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Abstract 

This paper investigates factors which can affect the accuracy of short-term wind speed 

prediction when done over long periods spanning different seasons. Two types of Neural 

Networks are used to forecast power generated via specific horizontal axis wind turbines. 

Meteorological data used is for a specific Western Australian location.   

Results reveal that seasonal variations affect the prediction accuracy of the wind resource, 

but the magnitude of this influence strongly depends on the details of the Neural Network 

deployed. Factors investigated include the span of the time series needed to initially train the 

networks, the temporal resolution of this data, the length of training pattern within the 

overall span which are used to implement the predictions and whether the inclusion of solar 

irradiance data can appreciably affect wind speed prediction accuracy. There appears to be a 

relatively complex relationship between these factors and the accuracy of wind speed 

prediction via Neural Networks. Predicting wind speed based on Neural Networks trained 

using wind speed and solar irradiance data also increases the prediction accuracy of wind 

power generated, as can the type of network selected.  

1. INTRODUCTION 

Wind represents a clean and sustainable energy source which makes it a promising 

alternative to fossil fuels. On average, global wind power generation capacity has increased 

by 25% over the last years to reach 238 Gigawatts (GW), but is expected to grow by another 

255 GW by 2016 (Global Wind Energy Council 2011).  Combining wind with other 

renewable energy resources, such as solar energy and an energy storage means like 

hydrogen, can help build a 100 precent renewable energy system for small applications 

(Lund 2005, Lund and Mathiesen 2009). However, increasing wind power penetration 

requires a number of major challenges to be addressed, including the use of realistic models 

to determine techno-economic feasibility as well as utilising accurate wind speed predictions 

to better assess overall viability and the impacts on ancillary service requirements (Haque 

and Meng 2011). As with other renewable sources such as solar irradiance, the intermittent 

and seasonal nature of wind speed is a major hurdle against the utilisation of wind energy 

systems. For these reasons, wind speed prediction can play an important role in determining 

the overall feasibility of a renewable energy system and the scale of energy storage media 
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such as batteries or hydrogen (Deshmukh and Deshmukh 2008, Abdel-Karim et al. 2009, 

Soman et al. 2010, Xiaomei et al. 2011). In this regard, wind power forecasts can be 

classified based on the prediction timescale into four categories, namely: very short-term 

(few seconds to 30 minutes ahead); short-term (30 minutes to 6 hours ahead);  medium-term 

(from 6 hours to one day ahead); and long-term (one day to one week ahead) (Soman et al. 

2010). 

Among several methods, Neural Networks (NN) are excellent for predicting variables which 

are nonlinear or stochastic in nature and have therefore been used to forecast wind speed. 

The advantage of Neural Networks is that there is no need to base the predictions on 

preconceived mathematical models. Instead, the methodology relies on samples of training 

data (historical records of wind speed) to predict patterns of future wind power availability 

using an “intelligent” self-iterating numerical process which is presented as data intensive. 

The literature cites numerous investigations into the use of Neural Networks for wind speed 

prediction (More and Deo 2003, Reikard 2008, Wu et al. 2009, Hong et al. 2010, Anvari 

Moghaddam and Seifi 2011, De Giorgi et al. 2011, Shi et al. 2011, Sideratos and 

Hatziargyriou 2012) but the majority of the work done to date uses historical wind speed 

data as the only (meteorological) parameter to train the networks. Very few exceptions exist 

to this with some adding other parameters such as ambient temperature and humidity when  

predicting wind speed (Cali et al. 2008).  

When basing predictions (largely) on wind speed data, several attempts have been made to 

perform very short-term wind energy forecasting using “intelligent” techniques such as 

Neural Networks (Kariniotakis et al. 1996, Li et al. 2001, Ricalde et al. 2011, Shi et al. 

2011). Ricalde et al. used Neural Networks for wind speed forecasting and compared 

between different networks (Ricalde et al. 2011). However, limited wind speed data 

covering five hours (only) was used to train and test the networks which raise questions on 

the sensitivity of this methodology in predicting wind speed over longer periods of time. The 

current study will show that deploying networks over longer periods (like one year) is 

paramount in order to capture seasonal variations which have an impact on the accuracy and 

will address this shortfall by applying short-term predictions (1 hour ahead) over an 

extended period spanning multiple seasons. Welch, Ruffing and Venayagamoorthy similarly 

trained three types of Neural Networks to predict (fifteen minutes ahead) wind speed using 

wind speed, temperature and humidity as training data (Welch et al. 2009). Their results 
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showed that although some Neural Networks outperform others, this improved accuracy 

comes at the expense of longer training time. Similarly, the use of training data spanning 

only one week may not allow an analysis against long-term (seasonal) effects. Reikard also 

used Neural Networks for short-term wind speed forecasting with both wind speed and 

temperature used for training (Reikard 2008). The use of additional meteorological data (i. e. 

