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Cognitive decline and dementia due to Alzheimer’s disease (AD) have been associated
with genetic, lifestyle, and environmental factors. A number of potentially modifiable
risk factors should be taken into account when preventive or ameliorative interventions
targeting dementia and its preclinical stages are investigated. Bone mineral density
(BMD) and body composition are two such potentially modifiable risk factors, and their
association with cognitive decline was investigated in this study. 164 participants, aged
34–87 years old (62.78 ± 9.27), were recruited for this longitudinal study and underwent
cognitive and clinical examinations at baseline and after 3 years. Blood samples were
collected for apolipoprotein E (APOE) genotyping and dual energy x-ray absorptiometry
(DXA) was conducted at the same day as cognitive assessment. Using hierarchical
regression analysis, we found that BMD and lean body mass, as measured using DXA
were significant predictors of episodic memory. Age, gender, APOE status, and premorbid
IQ were controlled for. Specifically, the List A learning from California Verbal Learning Test
was significantly associated with BMD and lean mass both at baseline and at follow up
assessment. Our findings indicate that there is a significant association between BMD
and lean body mass and episodic verbal learning. While the involvement of modifiable
lifestyle factors in human cognitive function has been examined in different studies, there
is a need for further research to understand the potential underlying mechanisms.

Keywords: dual energy x-ray absorptiometry, cognition, apolipoprotein E, bone mineral density, episodic verbal

memory, executive function, aging

INTRODUCTION
Dementia is a major debilitating disorder and a cause of sig-
nificant concern for the currently aging population. In 2010,
more than 35.6 million individuals were diagnosed with dementia
worldwide (Prince et al., 2013). Prevalence projections indi-
cate that dementia cases will dramatically increase worldwide
by 2050 (Norton et al., 2014). In particular, a report from
the Australian Institute of Health and Welfare estimates that
the number of dementia patients in Australia will increase
from 175,000 to 465,000 by the year 2031 (Australian Institute
of Health and Welfare, 2007). Preventative research to reduce

dementia-related burden is essential to tackle the financial as
well as social consequences of this condition. Based on recent
modeling reported by Alzheimer’s Australia, if the onset of
dementia was delayed by 2 years, a reduction of 13% or
398,000 cumulative new cases by 2050 would be achieved.
Further, a delay of 5 years would reduce the number of cumu-
lative new cases by 30%, or 935,000 individuals by 2050.
Dementia-prevention programs would have a significant eco-
nomic impact and improve the quality of life for affected indi-
viduals and their family (Vickland et al., 2012). Identification
of potentially modifiable risk factors, including lifestyle factors,
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is a promising avenue for facilitating reductions in dementia
incidence.

Dementia due to Alzheimer’s disease (AD) is the most com-
mon form of dementia worldwide (Di Carlo et al., 2012). While
the underlying causes of the late-onset form of the disease remain
poorly understood, a complex mix of genetic, lifestyle, and hor-
monal factors is thought to contribute to the cerebral accumula-
tion of a small peptide, beta amyloid (Aβ) (Butterfield et al., 2002;
Isacson et al., 2002; Verdile et al., 2004; Wirths et al., 2004), result-
ing in the formation of extracellular amyloid deposits (Glenner
and Wong, 1984; Masters et al., 1985). Research suggests that one
third of AD cases are preventable (Norton et al., 2014). Because
lifestyle and hormonal factors are potentially modifiable risk fac-
tors for AD, they remain a focus of intense research scrutiny. One
such hormone-related risk-factor is osteoporosis, which is defined
as bone mineral density (BMD) more than 2.5 standard devi-
ations below the mean for healthy adults aged between 20 and
40 years (W.H.O, 1994). The prevalence of osteoporosis increases
with age. According to Osteoporosis Australia, 1 in 2 women and
1 in 3 men over the age of 60 will experience an osteoporotic
fracture. In addition to age, female sex and menopause-related
changes, previous fragility, previous fragility fractures, family his-
tory of hip fracture, and the use of oral corticosteroids are also
significant risk factors for low BMD (Kanis, 2002; Finkelstein
et al., 2008).

Osteoporosis and low BMD (osteopenia) have been associ-
ated with cognitive impairment and dementia (Lui et al., 2003;
Rothman et al., 2007). BMD is regulated through the brain
(Haberland et al., 2001; Karsenty and Oury, 2010), and this may
partially explain the underlying relationship between BMD, cog-
nitive dysfunction, and dementia. The brain regions involved
in adiposity, (specifically the hypothalamus), also regulate bone
remodeling through complicated and slow processes involving
hormones including leptin (Haberland et al., 2001; Crockett et al.,
2011). Leptin is thought to mediate BMD via binding to rel-
evant receptors in the ventromedial hypothalamus (Haberland
et al., 2001; Yang and Barouch, 2007) suggesting that osteo-
porosis may represent a neuro-skeletal condition (Takeda, 2009).
Of note, plasma leptin level has been negatively associated with
dementia and AD risk (Lieb et al., 2009). Additionally, the rela-
tionship between lower BMD and dementia may be modulated
through cumulative exposure to estrogen as it was found in the
Framingham Study, that lower femoral neck BMD was associated
with a two-fold increase in risk of AD in women, potentially due
to estrogen exposure (Tan et al., 2005).

