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ABSTRACT 

Stable carbon isotope (o13C) analysis is a tool used to understand the water use 

efficiency (WUE) of plants. The advantage of measming the carbon isotope 

composition in plant tissue over other measures of WUE (such as the ratio of 

photosynthesis to transpiration) is that it provides a time-integrated, rather than an 

instantaneous measure of plant-water relations. The purpose of this study was to 

evaluate the applicability of using 013C analysis in natural populations of the fringing 

tree Melaleuca preissiana based on short and long term sampling methods. There were 

three components to this study; a controlled, glasshouse experiment which established 

whether a relationship existed between o13C and instantaneous WUE in M. preissiana, 

and two field studies which evaluated the use of time-integrated, short and long term 

sampling methods of o13C in M. preissiana populations along a hydrological gradient. 

The glasshouse experiment compared measures of instantaneous WUE and time

integrated o13C of M. preissiana seedlings undergoing a drying regime (two five-week 

drying intervals) to those in a control (regular watering). The seedlings undergoing the 

drying regime became more water use efficient (using instantaneous measures) as soil 

moisture decreased. Time-integrated o13C measurements of the same seedlings also 

increased significantly over the duration of the experiment. This established the positive 

relationship between 013C and instantaneous WUE in M. preissiana, and supported the 

inverse relationship between water availability and o13C, which has been documented by 

many researchers. Light intensity was also a likely factor influencing the o13C 

discrimination of the seedlings. Future studies need to account for light variations when 

isolating water availability as the primary factor affecting o13C. 
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Short term sampling for 813C of natural M. preissiana populations involved collecting 

recently-formed xylem tissue for isotopic analysis. Trees situated along a hydrological 

gradient (from areas of high to low relative water availability) at three wetlands were 

sampled for 813C. 813C of trees decreased significantly from areas of low to high water 

availability. Seasonal sampling also showed that 813C of the trees decreased 

significantly from the dry to wet season. This suggested that sh01t term 813C 

measurements indicated a physiological response in WUE in M. preissiana, due to 

spatial and temporal vmiations in water availability. 

Long term 813C measurements involved sampling annual growth ring tissue from the 

same M. preissiana populations sampled for short term 813C. This provided a record of 

the trees WUE across annual pe1iods of growth. Direct relationships between ring 813C 

and historical water availability were not significant, however 813C of annual rings did 

indicate a physiological response to past, episodic events such. as fire and prolonged 

drought periods. 

From these results, it was concluded that short and long term 813C measurements of M. 

preissiana populations were indicative of spatial and temporal variations in water 

availability. It was supported that the degree of isotopic discrimination in M. preissiana 

was inversely related to water availability due to the various physiological processes 

occurring during carbon assimilation. The applicability of the approaches used for 

measuring 813C would increase by accounting for tree morphological factors such as 

age, size and health, and "external" environmental factors such as light intensity, all of 

which additionally influence 813C discrimination. 
iii 
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CHAPTER 1: INTRODUCTION 

The relationship existing between plant physiology and the sutTounding biophysical 

environment is highly complex and encompasses many interactive processes. Plant water 

relations involve the physiological functioning of the plant in response to water availability 

(Baird & Wilby, 1999). There are a variety of methods available for measuring plant water 

relations, many of which involve measuring the plant's physiological responses to changes 

in water supply on an instantaneous or short-term basis. One measure is the photosynthetic 

water use efficiency (WUE), which refers to the plant's capacity to conserve or retain 

water, and is defined by the ratio of net photosynthesis to transpiration (Lajtha & Marshall, 

1994). This is a useful tool for understanding factors such as water stress in plants. 

However, traditional measures of WUE are instantaneous in nature, and therefore are 

subject to high diurnal variation (Lajtha & Marshall, 1994). A relatively recent tool adopted 

by scientists to understand the WUE in plants is measuring the abundance of stable carbon 

isotopes (813C) contained within plant tissue. This provides a longer, more time-integrated 

measure of plant WUE, and therefore a more reliable understanding of the plant's 

physiological use of water. 

An understanding of plant water relations using measures such as WUE are becoming of 

increasing importance in the scientific community due to the detrimental effect that a 

depleting water supply has on the health and survival of plant communities. Increasing 

anthropogenic activity on the Swan Coastal Plain (SCP), Western Australia, has altered 

natural water regimes, and consequently resulted in the gradual drying of wetland 
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ecosystems (Froend et al, 1993). Surrounding vegetation has responded differently to these 

changes in water availability. Knowledge of the physiological responses of plant 

populations to variations in water availability around wetlands is a valuable tool for 

incorporating the vegetation component into wetland management. 

The paperbark Melaleuca preissiana (Shauer) is a common tree species occurring around 

lake margins. Its distribution on the SCP is related to areas of high groundwater 

availability, and its health and survival are likely to be dependent on its physiological use of 

water. It is for this reason that M. preissiana is an ideal species to study physiologically 

using stable carbon isotope analysis, in its response to fluctuating water availability on the 

SCP. 

I. I CARBON DISCRIMINATION IN PLANTS 

Approximately 98.89% of all carbon in nature exists as 12C and the remaining 1.11 % of 

carbon is BC (Boutton, 1991a). These two isotopes exist as a ratio (13C/12C) in natural 

materials as a result of isotopic fractionation during physical, chemical and biological 

processes. BC is discriminated against in biological systems because of its lower reactivity 

during these processes (Farquar et al, 1982). For instance, when conditions are optimal, 12C 

will be used in preference to BC in biological systems (McNulty & Swank, 1995). 

However, when conditions are less than optimal, more BC may be used as alternative. This 

affects the BC/12C ratio contained within living matter. 

The isotopic compositions of carbon are often referred to as delta values (813C), specifying 
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the 13C/12C ratio of a material relative to a standard. This is calculated by the equation: 

<>13C (%0) = [R sample / R standard - 1] X 103 

where 813C is the parts per thousand (%0) difference between the 13C content of a sample to 

a standard, and R is the mass ratio of the sample or standard gas (Farquar et al, 1992). <>13C 

values are expressed relative to the calcium carbonate standard Pee Dee Belemnite (PDB), 

which has a 13C/12C ratio of 0.0112372 (Boutton, 1991a). The 813C value of a material 

therefore indicates whether the sample has a higher or lower 13C/12C ratio than PDB. 

813C values of natural materials range from 0%o to -110%0. The 813C value for carbon 

dioxide in the atmosphere lies at about -7 .8%0, indicating the smaller proportion of 13C 

relative to 12C. This value is influenced by the atmosphere -ocean exchange of C02, global 

patterns of photosynthesis and respiration by plants, and human activities (Boutton, 1991b). 

The 813C signature contained by plant tissue is a result of carbon uptake during 

photosynthesis, and is highly dependent on its photosynthetic pathway. Plants utilising the 

C3 pathway of photosynthesis discriminate against the heavier isotope through two 

components. The diffusion of C02 from the atmosphere into the plant via the stomata! 

openings on the leaf' s  surface causes a fractionation of approximately -4.4%0. More 

evidently, isotopic discrimination of carbon occurs during carbon fixation, when C3 plants 

reduce C02 to a 3-C compound via the enzyme ribulose-1,5 bisphosphate (RuP2) 

carboxylase (otherwise known as rubisco). Carbon fixation results in a fractionation of 

about -27%0 (Ehleringer, 1993). The 813C signature of a C3 plant expressed during 

photosynthesis is demonstrated by the equation: 
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013C1eaf = 013Catmosphere -a -(b -a)c/ca 

where 013Catmosphere is -7.8%0, a is the fractionation caused by atmospheric C02 diffusion 

(-4.4%0), b is the fractionation caused by carbon fixation (-27%0) and c/ca is the ratio of 

intercellular to atmospheric C02 concentration (Farquar et al, 1992). The balance between 

a and b yields leaf o13C values of approximately -27%0. Plants utilising C4 and CAM 

(Crassulacean Acid Metal) photosynthetic pathways differ slightly due to the different 

enzymatic processes occurring during carbon fixation. C4 and CAM plants average o13C 

values of 14%0 and 11%0 respectively (Lajtha & Marshall, 1994). 

1.2 o13C AND PHOTOSYNTHETIC WATER USE EFFICIENCY IN PLANTS 

One of the. most common biological uses of carbon isotope ratios is as a measure of 

photosynthetic water use efficiency (WUE) of C3 plant species. WUE is defined as the ratio 

of net photosynthesis (A) to transpiration (E) . Physical factors such as temperature, solar 

irradiation, nutrients and water availability influence the isotopic ratio via their effect on the 

intercellular C02 concentration during . photosynthesis (Saurer et al, 1995). Water 

availability in particular is a major factor determining the o13C value of a plant due to its 

direct relationship with C02 exchange (Livingston & Spittlehouse, 1996). In conditions of 

low water availability, such as a drought, stomata} closure occurs. As a result, water loss is 

reduced and there is a decrease in intercellular carbon levels. This causes an increase in the 

C02 concentration gradient moving into the leaf (A) and an overall increase in AIE (Lajtha 

& Marshall, 1994). The isotopic response is a higher 13C/12C or more positive o13C. When 

water availability is high, leaf stomatal conductance increases, resulting in higher 
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intercellular carbon levels. Therefore the ratio of AIE decreases due to the abundance of 

water and carbon, resulting in lower 13C/12C, or more negative 813C. This negative 

relationship between WUE and 813C has be experimentally demonstrated for numerous 

species (e.g. Farquhar et al, 1982; Ehleringer & Cooper, 1988; Komer et al, 1991; Leavitt, 

1992; Stewart et al, 1995; Livingston & Spittlehouse, 1996; Berry et al, 1997; Damesin et 

al, 1997; Walcroft et al, 1997; MacFarlane & Adams, 1998; Pate & Arthur, 1998). 

Traditional WUE measures have relied on gas-exchange analysis to measure A and E. This 

technique measures WUE on an instantaneous basis, indicating the leaf WUE for that 

moment in time. This provides limited insight into the overall productivity and fitness of 

the individual due to the rapid variations in photosynthesis and transpiration rates in 

response to environmental conditions (Ehleringer, 1993). Long term estimates of WUE are 

difficult to make using this method because gas exchange rates change over the life time of 

the leaf (Lajtha & Marshall, 1994). Carbon isotope analysis is a more appropriate and 

efficient means of determining the long-term WUE of plant tissue. 813C is recorded in all 

plant tissue as a time-averaged estimate of WUE over the lifetime of the tissue. By 

measuring 813C, spatial and temporal variability is reduced by integrating over all seasons 

of carbon gain (Leffler & Evans, 1999). Additionally, it is possible to sample many plants 

simultaneously for isotopic compositions, which allows for a greater degree of replication. 

This is not possible using standard gas exchange techniques (Boutton, 1991b). 
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1.3 APPLICATIONS OF STABLE CARBON ISOTOPE MEASUREMENTS IN PLANTS 

Due to the proven link between 813C and WUE, and their direct relationship with 

environmental variables, it is possible to make the assumption that 813C measurements in 

most C3 species can be applied as actual measurements of WUE. Additionally, 813C values 

contained in plant tissue can be indicative of the environmental conditions occurring during 

tissue formation. These applications of 813C measurements have been widely adopted by 

researchers and are reviewed below. 

Leaf tissue is one of the most common plant tissues used for 813C analysis and its measure 

of WUE is dependent on the age of the leaf (McNulty & Swank, 1995). This is a 

particularly useful measure for assessing the WUE of annual and perennial species. In an 

agronomic context, the 813C of annual crop species (such as wheat) has been used to assist 

in the selection of water use efficient individuals in breeding programs (Farquar & 

Richards, 1984; Matus et al, 1997). There is also extensive literature available on the use of 

813C to assess the WUE of perennial desert plants, which are highly dependent on the 

availability of water for growth and survival (e.g. Ehleringer & Cooper, 1998). 

There are variations existing in leaf 813C and light intensity gradients. Berry et al (1997) 

found that in a forest ecosystem where light is a limiting factor, leaf tissue sampled near the 

forest floor had lower 813C values than samples located near the top of the canopy where 

light is abundant. This reflects the strong influence that light intensity has on C/Ca and 

subsequently 813C. Branch length is also a contributing factor in determining leaf 813C, 
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where the foliage from long branches of Pinus sp. was found to be isotopically heavier than 

the foliage from shorter branches due to the effect of reduced hydraulic conductance 

(Wan-en & Adams, 2000). Other factors such as air temperature and atmospheric pressure 

were found by Komer et al (1991) to affect leaf 13C discrimination in alpine plant species. 

Wood is an alternative tissue used for the sampling of 13C. The carbon contained in stem 

wood integrates the variability in leaf carbon assimilation to reveal long term trends in 813C 

(Walcroft et al, 1997). Similarly to leaf tissue, wood tissue contains a record of 813C as a 

time-averaged estimate of the WUE of the plant over the lifetime of the tissue (Leffler & 

Evans, 1998). The tissue from annual growth rings contained in a tree stem persists 

indefinitely. Therefore, one annual ring contains a time-averaged, integrated record of the 

813C, or WUE, of the tree during that period of growth. Recent studies have investigated 

changes in the 813C of annual ring tissue of trees and related these to histmic environmental 

conditions including water availability. Water availability influences the 813C of wood by 

altering leaf stomata! conductance and intercellular carbon levels (McFarlane & Adams, 

1998). This in tum influences the supply of photosynthates and auxins to the cambium of 

the tree. Therefore, growth 1ings exhibiting more positive 813C signatures usually 

developed during years when water availability was low (e.g. low precipitation, low soil 

moisture content, high temperature), and more negative 813C values occurred during 

"wetter" years when water availability was higher (Lipp et al, 1991; Leavitt, 1992; 

McNulty & Swank 1995; Saurer et al, 1995; Livingston & Spittlehouse, 1996; Walcroft et 

al, 1997). 
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813C signatures have also been correlated with tree growth, with the 13C content of tree 

rings being more negative during years when basal area increment was high (Leavitt & 

Long, 1986; Leavitt & Long, 1989; Dupouey et al, 1993; McNulty & Swank, 1995). This 

suggests that more negative 813C in wood tissue forms during years in which the 

environmental conditions were more favorable for tree growth. Macfarlane & Adams 

( 1998) found that this theory had important implications for the management of Eucalyptus 

globulus plantations in the southwest of Western Australia, where 813C could be used to 

infer the appropriate conditions required for rapid tree growth. 

As an alternative, Pate & Arthur (1998) investigated novel means of obtaining 813C 

signatures using tissue types other than wood and leaf material, to obtain water relations 

data for E. globulus stands. As well as collecting samples from mature leaf and wood 

tissue, 813C signatures were analysed from phloem sap obtained through cambial-deep 

incisions made into the tree' s  trunk, and nascent xylem tissue taken from outer cambium 

layers of the tree stem. These sampling techniques proved to be simple and reliable means 

of obtaining time-integrated measures of 81.3C. 

To date, there have been very few studies in wetland environments focused on the use of 

813C analysis within tree populations to gain an understanding of their response to spatial 

and temporal variations in water availability through time. Leffler & Evans (1999) recently 

investigated the environmental parameters affecting 813C in riparian tree populations of 

Populus fremontii in the United States. For this species, stream flow was found to be the 

major factor determining its water use efficiency through time. This fact alone is an 
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important implication for improving the management of not only populations of this 

species, but also the riparian ecosystem. The high occurrence of wetland ecosystems 

throughout the SCP and their decreasing trends in water availability provide reason for 

requiring an understanding of the physiological responses of fringing tree species. 

1.4 SIGNIFICANCE AND AIMS OF THIS STUDY 

The commonly occurring tree species M. preissiana that fringes lake margins on the Swan 

Coastal Plain is responsive to fluctuations in water availability. Froend et al (1993) 

recognise that the recruitment of the species is not a common occurrence, and rather is a 

response to episodic events such as fire and raised groundwater levels. There is very little 

research focused on the water use efficiency of fringing tree species around wetlands on the 

SCP and their response to fluctuations in water availability. In order to gain an 

understanding of the complex relationship between plant physiology and water availability 

in a wetland environment, it is of significance to apply 813C measurements to fringing tree 

populations such as M. preissiana. 

The overall aim of this study was to evaluate the applicability of stable carbon isotope 

analysis as a time-integrated measure of the water use efficiency of natural populations of 

M. preissiana on the Swan Coastal Plain, and discuss its relevance to wetland management. 

The purpose was to report findings regarding the variations in 813C occurring within M. 

preissiana populations and assess the applicability of the approaches used by identifying 

the qualities and constraints involved. Specific objectives are as follows: 
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a) Assess the reliability of 813C to measure the water use efficiency of M. preissiana in a 

controlled environment; 

b) Evaluate the applicability of time-integrated, short term 813C measurements in 

understanding the water use efficiency of natural populations of M. preissiana in a 

wetland environment; 

c) Evaluate the applicability of time-integrated, long-term 813C measurements in 

understanding the histmical water use efficiency of natural populations of M. preissiana 

in a wetland environment. 

These objectives are addressed in separate chapters in this report, and are discussed in 

terms of the relevance of 813C analysis as a tool in wetland management on the SCP. 
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CHAPTER 2: GLASSHOUSE EXPERIMENT 

2.1 INTRODUCTION 

The ability of 813C to indicate the water use efficiency of a plant in response to water 

availability has been well documented in the existing literature (e.g. Ehleringer & Cooper, 

1988 ; Komer et al, 1991 ; Leavitt, 1993 ; Stewart et al, 1995 ; Livingston & Spittlehouse, 

1996; Berry et al, 1997; Damesin et al, 1997; Walcroft et al, 1997; MacFarlane & Adams, 

1998 ; Pate & Arthur, 1998). Farquar et al (1982) demonstrate the theory of carbon isotope 

discrimination in C3 plants on the basis of the activity of the primary carboxylating enzyme 

rubisco during photosynthesis. Rubisco discriminates against the heavier isotope 13C more 

so during carbon fixation when water availability is high, due to the higher intercellular 

carbon levels and higher abundance of 12C02 entering the leaf. When water availability is 

low, and stomata! conductance decreases, the lower supply of 12C02 entering the leaf means 

that rubisco must fix a higher proportion of 13C02 than preferred. Therefore, a relationship 

exists, where higher 13C/12C (or 813C) indicates higher water use efficiency, and low 813C 

indicates lower water use efficiency. Both 813C and WUE are inversely related to water 

availability. 

The relationship between 813C, WUE and water availability has been experimentally 

demonstrated for numerous tree species, many of which are Northern Hemisphere softwood 

varieties. In terms of native Australian trees, a number of Eucalyptus species have also been 

shown to demonstrate this relationship (Le Roux et al, 1996; Macfarlane & Adams, 1998 ; 
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Pate & Arthur, 1998; Pate et al, 1998). However, there is no proven evidence that fringing 

wetland tree species in the southwest of Western Australia exhibit this relationship, and 

there have been no previous studies investigating 813C and WUE in Melaleuca preissiana. 

This study attempts to prove that a relationship exists between 813C and WUE in M. 

preissiana in water-limiting conditions. By investigating this relationship between plant 

813C and WUE in a controlled environment (e.g. a glasshouse), the knowledge can be 

applied to naturally occurring populations of M. preissiana in wetland environments. 

The aim of this study was to assess whether 813C is a reliable measure of WUE in M. 

preissiana under experimental conditions. A number of specific research objectives were 

investigated. These were as follows: 

i. Investigate the variations in the instantaneous gas exchange rates (A, E, and gs) of M. 

preissiana in response to water availability; 

ii. Investigate the variations in the instantaneous WUE of M. preissiana in response to 

water availability; 

iii. Investigate the variations in the 813C of M. preissiana in response to water availability; 

iv. Examine the relationship between 813C and instantaneous WUE in M. preissiana; 

v. Identify the external factors (other than water availability) that influence 13C/12C in M. 

preissiana. 
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2.2 MATERIALS AND METHODS 

A controlled glasshouse experiment was constructed to confirm that a significant 

relationship existed between the 813C signature and photosynthetic WUE of M. preissiana. 

It was necessary to examine this relationship in a controlled environment before sampling 

natural populations of the species in order to identify the qualities and constraints involved 

with using this approach. 

2.2.1 Description of the Experiment 

This experiment involved studying 144 six-month M. preissiana seedlings, which were 

divided into a control and a treatment, with 72 plants in each (Plate 2.1). Seedlings in the 

control were maintained under glasshouse conditions for ten weeks, with temperature 

moderated at approximately 22°C and watering twice daily. Each plant received 

approximately 330ml of water each day. Plants in the treatment underwent a drying regime, 

where plants were maintained under similar glasshouse conditions to the control, however 

watering was excluded for two five-week periods. This was achieved by constructing a 

"mini glasshouse" within the glasshouse, where the 72 seedlings in the treatment were 

surrounded by clear, plastic drop sheets attached to the ceiling, in order to exclude watering 

from smrounding sprinklers. Five weeks of drying resulted in the seedlings displaying signs 

of water stress such as wilting and discolouration of leaves. This time period also resulted 

in significant drying of surface and bottom soil in the pots. After the five-week drying 

period, seedlings were watered to saturate soils and were dried for another five weeks. All 
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seedl i ngs were potted in 1 80mm standard black pots us ing whi te ,  coarse grained sand, and 

a thin layer of pea grave l to l i ne the bottom of the pots to assist i n  drainage. Addit ional ly ,  at 

the ti me of pot t ing each seed l i ng was fert i l ised wi th  one tab lespoon of nat ive s low re lease 

fert i l i ser. Dur i ng the 1 0  week period, a series measurements were taken from plan t s  in both 

con trol and treatment  to test the hypothesis t hat photosyn thet ic  WUE and b 13C signatures 

are re lated in M. preissiana .  

Plate 2. 1 :  Set up of M. preissia11a seedlings i n  glasshouse. 72 seedli ngs contained in control and 
treatment. Watering was excluded periodically from the treated seed l i ngs, which were enclosed by 
clear, plastic sheeting ( pictured in background). Controlled seedlings (pictured in foreground) were 
watered daily. 

2 .2 .  l .  l Experimental Design 

In order to test for the relationship between b 13C and WUE of the seed l i ngs ,  a variety of 

instantaneous and i n tegrated mea ure were taken including soil moisture content, 

i nstan taneou. gas exchange and WUE, xylem pressure potential (XPP), b 1 3C using foliar 
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samples and 813C using nascent xylem tissue samples . The timing of the experiment was 

designed so that the treated seedlings were dried to the extent that they showed signs of 

water stress , in order to enable repeatability of the experiment and ensure sufficient 

sampling for 813C. During this period the series of measurements were taken over regular 

intervals to quantitatively show the physiological response of the treated seedlings to the 

drying regime in comparison to the control . The timing of measurements for the glasshouse 

experiment is presented in Table 2 . 1 .  

Table 2.1 : Design and timing of various measurements for 10-week glasshouse experiment. The 
treatment underwent a drying regime where M. preissiana seedlings were dried for five weeks, 
rewatered once, then dried again for 5 weeks. The control seedlings were watered regularly for five 
minutes twice daily. The numbers within the table indicate the number of seedlings used per 
contro1/treatment during each week, for each particular measure. X indicates the weeks during which 
watering occurred for the control and treatment. Week O refers to the time period prior to the 
commencement of the experiment. 

Watering - Control 
Watering - Treatment 

Soil Moisture Content 
Gas exchange measurements 
XPP measurements 

Nascent xylem tissue samples for o13C 
Foliar tissue samEles for 013C 

Week Number 
0 1 2 3 4 5 6 7 8 9 10 
X X X X X X X X X X X 

X X * 

3 3 3 3 3 3 
1 2  12  12 12 12 12  

6 6 6 6 
6 6 6 

12  12  12  12  

12 

12 

* A light rewatering occurred in the treatment in �eek nine. This was to prolong the experiment to  ensure 
sufficient sampling of o13C during week 10. 

Repeated measures were carried out on seedlings measured for instantaneous gas exchange 

and seedlings sampled for 813C from foliar tissue. This is because of the non-destructive 

nature of these methods, which therefore allowed for repeated sampling/measuring of the 

same seedlings . Xylem pressure potential (XPP) measures and sampling for 013C from 

nascent xylem tissue caused some destruction, and therefore could not be repeatedly 

measured/sampled from the same seedlings. Number allocation of replicate seedlings used 
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for each measure was based on the total number of seedlings (72 seedlings each for the 

control and treatment) and the largest number of replicates were allocated to measures that 

were considered to be of importance in meeting the aims of the experiment. Irregular 

sampling over weeks occurred due to weather conditions (gas exchange measurements 

required full sunlight) and due to the supply of tissue for the sampling of 813C (after 

prolonged drying, seedlings in the treatment i1Tegularly produced new foliage). 

2.2.1.2 Sampling/Measurement Techniques 

2.2. 1.2.1 Soil moisture 

At one to two weekly intervals, the soil from three replicate pots in the control and 

treatment were measured for moisture content. Approximately 30 grams of soil from the 

surface, middle and bottom of the pots were weighed, oven dried for 48 hours at 105°C and 

weighed again in order to compare wet and dry weights, and calculate the % moisture of 

the soil. The resulting soil saturation values for top, middle and bottom of each pot were 

averaged in order to determine the mean soil moisture content (% ). 

2.2.1.2.2 Instantaneous gas exchange measurements 

In both control and treatment, gas exchange measures were taken on weekly to fortnightly 

intervals on selected seedlings in order to determine changes in instantaneous WUE over 

the duration of the experiment. This involved using a portable differential infra-red gas 

exchange analyser (IRGA) (model LCI-3, Analytical Development Co., Hoddesdon, UK) to 

sample a combination of new and mature leaves from 12 seedlings for measuring leaf 

photosynthesis rate (A µmol m-2s-1), transpiration rate (E mol m-2s- 1
),  stomata! conductance 
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(gs mol m-2s- 1
) and intercellular carbon level (C; µmol mor1). WUE was calculated based on 

the ratio of A/E. Measurements were taken mid-morning (10am - 11am) in sunny 

conditions. 

2.2. 1.2.3  Xylem pressure potential 

The xylem pressure potential (XPP) was measured for selected plants in both the control 

and the treatment. This is a technique of measuring plant water stress using a plant water 

status chamber (Model 3000, Soil Moisture Equipment Corp, Santa Barbara, California). 

The method consisted of removing a single stem (approximately 20cm length) from the 

seedling and sealing it inside the pressure chamber. Pressure was applied inside the 

chamber until sap exuded from the cut end of the stem. The pressure (MPa) required for 

exudation was measured, providing an indication of the negative pressure of the moisture 

stress within the plant at the time of cutting (Milburn, 1979). Three replicates from the 

control and treatment were measured for xylem pressure potential at pre-dawn (6:00am) 

and midday (12 :00pm), at two to three weekly intervals. 

2.2. 1.2.4 813C measurements 

Plant tissue was taken from selected seedlings in order to sample o13C signatures using two 

short-term sampling methods. Integrated, short-term methods for measuring o13C involved 

sampling recently formed plant tissue, in order to obtain a time-averaged measure of WUE 

of the plant for the duration of tissue formation. Therefore, the new tissue formed over two 

weeks (such as new leaf matter) contained an integrated o1 3C value indicative of the WUE 

of the plant over the two week period. The two methods adopted for measuring short-term 
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o13C measurements are described below. 

2.2.1.2.4.1 Foliar sampling 

In both control and treatment, the most recently developed leaves ( lmm-2mm in length) 

were removed, dried at 40°C for 24 hours and subjected to o13C analysis. The resulting 

delta signatures represented an average, time-integrated measure of the plant's WUE for the 

lifetime of the leaf, presumably one to two weeks. This was conducted fortnightly in order 

to gain o13C signatures of the plant for the duration of the experiment. 

2.2.1.2.4.2 Nascent xylem tissue sampling 

In all seedlings, nascent stem xylem tissue was collected for o13C analysis. The thin layers 

of bark and cambium were removed from the stem using a scalpel blade, and the thin, 

gelatinous layer of recently formed xylem tissue was collected and placed into vials 

containing �0% ethanol for a period of three weeks, during which the ethanol was replaced 

three times. The xylem tissue was oven dried at 75°C for 48 hours after which the 

remaining woody residue was subjected to o13C analysis. Sampling was conducted every 

four weeks in order to account for the time taken for the phloem-derived carbon that 

supplied the cambium to become incorporated into the xylem tissue (Pate & Arthur, 1998). 

Therefore the o13C value derived from this tissue represented the WUE of the seedling from 

approximately four weeks ago. 

