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ABSTRACT 
 

BACKGROUND: The incidence of skin cancer in Australia has increased rapidly in the last 

few decades. Ultraviolet radiation (UV) is a major risk factor for skin carcinogenesis. UV, 

particularly the UVB spectrum, causes formation of cyclobutane pyrimidine dimers (CPD) in 

cellular DNA. Persistent and incorrectly repaired CPDs lead to DNA mutations and 

consequently, formation of cutaneous lesions. Interestingly, recent epidemiological studies 

have shown a significant increase in skin cancer incidence in geographical locations with high 

environmental temperatures. Thus, heat stress may potentiate the effects of UV exposure and 

act as an additional risk factor for skin cancer. Previous studies in mice have shown that 

repeated and concurrent exposure to UVB and heat stress, increases the rate and incidence of 

cutaneous tumour formation relative to UVB alone. However, the effects of UVB plus heat on 

human epidermal cells have yet to be determined. Furthermore, the exact mechanisms 

responsible for the observed effects of heat stress need to be characterised in skin 

keratinocytes to increase knowledge of its risk in skin cancer.  

Heat stress induces upregulation of heat shock proteins (HSPs), particularly HSP72 and 

HSP90 which are known to affect the activity of the p53 protein. Furthermore, heat stress has 

been linked with increased Sirtuin1 (SIRT1) protein activity. SIRT1 is an important histone 

deacetylase that helps maintain chromosomal integrity but can also induce post-translational 

modifications of the p53 protein. By mediating deacetylation of the p53 protein, SIRT1 can 

diminish the ability of p53 to bind to its downstream gene targets. The p53 protein is an 

integral mediator of the cellular stress response in skin cells, particularly keratinocytes. Thus, 

impairment of p53 transcription factor functions could compromise the ability of epidermal 

cells to mount an appropriate response to DNA damage. Moreover, loss of p53 function may 

induce survival of cells harbouring DNA lesions. 

We hypothesise, therefore, that exposure to UVB plus heat induces survival of DNA damaged 

keratinocytes and that these cells escape apoptosis surveillance as a result of heat-mediated 

alteration to the p53 signalling pathway. Thus, exposure to heat stress could exacerbate the 

carcinogenic effects of UV and increase the risk of skin tumour formation in humans.  
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AIMS: In this study, we aimed to determine whether repeated exposure to UVB followed 

immediately by heat stress (39°C) has a more damaging effect on human keratinocytes than 

UVB alone. In particular, we assessed the effects on DNA damage, apoptosis, cell cycle and 

DNA repair. Furthermore, we aimed to unravel the mechanism through which heat mediates 

the survival of UVB DNA-damaged keratinocytes, focusing on the effects on the p53 

signalling pathway. 

MATERIALS AND METHODOLOGY: Primary adult human epidermal keratinocytes 

(NHEK) and ex vivo punch biopsies of normal human skin called NativeSkin® (Genoskin, 

France), were used as experimental models for this study. A UV cabinet fitted with a TL-

UVB Narrowband lamp (Philips, GERMANY), with a spectral output of 290 -315 nm, was 

used to administer UVB irradiation at a dose of 1 KJ/m². Heat stress involved culture in a 

normal CO2 incubator, with temperature maintained at 39°C for three hours. The temperature 

used in the experiments was based on previous measurements of skin surface temperature of 

open cut miners, who are prone to intense heat stress, in the Pilbara region of Western 

Australia. For UVB plus heat exposures, cells and skin models were sequentially exposed to 1 

KJ/m2 of UVB, (at room temperature), followed immediately by 3 hours incubation at 39°C 

once per day, for four consecutive days. Unexposed skin models and NHEK, maintained at 

37ºC, were used as experimental controls. Cell proliferation, apoptosis and whole genome 

expression profiles were analysed at four hours post day 4 exposure, to understand earlier 

events, and at 2 days post-exposure, to assess persistent outcomes of these exposures.  

Treated primary NHEK cells were counted in a Vi-CellTM Viability Analyser and the level of 

apoptosis for exposed primary cells was determined using Annexin V/Propidium Iodide 

apoptosis assay at 4 hours and 2 days post exposure. To determine the presence of DNA 

damage, total and active p53 protein, as well as total and active SIRT protein, in the skin 

models and primary NHEKs, immunohistochemistry and/or immunocytochemistry was 

performed. Skin FFPE and primary NHEKs were incubated with antibodies to thymine 

dimers (CPD, DNA damage) and p53 (total), acetylated p53-382 (active), SIRT1 (total) or 

SIRT1-p (active) antibodies.  

To measure apoptosis in skin, an anti-pan-cytokeratin marker was used to label keratinocytes 

and active-caspase-3 antibodies were used to identify apoptotic cells. To determine the 

expression of p53-downstream target genes at 4 hours, quantitative RT-PCR was performed 

using TaqMan probes for BAX, Survivin (BIRC5), ERCC1 and XPC genes, with Human 18S 
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gene as the endogenous reference gene. Relative quantification of the expression levels of 

each transcript in each sample were calculated using the Delta-Delta CT method relative to 

untreated controls. A whole genome expression analysis was performed at 2 days post-

exposure using the Human HT-12 Expression v4 BeadChip (Illumina, USA). The Ingenuity 

Pathway Analysis (IPA) (Qiagen, USA) software was used to annotate the effects of altered 

gene expression on cell function and upstream signalling pathways. Two-way ANOVA was 

used to analyse differences across treatment groups, while parametric unpaired t-tests were 

used to detect differences between specific treatment groups in all experimental categories, 

i.e. proliferation, apoptosis and gene expression, with p-values <0.05 considered significant.  

RESULTS:  

Outcome 1 –Using ex vivo skin models and NHEKs, we show for the first time that UVB plus 

heat treated keratinocytes exhibit DNA damage, as observed after UVB treatment alone. 

However, apoptosis was significantly reduced, possibly as a result of inactivation of the p53-

mediated stress response, in DNA damaged cells of UVB plus heat treated samples. 

Furthermore, whole genome expression and IPA upstream analysis showed that heat induces 

SIRT1 activation, which was confirmed via immunohistochemistry assays. Heat-induced 

SIRT1 expression was linked to a decrease in acetylated p53 and consequently, 

downregulation of p53-regulated pro-apoptotic and DNA damage repair genes. These results 

suggest that p53-mediated cell cycle arrest and apoptosis, known to be induced by UVB, are 

ablated with the addition of heat, leading to survival of DNA damaged cells after UVB plus 

heat treatment. 

Outcome 2 – We further confirmed that SIRT1 activation did not inhibit the transcription of 

the p53 protein but mediated deacetylation of p53, resulting in significant deregulation of 

expression of p53 downstream gene targets and decreased keratinocyte apoptosis in UVB plus 

heat treated samples. Importantly, chemical inhibition of SIRT1 by Ex-527, a known 

chemical inhibitor of SIRT1, in UVB plus heat exposed keratinocytes, resulted in re-

activation of the p53 signalling pathway and increased apoptosis of DNA damaged 

keratinocytes. This clearly demonstrated the role of heat-mediated SIRT1 activation in the 

survival of DNA damaged keratinocytes after exposure to UVB plus heat.  
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CONCLUSION: In this study, we showed that the efficiency of cellular stress response to 

UVB-induced DNA damage is diminished in the presence of heat and, for the first time, 

provide a molecular mechanism that explains these effects. With the novel use of an ex vivo 

human skin model, this study showed that heat stress prevents human keratinocytes, damaged 

by UV irradiation, from undergoing apoptosis and/or necrosis. We found UV plus heat 

exposure mediates SIRT1 activation which has been found to induce deacetylation of p53 

and, consequently, the inactivation of the p53 signalling pathway. SIRT1 inhibition precluded 

the downregulation of p53 signalling by UV plus heat exposure, restoring apoptosis levels to 

those observed in UVB-only exposures. Thus, we demonstrated that SIRT1 activation is the 

main molecular mechanism driving UVB plus heat-induced survival of DNA damaged 

keratinocytes.  

Overall, the results of this study suggest that by allowing the survival of DNA damaged 

keratinocytes, via induction of SIRT1 activation, heat stress can exacerbate the carcinogenic 

effects of UVB radiation. Exposure to heat stress, in addition to UV, could therefore increase 

the accumulation of mutations in keratinocytes, possibly leading to the transformation of 

normal cells into pre-cancerous cells. Further research is warranted to determine the role of 

UVB plus heat in skin cancer pathogenesis. Such knowledge could be utilised in public health 

campaigns to decrease risk, particularly for people exposed to combinations of these 

environmental hazards in workplaces such as in the mining, construction and petroleum 

industries. 
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GENERAL INTRODUCTION 
 

Non-melanoma skin cancers (NMSCs), particularly basal cell carcinoma (BCC) and squamous 

cell carcinoma (SCC), are the most common cutaneous cancers in Caucasian populations around 

the world (Xiang et al., 2014). In Australia, NMSCs account for 75% of all cancers and are 

considered a great health and economic burden (Jou et al., 2010). BCC is defined as a malignant 

tumour of follicular germinative cells or trichloroblasts (Barascu et al., 2012; Hsieh et al., 2014). 

It accounts for approximately 80% of all diagnosed skin cancers and is considered to be the 

most common malignant tumour (Epstein, 2008; Saran, 2010). BCC incidence is on the rise, 

and many experts suggest that it will continue to increase in coming years (Basset-Seguin et al., 

2015; Bath-Hextall et al., 2007). BCC is known to have a very low metastatic potential and 

mortality arising from this tumour type is approximately 0.1% (Lear et al., 2005; Roewert-

Huber et al., 2007).  BCC can be highly invasive, however, and can often cause extensive tissue 

destruction. BCC largely affects the elderly, although, the incidence of cutaneous BBCs has 

been increasing in younger adults in recent years (Bath-Hextall et al., 2007; Greinert, 2009). 

BCC is generally more common in males than in females, with a ratio of approximately 2:1 

(Barascu et al., 2012).  

The incidence of Squamous Cell Carcinoma (SCC) also appears to be on the rise (Levin et 

al., 2005; Nickoloff et al., 2002). SCC accounts for 20% of all cutaneous cancers; it is the 

second most common skin cancer after BCC (Kim et al., 2012; Sridhar et al., 2012). The 

incidence of SCC varies in different countries, but the US and Australia have the highest 

reported incidence, this being 20% of all skin cancer cases (Zhang et al., 2012). This cancer is 

two to three times more common in men than in women, and mostly affects adults over sixty 

years of age, though in recent years, the incidence of SCC in people below fifty years of age has 

increased (Monroe et al., 2011; Sabunciyan et al., 2015). Unlike BCC, which has a low 

metastatic dissemination of less than 0.1%, SCC is known to be more aggressive, and the 

incidence of SCC metastasis, which normally arises after one to two years of diagnosis, is 

reported to be between 5 and 20 percent (Smoller, 2006).  
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SCC, like every other skin cancer, is common in Caucasians (Gomez et al., 2015; Wei et al., 

2015). In the USA, people of Irish or Scottish ancestry have the highest prevalence (Brantsch et 

al., 2008; Schwarz, 2005). In people of African and Asian descent, SCC is relatively rare but 

it is the most common form of skin cancer in these groups (Monroe et al., 2011; Rao et al., 

2013). SCC in dark skin people carries a higher mortality rate, and this is attributed to delayed 

diagnosis as tumours are more likely to occur in sun-protected areas such as the scalp and 

sites of previous injury and scarring ( M o n r oe  e t  a l . ,  2 0 1 1 )  

Environmental stressors are considered the most common risk factors for skin cancer formation 

(DeFedericis et al., 2006; Lucas et al., 2006; Rosso et al., 2008). In particular, exposure to UV 

radiation is associated with formation of 80% of all skin tumours (Ananthaswamy and Pierceall, 

1990; Lee et al., 2012; Xia et al., 2006). UV induces DNA damage, which often leads to 

formation of mutations in key regulators of cell apoptosis, survival and proliferation signalling 

pathways, which can lead to cancer initiation (Ananthaswamy and Pierceall, 1990; Brash et al., 

1996; Courdavault et al., 2005; Grujil et al., 2001; Narayanan et al., 2010). However, given the 

effect of high temperature on cell viability and chromosome stability (Akerfelt et al., 2007; 

Takahashi et al., 2004), heat stress could be another risk factor for skin cancer. However, the 

exact molecular effects of repeated exposure of epidermal cells to high temperatures and UV 

radiation, which is what is observed in the environment, needs to be clarified. 
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GENERAL INTRODUCTION 
 

CHAPTER 1: Environmental Stresses and their Role in Skin Carcinogenesis 

1.1 Normal Skin Physiology  

 
Keratinocytes and the Epidermal-Melanin Unit 

The skin is the largest organ in the body and offers a protective barrier against environmental 

insults. The skin barrier is primarily maintained by the epidermis, which is further separated into 

different layers comprising the basal, granular and cornified layers (Haggarty, 2015). These 

epidermal layers are identified by differences in the morphology of keratinocytes, which are the 

most abundant cell type in the skin (Agthong et al., 2012).  