Adiposity or body fat is another potentially modifiable risk
factor associated with cognitive decline and dementia; how-
ever, research has produced somewhat conflicting results in this
area. While most studies have supported a significant associa-
tion between adiposity and cognitive decline (Luchsinger et al.,
2007; Kerwin et al., 2011) other studies have failed to identify a
significant relationship between these two on some of the cog-
nitive functions associated with AD, including verbal memory
(Wolf et al., 2007). In some studies, adiposity has been associ-
ated with cognitive decline only in men (Kanaya et al., 2009), in
individuals above 70 years old (Levine and Crimmins, 2012), or
in participants below age 70 (Yoon et al., 2012). Adiposity is a
risk factor for diabetes, hypertension, and cardiovascular changes;

conditions which themselves contribute to significantly increased
risk of AD (for a review see: Gustafson and Luchsinger, 2013) and
cognitive decline due to vascular pathologies (Gustafson, 2012).
For example, it has been suggested that adiposity, as a risk factor
for insulin resistance and hyperinsulinemia may increase amyloid
deposits in the brain resulting in AD (Luchsinger and Mayeux,
2007). In sum, the available evidence suggests that midlife cen-
tral obesity plays a significant role in age-related cognitive decline
and significantly increases the risk of dementia (Whitmer et al.,
2008).

It is important to note that both increased adiposity and
osteoporosis have been associated with cardiovascular disease
(CVD) (Banks et al., 1994), which is associated with AD-plasma
amyloid-β protein (Bates et al., 2009) and has been shown
to increase the risk of cognitive decline and dementia (Qiu
et al., 2010; Norton et al., 2014). Interestingly, subclinical CVD
increases the risk of bone loss and fracture (den Uyl et al., 2011)
and BMD has been inversely associated with CVD (Farhat et al.,
2007). Further, cardiovascular problems are associated with
osteoporosis; moreover, lipid-related problems may play a role
in increasing osteoporosis risk (Brown and Sharpless, 2004).
Animal models support the association between osteoporosis
and atherosclerosis (Parhami et al., 2000; Price et al., 2001).
Observational studies have shown that higher atherogenic lipid
profile and lipoproteins are inversely associated with bone density
(Dimic et al., 2012; Sarkis et al., 2012) but the exact mechanisms
underlying this relationship are unclear (Farhat and Cauley,
2008).

Cholesterol metabolism has been linked to apolipoprotein E
epsilon 4 allele (APOE ε4), a major genetic risk factor for late-
onset AD (Corder et al., 1993; Saunders et al., 1993; Roses, 1997).
The ApoE protein is the major cholesterol transport protein in
the brain, with allelic polymorphism in the APOE gene resulting
in isoform-specific functional effects (e.g., higher risk of AD for
ε4 carriers and more resistance to AD in ε2 carriers) (Weisgraber,
1994; Mahley et al., 1996). Some studies have indicated that, in
addition to increased risk of AD, APOE can also be involved in
osteoporosis through mediating vitamin K transportation and/or
inhibition of osteoblast differentiation (Kohlmeier et al., 1996;
Parhami et al., 1997). However, a more recent study did not sup-
port the involvement of APOE genotype in BMD, increased bone
loss, or higher risk of osteoporotic fractures (Schoofs et al., 2004).

The current study evaluated the relationship between adipos-
ity, BMD and subsequent cognitive decline with respect to both
screening of functional capacity and, more specifically, verbal
episodic memory. We assessed BMD, adiposity and cognition,
controlling for the potential effects of age, gender, and posses-
sion of the APOE ε4 allele. Specific hypotheses included: (i)
higher BMD would be significantly associated with better current
and future cognitive functioning, particularly verbal memory;
(ii) higher adiposity and lower lean body mass would be related
to current cognitive function and predict subsequent cognitive
function.

MATERIALS AND METHODS
STUDY DESIGN AND COHORT SELECTION
One hundred and sixty four participants aged 34–87 years
old (62.78 ± 9.27) were recruited from a larger, longitudinal,
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community-based study (the Western Australia Memory Study),
investigating molecular and neuropsychological predictors of
cognitive decline within younger and older adults (Clarnette et al.,
2001; Sohrabi et al., 2009). The results were analyzed at base-
line and after a 3-year follow-up. Participants completed annual
blood and cognitive testing using standardized, validated screen-
ing and diagnostic measures. Exclusion criteria at the recruitment
included: Mini Mental State Examination (MMSE) score ≤ 24
(Folstein et al., 1975); clinically diagnosed dementia; untreated
depression [Geriatric Depression Scale (GDS) score ≥ 11]; history
of neurological or psychiatric disorders affecting cognitive func-
tions (e.g., stroke, Parkinson’s disease, epilepsy, schizophrenia)
and difficulty understanding or speaking English.

