the surface into each of the plane

equations. Suppose r =r, +r, 1s represented as the intersection of the two planes:

au+bv+cew+d =0=F (u,v,w)

au +byv+c,w+d, =0=F,(u,v,w)

21

The intersection of r with the surface S(u,v) defined by (u(u,v),v(u,v),w(u,v)) may

now be written:

FS (u,v)=au(u,v) +bpy(u,v) +cw(u,v)+d, =0
Fy (u,v) = aqu(u,v) + byv(p,v) + cw(p,v) +d, =0

where each F°(u,v) is a function of the coordinate values of surface S, which vary

with g and v.

The equations FIS (u,v)=0 and F2S (u,v) =0 may be solved to provide the parameter
pair (u,v) of any intersections that the ray makes with the surface. As the ray
parameter / is not used, the first intersection in terms of the direction of the travel of the
ray i1s not immediately obvious in the event that more than one (real) intersection is
made. The coordinates of each intersection, then, need to be compared to the origin of

the ray to determine this initial intersection.

The conversion of a parametric, explicitly defined element to an implicit one is a
process referred to as implicitization (sic). To find the parameters for a given point on
an implicit surface, the reverse process, is referred to as inversion. Both techniques will
be discussed in the ensuing descriptions of objects and with reference to their usage in

computer graphics applications.

22

3. Ray Tracing and Ray Casting — Mathematical Discussion

Ray tracing identifies the potential paths that light could take about a scene (the problem
world) to reach a given location (the eye). The ray tracing procedure may be described
in broad terms by the following algorithm. The bracketed numbers refer to the section

where the procedure is discussed.

Given the problem world: (3.1)
select the centre of projection (eye) and the view window. (3.2)
for each pixel in view window;
identify the ray from the centre of projection through that pixel. (3.3, 3.4)
*for each ray;
for each object surface in the problem world;
test for the ray — surface intersection(s), (3.5, 4)
if there is an intersection;
note the ray parameter(s).
identify the first intersection of the ray with the problem world,
identify the point of the first intersection,
compute the normal to the surface at this point of intersection.
Sor each light source in the problem world; (5)
identify the ray from the point of intersection to the light,
test if the point is obscured from this light.
if the surface is reflective;
cast a secondary ray in the direction of reflection and return to *.
if the surface is transparent;
cast a secondary ray in the direction of refraction and return to *.
colour the pixel represented by the ray using illumination mode! and

information received for reflection and/or transparency rays.

The above algorithm is by no means an extensive representation of the ray tracing

process, but serves as an introduction to the concepts. Further additions and extensions

23

will be noted if they have a substantial mathematical basis. The stated algorithm is also
without reference to any form of optimisation techniques, which are essential if an
implementation is to be rendered practical. Whilst the implementation of the algorithm
is not a concern of this project, the structure described provides a framework for the
discussion of the mathematics involved in generating images of three dimensional

scenes.

3.1 Specification of the Problem World.
The method of construction of the problem world will vary greatly between
applications, however the presence of some starting world coordinate system is an
initial inclusion to all of these. If the application were for visualisation of existing
(three dimensional or volumetric) data, then some coordinate system would already be
specified by the sampling process. Whether or not this coordinate system would be
used during the ray-tracing process is an arbitrary decision, as it is convenient to re-
specify the problem world anyway in terms of the position and angle from which it is to

be viewed before ray tracing from that orientation.

Choosing to discuss further points with reference to an object coordinate system
(u,v,w), we now consider the placement of objects, surfaces, and other data sets in the
problem world, facilitated by the Euclidean transformations discussed in section 2.4.
For each object, surface or data set i to be placed in the problem world (x, y,z) we can

specify the required transformation by matrix M;:

24

L I T =

where M, =T,S,R,; and

-1
R, =T RTy(,

s, 0 0 0
g _qi1 |0 % 0 0
1Tl g g, 0] 49
0 0 0 1
1 0 0 ¢
T,.:O 1 0 1,
00 1 ¢,
000 1

R is the composite rotation matrix for object i (see section 2.4.5.2). Both the scaling
and rotation transformations have been specified for operations about a particular point
d(s) and d(r) respectively (see section 2.4.5.1 and 2.4.5.3), although a careful
specification of object coordinates when defining object space could obviate the need

for some of these transformations.

We position the object i in the problem world by using M, to transform the object

space with respect to the coordinate axes #, v and w, and label the resulting coordinates

(x,y,z) instead of (u,v,w).

25

<

»

wl
vf
" %
A y
M)

w object space w’ problem world

Figure 3.1. Positioning of object 7 in the problem world.

The specific ordering of the composition of M (a rotation followed by a scaling and
then the translation to the desired location in the problem world) is a necessity not of a
mathematical nature, but of a practical one for the programmer. The manual
construction of a problem world through the manipulation of a number of objects and
surfaces is simplified somewhat by defining relative scale and orientation (rotation)
before the translation to the final location. The ordering of the scaling and rotation
operations themselves is of less importance; it might be more precise when using some
graphical interface to rotate a larger unscaled object than a minuscule one, but this is of

no matter to the internal (representation on the computer) construction of the matrix M.

