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Abstract

Exponential growth in the volume of wireless data, boosted by the growing popularity of
mobile devices such as smart phones and tablets, is forcing telecommunication industries
to rethink network design, and focus on developing high capacity mobile broadband net-
works. Accordingly, researchers have undertaken developmental work for an integrated
wireless-optical broadband access network (WOBAN). Passive optical networks (PONs)
and fourth generation (4G) wireless networks are two major candidate technologies for the
WOBAN. PON is a wired access technology, well-known for its high capacity, whereas 4G
is a wireless broadband access technology, popular for its ease of deployment and ability
to offer mobility. Integration of PON and 4G technologies, as a wireless-optical broadband
access network, offers advantages such as extension of networks in rural areas, support
for mobile broadband services, and rapid deployment of broadband networks. However,
these two technologies have different design architectures for handling broadband services
which require Quality of Service (QoS), for example, 4G networks use traffic classification
for supporting different QoS demands whereas PON does not differentiate between traffic
types. This integrated network must also be energy efficient, as a green broadband access
network, without hindering QoS. While these technologies both use sleep mode, they differ

in their power saving mechanisms.

This thesis first addresses a QoS solution for the incompatibility between these techno-
logies. Service class mapping is proposed in Chapter 3 for the integrated WOBAN, based
on the M/G/1 queuing model supported by an innovative priority scheduler. Once class
mapping is deployed, a power saving mechanism can be devised by exploiting traffic dif-
ferentiation. Specifically, a class-based strategy is proposed which helps optimise the sleep
period for the terminal units of the optical network, without compromising QoS.

Since the optical network involves control and terminal nodes, both of which consume
power, this thesis proposes an energy efficient mechanism that involves both components.
In contrast, other published strategies (Chapter 2) have only considered the terminal units.

Chapter 4 presents the mechanism for enabling global sleep (control and terminal nodes)
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and local sleep (terminal nodes), based on the available traffic’s class structure. This
mechanism enables sleep for different components within the bandwidth allocation by
adapting the switching between predefined polling cycle lengths.

As the WOBAN is comprised of both wireless and optical parts, a dynamic resource
management mechanism is needed which responds to changing daily traffic patterns across
a green integrated network. Consequently, Chapter 5 proposes a mechanism which dy-
namically adapts the polling cycles, of the optical and wireless parts of the network, to
the changing traffic volume and class composition. Tailored sleep durations for the com-
ponents of the WOBAN are facilitated within the resource management regime, as these
components differ in their ability to function efficiently if management of the sleep periods
is not responsive to the changing traffic volumes and class composition.

This dissertation creates new knowledge by seamlessly integrating the two parts of
WOBAN and introducing differentiated, class-based sleep for the components of the hybrid
network to help realise a green WOBAN.
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Chapter 1

Introduction

In recent years, broadband access technologies have attracted increasing attention because
of the exponential growth of the Internet and the popularity of many broadband services
such as high definition TV, video on demand, video streaming, voice over IP and peer-to-
peer file sharing, all of which demand a high bandwidth for delivery. Video traffic alone ac-
counts for approximately 84 percent of the Internet traffic in the USA [9], and its bandwidth
demands will prove very challenging for current broadband access technologies. Broadband
technologies differ in their ability to cost-efficiently provide the above mentioned services.
Wireline and wireless are the two categories of broadband access technologies which con-
nect the end user to the service provider and compete to provide the required bandwidth
for delivering broadband services. However, each technology features different advantages
and limitations regarding bandwidth, coverage, cost, power consumption, quality of service
(QoS), mobility, and reliability issues. For instance, wireless technologies allow low cost
deployment and offer ubiquity and mobility, but are limited by bandwidth. Optical net-
works are the most promising wireline solution due to their reliability and high bandwidth,
but they are costly to deploy and lack mobility. The telecommunications industry and
its consumer groups envisage a green next-generation broadband access network, capable
of delivering high bandwidth, QoS, reliability, and mobility. Since no individual tech-
nology will satisfy all these requirements, a hybrid access network comprised of multiple

complementary technologies can be the solution [7].

Hybrid networks, constructed by integrating an optical network with a wireless broad-
band network, inherit reliability and high bandwidth from the former and mobility from
the latter. In meeting the aforementioned challenges, hybrid wireless-optical networks also
help overcome the inequitable digital division between rural and urban users. However,

hybrid networks face QoS and energy efficiency challenges that must be addressed.
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Figure 1.1: Connectivity in wireless network.

1.1 Wireless Communication Networks

Wireless broadband networks use radio or microwave frequencies to communicate between
the receiver and transmitter as shown in Fig. 1.1. Wireless technology is becoming increas-
ingly important for people worldwide due to its ubiquity and convenience. By 2019, mobile
connected devices are expected to equate to 150% of the world’s projected population [10].
Wireless and cellular communication systems are undergoing continuous development to
cope with growing demand for better and diverse services. For example, the first gener-
ation (1G) wireless system provided poor quality analogue voice service, then the second
generation (2@G) system improved voice quality by using digital voice, and supported data
services. The progression from 2G to third generation (3G) was even more significant.
3G was considered to be a broadband wireless system because it supported the Internet,
streaming video, and multimedia messaging services. The current wireless access tech-
nology is the fourth generation (4G), which is comprised of two technologies, Worldwide
Interoperability for Microwave Access (WiMAX), and Long Term Evolution (LTE). The
4G technology was released in 2012 and its goals were to accelerate data rates and in-
crease the capacity to provide bandwidth-intensive services like HDTV, which requires up
to 19.3 Mbps of downstream bandwidth [11] [12]. The 4G communication system utilizes
only Internet Protocol (IP) to transfer packets, a standardization which accelerates the
switching of packets between access and backbone networks [13]. Despite their design dif-
ferences, both WiMAX and L'TE have surpassed the requirements for a 4G wireless system
in the International Mobile Telecommunications-Advanced (IMT-A) standard of 1 Gbps
and 100 Mbps download bandwidth, for stationary and mobile wireless access devices re-

spectively [14]. Although 4G has not been fully deployed worldwide, research on fifth
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generation wireless systems (5G) has commenced and this technology is expected to be

available by 2020 [15].

1.2 Optical Networks

Optical networking technology is unique in that its huge bandwidth can theoretically sup-
port data rates up to 25,000 Gbps [16]. This capacity and high reliability make optical
networking the most attractive choice for backbone networks. It can also extend directly
to the end user, via Fibre-To-The-Home (FTTH), Fibre-To-The-Building (FTTB), and
Fibre-To-The-Curb (FTTC); using either of two connectivity architectures, Point-to-Point
(P2P) and Point-to-Multi-Point (P2MP). Since the laying of fibre optic cable to each sub-
scriber is a highly expensive option, Passive Optical Network (PON), which is based on
P2MP connectivity architecture, is an economical alternative as it enables numerous users
to share the fibre length and deploys passive components along the fibre path. However,

a PON deployment still requires the laying of a fibre cable all the way to, or close to the

users’ premises (Fig. 1.2).

1.3 Wireless-Optical Broadband Access Network (WOBAN)

The Wireless-Optical Broadband Access Network (WOBAN), a hybrid network which inte-
grates PON and 4G, could develop into a major access network as it offers the advantages
of optical and wireless technologies, and suits both urban and rural areas. However, PON
and 4G follow standards which were developed to meet different targets; thus a hybrid

wireless optical network presents many technical challenges.



As an access network, WOBAN must support QoS while delivering various types of
traffic, each of which has particular service challenges. For example, VoIP is affected by
the delay and jitter, so the WOBAN must minimise these problems to maintain appropriate
QoS. 4G networks have strong QoS credentials as they differentiate traffic delivery into flows
with predefined QoS. However, while PON networks have no defined standards for the QoS,
they do support queues. Despite the importance of queue management and the scheduler
in achieving QoS at the PON networks, they are not yet standardized. Therefore, research
into integrating the 4G and PON technologies has become important for achieving a hybrid
network of wireless and wireline i.e., a WOBAN, particularly for QoS mapping and queue
management. Even though 4G employs its own QoS strategies, it does not guarantee the
overall QoS for the entire network. A design is needed for the optical component of the
network to deal with a 4G’s differentiated traffic. To this end, an efficient QoS mapper at
the interface between 4G and the optical part of the network, augmented by robust queue
management at the optical part, and a suitable scheduler to deal with different traffic
types, are essential. The QoS mapper ensures the required QoS for each type of traffic
when it travels between the 4G network and the PON. The queue management and the
scheduler then play vital roles in serving each type of traffic, according to the required QoS.
Important questions in this context include: i) the number of queues that are needed; ii)
the appropriate queue management design for the WOBAN. (Queue management involves
the number, length, and type of queues; and how to schedule the traffic from these queues
when the network deals with traffic that is highly sensitive to delays, i.e. VolP, and best
effort traffic such as email, which has no QoS requirement); iii) the means for maintaining
the QoS requirement and the fairness between the traffic types when dealing with these

varieties of traffic.

Another aspect of the viability of an access network is energy efficiency. Developing
a green access network means reducing the power consumption without affecting the QoS
and the normal functionality of the network. Sleep and doze modes are commonly used to
reduce the power consumption; in sleep mode, both the transmitter and the receiver are
switched into sleep mode during the idle periods while in doze mode only the transmitter
switches to sleep mode as the receiver remains active. The power consumption in sleep
mode is much less than that in active mode. The sleep durations should be defined so
that the components are ready to serve the traffic when it arrives. Deep and cyclic are the
two categories of sleep mode. In deep sleep, the components enter into sleep mode for a

long time whereas in cyclic, the components enter into sleep mode for a short duration and



wake up to check and serve, and then go back to sleep. The challenges with sleep mode in
QoS supportive networks are in deciding when to move into sleep mode, and for how long
without affecting the QoS, given that long sleep durations cause longer delays but save
more energy. The energy efficiency mechanism should take into account all components
that consume power in the WOBAN. However, the roles of the various components and
their idle times differ. Therefore, controlling the idle durations for each of the components,
based on their role and their traffic types, can be achieved to enable energy savings within
the resource management mechanism. Moreover, the resource management mechanism
should also consider the daily traffic fluctuations in order to adjust the allocated resources
to suit the existing traffic. The gains from responding to changes in the traffic are in
improving the channel utilization, reducing the power consumption, and maintaining the

QoS. The central components of this thesis revolve around this vital research area.

1.4 Significance

It has recently been revealed that the annual electricity consumption of all Information
and Communication Technology (ICT) systems is about 1,500 TWh, which represents 10%
of globally generated electricity [17]. Importantly if that electricity was generated from
oil, the greenhouse gas emissions would include about 1099 million tonnes of C'Oy [18].
The increased power consumption of ICT in recent times is due to the huge growth of con-
nected devices and global data traffic, which has been boosted by the emergence of wireless
broadband access networks for mobile devices, i.e., smart phones and tablets. Furthermore,
access networks tend to consume the most power in the ICT sector, and specifically 70%
of the Internet’s consumption [7]. This increase in power consumption has environmental
and economic impacts from increasing both global warming and the operational cost of
the networks [19]. These figures, together with increasing awareness of global warming,
demonstrate the need for better strategies for reducing power consumption. Thus the ever
increasing demand for electricity can be significantly mitigated by using green networks
that have efficient resource utilization and lower energy consumption. An overall strategy
is required to meet the increasing demand for high bandwidth, cost efficient delivery of
broadband services, especially for video services which consume a huge bandwidth, and to
support mobility in response to the increasing number of smart phones and tablets. This
thesis presents mechanisms for improving QoS and reducing power consumption in the

next generation broadband access networks.



1.5 Motivation

The future-proof network should be green, consume less power, and support QoS. The pres-
ence of more than one category of access network i.e., wireless and wireline, the diversity of
traffic, the dominance of video traffic, the cost, the required coverage, and the distribution
of the users, lead to a consideration of what the ideal access network is. This ideal net-
work should maximize customer experience, be affordable, and be more environmentally
friendly. As each category has its own advantages and disadvantages, finding the optimum
broadband access network requires integration of the wireless and the optical components.
Thus it is important to develop a green hybrid network that include an optical network,
to obtain high capacity and reliability, and 4G, to obtain the required QoS and mobility;

which provides the motivation for conducting this project.

1.6 Objectives

This thesis focuses on the design of future-proof broadband access networks. WOBAN is
introduced as a promising solution for broadband networks as it links the merits of low
costs and the ubiquity of wireless networks, together with the reliability and high capacity
of the optical networks. However, QoS and energy efficiency are the major challenges that
must be addressed. The QoS challenge is related to the gap between the two technologies
that make up WOBAN. The wireless technology is more precise in defining both the QoS
and the difference in the QoS parameters for different types of traffic; however the optical
technology has no specific definition for the QoS. To overcome this problem, the fusion
between the two part technologies must achieve seamless movement of traffic between the
two technologies. The second potential challenge is power consumption. Realising a green
WOBAN is about minimizing power consumption whilst maintaining acceptable levels
of QoS for the real time traffic and, in particular, to cost efficiently deliver broadband
services to the end users. This new hybrid network poses several challenges that motivate

the in-depth investigations within this thesis. The key questions in this thesis are:

e How to integrate the two technologies (i.e., PON and 4G) to improve overall network

performance and maintain QoS for the network?

e How to develop an energy efficient WOBAN by reducing the power consumption of

the PON’s terminal and control nodes without affecting the QoS?

e In addition to the above PON node issues, how to make the integrated network more
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Figure 1.3: Layout of the integration between wireless and optical networks.

efficient by linking power consumption to the available load?

1.6.1 Establishing the Integration and Maintain QoS

The diversity of the wireless technologies and optical technologies makes the selection of
the technologies that construct WOBAN a key factor for controlling the available capacity.
The first requirement for realizing the integration of the wireless and optical networks is in
achieving the fusion of the two technologies. Figure 1.3 shows the layout of the integration
between the wireless and optical networks. Preparing the background for the integration
requires solving the mapping challenge between the classes of traffic in the wireless network
and the queues of traffic of the optical network. Moreover, servicing the queues which
hold these different types of traffic is important; therefore, the queue management that
suits this type of network is specifically addressed in this thesis. It is understood that
this will require a scheduler that respects high priority traffic without disadvantaging low
priority traffic. This study proposes a design for queue management and a scheduler that
suits the WOBAN;, so that QoS for each type of real time traffic is maintained without
disadvantaging the non-real time traffic. From this, the relationships between the delays

for each class, the arrival rate and the allocated resources, are derived.

1.6.2 Green Resource Management

Different service classes require different QoS parameters. Resource management affects
the QoS, as the traffic is in two states; either wait or serve. Different usage of the access
network requires different resource management. This thesis proposes a new resource
management mechanism that lengthens the idle duration, to extend the sleep durations

and increase power savings. The class of traffic is added as another dimension to the
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Figure 1.5: Aggregated daily traffic profile of a sample network [3].
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resource management in order to maintain the appropriate service level agreement for each
class. This mechanism targets the energy efficiency of the key components in WOBAN

that consume the most power (shaded parts in Fig. 1.4).

1.6.3 Coordinated Resource Management

This part of thesis deals with the effect of the two resource management stages in WOBAN;
specifically at the control nodes of the optical and wireless parts of the network affecting
the QoS of all traffic flows. A comprehensive investigation shows that power can be saved
and QoS supported if the control nodes are responsive to the composition and volume of
traffic. The design of the proposed mechanism aims to make the resource management
mechanism responsive to the dynamics of the changing daily traffic. A typical pattern for
the relative aggregated traffic volume is shown in Fig. 1.5. In this proposal, either the
resource management of the wireless part of the network depends on the changes in the
optical part of the network, or it is independently changed. This mechanism provides more
comprehensive control over the delay and jitter which affect the service level agreement.
It is important to include all the components of the WOBAN (all the shaded parts in Fig.
1.6) when optimising energy efficiency. Strategies which improve energy efficiency through
coordinated resource management in the WOBAN should also be evaluated for any effects

on QoS.

Splitter/
Combiner
1:N

Figure 1.6: Layout of the WOBAN that shows the points of power consumption in both
the optical and wireless parts.
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1.7 Research Contributions

This research contributes to the development of an environmentally friendly hybrid wireless-

optical broadband access network and the QoS provisioning for that network. To facilitate

the fusion between the two technologies, it presents the mechanisms that adjust the peri-

odic resource management to the dynamics of daily traffic, so as to improve both energy

efficiency and QoS. Specifically, the best durations for the allocated resources and sleep

periods are identified to suit the different types of traffic. In this thesis, each chapter

contributes to an aspect of these overall goals:

14

e The first contribution of this thesis is to propose a solution to realize the seamless

integration between 4G and PON. It is necessary to cater for different traffic classes
that require different QoS. Therefore, a QoS mapper is proposed to assign the differ-
entiated traffic at the 4G network to the appropriate queues at the PON. Following
that, a design for queue management is proposed with a scheduler to maintain the
priority of the traffic. The mathematical model and performance results from the

associated simulation are outlined.

The energy efficiency of the integrated network depends on reducing the power con-
sumption when the load is low. This research deploys a cyclic sleep for the terminal
nodes of the optical part of the network to exploit the idle durations. Differenti-
ated fixed sleep duration is proposed in this thesis. The mathematical models and

performance results are compared with those from published alternative strategies.

An inflexible approach to the dynamics of daily traffic (shown in Fig. 1.5), should
be considered as being energy inefficient as it usually reflects peak loads. Thus, a
differentiated resource management, based on the instantaneous traffic conditions,
is proposed in this thesis. The network switches between predefined durations for
allocating resources, to adjust power consumption to the available load. In this study,
even the control node is included in this management strategy to boost the power
saving. The mathematical model, algorithm, and the performance with comparative

studies are outlined.

Since both the wireless and optical parts contribute to power consumption and affect
the QoS, this research presents the interoperability between the resource management
at the optical and wireless parts of the network to enhance both the QoS and energy

efficiency. This part of the thesis presents the concept of extending the idle durations



at the optical and wireless parts of the network to the limit that an efficient traffic flow
can tolerate, to maximize power savings. The mathematical model, the algorithms

and the simulation results are outlined.

1.8 Thesis Outline

The organization of this thesis is as follows:

e Chapter 1 introduces the broadband access networks, particularly wireless and opti-
cal, and the limitations in their deployment. In addition, the importance of develop-
ing a green hybrid network which integrates the optical and wireless parts (WOBAN)

is presented.

e Chapter 2 presents the technical background of network architecture, QoS, resource
management and energy efficiency for the optical, wireless, and WOBAN. A com-
prehensive review of QoS and energy efficiency is provided. In addition, a critical
overview of the advantages and disadvantages of the strategies implemented for en-

ergy efficiency and QoS is provided.

e Chapter 3 proposes a solution to bridge the gap between the wireless and optical
networks. As the traffic moves between the wireless and optical parts of WOBAN,
service class mapping at the interface becomes a major challenge. This work proposes
a solution for the QoS mapper at the interface between the optical and wireless
technologies. The queue behaviour and the classes of traffic are investigated and
a model is developed to calculate the maximum lengths for different queues. This
model ensures that QoS for various end applications is not compromised. This queue
model is augmented by a priority scheduler which ensures that traffic is serviced
based on its class priority and the QoS requirements of each class. However, this
scheduler should not disadvantage the low priority traffic. By differentiating the
traffic into classes, this thesis proposes a class-based differentiated sleep to reduce
power consumption for terminal nodes in the optical part of the WOBAN. This work
has been published in IEEE/OSA Journal of Lightwave Technology, vol. 33, no. 1,
pp. 7-18, 2015.

e Chapter 4 focuses on solving the problems of power consumption and under-utilization
of channels. The challenge is in maintaining the QoS of different types of traffic

alongside solving the problem of power saving, and furthermore, making the power
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consumption proportional with the traffic load. This thesis proposes local and global
sleep mechanism based on the type and size of the load. This is achieved by intro-
ducing sleep mode for the control node and terminal nodes of the optical part of
the WOBAN. In this work, a novel dynamic resources management mechanism is
proposed to exploit the fluctuation of daily traffic to maximize the energy efficiency
of the WOBAN. This is done by making the wake up and the sleep time of the
control and terminal nodes of the optical part of WOBAN, relate to the quantity
and priority of the traffic. This work is published in IEEE/OSA Journal of Optical

Communications and Networking, vol. 7, no. 7, pp. 669-680, 2015.

