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Abstract 

The mathematics behind algorithms involved in generating three-dimensional images on 

a computer has stemmed from the analysis of the processes of sight and vision. These 

processes have been modeled to provide methods of visualising three-dimensional data 

sets. The applications of such visualisations are varied. 

This project will study some of the mathematics that 1s used m three-dimensional 

graphics applications. 
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1. Introduction 

1.1 Background and Significance 

Computer graphics applications seek to generate images by processing data that is in 

part provided by a user. Frequently this data may represent three-dimensional spaces 

and may be thought of as a problem world or scene, which the user desires to exist as a 

visual communication. 

In any visual communication of a given problem world, be it a photograph, artist's 

impression or computer generated image, it is the position from which the world is to be 

viewed that determines that communication. Typically, this viewing location, the 

camera or eye, is a point within the world, perhaps even within an object in that world. 

From this point the world is viewed through a view plane that facilitates the description 

of the third dimension in only two dimensions by means of projection. 

Conventional theory dictates that it is the light within an environment that is received by 

the eye and interpreted as vision. Not surprisingly then, computer graphics applications 

aim to communicate visually by applying models simulating the behaviour of light and 

its interaction with the surfaces of an environment. 

1.2 An Introduction to Ray Tracing 

The modelling of light in an environment centres around the idea that a light source 

emits particles called photons. These carry energy that is perceived as a colour, should 

such a photon strike the eye. The path of a photon is assumed to be a straight line 

through space, and is referred to as a light ray. This may change direction as the light 

ray collides with or passes through different media in the environment. By identifying 
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all the light sources present, one could trace the light rays of all photons as they interact 

with an environment and identify those that are going to strike the eye, and hence 

generate an image based on the colours received. However, this method is an 

impractical solution to the image generation problem, since any one light source could 

emit millions of photons (per unit time), in all directions, filling the environment 

volume with rays, most of which would eventually have to be discarded for any given 

viewing location. 

A more practical approach is found by identifying the potential paths that light could 

take to reach a given location (the eye). By placing a view plane in the problem world, 

a limited number of rays originating at the eye can be cast 'backwards' through this 

plane into the problem world. Determining the colour of such a ray involves examining 

the colour and the illumination of any surfaces that it strikes. This process is known as 

ray tracing. The theory behind ray tracing provides a general solution to the image 

generation problem, and will be examined in some detail in this project. 

1.3 Significance of the Study 

Generating computer graphics, which represent three-dimensional data, highlights the 

role of the computer as a principal tool in the visualisation process, the application of 

which can be seen in many areas, ranging from heavy industry to forms of 

entertainment. More recent developments in this field have centred on the extension 

and refinement of the application of existing principles. In particular, the rendering of 

non-visual data has seen much attention; computer images being used to aid 

understanding of data through visualisation. 
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1.4 Purpose of the Project 

This project studies some of the mathematics behind the processes used to create images 

and effects that are now in evidence in many visually communicative media. It will 

consider contemporary three-dimensional graphics engines, both those designed for 

speed and interactivity, and those designed for detail and clarity; and it will present 

some of the mathematical principles involved. 
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2. Mathematical Framework and Preliminaries 

The primary motivation for the following sections is to introduce the notation that will 

be employed in the rest of this project, and some of the mathematical concepts that are 

used to describe methods by which a problem world, or environment may be viewed. 

2.1 Coordinate Spaces 

Euclidean space is used to describe and understand the three dimensions of the world 

around us. We interpret size, length, angles and volumes according to Euclidean 

geometry, for it is the geometry that we are most familiar with (so much so that the 

word 'geometry' alone is commonly understood to refer to Euclidean geometry). 

A point in Euclidean 3-space may be described by the coordinate triple (x, y, z), where 

the coordinates represent distances of the point from the various coordinate planes. 

y 

z 

Figure 2.1. 
Right-handed coordinate 

system. 
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This project will use a right-handed coordinate system. The choice of a right-handed or 

left-handed system is arbitrary as a simple transformation exists to switch between the 

systems: 

2.2 Vectors 

This section introduces the notation that will be used to describe vectors, and 

summarises the vector operations that will be employed through the course of this 

project. 

2.2.1 Notation. 

The following alternative notation will be used to describe a vector: 

v=[~ ]=[a,b,c]T =ai+bj+ck 

where i, j, k are unit vectors in the directions of the principal axes. Although 

unconventional, the commas will sometimes be used in the horizontal matrix to assist 

readability. 

2.2.2 Euclidean Norm ofa Vector (Magnitude) 

2.2.3 Addition and Subtraction. 
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2.2.4 Scaling. 

2.2.5 Dot Product 

where e is the angle between vo and v1 (If v O • v 1 = 0 the vectors are said to be 

orthogonal). 

2.2.6 Cross Product. 

j k 

and llvo xviii= llv ollllv1llsin e 

The cross product of any two vectors generates a vector that is orthogonal to both of 

those vectors. If we take the two vectors as lying on a plane, then the cross product 

defines the normal vector to the plane. 
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2.3 Homogeneous Coordinates 

3-space exists as a subset of 4-space, which itself may be described by the coordinates 

(X,Y,Z,W). As such, a point (x,y,z) in 3-space is equivalent to the 4-tuple 

(X,Y,Z,W) if and only if: 

X Y Z 
-=X -=y -=z. 
w 'w 'w 

It is convenient to choose the case for which W =I, allowing (x, y, z) to be written 

homogeneously as (x, y, z, 1). Whilst this may seem to be of trivial notational value (we 

can already define a complete 3-dimensional problem world using only (x, y, z) ), the 

use of homogeneous coordinates is useful in certain computations, which will be 

detailed below. 

2.4 Elementary Euclidean Transformations. 

We will be concerned with two types of transformations, those that transform the 

coordinate space relative to a fixed coordinate system, and the inverse transformations 

that transform the coordinate system itself to another. Generally, the matrix M will be 

used to denote transformations of the first type, and M-1 for those of the second type. 

y 

•P 

z 

Figure 2.4.a. 
Transformation of coordinate 

space by M. 

z' 

z 

x'.,,,,,' 
/ 

/../ 

y 

I 
I 
I 
I 
I 
I 
I 
I 

y' 

,>-----------~ X 

Figure 2.4.b. 
Transformation of coordinate 

axes by M-1. 
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The matrix M describes a manipulation of a coordinate space relative to its own axes. 

Such transformations will be the standard for this project (as opposed to manipulation of 

coordinate axes with a fixed space), and the focus of the following discussion. 

2. 4. 1 General Form of a Transformation. 

All transformations in this project are stated in the premultiplicative form P' = MP, 

where M is the 4 x 4 transformation matrix, and P is the (augmented) column vector 

representing the points with homogeneous coordinates (x, y, z, 1). 

x' mu m12 mn m14 X 

y' m21 m22 m23 m24 y 
= 

z' m31 m32 m33 m34 z 

1 m41 m42 m43 m44 1 

i.e. P'= MP 

2.4.2 Scaling 

Scaling refers to the multiplication of each coordinate by some value: 

x'=s x 
X 

y'=syy 

z'=s z z 

This is more conveniently represented as the matrix transformation S. 

x' sx 0 0 0 X 

y' 0 Sy 0 0 y 
= 

z' 0 0 Sz 0 z 

1 0 0 0 1 1 

i.e. P'=SP 
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The inverse transformation (restoring the original coordinate values) is intuitively 

obvious. The scaling constants of the inverse matrix are simply the reciprocals of those 

in the original transformation matrix. 

2.4.3 Rotation 

The rotation of points and vectors in cartesian 3-space is readily handled by considering 

rotations about each axis separately, and then applying each transformation in turn to 

the object which is to be rotated. 

2.4.3. l Rotation of a point/ vector about the z axis. 

In a right-handed coordinate system, a positive rotation about the z axis rotates points on 

the x axis towards they axis. The transformation matrix R z is given: 

cosB2 - sin ez 0 0 

sin ez cosBz 0 0 
R = z 0 0 I 0 

0 0 0 I 

so that P'= RZP 

y 

z 

Figure 2.4.3.1. A positive rotation about the z axis. 
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2.4.3.2 Rotation of a point/ vector about the x axis. 

In a right-handed coordinate system, a positive rotation about the x axis rotates point on 

they axis towards the z axis. The transformation matrix Rx is given: 

1 0 0 0 

0 cos(} x sin(} x 0 
R = X 

0 sin(} x cos(}x 0 

0 0 0 

so that P'=RxP 

z 

X 

Figure 2.4.3.2. A positive rotation about the x axis. 

2.4.3 .3 Rotation of a point/ vector about the y axis. 

In a right-handed coordinate system, a positive rotation about the y axis rotates points 

on the z axis towards the x axis. The transformation matrix RY is given: 

cos BY 0 sin By 0 

0 1 0 0 
R = y 

- sin By 0 cos BY 0 

0 0 0 

so that P'=R P y 
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X 

y 

Figure 2.4.3.3. A positive rotation about they axis. 

The inverse of a rotation of 8 about an arbitrary axis is a rotation by -8 about the same 

axis. For example: 

cos(-By) 0 sin(-By) 0 COSBY 0 - sin ey 0 

R-1 = 0 1 0 0 0 I 0 0 
= y 

- sin(-By) 0 cos(-By) 0 sin ey 0 cosey 0 

0 0 0 I 0 0 0 1 

The reader will note that R ;1 = RJ:. Matrices for which the inverse is equal to the 

transpose are known as orthogonal. In practical terms, the property allows an inverse to 

be found by exchanging row and column references. This can save on storage space 

and speed computations (a second matrix does not need to be computed, instead the 

order in which columns and rows are referenced is reversed). 

2.4 .4 Translation 

The translation of a point is defined by a shift in each of its coordinates: 

x'= x+tx 

y'=y+ty 

z'= z +tz 
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One of the pnmary reasons that homogeneous coordinates are used in computer 

graphics computations is they facilitate the representation of translations by matrix 

multiplication. The transformation matrix for a translation is 

TJ'. 
0 0 Ix 

1 0 ty 

l~ 0 1 I_ 
-

0 0 

so that P'=TP 

Again, the inverse matrix is intuitively obvious. To reverse the transformation applied 

by T, one would simply apply a translation of the same magnitude in the opposite 

direction. 

2.4.5 Composite Transformations 

Given the ability to rotate and translate a set of points or vectors, it is possible to 

position that set anywhere in Cartesian 3-space with the orientation (shape / relative 

position of points) of that set intact Whilst one could perform the necessary 

transformations one step at a time, it is more compact to describe the whole composite 

transformation at once. Simply put, sequential transformation matrices may be 

multiplied together to provide a matrix that describes the total transformation. One 

must note that the ordering of this action is important, given the non-commutativity of 

matrices under multiplication. Whilst some composite transformations do not require 

such caution, the general form of a composite transformation is strictly ordered: 



If the matrix transformations are applied in the order M 1, M 2 , ... , M 1 , the composite 

transformation is defined: 

So the process of j transformations: 

P'=M 1P 

P''=M 2 P' 

P"'= M 3P" 

pW ~M .p<H> 
I 

reduces to p< n = MP 
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The inverse of this product is the product of the inverses of the original transformations 

in reverse order: 

M -1 = M-1M-1 M-:1 
I 2 ··· J 

This follows from the matrix property that the inverse of a matrix product is the 

reversed product of the individual inverses: (AB)"1 = B"1A"1. Moreover, it makes sense 

geometrically in that one would invert the individual transformations from last to first to 

find the original points / vectors that were transformed. 

The use of composite transformations allows a number of more general transformations 

to be defined. 

2.4.5.1 Scaling from an Arbitrary Point d. 

The standard scaling matrix S represents a dilatation with centre at the origin. When we 

are concerned with a set of points, for example defining the vertices of an object in 3-

space, we may need to scale from some point represented by d =[dx,dy,dz,I]T, and 
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not the ongm. This can be accomplished by first translating all points so that 

d'=[0,0,0,l]T. This transformation is: 

0 0 -d 
X 

0 l 0 -dy 
Td = 

0 0 1 -d z 
0 0 0 l 

The points can then be scaled according to the constants sx, Sy, Sz Applying the inverse 

translation T; 1 to the scaled points positions them so that their only displacement was 

due to the scaling. The complete transformation can be written: 

sd = T; 1sTd 
0 0 dx sx 0 0 0 0 0 -d 

X 

0 1 0 dy 0 Sy 0 0 0 1 0 -d y 

0 0 1 dz 0 0 sz 0 0 0 1 -d z 
0 0 0 0 0 0 1 0 0 0 1 

sx 0 0 dx(l-sx) 

0 s 0 dy(l-sy) 
sd = y 

0 0 sz dz (l- Sz) 

0 0 0 

2.4.5.2 Composite Rotation 

The three rotation matrices, Rx, Ry, and R 2 , each perform a rotation about the named 

axis. A matrix R can be used to describe a general rotation of coordinate space about an 

arbitrary axis through the origin. The order in which the rotations are performed is a 

determining factor in the transformation (along with the size of the angles specified), 

and, as such, R has no set form and must be computed as a sequence of matrix 

multiplications each time it is used. 
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R has the general form: 

r11 r12 r13 0 

r21 r22 r23 0 
R= 

T31 T32 T33 0 

0 0 0 1 

Consider a rotation about an arbitrary axis through the origin: 

y 

z 

Figure 2.4.5.2. Rotation about an arbitrary axis. 

The rotation of coordinate space about the arbitrary axis is obtained by a rotation about 

they axis, and then about the x axis, and subsequently about the z axis ( on which now 

lies the arbitrary axis), before two rotations to restore the principal axes to their original 

a rotation of - e Y about they axis, 

a rotation of ex about the x axis, 

a rotation of e z about the z axis, 

a rotation of - ex about the x axis and finally, 

a rotation of ey about they axis. 

A worked example of this type of problem may be found in Appendix 1. 
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2.4.5.3 Rotating About an Axis through an Arbitrary Point d. 

The arbitrary axis about which a rotation occurs need not pass through the origin. In 

much the same way as was done for the scaling matrix, a point d can be defined through 

which the axis of rotation passes, and then: 

Rd =Ti1RTd 

1 0 0 dx 1 0 0 -dx 

0 1 0 dy 0 1 0 -d 
Rd= R y 

0 0 1 dz 0 0 1 -dz 

0 0 0 1 0 0 0 I 

2.5 Defining Elements of a Scene. 

The goal of a graphics application is to display an internally represented (i.e. stored in 

the computer) scene consisting of an array of objects. In this project the term object 

refers to a bounded volume, or some part of a surface. The following sections discuss 

the various treatments which may be applied to these objects in order to display them. 

2.5.1 Object Space. 

The concept of object space is a simple one. Rather than define each element of a scene 

in the coordinates of that scene (termed world coordinates, usually denoted (x,y, z) ), 

each element is defined in its own coordinate space (ui, vi, wi). The object may then be 

scaled to the appropriate size, rotated to the desired orientation, and translated to the 

desired location through the use of the transformation matrices seen in the previous 

section. 



w 

V 

object space 
z 

w 

V 

y 

v' 

Figure 2.5.1. Object space. 

2.5.2 Basic Mathematics of Object Definition 
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w' 

u' 

problem world 

The processes to be detailed in this project require that the features or elements 

comprising a scene be represented mathematically. This mathematical modelling of 

such features involves describing their geometry in 3-space. Two broad categories of 

geometric model exist (Hanrahan, in Glassner, 1989): the models that are described by 

class(fication (i.e. those that are defined implicitly), and those that are described 

enumeratively (parametrically). 

2 5 .3 Implicit Definitions of Objects 

The method of classification defines each element of a scene implicitly, according to a 

function of the coordinates of the three space in which it lies. The term implicit is used 

because the object itself is not described explicitly by the function, rather the regions of 

the three space in which it lies are identified as either being inside the object, outside the 

object, or lying on the boundary between these two classifications: 



w 

V 

{
< 0 inside the object 

F(u, v, w) = 0 on the surface of the object 

> 0 outside of the object 

~.,,,_ _____ F(u, v, w) > 0 

F(u,v,w)=O 

Figure 2.5 .3. Object description using classification of coordinate space. 
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Whilst an implicit definition does not always lend itself to an intuitive visualisation of 

the surface it is ideal for use within a ray tracing algorithm, as all ray-surface 

intersections can be defined exactly by replacing each variable of F with the equivalent 

parametrically defined coordinate of each particular ray, and then solving for the 

parameter, as follows. 

Given the ray (in object space): r = r0 + tr1 , fort> 0. 

The parametric equations of the ray are: 

u = u0 + tu 1 

v=v0 +tv1 

W =Wo +tw, 

The intersections of this ray with an object defined by F(u, v, w) = 0 can be found by 

solving the following equation fort, and substituting the returned value(s) back into the 

parametric equations above: 
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This equation will be abbreviated by pr (t) = 0, where pr (t) is a function of 

coordinate values along ray r, which vary with t. 

A more detailed discussion about the geometric interpretations of the solutions for this 

type of equation will follow in later sections, but generally the first positive intersection 

(i.e. corresponding to the value min(t: t > 0)) is the important result. 

2.5.4 Explicit Definitions of Objects 

Typically elements of a scene that are defined explicitly are expressed as mappings 

from a set of parameters to a set of points in 3-space. 

V 

µ=O 
µ=I 

coordinate space 

11 
parameter space 

u 

w 

t-------------11µ 
0 1 

Figure 2.5.4. Diagrammatic representation of a parameter to point mapping. 

To represent a surface, two parameters are required (a single parameter will describe a 

curve, three parameters will describe a volume). The coordinates of a point on such a 
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surface S(µ, v) are defined by (u(µ, v), v(µ, v), w(µ, v)), where µ and v are the two 

parameters. 

The surface, then, is described as the parameters vary independently of each other 

through some specified domains. For example, a plane may be described explicitly as: 

u uµ UV Uo 

forµ, VER. 
V =µ vµ +v vv + Vo 

w wµ WV Wo 

where P is a general point on the plane corresponding to the parameters (µ,v), 

P µ and P v are independent vectors parallel to the plane, and PO is some arbitrary fixed 

point on the plane. 

The intersection of an arbitrary parametric surface such as S(µ, v) with a 

parametrically defined ray is not readily found. Mathematically, it is more convenient 

to treat the ray or line implicitly as the intersection of two planes, and then substitute the 

above parametric definition of each coordinate on the surface into each of the plane 

equations. Suppose r = r0 + tr1 is represented as the intersection of the two planes: 

aiu + b1 v + Ci w + di = 0 = Fi (u, v, w) 

a2U +b2V+C2W +d2 = 0 = F2(U, v, w) 
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The intersection of r with the surface S(µ, v) defined by (u(µ, v), v(µ, v), w(µ, v)) may 

now be written 

F/ (µ, v) = a1u(µ, v) + b1v(µ, v) + c1w(µ, v) + d1 = 0 

F/ (µ, v) = a2u(µ, v) + b2 v(µ, v) + c2 w(µ, v) + d 2 = 0 

where each F 5 (µ, v) is a function of the coordinate values of surface S, which vary 

withµ and v. 

The equations F/ (µ, v) = 0 and F/ (µ, v) = 0 may be solved to provide the parameter 

pair (µ, v) of any intersections that the ray makes with the surface. As the ray 

parameter t is not used, the first intersection in terms of the direction of the travel of the 

ray is not immediately obvious in the event that more than one (real) intersection is 

made. The coordinates of each intersection, then, need to be compared to the origin of 

the ray to determine this initial intersection. 

The conversion of a parametric, explicitly defined element to an implicit one is a 

process referred to as implicitization (sic). To find the parameters for a given point on 

an implicit surface, the reverse process, is referred to as inversion. Both techniques will 

be discussed in the ensuing descriptions of objects and with reference to their usage in 

computer graphics applications. 
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3. Ray Tracing and Ray Casting - Mathematical Discussion 

Ray tracing identifies the potential paths that light could take about a scene (the problem 

world) to reach a given location (the eye). The ray tracing procedure may be described 

in broad terms by the following algorithm. The bracketed numbers refer to the section 

where the procedure is discussed. 

Given the problem world: (3. 1) 

select the centre of projection (eye) and the view window. (3.2) 

for each pixel in view window; 

identify the ray from the centre of projection through that pixel. (3.3, 3.4) 

*for each ray; 

for each object surface in the problem world; 

test for the ray- surface intersection(s), (3.5, 4) 

if there is an intersection; 

note the ray parameter(s). 

identify the first intersection of the ray with the problem world, 

identify the point of the first intersection, 

compute the normal to the surface at this point of intersection. 

for each light source in the problem world; (5) 

identify the ray from the point of intersection to the light, 

test if the point is obscured from this light. 

if the surface is reflective; 

cast a secondary ray in the direction of reflection and return to *. 

if the surf ace is transparent; 

cast a secondary ray in the direction of refraction and return to *. 

colour the pixel represented by the ray using illumination model and 

information received for reflection and/or transparency rays. 

The above algorithm is by no means an extensive representation of the ray tracing 

process, but serves as an introduction to the concepts. Further additions and extensions 
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will be noted if they have a substantial mathematical basis. The stated algorithm is also 

without reference to any form of optimisation techniques, which are essential if an 

implementation is to be rendered practical. Whilst the implementation of the algorithm 

is not a concern of this project, the structure described provides a framework for the 

discussion of the mathematics involved in generating images of three dimensional 

scenes. 

3.1 Specification of the Problem World. 

The method of construction of the problem world will vary greatly between 

applications, however the presence of some starting world coordinate system is an 

initial inclusion to all of these. If the application were for visualisation of existing 

(three dimensional or volumetric) data, then some coordinate system would already be 

specified by the sampling process. Whether or not this coordinate system would be 

used during the ray-tracing process is an arbitrary decision, as it is convenient to re­

specify the problem world anyway in terms of the position and angle from which it is to 

be viewed before ray tracing from that orientation. 

Choosing to discuss further points with reference to an object coordinate system 

(u, v, w), we now consider the placement of objects, surfaces, and other data sets in the 

problem world, facilitated by the Euclidean transformations discussed in section 2.4. 

For each object, surface or data set i to be placed in the problem world (x,y,z) we can 

specify the required transformation by matrix Mi: 
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X U 

y V 
=M; 

z w 

1 1 

R; = Til,>RTdCr> 
s u 0 0 0 

S; = Tdls> 
0 s 0 0 

V 

TdCs> , 
0 0 SW 0 

0 0 0 1 

1 0 0 tu 
0 1 0 tv 

T;= 
0 0 1 tw 

0 0 0 1 

R is the composite rotation matrix for object i (see section 2.4.5.2). Both the scaling 

and rotation transformations have been specified for operations about a particular point 

d(s) and d(r) respectively (see section 2.4.5.1 and 2.4.5.3), although a careful 

specification of object coordinates when defining object space could obviate the need 

for some of these transformations. 

We position the object i in the problem world by using M; to transform the object 

space with respect to the coordinate axes u, v and w, and label the resulting coordinates 

(x,y, z) instead of (u, v, w). 