All participants provided written, informed consent to the
study procedures including a body composition/BMD scan, using
dual energy x-ray absorptiometry (DXA). Cognitive and clinical
assessments, along with venous blood sampling occurred on the
same day as DXA was performed. The study was approved by the
Human Ethics Committees of Edith Cowan University, University
of Western Australia, and Hollywood Private Hospital, Western
Australia.

DXA ANALYSIS
The DXA technique quantifies bone mineral content by com-
paring the attenuation that occurs as a result of absorption of
photons at two different energy levels, thereby creating a two
dimensional BMD (aBMD) map (Van Loan and Mayclin, 1992).
This analysis allows for the separation of body mass into bone,
lean, and fat components.

In this study, DXA bone density and body composition scans
were conducted on a central, whole body, Norland XR-46, pencil
beam scanner using software version 4.1.1. The instrument was
calibrated daily using a 77-step calibration standard QC phantom.
The mean coefficient of variation (over 5 days) was 0.40 for BMD,
0.20 for lean mass and 0.14 for fat mass. Bone density measures
were taken at the spine (L2-L4) and at the hip (femoral neck and
total hip). The software generated: (i) t-scores, which compared
each individual against a group, defined as possessing peak bone
mass (i.e., normative data from healthy adults aged 20–40 years);
and (ii) z-scores which compared an individual with data from
their own age group.

Whole body scans were divided into regions of interest includ-
ing head, chest, midriff, pelvis, and limbs. The measures taken
included fat and lean mass (in kg), total body fat percentage, Siri
formula, and Brozek formula, for underwater weight equivalents
(UWE) (Guerra et al., 2010). To estimate body fat %, body mass
density is calculated and converted to body fat %, using the Siri
or Brozek equations. These are the most commonly equations
available (Guerra et al., 2010).

Most of the scores produced by DXA are highly inter-
correlated. In order to address potential multicollinearity, we
created composite, sample-based z scores derived from the sum
of all the z scores calculated for lean mass and BMD raw scores,
divided by the number of scores. The following raw scores were
converted to z scores and divided by six (number of scores) to
compute the composite lean mass z score: Midriff lean mass +
Pelvis lean mass + Left leg lean mass + Right leg lean mass +

Left arm lean mass + Right arm lean mass. The bone density
composite z score was calculated by summing the DXA Spine L2-
L4, Femoral Neck, and trochanter computed z scores divided by
three. We did not use a Fat mass composite z score, but instead
used the Siri UWE as this score is strongly associated with fat %
and other fat mass-related scores derived from DXA.

CLINICAL AND COGNITIVE MEASURES
Participants completed a comprehensive set of clinical and neu-
ropsychological assessments lasting between 1.5 and 2.5 h and
were offered breaks as needed. Depression at baseline was mea-
sured using the GDS (Yesavage et al., 1982). Premorbid cog-
nitive ability was assessed using the Cambridge Contextual
Reading Test (CCRT) (Beardsall, 1998). General cognitive func-
tioning was assessed using the CAMCOG-R (Roth et al., 1998).
Verbal episodic memory was assessed using the California Verbal
Learning Test (CVLT) (Delis et al., 1988). Baseline and 3-year
follow-up scores for the CVLT were calculated as follows: List
Learning (List A; trials 1–5 total score), short delay free recall
(SDFR), short delay cued recall (SDCR), long delay free recall
(LDFR), long delay cued recall (LDCR), and recognition discrim-
inability (RecDisc).

BIOCHEMICAL AND GENETIC ANALYSIS
On the same day as the DXA scan and cognitive/clinical assess-
ment, a fasted venous blood sample was collected into serum,
EDTA (containing prostaglandin E to prevent platelet activa-
tion) and heparin blood collection tubes (Interpath Services,
Australia). The whole blood was then separated into different
components using standard centrifugation techniques. DNA was
isolated from leukocytes, and APOE genotype was determined
via polymerase chain reaction (PCR) amplification and restric-
tion enzyme digestion using the method originally described by
Hixson and Vernier (1990), and outlined in Laws et al. (2002).

STATISTICAL ANALYSIS
Data were entered into Microsoft Excel and statistical analyses
conducted using IBM SPSS Version 19 (IBM SPSS Statistics, 2010
New York, IBM Corp). After testing for normality, descriptive
sample characteristics were analyzed. Next, a series of two-step
hierarchical linear regressions were conducted in order to explore
the relationships between biological variables, general cognitive
function (as assessed by the CAMCOG-R) and episodic ver-
bal memory (as measured by the above-mentioned CVLT sub
scores). In step one, potential covariates including age at scan
time, gender, APOE ε4 allele status, and premorbid IQ (CCRT)
were entered into the analysis. In step 2, variables derived from
DXA were entered into the model. These variables included (1)
Siri UWE Fat percentage, (2) Lean mass composite score, and (3)
BMD composite score.

