
Edith Cowan University Edith Cowan University

Research Online Research Online

Theses : Honours Theses

1998

Pathfinding in VRML Pathfinding in VRML

Jason Richard Pearce
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses_hons

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Pearce, J. R. (1998). Pathfinding in VRML. https://ro.ecu.edu.au/theses_hons/1453

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses_hons/1453

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses_hons
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses_hons?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F1453&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F1453&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses_hons/1453

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose

of your own research or study.

The University does not authorize you to copy, communicate or

otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following:

 Copyright owners are entitled to take legal action against persons
who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement. Where the reproduction of such material is

done without attribution of authorship, with false attribution of

authorship or the authorship is treated in a derogatory manner,

this may be a breach of the author’s moral rights contained in Part

IX of the Copyright Act 1968 (Cth).

 Courts have the power to impose a wide range of civil and criminal

sanctions for infringement of copyright, infringement of moral

rights and other offences under the Copyright Act 1968 (Cth).

Higher penalties may apply, and higher damages may be awarded,

for offences and infringements involving the conversion of material

into digital or electronic form.

Pathfinding

lll

VRML

•

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

Pathfinding in VRML

by

Jason Richard Pearce

A Thesis

Submitted in Partial Fulfilment of the Requirements for the Award of

Bachelor of Science (Communications & Information Technology) Honours

At the Faculty of Science Technology and Engineering
Edith Cowan University

Perth, Western Australia, Australia

Supervisor: Dr Arshad Omari

Submission date: 5
th of January, 1998.

11

Abstract

Virtual Reality Modelling Language (VRML) is a scene

description language which describes three dimensional (3D) space to a

computer. Thus the three axis of space that is inherent in our dimension

X Y and Z is represented inside a computer. To many people VRML

represents a new beginning for the World Wide Web (WWW) because it

behaves more like the real world. VRML is experimental, interactive,

continuous and of course, three dimensional.

Algorithms in computing have been designed for 2D problem

solving and this does not necessarily translate to problem solving on a

3D level. The aim of this project was to experiment with one of these

algorithms within the domain of 3D space (VRML).

This project chose to use an algorithm based on solving shortest

path problems and then translate this algorithm for it to work in a 3D

environment. Java, a programming language, was used to find the

shortest path. The shortest path was then shown via the use of an

animated camera going through the 3D environment in effect delivering a

pathfinding system. VRML was used as the basis to create the 3D

environment, thus the project creates a pathfinding system that can be

used as a navigational tool within a VRML world.

IV

Acknowledgments

I would like to extend my gratitude to my supervisor, Dr Arshad Omari

whose knowledge of shortest path algorithms was critical for the

project's development. Dr Omari's patience and understanding

throughout the project is also appreciated. Thanks also to the university

architect office for the supply of the both the paper and electronic

drawings. Lastly, thanks needs to be given to my sister, Karen, for proof

reading the work.

V

Table of Contents

Abstract ii

Declaration lll

Acknowledgments iv

Table of Contents V

List of Figures viii

Introduction 1

Background to the study 2

Significance of the study 5

Purpose of the study 7

Objectives of the study 8

Literature Review 9

General Literature 9

Literature on previous findings 11

Specific studies related to project 14

Literature on methodology 18

Summary of Literature Review 19

Analysis and Design 20

Choice of development environment 21

Project Design 23

VRML basics 25

Nodes and fields 25

Scene graph 30

VRML and the project 31

Viewpoint

I nterpolators

Routing

Time Sensor

VRML, EAI and the Java applet

Teleportation

The shortest path algorithm

Development

Construction of a higher order data structure

Higher order data structure in Java

Pathfinding in Java and VRML

Initialisation of pathfinding

Nearest Neighbour

Finding the shortest path

Java to VRML

Results

Conclusion

Further Research

Conclusion

Definition of terms

References

Appendix

Appendix A

31

33

34

35

37

40

43

46

46

50

53

54

55

59

64

79

84

84

87

88

91

94

95

vi

vii

Appendix B 96

Appendix C 98

Appendix D 100

Environment panel 100

Touchsensor panel 101

Imagemap panel 102

Paths and map panel 103

User Input panel 104

Teleportation panel 105

Pathfinding panel 106

Extra panel 107

Help frame 108

Appendix E 109

List of Figures

Figure 1: Graph (shortest path)

Figure 2: VRML, EAI, and Java

Figure 3: VRML and Java applet

Figure 4: VRML basic scene

Figure 5: VRML basic scene no. 2

Figure 6: VRML basic scene no. 3

Figure 7: VRML scene graph

Figure 8: VRML & the viewpoint

Figure 9: A* algorithm

Figure 10: Coordinates from the VRML world

Figure 11: Top of the VRML world

Figure 12: Top of the VRML world with 7 coordinates

Figure 13: 2D tree graph representation of figure 11

Figure 14: 2D representation of 3D scene

Vlll

11

22

23

27

29

30

30

32

45

46

47

48

48

49

Figure 15: User's current position & orientation in VRML world 53

Figure 16: Pseudocode for nearest neighbour function 56

Figure 17: Finding nearest neighbour 57

Figure 18: A* in pseudocode 59

Figure 19: Finding the path from the root node to the end node 60

Figure 20: All connections from d are made and compared 61

Figure 21: All connections from e are made and compared 62

Figure 22: Pseudocode for java to vrml function 64

Figure 23: Orientation in VRML 66

Figure 24: Orientation in VRML project 66

Figure 25: Calculating the orientation 67

Figure 26: Quadrant of the orientation 68

Figure 27: Viewpoint moves from original position to canteen 73

Figure 28: Viewpoint orientates towards the nl node 'e' 75

Figure 29: Move from canteen to nl node 76

Figure 30: Orientate towards building 6 node 76

Figure 31: Move to building 6 node 77

Figure 32: First orientation in VRML, as Viewpoint begins to 78

roll from canteen to face nl node

Figure 33: Procedure for pathfinding in VRML/Java 82

Figure 34: ECU world outside the library in the afternoon 95

Figure 35: ECU world inside the library 1st
floor 95

ix

Figure 36: ECU world facing building 3 from the canteen 96

Figure 37: ECU world birds eye view facing north 96 .

Figure 38: Environmental panel from the applet 100

Figure 39: Touchsensor panel from the applet 101

Figure 40: Imagemap panel from the applet 102

Figure 41: Paths and map panel from the applet 103

Figure 42: User input panel from the applet 104

Figure 43: Teleportation panel from the applet 105

Figure 44: Pathfinding panel from the applet 106

Figure 45: Extra panel from the applet 107

Figure 46: Credits frame from the applet 107

Figure 47: Help frame from the applet 108

Introduction

The use of 3D computer graphics is becoming increasingly

popular, from video games, weather simulations to movies that give us a

glimpse of virtual reality. The World Wide Web (WWW) has gained

even more popularity for its easy to use interface and its hypermedia

abilities that can stretch the globe. Therefore it is natural that people

would want to combine the two, marrying the compelling experience of

3D to the global access of the Web. Virtual Reality Modelling Language

(VRML) was conceived to join the WWW and 3D graphics together.

VRML is a standard for creating 3D virtual experiences on the

World Wide Web. Even though it is in its infancy, VRML solves many

of the problems that are associated with typical Virtual Reality systems

i.e. cost & portability, while also utilising the enormous distributive

power of the Web.

This project seeks to explore the potential of VRML within the

context of a pathfinding system that operates within a 3D scene.

Pathfinding, in this project, has been defined as solving the problem of

finding the shortest path from one point to another. More precisely, in the

case of this project, it is to find the shortest possible route from one

coordinate in 3D space to another coordinate. The project has

investigated the necessities of building a path, based on the 6 degrees of

freedom, that is inherent within a virtual world. This pathfinding system

has then been incorporated into a 3D map of the ECU campus at Mt

Lawley, using VRML as the modeller. Traditionally, pathfinding systems

have sought to solve the problem in a 2D environment using the X and Y

axis. This project will add the Z axis as well as pitch, yaw and roll. Thus

within a sentence this project can be described as,

"To experiment with VRMUJava using pathfinding as an example"

1

Background to the Study

A pathfinding system in VRML needs to incorporate the

background of Virtual Reality (VR), and how this led to the VRML

standard. It must also include the background of the WWW,

programming languages in VRML, and shortest path algorithms.

Until recently, displaying 3D graphics required powerful

computers and so it was limited to research, entertainment and other

areas that had large budgets to sustain the need for 3D graphics. 3D

computer graphics have always had a niche and so there has never been

much need to develop a standard file format for 3D, unlike PostScript

with DTP or HTML for Web publishing. Yet with, computer processing

power constantly expanding and hardware prices continually falling, 3D

content is now becoming accessible for everyone. And there is no better

way for distribution of 3D graphics than utilising the already existing

network of the Web. In order to utilise the Web, a standard 3D file

format was needed and so the VRML file format was conceived. VRML

uses the concept of a scene graph to describe the structure of the world,

in much the same way that the HyperText Markup Language (HTML) is

used to describe the formatting of a document on the WWW. A VRML

scene graph can be described using simple words and punctuation (the

same as HTML). As such VRML files are written in plain text, and

therefore can be created using a simple text editor.

This text file with the suffix . wrl which is sent just like a HTML

page (.htm) from a server to a browser. Once downloaded the user needs

to have a VRML plugin that reads the .wrl file and converts it into a 3D

2

scene on the web browser. This is the reason HTML experienced such

explosive growth. People who were not experts in computers could easily

3

create web pages without the need to use tools specifically for the task.

This is also an important attribute for VRML in its early stages, and will

ensure virtual reality can be successfully introduced to the general

community. This is because virtual worlds will not be created, and

should not be created, by computer personnel only, as this would lead to

stagnated environments, dominated by a small section of the community,

who have the necessary programming skills and software to implement a

system.

There is no common definition of virtual reality. Instead the

meaning varies, based on the needs of the person using the term. Since

the origins of this project borrows heavily from the architectural world,

an architectural definition of virtual reality is;

A technology that enables us to design buildings electronically.

These buildings can then be entered , viewed, explored and worked

with - all without the use of brick and mortar, or even physical

models.

(Jones & Wyatt, 1994, p.468) .

Ultimately though the catch all definition of virtual reality has

been described by Hamit (1993, p.11) as;

A method to allow people to manipulate information in a computer

the same way they manipulate objects in nature. It is meant to

enhance our ability to deal with the complexities of an increasingly

complex society.

In order to utilise VRML for pathfinding a programming language

will be needed to calculate shortest paths. By itself VRML is used as a

descriptive language of a virtual -environment and it is with a

programming language that the data describing the 3D world can be

manipulated to produce new data that defines the world. Java, a recently

devised programming language for the WWW, is the language used for

the project.

Search problems are widespread within our world. They deal with

the situations in which one choice leads to another and which present

problems of organising these choices and choosing the best solution.

Shortest path algorithms are designed to solve some of these problems.

For many years now, algorithms have been devised to determine the

shortest path between two defined points. With VRML, shortest path

algorithms can now be introduced to a 3D environment instead of being

constrained to the 2D environment.

4

Significance of the Study

The reason for this project is to look at how VRML and Java can

interact with one another using the shortest path problem as the project's

goal. There are several good reasons why pathfinding is significant in

VRML, a few will be discussed here.

There are occasions when a user of a VR environment does not

want to concentrate on manual navigation around the environment. Such

an environment is architecture walkthroughs, where visualising the

surrounding environment is far more important than manual navigation.

Therefore, if the user had the choice of seeing this environment via the

use of a animated path, from the users current position to another

position of their choice, then the user would gain more out of just

visualising the journey, rather than manually controlling the journey.

Pathfinding systems for VRML will allow a user to visualise the

journey in virtual reality before undertaking the journey in reality.

Current maps describe reality in 2D space. Human beings, however, do

not visualise in 2D space but in 3D space. To visually demonstrate the

journey in 3D, the user would not remember the name of streets as on a

2D map, but visual signs such as shops, trees etc that are a part of the

actual journey. As Sarna and Febish (1996) have emphasised about

VRML;

Adding a GUI is significant because it speaks to your

so-called right brain as well as to your left, doubling the

brain power that can be applied to understanding an

application. Spatial reasoning adds yet another

dimension of cognition, making the Internet more

human like, conforming better to the way we think and

feel.

5

6

There is also the use of finding shortest paths for the purpose of

data visualisation in 3D. In this project, the shortest path will be shown

through the use of an animated camera. However, the shortest path could

exist within a data set of coordinates within a 3D space. Such an example

would be through the use of network flows or layouts.

Although VRML worlds at the present time are simple and small,

as desktop power increases these worlds will become larger and more

detailed and eventually, with the aid of VRML 3.0, these worlds can co

exist together, although residing on different machines (i.e. move

through a door, which invokes a new world, kept on a server on the other

side of the world, without the user knowing). As one industry analyser

has expressed about VRML, "the beginnings of tomorrows killer

applications are starting to be developed today" (Leinfuss, 1996). Vizard

(1996) has emphasised that "VRML has the potential to become an

incredibly important IS tool, if used in a innovative way".

There is also the general need to experiment with VRML and to

find possible innovative applications for the product. Although most of

these experiments may not lead to a direct product, they will add to the

bare knowledge base that is known about the potential of VRML.

Pathfinding systems may become invaluable for a new user to the

VR environment as a navigation aid in journey visualisation or for

possible data visualisation systems where the shortest path in 3D needs

to be shown.

Purpose of the Study

7

For VRML to allow animated paths, it requires the creation of data

structures that are unknown in size. One of the drawbacks of current

virtual environments is that they are predetermined at the time of their

creation. Occasionally an object may change its colour or move to

another position, but the data produced is designed to fit in the objects

definition i.e. to change a position of an object requires 3 coordinates,

these coordinates can be stored within a file.

This project attempts to explore the possibility of using VRML to

accept data that is not of a set nature, whose size is unknown and to use

the viewpoint of the world as the receiver of this data.

Objectives of the Study

This project has been broken into 3 main components. Two of

these are software components the other is theoretical.

Software.

• Development of the VRML model, using the ECU campus (Mt

Lawley) as the basis of the model. This model will act as the basis of

the pathfinding system, so that the viewpoint will move from the

starting coordinate to the end coordinate while avoiding solid objects

such as buildings.

• Development of the Java applet, that is used to control the viewpoint

through pathfinding, in the VRML model. The applet will act in a

kiosk mode with the VRML world.

Theoretical.

• Development of techniques for solving pathfinding problems within a

3D space using the VRML model.

8

Literature Review

This chapter will discuss the literature relating to VRML, VR and

shortest path algorithms. Through this chapter the foundations for the

study will be formulated.

General literature

9

Since the release of the VRML 2.0 specification in August 1996,

many books have been released introducing new ideas for the application

of VRML. Two very good books widely recognised in the VRML

community are Marrin & Campbell (1997) and Ames, Nadeau &

Moreland (1997). Marrin & Campbell have illustrated an idea for the use

of VRML for a general 3D map modeller;

A person arrives at a map kiosk in an airport. What if the user had a

window on the screen showing the gallery she was standing in at that

moment, as if there were a camera in a nearby corner. She knows that

her departure gate is building E, so she moves her view of the gallery

up and through the roof to see an overview of the airport . . . She now

has landmarks and an approximate walking time as she follows the

path she just saw on the computer screen, with no confusion.

To extend this paradigm, it would be far easier if the woman was

to simply click an option for building E and the shortest path would be

taken from her current position to the destination, instead of having to

manually navigate the journey herself. There is also the complete VRML

spec 2.0 on the WWW, that was released by the VRML consortium at

http://vag.vrml.org.

10

Virtual reality in architecture is a rapidly expanding area.

Architectural walkthroughs can be treated as a well-defined subset of

computer-aided design applied to architecture. Watkins & Marenka,

(1994) extensively cover the possibilities for VR in architecture by

stating that "architects and engineers have long held that they can read

blueprints and see the building in three dimensions in their head.

Although this may be true, the customers rarely have this gift or

training". The authors also emphasises that architects "prefer to visualise

their buildings in 3D within their minds rather than looking at 2D

drawings".

Vince (1992) has described the usefulness of visualising large

architectural and construction projects in 3D and viewing these projects

via some aerial route or by taking a car view look of the project.

Pathfinding however would allow greater flexibility for the user to

describe the path of the aerial or moving car camera shot, instead of the

route being fixed beforehand.

Aukstakalnis (1992) describes ways in which VR can be used,

although the book does not mention VRML (not conceived at the time of

writing). Many examples describing the use of VR however, can now

make excellent candidates for VRML.

Since the use of the Java language was necessary for the project,

books containing Java information will also be used (Ritchey,1996),

(Newman,1996) and (van der Linden,1996). These books, in particular

Ritchey (1996), contain ideas about the construction of data structures in

Java which was an essential part'of the project's development.

11

Literature on previous findings

Mathematics and computer science have long been involved in

solving the problem of finding the shortest path between two points in a

graph. By first examining an example (Figure: 1), a better understanding

of shortest paths can be established.

Pathfinding system
shortest path= [r 2,2 9,9 10] 0 =NODE

=EDGE

Figure 1: graph (shortest path)

The above diagram is a graph, the graph being a collection of

nodes. The graph consists of a distinguished node R, called the root, and

zero or more subtrees [R 3, R 2, R 1, R 3 6, R 3 2, etc] each of whose

roots are connected by a directed edge to R. The root of each subtree is

said to be a child of R, and R is the parent of each subtree root.

Winston (1984) has described several algorithms for finding the

shortest path, which can be classified into 2 areas, some path algorithm

and optimal path algorithm. Below are a list of algorithms that are

separated into these two areas.

12

Some path - These algorithms are used to find paths from the starting

positions to goal positions when the length of the discovered paths is not

important, so whether they produce the shortest path is unknown, some

examples of these algorithms are;

• Depth first.

• Breadth first.

• Beam.

• Best-first.

Optimal path - These algorithms are more complicated procedures that

attempt to find the shortest path, in the most efficient way possible.

Except for the British Museum procedure which finds the shortest path

simply by comparing all possible paths, some examples of optimal path

algorithms are;

• British Museum.

• Branch and bound.

• Dynamic programming.

• A*.

Another method, discussed by Grogono and Nelson (1982) for

finding shortest paths is known a_s backtracking (optimal path solution).

In this algorithm, the path is defined from the goal rather than from the

root. This backtracking method is built on the conception of problem

solving (sometimes its easier to solve a problem by working back from

the solution to the question).

13

A on-line site at http://www.northpark.edu/acad/math/courses

/Math_l 030/W ebBook/ deals extensively with the use of these

algorithms and others such as Dijkstra's algorithm and Kruskal's

algorithm. These algorithms are elaborated more in (Reingold, Nievergelt

& Deo, 1980) ,(Sedgewick,1988) and (Weiss,1993). A more detailed

discussion of these shortest path algorithms will be given in analysis and

design, and a decision will be made on the eventual algorithm used and

why.

It is important to note that Paul Dvorak (1997) has stated that

"Problem solving in 2D does not necessarily translate to problem solving

in the 3D environment". He elaborates this axiom by explaining that

variables in the 3D environment were not considered for the 2D

environment because they were not factors. Thus for the project,

although the concepts of 2D pathfinding (shortest path algorithms) can

be used, additional work must be done in order for the algorithm to work

in 3D, and in particular to work in VRML.

Previous studies have shown (Sarna & Febish, 1996) that

navigating within a 3D environment on a 2D screen is not easy. Problems

are caused by the mixing of metaphors on a 2D environment within a 3D

environment. Due to this many different input devices have been used to

simulate what is called the 6 degrees of freedom (X, Y, Z axis plus pitch,

yaw and rotate) that is inherent within a virtual environment. However,

this project's pathfinding system is an easier navigation tool to use

because the system handles the navigation from one defined point to

another.

Specific studies related to project

14

Since VRML 2.0's release in 1996, there are now thousands of

sites containing VRML worlds across the Web. Many VRML sites are

being used to create interesting but not very useful VR worlds. Other

projects are attempting to provide useful applications of VRML that can

be a source of data visualisation, virtual expos, or virtual cities. These

virtual cities and expos may provide 2D maps for the user to use, but

again, these, as in reality, can be meaningless because of the difference

between visualisation in 2D and 3D.

One ambitious project in its early stages is the world of worlds

project by Richard Tilmann (http://www.meshmart.org/wow/). The aim

of this project is to produce a integrated virtual map of the major cities of

the world. Within these cities, it would initially be useful to navigate

around using the pathfinding system for VRML, until the user

familiarises themselves with the virtual environment.

Another project features the use of VRML in a virtual expo

(http: //www.construct.net/projects/ntt/). Again, this virtual expo would

have much more user friendliness if the user were able to navigate using

pathfinding. Instead the user must explore the site using the mouse or

keyboard, which are slow and cumbersome to use.

Other projects more closely related to the study are the use of 3D

maps (http://www.bath.ac.uk/Centres/CASA/london). This project is

looking at the potential of 3D maps to represent the streets of London

and reviewing the advantages and disadvantages of using such maps.

Another project (http:// cimcentre. snu. ac.kr/-next/viewer/pathfinder .html)

is exploring the use of Java in pathfinding on a 2D map ie click two

points to discover the distance between the two etc.

15

Other projects, off-line, include a virtual 200,000 square foot

community centre in Los Angeles that was used to illustrate to

councillors what the project would eventually look like. The most

important aspect of the project was stated by Rick Curoso, the developer,

as being, "that the virtual environment allowed the city fathers to

participate in the planning process of the development because they

could visually understand what the project was trying to achieve"

(Bergsman, 1997).

Technology Marketeer, Fujitsu, is at present shopping for retail

marketeers to help take its 'virtual mall' by mid 1998 (Matzer, 1996).

Although stating that virtual shopping would not overtake reality

shopping, Fujitsu believe that this will provide options for users to

choose what medium they prefer. The site would allow users to 'walk'

through city streets and stores where they can view and purchase

products on-line.

There are several universities in the competitive US education

market who are experimenting with using VR and VRML to guide

prospective students around the campus, showing features the university

has to offer. Two such universities are Drew University (Madison, New

Jersey), (Briggs, 1996) and UCLA (http://www.gsaup.ucla.edu/vrml/).

There are also many universities in Europe who are beginning to

experiment with the applications of VRML within an educational

institution. These universities are looking at how, from a tertiary level,

VRML can be used as a teaching tool for design in architecture and

molecular modelling in chemistry etc.

(http://www.rvs.unibielefeld.de/project/vrml-uni/).

Federick Brooks and the University of North Carolina are the

pioneers in the field of architectural walkthrough (Watkins & Marenka,

16

1994). Their work involves the ability to introduce the 'what if' scenario

a popular concept in the area of electronic spreadsheets. The 'what if'

scenario allows a user to change the look of a building without the need

for re-programming. The teams are also looking at methods in which the

user can navigate around the virtual environment.

The Seattle Port Authority, in conjunction with the Human

Interface Lab in Seattle, is a developing a virtual environment to test

proposed expansion plans for the port, again the 'what if' scenario is an

important task for this project. Cecil Patterson the IS director of HIL is

quoted as saying "there is no substitute for walking around a model in

three dimensions to get a feel for how it will do the job" (Watkins &

Marenka, 1994). To extend the paradigm for this study, with pathfinding

the user would not need to input every step that they wanted to take,

instead they could define the path and then just visualise what the

journey and the surroundings would look like.

Since the release of SGI's (Silicon Graphic Industry's) EAI (a

method of using a programming language to control the world) in early

1997, many projects have begun to create kiosk type interfaces to the 3D

world. However as noted by David Brown of SGI;

There are many examples which use the EAI to create geometry in

the scene, and manipulate or animate objects in the world. One

important use of the EAI is often overlooked though: using the

EAI to control the camera from an applet.

(http://vrml.sgi.com/developer/eai/index.html)

On his paper available at the previous site, David Brown discussed

the use of the EAI for creating a Java applet that is used to steer the

viewpoint using enhancements such as throttle to give the user more

control.

17

Another project is looking at the control of an underwater vehicle

within a 3D space, this project can be found at http://www.stl.nps.navy.

mil/-brutzman/dissertation. The object of this project was to control

through the use of 3D space, a military underwater vehicle. At the time of

writing this project was constructed on a C++ platform however, the

writer did express an interest in using the VRML file format because of

its simplicity of use and its portability.

To expand this paradigm, another project is looking at the

possibilities of using VRML to control processes on the other side of the

world http://www.ai.mit.edu/projects/webot/robot/. A robot's

environment was translated into VRML, upon which the user could move

around to view the robot's environment and make decisions on where the

robot should move, instead of being constrained to photographic 2D

images of the robot in its reality.

Another closely related project is using VRML in artificial

intelligence http://www.coolware.com/lotech/3technology/4ai/. This

project, combined with the previous robot project and this project of

finding shortest paths within VRML's 3D space and an understanding of

the basis of artificial intelligence can be seen, which is an area that the

project delves into.

18

Literature on methodology

Since the structure of the data that needs to be produced is known

this project will follow the data-driven design as described by Marco

(1979) . This methodology is driven by three main principles ;

• Determine the structure of the major input and output data streams.

• Describe data structure in terms of sequence, iteration and selection.

• Make design structure conform to structure of data processed.

This method in combination with a prototyping design, where the

project is continually re-evaluated based on the results produced by

continually improving the prototype, is the basis of the methods that will

be used to complete the project.

Summary of Literature Review

19

VRML is a standard for creating 3D environments. Although still

in its infancy it has a great deal of potential in its uses, as shown

previously. Shortest path algorithms have been used extensively in

computer science for the application of finding the shortest route from

one point to another. Through a review of the literature the foundations

of the project have been laid, which is to incorporate a shortest path

algorithm into the 3D realm of VRML utilising the Java language and to

show this path through the use of an animated camera, as though the user

themselves was travelling through the path.

Analysis and Design

20

This chapter will examine the framework upon which the project is

based. It is through this theoretical framework that development has

taken place.

21

Choice of development environment

In order for pathfinding in VRML to work a programming

language is needed to produce the data structure necessary for the

creation of paths. There are two specified methods to utilise languages

within VRML, one is internal the other is external. For this project there

seemed to be two viable options of using these languages to complete the

projects objectives.

• Head Up Display

• Applet - operating as 2D GUI to the world.

A HUD that was actually embedded into the VRML world would

use the internal method. The entire code would reside within the . wrl file

thus the code would be a part of the VRML scene graph. There are

currently three supported languages for this internal method (support for

the languages differ from plugin to plugin) these being VRMLScript,

JavaScript and Java. The first language VRMLScript was discounted

straight away because it was still in its infancy and too simple for

extensive work too be done. Javascript was originally the choice to be

used in relation to a HUD, however it was soon realised that the language

did not have the features required for pathfinding.

This is because the previous two are scripting languages, in that

they are created for a specific purpose (simple interactions in VRML and

HTML interaction). Thus Java, an object orientated programming

language was the choice. However, development of a useable HUD was

slow. The issue of designing a scrollable list on a HUD proved to be a

real barrier and the project was slowly drifting into the areas that it was

not intending to investigate (constructing 3D GUis). It was at this time

22

that a decision was made to use an external 2D Java applet to control the

VRML world, using a kiosk mode metaphor.

Java is an object-oriented programming language developed by

Sun Microsystems. Java is compiled to an intermediate byte-code which

is interpreted on the fly by the Java interpreter which resides on a client

machine. Java programs cannot access arbitrary addresses in memory.

This is what makes Java, in theory, able to execute on any platform

regardless of its architecture. Java applets can be sent in the same manner

that an HTML page is sent on the request of the user. However, as stated

before, it is not like HTML or VRML which are description languages.

Java is a fully functional object orientated programming language.