25 

w' 
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XU u' 

object space 
z 

problem world w w 

Figure 3 .1. Positioning of object i in the problem world. 

The specific ordering of the composition of M (a rotation followed by a scaling and 

then the translation to the desired location in the problem world) is a necessity not of a 

mathematical nature, but of a practical one for the programmer. The manual 

construction of a problem world through the manipulation of a number of objects and 

surfaces is simplified somewhat by defining relative scale and orientation (rotation) 

before the translation to the final location. The ordering of the scaling and rotation 

operations themselves is of less importance; it might be more precise when using some 

graphical interface to rotate a larger unscaled object than a minuscule one, but this is of 

no matter to the internal (representation on the computer) construction of the matrix M. 

It is noted here that while we may consider the rotation and translation of an object not 

to affect its shape, scaling can produce alterations in shape. If the scaling constants Su, 

Sv, and Sw are not equal then the object can be distorted. For example, a sphere scaled 

with su > sv = s w becomes an ellipsoid. These effects may be put to good use in 

extending the number of shapes available to the construction. 
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With the problem world in place we can begin to examine its representation in only two 

dimensions, that is on a view plane. 

3.2 Specifying the Viewplane. 

The viewplane is the plane through which the observer views the problem world. On 

this plane a view window is defined (which itself is often referred to as the viewplane, 

but will not be so in this project), which is a coordinate representation of the boundaries 

of the intended output. One can consider a rectangle of transparent material in front of 

them as an analogy to the role of this window. 

problem world 
view window 

• eye 

Figure 3.2. A view window in a problem world, illustrating the analogy drawn to a 

rectangle of transparent material. 

The window is divided into a regular grid, the number of divisions determining the 

resolution of the final image. When making this choice of resolution consideration 

would be given to the resolution of the output (screen or printer), the desired level of 

detail in the image and the desired speed of the output 
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3.2.1 Definition ofViewplane Space. 

Typically the viewplane exists in its own coordinate space, with its normal running 

along one of the axes of that space. The position of the viewer is also indicated in this 

space. Most frequently the coordinates are labelled (u, v, n), with the viewplane unit 

normal defined as n = [O, 0, -1] for a right-handed system (and n = [O, 0, 1] for a left­

handed system). A typical view system construction would see the centre of the view 

window located at (0, 0,-1) and bounding vertices 

(-a,b,-1), (a,b,-1), (a,-b,-1) and (-a,-b,-1), with the viewer location at 

(0, 0, 0). Variations on this will be discussed in the subsequent sections. 

V 

(-a, b,-1) 

n 

.---------. (a, b, - 1) 
":f .·· 

(a,-b,-1) 

Figure 3.2.1.1. Specification of the view window. 

Resolution is defined horizontally and vertically by the constants g and h (i.e. a g x h 

array of pixels), the central position (and name) of each pixel denoted (i,j), where 

0 s i :5 g -1, and O :5 j :5 h - 1, for the i, j E rtJ. Non-central positions on pixels such as 

pixel boundaries (used for the purpose of increasing the sampling of the problem world) 

can be referred to in terms of (i, j) where - 0.5 s i s g - 0.5, and - 0. 5 s j sh - 0.5, for 

i,j E IR. 
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(O,h-1) (g-1, h-1) 

(a,b,k) (-a,b,k) 
I \ 

I \ 

-#--(i,j) 
I I 
\ I 

(a,-b,k) (-a, - b,k) 

(0,0) (g-1, 0) 

Figure 3 .2.1.2 The pixels on the view window. 

3.2.2 Pixel to Coordinate Mapping. 

The relationship between the view system coordinates (u, v, n) and the view window 

pixel references (i, j) can be described by the one to one mapping V: (i, j) ~ (u, v, n). 

This mapping is defined by the resolution (g x h) and the size (2a x 2b) of the view 

window and by the orientation of the view plane in the view system. The following 

expresses this relationship. For a view window with centre ( 0, 0, k) and bounding 

vertices (-a,b,k), (a,b,k), (a,-b,k), (-a,-b,k), describing a resolution of gxh, it 

is easily shown that: 

V: 

u ~ f' ;' -I J 
V= {2\+1 _1) 
n=k 

- 0.5 sis (g-0.5) 
for i,J ER 

-0.5 ~ j ~ (h-0.5) 
(3.2.2) 

where V generates (u, v, n), the view system coordinates of the point on the view 

window pixel (i, j) (window coordinates on a pixel (i, j) vary for 

[(i-0.5),(i+0.5)] and [(J-05),(j+0.5)]). A worked example of this mapprng 1s 

provided in Appendix 1 (Example 3.2.2). 
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The view system may be placed into the problem world usmg a composite matrix 

transformation, V T, Sv R,, according to the position and orientation from which the 

world is to be viewed. Having stated the above, the task of defining rays can begin. It 

is noted here that the inverse transformation v- 1 applied to all world coordinates (i e, 

all objects and surfaces would be associated with the matrix v- 11\1 1 , where 1\11 is object 

i's transformation matrix) would effectively describe the problem world relative to the 

viewer. 

3.3 Definition of the Rays. 

The goal of the ray tracing application is to colour the pixels of the view window. This 

is accomplished by casting one or more rays through each pixel The definition of each 

of these rays is presented as follows. 

3.3.1 General Form of a Ray. 

Explicit definition r = r0 + tr1 , where 

r0 = [x0 , y 0 , z 0 ]T is the vector indicating the point where the ray begins, 

r = [x1 , y 1 , z1 ]T is the unit vector in the direction of the ray, 
I / 1 1 1 

\)Xr~+yt+zr~ 

/ is the parameter explicitly defining points along the ray 

The benefits of using a unit vector for rr stem from an application of the dot product 

Recall that v O • v 1 = llv O 11 llv i II cos B . If both v O and v 1 are unit vectors, then the cosine 

of the angle between the two is v O • v 1. This simplification can save much 
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computational effort. Furthermore, if all rays are expressed in terms of unit vectors, 

then the parameter t can be considered a uniform measure of the distance from the eye. 

For t: -oo < t < oo, the formula for r describes a line. For the purposes of intersecting 

the ray with explicitly defined surfaces and objects, it is useful to have an implicit 

definition of this line. Such a definition is given in terms of the intersection of two 

planes, the implicitization of which we now explain. 

The problem requires the definition of two planes on which the ray represented by 

vector r = r0 + tr1 lies. Any point p on a plane can be defined by its relationship to 

coplanar point po and the normal vector Dptane by (p - p O) • ( n plane ) = 0 . The point 

r0 may be substituted for po in this example. The normal vector to the plane may be 

found using the cross product of any two coplanar vectors. r1 describes one such 

vector, and since we seek any two planes that intersect along r1 , the choice of the other 

vector (for each plane) is an arbitrary one. We will make use of the vectors normal to 

r1 , which are infinite in number, but three of which are simply defined as follows. 

Given r1 = [ x1, y 1 , z1 f three normal vectors are defined: 

and 
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All of these are clearly orthogonal to r1. The subscript of each normal refers to the axis 

to which it is also normal. Note that the opposites of each of these vectors could also be 

used, but would not provide any extra implicit definitions as -I could be factored out, 

carried through the following equations, and divided away at the end. 

The cross product of each of these vectors with the ray direction vector rt defines a 

vector normal to a plane on which rt lies, thus n plane/: ::: rt x n 1:, 11 plane 1 = r 1 x n1 , and 

nplane i = rt x n1 . These planes are described by all vectors p for which p • nplane = 0, 

where p itself can be represented as the vector difference between any point [x, y, z]T on 

that plane and a given point on the plane, in this case r0 = [x 0 , Yo, z0 ]T. So we have, 

for the plane containing Dk 

[x - Xo,Y- Yo, z - Zo]T • 11planck = 0 

[x - x0 , y - y 0 , z - z O ]T • (rt x 11 k) = 0 

[x-x0 ,y-y0 ,z-z0 ]T • ([xr,yi,zt]T x[yt,-xt,O]T)=O 

[x-x0 ,y-y0 ,z-z0 l • [xtzr,y 1zr,-x; - ;)]T =0 

[ ( x - x0 )( x t z t ) + (y - y O )(y t z t ) + ( z - z O )( - x; - y; ) ] ::: 0 

This has the form ax+ by+ cz + d::: 0, the implicit form of a plane. By similar 

expansions: 

[X-Xo,Y-Yo,Z-Zo]T • nplane; =0 

[x-x0 ,y-y0 ,z-zul • ([x 1 ,yr,ztl x[-z 1 ,0,xrl)=O 

[X-Xo,Y-Yo,z-zo]T • [xtYt,-x; -z;,ytzt]T =0 



and 

[X-Xo,Y-Yo,Z-zo]T • nplanei =0 

[x-x0,y- y 0,z-z0]T • ([x,,y,,z 1 l "[O,z,,-y1 ]T)=O 

[x-xu,Y-Yo,Z-zo]T • [-yr2 -z12,x,y,,xrz1]T =0 
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(3 3.1.3) 

The set of points that satisfy any two of the equations (3.3.1.1), (3.3.1.2) or (3.3.1.3) lie 

on the line describing the path of the ray r = r0 + tr1 . See Example 3 .3.1 in Appendix I 

for a worked example. 

3.3.2 Labelling of the Rays. 
" 

N o,v that the general form of a ray in three-space has been identified, the form of a ray 

in the ray tracing problem can be stated. The set of primary rays passing through the 

viev.: windov: is labelled according to an intersecting pixel (i, .J): e.g r = r0 + tr, 

becomes ri,J = r~·1 + tr;·1 . As such r;·1 is defined as the (normalised) direction vector 

from r~·_; to the view system coordinates (u, v, n) corresponding to the pixel (i, j). 

Recalling the mapping V: (i, j) ~ (u, v, n) (3.2.2), we can express r;·1 in the form: 

ri,J = [Vu(i,j),Vv(i,j),Vn(i,j)]T -r~·J 

r ll[Vu(i,j),V\(i,j),Vn(i,J)]T -r~·./11' 

giving us the general ray: 

(3.3 2) 



33 

The ray is, then, defined by its point of origin and the pixel it passes through, according 

to some mapping V. Using the equations of (3.2.2), the above equation (3.3.2) can be 

expanded to: 

{[{~-1H¥-1),k1-,:·1 J 

H2i ;1-1H\+ 1-1),k1-,:·' J 

Implicit definitions can be obtained in a manner similar to that demonstrated in the 

previous section. 

Armed with the above definition of a ray in general terms, the discussion will now tum 

to specific ray equations and their applications. 

3.4 Projection Methods. 

The process of creating a two-dimensional image based on three-dimensional data is 

referred to as projection. The rays employed in a ray tracing algorithm describe the path 

of projection of a finite number of points in the problem world onto the view plane (the 

rays are referred to as projectors). By giving the sets of rays different paths a number of 

different types of projections may be obtained. 

3.4.1 Parallel Projection. 

Parallel projection refers to the use of projectors that are all parallel. As such, there is 

no single observer location when dealing with a parallel projection, rather we assume 

that all rays pass through the view window parallel to one another and, hence, all start at 

different points, defined for each by the pixel coordinates. The typical (orthographic) 
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parallel projection has rays that are in the same direction as the normal to the view 

window, that is r, = [O, 0, - l]T, which begin from points on the uv plane with u and v 

equivalent to those on the view window. 

n 
(i,j) 

view window 

Figure 3 .4.1.1. Rays and view window of orthographic projection. 

The equation for these rays may be written explicitly: 

The implicit definition is intuitive; the rays are described by the intersection of the 

planes: 

( 2i + 1 J (2) + 1 ) u=a g-1 and v=b -h--1 
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Parallel projections can be used to obtain side, front and back elevation views of an 

object I problem world as well as plan (top) views, through particular placements of the 

viewing system in that world. 

An oblique projection can be performed by displacing the points of origin of rays 

defined under an orthogonal projection, whilst still passing the rays through their 

defining pixels. As such, the projectors remain parallel, but this direction of projection 

is now defined in the more general sense r1 = [Vu (i, j), Vv (i, j), Vn (i, j)]T - r~'1 by any 

one (i, j). Denoting the displacement by [c,d,e]T, the new vectors can be stated: 

. . . . ri,J 
r',l = r',l + 1_r _ 

0 llr? 11 
ii [Vu(i,j),Vv(i,j),Vn(i,j)]T -r~,J = r '· + t-:-------------
0 ll[Vu(i,j),Vv(i,j),Vn(i,j)]T -r~'jll 

=[{2i;l-l)+c,{2\+1 _1)+d,e]T 
1H2i;l-}(2jt-1}k]' -[{2i;1-1)+c,{\+I _I)+d,e]T] 

+--=---------------------------=c-
H2it-}(2jt-1).k1T -[{2i;1-1) +c,b(\+ 1 -l)+d,e]T] 

r',.I =[a ---1 +c,b ---1 +d,e] + [-c,-d,k-e]T ·· (2i+l) (2)+1) T t 
g h ~c2+d2+(k-e)2 
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view window 

Figure 3 .4.1.2. Rays and view window of oblique projection. 

Note that the direction of these projectors is independent of the pixels through which 

they pass, and is simply a function of the displacement of the origins. Implicit 

formulations may be found by applying two of the equations (3.3.1.1), (3.3.1.2) or 

(3.3.1.3), as identified in section 3.3.1. 

Traditional ray tracing does not usually feature parallel projections, simply because the 

typical goal has been to attain visual realism, which is not provided for by parallel 

methods. However parallel projection fits well within the framework of ray tracing and 

so has been included here. An example may be found in Appendix 1 (Example 3.4.1). 

3 .4 .2 Perspective Projections. 

The perspective projection is the typical means by which ray tracing is accomplished. 

Mimicking the process of vision (though only to a certain extent, as it is better thought 

of as mimicking a pinhole camera model (Glassner. 1989, p. 2)), only one ray origin is 

defined per image, named the centre of perspectivity, or the eye. Casting rays outward 

through each pixel on the view window from this point generates the perspective effect 
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by which we gauge relative distance from our eyes. Typically this initial point, r0 , is 

placed at the origin (0, 0, 0). The directions of the rays, then, are defined in terms of the 

pixels through which thev each pass 

z,j z,; 
i,.i - z,j rt - rt 

r - ro + t JJr; IJ - ro + t llr;·.1JJ 

Wu (i, )), vv (i, )), vn (i, j)]T - ro = r0 + t------------
JJWu (t, ;), vv (t, ;), vn (i' ;)]T - ro II 

= [O, 0, O]T 

+ . 2 • 2 [[a[2i;J-J}{2Jhl '-J),k]T -[0,0,0]TJ 

a'( 21; I -1) + b'(2Jh 11_ _ ,) +k' 

r 

view window 

Figure 3 .4.2.1. Rays and view window of perspective projection. 

Placing r0 at a point other than the origin (for the viewing system with the view window 

centred at (0, 0, k)) will generate various effects, which may be desirable in the 

presentation of the image. 
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Moving the centre of perspectivity to (c, d, e), the following ray definitions apply: 

Again, the implicit form of the above may be found using two of the equations (3 .3. I. I), 

(3.3.1.2) or (3.3.1.3). 

(i,/} ri,/ = ~ +[c d e]T +tri,J , 0 , , t 

r0 + [c, d, e ]T !"', ~:=:::~---.----~ 
I 
I 
I 
I 
I 
I 
I 

view window 

Figure 3.4.2.2. Rays and view window of alternative perspective projection. 

Appendix I includes an example of a perspective projection (Example 3.4.2). 
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3.4.3 Other Projection Methods. 

There are other methods of projection that may be adapted for use in computer graphics 

algorithms. The parallel and perspective methods are classed as linear projections 

(because of the behaviour of the rays). Non-linear projections may be used to mimic 

various camera lens types, such as .fisheye and omnimax. Such variations can be 

achieved by making the parameter t a function of pixel position (i, J), defining ray 

origins according to (i, j) but not ray direction (for example, rather than one point as 

the eye, a circle through which various rays pass is defined), or by defining curved paths 

for rays. 

3.5 Ray - Surface Intersections. 

Ray tracing is principally concerned with ray - surface intersections, as rays are cast out 

into the problem world to return information about the various surfaces that they strike. 

Given that there are two broad methods to define an object, through classification 

(implicitly) or through enumeration (explicitly), there are two broad types of ray -

surface intersection. For an implicitly defined surface F(u, v, w) = 0, an explicitly 

defined ray r = r0 + tr, is used to replace the coordinates in F with parametric 

expressions in t. Alternatively, an explicit surface (u(µ, v), v(µ, v), w(µ, v)) is 

intersected with an implicitly defined ray (the intersection of two implicitly defined 

planes). 

Intersection testing and computation for a general ray tracing scene 1s processor 

intensive. In any given scene, a ray needs to be tested against all surfaces for a potential 

intersection (the use of object hierarchies to restrict these searches is not within the 

scope and aim of this project). Once all objects have been tested, then and only then 

l 
i 
.\ 
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may the first intersection of that ·backwards' ray with the problem world be identified 

Mathematically, there is little one can do to enhance the process beyond placing a 

primitive bounding volume about a particular surface and testing for an intersection 

with that. If no intersection is returned then a potentially complex surface-ray equation 

is not required to be solved. 

3.5.1 Rays defined in object spaces. 

The ray-surface intersection computation generally takes place in object coordinate 

space. This may seem an odd choice after defining in Section 3 .2.1 a matrix 

M 1 = T1 S 1 R 1 to transform every object or surface i into some position and orientation 

in the problem world, but a ray is merely a line in three-space, and is transformed 

relatively simply from its vector form to any object or surface space by the inverse 

object transformation matrix: 

(3 5 11) 

Furthermore, recall from Section 3.2.2 that the ray is defined in view system space, 

which is related to the problem world according to some transformation: 

(3.512) 



n 

n' 
\' 

,,.1' y 

v=} 
v' 

view system space z problem world 

Figure 3.5. l. The placement of the view system in the problem world using 

transformation V 
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To work in object space the ray first needs to be expressed in the problem world 

coordinates, and so is first transformed by V = Tv S \' Rv . It must be noted here that, 

because of the definition of the ray, caution must be exercised during this 

transformation. Whilst the origin component of the ray r0 is transformed, the direction 

component r1 should not be subjected to a translation transformation (the direction of a 

vector should be invariant under translation). Thus, for any ray r = r0 + tr1 , using 

(3.5.l.l) and (3.5 12) yeilds: 

Ul R- 1s-1T-1T S R ro = i i i v v vro 

=M;1vr0 

and 

u> R-1s-1s R rt = i 1 v vr1 

= R:-1s-1r-1T r-:1T s R 
I I I I \ V \ vrt 

= M;1Ti T;1Vr1 

so that 

<1> l\1-1v M-1T T-1v r = ro + I i I v r1 where r(i) is the ray in object i space 
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Example 3. 5 .1 in Appendix I illustrates a transformation matrix V for a particular 

positioning of the viewplane in the problem world. 

3. 5 .2 Interpretation of intersections. 

Using ru> explicitly to find any ray-surface intersections will provide solutions in terms 

of parameter t. Finding the . intersection of an explicitly defined surface with an 

implicitly defined ray provides the parameter pair(s) (µ, v)j, which corresponds to a 

point in space on the ray (and surface). Given one coordinate value from such a point, 

the parameter t can be computed. The following is an interpretation of the possible 

values oft. 

Positive solutions: Intersections in the path of the ray. 

Negative solutions: Intersections 'behind' the origin of the ray. 

niin(t: t > 0): The nearest intersection to the origin of the ray. 

One solution: The intersection occurs on a point of tangency. 

Complex solution: The ray does not intersect the given object. 

For a ray tracing application the solution corresponding to the least positive value oft is 

of the most significance. It represents the first point on that surface which the ray 

would hit, assuming there are no objects in front of it. Testing for all objects we can 

state the first intersection of the ray with the problem world (at i*) as follows: 

i* = min(ti : ti > 0) for all objects i. 

Having found the nearest point of intersection (assuming that there was an intersection) 

of a ray with the elements in the problem world, the ray tracing procedure can begin the 

process of implementing optical effects and this will be detailed in Chapter 5. Chapter 4 
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examines many of the objects and surfaces that are frequently rendered using ray 

tracers, beginning with primitive objects and progressing through to parametric 

representations of surfaces. 
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4. Representations of Surfaces. 

This section will elaborate on the general representation of surfaces implicitly 

(F(x,y,z)=O) and explicitly (S(µ,v)) by considering a number of particular surface 

and object definitions. The following section re-iterates the requirements that a ray 

tracing algorithm requires of such objects, and provides a guide to the content of 

subsequent sections. 

4.0 Guide to the Treatment of Surfaces. 

4.0. l General Discussion of the Particular Surface. 

Any special properties or usage of a particular type of surface will be noted. 

4.0.2 The Mathematical Representation of the Surface. 

As stated before, there are two broad types of surface representation, implicit and 

explicit. Whilst the choice of representation is an arbitrary one from a mathematical 

perspective, when both are readily definable, a programmer would choose the 

representation more suitable for coding - with issues such as storage capacity, speed of 

use and accuracy of results (once coded) influencing their choice. For some surfaces 

though, the representation will be limited to either implicit or explicit only, as the other 

definition may be impractical, even mathematically. 

Recall that an implicit surface is a definition by classification, the function F(x, y, z) 

describing some region in space for which F(x, y, z) = 0 is the boundary or surface; 

where F(x,y,z)<O refers to the interior; and F(x,y,z)>O the points (x,y,z) exterior 

to this region (F is also known as a point-membership classification function). For 
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example, the sphere u 2 + v 2 + w 2 = 1 is such an example as it can be represented by 

u 2 + v 2 + w 2 -1 = O. Implicit definitions are generally used in computer graphics 

applications to describe simpler, 'regular' surfaces. 

Recall too that S(µ, v): (u(µ, v), v(µ, v), w(µ, v)) is an enumerative description, or 

explicit representation, of a surface. For example, the same sphere can be described 

parametrically: 

[: l = [~!- µ~ COSY] 

w J ~1- µ 2 sin v 

for - 1 :S µ :S 1 and O :S v :S 2.1r 

Explicit definitions exist for many of the implicit functions that will be discussed below, 

and they (the former) will be included in the discussion as the explicit definition may on 

occasion require pre-computation of some quantities useful to a graphics program ( for 

example, the surface normal). 

4.0.3 The Representation of the Surface Normal. 

The surface normal, the vector pointing in the direction m which the surface is 

considered to be 'facing', is readily defined for an implicit surface. Given F(x, y, z), 

the normal vector to the surface defined by F(x, y, z) = 0 is given by the vector: 
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The computation of a normal vector to a parametric surface is more involved. Such a 

vector is expressed as the cross product (section 2.2.6) of two vectors in the plane that is 

tangential to the surface at the point for which the normal is required. These vectors 

may be described using the first partial derivatives of the parametric function 

S (µ, v) : ( u(µ, v ), v(µ, v ), w(µ, v)) with respect to each parameter (µ, v) . So the normal 

vector can be stated: 

D = [au(µ, V)' fJv(µ, V)' ow(µ, V)]T x[ou(µ, v)' fJv(µ, V)' ow(µ, v)]T 
aµ aµ aµ av av av 

The normal vector is used extensively in the shading and illumination of surfaces in the 

problem world, and its usage will be discussed more thoroughly in Chapter 5, which 

deals specifically with that area of the image generation process. 