2.2.1.3 o13C Analysis 

Samples of dried nascent xylem tissue and foliar tissue were ground to a fine pulp 

manually. Wood was weighed to 1-l.5mg samples (± 0.1mg) and placed in small foil 
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capsules. The 813C signature of the samples was determined using a 13C analyser mass 

spectrometer (ANCA-GSL, Europa Scientific, Crewe, UK). Wood samples were analysed 

relative to the PDB standard using a scientific flour (40.37%C, 8PD4 -25.34; Europa 

Scientific) as the laboratory standard. Whole wood samples were analysed for 813C. 

Chapter 4 identifies a method for extracting the crude cellulose from wood for analysis, in 

order to reduce isotopic variations that may occur due to different proportions of lignin and 

hemicelluloses occurring within different samples. The strong positive relationship existing 

between the 813C of whole wood and 813C of cellulose in M. preissiana nascent xylem 

tissue of mature trees (proven in Chapter 4) meant that the cellulose extraction procedure 

was unnecessary. 813C signatures were expressed in patts per thousand (%0). 

2.2.1.4 D�ta Analysis 

To understand the changes occurring in seedling gas exchange, instantaneous WUE, XPP 

and 813C over the duration of the experiment, measurements were analysed descriptively in 

order to detect trends. Average values and .standard error for each measure were calculated 

and displayed graphically over time in order to determine the physiological changes 

occurring in the treated seedlings in comparison to the control. Additionally, repeated 

measures analysis of variance (ANOVA) using SPSS Version 10.0 were used to identify 

significant differences in 813C and instantaneous WUE of the M. preissiana seedlings 

according to experiment (control and treatment) and to weeks (each sampling period). Two

way ANOV A was conducted to identify overall differences occurring between experiments 

and between weeks. If a significant interaction existed between the two factors, individual 
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samples t-tests were conducted to examine where the differences existed between 

individual sampling periods. Additionally, one-way ANOV A identified specific, rather than 

overall, differences existing over the duration of the experiment within both the control and 

the treatment. The Bonferroni test was applied to make post-hoe comparisons where 

significant relationships existed. Before all analyses, Levene's test for equality of variances 

and Mauchly's Test of Sphericity were conducted to test for the relevant assumptions, and 

approp1iate data transformations were made if necessary. 813C and WUE were used for 

ANOV A due to the emphasis of this study being on the relationship between the two. 
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2 .3  RESULTS 

2.3.1 Soil Moisture 

Over each five week drying interval , it was found that on average, the soil moisture of the 

treated seedlings fell from approximately 1 1  % by weight at the beginning of the experiment 

(week 0) to below 2% after five weeks of drying (week 5 and week 9) (Figure 2 . 1 ) .  In 

comparison ,  over the duration of the experiment, the mean soil moisture content of the 

control fluctuated slightly, with values ranging from 10.4% (week 2) to 1 2.4% (week 4) . 

Figure 2.1 : Mean Soil Moisture Content of M. preissiana seedlings under glasshouse conditions. 
Control seedlings were watered twice daily and treated seedlings underwent a drying regime where 
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seedlings were dried for five weeks then rewatered. Mean soil saturation values represent average 
moisture content of soil taken from the top, middle and bottom of three seedling pots. Error bars 
represent the standard error within means. 

2.3.2 Physiological Changes in M. preissiana Seedlings 

2 .3 .2 . 1 Instantaneous Gas Exchange Measures 
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The average rate of photosynthesis (A) for the watered seedlings remained fairly constant 

throughout the duration of the experiment with rates ranging from 0.25µmol m-2s- 1 (week 

10) to l .08µmol m-2s- 1 (week 8) (Figure 2.2) . The rate of photosynthesis of the treatment 

was smaller than that of the control in the first five weeks of the experiment, with the 

seedlings displaying the lowest A values in week Sa (before watering) and Sb (after 

watering) of 0 .20µmol m-2s- 1 and O. l lµmol m-2s- 1 respectively. This corresponded to the 

period during which the seedlings may have been most water-stressed. Following week 5 ,  

photosynthesis rates increased up to  l . 37µmol m-2s- 1 in week 8 .  

1 .8 
Treatment I El Control 

1 .6 
__... Watered 

1 .4 Week 5 li!!Treatment 

�� 
1 .2 

,q: . 0.8 

SI o.6 

0.4 

0.2 

0 
week 1 week 2 week 4 week 5a week 5b week ? week 8 week 1 0  

Figure 2.2: Mean photosynthesis rates (A) o f  M. preissiana seedlings under glasshouse conditions. 
Control seedlings were watered twice daily and treated seedlings underwent a drying regime where 
seedlings were dried for five weeks then rewatered. Mean A values represent average photosynthesis 
rate taken from 12 seedlings. Week Sa refers to measurements taken in week S prior to rewatering; 
week Sb refers to measurements taken in week S following rewatering. Error bars represent the 
standard error within means. 

The mean transpiration rates (E) of the M. preissiana seedlings in the control were also 

relatively consistent throughout the ten-week experiment. With the exception for weeks 7 

and 10  where transpiration rates of the seedlings were lower than other weeks , E values 

ranged from 2.65mol m-2s- 1 in week Sb to 3 . 1 6mol m-2s- 1 in week 1 (Figure 2 .3) .  In 

comparison, the seedlings undergoing the drying regime displayed lower transpiration rates 
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than the control in most weeks. In week 5 ,  both before and after watering, seedlings were 

transpiring at their lowest levels at less than lmol m-2s- 1 • The low rates of photosynthesis 

and transpiration in week Sa (before rewatering) corresponded to the low soil moisture 

content of the treated seedlings . However, re-watering (week Sb) did not appear to cause 

an immediate increase in either of the gas exchange rates .  

Figure 2.3: Mean transpiration rates (E) of  M. preissiana seedlings under glasshouse conditions. 
Control seedlings were watered twice daily and treated seedlings underwent a drying regime where 
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seedlings were dried for five weeks then rewatered. Mean E values represent average transpiration 
rate taken from 12 seedlings. Week Sa refers to measurements taken in week S prior to rewatering; 
week Sb refers to measurements taken in week S following rewatering. Error bars represent the 
standard error within means. 

There were no obvious trends or differences in the average intercellular carbon levels ( C;) 

of both watered and dried seedlings (Figure 2 .4) . The mean Ci levels of the treatment 

fluctuated above and below that of the control over the duration of the experiment. The 

dried seedlings displayed the lowest carbon levels of 340µmol mor 1 in week 5 following 

re-watering, while the control were of the highest Ci of 355µmol mor 1 in week 2. 

23 

I 

I 

I 

I 

� I 

�
'u, 

E 
I 

I 

0 I 

§. I 

LU I 

C'O I 
Q) 

:E I 

I 

I 

I 

I 



360 

,..._ 355 .. 
0 350 

0� 345 
i::: 

:E 340 

335 

Treatment 
Watered _..,. 
Week 5 

li!I Control 

l!:! Treatment 

week 1 week 2 week 4 week 5a week 5b week 7 week 8 week 1 0  

Figure 2.4: Mean intercellular carbon levels (C;) of M. preissiana seedlings under glasshouse conditions. 
Control seedlings were watered twice daily and treated seedlings underwent a drying regime where 
seedlings were dried for five weeks then rewatered. Mean C; values represent average intercelluar 
carbon level taken from 12 seedlings. Week Sa refers to measurements taken in week S prior to 
rewatering; week Sb refers to measurements taken in week S following rewatering. Error bars 
represent the standard error within means. 

The watered seedlings displayed variations in stomatal conductance throughout the duration 

of the experiment, with weeks 2, 4 and 5a supporting the highest gs values, of greater than 

0.4mol m-2s- 1 (Figure 2 .5) .  For the first five weeks of the drying regime, the treated 

seedlings displayed lower gs values than the control , with values decreasing below 0.05mol 

m-2s- 1 both before and after rewatering in week five. Weeks 7-10  saw a rise in stomatal 

conductance for the seedlings under the drying regime with rates increasing to a maximum 

of 0 . 38mol m-2s- 1 in week 8 .  
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Figure 2.5 : Mean stomatal conductance (g.) of M. preissiana seedlings under glasshouse conditions. 
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Control seedlings were watered twice daily and treated seedlings underwent a drying regime where 
seedlings were dried for five weeks then rewatered. Mean g. values represent average stomatal 
conductance taken from 12 seedlings. Week 5a refers to measurements taken in week 5 prior to 
rewatering; week 5b refers to measurements taken in week 5 following rewatering. Error bars 
represent the standard error within means. 

Water use efficiency was calculated by the ratio of photosynthesis rate to transpiration rate 

(AIE) for each seedling. Figure 2 .6 shows that the mean water use efficiency of the control 

remained fairly consistent throughout the experiment, with ratios ranging from 0.21 in 

week 1 0  to 0 .47 in week 7 .  The error bars in Figure 2 .6 show that the degree of error within 

the control mean was higher than that of the treatment . It was found that as soil moisture 

decreased with drying, WUE of the treatment increased, with the seedlings being most 

water use efficient in week 5a (before rewatering) with an AIE ratio of 0.48 . Following 

rewatering, WUE decreased to 0 .27 in week 5b, then proceeded to increase as soil moisture 

progressively decreased for the second drying interval. 
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Figure 2.6: Mean water use efficiency (WUE) of M. preissia11a seedlings under glasshouse conditions. 
Control seedlings were watered twice daily and treated seedlings underwent a drying regime where 
seedlings were dried for five weeks then rewatered. Mean WUE values represent the ratio of average 
photosynthesis rate: transpiration rate. Week Sa refers to measurements taken in week five prior to 
rewatering; week Sb refers to measurements taken in week five following rewatering. Error bars 
represent the standard error within means. 

Analysis of variance was used to further understand the effects of the drying regime on the 

instantaneous WUE of the M. preissiana seedlings and to determine whether differences in 

WUE between the control and treatment over the ten week experiment were significant. 

Two-way ANOV A found that there was an overall difference in WUE over weeks, 

however, no significant difference betwee_n the control and treatment (Table 2.2) .  There 

was no significant interaction between the two, therefore it could be concluded that time 

was independently affecting the WUE of the M. preissiana seedlings . In order to identify 

the specific differences in WUE over time, one-way ANOV A was conducted to investigate 

differences existing in WUE within both the control and the treatment. It was found that 

the seedlings in the control did not differ significantly in instantaneous WUE over time, 

while the seedlings in the drying regime did (Table 2 .2) .  The Bonferroni post-hoe test 

confirmed that these differences were significant between week 2 and week 5a and week 2 
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and week 8 , with the seedlings being significantly less water use efficient in week 2 

(p<0.05) . 

Table 2.2: Results of repeated measures ANOV A testing differences in M. preissiana instantaneous 
WUE (AIE) between experiment (treatment and control) and between sampling period (weeks). Two
way ANOV A was conducted to test for the overall effects of week and experiment on WUE. 
Week*Experiment refers to the interaction between the two factors. One-way ANOVA was conducted 
to test for differences in WUE over the experiment, within the treatment and the control. 

Factor 
Week 

error 

Experiment 
error  

Week*Experiment 

Factor 
Control 

error 

Treatment 
error  

Two-way repeated measures ANOVA 
Differences in WUE between weeks and experiment 

dJ. Mean Square F-Value P-Value 
7 0 . 1 87 3 .544 0 .001  

1 54 0 .005 

1 0 .009 1 .600 0 .21 9 
22 0.005 

7 0 .009 1 .800 0 .09 1  

One-way repeated measures ANOVA 
Differences In WUE within experiment, between weeks. 

d.f. Mean Square F-Value P-Value 
7 0 .009 1 . 973 0.070 

77 0.005 

7 0 . 1 88 3.250 0 .004 
4 0 .423 

NS Not stat istical ly s ign ificant (p>0.05) 
Stat istica l ly sign ificant (p<0.05) 

2 . 3 .2 .2 Xylem Pressure Potential 

* 

NS 

NS 

NS 

* 

The pre-dawn measurements of XPP, representing the time of day when seedlings were 

least water stressed, were used for result analysis .  Figure 2 .7  shows that the XPP of the 

control seedlings remained higher than that for the treatment, with pressures ranging from 

-0.4mPa to -0.27mPa. The treated seedlings displayed a progressive decrease from -0 .3mPa 

in week O to -0.65mPa in week 8 during which the soil dried twice. 
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Figure 2.7: Mean xylem pressure potential (XPP) of M. preissiana seedlings under glasshouse 
conditions. Control seedlings were watered twice daily and treated seedlings underwent a drying 
regime where seedlings were dried for five weeks then rewatered. Mean XPP values represent the 
mean xylem pressure potential taken from 3 seedlings at pre-dawn. Week Sa refers to measurements 
taken in week S prior to rewatering; week Sb refers to measurements taken in week S following 
rewatering. Error bars represent the standard error within means. 

2 .3 .2 .3  813C Measurements 

2.3 .2 . 3. 1  Foliar sampling 

Sampling at two to three week intervals found that the mean foliar 813C measurements of 

the controlled seedlings remained relatively consistent throughout the experiment, with 

values ranging from -27 .38%0 (week 0) to -26 .6 1%0 (week 4) . Surprisingly, the treated 

seedlings that underwent the drying regime were found to have isotopically lighter 813C 

signatures on average for all sampling periods (Figure 2 .8 ) .  This was unexpected 

considering the positive relationship that was proven in previous studies to exist between 

water use efficiency (AIE) and 813C.  
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Figure 2.8 : Mean 613C of M. preissiana foliar tissue based on a 10-week glasshouse experiment. Control 
seedlings were watered twice daily and treated seedlings underwent a drying regime where seedlings 
were dried for 5 weeks then rewatered. Mean 613C refers to the mean discrimination between 13C and 
12C measured from 12 seedlings. Error bars refer to the standard error within treatment/control. 

The mean 813C of the treated seedlings was similar to that for the treatment at the beginning 

of the experiment (week 0) . After the initial two weeks of drying, there was a decrease in 

813C from ...:.28 .0%0 to -30.0%0. As the soil moisture content of the treatment progressively 

decreased, the 813C of seedlings increased to -27 . 1%0 in week 10, with the rewatering event 

in week 5 not appearing to affect changes in foliage o13C of the treated seedlings . 

Two-way analysis of variance found that overall , there were significant differences in foliar 

813C of seedlings over time, and between the control and treatment (Table 2 .3) .  There was a 

significant interaction between the two factors , indicating that 013C of the M. preissiana 

seedlings also differed due to the combination of time and experiment type . In order to 

understand this interaction, independent samples T-Tests were conducted to make 

comparisons in o13C between the control and treatment within individual sampling periods . 

It was found that foliar tissue 81 3C of the M. preissiana seedlings was significantly lower in 
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the treatment than the control during weeks 2, 4 and 7 ,  however not significantly different 

prior to the start of the experiment (week 0) and during the last sampling period (week 10). 

One-way ANOVA was conducted to further understand the differences in foliar 813C of the 

seedlings over time within the control and treatment (Table 2 .3) .  This found that the 813C of 

seedlings in the control did not change significantly over time, while the treated seedlings 

did .  The Bonferroni post hoe test confirmed that the 813C of seedlings in the treatment 

differed significantly (p<0 .05) according to the mean values depicted in Figure 2 .8  between 

all sampling periods , with the exceptions being between week O and week 7 ,  and week 0 

and week 10 ,  where 813C values were not significantly different. 

Table 2.3: Results of repeated measures ANOVA testing differences in M. preissiana foliage B13C 
between experiment (treatment and control) and between sampling period (weeks). Two-way ANOVA 
was conducted to test for the overall effects of week and experiment on o13C. Week*Experiment refers 
to the interaction between the two factors. One-way ANOV A was conducted to test for differences in 
o13C over the experiment, within the treatment and the control. 

Two-way repeated measures ANO VA 
Differences in foliar o13C between weeks and experiment 

Factor d .f. Mean Square F-Value P-Value 
Week 4 8 .575 1 7 .826 <0.001 

error 88 0 .48 1 

Experiment 1 7 1 .828 57.369 · <0.001 
error 22 0 .005 

Week*Experiment 4 7.71 4  1 6 .036 <0.001 

Factor 
Contro l 

error 

One-way repeated measures ANOVA 
Differences In foliar o13C within experiment, between weeks. 

d.f. Mean Square F-Value P-Value 
4 1 .393 2 .857 0 .074 

44 0 .487 

Treatment 4 1 4 .897 31 .382 <0 .001 
error 44 0.475 

NS  Not statistica l ly s ign ificant (p>0.05) 
* Statistical ly s ign ificant (p<0.05) 
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2.3.2 . 3 . 1 Nascent Xylem Tissue Sampling 

The four-weekly sampling of the nascent xylem tissue found that the 813C signatures of the 

control and treatment were similar to those measured from foliage tissue (Figure 2.9) .  The 

mean 813C of the control displayed a slight decrease over the duration of the experiment. 

The seedlings in the treatment displayed a similar mean 813C signature than the control in 

week 0. After the initial four weeks of drying, 813C decreased with a drop from -27.9%0 in 

week O to -30.2%0 in week 4. Week 8 saw an increase in 8 13C of seedling xylem tissue 

(Figure 2 .9) .  
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Figure 2.9: Mean 613C of M. preissiana nascent xylem tissue based on a 10-week glasshouse experiment. 
Control seedlings were wat�red twice daily and treated seedlings underwent a drying regime where 
seedlings were dried for 5 weeks then rewatered. Mean 613C refers to the mean discrimination between 
13C and 13C taken from 6 seedlings. Error bars refer to the standard error within treatment/control. 

Two-way analysis  of variance found that overall, nascent xylem tis sue 813C differed 

significantly over the duration of the experiment and between the treatment and control 

(Table 2.4). There was a significant interaction between the two factors , and independent 

samples t-tests confirmed that the difference in 813C of the M. preissiana seedlings between 

the control and treatment occurred during week 4, with 813C of the control being 
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significantly higher in the control (p<0.05) .  One way ANOV A, found that xylem 013C 

varied significantly over time within both control and treatment (Table 2.4). The Bonferroni 

post hoe test revealed that nascent xylem tissue 013C of the control decreased significantly 

between week O to week 8, and decreased significantly in the treatment between week 0 

and week 4 (p<0.05). 

Table 2.4 : Results of repeated measures ANOVA testing differences in M. preissiana xylem tissue 613C 
between experiment (treatment and control) and between sampling period (weeks). Two-way ANOV A 
was conducted to test for the overall effects of week and experiment on 613C. Week*Experiment refers 
to the interaction between the two factors. One-way ANOVA was conducted to test for differences in 
613C over the experiment, within the treatment and the control. 

Two-way repeated measures ANOVA 
Differences In xylem o13C between weeks and experiment 

Factor d.f. Mean Square F-Value P-Value 
Week 2 5 .571 1 8 .037 <0.001 

error 20 0 .309 

Experiment 1 1 0.896 28. 1 33 <0.001 
error 1 0  0.387 

Week*Experiment 2 4 .204 1 3 .587 <0.001 

One-way repeated measures ANOVA 
Differences In xylem o13C within experiment, between weeks. 

Factor d.f. Mean Square F-Value 
Contro l 2 2 .285 9 .705 

erro r  1 0  0 .235 

Treatment 2 7.500 1 9 .562 
error 1 0  0.383 

NS  Not statistica l ly sign ificant (p>0.05) * Statistical ly s ign ificant (p<0.05) 

2.3.3 Soil Moisture, Water Use Efficiency and 013C 

P-Value 
0.005 

<0.001 

* 

* 

* 

* 

* 

Figure 2 . 10  combines the soil moisture, WUE and foliar o13C measurements of the treated 

M. preissiana seedlings to descriptively illustrate the changes that occurred between the 

. three measures over the duration of the experiment. The short sampling period and the 
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limited number of measures made during this period means that the relationship between 

measures could not be demonstrated statistically via con-elation .  However, observation 

shows that as the soil moisture decreased progressively, WUE of the treated seedlings 

increased, and 813C of foliar tissue dropped (with the exception of week 0) (Figure 2 . 10) .  
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Figure 2.10: Mean water use efficiency, soil moisture and foliar 613C of M. preissiana seedlings under 
the drying regime, where seedlings were dried for five weeks then rewatered. 
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2.4 DISCUSSION 

The relationship existing between 813C and photosynthetic water use efficiency in M. 

preissiana was partly demonstrated by the results obtained in the glasshouse experiment. 

The experiment attempted to eliminate the effects from all variables other than water 

availability on isotopic discrimination, however, the unexpected differences between the 

813C of the control and treatment suggest that other variables may have been present. 

2.4.1 Water availability and instantaneous gas exchange 

The various instantaneous gas exchange measures followed similar trends for the duration 

of the drying experiment. The mean rates of photosynthesis, transpiration and stomata! 

conductance of the seedlings undergoing the drying regime were lower than those in the 

control for the first five weeks of drying. Farquar et al (1989) recognise that as a 

physiological response to drought, plants commonly show a simultaneous decrease in A, E 

and gs in order to survive the effects of reduced water availability. Ci varied between the 

control and the treatment over the duration of the experiment, possibly due to the longer 

time period required for carbohydrate fractions within leaves to indicate water stress 

(Farquar et al, 1989). 

The dramatically lower A, E and gs values measured from the treatment in week 5 in 

comparison to the control expressed the severe state of water stress that the seedlings were 

under as the soil moisture content approached zero. Rewatering in week 5 did not induce an 
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immediate response in the instantaneous gas exchange rates measured from treated 

seedlings, however by week 7 (two weeks after rewatering), the rates of A, E and g5 

increased to higher than those measured in the control. The higher rates of gas exchange 

were unexpected, and may possibly be a result of diurnal variability, which affects the 

reliability of the IRGA measurements. It is also possible that the age of the leaves sampled 

for instantaneous gas exchange may have affected the values measured. The restricted 

water supply for the treated seedlings caused an obvious reduction in plant growth. The 

higher abundance of new growth formed by the seedlings in the control resulted in the 

instantaneous gas exchange rates being taken from a higher proportion of newly developed 

leaves than from the treatment. Cavender-Bares & Bazzaz (2000) found that the 

photosynthetic capacity of plants increased with age, with more mature leaves exhibiting 

higher A values than juvenile leaves. Similarly, Damesin et al, (1997) found that mature 

leaves display more negative 813C signatures than leaves that are recently formed, which 

could be attributed to higher rates of photosynthesis, transpiration and stomata! 

conductance. 

2.4.2 Water availability and instantaneous water use efficiency 

By calculating water use efficiency from the instantaneous gas exchange measures, one can 

reduce the variations that are likely to occur. This is because WUE incorporates a ratio 

comparing the plant's rate of photosynthesis to its rate of transpiration. The instantaneous 

WUE calculated for the treated seedlings was found to be negatively associated with soil 

moisture, where the WUE of the treated seedlings increased significantly during the drying 
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regime, and decreased when soil moisture was replenished. Figure 2.6 shows that 

rewatering in weeks 5 and 9 induced a negative response in terms of seedling WUE, 

illustrating the instantaneous basis in which this variable was measured. 

The relationship between water availability and WUE can be understood by considering the 

combined physiological responses of the seedlings to a reduced water supply. Reduced 

stomata! conductance in dry conditions leads to a reduction in water loss (E) and a 

reduction in intercellular carbon levels. The assimilation of carbon (A) increases due to the 

reduction in the diffusive supply of carbon, resulting in an overall increase in AIE, or an 

increase in water use efficiency (Lajtha & Marshall, 1994). The opposite occurs when 

water availability is high, and the ratio of AIE decreases, leading to a decrease in WUE. 

The xylem pressure potential of the seedlings that underwent the drying regime also 

suggested that WUE and water availability for M. preissiana might have been inversely 

related. Fitter & Hay (1989) suggested that pressure potential be used as an indicator of 

plant water stress (rather than WUE), and derived three degrees of water stress in plants. 

Mild stress was measured in plants with XPP around -0.SmPa, moderate stress measured 

between -0.SmPa to -l.2mPa and severe stress measured up to -1.SmPa. The progressive 

decrease in XPP of the seedlings in the treatment suggested that the seedlings were of 

moderate stress by the end of the experiment when the water supply was lowest, while the 

control remained less than mildly stressed. This was due to water stress being associated 

with a rapid loss of leaf turgor and an increase in leaf wilting as a result of increased 

drought conditions (Baird & Wilby, 1999). 
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2.4.3 Water availability, WUE and 813C 

These instantaneous measures of plant water use efficiency and plant water stress of the M. 

preissiana seedlings that experienced the drying regime in comparison to those that were 

regularly watered suggested that a decrease in soil moisture resulted in the plants becoming 

more water use efficient and more water stressed. The 813C signatures measured from new 

foliar tissue and nascent xylem tissue indicated a similar response to the drying regime. 

However, it is recognised that outside factors (other than water availability) may have 

affected isotopic discrimination. While the isotopic discrimination displayed by the 

controlled seedlings fluctuated around a mean value of approximately -27%0 and -28%0 for 

the foliar and xylem tissues respectively, the treated seedlings exhibited significantly more 

negative 813C than the control for the duration of the experiment as water availability 

decreased. This was unexpected due to the proven negative relationship that exists between 

water availability and 013C documented by many researchers (e.g. Farquhar et al, 1982; 

Ehleringer & Cooper, 1988; Komer et al, 1991; Leavitt, 1992; Stewart et al, 1995; 

Livingston & Spittlehouse, 1996; Berry et al, 1997; Damesin et al, 1997; Walcroft et al, 

1997; MacFarlane & Adams, 1998; Pate & Arthur, 1998). However, by examining 

exclusively the isotopic discrimination displayed by the treatment (with the exception of 

week 0), 813C was found to increase significantly as water availability decreased. This 

corresponds to the theory that as water availability in an environment decreases, WUE and 

013C increase due to the reduced discrimination against the heavier isotope during carbon 

assimilation (Boutton, 1991b). The rewatering events in weeks 5 and 9 did not induce a 

significant response in 013C. This enforces the fact that isotopic measurements are not 
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instantaneous, and act as a time-integrated measure of WUE. 

The more positive 813C values of the controlled seedlings receiving a regular water supply 

and of the treatment in week O before the drying regime commenced indicates that other 

variable/s may have been affecting the isotopic discrimination of the seedlings. The lower 

light conditions experienced by the treated seedlings were probably the dominant 

environmental factor causing the variation in 813C between the control and treatment. The 

clear, plastic sheeting surrounding the glasshouse area that contained the treated seedlings 

(in order to exclude watering from surrounding sprinklers) shaded these seedlings from the 

morning and midday sun. These less than optimal conditions were difficult to overcome 

due to limitations in glasshouse space. However, the lower light intensity reaching the 

treatment explained the higher levels of isotopic discrimination that occurred when water 

availability was limited. Studies investigating the changes in 813C along light gradients in 

forest ecosystems from the canopy to forest floor, found that 813C of leaves increased with 

canopy height due to the increase in light intensity (Berry et al, 1997). This pattern has 

been explained by lower light conditions influencing a decrease in intercellular carbon 

levels influenced, and therefore similarly influencing a decrease in 813C (Lajtha & 

Marshall, 1994). Although there were no significant trends found between the Ci of the M. 

preissiana seedlings of the control and the treatment, lower levels were displayed by the 

treatment during most sampling periods. Therefore, the more positive 813C displayed in 

week O and by the control may have been attributed to higher light intensity and 

subsequently higher levels of C. 
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2.4.4 Conclusion 

The precise nature of isotopic studies means that methods applied to experimental design, 

sample collection and analyses techniques require high accuracy in order to reduce error 

(Boutton, 1991a). It has been acknowledged that this experiment may have been limited by 

light variations, which occurred in an otherwise controlled environment. However, by 

examining the rate of change in the o1 3C of the treated seedlings over the duration of the 

drying regime, it can be concluded that the o1 3C, instantaneous WUE and water stress of M. 

preissiana seedlings became more positive as water availability decreased. However, the 

differences in o13C noted between the control and the treatment during the experiment 

suggested that external factors (other than water availability) might have also been inducing 

these differences. By eliminating light variations, the findings of this experiment may be 

improved in order to investigate the primary isotopic response of this species to water 

availability. However, being a study to assess the applicability of o13C analysis in 

measuring the WUE of M. preissiana, this experiment succeeded in proving that the 

instantaneous water use efficiency of the species was a response to water availability, and 

with all other factors constant, o1 3C can be used to indicate this response on a short term 

basis. 
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CHAPTER 3: FIELD SITE SELECTION 

3.1 SITE SELECTION 

Three wetlands situated within the Perth region of the Swan Coastal Plain were selected for 

the field component of this study: Lake Jandabup, Thomsons Lake and Banganup Lake. 