This project has created a Java applet which in turn controls the

pathfinding aspects of the VRML world through the viewpoint contained

within the world.

However, for communication between a VRML world and an

external Java applet an interface between the two is needed. This

interface is call an External Authoring Interface (EAI) and it defines the

set of functions on the browser that the external environment can perform

to affect the VRML world. The EAI acts as a layer between the VRML

world and the Java applet as shown in Figure 2.

Figure 2: VRML, EAI and Java

A detailed analysis of how· this system works will be given later.

VRML

EAI

Project Design

The design of this project is centred around the whole project

appearing on one HTML page. Within this HTML page their are two

embedded objects, the VRML file and the Java class file as shown in

Figure 3.

23

)$;'.VRMUJava Project 1997 • Netscape 1!1013

lmagemap I Touchsensor Emnfonment I l3iJ

,----environment------,

x , 279

Y , 1.5993446

z, ·224

building outside

jTueDec 1 6 1 5,54,37 PS

Figure 3: VRML and Java applet

The Java applet has been divided into six separate panels, each

panel having different functions that can be performed. The following

list highlights the name of these panels. More detail on these panels and

their functions can be found in Appendix D (user guide).

• Environment - A general panel that is first seen by the user when

entering the HTML page as shown in Figure 3. It is used to give the

user general information about their place in VRML world.

24

• Touchsensor - This panel allows the user to find the names of

buildings by clicking on the building in the VRML world. A birdseye

map of the world in the Java applet highlights the building. (Appendix

D).

• Imagemap - This panel uses the same metaphor as above but the user

clicks the map in the Java applet and they are teleported in the VRML

world to the building entrance. (Appendix D).

• Paths and maps - Similar to the previous panel but instead the shortest

path between the user' s current position and the destination is shown.

(Appendix D).

• User Input - This panel allows the user to enter coordinates and

orientation upon submission of these coordinates the user teleports to

this position. (Appendix D).

• Teleportation - A list is presented to the user upon which clicking on a

building's name in the list, the user teleports to the building's

entrance. (Appendix D).

• Pathfinding - Similar to the teleportation panel, instead the shortest

path is shown through the use of the camera. (Appendix D).

This whole applet was developed to give the user a sense of place

within the VRML world and allow the user to move around the VRML

world without the need to navigate with the VRML navigation tools,

which at times can be difficult to use. In order to fully understand the

project, a brief description O!} how VRML works will now be given.

25

VRML basics

In construction, blueprints are used to specify the layout of a

building. VRML scene graphs are blueprints for building three

dimensional worlds. It specifies and organises the structure of the VRML

world.

This scene graph can be described using simple words and

punctuation. As such VRML files are written in plain text, so they can be

created using a simple text editor. This is the reason HTML experienced

such explosive growth.

The three most important components of a VRML scene graph are

nodes, fields and routing.

Nodes and fields

There are approximately 60 node types to choose from in VRML.

A node in VRML is an element that implements some functionality. The

name of the node indicates its basic function ie (Cone, Transform etc).

Each node contains a list of fields, which holds values that define the

parameters for its function. Below is an example of the syntax of the

Cylinder node, bold indicates that it is a part of the syntax for a VRML

file.

Cylinder

field SFFloat radius 1 . 0

field SFFloat height 2 . 0

field SFBool side TRUE
field SFBool top TRUE
field SFBool bottom TRUE

{

}

26

• Field - their are five fields that determine the parameters for the

function of a cylinder. If none of these fields are used in the syntax

of the VRML file then they are set to the default values as shown

above. A node's fields has two types of specifiers, type specifier

and class specifier.

• type specifier - the type specifier deals with what type of

information is stored within the field. SFFloat stands for

Single Field Float which is one floating point number

which for the cylinder is the type specifier for the radius

and height field. The other 3 fields have SFBool type

specifiers (holds a value of either true or false).

• class specifier - the class specifier indicates which one of

four classes to which a field can belong, these being

• field (static cannot be changed once set);

• eventln (field can receive events),

• eventOut (field can send events),

• exposedfield (field can send and receive events).

Making a VRML file (.wrl) with just a cylinder node will not do

anything. The cylinder node specifies only the geometry of the object,

not its appearance. VRML also has an appearance node. Once you have

geometry and appearance this can form the basis of a VRML object. All

that is needed to do is to associate the geometry with the appearance. In

VRML this is achieved with the Shape node. Its definition looks like

this:

Shape {

appearance

geometry

}

27

Because the type specifier for both of the fields is SFNode (Single

Field Node), the fields in these nodes accept other VRML nodes. Thus,

the simplest scene graph in VRML might look like this:

Shape {

geometry Cylinder{ }

}

This scene describes a cylinder which uses the default values for

both its geometry and appearance (2mtr height 1 mtr diameter and the

colour white) because no data was entered into their fields, this scene in a

browser would look like Figure 4.

!,i!,(Nctscopc • [@c:///CI/WINDOWS/DESKTOP/PROJECT/OOCS/CYLWRLJ l!!lr;JEi

Figure 4:. VRML basic scene

VRML uses a Cartesian coordinate system. Every point in the

world can be described by a set of three numbers, called a coordinate.

28

These three numbers are represented by X Y and Z. The X component

places the object right and left in the world. The Y component places the

object up and down in the world and the Z component which places the

object nearer and farther from the front of the screen. In the preceding

example of the cylinder, because there were no coordinates associated

with the Shape node, the shape is placed at the default coordinate O O 0.

Coordinates in VRML are defined in units which are metres in the

VRML file. In order to place objects throughout the scene, another node

must be used to move the shape, the Transform node. So to move the

cylinder to the coordinate point of { 3,2,2 } (3 meters to the right, 2 metres

up, 2 metres closer to the viewpoint) the following syntax is required in

the VRML file.
Transform {

translation 3 2 2

children

Shape {

}

geometry Cylinder { }

}

producing the following result in Figure 5:

29

!ll,r Netscape • (flle:///CI/WINDOWS/DESK .•. T /DOCS/DEVEL0-1/CYLWRLJ l!ll'i:I £i

Figure 5: VRML basic scene no. 2

By combining these nodes, one can construct the form that is used

to describe the world, So that the following VRML scene would produce

the accompanying screenshot.

Transform {

}

translation 3 2 2

children Shape

{
geometry Cylinder { }

}

Transform {

}

translation 1 - 2 - 2

children Shape

{

}

appearance Appearance {
material Material {

di ffuseColor O O 1

}

}
geometry Cone { }

The above VRML syntax would produce the scene in Figure 6.

30

Q,. Netscape • (file:///Cf/WINDOWS/DESK .•• T/DOCS/DEVEL0-1/CYL\IIRLJ ll!!lr;f;I £1

Figure 6: VRML basic scene no.3

By building a scene using these nodes a user would have

constructed a scene graph, an example is shown below.

Scene Graph

A simple scene graph for describing a 3D world. This scene graph

(Figure 7) is of the previous VRML syntax of the cylinder and cone.

Transform Node

Shape Node

Figure 7: VRML scene graph

VRML and the project

For the purpose of this project it is important to understand the

concept of some other nodes; Viewpoint, TimeSensor,

Positionlnterpolator and Orientationlnterpolator.

Viewpoint

3 1

The Viewpoint node is used to set up the actual view that the user

sees within the VRML world. The following is the Viewpoint node

definition;
Viewpoint

{

}

eventin
exposedField
expos edField
exposedField
exposedField
field
eventOut
eventOut

SFBool
SFFloat
SFBool
SFRotation
SFVec3 f
SFString
SFTime
SFBool

set_bind
fieldofView

j ump
orientation

position

description
bindTime
i sBound

0 . 7 5 3 9 8

TRUE

0 0 1 0

0 0 10
\\ II

In the previous examples of VRML syntax, no Viewpoint node

was used thus the default Viewpoint was used. The default position for

the viewpoint is O O 10. To change this the user would need to specify a

new position by using the Viewpoint node.

Viewpoint {
position 3 0 7
#all other fields are s t i l l default

}

Transform {

}

translation 3 2 2

children Shape

{
geometry Cylinder { }

}

Transform {
translation 1 - 2 - 2

}

children Shape

{

}

appearance Appearance {
material Material {

di ffuseColor O O 1

}

}
geometry Cone { }

32

The viewpoint has now moved to the right 3 metres and forward 3

metres from the default shown in the previous screenshot, Figure 6.

� Nehcope • (file:///CIIWINOOWS/OESK. •. T /DOCS/DEVEL0-1/CYLWRLJ l!lr;f £1

Figure 8: VRML & the Viewpoint

Below is the starting viewpoint of VRML world that was used in the

project.

DEF CAM Viewpoint {
position 2 7 9 . 1 1 . 6 - 2 2 4 . 1

orientation O 1 0 1 . 57 1

fieldOfView 0 . 7 854

description 11 CameraO l 11 }

33

The most important fields in the Viewpoint node in regard to the

project, is the position and orientation node. The position field obviously

defines, in the VRML space, the location of the camera or viewpoint.

The orientation field defines the direction that the view is facing, which

on a basic level is either north, south, east or west. The 'DEF CAM'

syntax is used to give the node a name so that events can be sent to this

node to change data in the nodes' fields. Because the object of

pathfinding is to produce an animated viewpoint of the path, animation

nodes must be used to send new positions and orientations to the

Viewpoint node. This is where the Positionlnterpolator and

Orientationlnterpolator nodes are used.

lnterpolators

To move the viewpoint from a position of O O 10 to 3 0 7 the

position of every coordinate between these two coordinates needs to be

sent to the viewpoint such as 1 0 9 etc. This is what interpolation

achieves. Below is the definition for the Positionlnterpolator.

Positioninterpolator

{

}

eventin
exposedField
exposedField
eventOut

SFFloat
MFFl oat
MFVec3 f
SFVec3 f

set_fraction
key []

keyValue []

value_changed

To illustrate how the interpolator works, some simple values will

be added to the key and keyValue fields such as;

Positioninterpolator

{

}

eventin
exposedField
exposedField
eventOut

SFFloat
MFFloat
MFVec3 f
SFVec3 f

set_fraction
key [O , 1]

keyValue [O o 10 , 3 o 7]

value_changed

, -

34

An interpolator node, whether it be for orientation, scale or

position, has a list of numeric values called keys and a list of values to

interpolate called key values. The type specifier for the key value is

determined by the particular interpolator. Every interpolator has a

set_fraction eventin. When this event is received, its value is matched to

one of the keys. If a match is found, the key value corresponding to that

key is sent out. Thus if the set_fraction receives an eventln of O the

match of O is made at position 1 in the key and the first position in the

keyValue is sent out (value_changed = 0 0 10) and the same with the key

of 1 (3 0 7). If a value of .5 is received the formula for the interpolator

computes the middle distance between the key values between position 1

and 2 (1.5 0 8.5). By routing the value_changed field to a Viewpoints

position, an animated path can be created.

However one thing missing is the value for eventln field

set_fraction, which is the role of the TimeSensor node. In order to

understand the role of the Timesensor node in this project the concept of

routing in VRML must be understood first.

Routing

In VRML, routes are the wiring that makes animation and user

interaction possible. The route command at a basic level looks like this;

ROUTE Nodel . isActive TO Node2 . set_on

In this example, the field isActive of Nodel is true when it is

activated. This true value is then sent to the field set_on in Node2

.

35

therefore set_on is now true. This is much in the same way a light switch

is used to turn on a light.

Time Sensor

The TimeSensor node generates time related eventOuts and this is

its definition;
TimeSensor

{

exposedField
exposedField
exposedField
exposedField
exposedField
eventOut
eventOut
eventOut
eventOut

}

SFTime
SFBool
SFBool
SFTime
SFTime
SFTime
SFFloat
SFBool
SFTime

cycleinterval 1
enabled TRUE

loop FALSE
start Time 0
stopTime 0
cycleTime
fraction_changed
i sAct ive
time

The most important field in this node is the fraction_changed field.

This eventOut generates increasing SFFloat values from O to 1 as time

proceeds. These values are routed from this field to the interpolators

set_fraction, which as discussed before, is used to find the keys and the

corresponding key values. Therefore the number of keys = number of

keyvalue sets. Also the key field of the interpolator can never go higher

than 1, thus all keys represented must be between O and 1. Below is an

example of how animation works in VRML. In this case the Viewpoint is

being animated but any object's position can be animated by changing its

position value in its Transform node.
DEF CAM Viewpoint {

position O O 10

}

Transform {

}

translation 3 2 2

children Shape

{
geometry Cylinder{ }

}

DEF CAMTIME TimeSensor { loop TRUE cycleinterval 5 } ,
DEF CAMPOS Positioninterpolator {

key [0 , 1]

keyValue [O O 10 , 3 0 7] } ,
ROUTE CAMTIME . fraction_changed TO CAMPOS . set_fraction

ROUTE CAMPOS . value_changed TO CAM . set_position

Upon loading this world file, the Viewpoint is continually

36

animated (loop = true) from the position of O O 10 to 3 0 7 with each loop

taking 5 seconds to complete. Routing in VRML is used to send events

from one field to another as the last two lines of the previous example

illustrate.

Below is the initial set up of the Positionlnterpolator and

Orientationlnterpolator within the VRML world used for the project.

DEF CAMTIME TimeSensor { enabled FALSE}

DEF CAMPOS Positioninterpolator {
key [0 , 1]

keyValue [0 0 0 0 0 0] }
ROUTE CAMTIME . fraction_changed TO CAMPOS . set_fraction

ROUTE CAMPOS . value_changed TO CAM . set_position

DEF OCAMTIME TimeSensor { enabled FALSE}

DEF CAMROT Orientationinterpolator {

key [0 , 1]

keyValue [O O O O O O O O] }

In this project, for both the Positionlnterpolator and

Orientationlnterpolator their are separate Timesensor nodes. Although

one could have been used the reason for two will be provided later. Also

both TimeSensors are currently turned off ie enabled= false. Via the use

of the Java applet, this will be turned on as values are sent to the

key Value field of both the interpolators from the construction of a path.

VRML, EAI and the Java applet

37

For communication between a VRML world and an external Java

applet, an interface between the two is needed. This interface is called an

External Authoring Interface (EAI) and it defines the set of functions on

the VRML browser that the external environment can perform to affect

the VRML world. The EAI described here is designed to allow an

external program (referred to here as an applet) to access nodes and its

subsequent fields in a VRML scene using the existing VRML event

model.

To Java, the EAI is just anther set of classes with methods that can

be called to control the VRML world. To VRML, the EAI is just another

mechanism that can send and receive events, just like the rest of VRML.

In order to explain how the EAI works with the applet and the

VRML world, a simple example of teleportation which was created in the

teleportation panel will be used to illustrate the workings of the project.

Teleportation in VRML is achieved by changing the position and

orientation values in the Viewpoint node. The Viewpoint node in the

VRML file has been defined by the word 'CAM'.

The first thing done in the Java file is to declare the fields that are

to be use in teleportation as shown below. Both the eventln and eventOut

of the position and orientation field. Strictly speaking, only the eventin is

needed the eventOut is used to provide the user with information on what

the new position and orientation fields now hold.

EventinSFVec3f translation = nul l ;
EventOutSFVec3 f newtrans = null ;
EventinSFRotation rotate = null ;
EventOUtSFRotation newrot = nul l ;

The data types these variables hold are shown by its data type

declaration (EventinSFVec3f) which holds 3 floating point values and

SFRotation which holds 4 floating point values.

38

The next thing that needs to be obtained is a reference of the

VRML file when the applet is initialized, by using the following code in

the init() method of the Java applet.

//ge t ting a hold the browser and embedded fil e (VRML)
//this i s for netscape browsers only.

JSObj ect win = JSObj ect . getWindow (thi s) ;

JSObj ect doc = (JSObj ect) win . getMember (" docwnent ") ;

JSObj ect embeds = (JSObj ect) doc . getMember (11 embeds 11) ;

browser = (Browser) embeds . getSlot (O) ;

As shown before nodes in VRML can be named using the DEF

function. Any node that has been defined can be accessed by the applet.

Once a pointer to a node is obtained the eventlns, eventOuts

(exposedfields have essentially an eventln and eventOut) of that node

can be accessed as shown from the code below from the ecu.java file

which compiles to make ecu.class.

//ge t ting a hol d of the VRML nodes
Node camera = browser . getNode ("CAM") ;

Once the node has been accessed, the fields of these nodes can be

accessed. In this case, the field's name is set_position and not position.

This is because the position field is an exposedField and has both a

eventln and eventOut thus these are called set_position and

position_changed respectively, although strictly speaking both fields

have the same value.
//get ting a hold of the VRML fields Even tin contained wi thin
the nodes
translation = (EventinSFVec3 f) camera . getEventin (" set_position") ;

rotate = (EventinSFRotation) camera . getEventin ("set_orientation") ;

//get ting a hold of the VRML fi elds Eventou t con tained wi thin
the nodes
newtrans = (EventOutSFVec3 f) camera . getEventOut ("position_changed") ;

newrot = (EventOutSFRotation) camera . getEventOUt (" orientation_changed") ;

Once this has been achieved i.e. a handle to these two fields has

been obtained, new values can be assigned to these fields.

39

40

Teleportation

If the user was to double click on building 6 in the list contained in

the teleportation panel, the first thing that is executed is the following

code.

case,

else i f (l . getSelectedJ:tem () == "building 6 11)

{

teleportation (b6, east) ;

This enacts the teleportation method sending it 2 arguments, in this

float b6 [] = { 3 47 . S f , 1 . 6f , - 2 0 4 . 7 f } ;

float east [] = { O f , lf , O f , - 3 . 14 2 f } ;

The teleportation method then executes;

public void teleportation (float [] telepos , float [] telerot)

{

translation . setValue (telepos) ;

rotate . setValue (telerot) ;

The data contained within the two arrays are sent to the

teleportation method, then they are assigned to the translation and rotate

object reference which was shown before;

translation = (EventinSFVec3 f) camera . getEventin ("set_position") ;

rotate = (EventinSFRotation) camera . getEventin ("set_orientation") ;

Because this data type is an eventln the new data is sent to the

Viewpoint node defined as 'CArvJ'. In this case, the entrance of building

6 which is facing in a easterly direction.

}

}

4 1

This is the basis of how the EAI works. It is simply a tool to allow

VRML worlds and Java applets to talk to one another, allowing events to

be passed backward and forward to one another.

In order to observe events that are changing within the fields of

nodes, another class called the EventOutObserver is needed. The

EventOutObserver gets the eventOut of fields from the VRML world. All

eventOuts (value of field) need to be referenced first such as;

newtrans = (EventOutSFVec3 f) camera . getEventOut ("position_changed") ;

newrot = (EventOutSFRotation) camera . getEventOut ("orientation_changed") ;

After a reference is made to the eventOut, it has to advise the

eventout of the data to the EventOutObserver, in this case using a method

declaration;
newtrans . advise (this , new Integer (3)) ;

newrot . advise (this, new Integer (15)) ;

Then the callback method in the applet has to be overridden, to

match the abstract method signature of the EventOutObserver, such as

below;

public void callback (EventOut who, double when, Obj ect which) {
Integer whichNwn = (Integer) which;

Then the callback method can be used to observe any changes that

are being watched within the VRML file as shown below. Using the

teleportation function, the new position and orientation are placed in

textAreas for the user to observe.

public void callback (EventOut who , double when, Obj ect which) {
Integer whi chNwn = (Integer) which;

if (whichNwn. intValue () == 3) {
float [] val = newtrans . getValue () ;

float [] val 2 = newrot . getValue () ;

}

42

textAreal . appendText (11x 11 +
Math . floor (val [O]) + 11 , 11 + 11y 11 + val [l] +
11 , 11 + 11 z 11 + Math . floor (val [2]) + 11 \n 11) ;

textArea3 . appendText (val2 [0] + 11 , 11 + val2 [1]
+ 11 , 11 + val2 [2] + 11 , 11 + val2 [3] + 11 \n 11) ;

}

}

43

The shortest path algorithm

Shortest path algorithms differ in complexity, more percisely what

differs from one algorithm to another is accuracy against execution time.

The more accurate an algorithm is, the longer the computational time it

requires. In the case of finding the shortest path, this computational time

is taken up in generating alternative paths.

As mentioned during the literature review, shortest path algorithms

can be divided into two categories, some path and optimal path.

The some path algorithms just find paths from the root node to the

end node. It is the first path that is generated that is defined as the path

between the start and the end. Whether this path is the shortest depends

upon the structure it is working on and the number of nodes, because

they do not compare paths to other paths, they simply find paths. Due to

their lack of accuracy, these types of algorithms were not a serious

consideration for the project. Although computationally they can be very

efficient and quick, it is not evident that they have found the shortest

path.

The second type of shortest path is the optimal path, which is when

the likely shortest path is found in proportion to the amount of

computation that it takes.

The first method to solving the shortest path from one coordinate

to another is to build all possible paths and calculate the distance of each

path and then return the shortest path. This method will always return the

shortest path (accurate) but it is extremely wasteful of execution time,

especially for a large group of nodes. In this project 22 nodes are used

and it is possible to create 1 OOO' s of possible paths. The method is

known as the 'British Museum' or 'greedy' method and was not

considered for the project.

The accuracy needed in finding the shortest path, determines the

eventual algorithm. A balance must be struck between the need for

accuracy and quickness.

44

The two algorithms considered seriously for the project are the

Dijkstra algorithm and the A* algorithm. The Dijkstra algorithm tends

towards the greedy side of solving the shortest path, whereas the A*

algorithm is computationally more efficient. However, Dijkstra algorithm

works best when the nodes of the tree graph are tightly bound together

and nodes tend to connect to many other nodes. The A* algorithm is

most accurate when nodes are relatively spaced apart with a smaller

number of connections. As the eventual higher order data structure

within the VRML world would fit this second description, the, A*

algorithm was used.

The structure of how the A* algorithm performs is shown in

Figure 9.

To do A * with lower bound estimates:

1. Form a queue of partial paths. Let the initial queue consist of

zero-length, zero-step path from the root node to nowhere.

2. Until the queue is empty or the goal has been reached,

determine if the first path in the queue reaches the goal node.

2a. If the first path reaches the goal node do nothing.

2b. If the first path does not reach the goal node:

2bl. Remove the first path from the queue.

45

2b2. Form new paths from the new path by extending

one step.

2b3. Add the new paths to the queue.

2b4. Sort the queue by the sum of distance

accumulated so far and a lower bound estimate

of the distance remaining, with least distance

paths in front.

3. If the goal node has been found announce success, otherwise

announce failure.

(Winston, 1984)

Figure 9: A* algorithm

How this algorithm was implemented will be shown in the development

chapter.

46

Development

Construction of a higher order data structure

In order for pathfinding to work within VRML, a higher order data

structure had to abstracted from the VRML world and made accessible in

the Java applet. VRML deals in form but what was needed were

coordinates in the VRML world to be used as nodes in the construction

of paths in the Java applet. In this case, the structure had to be a set of

coordinates extracted from the VRML model as shown in Figure 10.

Figure 10: Coordinates from the VRML world

This screenshot of the world file used in the project (shown only in

wireframe to indicate the coordinates) shows 22 white spheres (not all

can be seen). These spheres, which are only shown here for

representation purposes (they are not a part of the ecu. wrl file) represent

coordinates in the VRML world, with most of the coordinates being

entrances to buildings. The other coordinates are special nodes used to

connect other nodes together.

This is because for pathfinding in VRML to work, nodes have to

be 'line of sight' to construct paths. Remembering that the

Positionlnterpolator uses a linear interpolation between two points ie a

straight line from the coordinate of building 6 can not go directly to the

canteen because it requires it to go around a corner thus the point in the

middle that is not outside of any building is called nl . All other points

are named after the building that they are associated with (guild, b3,

library etc). To get a better understanding of how these coordinates can

form a graph so that shortest paths can be found, a view from the top of

the ECU world needs to be shown as in Figure 11.

�
I

building 1 4
building 1 5 building 1 6

canteen
building 1 3 building 1 7

building 1 8

Figure 11: Top of the VRML world

47

From this screen shot the basis of pathfinding can begin. Nodes are

represented by coordinates from the VRML world and edges are

constructed on the basis of whether the coordinate can connect with

� I I

48

another coordinate without it going through something solid like another

building. In order to illustrate this structure in more detail an example

will be used on a smaller area containing only 7 coordinates as shown in

Figure 12.

canteen building 1 3

guild

building 6

Figure 12:Top of VRML with just 7 coordinates

This screenshot with the coordinates can be represented in a 2

dimensional diagram in the following way;

Diagram of a 2D representation of the VRML world (Figure 12).

Figure 13:2D graph representation of figure 11

49

As can been seen, the basis of pathfinding relating back to how

shortest paths work, can now be seen. Whether coordinates are also

elevated in the world, like the first floor of the library does not matter

because this is just another node which is connected only to the node at

the front of library and obviously to the second floor of the library. It has

to be stated though in order to go from the first floor to the second floor

intermediate coordinates are used to go up the stairs. The whole

representation of the points in 3D can be flattened into a 2D diagram,

which enables the structure to be represented within the Java applet. As

Figure 14 shows.

Figure 14: 2D representation of 3D scene

Higher order data structure in Java

The basis of pathfinding in VRML requires the following

information being available in the Java applet;

• The coordinates in space.

• What coordinates are connected to what coordinates (edges).

50

• What is the distance between these connected coordinates (the weight

of the edges).

To illustrate shortest paths, an example of just 7 coordinates

(guild, library, building 3, canteen, n l , building 6, n4) will be used,

although in the final project 22 coordinates were used. The first thing

that was stored in the Java applet were the coordinates in the VRML

world. This was achieved by using a multiple subscripted array, in this

case 6 rows (the number of coordinates) by 3 columns storing the X Y

and Z of a coordinate, as shown below the array is declared;

float points [] [] = { { 2 8 6 . 7 £ , 1 . 6£ , - 19 1 . 4 £ } , / / guild

{ 2 5 5 . S f , 1 . 6 £ , - 2 2 2 . 8 £ } , / / l ib

{ 2 8 0 . 8 £ , 1 . 6 £ , - 17 7 . 2 f } , / /b3

{ 27 9 . lf , 1 . 6 £ , - 2 2 4 . lf } , / / can

{ 2 8 2 . lf , 1 . 6£ , - 2 07 . S f } , / / nl

{ 3 47 . Sf , 1 . 6£ , - 2 04 . 7 f } , / /b6

{ 3 3 6 . lf , 1 . 6£ , - 2 07 . 4 f } } ; / / n4

The second piece of information that needs to be declared is what

coordinates connect to what coordinates i.e. does the library connect to

building 3 etc. This is achieved again by using a multiple subscripted

array determined by the number of coordinates by the number of

coordinates (7x7).

float edges [] [] = { { 0 , 0 , 1 , 1, 1, 0 , l } , / /gui ld
{ 0 , 0 , 0 , 1 , 1 , 0 , 0 } , / / l ib
{ 1 , 0 , 0 , 0 , 1 , 0 , 0 } , / /b3
{ 1, 1 , 1 , 0 , l, O , O } , / / can
{ 1 , 1 , 1 , 1 , 0 , l , 1 } , / /nl

{ 0 , 0 , 0 , 0 , 1 , 0 , 1 } / /b6

{ 1 , 0 , 0 , 0 , 1 , 1 , 0 } } ; / /n4

5 1

Taking the first row which reads O O 1 1 1 0 1, this row determines

what is connected to the guild coordinate thus;

0 (first column) - indicates that the guild is not connected to itself

because the guild is row number 1 in the array.

0 (second column) - indicates that the guild is not connected to row 2

which is the library.

1 (third column) - indicates that the guild is connected to building 3.