A preliminary note is made here about the direction of the normal. The cross product is 

such that for any vectors p and q, p x q = -q x p . Given that the choice of tangential 

plane vector order is an arbitrary one (it could be considered standard to use first the 

derivative with respect to the first parameter alphabetically speaking), the resulting 

normal vector really has two directions that may be considered, one opposite to the 

other. The choice of which to use is based on the use of the normal. For the purpose of 

shading and illumination, the normal of a surface at a point of intersection with a ray is 

said to be the vector through points with the same function classification (i.e. either 

F < 0 or F > 0) as the ray had 'just' before it intersected. In other words if the ray 

came from outside of the object, then the normal used in shading computations points to 

the outside or away from the object. Conversely, a ray that is passing through the 
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interior of an object to make a particular intersection defines a normal pointing inwards. 

A simple algorithm exists, which can be used generally, to identify the normal to be 

used: 

if rt •D > 0 then; 

n = (-1) * n: reverse the direction of the normal (fig. 4.0.3 b). 

else the direction of the normal is correct (fig. 4.0.3 a). 

where rt is the direction of the ray rand n is the normal. 

i( 
8>-

2 

rt• n <0 

Figure 4.0.3 a. 

n 

i( 
8<-

2 
rt. n > 0 

Figure 4.0.3 b. 

4.0.4 The Intersection of a Ray with the Surface. 

The discussion of each surface will provide a simplification of the equations used to 

intersect a ray with that surface. Recall that the general form of a ray intersection with 

an implicit surface is as follows. 

For an implicit surface: F(u, v, w) = 0, 



{
u =u 0 + tu 1 

and the explicitly defined ray r = r0 + tr, ~ v = v0 + tv1 

W=Wo +tw1 

then the intersection is given: F(u 0 + tu" v0 + tv1 , w0 + tw,) = 0 
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which we abbreviate to F .. (t) = 0, where pr (t) is a function of coordinate values along 

ray r, which vary with t. The ray equation can be solved for t, thus providing the 

position of any intersections. 

When rays are cast at parametric surfaces, the intersections are obtained as follows. 

Treating the ray implicitly as the intersection of two planes 

r = r O + tr, becomes 
A1u+B1v+C1w+D1 =O=Fi(u,v,w) 

A2u+B2v+C2w+D2 =O=F2 (u,v,w) 

using methods detailed in section 3. 3 .1. 

The intersection with the surface S(µ, v) defined by (u(µ, v), v(µ, v), w(µ, v)) may be 

written: 

F1s (µ, v) = A1u(µ, v) + B1v(µ, v) + C\ w(µ, v) + D1 = 0 

Ff(µ, v) = A2u(µ, v) + B2 v(µ, v) + C\ w(µ, v) + D2 = 0 

where each F s (µ, v) is a function of the surface parameters µ and v. These equations 

may be solved to provide the parameter pair (µ, v) of any intersections of the ray with 

the surface. 
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Note that the general form of a ray r = r0 + trr will be used in most instances, in spite of 

specific forms already defined for particular projection methods (section 3.4), which 

may have common usage. The reasoning behind this is that not all rays that are tested in 

a ray tracing algorithm originate at the eye and pass through the view window. For 

example, secondary rays cast from points of intersection are based on the direction of 

the surface normal and the intersecting ray. 

4.0.5 Behaviour of Surfaces under Transformations. 

Whilst in many cases it will be possible to apply some transformation to a given surface 

directly, this project will not consider such treatments for any surfaces to be ray traced. 

Rather, the intended transformation matrix is inverted and applied to any rays against 

which this object is to be tested, and the computations are performed in the object space. 

It is convenient to test for intersections in this manner because the rays are more simply 

transformed than the surfaces. Still, the principle of the above is the same as that of 

transforming a surface and comparing it to a ray that is in its original form. This would 

provide an avenue for predicting and checking results. 

4. 1 Quadric Surfaces 

Many so called geometric primitives, as referred to in the computer graphics literature, 

fall into the family of quadric surfaces. Planes, spheres, cylinders and cones, amongst 

others, are quadric surfaces. The general implicit equation for such a surface is: 

F(x, y, z) = ax 2 + by2 + cz 2 + 2dxy + 2eyz + 2/xz + 2gx + 2hy + 2jz + k = 0 

This can be expressed in the following matrix form: 
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F(x,y, z) = PTQP = 0 

X a d f g 

where: P = 
y 

and Q= 
d b e h 

z f e C j 

1 g h j k 

This family of surfaces possesses many properties that make the surfaces attractive for 

use in graphics applications (Foley, et al. 1994, pg. 357). The two main properties that 

make quadrics particularly popular in ray tracing are the ease of computation of the 

surface normal, and the fact that an intersection with a ray can be found by simply 

solving a quadratic equation. 

Given a ray of the form r = r0 + tr1 , the intersection with the quadric F can be written 

rTQr=[r0 +tr1f Q[r0 +tr1] 

TQ TQ TQ 2 TQ =~ ~+% ~+~ ~+t~ ~ 

=rlQr0 +2tr1TQr0 +t 2r1TQr1 as rlQr1 =r1TQr0 

so that 

This equation is a quadratic in t, and hence can be solved using the quadratic formula to 

give: 

-rtTQro ±J(r?Qro)2 -(r1TQr1)(roTQro) 
t=~~~~~~~~~~~~~~~ 

rtTQrr 
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The normal to a quadric surface is found through taking the first derivative of F with 

respect to each variable: 

n=[aF aF aF]T 
ax'ay'az 

soif F(x,y,z)=ax2 +by2 +cz 2 +2dxy+2eyz+2jxz+2gx+2hy+2jz+k, 

l2ax + 2dy + 2/z + 2gj 
then n = 2by + 2dx + 2ez + 2h 

2cz + 2ey + 2fx + 2 j 

To conclude the summary of the quadric surfaces, it is noted here that a quadric surface 

can be transformed by the composite transformation ( 4 x 4) matrix M according to the 

following (Foley, et al. 1994, pg 357): 

This property would facilitate placing quadric surfaces directly into the problem world, 

and even into view space. However, as stated before, the use of transformations will be 

kept to the manipulation of the ray equations. 

4.1.1 Planes 

The implicit definition of a plane can be written using the quadratic form: 

0 0 0 g X 

F(x,y,z)=PTQP=O, where Q= 
0 0 0 h y 

and P= 
0 0 0 j z 

g h j k 1 

2gx + 2hy + 2 jz + k = 0 
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The normal to this plane is given by n = [2g,2h,2j]T. The unit normal is given by 

A 1 h ']T n= [g, ,J 
Jg2 +h2 + J2 

Should a parametric representation of the above plane be sought, one can refer to the 

following. For any point ( x, y, z) on the plane 2gx + 2hy + 2 jz + k = 0 , a position 

vector P = [ x, y, z] T can be expressed such that: 

Po is some arbitrary point on the plane from which all P can be described by moving in 

the directions of P µ and P v, Po may be defined as a point on one of the principal axes, 

by setting two variables to zero and solving for the remaining one: e.g., on the z axis 

k . 
P0 = [0,0,- 2}T. P µ and Pv may be any two vectors orthogonal to n = [2g,2h,2J{, for 

which P µ 1:: kP v. For example, P µ and P v could be chosen from the three vectors 

[h,-g,O]T' [- j,O, g]\ [O, j,-h]T. 

To illustrate, a parametric representation for the plane 2x + 4y - 3z + 2 = 0 is 

2 T T 3 T P=[0,0,-] +µ[2,-1,0] +v[-,0,1] ,forµ,vER. 
3 2 

The solution to a ray-plane intersection is obtained without the need for the quadratic 

formula. The implicit form of the plane is: 

2gx + 2hy + 2jz + k = 0 



When we substitute the ray equation into this we get: 

2g(x0 + lxr) + 2h(y0 + 1Yr) + 2j(z0 + tzr) + k = 0 

2(gx0 + hy0 + jz0 ) + k = -2t(gxr + hyt + Jzr) 

gx0 + hy0 + jz0 + k/2 
t = ---------

gxt +hyr + Jzr 

. f= -(D•fo +k/2) 
1.e. 
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There is no solution if the ray is parallel to the plane (and hence orthogonal to the 

plane's normal), as the denominator in the expression fort is zero. 

4.1.2 Faceted Surfaces. 

A method of surface construction is to specify a set of bounded planes or facets that 

together describe the desired surface. For example, the surface of a cube could be 

described by a set of six facets. The positioning of facets relative to each other is best 

accomplished by identifying the vertices of the surface, and then noting the vertices 

common to each facet. These facets, each represented by a set of vertices, may be 

treated as bounded planes and used in image generation techniques. 

It is convenient to subdivide each facet into triangles to simplify its representation 

mathematically. A triangle can be described parametrically much in the same way a 

plane was in the previous section, except that constraints are applied to the parameters. 

Consider the triangle defined by position vectors Po, P1 and P2 

with its tail at the origin of the local coordinate space, and hence 'points' to a single 
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coordinate (a corner of the triangle). For any point (x, y, z) on this triangle, a position 

vector P = [x, y, z ]T may be expressed: 

P = PO + µP µ + vP v 

where P µ = P1 - PO, P v = P 2 - PO, and µ 2: 0, v 2: 0, µ + v ~ 1 . A normal to this 

triangular facet is n = (P1 - P0 ) x (P2 - P0 ). 

' ' ' ' ' ' ' ' ' ' 

P = PO + µP µ + vP v 

' ' ' ', p 
I 

Figure 4.1.2.1. Representation of a Triangular Facet. Note that for simplicity, the 

position vectors of the corners are not drawn. 

When testing for an intersection of a ray with a facet, the ray can be implicitized into the 

intersection of two planes (as discussed in section 3 .3 .1) and then the parametric facet 

coordinates substituted into the two equations. A solution (if any) would be in terms of 

µ and v, which could then be directly compared to the bounding conditions stated above 

to see whether the ray intersected the facet. 

Alternatively, the facet plane could be represented implicitly as Ax+ By+ Cz + D = 0, 

where A, Band C, respectively, are the x, y and z components of n and D is found by 

D =-Ax-By -Cz and using the coordinates of any one of the facet's vertices. The 
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intersection would be found with an explicitly defined.ray, in terms of the ray parameter 

t, and hence the intersection coordinates would have to be computed and substituted into 

the parametric equation for the facet to determine whether the intersection was within 

the bounds of the facet. Examples 4.1.2, 4.1.2.1 and 4.1.2.2 in Appendix 1 provide 

worked examples of the intersection of a ray with a facet. 

In some instances, the use of quadrilaterals may be considered as an alternative to 

triangles. A point on the quadrilateral PoP1P2P3, labelled either clockwise or 

position vector P = [ x, y, z f : 

where O ~ µ ~ 1, and O ~ v ~ 1 (Burger & Gillies, 1989. pg. 412). 

The normal to this surface is n = (P1 - PO) x (P 2 - PO) or the cross product of vectors 

joining any two of the vertices. Computations to find intersections with rays are carried 

out as with triangles, although are more complicated because a mixed term with the 

product of the facet parametersµ and vis involved. 

4.1.3 Spheres. 

The equation of a sphere with radius 1 and centred at the origin may be written in 

quadratic form: 

F(x,y, z) = PTQP = 0 
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1 0 0 0 X 

0 1 0 0 y 
where Q= and P= 

0 0 1 0 z 

0 0 0 -1 1 

which is equivalent to 

x 2 + y 2 +z 2 -1=0 

y 

1 

-1 

Figure 4.1.3. The sphere x 2 + y 2 + z 2 -1 = O. 

The normal to this surface, given by n = [:, : , : f, 1s n = [2x, 2y,2zfr. The 

unit normal is n = [ x, y, z] T , as expected for a point on a unit sphere ( the normal is the 

vector from the origin to that point). 
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The intersection of the sphere x 2 + y 2 + z 2 -1 = 0 with the ray r = r0 + tr1 (already 

assumed to have already been transformed by the inverse of the sphere's own 

transformation matrix Msphere) may be found by solving the quadratic equation: 

(xo +tx1)2 +(yo +ry1)2 +(zo +tz1)2 -1=0 

t2 (x/ + Y12 + Z12) + 2t(xoxr + YoYr + zozr) + (x5 + Y5 + z5)- l = 0 

Two solutions fort would indicate that the ray passes through the sphere (see Example 

4.1.3, Appendix 1 ). The ray is said to touch the sphere tangentially when t has only one 

solution, and typically this occurrence is ignored by the ray tracing algorithm. No 

solutions are returned when the ray does not intersect the surface. 

Spheres are members of the subset of quadrics named the quadrics of revolution. The 

general form of the equations for these surfaces is ax2 + by 2 + cz 2 + 2jz + k = 0, for 

a= b . The cross section made by the plane z = 0 is a circle of the form 

x 2 + y 2 + k/a = 0. Cylinders, cones and paraboloids are other examples of this type of 

surface. The following sections refer to examples where a= b = I , on the 

understanding that a scaling matrix S (section 2.4.2) could be applied subsequent to 

their definition to provide shapes where a and b have values other than 1. 

4.1.4 Cylinders. 

The equation of an infinite cylinder with radius 1 and centred about the z axis may be 

written in general quadratic form: 

F(x,y, z) = PTQP = 0 
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1 0 0 0 X 

0 1 0 0 y 
where Q= and P= 

0 0 0 0 z 

0 0 0 -1 1 

which is equivalent to 

x 2 + y 2 -1=0 (4.1.4) 

z 

X 

Figure 4.1.4. The cylinder x 2 + y 2 -1 = 0. 

The normal to this surface, given by n = [ oF , oF , oF f, is n = [2x, 2y, of. The unit 
ox 8y oz 

normal, n = [x, y, O]T, is as expected for a point on a the surface of an unbounded 

cylinder (the normal is the vector from the corresponding point on the z axis, with 

position vector [0,0, z]T, to the point indicated by[x,y, z]T). 

.. 
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The intersection of a cylinder x 2 + y 2 -1 = 0 with a parametrically defined ray can be 

found via substitution: 

(xo +txr) 2 +(Yo +tyr) 2 -1=0 

f 2 (x; + y;)+2t(xoxt + YoY1)+(x5 + Y5)-1=0 

This equation can be solved using the quadratic formula. Solutions for t can be 

interpreted in a similar manner to the case for the sphere: two solutions indicating a ray 

passing through the cylinder, one solution for a ray that tangentially touches the surface 

and no solutions for a ray that has no intersection with the cylinder. 

It would be unusual to use many infinite cylinders in the construction of the problem 

world, rather each cylinder would be of a certain length and perhaps capped with two 

circular discs at the ends. We may define a finite cylinder, by the following: 

x 2 + y 2 -1=0 

Oszsl 

The choice to limit z in this manner is an arbitrary one, and relies on the scaling 

component in the transformation matrix Mi to achieve varying degrees of width and 

height (which would be reflected in the components of r = r0 + tr1 before the 

computation of the intersection). Under these limits, the solutions providing the 

intersections of the cylinder with a ray may take on new meaning. Two intersections 

with z components out of the domain O s z s 1 would mean that the ray does not come 

into contact with the finite cylinder, whilst two intersections with the infinite cylinder, 
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one of which is in the stated domain, would indicate that the ray enters or exits through 

one of the capping surfaces. Example 4.1.4 illustrates this numerically (Appendix 1). 

4.1.5 Cones. 

The equation of an infinite cone with semi-vertical angle 1f/4 is: 

F(x,y, z) = PTQP = 0 

1 0 0 0 X 

0 1 0 0 y 
where Q= and P= 

0 0 -1 0 z 

0 0 0 0 1 

which is equivalent to x2 + y2 -z2 =0 

z 

Figure 4.1.5.1. The cone x2 + y 2 - z2 = O. 

1 h. .c'. • b [ aF aF aF 1T • [ 2 2 2 1T h The norma tot 1s sunace, given y n = -, -, - , 1s n = x, y,- z . T e 
ax 8y az 

. I . ~ 1 [ ]T umt norma 1s n = ~ x,y, - z . 
x2 + y2 + z2 
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The coordinates of a parametrically defined ray may be substituted into the equation of 

a cone to provide its points of intersection (if any) with that surface (see Example 4.1.5 

in Appendix 1): 

using r = r0 +tr,, the expression for the cone x2 + y 2 - z 2 = 0 becomes: 

(xo + tx, )2 + (Yo + ty1 )2 - (z0 + tz, )2 = 0 

t 2 (x; + y; - z;) + 2t(x0 x, + Yo Ye - z0z1 ) + (x5 + y~ - z~) = 0 

As with cylinders, an infinite cone may be unsuitable in the construction of a problem 

world, and so it may be bounded as required. Bounding the cone at z = 0 provides the 

familiar pointed end (at which the normal vector n is undefined), and at z = ±1 a 

'bottom' to the cone. Choosing to restrict both z boundaries to values higher ( or lower) 

than O provides a truncated cone, without the pointed end, as illustrated below. 

Figure 4.1.5.2. A truncated cone (or 'bucket'). 

4.1.6 Paraboloids and Hyperboloids 

Consider the paraboloid: 

x2 + y 2 -z = 0 

which may be written in the quadratic form: 
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1 0 0 0 
X 

0 1 0 0 

F(x, y, z) = pT QP = 0, where Q = 
y 

0 0 0 
1 and P= 

2 z 

0 0 
1 

0 1 
2 

The normal to this paraboloid is n = [2x, 2y,-l]T. The intersection of this surface with 

a ray is found as follows: 

x 2 + y 2 -z=O 

(Xo +t:xr) 2 +(Yo +tyr) 2 -(zo +tzr)=O 

t 2 (Xr2 + Yr2 )+t(2XoXr +2YoYr -z1)+(x5 + yJ-zo)=O 

A circular hyperboloid may be expressed in quadratic form; such as 

F(x,y, z) = PTQP = 0 

1 0 0 0 X 

0 1 0 0 y 
where Q= and P = 

0 0 1 0 z 

0 0 0 +l 1 

which is equivalent to 

x2 +y 2 -z 2 +1=0 (4.1.6.1) 

A hyperboloid of one sheet, without discontinuities, is represented by the equation 

x2 + y 2 -z 2 -1=0 (4.1.6.2) 

whereas x2 + y 2 - z 2 + 1 = 0 refers to a discontinuous hyperboloid, which is not 

defined between the planes z = 1 and z = -1 . The normal to the surface defined by 

(4.1.6.1) is n = [2x, 2y,-2z]T. 



The intersection of this surface with a ray r = r0 + trr is found as follows: 

x2 + y 2 + z + 1 = 0 

(x0 +txr)2 +(y0 +tyr) 2 +(z0 +tzr)+l=O 

t 2 (x1
2 + y;) + t(2x0 x1 + 2y0 yt + Z 1 ) + (x6 + Y6 + z0 ) + 1 = 0 

t 2 (x; + y;)+t(2x0 x1 +2y0 y 1 +z1 )+(x6 + Y6 +z0 )-1=0,foronesheet. 

t 2 (x; + y;)+t(2x0 x1 +2y0y 1 +z1 )+(x6 + Y6 +z0 )+1=0,fortwosheets. 
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A paraboloid or hyperboloid may be bounded in much the same way as described for a 

cone or cylinder. 

4.2 Tori. 

A torus, or doughnut ring, is generated by rotating a circle about a line which lies in the 

plane of the circle, but does not intersect it. The implicit equation for a torus is based on 

the radius r of the circle rotated and on the radius s of the revolution (which is taken to 

be the distance from the centre of the circle to the axis of revolution). By describing a 

second circle that is the mirror image of the first in the given line a cross section of the 

torus is defined. For example, if the two circles lie on the xz plane, they are described 

by: (x - s)2 + z 2 = r 2 and (x + s) 2 + z 2 = r 2 . The equation for the cross section is 

obtained by multiplying the two equations together ( once each is rearranged in the form 

F(x,z)=O): 

which expands to: 

(4.2.1) 
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z 

X 

Figure 4.2. Cross section of a torus. 

Equation ( 4.2.1) implicitly describes the points on the two circles on the xz plane. The 

torus is obtained by the rotating of the circles about the z axis. The equation of the torus 

is found by replacing x2 in (4.2.1) with (x2 + y2), yielding: 

(x2 + y2)2 -2s2(x2 + y2)+s4 +2(z2 -r2)(x2 + y2 +s2)+(z4 -2r2z2 +r4)=0 

which can be simplified: 

(4.2.2) 

Equation (4.2.2) represents a torus with radius of revolutions (measured to the centre of 

the band) and of band radius r. As one would expect, the equation is a quartic, 

indicating that it can have up to four intersections with any one line. Intersecting the 

ray r = r0 + tr1 with the torus provides an equation in terms of parameter t of the form: 

Fr(t)=at 4 +bt 3 +ct 2 +dt+e=O, 
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The normal to the surface at any point may be found by partial differentiation of the 

implicit formula (4.2.2): 

[
4x(x2 + y 2 +z 2 -r2 -s2)] 

n = 4y(x2 + y2 + z2 - r2 - s2) 

4z(x2 + y2 +z2 -r2 +s2) 

See Appendix 1 for an example of a ray-torus intersection problem with surface normal 

computation (Example 4.2). 

4.3 Composite Surfaces of Revolution. 

The above method for generating the torus by the revolution of the cross sections about 

an axis can be applied generally to other curves defined in the same plane (the uw 

plane). Suppose these curves are labelled 1, 2, ... , j. By rearranging the equation of 

each in the form Fi ( u, w) = 0, we can form the equation implicitly representing all 

points on the composite cross section: 

j 

F(u,w)= fIFi(u,w)=O 
i=l 

The representation for the surface of revolution (the revolution of the composite 

boundaries about thew axis) is then given by substitution of ~u 2 + v2 for u: 

f1Fi(~u 2 +v 2 ,w)=O 
i=l 

For example, consider the construction of an infinite cylinder of radius 1, with its axis 

along the z axis. On the xz plane the two edges of this can be described by the lines 
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x = -1 and x = 1, or equivalently: x + 1 = 0 and x -1 = 0. The composite function is 

then: 

The cylinder is defined: 

2 

F(x,z)= I]F:(x,z)=O 
i=l 

(x + l)(x -1) = 0 

x 2 -1 = 0 

[IFi(~x 2 + y 2 ,z}=O 
i=l 

(~x2 + y2)2 -1=0 

x 2 + y 2 -1 = 0 

which agrees with equation ( 4.1.4). 

Similarly consider the construction of a single sheet hyperboloid. On the xz plane the 

cross section can be described by x 2 = z2 + 1, and by - x 2 = z2 + 1. The composite 

function is then: 

The hyperboloid is defined: 

which agrees with (4.1.6). 