The stratum basalis, or basal layer, of the epidermis consists of stem cells which continuously 

undergo mitotic division to provide new keratinocytes (Leung et al., 2015; Marshall, 2015; 

Sexton-Oates et al., 2015). Daughter cells of basal keratinocytes then detach from the basal 

membrane and undergo further differentiation as they move towards the epidermal surface, over 

a period of approximately two weeks (Zitzmann et al., 2015). Keratinocytes then undergo 

terminal differentiation, lose their nuclei and adapt a flattened morphology, to become 

corneocytes of the stratum corneum of the epidermis (Santen et al., 2009; Verdin and Ott, 2015). 

The terminal differentiation process of keratinocytes in the cornified layer represents the 

physiological apoptosis of epidermal cells (Nowotarski et al., 2015). Imbalances in the delicate 

physiological cycle of keratinocyte proliferation or differentiation can significantly affect the 

integrity of the skin and result in the formation of cutaneous malignancies (Schraml et al., 2009; 

Villanueva et al., 2015). 

Apart from keratinocytes, one of the most prominent cell types in the skin are the melanocytes, 

which are also located in the basal layer of the epidermis (Chen et al., 2015). Melanocytes are 

specialised cells that are responsible for the production of melanin, an important skin 

chromophore (Abdel-Malek et al., 2000; McCarty and Loeb, 2015; Ratajczak-Wrona et al., 

2009). Normal skin physiology includes an epidermal-melanin unit, comprised of keratinocytes 

and melanocytes arranged at a ratio 35:1, the function of which is to produce melanin to protect 

keratinocytes from the harmful effects of environmental stressors (Chen et al., 2015; Costin and 

Hearing, 2007).  
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Figure 1.1: Keratinocyte-Melanocyte Complex. This figure highlights mechanisms by which 
keratinocyte-derived factors such as endothelins (ET) and melanocyte-stimulating hormone (MSH) 
(red boxes) act on human melanocyte proliferation and stimulate melanogenesis.[Adapted from: 
(Hirobe, 2005)] 

 

Keratinocytes located in the epithelial layer of the stratum corneum can initiate melanin production 

within melanocytes by secreting growth factors, such as endothelins and melanocyte-stimulating 

hormone (MSH), which act in a paracrine manner to stimulate melanocyte function (Costin and 

Hearing, 2007; Hirobe, 2005). Melanocytes and keratinocytes interact with each other through cell-

to-cell signalling to induce melanin production in melanocytes (Figure 1.1).  
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Melanin has an important role in the physiology, pathology and toxicology of the skin, eyes and 

brain (Hu, 2008). This pigment acts as a filter by absorbing near-infrared, visible light and UV 

photons (Gidanian et al., 2008). It also functions as a free radical scavenger, capturing oxygen and 

hydroxyl radicals and preventing them from causing oxidative stress (Soumyanath et al., 2006). 

Melanin is also known to have an affinity for metals and toxic substances and has a sun protection 

factor (SPF) value of 2-3 (Maddodi and Selaturi, 2008). It is also known to be able to transform light 

energy into heat and distribute it evenly between the capillary vessels and hair follicles (Pons and 

Quintanilla, 2006). 

There are two types of melanin produced by mammalian melanocytes - eumelanin and pheomelanin 

(Tody et al., 1991). Eumelanin is brownish-black in colour, while pheomelanin appears as a reddish-

yellow pigment (Pons and Quintanilla, 2006). Synthesis of both involves the enzyme, tyrosinase 

(Chen et al., 2009). This enzyme converts tyrosine to dopaquinone, which when further oxidised, 

gives rise to eumelanin (Tody et al., 1991; Williams and Ouhtit, 2005). Pheomelanin is also formed 

from further oxidation of dopaquinone, but requires the presence of sulphydryl groups from the 

amino acid cysteine (Pons and Quintanilla, 2006; Tody et al., 1991). Eumelanin and pheomelanin are 

found in human skin and hair in almost equal amounts, though a relatively greater concentration of 

pheomelanin is found in people with red hair and those with a ‘Celtic type’ skin phenotype (Tody et 

al., 1991). 

Skin pigmentation varies for each individual, due to the difference in the amount of melanin 

produced and distributed to neighbouring keratinocytes (Markovic et al., 2007). Lighter skin 

produces less melanin (Maddodi and Selaturi, 2008), while a darker skin tone produces more 

melanin (Yamaguchi et al., 2008). The distribution of melanosomes and the production of melanin is 

the main reason why people with darker skin tone are more efficient at absorbing UV radiation 

(Markovic et al., 2007).  

While the mechanisms that regulate skin pigmentation are not completely understood, extensive data 

shows that UV-induced DNA damage and/or its repair produce initiating signals that induce 

melanogenesis (Lee et al., 2013; Mullard, 2015). In response to UV, melanin is transferred to 

keratinocytes and repackaged as granules in keratinocytes where it accumulates above the nuclei to 

protect them from the mutagenic effects of UV radiation (Costin and Hearing, 2007; Gorman et al., 

2007). 
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 If melanin is produced and distributed correctly, keratinocytes are protected from the harmful effects 

of UV, even as the cell is undergoing cell division (Seripa et al., 2015; Tallmadge et al., 2015; 

Wilken et al., 2015). However, if the melanin production and distribution is significantly reduced, or 

if alterations in the signalling pathways of the keratinocyte-melanocyte complex arise, leading to 

diminished melanin production, then it is possible for UV and other environmental stresses to cause 

the DNA mutations that precede skin cancers (Coelho et al., 2009). 

While melanin is extremely important in protecting skin from damage caused by chemicals and 

radiation, it can itself be an indirect cause of damage (Yamaguchi et al., 2008). Chronic exposure to 

chemicals and radiation can result in changes to melanin properties, such that it fails to bind toxic 

substances, resulting in cell damage (Hu, 2008). Furthermore, after consistent and long term 

exposure to various environmental hazards and stresses, melanin accumulates free radicals, which 

have the potential to disrupt the synthesis of major proteins and RNA and cause dermal cell damage 

(Hu, 2008; Hube and Francastel, 2015; Tody et al., 1991).  

1.2 UV Radiation and Skin Cancers  

Environmental stresses and their role in skin cancer pathogenesis have been studied extensively, to 

gain a better understanding of the molecular mechanisms underpinning the tumourigenic process and 

to identify treatment or protection strategies. The factor identified as the main cause of most skin 

cancers is UV radiation, which induces specific mutations in skin cell DNA (Ikehata and Ono, 2011; 

Miller, 1985).  

Solar radiation is a spectrum of electromagnetic radiation that includes ultraviolet rays, infrared and 

visible light (Maddodi and Selaturi, 2008; Setlow et al., 1993; Sinha and Hader, 2002). UV radiation 

is considered a potent carcinogen, and it can enter the earth’s atmosphere and cause mutations in 

various mammalian cells including epidermal cells (Brenner et al., 2009). The association between 

UV radiation and skin cancer was first established in the late 60’s and was confirmed by Fears et al. 

(1977). Fears and colleagues showed that the incidence of non-melanoma skin cancers is far higher 

in areas where people are exposed to excessive sunlight. This led them to conclude that solar 

radiation is one of the main causes and suggested that formation of skin cancers is most likely related 

to annual rates of UV exposure.  
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Retrospective epidemiologic data gathered by various researchers over many years supports the 

claims made by Fears and colleagues (1997). One particular study conducted by Williams and Ouhtit 

(2005), also showed a clear link between skin cancer risk and UV exposure. Their systematic review 

showed clearly that exposure to sunlight both in childhood and adulthood contributes greatly to the 

risk. This result was mirrored by a study conducted in 2004 (Solomon et al., 2004), where the 

researchers also found that lifetime UV exposure leads to an increased likelihood of skin cancer. 

The epidemiological link between skin cancer and UV exposure provides only half of the evidence of 

the important role of this particular environmental stress in skin carcinogenesis. The discovery of UV 

signature gene mutations that are present in UV-induced BCC and SCC also confirmed the role of 

UV in skin carcinogenesis (Ananthaswamy and Pierceall, 1990; Andreassi, 2011; Miller, 1985). 

These UV signature mutations initiate tumourigenesis when found in genes involved in signalling 

cascades that control cell proliferation and apoptosis (Markovitsi et al., 2010).  

UVA Radiation  

Ultraviolet radiation is comprised of type A (UVA), which makes up 90% of all solar radiation and 

has wavelengths between 315-400 nm, and type B, which has long wavelengths of 290-320 nm 

(Weigmann et al., 2010). These relatively long wavelengths allow UV rays to penetrate the epidermis 

where they inflict cellular damage, including morphological and genetic alterations to keratinocytes 

and melanocytes (Courdavault et al., 2005). In particular, UVA is known to penetrate the deeper 

layers of the epidermis and induce significant damage to the cells located in the stratum basale. 

While UVA is capable of inducing DNA damage via thymine dimerisation (Ikehata and Ono, 2011), 

the basis for UVA mutagenesis and subsequent carcinogenesis lies predominantly in production of 

reactive oxygen species (ROS). ROS can covalently bind or directly oxidise proteins and can cause 

reversible or irreversible modifications including protein-protein cross linking, carbonylation, 

formation of adducts with lipid peroxidation products, and nitration (Perluigi et al., 2010; Vidal et 

al., 2014). These modifications often result in changes in stability, as well as functional and structural 

changes in proteins, which can lead to loss of protein function, protein aggregation and degradation, 

in turn causing DNA missense mutations. ROS are also capable of inducing DNA strand breaks and 

distorting nucleotide bases (Dai et al., 2012a).  
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UVB Radiation 

Considered the most-cancer inducing spectrum, UVB induces formation of multiple thymine dimer 

photoproducts, which can distort the DNA and affect its stability. UVB is implicated as the main 

cause of skin cancers, particularly keratinocyte-derived carcinomas. Several studies have shown that 

UVB, can induce histological and morphological alterations in epidermal cells (Delgado-Cruzata et 

al., 2014; Hillman et al., 2015).  