Chapter 5 proposes the coordination of the resource management for the optical and
wireless parts to enable longer sleep periods and maximize energy efficiency for all
of the WOBAN. The resource management at the wireless part follows the dynamics
in the optical part or relies on monitoring traffic in the local cell. Thus, this work is
based on adapting the dynamic resource management at both parts of WOBAN., to
traffic changes during the day in order to achieve the goals of supporting QoS and
increasing the energy efficiency. This work has been submitted for publication at

IEEE/OSA Journal of Lightwave Technology.

Finally, Chapter 6 summarises and concludes the contributions and significance of
this research in developing an environmentally friendly WOBAN. Furthermore, sev-

eral extensions and directions for future research are recommended.



Chapter 2

Background and Literature Review

This chapter largely addresses the problem of realizing the integration between optical
and wireless systems, supporting QoS and developing energy efficient mechanisms for this
hybrid network. QoS is highly dependent on the designs deployed for QoS mapping, queue
management, scheduling and resource management. All of these factors affect the be-
haviour of the WOBAN which integrates wireline and wireless network technologies. High
capacity wireline networks use optical technology, with the passive optical network (PON)
being the most popular as it cost effectively achieves high levels of bandwidth, coverage and
reliability. For these reasons, PON has replaced T1/E1 and digital subscriber line tech-
nologies. The Fourth Generation (4G) wireless network is currently the superior option for
wireless broadband access and it is designed to support high data rates for downstream
and upstream traffic. WOBAN [6], which integrates the 4G as the last mile network and
10G-EPON as the back haul network, has the advantages of both the optical and wireless
networks; however, it faces QoS and energy efficiency challenges.

This chapter provides an overview of the relevant background theory and literature.
Firstly, an overview of the access networks, i.e. 4G and PON, which form the WOBAN, is
presented, with particular emphasis on architecture, important components and different
standards and technologies. Section 2.4 briefly explores resource management strategies
for these networks. Section 2.5 presents the state of the art research and related works
for developing energy efficiency mechanisms and QoS for those access networks. Finally,

Section 2.6 summarises the major ideas presented in this chapter.

2.1 4G Technologies

The prevalence of broadband services and limitations of earlier technologies drove the intro-

duction of 4G systems, which are commonly referred to as fourth generation wireless tech-
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nology. Orthogonal Frequency Division Multiplexing Access (OFDMA) and Multiple-Input
and Multiple-Output (MIMO) technologies heightened the performance of 4G. OFDMA is
a robust solution for the intra-cell interference problem and supports multiple subscribers.
MIMO Technology [20] is a key strength of 4G, which significantly improves the spectral
efficiency. 4G supports both Time Division Duplex (TDD) and Frequency Division Duplex
(FDD) as the modes of operation. In TDD, the upstream and downstream channels share
the same frequency, but at different intervals, while in FDD the upstream and downstream
channels have different frequencies. 4G supports many types of traffic from VoIP to stream-
ing video and online game services, and provides high data rates up to the IMT-Advanced

constraints (1 Gbps and 100 Mbps for fixed and mobile use, respectively).

There are two commonly used 4G standards, Worldwide Interoperability for Microwave
Access (WiMAX2) [21] and Long Term Evolution-Advanced (LTE-A) [22]. Both LTE-A
and WiMAX2 are based on multiple access technologies in downstream and upstream
transmissions. LTE-A uses OFDMA and Single Carrier-Frequency Division Multiplexing
Access (SC-FDMA) in downstream and upstream transmission, respectively. WiMAX2
uses OFDMA in both upstream and downstream transmissions. The Medium Access Con-
trol (MAC) layer protocol deploys TDM and TDMA for the downstream (from base station
(BS) to subscriber stations (SSs)) transmission and upstream (from SSs to BS) transmis-
sion, respectively. Both TDM and TDMA technologies use time division to distribute the
available bandwidth among a number of subscribers. TDMA combines multiple signals
from different SSs into a single channel. Whereas TDM multiplexes signals come from the
BS into the channel. The upstream channel is shared among the SSs while the downstream

channel is a broadcast.

Table 2.1: QoS parameters for IEEE 802.16 [1].

Class of Service QoS Parameters ‘ Application
constant bit rate, max. packet dropping rate,
UGS - P DD Tate. VoIP
max. jitter and max. latency
uaranteed min. data rate,
ertPS g - . Silent suppressed VolIP
variable bit rate and max. latency
guaranteed min. data rate, MPEG video,
rtPS - - ;
variable bit rate and max. latency video Conference
nrtPS guaranteed data rate FTP
BE no requirements E-mail, HTTP
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2.1.1 WiMAX Technology

The IEEE 802.16 commonly known as WiMAX is a wireless standard for a Metropolitan
Area Network (MAN). In 2001, the standard IEEE 802.16a was launched for fixed broad-
band wireless access, while in 2004 TEEE 802.16d was published. In the following year, the
mobile WiMAX (TEEE 802.16e) emerged and was considered as a pre-4G technology. The
latest amendment for WIMAX is the IEEE 802.16m (WiMAX2) which was released in 2012
and is considered as a 4G technology. WiMAX2 is designed with a physical layer operated
at a frequency less than 6 GHz and is capable of supporting high data rates. The MAC
of WiMAX is connection oriented and supports two modes of operation: mesh mode [23],
which permits the communication between two subscriber stations, and Point-to-Multi-
Point mode (P2MP), which depends on using a base station (BS) to govern the subscriber
stations. WiMAX defines different service flows for the connections and each service flow
has specific QoS parameters, such as jitter, delay and throughput. Each cell is constructed
from several subscriber stations which are connected to a BS. BSs are responsible for re-
source management and bandwidth allocation. WiMAX can support different applications
by using multiple types of service flow. WiMAX supports QoS by differentiating the traffic
into five service flows and allocates bandwidth per service flow per connection. The ser-
vices supported by the IEEE 802.16m [24] are: Unsolicited Grant Service (UGS), real-time
Polling Service (rtPS), extended-real-time Polling Service (ertPS), non-real-time Polling
Service (nrtPS), and Best Effort (BE). The highest priority is UGS service, which sup-
ports a constant bit rate (CBR) and delay sensitive application, i.e., VoIP. In the second
priority is rtPS, which is a variable bit rate (VBR) and delay dependent application such as
streaming video. Then, ertPS which is characterized as VBR and supports delay sensitive
flows such as VoIP with silence suppression. The nrtPS is also VBR, but supports non-real
time applications, i.e., FTP. The BE is best effort such as E-mail and web browsing. BE
and nrtPS have the lowest priority because they do not require a set quality of service.
Table 2.1 illustrates the QoS parameters and applications, for the five service classes which

are supported by WiMAX.

2.1.2 Long Term Evolution-Advance (LTE-A) Technology

Long Term Evolution (LTE) is a 3rd Generation Partnership Project (3GPP) standard
which evolved from the Universal Mobile Telecommunication System (UMTS). This wire-
less technology started with Release-8 [25] [26] which provided a data rate and latency of
about 300 Mbps and 5 ms, respectively. The physical layer supports different modulation
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techniques such as QPSK, 16 QAM, 64 QAM and OFDM. LTE is equipped with a two-
layer retransmission algorithm to capture the errors in transmissions [27]. This is a high
speed wireless technology that enables the migration of an Internet application from fixed
to roaming such as VoIP, HDTV and video streaming. Unlike WiMAX which needs to
install its own network infrastructure, LTE uses the installed mobile telecommunication
system infrastructure to provide real and non-real time services. Therefore, the challenge
for LTE is increasing the throughput, reducing the latency and exploiting the existing

infrastructure.

Table 2.2: QoS parameters for LTE -A [2].

Service 0S Parameters Application
pPp

constant bit rate, max packet dropping rate
QC1 ) maxp ppig Tate, VoIP

max jitter and max delay

guaranteed min data rate, max sustained data . . . .
QCI2 Conversational Video (live streaming)
rate, max packet error rate and max delay

guaranteed min data rate, max sustained data . .
QCI3 Real Time Gaming
rate, max packet error rate and max delay

guaranteed min. data rate, . .
QCI4 . Non-conversational Video
max. sustained data rate,

QCI5 max packet error rate, max delay IP Multimedia Sub-system signalling
QCI6 max packet error rate, max delay Video (buffered streaming), FTP and Email
QCI7 max packet error rate, max delay Voice, Video (live streaming)

QCI8 max packet error rate, max delay Video (buffered streaming), FTP and E-mail

LTE-A architecture evolved from LTE and provides a variety of coverage including
macro cell and indoor. This architecture is typically constructed from three domains:
Evolved Packet Core (EPC) as the core network, Evolved-Universal Terrestrial Radio Ac-
cess Network (E-UTRAN), and User Equipment (UE). UTRAN consists of a base station,
called “evolved NodeB (eNB)” which is responsible for radio resource allocation and air
interface control. LTE-A is based on bearers as information carriers, and is a virtual
connection of predefined performance. To maintain the quality and priority of the data
packets, the bearer informs the networks on handling these packets. LTE-A defines eight
levels of QoS class identifier (QCT) [28]. These QCIs are classified as either guaranteed bit
rate (GBR), which requires a minimum bit rate such as QCI1-QCT4, or Non-GBR such
as QCI5-QCI8. For each QCI, the priority, packet delay budget and packet loss rate are
defined. When the user equipment establishes a connection with the eNB, it is assigned
a non-GBR bearer which supports “always on” connectivity. Because the user can run
different applications on the equipment, a dedicated bearer is assigned to each level of

QoS. Each user can establish a maximum of three signalling bearers and 8 data bearers [2].
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There are different types of services that are supported by LTE-A with the highest prior-
ity, based on delay perspective, being real-time gaming (QCI3) which requires very tight
end-to-end delay (50 ms) followed by QCI1 and QCI2 which require 100 ms and 150 ms
end-to-end delay, respectively and the lowest is TCP based services (QCI8) e.g. email
which is BE [28]. Table 2.2 illustrates the QoS parameters and application of the services
which are supported by LTE-A.

Table 2.3: PON Standards (Note XG-PON uses X, the Roman numeral for 10.)

Classification ‘ Standard ‘ Bandwidth
APON/BPON ITU-T G.983 622 Mbps/ 155 Mbps
GPON ITU-T G.984 2.5 Gbps/ 1.25 Gbps
EPON IEEE 802.3ah 1.25 Gbps/ 1.25 Gbps
10G-EPON TEEE 802.3av 10 Gbps/ 10 Gbps
XG-PON FSAN/ITUT-T Rec. G.987 | 10 Gbps/ 2.5 Gbps

2.2 Passive Optical Networks (PON)

PON is a class of optical technology for which there are different standards as shown
in Table 2.3. The main components of PON are the Optical Line Terminal (OLT) and
Optical Network Units (ONU)s as shown in Fig. 2.1. The interface between the PON and

ONU;

OLT [}
1270 nm €— ONU,

ONUy

Figure 2.1: PON Architecture

backbone network is the OLT, which for each PON network, is located at the central office
of the service provider and is connected to N ONUs through a 1:N splitter/combiner. The
split ratio is between 4 and 64, and the maximum distance between OLT and ONU is 20

km [29]; both factors are affected by the power budget. Fibre cables connect the OLT to
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the splitter, and the splitter to the ONUs which are located at or close to the subscriber
premises. In Time Division Multiplexing (TDM) PON, two optical channels are used;
downstream and upstream. The data flow from the OLT to the ONUs is called downstream
while the reverse flow is called upstream. The OLT’s main function is controlling the
transmission from and to the ONUs. The OLT broadcasts the data and only the intended
ONU obtains the data while the other ONUs discard it. In upstream, the OLT controls
the transmission from the ONUs via a Bandwidth Allocation (BA) mechanism. As PON
is Point-to-Multi-Point (P2MP), its MAC layer is based on Multi-Point Control Protocol
(MPCP) to arbitrate the ONUs access to the upstream channel. The MPCP supports
messages namely: REPORT and GATE of 64-byte to control the upstream transmission
[30]. The REPORT message carries the ONU’s bandwidth request and the GATE message
carries the allocated transmission window for the ONUs. The OLT uses Time Division
Multiplexing Access (TDMA) to assign each ONU a time slot when they are allowed to
transmit. The MPCP also performs auto-discovery, registration and ranging processes [31]
[32], in the last of which, the OLT measures the Round Trip Time (RTT) between itself and
each ONU and keeps the RTTs of all ONUs for later use in appropriately calculating the
allocated time slot for each ONU. It also applies synchronization which prevents potential
collisions due to concurrent transmission from multiple ONUs.

To cope with increasing capacity demands, the Institute of Electrical and Electronics
Engineers (IEEE) and the Full Service Access Network (FSAN) sought to expand of PON’s
capacity, so the concept of New Generation (NG) PON standards was proposed. The trends
for NG PON include increasing the bandwidth, extending the coverage, and enlarging the

number of users. NG PON encompasses the various standards presented below.

2.2.1 New Generation (NG) PON

XG-PON and 10G-EPON (shown in Table 2.3) represent the first approaches to NG PON
which use TDM, evolved from Giga (GPON) and EPON, respectively [33]. Thus, XG-PON
and 10G-EPON coexist with GPON and EPON on the same fibre plant, respectively. XG-
PON provides 2.5 Gbps and 10 Gbps for upstream and downstream respectively, and
10G-EPON can provide a symmetric bandwidth of 10 Gbps [34].

The second approach to the NG PON is Wavelength Division Multiplexing (WDM)
PON, which uses multiple wavelengths to increase the available bandwidth for upstream
and downstream communication. In WDM PON, each ONU is assigned a pair of dedicated

wavelengths, one for downstream and another for upstream to achieve Point-to-Point (P2P)
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connection. Effectively, several virtual PONs share the same physical infrastructure. In
WDM PON, the ONUs are multiplexed to different wavelengths by Arrayed Waveguide
Grating (AWG) which replaces the TDM passive splitter used in TDM PON architecture
[35] [36]. Coarse WDM (CWDM) PON is the cheaper WDM PON which is constrained by
eight channels because it uses a gap of 20 nm between channels [12]. However, Dense WDM
(DWDM) only utilizes a gap of 0.2 nm to 0.8 nm between channels and thus uses a huge
number of wavelengths. CWDM PON and DWDM PON are used in metro networks and
long-back haul connection [37]. WDM PON can provide a raw bandwidth of more than 10
Gbps, and is better than TDM PON in three aspects: there is no sharing of wavelength
channel capacity because it is dedicated to only one user; synchronization is not required
between wavelength channels; and it is more secure because no one can access another’s
channels. However, it is an expensive choice. Another solution for the NG PON is Optical
Code Division Multiple Access (OCDMA) PON, in which, the users share the wavelength
by using their allocated optical codes as signatures and coding and decoding are performed

in the optical part [12].

S
Nl

ONU,/Gateway; ONU,/Gateway, ONUs/Gateways ONU,/Gateway,

Figure 2.2: The connectivity layout in fibre-Wireless (FiWi) [4].
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Figure 2.3: The architecture of an integrated network of TDM/WDM PON and wireless

mesh proposed by [5].
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Other approaches to the NG PON involve hybrid PON such as WDM/TDMA PON |[38]

and the combination of OCDMA with CWDM [12]. In the former hybrid, the bandwidth
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over the wavelength is shared between various users through TDMA| while the latter can
support many more subscribers. Another approach is Long Range PON (LR-PON) which
extends the maximum distance to 100 km and uses many splitters which are each connected
to 256 ONUs, so this PON can connect a few thousand ONUs. An optical amplifier is used
because the losses for long range propagation and for splitting need to be substituted [39].

Using LR-PON will reduce the required number of OLTs and thus minimize capital and
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Figure 2.5: WOBAN architecture [7].

operational expenditure while increasing the number of connected users [40] [38].

2.3 Hybrid Access Networks

The motivation for using hybrid networks is to aggregate the advantages of different tech-
nologies in one network and the dominant ones are constructed from a Passive Optical
Network (PON) and a wireless network, because they provide reliability, high bandwidth
and ubiquity. For example, FiWi (Fig. 2.2) [4] integrates WDM/TDM PON with wireless
mesh network to reduce the effects of interference in the wireless part by transmitting data
between two wireless subscribers through the optical part instead of a multi-hop wireless
network. In [5], TDM/WDM PON was integrated with a mesh wireless network as shown
in Fig. 2.3; the reconfiguration scheme at the optical part was employed to balance the load

and enhance the resource utilization. Figures 2.4 [6] and 2.3 [7] show WOBAN architec-
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tures constructed from the PON and mesh wireless network. The concerns of researchers
developing this network are the routing mechanisms to minimize delay [41] and network
planning [42]. In these studies, traffic differentiation was not considered providing that
QoS is not guaranteed, since mesh wireless network is based on WiFi technology (IEEE
802.11 standard).

Another study addressed the challenges of integrating LTE with WDM PON [28].
The latter was chosen to avoid the typical (TDM) PON topology, as that topology did
not support a full distribution access network, and to isolate OLT from controlling the
upstream transmission, and detecting the failure in fibre cable because it is time costly.
Therefore, the authors in [28] proposed an architecture for integrating a network based
on deploying ring fibre to connect the distributed eNBs, each of which is integrated with
ONU, while the OLT is connected to the EPC’s Access Gateway (AGW). The author did
not provide details of the queues apart from using one-to-one mapping with eight QCI of
the eNB but how to calculate the queue size, the expected delay, and the behaviour of the

end-to-end delay, jitter and throughput is missing as they only proposed a methodology.

802.16BS .
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Figure 2.6: WOBAN architecture based on multi-point to point wireless part [8]

EPON can also be integrated with WiMAX which is facilitated by the similarity be-
tween the two technologies in terms of bandwidth allocation. Four ways for integrating the
aforementioned technologies were proposed by [43] namely: independent, hybrid, unified
connection-oriented and Microwave-over-fibre architectures. A WOBAN based on P2MP
wireless network such as WiMAX (Fig. 2.6), was proposed in [8] [44], but QoS was a major
concern. Jung et al. in [44], proposed centralized scheduling at the OLT to schedule the
traffic from the SSs at the wireless part, and hybrid integration between the BSs and the

ONUs is used. The OLT assigns a transmission window to the ONU based on the aggre-
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gated requests, from the SSs associated this ONU, which are forwarded from the BS to the
ONU and then the OLT. Yang et al. in [8], proposed a two stage bandwidth allocation,
based on using a virtual ONU-BS unit whose role was to control the bandwidth allocated
for the BS which in turn dictates the allocated bandwidth per connection to the SSs. The
proposed mechanism for bandwidth was based on reserving a percentage of bandwidth
to schedule the best effort traffic. Both studies [8] [44] used priority queues (the former
used three and the later used eight queues) to accommodate the different services of the
WiMAX, however, they did not investigate the queue issues such as the queue length and
the expected waiting time for packets in these queues which are crucial to maintain the
QoS. Their strategies were based on informing the OLT about the requested bandwidth of
the SSs to maintain the QoS. These strategies however, increase the overhead by not solv-
ing the QoS problem from the queues at the ONU because they are used to send messages
between the BSs and the ONUs then from the ONUs to the OLT to inform the OLT how
much bandwidth is required by each BSs. To this end, the focus of this thesis is around

an architecture based on using P2MP wireless topology connected to the optical network.