(x- ~)(x + .[;2;i) = 0 

x2 - (z 2 + 1) = 0 

[IF;(~x 2 +y2 ,z)=0 
i=l 

(~x2 + y2)2 -(z2 +1)=0 

x 2 + y 2 -z2 -1=0 
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These surfaces may be combined once they have been defined in the above form, or 

alternatively the same effect can be achieved from the combined set of component 

curves on the uw plane. Consider the following bounded cylinder of radius one, capped 

by a paraboloid touching the origin and by the plane z = -1. 

z 

X = -1 x=l 

_____________ ..__~~-+-~~--',-------------
-1 : z=-1 

I 
I 
I 

Figure 4. 3 .1. Composite Surface of Revolution. 

The composite surface consists of the paraboloid x2 + y 2 - z = 0; the cylinder 

x2 + y 2 -1 = 0; and the plane z + 1 = 0. The expression for the surface as a whole can 

be written: 

(x 2 + y 2 - z)(x 2 + y 2 - l)(z + 1) = 0 (4.3.1) 

The same result is achieved when the curves z = x2 z = -1 x = 1 and x = -1 are , ' ' 

combined, and then ~x 2 + y 2 substituted for x. 
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Substituting the ray coordinate equations into ( 4.3 .1) yields an equation from which 

parameter values of t can be obtained for points of intersection. The surface normal 

may be obtained by partial differentiation. 

When generating surfaces with the above method, it is important to note the practical 

implications of the required computations. The equations generated for such a surface 

can be of too high an order to allow straightforward computation of intersections with a 

ray (bearing in mind that in all likelihood, many rays will need to be tested for 

intersections with the surface) hence making ray tracing computationally expensive. 

Should the complexity of the calculations become too great, one can limit the definition 

of the composite surface, and treat it as separate surfaces of lower orders. 

A bounding volume may be defined in addition to, or as an alternative to, the above 

strategy, against which rays are tested prior to intersection with the full surface. For 

example, the infinite cylinder used in the above bounded the entire surface. Rays that 

did not intersect with the cylinder would certainly not intersect the surface in question, 

and so could be deleted from further computations. Furthermore, all rays with two 

intersections with the cylinder, having z components of either both greater than one or 

both less than minus one, could be removed, a test which is simply performed. 

4.4 Swept Surfaces. 

Whereas surfaces of revolution were generated by revolving an arbitrary curve about an 

axis, swept surfaces, in their simplest forms, are described by translating a planar curve 

along an axis. For example, a cylinder was generated by the complete revolution of a 

straight line about an axis running parallel to it. The same form may also be described 
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by sweeping along that axis a circle lying on the plane perpendicular to the axis. More 

complex shapes can be obtained through sweeping a curve, or volume, along some 

arbitrary path in three-space, described by a number of parameters. The following 

sections, however, will look at the surfaces generated by sweeping a planar curve 

through some distance along the axis perpendicular to the plane, and more particularly, 

the intersection of such surfaces with a ray in their object space. 

4.4.1 Cylindrical Sweeps. 

A cylindrical sweep (named so because the method can be used to describe a cylinder) 

simply augments a third variable to the definition of a planar curve, which facilitates the 

definition of the curve on an infinite number of planes parallel to that on which the 

curve was described. For example, the coordinate pair (u(s), w(s)) representing the 

parametric curve on the uw plane becomes the triple (u(s), k, w(s)), where a::; k::; b for 

some a and b. 

V 

w 
(u(s),k, w(s)) 

(u(s), w(s)) 

w 

Figure 4.4.1. A cylindrical sweep for a::; k::; b of a parametric curve. 

.. 



70 

When computing the ray-surface intersection in object space, the ray r = r0 + tr1 can be 

projected on to the plane of the curve (for example the uw plane) by omitting the ray 

coordinate corresponding to the axis of the sweep (v). If the ray is required in its 

implicit form, it is described by the single two-dimensional line equation: 

Once the intersection(s), if any, in 2-space is found, the value of the third (omitted) 

coordinate is obtained for this intersection via the ray parameter t. By comparing the 

value of the third coordinate to the range of the sweep ( a s; k ::s: b) we can determine 

whether the ray actually intersects with the swept surface, or whether it passes above or 

below. 

The normal to the surface is parallel to the plane of the curve (i.e., has a value of O for 

the component representing a direction parallel to the sweep axis}, and is defined by 

taking the first partial derivatives of the curve. For example, for a curve swept along the 

v axis: 

n = [iJu(s) 0 aw.(s)J 
as ' ' as 

A swept surf ace may be bounded by planes at either end, much in the same way the 

surfaces of revolution were previously. 
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4.4.2 Cone Sweeps. 

A cone sweep is similar to a cylinder sweep, but scales the curve for which it is defined 

in proportion to the value of the variable which it augments. For example, the 

coordinate pair (u(s), w(s)) representing the parametric curve on the uw plane becomes 

the triple (Jklu(s),k,Jkjw(s)), whereas ks b. 

V 

(lkju(s), k, jkjw(s)) 

w 

Figure 4.4.2. A cone sweep for asks b. 

The intersection with the ray r = r0 + tr1 may be found in a manner depending on the 

form of the original curve. Once an intersection is found it may then be compared to the 

range of the sweep ask s b to decide if the ray passes above, below or through the 

swept surface. 

J 
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4.5 Parametric Curves. 

Consider a smooth object, sampled or approximated, and stored as a set of points 

defined as vertices describing a polygon mesh. Many applications in the design field 

require that from such a set of points a smooth curve be drawn, as the output often is to 

model the real world, in which many objects and surfaces are smooth. This section will 

discuss methods that enable such a curve to be defined, one that either interpolates 

(passes through) the given data, or provides some reasonable approximation to the given 

data. 

Smooth surface, 
with sampled 

points. 

Polygon mesh, 
using points as 

vertices. 

Figure 4.5. Polygon mesh approximation to a smooth surface. 

The reader is reminded that whilst this project seeks to examme some of the 

mathematics behind such techniques, the issue of the practicality of any implementation 

is of key concern to the extent of the discussion of a technique. The common goal is to 

generate smooth, user-definable curves and surfaces, but this is not irrespective of the 

speed and the usefulness of the method employed to do so. In particular, techniques 

that interpolate the given points are generally computationally expensive and in some 

instances subject to unwanted effects in between points; thus extended discussion will 

be reserved for more suitable methods, beginning with two-dimensional curves. 
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A preliminary note is made here with regard to use of examples in the following 

discussion. Because these curves and surfaces will be described explicitly, examples 

that would generate a point alone or a series of points would have little illustrative 

value. Typically, one would need to evaluate the expression describing the curve or 

surface at many different values of the parameter to begin understanding the nature of 

the shape being created, and within this discussion there is little room for such lengthy 

procedures. Instead the reader is referred to Appendix 2 for information regarding the 

Microsoft Excel workbooks on the disks included with this report. These workbooks 

examine some of the parametric curves and surfaces that are to be discussed, and allow 

manipulation of their defining features. Appendix 2b includes some output from these 

programs for a more speedy, if less dynamic reference. 

4.5.1 Piecewise Linear Curves. 

A very rudimentary approximation of a smooth curve is through the piecewise use of 

line segments between the points (xi ,y;) sampled from it. A function can be written, 

providing n line segments joining n + l points: 

P(x)= 

( _Y_n-_l _-_Y_n Jx + Y n-1 -(Y n-1 - Y n Jxn-1, Xn-1 ~ X ~ Xn 
xn-1 - xn xn-1 - xn 
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y 

~--------------------x 

Figure 4. 5 .1. Piecewise linear interpolation. 

We may choose to write this parametrically as: 

This may be more concisely represented by: 

where O ~ ti s 1, and i -1, ... , n. Note that the parameters ti could be replaced by the 

solitary t, defining each curve segment at the same time. 

Generally, as the number of sample points is increased, so too does the accuracy of the 

approximation. However this requires more storage space and moreover the method 

quickly becomes unwieldy and inefficient. Furthermore, while adjacent line segments 

are joined, adjacent slopes are generally not equal, limiting the extent to which we can 

accept the method as one that provides a suitable approximation of a smooth, non-linear 

curve. By increasing the order of the functions defining the curve segments, and forcing 

• 



75 

the equality of slopes at the joins, acceptable approximations suitable for use m 

computer graphics applications can be obtained. 

4.5.2 Continuity between Curve Segments. 

Before any further discussion about the use of curve segments, a notational point is 

made regarding the continuity of the functions that will be dealt with. Consider the 

parametric curve segment Q; (t) of degree n: 

[x(t)] r 
Q/t)= =C;~n 

y(t) 

C; is a 2 x (n + 1) matrix, describing the coefficients of the functions for curve segment 

i. If Q; (1) = Qi+1 (0), that is the curve segments join at point (x;, yi), then the curve is 

said to have geometric continuity (Foley et al. 1994, p. 330). This is denoted G0. 

Furthermore, if Q;' (1) = hQi+1' (0) then the curve is said to have G1 continuity. This 

implies that the tangent vectors of each curve at the join are scalar multiples of each 

other, indicating that the curve is smooth (at least geometrically speaking) at that join. 

Generally, a curve is said to be Gn continuous at the join between segments i and i + l if 

Q;n} (1) = hQ;:i (0). 

As a side note, should the curve segments be such that Q;n} (1) = Q~;i (0) at join i then 

at this point on the curve is said to have en parametric continuity. This is useful for the 

purposes of animation, where the curve may describe a path of movement, to ensure 

smooth movement between frames. Clearly, en implies Gn continuity (for the case 

where h = l). 
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4.5.3 The de Casteljau algorithm. 

Consider the four points P0 , P1, P2 , and P3 . The piecewise linear interpolation is given 

by: 

[ x(t)] [(xi - xi-l) xi-1 ]['] . Qi (t) = = , where 1 = I, 2, 3. 
y(t) (Y; -Yz-1) Yz-1 1 

y 

0 

P2 ,....._ ___ _ 
t 

1 
-1----------------x 

Figure 4.5.3.1 Piecewise linear interpolation of four points. 

The de Casteljau algorithm (formulated by Paul de Casteljau in 1959) provides a 

method for defining a smooth curve which interpolates end points, and which tends 

towards the intermediate points. Consider a second piecewise linear interpolation 

performed on the points (x1 (t), y 1 (t)), (x2 (t), y 2 (t)), and (x3 (t), y 3 (t)). The resulting 

curves may be written (by expanding the notation such that a superscript refers to the 

level of linear interpolation): 

Q(l) (t) = [x(t)] = [<x~1l (t)- xf1l (t)) x}1l (t)J[t] 
1 y(t) (y~1) (t) - y}1) (t)) y}1) (t) 1 

and: Q(Zl t = [x(t)] = [<xJ1) (t)- x?) (t)) x~1) (t)J[t] 
2 () y(t) (yj1l(t)- y~1)(t)) y~1)(t) 1 
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Figure 4.5.3.2 Detail of second linear interpolation. 
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0 

1 

A third linear interpolation may be performed on the points generated from the second 

interpolation (and so on if more points are available). The recursive nature of this 

process may be expressed as follows: 

Q~r) (/) = I = 1+1 I [
x(r) (t)] [(x<r-l) (t)- x<r-l) (t)) 

yy> (t) (yt~l) (t) - yf-l) (t)) 
x?-1

> (t)][t] 
yf-1> (t) 1 

or, more succinctly, 

xf > (t) = (1- t)xf-1> (t) + 1xt~1> (t) 

yy> (t) = (1- t)yy-l) (t) + 1Yt~1> (t) 

, for 
r=l, ... ,n 

i = l, ... ,n- r + I 

· Q(r) ( } _ (l }Q(r-1) ( } Q(r-1) ( } h Q(O) ( } _ p _ [ ]T 1. e. i t - - t ; t + t i+I t , w ere ; t - ;-i - xi-l • Y;-i 

The above notational abbreviation will be utilised throughout the rest of this discussion. 

The de Casteljau algorithm may be used to describe a smooth curve of degree n for 

n + I points. However, for the purpose of computer graphics, and in particular, 

applications running at speed, functions of high degree are infrequently used, given the 

computational expenses they incur. Such costs must be weighed against the usefulness 
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of the function for, as we have seen, a function of degree n = 1 provides little more than 

a piecewise linear approximation to the curve that might be sought. The computer 

graphics literature suggests that a curve of degree n = 3, Q~3> (t) for example, is the 

most suitable compromise (Foley et al. 1994, p. 329). Cubic curves will be examined 

throughout this section in some detail given they are the ones most commonly used. 

4.5.4 Bezier Curves. 

The cubic Bezier curve is a popular choice of parametrically defined curve, and is used 

extensively in CAD applications. Each Bezier curve segment may be specified using 

four control points PO, P1 , P 2 , and P 3 , two denoting the start and finish of the curve 

segment, and a further two, each of which lie on a line tangential to the curve at the its 

end points. The cubic Bezier curve, which will be denoted QB (t), may be generated 

using the de Casteljau algorithm: 

Q}r) (t) = (I - t)Qv-•> (t) + tQ~:;1> (t)' where Q~O) (t) = PH 

QB {t) = Q~3) (t) 

= o - t)QV> <t) + tQ~~~ (t) 

= (1- t){{l - t)Qf1> (t) + tQ}~1 (t)) + t((I - t)Q}~1 (t) + tQ~~2 (t)) 

= (1- t) 2 Q~l) (t) + 2t(I - t)Q~~. (t) + t2Q~~2 (t) 

= (I - t) 3 Qf> (t) + 3t(l - t) 2 Q~~~ (t) + 3t 2 (I - t)Q~~~ (t) + t 3Q~~~ (t) 

QB(t)={l-t)3 P0 +3t(l-t)2P1 +3t2(1-t)P2 +t3 P3 

Using matrix notation we obtain: 
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(1- t)3 

QB (t) = [Po pl P2 P3] 
3t(l - t) 2 

3t 2(l-t) 
t3 

-1 3 -3 I t3 

= [Po P3] 
3 -6 3 0 t2 

pl P2 
-3 3 0 0 t 

1 0 0 0 1 

QB (t) = GBMB ~3 ,2 t 1 ]T 

where G is referred to as the geometry matrix, and contains the control points for the 

particular curve segment, while M is referred to as a basis matrix for the particular type 

of curve (in this case MB is a Bezier curve basis matrix). This notation is adopted from 

Foley et al. (1994, p. 331). 

y 

P2 .. 
' ' ' ' ' ' ' ' ' ~ 

~ 
~ 

-+---------------- X 

Figure 4.5.4.1 Cubic Bezier curve. 

The product MB ~3 t 2 t 1f provides the weights of the points of GB, often 

referred to as the blending functions. By plotting the values of each polynomial in 

BB (t) = MB ~3 t 2 t } r, we can gain an insight into the behaviour of the curve 
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QB (t) before plotting it. It is noted that the blending functions BB (t) of the Bezier 

curve are called the Bernstein polynomials, and they have the general form: 

These polynomials have properties that makes the use of Bezier curves attractive in 

computer graphics applications. Primarily, for any given n, the sum of all nth degree 

Bernstein polynomials is one. This is proved as follows (Farin, 1988. pg. 38): 

n n [n: "IB(n,j,t)= I . t 1 (l-tt- 1 =(t+(l-t)t =l 
/=0 7=0 j 

Secondly, each polynomial is non-negative. As such, we can think of these polynomials 

as providing a weighted average of coordinates of the points to which they are applied. 

Bezier curves, then, may be considered to always lie within a convex hull, defined by 

the control points. A curve is said to have the convex hull property if it is contained 

entirely with the convex boundary of its control points. Foley et al. liken this boundary 

to a 'rubber band' stretched around the points: any 'interior' points are not considered 

part of this boundary (1994, p. 338). Mathematically it could be defined as the 

boundary of the union of all triangles defined by triples of the control points. Whilst the 

three-dimensional comparison will be made later when dealing with Bezier surfaces, it 

is clear already that this property would be useful in defining a bounding volume in ray 

tracing applications. 



Figure 4.5.4.2. The convex hull property. The union of triangles principle is 

exemplified on the left, whilst the 'rubber band' effect is demonstrated in 

the diagram on the right. 
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Bezier curve segments are joined by allocating points Pk_3 , Pk-z, Pk_1, Pk for some k to 

a curve segment QB 1_1(t), and points Pk>Pk+i,Pk+z,Pk+J to the following curve 

segment QB; (t) . G0 continuity is automatically assured between the curves since, by 

definition, they interpolate start and end points. To attain G1 continuity at the join Pk, 

the points Pk_1, Pk> Pk+l must be collinear, or algebraically: (Pk-l - Pk)= h(Pk - Pk+d 

for some h. If h = 1, C1 continuity is attained. By joining curve segments in this 

manner, much scope is provided for design and application. In general, a piecewise 

defined cubic Bezier curve QB (t) of s segments requires 3s + 1 control points, and 

interpolates points Pk> where k = 0, 3, 6, ... ,s. 
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Figure 4.5.4.3. Bezier curve segments joined with: G0 continuity at P3 , 

and G 1 continuity at P6 . 

4.5.5 Hermite Curves. 
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The intermediate control points, Pk+I and Pk+2 of a Bezier curve starting at Pk specify 

the tangent to the curve at its start and end points, Pk and Pk+3 , respectively. The 

Hermite curve is based on the same principle, but rather than explicitly state the 

intermediate control points, they are inferred by the slope of the tangents that they 

make. The following matrix formulation applies: 

2 -3 0 1 t3 

QH (t) = [Po H3] 
-2 3 0 0 ,2 

P3 Ho 
1 -2 1 0 t 

1 -1 0 0 1 

QH(t) = GHMH ~3 12 t 1)1" 

where H O = [~ox] and H 3 = [~3 x] in which h0 x and h3 x are the x components and 
Oy 3y 

h0 Y and h3 Y are the y components of the slopes of the tangent to Q H (t) at PO and P3 
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respectively. As with the case of the Bezier curves, the blending functions given by 

BH(t)=MH~ 3 t 2 t if may be referred to in order to anticipate the behaviour of 

the curve. 

y 

11 I 
I 

I 

Bo/ 
I 

I 
I 

I 
I. 

-+-----------------+X 

Figure 4.5.5. Hermite curve. 

Having previously detailed the mechanics of the Bezier curve, the specification of the 

Hermite curve using explicit control points is a logical extension of the discussion of 

cubic parametric curves. By allocating phantom intermediate control points 

P1' = P0 + B 0 / j and P2 '= P3 - B 3 / k, we can compare the two types of curve. 

Restating Q H (t) : 

2 - 3 0 I t 3 

2 3 0 0 t 2 

I -2 I O t 

I -1 0 0 I 

The effect of B 0 and H 3 is equivalent to using the pair of phantom intermediate points 
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1 0 -j 0 2 -3 0 1 t3 

0 0 j 0 -2 3 0 0 t2 
Q~(t) = [P0 P' P' P3] l 2 

0 0 0 -k 1 -2 1 0 t 

0 1 0 k 1 -1 0 0 1 

which we write as 

Q~ (t) = G~ (j, k)M 8 ~ 3 t2 t if (4.5.5) 

The variables j and k represent the magnitude of the tangent vectors at the start and end 

points respectively. It may be shown by a simple matrix multiplication that for 

We can adopt (4.5.5) to define a modified Bezier curve Q~ (t): 

-}+2 2)-3 -j 1 t3 

j -2} j 0 t2 
Q~ (t) = [P0 P1 P2 P3] 

-k k 0 0 t 

k-2 -k+3 0 0 1 

which we may write 

When the curve is drawn, the values of j and k determine the 'speed' at which the curve 

leaves the end points in the direction of the intermediate control points (i.e. the 

magnitude of the tangent to the curve). The convex hull property applies to the points 
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4.5.6 Uniform Cubic B-Splines. 

The problem of approximating a curve, given only a number of sample points from it, is 

one that could be solved using a so called natural cubic spline which interpolates those 

points and ensures parametric continuity up to C2 . However, this approach offers little 

of the flexibility of Bezier curves since arbitrary alteration of points requires much re­

computation. Uniform cubic B-splines however, do exhibit such local control, at the 

expense of the interpolation of any of the data. 

Cubic B-splines differ from the previous piecewise curves that we have discussed in 

that, rather than the curve being made up of segments QBSi (t) each relying on four 

distinct control points P3(i-l), P3(i-l)+l, P3(i-l)+z, P3(i-l)+3 , the curve is defined 

progressively by segments defined by consecutive quadruples of control points. This 

is more formally written: 

AcubicB-splinewith s-2 segments needs s+l control points P0 ,P1, ... , Ps. Each 

curve segment QBSi (t) is defined for the parameter t, where t1_ 1 ~ t < t1 , with t0 = 0 

and ti - ti-l = 1 (this is a uniform parameter interval and so these splines are often 

referred to as such). 

j 
ij 

I 



86 

The matrix equation for a curve segment of a uniform B-spline is given, for 

i = I, ... , s-2: 

-1 3 -3 1 (t - t;-l )3 

P;+2li 
3 -6 0 4 (t-t;-1)2 

QBS; (t) = [Pi-I P; P;+1 
-3 3 3 1 t - ti-I 

1 0 0 0 1 

which we can rewrite as 

Q88;(t)=G88;M88 [<t-t;_1)3, (t-t;_i) 2 , t-t;_1, if 
= GBs;BBs (t - t;-1) 

Much can be understood about the behaviour of these curves by examining the blending 

functions. By abbreviating (t - t;_1) with t ( a notation that will see much use in the 

upcoming discussion), the cubic B-spline blending functions are expressed as follows: 

Bes(t)=MBs~3 ,2 t 1f 
=i[(l-t)3 , 3t3 -6t2 +4, -3t3 +3t 2 +3t+I, t 3f forO~t~l 

As for the Bezier curves, the blending functions are non-negative in the domain 

O ~ t < I , and sum to one. Therefore the convex hull property applies to cubic uniform 

B-spline segments. Similarly, we can also glean information about the continuity of 

these curves at the joins or knots (the literature refers to the points Q 8 s; (0), for 

i =I, ... , s -1, as knots) by examination of the blending functions. For example, to 

demonstrate C2 continuity, we need the second derivative of Q88 (t), and hence the 
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secondderivativeofB88 (t) which is B~J(t)=[l-t, 31-2, -3t+l, tJT. We can 

therefore write: 

and 

G 88;B~J(l)=[P;_1 P; P;+i P;+2 ][0 1 -2 1JT 

= P; - 2P1+1 + P;+2 

Gus;+1B~J (0) = [P; Pi+1 Pi+2 P;+3 ][1 - 2 1 oY 
= P; - 2P;+i + P;+2 

from which it follows that 

Q (2) Q(2) 
BS; (1) = BS;+l (0) 

indicating C2 continuity. 

C1 and c0 continuities can be demonstrated in a similar manner. The continuities C2, C1 

and c0 are automatic across all knots, unlike that for the Bezier curves, where the 

careful ( collinear) positioning of all control points in each segment was necessary. 