Previous studies in mice have shown that UVB induces significant changes to skin histology, 

including decreased epidermal thickness, increased epidermal differentiation and significantly 

reduced numbers of proliferating cells in UVB-treated skin (Luo et al., 2007; Riyahi et al., 2015; 

Saksouk et al., 2014). Furthermore, irradiation with solar and/or narrowband UVB strongly alters 

keratinocyte morphology, inducing cytoplasmic vacuolisation and disintegration of nuclear and 

cellular membranes (Kebir et al., 2014; Reich et al., 2007). Irregular distribution and bleb-like 

protrusions of the cell surface, rearrangement of the cytoskeleton and thinning or redistribution of 

microfilaments to the cell periphery, are also considered some of the most prominent narrowband 

UVB-induced morphological alterations in keratinocytes (Reich et al., 2007; Riyahi et al., 2015). 

Formation of major carcinogenic photoproducts, such as cyclobutane pyramidine dimers (CPD) and 

pyrimidine(6-4)-pyrimidone (6-4PPs), at pyrimidine sites on the DNA of epidermal cells are known 

to be induced by UVB irradiation (Courdavault et al., 2005; Ikehata and Ono, 2011; Matsunaga et al., 

1991). CPDs and 6-4PPs are formed as a result of a photochemical reaction between UVB and the 

DNA, leading to covalent linkage of adjacent thymine dimers (Figure 1.2), inducing significant 

changes in the nucleotide structure (Besarutinia et al., 2004; Yogianti et al., 2012). CPD formation 

generally occurs at sites of methylated cytosines, and thus an abundance of methylated cytosines in a 

particular DNA region increases susceptibility to UV radiation-induced damage at these sites (Aigal 

et al., 2015; Brenner et al., 2009). Thus, CpG islands, DNA regions containing 5-methylcytosines, 

are hotspots for such DNA mutations (Ikehata et al., 2003; Ikehata and Ono, 2011).  

Keratinocytes undergo rigorous processes of surveillance to ensure that cells which harbour CPDs or 

6-4PPs DNA damage do not proliferate (Alonso et al., 2015; Khalkhali-Ellis et al., 2014). Conserved 

processes of cell cycle arrest and photoproduct-repair, primarily via the nucleotide excision repair 

pathway (NER) and activation of DNA polymerases such as translesion DNA synthesis (TLS) 

polymerases, are imposed on cells with DNA lesions (Loughlin, 2015; Pathania et al., 2015; Rubin et 

al., 2014; Vilahur et al., 2014). These innate cellular stress responses to DNA damage help in 

guarding the genome against mutations that may induce unrestricted proliferation and/or evasion of 

apoptosis, leading to the formation of tumours. 
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Figure 1.2: UV-Induced Thymine Dimer Formation. a) Diagrammatical representation of UV-
induced thymine dimer formation in cells and distortion of the DNA helix (Pearson Publishing 
Inc, Benjamin Cummings). b) Covalent linkage of thymine bases as a result of UV radiation.  

UV Damage and Cell Cycle Arrest 

Cell cycle arrest is imposed on cells with DNA damage to provide time for correction of any 

DNA defects (Andersen, 2015; Baud et al., 2014). The cell cycle arrest mechanism in mammalian 

cells is primarily controlled by the p53 protein, a product of the TP53 gene (Geranton and 

Tochiki, 2015; Kastan et al., 1991). In response to genotoxic stress, particularly UV-induced 

DNA damage, the levels of p53 protein increase, which determines either a transient arrest of cell 

cycle progression or triggers apoptosis (Brash, 2006; Chipuk and Green, 2004). The p53 protein 

can activate agents of the cell cycle checkpoints, controlling their activity, to primarily induce a 

transient arrest at a specific stage of the cell cycle (Andersen, 2015; Geranton and Tochiki, 2015; 

Mourad et al., 2014). There are two well-known p53-regulated checkpoints at which DNA 

damage is monitored (Figure 1.3)-, the G1/S transition checkpoint, which prevents replication of 

damaged DNA, and the G2/M transition, at which stage cell cycle is inhibited in response to 

persistent DNA damage and/or incompletely replicated DNA (Harris and Levine, 2005).  
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The p53 protein mediates G1/S phase arrest via the activation of p21CIP1, which inhibits the kinase 

activity of cyclin/cyclin-dependent kinase complexes, which are key elements in cell cycle 

progression (Jimenez et al., 1999; Pellegata et al., 1996; Smith et al., 2000). By inactivating these 

kinases, p53 prevents the phosphorylation of the G1 cyclin/cyclin-dependent kinase substrate pRB 

and inhibits the transition of cells from the G1 to the S phase of the cycle (Abbas and Dutta, 2009; 

Brant et al., 2014). Arrest at G1 provides time for innate nucleotide excision DNA repair 

mechanisms to repair critical damage, thereby avoiding the propagation of genetic lesions to 

progeny cells (Yu et al., 2000). If the nucleotide excision repair is successful in removing and/or 

repairing the DNA lesion, the cell cycle can resume. However, if the damage is too extensive, 

cells will undergo apoptosis (Pellegata et al., 1996). Loss of the G1 checkpoint also results in 

genomic instability, as seen by the increase in the frequency of gene amplifications in p53-

defective cells (Bodega and Orlando, 2014).  

 

 

Figure 1.3: The Cell Cycle Checkpoints. 
 

DNA Damage Repair  

In all mammalian cells, the recognition and effective removal of DNA lesions is facilitated by an 

efficient DNA repair system. The nucleotide excision repair (NER) mechanism is responsible for 

the surveillance and removal of UV-induced DNA damage and other lesions that may induce 

distortion of the DNA helix in various cells, most particularly in keratinocytes which are 

constantly exposed to UV radiation (Du et al., 2015; Feng et al., 2014; Kratochwil and Meyer, 

2015; Pacis et al., 2014).  
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Nucleotide excision repair is indispensable for the removal of UV-induced DNA lesions, as 

highlighted by three clinically and genetically heterogeneous human syndromes carrying defects 

in NER-associated genes; Xeroderma Pigmentosum (XP), Cockayne Syndrome (CS), and 

Trichothiodystrophy (Asada et al., 2015; Kraemer et al., 1987; Pan, 2014). People with these 

syndromes are all sensitive to UV exposure and, in particular, patients with Xeroderma 

Pigmentosum have a >1,000-fold increased susceptibility to UVB-induced skin cancers (Anink-

Groenen et al., 2014; Sarasin, 1999). The nucleotide excision repair-mediated damage 

surveillance mechanism is subdivided into two sub-pathways (Figure 1.4) – Transcription 

Coupled - Nucleotide Excision Repair (TC-NER) and Global Genome - Nucleotide Excision 

Repair (GG-NER). These pathways differ primarily in the way they respond to or recognise 

damage (Raviram et al., 2014). 

TC-NER is initiated when an elongating RNA polymerase II is stalled as a result of DNA lesions, 

which disrupts transcription on the template strand of active genes (Katz et al., 2014; Kolovos et 

al., 2014). This is followed by the recruitment and modifications to Cockayne Syndrome B (CSB) 

and Cockayne Syndrome A (CSA) proteins, which have DNA-binding ability (Bianchi et al., 

2014; Edelstein and Smythies, 2014). The Xeroderma Pigmentosum group B and D (XPB and 

XPD respectively) helicases of the 10-subunit transcription factor TFIIH then unwind the helix 

surrounding the lesion, creating short stretches of single stranded DNA (ssDNA) around the 

lesion (Qian et al., 2015).  

The creation of ssDNA facilitates the recruitment of Xeroderma Pigmentosum group A (XPA) 

and Replication Protein A (RPA), ssDNA binding proteins, which verify DNA damage and 

prevent complimentary repair by aberrant NER complexes formed on undamaged DNA 

(Simpson, 2014). Once DNA damage is verified, Xeroderma Pigmentosum complementation 

group G (XPG) and the Excision Repair Cross-Complementation group 1 – Xeroderma 

Pigmentosum group F (ERCC1-XPF) protein complex of structure-specific endonucleases, cut 

the DNA strand containing CPDs at the 3′ and 5′ side of the lesion respectively (Corware et al., 

2014; Janssen et al., 2014; Yang et al., 2014). When the oligonucleotide, approximately 30nt in 

length, containing the lesion has been removed, Proliferating Cell Nuclear Antigen (PCNA) is 

loaded onto the DNA by Replicating Factor C (RFC) protein, as is the case in normal DNA 

replication. DNA polymerases δ and ε then mediate DNA repair synthesis across the gap using 

the undamaged strand as a template (Bailey et al., 2015; Murphy et al., 2015). Finally, the 

remaining nick is sealed by DNA ligase I. 
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Figure 1.4: The Nucleotide Excision Repair (NER) System. The molecular events involved in 
nucleotide excision repair (NER) mechanism for DNA damage recognition and repair in 
mammalian cells. Global genome-NER (GG-NER) and Transcription coupled-NER (TC-NER) 
mediate excision of the DNA strand containing UVB-induced lesions (Erdmann et al., 2014). 
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By contrast, GG-NER is mediated by the protein complex XPC-hHR23B (RAD23B), which 

probes the complete genome for deformation of the DNA double helix (Kobow and Blumcke, 

2014; Nakajima and Kunimoto, 2014; Wang et al., 2014). As a result, GG-NER is highly 

important for the recognition of the highly helix-distorting 6-4PPs, and their immediate repair 

(Wang et al., 2014). However, this particular nucleotide excision repair system poorly recognizes 

and removes CPDs which only mildly distort the DNA structure (Bilal et al., 2014). In humans, 

this oversight in DNA damage surveillance is compensated by the activation of the p53 protein, 

an important regulator of UV-induced cellular stress response (Bodega and Orlando, 2014; Saleh 

et al., 2000). The p53 protein induces upregulation of the p48 subunit of the DNA damage 

binding (DDB) protein to help in the recognition of CPDs and to mediate their repair (Asgari, 

2014; van den Elsen et al., 2014). 

From the information outlined above, it is clear that pyrimidine dimers are a main form of solar 

UV-induced DNA damage and that NER is the main line of defence against the genetic 

alterations that these dimers may cause in keratinocytes (Figure 4). Furthermore, it is important 

to note that these repair mechanisms facilitate an error-free repair of DNA using the template 

strand remaining at the CPD site. If the cellular damage persists, UVB elicits a fail-safe 

mechanism evidenced by the formation of sunburn cells (SBC), representing keratinocytes 

undergoing apoptosis.  

Apoptosis Following UV Irradiation 

As previously mentioned, when the DNA lesion is too extensive and beyond repair, cell apoptosis 

occurs and sunburn cells are formed to ensure the disposal of the damaged cells. The main 

function of sunburn cells, formed by a complex multifactorial process, is to reduce the risk of 

malignant transformation (Brash et al., 1996; Tian and Xu, 2015). Sunburn cells exhibit 

morphology characteristically observed in apoptotic cells, including pyknotic nuclei and 

cytoplasmic shrinkage (Laethem et al., 2005). Sunburn cells typically accumulate in the 

suprabasal and mid epidermal layers, particularly at later time points after UVB exposure (Babu 

et al., 2015). The morphological features of sunburn cells result from activation of the pro-

apoptosis cysteine-protease family of caspases, which induce cleavage of cellular substrates and 

rapid disassembly of keratinocytes. Caspase activation in mammalian cells occurs via two 

principal pathways – extrinsic and intrinsic apoptosis pathway (Assefa et al., 2003; Kroemer et 

al., 1997; Lee et al., 2013).  
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The extrinsic caspase-activation pathway is initiated when ligands bind to membrane death 

receptors (DR), and an apoptosis-inducing signalling complex (DISC) is formed (Kar et al., 

2014). DISC induces the recruitment of pro-caspase initiators, procaspase-8 and/or 10, which 

leads to the activation of caspase-8 and caspase-10, which in turn promote the processing and 

activation of downstream effectors, procaspases-3, 6 and/or 7 (Aragane et al., 1998; Reidl et al., 

2007).  

