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Abstract 

 

Slope stability in mining and civil engineering projects is always a problem of great concern. 

Because the rock mass behavior is significantly governed by the presence of joints or other 

discontinuities, several types of slope failure, such as plane failure, wedge failure, toppling 

failure, buckling failure and circular failure, are often observed. The present work focuses on 

the study of the wedge failure, which occurs as sliding of a mass of rock on two intersecting 

planes, generally discontinuity planes. 

Recently, the factor of safety of rock slopes against the wedge failure has been studied in 

a number of investigations under static and/or dynamic conditions by different methods such 

as the limit equilibrium method, numerical modeling method, reliability method and 

stereographic method. However, the anchored rock slope against the wedge failure subjected 

to surcharge and seismic load has not yet been studied in detail in earlier studies.  

In this thesis, the rock slope subjected to the generalized loads such as surcharge and 

seismic/dynamic loads is analyzed against the wedge failure by the limit equilibrium method. 

The expression for the factor of safety was derived for the cases with anchors and without 

anchors separately. In addition, a parametric study is carried out to demonstrate the effects of 

the most relevant governing parameters on the stability of rock slope. The parameters include 

geometrical parameters, joint material properties, unit weight of rock, anchor inclination and 

hydraulic parameters. Several special cases of the developed generalized expression result in 

the expressions for the factor of safety for simplified field situations as reported in the 

literature.  

The parametric study shows that most parameters as mentioned above affect the factor of 

safety ( FS ) of the rock slope against the wedge failure significantly. In order to find an easy 

way to work on the parametric analysis, the “ * ” indicates dimensionless parameters. It is 

observed that the surcharge would always be a destabilizing force when the cohesion ( *c ) is 

not zero; the FS decreases with an increase in surcharge. However, when *c = 0, the FS

increases slightly with an increase in surcharge. The anchor forces ( *T ) would always be a 

stabilizing force that makes the FS  increase with an increase in *T . As the angle of 
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inclination of the joint plane/failure plane to the horizontal ( p ) increases, the FS  

increases nonlinearly; it increase sharply by 60% from 42° to 45° while it deceases 

nonlinearly by 67% with an increase in the slope angle ( f ) from 40° to 60°. It is also 

observed that the FS  decreases with an increase in horizontal seismic acceleration 

coefficient (
hk ) and the vertical seismic acceleration coefficient ( vk ), separately, while it 

increases linearly with an increase in the following parameters: the cohesion ( c ) and the 

angle of shearing resistance (  ), separately. The FS  increases with an increase in 

inclination of stabilizing force to the normal at the failure plane ( ); it becomes maximum 

when   increases to 80°. However, the unit weight of rock ( * ) does not affect the FS

significantly.  
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Notation 

 

A          total area of joint plane (m
2
)      

1A              area of joint plane 1 (m
2
)     

2A              area of joint plane 1 (m
2
)   

cA              the cross-section area of wedge block (m
2
)      

B          length of PY , which in the Fig.1 (b)       

c            cohesion along sliding surface (N/m
2
)  

*c          cohesion alone sliding surface ( Hc / ) (dimensionless) 

D          length of PR , which in the Fig.1 (b) 

rF          resisting force (N) 

iF          driving force (N)  

FS         factor of Safety against sliding (dimensionless) 

H          height of the slope (m) 

vk          vertical seismic acceleration coefficient (dimensionless) 

hk           horizontal seismic acceleration coefficient (dimensionless) 

1L               a side of plane 1 ( OR ) (m) 

2L               a side of plane 2 ( OP ) (m) 

12L              intersection line of wedge block ( OE ) (m) 

N          normal force acting on the intersection line (N) 

1N          normal force acting on the joint plan 1 (N) 

2N          normal force acting on the joint plan 2 (N) 

Q           load on the wedge block due to surcharge (N) 

q           surcharge (N/m
2
) 
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q           surcharge (= hq / ) (dimensionless) 

S           force of shearing resistance (N) 

T           dimensionless the forces of anchors (N) 

T          the forces of anchors (= 3/ hT  ) 