The location of the lakes is shown in Figure 3.1. All three sites were selected on the basis of 

having a large sampling population of M. preissiana occurring along a topographical 

gradient. The gradient was assumed to represent a gradient in depth to groundwater, 

inundation frequency, and therefore water availability. Site selection was also considered 

according to the availability of historical ground and surface water monitoring data. It is 

acknowledged that emphasis was placed on obtaining and processing data from Banganup 

Lake. This lake has one of the most significant populations of M. preissiana occurring on 

the Swan Coastal Plain (Froend et al, 1993). Additionally, the pristine nature of Banganup 

Lake means that external factors caused by anthropogenic disturbances were minimised, 

and tree water relations could be isolated as the major factors affecting 813C. Data obtained 

from Thomsons and Jandabup Lakes were used to provide back-up to findings made at 

Banganup Lake, to allow comparisons between the three lakes, and to sample the 

variability occurring within the Swan Coastal Plain. Below is a background to the 

characteristics of the Swan Coastal Plain, as well as a description of the three study sites. 
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Figure 3.1 :  Location of the three study wetlands within the Perth Region of the Swan Coastal Plain: 
(from north to south) Lake Jandabup, Thomsons Lake and Banganup Lake. Location of the Gnangara 
and Jandakot Groundwater Mounds and other SCP wetlands are also shown. Adapted from Froend et 
al (1993). 
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3.2 SITE DESCRIPTION 

3.2.1 Description of the Swan Coastal Plain 

3.2.1.1 Location 

The Swan Coastal Plain was defined by Seddon (1972) as being the coastal plain along the 

west coast of southwest Australia, extending from Geraldton in the north, to Dunsborough 

in the south. It covers an expanse of 550km of coastline, and at its maximum, extends 

eastward for 35km to the Darling Scarp (Balla, 1994). The Perth Region lies within the 

Swan Coastal Plain, includes most of the Perth metropolitan area, and covers an area of 

approximately 4000km2
• (Davidson, 1995). 

3.2.1.2 Climate 

The climate of the Perth Region is typically Mediterranean with hot, dry summers and cool, 

wet winters. The hot, dry summers are a result of a series of anti-cyclones (high-pressure 

zones) that pass over the region during summer (Davidson, 1995). The cool, wet winters 

are associated with the subpolar, low-pressure cells that cross the region as cold fronts 

(Davidson, 1995). The average annual rainfall for the Perth region is 769mm. A majority of 

Perth's rainfall occurs during the period of April - October, with the summer months being 

virtually dry. 
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3.2 . 1 .3 Geomorphology 

The Swan Coastal Plain consists of four major landforms that run parallel to the coastline. 

The most easterly landform is known as the Pinjarra Plain, which is an alluvial plain 

located at the foot of the Darling Scarp (Seddon, 1972). The three successive landforms, the 

Bassendean, Spearwood and Quindalup dunes, consist as a series of dune systems that 

formed during periods of higher sea levels. Wetlands occurring on the Swan Coastal Plain 

mostly lie in the interdunal swales of the Bassendean Dune System, in the interbarrier 

depressions between the Spearwood Dune and Bassendean Dune Systems, and within the 

Spearwood Dune System (Arnold, 1990) 

3 .2. 1 .4 Hydrology 

The Perth Region contains a very large and renewable groundwater resource (Davidson, 

1995). The Gnangara and Jandakot Mounds exist as two shallow, unconfined groundwater 

mounds occmTing to the n01th and south of the Perth metropolitan area respectively (Figure 

3 . 1) .  The lakes occurring on the groundwater mounds are surface expressions of the 

underlying unconfined aquifer and their water levels vary with that of the water table 

(WA WA, 1991a). The . lakes are directly recharged by rainfall infiltration, smface runoff 

and artificial drainage, while discharge is comprised of evapotranspiration, drainage and 

groundwater outflow (WAWA, 199 1). The lakes reach their maximum levels at the end of 

winter as a response to the winter rains and drop to minimum levels at the end of summer 

(Froend et al, 1993). Over 80% of wetlands on the SCP are seasonal sumplands or 

damplands, and only contain water during these winter months (Davidson, 1 995). A 
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combination of low rainfall and decreasing groundwater levels in the Perth Region have 

seen lake levels and the period of inundation decrease gradually (Davidson, 1995). 

3.2.1.5 Vegetation 

The vegetation of the Swan Coastal Plain is highly diverse and consists of many different 

community types. Beard (1990) identified the vegetation of the Perth region as being part 

of the Drummond Botanical Subdistrict. This is mainly comprised of Banksia woodland 

located on leached sands, with Melaleuca swamps occurring in poorly drained soils, and 

woodlands of tuart (Eucalyptus gomphocephala), jarrah (E. marginata) and marri 

(Corymbia calophylla) occunfog on less leached soils (Beard, 1990). Areas of open water 

are commonly bordered by the paperbark Melaleuca rhaphiophylla, which can survive 

seasonal waterlogging (Seddon, 1972), and accompanied by a belt of sedges and/or rushes 

extending into the water such as Baumea articulata and the introduced bulrush Typha 

orientalis. Seasonally inundated swamps are often fringed by the paperbark M. preissiana, 

along with Banksia littoralis and E. rudis (Beard, 1990). 

3.2. 1 .5. 1  Melaleuca preissiana (Shauer) 

Melaleuca preissiana (common name, moonah) is a paperbark tree, growing 9-13m high 

(Froend et al, 1993) (Plate 3.1). It has subterminal white flowering spikes and white papery 

bark, both of which resemble that in M. rhaphiophylla (Seddon, 1972). Flowering occurs 

from November to January in most areas, and sometimes extends into March (Marchant et 

al, 1987). M. preissiana is most common growing around the fringing area of freshwater 

swamps on the Swan Coastal Plain, although it also occurs in low lying depressions in 
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moister soi l s  (WA WA, 1 99 1  b) .  Un l i ke M. rlzaphiophylla , M. preissiana wi l l  not survive 

when regularly i nundated, and grows several metres back from the wet depression (Seddon , 

1 972 ;  Froend et al, 1 993 ) .  The two Melaleuca species often occur i n  success ion in  wet land 

env i ronments . 

Plate 3. 1 :  Photograph of a Melaleuca preissia11a individual growing on the margin of Lake Jandabup. 

3.2.2 Description of Study Sites 

3 .2 .2 .  l Banganup Lake 

Banganup Lake is an ephemeral wet land, s i tuated wi th in  the Harry Waring Marsupial 

Reserve at 32° I O' S ,  I 1 5°50' E .  The lake i s  located on the Jandakot Groundwater Mound 

and forms part of the Beel iar wetl and chain (Froend et al, 1 993 ) .  

45 



3.2. 2. 1 . 1  History of Banganup Lake 

Banganup Lake is located to the adjacent south of Thomsons Lake and remains as one of 

the least disturbed wetlands within the Perth region. There is no record of previous 

horticultural activities occurring within the lake or the lake margins, however, dairy, cattle 

and horse grazing were prevalent during the 1930s, and timber felling of banksia and jarrah 

for firewood occurred during the 1930s and 1940s (Wilkins, 1992). Fires were an 

occurrence in summer and remained uncontrolled until the Jandakot Bush Fire Brigade 

formed in the late 1960s. In 1970, Banganup Lake was included in the 253.7ha Harry 

Waring Marsupial Reserve, located to the south of Russell Road. The purpose of the 

reserve was primarily to establish and maintain a quokka colony translocated from Rottnest 

Island, and was vested in the Western Australian Wildlife Authority and the Minister for 

Fisheries and Fauna (Wilkins, 1992). An electrified, 2 metre high wire fence enclosed the 

reserve to prevent the entry of dogs, cats, rabbits and foxes. This fence controlled predators, 

and limited the dispersal of species and as a result, in the 1970s and early 1980s the reserve 

experienced excessive overgrazing (Wilkins, 1992). Wildfires occurring in 1977 and 1978 

exacerbated the problem, and it is believed that the combination of competitive grazing and 

fox predation caused the quokka population to "crash" in 1983-1984 and never recover. 

Since then, the Reserve changed its lease to the University of Western Australia Zoology 

Department and the Department of Conservation and Land Management (CALM). It is 

managed as an A class reserve and forms part of the eastern chain of wetlands in the 

Beeliar Regional Park (WAWA, 1991 ; DPUD, 1992). Banganup Lake is believed to be the 

least disturbed in this chain of wetlands (WA WA, 1991). 
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3.2.2 . 1 .2  Current management issues 

Management of the Harry Waring Marsupial Reserve is currently undertaken by the 

Reserve Warden. This involves rabbit, fox and feral cat control, weed control, fence 

maintenance, firebreak maintenance, fire fighting and control of research activity (Wilkins ,  

1 992) . The three areas of highest concern for management for Banganup Lake include: 

3 .2 .2 . 1 .2 . 1 Fire 

Wilkins ( 1992) identified that fire is excluded from the Reserve, in order to preserve the 

fauna population for research purposes . This has resulted in an increased fuel load in the 

Reserve, and smTounding Banganup Lake. Consequently, previous wildfires have been of 

high intensity, and caused considerable damage to the vegetation (Wilkins ,  1 992; Froend et 

al, 1 993) .  The most recent fire recorded in the HWMR was in March, 1 994 ("Arsonists 

Suspected", 1 994) . The last recorded fire prior to 1 994 was in March, 1 977, which scorched 

the fringing M. preissiana and E. rudis tree canopies and the B. articulata stands of the lake 

bed (Froend et al, 1 993) .  

3 .2 .2 . 1 .2 .2 Disease 

J arrah die back (Phytopthora cinnamomi) has not been recorded as present in the fringing 

areas of Banganup Lake. However, the canker fungus (Botryophaeria) is suspected to be 

invading the reserve, which is evident from dead branches observed on some M. preissiana 

individuals fringing Banganup Lake (Wilkins , 1 992) . This has not been confirmed, 

however M. preissiana is known to be highly susceptible to the fungus . 

3 .2 .2 . 1 .2 .3 Water regimes 

The seasonality of Banganup Lake ' s  water levels currently remains unaffected by artificial 

drainage lines and industrial or urban effluent inflow. However, its close proximity to 
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Thomsons Lake means that the wetland is affected by its groundwater management, aimed 

at maintaining low water levels for waterbird habitat (WA WA, 1991). Additionally, in 

1991, the EPA approved the Stage 2 expansion of the Jandakot Groundwater Scheme. This 

involved increasing groundwater abstraction for public water supply from 4 to 8 million 

cubic metres per year by creating a new line of 13 wells to the west of the existing well 

field (WA WA, 1991). The most expected effect of this increase in groundwater abstraction 

is the drawdown of the local water table. Drawdowns of greater than 2m in depth can be a 

threat to phreatophytic vegetation, and have an affect on areas located more than 1km 

radius from the well (WA WA, 1991). Stage 2 proposed to place wells at least 300m away 

from wetlands in order to reduce the drawdown effect on lake levels. Wilkins (1992) 

predicted that as a result of the Stage 2 expansion of the J andakot Groundwater Scheme, 

Banganup Lake would experience a 0.20m reduction in groundwater levels at the end of 

summer, as well as a prolonged dry period. 

3.2.2. 1 .3  Current environment at  Banganup Lake 

Banganup Lake is a shallow basin, lined with sandy peat sediment. Its area totals 37.5 ha, 

however much of this is covered by either sedgeland dominated by Baumea articulata, or 

Melaleuca preissiana/Eucalyptus rudis woodland. There is very little open water. The Lake 

is seasonal, remaining dry for 10 - 11 months during the year (WA WA, 1991). Froend et al 

(1993) found variations in water levels during 1986-1990 to range from 0.9m above the 

lakebed in the wettest months, to 1.2m below in the driest months. 

The sediment of Banganup Lake consists of a peat/sand (Froend et al, 1993). The lake bed 

and surrounding areas are comprised of a peaty or black friable silt, are abundant in organic 
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matter and variable in soil content (Wilkins, 1992). The sediment of the surrounding 

eastern portion of the Reserve consists of highly leached, deep gray sands. To the west, the 

soil formed as part of the Karrakatta soil association, being a pale, yellow-brown sand 

derived from Tamala limestone (Wilkins, 1992). 

The population of M. preissiana at Banganup Lake is one of the most significant on the 

Swan Coastal Plain. It is the dominant fringing tree species, occurring with Eucalyptus 

rudis and Banksia littoralis. It forms a dense, closed canopy in fringing areas (Wilkins, 

1992). In the surrounding woodland, dryland species include B. menziesii, B. attenuata, 

Allocasuarina fraseriana and E. marginata. M. preissiana occurs in distinct age group 

bands (Figure 3.2). Surrounding the northern to eastern lake margins is a juvenile band, 

aged by Froend et al (1993) at 23 years. This band established after the reserve was 

subjected to a bushfire in March 1977. The combination of the fire in 1977, and declining 

lake levels and rainfall during the late 1970s, would have induced the establishment of 

seedlings at lower elevations. A young parental band of trees aged 69 -75 years surrounds 

the juvenile band. These trees were likely to have established during the period of 1925 -

1930 when rainfall was higher. With the clearance of land in the Jandakot region in the 

1890s, and the high rainfall in the 1920s, lake levels would have risen, generating a mass 

recruitment of individuals in more elevated areas (Froend et al, 1993). Along the outskirts 

of the young parental band occur old parental trees, with ages estimated to be greater than 

200 years (using tree diameter as an indicator). This structured nature of the age 

distribution at Banganup Lake suggests that recruitment of M. preissiana is episodic rather 

than a common occurrence. The sequence of ages down the elevational and hydrological 

gradients may represent a species response (through recruitment) to long term changes in 
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water availability and fire regimes (Froend et al, 1 993) .  
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Melaleuca preissia·na 
Juvenile band 

Melaleuca preissiana 
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N 

• 
0 200 metres 
, ... --------' 

Figure 3 .2 :  Spatial distribution of the juvenile and young parental bands of M. preissia11a at Banganup 
Lake. Old parental trees were scattered throughout the upper slope. The bands were assumed to have 
established as a response· to fire, and/or during periods of high groundwater levels. Map adapted from 
Froend et al (1 993), 
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3.2.2.2 Thomsons Lake 

Thomsons Lake is a large circular basin located 34km south west of Perth, and is situated to 

the north of Banganup Lake. The lake occupies a depression between the Bassendean and 

Spearwood dune systems. The junction between the two dune systems is marked by the 

Beeliar chain of wetlands, in which Thomson Lake is the largest (Crook & Evans, 1981). 

The Lake is currently an A class reserve and is managed by the Department of 

Conservation and Land Management. The overall  management objective for Thomsons 

Lake is to "protect the ecological character of the lake and, in particular, its importance as 

a waterbird habitat" (WAWA, 1991). 

The lake covers an expanse of 253.7 ha, with an extensive fringe of sedgeland comprising 

of B. articulata and Typha orientalis, occupying 101.2ha (Froend et al, 1993). Variations in 

water levels have been dramatic in the past, with the water regimes changing from 

permanent to seasonal. A ring of large, old M. preissiana individuals on the upper slope 

suggests a higher water table existed sometime in the past (WAWA, 1991). Local residents 

reported that the lake dried during the 1940s and was completely covered in reeds (Wilkins, 

1992). Since then, the maximum recorded lake depth was 3.3m in the 1970s, and has since 

varied from being Orn in drier years, to 1.2m above the lake bed during wetter years. 

Thomsons Lake is currently affected by rural and urban drainage. Water drains into the lake 

from the north, from Lake Kogolup, and from agricultural land from the east. This has 

subsequently caused nutrient enrichment by nitrogen and phosphorus draining into the lake. 
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Surface water inputs via drains from surrounding areas are causing an increase in the mean 

water level , and it is possible that without the drainage system, the water regime at 

Thomson Lake ' s  would reflect that found at Banganup Lake (Froend et al, 1 993) . CALM's  

management strategy is to  maintain a seasonal water regime a t  the lake in  order to  provide 

optimal bird breeding habitats (WAWA, 1991 ) .  Sudden, unexpected rises in water levels 

may occur due to artificial sources, however, these are minimised under CALM's 

management criteria for Thomsons Lake (EPA, 1989) . In 1987 ,  the South Jandakot 

Management Plan proposed to construct the South J andakot Branch Drain to assist in the 

drainage management of the Beeliar Wetlands (EPA, 1 987) .  The development of this drain 

has been deferred until construction of the Thomsons Lake Main Sewer commences . 

Development of the sewer is dependent on the rate of urban development, and the 

subsequent defen-al of drain construction may result in increased lake water levels (EPA, 

1 996) . 

Thomsons Lake occupies the 509ha Thomsons Lake Nature Reserve. This reserve supports 

a wide variety of vegetation zones, identified in Crook & Evans (198 1 ) .  M. preissiana 

occurs predominantly around the north, east and west lake margins in association with E. 

rudis, B. menziesii, B. illicifolia, B. attenuata and B. littoralis . Similarly to Banganup Lake, 

a fox-proof fence sun-ounds the Reserve, however public access is not restricted. 

The fire history at Thomsons Lake Reserve is particularly extensive, with the vegetation 

being severely damaged by frequent fires (Crook & Evans, 198 1 ) .  The first recorded fire 

occun-ed to the south of the lake during 1965 and 1966. The 1970s saw a series of extensive 

and hot fires occun-ing throughout the entire Reserve, with the entire Reserve burned at 
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least twice from 1965-1980 (Crook & Evans, 1980). The regular burning of vegetation has 

resulted in thinning and damage to woodland canopies and in tree mortality. The 

recruitment of grasses and weeds has also become a problem due to fire (Crook & Evans, 

1981). At present, fire management and suppression at Thomsons Lake is undertaken by 

CALM (DPUD, 1992). 

3.2.2.3 Lake Jandabup 

Lake J andabup is located 22km north of Perth, 9km east of the coastline, and is situated on 

the Gnangara Groundwater Mound. Similarly to Thomsons and Banganup Lakes, Lake 

Jandabup lies in the depression between the Spearwood and Bassendean dune systems 

(Davis & Rolls, 1987). The Lake occupies a shallow (1.5m) north-south oval basin about 

3km long and 2km wide, and covering an area of 330h. (Allen, 1979). 

The Lake is a surface expression of the Gnangara Mound groundwater flow system, with 

groundwater inflows occurring from the east, and outflows occurring from the lake's 

southwest margin (Allen, 1979). Rainfall does add a significant volume of water to the 

Lake, however losses by evapotranspiration are greater, and account for 90% of the total 

recharge (Allen, 1979). The Lake does not dry completely in summer, however seasonal 

patterns show a gradual decrease in water table levels as a result of regional groundwater 

abstraction, maturing of near-by pine plantations and the artificial maintenance of water 

levels (Froend et al, 1993). Previous shorelines can be recognised, which is evident by the 

changes in slope and vegetation, and suggest that the lake is progressively becoming drier. 

Open water is restricted to an area of 1.2km2, and is bounded by Baumea articulata and 
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Leptocarpus sp. (Froend et al, 1993). The centre of lake bed is covered with organic 

sediment, which is mainly diatomite, while the periphery consists of carbonaceous sands 

(Allen, 1979). 

The vegetation of J andabup Lake consists of a few species of aquatic plants in the areas of 

open water, broad zones of reeds which border the open water and extend to the shores of 

the lake, and a narrow zone of sedgeland/grassland in areas of occasional inundation 

(Allen, 1979). Large trees are sparse and occur amongst the low scrubland located on the 

older, more elevated shoreline. The remaining fringing tree communities consist 

predominantly of E. rudis, M. preissiana and M. rhaphiophylla in areas of seasonal 

inundation (WA WA, 1995). Only 25% of the littoral zone surrounding the lake remains 

undisturbed and, although remnant areas of terrestrial vegetation are few, the populations of 

M. preissiana are of significance (Froend et al, 1993). 

The central area of the lake is vested as an A-Class Reserve, managed by CALM and the 

City of Wanneroo. 21 % of the perimeter is privately owned, and has been cleared for 

horticulture, grazing and housing (Ryder, 1993). The high diversity of macrophytes, aquatic 

invertebrates and waterbirds suggests that Lake Jandabup is of high conservation value 

(WAWA, 1995). In order to protect these values, CALM's specific management objectives 

include maintaining the bird wading habitat, sedge habitat and fringing woodlands and 

ensuring a high species richness of aquatic invertebrates (WA WA, 1995). 
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CHAPTER 4: TIME-INTEGRATED, SHORT TERM 813C MEASUREMENTS 
USING NASCENT XYLEM TISSUE 

4.1 INTRODUCTION 

The application of 813C analysis in understanding plant physiological responses to 

variations in water availability is of use in the management of natural ecosystems where the 

water resource is of significance to the plant community. Studies investigating the 

relationship between 813C and environmental parameters in controlled experiments are 

difficult to apply to natural ecosystems due to the exclusion of the complex ecological 

interactions existing in nature (Bert et al, 1997). Plants respond physiologically to a variety 

of environmental factors, and their response is largely determined by morphological 

characteristics such as species type, growth strategy, plant size, age, and health. These are 

factors that cannot be controlled in the natural environment. 

813C measurements in plant populations have been used to understand how populations 

respond to natural variations in the environment. Variations in 813C has been measured in 

the field in relationship to light (Berry et al, 1997), climate (Lipp et al, 1991), temperature 

(Saurer et al, 1995), altitude (Komer et al, 1991) and water availability (Dupouey et al, 

1993; Livingston & Spittlehouse, 1996; Damesin et al, 1997). A majority of these studies 

compare the carbon isotopic ratios between populations from contrasting environments. 

Leffler & Evans (1999) investigated the 813C dynamics within a single riparian tree 

population in terms of stream flow. The remarkable variations found in 813C between 

individuals of the same population were indicative of the heterogeneity that occurs along a 

hydrological gradient. The occurrence of Melaleuca preissiana in cohorts along some lake 
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margins suggests that similar heterogeneity may be present along hydrological gradients of 

water availability. 813C is a possible tool for measuring physiological heterogeneity within 

natural populations of M. preissiana. 

The various methods of sampling plant tissue for 813C have been widely documented. All 

plant tissue contains a record of 813C, which exists as a time-averaged measure of the 

plant's water use efficiency over the lifetime of the tissue. Pate & Arthur (1998) suggested 

a novel method for measuring short-term 813C in Eucalyptus globulus by sampling nascent 

xylem tissue taken from cambium layers of the tree stem. This was proven to be a simple 

and reliable means of obtaining time-integrated, short-term measures of 813C. 

It was proposed to investigate the applicability of a short term sampling method for 813C 

analysis in M. preissiana populations occurring along a hydrological gradient. The 

temporal and spatial variations in water availability experienced by Swan Coastal Plain 

wetlands are factors causing the heterogeneity in the distribution of M. preissiana 

individuals. By assessing the differences in short term 813C of populations of M. preissiana, 

it can be understood how seasonal fluctuations in water availability affect the water use 

efficiency of individuals located in different positions within the landscape. 

There is a paucity of literature available on the physiological response of fringing tree 

species to variations in water availability in the southwest of Western Australia. Therefore, 

the objective of this study aimed at assessing the applicability of short-term 813C 

measurements in understanding the water use efficiency of natural populations of M. 
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preissiana in a wetland environment. Specific research objectives were as follows: 

i. Identify whether a hydrological gradient of water availability exist within wetlands; 

ii. Investigate the variations in short-term measures of 813C in M. preissiana individuals 

along a hydrological gradient; 

iii. Investigate the variations in short-term measures of 813C in M. preissiana individuals 

between seasons; 

iv. Examine the relationship between short-term 813C measures and instantaneous WUE of 

M. preissiana populations along a hydrological gradient; 

v. Identify the external factors (other than water availability) that influence short-term 

813C in natural M. preissiana populations. 
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4.2 MATERIALS AND METHODS 

4.2.1 Field Sampling Design 

At the three study wetlands : Banganup, Thomsons and Jandabup Lakes, three transects 

were marked in various positions in order to sample the variability occurring throughout the 

sites . Transects were of various lengths , ranging from 50m to 200m, each starting from the 

water' s edge and extending radially toward the dryland vegetation . A total of nine M. 

preissiana trees were selected at each wetland, with three located along each of the three 

transects . These were labelled A, B and C .  Tree A was located on the lower slope and 

closest to the water' s edge. Tree B was located mid-slope, and Tree C was located on the 

upper slope with furthermost distance from the lake (Figure 4 . 1 ) .  

WET DRY 
._ _ _ _  !!Yslrolqgj.cal Gradient _ _ _ _  

..,.. 

Tree Tree 
B C Transect 1 

,_· .;;;.A.;;......��B---��---C.a;;;..... Transect 2 

B Transect 3 

Figure 4 .1 :  Field Sampling Design showing hydrological gradient, transect and tree positions. Trees 
located on the lower slope (A. position) were assumed to have highest relative water availability, and 
trees on the mid and upper slopes (B and C positions) had moderate and lowest relative water 
availability respectively. 

Each transect represented an assumed hydrological gradient, with the trees located on the 

58 

C 



lower slope (A position) located in the area of highest relative water availability, the trees 

located on the mid slope (B position) located in an area of moderate water availability and 

the trees located on the upper slope (C position) located in the area of lowest relative water 

availability. The position of transects at Banganup, Thomsons and Jandabup Lakes is 

shown in the aerial photographs in Plates 4. 1 ,  4.2 and 4.3 respectively. Effort was made to 

spread transect locations throughout the fringing wetland environment in order to sample 

the variations in 813C throughout the entire wetland. For Banganup Lake, the bands of M. 

preissiana occurred continuously around the north, east and south margins, making it 

possible to do so adequately. At Thomsons Lake and Lake Jandabup, the occurrence of M. 

preissiana populations suitable for this study were limited in comparison to Banganup 

Lake, and therefore transect location could not adequately cover the expanse of the lake 

margins. The small area of remnant vegetation surrounding Lake Jandabup meant that the 

location of the three transects were within 200m of each other. 

Trees were selected on the basis being of good health and where possible, trees of the same 

size/age were selected at each wetland. Tree height, diameter at breast height (DBH) and 

vigour (based on the crown classification scale procedure shown in Figure 4.2 (Ladd, 

1994)) were measured. The trees were used as subjects for sampling, with each tree 

sampled for time-integrated, short term 813C measurements of nascent xylem tissue. 

59 



. Plate 4. Jl :  Aerial pho tograph ,of Banganup Lake. 
umbers refer to Eot:ation er the tltree traruects. ScaJe 

1 : 5000. Photograpb taken in February 2-000. Source: 
Department of Land Adminish"ation .. 

Plate 4.2 : Aerial ph-0tograph or Thommo.os Lak e. N umbetrS 
refer to location ,of the three transttts. Scale I: H), 00(11. 
Photograph taken in Febmary 2-000. StJurce: Department of 
Land Administration. 

Plate 4.3: Aerial photo:g;raph of Lake Jandabup . 
Numbers refer to location or the th ree transeds. Scale 
1 :  rn OOO. Photograph taken in January 19'99. Source: 
Department or Land Administration. 
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Figure 4.2 : Crown Assessment Procedure used to determine tree vigour. The assessment was based on 
observations of crown density, dead branches and epicormic growth. Trees were given a vigour score 
from 3-23, where a score of 23 indicated high vigour. Adapted from Ladd (1994). 
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4.2.2 Time-Integrated, Short Term 0 13C Measurements 

4 .2 . 2 .  l Nascent Xylem Tissue Sampl ing 

The methods for sampl i ng xy lem t i ssue fol lowed those out l ined by Pate & Arthur ( 1 998)  

and were s im i lar to tho · e  used in  the g lasshouse experiment (Chapter 2 ) .  Recent ly formed 

xylem t issue located d i rec t l y  under the cambium of the t ree contained a o 1 3C s ignature 

reflec t i ng the env i ronmental cond i t ions experienced by the plant over the past month. Trees 

at each of the three study s i tes were sampled for their 0 1 3C signature using this method 

three times during  the year ( i n  Apri l ,  June and August) to account for seasonal variations .  

In each tree ,  a square wi ndow of bark approx imately 1 0cm x 1 0cm in  area was removed at 

breast height ( 1 . 3m) to j ust beneath cambium level .  The thin ,  ge l at inous layers of recent ly 

formed xylem tissue were scraped off and col lec ted i n to v ia l s  contain ing 80% ethanol . This 

process is pictured in Plate 4.4. 