temperature) in the training was found to reduce the forecast error for wind speed but the 

methodology applied also showed that Neural Network  prediction accuracy decreases as the 

temporal prediction range grows (for longer periods ahead). The current paper will show that 

seasonal effects should be factored in with long-term predictions but the prediction accuracy 

is strongly affected by the length of (historical) data used for training the Neural Network 

(varied between 5 hours and 168 hours). Alternatively, long-term wind power forecasting 

has been conducted by Cali at al. (Cali et al. 2008) using a multi-model approach with wind 

speed, wind direction, ambient pressure, temperature and humidity as training data. 

However, the predictions were implemented for relatively large time-steps which render the 

wind power predictions at a much longer temporal resolution than typically expected 

variations in load (demand) that wind energy systems need to meet. As such, investigating 

seasonal parameters which have the propensity to affect short-term forecasts when applied 

over prolonged periods, spanning many seasons, is important.  

In addition to research undertaken into the effect of meteorological parameters on the 

accuracy of Neural Network predicted wind speed, the effects of temporal resolution for 

time steps and the size of data used to train a Neural Network has also been done and the 

results showed that only one year training data can provide satisfactory prediction accuracy 

of monthly wind energy(Tu et al. 2010) . However, prediction of long-term (monthly) wind 

energy was only investigated.   Additionally, other studies have applied Neural Networks to 

wind power predictions of up to 30 hours ahead (Bhaskar and Singh 2012), but the effect of 

including other meteorological parameters such as solar irradiance, to help refine wind 

power predictions, was not done. More importantly, the impact of changing the Lengths of 

Training Pattern (LTP) on the prediction accuracy was also not investigated. A combination 

of Neural Network and Genetic Algorithm (GA) has also been used for short-term wind 

power predictions (Kolhe 2011) where it has been found that combining GA with Neural 

Networks improves the prediction accuracy. However, results also showed that prediction 

accuracy is affected during periods of strong variation in wind speed.  This suggests that 

more investigation into the effect of seasonal variations on the accuracy of Neural Network 
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predictors may also be warranted whereby parameters, such as temporal resolution of 

training data, are investigated if they have an effect on the accuracy of wind speed 

prediction. In this regard, the current research also investigates this issue with different time 

steps of wind speed data (0.5 hour to 3 hours). 

With the above in mind, there have been no studies which the present authors are aware of 

that investigate the effect of seasonal variations onto the prediction accuracy of wind speed 

using Neural Networks. Moreover, the current research also investigates the significance of 

simultaneously including location-specific solar irradiance data (W/m2) on the accuracy of 

wind power predictions. This work is done across seasons and also investigates the effect of 

the LTP and temporal resolution on the accuracy of short-term wind energy predictions. 

Measured wind speed data for a Western Australian location are used to implement the 

predictions and the power characteristics of two wind turbines (2kW, 30kW). The paper is 

divided as follows: Section 2 describes the methodology including the wind data, wind 

turbines, solar irradiance data and Neural Networks used; Section 3 presents the results 

followed by the discussion in Section 4 and finally the conclusions in Section 5. 

2. METHODOLOGY 

Wind speed is stochastic in nature, but once predicted, the available wind energy can be 

estimated to reasonable accuracy using a suitable wind turbine model. In this paper, short-

term wind energy forecasting is performed using two types of Neural Networks, namely: 

Feed Forward (FF) and Radial Basis Function (RBF) Neural Networks. These two 

techniques are categorised as supervised networks because the training algorithm is initially 

developed using known pairs of input-output patterns (i.e, a historical time series of calendar 

date versus wind speed, wind speed and direction, or wind speed and solar irradiance). The 

forecasting process is tested over a prolonged period (one year) so as to identify the effect of 

seasons on prediction accuracy. Although the forecasting is done over one year period, the 

prediction step where mainly an hour-ahead, i.e., 8760 predictions are done to forecast the 

wind speed over one year.  