2.4 Resource Management

Network performance is greatly affected by resource management with bandwidth being
a vital resource that all of the connected users share. The available bandwidth and the
allocation of this bandwidth amongst users vary for different technologies. The following

sections discuss the resource management for the PON, 4G and WOBAN.
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2.4.1 Resource Management in PON

In PON, all ONUs share access to the upstream channel. To avoid collision when two
ONUs intend to transmit at the same time, the medium access control of PON uses a
scheduling mechanism to control the ONUs’ access to the upstream channel [33]. In PON,
there are two schedulers; one at the OLT (Inter-ONU) and the other at the ONU (Intra-
ONU). The Inter-ONU scheduler arbitrates the order of the ONUs to access the upstream
channel and the Intra-ONU scheduler arbitrates the traffic from different queues at each
ONU, while for the collective scheduling of the ONUs, the time for which each ONU can
transmit is important. In TDMA scheme, the OLT assigns a time slot called a grant
(transmission window) for each ONU based on the polling mechanism; ONUs request their
desired amount of bandwidth and the OLT decides the respective amounts and assigns it.
This assignment is periodic and the granted transmission window depends on the length
of the polling cycle and the bandwidth requested by individual ONUs as shown in Fig.
2.7. The OLT uses either Fixed Bandwidth Allocation (FBA) or Dynamic Bandwidth
Allocation (DBA) [31] [45]. In FBA, fixed grants are assigned for the connected ONUs, so
the polling cycle duration is also fixed and the ONUs do not need to request any bandwidth
as the OLT assigns the same size transmission window for all ONUs. In this case, the
granted transmission window might be underestimated or overestimated for the heavy
loaded and light loaded ONUs, respectively. The underestimated transmission window
wastes bandwidth while overestimated transmission window causes more delay and packet
dropping and both of them affect channel utilization and network performance. DBA can
enhance the network performance as the OLT uses statistical multiplexing which considers
the bandwidth requested by ONUs, and the available bandwidth. So, in DBA, the grant
size varies with the requested bandwidth, and so the polling cycle duration also varies. To
prevent the highly loaded ONUs from monopolizing the channel and affecting the service
of the other ONUs, the maximum grant size technique is important and will help predict
the polling cycle duration. In contrast, lightly loaded ONUs result in more frequent polling
which wastes more power. To this end, the bandwidth allocation mechanism plays a crucial

role in network performance.

2.4.2 Resource Management in 4G

In 4G networks, the geographical cell is constructed from the BS and the SSs. The BS
controls the resource management which uses TDD or FDD to allocate the resources among

the SSs. In TDD, the upstream and downstream channels share the same frequency while
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in FDD each channel has a different frequency. Figure 2.8 shows the frame structure for
the TEEE 802.16 standard. This frame is of fixed duration and composed of two sub-
frames; downstream and upstream. In P2MP operation, the transmission is between the
BS and SSs. For upstream transmission, BS allocates resources among SSs by slicing
the upstream sub-frame, so it assigns time slots for each SS. As noted in section 2.1,
the transmission method in the downstream communication, which is from BS to SSs, is
based on broadcasting. The BS informs all the SSs about their upstream and downstream
time slots by broadcasting DL-MAP and UL-MAP control messages. From these control
messages, the SSs learn about their transmission and receiving windows [24]. 4G networks
are superior in QoS provision by supporting class differentiation of traffic as they assign
each connection to a predefined QoS service. These QoS requirements affect the scheduling
and the radio resource allocation. As mentioned earlier, WiMAX supports five types of
services and each requires different QoS parameters while LTE supports eight types of

services which are also require different QoS.

2.4.3 Resource and Traffic Management in WOBAN

As WOBAN is a hierarchical network, there are two stages of resource management; at
the BS and the OLT. The efficiency of both stages contributes to the behaviour of the
whole network. In WOBAN (Fig. 2.6 ), the ONU architecture includes single or multiple
queues, which accommodate traffic until it is dispatched. Mapping between different classes
of traffic at the wireless part and these ONU queues is challenging. Researchers have
attempted to address this problem from different viewpoints to arbitrate the appropriate
number of queues in ONU. In [43], Gangxiang et al. suggested eight priority queues at
the ONU to accommodate traffic from the BS. However, they did not propose any model

for calculating the appropriate length of each queue and scheduling packets from these
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queues. In [46], Shi et al. developed a model for accommodating two services, real-
time and best effort traffic, to control sleep periods for the ONU. They used a single
pre-emptive queue for both services, but did not address the queue length estimation
problem. Another study [44] proposed a centralized scheduling mechanism at the OLT,
to reduce the end-to-end delay, based on the hybrid ONU-BS architecture. While this
included QoS mapping between eight priority queues and WiMAX traffic, they did not
specify any class mapping or queue modelling. For bandwidth allocation, Yang et al. in [§]
suggested a virtual ONU-BS unit to achieve QoS-aware dynamic bandwidth allocation and
their proposed model involves more than one priority queue at the ONU. Although their
study considered the signalling of bandwidth allocation, they did not specify the queues
apart from highlighting the bandwidth requested for each queue. In [45], Assi et al. used
multiple priority queues for developing an efficient bandwidth allocation scheme, which
redistributed excess bandwidth with an arbitrary large queue size (10 MB), but did not
address the queue length and its relation with the resource management, which affect the
QoS.

Since queue length affects the integrated network’s performance, through queuing delay
and the packet dropping rate, queue management for ONU-BS complements QoS mapping.
Despite the importance of the queue management at ONU-BS on the QoS, few studies have
addressed this issue. In [47], Kramer et al. investigated queue behaviour and size for the
EPON network, but did not consider the different classes of traffic and the QoS. Obele
et al. in [48] studied queue behaviour in a WiMAX-GEPON network, by deploying one-
to-one mapping of only four services between the two technologies. These authors had to
arbitrate the queue size to solve the embedded Markov chain and thus estimate the delay
and the packet dropping rate in the queues. This approach is impractical as it is only
applicable for small size queues of a few packets. Moreover, these authors did not consider
a bandwidth allocation mechanism which affects the allocated transmission window, when
calculating the waiting time at the queues. Also they used strict priority for scheduling the
packets and thus low priority packets may suffer excessively long delays and high dropping

rates.

2.5 Energy Efficiency

Since climate change and operating cost have become an increasingly important issue,
researchers have sought to develop energy efficient access networks. The following sections

discuss the recent research in this field.
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2.5.1 Energy Efficiency in PON

As power consumption scales up with the transmission rates, one energy conservative
approach involves using an Adaptive Link Rate (ALR), to adapt the transmission rate to
the traffic load in Ethernet networks [49]. As WDM PON supports multiple wavelengths
where each user is assigned a wavelength, the authors in [50] proposed using this technology
(WDM PON) in which different transmission rates are carried by different wavelengths.
The data rates are based on the applications run by the end users. In TDM PON, the
authors in [51] exploit the compatibility between EPON and 10G-EPON to propose the
switching between 1 Gbps and 10 Gbps, by incorporating transceivers for 1 Gbps and 10
Gbps into the architecture for the ONU and OLT. However, this proposal involves the
complexity of just when to make the decision to switch between these two transmission
rates. Those authors in [51] proposed a sleep mechanism for the ONUs that enables sleep
and periodic wake up based on a three way handshake protocol between the ONU and OLT.
Their work was supposed to use DBA as a mechanism for resource management; however,
there is a lack of results that show the effects of the resource allocation parameters on
the QoS and power savings. Moreover, the authors proposed different sleep schedules for
different classes of traffic, but there was no sleep when high priority traffic occurred. Since
the OLT is a significant power consumer, in [52] authors proposed connecting multiple
OLTs through optical switches to turn off the OLT under a light load scenario so that
another OLT could serve the network. Apart from the delay issue, which is caused by the
multiple stages of switching, this approach is costly because it requires additional optical
switches and cables. To develop an energy efficient ONU, Wong et al. proposed two ONU
architectures to support sleep mode and minimise the overhead of clock recovery (from 2-5
ms to 125 us) when ONU switches from sleep mode to active mode [53]. Since maintaining
the ONU in an idle state wastes energy, another approach used by researchers to improve
energy efficiency is adopting sleep mode for the ONU when there is no traffic. Mandin [54]
proposed to initiate the sleep time after a three way handshake protocol between the ONU
and OLT to ensure that there is no upstream or downstream traffic, and sleep could be
interrupted by the arrival of traffic. This necessitates a cyclic wake up for ONUs to check
for upstream traffic before returning to sleep if there is none. Conversely, if the ONU
detects any packets in its queues, it informs the OLT by requesting bandwidth, which

eventually cuts off the sleep phase and the ONU resumes normal work.

Ying et al. [55] proposed two mechanisms to put the ONU into sleep mode; one is based

on the scheduling of upstream traffic and the other on downstream traffic. In this work [55],
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the OLT schedules the sleep and wake up time for the ONUs using a message similar to
the GATE. In [56], the authors proposed a strategy for switching from DBA to FBA when
the load becomes low, so that the ONU can enter into sleep mode and periodically wake up
to transmit and receive traffic. These authors also mentioned that the transmission rate
could change between 1 Gbps, 100 Mbps and 10 Mbps based on the load, but they did not
describe how the transition between these different rates can be achieved. In their work, the
traffic is not differentiated so if the traffic is low the system will turn to FBA and a low rate
is chosen even if the traffic contains voice or video. Hence, performance could be degraded
which indicates that QoS was not considered. Furthermore, queue issues such as size and
expected waiting time were not addressed despite their impact on the network behaviour
especially when long polling cycles that are used. In [57], Dhaini et al. considered a green
bandwidth allocation scheme which involves enabling fast and deep sleep of the ONU and
dynamic bandwidth allocation based on an upstream-centric strategy. The authors sought
to put the ONU into sleep after it receives the GATE message and is informed about
the transmission window details; the ONU wakes up when the transmission window is
initiated. In their work, the authors also did not differentiate the traffic. In [58] [59], the
researchers based the decisions for transition to sleep time and the duration of sleep time,
on traffic conditions. In [58], Zhang et al. proposed four levels of power saving and the
transition between these power states depending on traffic conditions. In their work, the
sleep duration is either within one or more DBA cycles and the maximum sleep period is
50 ms. Despite the use of DBA for resource management, which indicates the authors’
concern for QoS, they proposed switching to sleep state based on the absence of traffic
and repetitive wake up after each sleep duration to check for arriving traffic. That study
initially made the sleep duration equal to the duration of no traffic and then there was a
controlled increase in duration up to 50 ms. However, the authors [58] only proposed the
framework, but did not address the queue issues and did not differentiate the traffic. In
contrast, a sleep cycle was proposed in [59], based on classes of traffic for the downstream
transmission, in which the arrival of high priority traffic wakes up the ONU. These authors
proposed adaptive sleep duration based on measuring the downstream traffic situation
periodically. In their study, the negotiable sleep period is implemented through a three
way handshake mechanism between the OLT and ONU and the arrival of the upstream
traffic which makes the ONU ignore the OLT request for sleep. At the end of each sleep
duration, the ONU wakes up, then transmits if there is any traffic or otherwise goes back

to sleep. In that research, the arrival of high priority traffic stops the sleep mode and
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hence, limits power savings in a practical scenario. Overall, there are challenges associated
with the sleep mode such as when to initiate the sleep time cycle, the appropriate sleep
time duration, the effect of the recovery time for transition from sleep to wake up, and
how should registration of the ONU be maintained. Although researchers have attempted
to address QoS in PON, none of these studies concurrently addresses both service class
mapping and queue modelling at the ONU in WOBAN. There is also no available model
that deals with the power saving issue and QoS at the ONU. This thesis has addressed the
above mentioned problems and proposes efficient solutions.

In general, the incorporation of sleep mode within resource management is important
to maintain the performance of the network and the QoS. The servicing of the traffic from
each ONU is informed by the GATE message, therefore, if the ONU is in sleep mode when
the OLT advertises the GATE, the ONU will miss its allocated time slot and its traffic
must wait. To ensure the servicing of traffic at the ONU, the receiver should wake up to

receive all messages and data, then obtain the details of the allocated transmission window.

2.5.2 Energy Efficiency in 4G

As the BSs are the biggest power consumers in the wireless network [60], one of the green
approaches in wireless networks is turning off, or putting the lightly loaded BS in sleep and
letting the neighbouring BSs take over the traffic [61] [62] [63]. All these techniques are
based on a long sleep strategy (turning off); however, the working BSs and SSs still waste
power due to the idle durations for listening to the radio channel when there is no traffic
to receive. These idle durations only can be controlled within the resource management
and specifically, a cyclic sleep strategy is needed to solve the problem of idle listening and

to support QoS.

2.5.3 Energy Efficiency in WOBAN

There have been some studies conducted to improve the energy efficiency of WOBAN.
Chowdhury et al. [7] proposed using routing protocols. These authors sought to green the
WOBAN architecture, based on a wireless mesh network, by re-routing the traffic in the
wireless part to achieve the two requirements. The first was to increase reliability against
fibre failure, ONU failure or failure in the wireless part (routers and gateways). The second
was to turn off the ONUs with light loads to save more energy. This approach relies on the
assumption that routers require less power than ONUs. However, the wireless part was not

considered in that energy efficiency and still wasting power when underutilised. Therefore,
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the authors in [64]proposed to turn on only the radio interface part of the wireless node to
perform the rerouting and turn off the other components of the nodes which are unused
parts when the attached ONU is in sleep mode. Another study [65] proposed to use power
saving mechanisms for the all integrated network. Power saving mode and sleep mode
were proposed for the wireless and optical parts of the integrated network, respectively.
These authors coordinated the sleep time of the ONU according to the access point that
the ONU was attached to. However, their study considered the downstream traffic only,
so the timing signals between the ONU and OLT were ignored.

All the above studies are based on wireless mesh network, not 4G technology and
point-to-point connections between the base station and the wireless subscribers. As such
the QoS is not considered in these proposals because the used wireless technology has not
differentiated and defined the QoS for different services like 4G. Moreover, the amount
and traffic profile was not considered in their energy efficiency which represents a major
point for energy deficiency. This research addresses these signeficant gaps in the field of

supporting QoS.
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Figure 2.9: A WOBAN architecture.

2.5.4 Research Questions

This thesis targets a WOBAN that integrates 10G-EPON and 4G as shown in Fig. 2.9,
since it is collectively superior to 10G-EPON and 4G as previously mentioned. Indeed, the
aim of this integration is the efficient delivery of broadband services, including voice, video
and best effort, to the end user. In this network, the integrated ONU-BS unit is crucial

for realising the integration and provisioning of QoS. All traffic between the wireless users
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and the OLT passes through this hybrid unit (ONU-BS). In upstream, each BS gathers
the traffic from the wireless users and forwards it to the associated ONU. The ONU then
sends it to the OLT located at the central office to connect the WOBAN to the backbone
network. Therefore, the design of the ONU-BS ultimately affects the performance of the
WOBAN and represents a major challenge especially with the diversity of traffic and the
QoS requirement.

Clearly solutions are needed to maximize resource utilization and energy efficiency. In
the TDM PON, the durations of serving or waiting states for ONUs change with the load.
As the waiting durations are inevitable and power consumption becomes a big concern,
lengthening the waiting time to enable relatively longer sleep should be considered. The
questions are: what is the acceptable limit for the waiting periods and how this waiting time
can be controlled? Tolerated delays for the available traffic can be considered to define
the boundaries for the waiting periods and this could be achieved through the resource
management mechanism. To this end, this dissertation mainly focuses on the realization
of WOBAN and developing mechanisms, to better perform resource management, that

consider both the QoS and energy saving through cyclic sleep.

The objectives of this thesis are as follows:

e Maintaining QoS in the integrated network when there are different QoS interpreta-
tions in the constituent technologies. In WOBAN, BS differentiates the services into
several specific classes, for example, five in WiMAX whereas LTE-A defines eight
QoS Class Identifiers (QCI). In contrast, the ONU architecture includes single or
multiple queues, which accommodate the pending traffic until it is released. The
challenge with integrating BS and ONU is mapping the traffic at the BS and the
queues at the ONU. Furthermore, since queue length affects the integrated network’s
performance, through queuing delay and the packet dropping rate, queue manage-
ment for ONU-BS complements QoS mapping. Despite the influence on the QoS of
the integrated design of QoS mapper, queue management and resource management
at the ONU-BS, there has not previously been enough research to comprehensively

address this issue in PON or WOBAN.

e A common approach to reduce the power consumption is enabling a sleep mode.
There is no available model that deals with the power savings and QoS issues and
considers the existence of different loads at the ONU in PON and WOBAN. Sleep

mode has often been used by researchers as a power saving approach when traffic is
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absent. While the idea can be useful in scenarios where FTTH or FTTB technology is
used for serving a small number of subscriber stations, this is not useful in WOBAN
where the ONU is connected to a BS serving hundreds of subscriber stations because
there is very little chance that the ONU queue becomes completely empty when
serving a Macro BS. As such, a more intelligent power savings strategy is required

and this provides the motivation for this research.

In order to develop an efficient green WOBAN, QoS sustainability and reduced power
consumption are essential considerations. However, the problem of reducing power
consumption in the QoS support network is challenging, as the network must be
service-ready at all times. Sleep periods that are longer than required (in the context
of traffic load) result in more power savings at the cost of increased packet dropping
rates, jitter and delay, whereas shorter periods cause more power consumption. QoS
demands, often expressed in terms of delay, jitter, packet loss requirements, for vari-
ous traffic classes (e.g., voice, video, data) must also be considered when calculating
the appropriate sleep periods for OLTs and ONUs and the class specific load. For
example, if the load from real-time service classes is low, ONUs and, where possible,
OLTs can be put into sleep for longer durations since delay is not a major concern
for non-real-time and best effort traffic. A fixed power saving strategy is also not
sufficient because traffic load varies significantly during various periods in a day. As
such, the problem that needs to be addressed is - how to develop an efficient resource
management scheme that allows adaptive sleep periods for ONUs and OLTs so that

power consumption can be reduced without sacrificing the QoS of end applications.

The sleep mode approach has been widely adopted for wireless and PON networks.
No research has been identified which concurrently consider the energy efficiency of
both the wireless and optical parts of WOBAN. In the literature, sleep mode has been
proposed for only the ONUs yet there are other components that need to contribute
to energy efficiency namely, OLT, BSs and SSs. This research aims to extend the
idle durations not only for the optical components but also for the wireless part
components to maximize the sleep time. This can be achieved by controlling the
idle times to mitigate the effect of the overhead. As no study has so far developed a
mechanism for QoS and energy efficiency, this thesis will fill this gap by proposing a

dynamic resource management, at the optical and wireless parts that simultaneously



adapts to dynamic daily traffic.

2.6 Closing Remarks

This chapter has provided an outline of the research undertaken in the course of this
study in realizing a green WOBAN. Since this thesis presents mechanisms to enhance
the energy efficiency and QoS of a hybrid network of an integrated 10G-EPON and 4G
(WOBAN), it is important to demonstrate the factors that relate to this subject. Therefore,
an overview of the PON and 4G, with their standards and technologies is given. An
overview for the hybrid network of 10G-EPON and 4G was presented. As the WOBAN’s
QoS and power consumption are affected by the optical (10G-EPON) and wireless (4G)
parts, these variables have been strongly emphasised in this literature review. Specifically,
4G is much better than PON at organising different types of traffic according to their QoS
requirements.

This research explores the potential of using sleep mode and its impact on the perfor-
mance of PON, 4G and WOBAN. An investigation and evaluation of the performance of
energy efficiency schemes has been conducted. In particular, this research focuses on how

to provide appropriate QoS with minimum power consumption.
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Chapter 3

Quality of Service (QoS) Support Model for Green
WOBAN

It is commonly understood that there are several important factors that influence the
deployment of access networks such as the QoS, energy efficiency, mobility, capacity, cost,
coverage, and reliability. While the QoS ensures the success of transmission of diverse traffic
according to its requirements, the energy efficiency provides the flexibility for reducing
the power consumption according to the presence of traffic, which results in lower bills
for end users. Integration of PON and 4G technologies, in the form of wireless-optical
broadband access networks, offers advantages such as extension of networks throughout
rural areas, support for mobile broadband services and quick deployment of broadband
networks. These two technologies however, have different design architectures for handling
broadband services that require QoS. For example, 4G networks use traffic classification for
supporting different QoS demands, whereas the PON architecture has no such mechanism
to differentiate between various types of traffic. These two technologies also differ in their
power saving mechanisms. This chapter proposes a service class mapping for an integrated
10G-EPON-4G network, based on the M/G/1 queuing model. A class-based power saving
mechanism which significantly improves the sleep period for the integrated optical wireless

unit, without compromising support for QoS is also proposed.

3.1 Architecture of an Integrated 10G-PON and WiMAX
Network (WOBAN)
Figure 2.9 presents a WOBAN architecture which integrates the 10G-EPON with 4G

standard system. The OLT is the controller and resource manager of the WOBAN. The

ONU is connected directly to the base station of each wireless network to construct a
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Figure 3.1: Proposed optical network unit (ONU)-base station (BS) architecture.

hybrid unit called ONU-BS/eNB. Therefore, the seamless integration between 10G-EPON
and 4G requires a reliable QoS mapper to map the traffic between the two technologies.
The BS/eNB controls the transmission of multiple subscriber stations within the cell. Thus,
the wireless segment of a WOBAN, in normal operation such as high traffic loads and with
no fault in the fibre between ONU and the splitter, is a single hop connection (between
SS and BS/eNB). The number of wireless cells is similar to the number of the connected
ONUs to the OLT. In WOBAN, the transmission between subscribers within the same cell
is controlled by the BS or eNB of the cell, while the transmission between subscribers from
different cells is controlled by the OLT. For the upstream, the SS creates a packet and
sends it to the BS/eNB of the geographic cell which in turn forwards it to the associated
ONU which schedules this packet to the OLT.