The following sections look at some extensions to the uniform B-spline. 

4.5.6. l P-Splines: Tensioning a spline. 

By using modified blending functions the behaviour of a spline near its control points 

can be controlled more precisely. Such splines are known as P-splines, and much 

research has been carried out in this particular area (Burger, 1989. p. 268). The 

blending function presented here is adapted from a P-spline given by Barsky (1983, 

from Burger, 1989. p. 269), and features a tension parameter -r that allows the curve to 

be pulled towards the control points: 
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2(1- t) 3 

1 (8+r)-3(4+r)t 2 +2(3+r)t 3 

B ,a (t, r) = 12 + ,,. 3 , for r ?. O . 
• 2 + 6t + 3 ( 2 + T )t 2 - 2(3 + T )t 

2t 3 

The corresponding basis matrix M ,a is written: 

-2 6 -6 2 

1 2(3 + r) -3(4+r) 0 8+r 
M,a(r)=--

12+r -2(3 + r) 3(2 + r) 6 2 

2 0 0 0 

At r=O there is no tension, and M,a(O) reduces to MBs· Usage of M,a(r) is the 

4.5.6.2 Controlling End Points of a B-Spline. 

Since a B-spline does not usually interpolate the control points, the end points of such a 

curve are prone to unsatisfactory positioning, and this is of particular concern in a 

design application where precision is the goal. However, a number of techniques exist 

to curb the sometimes erratic nature of the extremes of a B-spline. 

By duplicating the first and last control points PO and P s by defining 

P_1 = P0 and Ps+l = Ps respectively, the curve is extended towards them with an extra 

curve segment at each end. Furthermore, the slope of these segments approaches that of 

the line extending from each of the end points to the corresponding nearest non­

duplicate point (P1 and P5 _ 1 ). For the discussion we will add a subscript x to the 



89 

blending function notation so that BBsx denotes the weighting applied to a particular 

control point x: 

(4.5.6.2) 

where for O::;; t::;; 1. 
BBS1+1(t)=-3t 3 +3t 2 +3t+l 

Now, the curve segments generated by the duplication of the end points ( i = 0 and 

i=s)canbewrittenusingthefactthat P_1 =P0 and Ps+l =Ps: 

and 

When the end points P0 and Ps are triplicated by adding yet another pair of additional 

points, the new curve segments QBs-i (t) and QBs s (t) interpolate the respective end 

points: 

The curve segment QBs-i (t) is defined by using (4.5.6.2) for P_ 2 = P_1 P0 and P1 : 

from which it follows that 



L 

90 

Similarly, using (4.5.6.2) the curve segment Q88 s(t) is defined for Ps = Ps+l = Ps+2 

and ps-1: 

from which it follows that 

These techniques can be applied anywhere along the curve, but reduce the level of 

continuity for each replication performed. 

Another method by which the end points can be treated is through the specification of 

phantom end points, which constrain the curve to pass through P0 and Ps. Labelling 

these phantom points P~1 and P;+l the following conditions hold at the respective 

parameter values: 

Q880 (0)=1/6P~1 +2/3P0 +1/6P1 +P2 (0)=P0 

P~1 =2Po -Pi 

and similarly: 

Whilst the B-spline does not pass through the phantom points, it does begin and end at 

the desired locations. Furthermore, the slope at the end of these curves follows the 

gradient of the line joining the first two and the last two control points. 



91 

4.5.6.3 Interpolation Using a Cubic B-Spline. 

AB-spline may interpolate a set of control points Pi (for i = 0, ... , s ), by describing a set 

of s + 3 phantom points that blend at the ends of each curve segment to each of those 

control points. Note that there are now s curve segments (numbered O to s - 1 ; one 

between successive pairs of control points). For the phantom points denoted by pi* 

(i = -1, ... ,s + 1) this can be written: 

• • • • Q88i (t) = B8si-l (t)PH + B8si (t)Pi + B8si+l (t)Pi+l + B8si+2 (t)Pi+2 , for i = 0, ... , s -1. 

Q8s1 (t) interpolates the control points: 

and so 

QBso(O)=Po 

QBSi (1) = Q 8si+l (0) = Pi+l• for i = 0, ... , s - 2, 

QBSs-1 (1) = ps 

In defining the end phantom points P~1 and P;+l there is an opportunity to force the 

gradient of the curve segments at the end points by talcing the first derivative of 

Q88 i (t). The phantom points P~1 and P;+l are defined in relation to user-selected 

gradients m O and ms as follows: 



and 

mo =Quso'(O) 

= BBs-i '(O)P~1 + BBso 1 (O)P ~ + Bus 1' (O)P; +Bus/ (O)P; 

ms =QBSs-1 1(1) 

= Buss-2 '(l)P;_2 + Buss-1 '(l)P;_l + Bus/(l)P; + Buss+1 '(l)P:+1 

= -3P;_1 + 3P:+i 
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In summary there are s + 3 unknowns, which are the phantom control points P~1 to 

P;+1, and there are s + 3 equations, of which s + 1 are described by the relation 

P; = (1/6)P;~1 + (2/3)P; + (l/6)P;:1, for i = 0, ... , s. The other two equations are those 

concerning the gradient at the end points as described above. The system of equations 

can be solved to determine the phantom control points that will provide a cubic B-spline 

curve that interpolates the given control points: 

-3 0 3 0 0 0 0 0 p* 
-1 mo 

1/6 2/3 1/6 0 0 0 0 0 p* 
0 Po 

0 1/6 2/3 1/6 0 0 0 0 p* 
I pl 

= 

0 0 0 0 1/6 2/3 1/6 0 p;_l ps-1 

0 0 0 0 0 1/6 2/3 1/6 p; PS 

0 0 0 0 0 -3 0 3 p;+l ms 

AG*=G 

G* = A-1G 

in which A is of order (s + 3) x (s + 3). 
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In implementing this method, the pre-computation of the inverse of A may be 

problematic in that it restricts the number of control points available for use. Preferably, 

some general iterative method of solution such as Gaussian elimination would be used 

instead. 

Each interpolating curve segment may be drawn according to: 

where G;8 i is the row vector of the ith set of four consecutive elements from G*, i.e. 

It is of note that the matrix A is such that, should a particular control point Pi not need 

to be interpolated, row i in A can be adjusted so that all entries are O other than a 1 on 

the main diagonal. The curve resulting from the phantom points generated by this 

matrix no longer interpolates control point i. Similarly, should only one control point) 

need to be interpolated, then all rows other than row j have all entries O other than a I on 

the main diagonal. 

4.5.7 Non-Uniform B-Splines. 

Previously, the uniform B-splines discussed were subject to the condition ti - ti-I = 1, 

for all segments i = 1, ... , s - 2. This was advantageous in that the entire curve was 

defined using the matrix B88 (t) = M 88 [Ct - tH )3 , (t - lz-1 )2 , t - tz-1, 1 f for the 

blending functions. However, relaxing this condition brings an increased generality to 

the formulation can make the spline easier to manipulate The expression of a non­

uniform cubic B-spline is: 
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with recursively defined blending functions: 

Without any constraint on the parameter interval ti 5: t 5: ti+l • it is possible to define a 

number of knots, or joins, for the same value of ti. An interpolation is thus achieved, 

yet without the necessity of incurring a strictly linear function on either side of the knots 

which was the case for uniform B-splines (without phantom control points). 

Furthermore, extra knots and control points can be added easily to reshape the curve. 

4.6 Parametric Surfaces. 

A parametric surface may be thought of as a span of parametric curves which vary from 

each other according to some second parameter, and at the same time a span of 

parametric curves defined by that second parameter, varying from each other according 

to the first parameter. Based on the parametric curves discussed previously, the bi­

cubic surfaces generated by Bezier and B-spline curves will now be examined. 
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4.6.1 Properties of the Parametric Bi-Cubic Surface. 

The general form of a parametric bi-cubic surface is given by: 

S(t, u) = ~1 3 l/2 u 1]MTGM~3 t2 t 1f' 
orif S(t, 21) = [x(t, u),y(t, u), z(t, u)Y 

x(t, 21) = ~3 212 u 1]MTGXM~ 3 t2 t 1f 
y(t, 21) = ~3 2 21 21 1]MTGYM~ 3 t2 t 1f' 0 :s; t, u :s;I. 

z(t, 21) = ~3 212 u 1]MTGZM~ 3 t2 t 1f 
where: G is the geometry matrix, which contains the control points in each co-ordinate, 

M is the basis matrix for the particular curve upon which the surface is based. 

The normal to such a surface is simply expressed, given that the vectors tangential to the 

surface are readily found through a first partial derivative with respect to each of the 

parameters involved. The cross product then yields the normal vector as a bi-quintic 

expression (Foley et al. 1994, p. 355): 

oS(t, 21) oS(t, u) 
D= X 

at au 
ox(t, u) oy(t, u) oz(t, u) 

at at at 

n= 
ox(t, 21) oy(t,21) oz(t, u) 

au au au 
i j k 

An intersection of a patch with a ray may be defined when the ray is expressed 

implicitly as the intersection of two planes (see section 3 .3. I). The alternative would be 

to implicitize the bi-cubic patch and intersect it with a parametrically defined ray. 

However, Hanrahan (in Glassner, 1989) states that a bi-cubic patch can lead to an 
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implicit surface of degree 18, and so the possibly simpler (in that it 1s simpler to 

implicitize a ray than a patch) problem is presented here. 

Given the intersection of two planes representing the ray: 

a1X + b1y + c 1z + d 1 = 0 

a2 x+b2 y+c2 z+d2 =0 

The surface's coordinates can then be substituted in: 

a1x(t, u) + b1y(t, u) + c1 z(t, u) + d 1 = 0 

a2 x(t, u) + b2 y(t, u) + c 2 z(t, u) + d2 = 0 

Given the relatively high degree of the polynomials, one would seek to facilitate 

bounding volume algorithms prior to pursuing a solution of the above. Fortunately, as 

hinted at earlier, parametric bi-cubic surfaces such as the Bezier and B-spline 

definitions satisfy the convex hull property, from which a bounding volume is readily 

identified. In the two-dimensional case, the 'rubber band' analogy was drawn to 

illustrate this. A similar analogy exists for the surface representations, whereby one 

can imagine stretching a balloon over the control points to ascertain the points that form 

the convex hull, and hence define the facets to test against all incoming rays. 

4.6.2 Bezier Surfaces. 

The Bezier surface is represented as follows: 
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-1 3 -3 1 P11 P12 P13 P14 

3 -6 3 0 P21 P22 P23 P24 
where MB= and GB= 

-3 3 0 0 P31 P32 P33 P34 

1 0 0 0 P41 P42 P43 P44 

GB , the geometry matrix for the Bezier surface, is an arrangement of 16 control points 

that can be thought of as describing two 'horizontal' Bezier curves 

(Pll toP14 and P41 toP44 ), and two 'vertical' Bezier curves (P11 toP41 and P14 toP44 ). 

As such, the corner entries are all interpolated by the surface. 

Bezier surfaces can be joined in a manner similar to their two dimensional counterparts. 

The literature (for example, Burger, 1989. p. 268) refers to these separate surfaces to be 

joined as patches. G0 continuity is attained simply by making the four control points 

along the edge of the join equal. G1 continuity is achieved when the four triplets of 

points along an edge (i.e., the edge points and those either side of the edge points) each 

exhibit collinearity. C1 continuity is attainable, but perhaps not desirable given the 

restrictions it places on points. To underline that observation, consider a patch that is 

joined on all four sides to other patches. In this case every single element of GB is 

influencing the continuity of at least one of the joins of that patch. 
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4.6.3 B-Spline Surfaces. 

A B-spline patch can be written: 

-1 3 -3 1 

1 3 -6 3 0 
where Mu=-

6 -3 0 3 0 

1 4 1 0 

Note that the effect of the geometry matrix Gus is very different from that of the Bezier 

form. Rather than defining a regular 'patchwork' of control points, representing the 

individual patches, any size matrix of points will suffice (providing it is at least 4 x 4 ). 

The B-spline surface may then take each particular 4 x 4 matrix, and without any 

continuity conditions other than an avoidance of duplicate control points, generate a 

patch which is automatically joined to the adjacent patches. 

The reader is reminded that examples of curves and surfaces described from Section 

4.5.4 through to this point are presented in Appendix 2b. Moreover they are encouraged 

to try the Excel workbooks included with this thesis, which were used to generate the 

images presented. 



99 

5. Illumination Models and Shading of Surfaces. 

The process of illumination is based in part on the physical behaviour of light in an 

environment. However, some illumination models mimic physical laws more closely 

than others. Therefore, the following methods should be considered to be 

approximations of the applicable physical laws, simply because they have been 

developed to provide desirable image quality rather than strictly obey the laws of optics. 

5.1 Model Notation. 

An illumination model specifies the factors that determine a surface's colour at a given 

point (Foley et al. 1994, p. 477). To begin to implement such a model, the term colour 

needs to be quantified in some manner. For the purposes of this project, colour will be 

described in terms the intensity, I Jc , of light in possibly a number of wavelengths, each 

denoted A. , and with no further detail. The colour of a point on a surface, then, may be 

described as the net perception of all I Jc for all light that makes its way from that point 

to the eye. 

The specification of light sources within the environment takes one of two forms. We 

may define a point light source, L, from which light of specified wavelength(s) A. and 

intensity I AL is emitted, by its location in the problem world ( x L, y L , z d. From any 

point (x, y, z) in the problem world, the unit vector L indicates the direction to this 

light source: 

L= [xr -x, Yr -y, Zr -zY 
jj[xr -x, Yr -y, Zr -zYjj 
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By placing a point source at infinity, a directional light source is defined. The vector 

L = [ x L , y L , z L ] T /II[ x L , y L , z L ] T II denotes the direction opposite to that of light rays 

from this infinite source. 

~l 
• point light source at (x L, YL, z L) 

1v 
directional light source denoted by 

vectors in the direction L =[xL,YL,zL]T 

Figure 5 .1. Depiction of point and directional light sources. 

To evaluate I 2 at a point on a surface, the behaviour of light at that point is studied, 

bearing in mind that the only light that will travel towards the eye is to be considered. 

Glassner (1989, p. 130) identifies "four mechanisms of light transport" that can be used. 

The geometry of these will be detailed in the following section to facilitate the 

discussion of the behaviour of light upon striking a surface and its treatment in a ray 

tracing algorithm. 

5.2 Mechanisms of Light Transport. 

5.2.1 Specular Reflection. 

Specular reflection is observed when looking at a shiny surface. A perfect specular 

reflector would have a mirror-like quality, where each of the incident (incoming) light 

rays is reflected in a single direction. In the typical instance though, light rays are 
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reflected in different directions by the surface with varymg degrees of intensity 

depending on the quality of the reflector. Whilst this typical case is difficult to apply 

because of the inordinate number of post-primary rays that may be cast, approximations 

to it exist based on the example of a perfect specular reflector. 

The direction of reflected light (from a perfect specular reflector) can be found as 

follows (refer to Figure 5.2.1): 

~ 

n 

s 

Figure 5 .2.1. Perfect specular reflection. 

Let S = n cos B - L 
and let unit vector R = 11 cos e + S 

then R = 211 cose -i, 

Now since 11 and L are unit vectors, cosB = 11. L and so: 

R = 2n(n. L)- i. (5.2.1) 

An worked example of the above can be found in Appendix 1. The computations 

regarding the intensity oflight specularly reflected, I], will be discussed in the section 

detailing an illumination model Section 5.4. 
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5.2.2 Diffuse Reflection. 

Matt surfaces such as chalk provide the best examples of diffuse reflectors. Diffusely 

reflected light is reflected away from the surface equally in all directions. 

n R 

Figure 5.2.2. Perfect diffuse reflection. 

The only mathematical principle that need be stated here (without delving too far into 

surface physics), is that the intensity of the light diffusely reflected, If , is taken to be 

proportional to the cosine of the angle between the vector L and the outward facing 

surface normal n : 

5.2.3 Specular Transmission. 

Transparent surfaces are those which exhibit specular transmission. The surface 

represents the boundary between two media through which light travels at different 

speeds. According to the theory presented in much of the literature, a phenomenon 

known as refraction, or the bending of the path of the light, occurs at such a boundary. 

Consider the following: 



n 

A 

L 

medium 1: T/i 

medium 2: Tfr 

T 
-n 

Figure 5.2.3. Specular transmission. L points towards the light source and T 

gives the direction of the transmitted light. 
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Given that T/i is the index of refraction of medium 1 (the speed of light through this 

medium relative to the speed of light through a vacuum) and that T/r is the index of 

refraction of medium 2, then the relationship between () L and Or can be written: 

sin Br T/i 
=-=Tfir 

sin ()L T/r 

This is known as Snell's Law. The vector T, representing the direction of transmission, 

will need to be computed in terms of the vectors n and L , and the indices of refraction 

for the media on either side of the surface. Consider the following diagram: 
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n 

~ 

-n 

Figure 5.2.3 .1. Perfect specular transmission (refraction). 

~ 

The unit vector T may be expressed as: 

where S is the unit vector on the surface and in the same plane as n and L . L may be 

written: 

which gives: 

and so: 

L = -S sin BL + ii cos BL 

S= iicosBL -L 
sin BL 

~ sin B ~ 
T= . T (iicosBL -L)-iicosBr 

smBL 

sin Br . 
Rearranging and replacing . with 17 LT : 

smBL 

Given that ii and L are unit vectors, cos BL and cosBT can be written as follows: 
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cos BL= n. i. 
cos Br = J1 - sin 2 Br 

= J1 -1Jir (1- COS 2 BL) 
I 2 , ~ 2 

=\fl-77LT(l-(n•L) ) 

This provides us with the final expression for T: 

(5.2.3) 

See Example 5.2.3 in Appendix 1 for a numerical illustration of the above. 

A phenomenon known as total internal reflection may occur when light passing through 

one medium reaches the boundary with a second medium having a smaller refractive 

index. Rather than continue at a refracted angle in the next medium, the light is 

reflected against the boundary between the two media and continues in the original 

medium. 

incident light n 

R 

medium 1: more dense (slower) 

~-ll'-~~~~1.--~~~~~~ surface 

medium 2: less dense (quicker) 

T 

Figure 5.2.3.2. Total internal reflection. 
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~ 

Should equation 5.2.3 yield a complex value for T then total internal reflection is 

considered to occur. The critiDal angle, the angle of incidence of a light ray with the 

surface below which total internal reflection occurs, may be found by simplifying 

I-11zr (1- (n • L) 2 ) = 0, which gives: sin BL = 17r /77L , which is at least reasonable, as 

17r /77L < 1 given that 17L > 77r (light is travelling slower on the side of the light source). 

Again, the intensity of light specularly transmitted, I I , will be discussed in Section 5. 4. 

5.2.4 Diffuse Transmission. 

A translucent material, that allows light to pass through, but colours and scatters it 

along the way (making objects behind the material appear indistinct), exhibits diffuse 

transmission. Perfect diffuse transmission would scatter light evenly in all directions as 

it passed through. 

As with the case for diffuse reflection, the intensity of the light diffusely transmitted, 

I fr , is taken to be proportional to the cosine of the angle between the vector L and the 

outward facing surface normal n . 

5.3 Application of Optical Models to Ray Tracing. 

Recall that the goal of the illumination model in the ray tracing algorithm is to colour 

the pixel through which a particular primary ray was cast into the problem world. Thus 

the previous expressions for the behaviour of light when it strikes a surface need to be 

restated and put into the context of the ray tracing algorithm, where only information 
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regarding light that is eventually received by the eye (i.e., travelling along a primary 

ray) is of concern. 

We may consider two sources of colour information for a particular point on a surface. 

Primarily, it is the presence of light sources in the problem world that will cast this point 

in varying degrees of light or shadow, depending on the positions of these sources 

relative to the point on the surface. Should this same point be on a surface that 

facilitates either perfect specular reflection or perfect specular transmission, or both, 

then we can consider the other positions in the problem world as secondary providers of 

colour information. A single secondary ray can be cast in the direction of reflection or 

transmission to indicate the direction in which this position lies from the point on the 

surface. This secondary ray may be followed in a similar manner to the primary ray that 

spawned it. 

n T 

-n 

Figure 5.3.1. Illumination of 
point by light sources. 

~ 

n 

eye 

~ 

-n 

Figure 5.3.2. Casting of 
secondary rays for a perfect 

specular surface. 

R 
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5. 3. 1 Illumination of a Surface at a Point of Intersection. 

The extent to which each light source in the problem world lights a particular point is a 

function of both the angle of incidence a ray cast from that point strikes the surface, and 

the wavelength of the light. The following will provide expressions for the angle of 

incidence in terms of the mathematics already identified in the ray tracing process (for 

the four modes of light transport). These will be determined with reference to the 

position of the viewer. Note that computations will take place in problem world space, 

and so the surface normal vector n, previously defined in object space, is transformed 

by matrix T;-1M;. Similarly, the direction in which the eye (or origin of the spawned 

ray) lies is expressed by the vector -Tv1Vr1 (see section 3.5.1). 

5. 3 .1. 1 Illumination by Specular Reflection. 

A light source (pointed to by vector i ) is not typically located in a manner that allows 

the perfect specular reflection to be seen from the viewing position. As such, perfect 

specular reflection is oflimited use in an illumination model. 

surface normal: 
T-IM" ; ;n eye: 

-Tv1Vr1 

Figure 5 .3 .1.1. Specular reflection in problem world space. 
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In the Phong illumination model an imperfect specular reflector is approximated using 

the angle a between the vector pointing towards the viewer and the reflected vector R. 

This model assumes that specular reflectance is at a maximum when a = 0, and 

decreases sharply as a increases, according to cosn a, where n is some number specific 

to the particular surface. This will be used in Section 5.4, but first we need the 

following: 

using equation ( 5 .2. l) with unit vector DI ~ r;- l M; ,ill instead of i, , R can be stated 
T-1M ~ 

i in 

R=2m(m.i)-i 

The cosine of a can now be written: 

Example 5.3.1.1 in Appendix 1 illustrates this, for the simplified case without object 

space/ view system transformations. 

It may also be noted that the cosine of the angle of incidence of the light, () L, is written: 

.........., 
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5.3.1.2 Illumination by Specular Transmission. 