RESULTS
In the current study, participants included 69% women and
38% of participants were APOE ε4 carriers. Descriptive data
for males/females, and APOE ε4 +/APOE ε4 – groups are pre-
sented in Tables 1, 2. The percentage of participants who were
APOE ε4 + did not differ by gender, χ2(1; N = 162) = 0.010,
p = 0.919. There were significant differences between men and
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Table 1 | Descriptive findings of dual energy x-ray absorptiometry (DXA) including the p-values corresponding to independent t†.

Sex APOE ε4e Status

Male (N = 51) Female (N = 113) P Non-Carrier (N = 102) Carrier (N = 61) P

Mean (±SD) Mean (±SD) Mean (±SD) Mean (±SD)

Age at scan 63.65 (± 7.88) 62.39 (± 9.85) 0.423 63.31 (± 9.36) 61.97 (± 9.21) 0.372
Total fat % 25.65 (± 6.05) 40.27 (± 8.07) 0.000* 36.63 (± 10.36) 34.30 (± 9.61) 0.155
Siri UWE fat % 21.14 (± 5.67) 32.71 (± 7.35) 0.000* 29.89 (± 8.75) 27.87 (± 8.62) 0.153
Lean mass composite scorea 5.13 (± 3.08) −2.31 (± 3.10) 0.000* 0.100 (± 4.68) −0.307 (± 4.49) 0.586
BMD composite scoreb 0.0007 (± 0.944) −0.0003 (± 0.855) 0.999 0.018 (± 0.922) −0.051 (± 0.805) 0.626
HDLc 1.21 (± 0.364) 1.59 (± 0.419) 0.000* 1.46 (± 0.431) 1.50 (± 0.458) 0.570
LDLd 2.81 (± 0.989) 3.13 (± 0.851) 0.032* 3.01 (± 0.878) 3.08 ( ± 0.959) 0.626
Cholesterol 4.93 (± 0.992) 5.44 (± 0.885) 0.001* 5.26 (± 0.931) 5.34 (± 0.979) 0.584
Triglycerides 1.98 (± 1.40) 1.54 (± 1.03) 0.027* 1.69 (± 1.17) 1.64 (± 1.19) 0.798

†Equal variances not assumed; *p < 0.05;
aLean mass composite score included the DXA Lean mass Z scores for Midriff, Pelvis, Left leg, Right leg, Left arm, and Right arm divided by six;
bBone Mineral Density Composite Score included the Z scores for DXA Spine L2-L4, Femoral Neck, and trochanter divided by three;
c High-density lipoprotein;
d Low-density lipoprotein;
eApolipoprotein E ε4.

Table 2 | Descriptive cognitive data including p-values corresponding to independent t†.

Sex APOE ε4i Status

Male (N = 51) Female (N = 113) P Non-Carrier (N = 102) Carrier (N = 61) P

Mean (±SD) Mean (±SD) Mean (±SD) Mean (±SD)

CAMCOGa-baseline 99.90 (± 2.76) 97.79 (± 4.40) 0.000* 98.72 (± 3.50) 97.98(± 4.91) 0.270

CVLT List Ab-baseline 53.71 (± 10.37) 54.61 (± 11.20) 0.625 55.05 (± 10.83) 52.98 (± 11.07) 0.244

CVLT SDFRc-baseline 10.75 (± 2.86) 11.20 (± 2.91) 0.350 10.99 (± 2.98) 11.10 (± 2.73) 0.817

CVLT SDCRd-baseline 11.73 (± 2.50) 11.68 (± 2.95) 0.926 11.70 (± 2.95) 11.62 (± 2.54) 0.872

CVLT LDFRe-baseline 11.22 (± 2.77) 11.17 (± 3.04) 0.924 11.32 (± 2.92) 10.87 (± 2.96) 0.340

CVLT LDCRf-baseline 11.61 (± 2.81) 11.42 (± 3.23) 0.727 11.59 (± 3.06) 11.23 (± 3.15) 0.475

CVLT RecDg-baseline 94.77 (± 5.96) 93.26 (± 10.76) 0.354 93.70 (± 11.11) 93.66 (± 6.36) 0.981

CAMCOG-F/Uh 98.36 (± 4.67) 98.12 (± 4.23) 0.763 98.30 (± 3.96) 97.98 (± 5.02) 0.682

CVLT List A-F/U 56.16 (± 9.77) 62.09 (± 10.41) 0.002* 60.41 (± 10.39) 59.98 (± 11.01) 0.818