U           total water pressure along joint plane (N) 

1U          water pressure along joint plane (N) 

2U          water pressure along joint plane (N) 

W           weight of the sliding block (N) 

           the inclination of stabilizing force to the normal at the failure plane (degrees) 

p          angle of inclination of the joint plane/failure plane to the horizontal (degrees) 

f          angle of inclination of the slope face to the horizontal (degrees) 

            friction angle (degrees) 

            unit weight of the rock (N/m
3
) 

w           unit weight of water (N/m
3
) 

            unit weight of rock (=
w / )(dimensionless) 

            wedge factor by Kovari and Fritz (1975) (dimensionless) 

1            angle between 
1L  and 12L  (m) 

2           angle between 2L  and 12L  (m)   

1           the angle between the surface A and vertical (degree) 

2            the angle between the surface B and vertical (degree) 
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Chapter 1 
 

Introduction 

 

1.1 General  

Slope stability analysis is a study of much importance for many industry areas, such as 

buildings, bridges, dams, highways, railways and mines. They should be designed as safe as 

possible by engineers, due to the impact on personnel safety and great cost of any potential 

accidents. The slope failure may trigger a disaster as well. That is why this subject has been 

studied by many engineers and researchers for centuries. The angle of inclination of the slope 

face to the horizontal affects the economy and safety. A small angle of slope means extra 

excavation and extra mine waste, but too steep a slope will cause a safety problem, and will 

increase the probability of failure. Therefore the balance between those two factors will have 

to be considered when thinking about economic factors and safety concerns. Most current 

systems for designing slopes in open pit mines assume that the principle of limiting 

equilibrium and kinematical applications are followed and that the rock can be treated as a 

typical engineering material. However, the rock is not a typical engineering material on a 

macroscopic level hence a factor of safety approach is adopted (Hoek and Bray, 1981; Stacey, 

1996). 

Rock slope failure is generally governed by the intercalated change in lithologies and the 

correlative change in discontinuities such as bedding, faults, foliation cleavage schistosity 

and joints. (Wyllie and Mah, 2004). While the rotational rock failure can occur under highly 

weathering and rock mass, the rock slope failures have been identified by engineers in 5 types 

of categories: 1) plane failure, 2) circular failure, 3) wedge failure, 4) toppling failure and 5) 

buckling failure. 

The rock mass sliding on a single surface of rock slope is termed as the plane failure, it 

generally occurs in hard or soft rocks with well-defined discontinuities and joints, e.g., 

layered sedimentary rock, volcanic flow rocks, block-jointed granite, foliated metamorphic 
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rock. The sliding rotation of a rock mass about an edge, either single or multiple blocks is 

termed as toppling failure. Toppling failure is possible whenever a set of well-developed or 

through-going discontinuities dips steeply into the slope. Buckling failure takes place when 

the excavation is carried out with its face parallel to the thin weakly bonded and steeply 

dipping layers, which may buckle and fracture near the toe, resulting in the sliding of the 

upper portions of the layers. (Goodman and Kieffer，2000) 

 

 

 

 

 

                 (a)                                   (b)                                                                     

 

 

 

 

 

 

                   (c)                                       (d)               

 

 

 

 

 

 

                                  (e)                                                

Fig. 1.1. Types of rock slope failure: (a) plane failure, (b) circular failure, (c) wedge failure, 

(d) toppling failure, and (e) buckling failure. (adapted from Hoek and Bray, 1981; Goodman, 

1989; Kliche, 1999; Wyllie and Mah, 2004) 
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The wedge failure of rock slope is probably the most common type of failure in rock 

sliding (Hoek and Bray, 1981). The tetrahedron wedge failure can occur in one of following 

way (Piteau and Martin，1982): 

 

 by sliding on both planes in a direction along the line of intersection 

 by sliding along one plane only with separation across the other plane  

 by rotational sliding on one plane and separation across the other plane  

 by progressive raveling of rock along planes formed by the wedge in highly jointed 

rock 

 