In much the same way as illumination by perfect specular reflection was limited to one 

view point only, so too is illumination by perfect specular transmission. Similarly, 

imperfect specular transmission is approximated by finding the angle a between the 

actual and ideal incident rays. 

surface normal: 
T-lM A 

i ;D 

A 

T 
medium 1 : 17 ray 

~~~~~~-1-~~~~~~ surface 

L 
direction of 

incoming light's 
source 

medium 2: 17L 

Figure 5.3 .1.2. Specular transmission in problem world space. 

Using D1 = -t-'M;DII in place of D, equation (5.2.3) gives the formula for 'f as: 
T-lM A 

I ;D 

where 17 L,ray is the ratio of the indices of refraction 17 L / 17 ray , with the numerator 

referring to the medium through which the light passes to reach the surface. 
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Note that T;-1 and Tv1 are the inverse translation matrices for the object space and view 

system space, and are not related to T , which is the vector representing the direction 

that incoming that would follow if it were to be perfectly specularly transmitted. 

With an expression for T in hand, and bearing in mind that the angle made by L with 

the surface may cause total internal reflection, the cosine of a, for use in the Phong 

illumination model, can now be written using cos a= (-Tv1Vr,). T 111Tv1Vr, 11 · 

5.3.1.3 Illumination by Diffuse Reflection and Diffuse Transmission. 

Diffuse light is reflected and transmitted in all directions (which includes the direction 

of the viewer) with an equal intensity, this intensity being proportional to the cosine of 

the angle of incidence: 

surface normal: 
T-lM A 

i ;D 

Figure 5.2.2. Diffuse reflection in problem world space. 
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5.3.2 Recursive Ray Tracing. 

Should the surface at a point of intersection with a primary ray have either perfect 

specular reflection or perfect specular transmission qualities, then a secondary ray is 

cast to receive information about the part of problem world that can be seen as a result 

of the reflection or refraction. Should the secondary ray encounter a similar surface, 

then a tertiary ray is cast, hence the term recursive ray tracing. Subsequent rays are 

treated in the same way as rays before them up until some arbitrary threshold for the 

number of rays, or accumulated distance of travel by the light they represent, is reached. 

5.3 .2.1 Definition of a Specularly Reflected Ray. 

r '=R t 

Figure 5.3.2.1. Casting of a subsequent ray due to specular reflection. 

Given the ray - surface intersection at ( x a, ya, z a), the subsequent ray cast to receive 

information about the problem world specularly reflected to this point is defined (in 

problem world space): 

We may obtain an expression for r 1 ' from (5.2.1) by replacing 



which gives 

rt'= R = 2m(m. k) - k. 

See Appendix 1, Example 5.3.2.1 for an application of the above equation. 

5.3.2.2 Definition of a Specularly Transmitted (Refracted) Ray. 

T -1M ~ 
i ;D 

medium 1: 'ff ray 

~~~~~~..::::::.j,.~~~~~~ surface 

medium 2: n ·tcast 

Figure 5.3.2.2. Casting of a subsequent ray due to specular transmission. 
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A subsequent ray cast to receive information about the problem world specularly 

transmitted to a point ofintersection(xa,Ya,za) is defined (in problem world space): 

We may obtain an expression for rr' from (5.2.3) by replacing 

which gives 
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in which r, ray,cast is the ratio of the indices of refraction r, ray/ r, cast , with the numerator 

referring to the medium through which the light passes to reach the surface. Example 

5.3.2.2. in Appendix 1 illustrates the definition of such a ray. 

5.4 Illumination Model. 

What follows is an example of an illumination model that may be used to generate the 

colour information for a particular point on a surf ace. The mathematical content behind 

it is quite thin, beyond the already indicated references to the geometry of the behaviour 

of light rays. As such, it is included purely for the sake of completeness. 

The illumination equation describes the net intensity of light of a particular wavelength 

that is evident from the position of the eye. The factors that contribute to this include 

the properties ( with respect to facilitating optical mechanisms for light of certain 

wavelengths) of the surface at which this value is determined; the intensity, colour 

(wavelength), and angle of incidence of light illuminating the point; and the angle from 

which the surface is viewed. 

The notation used is, in part, from Foley et al. (1994, pp. 478-489). 

5.4.1 Surface Characteristics. 

In this basic model we may identify two variables that influence the illumination of a 

surface. A constant k representing the surface's ability to facilitate the mechanics of 

light transport at that point ( 0 s k s 1) is used in conjunction with O A , the surface's 

colour component of wavelength 2, to determine the amount of light of that 
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wavelength which enters the calculations. The intensity of illumination then, is based 

on these and the intensity and direction of incident light: 

A more adaptable model is described by considering that a surface has independent 

variables representing its ability to reflect light, both diffusely and specularly, and 

transmit light (for which the diffuse case will be addressed separately): 

L=JI?+J~+J! 
/1. ), ), ), 

rr ~ ~ ] {ks cos n as, if source of L is • in front of surface'1 
l,1, =1;,L LkdOJ,1,(n•L) +05;, ~ (5.4.1) 

k I cos n a 1 , if source of Lis 'behind the surface' 

where I AL is the light source intensity. Note that the diffuse reflection component is 

proportional to the angle of incidence of the light, and that the intensity of specular 

reflection and transmission components relies on the Phong illumination model, which 

considers a, the angle between the direction of perfect specular transport and the 

direction from which the surface is viewed. 

5.4.2 Light Source Attenuation. 

Light source attenuation describes the decrease in light energy when a light source is 

moved away from a surface. The expression is a function of the distance d L between 

the source and the point that is being illuminated: 

where c3 ,c2 , and c1 are constants associated with the light source. Applied to 

illumination equation 5.4.1 we obtain: 
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5.4.3 Multiple Light Sources and Shadows. 

Multiple light sources are simply accounted for by the summation of the illumination 

equations attributable to each for the given point on the surface. However, some 

sources may be occluded from that particular point, and as such should not contribute to 

the overall equation. Multiple light sources may be modelled as follows: 

where m is the number of light sources illuminating the scene, and S1 is the shadow 

term, defined as: 

{
O, if light source l is obscured 

Sz = 
1, if light source l is not obscured 

5.4.4 Ambient Lighting. 

Ambient light is typically considered to be a result of general diffuse interactions not 

described by the model, including diffusely transmitted light from light sources that 

have been defined, and light from sources external to the problem world (for example, 

the sky). Surfaces are illuminated by ambient light of intensity If according to the 

term k a (0 :ska :s 1) and their diffuse colour O cJJ,, • The 'complete' illumination 

equation can now be described: 
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5.5 Surface Detail. 

In the previous discussion each surface was identified as having a single colour 

parameter (for each mode of light transport) that was uniform across its entirety. This 

section will look at a number of mappings that can add detail to the appearance of a 

surface. 

5. 5. 1 Texture Mapping. 

A texture map is usually, but not necessarily, a two-dimensional, rectangular image that 

is to be placed on some surface in the problem world. An example would be a digitised 

photograph, stored as a matrix of coloured pixels and indexed by the parameters µ 1 and 

vt, to be placed on some facet representing a picture in a frame in the problem world. 

For the purposes of ray tracing the texture mapping must be invertible: i.e., given a 

point of ray intersection on a textured surface (x,y,z), the corresponding texture space 

parameters µ 1 and v I can be found. The following describes the mapping from a 

rectangular texture space to an arbitrary quadrilateral PoP1P2P3. 

The position vector P=[x,y,z]T of a point on the quadrilateral corresponding to 

texture parameters µ 1 and vt is given by a modified version of the equation given on 

page 55. 

(5.5.1.1) 

where O ~ µ 1 ~ I, and O ~ v1 ~I. 
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Note that P is given in terms of a displacement from the first corner P0 . This 

displacement is labelled p, where p = P - P0 , which gives: 

(5.5.1.2) 

where 

p = [p x , p y , p z ] T 

The corresponding texture space parameters can be identified by solving any two of the 

three equations represented by equation ( 5. 5 .1.2). Representing the vector differences 

(P1 -P0 ), (P3 -P0 ) and (P2 -P3 )by a, b, and d respectively, equation (5.5.1.2) is 

simplified: 

p = µt [ (1 - Vt )a + Vt d] + Vt b 

= µ 1vi(d - a)+ µta+ v1b 

Solving the equations p x and p Y for µ 1 and v 1 , the general inversion is obtained: 

- a 2 ± Jai - 4a1a 3 
µ 1 = , Os µ 1 s 1 

2a1 

where a1 =(-ax(dy -ay)+ay(dx -ax)) 

a 2 = (aybx -axby + px(dy -ay) + Py(dx -ax)) 

a3 = Pxby - Pybx 

. i 
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texture space coordinate space 

Figure 5.5.1.1. Texture Mapping to a quadrilateral. 
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As one would expect, the case for which PoP1P2P3 is a parallelogram simplifies the 

computations somewhat (a= d): 

The general inversion is stated: 

As with the specification of faceted surfaces, matters are simplified $Omewhat when 

triangles are used: 



V t 

1 : 0 
a<:------------------~--· 
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01 
flt 

0 

texture space 

For triangles there are two mappings: 
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coordinate space 

where pis the displacement from P0 and q is the displacement from P2 . Both of these 

formulations are simply invertible. 

Textures can be mapped to any parametrically defined surface. For example, a mapping 

to a bi-cubic parametric patch is trivially done through substitution of texture space 

parameters for the surface parameters. A mapping to a cylinder would most likely 

assign texture space parameter v I to the height of the cylinder, and µ 1 to the angle of 

revolution about the cylinder's axis. 



121 

5.5.1.2 Bump Mapping. 

Bump mapping is similar to texture mapping in that detail is added to an otherwise 

uniform surface through a mapping to coordinate space. However, rather than map an 

array of colours to the surface, an array of surface normal transformations are mapped 

that provide variations in the illumination of the surface. For example, bump mapping 

can be used to simulate the dimples on a golf ball by altering the surface normal of a 

sphere in a regular patterned manner. Whilst the technique brings little to the discussion 

of mathematics behind image generation, it is a useful short cut that is commonly 

applied. 

5.6 Approximation of a Smooth Surface through Phong Shading. 

Consider a triangular facet, with normal n, that is defined by vertices which were 

sampled from a smooth object. If it is anticipated that a number of rays will intersect 

with the facet, the surface normal may be adjusted at the points of intersection, which 

will in turn mean that the illumination of the approximated surface is closer to that of 

the original form. Phong ( 197 5) provides a method to accomplish this. 

Phong shading linearly interpolates a surface normal according to the (normalised) 

vector sum of the normal vectors of that surface and the adjacent surfaces at each vertex 

( care must be taken not to sum vertices at a vertex running along a deliberately 

discontinuous edge, otherwise unwanted smoothing may occur). More formally the 

surface normal is defined as follows. 

For the triangular facet Po P1 P2 the approximated surface normal n * at the point 

P == P0 + µ(P1 - P0 ) + v(P2 - P0 ) is given by: 
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where ni is the unit vector in the direction of ni, the vector sum of the unit normals to 

the facets (that we are interested in) meeting at vertex i. 

A 

/ 

Figure 5.6. A cube with a 'rounded' edge. 

Consider figure 5. 6, where a corner of a cube has been removed in an attempt to 

model some sort of curvature. Close to vertex A, one would assume that the Phong 

shading method would use the 'average normal' vector n A , which has the same 

direction as n A = n a + n b + n d . However, close to vertex B, where rounding is not 

wanted ( a straight edge is desired), an average normal vector would not be 

designated, instead shading on each facet occurring irrespective of the adjacent 

facets. 
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6. Other Methods of Image Generation. 

A primary inefficiency of the ray tracing algorithm discussed in Chapter 3 is the 

arbitrary casting of (at least) one ray through each pixel on the view window. The 

method does not consider the construction of the problem world and would be improved 

if the direction of each ray cast could be determined by the presence of detail in the 

problem world. By considering the positions of vertices and edges in the problem world 

we identify not only a means (albeit an over-simplified one, given the depth of research 

into the area) of improving the efficiency of the ray tracing algorithm, but also a general 

method of two-dimensional image generation. 

In Section 3. 4 a number of projection methods were discussed in the definition of the 

general form of a ray, without any reference to the problem world into which they were 

to be cast. In this section, the special cases of these projection methods will be 

considered in which, depending on the method used, rays passing through a number of 

vertices in the problem world are cast in order to describe the appropriate image on the 

view window. 

The resulting image consists of a set of points on the view window, which are then 

joined by computer algorithm to define edges, and in turn used to identify facets that 

can be shaded. The removal of vertices, edges and facets that are hidden or out of view 

from the consideration of the image generation process is a task that can occur before or 

during shading of surfaces. There is much literature describing such image generation 

processes, and with an almost exclusively computer programming orientation 

(especially with regards to the hidden point/ line/ surface removal steps) the associated 
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algorithms will not be discussed in any further detail by this project, except where there 

is suitable mathematical content. 

6.0 Review of Notation. 

The following discussion will look at different types of projection. But first we briefly 

remind the reader of some of the notation used in the definition of a view system as 

detailed in Section 3.2. The form in which a ray is expressed (Sections 3.3 to 3.4) is also 

reviewed. 

The axes of the view system are labelled (u, v,n) and view system space is positioned 

in the problem world by the transformation V. Hence, when working in view system 

space, object coordinates need to be first transformed into problem world coordinates 

and then into view system coordinates: this composite transformation is represented by 

the matrix product v-1Mi (for object i). 

The view plane is defined in view system space (u, v, n) by n = k, with normal vector 

n = [O, 0, - If, and the view window as the rectangle with bounding vertices 

(-a,b,k), (a,b,k), (a,-b,k) and (-a,-b,k). The 'observer' is typically located at 

(0, 0, 0), and 'looks' through a view window lying on the plane k = -1. For the 

purposes of the following sections, a point on the view window will not be referred to 

by a point on the pixel (i, j) as previously, but rather the point (A, B, k) on the plane of 

the window itself will be used. As such, - a :::; A :::; a and - b :::; B :::; b define the points 

on the view window. The equation rA,B = r(;·B + tr/·B describes the ray that passes 
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through the view window at the point (A,B, k), where rt·B and r/·B are defined 

according to the particular projection method to be used. 

As stated throughout Chapter 3, ray traced projection is implemented by tracing the 

paths of an arbitrary number of rays through the view window into the problem world. 

Now consider that the points of interest in the problem world are already known, and we 

wish to examine their projection on to the view plane, more particularly any projections 

on to the view window, which also lies in the problem world. The following sections 

discuss identifying the point (A,B,k) on the view window for the ray rA,B that passes 

through an already identified point in the problem world. 

6.1 Parallel Projection. 

A parallel projection is defined by a set of rays that have parallel direction vectors, i.e. 

have the same vector r1 in each of their equations. 

view window 

Figure 6.1. Rays and view window of a parallel projection. 
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Recall that a parallel projection is not restricted to the direction of the normal vector to 

the view window. This direction is denoted from the point (u, v,n) in the problem 

world as rt* = [ c, d, e - k ]T, where the vector [ c, d, e ]T represents the displacement of 

the origin of a ray that would have passed perpendicularly through the view plane (the 

view plane is typically located with centre (0, 0,- k), or by position vector [O, 0, - k ]T, 

hence the vector addition in r; ). 

So for any point (u, v,n) in the view space representation of the problem world, the 

following equations describe the projection by ray rA,B to the point (A, B, k) on the 

view window: 

u A -c 
A= u + tc (6.1.1) 

V = B +t -d 'so: B=v+td (6.1.2) 

n k k-e k=n+t(e-k) (6.1.3) 

Equation ( 6.1.3) provides the solution fort when the ray passes through the view plane: 

k-n 
t=-­

e-k 
(6.1.4) 

Using result (6.1.4) in (6.1.1) and (6.1.2) we obtain expressions for A and B, which lead 

to the matrix representation, L, of the parallel projection operation: 

A 1 0 
C ck 

--- u 
e-k e-k 

B d dk V 0 1 ---
= e-k e-k 

k 0 0 0 k n 

1 0 0 0 1 1 

[A,B,k,lY =L[u,v,n,lY 
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For example, consider the trivial case where the view plane is located at n = -1, and the 

origin of the rays has not been displaced, that is the projection is perpendicular to the 

view plane, or c = d = e = 0. L then reduces to: 

I 0 0 0 

0 1 0 0 
L= 

0 0 0 -1 

0 0 0 1 

which means that under this projection [A, B, -1, 1Y = [u, v,-1, 1 ]1, indicating that the n 

term of a point in the (view system representation of) problem world is simply replaced 

with k = - l , the n term of the view plane. 

6.2 Perspective Projection. 

Ray traced perspective projection 1s implemented by tracing the paths of rays 

originating from the eye, which is usually denoted at the origin of the view system, 

through the view window into the problem world. To find the position (A, B, k) on the 

view window passed through by such a vector intersecting point (u, v, n), a comparison 

of similar triangles may be used. 



(c,d,e) 
I 
I 
I 
I 
I 
I 
I • (0,0,0) 

_____________ (c,d,k) ----------------------------... (c d n) 
: ' ' 
' ' ' ' 
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 

n '(u, v,n) 

view window 

Figure 6.2. Rays and view window of a perspective projection. 
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Note that this describes the general perspective projection case, where the eye has been 

translated to (c,d,e). What is required is an expression for (A,B,k) in terms of 

(u, v,n). By similar triangles (comparison of perpendicular sides): 

k-e A-c k-e B-d 
~--~- and ~--~~ 
n-e u-c n-e v-d 

Rearranging these in terms of the required variable: 

A= (k-e)(u-c) +c and B= (k-e)(v-d) +d (6.2.1) 
(n-e) (n-e) 

By factoring each right hand side for 
1 

the perspective projection may be 
n-e 

expressed in matrix form, R: 

A k-e 0 C -ck u 

B 1 0 k-e d -dk V 

= 
k n-e 0 0 k -ek n 

W O O 1 -e 1 

[A,B,k,1Y =-1-R[u,v,n,lJT 
n-e 

.. 
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Further understanding of the above comes through the consideration of a matrix R • 

defined by equation (6.2.1) but without the factoring out the expression 1/(n - e). In 

such a case, the fourth entry of the resulting coordinates [A*, B*, k *, W r might not 

necessarily be equal to one. Thus, to complete the projection, the coordinates need to be 

reverted to the form [A, B, k, 1 Y, by dividing through by W: 

[A,B,k,lY =-1 [A*,B*,k*,WY =-1-R*[u,v,n,lY 
W n-e 

6.3 Implications of Projecting on to the View Plane. 

When projecting on to the view plane a number of difficulties emerge that are a result of 

attempting to state explicitly the points of interest in a scene. Hidden surface and line 

detection is a key area of concern, with mathematical concepts such as identifying 

volumes of occlusion behind foreground objects, or viewing volumes that represent the 

total space in the problem world that could be seen through the view window. 

Whereas the ray tracing method of sampling the problem world for incoming light rays 

relied solely on line - surface intersection computations, the above methods require that 

if a surface - surface intersection is present and suspected to be visible, it must be 

computed and eventually be represented explicitly as a set of points. 

6.4 Gouraud Shading. 

Once the visible surface algorithms have specified the extent to which each surface is 

visible, the process of shading can begin. In the most basic shading routines the entire 
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surface is illuminated using its normal, which produces images with a faceted 

appearance. 

Since each projected vertex is from some object in the problem world, the colour and 

illumination of the surface at each vertex may be computed. The normal at each vertex, 

n;, is dependent on the adjoining surfaces' (intended) continuity to the particular 

surface being shaded. From Section 5.6: 

k 

n;=InU), 
j=l 

where k is the number of facets, with unit normals n(j), each cornered by vertex i, that 

are considered contiguous to the facet in question. Using the computed normal, use can 

be made of the illumination models of Section 5 to provide an intensity 1,i.; at each 

vertex. 

Gouraud shading ( Gouraud, 1971) linearly interpolates the intensities of the vertices 

about a (triangular) facet. The approximated intensity of light on the surface of a 

triangular facet Po P1 P2 as a result of this technique at the point 

P=P0 +µ(P1 -P0 )+v(P2 -P0 ) is given by: 

where µ, v ~ 0 and O :$; µ + v $; I. 

It is noted that the Phong illumination model is equally well suited to this task, although 

takes more time as the illumination model is run through for each interpolation. 
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7. Conclusion. 

It was noted in the introduction that conventional theory dictates that it is the light 

within an environment that is received by the eye and interpreted as vision. As such, 

computer graphics applications that aim to communicate visually some digitally stored 

environment apply models simulating the behaviour and interaction of light with an 

environment. The ray tracing algorithm was cited as an implementation of some of 

these light behaviour models. 

This thesis presented an outline of some the mathematical concepts that find application 

in the ray tracing algorithm, one solution to the image generation problem. In 

particular, vector geometry was applied to the understanding that incoming light rays 

from an environment provide the visual information necessary to render the scene in 

two-dimensions. This provided a mathematical framework (the view system) through 

which an arbitrary problem world could be viewed. 

Whilst the ray tracing algorithm provides an elegant means of image generation, it is a 

costly computational procedure. As alluded to in Section 6, the scope for the 

optimisation of the basic technique lies with identifying that the procedure essentially 

samples the problem world before it. Thus, statistical methods have found much use in 

the practical implementation of ray tracing (Glassner, 1989. p. 24). The special case 

was presented (Section 6.2) where only the vertices of interest are sampled from the 

problem world, using a perspective projection transformation. The reader familiar with 

computer graphics will identify this as the core of the method by which the real time 

rendering of graphics is accomplished. 
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The content of this thesis could be understood to be representative of a fair proportion 

of elementary image generation concepts, certainly all of which have been many times 

considered and presented in more detail than shown here. As such this should be 

considered to provide at best a mathematical discussion of some computer graphics 

topics that are perhaps usually presented with only their implementation in mind. 
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APPENDIX 1 

Worked Examples. 
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Example 2.4.5.2: Rotation about an arbitrary axis running through the origin. 

Consider an anticlockwise rotation of 8 about an arbitrary axis q that runs through the 

origin: 
y 

axis q 

z 

This example identifies the matrix transformation of the form R = RyRxRzRJR; that 

performs the above rotation. 

Suppose that the line that is the intersection of the planes z = .fix and y = 2 x lies on 

the axis q. This axis may now be described in terms of some rotation of space about the 

y axis (by 8 Y) and then about the x axis (by 8 x ), which transforms a line running along 

the z axis into the areforementioned line along q. Furthermore, the anticlockwise 

rotation of 8 z about the z axis prior to the above rotations facilitates the anticlockwise 

rotation of 8 about q, if Oz = 8. 
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y 
Intersection of 

z = Ji x and y = 2 x 

z 

Given that the line is the intersection of the planes z = Ji x and y = 2 x, the angles 8 Y 

and ex can be obtained. Note that the rotation about the x axis is in a clockwise 

direction ( or from the z axis to they axis), and so the angle 8 x is negative. 