Plate 4.4 : Photographs showing the technique used for sampling nascent xylem tissue from M. 
preissia11a individuals. A 1 0cm square piece of bark was removed to cambium level (A). Using a razor 
blade, the thin, gelati nous layer of recently formed xylem tissue was removed and collected i nto vials 
contai ning 80 % ethanol solution ( B). Samples were dried and analysed for 6°C. This method was based 
on the tech nfr1ue outlined by Pate & A rthur ( 1 998). 
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The xylem tissue was washed with 80% ethanol solution three times over three weeks to 

remove contaminating solutes and resins which may alter the 813C of the wood. The 

remaining insoluble residue was oven dried at 75°C for 48 hours and subjected to 813C 

analysis. 

4.2.2.2 Cellulose Extraction 

Wood is comprised of three main components: lignin, cellulose and hernicellulose (Rowell, 

1984). These components exist in wood in different proportions, depending on the number 

of biochemical reactions occurring within the plant. It is assumed that the number of 

reactions is positively correlated with the extent of discrimination between 12C and 13C (i.e. 

the greater the number of reactions, the greater the discrimination). The formation of 

cellulose during photosynthesis requires fewer reactions than those required for the 

formation of lignin and hernicellulose. For this reason, the 813C of cellulose is similar to the 

813C of the whole plant (MacFarlane et ql, 1999). The 813C of hemicellullose in wood 

differs from that of cellulose by ±1 .5%0, while lignin is 2 -4%o lighter than cellulose. The 

ratio of lignin to cellulose has been found to vary within a single plant, both radially and 

vertically along the stern (Wilson & Grinsted, 1977). The lignin-to-cellulose ratio also 

varies within an individual growth ring, with the early wood containing a higher proportion 

of lignin, and therefore being isotopically heavier, than the late wood (Wilson & Grinsted, 

1977). By analysing the 813C of only cellulose, these variations are minimised. 
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Nascent xylem tissue collected from the first sampling period (April, 2000) was treated to 

extract the cellulose from the whole wood for 813C analysis. The 813C signatures of the 

cellulose samples were compared to the 813C from the same, untreated sample of whole 

wood to determine whether the procedure was necessary. The methods for extracting the 

cellulose from the samples in this study followed the modified diglyme-HCl procedure 

introduced in McFarlane et al (1999). Following sample collection, wood samples were 

weighed, and treated to extract crude cellulose from whole wood. The resulting residue 

after extraction consisted of crude cellulose, which was subjected to 813C analysis. 

Comparisons were made to compare the 813C signatures of whole wood and cellulose from 

the same sample using the Pearson correlation coefficient. If a significant correlation 

(p<0.05) existed between the 813C value of whole wood and cellulose, it was deemed 

unnecessary to extract the cellulose from the remaining samples, as the 813C of crude 

cellulose would not be significantly different to that of whole wood. 

4.2.2.3 813C Analysis 

The process of analysing samples for 813C follow that outlined in Chapter 2. 813C 

signatures were expressed in parts per thousand (%0). 

4.2.3 Instantaneous WUE Measurements 

Instantaneous gas exchange measurements for each tree at Banganup Lake were conducted 

once per week for the four weeks prior to sampling nascent xylem tissue, in order to 
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compare values to the monthly integrated 01 3C value. IRGA equipment was used to 

measure the leaf photosynthesis rate (A µmol m·2s· 1 ) ,  transpiration rate (E mol m·2s·1 ) ,  

stomata! conductance (gs mol m·2s- 1 ) and intercellular carbon level (C; µmol mor 1
) by 

sampling intact foliar exposed to sunlight. Foliage from each tree was sampled three times 

and an average for each tree calculated. WUE was measured using the ratio A/E, or the ratio 

of net photosynthesis to transpiration (Laj tha & Marshall , 1 994) . Measurements were 

conducted in sunny conditions, during mid-morning (between 10am and 1 1am). 

4.2.4 Water Availability 

To relate the 8 13C signatures of the nascent xylem tissue to the tree ' s  water availability, it 

was necessary to collect data from different variables such as meteorological parameters 

and lake water levels .  This involved collecting water level monitoring data for the twelve 

months from September 1999 to August 2000 from the Water and Rivers Commission for 

each wetland. Lake surf ace water level monitoring data were collected from staff gauges 

and groundwater level data collected fro� near-by monitoring bores . These data provided 

information regarding the water availability at the site level during the latter half of 1999 

and during 2000. 

Additionally, the meteorological data for the Perth region from September 1 999 to August 

2000 were collected from the Bureau of Meteorology. These data included the total 

monthly rainfall and mean monthly maximum temperature. The truncated period of 

sampling for water availability from 1999-2000 was carried out in order to understand the 
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fluctuations that occurred over a 12-month period, and to account for variations in xylem 

tissue 813C that may have been a result of changes in water availability occurring during the 

latter half of 1999. 

In order to examine the water availability at the individual tree scale, the depth to 

groundwater next to each tree was measured by augering to the top of the underlying, 

unconfined aquifer. At Lake Jandabup, where all trees were located in close proximity to 

one another due to the small area of remnant bushland, augering occurred adjacently to the 

trees in transect 1 only. These data were extrapolated to incorporate the depth to 

groundwater of trees from transects 2 and 3. An elevational gradient was measured using 

theodolite equipment in order to depict the slope of the land's surface in relationship to the 

water table below, in metres Australian Height Datum (ARD). Using a period of seven 

years (from 1993-2000 because this was the minimum period of time that groundwater was 

monitored for between the three sites), mean water table levels, minimum water table levels 

and maximum water table levels were calculated for each transect. Mean water levels were 

calculated by averaging the monthly groundwater readings for the seven-year period. 

Minimum water levels were calculated by averaging the groundwater readings taken during 

the dry season of each year (March, April and May). Maximum water levels were 

calculated by averaging the groundwater readings taken during the wet season of each year 

(August, September and October). The values were calculated in accordance to current 

groundwater levels (taken by augering) by constructing elevational gradient diagrams for 

each transect at each site showing the extremes in groundwater level changes experienced 

by the trees occurring along the transect. 
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To investigate the combination of water availability parameters measured on a monthly 

basis over 2000, a water availability index (WAI) was derived, which combined total 

rainfall, mean maximum temperature, mean relative humidity, mean lake levels and mean 

groundwater levels for each tree dming each sampling period. The methodology used to 

derive the index is detailed in chapter 5, where it was used to investigate historical water 

availability on an annual basis. The same method was applied, however, monthly values 

were calculated rather than annual values. 

4.2.5 Data Analysis 

The o13C signatures measured for each tree during each sampling period were descriptively 

analysed and illustrated graphically in order to display any differences occurring in o13C of 

trees between transect positions and between sampling periods. Results were statistically 

analysed using SPSS Version 10.0 to perform two-way repeated measures analysis of 

variance (ANOV A) where p=0.05. Differences in the xylem tissue o13C of M. preissiana 

populations at each wetland were tested between transect positions, and between sampling 

periods. The Bonferroni test was applied to make post hoe comparisons where significant 

relationships existed. Before all analyses, Levene's test for equality of variances and 

Mauchly's Test of Sphe1icity were conducted to test for the relevant assumptions, and 

appropriate data transformations were made if necessary. Gas exchange results obtained 

from IRGA measurements were coi:related with o13C using Pearson's correlation coefficient 

in order to assess whether a significant relationship (p<0.05) between the two existed. The 
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distance to groundwater and water availability index were also correlated with 813C for 

each tree during the months that sampling took place. Comparisons were not made between 

wetlands. This is because it was unlikely that the sampled hydrological gradients were 

consistent between the three wetlands. 
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4 .3  RESULTS 

4.3.1 Transect location 

4 .3 . 1 . 1  Banganup Lake 

The M. preissiana trees selected for this study in the "A" position (located closest to the 

water ' s  edge) were relatively smaller than the "B" and "C" trees located further upslope. 

Table 4 . 1  presents the size pattern at Banganup Lake, with the trees in A position being the 

shortestin height, trees on the mid slope being tallest, and the height of trees on the upper 

slope in C position lying between the two. Tree B in transect 1 was recorded as particularly 

tall , reaching over 21m in height, which exceeds all height descriptions for this species 

(Seddon, 1972;  Marchant et al, 1987 ;  Froend et al, 1993). In terms of tree diameter (DBH), 

it was found that trees in the C position were largest in diameter, followed by the trees in B 

position, then the trees located on the lower slope. 

Table 4.1 : Height, DBH and Vigour of study trees at Banganup Lake. Diameter was measured at breast 
height (1.3m). Where multiple stems were pr�sent, diameter was recorded from the largest stem. 
Vigour measurements were based on the crown classification technique outlined by Ladd (1996). Trees 
labelled according to lake, transect number and transect position. 

Tree Height DBH Number Vigour score 
(m) (cm) Stems (3 - 23) 

Transect 1 '  BLla 1 1 .26 1 5 .9 1 14 
BLlb 2 1 .23 36.4 1 17 
BLlc 13 .52 74 1 14 

Transect 2 BL2a 8 .602 12 .8  1 1 8  
BL2b 15 . 88  35 . 8  1 17 
BL2c 15 .36 58 :75 1 12  

Transect 3 BL3a 6 .26 1 3 . 6  1 16  
BL3b 1 1 .6 25 .6  1 17 
BL3c 8 .09 3 1 .3 1 14 

69 



Vigour scores of the trees ·within the sampling population remained relatively constant, 

ranging from 12 (tree 2c) to 1 8  (tree 2a) . 

4 .3 . 1 .2 Thomsons Lake 

Tree heights at Thomsons Lake were generally found to be shorter than the trees at 

Banganup Lake in all transect positions . Trees in position C appeared to be tallest at the 

lake, with the height of tree l e  being 1 1 . 1 3m (Table 4 .2). In terms of tree diameter, the 

trees located furthermost from the water' s edge (position C), were larger than the trees 

located downslope in both B and A positions . 

Table 4.2: Height, DBH and Vigour of study trees at Thomsons Lake. Diameter was measured at breast 
height (1.3m:). Where multiple stems were present, diameter was recorded from the largest stem. 
Vigour measurements were based on the crown classification technique outlined by Ladd (1996). Trees 
labelled according to lake, transect number and transect position. 

Tree Height DBH Number Vigour score 
(m) (cm) Stems (3 · 23) 

Transect 1 TLl a  3 . 9 1  15 .85 1 1 3  
TLlb 4 .47 19 . 8  1 17 
TLlc 4 .85 37 .5  1 10  

Transect 2 TL2a 5 .24 23 .5 1 1 8  
TL2b 7 . 12 15 . 5  1 15  
TL2c 8 .55 46 1 1 9  

Transect 3 TL3a 5 . 64 34.5 3 1 8  
TL3b 5 .05 1 8  3 12 
TL3c 1 1 . 1 3  48 1 10  

The vigour of individuals varied, with trees le and 3c having low vigour scores of 10  out of 

a possible 23 . All trees were single-stemmed with the exceptions of trees A and B from 

transect 3 ,  which were both triple-stemmed. 
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4.3 . 1 .3 Jandabup Lake 

Tree heights at Jandabup Lake were the shortest of the three wetlands , with tree heights 

ranging from 3m (tree 2a) to 9 . lm (tree l e) (Table 4 .3) .  Diameters ranged from 20.5cm 

(tree 2a) to 55 .5cm (tree le) .  Tree vigour remained fairly constant between transect 

positions .  All trees in Transect 1 were multiple stemmed (with tree lb having 8 stems at 

breast height), while transect 2 and 3 contained all single-stemmed trees . 

Table 4.3: Height, Diameter and Vigour of study trees at Lake Jandabup. Diameter was measured at 
breast height (1.3m). Where multiple stems were present, diameter was recorded from the largest stem. 
Vigour measurements were based on the crown classification technique outlined by Ladd (1996). Trees 
labelled according to lake, transect number and transect position. 

Tree Height DBH 
(m) (cm) 

Transect 1 JLla  5 .4 2 1  
JLlb 6 .3 22 
JLlc  9 . 1  55 .5 

Transect 2 JL2a 3 20.5 
JL2b 3 . 8  25 
JL2c 6 .7 46 

Transect 3 JL3a  3 . 1  22 
JL3b 6.5 39 
JL3c  7 . 1  34.25 

4.3.2 Hydrological Gradients along Transects 

4 .3 .2 . 1 Banganup Lake 

Number Vigour score 
Stems (3 - 23) 

2 1 3  
8 17  
2 1 6  

1 17  
l 15  
1 14 

1 1 6  
1 1 9  
1 14  

By calculating the mean, average minimum and average maximum groundwater levels 

experienced at Banganup Lake (based on monitoring data from 1993-2000), it was found 

that there existed an annual 0 .93m range in groundwater levels .  For all three transects , the 
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mean groundwater level was found to lie directly below (less than O. lm) the level augered 

to in July 2000, indicating that at the time of augering, groundwater levels had only just 

risen above the mean level . Figures 4 . 3 ,  4.4 and 4 . 5  show the elevational diagrams of 

transects 1 ,  2 and 3 respectively at Banganup Lake. The three positions A, B and C are 

described below in terms of annual groundwater fluctuations . 

The combination of groundwater levels measured in 2000 and the monthly groundwater 

data monitored from a nearby bore during 1 993-2000, showed that the trees located on the 

lower slope (A position) were of shallowest depth to groundwater. The three A trees 

experienced a mean annual depth to groundwater ranging from 0.45m and 0 .5m. Maximum 

groundwater levels were reached during August-October and rose to ground level . 

Minimum levels dropped approximately 0 .9m under ground during March-May. 

The trees located on the mid slope ranged in depths to groundwater from an average of 

1 .3m to 1 .6m annually. Groundwater rose to a maximum depth during the winter months 

from 0 . 8m to 1 .2m below ground, and dropped to a depth between 1 .7m and 2 . lm. 

The C trees positioned on the upper slope were located with furthermost distance from the 

lake ' s  edge. These trees were elevated between 2 to 4m above the trees located on the mid 

and upper slopes . On average, the annual depth to groundwater for the C trees ranged from 

2.9m (tree 2c) to 4 .4m (tree le) .  Maximum levels rose to depths between 2 .5m and 3 .9m, 

and minimum levels dropped to depths between 3 .4m atid 4 . 8m below ground. 
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Figure 4.3 : Elevational Gradient of Transect 1, Banganup Lake, showing position of trees along 
transect and depth to groundwater. Dotted line refers to water levels taken during July 2000. Mean 
levels were calculated from monitoring data taken from bore LBl during the period 1993 to 2000. 
Minimum water levels refer to the mean taken from the dry season each year (March, April, May) ; 
Maximum water levels refer to the mean taken from the wet season each year during this period 
(August, September, October). Trees not pictured to scale. 

1 7  

1 6  

1 5  
c BL2A 
:c 

1 4  
--
C 

� 1 3  
iii -- • " " • • • • 
jjj 

1 2  

1 1  

1 0  

-5 5 1 5  25 

• • • • •  • !!I • • 
t 

Dotted line refers to 

w ater level taken 

during July 2000 

35 45 55 

Dis tance (m)  

- II 

Min Level 

• • • 

BL2C 

._ Mean 

Level 

I\Aax Level 

65 75 

Figure 4.4: Elevational Gradient of Transect 2, Banganup Lake, showing position of trees along 
transect and depth to groundwater. Dotted line refers to water levels taken during July 2000. Mean 
levels were calculated from monitoring data taken from bore LB1 during the period 1993 to 2000. 
Minimum water levels refer to the mean taken from the dry season each year (March, April, May) ; 
Maximum water levels refer to the mean taken from the wet season each year during this period 
(August, September, October). Trees not pictured to scale. 
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Figure 4.5: Elevational Gradient of Transect 3, Banganup Lake, showing position of trees along 
transect and depth to groundwater. Dotted line refers to water levels taken during July 2000. Mean 
levels were calculated from monitoring data taken from bore LBl during the period 1993 to 2000. 
Minimum water levels refer to the mean taken from the dry season each year (March, April, May); 
Maximum water levels refer to the mean taken from the wet season each year during this period 
(August, September, October). Trees not pictured to scale. 

4.3 .2 .2  Thomsons Lake 

It was found that groundwater levels for Thomsons Lake had an annual range of 0 .58m, 

with maximum levels occurring during September-November and minimum levels 

occurring from March-May (Figures 4.6-4 .8) .  The groundwater level measured during July 

2000 at each tree was 0 .04m below the average minimum groundwater level expected, 

indicating that groundwater levels in July 2000 were fairly low in comparison to the 

expected levels calculated from the period 1993-2000. This may be due to the rapid 

decrease in groundwater levels during this period (Chapter 5, Figure 5 . 9) .  In terms of depth 

to groundwater and inundation period experienced by the trees at Thomsons Lake, the 

conditions were somewhat "wetter" than those experienced at Banganup Lake. 
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Figure 4.6: Elevational Gradient of Transect 1 ,  Thomsons Lake, showing position of trees along 
transect and depth to groundwater. Dotted line refers to water levels taken during July 2000. Mean 
levels were calculated from monitoring data taken from bore TMlOC during the period 1993 to 2000. 
Minimum water levels refer to the mean taken from the dry season each year (March, April, May); 
Maximum water levels refer to the mean taken from · the wet season each year during this period 
(September, October, November). Trees not pictured to scale. 
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Figure 4.8: Elevational Gradient of Transect 3, Thomsons Lake, showing position of trees along 
transect and depth to groundwater. Dotted line refers to water levels taken during July 2000. Mean 
levels were calculated from monitoring data taken from bore TMlOC during the period 1993 to 2000. 
Minimum water levels refer to the mean taken from the dry season each year (March, April, May); 
Maximum water levels refer to the mean taken from the wet season each year during this period 
(September, October, November). Trees not pictured to scale. 

The trees located on the lower slope experienced seasonal inundation, based on the data 

monitored from a nearby bore during 1 993-2000. Tree l a  experienced groundwater rising 

to 0.34m above ground on average, and Tree 2a experienced a mean depth to groundwater 

of 0 . 14m above the land' s  surface.  During the winter months., inundation occurred, with 

levels rising between 0.4 1m and 0 .6 1m, and the drier months saw groundwater dropping, 

with trees l a  and 3a remaining slightly inundated, and tree 2a experiencing groundwater 

levels dropping to 0. 16m below ground. 

The trees located on the mid slope at Thomsons Lake experienced a range in the depth to 

groundwater and inundation period. Tree lb inundated seasonally, with annual depths to 

groundwater rising to 0 . 1 lm above ground during the winter months , and falling to 0.47m 

underground in summer. Tree 2b experienced the driest condition of the trees at this 
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position, with a mean depth to groundwater being 1 . 58m underground, and depths ranging 

from 1 .23m to 1 . 8 1m annually. The annual groundwater regime at tree 3b fell between trees 

lb and 2b, with the mean depth to groundwater being 0.34m below ground. 

The trees in the C position at Thomsons Lake also experienced a variety of annual 

groundwater regimes. The annual depth to groundwater at tree le ranged from 0.59m to 

1 . 1 6m, at tree 2c the annual water level ranged from 2.69m to 3 .26m below ground and at 

3c ,  the range in water levels fell between 0 .7m and 1 . 2m below ground. Despite the high 

variations in depth to groundwater experienced by the replicate trees within transect 

positions at Thomsons Lake, comparisons between different transect positions were made 

by taking average values of the replicates , in order to reduce the effects of this variation. 

4 .3 .2 .3 Lake Jandabup 

Due to the small area of remnant terrestrial vegetation existing at Lake J andabup, 

groundwater levels were measured at transect 1 trees only, and data relating to groundwater 

levels were extrapolated to include all trees . Physical measurements to the groundwater at 

Lake Jandabup were impossible to make due to the layer of hard pan rock intercepting the 

auger before the water table was reached. For this reason, the depths to groundwater were 

estimated by using the data from a near by bore, and assuming that the water table levels 

measured remained constant throughout the landscape. This method found that the average 

range in annual groundwater levels at Lake Jandabup (from 1993-2000) was 0 . 8m, with 

minimum water levels occurring from March-May and maximum levels occurring from 

September-November (Figure 4.9) .  
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Figure 4.9: Combined Elevational Gradient based on  measurements taken from Transect 1 ,  Lake 
Jandabup, showing position of all trees along gradient and depth to groundwater. Dotted line refers to 
layer of hard pan rock measured during July 2000. Mean levels were calculated from monitoring data 
taken from bore JB12A during the period 1993 to 2000. Minimum water levels refer to the mean 
taken from the dry season each year (March, April, May) ; Maximum water levels refer to the mean 
taken from the wet season each year during this period (September, October, November). Trees not 
pictured to scale. 

Figure 4.9 shows that the nine study trees occurred along the hydrological gradient in four 

apparent "patches". Trees 2a and 3a  occurred closest to the water' s edge, with mean depths 

estimated at being between O. lm and 0.2m below ground. At maximum, these trees were 

inundated with groundwater, with levels ri�ing from 0.2-0 .4m above the sutface. Minimum 

levels were found to fall from 0.4m-0.6m below ground. The second patch of trees located 

on a similar elevation were trees l a  and 3b. Tree la was found to lie approximately 0.9m 

above the water table on average, with levels rising to 0 .45m below ground in the wet 

season and falling below 1 .2m underground in the dry season. It is predicted that tree 3b 

experienced similar conditions to this . Trees lb, 2b, and 3c were located further along the 

gradient. The annual groundwater level averaged 2. lm below ground for tree lb .  Levels 

were predicted to rise in the wet season to 1 .6m under ground, and fall in the dry season to 
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2.4m below ground. It was assumed that trees 2b and 3c also experienced this groundwater 

levels regime. Trees le and 2c were located the furthermost away from the water's edge, 

with le elevated 2.8m above lb. Groundwater levels were 4.9m below the land surface in 

this position, with the dry season seeing the water table drop to 5.2m below ground, and 

rise to 4.4m below ground in the wet season. 

4.3.3 Water Availability in 2000 

4.3.3.1 Climate 

Total monthly rainfall and mean maximum monthly temperature were calculated for the 12-

month period between September 1999 - August 2000, as this was the likely period to 

affect the 813C signature obtained from samples of nascent xylem tissue. From September 

1999 to August 2000, Perth's average monthly maximum temperature remained fairly 

similar to that of the mean temperature expected for that month. Figure 4.10 shows that 

only in November and December 1999 did the temperature increase considerably above the 

mean. The monthly rainfall received during this period did deviate from the mean, with 

January receiving 102.4mm of rain compared to the average level of 9.2mm. July also 

received more rainfall than expected, totalling 231mm compared to the average of 161mm. 
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Figure 4.10: Perth's total monthly rainfall and mean maximum temperature, September 1999 · August 
2000. Monthly averages are included, based on data between 1944 · 2000. 

4.3 . 3 .2  Hydrology 

4.3. 3 .2 . 1 Banganup Lake 

From September 1999 to June 2000, Banganup Lake remained dry with water levels never 

exceeding the lake bed. July 2000 saw a small rise in lake levels with the lake inundating to 

a depth of 0.08m (Chapter 5, Figure 5 .4). The decreasing trend in groundwater levels at 

Banganup Lake since 1993 saw October 1 999 peaking at 12 . 59mAHD, which was 0 .7m 

lower than levels in October 1994. However, 2000 saw a rise in groundwater levels, with 

levels rising to 1 2.78mAHD in August (Chapter 5, Figure 5 .6) . 

4.3 .3.2 .2 Thomsons Lake 

The surface water monitoring data was available until February 2000, and these data show 
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that Thomsons Lake was dry from September 1999 to February 2000 (Chapter 5, Figure 

5.7). Groundwater levels reached a maximum in 1999 during November, peaking at 

12.44mAHD. Levels declined to 11.48mAHD in May 2000, and then rose in June 2000. 

Lake levels would be expected to peak during September to November 2000 

4.3.3.2.3 Lake Jandabup 

January 2000 saw surface lake levels dropping to a minimum for the 1999/2000 dry season 

of 44.3mAHD. The water depth during this period remained just below 0.5m, which was 

relatively high compared to the previous year where the lake filled to just 0.24m in 

February (Chapter 5, Figure 5.1). Lake levels filled gradually until August, after which 

depths rose rapidly to over lm. Groundwater levels did not rise until July 2000. 

4.3.4 Time-Integrated, Short Term 013C Measurements from Nascent Xylem Tissue 

The preliminary trial of extracting cellulose from whole wood samples of xylem tissue 

occurred using the samples taken in April 2000. It was found that a strong, positive 

correlation existed between the o13C of whole wood and the o13C of the same sample 

consisting of crude cellulose (Figure 4.11 ). This strong relationship has been demonstrated 

in other studies (e.g. Livingston & Spittlehouse, 1996; Macfarlane et al, 1999; Warren & 

Adams, 2000) and indicates that reliable data can be obtained from whole wood samples 

for M. preissiana. For this reason, all subsequent o13C analyses of nascent xylem tissue 

were performed on whole wood. 
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Figure 4.11 : Scattergraph of 613C of cellulose versus 613C of whole wood of M. preissiana (including line 
of best fit) taken from nascent xylem tissue sampled during April 2000. Each value represents a value 
taken from a single sample. Points represent trees from the three wetlands. A significant correlation (r 
= 0.87) existed between whole wood and cellulose o13C. 

4 .3 .4 . 1 Transect position, month and 813C 

4. 3.4. 1 . 1 Banganup Lake 

The mean 81 3C signatures of trees at all sites appeared to become more negative from 

position C (with greatest distance from the lake ' s  edge) to position A (closest to the lake ' s  

edge) and from April to  August. Banganup Lake best exhibited these trends (Figure 4 . 12) .  

In April, there was little difference in  81 3C between transect positions, however, trees in  the 

"A" position displayed the most negative xylem tissue 813C values averaging -25 .60%0, and 

C trees displayed the most positive signatures averaging -24.32%0. In June, these 

differences between positions became more pronounced, with the C trees showing little 

change in 813C,  however the B and A trees decreasing in 8 13C, averaging -25 .57%0 and -

26 .58%0 respectively. In August, the mean 8 13C of all trees decreased more so, 
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con-esponding to the increase in rainfall during August .  
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Figure 4.12: Mean 013C and standard error of nascent xylem tissue at Banganup Lake during 2000. 
Line graph shows mean changes in o13C from April-June-August according to transect position. 

Two-way analysis of variance ,  which investigated the effect of month and transect position 

on 81 3C of the M. preissiana population at Banganup Lake, found that both factors 

significantly affected nascent xylem tissue 813C (Table 4.4) . The Bonfen-oni post-hoe test 

proved that this difference existed between the trees located on the lower slope (position C) 

Table 4.4: Results of repeated measures ANOVA testing differences in M. preissia11a c513C between 
months and transect position at Banganup Lake. Two-way ANOVA was conducted to test for the 
overall effects of month and position on o13C. Month*Position refers to the interaction between the two 
factors. 

Factor 
Month 

error 

Posit ion 
error 

Two-way repeated measures ANOVA 
Differences in o13C between time and transect position 

d.f. Mean Square F-Value P-Value 
2 7.640 . 1 6 .888 <0.0 1  
1 2  0 .452 

2 1 3 .077 6.378 0.033 
6 2 .050 

Month*Posit ion 4 0.774 1 .7 1 1 0.2 1 2 
NS Not stat istical ly  s ign if icant (p>0.05) 
* Statistical ly  s ignif icant (p<0.05) 

* 

* 

NS 

and the upper slope (position A)  and between the month of  August with April and June 

(p<0.05) .  There was .no significant interaction between the two, and therefore it could be 
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concluded that these factors were independently affecting the 813C signatures of the M. 

preissiana population at Banganup Lake. The Bonferroni post hoe test confirmed that these 

differences occurred between the months of April and August and June and August, with 

the 813C values of the trees being significantly lower in August. There was no significant 

difference between xylem tissue 813C in April and June. Differences in 813C between 

transect positions existed between positions A and C, with the trees located on the upper 

slope being isotopically heavier than those on the lower slopes. 

4.3.4.1.2 Thomsons Lake 

Thomsons Lake reflected similar differences in xylem tissue 813C of M. preissiana to those 

observed at Banganup Lake. Figure 4 . 13  shows that there was a general decrease in 813C 

from April .to August by trees from all positions. Similarly to Banganup Lake, C trees did 

not show a high degree of change between April and June (in contrast 813C increased 

during this period), however, as the wet season progressed between June and August, 813C 

became more negative. The 813C activity of the M. preissiana trees in the B position at 

Thomsons Lake was of particular interest. In April, the mean 813C of the trees in this 

"central" B position was similar to that of the C trees located further most from the water's 

edge. These trees were more than 1 .2%0 heavier than the A trees . In comparison, in August 

when water availability was higher, the mean 813C signature of the B trees was more similar 

to that of the A trees located closest to the water's  edge. A and B trees during August were 

found to be more than 2.7%0 more negative than the C trees . 