2.1 Wind data and wind turbine models 

The available time series consists of half hourly resolved wind speed and direction data 

measured by the Bureau of Meteorology (BOM) at a height of 10 meters at the Ocean Reef 

meteorological station (Western Australia, latitude: -31.75o, longitude: 115.8o ) (BOM 
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2012a). These data cover a period from January 2001 to December 2009. Data spanning 

either a single year (2001) or six years (2001-2006, around 70% of the available data) are 

used to first formulate and train the Neural Networks while data for the years 2007-2009 is 

subsequently used for testing accuracy. In this study, the temporal resolution of the (source) 

training data is half hour based. However, to help study the effects of using other resolutions 

such as hourly, two hours and three hours are also investigated by binning the half hourly 

data and deriving average wind speeds over the binned periods. Lower resolutions such as 

weekly or monthly are not considered because these time steps will unnecessarily smooth 

much of the intermittency characteristics of wind speed as well as impact the ability of the 

Neural Networks to resolve seasonal effects. To convert the kinetic energy of wind speed to 

wind power, the power characteristic curves of commercially available wind turbines are 

used. In this research, the characteristics of 2kW and 30kW off-grid wind turbines are 

considered and Figure 1 gives the power-vs-wind speed curves for both turbines with basic 

operating data being available (Anhui Hummer Dynamo Co. Ltd 2012).  

 

Figure 1: Power curve of off-grid wind turbines (Anhui Hummer Dynamo Co. Ltd 2012). 

Power generated has been normalised by the respective (peak) power capacity.  

The hub height of a wind turbine affects the generated wind power (Genç et al. 2012). To 

accurately estimate the power extracted by the wind turbine, the effect of wind shear, which 

represents the variation of wind speed with elevation, is typically considered. In most 

studies, the wind speed shear is described by the shear exponent coefficient (𝛼𝛼) shown in 

equation (1). Because the modelled wind turbines operate at a height of 18m, but the 
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meteorological wind data is originally measured at 10m, each data point for wind speed is 

revised to the operating height of the wind turbine (Belfkira et al. 2009): 

  ( )α00 HHvv =                                                                                                             (1) 

In this regard, v and 0v are the wind speed at H and 0H , respectively, whilst α is the wind 

shear exponent coefficient. The value of this coefficient has been taken equal to 1/7 

commensurate with the value for open land because the location for which the wind power 

modelling is being undertaken is an unobstructed costal land spot (Belfkira et al. 2009). It is 

worth noting that whilst the value of the shear exponent coefficient for a particular area is 

not constant along the whole rotor swept area of the wind turbine, ignoring the effect of the 

wind shear coefficient is proven to result in overestimating the wind power extracted from a 

wind profile for large turbines. This is particularly evident for the cases where the hub height 

is much greater than the height of the meteorological anemometer used to measure wind 

speed (Bechrakis and Sparis 2000, Wagner et al. 2011). Previous studies have also shown 

variations of wind shear coefficient is insignificantly changed across seasons (summer and 

autumn compared to winter and spring) (Ray et al. 2006).  Therefore, in this study a single 

wind shear coefficient is considered across all seasons. 

2.2 Solar irradiance data 

In order to train the Neural Networks on both wind speed and solar irradiance at the relevant 

geographical location, solar irradiance data has been derived using the ASHRAE clear-sky 

model (Bakirci 2009). The parameters of the ASHRAE model are retrieved from the 

literature (Wong and Chow 2001). Before the ASHRAE derived (hourly) solar irradiance 

data was used in the Neural Networks, its accuracy was checked against daily total measured 

solar irradiance data (BOM 2012b). This process can be undertaken when no well resolved 

(e. g. hourly) exists. Figure 2 shows these comparisons whereby the data derived using the 

ASHRAE model (for each day) has been formed by summing the hourly resolved 

predictions over 24 hours. The figure shows the irradiance predictions based on the clear sky 

model are able to accurately follow the peak solar irradiance values. It should be noted here 

that any other reasonably accurate model (or even measured data) could have also been used 

to demonstrate the validity and effects of coupling wind speed predictions with 

representative solar irradiance data.   
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Figure 2: A comparison of daily (cumulative) total solar irradiance derived using the 

ASHRAE model compared to measured (meteorological) daily totals data. (latitude: -31.750, 

longitude: 115.80, 2004). 