It is noted here that while we may consider the rotation and translation of an object not
to affect its shape, scaling can produce alterations in shape. If the scaling constants s,,
sy, and s, are not equal then the object can be distorted. For example, a sphere scaled

with s, >s, =5, becomes an ellipsoid. These effects may be put to good use in

extending the number of shapes available to the construction.

26

With the problem world in place we can begin to examine its representation in only two

dimensions, that is on a view plane.

3.2 Specifying the Viewplane.
The viewplane is the plane through which the observer views the problem world. On
this plane a view window is defined (which itself is often referred to as the viewplane,
but will not be so in this project), which is a coordinate representation of the boundaries
of the intended output. One can consider a rectangle of transparent material in front of

them as an analogy to the role of this window.

problem world
view window

® cye

Figure 3.2. A view window in a problem world, illustrating the analogy drawn to a

rectangle of transparent material.

The window is divided into a regular grid, the number of divisions determining the
resolution of the final image. When making this choice of resolution consideration
would be given to the resolution of the output (screen or printer), the desired level of

detail in the image and the desired speed of the output.

27

3.2.1 Definition of Viewplane Space.
Typically the viewplane exists in its own coordinate space, with its normal running
along one of the axes of that space. The position of the viewer is also indicated in this
space. Most frequently the coordinates are labelled (u,v,n), with the viewplane unit
normal defined as n=[0,0,—1] for a right-handed system (and n=[0,0,1] for a lefi-
handed system). A typical view sysfem construction would see the centre of the view
window located at (0,0,-1) and bounding vertices
(-a,b,-1), (a,b,-1), (a,- b,-1) and (-a,—-b,—-1), with the viewer location at

(0,0,0) . Variations on this will be discussed in the subsequent sections.

»~

(—a,b,—1)

/;"
—a,—b~1 _h _
(—a ‘/) : ., (a,—b,-1)

n

(a,b,-1)

Figure 3.2.1.1. Specification of the view window.

Resolution is defined horizontally and vertically by the constants g and 4 (ie. a gxh
array of pixels), the central position (and name) of each pixel denoted (i, j), where
0<i<g-1,and0< j<h-1, forthei, j € N. Non-central positions on pixels such as

pixel boundaries (used for the purpose of increasing the sampling of the problem world)

can be referred to in terms of (7, j) where —0.5<i<g—-05,and-0.5< j<h-0.5, for

i,je R

28

(0,h-1) (g-Lh-1)
(-a,b,k) Y7 vt (a,b,k)
(—a,-b,k) \\ // (a,—b,k)
(0’0) (g—l,O)

Figure 3.2.1.2 The pixels on the view window.

3.2.2 Pixel to Coordinate Mapping.
The relationship between the view system coordinates (u,v,n) and the view window
pixel references (i, j) can be described by the one to one mapping V : (7, j) > (u,v,n).
This mapping is defined by the resolution (g x /#) and the size (2ax2b) of the view
window and by the orientation of the view plane in the view system. The following
expresses this relationship. For a view window with centre (0,0,4) and bounding
vertices (—a, b, k), (a,b,k), (a,-b,k), (-a,~b,k), describing a resolution of g xh, it

1s easily shown that:

' -05<i<(g-05
V: v:b(z‘/ *l -—1} (8)

fori,j e R 322
_05<j<(h-05) "€ (322)

where V' generates (u, v, n), the view system coordinates of the point on the view

window pixel (7,j) (window coordinates on a pixel (,j) vary for
[(-0.5),(7+0.5)] and [(j —0.5),(j+0.5)]). A worked example of this mapping is

provided in Appendix 1 (Example 3.2.2).

29

The view system may be placed into the problem world using a composite matrix
transformation, V =Ty Sy Ry, according to the position and orientation from which the
world is to be viewed. Having stated the above, the task of defining rays can begin. It
is noted here that the inverse transformation V™' applied to all world coordinates (i.e.,
all objects and surfaces would be associated with the matrix V™'M,, where M, is object

i’s transformation matrix) would effectively describe the problem world relative to the

viewer.

3.3 Definition of the Rays.
The goal of the ray tracing application is to colour the pixels of the view window. This
is accomplished by casting one or more rays through each pixel. The definition of each

of these rays is presented as follows.

3.3.1 General Form of a Ray.

Explicit definition: r =r, +r,, where

r, =[x,,¥.2,]1" is the vector indicating the point where the ray begins,

r, = [x,,¥,,2]" is the unit vector in the direction of the ray,

2 2 2
x! +yl+z,

t is the parameter explicitly defining points along the ray.