The scheduler at the OLT is responsible for scheduling the ONUs by assigning the
transmission windows. The ONU is informed of the details of its assigned transmission
window by the GATE message (from OLT to ONUs) which tells the intended ONU when
and for how long it is allowed to transmit. Because the ONUs should wait until the
occurrence of their transmission window, each ONU is constructed with queues to retain
the packets until they are transmitted. Moreover, due to the diversity of services that
these packets belong to, and the difference in their QoS requirements, the ONUs could use
more than one queue to store different packets. Therefore, the scheduling of the packets
from different queues needs to be controlled. This control is achieved by the Intra-ONU
scheduler, which is located at the ONU. The responsibility of the Intra-ONU scheduler is to
nominate the packets and their sequence, which are based on a specific policy, in the next
transmission window. In the next sections, the details of the proposed queue management

and the Intra-ONU scheduler are described.
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3.2 Proposed QoS Management Scheme

ONU and BS adopt dissimilar strategies for handling services that require QoS. For merging
the gap in QoS handling, an architecture for the ONU-BS unit is proposed as shown in Fig.
3.1. The ONU-BS unit consists of a QoS mapper unit that maps traffic classes defined in
the 4G standard to the appropriate class in the ONU unit. The queue is also modelled,
corresponding to various classes in the ONU unit, and the model shows how to calculate

appropriate queue lengths.

3.2.1 QoS Mapping

The queuing system in the proposed ONU-BS architecture is modelled as an M/G/1 sys-
tem, where M stands for Markovian arrival and G stands for General distribution for the
service time and 1 means a single server [66]. The arrival of packets from subscribers is
considered as a Poisson random variable with a mean arrival time \. As different packet
lengths require different serving durations, the distribution of the serving time is considered
as general. The ONU scheduler is responsible for allocating serving time to different traffic
types depending on their priority. The proposed queue model analysis is based on classify-
ing the incoming traffic from the 4G base station into three priority ONU queues namely,
q1, ¢2, and ¢3 in descending order of priority:

-q1 is the queue for class 1 packets; these are urgent and delay sensitive, such as voice
over IP (VoIP). Urgent and delay sensitive applications belong to the QCI1 and QCI3
traffic types in the LTE-A, and UGS in the WiMAX 4G standards.

-q2 is the queue for class 2 packets; these are more delay tolerant, but have a maximum
delay limit, such as video streaming. LTE-A defines QCI2, QCI5 and QCI7 traffic types
and the WIMAX defines ertPS and rtPS for these types and traffic.

-q3 is the queue for class 3 packets; these are delay tolerant and do not have a delay
limit, such as e-mail, File Transfer Protocol (FTP), chat and web browsing. LTE-A defines
QCI4, QCI6 and QCI8 and the WiMAX defines nrtPS and BE traffic types for such services.

This system uses three priority queues at the ONU, because additional queues increase
both the complexity of the scheduling system and power consumption, while fewer queues
would harm service differentiation. Every single queue uses a drop-tail discipline and the
serving of packets within the same queue operates on a first-come-first-served basis. The
scheduling policy at the ONU is non-preemptive in the sense that when packets from a lower
priority queue are being served, an arrival of a packet to the higher priority queue does not

affect the serving of lower priority packets. For example, during the transmission window
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at an ONU which is determined by the OLT, the scheduler at the ONU serves the ¢; packets
first until it is emptied, then it moves to go and finally, it serves ¢3. The arrival of packets
in q1 before or just when a transmission window of ONU has started will qualify those
packets to be served since the scheduler did not move to serve go. This implementation
uses a non-preemptive policy which means that when the scheduler at the ONU has served
all ¢; packets and moved to go, arrival of new packets at g; does not interrupt the serving of
packets at ¢o. Information about these new packets at ¢; will be included in the REPORT
that will be sent to the OLT at the end of the current transmission window. The REPORT
will help the OLT to decide the length of the next transmission window for the ONU. This
management strategy makes sure that packets in g3 are not heavily dominated by ¢; and
q2 packets and thereby, creates a scenario where low priority traffic does not suffer from
resource starvation. Moreover, the arrival packets in ¢, when the scheduler has moved to
serve g2, will wait until the expiration of this transmission window and the occurence of the
next granted transmission window. However, the heavy traffic at g2 and g3 will not cause
excessive delay for the packets in ¢; because the granted transmission window is bounded

by a constraint which is the maximum transmission window.

3.2.2 Queue Management at the ONU unit

The QoS mapping unit is responsible for mapping the packets delivered by the BS unit to
the appropriate queue at the ONU unit and vice versa. The next challenge is to compute
the optimum length for each queue so that both queuing delay and packet dropping rates,
for packets in each queue, are minimised. From a design perspective, a queue with longer
than optimum length minimizes the packet dropping rates at the cost of increased delays.
This also increases power consumption because of the buffer’s demand for more powered
hardware [67]. A queue with shorter than optimum length reduces delays at the cost of an
increased packet dropping rate. The next section addresses this issue by first, analysing
the expected waiting time of packets in each queue, for a given scheduler, and then show

how to calculate the optimum queue length for each queue in the proposed M/G/1 model.

3.2.2.1 Expected Waiting Time in Relation to a Packet’s Priority at the ONU
Unit

An incoming packet at the ONU experiences a delay which depends on the traffic class
the packet belongs to, and its load. The general formula that expresses such delays can

be modelled after the Pollaczek-Khinchin formula for the expected waiting time of non-
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preemptive priority queues and can be given as:

%Zde A X E (Si)
(1= pg_q) (1= pg)

E(WFK) = (3.1)

where E(WH) denotes the expected waiting time of the arriving packets in their cor-
responding queue K; A, denotes the Poisson arrival rate of the packets in the k' queue; py
denotes the traffic intensity of class k, the stability condition of which is (Zle pr < 1);
related to this, pj = Zle pL; Sk denotes the class k service times with finite expected or
average service time (E(Sg)) and expected second moment service time (E(S7)).

This waiting time is based on the system’s status at the instant the packet departs
from an M/G/1 queue. The waiting time of a newly arrived packet depends on the class
of the packet and the number of packets for other classes waiting in their queues. The
expected waiting time of the packets at ¢ is:

_ 3Mx E (5

EW! = 0 p) (3.2)

Eq. (3.2) shows that the waiting time of the arrival packets that belong to the highest
priority traffic class (class 1) depends on the arrival rate of class 1 traffic and its expected
serving rate. The waiting time for a newly arrived class 1 packet thus depends on the

number of packets already in the ¢.

The expected waiting time for class 2 packets is expressed as:

L\ x E(S3) + X x E(83))

2\ _
B(W) = (1=p1) (1 =p1—p2)

(3.3)

The waiting time of newly arrived packets in ¢ga depends on the number of packets
waiting in ¢ plus the number of packets already entered into go. For the lowest priority
packets (class 3), any newly arrived packet sees all the packets waiting for being served in
the q1, g2, and ¢3. Therefore, the expected waiting time for class 3 packets is longer than
class 1 and 2, and can be given as:

2 (M x E(S?) 4+ X2 x E(S3) + A3 x E(S3))

3y _
EW?) = (1—p1—p2)(1— p1 — p2 — p3) (3.4)
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Figure 3.2: The time allocation (grant) of two ONU-BSs in TDM-PON.

To calculate the E(WX), E(52) must be calculated as:

E(S}) =23 4+ 0°

(3.5)

the system by using Eq. (3.6)

where xj denotes the service time for the packets in g and is equal to packet size
x8 /bandwidth; o2denotes the variance of service time and can be adjusted to better reflect

3

02 =g x (25 = Tavg)® + B % (Tyap — Tang)?
k=1

(3.6)

In Eq. (3.6), the assumption is that there is a dummy packet with service time equal

to Tyap, the time period between two successive grant periods (Fig. 3.2) and this Ty, for

any ONU in a system consisting of N ONUs, denotes service time of the other (N-1) ONUs
and can be calculated as follows:

Tgap = Tcycle - Tgrant

(3.7)



Togap = (N — 1) X Tyrant + N x T, (3.8)

where T} is the guard time between grant periods of two successive ONUs; Typqn¢ and
Teycle denote the allocated time for ONU to transmit and polling cycle time, respectively.
Tyrant is fixed in a fixed bandwidth allocation and variable for a dynamic bandwidth

allocation. The relationship between Tyrqn¢ and Tpyee is as follows:

N
TCyCle = Z [Tgrfrant + Tg] (3'9)

n=1

Here n denotes the nt* ONU.
In Eq. (3.6), Tayg denotes the average value of the service time for all types of packets

including the dummy packets which has service time equal to Tyqp. Tgug is calculated using

Eq. (3.10):

3

Towg = (Z Tk + Tgap)/4 (3.10)
k=1

In Eq. (3.6), ay and 8 are parameters that are linked to the Ty qn¢ and Tiyee, and to

the normalized assigned bandwidth (py) for queue k (g) in the following way:

= Pk X Tgrant/Tcycle (3.11)

ﬂ =1- Tgrant/Tcycle (3.12)

where py denotes the normalised assigned bandwidth for different queues (22:1 DL =
1).

From Eq. (3.9), it can be seen that the length of the polling cycle (Tyyee) is based
on the granted time for each ONU and the number of ONUs. In dynamic bandwidth
allocation, the duration of Tj,., varies with the requested bandwidth from the ONU.
Consequently, the duration of the polling cycle also becomes variable. However, in fixed

bandwidth allocation because the granted transmission time for each ONU is fixed, the
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polling cycle time is also fixed and can be calculated as follows:

Tcycle =N x (Tgrant + Tg) (3.13)

3.2.2.2 Expected Waiting Time Due to the Scheduler Grant

The bandwidth allocation and scheduling mechanisms of the ONUs are centrally controlled
by the OLT. Figure 3.2 shows that the ONU is only allowed to transmit for the duration
of Tyrant which reflects the allocated bandwidth for the ONU. Because the scheduler at
ONU-BS cannot schedule without grant, packets which arrive during the absence of the
grant (Tyqp) stay in their corresponding queues until the grant occurs. This waiting time
for grant in the TDM system is additional to the priority-related waiting time. Therefore,

the expected total transit time in any queue can be calculated as follows:

E(T®) = EOWE) + ¢ x Tyap (3.14)

where E(TX) denotes the total expected transit time for the packets in k" queue; c
denotes a constant <0.5, which is linked to the differences in waiting time in relation to
grant times that are experienced by packets due to differences in arrival time. The average

waiting for the grant (Tg,qn¢) for all the packets is approximately half of Tj,, (hence 0.5).

3.2.2.3 Queue Length Estimation Based on Expected Waiting Time

According to Little’s Law, the ONU-BS unit’s queue length is equivalent to the average

delay of the packets and can be written as:

LE =\ x B(TF) (3.15)

where LZ denotes the length of the k** queue; A, denotes the mean arrival rate of

packets.

By analysing the Eq. (3.14) and adjusting these equations to the proposed system, the

queue length can be calculated as:
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Zf:l Ai % (27 +0?)
2(1=pp_y) (L=py)

LE = x ( + ¢ x Tgap> (3.16)

where pi denotes the utilization intensity and pr = A\; X 2. Sections 3.1 and 3.2 show
how service class mapping can be achieved in an integrated PON-4G network. The next

section extends the service class mapping model for developing a power saving mechanism

for the ONU-BS unit.

3.3 Proposed Class-Based Power Saving (CBPS) Model

The CBPS model is based on a DBA scheme which increases the sleep duration of ONUs.
This model supports both doze and sleep modes at ONUs. The model uses batch-mode
transmission in which packets are buffered at the ONU and OLT for upstream and down-
stream traffic, respectively. Upstream and downstream traffic are dispatched when the

transmitter and the receiver at the ONU wake up, respectively. The following sections

all-
wakeup

(a) (b)

Figure 3.3: Different power states of ONU based on; a- existence and b- absence of a class
1 traffic.

Table 3.1: Maximum Sleep Duration for the ONU’s Transmitter for Different Traffic

Class Priority Tx Sleep Time (T5) Mode Type
! High Tcycle — Lgrant — Toh 1
2 Medium Nimaz X Tcycle - Tgrant —Ton
3 Low Npaz X Tcycle - Tg’r‘ant —Top 3

discusses the power states of the ONUs during the operation of the DBA, the sleep time

duration and their relationships with queue management as proposed in Section 3.2.
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Algorithm 3.1 The transition between all-wake-up and all-sleep states.

start: If OLT allocates grant for the ONU;
ONU; sends data to the OLT;
ONU; sends the REPORT to the OLT;
set sleep time — (Tcycle — dgrant — Ton);
ONU; switches to_ sleep  mode;
after sleep time duration
ONU; Rxis wake up;
If ONU; Tx transmitted BW requests for ¢;
ONU,; Txis wake up;
go to line start;
Else
go to line k; (Algorithm 3.2)
End if

End if

Algorithm 3.2 The transition from all-sleep to all-wake-up through doze state.

k: If ONU; Tx transmitted BW request for g2 or g3
s = 1;
set ONU; _Tx_sleep_time — Npaz X Teyete — Tyrant — Ton;
a: after sxTcyee
ONU; Rxis wake up and read the downstream traffic;
If ONU; _Tx_sleep_time > (sxTeyce)
ONU; Rx enter sleep;
s—=s+ 1
go to line a;
Else
ONU; Rxis wake up;
ONU; Txis wake up;
End if
End if

3.3.1 Transition between Different Power States

This proposed scheme uses two different modes for power saving, one for dealing with class
1 traffic (Figure 3.3(a)) which is highly time sensitive and requires immediate attention
from the transmitter while the other mode (Fig. 3.3(b)) is for class 2 and 3 traffic. Mode 1
is based on two power states because the transmitter and receiver have the same sleep and
awake times. As shown in Fig. 3.3(a), this proposed scheme switches between the all-wake-
up and all-sleep states for class 1 traffic. The all-wake-up state stays on for (Ty,anst + Ton)
and all-sleep state stays on for (Teycte — Tgrant — Ton) (Table 3.1). This is because the delay
for class 1 traffic should not exceed one polling cycle duration. The transition from the
all-sleep to all-wake-up occurs when the sleep time expires.

Mode 2 has three power states namely: all-wake-up, all-sleep and doze. These three

states arise from the difference between the sleep time duration of the transmitter and the
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Table 3.2: Maximum Sleep Duration for Different Sleep Categories for class 2 and class 3
Traffic

Categories of Sleep Max. Sleep Time (T77%*)
Aggressive 45 ms
Fine 35 ms
Conservative 25 ms

receiver. Because classes 2 and 3 tolerate longer delays, a longer sleep time can be used
for the transmitter than for the receiver. This is because the OLT transmits downstream
traffic and control messages (GATE) for the ONUs even when the transmitter is sleeping.
Therefore, in order to maintain the QoS of downstream traffic, the receiver needs to wake
up in every cycle. Firstly, the decision for sleep time duration in this proposed scheme
is based on the upstream traffic condition. Secondly, there is no mechanism to inform
the ONU about the priority of downstream classes; therefore, the delay of downstream
traffic is restricted within one polling cycle and treated as classl traffic and the reciever
has to wake up every polling cycle so the transition between the all-sleep to doze occurs.
After receiving the downstream data and GATE, the receiver either turns to sleep if the
sleep duration for the transmitter is not expired yet then the transition from doze to
all-sleep occurs, or the transition from the doze to all wakeup occurs if the sleep time
of the transmitter is expired. The transition between all-wake-up to all-sleep occurs in
similar way to mode 1 (Figure 3.3(a)). Because the transmitter is switched to sleep for
(Nmaz X Teyete — Tyrant — Ton) duration (3.1) and the receiver wakes up in every polling
cycle, the transition between the all-sleep to doze state occurs. T, depicts the overhead
time required for the ONU to synchronize and warm up after it wakes up; Ny,q, depicts
the maximum number of polling cycles over which an ONU can continuously sleep, and is

_ Tme* (Table 3.2)
calculated as (Nmae = =70

). The reverse transition occurs when the transmitter
still has sleep time and the receiver has finished receiving the downstream data, so it can
switch to sleep mode again. The transition between doze to all-wake-up occurs with the
expiration of sleep time for the transmitter and receiver and the approximation of the
starting time if bandwidth is allocated.

Algorithms 3.1 and 3.2 describe the transition between the power states of mode 1
and 2, respectively. Importantly, to allow the all-sleep state, the OLT needs to buffer the

downstream traffic of the sleep ONUs and schedule concurrently with the upstream traffic

scheduling for the intended ONU. The decision whether to use mode 1 or 2 at the ONU
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is not static, but depends on the status of its ¢1, g2 and ¢3 occupancies which is likely to
change with time. Thus the ONU makes this decision every time before it goes to sleep.
For ONU’s transmitter, the sleep time (T) and wake up time (T},) can be re-expressed

in Eq. (3.17) and (3.18), respectively.

T = Tcycle - Tgrant —Ton class1 (3.17)

Niaz X Teycte — Tgrant — Ton  class2, 3

T, = grant + Ton (318)

In the dynamic bandwidth allocation, the length of polling cycle (Tyee = ZTJLI(Tg +
T'I'L

grant)) varies depending on the load conditions. Because Tpyce depicts the polling cycle

when all the ONUs are polled and transmitting their upstream traffic (Fig. 3.2), it is
necessary to calculate the maximum duration of the polling cycle to estimate the maximum
sleep time.

The maximum length of the polling cycle (T7'4* = N x (T, + T;'%%,)) and (T2, =

cycle grant grant —

3 AT % P, X 8
ket qu k ); where Tmaz

grant depicts the maximum transmission window which should

be equal to the maximum requested bandwidth by any ONU; P} depicts the packet size
for class k" q;**depicts the maximum queue size for class kth: R depicts the transmission

rate.

3.3.2 Sleep Time Duration Policies

The sleep time duration differs in mode 1 & 2 ( see Table 3.1) only for the transmitter and
the shown sleep durations have been chosen to be less than the maximum gap between two
REPORTS, which is 50 ms, to maintain the ONU’s registration with the OLT [57] [58].
Moreover, the suggested transmitter sleep time duration depends on the class of traffic.
Sleep time was predefined for every traffic class, so that the OLT can calculate the wake up
time for each ONU based on firstly, the starting time of the granted transmission window

and secondly, on the last REPORT message (as described in Fig. 3.4), which infers the OLT
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Figure 3.4: Time diagram of CBPS operation for four ONUs.

about the sleep duration of the ONU. For instance, when the ONU requests bandwidth,
it puts information regarding its ¢, ¢2 and g3 occupancies in the REPORT message. So,
if it reports packets in g1, the OLT knows that the transmitter will wake up at the end
of one polling cycle (Teycte — Tgrant — Ton). Similarly, if ONU sends a REPORT with 0
for the ¢; and requests bandwidth for the g2, the OLT infers that the transmitter’s wake
up time is after T for class 2 and so on. For ¢3, even though this traffic tolerates a sleep
time duration longer than that for class 2, the ONU’s transmitter needs to be triggered

every 50 ms because of the restriction of the 802.3av (the standard for 10G-EPON) as

aforementioned.

For class 1, the sleep time is set at less than one polling cycle (Teycte — Tyrant — Ton)-
However, if the polling cycle duration is no longer than the double length of overhead
time then it will not activate the sleep state of the transceiver. This work considers the
maximum polling cycle as a fixed cycle even with dynamic allocation of the bandwidth,

which is a common approach for the dynamic bandwidth allocation, because it facilitates
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the synchronization. Moreover, in these experiments, only aggressive and conservative

sleep times are used with 3 ms and 2 ms overhead times, respectively (see Table 3.2).

Algorithm 3.3 Class-Based Dynamic Bandwidth Allocation (DBA).