The “intrinsic” apoptosis pathway is induced via the permeabilisation of the outer mitochondrial 

membrane and the release of intermembrane space proteins, such as cytochrome c, which triggers 

the formation of the “apoptosome” (Clement-Lacroix et al., 1996; Wu and Cederbaum, 2008). 

Apoptosomes are molecular platforms composed of apoptosis protease-activating factor-1 (Apaf-

1), dATP and cytochrome c, which recruit and activate procaspase-9. Caspase-9 then cleaves and 

activates the effector procaspases-3,-6,-7 (Kroemer et al., 1997; Laethem et al., 2005). Intrinsic 

apoptosis is critically regulated by pro-apoptotic genes such as BAX, BAK and BAD, and anti-

apoptotic Bcl-2 family members (Holley and St Clair, 2009; Wu and Cederbaum, 2008). Due to 

the ability of UVB to induce DNA damage, induction of sunburn cell formation is achieved via 

both procaspase activation pathways. 

As previously mentioned, the presence of sunburn cells signifies a successful termination of 

DNA-damaged keratinocytes. Thus, extensive activation of caspase-3 and/or upregulation of pro-

apoptotic genes, such as BAX, indicates that DNA damaged keratinocytes are appropriately 

controlled and are in the process of being eliminated from the epidermis. Increased presence of 

sunburn cells, as well as increased numbers of keratinocytes with active caspase-3 protein, are 

often observed after extensive UV exposure, and are indicative of the damaging effects of this 

radiation on the DNA (Assefa et al., 2003; Kroemer et al., 1997; Lee et al., 2013). 

UV-Induced Keratinocyte Apoptosis and the p53 Protein 

It is important to note that apoptosis following UVB exposure depends on the differentiation state 

of the keratinocyte, the dose of UVB irradiation and on the balanced presence of survival and 

death factors in the keratinocyte microenvironment. It is known that p53 is also an important 

factor in UVB-induced cell death in murine skin and cultured human keratinocytes (Brash et al., 

1996; Henseleit et al., 1997). Differentiating populations of keratinocytes require p53 to mediate 

apoptosis as a result of UVB irradiation. Paradoxically, p53 or p53-regulated proteins also 

enhance DNA repair in the basal layer so as to maintain the proliferative potential of this cellular 

compartment (Narine et al., 2010; Tron et al., 1998).  
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Figure 1.5: The p53 Signaling Pathway. Activation of the p53 protein (red) is initiated by 
checkpoint enzymes ATM/ATR. Activated p53 binds to target genes to regulate cellular processes. 
MDM2 induces ubiquitination (Ub) of p53, leading to the degradation of this protein. (Adapted 
from: (Chakraborty et al., 2011) 

 

Upon UV-induced DNA damage, the tumour suppressor p53 proteins are stabilised, mainly 

through phosphorylation-mediated disruption of the MDM2-p53 complex, and translocate to the 

nucleus (Jimenez et al., 1999). In a cell- and stress-specific manner, the transcription factor p53 

can trigger either cell-cycle arrest facilitating DNA repair, senescence or apoptosis, thus 

preventing damaged cells from becoming cancerous. It is important to note that p53-null mice 

(Attardi and Jacks, 1999) or p53-S389A mutants (Bruins et al., 2004),are more prone to develop 

UV-induced skin cancers and show a dramatic reduction in the number of apoptotic cells in the 

epidermis. Thus, the p53 protein appears to be a critical regulator of DNA sunburn cell induction. 

Due to its role in cell cycle arrest and DNA damage repair, TP53 is one of the most commonly 

mutated genes in keratinocytes, and is considered an essential factor for the malignant 

transformation of keratinocytes. 
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The p53 Signalling Pathway in Keratinocytes 

The TP53 gene encodes the p53 transcription factor, a cellular protein that is a key tumour-

suppressor (2008). As previously mentioned, this protein is involved in maintaining genomic 

stability, and can enforce a G1 cell cycle arrest or induce apoptosis in response to cellular stresses 

(Harris and Levine, 2005). As outlined above, cell cycle arrest at the G1 phase is very important 

as it allows for cellular repair pathways to remove damage before DNA synthesis and cell mitosis 

can begin (Terzian et al., 2010). Conversely, p53-induced apoptosis helps eliminate potential 

tumour cell progenitors. Thus, p53 protein activity is important for regulating keratinocyte 

biology and, in turn, maintaining skin integrity. P53 protein activity and its multiple roles are 

regulated by post-translational modifications, particularly phosphorylation and acetylation.  

Post-translational Modifications and p53 Activation  

While the p53 protein is normally expressed at low levels in normal cells, activation and 

expression of this protein increases in response to DNA damage induced by environmental 

stressors, particularly UV radiation (Smith et al., 2000). In particular, UVB-induced thymine 

dimer formation alters the integrity of the DNA template, resulting in the activation of UV 

damage signal transducers and checkpoint kinases such as Ataxia Telangiectasia (ATM), ATM 

and Rad-3 (ATR), Checkpoint Kinase 1 (Chk1) and (Chk2) enzymes (Figure 1.5). These 

enzymes phosphorylate p53 at one or more serine residues at the N- or C- terminus, resulting in 

the activation of the protein (Vogelstein et al., 2000). Once activated, the p53 protein translocates 

to the nucleus, where it binds to specific DNA sequences comprised of 1-21 nucleotides, termed 

the p53-responsive element, at the promoter of its target genes, to regulate target gene expression 

(Figure 1.6).  

In addition to phosphorylation, acetylation of p53 at various lysine sites within its C-terminus is 

fundamental for p53 activation. Histone acetyltransferases CBP (KAT3A) and p300 (KAT3B) 

mediate the acetylation of the p53 protein at six lysine sites, including K381 and K382, which can 

enhance the DNA-binding ability of p53 and prevent its export from the nucleus (Li et al., 2011). 

Furthermore, acetylation of p53 by these enzymes also opposes the recruitment of MDM2 and 

MDM4, which are known repressors of p53, preventing p53 protein degradation.  
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The action taken by p53 is dependent on the level of DNA damage within cells (Cui et al., 2007). 

If minor DNA damage is detected, p53 protein expression increases and accumulates to inhibit 

cell division and promote repair before cell replication begins (Harris and Levine, 2005). If 

damage is excessive, the p53 protein actively induces transcription of genes that may direct cells 

to undergo apoptosis (Mullerat et al., 2003). As long as the TP53 gene is free from mutations or 

otherwise active, this system is maintained. However, once the gene itself accumulates mutations 

or the protein is otherwise incapacitated, by for example aberrant post-translation modifications, 

the system is disrupted and damaged cells may escape surveillance (Hussein et al., 2003).  

 

Figure 1.6: Activation of p53 by Post-Translational Modification. Checkpoint enzymes 
ATM/ATR and Jnk phosphorylate p53 and initiate activation of the p53 protein (red). p300 also 
induce activation of p53 via acetylation of lysine 382 residue at the p53 c-terminus. 
a=acetylation, p=phosphorylation, lys 382=lysine at position 382, Ser15 or Ser20=serine at 
position 15 or 20, Thr81= threonine at position 382 

UV radiation, p53- inactivating mutations and Keratinocyte-derived skin cancers 

The TP53 gene is commonly found to be mutated in the majority of human cancers. As 

mentioned above, expression of p53 in the nucleus is elevated after UV irradiation following a 

genotoxic insult, and is involved in cell cycle arrest (late G1 and G2/M), apoptosis and NER 

(Athar et al., 2000; Seo and Jung, 2004). In SCC and BCC pathogenesis, the TP53 gene 

accumulates UVB-induced point mutations, particularly at di-pyrimidic sites associated with C to 

T transitions and 5–10% of CC to TT tandem mutations. Extensive mouse experiments 

have confirmed that the TP53 gene is a target in UV-induced carcinogenesis, and it has been 

found that the wavelength dependency of the induction of SCC closely parallels that of the 

induction of pyrimidine dimers in the skin, especially those wavelengths within the UVB bands. 
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Experiments with hairless mice show that clusters of epidermal cells with mutant p53 occur 

long before SCC becomes visible. Similarly, clusters of mutant p53 have also been found in 

human skin (Dumaz et al., 1997; Grujil et al., 2001; Kanjilal et al., 1993). The presence of a 

dysfunctional p53 impairs protective responses against DNA damage and oncogenic 

signalling. Thus, the presence of TP53 mutations may facilitate malignant progression of 

keratinocytes. Interestingly, a study has shown that BCC and SCC frequently show 

chromosomal aberrations such as loss of heterozygozity (LOH), originally thought to be the 

result of mutations in TP53 (Rass and Reichrath, 2008; Ren et al., 1996b). In BBC, LOH is 

restricted to chromosome arm 9q. However, LOH is found to be more diverse in SCC, where 

aberrations are found at 3p, 9p, 13q, 17p, 17q. Actinic keratoses (AKs), which are 

considered precursors of SCCs, also carry extensive LOH and p53 mutations (Grujil et al., 

2001; Ren et al., 1996a).  

Although it was previously suspected that LOH is attributable to the presence of mutant p53, 

studies have shown that LOH can occur without any TP53 gene mutations. These studies 

then beg the question whether LOH is caused by UVB-induced DNA damage directly, given 

the significant relationship between AKs, SCC and sun exposure. However, it is important to 

note that mutations in the TP53 gene are not enough to cause BCC or SCC. At the very least 

some oncogenic pathway has to be activated (Brash, 2006)(de Grujil, 2008). In BCCs and 

SCCs, the deregulation of the Sonic hedgehog (SHh) pathway is commonly observed. SHh 

normally contributes to self-renewal of the skin and its appendages in adults, so its 

oncogenic constitutive activation leads to uncontrolled cell proliferation (Reifenberger et al., 

2005).  

 

1.3 Heat Stress and Skin Cancers 

Apart from UV, heat stress is also hypothesised to be involved in skin carcinogenesis. The 

possible role of heat stress in skin carcinogenesis was postulated given the observed 

increased incidence of skin cancer among people constantly exposed to intense temperatures, 

such as mine workers (Fortes, 2008). Furthermore, epidemiological studies have shown 

significant correlation between elevated environmental temperatures and increased skin 

cancer incidences in the US (Freedman et al., 2015; van der Leun et al., 2008). However, the 

exact contribution of heat stress to skin carcinogenesis has yet to be determined. 
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Heat control is an important factor in homeostasis and is necessary for maintaining cellular 

functions (Kregel, 2002). The core body temperature of 37°C, sustains activity and transcription of 

various genes that are vital in cell differentiation and proliferation. While this temperature is 

maintained by innate homeostatic mechanisms that regulate internal temperature (Sonna et al., 

2002), it is important to note that surface skin temperature, which is normally at 32ºC, tends to be 

affected by environmental temperature. As a matter of fact, surface skin temperature has been found 

to increase to 40ºC with direct exposure to sunlight (Lee et al., 2006). Thus, as the body is 

constantly exposed to thermal fluctuations in the ambient environment, some cells, particularly 

those located in the skin, may be subjected to increased temperatures (Jonak et al., 2006).  

Cell exposure to elevated temperatures (heat shock), can trigger extensive denaturation, degradation 

and aggregation of critical intracellular proteins which can lead to cell death (Kregel, 2002). The 

deleterious consequences of intense temperatures is ameliorated by an adaptive response to ensure 

cell survival (Soti et al., 2005). The cell survival pathway activated by heat shock is the heat shock 

response, a cascade of events that lead to induction of heat shock proteins (HSPs) (Ciocca and 

Calderwood, 2005). 