The benefits of using a unit vector for r, stem from an application of the dot product.
Recall that v «v, = HVOHHVIH cos@. Ifboth v, and v, are unit vectors, then the cosine

of the angle between the two is v,.v,. This simplification can save much

30

computational effort. Furthermore, if all rays are expressed in terms of unit vectors,

then the parameter 7 can be considered a uniform measure of the distance from the eye.

For 7:-w <t <, the formula for r describes a line. For the purposes of intersecting
the ray with explicitly defined surfaces and objects, it is useful to have an implicit
definition of this line. Such a definition is given in terms of the intersection of two

planes, the implicitization of which we now explain.

The problem requires the definition of two planes on which the ray represented by

vector r =ry +7r, lies. Any point p on a plane can be defined by its relationship to
coplanar point po and the normal vector Npiane by (p—pg)e (M.)=0. The point
r,may be substituted for py in this example. The normal vector to the plane may be

found using the cross product of any two coplanar vectors. r, describes one such

vector, and since we seek any two planes that intersect along r,, the choice of the other

vector (for each plane) is an arbitrary one. We will make use of the vectors normal to

r,, which are infinite in number, but three of which are simply defined as follows.

Given r, =[x,,y,,2,]" three normal vectors are defined:

n, =[y,,—x,,0"

T
n; =[-z,,0,x]

and ni :[07 Zta“yr]T

31

All of these are clearly orthogonal to r;, The subscript of each normal refers to the axis
to which it is also normal. Note that the opposites of each of these vectors could also be
used, but would not provide any extra implicit definitions as —1 could be factored out,

carried through the following equations, and divided away at the end.

The cross product of each of these vectors with the ray direction vector r, defines a
vector normal to a plane on which r, lies, thus n ., =r, xng, n,,.. . =r, xn,, and
N ... ; =F xn,. These planes are described by all vectors p for which p+n =0

plane ’

where p itself can be represented as the vector difference between any point [x, y, z]"on

that plane and a given point on the plane, in this case ry =[xy, V,,2,] . So we have,

for the plane containing ny:

[x“on”“}’mZ‘Zo]T ¢ et =0

[Xx=X0, Y=Y, 2—25] « (r, xn,)=0

[x %o,y =Yg, 2= 21"« (%, ¥, 2,1 x[y1,7%,,0]") =0
[x‘an}’“}’o’Z_Zo]T « %z, y.2,,-x] “}’rz]T =0

[(x = x0)(x, 2) + (¥ = ¥0)(,2,) + (2 = 20)(=x{ = ¥{)]=0

(x,z,)x+(ytz,)y+(—x,2 —y,z)z+(—x0x,z, — Yol 2, +Zox12 +ZOy12):O (3~3-1~1)

This has the form ax+by +cz +d =0, the implicit form of a plane. By similar

expansions:

[x——xoay—yOvZ_ZO]T d nplane]’ :O
[x_x07y—y07Z—ZO]T * ([xtaytvzt]T x[—ZtaOaxt]T):o

[x~x0,y—y0,z“zo]T . [xxyta“xrz 'szaYrZr]T =0

Cey)+ (-x} =2y + (V,2,) 2+ (—xx, Y, + yox? + Yoz} = 2oy,2,)=0 (33.1.2)

32

and

[x”any_y(),Z_Zo]T * Mptane =0
[x—x0,¥ = yg,2 = 201" « (%, ¥, 21" x[0,2,,-y,]")=0

[x_any—yOaZMZO]T' [_ytz wthaxtyt’th[]T =0

(Wytz —-Zfz)er(xtyt)er(tht)ZJr(xOy,z +x0212 —YoX. —zox,z,):O (3-3~1~3)

The set of points that satisfy any two of the equations (3.3.1.1), (3.3.1.2) or (3.3.1.3) lie
on the line describing the path of the ray r =r; + fr,. See Example 3.3.1 in Appendix 1

for a worked example.

3.3.2 Labelling of the Rays.
Now that the general form of a ray in three-space has been identified, the form of a ray
in the ray tracing problem can be stated. The set of primary rays passing through the

view window is labelled according to an intersecting pixel (7,7): eg r=ry +1r,

becomes r"/ =ry’ +r)’. As such r/”/is defined as the (normalised) direction vector

from ry’ to the view system coordinates (u,v,n) corresponding to the pixel (i, j).

Recalling the mapping V : (i, j) — (u,v,n) (3.2.2), we can express r,* in the form:

VI AT N AU
LAGHN A A R

giving us the general ray:

.. .. . N1T _ Lj
l‘i"]‘ — ré"" 4+ 1 [Vu (l’])7 Vv (17])7 Vn (l’ /)] rO_ :
AN AN A

(3.3.2)

33

The ray is, then, defined by its point of origin and the pixel it passes through, according

to some mapping V. Using the equations of (3.2.2), the above equation (3.3.2) can be

{[a[ZI +1 _l}b(zj +1 _lj’k]_ré,/J
g h
a

expanded to:

LI Y Y |
ro=rg o+

Implicit definitions can be obtained in a manner similar to that demonstrated in the

previous section.