1 (fourth column) - indicates that the guild is connected to the canteen.

1 (fifth column) - indicates that the guild is connected to n l .

0 (sixth column) - indicates that the guild is not connected to building 6.

1 (seventh column) - indicates that the guild is connected to n4.

One piece of information missing is the weight of each of the

edges (distance), which is completed on the fly as the pathfinding

function is executed. Distances could have been placed within the array

instead of just using a 1 to show that it is connected, but this would have

meant manually calculating each distance and placing it within the array,

a procedure that may have introduced errors and is not portable.

The following array was used for purposes of relating information

to the previous two arrays, in that row 1 in all the arrays gives

information about the guild, i.e. where it is, what is connected to it and

what is its character ('a') . This array uses characters and thus is limited to

127 coordinates in the VRML space, but it could have easily

accommodated string values, for purposes of simplicity characters were

used only.

char label [] = { ' a ' / *guild*/ ,
' b ' / * l ib* / ,
' c ' / *b3 * / ,
' d ' / *can* / ,
' e ' / *nl * / ,
' f ' / *b6 * /
' g ' / *n4* / } ;

52

Pathfinding in Java and VRML

53

To solve the problem of finding the shortest path from one

coordinate to another in the VRML world, the problem was broken down

into four smaller functions. The first function solves the nearest

neighbour problem. The second function finds the actual path, while the

third function converts the shortest path into coordinates and

orientations. The last function is that these coordinates and orientations

are then sent in pairs to their respective interpolator until the viewpoint

arrives at its destination. These functions will be explained in more detail

in this chapter.

In order to better understand these functions the following scenario

will be used. The user has entered the VRML world and has moved

manually to a position somewhere between the canteen and the library

(Figure 15).

b •

• 1 I • users

current canteen
position

" '

building 1 3

e •
guild

building 6

building 3

Figure 15: User's current position and orientation in VRML world.

Given this the user wishes to go to the entrance at building 6 'f'

and has clicked on the building's name in the pathfinding panel of the

Java applet.

g

•
•

54

Initialisation of the pathfinding

When the user clicks on a destination two things happen. The first

is that two arguments are sent to the nearest neighbour method. In this

case because the destination is building 6, the arguments 'f' (character of

building 6) and the integer '5' (the row number regarding information on

building 6, its coordinate and what is connected to it, remembering that 0

is row 1) are sent and this is the endpoint of the path. Also three variables

are set up (X Y Z) to identify the end of the animated path and thus

turning it off through the use of the EventOutObserver, but this situation

does not happen till the end where it will be explained in more detail.

55

Nearest neighbour

The nearest neighbour function only knows one thing at execution

and this is the destination coordinate (node). The function of nearest

neighbour is to find the user's current position and from this find the

nearest coordinate in the points array (data structure) that the user is

closest to.

Within VRML a user could be anywhere, thus the first problem to

be solved is to find where the user is (Viewpoint) and find the nearest

coordinate (neighbour) to the user's current position (put the user on the

data structure). The user' s current position is obtained by using a global

proximity sensor. A proximity sensor node in VRML sends out events

when the user enters or exits a defined region of the scene. While inside

this region, it reports the users location during movement. Thus by using

this node that encompasses the whole ECU world, the user's present

position can always be traced. The proximity sensor used in the project is

shown below.

DEF GLOBALPS ProximitySensor {

size 1000 6 6 1000

}

A field not shown here is the position_changed field which has a

class specifier eventOut. This field relates the position of the Viewpoint

inside the ECU world. This eventOut is routed to the Java applet as a

SFVec3f type specifier which is 3 floating points for X, Y and Z.

Once the user' s current position has been obtained, it can then be

compared to all the other coordinates in the points array which is a part

of the higher order structure, as the following pseudocode illustrates.

nearest_neighbour:

GET endnode_character

GET endnode_index

GET users_cmTent_position

DOWHILE x =0 x <= number_of_coordinates x++

ENDDO

SET distance TO users current_position - coordinate_position

IF distance < lowest_distance

SET lowest_distance to distance

SET index TO index_of_closest_coordinate_position

ENDIF

ADD character[index] TO root_path

IF character[index] != endnode_character

findpath

ENDIF

Figure 16: Pseudocode for nearest neighbor function (Java source code pg132)

The user's current position is mapped to the closest node within

the higher order structure or the points array.

56

Thus this section takes the users current coordinate from the

proximity sensor and by looping through every coordinate calculates

which coordinate is the closest to the user simply by using pythagoras, as

shown in Figure 17, for the first four loops.

$
b

gu i !d

canteen I l ";;;:::====' g

it:= :-.,.-,x

57

�b _;;;:;:*d
$

L==�l g l ·-
cante e n

f'J/ f

�:· if: i: .:,..-.�

distance/ram user's current position to 'a ' distance/ram user's current position to 'b '

$
b

gu i ld

cantee n I l '=====' g
® f

f C

$ �I cante e n l g l b
® f

� @, .f @ C

distance from user's current position to 'c ' distance/ram user's current position to 'd'

completed for all other nodes, 'e' , 'g' etc

Figure 17: finding nearest neighbour

Once the closest coordinate has been found, the index of this

coordinate from the points array is placed within a variable. This is the

index of the path to be extended and it is also the root node within the

label array. This root node is then placed within a queue. As the user's

position, which was abstracted from the proximity sensor is X: 277 .1 Y:

1.6 Z:-226.1, then the canteen coordinate would produce the lowest

distance to the users current position. Thus the queue would read [d], the

character that relates to the canteen.

At the end of this function, the root node [d] is compared to the

end node 'f', to see whether the root node is also the end node. If it is

not, the findpath function is executed.

It was decided during this stage that the user's position should also

map to the same level. This is why the Y point was not considered in the

calculation. Although a user could be closer to a node on a higher or

lower level, it was decided that the root node should be mapped to the

same level that the user was currently in.

58

One weakness of this function is its inability to know whether a

nearest node is on the opposite side of a wall or a building. Minor rework

could not fix the problem as it required a completely different method of

solving the problem using different types of information. For example,

all form in the world would need to be extracted into a database and

straight line comparisons would need to test whether the nearest node

intersects with a solid object. However because the system has been set

up for line of sight between the nodes this problem is greatly reduced.

Finding the shortest path

59

The findpath function has two pieces of information that it knows,

it can tell what the starting coordinate on the data structure is and what

the end coordinate is, the result being that findpath performs, the

function of finding the shortest path between the start and end. Given

that, this is the following pseudocode for the findpath function.

findpath:

SET coordinate_extend TO coordinate[index]

SET coordinate_end TO coordinate[endnode_index]

DOWHILE x=O x<=number_of_coordinates x++

ENDDO

IF edge[index] [x] >= l

ENDIF

SET path TO root_path

IF last element in path != endnode

ADD edge TO path

SET estimate_distance_of_path TO

sum_of_distance_so_far + distance_to_go

ENDIF

IF estimate_distance_of_path < lowest_path_distance

ELSE

SET lowest_path_distance TO estimate_distance_of_path

ADD path TO front of possible_paths

ADD path TO possible_paths

ENDIF

SET check_path_if_end TO first element of possible_paths

IF check_path_if_end last character == endnode

javatovrml

ELSE

SET root_path to first element of possible paths

SET lowest_path_distance TO 9999

findpath

ENDIF

Figure 18: Pseudocode for A* procedure (Java source code pg. 133)

60

The first thing this function does is extend the root node [d] to see

what is connected to the root node, this is where the edges array is used,

1 means there is a connection, 0 means there is no connection.

By scanning through the edges array at row d the fourth row, the

loop checks to see what is connected to the canteen coordinate. The first

connection is the guild coordinate, thus the queue now reads [d,a] . Then

the distance travelled so far from d to a is calculated and is added to the

distance remaining from a to f (as the crows flies) as the following Figure

illustrates.

guild

canteen

�--
distance

to go

building 3

Figure 19: finding the path from the root node to the end node

building 1 3

building 6

This distance gives a rough estimation on the total length of the path.

Distance travelled so far

+ Estimated distance to go

Estimated distance of path

b

� I I

•

\ \

/

g � e

• � d"
___ "@JI 1 t

I
veiled �-

\ o far

This is completed for all possible connections to the d node.

$
b

gu i ld

canteen I l
�= g

f

a

distance from 'd ' to 'a ' and 'a ' to 'f'

$
b

gu i ld

canteen I l
�=- g

® f

distance from 'd ' to 'c ' and 'c ' to 'f'

$
b

distance from 'd ' to 'b ' and 'b ' to 'f'

"==c=a=nt=e=en=1 ==I g l
e

f

distancefrom 'd' to 'e ' and 'e ' to 'f'

Figure 20: All connections from d are made and compared

6 1

The partial path with the lowest estimated distance is placed at the

front of a queue, hence the queue would read as the following;

[[d,e] , [d,a] , [d,b] , [d,c]]

The function then checks to see whether the last character in the

first path from the queue [d,e] in this case 'e' is the destination 'f', if it is

then the java to vrml function is executed otherwise the index of the

coordinate is updated for the last character in this case e = 4 (the fifth

row in the edges array). The whole process then starts again with [d,e]

being the root node which could be called now the root path and all

connections to 'e' are tested, these connections are shown in Figure 21.

$
b

$
b

62

canteen I
l ';;;====g

f

a

distance from 'd, e ' to 'a ' and 'a ' to 'f' distance from 'd, e ' to 'b ' and 'b ' to 'f'

'<;=
===

c=a=nt=e=e=n
======'

l g l
$ canteen l g l b

f

a ®a 1 i ltng

@ c
�-.:,-.:..

distance from 'd, e ' to 'c ' and 'c ' to 'f' distancefrom 'd, e ' to 'g ' and 'g ' to 'f'

$ cante e n l g l b
f

a ®a

f
�

in
g

@ c
,:,..-,:,,.:.

distance from 'd, e ' to 'f' and 'f' to 'f'

Figure 21: All connections from e are made and compared

The algorithm also checks to see whether paths that are being

extended already contain a visited node such as the situation as [d,e,d], as

such this path is ignored. This can occur if the destination is on the other

side of the building and the algor�thm keeps turning on itself. Also by

doing this, it cuts down the time it takes to find the path by dropping

paths that could not be the shortest path.

e f 1J �

®a

1

The whole process in this example ends with [d,e,f] being at the

front of the queue and this is the shortest path, now this path has to be

converted into coordinates for the VRML world' s Interpolators thus the

javatovrml() method is executed.

63

Java to VRML

64

From this section, the path which is the first queue in the master

queue needs to be converted into a set of coordinates for the keyValue

field within the Positionlnterpolator and into set of orientations for the

Orientationlnterpolator. The pseudocode for this section is shown below.

java_to_ vrml

SET shortest_path TO possible_paths(first element)

GET users_current_position

GET users_current_orientation

DOWHILE x=O x<= number_of_characters_in_shortest_path x++

SET path_character TO current_character_in_shortest_path

DOWHILE x=O x<= number_of characters_in_label x++

IF label_character == path_character

ENDDO

ENDDO

SET position_array TO coordinates[label_index]

SET orientation_array[first 3 postions in each row]

ENDIF

DOWHILE x=number_of_elements_in_path x<= number_of_elements_in_path -2 x++

SET orientation_array[3] TO radian_angle

ENDDO

positioninterpolator

Figure 22: Pseudocode for java to vrml function (Java source code pg. 134)

By extracting the labels one by one off the shortest path, the index

of these characters within the label array points to the coordinates within

the points array. These coordinates are then placed within another array

which will be dispatched to the VRML file.

Thus the array that holds all of the coordinates needed for the path

would read as follows;

[[277 . 1 , 1 . 6 , - 2 2 6 . 1] , / /current posi tion proximity sensor

[2 7 9 . 1 , 1 . 6 , - 2 2 4 . 1] , / /nearest neighbour ' d '

[2 8 2 . 1 , 1 . 6 , - 2 07 . 5] , / / shortest path ' e '

[3 47 . 5 , 1 . 6 , - 2 0 4 . 7]] / / destination ' f '

65

This is the set of coordinates needed by the Positionlnterpolator in

order to route its information to the Viewpoint starting position to the

end position. The first coordinate is the user's current position obtained

from the ProximitySensor and the nearest coordinate the second

coordinate, is the canteen coordinate, the last two are the coordinates for

n l and building 6 (current position of user + [d,e,f]).

However the calculations for the orientation of the Viewpoint have

not been evaluated yet, but now the coordinates have been obtained the

orientation of the Viewpoint can be completed.

So far in this project discussion on VRML has been based on

coordinates ie the position field in the Viewpoint and the key value field

in the Positionlnterpolator that have a X Y Z value within the Cartesian

coordinate system. Orientation fields though hold four values.

The first three values in a orientation field is the axis of rotation. In

this project, only one axis of rotation was used, the positive Y axis, upon

which the camera rolls, thus reading O 1 0. The fourth value in a

orientation field is the amount of orientation this is where a radian value

is entered. A full 360 degree turn can be calculated in radians as 2n. Thus

180 degrees would 3.142(n), 90 degrees would be 1.57 and 270 degrees

would be 4.71 radians as illustrated in Figure 23.

, .

X y

- 1 0 0 0 1 0

3 . 1 4 rad i an 1 .57 rad i an

0 .0 rad ian
4 . 1 7 rad ian

0 0 1 0 - 1 0

Figure 23: Orientation in VRML

z

0 0 - 1

axis of rotat ion
is counte rc lockwise
because O 1 0 , if
O -1 O i t wou ld be
c lockwise.

1 0 0

The users current viewpoint orientation is O 1 0 1.57. From a

birdseye view of the campus a better understanding of how radians

compare to the VRML world project can be seen in Figure 24.

0 (west

b 1 .57 (south)
---l'l !It-+--- 4.7 1 (north)

canteen

3 . 1 4 (east)e

guild

Figure 24: Orientation in VRML project

66

67

Knowing that the path is [d,e,f], the radian angle between d

(canteen) and e (n 1) is calculated first. The angle between the user's

current position and the closest coordinate was not calculated because

the whole animation works by the viewpoint moving to the nearest

neighbour coordinate first, and the nearest neighbour coordinate would

then hold the orientation from the user's original orientation (0 1 0 1.57).

Then it is a matter of finding the orientation from the 'd' node to the 'e'

node. This is achieved by first finding the sine of the angle, which is then

converted into radians. This is illustrated below in Figure 25.

l ibrary

b

gui ld

d

Figure 25: calculating the orientation

a

The sine of the angle is calculated using opposite/hypotenuse and

is then converted into radians which in this case is [d,e] is .17 radian. To

check what quadrant this angle is in, the difference between the X and Z

values in the two coordinates is needed. As shown in Figure 26;

0 (west

+X-Z +X+Z
b 1 .57 (south)

e
;----E�I-+--- 4.7 1 (nort h)

-X+Z -X-Z
canteen

3 . 1 4 (east)e

guild

Figure 26: quadrant of the orientation

As the calculation below shows both X and Z have produced

negative results thus the radian of 3.14 is added to the already existing

angle of .17 making the angle of rotation 3.31.

canteen coordinate

n 1 coordinate

279.1 1 .6 -224.1

- 282.1 1.6 (-207 .5)

-3 -16.6

Then the angle for between n 1 and building 6 is calculated which

gives a rotation of 4.67 radian. The final orientation array would look

like the following;

[[O , 1 , 0 , 1 . 57 1] ,

[O , 1 , 0 , 3 . 3 2 07] ,

[O , 1 , 0 , 4 . 67] ,

[O , 1 , O , 0]]

/ /users current orientation
/ / orientation to nl
/ / orientation to building 6
/ / anomaly that is ignored

68

The final orientation in this example is 0, however because the

animation stops before this at the last coordinate this orientation is never

done because it is never sent to the VRML world.

TI"==

a

Thus the two arrays that will be sent to VRML file read as such;

Coordinates
[[277 . 1 , 1 . 6 , - 2 2 6 . 1] , / / current pos ition
[2 7 9 . 1 , 1 . 6 , - 2 2 4 . 1] , / /nearest neighbour
[2 82 . 1 , 1 . 6 , - 2 0 7 . 5] , / / shortest path
[3 47 . 5 , 1 . 6 , - 2 0 4 . 7]] / /destination

Orientation

[[O , 1 , 0 , 1 . 57 1] ,

[O , 1 , 0 , 3 . 3 2 07] ,

[O , 1 , 0 , 4 . 67] ,

[0 , 1 , 0 , O]]

/ /users current orientation
/ / orientation to nl
/ / orientation to building 6
/ / anomaly that is ignored

69

Presently nothing has been sent to the VRML world. At the end of

converting the path into coordinates and orientations a function executes

that sends the first data to show the user the shortest path.

Originally this is where the project might have ended. The two

arrays could have been sent in whole to the Positionlnterpolator and

Orientationlnterpolator, but this led to many problems. One problem was

deciding on how large the array in the Interpolators was to be. This is

because the applet creates a array whose size is determined by the size of

the path. However the size of the Interpolators had to be fixed on

initialisation of the VRML world.

Once the world is loaded the number of key Values cannot change

although its values can. Unfortunately finding the shortest path might

produce the need to use either 5 sets of coordinates to complete the path

or 10 or any number that is possible for the data structure to produce. To

overcome this problem the array was set for 20 coordinates and 20

orientations which made the interpolators look like the following,

DEF CAMTIME TimeSensor { enabled FALSE cycleinterval O } ,
DEF CAMPOS Positioninterpolator {

key [O , . 0 5 , . 1 , . 15 , . 2 , . 2 5 , . 3 , . 3 5 , . 4 , . 4 5 , . 5 , . 5 5 , . 6 , . 65 , . 7 , . 7 5 , . 8 5 ,

. 9 , . 9 5 , 1]

70

keyValue [0 0

0

0] } ,
ROUTE CAMTIME . fraction_changed TO CAMPOS . set_fraction

ROUTE CAMPOS . value_changed TO CAM . set_position

DEF CAMROT Orientationinterpolator {

key

[O , . O S , . 1 , . 15 , . 2 , . 2 5 , . 3 , . 3 5 , . 4 , . 4 5 , . S , . S S , . 6 , . 65 , . 7 , . 7 5 , . 85 , . 9 ,

. 9 5 , 1]

keyValue [O O O O O O O O O O O O O O O O O O O O O O O O O O 0

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O] } ,

In order to fill out the rest of the keyValue field, the last set in the

coordinates array was used to fill out the whole array in the interpolators.

Such as, if their were 7 sets of coordinates once the seventh coordinate

was placed in the position array the remaining 13 places in this keyValue

field was filled out with the coordinate from the 7 th position. However, in

the final analysis this was not so much of a problem as the interpolation

was turned off once it reached its goal. Also if this was not done the

animation would simply sit on the spot for what time was remaining.

The choice of cutting out the interpolator all together and to use

Java to construct interpolators which fed the Viewpoint directly, was

experimented as another option. Unfortunately it proved unreliable,

because the Java applet was now sending hundreds of new positions to

the Viewpoint in a short amount of time through the EAI. This crippled

the system because it was also monitoring the Viewpoint's eventOuts

through the callback. Thus the idea was abandoned and the original large

array in the Positionlnterpolator was used again. The introduction of the

orientation of the camera also led to more problems, that needed a new

way of executing the path. This was because the orientation would occur

over the duration of the viewpoint moving from one coordinate to

another, producing a waltz like movement through the world.

7 1

The project's aim was that the orientation of the animated path was

set to occur at every coordinate. To what angle the orientation occurs

depends on the position of the next coordinate so that in the final

animation the following occurs; move to position, stop moving, orientate

to next position, move to position, stop moving, orientate to new position

etc.

In order to do this however the interpolation under the original

idea had to stop and start for each interpolator, i.e. one would execute

then stop and then the other would execute and stop and then back to the

other interpolator creating a ping pong effect.

Originally this was to be done setting the TimeSensor to start

generating its fraction_changed eventOut to at a certain position for

example .5 for the middle of the animation etc. But this method proved

clumsy and it did not solve the original problem of having a large array

for interpolators which had to cover the maximum number of edges in a

path which is n-1 (n = number of nodes).

This is where two more functions were added to solve the problem,

and the callback was used more extensively than just using it to get the

last position to turn the animation off. Under the new set up, the

interpolators could only accept 2 sets of coordinates and orientations, as

shown below;

DEF CAMTIME TimeSensor { enabled FALSE} ,
DEF CAMPOS Positioninterpolator {

key [0 , 1]
keyValue [0 0 0 0 0 0] } ,

ROUTE CAMTIME . fraction_changed TO CAMPOS . set_fraction
ROUTE CAMPOS . value_changed TO CAM . set_position

DEF OCAMTIME TimeSensor (enabled FALSE} ,
DEF CAMROT Orientationinterpolator{

key [0 , 1]

keyValue [O O O O O O O O] } ,

ROUTE OCAMTIME . fraction_changed TO CAMROT . set_fraction
ROUTE CAMROT . value_changed TO CAM . set_orientation

72

Thus the whole system works in the following diagrammatic way.

More detail of this is given in the proceeding pages.

Java applet VRML world

St t ar

EAI
w

pos i t ion interpo la tor \ Posi t ion l nterpo lator ... funct ion ... KeyValue and ,

\
,

pos i t ion [x] + [x+ 1] T imesensor on

l
cal lback of

pos i t ion [x+ 1 J � ViewPoi nt
if e n d then stop e lse � pos i t ion f ie ld

or ie ntat ion i nte rpolator

o ri e ntat ion i nte rpolator Or ientat ion I nterpolator
funct ion ... KeyValue and ,

or ientat ion [x]+[x + 1] T imesensor on

l
cal l back of

o r ientat ion [x+1]
,J I ViewPo i nt

when rea l i sed x++ -
I

o rientat ion f ie ld
pos i t i on i nterpo lator

I

l

Once the previous function converted the path into the two arrays

the first part of the animation was executed. The pseudocode for this

function is shown below.

positioninterpolator

IF x <= number_of_characters_in_shortest_path - 1

SET Postionlnterpolator_keyvalue TO position_array [x] and position_array[x+ l]

SEND Postionlnterpolator_keyvalue TO WORLD

SET animation in Postionlnterpolator WORLD on

ENDIF

(Java source code pg. 135)

Once this is executed the first two coordinates from the position

array are sent to the Positionlnterpolator's keyValue field.

[[277 . 1 , 1 . 6 , - 2 2 6 . 1] , / / current position
[2 7 9 . 1 , 1 . 6 , - 2 2 4 . 1]] / /nearest neighbour

The Timsensors controls are also set up and turned on to start the

animation. The Viewpoint then starts to animate from the users present

position to the canteen coordinate, the nearest neighbour.

l
guild

building 6

building 3

Figure 27: Viewpoint moves from original position to canteen

73

Once these coordinates were sent to the Positionlnterpolator, the

callback (EventOutObserver) would receive the coordinates of the

Viewpoint and waited until the appropriate coordinate in the position

array[x+ 1] had been met, as the following pseudocode illustrates;

call back_posi ti on

IF end_coordinate == Viewpoint_positon

turn_all_animation_off

ENDIF

IF position_array[x+ I] == Viewpoint_position

turn_Positioninterpolator_animation_off

orientationinterpolator

ENDIF

(Java source code pg. 124)

74

The callback for the Viewpoint' s position performs checks for two

values. The first thing it does is to see whether the Viewpoint is at the

final position, if it is, everything is turned off and the animation stops. If

it is not, then it checks as to whether the last coordinate in the first part of

the path has been sent to the Viewpoint' s position field. Once it has then

the TimeSensor is turned off for the Positionlnterpolator (thus turning off

the animation, momentarily) and the orientationinterpolator function is

executed, which is shown below in pseudocode.

orientationinterpolator

IF x <= number_of_characters_in_shortest_path - 1

SET Orientationinterpolator_keyvalue TO orientation_array [x] and

orientation_array [x + I]

SEND Orientationinterpolator_keyvalue TO WORLD

SET animation in Orientationinterpolator WORLD on

ENDIF

(Java source code pg. 134)

75

When this is executed, the first two orientations from the

orientation array are sent to the Orientationlnterpolator's keyValue field

as shown;

[[0 , 1 , O , 1 . 57 1] ,

[O , 1 , O , 3 . 3 2 07]]

/ /users current orientation
/ / orientation to nl

l

guild

building 6

building 3

Figure 28: Viewpoint orientates towards the nl node 'e'

So the first orientation that the user sees is the Viewpoint

orientating from its original position to face the new coordinate that it is

heading too, in this case to n 1.

Another callback then monitors the Viewpoint's orientation field

to check that the last orientation has been sent from the

Orientationlnterpolator to the Viewpoint's orientation. The following

pseudocode traces this callback;

ENDIF

callback_orientation

IF orientation_array[x+ 1) == Viewpoint_orientation

turn_ Ori en tationlnterpo lator_.animati on_ off

x++

positioninterpolator

(Java source code pg. 125)

76

Once the orientation has been realized in the Viewpoint, then the

Orientationlnterpolator is turned off and the index is incremented by one

(x++) and the positioninterpolator function is executed again thus

moving down one row in the position array and sending;
pos itioninterpolator

[[2 7 9 . 1 , 1 . 6 , - 2 2 4 . 1) , / / canteen
[2 8 2 . 1 , 1 . 6 , -207 . 5)) / /nl

guild

building 3

Figure 29: Move from canteen to nl node

and so on;
position_callback

orientationinterpolator

[[O , 1 , 0 , 3 . 3 2 07) ,

[O , 1 , 0 , 4 . 67))

guild

/ / orientation to nl
/ / orientation to bui lding 6

building 3

Figure 30: orientate towards building 6 node

building 6

l

building 6

·l"
��· J

--1�
_• e

1.

orientation_cal lback

positioninterpolator

[[2 8 2 . 1 , 1 . 6 , - 2 07 . 5) , / /nl
[3 4 7 . 5 , 1 . 6 , - 2 0 4 . 7)) / /destination (building 6)

guild

building 3

Figure 31: Move to building 6 node

all animation turned o f f .

77

l

building 6

This whole process goes from the positioninterpolator - callback -

orientationinterpolator - callback - positioninterpolator etc. until the

Viewpoint arrives at its coordinate destination upon which the animation

is turned off and the path is complete. Figure 32 is a screen shot of the

first orientation of this animation. The Viewpoint starts to rotate from the

canteen coordinate towards the n 1 coordinate, in a counterclockwise

direction.

78

)SfVRML/Java Project 1997 • Netscape 1!!10�
·�.· tilt ·Y�*>i·.·l!'*>, • .• < . •,::; ,•,.< ••3:•:/ •>."".·•·· >> ·· .. · .

�, lit/Ill!:• ' ·· ···· · · · ·· ·· ·· · ·· · ·. ·· · ·· · · · ·· · · · ·
f'110t.•>.SCC\lll;i• /il?'e ··. <· .. �• .Jd \, : ; .··.·:' ·•·.·•.f.

NDOWSIDESKTOP\PAOJECT\HTMLIVAML-1.HTM

Figure 32: first orientation in VRML as viewpoint begins to roll from canteen to face nl node

\.\,.� ,� . •. \
)

. �\ 'J ·}\'' . _r�

Extra Pathfmding I Teleportation) User input) Gi(8
�-------pathfinding

79

Results

In order to appraise the results of this project the original goals of

the project will be discussed in conjunction with what the final project

delivers.

The original goal of the project was to,

"To experiment with VRMUJava using pathfinding as an example"

The result being that VRML alone at the present time, although

having the potential, could not fully meet this requirement. However this

was due to the problems of creating a HUD that could be used as an

interface, a situation that could be resolved with future releases of the

VRML specification.