The Heat Shock Response 

The heat shock response is primarily controlled by heat shock factor-1 (HSF-1) at the transcription 

level (Jolly et al., 2004). HSF-1 is present in the cytoplasm of normal cells as a monomer, which 

has no binding capabilities (King et al., 2001). However, when cells are under duress, monomeric 

HSFs combine to form trimers which translocate to the nucleus where they bind to heat shock 

elements (HSEs) (Morimoto, 2002), consensus sequences located in promoters upstream of heat 

shock genes (Kim et al., 2005). In the nucleus, HSF-1 is phosphorylated which allows it to bind to 

DNA, leading to transcription of heat shock genes and expression of HSPs, particularly HSP72 

(Figure 1.7) (Guo et al., 2007).  

Expression of HSPs protect cells from apoptosis and from further damage, via interaction with 

signalling pathways that control cell proliferation and apoptosis (Soti et al., 2005). HSPs are highly 

conserved proteins that are expressed in all cells. There are many types of heat shock proteins, but 

HSP90 and HSP72/HSp70 are the main proteins involved in the heat shock response (Volloch and 

Rits, 1999; Yaglom et al., 2007). These peptides have important roles in various cellular processes 

but their main function is to act as molecular chaperones, i.e. they bind to other proteins and 

mediate their folding, transport and protein-protein interactions (Jonak et al., 2006). In addition, 

HSPs have the ability to direct re-folding of denatured proteins, damaged as a result of heat shock, 

thus suppressing further damage. As a result, cells are stabilised and protected against damage (De 
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Maio, 2011). When the stresses are removed, HSP72 binds to HSF-1 to inactivate it through a 

negative feedback loop. HSF-1 then returns back to the cytoplasm as a monomer (Ciocca and 

Calderwood, 2005). The role of heat shock response in cell survival and evasion of apoptosis is 

further discussed in Chapter 2 of this thesis. 

 

Figure 1.7: The Heat Shock Response 

(Adapted from: (Pockley, 2003)) 

While HSP90 and HSP70 are vital for sustaining cellular integrity and protecting cells against UV-

induced apoptosis, they are commonly overly expressed in a variety of cancers, including those of 

the skin (Nagata et al., 1999). In normal cells, activation of heat shock proteins, particularly HSP90, 

maintains the native conformation of its various client proteins, including p53, during thermal stress 

(Chen et al., 2002). Previous studies have shown that full-length HSP90 is able to 

stabilize p53 against thermal unfolding by binding to the DNA-binding domain of p53, thereby 

preserving the native conformation of this protein during thermal stress and maintaining its 

activation-competent state (Park et al., 2011b; Walerych et al., 2004). However, HSP90 can also 

bind to the DNA-binding domain of mutant p53, which could have implications for skin 

carcinogenesis (Diaz et al., 2010; Peng et al., 2001). 
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The HSP90 and mutant p53 interaction represents an altered use of chaperone proteins to protect 

mutant tumour-suppressor proteins. TP53 mutations, which are the most common genetic defect 

observed in human cancers, can result in the expression of a p53 protein with an altered 

conformation and impaired cell-cycle-checkpoint activity (Whitesell and Lindquist, 2005; Whitesell 

et al., 1998). The aberrant conformations of mutant p53 do not prevent HSP90 from binding to its 

DNA-binding domain (Whitesell et al., 1998). The extended interactions, therefore, of p53 with the 

HSP90-chaperone machinery prevent the normal ubiquitination and subsequent degradation of p53 

(Dai et al., 2007). This results in accumulation of dysfunctional protein within the pre-cancerous 

and in tumour cells, being a hallmark of cancer (Whitesell and Lindquist, 2005; Whitesell et al., 

1998).  

Previous studies have also shown that mutant p53 protein bound to HSP90 does not function as a 

tumour suppressor, and that the HSP90-mutant p53 complex can interfere with the functions of 

normal p53 by inducing formation of heterodimers, between normal and mutant p53, and 

inappropriate transactivation of p53-regulated target genes (Lin et al., 2008). Impairment of wild-

type p53 functions, as a result of interference induced by the HSP90-mutant p53 complex, may help 

facilitate the upregulation of pro-proliferation and survival genes, normally controlled by this 

protein (De Maio, 2011; Whitesell et al., 2003). Thus, heat stress, via HSP90, may help contribute 

to skin cancer formation by promoting the dominant-negative and positive tumour-promoting effect 

of mutant p53. Thus, heat stress may not act as a primary driver of tumourigenesis but rather it may 

exacerbate the carcinogenic effects of UV, a known mutagen of TP53. 

SIRT1 and the Heat Shock Response 

The heat shock response can also be regulated by factors that facilitate chromatin stability, 

particularly SIRT1, a NAD+/NADH dependent histone deacetylase (Aarenstrup et al., 2008; Cao et 

al., 2009; Glozak and Seto, 2007; Westerheide et al., 2009). SIRT1 is capable of inducing 

compacted chromatin reformation through the removal of acetyl groups, and is highly important for 

maintaining chromatin stability (Fritah et al., 2009; Lou et al., 2009; Raynes et al., 2013a). 

However, SIRT1 is also capable of deacetylating various transcription factors, including HSF1, 

which is essential for cellular response to heat stress (Westerheide et al., 2009). 
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Recent studies have shown that SIRT1 deacetylates HSF1, resulting in prolonged binding of HSF1 

to the hsp70 promoter and subsequent prolonged induction of the heat shock response (Donmez et 

al., 2012; Fritah et al., 2009; Lou et al., 2015; Raynes et al., 2013a; Westerheide et al., 2009). 

Conversely, downregulation of SIRT1 promotes the attenuation of the heat shock response via 

increased HSF1 acetylation, which inhibits its DNA binding ability. Thus, SIRT1 activation may be 

an intrinsic component of the heat shock response. 

Overexpression of SIRT1 was also found to mediate increased tolerance to high-temperature heat 

shock in 293T and A53T cells (Westerheide et al., 2009). SIRT1 has also been shown to work 

together with HSF1 to protect against α-synuclein pathology in Parkinson’s Disease (Donmez et al., 

2012). A recent study using a transgenic mouse model bearing the human α-synuclein gene with an 

A53T mutation, which causes familial early-onset Parkinson disease, showed that when A53T-mice 

were crossed with SIRT1 transgenic mice, SIRT1 prolonged the life span of the mice and decreased 

the level of α-synuclein aggregates in the mouse brain (Donmez et al., 2012). Interestingly, the 

molecular mechanism involved SIRT1 induced deacetylation of HSF1, leading to increased HSP70 

levels in the brains of the A53T-mice. It is clear then that SIRT1 affects HSF1 activity, via 

deacetylation, resulting in increased HSP expression under cell stress conditions.  

In addition, the interaction of SIRT1 with HSF1 has also been shown to be regulated by heat stress, 

as endogenous SIRT1 co-immunoprecipitates with HSF1 upon heat shock in mouse embryonic 

fibroblasts (MEFs) (Donmez et al., 2012). Furthermore, previous studies have shown significant 

correlation between SIRT1 protein overexpression and increased survival of cells, even at high 

temperatures (Raynes et al., 2013b; Westerheide et al., 2009). Thus, SIRT1 may play a role in 

mediating cell survival in the presence of heat. However, the exact mechanism as to how heat stress 

induces SIRT1 activation is yet to be determined. Nevertheless, recent reports showed that SIRT1 

phosphorylation is important for survival of cells under stress conditions. Phosphorylation of SIRT1 

has been found to increase its enzymatic activity, and has been shown to induce activation of HSF1 

(Monteiro and Cano, 2011; Sasaki et al., 2008). 

 It is important to note that SIRT1 is also capable of deacetylating p53, particularly at K373 and 

K382, and affecting the DNA-binding ability of this protein (Aarenstrup et al., 2008; Cao et al., 

2009; Glozak and Seto, 2007; Westerheide et al., 2009). Due to its active role in regulating cell 

proliferation and differentiation of keratinocytes (Boukamp, 2011), studies have shown that 

inhibition or inactivation of TP53 plays a large role in skin carcinogenesis (Madan et al., 2010). 

Thus, heat-mediated activation of SIRT1 may be involved in heat-mediated effects that lead to skin 

cancer pathogenesis. 
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As previously mentioned, inactivation of TP53 by activating mutations prevents interaction of p53 

to its downstream target genes, blocking p53-mediated transcriptional activation of these effectors 

and preventing induction of cell cycle arrest or apoptosis of DNA damaged cells. Mutations are not 

the only types of molecular alteration to the p53 protein that can inactivate its tumour suppressor 

functions. Post-translational modifications of p53, particularly deacetylation, can also affect the 

efficiency of this protein to bind to its downstream target genes and thus diminish its ability to 

regulate the cellular stress response. Interestingly, while heat stress has been found to increase 

SIRT1 activation, UV has been shown to inhibit it (Cao et al., 2009; Li et al., 2011; Westerheide et 

al., 2009). Thus, via SIRT1, exposure to heat stress, particularly in addition to UV, may result in the 

disruption of p53 function in epidermal keratinocytes, making them vulnerable to UVB-induced 

mutations. 

Skin Cancer Pathogenesis and Heat Stress 

While the role of UV radiation in skin carcinogenesis is undisputed, the effects of heat shock on 

cutaneous cancer pathogenesis remains controversial and undefined. Recent epidemiological studies 

in the US have shown significant increases in skin cancer incidence, particularly BCCs and SCCs, 

in geographical areas of high temperature (van der Leun et al., 2008). As a matter of fact, in their 

epidemiological report, van der Leun and colleagues (2008) suggested that the carcinogenic effect 

of UV appears to be potentiated by 2%, per 1°C increase in environmental temperature. 

Interestingly, Freedman et al (2015) also found a significant trend towards increased risk of BCCs 

in people living in areas with high UV radiation and elevated temperatures (approximately 34°C). 

Thus, these epidemiological results suggest that heat stress may have a role in skin carcinogenesis, 

possibly by exacerbating UV-induced risk of cutaneous tumour formation.  

Despite the existence of epidemiological studies correlating heat stress exposure to increased risk of 

UV-induced cutaneous cancers, there is a paucity of biological studies aiming to uncover the short 

term and long-term effects of heat on epidermal cells. Nonetheless, previous studies have shown 

that pre-treatment with heat stress (38-40°C) increases cell viability and decreases thymine dimer 

formation in murine and human keratinocytes subsequently exposed to UV, suggesting heat-

mediated protection of UV-exposed keratinocytes against damage (Kane and Maytin, 1995; Maytin, 

1995; Maytin et al., 1993; Trautinger et al., 1996). Cell protection is hypothesised to be maintained 

by heat shock proteins (HSPs), particularly HSP72, which can directly interact with various survival 

kinases or proteins such as c-jun N-terminal kinase (Jnk) and Akt, thereby reducing UV lethality 

(Jantschitsch and Trautinger, 2003).  
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It is important to note, that previous studies only reported on the effects of a singular exposure to 

heat stress and UV on keratinocyte biology. Furthermore, the cells were subjected to heat stress 

prior to UV irradiation. Thus, this exposure model that may have induced the pre-activation of 

protective mechanisms against UV-induced damage in keratinocytes. Environmental conditions, 

however, involve continuous exposure to heat stress independently or concurrently and/or 

sequentially with UV radiation in several geographical locations. Thus, it is more prudent to 

determine the effects of repeated simultaneous exposure to heat and UV in human keratinocytes.  