84 



-24 
0 
0 -+- A  
3:: -25 a, -l3- B  

-ts:- C  == 

l 
-26 

-27 

-28 
April June August 

Month 

Figure 4.13: Mean 813C and standard error of nascent xylem tissue at Thomsons Lake during 2000. 
Line graph shows mean changes in 813C from April-June-August according to transect position. 

Two-way analysis of variance showed that as with Banganup Lake, transect position and 

month both influenced independent, significant responses in xylem tissue 813C at Thomsons 

Lake (Table 4 .5) .  The Bonferroni post-hoe test revealed that these differences existed 

between the months of April and August, where 813C was significantly higher in April 

(p<0.05) .  In terms of transect position, the trees located on the A position were less 

depleted in 813C than those on the C position, where water availability was lower (p<0.05) .  

Table 4.5 : Results of repeated measures ANOVA testing differences in M. preissiana 813C between 
months and transect position at Thomsons Lake. Two-way ANOVA was conducted to test for the 
overall effects of month and position on 813C. Month*Position refers to the interaction between the two 
factors. 

Factor 
Month 

error 

Posit ion 
error 

Two-way repeated measures ANOVA 
Differences in 813C between time and transect position 

d.f. Mean Square F-Value P-Value 
2 3 .541 5 .434 0 .02 1  
1 2  0 .652 

2 8 .545 9 .897 0 .01 3 
6 0 .863 

Month*Posit ion 4 0.997 1 .530 0 .255 
NS  Not statistical ly  s ign ificant (p>0.05) 

Stat istical ly s ign if icant (p<0.05) 
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4.3.4. 1 . 3  Jandabup Lake 

The results obtained from the 8 13C of nascent xylem tissue at Lake Jandabup also reflected 

the trends found at Banganup and Thomsons Lakes . From April to August, the 813C of trees 

at the three transect positions became more negative as water availability at the sites 

increased (Figure 4 . 14) . June and August showed the most prominent variations, with the A 

trees being more depleted in 013c than the B trees ,  which in tum were more depleted than 

the C trees . 
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Figure 4.14: Mean 613C and standard error of nascent xylem tissue at Lake Jandabup during 2000. 
Line graph shows mean changes in 613C from April-June-August according to transect position. 

Two-way analysis of variance proved that a significant difference in 813C of the M. 

preissiana population at Lake Jandabup existed between months ,  however there was no 

significant change in 813C between positions along the hydrological gradient (Table 4.6) .  

The Bonferroni post hoe test confirmed that this difference existed from April to August 

and from June to August, with the 8 13C signatures of the M. preissiana population at Lake 

Jandabup being significantly higher in April and June than in August. The 813C signatures 

obtained from Lake Jandabup for all trees appeared to be more negative than those obtained 

from the other two wetlands, with mean 813C signatures never exceeding -26%0. 
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Table 4.6: Results · of repeated measures ANO VA testing differences in M. preissiana 613C between 
months and transect position at Lake Jandabup. Two-way ANOVA was conducted to test for the 
overall effects of month and position on o13C. Month*Position refers to the interaction between the two 
factors. 

Two-way repeated measures ANOVA 
Differences in 813C between time and transect position 

Factor d .f. Mean Square F-Value 
Month 2 5. 1 1 8  1 1 .4 1 8 

error 1 2  0.448 

Position 2 5 .871 1 .646 
error 6 3.546 

Month*Position 4 1 . 1 1 1  2 .477 

NS Not statistical ly s ign ificant (p>0.05) 
* Stat istical ly s ign ificant (p<0.05) 

4.3 .4.2 813C and Instantaneous Water Use Efficiency 

P-Value 
0.002 

0.268 

0 . 1  

* 

NS 

NS 

Gas exchange measures were carried out for the month prior to both the June and August 

sampling for 813C at Banganup Lake. The weekly measurements made during these months 

were averaged in order to relate directly with the month-averaged 813C signature obtained 

from the same tree. For the five gas exchange measurements (A, E, C;, gs , A/E), the 813C of 

xylem tissue proved to be insignificantly correlated with all measures (p<0.05). For 

example, the instantaneous WUE (AIE) of M. preissiana individuals at Banganup Lake 

measured during June and August were not well correlated with the 813C of trees in the A 

position (r = 0 . 1 8 ;  p>0.05), and were negatively correlated with the 81 3C of trees in the mid 

(r = -0. 82 ;  p<0.05) and upper slopes (r = -0 . 3 1 ;  p<0.05) (Figure 4 . 1 5) .  This negative 

correlation between 8 13C and instantaneous WUE was unexpected due to the widely 

documented positive relationship existing between the two (Ehleringer & Cooper, 1988 ;  

Komer et  al ,  1 99 1 ;  Leavitt, 1 993 ; Stewart et  al, 1995 ; Le Roux, 1 996; Livingston & 
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Spittlehouse, 1996;  Berry et al, 1 997 ;  Damesin et al, 1997 ; Walcroft et al, 1997 ; 

MacFarlane & Adams, 1998 ; Pate & Arthur, 1998) . 
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Figure 4.15: Scatterplot showing the trend between instantaneous water use efficiency (AIE) and 613C of 
nascent xylem tissue for M. preissiana at Banganup Lake. Values based on measurements taken during 
June and August 2000. Correlation coefficient between WUE and "a" trees ( +) was 0.18 "b" trees (X) 
was -0.82 and "c" trees (D) was -0.31. 

4 .3 .4 .3 81 3C and Water Availability 

The water availability index, which combined winter and summer rainfall ,  humidity, 

temperature, groundwater and sutface water, was found to be negatively correlated with the 

81 3C of M. preissiana. Figure 4 . 1 6  combines the water availability index for the months 

April , June and August in 2000 with 81 3C of the trees for all sites .  It was found that there 

was a significant, negative correlation between the 813C of xylem tissue and the water 

availability index of the B trees, (r = -0. 83 ;  p<0.05) . 8 13C of trees on the lower slope (A 

position) formed a moderate (and insignificant) negative correlation (r = -0.64; p>0.05) 

with the water availability at each site .  The 813C of C trees was not significantly correlated 
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with low water availability (r = -0.32 ;  p>0.05) .  
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Figure 4.16: Scatterplot showing the relationship between seasonal xylem tissue 013C of M. preissiana at 
all sites, and the water availability index for corresponding seasons (April, June, August 2000). The 
correlation coefficient between the index and o13C of "A" trees (+) was -0.64, "B" trees (X) was -0.83 
and C trees (D) was -0.32. 

By correlating the depth to groundwater experienced by each tree at Banganup and 

Thornsons Lakes (Lake J andabup could not be correlated due to the lack of accurate 

groundwater data available for each individual tree) with its corresponding 813C signature 

obtained during April, June and August, it was found that a significant, positive 

relationship existed between the two (Banganup Lake: r = -0.76 ; p<0.05 ; Thomsons Lake: r 

= -0.7 1 ;  p<0.05) . Figure 4. 17  shows that for Banganup and Thomsons Lakes, trees with the 

greatest access to the groundwater supply (i .e . the lowest depth to groundwater) had more 

negative 81 3C values .  This is also reflective of the negative correlations existing between 

tree 81 3C and the water availability index . 
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Figure 4.17: Scatterplot showing the relationship between tree depth to groundwater and o13C of 
nascent xylem tissue of M. preissiana at Banganup ( +) and Thomsons (D) Lakes during 2000. o13C 
values represent samples taken during April, June and August 2000. Correlation coefficient between 
groundwater depth and o13C at Banganup Lake was 0.76, and at Thomsons Lake was 0.71. 

In general, these results conclude that as water availability at the sites increased spatially 

and temporally, M. preissiana discriminated more so against the heavier isotope, and 

therefore exhibited more negative, short term <513C signatures . 
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4.4 DISCUSSION 

The 813C of M. preissiana at the three wetlands on the Swan Coastal Plain were interpreted 

in association with the water availability parameters measured at the time of sampling, in 

order to understand how the species responded physiologically to changes in water 

availability in the natural environment. Additionally, this information can be used to 

determine whether the water availability of a site induced a response in terms of 

instantaneous water use efficiency, and whether this is indicative of 813C. 

4.4.1 Water availability 

The seasonal trend in water availability at Banganup Lake, Thomsons Lake and Lake 

Jandabup were similar, with water availability being highest during the latter part of winter 

and early spring, and lowest during late summer and early autumn. This is due to the 

Mediterranean climate of the Swan Coastal Plain, with the warm, dry summers and cool, 

wet winters being the principal forces determining ground and surf ace water levels (Froend 

et al, 1993). Groundwater levels reflect a two to three month lag behind cumulative rainfall. 

Therefore, recharge to the shallow, unconfined aquifer occurring during April to October 

generally sees a progressive rise in groundwater levels. Levels peak in September-October 

as a response to winter rains, and drop to a minimum during March-April due to the dry 

summer (Froend et al, 1993). Being surface expressions of the unconfined groundwater 

table, the lakes studied showed seasonal variations in surface water levels that reflected 

those of the groundwater. Banganup Lake showed seasonal drying during summer, and 
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expressed high annual variation in groundwater levels of nearly lm. Thomsons Lake also 

dried periodically, and displayed smaller annual variation in groundwater levels of 0.6m. 

This is possibly due to the fact that lake levels are cmTently managed under CALM Water 

Level Criteria in order to prevent flooding and excessive periods of drying (EPA, 1989). 

Lake Jandabup is permanently inundated and experiences annual variations in groundwater 

of approximately 0.8m. 

The water availability occurring within the wetland sites was assumed to be distributed 

along a gradient (represented by the transects), where water availability was highest in 

areas closest to the lake's margin, and lowest on the upper slope with furthermost distance 

from the lake. The depth to groundwater taken from the three positions along each transect 

supported this assumption. At Banganup Lake, the trees on the lower slope (the A position) 

became close to inundated during winter, while groundwater levels dropped lm in summer. 

Thomsons Lake saw trees on the lower slope being inundated for a majority of the year, 

and the A trees at Lake Jandabup from transects 2 and 3 also become seasonally inundated. 

Trees on the mid slope were found to experience a mean depth to groundwater ranging 

from 0.5m to 1.85m (both at Thomsons Lake), with two of the B trees at Thomsons Lake 

experiencing inundation during winter. The mean depths to groundwater for trees located 

on the upper slope (the C position) ranged from 1.2m (Thomsons Lake) to 4.3m (Banganup 

Lake). Moisture measurements were not taken from the surrounding soil of each tree, 

however, it was assumed that soil moisture increased down the soil profile to the saturated 

zone. Therefore the trees with greatest access to the groundwater supply (trees in the A 

position) would similarly have greatest access to the water contained in the soil's upper 

horizons. 
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4.4.2 Time-Integrated Short Term 613C Measurements of Nascent Xylem Tissue 

4.4.2. 1 813C variations along the hydrological gradient 

The M. preissiana individuals occurring along the water availability gradient within the 

three wetlands were also found to display a gradient in carbon isotope discrimination . The 

short-term method of sampling for c51 3c, which provided an integrated, one-month value, 

became more negative from the upper slope (C position) to the lower slope (A position) . 

That is ,  the 813C of M. preissiana decreased as water availability increased within the 

wetlands . This pattern was most pronounced at Banganup and Thomsons Lakes , where 

significant increases in 813C were noted in trees from the A to the C positions. 813C was not 

found to di�fer significantly between trees on the mid slope to those on the upper and lower 

slopes .  This decrease in 813C in areas of increasing water availability has been likewise 

documented in other studies. Ehleringer & Cooper ( 1 988) found that 613C became more 

negative in species located in microhabitats of higher water availability. Garten Jr. & 

Taylor Jr. ( 1992) similarly discovered that the 81 3C of various tree species was more 

positive in xeric sites in comparison to mesic sites , while trees along a riparian zone were 

found to discriminate against the heavier isotope more so in zones of high stream flow than 

in zones of low stream flow (Leffler & Evans , 1 999). This negative rel ationship between 

water availability and 813C has been documented by various researchers where variations in 

water availability are investigated in terms of factors such as irrigation regimes, rainfall 

gradients, climate types and habitat types (Handley et al, 1 994; Saurer et al, 1995 ;  Stewart 

et al, 1 995 ; Le Roux et al, 1 996 ;  Livingston & Spittlehouse, 1 996 ; Damesin et al, 1997 ; 
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Walcroft et al, 1997; Pate & Arthur, 1998). The theory behind this relationship is that water 

availability limits the stomata! conductance of the tree, and when water availability is low, 

there is a decrease in transpiration rates, and an overall increase in A/E or WUE (Ehleringer 

& Cooper, 1988). The decrease in stomata! control in turn, leads to reduced discrimination 

between 13C and 12C, and therefore higher, or more positive, 813C (Handley et al, 1994). 

4.4.2.2 813C variations between seasons 

The relationship between water availability and 813C within the wetland sites was also 

proven by the seasonal changes in 813C occurring over 2000. There was a trend observed at 

all lakes, where the 813C values of the M. preissiana populations decreased significantly 

from April. to August. The trees at Banganup and Jandabup Lakes also exhibited this 

significant decrease from June to August. The decrease in 813C from April to August may 

be indicative of the increase in water availability due to the onset of winter rainfall. In 

particular, Perth received above average rainfall during June 2000, which may have 

influenced the negative response in 813C of the M. preissiana populations during August. 

This seasonal pattern of 813C has similarly been found by other researchers, where 813C is 

most negative during the growth period when water availability is highest, and is most 

positive during the hot, dry summer-autumn period (Leavitt & Long, 1986; Livingston & 

Spittlehouse, 1996; Walcroft et al, 1997; Macfarlane & Adams, 1998). This annual trend in 

813C is illustrated by the stylised pattern of 813C of E. globulus wood during one growth 

season (Macfarlane & Adams, 1998) (Figure 4.18). 
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Figure 4.18: Stylised pattern of changes occurring in c>13C of wood during one growth season. Wood 
formed during the start of winter (a) still carries a c>13C record of low WUE from the previous summer. 
c>13C formed in wood during the growth period (b) is most negative and indicative of low WUE. Wood 
formed during late summer/early autumn (c) is most positive in c>13C and indicates relative drought 
stress (adapted from Macfarlane & Adams, 1998). 

The strong, negative con-elation between 813C and the water availability index of the M. 

preissiana populations sampled during April, June and August during 2000 incorporated 

both spatial (transect position) and temporal (season) variations in 813C.  The high 

con-elation between the index and 813C therefore reinforces the inverse relationship 

between water availability and 813C.  The strong positive con-elation existing between the 

depth to groundwater and 813C for Thomsons and Banganup Lakes measured in April, June 

and August indicates that the depth to groundwater experienced by each tree may be a 

primary factor influencing its carbon isotope discrimination. This i s  expected due to the 

preference of M. preissiana to grow in areas of elevated groundwater levels (Seddon, 

1 976) . 

Trees located on the upper slope (C position) were found to respond more slowly to the 

annual rise in water availability than the trees on the lower and mid slopes in terms of o13C. 
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At the three wetlands, the 813C of the nascent xylem tissue of the C trees did not show a 

decline in 813C until August, while trees in the A and B positions were found to show a 

continual decline in 813C from April to August as water availability increased. This was 

similarly reflected by the relationship between the water availability index and 813C, where 

the trees in the C position were not significantly correlated with the increasing water 

availability. Froend et al (1993) recognise that these old, parental trees show a slower 

response to changes in groundwater in terms of root distribution and growth due to their 

reduced plasticity (e.g. they are less able to alter the root system to "follow" a declining 

water table). Additionally, the larger size of the individuals located on the upper slope 

supported a larger leaf area than the smaller trees, and probably transpired more water on 

an individual plant basis (Donovan & Ehleringer, 1992). This suggests that the larger trees 

use water more conservatively in the drier months than smaller trees in order to maintain a 

larger leaf area, and therefore may not respond isotopically to the influx of water until late 

winter, when groundwater levels maximise. 

4.4.2.3 813C variations and instantaneous WUE 

The gradient in 813C that was found to occur at Banganup Lake was not reflected in the 

WUE measures made during June and August. There was no significant relationship 

existing between WUE and 813C, and the relationships between 813C and A, E, gs and C; 

along the hydrological gradient were not of significance. The failure of M. preissiana at 

Banganup Lake to display this relationship may have been due to several factors. The 

sampling size (three replicates per transect position, per lake) may have been too small to 
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adequately measure gas exchange and instantaneous water use efficiency. The relatively 

short hydrological gradient sampled may have also been a factor affecting the results .  At 

transect 2 at Banganup Lake, there was a maximum of 75m distance between the tree in the 

A position and the tree in the C position. Although the trees occurring along the gradient at 

Banganup Lake did show significant differences in 813C,  the variations in water availability 

along the gradient may not have been adequate in inducing a significant change in 

instantaneous WUE between trees . It is also possible that the instantaneous WUE 

measurements made at Banganup Lake were a reflection of the diurnal variations occurring 

at the time of measurement rather than a reflection of the plant ' s  actual water status. These 

factors are difficult to account for in the natural environment and the short hydrological 

gradient upon which sampling was based may not have been adequate to induce an 

instantaneous response in plant WUE. Additionally, the morphological characteristics of 

the different trees sampled may have caused variations in the instantaneous measurements . 

Size and age differences between the trees were observed, however, Donovan & Ehleringer 

( 1992) recognise that larger trees are generally more water use efficient than smaller, 

juvenile trees . This relationship was not observed for M. preissiana during the sampling 

period. 

4.4.2.4 813C variations and other factors 

It is possible that the variations observed in 81 3C at the three wetlands were related to 

external factors other than water availability. One of these factors could be the light, or 

irradiance levels reaching the trees . The trees located on the lower and mid slopes at 
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Banganup Lake formed a part of two bands of trees .  The A trees were part of a dense, 

juvenile band surrounding the lake ' s  margin, which recruited after a fire in 1977. The B 

trees were also included in a thick, outer band, which was likely to have established 60-70 

years ago when rainfall was high. The C trees were scattered throughout the surrounding 

woodland on the upper slopes (Froend et al, 1 993) .  These dense bands of M. preissiana 

provided a highly competitive environment for the trees in the A and B positions at 

Banganup Lake, where light and water both may have been limited resources. Berry et al 

( 1997) found that plants receiving limited light expressed more negative 813C signatures. 

This was unlikely to be the case in this study, because the M. preissiana populations at 

Thomsons Lake and Lake Jandabup displayed similar trends in 813C along the hydrological 

gradient. These populations were of relatively low density in comparison to the population 

at Banganup Lake, where it was possible that light and water were limited by competition. 

Another possibility for the variations measured in 813C at the wetlands over 2000 could be 

tree age and/or size . By examining the measurements made of tree size (Tables 4 . 1 ,  4 .2 and 

4 .3) it is clear that generally, the size and subsequent age of trees increased with distance up 

the slope from positions A to C .  This size/age distribution of M. preissiana individuals 

around the wetlands is likely to be a response to changes in hydrology over time. This size 

gradient observed at Banganup Lake was found to be inversely associated with 81 3C, with 

the larger, older trees displaying more positive 8 1 3C values than the smaller, juvenile trees 

on the lower slope. 

Sanquist et al ( 1993) identified that a relationship exists where younger trees generally 
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exhibit more negative 813C signatures than older trees due to having lower AJE ratios 

(therefore lower WUE) and more rapid growth rates during the establishment stage of the 

plant' s  life. This conforms to the findings of Donovan & Ehleringer ( 1992) who suggested 

that instantaneous WUE was higher in larger trees due to the higher content of water 

transpired in total by the tree. The 813C variations measured along the hydrological gradient 

at the three wetlands do reflect these findings of Sanquist et al ( 1993) ,  where the smaller 

trees (located in the A position of the transects) discriminated against the heavier isotope 

more so than the larger trees in the C position. 

S imilarly, Francey & Farquar ( 1982) identified a possible "juvenile effect" that exists, 

where an age-related physiological factor affects the discrimination of carbon in plants, 

with younger plants discriminating against the heavier isotope more so than older trees ,  and 

therefore exhibiting more negative o13C values. This is due to smaller trees reassimilating 

the respired C02 retained under the canopy. This is relevant in plant communities such as 

forests , where smaller juveniles are distributed throughout stands of parent trees . However, 

the M. preissiana individuals at the three wetlands studied were either sparsely distributed 

(Thomsons Lake and Lake Jandabup) or distributed in even-aged stands (Banganup Lake), 

suggesting that the "juvenile effect" was unlikely to play a role in 13C/12C discrimination . 

4.4.3 Future Applications for Time-Integrated, Short Term o13C Measurements 

This field-based approach to assessing the applicability of o13C analysis in natural M. 

preissiana populations in the short term was effective in establishing a relationship between 
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carbon isotope discrimination and water availability along a short, natural gradient. 

However, there were limitations associated with the sampling techniques and field 

methodologies selected. One of these limitations involved the assumption of a hydrological 

or water availability gradient. This assumption that water availability was greatest near the 

edge of the wetland and decreased with distance up the slope was made on the basis on the 

depth to groundwater measured along the slope, and the inundation period of each transect 

position. Exact measures of water availability involving the soil stratigraphy and soil 

moisture content were not made and therefore this assumption could not be quantified. 

However, the distribution of M. preissiana around wet depressions on the Swan Coastal 

Plain suggests that the species is dependent on groundwater availability and that its root 

system utilises the water contained in the groundwater. Small trees are often associated 

with lower water availability due to their smaller root systems not accessing the soil-water 

supply during the growth season (Donovan & Ehleringer, 1992). This is probably not the 

case for the M. preissiana populations studied, with the smaller trees being located on areas 

of relatively higher groundwater levels than the larger trees that had larger root systems that 

could access the deeper water table. Therefore, despite the fact that water availability was 

not quantitatively measured, the assumption that it formed a gradient along the rising 

elevation could be substantiated in terms of depth to groundwater. 

As mentioned earlier, the age and size of individuals can impact 813C. The distribution of 

M. preissiana populations at the wetlands made it impossible to select trees of similar age, 

size and health at each transect position. For this reason, some of the trends observed in 

813C along the hydrological gradient at the wetlands may have been influenced by the age 
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or size of the tree in addition to water availability. Differences in 813C observed in trees of 

different sizes were likely to be due to the differences in their physiological responses to 

changes in water availability, with larger trees responding more efficiently to the water 

supply than smaller trees with higher growth rates (Donovan & Ehleringer, 1992). 

Another factor that may have influenced the 813C signatures derived from the M. preissiana 

populations was the type of plant tissue sampled for 813C analysis. It has been documented 

that there are a variety sampling methods that can reliably indicate the short-term WUE of 

plant in terms of 813C. This study focused on the analysis of recently developed xylem 

tissue, which provided an approximate one-month measure of the tree's WUE (Pate & 

Arthur, 1998). Perhaps more widely documented is the sampling of leaf tissue for 813C, 

which provides a 813C value representative of the plant's WUE for the lifetime of the leaf. 

Damesin et al (1997) found that problems existed with the sampling of foliar tissue due leaf 

age, with leaves showing little change in 813C after maturity. Therefore, the most reliable 

method of sampling leaf tissue for 813C analysis involves the sampling of juvenile leaves. 

Due to the sampling period of this study (April to August), it was impossible to sample 

juvenile leaves of M. preissiana because of its delayed growth season commencing in 

November (Marchant et al, 1987). Another short term method for measuring 813C is by 

sampling phloem translocate (Pate & Arthur, 1998; Pate et al, 1998). This method requires 

extensive prior sampling to ensure "phloem bleeding" in a species. Due to the time 

limitations of the project, this method was not investigated, however, it certainly holds 

potential for use in future studies: A comparison of the 813C signatures obtained in E. 

globulus from different plant tissue (foliar, nascent xylem, phloem sap, and stem wood) 
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found that nascent xylem tissue 813C provided reliable, short term measures of WUE (Pate 

& Arthur, 1998), and hence its application in this study. 

The mean 813C measurements made from the nascent xylem tissue of the M. preissiana 

individuals selected along the transects were subject to error due to the small number of 

replicates. Limitations in time and sampling costs meant that only three replicates for each 

transect position could be measured from three wetlands on the Swan Coastal Plain. 

Although significant differences were measured between trees expe1iencing different water 

availabilities, the accuracy of the predictions would increase with an increased number of 

replicates. Ideally, several transects would be constructed at each wetland, and longer 

hydrological gradients sampled in order to investigate changes in 813C and instantaneous 

WUE along a more significant hydrological gradient. Additionally, several wetlands on the 

Swan Coastal Plain would be selected for the study, with sampling accounting for wetlands 

of various water regimes in order to compare 813C vaiiability between lakes. 

The failure of M. preissiana to exhibit trends in instantaneous WUE may be due to the 

short gradients sampled, which may have represented insignificant variations in water 

availability. Otherwise, it may be accounted for by the variable nature of instantaneous 

measures, as they present only a "snapshot" of the tree's physiological response to the 

environmental conditions during that moment in time. Slight diurnal changes such as 

increased cloud cover or a change in atmospheric temperature may alter the WUE of the 

tree during that instantaneous moment, therefore providing results which do not truly 

represent the plant's physiological response to water availability. A method recommended 
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to indicate water use efficiency or water stress in plants is to measure leaf water potential or 

xylem pressure potential (mentioned in Chapter 2) . This is defined by the free energy per 

unit volume of water (Fitter & Hay, 1987) .  Generally, leaf water potential falls during a 

drought and increases when the water supply is abundant due to changes in the hydraulic 

conductance throughout the plant (Baird & Wilby, 1999) . Because this method is based on 

measuring the water pressure moving through the plant, it is reliable in indicating its 

instantaneous water stress, without incorporating the diurnal variations such as those 

measured by IRGA equipment. This method could be incorporated with the IRGA-based 

measures and 81 3C measures to provide a more complete understanding of how M. 

preissiana responds physiologically to changes in water availability. 
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CHAPTER 5: TIME INTEGRATED, LONG TERM 013C MEASUREMENTS 
USING GROWTH RING TISSUE 

5.1 INTRODUCTION 

The use of 813C as a time-integrated measure of plant water use efficiency can be extended 

by sampling older tissue in order to get a long-term measure of WUE. The 13C/12C ratio 

contained in tree rings represents a time-averaged measure of the plant's water use 

efficiency during a season of growth (Leffler & Evans, 1999). Cellulose is not transfen-ed 

between the annual growth rings formed in trees, therefore, annual events are recorded 

permanently within the 813C signatures of individual tree rings (Tans et al, 1978; Walcroft 

et al, 1997). For this reason, tree ring 813C is used to reveal long-term trends in plant 

physiological responses to various environmental conditions, and can be used as an 

indicator to monitor past changes in climate and atmospheric C02 levels (Dupouey et al, 

1993). 

Many researchers have found that 813C coi:itained in tree ring wood is representative of the 

water availability of the site during a season of growth (E.g. Wilson & Grinsted, 1977; 

Depouey et al, 1993; McNulty & Swank, 1995; Livingston & Spittlehouse, 1996; Walcroft 

et al, 1997; Macfarlane & Adams, 1998; Pate & A11hur, 1998; Leffler & Evans, 1999). 

Other factors affecting growth ring 813C include climate, atmospheric C02 concentration, 

nutrient availability, pollution and growth (McNulty & Swank, 1995). One alternative to 

understanding past environmental conditions is by measuring radial tree growth. Annual 

variations in water availability influence tree growth rates, with positive con-elations 
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existing between water availability with tree height and diameter (Livingston & 

Spittlehouse, 1996). However, 813C values contained within annual tree rings are believed 

to be less sensitive to random environmental effects than radial growth (Dupouey et al, 

1993) and therefore better indicators of the plant's response to environmental conditions. 

Many tree ring 813C studies have been conducted in controlled environments such as 

plantations, where environmental variations are minimised and trees sampled are of known 

ages (E.g. Macfarlane & Adams, 1998; Pate & Arthur, 1998). These studies prove to be 

difficult to apply to natural ecosystems. McNulty & Swank (1995) recognise that patterns 

in annual wood tissue 813C are often difficult to link with ecosystem parameters due to the 

complexity of, and variations in, natural ecological processes. 