Armed with the above definition of a ray in general terms, the discussion will now turn

to specific ray equations and their applications.

3.4 Projection Methods.
The process of creating a two-dimensional image based on three-dimensional data is
referred to as projection. The rays employed in a ray tracing algorithm describe the path
of projection of a finite number of points in the problem world onto the view plane (the
rays are referred to as projectors). By giving the sets of rays different paths a number of

different types of projections may be obtained.

3.4.1 Parallel Projection.
Parallel projection refers to the use of projectors that are all parallel. As such, there is
no single observer location when dealing with a parallel projection, rather we assume
that all rays pass through the view window parallel to one another and, hence, all start at

different points, defined for each by the pixel coordinates. The typical (orthographic)

34

parallel projection has rays that are in the same direction as the normal to the view

window, that is r, =[0,0,—1]7, which begin from points on the #v plane with » and v

equivalent to those on the view window.

\ 4

\4

\4

. (. ' =ry) + 1,
iJ

\ 4

view window

Figure 3.4.1.1. Rays and view window of orthographic projection.

The equation for these rays may be written explicitly:

i
. . r’
' =rp i —

]

T
1

:[a[zl il —1}1)(2]” —1), 0" + 10,0, ~1]"
g h

Y :[a[zz +1 _lj’ b(Zj +1 _l}_t]T
g h

— pls
=T,

The implicit definition is intuitive; the rays are described by the intersection of the

planes:

u:a[21+]~1j and v:b[2]+1~lj
g h

35

Parallel projections can be used to obtain side, front and back elevation views of an
object / problem world as well as plan (top) views, through particular placements of the

viewing system in that world.

An oblique projection can be performed by displacing the points of origin of rays
defined under an orthogonal projection, whilst still passing the rays through their

defining pixels. As such, the projectors remain parallel, but this direction of projection

is now defined in the more general sense r, =[V, (i, j),V, (i,)),V, (i, N]* - r;’ by any

one (7, j). Denoting the displacement by [c,d,e]”, the new vectors can be stated:

T A) N AN A
0 -
”[Vu (RN AN H

:[a[zj *l —1]+c,b[2]h+l - 1j+d,e]T

36

I

view window

Figure 3.4.1.2. Rays and view window of oblique projection.

Note that the direction of these projectors is independent of the pixels through which
they pass, and is simply a function of the displacement of the origins. Implicit
formulations may be found by applying two of the equations (3.3.1.1), (3.3.1.2) or

(3.3.1.3), as identified in section 3.3.1.

Traditional ray tracing does not usually feature parallel projections, simply because the
typical goal has been to attain visual realism, which i1s not provided for by parallel
methods. However parallel projection fits well within the framework of ray tracing and

so has been included here. An example may be found in Appendix 1 (Example 3.4.1).

3.4.2 Perspective Projections.
The perspective projection is the typical means by which ray tracing is accomplished.
Mimicking the process of vision (though only to a certain extent, as it is better thought
of as mimicking a pinhole camera model (Glassner. 1989, p. 2)), only one ray origin is
defined per image, named the centre of perspectivity, or the eye. Casting rays outward

through each pixel on the view window from this point generates the perspective effect

37

by which we gauge relative distance from our eyes. Typically this initial point, r,, is
placed at the origin (0,0,0). The directions of the rays, then, are defined in terms of the

pixels through which they each pass:

.) r.’
' o=y =y
1.7
|

f [I/u (I’J)vVv(Ial)vVn(I’/)]T —rO
AN N A RS

=[0,0,0]"

; ! {[a(ziﬂ 4} b(zj“ —lj,k]T —[0, O,O]T}

2i+1 2 27+1 g & h
a’ ~1] +b° —]———lj +k?
(g j (h
e t [a(Zi +1 lj’ b(Zj +1 1},1{]T
2 2 g h

Jaz[wlj ()
g h

()] /

view window

Figure 3.4.2.1. Rays and view window of perspective projection.

Placing ry at a point other than the origin (for the viewing system with the view window

centred at (0,0,k)) will generate various effects, which may be desirable in the

presentation of the image.

38

Moving the centre of perspectivity to (c,d,e), the following ray definitions apply:

I,]
0] l‘,'
r =r, +t

i,]
r;

[Vu(i’j)a Vv(17.])7Vn(1>.])]T -

=r, +1 T
[V, G)V, Gy 0V, G,] =

|

v =[c,d e]”

; ! [a{zlﬂ—l]—c,b(z]hﬂ~1)~d,k—e]T

[P oo

Again, the implicit form of the above may be found using two of the equations (3.3.1.1),

(3.3.12)or (3.3.1.3).

- _ o T .
r,”’ 1) r =ry+[c,d,e] +tr]’
A

7

view window

Figure 3.4.2.2. Rays and view window of alternative perspective projection.