Of note, previous studies in mouse models have shown that simultaneous exposure to UV and high 

temperature increases the incidence and rate of cutaneous tumour formation in mice (Bain et al., 

1943b; Freeman and Knox, 1964; van der Leun et al., 2008). Bain and colleagues have shown that 

white ABC mice concurrently exposed to UV plus heat developed high numbers of cutaneous 

tumours, which manifested after a short period of time, compared to mice exposed to UV radiation 

at room temperature (25°) or colder (3-5°C). Freeman et al. (1964) similarly showed significant 

increases in tumour development in white mice irradiated with UV at high temperatures. These 

biological studies suggest that exposure to heat and UV may increase the risk of skin cancer 

formation. However, these studies did not elaborate on the exact contribution or mechanism of heat 

stress in UV-induced skin carcinogogenesis. Interestingly, despite the innate heat shock response in 

cells, exposure to high temperatures causes DNA damage. Heat stress has been observed to 

deaminate cytosine and hydrolise glycosyl bonds, leading to genome instability (Bruskov et al., 

2002; Lindahl and Nyberg, 1974; Poltev et al., 1990). In addition, exposure to heat stress can induce 

formation of reactive oxygen species, which can cause G to T transversion mutations (Bruskov et 

al., 2002; Ehrlich et al., 1986; Smirnova et al., 2005; Takahashi et al., 2004). Thus, exposure to heat 

stress may potentially increase the risk of skin cancer formation by contributing to the accumulation 

of mutations.  

In order to generate a more accurate measure of the response of epidermal cells, particularly 

keratinocytes, to combined exposure to UV and heat, studies that aim to determine these effects 

need to use human skin models. Previous heat-related studies used primary keratinocytes in vitro 

and/or mouse models to determine the effects of thermal stress in these cells. There are biological 

differences to mice and humans and, thus, any heat-induced changes in mouse keratinocytes may 

not accurately reflect that of human cells. Furthermore, while in vitro studies have contributed 

greatly to our understanding of the consequences of environmental stress exposure on keratinocytes, 

use of primary cells pose significant limitations. In particular, primary keratinocytes are not in their 

natural environment and the lack of epidermal melanin complex, may affect their response to heat 

stress exposures. Melanocytes and keratinocytes appear to have a symbiotic relationship, which 
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allows them to maintain a level of protection against environmental stressors, particularly UV. 

Within a skin model, local immune responses are present and keratinocyte-melanocyte interaction is 

preserved, and thus, effects of heat stress on keratinocyte biology may be more accurately 

measured. 

It is imperative that accurate heat-mediated molecular changes in epidermal cell biology are 

identified, in order to gain more understanding of its possible role in UV-induced skin 

tumourigenesis. Furthermore, by unravelling the mechanisms responsible for heat-mediated 

alterations in keratinocyte biology, preventative strategies may be developed to abrogate heat-

induced changes in these cells, which will perhaps diminish the risk of skin cancer development. 

 

1.4 Conclusion  

In conclusion, the increasing incidence of people diagnosed with various forms of skin cancer 

annually, makes this disease one of the major health concerns across the globe. The lack of cure, 

especially for the deadly and metastatic forms such as melanoma and SCC, makes it imperative to 

determine all possible risk factors for skin cancer in order to decrease the probability of developing 

the disease. So far, studies have confirmed the role of UV in skin cancer formation. The knowledge 

gained from studying UV has allowed for the development of preventative strategies, which 

decrease the chances of developing skin cancer. However, the lack of information on heat, suggests 

that a potential threat currently goes unabated.  

Heat stress has a dramatic effect on epidermal cells and can influence the activity of signal 

transduction pathways, particularly those that are important in regulating keratinocyte and 

melanocyte proliferation, survival, differentiation and apoptosis, all crucial in skin cancer initiation. 

Furthermore, heat has been shown to sustain and stabilise the activity of UV-transformed mutant 

p53, or activation of SIRT1 leading to inhibition of p53 activity indicating that heat can exacerbate 

the effects of UV. The order of heat and UV exposure maybe crucial to the downstream effects of 

heat – the dichotomy of this response may be the critical point that we need to understand and 

identify. For this reason, it is imperative that the role of heat in skin cancer formation be studied, 

alone or in synergism with UV radiation.  
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1.5 Theoretical Framework 

In recent years, epidemiological studies have shown that heat stress may increase the 

incidence of UV-induced skin cancers (Freedman et al., 2015; Sun et al., 2008b; van der 

Leun et al., 2008). Thus, heat stress could be a potential risk factor for skin carcinogenesis. 

Studies of the effects of heat stress upon keratinocyte biology remain limited (Calapre et 

al., 2013). The few studies that are in the literature have shown that heat shock prior to UV 

irradiation can decrease the levels of UV-induced CPD formation and apoptosis in 

keratinocytes (Kane and Maytin, 1995; Trautinger et al., 1997). The heat-mediated 

protection against UV-induced DNA damage was suggested to be the result of the heat 

shock response activation and induction of heat shock proteins. However, the effects of 

combined exposure to UV and heat remain to be identified. 

As chaperone proteins, HSPs can interact with essential DNA damage response proteins, 

particularly p53, and can increase their stability and maintain their conformation, ensuring 

the survival of cells (Zylicz et al., 2001). However, it is important to note that in the 

environment, particularly in geographical locations with arid climates, heat stress occurs 

concurrently with UV radiation. Thus, it is important to determine the effects of exposure to 

UV plus heat in human epidermal cells.  

Previous studies on mice have shown that concomitant exposure to UV and heat stress 

increases the formation of skin lesions (Bain et al., 1943b; Freeman and Knox, 1964; van 

der Leun et al., 2008). Furthermore, previous studies have shown that heat stress increases 

SIRT1 protein activity (Raynes et al., 2013a; Westerheide et al., 2009). SIRT1 is known to 

deacetylate p53, affecting the ability of this protein to bind to its downstream target genes 

(Kim et al., 2007). Furthermore, HSP90 appears to affect the ability of wild type and 

mutant p53 functions to regulate the transcription of its target genes. Thus, with subsequent 

inhibition of DNA damage repair and apoptosis, exposure to heat stress after or in 

combination with UV, could lead to impairment of p53-mediated cellular stress responses 

in keratinocytes, leading to survival of UV-damaged cells.  
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This study was purposely designed to examine and understand the effects of heat stress, alone 

or in conjunction with UV irradiation, on human keratinocyte biology, particularly the 

regulation of DNA damage repair, apoptosis and proliferation in these cells. Furthermore, we 

also aimed to determine whether heat stress can specifically stimulate activation or 

inactivation of pathways associated with skin cancer initiation, such as the p53 signalling 

pathway, or if heat-induced changes are solely mediated by the heat shock response, or heat-

induced post-translational modification to the p53 protein. This knowledge is of particular 

importance given that the majority of the Australian population are constantly exposed to 

extreme temperatures and UV. Understanding the potential biological consequences of UV 

and heat on keratinocytes can be used to develop preventative strategies that will decrease the 

risks associated with heat exposure, which may significantly impact the incidence of skin 

cancer in Australia.  

 

1.6 Hypothesis 

 

 Repeated exposure to UV plus heat will induce a significant increase in DNA damage 

formation in keratinocytes. Heat enhances the processes activated by UV radiation to 

induce molecular pathways in keratinocytes which are associated with skin cancer 

development such as increased survival, proliferation of DNA damaged cells, and a 

decrease in apoptosis. 

 

1.7 Aims  

 

1. To explore heat-mediated molecular changes and their impact on known regulators of 

cellular stress response, proliferation and apoptosis in epidermal cells. 

2. To determine if repeated exposure to heat stress and/or UV plus heat, induces changes 

in keratinocyte biology, including apoptosis, proliferation and DNA damage formation 

in keratinocytes. 

3. To identify key molecular changes involved in or responsible for heat-mediated 

changes in keratinocytes, particularly heat-mediated regulation of HSPs and SIRT1 

activation, and their effects on the p53 signalling pathway. 



At the author’s request, 

Chapters 2, 3 and 4 are not available in this version of the thesis. 
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GENERAL DISCUSSION  

CHAPTER 5: Heat Stress and Skin Carcinogenesis 

The rising incidence of keratinocyte-derived skin cancers (NMSC) is a significant health and 

economic burden in Australia (Makin, 2011). UV radiation, particularly UVB, is a known risk 

factor for skin cancers, contributing to approximately 80% of all cutaneous tumour formation 

(Boros et al., 2015; Courdavault et al., 2005). UVB induces formation of cyclobutane pyrimidine 

dimers (CPDs), particularly in areas enriched for methylated cytosines in DNA (Berg et al., 1995; 

Boros et al., 2015; Courdavault et al., 2005; Hochberg et al., 2006). The persistent presence of CPD 

lesions can lead to morphological and genetic alterations in epidermal keratinocytes, which in turn 

causes deregulation of signalling pathways associated with regulating cell apoptosis and 

proliferation, resulting in the formation of cutaneous tumours (Courdavault et al., 2005). 

Interestingly, epidemiological studies in the US have found that there is a significant correlation 

between increased rates of skin cancer and geographical locations with high environmental 

temperatures (van der Leun et al., 2008). Thus, heat stress could also be a possible risk factor for 

skin carcinogenesis.  

There is limited research aimed at determining the biological effects of heat stress on epidermal 

cells. Nevertheless, previous studies have shown that exposure to heat stress, for 1 hour at 38-40°C, 

prior to UVB irradiation, protects keratinocytes against UVB-induced DNA damage (Kane and 

Maytin, 1995; Maytin et al., 1994; Trautinger et al., 1995). However, concomitant exposure to UV 

and heat in mice lead to increased skin cancer incidence (Bain et al., 1943b; Freeman and Knox, 

1964). Since Exposure to UVB and heat stress is often experienced either synchronously and/or 

consecutively in the environment, it is more crucial to determine the effects of repeated and 

concomitant exposure to UVB radiation plus heat stress on human keratinocytes biology and 

whether the order of exposures present a significantly different outcome.  

Altogether, this project aimed to address the effects of consecutive exposure to UVB plus heat in 

keratinocytes. In order to generate a more accurate measure of the response of keratinocytes to 

combined exposure to UV and heat, this study aimed to determine these effects using normal human 

skin models and in vitro primary keratinocytes. Keratinocytes were evaluated in particular for DNA 

damage formation, cell survival and apoptosis. Furthermore, this research also aimed to identify 

molecular mechanisms that underpin the biological changes induced by sequential exposure to UVB 

plus heat in keratinocytes, in order to gain a better understanding of the possible role of heat in skin 

carcinogenesis.  
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5.1 Effects of UVB plus Heat Exposure on Keratinocyte Biology 

UVB plus Heat and CPD damage  

It has been previously shown that cumulative exposure to high doses of UVB radiation 

induce significant DNA damage, in the form of CPDs, in keratinocytes (Bertrand-Vallery et 

al., 2010; Rass and Reichrath, 2008). Here we examined keratinocytes two days post multiple 

UVB then heat exposures, to determine the overall persistent consequences of these 

exposures to these cells (Chapter 3). As expected, significantly high numbers of 

keratinocytes harboured CPD damage two days post-UVB exposure. Interestingly, a high 

proportion of UVB plus heat-treated keratinocytes, in the skin and in vitro, also harboured 

CPD damage. These results are in direct contradiction to those observed previously, in which 

pre-treatment with heat shock, and subsequent activation of the heat shock response (HSR) 

mechanisms, was shown to diminish UVB-induced DNA damage formation in keratinocytes 

(Jantschitsch et al., 1998; Kane and Maytin, 1995).  