2.3 Neural Networks 

Neural Networks consist of interconnected computational units which imitate the structure 

of biological neurons. These neurons are independent processing units and the connections 

between these units (weights) are used to store the acquired data. In this paper, FF-NN and 

RBF-NN are used to forecast wind speed (only) using different combinations of 

meteorological training data. The general structure of these networks, shown in Figure 3, 

comprises of an input layer, a hidden layer, and a linear output layer. The function of the 

input layer is to distribute input data in order to initiate the computations. Typically, the span 

of the time series used to train a Neural Network, for example a single year which can be 

hourly resolved to yield 8760 data points, is further subdivided into batches. The number of 

data points in each batch dictates the number of neurons in the input layer. For example, an 

LTP of 10hours when half hourly resolved wind speed data is used will result in 20 neurons 

in the input layer, for both FF-NN and RBF-NN. The output of any neuron in the hidden 

layer of a FF-NN is a result of activating a sigmoid function using the weighted sum of the 

input signals. The sigmoid activation function has the following form (Fengming et al. 

2011):  

  ( )( )azzf −+= exp11)(                                                                                               (2) 

In this regard, a is the slope parameter of the sigmoid function and z  is the weighted sum of 

neuron inputs which is given as: 
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In the above equation, jy is the input signal, kjw is the connection weight and M is the 

number of values in the input pattern. The connection weights are dictated by the learning 

algorithm which the Neural Network uses when being training on historical data. In this 

study, three different algorithms were trialled (the gradient decent algorithm, Levenberg-

Marquardt algorithm and adaptive gradient decent algorithm). Based on preliminary testing, 

it was observed the adaptive gradient decent algorithm yielded the best accuracies and, as 

such, was deployed in the FF-NN throughout the results which appear in this paper. The 

output of the sigmoid function is only positive numbers between 0 and 1. Each neuron in the 

Neural Network compares the output of its activation function against a predefined threshold 

to decide whether to produce an output or not. In this research, the number of hidden 

neurons in the FF-NN was taken to be 10 in agreement with the literature (Bechrakis and 

Sparis 2000, Öztopal 2006). The design of a Feed Forward Neutral network also usually 

involves the selection of many control parameters. As there is no commonly agreed upon 

consensus (in the published literature) in relation to the specific rules for nominating these 

parameters, an iterative process was undertaken to resolve the best set of these which satisfy 

a pre-set convergence criteria (the performance goal). Table 1 lists the value of these control 

parameters.  

The difference between FF-NN and RBF-NN lies mainly in activation function as well as 

the role and number of neurons in the hidden layer.  The activation function of FF-NN is a 

sigmoid function whereas for the RBF-NN its activation function for the hidden neurons is a 

Gaussian function and expressed as (Xiaomei et al. 2011): 

  ( ) ( )( )2221exp ipjip cycyf −−=− δ                                                                      (4) 

In this regard, c and δ are the centre and the mean square deviation of the Gaussian function 

and py is the thp  input pattern whereby the Gaussian function is bell-shaped with a 

maximum of 1. Neurons are activated (produce an output) based on how close the net input 

is from a chosen value of averaged inputs. While FF-NN acts as a global approximation 

network, since the network’s output is decided by all neurons of the hidden layer, RBF-NN 

acts as local approximation network. This means the hidden layer in RBF-NN redistributes 

the input data and each output is determined by specified hidden units (Xie et al. 2011). 
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Further details on the training algorithm of RBF-NN are also available in the literature 

(Xiaomei et al. 2011, Xie et al. 2011). 

 

Figure 3: General structure of FF-NN and RBF-NN: (a) training phase (2001-2006); (b) test 

phase (2007-2009). 

The other difference between a FF-NN and RBF-NN is the former uses a fixed number of 

neurons in the hidden layer whereas the latter uses a variable number of neurons in the 

hidden layer (self-defined by the Neural Network). Training coefficients of Radial Basis 

Function Neural Network are also listed in Table 1. The consequences of the above are that 

RBF-NN trains itself over different ranges of the training data (e. g. different ranges of wind 

speed) where FF-NN is trained on the total range. 

Table 1: Training coefficients of the Neural Networks used. 