Appendix 1 includes an example of a perspective projection (Example 3.4.2).

39

3.4.3 Other Projection Methods.
There are other methods of projection that may be adapted for use in computer graphics
algorithms. The parallel and perspective methods are classed as linear projections
(because of the behaviour of the rays). Non-linear projections may be used to mimic
vartous camera lens types, such as fisheye and omnimax. Such variations can be

achteved by making the parameter ¢ a function of pixel position (7, j), defining ray
origins according to (i, /) but not ray direction (for example, rather than one point as

the eye, a circle through which various rays pass is defined), or by defining curved paths

for rays.

3.5 Ray - Surface Intersections.
Ray tracing is principally concerned with ray — surface intersections, as rays are cast out
into the problem world to return information about the various surfaces that they strike.
Given that there are two broad methods to define an object, through classification
(implicitly) or through enumeration (explicitly), there are two broad types of ray -

surface intersection. For an implicitly defined surface F(u,v,w)=0, an explicitly
defined ray r=r, +r, is used to replace the coordinates in F' with parametric
expressions in f Alternatively, an explicit surface (u(u,v),v(u,v), w(u,v)) is

intersected with an implicitly defined ray (the intersection of two implicitly defined

planes).

Intersection testing and computation for a general ray tracing scene is processor
intensive. In any given scene, a ray needs to be tested against all surfaces for a potential
intersection (the use of object hierarchies to restrict these searches is not within the

scope and aim of this project). Once all objects have been tested, then and only then

40

may the first intersection of that ‘backwards’ ray with the problem world be identified.
Mathematically, there is little one can do to enhance the process beyond placing a
primitive bounding volume about a particular surface and testing for an intersection
with that. If no intersection is returned then a potentially complex surface-ray equation

is not required to be solved.

3.5.1 Rays defined in object spaces.
The ray-surface intersection computation generally takes place in object coordinate
space. This may seem an odd choice after defining in Section 3.2.1 a matrix
M, =T,S,R, to transform every object or surface 7 into some position and orientation
in the problem world, but a ray is merely a line in three-space, and is transformed
relatively simply from its vector form to any object or surface space by the inverse

object transformation matrix:

M =R'S/'T (3.5.1.1)

Furthermore, recall from Section 3.2.2 that the ray is defined in view system space,
which is related to the problem world according to some transformation:

V=T,SyR,. (3.5.1.2)

41

X v'

n view system space z problem world

Figure 3.5.1. The placement of the view system in the problem world using

transformation V.

To work in object space the ray first needs to be expressed in the problem world
coordinates, and so is first transformed by V=TSR, . It must be noted here that,
because of the definition of the ray, caution must be exercised during this
transformation. Whilst the origin component of the ray r, is transformed, the direction
component r, should not be subjected to a translation transformation (the direction of a
vector should be invariant under translation). Thus, for any ray r=r, +1r,, using
(3.5.1.1)and (3.5.1.2) yeilds:

ry’ = R:ls;lTi-ITVSVRVrO

=M 'Vr,
and
r) =R7'ST'Sy Ry,
=R/'S' T/ T Ty TySyRyr,
=M, T, T, Vr,
so that

r" =M 'Vr, + M'T T, Vr, where r(") is the ray in object i space.

42

Example 3.5.1 in Appendix 1 illustrates a transformation matrix V for a particular

positioning of the viewplane in the problem world.

3.52 Interpretation of intersections.
Using r explicitly to find any ray-surface intersections will provide solutions in terms
of parameter . Finding the intersection of an explicitly defined surface with an
implicitly defined ray provides the parameter pair(s) (u,v),, which corresponds to a
point in space on the ray (and surface). Given one coordinate value from such a point,
the parameter # can be computed. The following is an interpretation of the possible
values of 7.
Positive solutions: Intersections in the path of the ray.
Negative solutions: Intersections ‘behind’ the origin of the ray.
min(7 ;¢ >0): The nearest intersection to the origin of the ray.
One solution: The intersection occurs on a point of tangency.

Complex solution: The ray does not intersect the given object.

For a ray tracing application the solution corresponding to the least positive value of 7 is
of the most significance. It represents the first point on that surface which the ray

would hit, assuming there are no objects in front of it. Testing for all objects we can
state the first intersection of the ray with the problem world (at ¢’) as follows:

" =min(z, :7, >0) for all objects 7.

Having found the nearest point of intersection (assuming that there was an intersection)
of a ray with the elements in the problem world, the ray tracing procedure can begin the

process of implementing optical effects and this will be detailed in Chapter 5. Chapter 4

43

examines many of the objects and surfaces that are frequently rendered using ray
tracers, beginning with primitive objects and progressing through to parametric

representations of surfaces.