CVLT SDFR-F/U 11.30 (± 2.89) 12.43 (± 2.78) 0.028* 11.98 (± 3.01) 12.25 (± 2.61) 0.588

CVLT SDCR-F/U 12.00 (± 2.68) 13.25 (± 2.19) 0.004* 12.82 (± 2.44) 12.92 (± 2.41) 0.805

CVLT LDFR-F/U 11.66 (± 3.26) 12.87 (± 2.52) 0.018* 12.58 (± 2.57) 12.31 (± 3.24) 0.584

CVLT LDCR-F/U 12.07 (± 2.98) 13.35 (± 2.30) 0.006* 13.00 (± 2.38) 12.85 (± 2.95) 0.736

CVLT RecD-F/U 95.02 (± 4.83) 96.04 (± 6.95) 0.380 95.83 (± 4.86) 95.50 (± 8.40) 0.766

†Equal variances not assumed; *p < 0.05;
aThe Cambridge Cognitive Examination-Revised total score;
bThe California List A Learning trials 1–5 total score;
cThe California Verbal Learning Test (CVLT) Short Delay Free Recall;
d The CVLT Short Delay Cued Recall;
eThe CVLT Long Delay Free Recall;
f The CVLT Long Delay Cued Recall;
gCVLT discriminability;
hFollow up;
i Apolipoprotein E ε4.

women on most of the DXA measures. The differences are pre-
sented in Table 2 with respect to gender and APOE ε4 status.
APOE ε4 status and GDS (depression level) were not significantly
associated with any of the DXA or cognitive variables.

CORRELATIONS
Table 3 presents the correlations between DXA, adiposity, and
cognitive measures at baseline and follow up. Premorbid IQ
(as measured using the CCRT) was not associated with any of
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Table 3 | Associations between Dual-energy X-ray absorptiometry (DXA), baseline, and follow up cognitive measures (2-tailed).

Scan CCRTa HDLb LDLc Cholestd Trigle Siri UWEf Lean mass BMD DXA DXA

age fat % compg comph t-score z-score

Scan age −0.001 −0.083 −0.121 −0.061 0.160* 0.077 −0.092 0.067 −0.275** 0.009

GDSi-baseline −0.065 −0.074 −0.110 0.061 −0.014 −0.046 0.006 0.094 −0.02 −0.009 −0.003

CAMCOGj-baseline −0.222** 0.174* −0.055 −0.008 0.011 0.079 −0.204** 0.214** −0.061 −0.028 −0.077

CVLT List Ak-baseline −0.206** 0.026 0.136 −0.052 0.026 0.035 0.035 −0.028 0.157* 0.240** 0.155*

CVLT-SDFRl-baseline −0.169* 0.064 0.195* −0.038 0.03 −0.03 0.055 −0.095 0.049 0.158* 0.049

CVLT–SDCRm-baseline −0.057 0.074 0.160* −0.062 0.024 0.017 0.006 −0.054 0.166* 0.205** 0.160*

CVLT-LDFRn-baseline −0.124 0.149 0.147 0.007 0.047 −0.039 −0.016 −0.007 0.078 0.12 0.063

CVLT-LDCRo-baseline −0.164* 0.078 0.162* 0.043 0.067 −0.076 −0.024 −0.02 0.083 0.14 0.071

CVLT-RecDp-baseline −0.146 −0.058 0.167* −0.015 −0.037 −0.176* −0.029 −0.051 0.066 0.157* 0.091

CAMCOG-F/Uq −0.218** 0.379** 0.004 −0.006 0.048 0.094 −0.016 0.054 0.017 0.116 0.041

CVLT List A-F/U −0.293** 0.132 0.155 0.119 0.152 −0.043 0.149 −0.189* 0.187* 0.319** 0.190*

CVLT SDFR-F/U −0.350** 0.152 0.166 0.11 0.137 −0.056 0.064 −0.098 0.083 0.233** 0.092

CVLT SDCR-F/U −0.337** 0.283** 0.184** 0.117 0.136 −0.081 0.106 −0.134 0.085 0.186* 0.116

CVLT LDFR-F/U −0.332** 0.132 0.087 0.078 0.116 0.013 0.079 −0.098 0.143 0.280** 0.159

CVLT LDCR-F/U −0.343** 0.166 0.105 0.026 0.06 −0.009 0.099 −0.12 0.104 0.286** 0.152

CVLT RecD-F/U −0.311** 0.266** −0.021 0.013 0.023 0.041 0.092 0.002 0.068 0.169* 0.083

*p < 0.05; **p < 0.011;
aCambridge Contextual Reading Test;
bHigh-density lipoprotein;
cLow-density lipoprotein;
d Cholesterol;
eTriglyceride;
f Underwater weight equivalents;
gLean mass composite score included the DXA Lean mass Z scores for Midriff, Pelvis, Left leg, Right leg, Left arm, and Right arm divided by six;
hBone Mineral Density Composite Score included the Z scores for DXA Spine L2-L4, Femoral Neck, and trochanter divided by three;
i Geriatric Depression Scale;
j The Cambridge Cognitive Examination-Revised total score;
k The California Verbal Learning Test (CVLT) List A Learning trials 1–5 total score;
l The CVLT Short Delay Free Recall;
mThe CVLT Short Delay Cued Recall;
nThe CVLT Long Delay Free Recall;
oThe CVLT Long Delay Cued Recall;
pThe CVLT discriminability;
qFollow up.