Network type Training coefficient Value 

 

 

FF-NN 

Momentum constant 0.6 

Learning rate 0.8 

Performance goal 1e-4 

Number of hidden neurons 10 

 

RBF-NN 

Spread of radial basis function 20 

Performance goal 1e-5 
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2.4 Accuracy 

The accuracy of hourly wind speed and wind power predictions is expressed as the Absolute 

Percentage Error (APE) which is calculated as follows: 

  %100)()()(
^

×





 −= tytytyAPE                                                                              (5) 

The Mean Absolute Percentage Error (MAPE) is used to assess the overall accuracy of the 

used Neural Networks and it is calculated as follows: 

   ( )∑
=

=
N

i
APENMAPE

1
1                                                                                              (6) 

In the above equations, )(ty is the measured wind speed over a time interval )(t , 
^

)(ty is the 

predicted wind speed (over the same time interval) and N is the number of data points in 

each year. The time interval )(t represents the resolution of the training and test data (0.5, 1, 

2 or 3hours). In the plots and tables which follow, the overall prediction accuracy is 

expressed by calculating the median value of sAPE ' and the median value of sMAPE ' for 

the test data (2007, 2008, and 2009).  

3.  RESULTS 

In this research, the effect of four training parameters on the prediction accuracy of FF-NN 

and RBF-NN when applied to wind energy prediction is investigated, namely the span of 

training data, the resolution of training data, the Length of Training Pattern (LTP) and the 

type of training data.  

3.1 Span of training data 

 To demonstrate the effect of the span of training data on the prediction accuracy of FF-NN 

and RBF-NN, Both Neural Networks are trained using hourly resolved data which spans 

either a single year (2001) or six years (2001-2006) with the LTP fixed at 10 hours. The 

prediction error corresponding to each set is shown in Figure 4. Whilst the length of training 

history does not appear to affect the errors qualitatively, the results do reveal that using six 

years data set to train the FF-NN provides a marginal improvement in the prediction 

accuracy, compared to one year training data sets. Quantitatively, no appreciable 

improvement occurs with RBF-NN, which the results also show already has an accuracy of 
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about one order of magnitude better than FF-NN. This also indicates that RBF-NN maybe 

more accurate than FF-NN for the same span (size) of data set.  

 

 

 

Figure 4: The effect of the span of training data on the prediction accuracy. Wind speed 

training data (only) are used: (a) FF-NN; (b) RBF-NN. 

3.2 Resolution of training data 

The effect of temporal resolution of the historical training data is also investigated whereby 

hourly, two hours and three hours’ time series are formed by averaging the original 

(measured) half hourly meteorological data. Figure 5 shows a comparison between the 

prediction accuracy related to using different temporal resolutions over a single season. A 

single season is used in this analysis (Figure 5) because, as will become evident from this 

study, strong seasonal effects can manifest themselves. The results show that prediction 

error for Neural Networks appears best for hourly resolution compared to the others. One 

distinctive feature from these results is that using half hourly resolution appears to provide 
12 

 



the least accuracy compared to 1-3 hours resolution. This may be due to the fact that half 

hourly wind speed data more realistically represents the variability of wind speed which 

results in a greater degree of uncertainty when the Neural Networks attempt to resolve the 

wind speed over the next time period. More comment and data analysis in relation to this is 

given within the Discussion section. With the above in mind, the ensuing results were all 

derived for Neural Networks trained using (hourly resolved) six years training data set.  

 

 

Figure 5: The effect of different training data resolutions of the prediction accuracy of 

Neural Networks: Wind speed training data (only) are used: (a) FF-NN; (b) RBF-NN. 
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3.3 Type of training data and LTP 

To further study the effect of the LTP on the prediction accuracy of the employed Neural 

Networks, both FF-NN and RBF-NN are trained with four different Lengths of Training 

Patterns (5, 10, 60 and 168 hours).  This is an important consideration because even if the 

networks are trained using hourly resolved historical data, the LTP dictates how far back in 

the time-series should the network consider when predicting each next (hourly) time step. A 

shorter LTP may be hypothesised to yield better predictions if applied to a stochastic 

parameter such as wind speed. An additional hypothesis to test is, in addition to LTP, what 

impact on the accuracy of predicted wind speed is associated with using different 

combinations of (historical) meteorological data. To resolve this question, the training data 

is also made up of three different combinations of meteorological data: wind speed (only), 

wind speed and direction, or wind speed and solar irradiance. Figure 6 presents the overall 

trends for the prediction error in both FF-NN and RBF-NN when predicting hourly resolved 

wind speed averaged over three years ahead (2007-2009). In the results shown, the Neural 

Network is trained using wind speed data (alone) and the different seasons are also denoted 

according to the Australian Bureau of Meteorology (BOM) (BOM 2012a). In this regard, the 

national summer season is made up of the three (hottest) months of December, January and 