As a tool, VRML and Java together can form a powerful

relationship. Although separately both could deliver a solution (Java can

be used to display 3D graphics) it is together that the two can deliver a

better solution.

The original aim of the project was to investigate the necessities

for pathfinding in a 3D space which has the 6 degrees of freedom X, Y,

Z, roll, pitch and yaw. Four of these freedoms are inherent within the

pathfinding project. The other two, pitch and yaw, were not considered

for two reasons

• The Viewpoint node was used to simulate human movement as

such humans do not pitch or yaw their head when walking.

Originally the camera was to pitch when it went up the stairs to

the first floor of the library but it seemed an unnatural

movement, instead the camera faces forward and moves up the

stairs.

80

• Pitch and yaw are simple extensions to the roll of a camera. In

the case of the roll of the camera the angle was calculated on the

X Z plane for pitch it would need to be on the X Y plane for

yaw Y Z plane. The orientation would need to pivot around on

the X axis and Z axis respectively. Roll in this project uses the

Y axis.

The A* algorithm performed very well. After slightly modifying it

a number of times, it proved to be extremely accurate even after

extensive testing with over 40 different coordinates distributed around

the X Y Z coordinate space. It must be stressed though, that the data

structure determines the best algorithm, in this project it happened to be

the A* algorithm. For other projects, with different data structures in that

nodes are closely bound together etc the results would be different, hence

the use of caution in choosing an algorithm to fit the data structure.

The ability of the A* algorithm to be 100% accurate, suggests that

even though it is computationally efficient perhaps further refinement of

the algorithm could have been achieved without losing accuracy (it took

approximately 9 seconds to find the shortest path from one side of the

campus to the other on different levels with over 40 coordinates in the

graph).

VRML itself, after it was set up to accept small pieces of the path,

performed the animation well at a high frame rate making it for smooth

animation. There was however a· trade off for the smoothness of the

animation, and that was the speed of the animation.

-··-------
···---. .

The animation occurred at approximately lmtr/sec. VRML

however, is able to cope at a much faster speed than this and still retain

smoothness in the animation. The problem was the callback from the

VRML world to the Java applet. As each new position or orientation

animation occurred, the number of new positions or orientations sent to

the Viewpoint node is determined by the size of the cycleinterval field

(which determines the length of the animation) in the TimeSensor node.

If the value was low, then the interpolator would send new events to the

Viewpoint at a much faster speed than if the cycleinterval was higher.

8 1

The problem seemed to be that the EAI was not sending back all

the events, especially the last event which was critical for the next part of

the animation to occur. This is why in the Java code for the project, the

callback looks for the integer value of the position and not the floating

point value. This means that when the animation has stopped at the

destination the actual final position is within l m2 of its accurate final

position which is quite acceptable. For the orientation though, a range

had to be used even when the animation was at l mtr/sec this range was

1 5 degrees .3 radians in either direction any lower and the callback might

miss the needed orientation of the last value. These problems though

relate to the slowness of the hardware and could not be overcome.

Another problem that was never completed for the orientation of

the camera, more particularly the roll, was the problem of the camera

rotating only in one direction (counterclockwise) . It could be possible to

almost do a 360° turn when facing the next node because the axis of

rotation should have been O - 1 0 (clockwise) instead of remaining at O 1

0. At the time of writing though it was realised that this could have been

solved by finding out if the angle of difference was greater than 1 80°

then the axis of rotation needed to be at O - 1 0 if lower then O 1 0.

82

However, the results of this project has resulted in a number of key

steps that need to be performed in order to complete pathfinding within a

VRML world, Figure: 33 indicates the procedure to achieve this.

START

1. Get destination (end node).

2. Find users current position.

2. 1 Map users current position to the closest coordinate

in data structure (root node).

3. Find shortest path between start node and end node.

4. Convert shortest path into VRML coordinates.

4. 1 Calculate orientation from VRML coordinates (pitch

and yaw would be done here too).

5. REPEAT until end node is realised.

END

5. 1 Send coordinates[x] & coordinates[x+l] to VRML

world.

5.2 Callback of coordinates, IF [x+ 1 J = Viewpoint

position.

5.3 Send orientation[x] & orientation [x+ 1] to VRML

world.

5.4 Callback of orientation, when [x+ 1] = Viewpoint

orientation.

Figure 33: Procedure for pathfinding in VRML/Java

Concluding this chapter, the results of the project were very

encouraging. VRML has enough flexibility, with the help of Java, to

perform pathfinding at a high level. As the hardware problem

encountered in the project becomes redundant due to faster hardware,

Java/VRML could be used to calculate and animate shortest path

algorithms very accurately.

83

84
Conclusion

This chapter will point to further research that could be conducted

into the field of VRML and its possible use in the future. A conclusion

on the study will finish the thesis.

Further research

Finding shortest paths is one of the basics of artificial intelligence

and this project shows that VRML has the necessities to have built in

basic artificial intelligence. Coupled with the fact that VRML has the use

of the WWW as its distributive medium, it demonstrates that the benefits

of 3D graphics are no longer constrained to the realm of specialised

computers.

With 3D graphics becoming a rapidly expanding area due to

falling prices (hardware in particular), there exists an enormous amount

of research to be done in this area. In particular with VRML 2.0 having

been released a little over a year ago, there exists a huge gap of

knowledge that is not known about the potential of VRML. Some further

research into VRML is shown below.

• To expand this project by making pathfinding truly efficient, would

require the use of a database that stored all objects in the VRML

world. This would give the Viewpoint the ability of spatial reasoning.

Human beings do not use set coordinates to find paths, we instead use

our ability to think in 3D and spacialise our surroundings and store

objects in our own database, this ideally is the goal in pathfinding.

However this would require extensive work to be done in the area of

artificial intelligence.

85

• HUD development for VRML - the development of a HUD Node in

VRML was under discussion for VRML 98, although now it does not

appear to be a part of the specification. The ability for a user to choose

from a list, for a HUD to change options according to the user's

decisions etc are all issues regarding the building of HUDs for virtual

environments. The issue of creating 3D user interfaces has been an

area of research for a number of years. It is thought that the next

generation of operating systems would be in 3D.

• Smart bot for VRML - the use of a Java applet that has the ability to

collect data all over the WWW and illustrate this data in VRML has

enormous potential, because 3D has the ability to show relationships

between data that sometimes cannot be seen on a 2D level.

• VRML integrity - VRML worlds can be downloaded from any server

in the world. When one user downloads a copy of a VRML world,

enters the world and opens a closed door, how does a user who

downloads the same world get notification that the door is now open

and not closed as it was previously. This is a problem of retaining the

integrity of the world no matter how high the number of users. On a

local network scale, this is not a problem. On the global network of the

WWW, this is a problem. Multi user worlds are common in VRML,

Multiuser worlds and VRML integrity together, is not. There is also

the problem of when entering a virtual world everything is in its initial

state. If a user was to move an object, then leave the world and come

back again by downloading it, the object would be back in its original

position.

• Seamless environments - The ECU world created is a small self

contained world. If a user was to catch a bus into the city of Perth

which was contained in another world file and initialised once the user

86

entered the bus, then this new world would take time to load. But to

get a truly virtual universe, seamless environments are needed. This

feature would allow the user to go from one VRML world to another

by walking down a road etc. To the user it would seem as though they

were moving through one continuous virtual universe, even though

their travels might take them to VRML content on dozens of machines

around the real world.

• Environmental control in VRML - In the VRML world used in this

project, a sun rotates around the ECU campus with its starting position

based on the current system time. An avenue for more research exists

on how to control other aspects of the VRML world through

environmental factors i.e. seasons, weather (making rain in virtual

reality) etc.

These are just a few of the possibilities of the future research in

VRML, where this research will eventually concentrate is something

only time will tell.

------------. .

. . - �

Conclusion

This project was used as a testing ground to investigate the

potential of VRML in pathfinding and the control of VRML via the use

of Java. The projects intentions proved to be quite successful.

87

As the field of virtual reality continually expands into new

domains, there exists a large capacity for society to benefit from the

realm of digital reality. With VRML being a standard format for 3D there

is now a consensus that 3D graphics will explode in use.

There are several other 3D file formats that can do a better job than

VRML but these formats are not open formats and suffer from the

problem of accessibility to the technology. VRML, with the weight of the

IT industry behind it however, will catch up fast as it took just 1 5 months

to go from VRML 2.0 to VRML 98, future releases will probably be even

shorter. Combined with the fact that VRML supports multimedia

extensions such as streaming video, Java etc and as this project has done

poses the ability to have at least basic artificial intelligence in

pathfinding, VRML is set to become the benchmark for the creation of

virtual environments.

There is no doubt that the future of computing will be 3D.

Although the thought of using a word processing package with a 3D user

interface seems ludicrous, it is because its different and has not been

done yet.

"Virtual Reality won 't merely replace Television, it will eat it alive! "

Arthur C. Clarke (Rheingold, 199 1) .

Definition of terms

Applet - A Java program that runs in the context of a Java - capable

browser or the appletviewer. Java applets extend the content of web

pages beyond just graphics and text. (Newman, 1996).

Browser - A program used for reading, displaying and interacting with

objects on the WWW.(Newman,1996).

88

class - a collection of variables and methods that an object can have, or a

template for building objects.(Newman,1996).

a . class file - a file containing machine - independent Java bytecodes.

The Java compiler generates .class files from source .java files.for the

Java interpreter to read. (Newman, 1996).

Cross Platform - when an application works on several operating

systems. Java works on both Macs, Windows, and Unix, so it is Cross

Platform. (http://vrml.sgi.com/basics/)

HTML (HyperText Markup Language) - the scripting language with

which Web pages are written. (Marrin & Campbell,1997).

Interpolators - Interpolators are built-in behaviour mechanisms that

generate output based on linear interpolation of a number of key data

points. (http://vrml.sgi.com/basics/)

Java - An object orientated programming language that can be used to

create machine independent applications and applets. (Newman,1996).

89

Node (VRML) - A node in VRML implements some functionality, the

name of the node indicates its functionality ie Transform, Cone etc. Each

node contains a list of fields that define parameters for its function ie

translation, rotate, bottomRadius. (Marrin & Campbell,1997).

Sensors - Provide mechanisms for the user to interact with objects in the

world. (http://vrml.sgi.com/basics/)

Virtual Environment - A world that is simulated entirely within the

memory of a computer. A virtual environment might consist of a three

dimensional house, or visualisation of a set of complex data, or any

number of things. It is through virtual reality that users are able to create

and explore these virtual environments. (Aukstakalnis et al. ,1992,p.12).

Virtual Reality - Jaron Lanier, ex-president of VPL, coined the term

virtual reality as "a computer generated, interactive, three dimensional

environment in which a person is immersed". (Aukstakalnis et al. , 1992,

p.12).

VRML (Virtual Reality Modeling Language) - A language used to create

three-dimensional content on a Web site. It is also a file format for saving

three-dimensional models. (Marrin & Campbell,1997).

�···--· .

World Wide Web - The servers and connections between servers that

contain and deliver the information shared over the Internet. (Marrin &

Campbell, 1997).

90

References

Ames, A.Nadeau, D.Moreland, J.(1997). VRML 2.0 Sourcebook. New
York: John Wiley & Sons.

Anon.(1996). Drew University offers a CD-ROM tour of its campus.
Link-Up. 30 (3), 18.

Aukstakalnis, S.(1992).Silicon Mirage: The Art and Science of Virtual
Reality.Berkeley: Peachpit Press.

9 1

Bergsman, S.(1997).Virtual Reality.Journal of Property Management. 62
(1) 26-29.

Brutzman, D. "A virtual world for an autonomous underwater vehicle".
[on-line]. Available WWW: http://www.stl.nps.navy.mil/-brutzman
/dissertation. [1997, December 12].

Brown, David. "Descent" navigation demo using the EA/. [on-line].
Available WWW :http://vrml.sgi.com/developer/eai/index.html. [1997,
December 10].

CimCentre. "Pathfinder". [on-line]. Available WWW: http://cimcentre.
snu.ac.kr/-next/viewer/pathfinder.html. [1997, December 11].

CASA. 'The Map of the Future". [on-line].Available WWW:
http: //www.bath.ac.uk/Centres/CASA/london. [1997, December 11].

Cool ware. "Intelligent Agents and Artificial Intelligence". [on-line].
Available WWW:http://www.coolware.com/lotech/3technology/4ai/.
[1997, December 12].

Dvorak, P.(1997).Engineering puts virtual reality to work. Machine
Design. 69 (4) 69-73.

Grogono, P.Nelson, S.(1982).Problem Solving and Computer
Programming. Massachusetts: Addison-Wesley.

Hamit, F. (1993). Virtual Reality and the Exploration of Cyberspace.
Indianapolis: Sams Publishing.

92

Jones, M.Wyatt, A.(1994).JD Madness. Indianapolis: Sams Publishing.

Kevin, 0. "AI Lab Telerobotic Control page". [on-line] Available WWW:
www .ai.mit.edu/projects/webot/robot/. [1997, December 12].

Leinfuss, E.(1996).Virtual worlds, real applications. Info World, 18 (48),
57-59.

Marrin, C.Campbell, B.(1997). Teach Yourself VRML in 21 days.
Indianapolis: Sams.net Publishing.

Matzer, M.(1996).Fujitsu woos retailers for v-mall. Brandweek, 37 (18),
16.

Marco, T.(1979).Software Engineering.New Jersey:Prentice Hall.

Newman, A.(1996). Using Java. Indianapolis: Que Corporation.

NTT. "V.EXPO". [on-line].Available WWW: http://www.construct.net/
proj ects/ntt/. [1997, December 11].

Rheingold, E.Nievergelt, A.Deo P.(1980).Combinational Algorithms.
Masachusetts: Addison-Wesley.

Ritchey, T.(1996).Programming Javascript for Netscape 2.0.
Indianapolis:New Riders Publishing.

Sarna, D.Febish,G.(1996).The Business Reality of VRML. Datamation,
42 (10), 27-30.

Schmidt, O.No title. [on-line]. Available WWW: http://www.rvs.
unibielefeld.de/project/vrml-uni/). [1997, December 12].

Tilmann, R. "A world of worlds". [on-line].Available WWW: http://www.
meshmart.org/wow. [1997, December 11].

UCLA.No title. [on-line].Available WWW: http://www.gsaup.ucla.
edu/vrml/). [1997 ,December 12].

Van der Linden, Peter(1996).Just Java.Mountain View,California:
Sunsoft Press.

Vince, J. (1992). 3D Computer Animation. Wokingham,UK: Addison
Wesley.

Vizard, M.(1996).It's time for VRML to grow up, earn its keep.
Info World, 18 (32), 3.

VRML Architecture Group. VRML Architecture Group. [on-line]
Available WWW: http://vag.vrml.org. [1997, Decemeber 10]

Watkins, C.Marenka, S.(1994). Virtual Reality excursions.
Massachusetts: AP Professional.

Weiss,M.(1993).Data Structures and Algorithms Analysis in Ada.
California: Benjamin/Cummings Publishing Co.

Wicks, John.Finite Mathematics. [on-line]. Available WWW
http://www.northpark.edu/acad/math/courses /Math_l 030/W ebBook/
[1997, 10 December] .

Winston, Patrick.(1 984) .Artificial Intelligence .Massachusetts: Addison
Wesley.

93

Appendix

The appendix is divided into the following five categories;

• Appendix A - HTML source code needed to display the applet and

world file.

• Appendix B - Gallery of VRML world.

94

• Appendix C - VRML source code for the world file, because this file

contains over 500 pages of text only the sections relating to the Java

applet have been included, the code for the library and building 3 have

not been shown.

• Appendix D - User guide for the Java applet.

• Appendix E - Java source code for the applet.

Appendix A

<HTML>
<HEAD>

HTML source code

<TITLE>VRML/Java Pro j ect 1 9 9 7 < / TITLE>
< /HEAD>
<EMBED src= " ecu . wrl " HEIGHT=4 0 6 WIDTH=459 ALIGN=TEXTTOP>

95

<APPLET code= " ecu . class " mayscript HEIGHT=4 0 0 WIDTH=3 8 0 ALIGN=TEXTTOP
></APPLET>
< /BODY>
< /HTML>

-

Appendix B Gallery of world file (ecu.wrl)

96

� Ncbcopc • (filo:///CI/WINDOWS/DESKTOP/PROJECT /HTMUECUCP2.WRLI l!lr;J£3

Figure 34:ECU world outside the library in the afternoon

Figure 35: ECU world inside the library 1st floor

97

,ii., Netscape • [fde:/1 /CI/WINOOWS/OESKTOP/PROJECT /NTML/ECUCP2WRLI 1!11\'l E3

Figure 36: facing building 3 from the canteen early morning with sun

>1,1 Netscape • (@o:///CI/WINDDWS/DESKTOP/PROJECT /HTML/ECUCP2.WRLI l!lf;;i E3

Figure 37: birdseye view of campus facing north, late evening.

Appendix C

Partial source code for the VRML world file (ecu. wrl)

#VRML V2 . 0 utf8

the Viewpoint node used for the proj ect , the intial viewpoint sits on the
#coordinate o f the canteen facing in a southerly direct ion (towards the library) .

DEF CAM Viewpoint {

posi tion 2 7 9 . 1 1 . 6 - 2 2 4 . 1
orientation O 1 0 1 . 57 1
fieldOfView 0 . 7854
description " Camera0 1 "

#The Posi tioninterpolator that was used t o send new positions t o the Viewpoint .

DEF CAMTIME TimeSensor { enabled FALSE cycleinterval 7 } ,
DEF CAMPOS Positioninterpolator {

key [0 , 1]
keyValue [O O O O O O J } ,

ROUTE CAMTIME . fraction_changed TO CAMPOS . set_fraction
ROUTE CAMPOS . value_changed TO CAM . set_position

98

#The Orientationinterpolator that was used to send new orientations to the Viewpoint .

DEF OCAMTIME TimeSensor { enabled FALSE cycleinterval 5 } ,
DEF CAMROT Orientationinterpolator{

key [0 , 1]
keyValue [O O O O O O O O J } ,

ROUTE OCAMTIME . fraction_changed TO CAMROT . set_fraction
ROUTE CAMROT . value_changed TO CAM . set_orientation

#Upon touching this building (guild) the TouchSensor would be activated
(isOver = true) and the bui lding is highlighted in the applet .

DEF oguild Transform {
translation 2 6 6 . 4 1 . 2 - 1 9 1 . 5
children [

Shape {
appearance Appearance {

material DEF MAT Material { }
texture ImageTexture {url " guildwrap . gif " }

textureTransform TextureTrans form { scale 1 0 1 0 }

geometry DEF guild Box { s i z e 2 6 2 . 4 18 . 45 }

}
DEF TOUCH_GUILD TouchSensor { }

#the background colour of the world was changed according to the time
#of the day it was either black for night time or shades of blue for dayl ight
#hours

DEF SKY Background {
skyColor [

l

0 . 0 0 . 2 0 . 7 ,
0 . 0 0 . 5 1 . 0 ,
1 . 0 1 . 0 1 . 0

skyAngle [1 . 3 09 , 1 . 57 1 J
groundColor [

l

0 . 1 0 . 10 0 . 0 ,
0 . 4 0 . 2 5 0 . 2 ,
0 . 6 0 . 60 0 . 6 ,

groundAngle [1 . 3 0 9 , 1 . 57 1 J

the sun rotated around the ECU world accroding to the time it indicated what
#the array was sent from the j ava applet , so that the sun would start at a dif ferent
#position relative to the time cyleinterval 8 6 4 0 0 number of seconds in a day . This
#revolution takes two nodes around the campus a shape node (sphere) for the sun
#and a PointLight node for the sunlight

DEF DummyOl Transform {
translation 3 7 1 . 2 4 . 652 4 15 . 1
rotation 0 . 5774 -0 . 5774 0 . 5774 -4 . 189
scale 1 1 1
scaleOrientation O 0 . 4 9 2 7 - 0 . 8702 -0 . 2 6 5 8
children [
DEF SUN_TS TimeSensor { loop TRUE cycleinterval 86400 } ,
DEF SUN_PI Posi tioninterpolator {

key [O , 0 . 09 , 0 . 18 , 0 . 27 , 0 . 3 6 , 0 . 45 , 0 . 54 , 0 . 63 , 0 . 7 2 , 0 . 8 1 , 0 . 9 ,
1 J

keyValue [OO O OOO O O O OOO O O O O O O O O O OOO O O O O O O O O O OOO] } ,
DEF sunlight Transform {

} ,

translation -13 . 54 - 5 . 72 3 -63 . 57
rotation O O - 1 -1 . 57 1
scale 1 1 1
scaleOrientation - 0 . 4 3 3 7 0 . 5024 - 0 . 748 -0 . 9 687
children [

DEF sunlight PointLight
intensity 2 . 5
color 1 1 1
location O O 0
on TRUE
radius 3 2 0

DEF sun Transform {
translation 2 . 2 6 -3 . 3 9 8 - 6 0 . 13
rotation 0 . 5774 -0 . 5774 - 0 . 5774 -2 . 0 9 4
scale 1 1 1
scaleOrientation 0 . 03587 - 0 . 13 1 8 0 . 9 9 0 6 -0 . 3 9 5 2
chi ldren [

Shape {
appearance Appearance {

material Material {
di f fuseColor 1 1 . 8 5

emissiveColor 1 1 . 85

geometry Sphere { radius 3 5 }

ROUTE suntime . fraction_changed TO sunpi . set_fraction
ROUTE sunpi . value_changed TO DummyO l . set_translation

#This proximity sensor was used to f ind the present position of the user as i t
#encompassed the whole world file .

DEF PROXS2 Transform {
children [

DEF GLOBALPS ProximitySensor
enabled TRUE
size 1000 6 6 1000

99

Appendix D User Guide for applet

100

This section describes the seven tab-panels used to build the applet

and the subsequent functions available on each tab-panel.

Environment panel

This is a general panel, shown first, when the user enters the ECU world,

and has the following general information about the user in the ECU

world;

• Users current coordinate.

• What direction it is facing (north, south, west or east).

• Where they are located within the VRML world (building name or

outside) .

• The current ECU time.
• It also has the facility for the user to enact the help frame and credits

frame.

lmagemap I Touchsensor Environment I �[i3
�------ environment---------.

X : 279

Y : 1 . 5993446

Z : -224

building: outside

lrue Dec ts 1 5:54:37 �S credits' I

Figure 38: environment panel from the applet

r·,::.::·;::,·il
�

10 1

T ouchsensor panel

This panel provides the user with a 2D birdseye map of the campus

and it highlights the building when the user clicks on the associated

building within the VRML world, as well as giving the name of the

building in the textbox. This is achieved through the use of a

TouchSensor encompassing every building in the VRML world. It also

has a small red dot just outside of the canteen when the user moves in the

VRML world this red dot is moved to show the location of the user from

a birdseye view. It is achieved by translating the Viewpoint position field

into the position of the red dot on the Java applet.

lmagemap Touchsensor I Environment I [3J[il
�------ touch sensor------�

Figure 39: touchsensor panel from the applet

102

lmagemap panel

This panel acts as an imagemap. When the user rollsover a

particular building in the applet, the name of the building is shown

beside it. If a user clicks on the building, the user teleports to the

entrance of that particular building in the VRML world. The coordinate

of the user in the 3D world is also given and the moving red dot that

relates to the last frame also appears here.

lmagemap I Touchsensor I Environment I [dl[B
.-------- imagemap--------,

-·
_ ...

- 1
X y z

11279 ········· · .� Jn .s

Figure 40: imagemap panel from the applet

•
id

1 03

Paths and Maps panel

Similar to the previous Imagemap panel but instead of teleporting

when a user clicks on a particular building, the pathfinding algorithm is

executed and the animated path between the user 's current position and

the end position is shown.

Te leportation I User input Paths & Map I �[ii
.--------- paths and map-------.

Figure 41: paths and map panel from the applet

11111 _._
i:I
-1

User Input panel

This panel allows the user to input a particular coordinate and

choose a direction. When the submit button is pushed, these new

coordinates and direction are then sent to the Viewpoint within the

VRML world.

Extra I Pathfinding I Teleportation User input I ISill.iJ
�------ user input coordinate------�

Position

X

y

z

�submit I

Rotation

r North

r East

r West

r South

Figure 42: user input panel from the applet

1 04

105

Teleportation panel

This panel gives the user a list of options to choose from. When

the user clicks on their choice from the list the user is teleported to the

new position and is told of their new coordinate space and orientation

within the VRML world. A search facility is also created for the user to

quickly find a destination from the list.

Extra I Pathfind ing Teleportation l User input I Gii!liJ
.--------- teleportation---------.

SEAR.CH FOR DESTINATION

librar_y
guild
building 3
building 6

'"�':"�:-�,::':·-:.;:- .�.� .. """ .
NEW POSITION AND ORIENTATION

Figure 43: teleportation panel from the applet

106

Pathfinding panel

Similar to the teleportation panel, this panel however, finds the shortest

path between the user and the destination and animates it through

VRML' s Viewpoint. Additional information such as the length of the

path and the time it will take is shown in the text box below. Once the

user has arrived the textbox tells the user they have arrived at the chosen

destination.

Extra P:athfinding I Teleportation I User input I [2i[E
....--------- pathfinding

SEAll.CH FOR DESTINATION

guild(pf)
library[pf)
canteen(pf)
building 6[pf)

., , , .. ' . "' " .. " ,

NEW POSITION

Figure 44: pathfinding panel from the applet

=====---- =�·
]:______····· -- f3:.r

107

Extra panel - This panel was used for development testing, to output field

values from the VRML file and Java variables.

Extra l Pathfind ing I Teleportation I User input l !EilliJ
�-------VRML output-------�

Output from VRML , for system testing

Figure 45: extra panel from the applet

Credits frame

�CREDITS l!!!llill3

Figure 46: credits frame from the applet

Help frame

Within the applet there is also a help frame to guide the user on the

performance of the applet. As shown below;

The environment panel is used to give the user general
information about their place within the World file. It show:
their current position and whether the}' are outside or in a
particular building. It also shows the current direction in
the World file the user is currentl.Y facing and also gives
the current time at the ECU campus, both help and
credits can be obtained from this panel.

The touchsensor panel gives the user information on the
building that the}' touch in the World file. If the user was
click on the guild in the World file then the guild would
appear in the textfield at the bottom of the panel. Also
the building would be highlighted in the map and woul.d
staJ highlighted until the user clicked on another
building.