44

4. Representations of Surfaces.

This section will elaborate on the general representation of surfaces implicitly
(F(x,y,z)=0) and explicitly (S(x,v)) by considering a number of particular surface
and object definitions. The following section re-iterates the requirements that a ray
tracing algorithm requires of such objects, and provides a guide to the content of

subsequent sections.

4.0 Guide to the Treatment of Surfaces.
4.0.1 General Discussion of the Particular Surface.

Any special properties or usage of a particular type of surface will be noted.

4.0.2 The Mathematical Representation of the Surface.
As stated before, there are two broad types of surface representation, implicit and
explicit. Whilst the choice of representation is an arbitrary one from a mathematical
perspective, when both are readily definable, a programmer would choose the
representation more suitable for coding — with issues such as storage capacity, speed of
use and accuracy of results (once coded) influencing their choice. For some surfaces
though, the representation will be limited to either implicit or explicit only, as the other

definition may be impractical, even mathematically.

Recall that an implicit surface is a definition by classification, the function F(x,y, z)
describing some region in space for which F(x,y,z)=0 is the boundary or surface;
where F'(x,y,z) <0 refers to the interior; and F(x, y,z)> 0 the points (x, y, z) exterior

to this region (/' 1s also known as a point-membership classification function). For

45

example, the sphere u? +v? +w? =1 is such an example as it can be represented by

u? +v? +w? -1=0. Implicit definitions are generally used in computer graphics

applications to describe simpler, ‘regular’ surfaces.

Recall too that S(u,v):(u(u,v),v(u,v),w(u,v)) is an enumerative description, or

explicit representation, of a surface. For example, the same sphere can be described
parametrically:

J1- 4% cosv

u _
V(= U for -1<pu<land0<v<2r
w

V1= u?sinv

Explicit definitions exist for many of the implicit functions that will be discussed below,
and they (the former) will be included in the discussion as the explicit definition may on
occasion require pre-computation of some quantities useful to a graphics program (for

example, the surface normal).

4.0.3 The Representation of the Surface Normal.
The surface normal, the vector pointing in the direction in which the surface is
considered to be ‘facing’, is readily defined for an implicit surface. Given F(x,y,z),

the normal vector to the surface defined by F(x, y,z) =0 is given by the vector:

: OF OF &F
ol =, S, 2
o’ oy oz

46

The computation of a normal vector to a parametric surface is more involved. Such a
vector is expressed as the cross product (section 2.2.6) of two vectors in the plane that is
tangential to the surface at the point for which the normal is required. These vectors
may be described using the first partial derivatives of the parametric function
S(u,v) (w(u,v),v(u,v),w(u,v)) with respect to each parameter (u,v). So the normal

vector can be stated:

ou(u,v) ov(u,v) aW(ﬂ,V)]T X[Gu(u,V) ov(u,v) ow(u,v)

"=l o o v ' ov ' oy

]T

The normal vector is used extensively in the shading and illumination of surfaces in the
problem world, and its usage will be discussed more thoroughly in Chapter 5, which

deals specifically with that area of the image generation process.

A preliminary note is made here about the direction of the normal. The cross product is
such that for any vectors p and q, pxq=—qxp. Given that the choice of tangential
plane vector order is an arbitrary one (it could be considered standard to use first the
derivative with respect to the first parameter alphabetically speaking), the resulting
normal vector really has two directions that may be considered, one opposite to the
other. The choice of which to use is based on the use of the normal. For the purpose of
shading and illumination, the normal of a surface at a point of intersection with a ray is
said to be the vector through points with the same function classification (i.e. either
F <QorF >0) as the ray had ‘just’ before it intersected. In other words if the ray
came from outside of the object, then the normal used in shading computations points to

the outside or away from the object. Conversely, a ray that is passing through the

47

interior of an object to make a particular intersection defines a normal pointing inwards.
A simple algorithm exists, which can be used generally, to identify the normal to be

used:

if v, en > 0 then;
n = (1) * n: reverse the direction of the normal (fig. 4.0.3 b).

else the direction of the normal is correct (fig. 4.0.3 a).

where r; is the direction of the ray r and n is the normal.

A
n -
4
surface
r. r.
6<Z
2
«n<0 r,en>0

Figure 4.0.3 a. Figure 4.0.3 b.

4.0.4 The Intersection of a Ray with the Surface.
The discussion of each surface will provide a simplification of the equations used to
intersect a ray with that surface. Recall that the general form of a ray intersection with

an implicit surface is as follows.

For an implicit surface: F(u,v,w)=0,

48

U=uy+1tu,
and the explicitly defined ray: r=ry +fr, =< v=v, +1v,

w=wy + 1w,

then the intersection is given: F(u, +tu,, vy +tv,,wy, +tw,)=0

which we abbreviate to F' () =0, where F"(f) is a function of coordinate values along

ray r, which vary with #. The ray equation can be solved for ¢, thus providing the

position of any intersections.

When rays are cast at parametric surfaces, the intersections are obtained as follows.