Heat-mediated induction of HSR is known to elevate the expression and activity of heat 

shock proteins (HSP), particularly HSP70 and HSP90 (King et al., 2001; Walerych et al., 

2010; Yoshihisa et al., 2012). HSP70 and HP90 are thought to prevent CPD formation by 

UVB in keratinocytes, and thus diminish the lethality of UVB in these cells (Hunt et al., 

2007; Jantschitsch et al., 1998). The persistent presence of CPDs in keratinocytes in our UVB 

plus heat treated samples seem to suggest inactivity of HSP70 and HSP90. However, analysis 

of HSP90 and HSP70 mRNA levels in UVB plus heat-treated keratinocytes soon after 

exposures (4 hours) showed that HSR was evident, and HSPs were active at this time.  

Increased HSP90 mRNA levels (data not shown) was observed in heat and UVB plus heat-

treated keratinocytes soon after exposures, indicating that the heat shock response in cells is 

not compromised by combined exposure to UVB and heat stress. However, the upregulation 

of HSP90 was not sustained 2 days after exposure, nor did heat exposure subsequent to UV 

prevent CPD damage formation, as UVB and UVB plus heat treated sample were observed to 

have similar proportions of CPD damaged keratinocytes at 4 hours post exposure. Thus, 

while the heat shock response is functional, its role in cytoprotection appears to be overcome 

by repeated exposure to UVB then heat stress. 
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The discrepancy between our findings and previously published results is likely a result of 

the differences in the exposure models. It is important to note that previous studies adhered 

to a single heat-then-UVB exposure experimental protocol, with a four-hour interval 

between heat and UVB exposures (Jantschitsch et al., 1998; Kane and Maytin, 1995; 

Maytin et al., 1994). Pre-treatment to heat stress prior to UVB irradiation activates the heat 

shock response and HSP70 (Jantschitsch and Trautinger, 2003; Roti Roti, 2007), and thus, 

these cells were provided with a pre-established protective mechanism against UVB-

induced DNA damage. By contrast, our study was based on repeated (4x) instantaneous 

succession of UVB (1 KJ/m2) and then heat exposure (39°C) for three hours, interestingly 

produced a significantly different experimental outcome. In a sequential UVB plus heat 

exposure model, the heat shock response is not pre-established in keratinocytes. 

Furthermore, repeated exposure to high doses of UVB plus heat may have overturned the 

protective effects of heat against CPD formation in keratinocytes. Thus, despite activation 

of heat shock response, as seen at four hours post-exposure, UVB-induced DNA damage 

was allowed to accumulate in significant numbers of keratinocytes. 

Our results provide evidence to show consecutive exposure to UVB plus heat affects the 

ability of these cells to mount an appropriate response to UVB-mediated DNA damage in 

keratinocytes. In nature, UVB and heat stress often occur in tandem and can, therefore, 

synchronously affect epidermal cells. Due to limitations, this study was only able to 

conduct experiments based on a consecutive UVB plus heat exposure. While we tried to 

ensure that keratinocytes were treated with heat immediately after UVB irradiation, our 

results may still not be an accurate representation of how the epidermal cells respond to 

multiple concurrent exposures. It is likely that in a concurrent model, there will be an equal 

proportion of cells protected from DNA damage and surviving cells with DNA lesions. 

It is also important to note that previous heat-related studies commonly used primary 

keratinocytes in vitro and/or mouse models, while this study was the first to use human skin 

models in a heat and/or UV-related experiments. Due to the biological differences between 

mice and humans, murine keratinocytes were thought to not necessarily provide an accurate 

representation of the effects of thermal stress and UVB on these cells. Furthermore, while 

in vitro studies have contributed greatly to our understanding of the consequences of 

environmental stress exposure on keratinocytes, use of primary cells does pose significant 

limitations. As mentioned previously, primary keratinocytes in vitro lacks interaction with 

melanocytes, and the lack of an intact epidermal-melanin complex was thought to affect the 
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response of primary cells to heat and UVB exposures. Interestingly, we found no 

significant differences in the way skin and in vitro keratinocytes responded to UV and heat 

stress, suggesting that changes induced by combined exposure to these stressors are 

independent of the epidermal-melanin complex. Our studies thus show that in vitro primary 

keratinocytes are a useful biological model for some UVB plus heat-related studies in 

keratinocytes. 

UVB plus Heat, DNA Damage Repair and Cell Survival 

This study was the first to report the UVB plus heat mediated survival and proliferation of 

DNA damaged keratinocytes. As mentioned extensively in this thesis, despite the persistent 

high levels of DNA damage, a high proportion of UVB plus heat treated keratinocytes 

expressed ki67 protein compared to those irradiated with UVB. Thus, despite significant 

DNA damage, consecutive exposure to heat stress appears to promote proliferation of 

keratinocytes in UVB plus heat treated samples. Interestingly, the high number of CPD 

keratinocytes that persisted in UVB plus heat-treated samples, suggests possible 

impairment of the DNA damage repair mechanisms. Normally, formation of CPDs induces 

p53-mediated cell cycle arrest and the activation of nucleotide excision repair (NER) 

mechanisms (Cheo et al., 1996; Hall et al., 2015).  

Nucleotide excision repair facilitates the recognition of DNA damage, via activation of 

XPC, with repair of the DNA lesions and elimination of CPDs in the helix by the ERCC1 

exonuclease (Maytin et al., 1993; Rass and Reichrath, 2008; Rocca et al., 2010; Takahata et 

al., 2015; van Steeg and Kraemer, 1999). In our study, significant downregulation of XPC, 

a fundamental DNA damage surveillance protein (Cheo et al., 1996; Pines et al., 2009), and 

ERCC1, an exonuclease that facilitates removal of DNA lesions (Nagai et al., 1995; Yang 

et al., 2007), was observed in UVB plus heat treated keratinocytes. These results appear to 

confirm that exposure to both UVB and heat impairs the ability of keratinocytes to 

recognise and excise CPD lesions. Impairment of DNA damage repair has not been 

reported previously as a possible consequence of UVB plus heat exposures. This study is 

therefore the first to show that heat exposure not only ameliorates UVB-induced apoptosis, 

it also incapacitates mediators of nucleotide excision repair, and thus affects the efficiency 

of DNA damage surveillance and repair in keratinocytes exposed to UVB plus heat.  
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Heat-mediated survival of UVB-damaged keratinocytes and impairment of the nucleotide 

excision repair system have potential grave consequences. By allowing keratinocytes with 

DNA lesions to evade apoptosis, as well as affecting the efficiency of the nucleotide excision 

repair mechanism to recognise and repair CPDs, heat stress may permit the persistence of 

mutations and/or contribute to the accumulation of mutations in skin cells. Indeed, 

Martinconera et al. (2015) recently reported that the burden of UV-signature somatic 

mutations, averaging at two to six mutations per megabase per cell, are prevalent in ‘normal’ 

sun exposed skin. They found that most of the key drivers of cutaneous cell carcinomas are 

under strong positive selection in normal skin, with mutations found in 18-32% of normal 

skin cells. Thus, high numbers of cells, carrying cancer-inducing mutations, are present in 

normal epidermis. Accumulation of driver mutations is the main mechanism that underpins 

tumour evolution. Thus, with subsequent exposures, heat stress, in addition to UV, may 

exacerbate the formation of cutaneous malignancies and enhance the frequency of their 

development. 

5.2 Molecular events underpinning UVB plus heat-mediated survival of DNA damaged 

keratinocytes 

Inactivation of p53 signalling  

The p53 protein is an important transcription factor involved in maintaining genome integrity 

upon exposure to UVB, either by enforcing a G1 cell cycle arrest, which induces apoptosis or 

enhancing nuclear excision repair of damaged cells (Abrahamson et al., 1995; Harris and 

Levine, 2005; Hermeking et al., 1995; Leontieva et al., 2010; Livingstone et al., 1992; Ozaki 

and Nakagawara, 2011; Pellegata et al., 1996; Reed and Quelle, 2014; Wan et al., 2015). 

While expressed at low levels in normal cells, exposure to damaging UVB radiation leads to 

a rapid increase in p53 protein levels, resulting in accurate chromosome segregation and 

prevention of replication of cells harbouring DNA damage (Athar et al., 2000; de Gruijl et al., 

2001; Geyer et al., 2000; Henseleit et al., 1997; Huang et al., 2013; Nakaya et al., 2000; Prost 

et al., 1998; Soehnge et al., 1997).  

As expected, in our experiments, UVB irradiated keratinocytes of ex vivo human skins and in 

vitro, showed increased cellular damage, and activation of cellular stress responses and pro-

apoptotic signalling pathways, including significant p53 activation and the high level of 

caspase-3, a protease involved in apoptosis of damaged cells (Bratton and Salvesen, 2010; 

Bushell et al., 1999; Cagnol et al., 2011; Porter and Janicke, 1999). Consequently, the 
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significant increase in cell apoptosis and necrosis in our UVB irradiated samples soon after 

exposures and at longer time points, suggest that the p53 protein is functional and is inducing the 

appropriate cellular stress response to UVB-induced DNA damage. 

By contrast, keratinocytes treated concurrently with UVB then heat exhibited reduced numbers of 

apoptotic cells. Most importantly, while the whole genome transcriptome analysis, using the 

Ingenuity Pathway Analysis (IPA) program, revealed a significant persistent activation of p53-

mediated stress response in UVB irradiated cells, p53 signalling was found inactivated in UVB plus 

heat treated cells (Chapter 3). Thus, UVB plus heat-mediated survival and reduction of apoptosis of 

keratinocytes with CPDs appears to be a consequence of impairment of p53 signalling in these cells.  

The inactivation of p53 signalling was initially thought to be a result of inhibition of the p53 protein 

transcription. However, soon after exposures when the cellular stress response and transcription of 

p53 is engaged, the proportion of cells expressing the p53 protein in UVB plus heat treated samples 

was found comparable to those irradiated with UVB. These results indicate that heat stress does not 

interfere with the induction of p53-mediated response to DNA damage. UVB plus heat samples, 

however, displayed characteristics that are attributable to inactivation of p53 by post-translational 

modifications at all time points. Diminished efficiency of p53-mediated cellular stress response in 

UVB plus heat appears to be due to possible impairment of the levels of the protein and/or DNA-

binding capability of the p53 protein.  

As discussed extensively in Chapter 1, acetylation of p53 enriches the DNA-binding ability of this 

protein to the promoters of its downstream effectors, resulting in significant upregulation of its 

target genes (Lu et al., 1998; Wang et al., 2004; Nakano et al., 2005). However, deacetylation 

renders the p53 protein incapable of regulating transcription of downstream target genes, leading to 

significant inefficient regulation of cell apoptosis and proliferation (Grossman et al., 2001; Lewis et 

al., 2008; Wang et al., 2004). We observed a lack of acetylated p53 staining in a high proportion of 

UVB plus heat treated keratinocytes, as well as the deregulated expression of downstream target 

genes, including BAX and Survivin, in these samples at all time points. Thus, these results provide 

significant evidence to support that UVB plus heat impairs p53 signalling via post-translational 

modifications to the p53 protein. Increase in Survivin activity has previously been found to disrupt 

cleavage of caspase-3 (Grossman et al., 2001; Lewis et al., 2008; Wang et al., 2004). Thus, heat-

mediated upregulation of Survivin, because of post-translational modifications to p53, may have 

induced significant numbers of surviving keratinocytes at early time points and, as a consequence, 

this may have contributed to the significant cell proliferation observed at later time points. 
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SIRT1 and SIRT1-mediated p53 deacetylation 

Another important factor in p53 signalling is SIRT1, which can affect the acetylation status 

of the p53 protein (Botta et al., 2012; Cao et al., 2009; Cheng et al., 2003. Significant 

activation of SIRT1 was observed in UVB plus heat treated samples. SIRT1 is a key regulator 

of cellular processes via its roles in the determination of chromatin structure, chromatin 

remodelling and regulation of gene expression. SIRT1 functions are achieved by targeted 

deacetylation of key regulatory proteins, including FOX1, HSF-1 and p53 transcription 

factors (Glozak and Seto, 2007; Lee and Gu, 2013; Yi and Luo, 2010). SIRT1 facilitates 

deacetylation of lysine 382 at the c-terminal end of the p53 protein, which renders this protein 

unable to bind to its downstream gene targets (Botta et al., 2012; Cao et al., 2009; Cheng et 

al., 2003). Thus, inactivation of p53 signalling in UVB plus heat-treated keratinocytes, and 

consequent lack of apoptosis and cell cycle arrest, was hypothesised to be mediated by 

SIRT1-induced deacetylation of the p53 protein.  