X 
taney =­

z 

Tr 
so e =­

y 6 

tan ( -e X ) = J y 
x2 + z2 

2x 
= =1 

~x2 + (Ji x)2 

Tr 
so e =--

x 4 

Note that only the solutions in the first octant (in each case) were stated, simply because 

these are the angles relevant to the problem. Now, the rotation matrices RY and Rx 

can be determined, and subsequently their transposes R; and R; : 

COS8y 0 sin ey 0 Ji/2 0 1/2 0 

0 0 0 0 1 0 0 
Ry= = 

- sin ey 0 cosey 0 -1/2 0 Jj/2 0 

0 0 0 1 0 0 0 1 



1 0 0 

0 cosBx - sin Bx 
R = X 

0 sin Bx cos Bx 

0 0 0 

0 

0 
= 

0 

1 

1 0 0 0 

0 Ji/2 Ji/2 0 

0 - Ji/2 Ji/2 O 

0 0 0 1 
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Now, suppose that an anti-clockwise rotation of B = n/2 about q is sought. Then 

matrix R 2 is written, using B2 = n/2: 

cosBz - sin Bz 0 0 0 -1 0 0 

sin Bz cosBz 0 0 1 0 0 0 
R = = z 

0 0 1 0 0 0 1 0 

0 0 0 1 0 0 0 1 

Hence the composite transformation R, that rotates coordinate space by B = 1r /2 about 

the axis q, on which the intersection of the planes z =.fix and y = 2 x lies, is given: 

R=RyRxRzR!R; 

0.1250 -0.3624 0.9236 0 

0.8624 0.5000 0.0795 0 
~ 

- 0.4906 0.7866 0.3750 0 

0 0 0 1 

The cube with homogeneous vertices (0, 0, 0, 1), (1, 0, 0, 1), (l, 1, 0, 1), (0, 1, 0, 1), 

(0, 0, 1, 1), (1, 0, 1, 1), (1, 1, 1, 1) and (0, 1, 1, 1), represented by the vectors P0 to P7 , 

is transformed by the above transformation (augmenting the vertex vectors): 
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This yields the following set of transformed vertices, represented m (x,y,z) 

coordinates: 

Rotated PO' Pl' P2' P3' P4' PS' P6' P7' 
vertices 

X 0.0000 0.1250 -0.2374 -0.3624 0.9236 1.0486 0.6862 0.5612 
y 0.0000 0.8624 1.3624 0.5000 0.0795 0.9418 1.4418 0.5795 
z 0.0000 -0.4906 0.2960 0.7866 0.3750 -0.1156 0.6710 1.1616 

Diagrammatically: 

y q y q 

P2 

P1 % =; I 
I 
I 
I 
I 
I 

X X 

z z 

where q1 = [ _!_, 1, ,J3 f is a point on both the surface of the cube and the axis q about 
2 2 

which the cube is rotated. 



Example 3.2.1: Specification of a View Plane and View Window, for use in 

further computations. 

V 

(-a,b,k) .---~~----.(a,b,k) 

(-a, - b, k) (a,-b,k) 

n 
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Working in view system space (u, v, n), the view plane that will be featured in the 

following examples is n = k = - 3 . The view window will be described by a= 2 and 

b=3/2, that is it has the vertices (-2,3/2,-3), (2,3/2,-3), (2,-3/2,-3) and 

(-2, - 3/2, - 3). The viewer is located at (0, 0, 0), unless otherwise stated. 

Resolution is defined horizontally and vertically by the constants g = 640 and h = 480. 

(i.e. an 640 x 480 array of pixels), with the central position of each pixel denoted (i, )) , 

where O :s: i :s: 639, and O :s: j :s: 479, for i, j E Z. Non-central positions on pixels such as 

pixel boundaries are referred to in terms of (i, j) where i,j E R. Thus, the pixels on the 

view window can be shown: 
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(0, 479) (639,479) 

(-2,3/2,-3) I \ 
I \ 

(2, 3/2, - 3) 

-#---- (i, j) 

I I 
\ I 

(-2, - 3/2,-3) (2, - 3/2, - 3) 

(0,0) (639, 0) 

Example 3.2.2: Pixel to Coordinate Mapping. 

The relationship between the view system coordinates (u, v,n) and the view window 

pixel references (i, j) can be described by the one to one mapping V: (i, )) ~ (u, v,n), 

as follows. 

For a view window with centre (0, 0, k) and bounding vertices (-a, b, k), ( a, b, k), 

(a,-b, k), (-a,-b, k), describing a resolution of (g x h): 

V 

u={2i;1-1J 
v={2jh+l _1) 
n=k 

Thus, our mapping is stated: 

u = 2( 2i + 1 - 1) 
640 

V: v=i(2j+l _1) 
2 480 

n=-3 

- 0. 5 :s; i ~ (g - 0. 5) 

-0.5:::;J~(h-0.5) 

-0.5:::; i ~ 639.5 

-0.5~j:::;479.5 
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For example, the view system coordinates of the centre of the comer pixel (639, 479) 

can be written: 

u = 2(2(639) + 1 -1) = 639 
640 320 

v=!(2(479)+1 _ 1)= 479 . 
2 480 320 

n=-3 

so 

V: (639 479) ~ (639 479 - 3) 
' 320' 320' 

Similarly for the bottom left comer of the pixel (0, 0), i.e. i = -0.5 and j = -0.5, the 

view system coordinates are: 

so 

u = 2(2(-0.5) + 1 -1) = -2 
640 

V =!(2(-0.5) + 1 -l) = _! 
2 480 2 

n=-3 

3 
V: (-0.5, -0.5) ~ (-2, - -, - 3) 

2 
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Example 3.3.1: The implicitization of a parametric ray. 

The trivial case of the implicitization of the parametric ray r = r0 + trt, where: 

1 0 

r0 = y 0 = 1 and rt = Yr = 0 

0 1 

will be demonstrated in this example. For a non-trivial example, see Example 4.1.2. 

The set of points that describe the intersection of any two of the following three 

equations ((3.3.1.1), (3.3.1.2) or (3.3.1.3)) lie on a line describing the path of the ray 

Substituting in the values of the variables as indicated by the ray r, into all three 

equations for the purpose of the example, yields: 

(O)x + (O)y + (O)z + (0) = 0 

(O)x + (- l)y + (O)z + (-0 + 0 + 1- 0) = 0 

y=l 

(-l)x + (O)y + (O)z + (0 + 1- 0 - 0) = 0 

x=l 

(3.3.1.a) 

(3.3.1.b) 

(3.3.1.c) 
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(3.3.1.a) provides no additional information, and so the implicit form of the ray r is the 

intersection of the planes x = 1 and y =I, which is a result obtainable by simple 

inspection of r. 

Example 3.4.1: General Parallel Projection. 

The following illustrates an oblique projection, performed by displacing the points of 

origin of rays defined under an orthogonal projection. Denoting the displacement by 

[c, d, e{, the equation for a ray r 1•1 , passing through pixel (i, j) is written: 

r 1•1 =[a ---1 +c,b ---1 +d,e] + [-c,-d,k-e]T ·· (2i+l J (2)+1 ) T f 

g h ~c2 +d2 +(k-e)2 

Using the view system described in Example 3.2.1 (a= 2, b = 3/2, k = -3, g = 640 and 

h = 480) a parallel projection ray passing through the pixel (319, 239) will be defined 

for the displacement [1, 0, o{. 

(319,239) 
r 319,239 _ 319,239 + f - ro rt 

r3t9,239 _ [l O O]T 
0 ' ' 

r3t9,239 
o r1 

view window 
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r3I9,239 = [2(2(319) + 1 -1) + 1, I(2(239) + 1 -1),o]T + t [-1, 0, -3]T 
640 2 480 J1 + (-3)2 

= [ 319 __ 1_ o] T + _t_ [- l O _ 3]T 
320' 320' Jw ' ' 

Note that the direction of this ray is simply a function of the displacement of its origin, 

and not its pixel position. 

Example 3.4.2: General Perspective Projection 

A perspective projection with centre of perspectivity or eye displaced by [c, d, e]T has 

the equation for a ray ri,J, passing through pixel (i, j) as follows: 

Using the view system described in Example 3 .2.1 ( a = 2, b = 3/2, k = -3, g = 640 and 

h = 480) a perspective projection ray that passes through the pixel (159, 239) will be 

defined for the displacement [1, 0, ot 

[0, 0, O]T; 

[1,0,0] 
I 

T' 

r159,239 = (l O O]T + trI59,239 
' , t 

view window 
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r1s9,239 = [I, O, O]T + t [-641, __ l_,_ 31T 

6412 + 1 320 320 
---+9 

320 

~ [1.0 X 10°, 0, O]T + t[-5.553 X 10-l, - 8.663 X 10-4 , - 8.316 X 10-l ]T 

Note that scientific notation was used because of the small v component of the ray. 

Example 3.5.1: Position of the View System in the Problem World. 

To use a ray defined in view system space for the purpose of testing for intersections 

with the problem world and determining illuminations, it needs to be expressed in the 

problem world coordinate system ( x, y, z) by using the transformation V = T v S v R v . 

u' 
n' 

V 

....... 11 
y 

.······ 

v~ 

n 
z 

Of course, this transformation determines what part of the problem world is to be 

viewed. For this example, consider that the (unscaled) viewer or eye is to be located at 

the problem world coordinates (I 0, 10, 10), and is 'looking' straight at the origin of the 

problem world space . The transformation V that orients the view system as described 

can be determined as follows: 



-

First, a rotation of ()v = ,r/4 of view system space about the v axis, 

then a rotation of () u = - 1r / 4 of view system space about the u axis, 

and finally a translation of view system space by+ 10 along each axis. 

The corresponding matrix Vis found by matrix multiplication, noting that scaling 

matrix Sv is an identity matrix as no scaling occurs: 

V = TvSv (RvRu) 

1 0 0 10 1 0 0 0 cos;r/4 0 sin ,r/4 

0 1 0 10 0 cos(-,r/4) - sin( - 1r / 4) 0 0 1 0 
= 

0 0 1 10 0 sin(-,r/4) cos(-;r/4) 0 - sin ,r/4 0 cos;r/4 

0 0 0 1 0 0 0 1 0 0 0 

Ji/2 0 Ji/2 10 

-1/2 Ji/2 1/2 10 
= 

-1/2 Ji/2 1/2 10 

0 0 0 1 

X Ji/2 0 Ji/2 10 u 

y -1/2 Ji/2 1/2 10 V 

t.e. = 
z -1/2 Ji/2 1/2 10 n 

1 0 0 0 1 1 
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0 

0 

0 

1 

The view can be rotated about the chosen axis on which the viewplane normal lies by 

including a rotation about the n axis in view system space before translating (and 

scaling). 
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Example 4.1.2: Triangular Facet. 

Consider the triangular facet, a bounded plane cornered by vertices indicated by 

position vectors Po = [I, 0, O]T, pl = [O, 2, O]T and P2 = [O, 0, 1r. The position vector p 

to any point on this facet can be defined parametrically as follows: 

where 

for µ, v ::2'. 0 and µ + v ~ 1 . 

Pµ =P1 -P0 =[-1,2,0]T and 

Pv =P2 -P0 =[-1,0,l]T 

The normal to this parametrically defined surface is obtained using the cross product of 

any two linearly independent vectors running parallel to its plane. Two such vectors are 

n=Pµ xPv 

=[-1,2,0]T x[-1,0,l]T. 

= [2, 1, 2]T 

Determining the intersection of a planar facet with a ray can be approached in two ways, 

either by treating the facet parametrically and the ray implicitly, or the facet implicitly 

and the ray parametrically. The following will demonstrate both methods. 
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Example 4.1.2.1: Intersection of a parametrically defined facet with a ray. 

Referring to the facet P = P0 + µ[-1, 2, O]T + v[-1, Ol]T where µ, v?. 0 and µ+vs 1, 

we can state the individual coordinate equations in (x, y, z) terms: 

x=l-µ-v 

y=2µ 

z=v 

(4.1.2.a) 

(4.1.2.b) 

(4.1.2.c) 

Now consider the parametrically defined ray r = [5, 5, 3]T + t[-2, - 2, - l]T. In order to 

find the intersection with the parametrically defined facet, the ray needs to be 

implicitized. Using equations (3.3.1.1) and (3.3.1.2) from the body of the report, the 

implicitization follows: 

(3.3.1.1) 

2x+ 2y-8z +(-10-10 + 12 + 12) = 0 

X + y - 4z + 2 = 0 (4.1.2.d) 

4x - 5 y + 2z + (-20 + 20 + 5 + -6) = 0 

4x-5y+2z-l=O (4.1.2.e) 

The implicit form of the line along the ray, then, is represented implicitly by the 

intersection of the planes described by (4.1.2.d) and (4.1.2.e). Substituting (4. l.2.a)­

(4.1.2.c) into these plane equations, the problem is put into the terms of the two 

parameters µ and v : 

(1 - µ - V) + ( 2 µ) - 4( V) + 2 = 0 

µ-5v +3 = 0 ( 4.1.2.t) 



and 

4(1- µ - v)- 5(2µ) + 2(v)-1 = 0 

-14µ-2v+3=0 
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( 4.1.2.g) 

Rearranging ( 4.1.2.f) to get µ = 5v - 3 and substituting this result into ( 4.1.2.g), we get 

v = 5/8 and subsequently µ = 1/8 . Thus the point of intersection can be found by 

evaluating P = P0 + µ[-1, 2, O]T + v[-1, 0 l]T for these parameter values, which yields: 

1/4 

p = 1/4 

5/8 

To find the ray parameter value of this intersection, it is simply a matter of solving the 

given parametric ray equation for the above point of intersection: 

1/4 5 -2 

1/4 = 5 +t-2 

5/8 3 -1 

The solution is provided when t = 19/8. 

Example 4.1.2.2: Intersection of a implicitly defined facet with a ray. 

Referring agam to the facet P=P0 +µ[-1,2,0]T +v[-1,0,l]T where µ,v?.0 and 

µ+vs; 1, and noting that the surface normal is n = [2, 1, 2]T, the implicit form of the 

plane of the facet is readily found. In general terms, the plane represented implicitly by 

Ax+ By+ Cz + D = 0 has a surface normal n = [ A, B, C]T. Thus, we have in this 

particular instance: 
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2x + y + 2z + D = 0 

The remaining term D is found by substituting a known point from the facet or plane 

into equation ( 4.1.2.h). For example, the vertex P1 = [O, 2, O]T provides us with 

D = -2. Thus the implicit representation of the plane on which the facet P0 P1 P 2 lies 

is stated: 

2x + y + 2z - 2 = 0 (4.2.1.h) 

The intersection with the parametrically defined ray r = [5, 5, 3]T + t[-2, - 2, - l]T 1s 

provided when the ray coordinates are substituted into ( 4 .2.1.h) 

which gives: 

x=5-2t 

y = 5-2t 

z = 3-t 

2(5 - 2t) + (5 - 2t) + 2(3 - t) - 2 = 0 

19 
t=-

8 

which is identical to that obtained for the same ray in Example 4.1.2.1. 
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Example 4.1.3: Intersection of a Parametric Ray with a Sphere. 

The unit sphere is defined in (x,y,z) space by the equation x2 + y 2 +z 2 -1=0. To 

test for any intersection of a parametrically defined ray with this sphere, one may 

substitute the ray coordinates into that equation to obtain an expression in terms of the 

ray parameter. The general case is stated: 

Fr(t)=(Xo +txr)2 +(Yo +tyr)2 +(zo +tzt)2 -1=0 

t 2(x; +y; +z;)+2t(x0 xt +y0 yt +z0 zt)+(xJ +yJ +zJ)-1=0 

For the ray r=[5,5,3]T +t[-2,-2,-l]T this becomes 9t 2 -46t+58=0. There are 

two solutions: 

t = 
23 

+ ,,fi R; 2.8495, providing the intersection at [-0.6991, - 0.6991, 0.1505]T, and 
9 

t = 
23 -..fi R< 2.2616, providing the intersection at [0.4768, 0.4768, 0.7384]T. 

9 

The solution for which t R; 2.2616 occurs first in terms of travel of the ray, and would 

be the intersection considered by a ray tracing algorithm. The unit normal at this point 

is simply n = [x, y, z]T = [0.4768, 0.4768, 0.7384]T. 
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Example 4.1.4: Intersection of a Parametric Ray with a Cylinder. 

Consider the cylinder defined by the equation x 2 + y 2 -1 = 0. To test for any 

intersection of a parametrically defined ray with this surface, one may substitute the ray 

coordinates into the equation to obtain an expression in terms of the ray parameter. The 

general case is stated: 

Fr(t)=(Xo +t:x1)2 +(Yo +1Y1)2 -1=0 

t2(x; + y;) + 2t(x0 x1 + y 0y 1 ) + (x5 + Y5 )-1 = 0 

For the ray r = [5, 5, 3]1 + t[-2, - 2, -1]1 this becomes 9t 2 
- 461 + 58 = 0. There are 

two solutions for the infinite cylinder: 

t = 
10 + J'2 ~ 2.8536, providing the intersection at [-0.7071, - 0.7071, 0.1464]1, and 

4 

t = lO-Ji ~ 2.1464, providing the intersection at [0.7071,0.7071,0.8536]1. 
4 

The solution for which t ~ 2.1464 is the solution occurring first in terms of travel of the 

ray, and would be the intersection considered by a ray tracing algorithm. However 

consider the finite cylinder, identical to this except that the variable z is bounded within 

the range [0,0.5]. The ray no longer strikes the cylinder at this 'first point', rather it 

intersects the bounding plane z = 0.5 at [O, 0, 0.5]1 when t = 2.5, and passes through 

the shape, exiting at the original point of intersection which has a z value within the 

limits set ( z = 0.1464 ). 
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Example 4.1.5: Intersection of a Parametric Ray with a Cone. 

The equation int: 

denotes the parametric ray coordinate substitution into the equation of an infinite cone 

with semi-vertical angle of n/4 whose equation is x
2 + y 2 

- z
2 = 0. For the ray 

r=[5,5,3]T +t[-2,-2,-l]T this becomes 7t 2 -34t+41=0. 

The solutions are simply obtained: 

t = 17 +Ji~ 2.6306, providing the intersection at [-0.2612, - 0.2612, 0.3694]T, and 
7 

t = 17 - Ji ~ 2.2265, providing the intersection at [0.5469, 0.5469, 0.7735t. 
7 

The intersection at [0.5469, 0.5469, 0.7735]T is the solution occurring first in terms of 

travel of the ray. The surface normal at this point is given by 

n = [ x, y, -z ]T = [0.5469, 0.5469, - 0. 7735]T, which provides the unit normal 

Il = [0.4571, 0.4571, - 0.6465]T. 
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Example 4.2: Intersection of a Parametric Ray with a Torus. 

The following equation is of a torus centred about the origin, with radius of revolution s 

and cross-sectional radius r. 

(4.2.a) 

Again usmg the ray r = [5, 5, 3]1 + t[-2, - 2, -1]1
, the following illustrates the 

intersection of this ray with the implicitly defined surface. Consider then, the torus 

described when r = 1 and s = 2. ( 4.2.a) becomes: 

Now substituting in to (4.2.b) the following: 

x=5-2t 

y=5-2t 

z = 3-t 

we obtain 

pr (t) = 8It 4 -828t 3 + 31041 2 
- 5064t + 3044 = 0 

(4.2.b) 

( 4.2.c) 

To solve for the intersections, of which four are possible in the general case, one may 

use an iterative method such as Newton's Method, or attempt to use geometry to 

intersect the ray with the cross-section of the torus. Equation ( 4. 2. c) has 2 solutions, 

t = 2.8571 and t = 3.5111, which return points of intersection at 

[-0.7144, - 0.7144, 0.1428]1 and [-2.0220, - 2.0220, - 0.5111]1 respectively. 
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The surface normal is given by the partial derivative, with respect to each coordinate, of 

(4.2.b): 

4x(x 2 + y 2 +z 2 -5) 

n= 4y(x 2 + y 2 +z 2 -5) 

4z(x 2 + y 2 + z 2 + 3) 

The surface unit normal at the 'first' point of intersection, [-0.7144, - 0.7144, 0.1428]\ 

is then n = [11.3125, 11.3125, 2.3086]T, which gives the unit normal at this point to be 

11 = [0.6999, 0.6999, 0.1428]T. 



Example 5: Positioning of a point light source over a surface (for the purposes of 

following examples regarding illumination topics) 
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This series of examples illustrating some of the concepts discussed in the body of this 

project (in Chapter 5) is based on the following: 

The surface to be illuminated is the plane y = 1 in problem world space ( object space 

transformations will be disregarded in this example). The point at which the 

illumination will be examined is P0 = [l, 1, l]T, at which the unit normal is denoted as 

facing in the direction of the positive y axis, that is n = [O, 1, O]T. Let the surface also be 

the boundary between two media with different refractive indices. Medium A, for 

which y > 1, has the refractive index 17 A = 1 . Medium B, for which y < 1, has the 

refractive index 11s = 4/3. 

The point light source is located at (xL,YL,zL)=(l+2..fi.,7,3). Thus from P0 , the 

unit vector indicating the direction in which this source lies is 

A final consideration is that the viewer of the illumination of the point P0 is located at 

(-2, 4, - 2) . Thus, the unit vector representing the direction of the viewer from the 

point of interest is 

~ 1 1 1 T 
k=[-- - --] 

J)' J)' J3 
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Example 5.2.1: Determining the direction of perfectly specularly reflected light. 

A 

A n 
R L 

______ ..z._ ______ y = 1 
(1, 1, 1) 

A 

Using equation (5.2.1), the unit vector R with direction of that of perfectly specularly 

reflected light can be computed: 

R = 2n(n. i) - i (5.2.1) 

= 2(JJ)[O 1 O]T -[ J2 J3 - 1-]T 
2 ' ' 2JJ' 2 ' 2JJ 

=[- J2_ J3 __ l_]T 
2JJ' 2 ' 2JJ 

Example 5.2.2: Diffuse reflection (and transmission) 

n 
L 

R R 

______ ::.:;.... ______ y = 1 
(1, 1, 1) 

Diffuse interactions with a surface cause light to be scattered with uniform intensity in 

all directions (including those directions through the medium in which the particular 

light source is not located, should the surface facilitate transmission of light). The 

intensity at which the light is scattered is taken to be proportional to the cosine of the 

angle of incidence e . Thus, in this case 
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Given the simplicity of the above statement one would not want to cast too much weight 

on any interpretation of it, but effectively the model suggests that the intensity of diffuse 

light that any viewer may see from this point due to this particular light source is about 

86.6% of what the maximum intensity could be (as n. i::; 1 ). 

Example 5.2.3: Determining the direction of perfectly specularly transmitted 

light. 

n 
A 

L 

Y > 1: 17A = 1 

------~------ y = I 

y < 1 : 77B = 4/3 

T A 

-n 

Using equation (5.2.3), the unit vector T with direction of that of perfect specularly 

reflected light can be computed: 

(5.2.3) 

17A 3 
where 77 AB = - = - . 

17B 4 
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T=[010]T(
3
xJj- 1-

9
[1-(JjJ

2

JJ- 3 [J2 Jj 1 ]T 
' ' 4 2 16 2 4 2Jj ' 2 ' 2Jj 

= [O 3Jj -..J55 O]T -[J2_Jj 3Jj Jj]T 
' 8 ' 8 ' 8 ' 8 

= [- J2_Jj _ Jsm _ Jj]T 
8 ' 8 ' 8 

The angle the vector T makes with the negative surface normal is provided by the 

equation 

cose7 =T·(-n)=i'.n 

. h .d . h O -1(FsmJ -1( ~J wh1c prov1 es us wit r = cos 
8 

= cos ~ I - 64 . 