Treating the ray implicitly as the intersection of two planes

Au+Byv+Cw+ D =0=F (u,v,w)

r=r, +ir, becomes
Ayu+B,v+Cow+ D, =0=F,(u,v,w)

using methods detailed in section 3.3.1.

The intersection with the surface S(u,v) defined by (u(u,v),v(u,v),w(u,v)) may be

written:

FS (,v) = Au(u,v) + Bv(u,v) + Cow(u,v) + D, =0
Ff (u,v)=Au(u,v)+ Bv(u,v) + Cow(u,v)+ D, =0

where each F®(u,v) is a function of the surface parameters and v. These equations

may be solved to provide the parameter pair (u,v) of any intersections of the ray with

the surface.

49

Note that the general form of a ray r =r, +fr, will be used in most instances, in spite of

specific forms already defined for particular projection methods (section 3.4), which
may have common usage. The reasoning behind this is that not all rays that are tested in
a ray tracing algorithm originate at the eye and pass through the view window. For
example, secondary rays cast from points of intersection are based on the direction of

the surface normal and the intersecting ray.

4.0.5 Behaviour of Surfaces under Transformations.
Whilst in many cases it will be possible to apply some transformation to a given surface
directly, this project will not consider such treatments for any surfaces to be ray traced.
Rather, the intended transformation matrix is inverted and'applied to any rays against
which this object is to be tested, and the computations are performed in the object space.
It is convenient to test for intersections in this manner because the rays are more simply
transformed than the surfaces. Still, the principle of the above is the same as that of
transforming a surface and comparing it to a ray that is in its original form. This would

provide an avenue for predicting and checking results.
4.1 Quadric Surfaces
Many so called geometric primitives, as referred to in the computer graphics literature,

fall into the family of quadric surfaces. Planes, spheres, cylinders and cones, amongst

others, are quadric surfaces. The general implicit equation for such a surface is:
F(x,y,z)=ax” + by’ +cz? + 2dxy +2eyz + 2 fez + 2gx + 2hy + 2jz + k=0

This can be expressed in the following matrix form:

50

F(x,y,z2)=PTQP =0

where: P = and Q=

L B -]
> 0 o Q
- 0 o N
L 3 0

fy ~ S8

This family of surfaces possesses many properties that make the surfaces attractive for
use in graphics applications (Foley, et al. 1994, pg. 357). The two main properties that
make quadrics particularly popular in ray tracing are the ease of computation of the
surface normal, and the fact that an intersection with a ray can be found by simply

solving a quadratic equation.

Given a ray of the form r =r; +r,, the intersection with the quadric F can be written:

F(xy +1x,,y, +1y,,2y +12,) =1 Qr=0

r'Qr=[r, +m,] Q[r, + Ir,]
= roT Qr, + trOTQr, + tr,TQr0 + tzr,TQr,

=r, Qr, +2tr/ Qr, + tzr,TQr, as r, Qr, =r,/Qr,
so that r, Qr, + 2t/ Qr, +t*r/Qr, =0

This equation is a quadratic in #, and hence can be solved using the quadratic formula to

give:

_—10r, (57 Qr)* — (7 Qr,)(r7 Q)

T
r, Qr,

4

51

The normal to a quadric surface is found through taking the first derivative of F with

respect to each variable:

n_[gﬁ OF OF.r
o’ oy o

soif F(x,y,z)=ax? + by? + cz? + 2dxy + 2eyz + 2 ficz + 2gx + 2hy + 2 jz +k,

2ax + 2dy + 2 fz + 2g
then n=| 2by + 2dx + 2ez + 2h
2cz+2ey+2fx+2j

To conclude the summary of the quadric surfaces, it is noted here that a quadric surface
can be transformed by the composite transformation (4 x 4) matrix M according to the

following (Foley, et al. 1994, pg 357):

Fy'(x,7,2)=PT(M™)TQM P =0

This property would facilitate placing quadric surfaces directly into the problem world,
and even into view space. However, as stated before, the use of transformations will be

kept to the manipulation of the ray equations.

4.1.1 Planes

The implicit definition of a plane can be written using the quadratic form:

F(x,y,z)=PTQP =0, where Q = and P =

o O O
X . X 0g
— N =

0 0
0 0
0 0
g h j
2gx+2hy+2jz+k=0

52

The normal to this plane is given by n=[2g,24,2]" . The unit normal is given by

. 1 .
= —— —[g.hj1'
NI

Should a parametric representation of the above plane be sought, one can refer to the
following. For any point (x,y,z) on the plane 2gx+2hy+2jz+ k=0, a position
vector P =[x, y,z]" can be expressed such that:

P=P, +uP, +vP,
Py is some arbitrary point on the plane from which all P can be described by moving in
the directions of P, and P,. P, may be defined as a point on one of the principal axes,

by setting two variables to zero and solving for the remaining one: e.g., on the z axis

P, = [O,O,——2k—_]T . P, and P, may be any two vectors orthogonal to n=[2g,2h,2]", for
J

which P, = AP,. For example, P, and P, could be chosen from the three vectors

[h-2,01", [-/,0,g]", [0, j,—h]" .