In most studies presented so far, the main efforts have been made so to consider several 

different methods to analyse the wedge failure. The stereographic method is first presented by 

Hoek et al. (1973) and it is a close – form method by (Low and Einstein, 1992). The limiting 

equilibrium method is the most popular approach applied in investigation. Despite of the 

surcharge load involved in stability of rock slope against plane failure that was presented by 

Shukla et al. (2009), the wedge failure of rock slope has not received proper attention until 

recently. It is the purpose of this thesis to analyses the effect of surcharge load on the rock 

slope against wedge failure by developing an expression for the factor of safety through the 

anchoring system. The parametric study will be carried out by incorporating most of the 

practically occurring destabilizing forces as well as an external stabilizing force.  

 

1.2 Objectives and scope of the research  

The analysis based on the limiting equilibrium method has been widely used by the engineers 

and the researchers for a long period. As the previous research works successfully, this 

method has been well accepted, because the accuracy of this method has been compared with 

numerical method and other method, such as kinematic method, vector algebra method and 

closed-form equations method. As some researchers have not presented the expression of the 

factor of safety of rock slope against the wedge failure involving some field aspects, such as 

surcharge and anchor force. These areas are considered for further research in order to 
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analysis the effects of the factor of safety. 

This research aims at investigating the wedge failure of rock slope under seismic load 

and water force. In order to cope with the research problem, which is identified above, the 

research aims to achieve the following outcomes: 

 

  deriving new expression of factor of safety under the seismic load and the water force 

against the wedge failure without anchors 

  illustrating the analysis of anchored rock slope against the wedge failure  

  developing the expression for anchored rock slope against the wedge failure  

  analyzing the anchored rock slope subjected surcharge and seismic load against the 

wedge failure 

  using the graphical method to analyse the special cases in view of different practical 

situations 

  analyzing the effect of parameters governing the rock slope stabilize 

 

The factor of safety is the ratio of the sum of the resisting forces to the sum of the driving 

forces which act on the considered slope. Ideally, the factor of safety greater than unity means 

that the slope would not slide; otherwise the slope has the potential of failing in the future. 

FHWA (1989) reported that a factor of safety of 1.3 is adequate for low slopes and a factor of 

safety of 1.5 is required for critical slopes adjacent to major highways. The factor of safety 

can not only express the failure probability, but also it is easy to calculate for real projects, 

where the stabilizing of rock slopes has always been a challenging problem for mining and 

civil engineering. 

Seismic loading means application of an earthquake-generated agitation to a structure. 

They are represented as horizontal and vertical forces, equal to weight of the potential sliding 

mass multiplied by a coefficient. They happen at contact surfaces of a structure either with 

the ground, or with adjacent structures, or with gravity waves from tsunami. 

http://en.wikipedia.org/wiki/Earthquake
http://en.wikipedia.org/wiki/Structure
http://en.wikipedia.org/wiki/Structure
http://en.wikipedia.org/wiki/Gravity_wave
http://en.wikipedia.org/wiki/Tsunami
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Sometimes, the seismic load exceeds the ability of a structure to resist it without being 

broken, partially or completely due to their mutual interaction, seismic loading and seismic 

performance of a structure are intimately related. 

1.3 Organization of the present work 

In this chapter, the research area is introduced and basic information of the concerned subject 

is described. A critical review of the previous studies on static stability, dynamic stability, 

numerical modeling, reliability and stereographic analyses are presented in Chapter 2, and 

subsequently the research problem is identified. Chapter 3 describes the analytical 

formulation of the identified problem to determine the analytical expression for the factor of 

safety of rock slope without anchors along with a discussion of its special cases in view of 

different practical situations. In Chapter 4, the parametric studies for the stability of rock 

slope without anchors are presented, the analysis focuses on the effects of surcharge on the 

factor of safety with different value for the parameters. Chapter 5 describes the derivation of 

the analytical expression for factor of safety of rock slope with anchors and presents some 

discussion. In Chapter 6, the parametric studies for the stability of rock slope with anchors 

are presented. Moreover, in Chapter 6 the parametric study not only analyses the effect of 

stabilizing force for the factor of safety, but also analyses the most governing parameters that 

affects for the factor of safety. The summary of the conducted work in the thesis and the 

conclusions and further research problems are presented in Chapter 7. 