Figure 47: help frame from the applet

108

Appendix E Source code for the Java applet

/ /ecu . j ava
/ *
* * * * *Java applet for the creation of shortest * * * * *
* * * * *paths within the VRML world using the EAI . * * * * *
* * * * *Proj ect completed i n partial fulfillment * * * * *
* * * * *of Comm & I T (Honours) . * * * * *
* * * * *Jason Pearce 0 9 4 0 5 4 0 * * * * *
* /
import j ava . awt . * ;
import j ava . applet . * ;
import j ava . util . * ;
import vrml . external . * ;
import vrml . external . field . * ;
import vrml . external . exception . * ;
import netscape . j avascript . JSObj ect ;
import symantec . itools . awt . * ;

public class ecu extends Applet implements EventOutObserver {

I I
/ /VRML handles
I I
Browser browser = null ;

EventinMFVec3 f newsunpi = null ;
EventinSFBool newsuntime = null ;

EventinSFVec3 f translation = null ;
EventOutSFVec3 f newtrans = nul l ;
EventinSFRotation rotate = nul l ;
EventOutSFRotation newrot = null ;

EventinMFVec3 f kv = null ;
EventOutMFVec 3 f newkv = nul l ;
EventinMFRotation okv = nul l ;
EventOutMFRotation onewkv nul l ;

EventOutSFBool touchguild null ;
EventOutSFBool touchcanteen = nul l ;
EventOutSFBool touchb14 nul l ;
EventOutSFBool touchb15 null ;
EventOutSFBool touchb16 null ;
EventOutSFBool touchb17 nul l ;
EventOutSFBool touchb13 null ;
EventOutSFBool touchb6 = nul l ;
EventOutSFBool touchb18 = null ;

EventOutSFVec3 f globalps = nul l ;
EventOutSFRotation oglobalps = null ;

EventinMFColor skychange = nul l ;

EventinSFTime timing = null ;
EventinSFTime stop = nul l ;
EventinSFTime start = null ;
EventinSFBool loopy = nul l ;
EventinSFBool enable = null ;

EventinSFTime otiming = nul l ;
EventinSFTime ostop = null ;
EventinSFTime ostart = null ;
EventinSFBool oloopy = null ;
EventinSFBool oenable = nul l ;

I I
I I
/ /data structure used for pathfinding _
I I
I I

float south [] = { O f , l f , Of , 1 . 57 1f } ;
float west [] = { O f , l f , O f , O f } ;
f loat north [] = { O f , l f , O f , 4 . 7 12 f } ;
f loat east [] = { O f , l f , O f , 3 . 14 2 f } ;

109

float guild [] = { 2 8 6 . 7 f , l . 6 f , - 1 9 1 . 4 f } ;
f loat library [] = { 2 5 5 . 5 f , 1 . 6 f , -222 . 8 f } ;
f loat b3 [] = { 2 8 0 . 8 f , 1 . 6 f , -177 . 2 f } ;
float canteen [] = (27 9 . l f , 1 . 6 £ , -224 . lf } ;
f loat b6 [] = (347 . 5 f , 1 . 6 f , -204 . 7 f } ;
f loat b13 [] (3 64 . lf , 1 . 6f , - 2 1 1 . lf } ;
float bl4 [] (3 3 5 . 7 f , l . 6 f , - 2 5 6 . 2 f } ;
f loat b15 [] (4 1 4 . 3 f , 1 . 6 f , - 2 6 3 . 4 f } ;
float bl6 [] (4 4 7 . 6f , l . 6 f , - 2 5 8 . 8 f } ;
f loat bl7 [] { 4 8 2 . l f , 1 . 6 f , - 1 9 8 . 2 f } ;
f loat bl8 [] (4 7 2 f , 1 . 6 £ , - 1 9 8 . 2 f } ;
float room3 1 [] = (2 6 0 . 5 f , 1 . 6 f , - 1 6 5 . 9 f } ;
f loat room32 [] = (2 6 8 . S f , 1 . 6 f , -164 . 6 f } ;
float admin [] = (2 8 2 . 2 f , 1 . 6 f , -146 . 8 0 ;
float b3north [] = (2 7 0 . 7 f , 1 . 6 f , - 1 2 7 . l f } ;
f loat room33 [] = (2 9 9 . 6 f , l . 6 f , -117 . 3 f } ;
float libll [] = (2 2 7 f , 5 . 2 f , - 2 3 0 f } ;

f loat points [] [] { (2 8 6 . 7 f , 1 . 6 f , - 1 9 1 . 4 f } , / /guild
(2 5 5 . 5 f , 1 . 6 f , - 2 22 . 8 f } , / / lib
(2 8 0 . S f , 1 . 6f , -177 . 2 f } , / /b3
(2 7 9 . l f , l . 6 f , - 2 2 4 . lf } , / /can
(2 8 2 . l f , l . 6 f , - 2 07 . 5 f } , / /nl
(347 . 5 f , l . 6 f , -204 . 7 f } , / /b6
(3 64 . l f , l . 6 f , - 2 11 . lf } , / /b13
(3 3 5 . 7 f , l . 6 f , - 2 5 6 . 2 f } , / /bl4
{ 414 . 3 f , 1 . 6 f , - 2 6 3 . 4 f } , / /bl5
(447 . 6 f , 1 . 6 f , - 2 5 8 . 8 f } , / /bl6
(4 82 . lf , 1 . 6f , - 1 9 8 . 2 f } , / /b17
(4 72 f , 1 . 6f , - 1 9 8 . 2 f } , / /b18
(42 0 . 8 f , 1 . 6 f , - 2 07 . 8f } , / /n2
{ 4 2 0 . 4 f , l . 6 f , -246 . 9 f } , / /n3
(33 6 . lf , 1 . 6 f , - 2 07 . 4 f } , / /n4
(3 3 6 . l f , l . 6f , - 2 4 6 . 5f } , / /n5
{ 2 4 7 f , 1 . 6 f , - 2 2 8 f } , / / libOl
(244 f , 1 . 6£ , - 2 2 8 f } , / / l ib02
(2 4 0 f , 4 . lf , - 2 2 8 f } , / / lib03
(2 3 7 f , 4 . l f , - 2 3 0 f } , / / lib04
(2 3 5 f , 5 . 2 f , - 2 3 0 f } , / / lib05
{ 22 7 f , 5 . 2 f , - 2 3 0 f } } ; / / lib0 6

/ / 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 0 , l , 2
f loat edges [] [] ({ 0 , 0 , l , l , l , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } , / /guild* l

(0 , 0 , 0 , l , l , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , l , O , O , O , O , O } , / / lib*2
(l , 0 , 0 , l , l , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } , / /b3 *3
(1 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } , / /can* 4
(l , l , 1 , l , O , l , l , 0 , 0 , 0 , 0 , 0 , 0 , 0 , l , 0 , 0 , 0 , 0 , 0 , 0 , 0 } , / /nl * 5
(0 , 0 , 0 , 0 , l , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , l , 0 , 0 , 0 , 0 , 0 , 0 , 0 } , / /b6 * 6
{ 0 , 0 , 0 , 0 , l , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , l , 0 , 0 , 0 , 0 , 0 , 0 , 0 } , / /bl 3 *7
(0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , l , l , 0 , 0 , 0 , 0 , 0 , 0 } , / /bl4 * 8
(0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , l , O , O , l , l , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } , / /bl5*9
(0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , l , 0 , 0 , 0 , l , l , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } , / /bl 6 *10
(0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , l , l , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } , / /bl7 * 1 1
(0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , l , O , l , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } , / /bl8*12
(0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , l , l , l , O , l , l , 0 , 0 , 0 , 0 , 0 , 0 , 0 } , / /n2 *13
{ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , l , l , O , O , l , 0 , 0 , l , 0 , 0 , 0 , 0 , 0 , 0 } , / /n3 * 14
(0 , 0, 0 , 0 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 1, 0 , 0 , 0 , 0 , 0 , O } , / /n4 * 1 5 ;
(0 , 0 , 0 , 0 , 0 , 0 , 0 , l , 0 , 0 , 0 , 0 , 0 , l , l , 0 , 0 , 0 , 0 , 0 , 0 , 0 } , / /n5 * 16
(0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , O } ,
(0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , l , O , l , 0 , 0 , 0 } ,
(0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , l , O , l , O , O } ,
(0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , l , O , l , O } ,
{ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , l , 0 , l } ,
(0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , O } } ;

char label [] ' a ' / *gui ld* / , ' b ' / * lib* / ,

f loat opoints [l [l

' c ' I *b3 * I , ' d ' , / *can* /
' e ' I *nl * / , ' f ' / *b6 * / , ' g ' / *b13 * / ,
' h ' / *b14 * / , ' i ' / *b15 * / , ' j ' / *bl 6 * / ,
' k ' / *b17* / , ' l ' / *b1 8 * / , ' m ' / *n2* / ,
' n ' / *n3 * / , ' o ' / *n4 * / , ' p ' / *n5* / ,
' q ' , 1 r 1 , 1 S 1 , ' t ' , • u • , 1 v 1 } ;

({ O f , l f , O f , l . 57 1f } , / / south
{ O f , l f , O f , Of } , / /west
(O f , lf , O f , 4 . 7 12 f } , / /north

1 10

{ O f , l f , O f , 3 . 14 2 f } } ; / / east

I I
/ /any variables used in the data structure are here
/ /although many of these could have been local
/ / time ran out to make the code as efficient as could be
/ /and naming conventions have gone right out the window
I I

f loat fullposvrml [l [] ;
float fullorientvrml [] [] ;
int z = O ;
f loat opposite;
f loat zdifferenc e ;
f loat hypotenusea ;
float hypotenuseb;
f loat hypotenuse ;
f loat sinofangle;
f loat radianangle ;
f loat end [] = { 0 , 0 , 0 } ;
float [] valpsx = new f loat [l] ;
f loat [] valpsz = new float [1] ;
f loat [] valxpos new f loat [22] ;
f loat [] valzpos = new f loat [22] ;
f loat distax;
f loat distaz ;
float dis t ;
f loat [] distArray new f loat [22] ;
f loat lowestdistance = 9 9 9 9 ;
int index = O ;
int indexpath = O ;
char end2 ;
int a , g , b , c , d , e , f , h , i , j , k , n , endnum, endnum2 , indexpath2 ;
char tempchar ;
f loat valxlpos ;
f loat valz lpos ;
float valx3pos ;
float valz3pos ;
f loat valx2pos ;
f loat valz2pos ;
f loat distl ;
float dist2 ;
f loat f inaldist ;
float distla;
f loat dist2a;
f loat finaldista;
f loat pathdis t ;
float lowestdist = 9 9 9 9 ;
f loat overalldistance = O ;

I I
/ /vectors used that are a part o f the shortest path algorithm
I I

Vector masvector = new Vector () ;
Vector vectorO = new Vector () ;
Vector vectorfirstO = new Vector () ;
Vector vectorend = new Vector () ;
Vector path = new Vector () ;

/ /assorted variables for other functions of the applet

float xvalp O f ;
f loat yvalp O f ;
float zvalp O f ;
f loat xvalr O f ;
f loat yvalr O f ;
float zvalr O f ;
float avalr O f ;

f loat daysky [] [] { { O . O f , 0 . 2 f , 0 . 7 f } ,
{ O . O f , 0 . 5 f , l . O_f } ,
{ 1 . 0 f , 1 . 0 f , 1 . 0 f } } ;

float nightsky [] [] { { O f , O f , O f } ,
{ O f , O f , O f } ,
{ O f , O f , O f } } ;

f loat sunOl [] [] { { 3 7 1 . 2 f , - 5 8 5 f , 23 . 84 f } ,

1 1 1

{ 3 7 1 . 2 f , - 3 4 8 . S f , 3 04 . 4 f } , { 3 7 1 . 2 f , 4 . 65 2 f , 4 1 5 . l f } ,
{ 3 7 1 . 2 f , 4 . 65 2 f , 4 15 . l f } , { 3 7 1 . 2 f , 357 . Sf , 3 04 . 4 f } ,
{ 3 7 1 . 2 f , 5 94 . 3 f , 2 3 . 84 f } , { 3 71 . 2 f , 642 . 7 f , - 3 3 7 . 4 f } ,
{ 3 7 1 . 2 f , 4 9 0 f , - 6 6 6 . 3 f } , { 3 7 1 . 2 f , 1 8 5 . 3 f , - 8 6 0 . 9 f } ,
{ 3 7 1 . 2 f , -175 . 9 f , - 8 6 0 . 9 f } , { 3 7 1 . 2 f , - 4 8 0 . 7 f , - 6 6 6 . 3 f } ,
{ 3 71 . 2 f , - 6 3 3 . 3 f , - 3 3 7 . 4 f } } ;

f loat sun23 [] [] { { 37 1 . 2 f , - 3 4 8 . S f , 3 04 . 4 f } , { 3 7 1 . 2 f , 4 . 65 2 f , 4 15 . l f } ,
{ 3 7 1 . 2 f , 4 . 6 52 f , 4 15 . l f } , { 3 7 1 . 2 f , 3 57 . S f , 3 04 . 4 f } ,
{ 3 7 1 . 2 f , 594 . 3 f , 2 3 . 84 f } , { 3 7 1 . 2 f , 642 . 7 f , - 3 3 7 . 4 f } ,
{ 3 71 . 2 f , 4 9 0 f , - 6 6 6 . 3 f } , { 3 71 . 2 f , 1 8 5 . 3 f , - 8 60 . 9 f } ,
{ 3 71 . 2 f , -175 . 9 f , - 8 6 0 . 9 f } , { 3 7 1 . 2 f , -480 . 7 f , - 6 6 6 . 3 f } ,
{ 3 7 1 . 2 f , - 6 3 3 . 3 f , - 3 3 7 . 4 f } , { 3 7 1 . 2 f , - 5 85 f , 23 . 84 f } } ;

float sun45 [] [] { { 3 7 1 . 2 f , 4 . 65 2 f , 4 15 . lf } ,
{ 3 71 . 2 f , 4 . 65 2 f , 4 15 . lf } , { 3 71 . 2 f , 3 5 7 . S f , 3 04 . 4 f } ,
{ 3 7 1 . 2 f , 5 9 4 . 3 f , 23 . 84 f } , { 3 71 . 2 f , 642 . 7 f , - 3 3 7 . 4 f } ,
{ 3 7 1 . 2 f , 4 9 0 f , - 6 6 6 . 3 f } , { 3 7 1 . 2 f , 1 8 5 . 3 f , - 8 6 0 . 9 f } ,
{ 3 7 1 . 2 f , -175 . 9 f , - 8 60 . 9 f } , { 3 7 1 . 2 f , -480 . 7 f , - 6 6 6 . 3 f } ,
{ 3 7 1 . 2 f , - 6 3 3 . 3 f , - 3 3 7 . 4f } , { 3 7 1 . 2 f , - 5 85 f , 2 3 . 84 f } ,
{ 3 7 1 . 2 f , - 3 4 8 . Sf , 3 04 . 4 f } } ;

f loat sun67 [] [] { { 3 7 1 . 2 f , 4 . 65 2 f , 4 15 . l f } , { 3 7 1 . 2 f , 3 57 . S f , 3 04 . 4 f } ,
{ 3 7 1 . 2 f , 5 9 4 . 3 f , 2 3 . 84 f } , { 3 7 1 . 2 f , 642 . 7 f , -337 . 4 f } ,
{ 3 7 1 . 2 f , 4 9 0 f , - 6 6 6 . 3 f } , { 3 7 1 . 2 f , 1 8 5 . 3 f , - 8 6 0 . 9 f } ,
{ 3 71 . 2 f , -175 . 9 f , - 8 6 0 . 9 f } , { 3 7 1 . 2 f , - 4 8 0 . 7 f , - 6 6 6 . 3 f } ,
{ 3 7 1 . 2 f , - 6 3 3 . 3 f , - 3 3 7 . 4 f } , { 3 71 . 2 f , - 5 8 5 f , 2 3 . 84 f } ,
{ 3 7 1 . 2 f , -34 8 . S f , 3 04 . 4 f } , { 3 7 1 . 2 f , 4 . 65 2 f , 4 1 5 . lf } } ;

float sun8 9 [] [] { { 3 7 1 . 2 f , 3 5 7 . Sf , 3 04 . 4 f } ,
{ 3 71 . 2 f , 5 9 4 . 3 f , 2 3 . 84 f } , { 3 7 1 . 2 f , 642 . 7 f , - 3 37 . 4 f } ,
{ 3 71 . 2 f , 4 9 0 f , - 6 6 6 . 3 f } , { 3 7 1 . 2 f , 1 8 5 . 3 f , - 8 6 0 . 9 f } ,
{ 3 7 1 . 2 f , - 1 7 5 . 9 f , - 8 60 . 9 f } , { 3 7 1 . 2 f , -480 . 7 f , - 6 6 6 . 3 f } ,
{ 3 7 1 . 2 f , - 6 3 3 . 3 f , - 3 3 7 . 4 f } , { 3 7 1 . 2 f , - 5 85 f , 2 3 . 84 f } ,
{ 3 7 1 . 2 f , - 3 4 8 . Sf , 3 04 . 4 f } , { 3 7 1 . 2 f , 4 . 6 5 2 f , 4 15 . l f } ,
{ 3 71 . 2 f , 4 . 65 2 f , 4 15 . l f } } ;

float sunlO l l [] [] = { { 3 7 1 . 2 f , 5 9 4 . 3 f , 2 3 . 84 f } , { 3 71 . 2 f , 642 . 7 f , -337 . 4 f } ,
{ 3 7 1 . 2 f , 4 9 0 f , - 6 6 6 . 3 f } , { 3 7 1 . 2 f , 1 8 5 . 3 f , - 8 6 0 . 9 f } ,
{ 3 7 1 . 2 f , -175 . 9 f , - 8 60 . 9 f } , { 3 7 1 . 2 f , -480 . 7 f , - 6 6 6 . 3 f } ,
{ 3 71 . 2 f , - 6 3 3 . 3 f , - 3 3 7 . 4 f } , { 3 7 1 . 2 f , - 5 85 f , 2 3 . 84 f } ,
{ 3 7 1 . 2 f , - 3 4 8 . S f , 3 04 . 4 f } , { 3 7 1 . 2 f , 4 . 65 2 f , 4 15 . lf } ,
{ 3 7 1 . 2 f , 4 . 6 52 f , 4 15 . l f } , { 3 7 1 . 2 f , 3 57 . S f , 3 04 . 4 f } } ;

f loat sun12 13 [] [] = { { 3 7 1 . 2 f , 642 . 7 f , - 3 3 7 . 4 f } ,
{ 3 71 . 2 f , 4 9 0 f , - 6 6 6 . 3 f } , { 3 7 1 . 2 f , 1 8 5 . 3 f , - 8 60 . 9 f } ,
{ 3 7 1 . 2 f , -175 . 9 f , - 8 6 0 . 9 f } , { 3 7 1 . 2 f , -480 . 7 f , - 6 6 6 . 3 f } ,
{ 3 7 1 . 2 f , - 6 3 3 . 3 f , - 3 3 7 . 4 f } , { 3 7 1 . 2 f , - 5 85 f , 23 . 84 f } ,
{ 3 7 1 . 2 f , - 3 4 8 . S f , 3 04 . 4 f } , { 3 7 1 . 2 f , 4 . 65 2 f , 4 15 . l f } ,
{ 3 7 1 . 2 f , 4 . 652 f , 4 15 . lf } , { 3 71 . 2 f , 3 5 7 . S f , 3 04 . 4 f } ,
{ 3 71 . 2 f , 5 9 4 . 3 f , 2 3 . 84 f } } ;

float sun14 1 5 [] [] = { { 3 7 1 . 2 f , 4 9 0 f , - 6 6 6 . 3 f } , { 3 7 1 . 2 f , 1 8 5 . 3 f , - 8 6 0 . 9 f } ,
{ 3 7 1 . 2 f , - 1 7 5 . 9 f , - 8 60 . 9 f } , { 3 7 1 . 2 f , -480 . 7 f , - 6 6 6 . 3 f } ,
{ 3 7 1 . 2 f , - 6 3 3 . 3 f , - 3 3 7 . 4 f } , { 3 7 1 . 2 f , -585 f , 2 3 . 84 f } ,
{ 3 7 1 . 2 f , - 3 4 8 . S f , 3 04 . 4 f } , { 3 7 1 . 2 f , 4 . 6 5 2 f , 4 15 . l f } ,
{ 3 7 1 . 2 f , 4 . 65 2 f , 4 15 . lf } , { 3 71 . 2 f , 3 57 . S f , 3 04 . 4 f } ,
{ 3 71 . 2 f , 5 9 4 . 3 f , 23 . 84 f } , { 3 7 1 . 2 f , 642 . 7 f , - 3 3 7 . 4 f } } ;

f loat sun1 617 [] [] = { { 3 7 1 . 2 f , 1 8 5 . 3 f , - 8 6 0 . 9 f } ,
{ 3 7 1 . 2 f , - 1 7 5 . 9 f , - 8 6 0 . 9 f } , { 3 7 1 . 2 f , -480 . 7f , - 6 6 6 . 3 f } ,
{ 3 7 1 . 2 f , - 6 3 3 . 3 f , - 3 3 7 . 4 f } , { 3 7 1 . 2 f , - 5 85 f , 2 3 . 84 f } ,
{ 3 7 1 . 2 f , - 3 4 8 . Sf , 3 04 . 4 f } , { 3 7 1 . 2 f , 4 . 652 f , 4 1 5 . l f } ,
{ 3 7 1 . 2 f , 4 . 65 2 f , 4 15 . l f } , { 3 7 1 . 2 f , 357 . S f , 3 04 . 4 f } ,
{ 3 7 1 . 2 f , 5 9 4 . 3 f , 2 3 . 84 f } , { 3 7 1 . 2 f , 642 . 7 f , -337 . 4 f } ,
{ 3 7 1 . 2 f , 4 9 0 f , - 6 6 6 . 3 f } } ;

float sun1819 [] [] = { { 3 7 1 . 2 f , - 1 7 5 . 9 f , - 8 6 0 . 9 f } , { 3 71 . 2 f , -480 . 7 f , - 6 6 6 . 3 f } ,
{ 3 7 1 . 2 f , - 6 3 3 . 3 f , - 3 3 7 . 4 f } , { 3 7 1 . 2 f , - 5 8 5 f , 23 . 84 f } ,
{ 3 7 1 . 2 f , - 3 4 8 . S f , 3 04 . 4 f } , { 3 7 1 . 2 f , 4 . 6 5 2 f , 4 15 . lf } ,
{ 3 7 1 . 2 f , 4 . 6 52 f , 4 1 5 . l f } , { 3 7 1 . 2 f , 3 57 . S f , 3 04 . 4 f } ,
{ 3 7 1 . 2 f , 5 9 4 . 3 f , 2 3 . 84 f } , { 3 7 1 . 2 f , 642 . 7 f , -337 . 4 f } ,
{ 3 7 1 . 2 f , 4 9 0 f , - 6p6 . 3 f } , { 3 7 1 . 2 f , 1 8 5 . 3 f , - 8 60 . 9 f } } ;

float sun2 0 2 1 [] [] = { { 3 7 1 . 2 f , - 4 8 0 . 7 f , - 6 6 6 . 3 f } ,
{ 3 71 . 2 f , - 6 3 3 . 3 f , - 3 3 7 . 4 f } , { 3 7 1 . 2 f , - 5 8 5 f , 23 . 84 f } ,
{ 3 7 1 . 2 f , - 3 4 8 . S f , 3 04 . 4 f } , { 3 7 1 . 2 f , 4 . 65 2 f , 4 15 . l f } ,
{ 3 7 1 . 2 f , 4 . 652 f , 4 1 5 . l f } , { 3 7 1 . 2 f , 3 5 7 . S f , 3 04 . 4 f } ,
{ 3 7 1 . 2 f , 5 9 4 . 3 f , 2 3 . 84 f } , { 3 7 1 . 2 f , 642 . 7 f , - 3 37 . 4 f } ,
{ 3 7 1 . 2 f , 4 9 0 f , - 6 6 6 . 3 f } , { 3 7 1 . 2 f , 1 8 5 . 3 f , - 8 6 0 . 9 f } ,
{ 3 71 . 2 f , -175 . 9 f , - 8 6 0 . 9 f } } ;

1 12

float sun2 2 2 3 [] [] = { { 3 7 1 . 2 f , - 633 . 3 f , -337 . 4 f } , { 3 7 1 . 2 f , - 5 S 5 f , 2 3 . S4 f } ,
{ 3 7 1 . 2 f , - 3 4 S . 5 f , 3 04 . 4 f } , { 37 1 . 2 f , 4 . 65 2 f , 4 15 . l f } ,
{ 3 7 1 . 2 f , 4 . 6 52 f , 4 1 5 . l f } , { 3 7 1 . 2 f , 357 . S f , 3 04 . 4 f } ,
{ 3 7 1 . 2 f , 5 9 4 . 3 f , 23 . S4 f } , { 3 7 1 . 2 f , 642 . 7 f , -337 . 4 f } ,
{ 3 7 1 . 2 f , 4 9 0 f , - 6 6 6 . 3 f } , { 3 7 1 . 2 f , 1 S 5 . 3 f , - S 6 0 . 9 f } ,
{ 3 7 1 . 2 f , -175 . 9 f , - S 60 . 9 f } , { 3 7 1 . 2 f , -4S0 . 7 f , - 6 6 6 . 3 f } } ;

boolean error = false;

void buttonl2_Clicked (Event event)
(new CREDITS ()) . show () ;

void buttonS_Clicked (Event event)
(new HELP (}) . show (} ;

void button4_Clicked (Event event }
(new HELP () } . show () ;

void buttonl_Clicked (Event event}
(new HELP (} } . show () ;

void textFieldl_EnterHit (Event event) {
listl . select (textFieldl . getSelectionStart (} } ;

void textField2_EnterHi t (Event event) {
list2 . select (textFieldl . getSelectionStart ()) ;

public void init () {
/ /getting a hold the browser and embedded file (VRML)
/ / for netscape browsers only

JSObj ect win = JSObj ect . getWindow (this) ;
JSObj ect doc = (JSObj ect } win . getMember (" document " } ;
JSObj ect embeds = (JSObj ect } doc . getMember (" embeds ") ;
browser = (Browser) embeds . getSlot (O) ;

try {
/ /getting a hold of the VRML nodes
Node camera = browser . getNode (" CAM" } ;
Node mover = browser . getNode (" CAMPOS " } ;
Node omover = browser . getNode (" CAMROT " } ;
Node sensorl browser . getNode (" TOUCH_GUILD") ;
Node sensor2 browser . getNode (" TOUCH_CANTEEN" } ;
Node sensor3 browser . getNode (" TOUCH_Bl4 " } ;
Node sensor4 browser . getNode (" TOUCH_Bl5 " } ;
Node sensors browser . getNode (" TOUCH_Bl6 " } ;
Node sensor6 browser . getNode (" TOUCH_Bl7 " } ;
Node sensor? browser . getNode (" TOUCH_Bl3 " } ;
Node sensors browser . getNode (" TOUCH_B6 " } ;
Node sensor9 browser . getNode (" TOUCH_BlS " } ;
Node ps = browser . getNode (" GLOBALPS ") ;
Node time = browser . getNode (" CAMTIME ") ;
Node otime = browser . getNode (" OCAMTIME ") ;
Node sky = browser . getNode (" SKY ") ;
Node sunpi = browser . getNode (" sunpi ") ;
Node suntime = browser . getNode (" suntime ") ;

/ /getting a hold of the VRML fields Eventin contained within the nodes

translation = (EventinSFVec3 f } camera . getEventin (" set_position " } ;
rotate = (EventinSFRotation) camera . getEventin (" set_orientation" } ;
kv = (EventinMFVec3 f) mover . getEventin (" set_keyValue ") ;
okv = (EventinMFRotation} omover . getEventin (" set_keyValue ") ;
loopy = (EventinSFBool) time . getE..ventin (" loop " } ;
enable = (EventinSFBool) time . getEventin (" enabled" } ;
stop = (EventinSFTime } time . getEventin (" stopTime ") ;
start = (EventinSFTime) time . getEventin (" startTime ") ;
timing = (EventinSFTime) time . getEventin (" cycleinterval ") ;
oloopy = (EventinSFBool) otime . getEventin (" loop ") ;
oenable = (EventinSFBool } otime . getEventin (" enabled") ;
ostop = (EventinSFTime) otime . getEventin (" stopTime ") ;
ostart = (EventinSFTime) otime . getEventin (" startTime ") ;

113

otiming = (EventinSFTime) otime . getEventin (" cycleinterval ") ;
skychange = (EventinMFColor) sky . getEventin (" skyColor ") ;
newsunpi = (EventinMFVec3 f) sunpi . getEventin (" set_keyValue ") ;
newsuntime = (EventinSFBool) suntime . getEventin (" loop ") ;