OLT:
start new polling cycle: Loop VONU
If state = wake up
Allocated BW = T;%Zt
Else
Allocated BW =T},4pn¢ based on ONU’s
previous REPORT message.
End if
send data (downstream packets)
collect upstream packets
collect REPORT
End Loop
OLT considers the REPORTS received from all ONUs and
calculates the wake up time of Rx and Tx for all ONUs
based on each ONU’s power state (Mode 1 or 2);
OLT calculates (Typqnt) for each ONU (Eq. 9)
OLT generates GATE messages and schedules them for each
ONU based on its wake up time
go to start new polling cycle:

ONU:
In every polling cycle:
If Rx_sleep time expired
Rx wakes up
Rx receives GATE message
Rx receives downstream packets
End If
If Tx _sleep time expired
Tx wakes up
If (Tyrant) is approached
ONVU sends data (upstream packets)
ONU sends a REPORT message to OLT indicating
its g1, g2 and g3 occupancies
If q1 is not empty
ONU moves into mode 1 (Algorithm3.1)
Else
ONU moves into mode 2 (Algorithm 3.2)
End If
ONU decides the next wake up time for Rx and Tx
End If
End If.
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3.3.3 CBPS based ONU

The essence of the proposed CBPS scheme is that the ONUs transit to sleep mode after
transmitting data and the REPORT. Despite the higher power saving of the sleep state,
compared to doze mode, the ONU transits to sleep mode only for a short time, and stays
in doze state for longer. As previously stated, the transition to sleep and doze states
depends on the class priority of the available traffic in the ONUs. Figure 3.4 illustrates
the operation of the CBPS mechanism in cooperation with dynamic bandwidth allocation.
Only the sleep time of the ONU’s transmitter is shown because as stated previously the
sleep time of the receiver is bounded to (Ttycie — Tyrant — Ton). It can be seen that the
OLT periodically polls 4 ONUs and assigns bandwidth for them (only two polling cycles
are shown). For instance, in polling cycle (n-1), it can be seen that ONU; receives a
GATE message (G1) and infers the starting time and length of its allocated grant. ONU;
dispatches its waiting packets (D7) and requests bandwidth by reporting the occupancy
of its queues in REPORT (Rj) for the next polling cycle; this report includes bandwidth
request for g1, go and g3.Therefore, ONU; enters sleep for (Tpycre — Tgrant — Ton) as it
requests bandwidth for ¢; in response to class 1 traffic. The allocated grant in the polling
cycle (n) is calculated based on the REPORT Ry for the (n-1) polling cycle. Similarly
ONUjs and ONUy also request bandwidth for ¢;. ONUs’s transmitter is switched to sleep
mode for (Npaz X Teyete — Tyrant — Ton) because it requested bandwidth for ¢ and g3 in the
previous REPORT. In this scheme, the OLT grants bandwidth, to all ONUs. For ONUs
in sleep mode, a Tg’%’gt of 64 bytes is required to allow the transmission of REPORTS
and detection of downstream traffic. Algorithm 3.3 summarizes all the operations of the

proposed class-based dynamic bandwidth allocation.

The total energy consumption of the transmitters for N ONUs is:

N
E= Z [CL X E?lsl + (1 - CL) X E;Loclsl] (319)

n=1

where F.g1 and Ej 51 denote the energy consumption with (a=1) and without (a=0)

class 1 traffic, respectively.

By introducing Ty and T, for class 1 and other classes (nonclass1), Equation (3.20) can

be generated as:
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Table 3.3: System Parameters for Simulation in 10G-EPON

Parameter Value
Sync time 2, 3 ms
PON cycle time 1, 5, 10, 20, 30, 40 ms
Number of ONUs 16
Guard time 1 ps
Mean packet length/q1 ¢2 g3 100 750 60
Bandwidth quota/q g2 g3 0.30.50.2

N
E =Y (ax (T} (clsl) x P+ T} (cls1) x Pa)+

n=1

(1 —a) x (T (noclsl) x Ps + T, (noclsl) x P,)) (3.20)

Eq. (3.20) shows that each ONU’s transmitter has both awake and sleep energy con-

sumption.

By specifying the Ts (Eq. (3.17)) and T, (Eq. (3.18)) of each class, the following can

be shown:

N
E= Z(a X ((Teyete = Tgrant — Ton) * P

n=1

+ (T;r"ant + Tah) X Pa)

+ (1 — a) X ((Nmaz X Tcycle Y Toh) X PS

grant —

+ (Thrane + Ton) X Pa)) (3.21)

In the above equation, E denotes the total energy consumption by the transmitters of
the ONUs; P denotes transmitter power consumption in sleep state; P, denotes transmitter
power consumption in active state. From Fig. 3.4, T,, = t, — tp, where t, denotes wake

up time and t; denotes the transmission start time for the data and REPORT.
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Table 3.4: System Parameters for Simulation in WiMAX

Parameter Value
WiMAX frame 20 ms
Number of UGS connections 0-10
Number of rtPS connections 0-12
Number of BE connections 0-2
Modulation BPSK 1/2
Cp 0.25
Channel bandwidth 20 MHz

3.4 Performance Evaluation

This section presents the simulation results to validate the proposed queue management
and power saving schemes. The Network Simulator 2.29 [68] was chosen and a model
was created to simulate the 10G-EPON and WiMAX. WiMAX model was elaborated
as a preferable option because of its compatibility with the simulator. The simulation
parameters for both the 10G-EPON and WiMAX were configured as shown in Table 3.3
& 3.4, respectively. For traffic modelling, a traffic profile proposed by [45] [69] was used
where high priority traffic such as VolP was modelled by a constant bit rate source, video
applications were modelled using a variable bit rate source, and best effort traffic arrived
dynamically. Similar traffic profile had been used in other relevant studies [45] [69]. The
UGS (class 1) traffic was modelled after the VoIP applications, using a constant bit rate
with a packet size of 100 bytes, and intervals of 0.1 s and 0.2 s for modelling high and low
load VoIP applications. For simulating the video streaming (class 2) applications, variable
bit rate traffic was chosen with packet sizes uniformly distributed between 500 and 1500
bytes. To simulate the BE traffic, a TCP/ Newreno type [68] was used with a packet
size of 60 bytes. The arrival rate of applications was changed to investigate the impact of
various loads on network performances. It can be noted that because the 10G-EPON with
a maximum capacity of 10 Gbps was used, WiMAX system (802.16m), which provides the
access network connections in WOBAN, worked as the bottleneck.

The same scenario and traffic profile were maintained when comparing the proposed
model against existing models. The comparison was made between the proposed approach,
which classified the traffic into three priority queues as presented in Section 3.2, against a
model proposed in [46], which classified the traffic into two classes, expedited forwarding
(EF) and best effort (BE). The high priority class was expedited forwarding, which was
delay sensitive (e.g., VoIP and video streaming). The low priority class was best effort and

not delay sensitive (e.g., FTP, email). EF BE was used to refer to that work (existing
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work) and Diff _srv was used to refer to the work proposed in this thesis. The EF_BE
model assigned a queue of infinite length to each traffic class. If there was no packet in
the queue corresponding to EF traffic, the EF BE model put ONU to sleep mode and the
sleep period was calculated based on a state-transition graph model in response to the load
in the queue corresponding to EF traffic. The comparison was made against the EF _BE
model because this is the only PON model available in the literature that dealt with QoS

of broadband services and power savings at the same time.
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Figure 3.5: Comparison between the proposed Diff srv and EF _BE model for the average
queuing delay with class 1 packets.

3.4.1 Queue Management

This section compares the performance of the proposed queue management model against
the FE_BE model [46]. In the simulation, the set up of the base station, wireless connec-
tions, the ONU and the OLT of the optical part are based on Table 3.3 & 3.4 and the length
of each queue in the proposed Diff srv system was calculated using Eq. (3.16) which is
needed before the starting of the simulation. The average queuing delay is monitored in
both the Diff srv and EF BE systems at various loads as shown in Fig. 3.5 and 3.6.
These figures show that the Diff srv system provides a much lower average queuing delay
for class 1 flows under all tested loads. Figure 3.5 indicates that the proposed Diff srv

scheme consistently outperforms the EF BE model in terms of queuing delay under all
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load conditions. Reduced queuing delay for time critical applications such as class 1 traffic,
implies reduced end-to-end delay which is a key parameter for measuring QoS. The first
reason for this outcome is the proposed system’s ability to calculate the appropriate queue
length and the second reason is its ability to serve the ¢; immediately after the ONU-BS
receives the grant. The proposed model also outperforms the EF _BE model for class 2
traffic in terms of average queuing delay under all tested loads (Figure 3.6). Moreover,
increasing the load causes a difference in the nature of the queuing delay behavior for the
Class 1 and Class 2 (delay in Fig. 3.5 increases after a load of about 0.5 while that in

Fig. 3.6 continues to decrease). This is because increasing the load makes more packets
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Figure 3.6: Comparison between the proposed Diff srv and EF BE model for the average
queuing delay with class 2 packets.

wait in the queues and lengthens the requested bandwidth. On the one hand, this reduces
the queuing delay for Class 2 packets as increases the served packets in each transmission
window, which then reduces the average queuing delay. On the other hand, causes a longer
delay for the Class 1 packets as they are affected by longer transmission windows. How-
ever, the delay for Class 1 traffic is not high as the constraint of a maximum transmission
window is applied.

Figure3.7 shows the packet dropping rates for class 1 and class 2 traffic. It is evident
that packet dropping rate is zero for class 1 and class 2 in the proposed model for low

to moderate load. Under heavy load, the system experiences insignificant dropping rates
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(i.e., 0.0047% and 0.072%, respectively) for class 1 and class 2 traffic. The packet dropping
rate for the EF _BE is zero under all loads because it uses a huge buffer length. For the

Diff srv system, another influence on queuing delay is the polling cycle duration.

Figure 3.8 shows the average queuing delay for each traffic class at various polling cycle
durations. The delay is linked to the average queue length as shown in Fig. 3.9. When
the polling cycle is very short (e.g., 1 ms, 2 ms), the grant period is also very short for
each ONU and when the grant period is short, packets from class 1 and 2 traffic start to

heavily dominate class 3 packets because of their higher priorities.
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Figure 3.7: Packet dropping rate comparison between the proposed Diff srv and EF BE
model.
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Figure 3.8: Average queuing delay versus different polling cycle duration (Tiyeqe) for
Diff srv model.
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Figure 3.9: Queue length versus different polling cycle duration (7t ) for Diff _srv model.

Class 3 packets however, are still served at a very low rate because the proposed scheme

allows a fraction of each grant period for class 3 traffic so that it does not experience
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complete resource starvation. When the polling cycle increases (e.g., 5 ms and above),
each ONU starts to enjoy much larger grant periods in each polling cycle. When the
grant period increases, their relative serving period in each grant period also increases for
all traffic classes. This however, comes at the cost of increasing the waiting period (Tyqp)
before the next grant period is made available to each ONU; this is one reason why average
queue length increases with increasing polling cycles for all traffic classes. The growth rate
of queue length for different classes at various polling cycles also depends on packet arrival
rates to the ONU, which is dictated by the wireless BS. In the simulation scenario for the
given traffic profile, at 5 ms polling cycle, a combination of parameters such as the serving
period for class 3, the serving periods for class 1 and 2, packet arrival rates for class 1, 2 and
3 to the ONU and the waiting period for the next grant period for each ONU, contributes

to a scenario where class 3 packets were transported with a lower average delay.
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Figure 3.10: Comparison between the CBPS and ITT-PS model for percentage power
saving.

3.4.2 Power Saving

This section presents the simulation results of the proposed class-based power saving
(CBPS) model against existing models [58] [46] available in literature. The common con-
cept for power savings in existing models is to adopt a mechanism for avoiding or quitting

sleep mode when high priority traffic is present at the ONU queue. An Idle Transmitter
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Time-based Power Saving (ITT-PS) model is used to refer to this concept. The ITT-PS is
a framework for calculating the sleep time as a function of the idle transmission period [58].
Initially, the sleep time begins with a specific value. As long as there is no upstream traffic,
the sleep time is gradually increased until it reaches the maximum sleep time of 50 ms.

The arrival of traffic favours the wake up state for the transmitter.

The simulation parameters for both the 10G-EPON and WiMAX are configured as
shown in Table 3.3 & 3.4, respectively. The simulation measures the total sleep time of

the transmitter and the average queuing delay experienced by different types of traffic.

The percentage sleep time of the transmitter in ONU is used as a parameter to measure
the energy efficiency performance. The more time the transmitter is in sleep mode, the
less energy is consumed by the ONU. The results provide the total sleep time used in
the proposed CBPS model, compared to I'TT-PS, for three values of the PON cycle time,
namely, 5, 10 and 20 ms. This highlights the effectiveness of making the sleep time accord
with the traffic class. QoS provisioning for different classes of traffic in the CBPS model

is shown.

Figure 3.10 presents the comparison between the proposed CBPS and ITT-PS models
in terms of percentage sleep time for the ONU’s transmitter. In the CBPS model the
percentage sleep time is not affected much by an increase in the offered traffic load. The
CBPS model consistently maintains a saving up to 77% for PON polling cycle of 20 ms.
This is because of the low impact of guard (1 ps) and the overhead time (2-5 ms) [53] on
the long polling cycle (20 ms). Furthermore, the long idle time for each ONU causes a

longer sleep time.

Notably, a shorter polling cycle causes lower power savings; therefore, a polling cycle
with 10 ms can save up to 72% while the 5 ms polling cycle shows the lowest power savings
(about 66%). This is again due to the higher impact of the guard and overhead time on the
shorter polling cycle length. However, in the ITT-PS model the savings in power declined
sharply from 80 percent as high priority traffic increases in the ONU’s queues. This occurs
because the ITT-PS model makes the ONUs keep awake all the time just when there are
any packets flowing in the networks even though those packets can wait at their queues for
a relatively long time if they belong to low priority traffic. Moreover, the I'TT-PS ignores
the idle time of ONUs even with heavy traffic which contributes to about 93 percent for
a system consisted of 16 ONUs (the transmission time of each ONU is about 1/16 of the
total transmission time). This behavior of the ITT-PS makes the ONUs cannot save energy

even they only transmit during their granted transmission windows. Such differences can
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be attributed to the CBPS efficiency in exploiting the idle time to make the ONU turn its

transmitter into sleep mode and save more power.
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Figure 3.11: Power saving comparison between ITT-PS and CBPS over 24 hours.
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Figure 3.12: Average queuing delay for class 1 traffic.

Moreover, there is a difference between the power saving of the proposed scheme for
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different PON cycle time 20, 10 and 5 ms but almost no differences between the performance
curves of the other proposal. The results for CBPS reveal that increasing the polling cycle
duration increases the sleeping time and consequently the power saving. Figure 3.11 shows
the comparison between the proposed model and the ITT-PS model in terms of ONU’s
active time (%) for a full 24 hour period following the traffic profile used in [7]. The traffic
profile captures the varying traffic loads during a 24 hour period. As indicated in Fig. 3.11,
the proposed model consistently outperforms the ITT-PS model by a significant margin.
Figure 3.12 illustrates the influence of CBPS on the behaviour of WOBAN by showing
the average queuing delay of class 1 traffic for different polling cycle durations. Pairs
(Teyete, Ts) are used in the discussion to describe every curve in the figure. As shown,
the shortest average delay belongs to the (5 ms, 25 ms) pair when the load is below the
half of the full load. Then, with increasing load, (20 ms, 45 ms) exhibits the minimum
average delay. The reason is that, with increasing load, the maximum transmission window
becomes over-utilized for (5 ms, 25 ms) which causes more unscheduled packets waiting in
the queues for the next polling cycle. For the (20 ms, 45 ms) pair, the light-load penalty is
clear below 50 percent load and is caused by small grants (small number of packets) with
long idle time; then the situation improves with increasing load to produce an average
delay of less than 8 ms. The worst performance belongs to (10 ms, 45 ms); this highlights
the importance of the ratio between the sleep time and polling cycle and the warm-up
time. Usually, after the 55% load, all scenarios illustrate a steady reduction on the average
delay due to the fact that with increasing load, the number of packets flowing in the queues
also rises. This implies that the transmission of more packets at one grant consequently

minimizes the average delay.

3.5 Closing Remarks

In this chapter, an efficient QoS mapper for WOBAN, based on differentiating the traffic to
three priorities including the priority scheduler at the ONU that satisfies the high priority
traffic and does not disadvantage the low priority traffic, has been proposed toward the
goal of establishing the basis for the integrated network. It is noted that differentiating the
traffic into less than three classes harms the QoS while more than three consumes more
power and increases the complexity. This proposed solution for the service class mapping
problem, between 4G classes and the 10G-EPON queues, is based on an M/G/1 queuing
model. The queue behaviour of these classes is investigated and a model to calculate the

required length for different queues is developed which ensures that the QoS for various end
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applications is not compromised. This is the first work of its kind that addressed service
class mapping, scheduling and queue modelling problems at the ONU in WOBAN. In this
chapter, the extended concept of service class mapping, a class-based dynamic bandwidth
allocation scheme for power savings with a specific sleep period for each class in WOBAN
was presented. The proposed scheme significantly increases the sleep period and reduces
overheads between the OLT and ONU. Moreover, it maintains the QoS by considering the
tolerated delay of each type of traffic when calculating the sleep cycle. It was proposed
that the differentiated sleep duration power saving exploits the idle periods at the ONUs
and the diversity of services that impact quality requirements.

The performance of the proposed mechanism (CBPS) was examined and analysed over
WOBAN network for different traffic loads. The simulation results indicated that this
proposal significantly reduced power consumption by up to 80 percent, and maintained
the packet dropping and delay within the requirements of the service level agreement.

In the next chapter, the mechanism of energy efficiency will include the OLT as it is
the major power consumer and at the same time is the controller of the entire WOBAN

network.
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Chapter 4

Load-Adaptive Power Consumption Model for
Green WOBAN

As described in Chapter 2, PON has two types of components that consume power, i.e.,
ONUs and OLT. A common approach for developing a green WOBAN is to turn off network
elements such as ONUs when they are idle. This chapter adopts a similar strategy and
presents an efficient resource management scheme that allows putting OLTs and ONUs into
sleep for longer periods without sacrificing the QoS of end applications (e.g., voice, video,
and data applications). This ultimately reduces power consumption at no additional cost
in terms of QoS. The concept of service class differentiation is used to develop a model
for calculating the sleep periods for both OLTs and ONUs, in response to the load from
various traffic classes. An analytical model is proposed to calculate the sleep and active
durations for the OLT and ONUs and the power consumption when the proposed model
is applied. There is no other research in the literature that aims to increase sleep periods
for the OLT and ONUs, while maintaining the QoS for different traffic classes in WOBAN.

Finally, this chapter summarises the significant results of the presented work.

4.1 Proposed Energy-Efficient WOBAN

This work assumes a WOBAN (Fig. 2.9) where N ONUs are connected to an OLT which
uses a DBA scheme to allocate resources. In a DBA scheme, bandwidth is allocated dy-
namically based on ONU demands, and the polling cycle length (T¢yce) varies accordingly.
The polling cycle length can be expressed as: (Tyyce = Zi]\il(Tgimm +Ty)), where T,
depicts the granted bandwidth (time slot) to the i ONU ; T, depicts the guard time
between two allocated grants for successive ONUs. If the ONUs are heavily loaded, the

assigned bandwidth (Tg.qn¢) is high, thus increasing the polling cycle duration. The long
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polling cycle affects the QoS (e.g., increases delay and jitter) for delay-sensitive services,
whereas, if the ONUs are lightly loaded or have no load, the polling cycle can be made
very short. Under no load scenario, a minimum polling cycle is maintained just to allow
the transmission of the REPORT message (i.e., 64 bytes). For short polling cycles, the
overhead in the form of the guard time and the time required for an ONU to warm up and
synchronize following every wake-up, becomes significantly high. This short but frequent
polling does not allow the ONU/OLT to go into sleep for longer periods and thereby, con-
tributes to a detrimental performance in terms of power savings and channel utilization.
Another aspect of using DBA with sleep enabled ONUs is the variable length of polling
cycle which makes the synchronization of the wake up time of the sleeping ONU and the
controlling OLT very challenging, often reducing the sleep periods for ONUs/OLTs. One
solution to this problem is to use a negotiation process between the ONU and OLT to

make an agreement regarding the point of time when ONUs and OLTs go into sleep. Such

negotiation process however, introduces an extra level of overhead.
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Figure 4.1: Polling cycle duration for different traffic classes.
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Figure 4.2: Polling cycle for a system with 16 sleep-enabled ONUs.