February. These results show that for both FF-NN and RBF-NN, the accuracy is not 

consistent throughout the year but experiences a relative trough (low range) during autumn 

and winter. Outside this period, errors increase and reach their highest values during summer 

and spring. These results clearly indicate that prediction accuracy for wind speed varies 

across the year. Moreover, when wind speed data (only) is used to train the Neural Network, 

the accuracy of both networks tested in this study remains prone to seasonal influences, even 

though in this instance RBF-NN is clearly more accurate than FF-NN. These results also 

demonstrate that more research is needed into the veracity of different prediction 

methodologies which are undertaken over only relatively short periods (e.g., over a week or 

few months only) as these may fail to resolve longer seasonal trends. This also exemplifies 

the need for the accuracy of wind speed prediction methods to be tested over prolonged 

periods (e. g. one year or more) so as to capture such seasonal influences. Unfortunately, it 

would appear that research into predicting wind speed (and power) over prolonged periods 

(to account for seasonal influences) is not always apparent in the published literature. 
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Figure 6: Prediction errors using 168 hour input data of wind speed (only) for the years 

2007-2009: (a) FF-NN; (b) RBF-NN. The first day in the figure corresponds to 1st January. 

 

Figure 7 shows the effect of changing LTP on the prediction accuracy of FF-NN and RBF-

NN. Results indicate the performance of both Neural Networks is improved by decreasing 

the LTP but the gain achieved in accuracy is not linear and appears to diminish as LTP is 

reduced from 168 hours to 10 and 5 hours. No considerable improvement is achieved by 

going lower than LTP=10. The results also show that RBF-NN remains more accurate than 

FF-NN. The more important observation is that although using a shorter LTP appears to 

improve the prediction error for both networks, it also appears to be less effective as a 

strategy to smooth out the seasonal influence for FF-NN. In comparison, the performance of 

RBF-NN not only becomes much better when reducing LTP but seasonal influences on the 

error of prediction are also damped. 
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Figure 7: The effect of LTP on the prediction accuracy over the years 2007-2009: (a) FF-

NN; (b) RBF-NN. Hourly resolved data is used in training the Neural Network. 

Figure 8 shows the effect of using different combinations of meteorological data at the input 

layer when predicting wind speed. Results show that combining wind speed training data 

with other meteorological parameters (e.g. wind speed and solar irradiance) appears to 

improve predictions and reduce seasonal effects.  
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Figure 8: The effect of prediction parameters on the accuracy of wind speed predicted 

via FF-NN over the years 2007-2009 (LTP=10 hours). Different combinations of 

(historical) meteorological data are used as inputs when attempting to predict wind 

speed. Hourly resolved data is used in training the Neural Network. 

4. DISCUSSION 

Five main observations can be drawn from this study. Firstly, increasing the size of the 

historical training data set has an insignificant impact on the prediction accuracy of FF-NN 

and RBF-NN. While the performance of FF-NN minimally improves by using wind speed 

training data of multiple years, RBF-NN gains no benefit from using more than one year of 

training data. The reason behind this may be because even a single year (well resolved) wind 

speed data captures the seasonal effects. 

Secondly, FF-NN and RBF-NN both exhibit better performance when trained using hourly 

wind speed, compared to 0.5, 2 or 3hours. This unexpected behaviour indicates that an 

intermediate temporal resolution should be targeted, rather than very small or large time 

resolution. This is believed to indicate that low temporal resolutions (e. g. 2 or 3 hourly) 

unnecessarily smooth the data and make it harder for the Neural Networks to be adequately 

trained.  Similarly, extremely high resolutions (e. g. 0.5 hours) are inherently susceptible to 

much variation which also negatively impacts prediction accuracy. To confirm this 

hypothesis, the standard deviations of the training sets used in this study are calculated and 

the results depicted in Figure 9. The data shows that half hourly resolved data has a 

significantly higher variability compared to the other data. This relationship was similarly 

reflected in predictions (Figure 5). Further statistical analysis is performed on the differently 

resolved wind speed data using an F-test. Results, not shown here, indicate that half hourly 
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resolved wind speed data and the other temporal resolutions (1, 2 and 3 hours) do come from 

normal distributions but with different variances indicating significant spread between the 

different data. This result highlights the significance of appropriately selecting (temporal) 

resolution.         

 

Figure 9: Standard deviations of the wind speed training data with different resolutions.  