http://en.wikipedia.org/wiki/Structure
http://en.wikipedia.org/wiki/Seismic_performance
http://en.wikipedia.org/wiki/Seismic_performance
http://en.wikipedia.org/wiki/Structure
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Chapter 2 
 

Literature Review 

 

2.1 General  

In rock slope stability analysis area, the researchers have made efforts for several decades. A 

rock mass generally exhibits anisotropic and heterogeneous behaviors. The behaviors are 

governed by the joints and other discontinuities. The engineers classify the failure of rock 

slope in five different types: plane failure, wedge failure, buckling failure, toppling failure 

and circular failure. There are several methods that can be used to analyse the stability of rock 

slopes, such as limit equilibrium method, stereographic method, numerical method and vector 

method, etc. This chapter attempts to categorize the literature in five sections, namely: static 

stability analysis, dynamic stability analysis, numerical modeling analysis, reliability analysis 

and stereographic analysis.  

 

2.2 Static stability analysis  

The analysis of static slope stability is based on the static equilibrium of unstable rock mass. 

In static system, the sum of each direction of forces and moments is equal to zero. The limit 

equilibrium method is presented by Hoek and Bray (1973) for the analysis of wedge failures.  

 The factor of safety ( FS ) is defined as the ratio of resisting force to the driving force. 

Thus: 

 

forceDriving

forceResisting
FS                                                      (2.1) 

 

Assuming that sliding is resisted only by the friction and that the friction angle   is same 

for both planes, the following equation holds: 
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



sin

tan)(

W

RR
FS BA                                                       (2.2) 

 

where AR  and BR  are the normal reaction forces provided by plane A and plane B, 

respectively, as given below:   

 


















 

2

1
sin

2

1
sin BA RR                                            (2.3) 

 

iBA WRR  cos
2

1
sin

2

1
sin 

















                                   (2.4) 

 

2
sin

sincos



 i
BA

W
RR                                                    (2.5) 

 

where the angles   and   are defined in Figure 2.1(a). Angles   and   are measured on 

the great circle containing the pole to the line of intersection and the poles of the two slide 

planes. 

 

Hence, 

 

i
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2
sin

sin
                                                         (2.6) 

 

In other words, 

 

PW KFSFS                                                              (2.7) 
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where WFS  is the factor of safety against the wedge failure, PFS  is the factor of safety 

against the plane failure, i  is the dip angle as the line of intersection, and K  is the wedge 

factor. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1. Resolution of forces to calculate factor of safety of wedge: (a) view of wedge 

looking at face showing definition of angles   and  , and reactions on sliding planes AR  

and BR ; (b) stereonet showing measurement of angles   and  ; (c) cross-section of 

wedge showing resolution of wedge weight W (after Wyllie and Mah, 2005) 

 

 Wang et al. (2004) proposed a general limit equilibrium method based on the Pan’s 

“Maximum principle” and the upper bound method to determine the direction of shear force. 

A non-symmetric wedge and a symmetric wedge were analyzed using two methods on the 

basis of which the formulation has been derived. After that, the influence is considered on 

stability due to the direction of the shear force acting on the two discontinuities and it also be 

identified by the finite – element analysis. Finally, the two comparisons have been applied; 

one comparison takes place within the traditional limit equilibrium or the method of general 

limit, upper bound and dilatancy of discontinuous plane, the other is the comparison of the 

finite element method with the method of traditional limit equilibrium and the general limit 
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equilibrium method.  

Alejano et al. (2011) proposed three footwall failures of rock slope such as bilinear slab 

failure, ploughing slab failure and three hinge buckling failure. They are not commonly 

encountered failures as we have known, such as plane failure, wedge failure, toppling failure 

and circular failure. The paper shows the analysis of bilinear slab failure and ploughing slab 

failure in 2 different conditions according to whether discontinuity control is full or partial. 