the DXA measures, but was a significant correlate of CAMCOG
Baseline and FU scores, and CVLT SDCR and RecD follow
up scores. GDS score was also not significantly associated with
any of the DXA or other biomarkers and therefore was not
included as a covariate in regression analyses. However, we
found significant associations between overall cognitive sta-
tus, as measured by CAMCOG-R, and various DXA mea-
sures. A significant, negative association was found between
baseline CAMCOG-R and Siri UWE (r = −0.204, p < 0.01).
Lean mass and BMD composite scores were positively asso-
ciated with verbal learning (CVLT scores) and general cogni-
tive functioning (CAMCOG-R) (Table 3) and therefore included
in the subsequent regression analyses. HDL was significantly
associated with baseline CVLT subscales including, SDFR (r =
0.195, p < 0.05), SDCR (r = 0.160, p < 0.05), and LDCR (r =
0.162, p < 0.05) but not with the CVLT follow up results
except for SDCR (r = 0.184, p < 0.05). Interestingly, HDL
was negatively associated with the total perseveration score

for List A learning trials 1–5 (r = −0.160, p < 0.05), indi-
cating that greater perseveration was associated with lower
HDL.

CLINICAL AND COGNITIVE DATA
Clinical and cognitive data were available for all participants.
The mean clinical and cognitive scores for all participants are
outlined in Tables 1, 2. The means for all neuropsychological
measures were within expected age-related norms (Yesavage et al.,
1982; Delis et al., 2000). We did not find any significant differ-
ences between APOE ε4 carriers and non-carriers on any of the
DXA or neuropsychological measures. Depression was not signif-
icantly associated with any of the DXA measures (Table 3) or with
cognitive measures at baseline or follow up.

REGRESSION ANALYSIS
A series of hierarchical multiple regressions was conducted to
examine the associations between DXA and adiposity measures
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and cognitive test results whilst controlling for the effects of
relevant covariates at both baseline and follow up assessments.
As discussed, demographic factors including age, gender, APOE
ε4 carriage, and premorbid IQ (as measured using the CCRT)
were entered in Step 1. In Step 2, variables derived from DXA
were entered into the model including the Siri UWE Fat per-
centage, Lean mass composite score, and the BMD composite
score.

COGNITIVE RESULTS
The DXA scores in our two-step hierarchical regression model
were not significantly associated with general cognitive func-
tioning at baseline (R2-change = 0.007; F change = 0.359,
p = 0.782) or follow up (R2-change = 0.002; F change =
0.110, p = 0.954). In predicting baseline CVLT List A tri-
als 1–5, the first model containing covariates only was not
significant [F(4, 141) = 2.014, p = 0.096, R2 = 0.054]. However,
the second model was significant [F(7, 138) = 2.359, p < 0.05,
R2 = 0.107]. Specifically, as seen in Table 4, the addition of
the DXA variables provided unique predictive variance (R2-
change = 0.53). Higher BMD was significantly associated
with higher learning scores, and there was a trend for lower
Lean mass composite score (B = −0.644; t = −1.926; p =
0.056).

Baseline CVLT discriminability (recognition) performance
was not significantly predicted by the first model containing
covariates only [F(4, 140) = 1.115, p = 0.352, R2 = 0.031, but the
second model was significant, F(7, 137) = 2.422, p < 0.05, R2 =

Table 4 | Hierarchical linear regression predicting baseline CVLT List A

trials 1–5 total score from lean mass and bone density composite

scores.

B Std. β Adj. R2 �R2

error

Step 1 0.027 0.054
Age −0.247 0.097 −0.209∗
Gender 0.558 1.931 0.024
APOE ε4 status −2.413 1.849 −0.107
CCRTa 0.062 0.185 0.028
Step 2 0.062 0.053*

Age −0.322 0.101 −0.272**

Gender −5.201 3.629 −0.221
APOE ε4 Status −2.457 1.837 −0.109
CCRT 0.073 0.183 0.032
Siri UWEb fat % 0.074 0.132 0.059
Lean mass comp scorec −0.644 0.334 −0.274#

BMD comp scored 3.123 1.138 0.252**

*p < 0.05; **p < 0.01; #p < 0.10 (trend);
aCambridge Contextual Reading Test;
bUnderwater weight equivalents;

cLean mass composite score included the DXA Lean mass Z scores for Midriff,

Pelvis, Left leg, Right leg, Left arm, and Right arm divided by six;
d Bone Mineral Density Composite Score included the Z scores for DXA Spine

L2-L4, Femoral Neck, and trochanter divided by three.