Phosphorylation is a necessary requirement for SIRT1 activation and is important for survival 

of cells under stress conditions. Phosphorylation of SIRT1 increases its enzymatic activity, 

and has been shown to induce activation of HSF1 (Monteiro and Cano, 2011; Sasaki et al., 

2008). SIRT1 activation was not observed in UVB irradiated samples alone, corresponding to 

previous studies showing that SIRT1 is inhibited by UVB (Chou et al., 2013a). However, an 

increase in SIRT1 activation was observed in heat treated samples, which is consistent with 

previous observations that SIRT1 activity is increased after heat shock (Fritah et al., 2009; 

Raynes et al., 2013b; Westerheide et al., 2009). It is important to note that in UVB plus heat, 

the balance between these exposures favours the activating effects of heat stress on SIRT1. 

Thus, SIRT1 activation appears to be an intrinsic component of the UVB plus heat-mediated 

cellular stress response.  

Interestingly, in the UVB plus heat-treated samples, the significant increase in SIRT1 

phosphorylation directly correlated with the increase in p53 deacetylation and deregulation of 

expression of known p53 downstream gene targets. As a matter of fact, co-expression of both 

phosphorylated SIRT1 and Survivin protein were observed in UVB plus heat treated 

keratinocytes. Thus, SIRT1 activation appears to mediate survival of UVB plus heat-induced 

survival of keratinocytes by causing deacetylation of p53 and, consequently, inactivation of 

the p53 signalling pathway.  
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Inhibition of SIRT1, on the other hand, was found to induce a significant increase in p53 

acetylation and activation of p53 signalling. The re-activation of the p53 signalling pathway 

corresponds to our observed increase in cell apoptosis and necrosis in UVB plus heat treated 

keratinocytes. Thus, these results showed that UVB plus heat-mediated survival of DNA 

damaged keratinocytes was alleviated when SIRT1 was inhibited in these samples. From 

these results, it is apparent that SIRT1 plays a critical role in the heat-mediated anti-apoptotic 

and pro-survival effects of UVB plus heat exposures on DNA damaged keratinocytes. 

UVB plus Heat-induced SIRT1 Pathway in Keratinocytes 

In summary, this project provides evidence that exposure to heat stress, in addition to UVB, 

can induce significant alterations in keratinocyte biology, particularly in the manner in which 

these cells respond to UVB irradiation. Our results indicate that while UVB plus heat stress 

did not prevent formation of DNA lesions, it promotes an alternative pathway that provides 

DNA damaged keratinocytes with the capacity to survive and proliferate. In this thesis, we 

propose a SIRT1 pathway that is mediated by exposure to UVB plus heat. As shown in the 

diagram below (Figure 5.1), when keratinocytes are exposed to UVB plus heat exposure, the 

increase in temperature activates SIRT1, which then subsequently deacetylates p53, allowing 

cells to circumvent apoptosis and survive.  

 

Figure 5.1: UVB plus Heat-Induced Molecular Pathway for the Survival of DNA Damaged 
Keratinocytes. UVB radiation significantly increased p53 protein activity (p53 aceytlation, 
red), leading to increased levels of apoptosis and DNA damage repair together with 
inhibition of pro-proliferation and survival mechanisms (red line). Heat-mediated SIRT1 
activation (red circle) induces inactivity (deacetylation) of p53 (blue), resulting in inhibition 
of apoptosis and survival of damaged keratinocytes. 
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While the effects of UVB plus heat exposure on p53 signalling were expected, as outlined in 

our review (Chapter 2), the role of SIRT1 in heat-mediated changes in keratinocytes is an 

interesting finding. Initially, it was originally hypothesised that any heat-mediated changes in 

keratinocyte biology would be induced by the heat shock response, an evolutionary 

conserved mechanism for cytoprotection against high temperatures (de Maio et al., 1996; 

King et al., 2001; Guo et al., 2007) (Chapter 2). Due to the effects of HSP72 and HSP90 on 

the JNK, p53 and PI3K/Akt pathways (Hagn et al., 2011; Park et al., 2011a; Walerych et al., 

2010), an increase in the activity of these heat shock proteins is thought to mediate the 

protective effects of heat stress on epidermal cells.  

In our study, we observed overexpression or activation of the heat shock response mediators, 

particularly HSP90, in our UVB plus heat-treated samples soon after exposures; however, 

these changes did not persist at two days post exposure, even though significant differences 

in keratinocyte apoptosis and necrosis were still prevalent between UVB and UVB plus heat 

treated samples. We did, however, observe a persistent significant upregulation of HSF-1, the 

mediator of the heat shock response (Chapter 3) and HSP70 (HSPA) at later time points (data 

not shown), which is known to attenuate UV-induced apoptosis. HSP70 induces activation of 

Jnk phosphatase, resulting in the subsequent inhibition of Jnk protein activity, and prevents 

recruitment of procaspase-9, which inhibits subsequent activation of caspase-3, to ensure cell 

survival (Kregel, 2002; Beeree et al., 2000). Thus, HSPs also appear to contribute to the 

survival of UVB plus heat-damaged keratinocytes in response to heat. However, despite their 

activity, HSPs do not appear to be the central mechanism associated with UVB plus heat-

mediated evasion of apoptosis in keratinocytes. Nevertheless, in depth query and better 

interrogation times need to be defined in future studies to determine whether HSPs have a 

more substantial role in UVB plus heat-mediated survival of DNA damaged keratinocytes. 

Interestingly, inhibition of SIRT1 induced significant downregulation of HSP90, despite the 

presence of heat stress. This finding was similar to previous reports where diminished 

expression of HSPs were observed when HeLa cells were exposed to nicotinamide, another 

Sirt1-inhibitor drug (Westerheide et al., 2009). SIRT1 was found to deacetylate HSF-1, 

increasing its DNA binding affinity to the promoters of heat shock proteins and thus causing 

significant increase in HSP expressions (Westerheide et al., 2009). Thus, our study further 

reinforces the importance of SIRT1 in thermal stress response. However, the exact 

mechanism as to how heat induces its activation needs to be determined. 
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5.3 Future Directions: Induction of Skin Cancer by UVB plus Heat Stress - SIRT1-Mediated 

Inactivation of p53 Signalling pathways 

This project both re-affirmed some of the reported effects of heat stress, and offered new perspectives 

on its effects in keratinocyte biology. However, further studies are required in order to validate the 

findings of this project. In particular, while this study is the first to report a possible role for SIRT1 in 

UVB plus heat mediated changes in keratinocytes, it is still unclear as to how heat stress induces 

significant SIRT1 activation. Previous studies have hypothesised that an increase in SIRT1 activity 

after heat stress could be due to significant formation of heat-generated reactive oxygen species, 

which can cause destabilisation of chromatin and induce activation of the Sirtuin 1 protein (Raynes et 

al., 2009; Westerheide at al., 2009; Donmez et al., 2012). However, these scientific theories need to be 

investigated. In addition, cell mediators responsible for SIRT1 activation needs to be identified. 

In addition, this study was only able to conduct experiments based on a consecutive UVB plus heat 

exposure model. As previously mentioned, environmental exposure to UVB and heat is not a linear 

progression of events. Heat stress may be experienced prior to, concurrently or post UVB irradiation. 

While previous research and this study offer perspectives on the effects of heat stress in keratinocytes 

when it is provided before or after a UVB respectively, experiments using simultaneous and long-term 

UVB plus heat exposures are necessary to have an accurate measure of the changes induced by 

exposure to combination of these stressors in human skin physiology. Nonetheless, the dichotomous 

change in outcome, dependent on the order of exposure is significant and of profound interest to skin 

cancer biology. 

In particular, the significant negative effect of heat stress on the regulation of apoptosis in severely 

UVB- damaged keratinocytes appears to impose a greater risk of cutaneous malignant transformation, 

including skin cancers. As previously mentioned, a recent study has shown that 18-32% of normal 

skin cells are burdened with UV somatic mutations (Martinconera et al., 2015). Thus, heat-mediated 

circumvention of apoptosis response in keratinocytes, particularly those containing DNA damage, 

could lead to enhanced accumulation of mutations and transformation of normal keratinocytes to 

malignant cells (Figure 5.2). However, translational experiments, which focus on SIRT1-mediated 

survival pathways, found prevalent in our UVB plus heat treated keratinocytes, are necessary to 

determine if heat can in fact enhance formation of UVB-induced cutaneous malignancies in vivo. 

Based on our results, we hypothesise that heat will not be the primary inducer of mutations 

responsible for the deregulation of signalling pathways controlling keratinocyte apoptosis and 

proliferation. Rather, heat stress, which induces SIRT1 protein activation and then post-translational 

modification to p53, is thought to aid and exacerbate UVB-induced skin carcinogenesis. 
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Figure 5.2: UVB plus Heat-Mediated Skin Carcinogenesis. Heat-mediated SIRT1 activation 
is hypothesised to induce inhibition of p53 signalling pathways, leading to survival of 
damaged keratinocytes, accumulation of mutations in these cells and skin tumour formation. 
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GENERAL CONCLUSION 

In conclusion, the increasing incidence of people diagnosed with various forms of skin cancer 

annually makes skin cancers one of the major health concerns in Australia. So far, studies 

have confirmed the role of UVB radiation in skin cancer formation. Now together with 

previous studies and those described here, knowledge of the role of heat has been advanced 

and its dramatic effect on cells and influence on the activity of p53 signalling pathways, 

which are important in coordinating cell cycle arrest and DNA damage repair in keratinocytes 

while regulating proliferation, survival and apoptosis of these cells, are better understood.  

In this study, we showed that the efficiency of response to cellular damage mediated by UVB 

is diminished in the presence of heat and, for the first time, provide a molecular mechanism 

that explains these effects of heat in the presence of UVB-induced DNA damage. With the 

novel use of an ex vivo human skin model, this study showed that heat stress prevents human 

keratinocytes, damaged by UVB irradiation, from undergoing apoptosis. Furthermore, UVB 

plus heat exposure mediates SIRT1 activation which has been found to induce deacetylation 

of p53 and, consequently, the inactivation of p53 signalling pathway. SIRT1 activation is 

considered the main molecular mechanisms driving UVB plus heat-induced survival of DNA 

damaged keratinocytes.  

Overall, the results of this study suggest that by allowing the survival of CPD damaged 

keratinocytes, via induction of SIRT1 activation, heat stress can exacerbate the carcinogenic 

effects of UVB. Thus, exposure to heat stress, in addition to UVB, could increase the 

accumulation of mutations in keratinocytes, possibly leading to the transformation of normal 

cells into pre-cancerous cells. However, further research is warranted to determine the role of 

UVB plus heat in skin cancer pathogenesis. Knowledge of the effects of UVB plus heat stress 

on skin carcinogenesis can be utilised to decrease risk exposures particularly for people 

exposed to combinations of these environmental hazards in workplaces such as the mining, 

construction and petroleum industries.  
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