To mitigate the above mentioned challenges, a DBA mechanism is used to allocate

bandwidth for ONUs based on service class differentiation of traffic, which is explained in
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the following sections.

4.1.1 Polling Cycle Calculation in the Proposed Mechanism

This work deploys the mapping policy that is proposed in Chapter 3 and proposes to use
the concept of service class differentiation at ONUs, and presents an adaptive polling cycle
solution based on two concepts; the first uses a DBA to allocate bandwidth for the ONUs,
but with a fixed polling cycle duration Teyere € {Teycter, Teycte2, Teyeies } where Toycer, Teycie2
and Tryqe3 represent the polling cycle corresponding to class 1, 2 and 3 traffic, respectively
(Fig. 4.1). The second concept is about OLT dynamically controlling the polling cycle
duration to adjust to the changes in network traffic (i.e. load from different classes). The
proposed mechanism works as follows: the OLT selects the duration of the polling cycle
(Teyele) based on the class of the available traffic in the ONUs and the traffic load. This
polling cycle is divided into Ty, and T}, (Fig. 4.2), which depict polling sub-cycle and
reserved sub-cycle, respectively. Grant allocations for ONUs occur within T,y and T,
is the duration for ONU and OLT to enter into sleep mode. The duration of the two sub

cycles are based on the 7., which depends on the traffic condition.

OLT ONU
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Grant L, GATE GATE Processor —» q1
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Figure 4.3: System model for the proposed dynamic polling cycle based-power saving
mechanism (DPCB-PSM).

The different steps in deciding the cycle duration, in the proposed model, are depicted
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in Fig. 4.3. All the steps that are performed in OLT are based on the REPORTS received
from ONUs. The decision for polling cycle duration arbitration is then made and all ONUs
are informed via the GATE messages. Initially, the OLT sets the duration of the polling
cycle as the Trycer, which is the shortest of all polling cycles (Figure 4.1). The OLT then
broadcasts the new polling cycle to all ONUs by the GATE messages. In every polling cycle,
ONUs request bandwidth from the OLT by sending REPORT messages which contain the
instantaneous queue length (i.e., g1, g2 and ¢3) information at each ONU. The OLT checks
the REPORTS to decide the next polling cycle length and allocates bandwidth accordingly.
For instance, if any ONU reports ¢; as not equal to zero (i.e., not empty), the OLT keeps
the next polling cycle as Ttycer- If none of the ONUs requests bandwidth for g1, but at
least one of them requests bandwidth for g2, then OLT selects T .y¢e2 as the duration for the
next polling cycle. Because the class 3 is less affected by the delay, the OLT selects T3,
which is the longest duration, as the duration of the polling cycle if no ONU requests
bandwidth for ¢; and go. If the system in a global sleep mode and packets arrived in ¢,
then only the first packets will experience extra delay, because when the system wakes up
and the ONU reports the existing of classl traffic the OLT will change to T,yce1. Despite
this, the affected packets are only the first arrival ones, but including admission control
with the proposed system will solve the problem as the OLT will be aware about the new

connection before starting and OLT can choose the proper polling cycle duration.

q:=0
q:=0

Figure 4.4: Transition between different polling cycle durations at the OLT based on the
ONUs’ queue occupancies.

Figure 4.4 depicts the transition between different polling cycles at OLT based on queue

conditions.

The calculation for Tyycie1, Teycle2 and Teyerez is shown as follows:
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Tcyclel T 0 0 a1 X Tmazr

cycle
Tcycle2 = 0 71 X9 0 as X nggl:g (41)
Teycles 0 0 T1 X T3 ag x Tg;&xe

where a1, as and ag are three design coefficients (a1 < as < ag); the first two coefficients
(a1 and as) are less than 1 to make the polling cycle lengths suitable for serving real time
traffic with acceptable delay. This is because of a relationship between the polling cycle
length and the expected waiting time of the packets in the queues as shown in Chapter 3.
nggfé depicts the maximum acceptable duration of the polling cycle; x1 and Z; are binary
variables that depict the presence and the absence of class 1 traffic, respectively; where x;
is the logical inverse of Z1; x5 and Ty are binary variables thar depict the presence and the

absence of class 2 traffic, respectively; where x9 is the logical inverse of Zs. These variables

(21, Z1, x2, T2) are updated after each polling process according to the following equation:

0 if class y does not exist
Vyell,2] zy = (4.2)

1 if class y exists

In the proposed mechanism, the polling cycle is refreshed before each polling process

and the polling cycle length T¢y . can be given as:

Tcycle = Tpoll + Trsp (43)

where

Teycle if class 1&2 traf fic are available
Tpoll = (44)

(1 —a) x Tpyee else

0 if class 1&2 are available
Trsry = (45)

a X Toyee else

Here, a is a design parameter that controls the ratio between T},,;; and 1.5, and thereby,
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influences energy savings.
The OLT calculates the allocated bandwidth for the ONUs according to the T},,; where
the allocated bandwidth for i** ONU (T

rant) 1S given by:

3 . 3
Ej:l Tq]' Zf Zj:1 qu < Tmaa:

i —
grant — qu

{1 a 5} T, otherwise

Ty

where Ty, depicts the maximum transmission window and (%, < Tinae); @ and §
depict coefficients < 1, which means that if the granted transmission window is short and
not long enough to send all the packets in all the three queues, the granted transmission
window should be at least long enough to send all the class 1 packets. Ty, , Ty, and Tg,

depict the requested bandwidth by the ONU for ¢1, g2 and ¢35, respectively, which can be

given as:
qu = )\1 X Zl/R (46)
Ty, = X2 X Zo/R (4.7)
Tq3 = Ao X Zg/R (48)
where
% E (S?)
— 4.
oo )

M X E(S}) + X2 x E(S3)

2T X A=) (—pi—pa) 410

A1 X E(S%) + Ao X E(S%) + A3 X E(S%)
3 = +
2x (1= p1—p2)(1 = p1 — p2 — p3)
Here R depicts the data transmission rate of the optical part; Z1, Zs and Z3 depict the

(4.11)

average (expected) waiting time of the packets in the their queues due to their priority and
the waiting time for the granted transmission window, which is calculated after an M/G/1
queuing model in Chapter 3; v depicts a coefficient relates to the effect of the polling cycle
length and it’s calculation is shown in Chapter 3.

In the proposed mechanism, the OLT centrally controls the scheduling and bandwidth

allocation mechanism, to change the duration of the polling cycle to adapt to the class
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and the volume of the traffic. However, constraints such as MPCP, which is the maximum
duration between two successive GATEs or/and two successive REPORTS is 50 ms as
constrained by the 802.3ah and 802.3av standards [58], and QoS consideration should be
considered by the OLT. Thus, the maximum polling cycle duration (7/4%) in the proposed

model is set as 50 ms.

4.1.2 Modes of the Proposed Dynamic Polling Cycle Based-Power Sav-
ing Mechanism (DPCB-PSM)

This section presents the two modes; global sleep and local sleep that are used in the
proposed power saving technique. In this proposal, there are two constraints, namely; the
delay limit of each class of traffic and the constraints of the MPCP. The following sections
describe the effects of the aforementioned constraints, the traffic condition and quantity

on the design of the proposed mechanism.

4.1.2.1 Global Sleep Mode (GSM)

In this mode, the maximum energy saving is achieved by making the ONUs and OLT go
into controlled sleep. This mode occurs only when no real time traffic is reported by any
ONU, i.e., all ONUs send REPORTS of zeros for ¢; and ¢s. To achieve this mode, the
OLT selects a long polling cycle duration (Teyete = Teycres = T:;glﬁ) Each ONU now is
polled within T},qy, so (Tpoll = Zl]il(Tﬁnm +T,) > Zf;l (% + Tg)) then the duration
of Ty will be (Teycres — Tpou)- The OLT and all ONUs enter the sleep state during 7.,
and they wake up during T,o;. In this mode, the duration of the two sub-cycles should
be selected to minimize energy wastage. 1)y is a short sub-cycle and is divided among
the ONUs to send REPORTSs with extra bandwidth to send the number of class 3 packets.
During this sub-cycle, all the ONUs and the OLT are waken, whereas during the second

sub-cycle (Tsy) both the ONUs and OLT are in sleep mode. For ONU and OLT, the sleep

duration (TONV and TOLT, respectively) and the wake up (active) duration (T9NVand
TOLT  respectively) can be expressed in Eq. (4.12) and (4.13).
N .
TONU _ TOIT _ .\ — Z(Trlm,n +Ty) (4.12)
i=1
T = TNV = Ty — Top (4.13)

where Tfnm depicts the minimum granted transmission window for i** ONU; T, depicts

the time required for an ONU and OLT to warm up and synchronize following each wake
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up as mentioned before.

Algorithm 4.1 Load-Adaptive Polling cycle.

OLT:
Initialization:
Tcycle = Tcyclel
OLT polls all ONUs
OLT collects REPORTs
Decision making: ¥V REPORT
if (¢1 is not empty)
Tcycle = Leyclels
go to LSM;
else if (¢ is empty)&&(ge is not empty)
Tcycle = Leycle2;
go to LSM;
else if (q1 is empty)&&(go is empty)
Tcycle = Tcycle?z?
go to GSM;
Advertise:
send GATE with new T¢ye. to all ONUs
GSM:
Calculate T}, and 754,
start new polling cycle (Tpo): loop V ONU
OLT assigns Tyrant = (Tpou — N x Ty)/N
OLT collects DATA+REPORTS
OLT sends downstream DATA
end loop
OLT enters sleep for T4,
ONU enters sleep for T},
after sleep time expiration
ONU and OLT wakes up
go to Decision making;
LSM:
start new polling cycle (Teyee): loop V ONU
OLT assigns Tyrant = (Teyete — N x Ty)/N
OLT collects DATA+REPORTS
OLT sends downstream DATA
ONU enters sleep for Ty = Teycie — Tgrant — Tsyne
end loop
after sleep time expiration
ONU wakes up
go to Decision making;

4.1.2.2 Local Sleep Mode (LSM)

In this mode, the ONUs can switch to the sleep state, but not the OLT. This mode occurs
when the class 1 and class 2 traffic are present. If class 1 packets exist, the constraint is the

delay for class 1 traffic and this delay is confined within one polling cycle, therefore, a short
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polling cycle duration is selected. The T¢yq is set as Tiyce1 which is the delay constraint
of class 1, given (Teyeie1 > Ef\il(Tfnm +Ty) and (T},;,, > T} ) where Tgl is the requested
bandwidth for class 1 packets (g1). In this mode, (TOXT = 0) and (TP = T,yee1), and

the durations of the sleep and wake up time for the ONUs are calculated as follows:

TSONUi = Tcyclel - T;rant - TO/’L (414)
TONY =T i + Ton (4.15)
where Tgimnt denotes the granted transmission window for i ONU.

However, if there is no class 1 packet, but class 2 packets are present, the constraint
is the delay of class 2 traffic (i.e., Teycre = Teycie2) Where Teyereo is the delay constraint of
class 2 given Toyeter > SO (T2 + T,) where Ty > Ty, In this case, (TOFT = 0) and

(TaOLT = T,yele2), and the durations of the sleep and wake up time for each ONU, are given

as:
TSONUi = TCZ/CZEQ - T;rant - TO/’L (416)
TONU: — T rant + Ton (4.17)

Because Tryeer is the shortest polling cycle for enabling sleep within the bandwidth
allocation, T¢yce1 should be long enough and at least double the T,y [58]. The stringent
Teycier may cause a longer delay and a high packet dropping rate for class 2 and class 3

traffic.

ql 0
Figure 4.5: Transition between global and local sleep states.

Figure 4.5 depicts the transition between the GSM and LSM based on the queue
conditions. All the operations of the proposed dynamic polling cycle based-power saving

mechanism are summarized in Algorithm 4.1.
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4.1.3 Sleep-Enabled Inter-ONU Scheduler

The durations of the polling cycle Ty and the two sub cycles T),,; and T, and the
transition between one polling cycle to another are the key design factors for the DPCB-
PSM. This scheme supports differentiated sleep time which resolves the problem of energy
saving under load variations, i.e., priority and size, at all ONUs. Hence, each ONU enters
into sleep mode for a specific duration based on its traffic in order to maintain the QoS.
Once this sleep time is specified, the OLT can estimate the wake up time and schedule the

grant accordingly.
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Figure 4.6: Grant scheduling for sleep-enabled ONU.

In the proposed scheme, the OLT schedules an ONU such that its request arrives before
its sleep time and at the end of its transmission window (see Fig. 4.6). Based on the grant

(G;), the OLT can calculate the wake up time according to an equation given as:

Tuwkp = Ts + G' + Trtt + Tppaps (4.18)

where Ty, denotes the wake up time for the sleeping ONU; T4 denotes the round
trip time; Ty denotes the sleep duration. From Fig. 4.6, to minimize the waste of energy,

the next grant for the same ONU should be:

Gi+1 = Gl + T_;rant + T+ Ty (4'19)

Wake up times for the ONUs change with their traffic condition and the polling cycle

74



durations. Thus the scheduling of the grant, which is based on the wake up time, changes
as well in terms of the order of grants and requests. Accordingly, in every polling cycle,
the number of scheduled ONUs and the order of grants usually change. The OLT should

synchronize the grant with the wake up instant of the ONU to maximize the sleeping time.
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Figure 4.7: Daily traffic profile for different traffic classes at the ONU.

4.1.4 Energy Calculation

Given the sleep and active time for the ONU and OLT in Section 4.1.2, the energy con-
sumption (E) can be calculated for the whole optical part of WOBAN (10G-PON) network

using the following equation:

E = N x (TONV x pONU 4 TONU  pONU) 1
(TOLT x pOLT 4 TOLT  pOLT) (4.20)
where PSONUand PSOLT are the power consumption during the sleep mode for ONU

and OLT, respectively. PaON Vand PaOLT are the power consumption during the sleep and
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active mode for ONU and OLT, respectively.
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Figure 4.8: Comparison of daily energy consumption between an existing mechanism and
the proposed DPCB-PSM.

4.2 Traffic Profile

Internet usage varies considerably during the day in terms of applications, the number
of end users and the equipment they use to access the Internet, e.g., smart-phone, tablet,
USB and modem. To gain an insight into the traffic classes, the traffic profile over 24 hours

periods as shown in Fig. 4.7 is used, which is based on findings reported in [3] [70] [71].

4.3 Performance Evaluation

For performance evaluation, the same scenario was used which was presented in Chapter 3.
The proposed Dynamic Polling Cycle Based-Power Saving Mechanism (DPCB-PSM) was
applied in a WOBAN, as shown in Fig. (2.9), comprising 16 ONU-BS units. The a is set at
0.98 and the a1, as and a3 were set at 0.2, 0.4 and 1, respectively. Within a specified period,
the accumulated sleep periods of the ONUs were measured to calculate the percentage

sleep time and thus energy saving. All ONUs were considered to have the same load. The
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Figure 4.9: End-to-End delay comparisons between an existing mechanism and the pro-
posed DPCB-PSM for class 1.

downstream traffic was scheduled synchronous with the scheduling of upstream traffic from
a particular ONU, which meant the OLT buffered the traffic for the ONUs and dispatched
it when the transmission time of the intended ONU occurred. The power consumption of
the ONU was considered as 6.35 W and 0.57 W [54] during the wake up and sleep mode,
respectively. Also the power consumption of the OLT was considered as 100 W [72] and 10
W during the wake up and sleep mode, respectively. The accumulated sleep time for the
ONUs and OLT were measured within a period. In this work, the proposed mechanism
was compared against the existing mechanism presented in [58], which utilized DBA for
resource management in a sleep-enabled ONU, but used no service class differentiation. The
existing model was simulated with a maximum transmission window restriction that made
the maximum polling cycle not exceeding the 10 ms limit which is a preferred duration to
suite the high priority traffic. For comparing the proposed mechanism and existing models,

the same traffic profile and network scenario were used.

Figure 4.8 shows the energy consumption of PON, observed in the proposed DPCB-
PSM and existing DBA mechanism. It is evident that the proposed mechanism signifi-
cantly improves energy consumption compared to the existing mechanism. On average,

the proposed mechanism saves about 44% of energy consumption per day for the simula-
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tion scenario. The energy consumption in the proposed model drops to 170 Wh in some
cases (e.g., during the 4-5 am period) when the global sleep mode is activated, which saves
more than 57% of the total energy consumption compared to the existing scheme. Obvi-
ously, the global sleep mode contributes more when only low priority traffic is available
in the network. Overall, the proposed mechanism consistently outperforms the existing
technique because the existing technique does not consider service class differentiation and
puts OLTs and/or ONUs into sleep only when no packets are present in the queue. The
proposed mechanism considers service class differentiation and puts OLTs and/or ONUs
into sleep even though packets are present in the queue as long as their QoS requirements

are met.
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Figure 4.10: End-to-End delay comparisons between an existing mechanism and the pro-
posed DPCB-PSM for class 2.

Figures 4.9-4.11 depict the comparison between the DPCB-PSM and existing mech-
anism in terms of end-to-end delay for different classes of traffic. Figure 4.9 shows the
end-to-end delay for class 1 traffic in the DPCB-PSM and the existing technique. The
average end-to-end delays for delay sensitive services (class 1) are comparable for all peri-
ods, which is a highly acceptable outcome since the DPCB-PSM saves energy at the same
time. The reason for this behavior is the durations of the polling cycles in DPCB-PSM are

relatively longer than that for existing work, which eventually increases the sleep duration
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and causes a slightly longer delay.
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Figure 4.11: End-to-End delay comparisons between an existing mechanism and the pro-
posed DPCB-PSM for class 3.

Figure 4.10 shows the end-to-end delay for class 2 traffic. Again for the same reason
which we mentioned for class 1 delay, the end-to-end delays are very close and the same
trend is evident for class 3 traffic (Fig. 4.11). It can be noted that class 1 and 2 traffic can
tolerate a maximum delay of 150 ms and 4 s [73], respectively. In this proposed mechanism,
class 1 and 2 traffic experience an average maximum delay of 30 ms and 40 ms, respectively,
which are well within the acceptable limits.

Figure 4.12 depicts the average queuing delay for different traffic types. It is obvious
that the Intra-ONU scheduler maintains the queuing delay of the class 1 traffic as the
minimum among the queuing delays of all the classes, followed by the queuing delay of the
class 2 traffic.

Figure 4.13 illustrates the average end-to-end delay when the polling cycle is arbitrated
dynamically by the OLT. Similar to Fig. 4.12, the average end-to-end delay decreases with
the increasing load for the class 1 and class 2 traffic. This is because the class 1 and class
2 traffic have less waiting time at queues than class 3 and their packets are released with
the occurrence of the transmission window. Moreover, because of using 10 ms and 20 ms

as polling cycles for class 1 and class 2, respectively, the length of the transmission window
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Figure 4.12: Average queuing delay for different traffic classes.

is large enough to transmit all the packets in the queues.

Figure 4.14 depicts the variation of the average throughput for different traffic classes.
From this figure, it is evident that the overall throughput for class 2 is higher compared
to other classes during most of the periods except for the 4-5 am period when the major

traffic source is class 3.

Figure 4.15 presents the average jitter in WOBAN during the day hours for real time
traffic classes. The figure shows that class 1 and class 2 traffic experiences low jitter even

during high load periods.

The impact of the synchronization time interval on the performance of the sleep-aware
DBA in WOBAN is also investigated. Figure 4.16 shows that the synchronizing time
interval has an impact on the sleep period. It is evident that longer synchronization
interval results in decreased accumulated sleep percentage while shorter synchronization
interval increases the sleep percentage. This is because longer synchronizing time interval

increases the active time, which ultimately decreases the sleep period.
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Figure 4.14: Average throughput for different traffic classes.
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4.4 Closing Remarks

Generally speaking, enabling and controlling the sleep of the ONUs and OLT within the
resource management, provide much better QoS support, energy efficiency and channel
utilization. Moreover, making resource management dynamics reactive to traffic dynamics
is important for supporting QoS. However, without considering sleep mode within resource
management, network performance for power consumption and channel utilization will be
compromised. Specifically, in light or no traffic load conditions, the dynamic resource
management would support QoS but not energy efficiency due to frequent polling associated
with assigning short grants for the ONUs. This scenario will lead to the ONUs being almost
continuously active. Therefore, to improve energy efficiency, it is important that dynamic
resource management operates within predefined durations for polling cycles to sustain
reasonable and controlled sleep periods without the need for handshaking between the
OLT and ONUs. That synchronisation would increase network overheads.