0.110]. Both lean mass composite score and BMD were signifi-
cant predictors of RecDisc in the final model, with higher BMD
and lower lean mass being associated with better performance
(Table 5). Adding DXA variables contributed an additional 8%
of predictive variance.

CVLT List A learning at follow-up was also significantly pre-
dicted by DXA variables. The first model containing covariates
only was significant [F(4, 124) = 6.005, p < 0.001]. The second
model was also significant [F(7, 121) = 5.375, p < 0.001, R2 =
0.237]. Specifically, the Lean mass composite score (t = −2.297,
p < 0.05), and BMD composite score (t = 3.351, p < 0.001)
were significant predictors (Table 6), accounting for an additional
8% of variance.

Due to significant differences between men and women on
DXA measures, we examined the interaction of gender and DXA
measures (i.e., Siri UWE Fat %, lean mass composite score, and
BMD composite score) in predicting cognitive functions. The
cognitive functions examined here included baseline and fol-
low up CAMCOG-R, List A learning trials 1–5, SDFR, SDCR,
LDCR, LDFR, and Recognition Disc results. Interestingly, we
did not find any significant results for these interactions except
for Gender X BMD on the follow up LDFR [R2-change =
0.052; F change = 2.707, p = 0.048; F(10, 118) = 3.944, p <

0.001; B = -1.302, SE = 0.606, Beta = −0.698; t = −2.150, p <

0.034]. Further analysis indicated that higher BMD was signif-
icantly associated with better follow up LDFR in men, but not
in women (r = 0.459, p < 0.002 and r = −0.039, p = 0.707,
respectively).

Table 5 | Hierarchical linear regression predicting baseline CVLT

discriminability score from lean mass and bone density composite

scores.

B Std. β Adj. R2 �R2

error

Step 1 0.003 0.031
Age −0.155 0.086 −0.150
Gender −1.685 1.715 −0.082
APOE ε4 status −0.238 1.641 −0.012
CCRTa −0.113 0.165 −0.057
Step 2 0.065 0.079**

Age −0.251 0.088 −0.243**

Gender −10.253 3.178 −0.499**

APOE ε4 status −0.460 1.609 −0.023
CCRT −0.089 0.160 −0.045
Siri UWEb fat % 0.104 0.115 0.095
Lean mass comp scorec −0.970 0.293 −0.471***

BMD comp scored 2.409 0.996 0.222*

*p < 0.05; **p < 0.01; ***p < 0.001;
aCambridge Contextual Reading Test;
bUnderwater weight equivalents;
cLean mass composite score included the DXA Lean mass Z scores for Midriff,

Pelvis, Left leg, Right leg, Left arm, and Right arm divided by six;
d Bone Mineral Density Composite Score included the Z scores for DXA Spine

L2-L4, Femoral Neck, and trochanter divided by three.
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Table 6 | Hierarchical linear regression predicting follow up CVLT List

A trials 1–5 total score from lean mass and bone density composite

scores.

B Std. β Adj. R2 �R2

error

Step 1 0.135 0.162***

Age −0.318 0.094 −0.279***

Gender 5.476 1.872 0.241**

APOE ε4 Status −0.885 1.792 −0.041
CCRTa 0.279 0.180 0.128
Step 2 0.193 0.075**

Age −0.400 0.096 −0.351***

Gender −0.665 3.459 −0.029
APOE ε4 status −0.993 1.751 −0.046
CCRT 0.294 0.174 0.135
Siri UWEb fat % 0.050 0.125 0.041
Lean mass comp scorec −0.732 0.319 −0.322*

BMD comp scored 3.633 1.084 0.304***

*p < 0.05; **p < 0.01; ***p < 0.001;
aCambridge Contextual Reading Test;
bUnderwater weight equivalents;
cLean mass composite score included the DXA Lean mass Z scores for Midriff,

Pelvis, Left leg, Right leg, Left arm, and Right arm divided by six;
d Bone Mineral Density Composite Score included the Z scores for DXA Spine

L2-L4, Femoral Neck, and trochanter divided by three.

DISCUSSION
The results of this longitudinal study lend further support to
the mounting body of evidence suggesting that lifestyle factors
may be involved in cognitive functions and, in turn, may mod-
ulate the risk of future cognitive decline. We report a significant
link between potentially modifiable indicators of systemic health,
namely BMD and Lean body mass on cognitive performance
in a group of community-dwelling, healthy adults. These find-
ings have a number of potential implications for understanding
the underlying, modifiable mechanisms involved in pathological
cognitive decline and for developing preventive and potentially
ameliorative clinical trials targeting AD, specifically with respect
to the possible influence of metabolic, cardiovascular, and general
health factors.