The sine of this angle is .J9 I 64 = 3 I 8. Note that this is in agreement with Snell's Law, 

that states: 

sin (Jr 17A 
-----'-= 
sin(} 17 B 

Recall that the angle of incidence was (} = 1r I 6, as its cosine was Jj I 2 . Thus the sine 

of this angle is sin (} = 1 I 2. From this and the fact that 77 A = 1 and 77 B = 4 I 3 , Snell's 

Law confirms that the angle T makes with the opposite to the surface normal has a sine 

of 3/8. 



Example 5.3.1.1: 
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Determining the angle between the direction of perfect specular 

reflection and the direction of the viewer. 

n 
R 

k 
L 

--------""------- y = l 
(1, 1, 1) 

One would expect that a perfect specularly reflected or transmitted light ray seldom 

travels in a direction straight towards the viewer. Rather than model the imperfect 

specular reflectance of the surface, the contribution of the light source to the 

illumination of a surface at a point is taken to be proportional to some function of the 

angle a between the 'perfect' ray and the vector pointing towards the viewer. For our 

example: 

cosa = R. k 

Jz fj 1 T 1 1 1 T 
=[-- - --] • [-- - --] 

2.fj' 2 ' 2.fj fj' fj' fj 

4+Jz 
=---

6 

The function f(a, n) = cosn a provides a suitable means of approximating the 

proportion of the original light source intensity reflected ( or transmitted) towards the 

viewer (Phong, in Foley et al. 1994, p. 485). The variable n distinguishes between 

different types of surfaces, with lower values denoting surfaces that scatter light to a 

greater extent than those with higher values of n. For our example then, consider the 

following proportions returned by f (a, n) for the angle 
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-1(4+../2J R a= cos 
6 

:::: 0.4456 or 25.53°. 

n cosn (0.4456) 
1 0.9024 
2 0.8143 
8 0.4396 

100 0.0003 

For example when n = 8, the model suggests that 43.96% of the maximum intensity of 

light from the particular light source is specularly reflected off the surface in the 

direction towards the viewer. 

Example 5.3.2.1: Determining the direction of a perfect specular reflection of a ray 

cast from the viewer. 

n 

k 

--------------- y = l 
(1, 1, 1) 

~ 

Using equation (5.2.1), the unit vector R may be found, the direction in which a 

secondary ray r' (representing a perfect specular reflection seen by the viewer) travels. 
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R = 2n(n. k)- k (5.2.1) 

The secondary ray r' can be stated as 

Example 5.3.2.2: 

r'= ro '+trr' 

1 T 1 1 1 T 
r = [l, 1, 1] + t[ Jj , Jj , Jj] 

Determining the direction of perfect specular transmission of a 

ray cast from the viewer. 

n 

k 

y > l: 17A = l 
----------'~----- y = l 

-n r '=T t 

y < l: 17B = 4/3 

Using equation (5.2.3), the unit vector T may be found, the direction in which a 

secondary ray r' (representing a perfect specular transmission seen by the viewer) 

travels. 

(5.2.3) 

17A 3 
where 77 AB = - = - . 

17B 4 
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So the secondary ray r' can be stated as 

r' = r0 '+trr' 
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Example 6: Projections of a cube. 

The following examples will project the vertices of a cube located in view system space 

(u, v, n) on to the view plane. Theses vertices are: 

PO Pl P2 P3 P4 PS P6 P7 
u 0 3 3 0 0 3 3 0 
V 0 0 3 3 0 0 3 3 
n -6 -6 -6 -6 -9 -9 -9 -9 

V 

u 

n 

Example 6.1: Parallel projection. 

Using the following transformation, the set of vertices of the cube will be projected 

back on to the view plane, which is defined for n = -3 . The projectors will not be 

orthogonal to the view plane, rather they will be defined by the displacement 

[c,d,e]T of the origin of a vector passing through the centre of the view window 

(0, 0, -1). In this instance, the displacement will be [l, 1, O]T. 
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Using the matrix L 

1 0 
C ck 

---
e-k e-k 

0 1 
d dk 

L= 
---

e-k e-k 
0 0 0 k 

0 0 0 1 

for c = 1, d = 1, e = 0 and k = -3, the transformation to view window coordinates 

(A, B) is written 

[A,B,k,IY =L[u,v,n,IY 

A 1 0 
1 

-1 u 
3 

B 0 1 
1 

-1 V 

= 3 
k 0 0 0 -3 n 

1 0 0 0 1 1 

which yields: 

PO Pl P2 P3 P4 PS P6 P7 
A 1 4 4 1 2 5 5 2 
B 1 1 4 4 2 2 5 5 
k -3 -3 -3 -3 -3 -3 -3 -3 

Plotting the above in uv space, and joining the vertices on each edge by a line shows 

that the transformation provides an oblique image. 
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Example 6.2: 

V 

Po 

P4 ,__~~~~--i-~~~Ps 

4 

Perspective Projection. 

168 

u n -3 

Using a perspective transformation, the set of vertices of the cube will be projected on 

to the view plane, which is defined for n = -3. The viewer has been displaced from the 

origin using[c,d,e]T =[4,1,0f. 

Using the matrix R 

k-e 0 C -ck 

R=-1-
0 k-e d -dk 

n-e 0 0 k -ek 

0 0 1 -e 

for c = 4, d = I, e = 0 and k = -3, the transformation to view window coordinates 

(A, B) is written 
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[A,B,k,IJT =R[u,v,n,IY 

A -3 0 4 12 u 

B I 0 -3 I 3 V 

= 
k n 0 0 -3 0 n 

I 0 0 I 0 I 

which yields: 

PO Pl P2 P3 P4 P5 P6 P7 

A 2 3.5 3.5 2 2.67 3.67 3.67 2.67 
B 0.5 0.5 2 2 0.67 0.67 1.67 1.67 
k -3 -3 -3 -3 -3 -3 -3 -3 

Plotting the above in uv space, and joining the vertices on each edge by a line shows 

that the transformation provides a perspective image in two dimensions. 

V 

2 

P4 
~....-------t--11 Ps 

Po n = -3 

'-------------+------------u 
2 4 
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APPENDIX 2 

Guide to Excel Routines for Parametric Curves and Surfaces. 



171 

Guide to Excel Routines for Parametric Curves and Surfaces. 

Included with this thesis are a number of Microsoft Excel Workbooks that illustrate the 

parametric curves and-surfaces detailed in Sections 4.5 and 4.6. The included files are 

in Excel version 5.0 / Windows 95 format, and were created on a Pentium 100 with 

32Mb RAM, using Excel 97. Macros are used to automate a number of features, 

included the selection of the type of curve and the entry of control points for pre-defined 

examples. Disabling the macros before opening a file does not render the workbook 

useless ( curves will still be drawn for control points given manually) but may detract 

from the presentation of the concepts. 

To use the files simply copy them from the floppy disks included with this thesis into 

the directory of choice on a suitable drive (e.g. C:\TEMP), and open them using a 

version of Excel no less than 5.0. Alternatively, from Excel open the files from the 

floppy disks and save them to an alternative drive. 

Included Files: 

2d-Curves.xls 

2d-Bezier.xls 

2d-B-spline.xls 

3d-Bezier. xis 

3d-B-spline.xls 
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Note on Using Charts Interactively. 

In many instances, it is preferable to manipulate the control points visually, rather than 

adjust an entry in the appropriate cell. On some of the charts featured in the included 

software, the control points have been plotted in addition to the curve which they define, 

in order to facilitate the direct manipulation of the shape of the curve. Charts in Excel 

are such that data plotted on them can be adjusted directly by using the mouse. 

However if the data plotted comes from cells containing functions, each adjustment will 

be queried with respect to what variable the user would like to adjust to achieve the 

desired change. 

To use Excel charts interactively: 

1. Select the chart on which you wish to alter data ( control points) by performing a 

single left mouse button click when the mouse pointer is over some part of the chart. 

2. Now carefully place the mouse pointer over some part of the series plot particular to 

the data point ( control point). That is, if the control points are joined by lines, you 

can place the mouse pointer over a part of that line. Otherwise, just place the mouse 

pointer over a control point. Perform a SINGLE left click. 

3. Pause. Clicking again too soon will bring up a dialogue box allowing you to adjust 

the specification of the chart in some way. If this occurs click on 'cancel' in the 

dialogue box and continue. 
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4. The data series should be selected (Excel highlights plotted points, but does not 

highlight any joining lines). Position the mouse pointer over the control point you 

wish to adjust and left click ONCE. 

5. Pause. Should you left click again too soon a dialogue box may come up again. 

Should this happen, left click 'cancel' on the dialogue box and redo step 4. 

6. After about a half a second after the single click, a number of things should happen. 

Most noticeably, if the mouse pointer is still over the control point selected, then the 

pointer changes from the default arrow to a four headed 'movement arrow'. If the 

mouse was moved off the control point after step 4, the default arrow should still be 

showing. Positioning the pointer over the selected point again causes the pointer to 

change to the four-headed arrow. Secondly, the only data that is highlighted is the 

selected point, by a large background square, and the 'previous' point in the series, 

by a smaller background square. 

7. When the four headed arrow is showing (i.e., the pointer is over the selected control 

point) the user can press and hold the left mouse button to pick up the control point. 

By moving the mouse, the point can be adjusted either horizontally or vertically. 

Diagonal movement is permitted, but the only change registered is the maximum of 

the horizontal and vertical displacement. For example, moving the point to a 

location up and to the left of its original placement, but more up than left, will only 

register a change in terms of the vertical axis. 
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8. Letting go of the left button will drop the point at its new location, and Excel will 

adjust the corresponding cell accordingly. Should the cell contain a formula, then 

the spreadsheet will query the user as to which variable ( cell) they wish to adjust to 

achieve their desired value. 

9. Once dropped, the same point can be picked up again straight away by returning to 

step 7. If another point is to be adjusted, return to step 4, but note that one does not 

need to pause (in step 5) to get the movement cursor. 

10. Once done moving the points, return to the normal worksheet function by left 

clicking on a location other than the chart on that sheet. This action will ensure that 

macro buttons (that become inactive when editing a chart on that sheet) are ready to 

use. A test for this is to see whether a small, pointing hand appears when the mouse 

pointer is passed over the macro button. 

Further Notes On Using Chart Interactively. 

It may occur that a number of control points that the user is wishing to adjust 

interactively are too close together or even on top of each other, preventing accurate 

manipulation using only the method described above. There are a number of options 

available. 

1. The user can use the 'zoom in' function to obtain a clearer view for those 

points close together. 
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11. The user can use the left and right cursor keys to cycle through the particular 

data series. This is ideal when control points are stacked on each other. By 

selecting a point in the same series with the mouse in less congested area, 

the user can move along the series by pressing the left or right keys until 

they reach the point of congestion. Since with each press of a key they 

move either up or down one position in the series, any particular point is 

easily highlighted. Then all that needs to be done is to place the mouse 

pointer over the highlighted point, which should cause it to change to the 

'movement arrow', and move the point as before. 
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Notes on Using the file "2d-Curves.xls". 

This workbook generates a single, cubic parametric curve segment, based on four 

control points. The parametric curve types featured are Bezier, modified Bezier 

(Hermite), B-spline and ~-spline. The workbook serves as a comparison between these 

types of curve segment, but does not illustrate the joining of such segments. The 

following is a brief description of the options available on important sheets of this 

workbook, and a reference to the appropriate sections of the body of this report .. 

Sheet: TYPE OF CUR VE 

Here the user can choose between the four types of curve: 

Bezier (Section 4.5.4) 

Modified Bezier or Hermite, for parameters} and k (Section 4.5.5) 

B-spline (Section 4.5.6) 

~-spline, for the tension parameter tor 1: (Section 4.5.6.1) 

Note that when selecting a basis matrix M that uses a parameter value, adjusting the 

parameter value will alter the curve as soon as the new value is 'entered'. This involves 

actually pressing enter on the keyboard, as merely adjusting the number and leaving the 

cursor in that cell has no effect. 

The blending functions for each type of curve (Section 4.5.4) can be viewed by clicking 

on the appropriate button on this sheet. 
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Sheet: CONTROL POINTS 

There are two example sets of control points on this sheet. The control points can be 

user defined by manual entry in to the appropriate cells, or by using the chart provided 

interactively. 

Sheet: Q(t) 

This sheet displays the plot of the curve defined by Q(t) =GMT . It is computed for 

one hundred parameter values oft, all of which are regularly spaced. Note that the 

control points on the plot are interactive. 
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Notes on Using the file "2d-Bezier.xls". 

This workbook generates a cubic parametric curve using three Bezier curve segments. 

The convex hull property is demonstrated for each segment, and through the use of 

control point manipulation, continuities at join points are illustrated. The following is a 

brief description of the options available on important sheets of this workbook, and a 

reference to the appropriate sections of the body of this report .. 

Sheet: TYPE OF CURVE 

Here the user can choose between two types of curve: 

Bezier (Section 4.5.4) 

Modified Bezier or Hermite, for parameters} and k (Section 4.5.5) 

Note that when selecting the basis matrix M for the modified Bezier curve, adjusting the 

parameter value will alter the curve as soon as the new value is 'entered'. This involves 

actually pressing enter on the keyboard, as merely adjusting the number and leaving the 

cursor in that cell has no effect. Also note that for j = k = 3 an unmodified Bezier 

curve is plotted. 

The blending functions for each type of curve (Section 4.5.4) can be viewed by clicking 

on the appropriate button on this sheet. 
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Sheet: CONTROL POINTS ~ ',;,~~,,~ 
'~ ,M,~\: '" 

This sheet allows the user to alter the nine control points for the three Bezier curve 

segments. Note that the first control points of the second and third segments are 

deliberately hidden, to ensure that the equality to the last control point of the preceding 

segment in each case is not removed. There are two example sets of control points on 

this sheet. Furthermore, the user can adjust the control points either by manual entry to 

the appropriate cells, or by using the chart provided. 

Two further options are provided. The first, labelled "Linearise: Adjust Join Points" 

automatically recomputes control points P3 and P6 as the mid points of the line 

segments P2P4 and P5P7 respectively. Thus collinearity between is assured across 

these joins and the curve becomes smooth. The second option, "Make Loop", simply 

makes P0 and P9 equal, and makes P1P8 collinear. 

Finally, the convex hulls of each segment can be viewed by clicking on the following 

box: 
'·· ' . *~' :,:;:_::;,. 

-:;;,, ,·, :»le R:,..."..'::,,'/ tv ~ 

Sheet: Q(t) 

This sheet displays the plot of the curve defined by Q(t) =GMT . It is computed for 

one hundred parameter values of t, all of which are regularly spaced. Note that the 

control points on the plot are interactive. 
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Notes on Using the file "2d-B-spline.xls". 

This workbook generates a cubic parametric curve using seven uniform cubic B-spline 

curve segments. By far the most involved workbook, it covers examples of point 

replication to increase control at the cost of reduced continuity, the use of phantom end 

points to interpolate the first and last control points, the use of phantom control points to 

achieve interpolation of control points and the use of f3-splines featuring a tension 

parameter. 

Sheet: TYPE OF CUR VE 

Here the user can choose between two types of curve: 

B-spline (Section 4.5.6) 

f3-spline, for the tension parameter tor r (Section 4.5.6.1) 

Note that when selecting the basis matrix M for the f3-spline, adjusting the parameter 

value will alter the curve as soon as the new value is entered, which involves actually 

pressing enter on the keyboard, as merely adjusting the number and leaving the cursor 

in that cell has no effect. Also note that for r = t = 0 there is no tension and a B-spline 

curve is plotted. For t > 0 tension is applied (the curve tends towards the control 

points). For -12 < t < 0, the curve moves away from the control points (more erratically 

as t tends toward -12). It is recommended that the user does not enter values between 

- 11 and -13, to avoid overflow errors (the plot becomes quite useless for these values). 
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Sheet: CONTROL POINTS 

This sheet allows the user to alter the ten control points for the seven spline curve 

segments. Three examples are provided to illustrate the flexibility of this particular type 

of curve. Furthermore, the user can adjust the control points either by manual entry in 

to the appropriate cells, or by using the chart provided. The following discusses the 

numerous features available on this sheet. 

Controlling the End Points of a Spline (Section 4.5.6.2) 

1. Duplication and Triplication of End Points. 

iii~ii1waiitfulliirtt•1~;~ 
By clicking on these buttons, a macro makes either the first and second, and ninth and 

tenth control points equal, or the first, second and third, and the eighth, ninth and tenth 

control points equal. Note that this method differs slightly from that described in the 

body of the report as we are not adding additional points, but rather redefining the end 

points and utilising the original end points for the purposes of either duplication or 

triplication. Still, the effect is the same - the curve is pulled towards the (new) end 

points when duplicated and it interpolates it when triplicated. Note that the user can 

manually triplicate any point using the table, to check that the curve becomes only c0 

continuous. 



182 

11. The Use of Phantom End Points. 

The theory behind the use of phantom end points is that by introducing an extra point at 

each end of the curve, the subsequent extra curve segments can be made to interpolate 

the original end points. The implementation of phantom end points provided by this 

workbook does not introduce any new points, instead it sacrifices the original end points 

and so provides interpolation for the second and ninth points, P1 and Pg. Unlike the 

implementation of the replication measures identified previously, the phantom end 

points can be left 'on' (enabled) so to speak, so that the curve can be modified and still 

maintain the interpolation at the points P1 and Pg, until the option is turned 'off' 

(disabled). Note that if the user attempts to interactively alter the phantom end points 

they will be queried as to what cell they want to adjust to do so, as the location of these 

phantom points is a function of the subsequent I previous two control points: 

P ~ = 2P 1 - P 2 and P; = 2P g - P 7 

Interpolation Using a Cubic B-spline (Section 4.5.6.3) 

Using the following matrix, a set of phantom control points can be identified that, when 

used to plot a B-sp line ( not a ~-spline) provide a curve that interpolates the intended 

control points. 
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-3 0 3 0 0 0 0 0 p~l mo 

1/6 2/3 1/6 0 0 0 0 0 p* 
0 Po 

0 1/6 2/3 1/6 0 0 0 0 p* 
I P1 

= 

0 0 0 0 1/6 2/3 1/6 0 p;_l ps-1 

0 0 0 0 0 1/6 2/3 1/6 p* 
s PS 

0 0 0 0 0 -3 0 3 • 
Ps+I ms 

AG*=G 

G* = A-1G 

There are a number of things to note here. Primarily this is a ten by ten matrix requiring 

inversion (in this case the workbook plots for ten phantom control points, not ten 

control points). Excel can perform the computation for us, but a Gaussian elimination is 

provided on the sheet INTERP. GAUSSIAN ELIMINATION anyway. Secondly, there 

are two gradient requirements for the ends of the curve, m 1 and m 8 . Rather than query 

the user further, these are automatically set to be the slopes of the lines between P1 and 

Upon pressing the button "Interpolate Control Points", the user is presented with the 

sheet INTERPOLATION CONTROL, which is similar to the previous sheet for control 

points except that there is a set of phantom points in addition to the given control points, 

and a panel of toggles. These toggles enable the user to indicate whether or not the 

control point listed above it should be interpolated. An option is also included to 

interpolate all or none (should the macro fail / be disabled, the user can go to the sheet 

INTERP. GAUSSIAN ELIMINATION and adjust the matrix A for each particular 

control point P,. Should P, not need to be interpolated, row i in A can be adjusted so 

that all entries are O other than a 1 on the main diagonal. For interpolation of Pi, the 
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main diagonal element of row i should be 2/3, whilst the adjacent entries to the left and 

right of this should be 1/6). 

Sheet: Q(t) and INTERP. Q(t) 

Again, the curve is plotted on these sheets. It should also be pointed out that the 

interpolation plot is interactive, which in effect enables the user to have very direct 

control over the shape of the curve. 
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Notes on Using the files "3d-Bezier.xls" and "3d-B-spline". 

The transition from two-dimensional parametric cubic curves to three-dimensional 

parametric bi-cubic surfaces necessitates a simpler form of demonstration, partly due to 

the limitations of the plotting capabilities of Excel (we will only be able to plot surfaces 

where control just one coordinate, inspite of having the data available to control all 

three coordinates) and partly due to the fact that visually manipulating three 

dimensional control points is difficult with a two dimensional control device (the 

mouse). 

The Bezier surface workbook, 3d-Bezier.xls, features three Bezier surface patches 

joined in a row, each patch defined by 16 three-dimensional coordinates. The relevant 

section in the body of this project is Section 4.6.2. Control points can be manipulated 

across all three patches by looking at the same row number in each geometry matrix 

simultaneously. 

The B-spline surface workbook, 3d-B-spline.xls, features nine surface patches defined 

by a six by six coordinate array. Since continuity is automatic across the entire surface, 

the user can enter coordinates arbitrarily and produce a smooth surface ( except when 

points are replicated). Refer to Section 4.6.3. of the project body for more information. 

The graphic output provided is limited in that variations in only one coordinate at a time 

are shown. The effect is similar to defining each coordinate triple over a plane divided 

into a regular grid governing x and z coordinates say, while variable y is freely defined. 
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APPENDIX2A 

Data used as Examples in Excel Routines for Parametric Curves and Surfaces. 
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Below is the data stored as examples in each of the workbooks. 

2d-Bezier.xls 

PO Pl P2 P3 P4 PS P6 P7 pg P9 

Eg. I X 5.25 1.25 4 3 1.5 5.5 6.5 7.5 10.5 5.25 
y 4 3 2 1.3g 0.75 3 0.63 0 1.25 2.25 

Eg. 2 X 3 1.25 1.25 3 3 5 7.5 7.5 11 11 
y 3 3 2 2 0.75 3 3 1.25 1.25 2 

2d-B-spline.xls 

PO Pl P2 P3 P4 PS P6 P7 pg P9 

Eg. I X I 1 2 3 6 2 5 6 7 7 

y 6 4 3 4 7 7 4 3 4 6 

Eg. 2 

Eg. 3 

3d-Bezier.xls 

y=O y=I y=2 y=3 y=4 y=5 y=6 y=7 y=g y=9 
x=O 0 3 3 2 0 3 4 5 5 3 

z values x=I I 3 3 2 I I 2 3 3 I 
x=2 1 3 3 2 1 1 2 3 3 1 
x=3 3 5 5 4 3 0 2 3 3 g 
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3d-B-spline.xls 

l}'=O lY = 1 l}'=2 lY = 3 lY= 4 y=S 
x=O 2 2 4 4 4 0 
x=l 2 4 2 2 4 4 

z values x=2 4 2 6 2 2 4 

x=3 4 2 2 2 2 4 

x=4 4 2 2 2 3 2 

x=S 0 4 4 2 2 3 
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APPENDIX2B 

Plots of Examples in Excel Routines for Parametric Curves and Surfaces. 
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