/ /getting a hold of the VRML f ields Eventout contained within the nodes
newtrans = (Event0utSFVec3 f) camera . getEventOut ("position ") ;
newrot = (EventOutSFRotation) camera . getEventOut (" orientation ") ;
newkv = (EventOutMFVec3 f) mover . getEventOut (" keyValue ") ;
onewkv = (EventOutMFRotation) omover . getEventOut (" keyValue ") ;
touchguild = (EventOutSFBool) sensorl . getEventOut (" isOver ") ;
touchcanteen = (EventOutSFBool) sensor2 . getEventOut (" isOver ") ;
touchbl4 (EventOutSFBool) sensor3 . getEvent0ut (" isOver ") ;
touchb15 (EventOutSFBool) sensor4 . getEventOut (" isOver ") ;
touchb16 (EventOutSFBool) sensorS . getEventOut (" isOver ") ;
touchb17 (EventOutSFBool) sensor6 . getEvent0ut (" isOver ") ;
touchb13 (EventOutSFBool) sensor7 . getEventOut (" isOver ") ;
touchb6 = (EventOutSFBool) sensor8 . getEvent0ut (" isOver ") ;
touchb18 = (EventOutSFBool) sensor9 . getEventOut (" isOver ") ;
globalps = (Event0utSFVec3 f) ps . getEventOut ("posi tion_changed") ;
oglobalps = (EventOutSFRotation) ps . getEventOut (" orientation_changed") ;

/ / Set up its callback from the EventOuts
newtrans . advise (this , new Integer (3)) ;
newkv . advise (this , new Integer (4)) ;
onewkv . advise (this , new Integer (1 6)) ;
globalps . advise (this , new Integer (S)) ;
newrot . advise (this , new Integer (1 5)) ;
touchguild. advise (this , new Integer (6)) ;
touchcanteen . advise (this , new Integer (7)) ;
touchb14 . advise (this , new Integer (8)) ;
touchb15 . advise (this , new Integer (9)) ;
touchb1 6 . advise (this , new Integer (l O)) ;
touchb17 . advise (this , new Integer (l l)) ;
touchb13 . advise (this , new Integer (12)) ;
touchb6 . advise (this , new Integer (l3)) ;
touchb18 . advise (this , new Integer (14)) ;

catch (InvalidNodeException ne)
add (new TextField (" Failure in VRML " + ne)) ;
error = true ;

catch (InvalidEventinException ee) {
add (new TextField (" Failure in VRML " + ee)) ;
error = true ;

catch (InvalidEventOutException ee) {
add (new TextField (" Fai lure in VRML " + ee)) ;
error = true ;

/ / { { INIT_CONTROLS
setLayout (null) ;
addNotify () ;
resize (47 7 , 4 9 7) ;
setForeground (new Color (O)) ;
setBackground (new Color (1 6777215)) ;
tabPanell = new symantec . itools . awt . TabPanel () ;
tabPanell . setLayout (null) ;
tabPanell . reshape (0 , 0 , 37 2 , 3 9 6) ;
tabPanell . setForeground (new Color (O)) ;
tabPanell . setBackground (new Color (16777215)) ;
add (tabPanell) ;
{

j ava . lang . String [] tempString = new j ava . lang . String [8] ;
tempString [O] new j ava . lang . String (" Extra ") ;
tempString [l] new j ava . lang . S tring (" Pathfinding ") ;
tempString [2] new j ava . lang . String (" Teleportation") ;
tempString [3] new j ava . lang . String ("User input ") ;
tempString (4] new j ava . lang . String (" Paths & Map ") ;
tempString [S] 1:1ew j ava . lang . String (" Imagemap ") ;
tempString [6] new j ava . lang . String (" Touchsensor ") ;
tempString [7] new j ava . lang . String (" Environment ") ;
tabPanell . setPanelLabels (tempString) ;

extra = new symantec . itools . awt . BorderPanel () ;
GridBagLayout gridBagLayout ;
gridBagLayout = new GridBagLayout () ;
extra . setLayout (gridBagLayout) ;

1 14

extra . reshape (12 , 3 3 , 34 8 , 3 52) ;
tabPanell . add (extra) ;
extra . setLabel ("VRML output ") ;
textArea4 = new j ava . awt . TextArea () ;
textArea4 . reshape (0 , 12 4 , 32 7 , 154) ;
GridBagConstraints gbc ;
gbc = new GridBagConstraints () ;
gbc . gridx = O ;
gbc . gridy = 3 ;
gbc . weightx = 1 . 0 ;
gbc . weighty = 1 . 0 ;
gbc . fill = GridBagConstraints . NONE;
gbc . insets = new Insets (0 , 0 , 0 , 0) ;
gridBagLayout . setConstraints (textArea4 , gbc) ;
extra . add (textArea4) ;

1 15

label14 = new j ava . awt . Label (" Output from VRML , for system testing ") ;
label14 . reshape (3 0 , 3 3 , 2 6 6 , 24) ;
label14 . setFont (new Font (" Courier " , Font . BOLD , 1 2)) ;
gbc = new GridBagConstraints () ;
gbc . gridx = O ;
gbc . gridy = 2 ;
gbc . weightx = 1 . 0 ;
gbc . weighty = 1 . 0 ;
gbc . fill = GridBagConstraints . NONE ;
gbc . insets = new Insets (0 , 0 , 0 , 0) ;
gridBagLayout . setConstraints (labell4 , gbc) ;
extra . add (label14) ;
pf = new symantec . itools . awt . BorderPanel () ;
gridBagLayout = new GridBagLayout () ;
pf . setLayout (gridBagLayout) ;
pf . reshape (l2 , 33 , 3 4 8 , 3 52) ;
tabPanell . add (pf) ;
pf . setLabel (" pathfinding ") ;
label3 = new j ava . awt . Label (" SEARCH FOR DESTINATION" , Label . CENTER) ;
label3 . reshape (9 0 , -2 , 14 6 , 2 1) ;
label3 . setFont (new Font (" Courier " , Font . BOLD, 1 0)) ;
gbc = new GridBagConstraints () ;
gbc . gridx = O ;
gbc . gridy = l ;
gbc . weightx = 1 . 0 ;
gbc . weighty = 1 . 0 ;
gbc . fill = GridBagConstraints . NONE ;
gbc . insets = new Insets (0 , 0 , 0 , 0) ;
gridBagLayout . setConstraints (label3 , gbc) ;
pf . add (label3) ;
textField2 = new j ava . awt . TextField (2 0) ;
textField2 . reshape (50 , 1 8 , 2 27 , 22) ;
textField2 . setFont (new Font (" Dialog " , Font . BOLD , 8)) ;
textField2 . setForeground (new Color (O)) ;
textField2 . setBackground (new Color (16777215)) ;
gbc = new GridBagConstraints () ;
gbc . gridx = 0 ;
gbc . gridy = 2 ;
gbc . weightx = 1 . 0 ;
gbc . weighty = 1 . 0 ;
gbc . fill = GridBagConstraints . BOTH ;
gbc . insets = new Insets (0 , 5 0 , 10 , 50) ;
gridBagLayout . setConstraints (textField2 , gbc) ;
pf . add (textField2) ;
list2 = new j ava . awt . List (O , false) ;
list2 . additem (" guild (pf) ") ;
list2 . additem (" library (p f) ") ;
list2 . additem (" canteen (p f) ") ;
list2 . additem (" building 6 (pf) ") ;
list2 . addi tem (" building 13 (pf) ") ;
list2 . additem (" building 3 (pf) ") ;
list2 . additem (" building 14 (p f) ") ;
list2 . additem (" building 15 (p f) ") ;
list2 . additem (" building 1 6 (p f) ") ;
list2 . additem (" building 17 (p f) ") ;
list2 . additem (" building 18 (p f) ") ;
list2 . additem (" l ibrary levell (p f) ") ;
list2 . reshape (5 0 , 4 8 , 2 2 7., 5 8) ;
list2 . setForeground (new Color (O)) ;
list2 . setBackground (new Color (1 6777215)) ;
gbc = new GridBagConstraints () ;
gbc . gridx = O ;
gbc . gridy = 3 ;
gbc . weightx = 1 . 0 ;
gbc . weighty = 1 . 0 ;
gbc . fill = GridBagConstraints . BOTH ;

gbc . insets = new Insets (0 , 5 0 , 0 , 50) ;
gridBagLayout . setConstraints (list2 , gbc) ;
pf . add (list2) ;
label4 = new j ava . awt . Label ("NEW POSITION" , Label . CENTER) ;
label4 . reshape (12 0 , 107 , 8 6 , 2 1) ;
label4 . setFont (new Font (" Courier " , Font . BOLD, 1 0)) ;
gbc = new GridBagConstraints () ;
gbc . gridx = O ;
gbc . gridy = 4 ;
gbc . weightx = 1 . 0 ;
gbc . weighty = 1 . 0 ;
gbc . fi l l = GridBagConstraints . NONE ;
gbc . insets = new Insets (0 , 0 , 0 , 0) ;
gridBagLayout . setConstraints (label4 , gbc) ;
pf . add (label4) ;
textArea2 = new j ava . awt . TextArea () ;
textArea2 . reshape (50 , 12 7 , 227 , 154) ;
gbc = new GridBagConstraints () ;
gbc . gridx = O ;
gbc . gridy = 5 ;
gbc . weightx = 1 . 0 ;
gbc . weighty = 1 . 0 ;
gbc . fill = GridBagConstraints . NONE ;
gbc . insets = new Insets (0 , 50 , 0 , 50) ;
gridBagLayout . setConstraints (textArea2 , gbc) ;
pf . add (textArea2) ;
button8 = new j ava . awt . Button (" help ") ;
button8 . reshape (144 , 2 9 0 , 3 9 , 2 0) ;
gbc = new GridBagConstraints () ;
gbc . gridx = O ;
gbc . gridy = 6 ;
gbc . weightx = 1 . 0 ;
gbc . weighty = 1 . 0 ;
gbc . fill = GridBagConstraints . NONE ;
gbc . insets = new Insets (l0 , 0 , 5 , 0) ;
gridBagLayout . setConstraints (button8 , gbc) ;
pf . add (button8) ;
tele = new symantec . itools . awt . BorderPanel () ;
gridBagLayout = new GridBagLayout () ;
tele . setLayout (gridBagLayout) ;
tele . reshape (12 , 3 3 , 3 4 8 , 3 52) ;
tabPanell . add (tele) ;
tele . setLabel (" teleportation ") ;
labell = new j ava . awt . Label (" SEARCH FOR DESTINATION ") ;
labell . reshape (9 1 , 0 , 0 , 0) ;
labell . setFont (new Font (" Courier " , Font . BOLD , 10)) ;
gbc = new GridBagConstraints () ;
gbc . gridx = 0 ;
gbc . gridy = l ;
gbc . gridwidth 2 ;
gbc . weightx = 1 . 0 ;
gbc . weighty = 1 . 0 ;
gbc . fi l l = GridBagConstraints . NONE ;
gbc . insets = new Insets (0 , 0 , 0 , 0) ;
gridBagLayou t . setConstraints (labell , gbc) ;
tele . add (label l) ;
textFieldl = new j ava . awt . TextField (2 0) ;
textFieldl . reshape (50 , 2 1 , 0 , 0) ;
textFieldl . setFont (new Font (" Dialog " , Font . BOLD, 8)) ;
textFieldl . setForeground (new Color (O)) ;
textFieldl . setBackground (new Color (1 6777215)) ;
gbc = new GridBagConstraints () ;
gbc . gridx = O ;
gbc . gridy = 2 ;
gbc . gridwidth 2 ;
gbc . weightx = 1 . 0 ;
gbc . weighty = 1 . 0 ;
gbc . fill = GridBagConstraints . BOTH ;
gbc . insets = new Insets (0 , 50 , 0 , 50) ;
gridBagLayout . setConstraints (textFieldl , gbc) ;
tele . add (textFieldl) ;
listl = new j ava . awt . List (O , false) ;
listl . additem (" library") ;
listl . additem (" guild") ;
listl . additem (" bui lding 3 ") ;
listl . additem (" building 6 ") ;
l istl . additem ("building 13 ") ;
listl . additem (" canteen") ;
listl . additem (" building 1 4 ") ;
listl . additem (" building 15 ") ;
listl . additem (" bui lding 1 6 ") ;

1 1 6

listl . additem (" building 17 ") ;
listl . additem (" building 1 8 ") ;
listl . additem (" room 3 . l ") ;
listl . additem (" room 3 . 2 ") ;
listl . additem (" administration") ;
listl . additem (" building 3 north") ;
listl . additem (" room 3 . 3 ") ;
listl . reshape (S0 , 52 , 2 2 7 , 3 2) ;
listl . setForeground (new Color (O)) ;
listl . setBackground (new Color (1 6777215)) ;
gbc = new GridBagConstraints () ;
gbc . gricbc = O ;
gbc . gridy = 3 ;
gbc . gridwidth 2 ;
gbc . weightx = 1 . 0 ;
gbc . weighty = 1 . 0 ;
gbc . fi l l = GridBagConstraints . BOTH ;
gbc . insets = new Insets (l 0 , 5 0 , 0 , 50) ;
gridBagLayout . setConstraints (listl , gbc) ;
tele . add (listl) ;
labe12 = new j ava . awt . Label ("NEW POSITION AND ORIENTATION ") ;
label 2 . reshape (73 , 112 , 0 , 0) ;
label2 . setFont (new Font (" Courier " , Font . BOLD, 1 0)) ;
gbc = new GridBagConstraints () ;
gbc . gr icbc = O ;
gbc . gridy = 4 ;
gbc . gridwidth 2 ;
gbc . weightx = 1 . 0 ;
gbc . weighty = 1 . 0 ;
gbc . fi l l = GridBagConstraints . NONE ;
gbc . insets = new Insets (0 , 0 , 0 , 0) ;
gridBagLayout . setConstraints (label2 , gbc) ;
tele . add (labe12) ;
textAreal = new j ava . awt . TextArea () ;
textAreal . setEditable (false) ;
textAreal . reshape (20 , 13 3 , 2 87 , 12 9) ;
textAreal . setForeground (new Color (O)) ;
textAreal . setBackground (new Color (1 6777215)) ;
gbc = new GridBagConstraints () ;
gbc . gricbc = 0 ;
gbc . gridy = 5 ;
gbc . weightx = 1 . 0 ;
gbc . weighty = 1 . 0 ;
gbc . fill = GridBagConstraints . NONE ;
gbc . insets = new Insets (0 , 2 0 , 5 , 2 0) ;
gridBagLayout . setConstraints (textAreal , gbc) ;
tele . add (textAreal) ;
button4 = new j ava . awt . Button (" help ") ;
button4 . reshape (144 , 2 92 , 0 , 0) ;
button4 . setForeground (new Color (O)) ;
gbc = new GridBagConstraints () ;
gbc . gricbc = O ;
gbc . gridy = 6 ;
gbc . gridwidth 2 ;
gbc . weightx = 1 . 0 ;
gbc . weighty = 1 . 0 ;
gbc . f ill = GridBagConstraints . NONE ;
gbc . insets = new Insets (0 , 0 , 0 , 0) ;
gridBagLayout . setConstraints (button4 , gbc) ;
tele . add (button4) ;
textArea3 = new j ava . awt . TextArea () ;
textArea3 . reshape (184 , 13 3 , 124 , 154) ;
gbc = new GridBagConstraints () ;
gbc . gricbc = l ;
gbc . gridy = 5 ;
gbc . weightx = 1 . 0 ;
gbc . weighty = 1 . 0 ;
gbc . fill = GridBagConstraints . NONE ;
gbc . insets = new Insets (0 , 2 0 , 5 , 2 0) ;
gridBagLayout . setConstraints (textArea3 , gbc) ;
tele . add (textArea3) ;
uic = new symantec . itools . awt . BorderPanel () ;
uic . setLayout (nul l) ;
uic . reshape (l2 , 33 , 3 4 8 , 3 52) ;
tabPanell . add (uic) ;
uic . setLabel (" user input coordinate ") ;
labelll = new j ava . awt . Label (" Position " , Label . CENTER) ;
labelll . reshape (0 , 15 , 85 , 24) ;
uic . add (label l l) ;
label12 = new j ava . awt . Label (" Rotation" , Label . CENTER) ;
labell 2 . reshape (2 2 8 , 15 , 63 , 2 1) ;

1 1 7

uic . add (label12) ;
label8 = new j ava . awt . Label ("X ") ;
label8 . reshape (3 6 , 75 , 2 3 , 2 1) ;
uic . add (label 8) ;
radioButtonGroupPanell = new
symantec . itools . awt . RadioButtonGroupPanel () ;
radioButtonGroupPanell . setLayout (nul l) ;
radioButtonGroupPanell . reshape (2 04 , 63 , 109 , 189) ;
uic . add (radioButtonGroupPanell) ;
Groupl = new CheckboxGroup () ;
radioButtonnorth = new j ava . awt . Checkbox ("North " , Groupl , false) ;
radioButtonnorth . reshape (12 , 12 , 9 5 , 2 1) ;
radioButtonGroupPanel l . add (radioButtonnorth) ;
radioButtoneast = new j ava . awt . Checkbox (" East " , Groupl , false) ;
radioButtoneast . reshape (l2 , 3 6 , 9 5 , 2 1) ;
radioButtonGroupPanell . add (radioButtoneast) ;
radioButtonwest = new j ava . awt . Checkbox (" Wes t " , Groupl , false) ;
radioButtonwest . reshape (12 , 60 , 95 , 2 1) ;
radioButtonGroupPanell . add (radioButtonwest) ;
radioButtonsouth = new j ava . awt . Checkbox (" South " , Groupl , false) ;
radioButtonsouth . reshape (12 , 84 , 9 5 , 2 1) ;
radioButtonGroupPanell . add (radioButtonsouth) ;
xpos = new j ava . awt . TextField () ;
xpos . reshape (84 , 7 5 , 80 , 2 1) ;
uic . add (xpos) ;
label9 = new j ava . awt . Label (" Y ") ;
label9 . reshape (3 6 , 12 3 , 23 , 2 1) ;
uic . add (label9 } ;
ypos = new j ava . awt . TextField () ;
ypos . reshape (8 4 , 1 23 , 80 , 2 1) ;
uic . add (ypos) ;
labellO = new j ava . awt . Label (" Z ") ;
label10 . reshape (3 6 , 17 1 , 2 3 , 2 1) ;
uic . add (labell O) ;
zpos = new j ava . awt . TextField () ;
zpos . reshape (8 4 , 171 , 80 , 2 1) ;
uic . add (zpos) ;
button6 = new j ava . awt . Button (" submit ") ;
button6 . reshape (13 2 , 27 9 , 47 , 2 1) ;
uic . add (button 6) ;
verticalLinel = new symantec . itools . awt . shape . VerticalLine () ;
vertica1Linel . reshape (2 04 , 15 , 2 , 23 0) ;
uic . add (verticalLine l) ;
imd = new symantec . itools . awt . BorderPanel () ;
imd . setLayout (null) ;
imd. reshape (l2 , 3 3 , 3 4 8 , 3 52) ;
tabPanell . add (imd) ;
imd . setLabel (" paths and map ") ;
reddotl = new symantec . itools . multimedia . ImageViewer () ;
reddotl . reshape (24 , 3 9 , 3 , 3) ;
imd . add (reddo t l) ;
try {

reddotl . setURL (new
j ava . net . URL (" file : / C : /WINDOWS/ Desktop/ PROJECT/html /block . GI F ")) ;

} catch (j ava . net . MalformedURLException error) {
}
imageViewer2 = new symantec . itools . multimedia . ImageViewer (} ;
imageViewer2 . reshape (0 , 15 , 3 2 0 , 2 40) ;
imd . add (imageViewer2) ;
try {

imageViewer2 . setURL (new
j ava . net . URL (" file : /C : /WINDOWS / Desktop/ PROJECT /html /birdseye . gi f ")) ;

} catch (j ava . net . Mal formedURLException error) {
}
invisibleButtonlibpf = new symantec . itools . awt . InvisibleButton () ;
invisibleButtonlibpf . reshape (3 6 , 5 1 , 3 9 , 40) ;
imd . add (invisibleButtonlibp f) ;
invisibleButtoncanp f = new symantec . itools . awt . InvisibleButton () ;
invisibleButtoncanpf . reshape (84 , 63 , 3 1 , 27) ;
imd . add (invis ibleButtoncanp f) ;
invisibleButtonguildpf = new symantec . itools . awt . InvisibleButton () ;
invisibleButtonguildpf . reshape (60 , 99 , 17 , 12) ;
imd . add (invis ibleButtong�ildp f) ;
invisibleButtonb13pf = new symantec . itools . awt . InvisibleButton () ;
invisibleButtonb13pf . reshape (13 2 , 63 , 48 , 17) ;
imd . add (invis ibleButtonb13pf) ;
invisibleButtonb3pf = new symantec . itools . awt . InvisibleButton (} ;
invisibleButtonb3pf . reshape (6 0 , 123 , 7 8 , 44) ;
imd . add (invisibleButtonb3pf) ;
invisibleButtonb6pf = new symantec . itools . awt . InvisibleButton () ;
invisibleButtonb6pf . reshape (12 0 , 9 9 , 2 6 , 17) ;

1 1 8

imd . add (invisibleButtonb6pf) ;
invisibleButtonbl8pf = new symantec . itools . awt . InvisibleButton () ;
invis ibleButtonb18pf . reshape (2 04 , 9 9 , 42 , 17) ;
imd . add (invisibleButtonbl8pf) ;
imc = new symantec . itools . awt . BorderPanel () ;
imc . setLayout (null) ;
imc . reshape (l2 , 3 3 , 3 4 8 , 3 52) ;
tabPanell . add (imc) ;
imc . setLabel (" imagemap ") ;
label imclib = new j ava . awt . Label (" library") ;
labelimclib . hide () ;
labelimclib. reshape (72 , 87 , 3 6 , 2 0) ;
labelimclib . setForeground (new Color (1 6777215)) ;
labelimclib . setBackground (new Color (O)) ;
imc . add (labelimc l ib) ;
labelimcb3 = new j ava . awt . Label ("building 3 ") ;
labelimcb3 . hide () ;
labelimcb3 . reshape (14 4 , 13 5 , 6 0 , 17) ;
imc . add (labelimcb3) ;
labelimcb3 . disable () ;
labelimcguild = new j ava . awt . Label (" guild") ;
labelimcguild. hide () ;
labelimcguild. reshape (8 4 , 1 1 1 , 3 0 , 15) ;
imc . add (labelimcguild) ;
labelimcguild. disable () ;
labelimccan = new j ava . awt . Label (" canteen") ;
labelimccan . hide () ;
labelimccan . reshape (12 0 , 7 5 , 4 8 , 1 6) ;
imc . add (labelimccan) ;
labelimccan . disable () ;
labelimcbl4 = new j ava . awt . Label (" bui lding 1 4 ") ;
labelimcb14 . hide () ;
labelimcbl4 . reshape (14 4 , 5 1 , 63 , 14) ;
imc . add (labelimcbl 4) ;
labelimcbl4 . disable () ;
labelimcb15 = new j ava . awt . Label (" bui lding 1 5 ") ;
labelimcbl5 . hide () ;
labelimcbl5 . reshape (180 , 3 9 , 6 5 , 1 5) ;
imc . add (labelimcbl 5) ;
labelimcbl5 . disable () ;
labelimcb16 = new j ava . awt . Label (" building 1 6 ") ;
labelimcbl 6 . hide () ;
labelimcbl 6 . reshape (2 2 8 , 27 , 68 , 15) ;
imc . add (labelimcbl 6) ;
labelimcbl6 . disable () ;
labelimcb13 = new j ava . awt . Label (" building 13 ") ;
labelimcbl3 . hide () ;
labelimcb13 . reshape (180 , 7 5 , 6 2 , 1 4) ;
imc . add (labelimcb13) ;
labelimcb13 . disable () ;
labelimcbl7 = new j ava . awt . Label (" building 17 ") ;
labelimcb17 . hide () ;
label imcbl7 . reshape (2 2 8 , 63 , 64 , 15) ;
imc . add (labelimcbl7) ;
labelimcbl7 . disable () ;
labelimcb6 = new j ava . awt . Label (" bui lding 6 ") ;
labelimcb6 . hide () ;
labelimcb6 . reshape (14 4 , lll , 58 , 12) ;
imc . add (labelimcb6) ;
labelimcb6 . disable () ;
labelimcacad = new j ava . awt . Label (" academy of performing arts ") ;
label imcacad . hide () ;
labelimcacad . reshape (15 6 , 1 95 , 155 , 1 5) ;
imc . add (labelimcacad) ;
labelimcacad . disable () ;
imageViewer3 = new symantec . itools . multimedia . ImageViewer () ;
imageViewer3 . reshape (0 , 15 , 32 0 , 24 0) ;
imc . add (imageViewer3) ;
try {

imageViewer3 . setURL (new
j ava . net . URL (" file : /C : /WINDOWS/ Desktop/ PROJECT/html /birdseye . gi f ")) ;

} catch (j ava . net . MalformedURLException error) {
} .
invisibleButtonb3 = new symantec . itools . awt . InvisibleButton () ;
invisibleButtonb3 . reshape (60 , 12 3 , 7 5 , 4 5) ;
imc . add (invisibleButtonb3) ;
invisibleButtonlib = new symantec . itools . awt . InvisibleButton () ;
invis ibleButtonlib . reshape (3 6 , 63 , 37 , 3 7) ;
imc . add (invisibleButtonl ib) ;
invisibleButtonguild = new symantec . i tools . awt . InvisibleButton () ;
invisibleButtonguild . reshape (6 0 , l ll , 17 , 12) ;

1 19

imc . add (invisibleButtonguild) ;
invisibleButtoncan = new symantec . itools . awt . InvisibleButton () ;
invisibleButtoncan . reshape (84 , 63 , 33 , 2 9) ;
imc . add (invisibleButtoncan) ;
invisibleButtonbl4 = new symantec . itools . awt . InvisibleButton () ;
invisibleButtonbl4 . reshape (l08 , 5 1 , 3 0 , 1 6) ;
imc . add (invisibleButtonbl4) ;
invisibleButtonbl3 = new symantec . itools . awt . InvisibleButton () ;
invisibleButtonb13 . reshape (13 2 , 75 , 4 9 , 1 9) ;
imc . add (invisibleButtonb13) ;
invisibleButtonb15 = new symantec . itools . awt . InvisibleButton () ;
invisibleButtonb15 . reshape (144 , 2 7 , 27 , 3 7) ;
imc . add (invisibleButtonb1 5) ;
invisibleButtonb1 6 = new symantec . itools . awt . InvisibleButton () ;
invisibleButtonb16 . reshape (180 , 3 9 , 117 , 1 8) ;
imc . add (invisibleButtonbl 6) ;
invis ibleButtonb17 = new symantec . itools . awt . InvisibleButton () ;
invisibleButtonb17 . reshape (2 04 , 75 , 63 , 14) ;
imc . add (invisibleButtonb17) ;
invisibleButtonb6 = new symantec . itools . awt . InvisibleButton () ;
invisibleButtonb6 . reshape (12 0 , lll , 2 5 , 17) ;
imc . add (invisibleButtonb 6) ;
invisibleButtonacad = new symantec . itools . awt . InvisibleButton () ;
invisibleButtonacad. reshape (6 0 , 183 , 94 , 4 5) ;
imc . add (invisibleButtonacad) ;
label5 = new j ava . awt . Label ("X ") ;
label5 . reshape (3 6 , 2 55 , 23 , 2 1) ;
imc . add (label5) ;
label6 = new j ava . awt . Label (" Y ") ;
label6 . reshape (14 4 , 2 55 , 23 , 2 1) ;
imc . add (label6) ;
label? = new j ava . awt . Label (" Z ") ;
label7 . reshape (2 5 2 , 2 5 5 , 2 3 , 2 1) ;
imc . add (label 7) ;
textField4 = new j ava . awt . TextField () ;
textField4 . reshape (108 , 27 9 , 93 , 24) ;
imc . add (textField4) ;
textField5 = new j ava . awt . TextField () ;
textField5 . reshape (2 16 , 27 9 , 97 , 24) ;
imc . add (textField5) ;
reddot2 = new symantec . i tools . multimedia . ImageViewer () ;
reddot2 . reshape (72 , 87 , 3 , 3) ;
imc . add (reddot2) ;
try {

reddot2 . setURL (new
j ava . net . URL (" f ile : /C : /WINDOWS/ Desktop/ PROJECT/html /block .GIF ")) ;