In this chapter, an efficient resource management scheme was presented that allowed
longer sleep periods for OLTs and ONUs without sacrificing the QoS of end applications.
This ultimately reduced power consumption with no considerable impact on the QoS. The
key innovation was incorporating the concept of service class differentiation, into the power
saving mechanism that enabled aggressive use of sleep modes. The proposed approach was
underpinned by a model for calculating the sleep periods for both OLTs and ONUs, in
response to the varying loads for different traffic classes. While the proposed solution
targeted WOBAN in this work, it could be used in any passive optical network irrespective
of the last mile access technology. No other research was identified in the literature, that
increased sleep mode for the OLT and ONUs, while maintaining the QoS for different
traffic classes in WOBAN.

In the next chapter, energy efficiency innovations will be extended to the wireless part

of the WOBAN including base stations and subscriber stations.

83



84



Chapter 5

Coordinated Resource Management for Green

WOBAN

In the previous chapter, the local and global sleep functions were introduced; showing
how they improve energy efficiency of the WOBAN by enabling the resource management
system to adapt to changes in the existing load. This adaptation is important in order
to avoid power wastage by frequent polling the ONUs during periods of light traffic loads.
Moreover, channel utilization is enhanced by tailoring the active periods and the sleep
periods to be suited to both the requested bandwidth from the ONUs, and the class of the
available traffic. This mechanism can also enable power savings to be achieved at the OLT),
when a high proportion of best effort traffic is available for transmission during the lightly
loaded night time periods. Importantly however, the BSs and SSs are not yet included in

this resource management system.

WOBAN is a hierarchical network, and the power efficiency of the wireless part of
the network, together with optical part of the network is a challenge, which has not yet
been addressed. This chapter deploys similar principles proposed in the previous chapter
(Chapter 4), and extends the work to include each of the components of the WOBAN in
an energy efficiency mechanism. To this end a coordinated resource management mecha-
nism is proposed; incorporating the resource management of both the wireless part of the
network, with the optical part of the network in order to boost the energy efficiency of the
WOBAN. The resource management for the wireless and optical parts of the network are
investigated, and this chapter provides an understanding of how these two parts can be
incorporated together into one coordinated resource management structure. An analytical
model of the coordinated resource management for a green WOBAN is presented, showing
the calculations for delay, sleep, and active durations of each component of the system, and

their power consumption. Finally, this chapter concludes by summarising the important
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points and significant results.

5.1 WOBAN Network

This work uses the WOBAN architecture which is shown in Fig. 2.9 with the QoS and
queue management proposed in Chapter 3. The OLT polls all the ONU-BSs for every new
polling cycle (Tyyee). The BS polls all the SSs for every new frame size (Tf). Commu-
nication with the OLT and BS is based on a poll grant mechanism. The SS and ONU
each request bandwidth from the BS and OLT respectively. The BS uses a fixed frame
size and a split ratio to assign the resources among the SSs. The split ratio determines
the lengths of upstream (T¥) and downstream (TF) sub-frames. In upstream communica-

tion, the BS slices the upstream sub-frame into a number of time slots and allocates them

Tp—TR-T.-Tg
n

based on SS requests (Tgs = ) where n depicts the number of SSs; T, depicts
the contention time duration; Ty depicts the grant duration (time slot length); and Tx
depicts the ranging time duration. The OLT is more flexible than the BS when allocat-
ing bandwidth. When utilizing dynamic bandwidth allocation (DBA), the OLT assigns
bandwidth based on the amount requested by the ONU, which in turn is an outcome of
the queue utilisations. Consequently the polling cycle length changes from cycle to cycle
because (Teyee = Zi\il Tprant + Ty). The OLT uses the REPORT and GATE messages
to implement resource management. The ONU informs the OLT of its bandwidth request
by sending a REPORT message, which includes the requests for q1, g2, and gs3; and the
OLT informs the ONU of the start time and the size of the allocated transmission window,
through the GATE message.

In the WOBAN, 10G-EPON and 4G utilize TDMA which means that the ONUs and
SSs are in a wait state until the time of their scheduling occurs. As a result, the traf-
fic at the ONUs and the SSs is aggregated at the respective queues, and here the effect
of the scheduling duration (which is determined from the length of the polling cycle and
the frame size) on the queue length and the QoS is known. As the traffic profile changes
during the day, from peak to light load for each of the various classes of data traffic, the
required resources change correspondingly. Thus, a fixed scheduling duration is inade-
quate for unevenly distributed traffic. Furthermore, an inappropriate ratio between the
scheduling duration at the BS and OLT creates a bottleneck which causes a degradation of
the WOBAN’s performance. Therefore, the BS and OLT should change their scheduling

durations based on the profile of the existing traffic. The mechanism for changing the

scheduling durations for the OLT and BS is described in Section 5.2.
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5.1.1 QoS and Energy Efficiency Issues in WOBAN

In the WOBAN, the wireless part of the network represents a bottleneck as the 10G-EPON
supports a much higher transmission rate. The resource management of each of the optical
and wireless parts of the network affects the QoS of the traffic crossing the interface between
these two technologies. In the optical part, during each polling cycle, the OLT polls all
the ONUs and assigns a transmission window for each ONU. Within a polling cycle, the
ONU only transmits during its grant and is on standby during the rest of the polling cycle;
however, the OLT can receive and send data at the same time, as it supports independent
downstream and upstream channels.

In the wireless part of the network, the communication between the BS and SSs is via
two channels having the same frequency, so the downstream and upstream communication
takes place over separate intervals. Consequently the frame is divided into two sub-frames,
as described in Section 5.1. The receiver of the SSs and the transmitter of the BS work
only during the downstream interval, while the SS’s transmitter and the BS’s receiver work
during the upstream interval where only one SS is allowed to transmit at a time. In this
section these idle times at the ONUs, BSs, and SSs within the WOBAN are addressed,
and a strategy is presented which aims at reducing them.

As the WOBAN has a hierarchical architecture consisting of heterogeneous networking
components, it requires discrete resource management mechanisms operating separately
across the optical and the wireless parts of the network. The challenge is to efficiently
coordinate the management of these resources across the WOBAN in an effective manner.
The design of an appropriate proportion of usage between the two grant cycles (ratio)
will strongly influence the WOBAN'’s performance. A long duration for the polling cycle
provides an opportunity for the system to go into sleep mode; but that duration should
be continually adjusted in response to the fluctuations and changes within the daily traf-
fic profile. This is an important consideration, as the composition of the network traffic
encountered in the so-called last-mile of network access tends to be very unevenly dis-
tributed; i.e., different patterns of usage experienced during the day compared with the
night time, with correspondingly different classes of data traffic being carried. Accordingly,
utilising fixed lengths for the frame size and polling cycle in both the wireless and optical
parts of the WOBAN respectively may waste a large amount of energy and use bandwidth
inefficiently.

To realise a fully energy efficient WOBAN, the ONUs, OLT, BSs, and SSs should all

enter sleep mode during any idle time. The problem arising when implementing such a
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Figure 5.1: Functional model of the proposed Load-adaptive Resource Management strat-
egy in WOBAN.

policy is the need for relatively long polling cycles and long frame sizes at the optical
and wireless parts of the network, respectively. These long polling cycles and long frame
sizes combine to extend the delays in end-to-end transmission significantly. Furthermore,
as the traffic volume and profile fluctuate during the day, the relative usage of different
applications also changes. Consequently a mechanism is required to make the distribution
of resources and the duration of the grant cycles (polling cycle at the OLT and frame
size at the BS) both dynamic and adaptable to the changing traffic conditions. Such
an adaptation to the changing traffic conditions means being able to lengthen the grant
cycles to the extent that the available class of traffic can accommodate; in order to achieve
reasonable sleep durations and to minimise the costs incurred when moving from sleep to
wake up state. This adaptation to the changing traffic conditions is able to also facilitate
achieving a reduction of power consumption of the OLT and BS. The dynamics of the
polling cycle duration of the optical part of the network should be coordinated with the
dynamics in the frame size of the wireless part of the network; as both parts contribute to
the end-to-end delay, jitter, and other QoS parameters. The interoperability between the
resource management strategies at the OLT and BS improves the QoS for different traffic
classes.

There is a compelling need for a coordinated approach to resource management. It
is proposed that available bandwidth be allocated; based on the dynamic selection of a
specific frame size and polling cycle duration at the BS and OLT respectively, in response

to the existing load. Such a coordinated approach should result in a dramatic reduction
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Algorithm 5.1 Dependent Load-Adaptive Scheduling.

Initialization:
Tcycle = Leyclels Tr =Tygs
OLT:

Decision making: V REPORT
if (¢1 is not empty)
Tcycle = Tcyclel
advertise the new Tiyee
go to line BS;
else if (qq is empty)&&(go is not empty)
Tcycle = Tcycle?
advertise the new Tryqe
go to line BS;
else if (qq is empty)&&(ge is empty)
Tcycle = Tcycle3
advertise the new Tryqe
go to line BS

BS:

if (Tcycle - cyclel)
Tr =Tucs

else if (Tcycle - cycle?)
TF = Trt

else if (Teyere = Teyeles)
Tp = Thrt

of power consumption across the WOBAN. In the following section, the details of the

proposed mechanism are described.

5.2 Proposed Load-Adaptive Resource Management (L-ARM)
in Green WOBAN

In this section a load adaptive-resource management (L-ARM) mechanism is proposed;
based on coordinating the bandwidth allocation for the wireless and optical parts of the
network, in response to load variations being encountered across the WOBAN.

The architecture of the proposed mechanism is presented in Fig. 5.1. The OLT utilises
the Tty arbitration unit in order to select the best polling cycle among a predefined set
of polling cycle lengths. Each ONU-BS has a QoS manager unit which monitors the traffic
conditions for the BS, and chooses the best available frame size from a set of predefined
frame size lengths. The values of Tty and T are continuously being updated in response
to the changing traffic conditions. The OLT is at the logical central element of the network,
and monitors the traffic from all the ONUs and selects the optimum value of T,,c.. Two

mechanisms are proposed to enable the QoS manager to change the frame size of the BS,
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namely: Independent Scheduling (IS) and Dependent Scheduling (DS).

Algorithm 5.2 Independent Load-Adaptive Scheduling.

OLT:
Initialization:
Tcycle = Leyclels

Decision making: V REPORT

if (g1 is not empty)
Tcycle = Tcyclel
advertise the new Tty e

else if (qq is empty)&&(gs is not empty)
Tcycle = TcycleQ
advertise the new Tty e

else if (q1 is empty)&&(gs is empty)
Tcycle = Tcycle3
advertise the new Tty e

BS:
Initialization:
Tr =1Tygs

Decision making;:
if (quas is not empty)

Tr =Tuas
else if (qugs is empty)&&([grips||gereps] is not empty)
Tr = Trt

else if (quas is empty)&&([grips||gerips] is empty) &&([¢nrips||¢pE] is not empty)

Tr = Thrt
where quas, grtPs, QertPs, qnrtps and gpp depict the queues for the UGS, rtPS, ertPS,
nrtPS and BE, respectively at the BS.

In IS, the QoS manager monitors and evaluates the queue status at the BS in order
to make decisions regarding the frame size, and does not need any information from the
OLT. In DS, the QoS manager depends on information received from the OLT in order to
make decisions regarding the frame size, and utilises the following mechanism. The OLT
polls all the ONU-BSs, to which each ONU-BS responds by sending a REPORT message
immediately after transmitting the bandwidth requests for each of the queues, ¢q1, g2, and
q3. Based on these REPORTS, if at least one ONU requests bandwidth for its ¢;, the OLT
chooses the shortest polling cycle (Ttyce1) and advertises the new polling cycle within the
GATE message. Then the QoS manager at each ONU-BS reads the information in the
GATE message, and changes the frame size of the BS as needed. The OLT switches to
another polling cycle whenever the traffic conditions change. For instance, if class 1 traffic
is not present in the network, the OLT checks for the existence of class 2 traffic; which
means that if any ONU sends a REPORT message requesting bandwidth for gz, the OLT

responds by changing to a longer polling cycle (T,yce2). If there is no class 1 or class 2

90



traffic, the OLT chooses the longest polling cycle (T,yqe3) and advertises the new polling
cycle via a GATE message. The QoS manager at each ONU-BS adjusts the frame size of its
BS after any change made to the polling cycle. The details of the DS and IS mechanisms
are provided in Algorithm 5.1 and Algorithm 5.2, respectively.

The main difference between the DS and IS mechanisms, is that in DS, all ONU-BSs
have the same value of Tr because changes in T are based on changes to the advertised
polling cycle length (Ttyce). By way of contrast, in IS every ONU-BS checks its local
queues and changes the value of its T accordingly. Thus, various ONU-BSs might have
different values of T when the traffic being encountered at these ONU-BSs does not have
the same traffic profile. As a result, DS works better in terms of the end-to-end QoS, as it

guarantees the interoperability of the resource management between the BS and the OLT.

As previously noted, the OLT responds to changes in the traffic conditions when updat-
ing the polling cycle; in turn affecting the allocated transmission time. The short polling
cycle duration reduces the allocated transmission windows and increases the guard time
effect. Conversely, a long polling cycle extends the allocated transmission and reduces the
guard time effect, but increases the delay. To enable energy saving in the 10G-EPON with-
out requiring negotiation between the ONU and OLT; a dynamic bandwidth allocation in
the 10G-EPON is used within a fixed polling cycle length. In 4G, frame size and slot size
are fixed. If the frame size is short, the number of the allocated slots will be reduced and
eventually the BS will become a bottleneck. However, lengthening the frame size causes an
increase in the number of time slots and the length of the delays. Since the traffic profile
in the access networks fluctuates during the day, adapting the polling cycle at the OLT
and the BS in response to the changing traffic profile, improves network performance and

energy conservation. The proposed traffic classification leads to the following cases:
e Case 1 (existing class 1 traffic):

The durations of 1., and T should be short as class 1 can only tolerates short delays.

Then Tcycle = Leyclel: Tr =Tygs
e Case 2 (existing class 2 traffic):

The durations of T, and T can be longer than case 1 as class 2 tolerates longer delays.

Then Tcycle = Leycle2: Tr =Ty

e Case 3 (existing class 3 traffic)
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The durations of T¢,.e and T can be relatively long as class 3 is not sensitive to delays.
Then Teyere = Teyeres; Tr = Thrt

The relationships between the different durations of polling cycle and frame size are
illustrated by Fig. 5.2. The following section explains the details of the proposed mecha-
nism for coordinating resource management at the BS and OLT; which aims to maximize

the power saving in Green WOBANSs, while maintaining the QoS for the various services.
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Tcycle3

Figure 5.2: Duration of (a) polling cycle and (b) frame size for different traffic classes.

5.2.1 Resource Allocation

In L-ARM, the OLT assigns each ONU the requested bandwidth (7}.) plus extra bandwidth
(¢p x T}), where v is a design coefficient, to enable the ONU to send all the packets in
its queues, including newly arrived packets (which were not included in the previous RE-
PORT). This flexibility is of particular value when utilising the longer polling cycles. More-
over, the OLT should update the maximum transmission windows (Tp,q, = M)
to enhance the utilization of the channel. Therefore, the transmission window granted for
the i"*ONU (T

rant) is:

, T+ xT if (Tr +¢xT) < Thaw
; (5.1)

grant =
Traz else

To further enhance channel utilization and fairness among each of the ONUs, it is
necessary to take into consideration the lightly loaded ONUs and their excess time; adding
the excess time to the loaded ONUs by increasing T},q, as follows:

Tcycle - 2;21 Tg — N x Tg

Tnar = (N — Z) (52)
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where 7 depicts the number of the lightly load ONUs.

After describing the mechanism of L-ARM and how a given polling cycle or frame size
changes, it now becomes important to show how these dynamics affect the behaviour of
the WOBAN. The next section describes and analyses the effect of the proposed L-ARM

on the end-to-end delay, jitter, and power consumption of the WOBAN.

5.2.2 Analytical Model for Quantifying the QoS and Energy of L-ARM

The scheduling and propagation delays in the optical and wireless parts of the network,
contribute significantly to the overall end-to-end delay (T,2.) of packets when they are
moving from the SS to the OLT. The scheduling delay in the optical part of the network

can be expressed as:

%Zf:l A X E (S7)
(1= pr—1) (1 — pr)

Tcycle — N X Tg)
N

EWE) = + C X (Teyete — (5.3)

The propagation delay of the optical (TIQ) part of the network can be expressed as:

DONU
TS = 5.4
R="5 (5.4)
The total delay in the optical part of the network can be expressed as:
79 = EWE) + 18 (5.5)

where E(W[) denotes the expected waiting time of the arriving packets in their cor-
responding queue K at the ONU due to scheduling and queuing delays; TIQ depicts the
propagation delay of the optical network; DNV denotes the distance between the ONU
and the OLT; and So denotes the speed of light in the fibre (2 x 108m/s) if the refract-
ive index of the fibre is considered as 1.5. For upstream transmission it is assumed that
the delays at the SS and the ONU are approximately equivalent, because both of 4G and
10G-EPON use TDMA, Eq. (5.3) can be adapted to suit the wireless part as:
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TU
b Yy M x B (SP) Tr X agp
— — 4+ O x (Tp — —EF—X
(1= pr-1)(1-pK) n

E (W)= )

where E(W%) depicts the expected scheduling delay at the wireless part; and n depicts
the number of SSs which are connected to the BS. The propagation delay at the wireless

part (T%) can be expressed as:

where Dgg depicts the distance between the SS and the BS; and Sy denotes the speed
of light in a vacuum (3 x 10%m/s). The total delay in the wireless part of the network can

then be calculated as:

TV = EOWE) + 19 (5.7)

Then the expected end-to-end delay from SS to OLT for class K traffic (E(TX%,)) can

be expressed as:

E(T},) = B(T{) + E(T}") (5.8)

&

%lele )\k x E (513) Tcycle - N x Tg

E TeKe = — — + C X Tc cle =
( 2 ) (1 N ﬂK—l) (1 o PK) ( ycl N )
TU
K ___F
Downv | 32 k=1 M X B (SF) + Oy x (Tp — Tr X girp )+ Dss (5.9)
So (1= pr-1) (1 - pK) n Sy '
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Zkal )\k X F (Sl%) Teycte = N X T,
ETeKez = S 4 O X (Toygge — —22¢ 9
(Tez) (1= pr-1) (1= pk) (Leye N )
T
Tr X 7070 p D
C1 x (T — Tetliy | 2SS | ZONU (5.10)
n Sw So

From Eq. (5.10), it can be seen that the grant cycle (T,yqe and Tr) of both the
optical and wireless parts of the network affects the end-to-end delay. For this reason, the

durations of T¢yee and T must change in response to the class of traffic in order to control

the end-to-end delay.

For example, if class 1 is available then the expected end-to-end delay for class K traffic

is calculated as:

S A x E(SP) Teycier — N X T,
E(TS,) = 5= C X (Teyerer — =~ 2
( eQe) (1 — ﬁK—l) (1 — ,(fK) +0O X ( cyclel N )+
U
Tugs X 7o 2%5— D D
Cy x (Tyas — %“”ﬁ”%+£f+ g?’ (5.11)

where T((]]GS and T(?GS depict the upstream and downstream sub-frames for the frame

size of Tygs.

If class 1 is not available, but class 2 is available, then

ZkK:Q Ap X E (Si)

Toerez — N x T,
E(TY,) = C ¢ (T, — Zcycle g
( 626) (1 _ ﬁK—l) (1 _ p—K) + X ( cycle2 N )
Tye X ol 2 D D
T U D
Cy x (Thy — TitTvey | 2SS ZONU (5.12)

n Sw So

where T and T depict the upstream and downstream sub-frames for the frame size

of Trt-
If class 1 and class 2 are not available, but class 3 is available, then
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/\3><E(S§>
ETeKe = — — +Cxche_
( 2) (l—pz)(l—pg) ( ycle3

TcycleS — N x Tg)
N

TU
Tm“t X UnirtD D D
C1 % (Tort — Turet o )+ 53 4 OnU (5.13)
n SW SO

where TV, and T

o woe depict the upstream and downstream sub-frames for the frame size

of T’m‘t .