Thirdly, the seasonal variation of wind speed affects the prediction accuracy of a Neural 

Network, but the severity of this effect is dependent on the prediction methodology 

deployed. In this regard, the superiority of RBF-NN in wind speed prediction could be 

attributed to its “architecture”. RBF-NN has the capacity to allocate specific hidden neurons 

to different ranges of wind speed which span the entire dynamic range represented through 

meteorological data (in this study mostly 3 to 9 m/s). This allows  RBF-NN to map finite 

ranges within the data (eg., wind speed) to specific neurons in the hidden layer. However, 

because these allocations are done in the hidden only (not the input layer), this does not 

affect the time-series nature in the data.. In contrast, the hidden layer of FF-NN tries to find 

a global approximation that fits the entire dynamic range of input data which is difficult to 

achieve because of the high nonlinearity in wind speed. As can be seen from Figure 10, the 

magnitude of wind speed varies between 3 m/s and 9 m/s during summer season while this 

range reduces during winter between 3 m/s and 7 m/s. Also notable here is the striking 

resemblance between the seasonal variations of wind speed (Figure 10) and the errors in the 

predicted wind speed already presented.  

 

18 

 



 

 

Figure 10: Measured hourly wind speed for the years 2001-2009. 

The fourth outcome of this research is that reducing the LTP initially increases the 

prediction accuracy of the wind resource (Figure 7), for both Neural Network methodologies 

used, but the degree of improvement in accuracy appears to plateau as LTP is reduced. Table 

2 also presents the training time for each methodology used when the LTP is varied between 

5 and 168 hours. This data indicates that another merit associated with using a shorter LTP 

is to improve the time needed to train a Neural Network when predicting the wind resource. 

This behaviour results because decreasing the LTP reduces the number of neurons in the 

input layer (Figure 3) which means less time is needed to update the connection weights 

between the input and hidden layer. The physical significance of this is the network is also 

better able to predict seasonal variations.  

Table 2: Training time for different Neural Networks based on different 

lengths of training data for wind speed: 5, 10, 60 and 168 hours. 

Network Time to train Neural Network (seconds) 

LTP=5 hours LTP=10 hours LTP=60 hours LTP=168 hours 

FF-NN 2,025 2,689 8,003 22,095 

RBF-NN 19 21 94 306 

 

The fifth outcome is that incorporating (historical) solar irradiance data along with wind 

speed, during the training phase, can reduce the prediction error of wind speed in some, but 

not all, Neural Networks (Figure 8) and that as shown in Table 3 this improvement comes 

with no negative consequences on the training time of both Neural Networks tested. The 
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physical explanation of this is the Neural Network is better able to discern an (hourly) 

relationship between the wind speed and the solar irradiance which then allows the Neural 

Network to better learn the behaviour of wind speed over prolonged periods spanning 

multiple seasons. To demonstrate the improvements in prediction accuracy which results 

from including solar irradiance data, the Absolute Percentage Error (Equation 6) is first 

derived for each (hourly) data point by comparing between the predicted and real value of 

wind speed. The median of APE’s of all the test data (2007-2009) is then derived to show 

the overall prediction accuracy. Table 3 shows the MAPE for both Neural Networks. These 

results indicate that for FF-NN, incorporating solar irradiance data when predicting wind 

speed improves the overall accuracy of the network. Regarding RBF-NN, the overall 

accuracy is not much affected but this maybe because this network has already reached 

“high” accuracy and there is no further improvement in accuracy in accuracy when historical 

training data includes both wind speed and solar irradiance. 

Table 3: Training time and MAPE for different Neural Networks based on the selection of         

various parameters for the input layer (LTP=10 hours) over years 2007-2009. 

 

 

Network 

Data input (historical) 

Wind speed Wind speed and 

direction 

Wind speed and solar 

irradiance 

Time 

(seconds) 

Median 

of MAPE 

Time 

(seconds) 

Median 

of MAPE 

Time 

(seconds) 

Median of 

MAPE 

FF-NN 2689 2.25% 2134 1.5% 2631 1.36% 

RBF-NN 21 0.16% 18 0.33% 21 0.24% 

 

The impact of Neural Network training methodology (type of Neural Network and LTP) on 

the predictions, resolved over different bands across the dynamic range of wind turbine cut-

in (2.5 m/s) cut-out speed (11 m/s), is given in Figure 11 for two wind turbines (2kW and 

30kW). These results indicate that using smaller LTP (10 hours) significantly reduces the 

prediction error of the generated power across all wind speeds and that more than a 30% 

improvement in wind power prediction accuracy can be achieved when 10 hours LTP is 

used instead of 60 or 168 hours. Figure 11 (a and b) also show that for all LTPs, the power 

prediction accuracy appears to improve at the higher wind speeds. The reason behind that 

may be because of the nonlinear shape of the wind turbine power curves (Figure 1). 
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According to Lange (Lange 2005), the shape of the wind turbine’s power curve influences  

the power prediction error. In the steep part of the wind turbine characteristic curve, a small 

difference in the wind speed is transferred to relatively larger difference between the 

corresponding predicted and measured power due to the power law dependency between 

wind speed and convertible kinetic energy.  