} catch (j ava . net . MalformedURLException error) {
}
textField3 = new j ava . awt . TextField () ;
textField3 . reshape (0 , 2 7 9 , 9 6 , 24) ;
imc . add (textField3) ;
ts = new symantec . itools . awt . BorderPanel () ;
ts . setLayout (nul l) ;
ts . reshape (l2 , 3 3 , 3 4 8 , 3 52) ;
tabPanell . add (ts) ;
ts . setLabel (" touch sensor ") ;
imageViewer5 = new symantec . itools . multimedia . ImageViewer () ;
imageViewerS . reshape (0 , 15 , 3 2 0 , 2 4 0) ;
ts . add (imageViewer5) ;
try {

imageViewer5 . setURL (new
j ava . net . URL (" f ile : /C : /WINDOWS / Desktop/ PROJECT/html /birdseye . gi f ")) ;

} catch (j ava . net . MalformedURLException error) {
}
tstext = new j ava . awt . TextField () ;
tstext . reshape (3 6 , 2 79 , 27 3 , 2 0) ;
ts . add (tstext) ;
libraryhigh = new symantec . itools . multimedia . ImageViewer () ;
libraryhigh . hide () ;
libraryhigh . reshape (3 6 , 63 , 42 , 40) ;
ts . add (libraryhigh) ;
try {

libraryhigh . setUR� (new
j ava . net . URL (" file : / C : /WINDOWS / Desktop/PROJECT/html / library . gi f ")) ;

} catch (j ava . net . Mal formedURLException error) {
}
canteenhigh = new symantec . itools . multimedia . ImageViewer () ;
canteenhigh . hide () ;
canteenhigh . reshape (84 , 7 5 , 3 4 , 3 2) ;
ts . add (canteenhigh) ;
try {

120

canteenhigh . setURL (new
j ava . net . URL (" fi le : /C : /WINDOWS /Desktop/ PROJECT/html / canteen . gi f ")) ;

} catch (j ava . net . MalformedURLException error) {
}

guildhigh = new symantec . itools . multimedia . ImageViewer () ;
guildhigh . hide () ;
gui ldhigh . reshape (6 0 , l ll , 19 , 13) ;
ts . add (guildhigh) ;
try {

guildhigh . setURL (new
j ava . net . URL (" f i le : / C : /WINDOWS / Desktop/ PROJECT/html/guild. gi f ")) ;

} catch (j ava . net . Mal formedURLException error) {
}
b3high = new symantec . itools . multimedia . ImageViewer () ;
b3high . hide () ;
b3high . reshape (60 , 13 5 , 7 8 , 4 9) ;
ts . add (b3high) ;
try {

b3high . setURL (new
j ava . net . URL (" file : / C : /WINDOWS/ Desktop/PROJECT/html /b3 . gif ")) ;

} catch (j ava . net .MalformedURLException error) {
}
bl3high = new symantec . itool s . multimedia . ImageViewer () ;
bl3high . hide () ;
bl3high . reshape (l2 0 , 75 , 52 , 22) ;
ts . add (bl3high) ;
try {

bl3high . setURL (new
j ava . net . URL (" f ile : / C : /WINDOWS /Desktop/PROJECT/html /bl3 . gi f ")) ;

} catch (j ava . net . Mal formedURLException error) {
}
bl4high = new symantec . itools . multimedia . ImageViewer () ;
bl4high . hide () ;
bl4high . reshape (108 , 51 , 3 4 , 19) ;
ts . add (bl4high) ;
try {

bl4high . setURL (new
j ava . net . URL (" f ile : /C : /WINDOWS/Desktop/PROJECT/html /bl4 . gi f ")) ;

} catch (j ava . net . Mal formedURLException error) {
}

blShigh = new symantec . itool s . multimedia . ImageViewer () ;
blShigh . hide () ;
bl5high . reshape (l44 , 3 9 , 3 0 , 40) ;
ts . add (bl Shigh) ;
try {

blShigh . setURL (new
j ava . net . URL (" f ile : / C : /WINDOWS /Desktop/ PROJECT/html /blS . gi f ")) ;

} catch (j ava . net . MalformedURLException error) {
}

bl 6high = new symantec . itools . multimedia . ImageViewer () ;
bl 6high . hide () ;
bl 6high . reshape (l 80 , 51 , 119 , 2 2) ;
ts . add (bl6high) ;
try {

bl6high . setURL (new
j ava . net . URL (" f ile : / C : /WINDOWS /Desktop/PROJECT/html /bl6 . gi f ")) ;

} catch (j ava . net . Mal formedURLException error) {
}

bl7high = new symantec . itools . multimedia . ImageViewer () ;
bl7high . hide () ;
bl7high . reshape (2 04 , 87 , 67 , 16) ;
ts . add (bl7high) ;
try {

bl7high . setURL (new
j ava . net . URL (" file : / C : /WINDOWS / Desktop/ PROJECT/html /bl 7 . gi f ")) ;

} catch (j ava . net . Mal formedURLException error) {
}

b6high = new symantec . itools . multimedia . ImageViewer () ;
b6high . hide () ;
b6high . reshape (12 0 , l ll , 2 8 , 2 1) ;
ts . add (b6high) ;
try {

b6high . setURL (new
j ava . net . URL (" file : / C : /WINDOWS / Desktop/ PROJECT/html /b6 . gi f ")) ;

} catch (j ava . net . Mal formedURLException error) {
}
bl8high = new symantec . itools . multimedia . ImageViewer () ;
bl8high . hide () ;
bl8high . reshape (2 04 , ll l , 44 , 22) ;
ts . add (bl8high) ;
try {

121

b18high . setURL (new
j ava . net . URL (" file : / C : /WINDOWS/ Desktop/ PROJECT/html /b18 . gi f ")) ;

} catch (j ava . net . Ma lformedURLException error) {
}
reddot3 = new symantec . itools . multimedia . ImageViewer () ;
reddot3 . reshape (3 6 , 7 5 , 3 , 3) ;
ts . add (reddot3) ;
try {

reddot3 . setURL (new
j ava . net . URL (" file : /C : /WINDOWS / Desktop/ PROJECT/html /block . GIF ")) ;

} catch (j ava . net . MalformedURLException error) {
·}
env = new symantec . itools . awt . BorderPanel () ;
env . setLayout (nul l) ;
env . reshape (l2 , 3 3 , 3 4 8 , 3 52) ;
tabPanell . add (env) ;
env . setLabel (" environment ") ;
buttons = new j ava . awt . Button (" time ") ;
button5 . reshape (3 6 , 2 07 , 3 8 , 2 1) ;
env . add (button5) ;
button12 = new j ava . awt . Button (" credits ") ;
button12 . reshape (2 2 8 , 2 5 5 , 6 0 , 2 1) ;
env . add (button12) ;
textField6 = new j ava . awt . TextField () ;
textField6 . setEditable (false) ;
textField6 . reshape (0 , 2 55 , 13 2 , 2 1) ;
env . add (textField6) ;
label15 = new j ava . awt . Label (" X : " , Label . CENTER) ;
label15 . reshape (24 , 3 9 , 2 0 , 2 0) ;
env . add (labe11 5) ;
label16 = new j ava . awt . Label (" Y : " , Label . CENTER) ;
labe11 6 . reshape (24 , 75 , 2 0 , 2 0) ;
env . add (label1 6) ;
label17 = new j ava . awt . Label (" Z : " , Label . CENTER) ;
label17 . reshape (2 4 , 111 , 2 0 , 2 0) ;
env . add (labe1 17) ;
buttonl = new j ava . awt . Button ("help ") ;
buttonl . reshape (2 2 8 , 2 07 , 5 9 , 2 1) ;
env . add (buttonl) ;
label18 = new j ava . awt . Label (" xpos ") ;
labell8 . reshape (4 8 , 3 9 , 80 , 2 0) ;
env . add (label18) ;
label19 = new j ava . awt . Label ("ypos ") ;
label19 . reshape (48 , 75 , 80 , 2 0) ;
env . add (label 1 9) ;
label20 = new j ava . awt . Label (" zpos ") ;
label 2 0 . reshape (4 8 , 111 , 80 , 2 0) ;
env . add (label2 0) ;
label21 = new j ava . awt . Label (" building : ") ;
label2 1 . reshape (2 4 , 15 9 , 50 , 2 0) ;
env . add (label2 1) ;
label22 = new j ava . awt . Label (" outside ") ;
label22 . reshape (8 4 , 159 , 100 , 2 0) ;
env . add (label2 2) ;
eastp = new symantec . itool s . multimedia . ImageViewer () ;
eastp . reshape (l 80 , 2 7 , 12 2 , 107) ;
env . add (eastp) ;
try {

eastp . setURL (new
j ava . net . URL (" file : / C : /WINDOWS/ Desktop/PROJECT/html / east . gi f ")) ;

} catch (j ava . net . MalformedURLException error) {
}
northp = new symantec . itools . multimedia . ImageViewer () ;
northp . hide () ;
northp . reshape (l80 , 2 7 , 12 2 , 107) ;
env . add (northp) ;
try {

northp . setURL (new
j ava . net . URL (" file : / C : /WINDOWS / Desktop/PROJECT/html /north . gi f ")) ;

} catch (j ava . net . MalformedURLException error) {
}
southp = new symantec . itools . multimedia . ImageViewer () ;
southp . reshape (180 , 27 , 122 , 1 0 7) ;
env . add (southp) ;
try {

southp . setURL (new
j ava . net . URL (" file : /C : /WINDOWS / Desktop/ PROJECT/html / south . gi f ")) ;

} catch (j ava . net . MalformedURLException error) {
}
westp = new symantec . itools .multimedia . ImageViewer () ;
westp . hide () ;

122

westp . reshape (lB0 , 27 , 122 , 107) ;
env . add (westp) ;
try {

westp . setURL (new
j ava . net . URL (" fi le : /C : /WINDOWS / Desktop/PROJECT/html /west . gi f ")) ;

} catch (j ava . net . MalformedURLException error) {
}

/ / } }
for (int i = l ; i<=2 ; i++) {
Date d = new Date () ;

int h = d . getHours () ;

f loat [] [] vals = new f loat [2 5] [3] ;
float [] [] valsk = new float [3] (3] ;

i f (h == o I I h == 1 l
{ vals = sunOl ;
valsk = nightsky;

newsunpi . setValue (val s) ;
skychange . setValue (valsk) ; }

else if (h == 2 I I h == 3)
{ vals = sun2 3 ;
valsk = nightsky;

newsunpi . setValue (vals) ;
skychange . setValue (valsk) ; }

else i f (h == 4 I I h == 5)
{vals = sun45 ;
valsk = nightsky;

newsunpi . setValue (vals) ;
skychange . setValue (valsk) ; }

else i f (h == 6 I I h == 7)
{vals = sun67 ;
valsk = daysky ;

newsunpi . setValue (vals) ;
skychange . setValue (valsk) ; }

else i f (h == 8 1 1 h 9)
{ vals = sun89 ;
valsk = daysky;

newsunpi . setValue (val s) ;
skychange . setValue (valsk) ; }

else i f (h == 1 0 I I h 1 1)
{ vals = sunlO l l ;
valsk = daysky;

newsunpi . setValue (vals) ;
skychange . setValue (valsk) ; }

else i f (h == 12 I I h 13)
{vals = sun12 13 ;
valsk = daysky;

newsunpi . setValue (val s) ;
skychange . setValue (valsk) ; }

else if (h == 14 I I h 1 5)
{ vals = sun1415 ;
valsk = daysky;

newsunpi . setValue (vals) ;
skychange . setValue (valsk) ; }

else i f (h == 1 6 I I h 17)
{vals = sun1617 ;
valsk = daysky;

newsunpi . setValue (val s) ;
skychange . setValue (valsk) ; }

else i f (h == 1 8 I \ h 1 9)
{ vals = sun18 19 ;
valsk = daysky;

newsunpi . setValue (vals) ;
skychange . setValue (valsk) ; }

else i f (h == 2 0 1 1 h -- 2 1)
{ vals = sun2 02 1 ;
valsk = nightsky ;

newsunpi . setValue (val s) ;
skychange . setValue (valsk) ; }

else if (h == 2 2 I J h == 2 3)

123

{ vals = sun2 22 3 ;
valsk = nightsky;
newsunpi . setValue (vals) ;
skychange . setValue (valsk) ;

public void paint (Graphics g)
{

imageViewer3 . repaint () ;
reddot2 . repaint () ;

public void callback (EventOut who , double when, Obj ect which) {
Integer whichNum = (Integer) which;

if (whichNum . intValue () == 6) {
tstext . setText (" guild") ;
guildhigh . show () ;
canteenhigh . hide () ;
bl4high . hide () ;
b15high . hide () ;
b16high . hide () ;
b17high . hide () ;
bl3high . hide () ;
b6high . hide () ;
b18high . hide () ;
}

i f (whichNum . intValue () == 7)
tstext . setText (" canteen") ;
canteenhigh . show () ;
guildhigh . hide () ;
b14high . hide () ;
bl5high . hide () ;
b16high . hide () ;
bl7high . hide () ;
b13high . hide () ;
b6high . hide () ;
b18high . hide () ;
}

i f (whichNum . intValue () 8) {
tstext . setText (" b14 ") ;
b14high . show () ;
guildhigh . hide () ;
canteenhigh . hide () ;
b15high . hide () ;
b16high . hide () ;
b17high . hide () ;
bl3high . hide () ;
b6high . hide () ;
b18high . hide () ;
}

i f (whichNum . intValue () 9) {
tstext . setText ("b15 ") ;
b15high . show () ;
guildhigh . hide () ;
canteenhigh . hide () ;
b14high . hide () ;
b16high . hide () ;
b17high . hide () ;
b13high . hide () ;
b6high . hide () ;
b18high . hide () ;
}

i f (whichNum . intValue () 1 0) {
tstext . setText (" b16 ") ;
b16high . show () ;
guildhigh. hide () ;
canteenhigh . hide () ;
b14high . hide () ;
b15high . hide () ;
b17high . hide () ;
b13high . hide () ;
b6high . hide () ;
b18high . hide () ;
}

if (whichNum . intValue ()
tstext . setText (" b17 ") ;
bl ?high . show () ;

1 1) {

1 24

guildhigh . hide () ;
canteenhigh . hide () ;
b14high . hide () ;
b15high . hide () ;
b1 6high . hide () ;
b13high . hide () ;
b6high . hide () ;
b18high . hide () ;
}

i f (whichNum . intValue ()
tstext . setText (" b13 ") ;
b13high . show () ;
guildhigh . hide () ;
canteenhigh . hide () ;
b14high . hide () ;
b15high . hide () ;
b1 6high . hide () ;
b17high . hide () ;
b6high . hide () ;
b18high . hide () ;
}

i f (whichNum . intValue ()
tstext . setText (" b6 ") ;
b6high . show () ;
guildhigh . hide () ;
canteenhigh . hide () ;
b14high . hide () ;
b15high . hide () ;
b16high . hide () ;
bl7high . hide () ;
b13high . hide () ;
b18high . hide () ;
}

i f (whichNum . intValue ()
tstext . setText (" b18 ") ;
b18high . show () ;
guildhigh . hide () ;
canteenhigh . hide () ;
b14high . hide () ;
b15high . hide () ;
b16high . hide () ;
b17high . hide () ;
b13high . hide () ;
b6high . hide () ;
}

1 2) {

13) {

14) {

i f (whichNum . intValue () == 3) {
f loat (] val = newtrans . getValue () ;
i f ((int) end [O J == (int) val [O J

&& (int) end [2] = = (int) va1 [2]
)

{
enable . setValue (false) ;
loopy . setValue (false) ;
oenable . setValue (false) ;
oloopy . setValue (false) ;
textArea2 . appendText (• arrived" + " \n ") ;
}
else i f ((int) fullposvrml [z+ l] [O J == (int) val [O J

&& fullposvrml [z+ l] [1] = = val [l]

else { }

&& (int) fullposvrml [z + l] [2] == (int) val [2])
{

enable . setValue (false) ;
loopy . setValue (false) ;
orientationinterpolator () ;

float [] val2 = newrot . getValue () ;
textAreal . appendText (" x " + (val [O J) + " , " + "y " + val [l] + " , " + " z "

+ Math . floor (val [2]) + " \n " L;
textArea3 . appendText (va12 [0] + + va12 [1] + " , " + val2 [2] + " , " +

va12 [3] + " \n ") ;

i f (whichNum . intValue () == 5) {
f loat (] valps = globalps . getValue () ;
textField3 . setText (" \n " + (int) valps [O]) ;

textField4 . setText (" \n " + valps [l]) ;

125

--

textField5 . setText (" \n " + (int) valps [2]) ;
labellS . setText (" " + (int) valps [O]) ;
labell9 . setText (" " + valps [l]) ;
label2 0 . setText (" " + (int) valps [2]) ;
reddotl . reshape ((int) valps [0] - 1 9 5 , (int) valps [2] +310 , 3 , 3) ;
reddotl . repaint () ;
reddot2 . reshape ((int) valps [0] -195 , (int) valps (2] +3 10 , 3 , 3) ;
reddot2 . repaint () ;
reddot3 . reshape ((int) valps [0] - 1 9 5 , (int) valps [2 l +310 , 3 , 3) ;
reddot3 . repaint () ;

if (whichNum . intValue () == 1 5) {
f loat [] valr = newrot . getValue () ;

}

i f (valr [3] < fullorientvrml [z+ l] [3] + . 3
&& valr [3] > fullorientvrml [z+ l] [3] - . 3)

z++ ;
oenable . setValue (false) ;
oloopy . setValue (false) ;
positioninterpolator () ;

else i f ((int) valr [3] == - 4)
{

}

eastp . hide () ;
northp . hide () ;
westp . hide () ;
southp . show () ;
southp . repaint () ;

else i f ((int) valr [3] - 3)
{

}

southp . hide () ;
northp . hide () ;
westp . hide () ;
eastp . show () ;
eastp . repaint () ;

else i f ((int) valr [3] - - - 1)
{

}

southp . hide () ;
eastp . hide () ;
westp . hide () ;
northp . show () ;
northp . repaint () ;

else i f (valr [3] == 0)
{

southp . hide () ;
eastp . hide () ;
northp . hide () ;
westp . show () ;
westp . repaint () ;

}
else { }

if (whichNum . intValue () == 1 6)
{

float [] [] valr = onewkv . getValue () ;
textArea4 . append Text (" onewkv" + " \n " +

126

valr [O] [O J + " " +valr [O] [1] + " + valr [O] [2] +
valr [l] [O J + " " +valr [l l [1] + " " + valr [l] [2] + "

}

+ valr [O] [3] + " \n " +
" + valr [l] [3] + " \n ") ;

i f (whichNum . intValue () == 4)
{

float [] [] valr = newkv . getValue () ;
textArea4 . appendText (" posnewkv" + " \n" +

valr [0] [0] + " " +valr [0 l [1] +
valr [l l [O J + " " +valr [l] [1] +

publ ic boolean handleEvent (Event event) {
i f (event . target == button4 && event . id

button4_Clicked (event) ;
return true ;

+ valr [O] [2] + " \n " +
+ valr [l] [2] + " \n ") ;

Event . ACTION_EVENT) {

i f (event . target == buttons && event . id
buttonS_Clicked (event) ;

Event . ACTION_EVENT) {

return true ;

i f (event . target == button12 && event . id -- Event . ACTION_EVENT) {
button12_Clicked (event) ;
return true ;

i f (event . target == buttonl && event . id
buttonl_Clicked (event) ;

Event . ACTION_EVENT) {

return true ;

i f (event . target == invisibleButtonlib && event . id == Event . MOUSE_ENTER) {
invisibleButtonlib_MouseEnter (event) ;
return true ;

}
i f (event . target == invisibleButtonlib && event . id == Event . MOUSE_EXIT) {

invisibleButtonlib_MouseExit (event) ;
return true ;

}
i f (event . target == invisibleButtonb3 && event . id == Event . MOUSE_ENTER) {

invisibleButtonb3_MouseEnter (event) ;
return true ;

}
i f (event . target == invisibleButtonb3 && event . id == Event . MOUSE_EXIT) {

invisibleButtonb3_MouseExit (event) ;
return true ;

i f (event . target == invisibleButtonguild && event . id == Event . MOUSE_ENTER) {
invisibleButtonguild_MouseEnter (event) ;
return true ;

i f (event . target == invisibleButtonguild && event . id == Event . MOUSE_EXIT) {
invisibleButtongui ld_MouseExit (event) ;
return true;

i f (event . target == invis ibleButtoncan && event . id == Event . MOUSE_ENTER) {
invisibleButtoncan_MouseEnter (event) ;
return true ;

i f (event . target == invisibleButtoncan && event . id == Event . MOUSE_EXIT) {
invis ibleButtoncan_MouseExit (event) ;
return true ;

i f (event . target == invisibleButtonb14 && event . id == Event . MOUSE_ENTER) {
invisibleButtonb14_MouseEnter (event) ;
return true;

i f (event . target == invisibleButtonb14 && event . id == Event . MOUSE_EXIT) {
invisibleButtonb14_MouseExit (event) ;
return true ;

i f (event . target == invisibleButtonb13pf && event . id
invis ibleButtonb13_MouseEnter (event) ;
return true ;

i f (event . target == invisibleButtonb13pf && event . id
invisibleButtonb13_MouseExit (event) ;
return true ;

Event . MOUSE_ENTER) {

Event . MOUSE_EXIT) {

i f (event . target == invisibleButtonb15 && event . id == Event . MOUSE_ENTER) {
invisibleButtonb15_MouseEnter (event) ;
return true ;

i f (event . target == invisibleButtonbl5 && event . id == Event . MOUSE_EXIT) {
invisibleButtonb15_MouseExit (event) ;
return true ;

i f (event . target == invisibleButtonb1 6 && event . id == Event . MOUSE_ENTER) {
invis ibleButtonb16_MouseEnter (event) ;
return true ;

i f (event . target == invisibleButtonb16 && event . id == Event . MOUSE_EXIT) {
invisibleButtonb1 6_MouseExit (event) ;
return true ;

i f (event . target == invisibleButtonb17 && event . id Event . MOUSE_ENTER) {

127

invisibleButtonbl7_MouseEnter (event) ;
return true ;

i f (event . target == invis ibleButtonbl7 && event . id == Event . MOUSE_EXIT) {
invisibleButtonb17_MouseExit (event) ;
return true ;

)
i f (event . target == invisibleButtonb13pf && event . id

invisibleButtonb6_MouseEnter (event) ;
return true ;

)
i f (event . target == invisibleButtonb13pf && event . id

invisibleButtonb6_MouseExit (event) ;
return true ;

)

Event . MOUSE_ENTER)

Event . MOUSE_EXIT) {

i f (event . target == invisibleButtonacad && event . id == Event . MOUSE_ENTER) {
invisibleButtonacad_MouseEnter (event) ;
return true ;

)

i f (event . target == invisibleButtonacad && event . id == Event . MOUSE_EXIT) {
invisibleButtonacad_MouseExit (event) ;
return true ;

i f (event . target == invisibleButtonb3 && event . id Event . ACTION_EVENT) {
invisibleButtonb3_Action (event) ;
return true ;

)
i f (event . target == invisibleButtonlib && event . id Event . ACTION_EVENT) {

invisibleButtonlib_Action (event) ;
return true ;

)

128

if (event . target == invisibleButtonguild && event . id Event . ACTION_EVENT) {
invisibleButtongui ld_Action (event) ;
return true ;

i f (event . target == invisibleButtoncan && event . id Event . ACTION_EVENT) {
invisibleButtoncan_Action (event) ;
return true ;

i f (event . target == invisibleButtonb14 && event . id Event . ACTION_EVENT) {
invisibleButtonb14_Action (event) ;
return true ;

i f (event . target == invisibleButtonb13pf && event . id Event . ACTION_EVENT) {
invisibleButtonb13_Action (event) ;
return true ;

i f (event . target == invisibleButtonb15 && event . id
invisibleButtonb15_Action (event) ;
return true;

i f (event . target == invisibleButtonbl6 && event . id
invisibleButtonbl6_Action (event) ;
return true ;

i f (event . target == invisibleButtonb17 && event . id
invisibleButtonb17_Action (event) ;
return true ;

i f (event . target == textFieldl && event . id
textFieldl_EnterHit (event) ;
return true ;

)

i f (event . target == textField2 && event . id
textField2_EnterHit (event) ;
return true ;

return super . handleEvent (event) ;

void invisibleButtonb3_MouseExit (Event event) {
labelimcb3 . hide () ;
imageViewer3 . repaint () ;

void invisibleButtonb3_MouseEnter (Event event) {
labelimcb3 . show () ;

void invisibleButtonlib_MouseExit (Event event) {
labelimclib . hide () ;
imageViewer3 . repaint () ;

Event . ACTION_EVENT) {

Event . ACTION_EVENT) {

Event . ACTION_EVENT) {

Event . ACTION_EVENT) {

Event . ACTION_EVENT) {

void invisibleButtonlib_MouseEnter (Event event) {
label imclib . show () ;

void invisibleButtonguild_MouseExit (Event event) {
labelimcguild. hide () ;
imageViewer3 . repaint () ;

void invisibleButtonguild_MouseEnter (Event event) {
labelimcguild . show () ;

void invisibleButtoncan_MouseExit (Event event) {
labelimccan . hide () ;
imageViewer3 . repaint () ;

void invisibleButtoncan_MouseEnter (Event event) {
labelimccan . show () ;

void invisibleButtonbl4_MouseExit (Event event) {
labelimcb14 . hide () ;
imageViewer3 . repaint () ;

void invisibleButtonb14_MouseEnter (Event event) {
labelimcbl4 . show () ;

void invisibleButtonb13_MouseExit (Event event) {
labelimcb13 . hide () ;
imageViewer3 . repaint () ;

void invisibleButtonb13_MouseEnter (Event event) {
labelimcb13 . show () ;

void invisibleButtonblS_MouseExit (Event event)
labelimcbl5 . hide () ;
imageViewer3 . repaint () ;

void invisibleButtonb15 _MouseEnter (Event event)
labelimcbl5 . show () ;

void invisibleButtonb16_MouseExit (Event event)
labelimcbl 6 . hide () ;
imageViewer3 . repaint () ;

void invisibleButtonb16_MouseEnter (Event event)
labelimcb16 . show () ;

void invisibleButtonb17_MouseExit (Event event)
labelimcbl7 . hide () ;
imageViewer3 . repaint () ;

void invisibleButtonb17_MouseEnter (Event event)
labelimcbl7 . show () ;

void invisibleButtonb6_MouseExit (Event event) {
labelimcb6 . hide () ;
imageViewer3 . repaint () ;