The limit equilibrium method has been carried out for factor of safety for two failure types in 

different phenomenon, and the methodologies of numerical modeling approach and physical 

modeling approach have been explained by the authors in order to compare the theoretical 

results of these two failures to justify the feasibility of limit equilibrium method. 

Bobet (1999) stated the analytical solution of toppling failure on the basis of the limiting 

equilibrium approach. In this investigation, the toppling mechanism was analyzed in 2D – 

plane conditions, and also consideration is the stability of toppling failure with water seepage. 

A numerical method which was proposed by Hoek and Bray (1981) has been implemented 

for compare analytical results, as the result of comparison the accuracy has been given as 

under 10% of the numerical solution, for height and length ratios larger than 50. 

Adhikary et al. (1997) investigated the mechanism of flexural toppling failure of rock 

slopes by implemented centrifuge test and compared it with the theoretical model based on a 

limiting equilibrium approach (Aydan and Kawamoto, 1992). In the centrifuge experiments, 

seven tests were performed using three different techniques which are quartz sand mixed with 

2% Portland cement, fibre-cement and a mixture of limonite and 15% gypsum on top of each 

layers. The crack was found to be oriented at an angle varying from 12⁰ to 20⁰ above the 

normal to the joint dip angle. Based on the analytical model, a set of designs charts have been 

set up to help with analysis of flexural toppling slope. After comparing, the accurate result 

was found corresponding to the expected result of failure load for the each tests presented in 

this study. That was mean the limiting equilibrium method which take into account of 

toppling failure will a capable approach to predict future fracture surface.  
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2.3 Rock sliding induced by dynamic force  

Due to the earthquakes and blasting shaking, rock slope dynamic forces can be categorized as 

horizontal or vertical seismic forces. The force would be equal to the weight of the potential 

sliding mass multiplied by a coefficient. This is a common approach that is carried by 

engineers to analyse the seismic response of rock slope. 

Ling and Cheng (1997) analysed the rock sliding induced by the seismic force. They 

presented a formula that is based on the two – dimensional limit equilibrium analysis. It is 

valid for a rock mass with sufficiently large width, typically with a plane strain condition. 

The rock mass is considered as a rigid body. The strength of the joint plane is assumed to be 

plastic, obeying the coulomb failure criterion. As the figure shows below, it is noted that the 

horizontal and vertical seismic forces are considered to be positive when acting horizontally 

away from the slope and vertically in the direction of gravity. The expression for the factor of 

safety is given below: 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.2. Mechanism of rock slope against plan failure with tension crack under self-weight, 

water forces, and horizontal and vertical seismic forces  
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h

k

k




1
tan                                                             (2.9) 

where 

P = angle of inclination of the joint plane/failure plane to the horizontal      

f = angle of inclination of the joint plane/failure plane to the horizontal         

V = horizontal force due to the water pressure in the tension crack  

U = uplift force due to the water pressure on failure plane  

 = joint plane friction angle 

 = function of seismic coefficients 

c = total cohesive force acting along joint plane 

 

Shukla and Hossain (2011) presented an expression for the factor of safety of 

multi-directional anchored rock slope subjected to the surcharge and seismic loads. The 

parametric study approach which was used to analyze special cases, such as the inclination of 

slope face, the inclination of the failure plane, the depth of the tension crack, the depth of 

water in tension crack, the shear strength parameters of the material at the failure plane, the 

unit weight of rock, the stabilizing force and its inclination, and the seismic force. This study 

is also shown as a graphical analysis of any specific inclination of one set of anchors to the 

normal at failure plane, when the second set of anchors are greater than about 60 degree 

where the factor of safety does not change significantly.  

Basha et al. (2013) proposed the stability analysis of rock slopes against the wedge 

failure subject to the seismic loads on basis of Barton’s theory. They developed an approach 

or a methodology of expression of factor of safety of the sliding block. The formulation is 

showed below as: 
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ssvshsD UkkWF  cossincossin 1                                (2.11) 

D

R

F

F
FOS                                                               (2.12) 

where  

RF = resisting force  

DF = driving force 

nbna RR ,  = net reaction force on plane A and B, respectively 

JRC = joint roughness coefficient 

JCS = joint compressive strength 

hv kk , = vertical and horizontal seismic acceleration coefficient, respectively 

r = residual friction angle 

nbna  , = stress on plane A and B, respectively 

The load and resistance factors have been estimated by the target reliability approach. 