Jitter, one of the QoS parameters, captures the delay variation of the received packets.
Some services such as CBR traffic are highly sensitive to jitter and need careful manage-
ment. The difference in the stay time of packets at different queues, due to the scheduling
at the wireless and optical parts of the network, contributes to the end-to-end jitter from
the SS to the OLT. Again, this can be interpreted as (E(Je2e) = f(Teycte + TF)), where
E(Je2e) depicts the expected end-to-end jitter.

The total power consumption of the WOBAN (Py o) is the aggregation of the power
consumption of the optical components (OLT and ONUs) and the wireless components
(BS and SSs) which are (POFT and PONV) and (PBS and PS9) respectively. For the
WOBAN which is constructed from N ONUs that are connected to the OLT, N BSs, and
n SSs that are connected for each BS (Fig. 2.9), the aggregated power consumption can

be expressed as following:

PWO = pOLT L N » (PONV 1 PBS) L N x n x P (5.14)

To calculate the energy consumption of the green WOBAN it is necessary to analyse
the resource management, in order to calculate the sleep and active durations of each
component. By using the mechanism presented in Chapter 4, the OLT dynamically moves
from one polling cycle to another, according to the type and priority of the traffic being
carried within the network at that present time. The ONU is permitted to enter into sleep
mode when the duration of the polling cycle is no less than 10 ms. The OLT can enter
into sleep mode only with either the existence of class 3 traffic, or when there is no traffic
at all. The calculations of the sleep time and active time for the ONUs and the OLT are

detailed in Chapter 4, and are shown in the following equations:
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Tcyclel - Tgrant - Toh case 1l
ONU __
TS - Tcycle? - Tgrant —Ton case?2 (515)

TcycleB - (Z Tgrant + N X Tg) case 3

where (3 Tyrant + N x T}) is a very short time which is about 2% of Ttycses-

0 case 1
TSOLT =450 case?2 (5.16)
TcycleS - (Z Tgrant + N x Tg) case 3
Tyrant + Ton case 1
TN = Tyrant + Ton case 2 (5.17)
> Tyrant + N x T, case3
Tcyclel case 1l
T = Teycre2 case?2 (5.18)

Y Tyrant + N x T, case3

where TSQN Uand T(?N U depict the sleep and active durations of the ONU respectively;
and TSOLT and TaOLT depict the sleep and active durations for the OLT, respectively.

The communication between the BS and each of the SSs is half duplex; meanings that
only one direction of communication can take place at any time. As shown in Fig. 5.3
in the downstream, the BS sends information and the SSs receive the information; while
in the upstream, the SSs send and BS receives. The transceiver system at the BS is the
most power demanding component [60], so keeping the transmitter of the BS on during
the upstream transmission, or the receiver on during the downstream transmission wastes

power. Similarly, keeping the transmitter of each of the SSs on during the downstream
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Figure 5.3: The downstream and upstream communication between the BS and one SS
where only one direction is activated each time.

transmission, or the receiver on during the upstream transmission also wastes power. In
order to reduce energy wastage it is important that the sleep mode for the transmitters
and receivers of the BSs and SSs be enabled. Figure 5.4 shows the transition between the

Downstream sub-frame Upstream sub-frame

Upstream sub-frame Downstream sub-frame

(a) (b)

Figure 5.4: Power states of transmitter (Tx) and receiver (Rx) of BS and SS in relation to
the upstream and downstream sub-frames.

two power states, sleep and active, for the transmitter and receiver of the BS (Fig. 5.4a)

and the SS (Fig. 5.4b). The calculations of the sleep duration for the transmitter TST‘T(SS)
and Tgx(BS) and the receiver Té{m(ss) and Téﬁ(BS) for the SS and BS, respectively, are:
Rx(S5S) Tx (BS) T
Ty =Ty = (Turt X 5" — To) (5.19)
Tm“t + Tm"t
Tw(SS) R (BS) T,
T =T ¥ = (Tt X 5" — Ton) (5.20)
ant + ant

The calculations of the active time duration for the transmitter T;M(SS) and T;””(BS)

and the receiver fo(ss) and Tfr(BS) for the SS and BS, respectively, are:
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_ T _ g ) (5.21)
+ U ov .

TR=(S9) = 7Tx(BS) = $(T,,,; TDTftTU T (5.22)
nrt nrt

Where T, depicts the overhead time required for the transmitter and receiver to switch
from sleep to active state. Enabling the sleep mode requires a longer sub-frame than Ty,,.
Therefore to enable the sleep mode at the BS and SSs where there is a split ratio of 1:1,

the T should not be less than 20 ms.
In order to calculate the total energy consumption of the green WOBAN within 7" time,
once the sleep and active times have been determined, the power consumption during these

times must be calculated for each of the components of the WOBAN.

T« pVO _ Z(TSOLT x PQLT { TOLT y pOLT |
T
N x (T9NU 5 p9NU 4 TONU o pONU |

Tgs X Pgs +Tfs X Pfs +
n x (T$% x PSS + T35 x P59Y)) (5.23)

Table 1 shows the estimated power consumptions for the OLT, ONU, and BS in

Table 5.1: Power Consumption and Notation for Different Components of WOBAN

Component Power Consumption (W) Notation
Active | Sleep Active [ Sleep
OLT 100 10 POLT | pOIT
ONU | 6.35 [54] 0.57 PONTpONT
BS 50 [60] 8.75 pfS Pégs
SS - _ pss 28

both sleep and active mode, and their notations. The values for the BS are based on the
assumption that a GSM 900 BS is being used, where each TRx contributes about 50 W of
the overall power consumption [60]. This work assumes that each BS only has one TRx.

The power consumptions for the SSs are not reported, consequently the SSs’ consumption
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are not included in the results.
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Figure 5.5: Traffic profile taking into consideration traffic classes during the day at the
ONU-BS.
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Figure 5.6: Daily power consumption comparison between the L-ARM scheme and existing
solution.
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5.3 Performance Evaluation

In this section the performance evaluation of the proposed coordinated resource manage-
ment mechanism for the green WOBAN is presented. The profile of the generated traffic
is shown in Fig. 5.5. The traffic rate is altered by changing the packet generation inter-
val and the number of connections. A comparison is made between the performance of
the proposed solution against the existing solution presented in [8] [58]. In their dynamic
bandwidth allocation schemes, the authors used a fixed polling cycle duration to mitigate
the effect of the guard time. This concept was implemented by distributing the excess
bandwidth, which is the residual bandwidth of the lightly loaded ONUs, evenly across the

heavily loaded ONUs, and by using a pair (T,yce, TF) to refer to each curve of the existing

work under discussion.

45

e existing(5 ms, 5ms)_class1 e . existing(5 ms, 5 ms)_class2
40 - @== |-ARM(class1) el | -ARM(class2)
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06-07 08-09 10-11 12-01 02-03 04-05 06-07 08-09 10-11 12-01 02-03 04-05

Time (hour)

Figure 5.7: End-to-end delay comparison for class 1 and class 2 between the L-ARM scheme
and existing solutions (with 5 ms and 20 ms durations of Tq. and Tp).

Figure 5.6 shows a comparison between the performance of the L-ARM scheme and the
existing solutions, which permit sleep when there is no traffic. The traffic profile in Fig. 5.5
reveals the existence of traffic during all periods, but the traffic is shown to be comprised
of a variety of volumes and classes. When this load is applied to the WOBAN network, the
proposed mechanism performs efficiently in terms of power saving, as illustrated in Fig.
5.6 where most of the energy saving is achieved over the light load periods. This figure
takes into consideration the power consumption of the BSs, the ONUs, and the OLT. This

proposed mechanism outperforms the existing solutions, as it exploits the idle durations
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in order to enable devices to enter sleep mode across both the wireless and optical parts

of the network.Power savings of up to 40 % are achieved during off-peak hours,
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Figure 5.8: Average end-to-end delay for class 1 traffic for L-ARM and existing solutions
(with different durations of Ttyee and Tr ).
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Figure 5.9: Average end-to-end delay for class 2 traffic for L-ARM and existing solutions
(with different durations of Tyyee and T ).

Furthermore, the proposed mechanism consistently delivers an acceptable end-to-end

delay for class 1 and class 2 traffic when compared to the existing work for (5 ms, 5 ms)
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and (20 ms, 20 ms) as shown in Fig. 5.7 because the proposed mechanism adjusts the
setting of the network to the available load, which means adjusting the sleep durations
and the resources according to the avaiable load. This figure shows that the L-ARM
scheme produces significantly lower end-to-end delays over existing solutions for (20 ms,
20 ms); but slightly longer delays for(5 ms, 5 ms). Importantly however, in the proposed

mechanism a polling cycle of less than 10 ms is not used.

The comparison also includes the impact of various T, and Tr combinations (existing
solutions) and the proposed L-ARM scheme on the performance of the WOBAN. Figures
5.8 - 5.11 describe average end-to-end and queuing delays for class 1 and class 2 traffic. In
these figures L-ARM performs better than the other combinations for existing solutions,
except where T,y and T are equal to 5 ms. It can be seen that the behaviour of the
average queuing delays is similar to that for end-to-end delays. For the same T¢y., the
delay increases with longer 7. The maximum delay occurs on the existing solution at
(20 ms, 20 ms), reaching a value of 40 ms. When Ty is 20 ms the delay is considerably
higher, whatever the value of Tx. This figure confirms that a Tty duration of more than

10 ms is unsuitable for class 1 if an end-to-end delay of less than 30 ms is required.
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Figure 5.10: Average queuing delay for class 1 traffic for L-ARM and existing solutions
(with different durations of Tty and Tr ).
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Figure 5.11: Average queuing delay for class 2 traffic for L-ARM and existing solutions
(with different durations of Ttyee and Tr ).
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Figure 5.13: Average jitter for class 2 traffic for L-ARM and existing solutions (with
different durations of Tyyee and Tp ).

The reason being that the value of Tty affects the queuing delay at the ONU more
than the value of T. The shortest T,y produces the shortest end-to-end delay, because it

causes a shorter queuing delay. Moreover, the delay experienced when using the proposed
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Figure 5.12: Average jitter for class 1 traffic for L-ARM and existing solutions (with
different durations of T,yee and Tp ).

mechanism is less than that achievable by the existing solutions for all the other combina-
tions, except as mentioned above for (5 ms, 5 ms). The shorter delays are achieved in the
proposed mechanism because the shortest polling cycle is 10 ms when any ONU reports
the existence of class 1 traffic. For class 2 traffic, it can be seen again that the end-to-end
delay is relatively high at a T,yqe of 20 ms (Fig. 5.9). However, the delay is more stable
and is acceptable for class 2 traffic (about 25 ms). This means that 20 ms is the most
acceptable polling cycle duration for class 2 traffic.

Figure 5.12 and 5.13 describe the average jitter for class 1 and class 2 traffic with
various combinations of Tpye and Tp . For class 1 traffic (Fig. 5.12), L-ARM is the equal
second best performer with (10 ms, 5 ms), and with (5 ms, 5 ms) it is the best. The
maximum jitter for L-ARM is less than 30 ms which is acceptable [74]. For class 2 traffic,
L-ARM is consistently the best performer for all the combinations except (5 ms, 5 ms).
Again, it should be noted thata Ty of less than 10 ms would not be used when deploying
the L-ARM mechanism. In Fig. 5.12, it is observed that the worst combinations are those
with either Tryqe or T equal to 5 ms and the other value equal to 20 ms. For instance,
the existing solutions at either (5 ms, 5 m) or (10 ms, 5 ms) achieve the least jitter, which
means that the best performing ratios of Ti.,¢e to Tr are 1:1, and 2:1 provided that T,y
and Tr do not exceed 10 ms. The worst jitter results from the use of the combinations

(5 ms, 20 ms) and (20 ms, 5 ms) which means the ratios of 4:1 and 1:4 between T¢ye

105



and Tp are not suitable for class 1 traffic. Furthermore, these results confirm that the
combinations of a polling cycle and a frame size where either is 20 ms are not suitable for
class 1 traffic.

Clearly in the majority of cases, the proposed scheme achieves the shortest end-to-end
delay for class 1 and class 2 traffic, regardless of the volume of traffic in the network.
Without an appropriate cooperative resource management mechanism, the wireless part of
the network is the bottleneck because of its low data rates compared to the optical part of
the network and degrades the network performance by affecting the QoS. Efficient resource
management is achieved by changing both the frame size carried by the wireless part of the
network, and the polling cycle duration. Conversely, switching to the appropriate frame
size improves channel utilization and saves energy.

In terms of throughput, there is no significant difference between the proposed mecha-

nism (L-ARM) and the existing solutions.

5.4 Closing Remarks

In this chapter, a sleep mode was adopted for all WOBAN components by using a dynamic
and cooperative resource management within both the optical and wireless parts of the
network. The aim was to enhance the energy efficiency and the QoS of the WOBAN, and
to exploit the changing traffic profiles and their dynamically changing class compositions
typically being experienced over the course of the day. To this end, the means to achieve
interoperability of resource management between 4G and 10G-EPON systems in order
to realize a green WOBAN was addressed; and a load-adaptive resource management
mechanism for green WOBAN was proposed. In the proposed mechanism, the frame size
of the wireless (4G) part of the network, directly affects the resource management for
the wireless subscribers. The choice of scheduling mechanism to be utilized was between
having either a dependent scheduling (DS) or an independent scheduling (IS) mechanism.
With DS, the frame selection by the BS is based on the information sent from the OLT,
while in the case of IS, the frame size selection depends on traffic monitoring by the BSs.
However, whether DS or IS was used, the selection of frame size and polling size followed the
same policies to prevent any conflict between resource management between the wireless
and optical parts of the network. The performance of .-ARM on the WOBAN network
was examined for a range of traffic loads. Simulation results showed that the proposed
mechanism maximizes energy savings; while maintaining the end-to-end delay and jitter

within acceptable boundaries for heterogeneous traffic conditions. The improvement in
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energy efficiency was achieved in part by placing the BSs along with the OLT and ONUs
under resource management control. Further improvements were achieved by making the
resource allocation in the optical and wireless parts of the network dynamically responsive
to changes in the available traffic load. No other previously published studies considered
cooperation between the resource management of the optical and wireless parts of the

network to increase sleep duration and support the QoS.
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Chapter 6

Conclusion

This thesis addressed the challenge of realising a power efficient, environmentally friendly,
or green wireless-optical broadband access network (WOBAN). The aim was to develop
a future-proofed access network, having improved QoS, using less power, and where the
resulting service price can be significantly reduced for end users. A complete design for
a green WOBAN having these attributes has been proposed. This design encompasses
the establishment of an integrated network; and the development of resource management
functionality which considers the class of traffic as another dimension for reducing power
consumption, while maintaining the QoS for various types of traffic. In this design it was
proposed firstly that a QoS mapper and queue management functionality be implemented
at the interface between the optical and wireless systems, in order to achieve the fusion
between these two technologies. Secondly, mechanisms to enable cyclic sleep within the
resource management were proposed to enhance the channel utilization and QoS. In rela-
tion to cyclic sleep, both a global and local sleep mechanisms have been proposed to take
advantage of having the OLT and ONUs in cyclic sleep to save additional power. Con-
sequently, with the fluctuating daily traffic for access network usage, the green WOBAN
can exploit opportunities as they arise to further optimise its resource management. The
idle durations are increased to the extent that the given class of traffic can tolerate, with
subsequent reduction in the net power consumption during those durations. In addition,
the proposed design provides for improved channel utilization, by avoiding the frequent
allocation of resources when the traffic volume is low. The inter-operability between the
resource management at the wireless and optical interface is important, and should con-
sider all the components, both optical and wireless, when attempting to maximise the
energy efficiency of the system.

This chapter summarises the findings and contributions of this thesis and suggests

several research directions that can be considered for future work.
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6.1

Contribution of the Thesis

The main contributions of this thesis are summarized as follows:

e The synthesis of a robust architecture for an integrated wireless-optical broadband

110

access network (WOBAN). The primary requirement for realising the integration
between the optical and wireless systems, is finding a solution for the gap between
the two different standards that serve the traffic according to their individual QoS
requirements. The wireless standard is capable of dealing with the QoS requirements
for different data traffic, while the optical standard uses queues to differentiate be-
tween the various types of traffic. A QoS mapper and queue management system,
based on M/G/1, supported by a special design for a priority scheduler were pro-

posed; to ensure the maintenance of the QoS for different types of traffic.

The development of a new class-based power saving model (CBPS) for the ONUs
in the WOBAN architecture, which reduces the overall power consumption and im-
proves the quality of service across the WOBAN. In CBPS, the sleep durations are
enabled within the resource management. The proposed model significantly improves
power saving by efficiently exploiting the idle periods within the tolerated delay of
various services, thereby increasing the total sleep time of each ONU. In addition to
the resource management, a mechanism for calculating the energy consumption was
formulated. The results reveal that by using the CBPS model, power savings of up
to 80 percent are obtained. The proposed class-based queue model also provides a

better quality of service compared to existing models.

The design of a new resource management system that adjusts the power consumption
in response to the changing volume and composition of the daily traffic, by monitoring
additional attributes such as the class of the traffic. This thesis proposes a novel
solution to this problem through the introduction of a dynamic polling cycle based-
power saving mechanism (DPCB-PSM). The identification of each class of traffic is
critical, as some classes of traffic do not need urgent service while others are very
sensitive to delays. For those classes of traffic which are not delay-sensitive, such as
the best effort traffic, the longest polling cycle is deployed. This long polling cycle
is then divided into two sub cycles; one for use in polling the ONUs, and the other
for use in putting the ONUs and the OLT into a sleep state. By monitoring the
class of traffic currently being transmitted, the OLT can adjust the polling cycle



so that delays and the allocated transmission window are able to respond to the

instantaneous traffic conditions.

e The design of a new mechanism for coordinating the resource management in the
wireless part of the network, able to adjust to the changes of the resource management
in the optical part of the network. The aim is to enhance the behaviour of the
WOBAN and to boost its energy efficiency. A load-adaptive resource management
(L-ARM) mechanism is proposed, where the changes in the frame size of the wireless
part of the network are either dependent on the advertised polling cycle of the optical
part of the network, or are an outcome of monitoring the traffic in the queues at the

base station (BS).

6.2 Future Work

This section suggests some extensions to the work presented in this thesis.

6.2.1 Using a Mixed Line Rate Strategy

An adaptive resource management mechanism was proposed in this thesis to improve
channel utilization, QoS, and energy efficiency. The aim was to enable the network to
identify the optimum polling cycle duration. Future work may include a mixed line rate
strategy that offers a range of data rates. Any extended design should consider the i)
existing work, ii) the volume and the classes of traffic, and iii) the system’s ability to make
decisions to either increase or decrease the data rate; in order to further control the power

consumption, as lower data rates consume less power.

6.2.2 Load Balancing for the WOBAN

The load for each cell differs, depending on the number of currently active users. Further
developments to this thesis could aim at maintaining the QoS by performing load balancing
within the wireless components of the network by using router, power control, or handover
strategies. This is an important consideration during periods of high load, in order to
avoid blocking or dropping of traffic when users want to connect with an overloaded BS,
which has neighbouring BSs that are not overloaded. WOBAN has the advantage of
being centralized, thus enabling the OLT to: monitor the entire network and control the

turning on and off of routers; or change the coverage of the base station by changing the
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transmission power. A future load balancing mechanism should consider the existing work

and define new messages to extend control to the BSs and routers.

6.2.3 Dynamic Split Ratio

The proposed mechanism to coordinate the resource management at the BS and OLT is
based on changing the durations of the polling cycle of the optical part and the frame size
of the wireless part of the WOBAN; in order to adjust the allocated bandwidth and sleep
durations for the available load. The concept of using dynamic durations for the polling
cycle and frame size is proposed in this thesis, introducing the capability of responding
to changes in the required bandwidth and the available load. As has been clearly shown,
this model has an advantage in terms of improving energy efficiency, especially during the
periods when the dominant traffic is of the best effort class. This mechanism is based on
a ratio of 1:1 between the upstream and downstream sub-frames in the wireless part of
the network. Future work aimed at improving the coordination of resource management
in the WOBAN, may investigate the effect of using a dynamically split ratio between
the upstream and downstream sub-frames. The advantage of such a solution would be a

significant increase in sleep durations and thus energy efficiency.
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