{

{

{

void invisibleButtonb6_MouseEnter (Event event) {
labelimcb6 . show () ;

{

{

{

void invisibleButtonacad_MouseExit (Event event) {
labelimcacad . hide () ;
imageViewer3 . repaint () ;

void invisibleButtonacad_MouseEnter (Event event) {
labelimcacad . show () ;

void invisibleButtonb3_Action (Event event) {
teleportation (b3 , east) ;

}

void invisibleButtonb17_Action (Event event) {
teleportation (bl7 , west) ;

void invisibleButtonb1 6_Action (Event event) {
teleportation (bl 6 , west) ;

void invisibleButtonblS_Action (Event event) {
teleportation (b1 5 , south) ;

void invisibleButtonb13_Action (Event event) {
teleportation (bl3 , west) ;

129

void invisibleButtonb14_Action (Event event) {
teleportation (bl4 , west) ;

void invisibleButtoncan_Action (Event event) {
teleportation (canteen , north) ;

void invisibleButtonguild_Action (Event event) {
teleportation (guild, south) ;

void invisibleButtonlib_Action (Event event) {
teleportation (library , south) ;

void invisibleButtonlibpf_Action (Event event) {
end [0] l ibrary [0 J ;
end [l] = library [l] ;
end [2] = l ibrary [2] ;
nearestneighbour (label [l] , l) ;
}
void invisibleButtoncanpf_Action (Event event) {

end [O J = canteen [O J ;
end [l l = canteen [l] ;
end [2] = canteen [2] ;
nearestneighbour (labe1 [3] , 3) ;
}
void invisibleButtonguildpf_Action (Event event) {

end (O] = guild [O J ;
end [l] = guild (l] ;
end (2 J = guild [2] ;
nearestneighbour (label [0] , 0) ;
}
void invisibleButtonb13pf_Action (Event event) {

end (O] = bl3 [0] ;
end [l] = bl3 [1] ;
end (2 J = b13 [2] ;
nearestneighbour (labe1 [6] , 6 } ;
}
void invisibleButtonb3pf_Action (Event event) {

end (O J = b3 [0] ;
end [l l = b3 [1] ;
end [2] = b3 [2] ;
nearestneighbour (label [2] , 2) ;
}
void invisibleButtonb6pf_Action (Event event) {

end [O J = b6 [O J ;
end [l] = b6 [1] ;
end [2 J = b6 [2] ;
neares tneighbour (labe1 [5] , 5) ;
}
void invisibleButtonb18pf_Action (Event event) {

end [O J = b18 [0] ;
end [l] = b18 [1] ;
end [2] = bl8 [2] ;
nearestneighbour (label [l l] , 11) ;
}

public void teleportation (f loat [J telepos , float [] telerot)
{

translation . setValue (telepos) ;
rotate . setValue (telerot) ;

public boolean action (Event event , Obj ect what) {

i f (event . target instanceof Button)
{

Button b = (Button) event . targe t ;

i f (b . getLabel ()
{

11 time 11)

Date d = new Date () ;
textField6 . setText (d . toString ()) ;

else i f (b . getLabel () == " submit ")
{

xvalp = Float . valueO f (xpos . getText ()) . floatValue () ;

1 30

yvalp = Float . valueOf (ypos . getText ()) . f loatValue () ;
zvalp = Float . valueOf (zpos . getText ()) . floatValue () ;
f loat [) valp = new f loat (3 J ;
valp [0 J xvalp ;
valp [l) = yvalp ;
valp [2) = zvalp ;
trans lation . setValue (valp) ;

i f (event . target instanceof Checkbox)
{

i f (radioButtonnorth . getState () true)
{

rotate . setValue (north) ;
}
else i f (radioButtonwest . getState () true)
{

rotate . setValue (west) ;
}

else i f (radioButtoneast . getState ()
{

true)

rotate . setValue (east) ;
}

else if (radioButtonsouth . getState ()
{

return true ;

rotate . setValue (south) ;
}

i f (event . target instanceof List)

List 1 = (List) event . target ;

i f (l . getSelecteditem () == " guild")
{

teleportation (guild, south) ;

else i f (l . getSelecteditem ()
{

teleportation (b3 , east) ;

" building 3 ")

else i f (l . getSelecteditem () == " library")
{

teleportation (library, south) ;

else i f (l . getSelecteditem ()

teleportation (canteen, north) ;

else i f (l . getSelecteditem ()
{

teleportation (b6 , east) ;

else i f (l . getSelecteditem ()
{

teleportation (b13 , west) ;

else i f (l . getSelecteditem ()
{

teleportation (b14 , west) ;

else i f (l . getSelecteditem ()
{

teleportation (b1 5 , south) ;

else if (l . getSelecteditem ()
{

teleportation (bl 6 , west) ;

" canteen")

" building 6 ")

" building 13 ")

" building 14 ")

" building 1 5 ")

" building 16 ")

true)

131

else i f (l . getSelecteditem ()
{

teleportation (bl7 , wes t) ;

else i f (l . getSelecteditem ()
{

teleportation (b1 8 , east) ;

else i f (l . getSelecteditem ()
{

teleportation (room3 1 , west) ;

" bui lding 17 ")

" building 18 ")

" room 3 . 1 ")

else i f (1 . getSelecteditem () == " room 3 . 2 ")
{

teleportation (room3 2 , east) ;

else i f (l . getSelecteditem () = = " administration")
{

teleportation (admin, north) ;

else i f (1 . getSelecteditem () == " building 3 north")
{

teleportation (b3north , north) ;

else i f (1 . getSelecteditem () = = " room 3 . 3 ")
{

teleportation (room3 3 , west) ;

else i f (l . getSelecteditem ()
{

end [O] = guild [O] ;
end [l] = guild [l] ;

" guild (pf) ")

end [2] = guild [2] ;
nearestneighbour (label [0] , 0) ;

else if (1 . getSelecteditem () = = " l ibrary (pf) ")
{

end [O] = library [O] ;
end [l] = library [l] ;
end [2] = library [2] ;
nearestneighbour (label [l] , l) ;

else i f (1 . getSelecteditem () = = " building 3 (p f) ")
{

end [O] b3 [0] ;
end [l] = b3 [1] ;
end [2] = b3 [2] ;
nearestneighbour (label [2] , 2) ;

else i f (l . getSelecteditem ()
{

end [O] canteen [O] ;
end [l] canteen [l l ;

" canteen (pf) ")

end [2] canteen [2 J ;
nearestneighbour (label [3] , 3) ;

else if (1 . getSelecteditem () == " bui lding 6 (pf) ")
{

end [O] b6 [O J ;
end [l l = b6 [1] ;
end [2 J = b6 [2 J ;
nearestneighbour (label [S] , 5) ;

else i f (1 . getSelecteditem () == " building 13 (p f) ")
{

end [O J = bl3 [0 J ;
end [l] = b13 [1] ;
end [2] = b13 [2] ;
nearestneighbour (label [6] , 6) ;

132

I I
I I

else i f (l . getSelecteditem ()
{

end [O] = b14 [0] ;
end [l] = b14 [1] ;

" building 14 (pf) ")

end [2] = b14 [2] ;
nearestneighbour (labe1 [7] , 7) ;

else i f (1 . getSelecteditem () == " building 15 (pf) ")
{

end [O J = b15 [0] ;
end [l] = b15 [1] ;
end [2] = b15 [2] ;
nearestneighbour (label [S] , 8) ;

else i f (1 . getSelecteditem () == " building 16 (pf) ")
{

end [O] = b16 [0] ;
end [l l = b16 [1] ;
end [2] = b16 [2] ;
nearestneighbour (label [9] , 9) ;

else i f (1 . getSelecteditem () == " bui lding 17 (pf) ")
{

end [O] = b17 [0] ;
end [1] = bl 7 [1 J ;
end [2] = b17 [2] ;
nearestneighbour (label [l0] , 10) ;

else i f (1 . getSelecteditem () == " building 18 (pf) ")
{

end [O] = b18 [0] ;
end [l l = b18 [1] ;
end [2] = b18 [2] ;
nearestneighbour (label [l l] , 11) ;

else i f (1 . getSelecteditem () == " library levell (pf) ")
{

end [O J = libll [O J ;
end [l] = libll [l] ;
end [2] = libl1 [2] ;
nearestneighbour (labe1 [2 1] , 2 1) ;

return true ;

/ / the pathfinding function begins here
/ / their is room for a lot of improvement
/ / in the efficiency of this code , but as it
/ / stands it works f ine , j ust not very quickly .
I I
I I

public void nearestneighbour (char end , int endnum)
{ textArea2 . appendText (" finding shortest path , " + " \n" +

"please wait " + " \n ") ;
end2 = end;
endnum2 = endnum;
float [] vals = globalps . getValue () ;
valpsx [O] = vals [O] ;
valpsz [O] = vals [2] ;

for (i = O ; i <= 2 1 ; i++)
{

valxpos [i] = points [i] [O J ;
valzpos [i] = points [i] (2] ;
distax = (valxpos [i] - valpsx [O J) * (valxpos [i] - valpsx [O]) ;
distaz = (valzpos [i] - valpsz [O]) * (valzpos [i] - valpsz [O]) ;
dist = (float) Math . sqrt (distax + distaz) ;
distArray [i] = dist ;

i f (distArray [i l < lowestdistance)

133

}

lowes tdistance
index = i ;
indexpath = i ;

distArray [i] ;

masvector . removeAllElements () ;
vectorO . removeAllElements () ;
vectorfirstO . removeAllElements () ;
vectorend . removeAllElements () ;
path . removeAllElements () ;
vectorfirstO . addElement (new Character (label [indexpath])) ;
lowestdistance = 9 9 9 9 ;
lowestdist = 9 9 9 9 ;
overalldistance = O ;
z = O ;

i f (label [indexpath] ! = end2)
{

findpath () ;
}
else { }

public void f indpath () {

valxlpos
valzlpos
valx3pos
valz3pos

points [indexpath] [O J ;
points [indexpath] [2] ;
points [endnum2] [O J ;
points [endnum2] [2] ;

for (g O ; g<= 2 1 ; g++)
{

i f (edges [indexpath] [g] >= 1)
{
vectorO = (Vector) vectorfirstO . clone () ;

i f (vectorO . lastElement () . toString () . charAt (O) ! = label [g]
&& ! vectorO . contains (new Character (label [g])))

vectorO . addElement (new Character (label [g])) ;
valx2pos = points [g] [O J ;
valz2pos = points [g] [2] ;
distl = (valx2pos - valxlpos) * (valx2pos - valxlpos) ;
dist2 = (valz2pos - val z lpos) * (valz2pos - valzlpos) ;
f inaldist = (f loat) Math . sqrt (distl + dist2) ;
distla = (valx3pos - valx2pos) * (valx3pos - valx2pos) ;
dist2a = (valz3pos - valz2pos) * (valz3pos - valz2pos) ;
finaldista = (f loat) Math . sqrt (distla + dist2a) ;
pathdist = finaldista + f inaldist ;

i f (pathdist < lowestdis t)

else
{ }

{
lowestdist = pathdis t ;
overalldistance +=finaldist ;
masvector . insertElementAt (vectorO , O) ;
indexpath2 = g ;

}
else
{

masvector . addElement (vector O) ;

vectorend = (Vector) masvector . firstElement () ;

i f (vectorend . lastElement () . toString () . charAt (O)
{

j avatovrml () ;
}
else
{
indexpath indexpath2 ;

end2)

vectorfirstO = (Vector) (masvector . firstElement ()) ;
masvector . removeElementAt (O) ;
lowestdist = 9 9 9 9 ;
findpath () ;

}

134

135

public void j avatovrml () {
path = (Vector) masvector . firs tElement () ;
textArea2 . appendText (" shortest path + path + " \n ") ;
textArea2 . appendText ("path distance " + overal ldistance +

" mtr " + " \n ") ;
textArea2 . appendText (" estimated time to complete " +

((overal ldistance/ c) + ((c - 1) * 5))
+ '' sees '' + 11 \n '') ;

c = path . size () - 1 ;
f loat positionarray [] [] = new f loat [path . size () +l] [3] ;
f loat rotationarray [] [] = new f loat [path . size () +l] [4] ;
f loat [] vals = globalps . getValue () ;
f loat [] ovals = oglobalps . getValue () ;
posi tionarray [O] [O J vals [O J ;
positionarray [O] [1] vals [l] ;
positionarray [O] [2] vals [2] ;
rotationarray [O] [O J ovals [O] ;
rotationarray [O] [1] ovals (l] ;
rotationarray [O] [2] ovals [2] ;
rotationarray [O] [3] ovals (3] ;
e = 1 ;

for (b = O ; b<= c ; b++)
{
tempchar = path . elementAt (b) . toString () . charAt (O) ;

for (d = O ; d<=21 ; d++)
{

e++ ;

i f (label [d] == tempchar)
{

posi tionarray [e] [O J
positionarray [e] [1]
positionarray [e] [2 1
rotationarray (e] [O J
rotationarray [e] [1]
rotationarray [e] [2]

else { }

for (n = l ; n<=c ; n++)
{

points [d] [O J ;
points [d l [1] ;
points [d] [2] ;
O ;
l ;

O ;

opposite = (positionarray [n] [0]) - (pos itionarray [n+ l] [O J) ;
zdif ference (positionarray [n] [2]) - (positionarray [n+ l] [2]) ;
hypotenusea = (opposite) * (opposite) ;
hypotenuseb = (zdi f ference) * (zdi f ference) ;
hypotenuse = (float) Math . sqrt (hypotenusea + hypotenuseb) ;
sinofangle = (f loat) Math . sqrt (hypotenusea) /hypotenuse ;
radianangle = (f loat) Math . asin (s inofangle) ;

i f (opposite <= 0 && zdi f ference <= 0)

{
rotationarray [n] [3] = radianangle + opoints [3] [3] ;

else i f (opposite <= 0 && zdifference >= 0)

rotationarray [n] [3] = radianangle + opoints [2] [3] ; ;

else i f (opposite >= 0 && zdi f ference <= 0)

rotationarray [n] [3] = radianangle + opoints [O] [3] ;

else i f (opposite >= 0 && zdif ference >= 0)

rotationarray [n] [3] = radianangl e ;

textArea2 . appendText (" sending path to VRML " + " \n ") ;
fullposvrml = positionarray;
fullorientvrml = rotationarray;
positioninterpolator () ;

public void orientationinterpolator ()
{

i f (z <= c)
{
f loat [] [] orientvrml = new float [2] [4] ;
orientvrml [O] [O J fullorientvrml [z] [O J ;
orientvrml [O] [1] = fullorientvrml [z] [l] ;

orientvrml [O J [2] ful lorientvrml [z J [2] ;
orientvrml [O] [3 J fullorientvrml [z J [3] ;
orientvrml [1] [O J fullorientvrml [z+ l J [O J ;
orientvrml [l J [l J fullorientvrml [z+ l J [l J ;
orientvrml [l J [2 J fullorientvrml [z+ l] [2 J ;
orientvrml [l J [3] fullorientvrml [z+ l J [3] ;
okv . setValue (orientvrml) ;
oenable . setValue (true) ;
long sees = System . currentTimeMi llis () / 1000 ;
long ostarttime = sees + l ;
long ostoptime = ostarttime + ((long) l O) ;
oloopy . setValue (true) ;
ostart . setValue ((double) ostarttime) ;
ostop . setValue ((double) ostoptime) ;
}

public void positioninterpolator ()
{

if (z <= c)

{
float [] [] positionvrml = new f loat [2] [3 J ;
positionvrml [O J [O J fullposvrml [z J [O J ;
posi tionvrml [0 J [1 J fullposvrml [z J [1 J ;
positionvrml [O] [2 J fullposvrml [z] [2 J ;
positionvrml [1] [O J fullposvrml [z+ l] [O J ;
positionvrml [1] [1] fullposvrml [z+ l] [l l ;
positionvrml [1] [2] fullposvrml [z+ l] [2] ;
kv . setValue (positionvrml) ;
timing . setValue (overalldistance/c) ;
enable . setValue (true) ;
long sees = System . currentTimeMi l l is () / 1000 ;
long starttime = sees + 1 ;
long stoptime = starttime + ((long) overalldistance/c) ;
loopy . setValue (true) ;
start . setValue ((double) starttime) ;
stop . setValue ((double) stoptime) ;

/ / { { DECLARE_CONTROLS
symantec . itools . awt . TabPanel tabPanel l ;
symantec . itools . awt . BorderPanel extra ;
j ava . awt . TextArea textArea4 ;
j ava . awt . Label labell4 ;
symantec . itools . awt . BorderPanel p f ;
j ava . awt . Label label3 ;
j ava . awt . TextField textField2 ;
j ava . awt . List list2 ;
j ava . awt . Label label4 ;
j ava . awt . TextArea textArea2 ;
j ava . awt . Button button8 ;
symantec . itools . awt . BorderPanel tele ;
j ava . awt . Label labell ;
j ava . awt . TextField textFieldl ;
j ava . awt . List listl ;
j ava . awt . Label label2 ;
j ava . awt . TextArea textAreal ;
j ava . awt . Button button4 ;
j ava . awt . TextArea textArea3 ;
symantec . itools . awt . BorderPanel uic ;
j ava . awt . Label labell l ;
j ava . awt . Label labell2 ;
j ava . awt . Label label8 ;
symantec . itools . awt . RadioButtonGroupPanel radioButtonGroupPanel l ;
j ava . awt . Checkbox radioButtonnorth;
CheckboxGroup Groupl ;
j ava . awt . Checkbox radioButtoneast ;
j ava . awt . Checkbox radioButtonwest ;
j ava . awt . Checkbox radioButtonsouth;
j ava . awt . TextField xpos ;
j ava . awt . Label label9 ;
j ava . awt . TextField ypos ;
j ava . awt . Label labellO ;
j ava . awt . TextField zpos ;
j ava . awt . Button button6 ;
symantec . i tools . awt . shape . VerticalLine verticalLinel ;
symantec . itools . awt . BorderPanel imd;
symantec . itools . multimedia . ImageViewer reddotl ;
symantec . itools . multimedia . ImageViewer imageViewer2 ;

136

symantec . itools . awt . InvisibleButton invisibleButtonlibpf ;
symantec . itools . awt . InvisibleButton invisibleButtoncanpf ;
symantec . itools . awt . InvisibleButton invisibleButtonguildpf ;
symantec . itools . awt . InvisibleButton invisibleButtonbl3pf ;
symantec . itools . awt . InvisibleButton invisibleButtonb3pf ;
symantec . itools . awt . InvisibleButton invisibleButtonb6pf ;
symantec . itools . awt . InvisibleButton invisibleButtonb18pf ;
symantec . itools . awt . BorderPanel imc ;
j ava . awt . Label labelimclib;
j ava . awt . Label label imcb3 ;
j ava . awt . Label labelimcguild;
j ava . awt . Label labelimccan;
j ava . awt . Label labelimcb14 ;
j ava . awt . Label labelimcbl5 ;
j ava . awt . Label labelimcbl6 ;
j ava . awt . Label label imcbl3 ;
j ava . awt . Label labelimcbl7 ;
j ava . awt . Label labelimcb6 ;
j ava . awt . Label labelimcacad;
symantec . itools . multimedia . ImageViewer imageViewer3 ;
symantec . itools . awt . InvisibleButton invisibleButtonb3 ;
symantec . itools . awt . InvisibleButton invisibleButtonlib;
symantec . itools . awt . InvisibleButton invisibleButtonguild;
symantec . itools . awt . InvisibleButton invisibleButtoncan;
symantec . itools . awt . InvisibleButton invisibleButtonb14 ;
symantec . itools . awt . InvisibleButton invisibleButtonbl3 ;
symantec . itools . awt . InvisibleButton invisibleButtonblS ;
symantec . itools . awt . InvisibleButton invisibleButtonbl6 ;
symantec . itools . awt . InvisibleButton invisibleButtonbl7 ;
symantec . itools . awt . InvisibleButton invisibleButtonb 6 ;
symantec . itools . awt . InvisibleButton invis ibleButtonacad;
j ava . awt . Label label5 ;
j ava . awt . Label label 6 ;
j ava . awt . Label label? ;
j ava . awt . TextField textField4 ;
j ava . awt . TextField textFieldS ;
symantec . itool s . multimedia . ImageViewer reddot2 ;
j ava . awt . TextField textField3 ;
symantec . itools . awt . BorderPanel ts ;
symantec . itools . multimedia . ImageViewer imageViewerS ;
j ava . awt . TextField tstext ;
symantec . itool s . multimedia . ImageViewer libraryhigh ;
symantec . itool s . multimedia . ImageViewer canteenhigh;
symantec . itools . multimedia . ImageViewer guildhigh ;
symantec . itools . multimedia . ImageViewer b3high;
symantec . itools . multimedia . ImageViewer b13high;
symantec . itool s . multimedia . ImageViewer bl4high ;
symantec . itool s . multimedia . ImageViewer bl5high ;
symantec . itool s . multimedia . ImageViewer b16high;
symantec . i tools . multimedia . ImageViewer bl7high;
symantec . itools . multimedia . ImageViewer b6high;
symantec . itools . multimedia . ImageViewer bl8high;
symantec . itools .multimedia . ImageViewer reddot3 ;
symantec . itools . awt . BorderPanel env;
j ava . awt . Button buttons ;
j ava . awt . Button button12 ;
j ava . awt . TextField textField6 ;
j ava . awt . Label labell5 ;
j ava . awt . Label labell 6 ;
j ava . awt . Label labell7 ;
j ava . awt . Button buttonl ;
j ava . awt . Label label l 8 ;
j ava . awt . Label labell9 ;
j ava . awt . Label label2 0 ;
j ava . awt . Label label2 1 ;
j ava . awt . Label label22 ;
symantec . itools . multimedia . ImageViewer eastp ;
symantec . itools . multimedia . ImageViewer northp ;
symantec . itools . mul timedia . ImageViewer southp ;
symantec . itool s . multimedia . ImageViewer westp ;
/ / } }

/ /HELP . j ava
/ *

help frame for the applet
* /

1 37

import j ava . awt . * ;
import j ava . net . * ;
import j ava . io . * ;
import j ava . applet . * ;

public class HELP extends Frame {

URL fileURL ;
InputStream input ;
DatainputStream datainput ;

void exit_MouseDown (Event event) {
hide () ;

public HELP () {

/ / { { INIT_CONTROLS
setLayout (null) ;
addNotify () ;
resize (insets () . left + insets () . right + 4 7 5 , insets () . top +

insets () . bottom + 4 27) ;
imageViewerl = new symantec . itool s . multimedia . ImageViewer () ;
imageViewerl . reshape (insets () . left + O , insets () . top + 0 , 474 , 42 8) ;
add (imageViewerl) ;
try {

imageViewerl . setURL (new
j ava . net . URL (" file : /C : /WINDOWS/ Desktop/PROJECT/html /helpback . gi f ")) ;

} catch (j ava . net . Mal formedURLException error) {
}
env = new symantec . itools . awt . InvisibleButton () ;
env . reshape (insets () . left + 12 , insets () . top + 48 , 12 0 , 2 0) ;
add (env) ;
ts = new symantec . itools . awt . InvisibleButton () ;
ts . reshape (insets () . left + 12 , insets () . top + 9 6 , 12 6 , 18) ;
add (ts) ;
imagemap = new symantec . itools . awt . InvisibleButton () ;
imagemap . reshape (insets () . left + 2 4 , insets () . top + 132 , 108 , 24) ;
add (imagemap) ;
pathsmaps = new symantec . itools . awt . InvisibleButton () ;
pathsmaps . reshape (insets () . left + 12 , insets () . top + 180 , 12 8 , 2 8) ;
add (pathsmaps) ;
userinput = new symantec . itools . awt . InvisibleButton () ;
userinput . reshape (insets () . left + 12 , insets () . top + 2 1 6 , 11 0 , 2 7) ;
add (userinput) ;
tele = new symantec . i tools . awt . InvisibleButton () ;
tele . reshape (insets () . left + O , insets () . top + 2 6 4 , 13 1 , 2 1) ;
add (tele) ;
pf = new symantec . itools . awt . InvisibleButton () ;
pf . reshape (insets () . left + 12 , insets () . top + 3 0 0 , 112 , 22) ;
add (pf) ;
exit = new symantec . itools . awt . InvisibleButton () ;
exi t . reshape (insets () . left + 3 6 , insets () . top + 372 , 4 8 , 2 5) ;
add (exi t) ;
try {
textAreal new j ava . awt . TextArea (6 0 , 0) ;
fileURL = new URL (" help . txt ") ;
}
catch (MalformedURLException e)

textAreal . append Text (" gone wrong ") ;
}
textAreal . reshape (insets () . left + 1 6 8 , insets () . top + 2 4 , 2 9 5 , 3 7 5) ;
add (textAreal) ;
setTitle (" HELP ") ;
/ / } }

public void start ()
{

String text ;

try{
input = fileURL . openStr�am () ;
datainput = new DatainputStream (input) ;
while ((text = datainput . readLine ()) ! =null)
textAreal . appendText (text + " \n ") ;
datainput . close () ;

catch (IOException e)
{ textAreal . appendText (" second gone wrong ") ; }

138

public HELP (S tring ti tle)
this () ;
setTitle (title) ;

public synchronized void show () {
move (SO , 5 0) ;
super . show () ;

public boolean handleEvent (Event event)
i f (event . id == Event . WINDOW_DESTROY) {

hide () ;
return true ;

i f (event . target == exit && event . id
exit_MouseDown (event) ;
return true ;

return super . handleEvent (event) ;

Event . MOUSE_DOWN) {

/ / { { DECLARE_CONTROLS
syrnantec . itool s . multimedia . ImageViewer imageViewerl ;
syrnantec . itools . awt . InvisibleButton env;
syrnantec . itools . awt . InvisibleButton ts ;
syrnantec . i tools . awt . InvisibleButton imagemap ;
syrnantec . i tools . awt . InvisibleButton pathsmaps ;
syrnantec . itools . awt . InvisibleButton userinput ;
syrnantec . itools . awt . InvisibleButton tele ;
syrnantec . itools . awt . InvisibleButton p f ;
syrnantec . i tools . awt . InvisibleButton exi t ;
j ava . awt . TextArea textAreal ;
/ / } }

I I CREDIT . j ava
/ *

credits frame for the applet
* /

import j ava . awt . * ;

public class CREDITS extends Frame {

public CREDITS () {

/ / { { INIT_CONTROLS
setLayout (null) ;
addNotify () ;
resize (insets () . left + insets () . right + 4 3 0 , insets () . top +

insets () . bottom + 270) ;
setFont (new Font (' Dialog ' , Font . BOLD, 1 2)) ;
setForeground (new Color (O)) ;
setBackground (new Color (1 6777215)) ;
credit = new syrnantec . itool s . multimedia . ImageViewer () ;
credit . reshape (insets () . left + O , insets () . top + 0 , 43 0 , 2 70) ;
add (credi t) ;
try {

credi t . setURL (new
j ava . net . URL (' f ile : /C : /WINDOWS/ Desktop/ PROJECT/html/credit . GI F ')) ;

} catch (j ava . net . MalformedURLException error) {
}

setTitle (' CREDITS ') ;
/ / } }

public synchronized void show () {
move (5 0 , 5 0) ;
super . show () ;

public boolean handleEvent (Event event)
i f (event . id == Event . WINDOW_DESTROY) {

hide () ;
return true ;

1 39

==

return super . handleEvent (event) ;
}
/ / { { DECLARE_CONTROLS
symantec . itools . multimedia . ImageViewer credit ;
/ / } }

140

	Pathfinding in VRML
	Recommended Citation

	tmp.1449719365.pdf.1ZUNs