To illustrate, a parametric representation for the plane 2x +4y -3z +2=0 is

2 3
P =[0,0, E]T + u[2,-1,0]" + V[E,O,I]T, for u,v € R.

The solution to a ray-plane intersection is obtained without the need for the quadratic
formula. The implicit form of the plane is:

2gx+2hy +2jz+ k=0

53

When we substitute the ray equation into this we get:

2g(xy +tx,)+2h(y, +ty,)+2j(zy +12,)+k =0
2(gxo +hyy + jzo) +k=-2t(gx, + hy, + jz,)
_ & thy, +jzo + k)2
gx, +hy, + jz,
_ —(n.ro +k/2)

ner,

ie t

There is no solution if the ray is parallel to the plane (and hence orthogonal to the

plane’s normal), as the denominator in the expression for ¢ is zero.

4.1.2 Faceted Surfaces.
A method of surface construction is to specify a set of bounded planes or facets that
together describe the desired surface. For example, the surface of a cube could be
described by a set of six facets. The positioning of facets relative to each other is best
accomplished by identifying the vertices of the surface, and then noting the vertices
common to each facet. These facets, each represented by a set of vertices, may be

treated as bounded planes and used in image generation techniques.

It is convenient to subdivide each facet into triangles to simplify its representation
mathematically. A triangle can be described parametrically much in the same way a

plane was in the previous section, except that constraints are applied to the parameters.

Consider the triangle defined by position vectors Py, P; and P,

([xo, yo,zo]T, [xl, Vis zl]T, [x2, V2,2,]T respectively). Each of these vectors is placed

with its tail at the origin of the local coordinate space, and hence ‘points’ to a single

54

coordinate (a corner of the triangle). For any point (x, y,z) on this triangle, a position
vector P =[x, y,z]" may be expressed:

P=P, + uP, +P,

u 1%
y - yO +,u yp +Vyv
V4 Zy Z# zZ,

where P, =P, —P;, P, =P, - P, and 4 >0,v >0, u +v<1. Anormal to this

triangular facetis n=(P, — Py) x (P, — Py).

Figure 4.1.2.1. Representation of a Triangular Facet. Note that for simplicity, the

position vectors of the corners are not drawn.

When testing for an intersection of a ray with a facet, the ray can be implicitized into the
intersection of two planes (as discussed in section 3.3.1) and then the parametric facet
coordinates substituted into the two equations. A solution (if any) would be in terms of
4 and v, which could then be directly compared to the bounding conditions stated above

to see whether the ray intersected the facet.

Alternatively, the facet plane could be represented implicitly as Ax+ By +Cz + D=0,
where A, B and C, respectively, are the x, y and z components of n and D is found by

D =—-Ax— By —(Cz and using the coordinates of any one of the facet’s vertices. The

55

intersection would be found with an explicitly defined.ray, in terms of the ray parameter
t, and hence the intersection coordinates would have to be computed and substituted into
the parametric equation for the facet to determine whether the intersection was within
the bounds of the facet. Examples 4.1.2, 4.1.2.1 and 4.1.2.2 in Appendix 1 provide

worked examples of the intersection of a ray with a facet.

In some instances, the use of quadrilaterals may be considered as an alternative to

triangles. A point on the quadrilateral PoP,P,P; labelled either clockwise or

antiC‘lOCkWisea with Vertices (x07yO’ZO)a (xlayl7zl)7 (x27y2’22)’ (x37y3723)7 has

position vector P =[x, y,z]}":

P=Py + u[(1-v)(P, —Py)+v(P, -P;)]+v(P; - Py)

where 0 < <1 and 0<v <1 (Burger & Gillies, 1989. pg. 412).

The normal to this surface is n= (P, - Py) x(P, — P,) or the cross product of vectors
joining any two of the vertices. Computations to find intersections with rays are carried
out as with triangles, although are more complicated because a mixed term with the

product of the facet parameters u and v is involved.

4.13 Spheres.
The equation of a sphere with radius 1 and centred at the origin may be written in

quadratic form:

F(x,y,2)=PTQP=0

56

1 00 O x
01 0 O y
where Q= and P=
0 01 O z
LO 0 0 -1} 1]

which is equivalent to

A

-1

\4

Figure 4.1.3. The sphere x* + y* +z> -1=0.

The normal to this surface, given by n= oF oF a—F]T, is n=[2x,2y,2z]". The

&’ oy oz
unit normal is n =[x, y,z]", as expected for a point on a unit sphere (the normal is the

vector from the origin to that point).

57

The intersection of the sphere x* + y% +2z% —1=0 with the ray r=r, +#r, (already

assumed to have already been transformed by the inverse of the sphere’s own

transformat