The variations in the hydrological regimes over the Swan Coastal Plain have impacted 

upon, and changed, wetland environments. The combination of reduced rainfall and 

declining groundwater levels have been the cause of the "drying" effects of wetlands on the 

SCP in terms of reduced water levels and prolonged drying periods (Froend et al, 1993). 

Banganup, Thomsons and Jandabup Lakes all show signs of declining water levels over 

time, which is indicative of the structure of the vegetation community (E.M. Mattiske & 

Associates, 1988; Froend et al, 1993). Investigating how plant populations occurring at 

wetlands responded physiologically to changes in the past will enable managers to monitor 

and understand the impacts of future activities on the health and survival of the vegetation. 

Melaleuca preissiana, being a dominant fringing tree species around wetlands on the SCP, 

and being responsive to changes in hydrology in terms of population distribution and 
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recruitment (Froend et al, 1993), provides an ideal species in which to study the 

relationship between long term plant physiology and water availability using tree ring 813C 

measurements. 

Following the short-term measurements of 813C made in M. preissiana populations by 

sampling recently formed tissue, it was proposed to make long term 813C measurements by 

sampling annual ring tissue of trees located along a hydrological gradient. The applicability 

of this choice of method will be determined by whether the long-term patterns of 813C 

sampled across tree rings are reflective of water availability parameters. 

The objective of this study was to assess the applicability of long-term 813C measurements 

(by sampli�g growth ring wood) in understanding the water use efficiency of natural 

populations of M. preissiana on the SCP. Specific research objectives were as follows: 

i. Identify and describe how the water availability changed over time in three wetlands 

on the SCP; 

ii. Investigate the variations in long-tern;i measures of 813C in M. preissiana individuals 

along a hydrological regime; 

iii. Investigate the variations in long term measures of 813C in M. preissiana individuals 

between annual growth seasons; 

iv. Determine whether long-term 813C measures of M. preissiana relate to past water 

availability parameters along a hydrological gradient; 

v. Identify the external factors (other than water availability) that influence growth ring 

813C in natural M. preissiana populations. 
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5.2 MATERIALS AND METHODS 

5.2.1 Site Selection and Field Sampling Design 

The field sampling design for this component of the study followed that used for the time

integrated, short term 813C method of sampling nascent xylem tissue. The same sites, 

transects and trees were used for this study (Chapter 4, Figure 4.1). 

5.2.2 Integrated, Long Term 813C Measurements 

5.2.2.1 Growth Ring Tissue Sampling 

In order to obtain a time-averaged record of the historical growing conditions at each study 

site, individual growth rings for each tree were analysed for 813C. At every site, cores were 

removed from the trunk of each tree at breast height (1.3m) using a 1.6mm diameter whole 

saw with a hand battery drill. Tree coring involved removing a small area of the bark layers 

and drilling from the edge radially toward the centre of the main stem. The core was 

removed and the exposed area of wood was treated with a bitumen-based wounding spray. 

Resulting tree cores were approximately 10mm in diameter and 40mm in length. Each core 

was collected into vials containing 80% ethanol for three weeks in order to remove 

contaminating solutes. Cores were oven-dried at 35°C for 24 hours and then sanded to 

enable visibility of growth rings by using a combination of coarse and fine-grained 

sandpaper. Plate 5.1 shows a longitudinal cross section with visible growth rings of the core 
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from t ree I a at Banganup Lake . 

Plate 5. 1 :  Longi tudi nal c ross section of core taken from tree l a  (age 23 yea rs) from Banganup Lake. 
Core was sanded to enable visi bi l i ty of growth r ings. A nnual g rowth rings were identified as containing 
vessels of early wood formed dur ing the growth period ( late spring/early summer) and late wood 
formed during winter. 

The cores were di v ided under a d i ssec t i ng  microscope in to ind ividual growth nngs . 

Division into r ings occurred along the layer of l atewood using a scalpel blade , with care 

be ing taken to ensure that each ring contained early and l ate wood, therefore representing 

an annual cyc le of growth. For cores where ring s izes were very small (e .g .  the core from 

tree 3c at Banganup Lake contained over 40 ri ngs in  one 40mm long core), the cores were 

div ided into equally spaced samples of wood, each  sample represen t i ng 5% of the total core 

length .  This i s  sim j lar to the method adopted by Pate & Arthur ( 1 998) for d ividing trunk 

sections of E. globulus . Each wood sample was ground into a fine pulp us ing a 1 .2mm 

mesh ti ssue grinder and subjected to 8 1 3C analysi s .  

5. 2 .2 . 1 . 1 Core agi11g and growth ring analysis 

Cores were v iewed under a di ssecting rrucroscope to define growth rings .  One ring of wood 

was considered to consist of l ate and ear l y wood, the refore representing one yearly cycle of 

growth. This pat tern of early and l ate wood represents the seasonal cl imat ic condi tions of 

the s i te, w i lh the l arge , th in -wal led earl y wood vessels forming during the growth season, 
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and the smaller, thick-walled late wood forming when growth slows down during the 

winter months (Mitchell Beazley Publishers Ltd, 1976). In most cases, one year of growth 

is represented by one tree ring, however, aberrations from this seasonal growth cycle do 

occur (e.g. from fire, insect attack, prolonged drought) and may result in the formation of 

"false rings" (Rowell, 1984). This was accounted for in the division of the M. preissiana 

growth rings. The thin layer of small, thick-walled late wood xylem cells was used to 

define the boundary of each growth ring. Growth rings were counted and measured to the 

nearest 0.01mm using a 0.05mm dial calliper (Mitutoyo, Japan) to estimate the approximate 

years of growth contained in each core. Cores were found to contain from 6 to 40 years of 

growth depending on tree age and size. In order to ensure that growth rings approximated 

one annual growth cycle, entire cross sections of trunk were removed from two, 

additionally selected M. preissiana trees of known ages at 20cm above ground level at 

Banganup Lake, which established after the 1977 fire (Froend et al, 1993). Two cores were 

taken from the same trees at breast height. Growth rings from both cores and cross sections 

(three radii from each cross section) were measured and compared in order to ensure the 

representation of cores to display annual growth rings. 

5.2.2 .1 .2 Basal area increment measurements 

Annual tree growth was related to the corresponding 813C value for that year. To do this, it 

was necessary to calculate the basal area increment (BAI) for each tree. This involved using 

the width of each tree ring to determine the area of wood produced during that year at 

breast height (1.3m). This was calculated by using the tree DBH, and the length of the core 

to determine the diameter, and the subsequent area of the remaining cross section of stem 
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not included by the core .  Each ring width from the core (starting from the oldest ring 

located closest to the centre of the stem) was then added to the diameter of this smaller 

cross section, and the area of the new, larger cross section was then calculated. This new 

area value (with the growth ring added) was subtracted from the previous area value 

(without the growth ring added) to determine the area of wood growth produced during that 

year. This process continued until all growth rings for the tree were accounted for. This 

technique results in estimates only of BAI. It is acknowledged that the core represented 

only one small section of the stem' s cross section, and ring widths displayed by the core 

may be poor representations of the width of the entire ring. The width of an entire ring is 

rarely constant and depends on the tree ' s  position in the environment and its exposure to 

different conditions (Mitchell Beazley Publishers Ltd. , 1 976) . 

5 .2 .2 .2 Cellulose Extraction 

The cellulose extraction method followed that described in Chapter 4. Due to the variation 

in ages of growth ring tissue, it was unlikely that the cellulose content in all growth rings 

were equal . Macfarlane et al ( 1999) recognise that much of the 813C variation within trees 

is due to the presence of resins and oils in untreated wood occurring in different proportions 

in various parts of the tree. In order to reduce variability in 813C due to these factors, the 

cellulose extraction technique was carried out for all samples from all sites, regardless of 

whether there was a significant difference between the whole wood and cellulose 813C of 

the samples .  
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5 .2 .2 .3  8 13C Analysis 

All growth ring wood samples were subjected to 813C analysis . A 1 .2mm mesh tissue 

grinder was used to grind individual wood samples into a fine pulp . Similarly for the 

nascent xylem tissue technique, wood samples were weighed to 1 - 1 . 5mg samples (± 

0 . 1mg) . The procedure used for analysing samples for 8 1 3C was outlined in Chapter 2 .  

Resulting 813C signatures were expressed in parts per thousand (%0) . 

5.2.3 Water Availability 

Similarly to the short term sampling method, it was necessary to collect historical data 

regarding the water availability of the three sites to compare to the long term 813C values . 

This  involved collecting meteorological data for the Perth region since 1950 such as the 

total annual rainfall ,  the total number of annual rain days and average maximum 

temperature and mean relative humidity . Data were also obtained from the Water and 

Rivers Commission for the monthly surfa?e water and groundwater levels for each of the 

three wetlands over the past 30 years. At Banganup and Thomsons Lakes, where lake 

inundation was a seasonal event in winter and spring, the number of months per year when 

inundation occurred was also calculated. 

In order to combine the effects of each of the water availability parameters studied above, a 

water availability index (WAI) was calculated annually for each wetland. This involved 

combining the total rainfall , mean maximum temperature, mean relative humidity, mean 
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groundwater levels and mean lake surface water levels during the dormant period (June

August) and the growing season (October-February) of each year. The yearly monitoring 

data for each parameter in both the dormant and growing seasons were listed. For each 

parameter, the season containing the highest value (or for temperature, the year containing 

the lowest value) was given a value of 1 .  This indicates the year of highest water 

availability for that particular parameter. Each of the other years were designated a value 

lower than 1 as a proportion of the highest value. For each year, the values for all 

parameters during both the dormant and growing seasons were averaged in order to obtain a 

final , combined annual index of water availability. Growth seasons were expressed rather 

than single years, with one growth season incorporating the water availability during the 

dormant period of the prior year (June-August) with the growth period of the following 

year (October-February) . For example, the growth season of 1993-1994 combined the 

water availability data from June-August in 1 993 and October-February in 1994. Higher 

index values indicated seasons of high water availability, while lower index values 

indicated seasons of lower water availability. The information regarding the historical water 

availability of the wetlands provided an understanding at the site scale. 

Similarly with the nascent xylem tissue sampling method, it was necessary to gain an 

understanding of the water availability at the individual tree scale . This involved relating 

the groundwater levels read from monitoring bores to the groundwater level read from 

physical measurements made at each tree during the same month . By  doing this ,  it was 

possible to estimate the subsequent historical changes that each tree may have experienced 

over time. 
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5.2.4 Data Analysis 

Resulting 813C of growth rings were analysed descriptively for each tree by graphically 

displaying the changes in tree 813C signatures between rings, and linking ring numbers with 

corresponding years of growth. Mean 813C values of corresponding tree rings were 

calculated for each transect position and for each wetland, in order to obtain an averaged, 

schematic overview of how 813C changed over time. For each tree, the 813C signature 

resulting from the estimated year of growth was correlated with the historical water 

availability data including the mean, minimum and maximum rainfall, the number of rain 

days, the mean maximum temperature, and mean, minimum and maximum groundwater 

and surface water levels. All measures were correlated using the Pearson correlation 

coefficient .(p=0.05) on an annual basis, and during the growth season of the tree (October

February). Other factors such as BAI, period of lake inundation and changes in 

groundwater level at the individual tree scale were also examined descriptively in order to 

find any evidence of particular historical events reflected in tree 813C signatures. Results 

were investigated at the individual tree scale, transect positions scale and at the site scale. 
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5 . 3  RESULTS 

5.3.1 Changes in Historical Water Availability 

5 . 3 . 1 . 1  Climate 

5.3. 1 .1 . 1 Rainfall (1951 - 1999) 

For the period of 195 1 - 1999, Perth experienced a decreasing trend in annual total rainfall 

(Figure 5 . 1 ) .  Rainfall in the Perth region was typically highest during winter (the wettest 

months being June and July) and lowest in summer (the driest months being January and 

February) . During the monitoring period, Perth ' s  annual rainfall peaked in 1955 at 

1 164 .7mm, which was over double that of the average rainfall expected. 1 973 ,  1 986 and 

1988  also displayed peaks in total rainfall , and 1992 experienced the highest total rainfall 

for Perth since 1965, receiving 960mm. Perth ' s  total rainfall reached its lowest during 

1 969, receiving only 523 . 8mm due to its relatively dry winter. 1 975 - 1985 was also a 

period of low rainfall. 

5.3.1 . 1 .2  Temperature(l951 - 1999) 

Based on average annual maximum temperature, Perth ' s  climate was progressively 

warming over time (Figure 5 .2) .  Perth experienced its highest temperature maximums 

during summer (warmest months being January and February) and its lowest temperature 

maximums during winter (the coolest months being July and August) . 1968 had a very low 

annual temperature of only 22 .4°C, which was nearly two degrees lower than the mean . In 

contrast, 1 972 was a much warmer year based on its mean annual maximum temperature, 
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being 25.6°C.  Following this ,  1975- 1 978 were also warm years , with the four consecutive 

years being warmer than the average. Perth' s  temperatures fluctuated above and below the 

mean until 1 994, and have since remained above the average. 

5.3 . 1 . 1 . 3  Humidity ( 1951 - 1999) 

By examining the average relative humidity from 195 1 - 1999 (Figure 5 .3) ,  i t  is clear that 

there was a decreasing trend over the period, with the average annual humidity reaching a 

maximum in 1955 of 54.8% and falling to a minimum of 42.6% in 1 999. Relative humidity 

in Perth was generally highest in winter (June-August) with the mean humidity in July 

being 60.4% . January-March was the period of lowest humidity on average, with the mean 

humidity in February being 35%.  
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Figure 5.1 : Total Annual Rainfall for the Perth Region 1951-1999. Dashed line shows Perth's average 
rainfall over the period of 796mm. 
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Figure 5.3: Mean annual relative humidity at 3pm for the Perth Region 1951-1999. Dashed line shows 
Perth's average humidity over the period of 47.1%. 

5 .3 . 1 .2 Hydrology of Banganup Lake 

5.3. 1 .2 . 1 Surface water 

The surface water levels of Banganup Lake have been recorded historically since 1 963 , 

however, regular monthly monitoring did not occur until 1 974. Since 1989, surface water 

levels were only recorded during periods of lake inundation. Therefore, when the lake dried 

surface levels were recorded at the lake bed level ( 12 .696mAHD). This resulted in the 
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flattening of the hydrograph for the lake after 1989 (Figure 5.4). For this reason, it was 

difficult to accurately interpret long term changes in groundwater levels without exact 

records of the level when the lake dried. It does appear however, that until 1988, Banganup 

Lake was becoming drier. Lake inundation has fluctuated over time, occun-ing between 0 

and 12 months per year. During 1974-1976, Banganup Lake inundated for 12 months 

annually (Figure 5.5). However, following this "wet" period, the Lake inundated 

seasonally, with the average number of months of inundation calculated to be 3.875. 1979 

was a dry year, being inundated for only 2 months, and with lake depths reaching a 

maximum of only O.lm. In 1983, Banganup Lake experienced a decrease in water levels, 

with levels dropping to 11.12mAHD (1.5m below the lake bed) in May. Following the "dry 

spell" in the 1980s, Banganup Lake experienced a rise in water levels from 1988-1996. In 

1992, water levels peaked at 13.42mAHD (over 0.7m in depth), and the lake remained 

flooded for 10 months. From 1997, Banganup Lake water levels dropped again, with the 

lake drying for the 12 months during 1999. 

5.3.1.2.2 Groundwater 

With Banganup Lake being an expression of the unconfined aquifer, its fluctuations in 

surface water levels reflected those of the groundwater. The Water Corporation established 

groundwater monitoring bores in 1993 and data are available from this year onwards. 

Figure 5.6 shows that the period of 1993-1999 displayed a decreasing trend in groundwater 

levels, with maximum levels dropping from 13.4mAHD in 1994 to 12.6mAHD in 1999. 
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monitoring data from bore LBl.  
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5 .3 . 1 .3 Hydrology of Thomsons Lake 

5.3. 1 . 3. 1  Surface Water 

The surface water levels for Thomsons Lake have been monitored since 1 952, however 

regular monthly monitoring did not occur until 197 1 .  From 1 97 1  to 1 978 ,  Thomsons Lake 

flooded permanently, with levels reaching a maximum during July and August and a 

minimum during February and March (Figure 5 .7) .  Levels peaked during 1973 at 

14 . lmAHD (2 .3m depth). From 1978,  Thomsons Lake inundated seasonally, with the lake 

flooding for 8 .6 months each year on average (Figure 5 . 8) .  In February 1980, lake levels 

dropped to a minimum of 10 . 8mAHD (lm below the lake bed) and until 1 992, maximum 

lake levels mostly remained under 13mAHD (greater than lm depth) . In 1989, Thomsons 

Lake inundated for the whole year, and up to 1998, dried once only. 

5.3 . 1 . 3.2 Groundwater 

Groundwater monitoring data for Thomsons Lake was available from 1985 .  In 1 99 1  

groundwater levels reached a minimum of 12 . lmAHD, which was similarly reflected by 

surface water levels (Figure 5 .9) .  In 1992, groundwater peaked, with the maximum level 

reaching 1 3 .9mAHD during October. Following 1992, the annual groundwater levels of 

Thomsons Lake gradually decreased, with maximuni levels measured in 1998 being 1 .6m 

below those in measured in 1992. 
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Figure 5.7 :  Hydrograph of Thomsons Lake showing historical changes in surface water levels based on 
monitoring data from 1971-2000. 
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Figure 5.8 :  The number of months per year that Thomsons Lake is inundated from 1971-1999. Mean 
number of months per year is 8.6 
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Figure 5.9: Hydrograph of Thomsons Lake showing historical changes in groundwater levels since 1985 
based on monitoring data from Bore TMlOC. Data were available up to June 1999. 
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5.3.1.4 Hydrology of Lake Jandabup 

5.3. 1 .4. 1 Surface Water 

The surface water data for Lake Jandabup were available from 1968, and levels were 

monitored on a monthly basis. From 1968 to 2000, the Lake's surface water levels 

declined, which is evident by the lake's hydrograph in Figure 5 .10. The most rapid decrease 

was from 1968 where maximum lake levels declined from 46.8m AHD (water depth of 

3m), to 45.lm AHD (water depth of 1.3m) in 1977. Lake Jandabup's water regime 

followed a seasonal trend, with water levels reaching a maximum in September-November, 

and falling to the minimum during March-May. Unlike the other two study lakes, Lake 

Jandabup remained permanently inundated, and never dried out completely. Minimum lake 

levels occurred in 1983, 1985, 1988 and 1991 and years when lake inundation peaked 1978 

when depths rose to 1.5m; 1986 and 1987 when water depths rose to 1.3m, and 1992 when 

the maximum water depth was recorded in October as being 1.5m. 1997-1999 experienced 

low lake levels, with the maximum levels being less than lm in depth. 

5.3. 1 .4.2 Groundwater (1977-1999) 

Groundwater levels for Jandabup Lake were monitored monthly since 1977. Over the 

monitoring period, groundwater levels decreased (Figure 5.11). Similarly to lake levels, 

groundwater levels peaked in 1978 and also during 1991-1993. Following 1993, 

groundwater levels decreased, with the lowest maximum level recorded during October 

1998 being 45.3m AHD, which was approximately lm lower than that recorded in 1992. 
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Figure 5.10: Hydrograph of Lake Jandabup showing historical changes in surface water levels based on 
monitoring data from 1968-2000. 
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Figure 5.11 :  Hydrograph of Lake Jandabup showing historical changes in groundwater levels since 
1977 based on monitoring data from Bore JB12A. 

5 . 3 . 1 .5 Water Availability Index 

By combining the summer (the growth season) and winter values (the dormant season) for 

total rainfall , maximum temperature, relative humidity, sutface water levels and 

groundwater levels into a water availability index (WAI), it was possible to study the 

combined effects from the key physical factors affecting water availability, on the 

physiology of the M. preissiana populations . The index for the three wetlands followed 

similar trends over the period of 1 969-1999. This is most likely to be due to the strong 
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emphasis that climate had on the overall index, with Perth's climatic data being applied to 

each lake. In most years, the water availability was highest at Lake Jandabup, while the 

index remained fairly consistent for Thomsons and Banganup Lakes (Figure 5.12). The 

growth period of 1971-1972 was found to be a peak year in water availability for the three 

lakes, which was also reflected by the lakes' water levels. The growth seasons of 1978-

1979 and 1983-1984 both saw drops in water availability at the wetlands, which was also 

reflected by the low lake levels and low rainfall. Peak years of water availability at the 

wetlands based on the index were 1985-1986, 1991-1992 and 1995-1996. The highest peak 

in water availability occurred from 1991-1992 with the WAI of all lakes being higher than 

0.95. 

5.3.2 Core Aging and Growth Ring Analysis 

5.3.2. 1 Tree Rings in Cross Sections vs Cores 

Entire cross sections of trunk were removed from two trees growing within the juvenile 

band of M. preissiana at Banganup Lake. These were known to have germinated after a fire 

in 1977, and were aged at 23 years (Froend et al, 1993). Both cross sections were found to 

contain 22 distinguishable rings, with the 23rd ring (probably formed at establishment in 

1977) difficult to identify due to the high resinous content of the heartwood in the centre of 

the stem. Figure 5.13 compares the width of corresponding tree rings between one cross 

section and two cores taken from the same tree. The average width of tree rings from the 

cross section (taken from 3 radii sections) were found to have little standard error, 

indicating that growth remained relatively constant around the circumference of the stem. 
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The widths of the rings from the two cores were indicative of the corresponding rings 

occurring within the cross section. This is reinforced by the high,  significant correlation 

(r = 0 .96;  p<0.05) existing between the average width of the tree rings contained in the 

cross sections with the average width of the rings contained in the cores (Figure 5 . 14) . It 

was found that the latest ring displayed by the cores corresponded to the second ring 

displayed by the cross section, probably due to damage that occurred during coring, making 

visibility of the most recently formed ring difficult. 
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Figure 5.14: Scatterplot showing the relationship between the mean width of tree rings from M. 
preissiana cross section and the mean width of tree rings from cores A and B from measured from 
corresponding rings of the same tree. A significant, correlation existed (r = 0.96; p<0.05). Line of best 
fit and X and Y standard error bars are shown. 

5 . 3 .2 .2 Aging of tree rings 

The number of rings and the growth period displayed by each tree core are presented by 

Table 5 . 1 .  The cores at Banganup Lake generally represented the greatest number of years , 

ranging from core 3a  displaying 14 years of growth ( 1985  - 1 998) to core 3c  displaying 
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over 40 years of growth. Trees located in the "A" position of the three transects at 

Banganup Lake displayed the fewest growth rings, while the trees from "B" and "C" 

positions exhibited the most rings, indicating that the trees may possibly be older. The 

cores at Thomsons Lake displayed similar trends, with the number of rings within cores 

ranging from 6 (tree la) to 22 (tree 2c). The Lake Jandabup cores similarly displayed these 

trends with the number of rings ranging from 6 (tree 2a) to greater than 40 (tree 2c). 

Table 5.1: The study trees at each wetland, the number of rings contained within each core and the 
period of growth represented by the core 

Site Tree label Number of rings in core Approx. period of growth 
rel!resented b;r core 

Banganup Lake la 17 1982-1998 

lb 23 1976 -1998 

le 17 1982 -1998 

2a 15 1984-1998 

2b 20 1979 -1998 

2c 19 1980-1998 

3a 14 1985 -1998 

3b 29 1970-1998 

3c >40 * 

Thomsons Lake la 6 1994-1999 

lb 7 1993 -1999 

le 11 1989 -1999 

2a 12 1978 -1998 

2b 18 1982-1999 

2c 22 1977 -1998 

3a 10 1989 -1998 

3b 16 1984 -1999 

3c 19 1981-1999 

Jandabup Lake la 19 1981 -1998 

lb 17 1983 -1999 

le 24 1976-1998 

2a 6 1994-1999 

2b 24 1976 -1999 

2c >40 * 

3a 11 1989 -1999 

3b 17 1983 -1999 

3c 9 1991 -1999 
* Due to the small size and difficult visibility of growth rings, cores were divided into 5% intervals along 

the core following methods outlined by Pate & Arthur (1998). 
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5.3.3 Time-Integrated, Long Term 013c Measurements using Growth Ring Tissue 

5.3.3.1 Transect position, year and o13C 

5.3. 3. 1 . 1  Banganup Lake 

The o13C signatures of each tree ring for each tree are illustrated in Figures 5.15, 5.16, and 

5.17 for transects 1, 2 and 3 at Banganup Lake respectively. In transects 1 and 2, the ring 

o13C of trees located on the lower slope (A position) were more negative than the trees on 

the upper slope (C position) during most periods sampled. The trees on the mid slope (B 

position) fluctuated between the two. This trend was also reflected in the results of the short 

term sampling method of measuring o13C at Banganup Lake, where 813C was significantly 

higher in tr�es of the C position than trees of the A position. The three trees from transect 1, 

tree 2c and tree 3b displayed an increase in o13C from the 181h ring to the 15th ring. This 

c01responded to the period between 1982 and 1985, during which rainfall was below the 

average for these four consecutive years. The 5th ring from the edge of the cores from all 

trees sampled at Banganup Lake displayed an apparent drop in o13C, which corresponded to 

the period of growth during 1995. This is the year following the fire in March 1994. The 

trees proceeded to increase in o13C during the years following 1995. Trees la, lb, 2a, 2b 

and 3a showed an immediate increase in o13C, while the trees located on the upper slope 

continued to decrease for several years. 
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Figure 5 .15 :  Transect 1, Banganup Lake 
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Figure 5.16: Transect 2,  Banganup Lake 
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Figure 5.17: Transect 3, Banganup Lake 
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Figures 5.15, 5.16 and 5.17: Cellulose 613C of M. preissia11a growth rings at Banganup Lake from 
transects 1, 2 and 3 respectively. Rings are numbered from the edge of the stem (bottom X-axis), and 
linked to the estimated year of corresponding annual growth (top X-axis). Values for tree 3c obtained 
from regular 5 % divisions made along the length of the core. 
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By averaging the isotopic signatures of corresponding rings for trees located lower, mid and 

upper slopes, it was possible to obtain a schematic idea of how M. preissiana varied 

between different positions along the hydrological gradient. Figure 5.18a shows the average 

changes in 813C over the length of cores of trees located in the A, B and C positions at 

Banganup Lake. It was found that the trees in the A position were l .20%0 more negative on 

average over the sampling period than trees in the C position, and 0.63%0 more negative 

than trees in the B position. Figure 5.18b displays a 3-point moving average of growth ring 

813C for the same trees. Doing this removed the variation occurring between years in order 

to obtain a schematic overview of the long term water use efficiency of the trees at 

Banganup Lake. Trees in all three positions displayed an increase in 813C from the 16th 

ring. This corresponded to the period from the early to mid 1980s, when lake levels and the 

yearly inundation period dropped. 813C increased until the early 1990s, after which isotopic 

discrimination remained fairly constant. Following 1994 813C dropped, however, proceeded 

to increase by the late 1990s. Figure 5.19 displays an overall average trend for 813C at 

Banganup Lake by taking average signatures of all trees sampled. The three point moving 

average for this trend shows that the M. p.reissiana population at Banganup Lake became 

more negative from the late 1970s to the mid 1980s. From this point onwards, the trees 

increased in 813C until the early 1990s where delta signatures levelled from -24%0 to -25%0. 

1995 saw a rapid drop in 813C followed by a progressive increase in 1997, as trees became 

isotopically heavier. 
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Figure 5.18a: Mean and standard error cellulose o13C of growth rings for trees in positions A, B and C 
at Banganup Lake, showing ring number and year of annual growth. 
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Figure 5.18b: 3-point moving average of growth ring o13C for trees in positions A, B and C at Banganup 
Lake, showing ring number and year of annual growth. Moving average . represents a schematic pattern 
of o13C experienced at the lake from 1970-1999. 
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Figure 5.19: Mean and standard error cellulose B13C of growth rings for all trees at Banganup Lake 
showing ring number and year of annual growth. Dotted line represents 3 point moving average, 
representing a schematic pattern of B13C experienced at the lake from 1970-1999. 

5.3. 3. 1 .2  Thomsons Lake 

Figures 5 .20, 5 . 2 1  and 5 .22 illustrate the changes in 813C over time for each tree in transects 

1 ,  2 and 3 at Thomsons Lake respectively. A similar trend to that at Banganup Lake was 

observed at Thomsons Lake, with the trees in the A position having more negative 813C 

values than tbe trees located in the B and C positions during most growth periods sampled. 