 

 

 

Figure 11: The power prediction error via FF-NN using different LTP over the years 2007-

2009: (a) 2kW turbine; (b) 30kW turbine. Hourly resolved data is used in training the Neural 

Network. 
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Figure 12 similarly shows that incorporating wind direction or solar irradiance adds further 

improvement to the prediction accuracy of the generated wind power particularly as the 

rated speed of each wind turbine is approached (9-11 m/s). At low wind speeds, the 

improvement in prediction accuracy is either negligible or low compared to higher wind 

speeds. This indicates that the prediction accuracy of Neural Networks can also be affected 

by the type of input parameters used and the relative improvement also changes with wind 

speed. 

Since solar irradiance can be predicted to some extent for any location via models such as 

the ASHRAE [29], the use of multi-parameter predictions using Neural Networks have an 

advantage over those based solely on wind speed. Solar irradiance incorporated into wind 

speed predictions could also be a reasonable alternative to other meteorological data which 

must be measured such as humidity, temperature and pressure.  

 

 

Figure 12: The power prediction error via FF-NN using different training parameters over 

the years 2007-2009 (LTP=10 hours). Hourly resolved data is used in training the Neural 

Network. 
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5. CONCLUSIONS 

In this paper, the impact of the Neural Network training methodology employed to forecast 

short-term wind energy is investigated. The research has analysed the effects on prediction 

accuracy as a consequence of using different size and resolution of training data as well as 

the LTP employed. In addition, the effects of these parameters on improving the seasonal 

prediction error for wind speed and the inclusion of solar irradiance (as a training parameter) 

on prediction accuracy have also been analysed. Two Neural Networks (FF-NN and RBF-

NN) have been trained using one and six years’ worth of meteorological wind speed data 

with half hourly, hourly, two hours and three hours temporal resolution to span the training 

history (5, 10, 60, and 168 past hours). The research has also looked at the effects of 

predicting wind speed using only wind speed data as well as wind speed with direction and 

wind speed with solar irradiance. To assess the impact of Neural Network training 

methodology on the total power predicted, the power characteristic curves of two 

commercially available wind turbines have been used.  

This paper has found that provided historical meteorological data already spans all seasons 

(i. e., at least a single year), no significant improvement is achieved by training the networks 

over more than one year. The results also reveal that seasonal variations can appreciably 

affect the accuracy of short-term wind speed predictions. The severity of this detrimental 

influence depends very much on the methodology used. This research has also shown that 

reducing the length of training data used in Neural Networks improves the accuracy of wind 

speed prediction and also reduces training time. However, this benefit appears to diminish 

below a certain value of LTP. The last finding of this study is that incorporating solar 

irradiance data can improve the prediction accuracy of wind speed with no significant 

consequences on the training time. This improvement in accuracy appears to be more 

effective at higher speeds compared to low (cut-in) speeds of the wind turbines. More work 

is warranted to determine if the outcomes from this research, which are based on the specific 

Neural Network architectures used (e.g., types, temporal resolution of data, etc), are also 

applicable to other data sets of wind speed and geographical locations.  Unlike other 

meteorological data, solar irradiance can be easily predicted for geographical locations using 

well established models such as ASHRAE. This approach of including solar irradiance data 

when predicting wind speed can help improve estimates of generated wind power at any 

particular location, especially for remote areas where a record of other meteorological data 

may not be available. Accurately predicting power generated can help reduce the 
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intermittency associated with wind energy through appropriate sizing and optimisation of 

energy system component selection. This may also help better size energy storage media 

such as batteries or hydrogen. Further work needs to be undertaken to explore the effect of 

using multiple input parameters on the prediction of other renewable resources (such as 

solar-PV) as well as the impact of using Neural Networks on the ability to meet load 

requirements in wind energy systems. 
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