BMD was a predictor for cognitive performance with respect
to CVLT measures (Tables 4–6) in a cross-sectional as well as
longitudinal context. Interestingly, the findings from the present
study indicate that the effect of APOE ε4 was limited, i.e., we
did not observe any significant differences between the APOE
ε4 carriers and non-carriers in the study on DXA or cognitive
assessment results (Table 1).

In this study, we found significant differences between men
and women on BMD and body composition (as expected from
previous studies), but we did not find significant differences on
cognitive measures at baseline. However, after 3 years of follow
up, women outperformed men on most of the CVLT measures
(Table 2) but their performance was similar on follow up global
cognitive function. This may be consistent with findings implying
differential cognitive decline rate in women vs. men (Maylor et al.,
2007; Holland et al., 2013).

Low BMD and osteoporosis restrict morbidity amongst the
elderly and have been associated to the risk of future cognitive
decline (Yaffe et al., 1999; Lui et al., 2003) and dementia due to
AD (Tan et al., 2005). Low BMD has been associated with lower
cognitive function in cross-sectional study of post-menopausal
women (Brownbill and Ilich, 2004) and with verbal memory per-
formance in both men and women (Zhang et al., 2001). It has
been suggested that BMD may be reflective of cumulative estro-
gen exposure, thus providing a molecular mechanism for the
link between BMD and cognition as longer estrogen exposure
has been associated with lower dementia risk (Fox et al., 2013).
However, the evidence supporting a role for estrogen replace-
ment in protecting against AD is currently uncertain due to
a number of methodological factors and possible confounding
variables including education, general health and physical activity
(as reviewed in: Yaffe et al., 1998). As such, the debate surround-
ing the efficacy of estrogen replacement as a therapeutic target for
AD continues.

We found that BMD and lean mass were significantly asso-
ciated with memory abilities as measured using the CVLT
(Tables 4–6). This is consistent with a previous report that BMD
and verbal memory impairment were significantly associated
(Zhang et al., 2001). Zhang et al. (2001) has postulated that this
relationship may be potentially a function of cumulative exposure
to estrogen. In fact, our findings, indirectly, support the notion
of BMD as a marker of cumulative estrogen exposure, particu-
larly because we observed a significant association between sex
and CVLT Learning abilities at follow-up in the present study
(Table 2). It should be noted that we did not measure estro-
gen exposure in this study. However, it has previously been
shown that body fat serves as a source of endogenous estrogen
in post-menopausal women (Bagger et al., 2004).

The relationship between memory, BMD, and body compo-
sition were more significantly pronounced on performance in
the List A learning trials. In the current study, BMD and lean
mass measures of DXA were significant predictors of CVLT scores
representing learning capabilities. This finding is important, as
encoding deficits in episodic verbal memory i.e., mental repre-
sentation of new information–are the primary memory problems
seen in preclinical dementia and AD (Golby et al., 2005; Twamley
et al., 2006; Beck et al., 2012), and such encoding problems have
been shown to correlate with cholinergic deficits that are com-
monly seen in AD (White and Ruske, 2002). Interestingly, the
cholinergic system plays a pivotal role in BMD regulation, as has
recently been reviewed (Eimar et al., 2013). These considerations
are consistent with our findings discussed earlier concerning the
association between learning ability and BMD.

It has been reported that executive functions are associated
with episodic memory (Duff et al., 2005). More specifically, the
attention component of executive function plays a significant role
in verbal learning and memory (Brooks et al., 2006) and has been
associated with difficulties in CVLT List A learning (Hill et al.,
2012). Our findings show a significant association between List
A learning and BMD (as discussed earlier). This may indirectly
suggest an underlying mechanism involved in both BMD and
executive functioning, although this has to be carefully examined
in future studies.
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While the current study furthers our understanding of the rela-
tionship between age-related memory capacities and BMD, the
cohort size and the very wide age range represent the main limita-
tions. In addition, it would be advantageous to have baseline and
follow up DXA results, and general morbidity and physical activ-
ity to examine the potential differences with negative changes in
the DXA results in terms of memory and other cognitive func-
tions. Additionally, examining the sex hormones will add value to
a longitudinal study investigating the relationship between DXA
scores and cognitive functions.

Further research is warranted investigating the relationship
between BMD and cognitive dysfunctions in various dementia
patient groups and in preclinical stages, and the potential mecha-
nisms underlying these relationships. Such research could signif-
icantly improve our knowledge of the association between bone
mineral content and higher cortical capabilities, and the rele-
vance of these factors in aging and dementia. Future research may
investigate the relationship between BMD and cognitive decline
in aging while controlling for the effects of general mobility and
current/previous physical activity as contributing factors.

The non-significant relationship between APOE alleles car-
riage, BMD and cognition in this study may indicate differential
contributing pathways for genetic vs. lifestyle factors. Of course,
we requires further research in a larger cohort where various genes
identified as contributing to dementia risk can be examined in
relation to BMD and cognitive decline measures.
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