The most apparent trend in ring 813C of M. preissiana individuals at Thomsons Lake was 

the drop in 813C displayed by trees in the 8 1h to 9th ring. This corresponded to the years 1991 

to 1 992, during which water availability reached a maximum at  Thomsons Lake (based on 

WAI) . The trees in transect 2 best reflected this drop in 81 3C.  Trees B and C from transect 3 

both displayed a rise in 813C in the i
h ring, which corresponded to the annual growth period 

of 1 993 . This was followed by a drop in 313c in the 61h ring. 
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Figure 5.20: Transect 1, Thomsons Lake 
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Figure 5.21:  Transect 2, Thomsons Lake 
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Figure 5.22: Transect 3, Thomsons Lake 
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Figures 5.20, 5.21 and 5.22: Cellulose B13C of M. preissiana growth rings at Thomsons Lake from 
transects 1, 2 and 3 respectively. Rings are . numbered from the edge of the stem (bottom X-axis), and 
linked to the estimated year of corresponding annual growth (top X-axis). 
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By examining the mean 813C signatures for each annual ring of trees in the A, B and C 

positions at Thomsons Lake, it was found that the lower slope trees (the A position) were 

on average 1.40%0 more negative over the growth period sampled than the trees from the 

other two transect locations (Figure 5.23a). For the trees in the B and C positions, the wood 

contained in the annual rings from the 1980s was progressively becoming more positive 

over time. A major drop in 813C of trees from the three positions occurred dming 1992, 

which was the year during which WAI peaked. Following this sudden drop in 813C, the 

trees from all transect positions became more positive during the next annual growth cycle. 

Figure 5.23b summarises this information in the three-point moving averages for the three 

positions along the hydrological gradient. By removing the variation shown in Figure 

5.23a, Figure 5.23b shows that on average, trees in the A position were decreasing in 813C 

over time, while the 813C of trees in the B and C positions peaked in 1991 and 1989 

respectively. These trees became more negative over the 2-3 years after this peak, and then 

both fluctuated to an average isotopic discrimination of approximately -25%0. The overall 

mean changes in 813C for the M. preissiana population sampled at Thomsons Lake over 

time is presented by Figure 5.24. There existed a slight trend where the 813C of the M. 

preissiana population was becoming more negative over time. The three-point moving 

average for this time series indicates that a slight rise in 813C was experienced during the 

mid to late 1980s. By the early 1990s, the 813C of the M. preissiana population began to 

decrease, and continued until the present. The error bars in Figure 5.24 show that there was 

a high degree of variation occurring within the M. preissiana population at Thomsons Lake. 
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Figure 5.23a: Mean and standard error cellulose cS13C of growth rings for trees in positions A, B and C 
at Thomsons Lake, showing ring number and year of annual growth. 
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Figure 5.23b: 3-point moving average of growth ring cS13C for trees in positions A, B and C at 
Thomsons Lake, showing ring number and year of annual growth. Moving average represents a 
schematic pattern in cS13C experienced at the lake from 1977-1999. 
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Year 
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· Figure 5.24: Mean and standard error cellulose 613C of growth rings for all trees at Thomsons Lake 
showing ring number and year of annual growth. Dotted line represents 3 point moving average, 
representing a schematic pattern in 613C experienced at the lake from 1977-1999. 

5.3.3. 1 . 3  L.ake Jandabup 

In transect 1 at Lake Jandabup, tree le  contained more positive 813C values in all growth 

rings than those contained in cores from trees l a  and lb (Figure 5 . 25) .  This trend was also 

reflected in the xylem tissue 81 3C measured from the trees during 2000. Transects 2 (Figure 

5 .26) and 3 (Figure 5 .27) failed to show this pattern, with trees located on the upper slope 

containing more negative ring 813C signatures than. those on the mid and lower slopes . Over 

time, the nine trees sampled did not display apparent changes in 813C .  The fifth ring (year 

1 995 ,  which was a year of high water availability (Figure 5 . 12)) contained in trees from 

transects 2 and 3 displayed a slight drop in 813C.  Trees from transect 1 and 3 displayed a 

gradual decrease in 813C from the ninth ring, which corresponded to the year 1991  when 

lake levels rose .  The 813C fluctuations displayed between growth rings at Jandabup Lake 

were less prominent than those shown by the trees at Banganup and Thomsons Lakes. 
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Figure 5.25: Transect 1, Lake Jandabup 

Relative distance from edge of core (%) (Tree 2c) 
95 85 75 65 55 45 35 25 1 5  5 

. -29 +-1-t-t--t--+-t--+-+--t-t--tt-t--t--+--1--+-+-+-t--t--t-+-+-t--+-i 
25 23 21  1 9  1 7  1 5  1 3 1 1  9 7 5 3 

Ring number (from edge) 

Figure 5.26: Transect 2, Lake Jandabup 

Year 

1 983 1 985 1 987 1 989 1 99 1  1 993 1 995 1 997 1 999 

-e- JL1 a 
- JL1 b 
--t,-- JL1 c 

-a-JL2a 
-.- JL2b 
-JL2c 

-24 +--t--+--t--t---+----i--t--+-+--+-+--t--t----t----il---+----i---i 

Gl -25 

-26 

,._ -27 

e!, -28 0 
I:o -29 

-a- JL3a 
- JL3b 
--t,-- JL3c 

-30 +---+--+---+--+----i--+--t----i--t---+--i---+---+--+---+--+--1 
1 7  1 6  1 5  1 4  1 3  1 2  1 1  1 0  9 8 7 6 5 4 3 2 

Ring  num ber (from edge) 

Figure 5.27 : Transect 3, Lake Jandabup 

Figures 5.25, 5.26 and 5.27:  Cellulose 613C of M. preissiana growth rings at Lake Jandabup from 
transects 1, 2 and 3 respectively. Rings are numbered from the edge of the stem (bottom X-axis), and 
linked to the estimated year of corresponding annual growth (top X-axis). Values for tree 2c obtained 
from regular 5 % divisions made along the length of the core. 
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Figure 5.28a shows the mean trends in 013c of between growth rings from trees in the A, B 

and C positions at Lake J andabup. Despite the unexpected results obtained from transects 2 

and 3, it was found that on average, trees located on the lower slope were 1.85%0 more 

negative over the sampling period than the trees located on the upper slope and 0.75%0 

more negative than the trees on the mid slope. In comparison to the results obtained from 

Banganup and Thomsons Lakes, there was a smaller degree of variation in 013C between 

rings at Lake Jandabup. The increase in 813C observed from the 18th to 14th rings for trees 

located in the A position was biased towards the 813C displayed by tree la, due to its core 

being the only one containing rings formed during this period. By observing the average, 

annual changes in 813C of trees in the three transect positions, it was apparent that 813C 

values of the M. preissiana population were becoming more negative over time. Figure 

5.28b illust�ates this relationship more so, with the three-point moving averages presenting 

a schematic overview of how the M. preissiana individuals changed over time at Lake 

Jandabup in terms of transect position. Trees in the C position of the transects showed an 

apparent decline in 813C over the time period sampled, while the trees from the B position 

remained fairly constant, with 813C signatures fluctuating around -26%0. The mean trend in 

813C over time displayed by all trees at Lake J andabup also showed that there was a 

decrease in the 013C of the M. preissiana population with time (Figure 5.29). This 

progressive drop in 813C was most apparent from the late 1980s onwards and corresponded 

to the period during which water availability at Lake Jandabup displayed several "peaks" 

(Figure 5.12). 
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Figure 5.28a: Mean and standard error cellulose 813C of growth rings for trees in positions A, B and C 
at Lake Jandabup, showing ring number and year of annual growth. 
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Figure 5.28b: 3-point moving average of growth ring 813C for trees in positions A, B and C at Lake 
Jandabup, showing ring number and year of annual growth. Moving average represents a schematic 
pattern in 813C experienced at the lake from 1976-1999. 
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Figure 5.29: Mean and standard error cellulose 613C of growth rings for all trees at Lake Jandabup 
showing ring number and year of annual growth. Dotted line represents 3 point moving average, 
representing a schematic pattern in 613C experienced at the lake from 1975-1999. 

5 .3 . 3 . 2  813C. Ring Area and Historical Water Availability 

Correlation coefficients were calculated between ring 81 3C, ring area and each of the water 

availability parameters (total rainfall , maximum temperature, relative humidity, surface and 

groundwater levels and WAI) for the annu_al period represented by each ring as well as for 

the time representing the growth period for the tree (October - February of each year). Very 

few significant correlations existed for all trees sampled (p<0.05) .  Therefore, no distinct 

relationships could be identified that existed between water availability and ring 81 3C of M. 

preissiana at the lakes over time. As an alternative , the time-series of historical tree 813C 

was investigated descriptively in order to identify episodic periods in which 81 3C appeared 

to be indicative of water availability. 
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5.3.3.2. 1 Banganup Lake 

Figure 5.30 plots the water availability index, mean growth ring area and mean 813C over 

time for trees located on the lower slope (A position) at Banganup Lake. It was found that 

from 1984 - 1990, there was a progressive increase in the average ring area formed by trees 

in the A position. This was accompanied by an increase in water availability during the 

same time period. 813C did not reflect this trend, with isotopic discrimination fluctuating 

between rings. The growth period of highest water availability (1991-1992) did not suppmt 

rapid growth rates in terms of ring area, yet the small ring area formed during this year was 

accompanied by a more positive 813C value. The largest rings formed during 1995-1996, 

l 

which was a period of high WAI. Low 813C signatures occurred during this growth season. 

Figure 5.31 shows that variation existed between the mean ring area of trees in the B 

position and mean 813C of rings over the time period sampled. 813C steadily increased from 

1980 - 1985, which corresponded to a period when lake levels were low. The water 

availability index and the mean ring area of trees did not reflect this trend. 1995-1996 was a 

period of high water availability, and was accompanied by high growth rates and low mean 

813C signatures. The trees located mid slope at Banganup Lake expressed a rise in 813C in 

their recently formed rings (1996-1998). This was accompanied by a decrease in water 

availability and ring area during the same period. 

The C trees at Banganup Lake did not exhibit distinct relationships between water 

availability, mean ring area and mean 813C (Figure 5.32). 813C and ring area fluctuated over 

the time period sampled and displayed high degrees of standard error. 
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Figure 5.30: Water Availability Index (second, top Y-axis), Mean ring area (first, top Y-axis) and mean 
'513C (lower Y-axis) of A trees at Banganup Lake. Rings are numbered from the edge (lower X-axis) 
and matched to corresponding growth periods for WAI (top X-axis). Standard error bars are shown. 
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and matched to corresponding growth periods for WAI (top X-axis). Standard error bars are shown. 
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Figure 5.32: Water Availability Index (second, top Y-axis), Mean ring area (first, top Y-axis) and mean 
613C (lower Y-axis) of C trees at Banganup Lake. Rings are numbered from the edge (lower X-axis) 
and matched to corresponding growth periods for WAI (top X-axis). Standard error bars are shown. 
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5.3.3.2.2 Thomsons Lake 

The changes in water availability, mean ring area and 813C of trees from the A position at 

Thomsons Lake over time are presented by Figure 5.33. During the growth pe1iod of 1991-

1992 when water availability peaked at Thomsons Lake, it was found that the average 

width of the corresponding tree ring also peaked, measuring over 2000mm2 at breast height. 

This year also saw a drop in 81 3C, indicating that the trees were low in water use efficiency. 

1995-1996 was also a year of high water availability, and was similarly accompanied by 

low 813C formed during the same year. However, the mean width of the same tree ring was 

relatively low. 

For the trees located in the B position at Thomsons Lake, it was found that the area of wood 

formed, and the 813C signatures obtained during the period of 1986-1991 were fairly 

constant (Figure 5.34). However, the increase in water availability in the early 1990s 

(particularly 1991-1992) saw a rise in ring area, and a decrease in 813C. 

Figure 5.35 combines water availability, .ring area and ring 813C over time for the trees 

located on the upper slope at Thomsons Lake. A relatively high degree of standard error 

was found within the means of ring area and ring 813C. Despite this, it was evident that as 

water availability decreased from the late 1980s, so did the area of wood formed annually. 

There was no evident trend observed in 813C during this period, however the peak in water 

availability in 1992 corresponded to the period in which the trees were most negative in 

813C, and therefore less water use efficient. 
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Figure 5.33: Water Availability Index (second, top Y-axis), Mean ring area (first, top Y-axis) and mean 
613C (lower Y-axis) of A trees at Thomsons Lake. Rings are numbered from the edge (lower X-axis) 
and matched to corresponding growth periods for WAI (top X-axis). Standard error bars are shown. 
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Figure 5.34: Water Availability Index (second, top Y-axis), Mean ring area (first, top Y-axis) and mean 
613C (lower Y-axis) of B trees at Thomsons Lake. Rings are numbered from the edge (lower X-axis) 
and matched to corresponding growth periods for WAI (top X-axis). Standard error bars are shown. 
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Figure 5.35: Water Availability Index (second, top Y-axis), Mean ring area (first, top Y-axis) and mean 
013C (lower Y-axis) of C trees at Thomsons Lake, Rings are numbered from the edge (lower X-axis) 
and matched to corresponding growth periods for WAI (top X-axis). Standard error bars are shown. 
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5.3.3.2.3 Lake Jandabup 

For the trees located in the A position at Lake Jandabup, there were no obvious trends 

existing between 813C, water availability and the width of tree rings (Figure 5.36). In 

contrast to theory, the lowest ring area of trees were found to have formed during years of 

higher water availability. 813C showed a progressive decrease in time from the late 1980s, 

indicating that the trees were becoming less water use efficient. The area of wood formed 

during this period fluctuated largely and failed to show any trends. 

Figure 5.37 presents these data for the mid slope trees at Thomsons Lake (B position). 

Similarly to the A trees, the trees located mid slope displayed a decrease in 813C over time 

from the mid 1980s. This corresponded to the overall increase in water availability (based 

on WAI) over time at Jandabup Lake. From the late 1980s onwards there were no distinct 

trends observed, with water availability fluctuating during this period. The average ring 

area increment was found to decrease during the 1980s, which corresponded to the period 

of low lake levels at Lake Jandabup. The rise in ring area was observed from 1993, and 

corresponded to the period when lake levels rose. 

Water availability and mean 813C and ring area for the trees in the C position at Lake 

Jandabup are illustrated by Figure 5.38. The decrease in 813C from 1991 onwards and the 

subsequent increase in ring area were likely to be due to the variations that occurred by 

averaging the tree ring measurements from only two cores. Prior to this period, the results 

were biased towards the results from one core only (tree le). Due to this bias, it was 

difficult to investigate relationships existing between ring 813C, ring width and water 
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availability accurately for M. preissiana in this position of the landscape. However, it was 

found that in 1 992 when water availability was highest, wood formation was also high and 

813C declined, indicating lower water use efficiency. 

� 1 500 
.§, 
� 1 000 
(ll 
en 
C a: 500 

-24 

OJ -25 

:§ -26 

� -27 ....... 
l -28 
JJ 

Growth period (yrs) 

�"° -29  
� 

-30 +'-'-r�-......,_.....,........_,..........,_........,_....._,r""-r'-'"'-r'--'-r""-r'-'"'-r'--'-r""-r'-.....,......., 
1 9  1 8  1 7  1 6  1 5 1 4  1 3  1 2  1 1  1 0  9 8 7 6 5 4 3 2 1 

Ring n umber (from edge) 

0 .9  ' 
0.8 !!l: 

� �  
0 .7 i li!illlll!I Rlng 

area 

-+- WAI 

1:1 1 3C 

Figure 5.36: Water Availability Index (second, top Y-axis), Mean ring area (first, top Y-axis) and mean 
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5.4 DISCUSSION 

The changes in 813C observed between the growth rings of the M. preissiana trees sampled 

from the three wetlands on the Swan Coastal Plain were individually examined in terms of 

the water availability occurring dming the corresponding period of growth. This provided 

an understanding of how trees located at different positions along a hydrological gradient 
1 

responded physiologically to changes in water availability over time. 

5.4.1 Historical Water Availability 

The combination of factors affecting historical water availability (total rainfall, maximum 

temperature, relative humidity and mean water levels) were represented by the water 

availability index. The changes in WAI over time showed that the three lakes experienced 

similar trends in water availability since 1970. The index fluctuated widely over the 

monitoring period, with the index being higher at Lake Jandabup than at Thomsons and 

Banganup Lakes. This may be due to the fact that Lake Jandabup was inundated on a 

permanent basis rather than seasonally. 

The growth season from 1978-1979 saw the WAI drop at Banganup and Thomsons Lakes. 

This may be due to the decrease in water levels at the two lakes due to groundwater 

abstraction commencing in the area during 1979. 1983-1984 similarly saw a drop in water 

availability at the three wetlands. Climatic data show that rainfall and humidity were below 

the average expected levels during this period, which may have reduced the recharge 

entering the lake. Banganup Lake inundated for only one month per year during this period, 
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while Thomsons Lake inundated for only four months. The growth period of 1985-1986 

saw a rise in WAI at the three lakes. This is possibly due to the increased lake levels and 

increased summer rainfall in 1986 after the four-year "dry spell". 

The high water availability experienced at the three lakes in the 1990s (peaking in 1992), 

'1'as likely to be due to a rise in rainfall, with particular reference to the high rainfall 

received in February 1992, which induced a massive increase in lake levels. Banganup 

Lake inundated for 10 months in 1992, while Thomsons Lake and Lake Jandabup 

inundated for the entire 12 months. From the early 1990s, water levels at Thomsons and 

Jandabup Lakes have been carefully managed. Lake Jandabup was artificially maintained 

from 1989 in order to prevent lake levels from drying (Froend et al, 1993) and CALM 

established criteria for the management of Thomsons Lake's levels to prevent flooding due 

to agricultural drainage (WAWA, 1991). 1997-1998 was a period of low water availability 

at the three wetlands. Rainfall was below average during both years, and lake levels fell 

following the influx of water during the early 1990s. Lake Jandabup dried from 1997-1999 

to eradicate the mosquito fish (Gambusia holbrooki) from its waters (O'neill, 2000). 

5.4.2 Transect position, year and o13C 

5.4.2.1 Banganup Lake 

5.4.2.1. 1  813C variations along the hydrological gradient 

At Banganup Lake, the negative relationship existing between 813C and water availability 
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was proven in terms of the tree ring 8I3C signatures of the trees located along different 

positions of the hydrological gradient. The average ring 813C values of trees in the A, B and 

C positions show that the trees located on the upper slope, where water availability was 

lowest, were isotopically heavier during most years of annual growth than those trees 

located on the mid and lower slopes. This negative relationship between water availability 

and 813C in M. preissiana at the study sites was demonstrated by the short term sampling 

method using nascent xylem tissue (Chapter 4). The fact that this relationship was also 

expressed across growth rings representing different years of annual growth supports the 

theory, and indicates that the spatial relationship between 813C and water availability 

existed during most years at Banganup Lake. 

It was mentioned earlier that the reasoning behind this difference in carbon discrimination 

between trees of different water availabilities is because of the direct role water plays in the 

plant's photosynthetic capacity. When water availability is low, reduced stomata! 

conductance and transpiration rates cause a decline in intercelluar levels and a reduction in 

the 13C/12C discrimination, leading to mor.e positive 813C (Lajtha & Marshall, 1994). This 

relationship has been proven between years in the growth rings of trees from environments 

of various water availabilities (E.g. McNulty & Swank, 1995; Saurer et al, 1995; Walcroft 

et al, 1997; Macfarlane & Adams, 1998). A study by Pate & Arthur (1998) compared the 

813C of Eucalyptus globulus across growth rings in two plantation sites: one rainfed and one 

irrigated. It was found that the tree ring 813C of the species displayed more negative 813C at 

the irrigated site, as a response to the higher supply of water. The documentation of the 

increase in tree ring 813C in environments of lower water availability over time supports the 
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findings made of M. preissiana at Banganup Lake. 

5.4.2.1.2  813C variations between years 

Differences observed in o13C between rings at Banganup Lake may be attributed to episodic 

fluctuations in water availability associated with climate and/or lake hydrology. Average 

o1 3C values observed at the transect position level (Figure 5.18) and at the site level (Figure 

5.19) show how the M. preissiana population responded physiologically to the 

environmental conditions over time. By investigating the changes in o13C at both levels, it 

was noted that the period of 1982 to 1985 saw tree o13C becoming more positive. This 

period corresponded to the "dry spell" over Perth, where rainfall was lower than the 

average for the four consecutive years, lake levels fell and inundation occurred for only one 

month per rear. 

The apparent drop in o13C displayed by the fifth ring in all sampled trees at Banganup Lake 

corresponded to the year 1995. This drop in o13C where all trees became more negative may 

be a response to the fire occurring in the Reserve in March 1994. The reduced WUE may 

be attributed to higher growth rates while the trees regenerated during the summer 

following the fire. This is evident by the larger ring areas in the trees from the A and B 

positions formed during 1995 (Figures 5.30 and 5.31). Sanquist et al (1993) suggested that 

plants with more rapid growth rates (such as those resprouting after fire) express more 

negative o13C signatures due to having a lower AIE ratio, and therefore a lower water use 

efficiency. As Figure 5.18a shows, trees located on the lower and mid slopes began to 

increase in o13C one to two years following the drop during 1995, which was also 
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accompanied by lower growth rates. In comparison, the trees located on the upper slope 

(where water availability was lowest) showed a less dramatic decrease in 813C following 

the fire, and their subsequent increase in 813C afterwards was less immediate. This may 

possibly be due to the tree' s  more water use efficient response to canopy damage caused by 

the fire. The lower growth rates of these trees during the post fire years indicated a 

prolonged recovery period, which may be due to the combination of the lower water 

availability and larger size of the trees at this position of the hydrological gradient. 

This relationship between the radial growth rates of trees (using ring area as an indicator) 

and 813C has been investigated by many researchers (E.g. Leavitt & Long, 1986; Dupouey 

et al, 1993 ; McNulty & Swank, 1995; Livingston & Spittlehouse, 1996; Bert et al, 1997 ; 

Macfarlane & Adams, 1998). It has been found that generally, more positive 813C values 

are associated with narrower rings, and therefore slower growth rates. This is due to the 

tree' s  response to water availability. Periods of extreme water stress (such as a drought) can 

cause stomata! closure and reduced C02 uptake in trees. This results in slower carbon 

assimilation rates, slower growth, and �onsequently narrower tree rings (Francey & 

Farquar, 1 982). Although no direct relationship was observed between ring area and 813C in 

M. preissiana at Banganup Lake, episodic events such as the 1994 fire induced 

physiological changes in the population, which supported these theories of effects of water 

availability on plant growth and carbon isotope discrimination. 
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5.4.2.2 Thomsons Lake 

5.4.2.2. 1 D13C variations along the hydrological gradient 

The differences observed in 813C between the trees along the hydrological gradient at 

Thomsons Lake reflected those found at Banganup Lake. As Figure 5.23 shows, the 813C 

values of trees located on the lower slope, where water availability was higher, were more 

negative than those displayed by trees located on the mid and upper slopes where water 

availability declined. The trees located on the lower slope (A position) of each transect 

experienced seasonal inundation from the 1990s, which may have been a factor affecting 

the lower 813C of trees in this position. 

5.4.2.2.2  �13C variations between years 

The variability between ring 813C within the M. preissiana population at Thomsons Lake 

may represent a species response to the temporal variations in water availability. The 

decreasing trend in 813C over time at Thomsons Lake was interrupted during the mid to late 

1980s, where 813C of the M. preissiana population decreased. This time frame represented a 

period of successively lower lake levels and seasonal inundation. The trees in the B 

position also displayed lower annual growth increments during this period. The drop in 

813C displayed in all trees during the early 1990s corresponded to the large rise in water 

availability during 1992 at Thomsons Lake. The influx of water in 1992 induced higher 

growth rates of trees in the A and B positions in terms of ring area. These findings suggest 

that the radial growth rate and 13C/12C disc1imination of the population was affected by 

water availability. Similarly to the findings made at Banganup Lake, it was only episodic 
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events such as the 1992 rise in water availability, that induced obvious responses in tree 

growth and 813C, rather than prolonged trends over time. This was evident by the failure of 

tree ring 813C to correlate significantly with the water availability parameters over time. 

5.4.2.3 Lake Jandabup 

5.4.2.3. 1 013C variations along the hydrological gradient 

Variations observed in the tree ring 813C values of the M. preissiana population at Lake 

J andabup were less conforming to the current theories relating 813C and WUE than those 

observed at Banganup and Thomsons Lakes. For example, in transects 2 and 3, the 813C of 

trees located on the upper slope were more negative in most years than the trees on the mid 

and upper �lopes where water availability was higher. The reasoning for this may be a 

result of tree age or size. Although the trees were generally shorter than those sampled at 

Thomsons and Banganup Lakes, variations in diameter between the A, B and C positions of 

the hydrological gradient were less pronounced. Therefore, the age or size effects that 

affect 813C, as described by Francey & Farquar (1982), Donovan & Ehleringer (1992) and 

Sanquist et al (1993) were removed. However, the examination of mean differences in 813C 

between the trees of different transect positions (Figure 5.28) revealed the expected trends, 

with areas of higher water availability (A and B positions) supporting trees with more 

negative 81 3C values during most years of growth. 

5.4.2.3.2 013C variations between years 

From the mid 1980s, it was evident that the fluctuations in 813C and ring area over time by 
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trees from different transect positions were less prominent than those displayed by trees at 

Banganup and Thomsons Lakes. Prior to the mid 1980s, 813C was biased towards the 

results of only one or two cores due to the different aging sequences contained by the cores 

/ from differently aged trees. Following this period, it was evident that 813C of trees in the A 

and C positions progressively decreased in time, while the 813C of trees in the B position 

remained fairly constant. Hydrographs show that water levels at Lake Jandabup fluctuated 

during this period, with high levels experienced in 1986 and 1991-1993 and low levels 

occurring during the late 1980s and late 1990s. The declining trend in 813C suggested a 

regional increase in water availability during this period. This was indicative of the higher 

water availability index calculated for Lake Jandabup. 

5.4.3 Future Applications for Time-Integrated, Long Term 013C Measurements 

Due to the difficulties found with linking the variations in 813C of annual wood tissue of M. 

preissiana with the environmental parameters of the lakes, it was important to investigate 

possible causes of 813C variations over time. McNulty & Swank (1995) identified that part 

of the difficulty in using wood tissue 813C as a tool for measuring historic ecosystem 

characteristics involves factoring out the potential influences on wood tissue other than 

water stress. In this study, there were a number of factors which needed to be accounted 

for before assessing the applicability of using time-integrated, long term measures of 813C 

to determine the WUE of M. preissiana populations. 
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5.4.3.1 Within ring variations in 513c 

J 5.4.3. 1 . 1  Seasonal '513C variability 

One factor that needed to be accounted for when analysing the 813C of annual ring tissue in 

· trees is the variation that occurs within individual rings. Seasonal variations in water 

availability have been found to induce variations in 813C between the early and latewood 

contained within annual ring tissue. Complying with the theory that 813C and water 

availability are inversely related, the early wood formed during the growth season 

(spring/summer) is generally isotopically heavier than the late wood formed during winter 

(Wilson & Grinsted, 1977; Francey & Farquar, 1982; Leavitt, 1992; Walcroft et al, 1997; 

Mcfarlane & Adams, 1998). Due to the higher proportion of early wood vessels contained 

in growth rings, it is possible that the 813C signatures obtained from integrated, one-year 

ring tissue in this study were biased towards the 813C formed during the growth season (i.e. 

contained in the early wood). Due to the limited scope of this study, it was impossible to 

analyse within-ring variations in 813C, however, annual 813C values were correlated with 

not only annual water availability parameters, but also with seasonal water availability 

(e.g. during summer and winter), in order to account for potential variations in seasonal 

813C of ring tissue. Additionally, the water availability index incorporated the variations 

occurring during the summer and winter of each year to also account for possible variations 

in 813C. The growth ring 813C was not found to correlate significantly with these seasonal 

water availability parameters. 
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5.4.3. 1.2 Longitudinal 813C variability 

813C of wood tissue has also been found to vary longitudinally along the length of the stem. 

This is due to differences existing in the 813C of the cellulose laid down in different 

branches of the same individual. Sunlight and shading are two factors that may cause these 

differences, with 813C increasing towards the canopy due to increasing light intensity 

(Leavitt & Long, 1986). In this study, coring occurred at the same height for all trees in 

order to eliminate possible variations in 813C associated with stem height. Some trees 

sampled at J andabup and Thomsons Lake were multiple stemmed, and in these cases, cores 

were taken from the largest stem. However, unequal conditions of soil moisture, ambient 

air temperature and light in the microenvironment may have induced differences in 813C 

between stems, and therefore the 813C values obtained from these trees may not have been 

indicative of the WUE of the individual. 

5.4.3. 1.3 Circumferential 013C variability 

Another source of variation in tree ring 813C is circumferential differences occurring within 

rings along the circumference of the stem. Leavitt & Long (1986) recognise that such 

variations in o13C are a reflection of variations in isotopic fractionation where the carbon is 

fixed (i.e. the leaves). Therefore, circumferential differences in the o13C of leaves within a 

tree's canopy (due light conditions) are often reflected in the o13C of the wood taken from a 

similar position around the stem's circumference. Leavitt & Long (1986) found a 0.5-2.5%0 

range in isotopic values for leaves within a single canopy, which may have also been 

reflected in the 813C of the stem wood. For this reason, it was recommended that rings from 

four orthogonal cores be pooled from individual trees for 813C analysis, in order to ensure 
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accurate representation of the WUE of the tree (Leavitt & Long, 1986; Leavitt, 1992; 

Saurer et al, 1995; Macfarlane & Adams, 1998). Such variability occurring within the 

circumference of tree rings was reduced in this study by averaging 813C values of three 

replicate trees at each transect position. However, subsamples were not taken from 

individual trees due to financial and time limitations. Taking a number of subsamples of 

growth rings from individual trees may be a direction for future carbon isotope studies 

based on this species. 

5.4.3.2 Other 813C variations 

5.4.3.2. 1 Age effects and D13C variations 

The differences observed in 813C between trees from different positions along the 

hydrological gradient may be attributed to possible age effects. This was addressed in 

Chapter 4, where it was found that the younger trees exhibited more negative 813C values 

than older trees, possibly due to their lower water use efficiency (Sanquist et al, 1993). This 

tree age factor could have similarly influenced carbon discrimination between individuals 

by sampling tree ring wood. However, temporal fluctuations in the 813C of M. preissiana 

(such as the seasonal variations found by measuring short term 813C, and the annual 

variations found by measuring long term 813C) suggested that 813C was more responsive to 

water availability than differences in tree age. 

The greatest detriment that tree age played in this study was the fact that the regular sizing 

of cores encapsulated different years of growth for different trees. The typical 40mm length 
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of the cores sampled contained between six to over forty rings, depending on the age and 

size of the individual. This created difficulty when making comparisons between differently 

aged trees, and created biases when averaging the 813C between corresponding annual rings 

of several individuals. 

5.4.3.2 .2 Tree aging techniques 

A final consideration to be made in assessing the applicability of 813C analysis in 

understanding the long term trends in water use efficiency of M. preissiana is the reliability 

of the tree aging and division techniques used. Microscopic detail ensured that growth ring 

visibility in cores was sufficient to make distinctions between annual growth rings. 

However, the development of "false rings", where abnormal conditions in growth cause a 

defect in ring formation, can create difficulties in accurately aging and dividing tree rings 

(Mitchell Beazley Publishers Ltd, 1976). The possible development of "false rings" in the 

M. preissiana individuals sampled might have affected the results obtained of 813C changes 

across growth rings. Additionally, the 813C value formed during one year can ultimately be 

affected by the environmental conditions ?f the site during the previous year, rather than 

the current growth period. Dupouey et al (1993) recognise that the climatic conditions of 

one year can pre-condition the physiological functioning of the tree during the following 

growth season. Characteristics such as the root system, the size of xylem vessels and the 

carbon reserves are determined by the climate experienced during the preceding year, and 

can ultimately affect the WUE of the tree during the following year. It is important to 

acknowledge factors such as these that affect the 813C values in tree rings, however, 

accounting quantitatively for these factors were beyond the scope of this study. 
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CHAPTER 6: CONCLUSIONS AND MANAGEMENT IMPLICATIONS 

6.1 CONCLUSIONS 

The heterogeneity displayed within and between wetland ecosystems on the Swan Coastal 

Plain in terms of spatial and temporal water availability was likely to be a plinciple factor 

determining the physiological responses of fringing tree populations in their use of water. 

The dynamic nature of wetland hydrology, now largely dliven by anthropogenic influences 

such as land clearance, groundwater abstraction and artificial drainage, provides reason for 

understanding the complex interactions between plant physiology and water availability. 

The results from this study supported the application of 813C analysis as a measure of the 

water use efficiency of M. preissiana in response to spatial and temporal variations in water 

availability. However, the findings identified that uncertainties associated with the 

sampling techniques did exist. These uncertainties must be addressed and accounted for in 

order to obtain a detailed representation of the role water availability plays in the 13C/12C 

discrimination process of plant populations in natural, heterogeneous environments. 

The relationship between 813C, instantaneous water use efficiency and water availability of 

M. preissiana in a controlled environment conformed to the findings documented for other 

C3 species (e.g. Farquar & Richards, 1984; Ehlelinger & Cooper, 1988; Leavitt, 1992 ; 

Dupouey, 1993; Saurer et al, 1995; Stewart et al, 1995; Zhang & Marshall, 1995; Walcroft 

et al, 1997; Macfarlane & Adams, 1998; Warren & Adams, 2000). M. preissiana seedlings 

undergoing experimental drought conditions responded by becoming more water use 

164 



efficient and exhibiting more positive 813C values. The inverse relationship between water 

\ availability and 813C in plants is due to their increasing water stress and water use 

efficiency inducing a reduced discrimination against 13C during carbon assimilation 

(Boutton, 1991b). However, the direct relationship that light plays in carbon assimilation 

during photosynthesis means that light intensity is also a factor influencing the 12C/12C 

discrimination in leaves (Farquar et al, 1989). Unfortunately, light intensity was not 

accounted for in the glasshouse experiment, and the resulting 813C measurements were not 

anticipated. In order to improve the certainty of the relationship existing between 813C and 

water availability, future applications of the sampling methods would require the 

elimination of possible variations caused by factors such as light intensity. 

The applic�bility of time-integrated 813C measurements in comparison to instantaneous 

WUE measurements in M. preissiana was of particular interest. Traditional measures of 

WUE using infrared gas analysis are used to understand short term gas exchange. However 

long term measures of WUE using this method are difficult to make, as stomata! 

conductance and other gas exchange varia\)les change over the lifetime of the plant (Lajtha 

& Marshall, 1994). 813C measurements can examine long term WUE by integrating carbon 

assimilation over all periods of growth for the lifetime of the tissue sampled (Leffler & 

Evans, 1999). These comparisons between the two methods were reflected in the 

glasshouse experiment. The controlled environment induced an instantaneous response in 

the WUE in the treated seedlings to watering "pulses" occurring over a drying period. 

However, the 813C values measured from the recently developed plant tissue did not reflect 

these occasional watering events, and instead provided an indication of the overall water 
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stress of the seedling. In the natural environment, the failure of the short term 813C values 

of nascent xylem tissue to indicate instantaneous WUE in M. preissiana was likely to be 

due to the variable nature of instantaneous measures and the difficulties associated with 

comparing with time integrated measures such as 813C in the natural environment. The 

choice of method for measuring plant water use efficiency is largely determined by the 

purposes behind data collection, however, Le Roux et al (1996) acknowledge that 813C of 

plant tissue is best applied in conjunction with a variety of other techniques to screen for 

overall WUE in natural tree populations. 

The application of 813C analysis to measure the spatial and temporal WUE of natural 

populations of M. preissiana was reliable, however it did incorporate some uncertainties 

which were_ impossible to avoid in the natural environment. On a short term, one-month 

basis, nascent xylem tissue 813C measurements indicated that a spatial gradient existed, 

with M. preissiana individuals within a population increasing in water use efficiency with 

increasing distance from the lake margin. On a temporal scale, the 813C values within M. 

preissiana populations were found to decrease from early autumn to late winter in 

correspondence to the influx of water associated with winter rainfall. These findings 

conform to popular theory and represent the inverse relationship existing between 813C and 

water availability. However, an identification of the other possible factors affecting this 

relationship is necessary in order to evaluate the applicability of this approach. At the 

organism scale, the morphological attributes of individual trees are potential sources of 

variation in 13C/12C discrimination. Tree age (Sanquist et al, 1993), tree height (Francey & 

Farquar, 1982), canopy structure (Leavitt & Long, 1986), root structure (Donovan & 
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Ehleringer, 1992), and branch length (Warren & Adams, 2000), have been identified as 

possible morphological characteristics which influence the 813C signatures expressed in 

plant tissue. At the population and community scales, competition for resources such as 

sunlight, water and nutrients affect the partitioning of carbon throughout the tree and 

subsequently influence 13C/12C discrimination. These factors were not quantitatively 

measured in this study and could have possibly been a source of variation in the 813C values 

of M. preissiana. 

On a longer-term basis, 813C signatures contained within older plant tissue (e.g. growth ring 

tissue) )ere subject to greater variation than those measured from younger tissue in M. 

preissiana. Difficulties arising between the links in growth ring 813C and environmental 

parameters such as water availability are often difficult to make due to ecosystem 

complexity and plant size, and detailed measurements of historical ecological parameters 

are required (McNulty & Swank, 1995). The scope of this study was limited in the fact that 

detailed measurements such as plant water demand and soil stratigraphy were not made 

over time. However, it was found that t�e historical trends in 813C displayed by the M. 

preissiana populations spatially, were reflective of the water regime gradient. Additionally, 

episodic events in time such as fire, prolonged dry spells and high summer rainfall were 

found to be reflected in the time series of 813C contained within the ring tissue of M. 

preissiana. 

From the findings of this study, it can be concluded that the time-integrated short and long 

tern1c methods of measuring the 813C in natural M. preissiana populations were relatively 
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reliable in detecting trends between tree WUE and water availability. The selected methods 

identified spatial and temporal variations in 813C of trees occurring along a natural 

hydrological gradient, and recognised how the populations responded physiologically to 

fluctuations in water availability. The degree of applicability in using this approach to 

understand the water use of M. preissiana is affected by the consideration of "outside" 

factors other than water availability that affect the 13C/12C discrimination in plants. By 

accounting for these external factors, the application of 813C analysis in understanding the 

Ci 
complex interactions between tree physiology and wetland hydrology can be improved and 

applied as an integrated approach to wetland management. 

6.2 MANAGEMENT IMPLICATIONS 

Of most importance, this study applied the technique of 813C analysis to natural populations 

in an environment where water limitations are of extreme significance to the health and 

survival of the plant community. These findings can be applied in a management context to 

understand the complex relationship existing between plant physiology and water 

availability. 

The spatial and temporal variations in 813C observed within populations of M. preissiana 

suggest that there is much environmental heterogeneity occurring in the fringing area of 

wetland ecosystems. As a response to water availability, some individuals were more water 

use efficient than others. Those trees located on the upper slope, where water availability 

was lowest had the highest water use efficiency, and possibly recruited during a period of 
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higher water levels. Their persistence is likely to be due to the plasticity of the individual 

and ability to adapt to fluctuating water levels (Froend et al, 1993). Therefore, rapid or 

prolonged decreases in groundwater levels may increase water stress to the point of local 

extinction at that position of the landscape (Froend et al, 1993). Conversely, prolonged 

periods of flooding may also be detrimental to the survival of local populations of M. 

preissiana. 813C values can be applied to understand the physiological responses of trees to 

both extremes of the water availability scale (drought and flooding). However, this study 

focused mostly on the effects of drought. 

The wetlands located on the Gnangara and Jandakot groundwater mounds on the Swan 

Coastal Plain are currently undergoing hydrological changes associated with surrounding 

landuse. For example, the establishment of pine plantations on the Gnangara Mound have 

induced a regional drawdown in groundwater levels (WAWA, 1995). The future harvesting 

of plantations will deliver a regional rise in water levels (CALM, 1999), and therefore 

higher regional water availability. Conversely, the proposed Stage 2 of the Jandakot Public 

Water Supply Scheme where public groundwater abstraction is estimated to increase from 4 

to 8 million cubic metres per year (EPA, 1991) is expected to see a 0.2m drawdown in 

groundwater levels at Banganup Lake (Wilkins, 1992). Knowledge of b13C discrimination 

in M. preissiana may improve the understanding of how the species will respond 

physiologically to expected, localised changes in hydrology such as these. 

The 813C signatures expressed by M. preissiana individuals in the natural wetland 

ecosystems ranged from -30%0 to -22%0. With additional studies, perhaps a scale of 813C 
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signatures could be established to indicate relative water stress in individuals of this 

species .  This could assist in wetland management by identifying fringing tree populations 

at risk of degradation due to reduced water availability (such groundwater drawdown). 

With the increased pressure placed on wetland water regimes by surrounding anthropogenic 

activities on the SCP, this information would be of use in understanding the physiological 

, tolerance range of the species to fluctuations in water availability. 

Additionally, long term sampling of 8I3C (using growth ring tissue) provides a historical 

record of the water use efficiency of the plant. By investigating the range of 813C values in 

, populations of M. preissiana (which have survived the past fluctuations in water 

availability), an understanding can be obtained regarding the species ' tolerance levels (in 

terms of 81 3C) to various environmental parameters from a historical perspective. For 

example, an understanding of how individuals within a population responded 

physiologically to a previous fire may assist in the future planning of fire management 

strategies . The 813C signatures contained within plant tissue formed during periods of 

prolonged drought can be applied in the u�derstanding of how the population will respond 

physiologically to similar variations in water availability in the future. Additionally, a range 

of "allowable levels" in water availability could be identified based on historical 813C 

signatures of plant populations, to which hydrological monitoring of wetlands can be 

compared (R. Froend, pers . Comm. , 2000) . 

170 



6.3 DIRECTIONS FOR FUTURE RESEARCH 

An important direction for future studies in <WC analysis of natural plant populations 

according to spatial and temporal variations in water availability is to eliminate the 

confounding effects of external factors (other than water availability) . Light is one factor 

that was likely to have influenced the degree of 13C/12C discrimination in M. preissiana 

seedlings in this study. To obtain a direct relationship between water availability and 8 13C, 

it is necessary to exclude the effects light intensity (and other environmental parameters) in 

the experimental design. Plant morphological attributes also affect the degree to which the 

individual discriminates against 13C during carbon assimilation. Future studies investigating 

the relationship between 81 3C and water availability in M. preissiana would require 

variations in tree morphology to be minimised by sampling from similarly aged and sized 

individuals . Greater replication and sampling sizes (e .g .  sampling several cores per tree) 

would also remove the potential of variation in 81 3C signatures due factors other than water 

availability. 

An interesting direction for future research is the application of 813C analysis to dead 

individuals of M. preissiana. In areas of localised species extinction, tree ring analysis of 

813C could be used to identify the cause of death of individuals . Historical o13C signatures 

may be interpreted to determine the time period during which trees were stressed before 

mortality. Relating 813C to environmental parameters may subsequently suggest the 

possible cause/s of death of affected populations , and therefore identify the conditions that 

the population could not tolerate. 
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There is a diverse range of 813C applications in terrestrial plant studies, many of which are 

increasing in importance due to the need to understand complex ecological relationships. 

The ability of stable carbon isotope measures to detect the physiological functioning of 

plants in both the present and the past indicates the true potential of this method in linking 

plant survival mechanisms with environmental parameters. With ongoing technological 

advancements, it is certain that the future application of isotopic techniques such as 813C 

analysis will become widespread in the scientific community. 
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APPENDICES 

APPENDIX 1 :  SIZE DISTRIBUTION OF M. PREISS/ANA POPULATION AT 
BANGANUP LAKE. 
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Size distribution (Diameter at Breast Height) of M. preissiana population at Banganup Lake. 
Measurements were taken from a randomly placed transect 100m x 10m in area. M. preissiana 
individuals falling within the transect were measured for DBH. Trees selected for this study are 
shaded in black and labelled. 
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APPENDIX 2: DETAILS OF HYDROLOGICAL MONITORING BORES AT 
BANGANUP, THOMSONS AND JANDABUP LAKES 

Table listing bore details used for this study at Banganup, Thomsons and J andabup Lake 

Site Bore # Aquifer Location Elevation Monitoring 
(mAHD) l!eriod 

Banganup 0614 19614  Groundwater Transect 1 14 .344 1 993-current 
Lake LB 1 

06 1419605 Groundwater Transect 2 16 .607 1 992-1994 
LB5 

0614196 1 1  Groundwater Transect 3 16 .484 1 963-current 
LB 1 1  

Q6 1425 1 6  Surface water All transects 14 .345 1985-current 

Thomsons 0616 1 1 1 1 1  Groundwater 14.636 1985-current 
Lake TM4C 

061 6 1 1 108 Groundwater Transect 2 14.227 1 985-1 999 
TMIOC 

06 16 1 1 1 16 Groundwater Transects 1 & 2 14 .87 1 985- 1 993 
TMl lC  

Q6 1425 1 7  Surface water All transects 14.3 1 1952-current 

Lake 06 16 10763 Groundwater All transects 50.4 1 1 977-current 
Jandabup JB 12A 

Q61 62578 Surface water All transects 54.457 1954-current 
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APPENDIX 3 :  ANNUAL GROWTH RING WIDTHS TAKEN FROM M. 
PREISS/ANA TREE 2 .  RINGS MEASURED FROM 1 CROSS SECTION AND 2 
CORES . 
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stem (bottom X-axis) and matched to correspon�ing years (top X-axis). 

1 8 1  

E 
E 

Cl 
c:: 
c2 

1 

---··· ·--···--

. 

� 

l .i 
. 

.._ 



APPENDIX 4: ANNUAL GROWTH RING WIDTHS MEASURED FROM CORES 
FROM M. PREISSIANA TREES AT BANGANUP, THOMSONS AND JANDABUP 
LAKES 

Year 
1 967 1 970 1 973 1 976 1 979 1 982 1 985 1 988 1 991  1 994 1 997 
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Graphs showing width (mm) measured of the rings contained in each core taken from M. preissiana 
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trees at Banganup Lake. Rings are numbered from the edge of the stem (lower X axis), and 
corresponding years matched (upper X-axis) 

Year 

1 977 1 979 1 981 1 983 1 985 1 987 1 989 1 991 1 993 1 995 1 997 1 999 
--a-- 1 a 

6 
--+- 1 b  

5 

4 

3 

2 

1 

0 +---+--+---+---+-+-------;-t---t--+--+--+---+---+--+--,1--+--+---+--+---+---+-+--, 

23 22 2 1  20 1 9  1 8  1 7  1 6  1 5  1 4  1 3  1 2  1 1  1 0  9 8 7 6 5 4 3 2 1 

Ring number (from edge) 

Transect 1,  Thomsons Lake 

Year 

1 977 1 979 1 981  1 983 1 985 1 987 1 989 1 991 1 993 1 995 1 997 1 999 
--a-- 3a 
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23 22 2 1  20 1 9  1 8  1 7 1 6  1 5  1 4  1 3  1 2 1 1  1 0  9 8 7 6 5 4 3 2 1 

Ring number (from edge) 

Transect 2, Thomsons Lake 
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--+- 3b 

--6-- 30 

1 977 1 979 1 981  1 983 1 985 1 987 1 989 1 991  1 993 1 995 1 997 1 999 
--a-- 2a 

5 
--+- �  4.5 

4 - 20 
3.5 

3 
2.5 

2 
1 .5 

1 
0.5 

0 +---+--+--+---+---+-+--t-=-,1--t---t--+---+--+--+---+---+-+-------;-1---t--+---+--i 

23 22 2 1  20 1 9  1 8  1 7  1 6  1 5  1 4  1 3  1 2 1 1  1 0  9 8 7 6 5 4 3 2 1 

Ring number (from edge) 

Transect 3, Thomsons Lake 

Graphs showing width (mm) measured of the rings contained in each core taken from M. preissiana 
trees at Thomsons Lake. Rings are numbered from the edge of the stem (lower X-axis), and 
corresponding .years �tched (upper X-axis) 
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Graphs showing width (mm) measured of the rings contained in each core taken from M. preissiana 
trees at Lake Jandabup. Rings are numbered from the edge of the stem (lower X-axis), and 
corresponding years matched (upper X-axis) 
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APPENDIX 5: CORRELATION COEFFICIENTS BETWEEN TREE RING 813C OF M. PREISS/ANA TREES AND WATER 
AVAILABILITY PARAMETERS AT BANGANUP, THOMSONS AND JANDABUP LAKES. 

Table showing results from Pearson's correlation coefficient (r), testing relationship between water availability variables at Banganup Lake, and tree ring 813C 
from corresponding years of trees sampled. Annual and summer (Dec-Feb) values tested. Bold print indicates a significant correlation (p<0.05). 

ANNUAL 
BLla BLlb BLlc BL2a BL2b BL2c BL3a BL3b 

MeanGW 0.451 0.465 0.595 0.174 0.152 -0.232 0.399 0.257 

MinGW 0.575 0.516 0.399 0.260 0.282 0.044 0.499 0.291 

MaxGW 0.000 0.473 0.859 0.254 0.130 -0.308 0.435 0.300 

Mean SW 0.113 -0.143 0.232 0.129 0.152 0.414 0.495 0.129 

Min SW -0.148 -0.364 0.174 0.023 0.022 0.193 0.289 0.118 

MaxSW 0.345 0.205 0.377 0.300 0.175 0.303 0.553 -0.120 

Total rainfall -0.068 -0.023 -0.122 -0.342 -0.232 0.290 -0.234 -0.048 

Number of raindays 0.004 0.059 -0.184 -0.137 -0.198 0.121 -0.176 -0.195 

Mean max temperature 0.061 -0.280 0.255 0.243 -0.054 -0.213 -0.088 0.047 

Mean humidity (�pm) -0.332 -0.369 0.304 -0.147 -0.391 -0.056 -0.047 -0.333 

Water Availability Index 0.035 -0.022 0.266 0.121 -0.066 0.495 0.053 0.252 

SUMMER 
BLla BLlb BLlc BL2a BL2b BL2c BL3a BL3b 

MeanGW 0.261 -0.123 0.614 0.442 -0.017 -0.417 0.408 0.255 

MinGW 0.274 -0.053 0.668 0.528 0.038 -0.268 0.506 0.371 
MaxGW -0.299 -0.323 0.510 0.279 -0.126 -0.586 0.233 0.095 

Mean SW -0.191 -0.322 0.115 -0.081 0.128 0.202 0.364 0.251 

Min SW -0.260 -0.304 0.160 -0.102 0.091 0.119 0.311 0.083 

MaxSW -0.138 -0.128 0.099 -0.054 0.150 0.233 0.364 0.095 

Total rainfall -0.100 0.220 -0.418 -0.118 0.042 0.068 0.197 0.073 

Number of raindays -0.108 0.183 -0.427 -0.136 -0.038 -0.179 0.045 0.018 

Water Availability Index 0.223 -0.003 0.193 0.215 -0.048 0.499 0.037 0.263 
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Table showing results from Pearson's correlation coefficient (r), testing relationship between water availability variables at Thomsons Lake, and tree ring o13C 
from corresponding years of trees sampled. Annual and summer (Dec-Feb) values tested. Bold print indicates a significant correlation (p<0.05). 

ANNUAL 
TLla TLlb TLlc TL2a TL2b TL2c TL3a TL3b TL3c 

MeanGW -0.557 0.065 0.282 -0.264 0.000 -0.305 -0.285 0.222 0. 195 

MinGW -0.532 0. 149 0.406 -0.204 0.069 -0. 159 -0.237 0.330 0.283 

MaxGW -0.560 0. 147 0.480 -0.089 0.067 -0.068 -0. 128 0.492 0.377 

Mean SW -0.524 0. 1 87 0.369 -0. 102 0. 191  -0. 167 -0. 190 0.465 0.403 

MinSW -0.73 1 -0.022 0.464 0. 150 0.344 -0.013 -0.076 0.479 0.404 

MaxSW -0.443 0. 1 88 0.27 1 -0.245 -0.055 -0.242 -0.233 0.355 0.293 

Total rainfall 0.838 -0.041 -0.250 -0.582 -0.018  -0.254 -0.079 -0. 167 -0.095 

Number of raindays 0.664 -0.361 0.075 -0.629 -0. 104 -0.288 0.200 -0.200 -0. 135 

Mean max temperature -0.254 0.044 -0.57 1 0.349 -0.056 0.275 -0.401 -0.413 -0.258 

Mean humidity (3pm) 0. 150 0.390 0.039 -0.440 0.3 10 -0.300 0.401 0.368 0. 107 

Water Availability Index -0.681 -0.039 0.214 -0.304 0.235 -0.463 -0.022 0. 1 89 0.054 

SUMMER 
TLla TLlb TLlc TL2a TL2b TL2c TL3a TL3b TL3c 

MeanGW -0.484 0.227 0.468 -0.026 0.215 0.150 -0.260 0.209 0.260 

MinGW -0.558 0.198 0.490 0.009 0.372 0.288 -0.240 0.402 0.295 

MaxGW -0.416 0.270 0.458 0.055 0. 145 0. 129 -0. 1 89 0.385 0.373 

Mean SW -0.642 0. 1 84 0.489 0. 1 84 0.357 0.005 -0. 152 0.510 0.413  

Min SW -0.728 0.103 0.453 0.233 0.376 -0.001 -0. 138 0.521 0.458 

MaxSW -0.553 0.259 0.5 1 3  0. 1 32 0.368 0.028 -0. 169 0.476 0.322 

Total rainfall 0.566 0.287 0.082 -0.29 1 -0.379 -0.696 0.323 0.282 0.059 

Number of raindays 0.483 0.068 0.214 -0.342 -0.359 -0.404 0.694 0.268 0.043 

Water Availability Index -0.892 -0. 129 0.250 -0.233 0.09 1 -0.561 0.246 0.39 1 0. 156 
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Table showing results from Pearson's correlation coefficient (r), testing relationship between water availability variables at Lake Jandabup, and tree ring 013C 
from corresponding years of trees sampled. Annual and summer (Dec-Feb) values tested. Bold print indicates a significant correlation (p<0.05). 

ANNUAL 

JLla JLlb JLlc JL2a JL2b JL3a JL3b JL3c 

Mean GW -0.076 0.462 0.245 -0.272 -0. 178 -0.397 -0.400 -0.709 
Min GW -0.005 0.398 0.224 -0.376 -0. 126 -0.497 -0.571 -0.737 
Max GW 0.02 1 0.553 0.308 -0.034 -0. 1 13 -0.220 -0.3 1 1  -0.658 

Mean SW 0.2 1 8  0.344 -0.005 -0.320 -0. 154 -0.255 -0.247 -0.708 
Min SW 0. 1 1 1  0.434 -0. 1 37 -0.754 -0.060 -0.263 -0.353 -0.673 

MaxSW 0.230 0.300 0.052 -0.056 -0. 130 -0. 143 -0. 152 -0.644 

Total rainfall 0. 148 -0. 176 0.127 0.453 0.044 0.037 0.272 -0. 167 

Number of raindays 0.097 -0.27 1 0.086 0.055 0.025 -0.341 0.377 -0.3 14 

Mean max temperature -0.389 -0. 1 15 -0.435 0.078 -0.323 0.623 0.286 0.635 

Mean humidity (3pm) 0.320 -0. 190 0.160 0.060 -0.020 -0.660 0.260 -0.590 

Water Availability Index 0.410 -0.099 0.080 -0.292 0. 145 -0.797 0. 139 -0.357 

SUMMER 
JLla JLlb JLlc JL2a JL2b JL3a JL3b JL3c 

Mean GW -0.542 0.555 0.222 -0.541 -0.329 -0.454 -0.582 0.276 

Min GW -0.528 0.612 0.240 -0.472 -0.273 -0.381 -0.602 0.352 

Max GW -0.553 0.516 0. 1 85 -0.579 -0.403 -0.494 -0.537 0.232 

Mean SW 0. 104 0.098 -0. 123 -0.608 -0.226 -0.284 -0.344 -0.602 

Min SW 0.040 0.249 -0.095 -0.654 -0. 170 -0.278 -0.353 -0.568 

MaxSW 0. 123 0.008 -0. 173 -0.687 -0.250 -0.296 -0.269 -0.573 

Total rainfall 0. 149 -0.004 0. 155 0.819 0.070 -0.393 -0.007 -0.605 

Number of raindays -0.044 0.07 1 0.34 1 0.47 1 0. 103 -0.277 -0.013 -0.096 

Water Availability Index 0.346 -0.340 0.140 0.754 0. 100 -0.014 0.324 -0.042 
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