The consideration of parameter input and variation of coefficient has been applied to prove 

that the load resistance factor design is a capable approach of handling multiple design 

parameters. They concluded conclusion from this study that the resistance factor decrease 

when the coefficient of variation of JRC  and JCS  increase, while the load factor rise 

particularly in corresponding to the horizontal seismic acceleration coefficient.   

Kumsar et al. (2000) provided an experiment to show the model wedges under static and 

dynamic loading conditions and the existing limiting equilibrium methods were derived to 

take into account the dynamic effects. The expression of the factor of safety is obtained as: 
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Fig. 2.3. Force acting on a wedge block (after Kumsar, 2000). (a) side view of slope, (b) front 

view of slope 
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where  

ts UU , = the water force acting on the face and the upper fart of the slope, respectively. 

,ai = the plunge of the intersection line and the inclinations of the dynamic force E        

 = Biot’s coefficient 

 = called the wedge factor by Kovari and Fritz (1975) 

,c = cohesion and friction angle, respectively 

21, AA = area of plane A and plane B, respectively  

,W = weight of the wedge block W, and the seismic coefficient 

The above presented method was checked through the laboratory tests being performed 

under the well-controlled conditions and by the actual cases being studied. Six types of 

concrete wedge block and base were prepared by the authors to test them under 4 different 

conditions such as static test, dry test, submerged test and dynamic test. A shaking table was 

used for the dynamic test under dry condition and static test were carried out under dry and 

submerged conditions. After that comparison of the experimental and theoretical result 

proved that the limiting equilibrium method is valid. Finally, 5 cases had been studied to 

(a) (b) 
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check the validity of the present method in the paper. 

Aydan and Kumsar (2010) developed the expression evaluating the displacement of 

sliding of rock wedges subject to the dynamic and water loading. They derived the solution 

through numerical integration method. The solution was also based on the linear acceleration 

finite difference technique. The function of velocity, displacement and acceleration of wedge 

for a time step also had been presented by the authors. They compared the results with that of 

experimental approach being same as shown in previous paper (Kumsar et al. 2000), as the 

figure shows that good accuracy was observed between the experimental results and the 

analytical evaluation. 

2.4 Numerical modeling method of analysis slope stability  

He et al. (2013) presented a three-dimensional numerical modeling method for rock slope 

stability, which codes numerical manifold method (NMM). This method is like the 

combination of the finite element method with the discontinuous deformation analysis, thus 

providing another version of hybrid modeling. They explained the fundamental concepts, 

framework and algorithm of NMM, so as to compare the 3-D NMM with the analytical result 

to identify if the 3-D NMM is an accurate method for jointed rock slope stability analysis. 

This investigation has found that 3-D NMM is a convenient geometrical modeling and has a 

good capability to use in stability analysis.   

Goodman and Kieffer (2000) stated the principles of rock failure, and explained how and 

why different failure modes occurred in different rocks. The paper explained that the surface 

excavation is more dangerous than that underground, because of weathered, water active and 

tangential stress at first. Recognition of rock slope hazards had been illustrated and explained 

in 8 different situations with figures; the authors also plotted a table for different failure mode 

and discussed how different failures worked and developed in rock slope. Stability analysis 

had been roughly presented; 3D and 2D had been considered under limit equilibrium 

approach corresponded with numerical models, such as UDEC, DDA, AND FLAC. A real 

case had been shown in this paper, which is rock slope failure along spillway of Pardee dam 

in California that illustrated the diversity of behavioral styles to which a rock slope is 

susceptible.     
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2.5 Reliability study of rock slope  

Tamimi et al. (1988) proposed the reliability study of rock slope against single plane sliding 

subjected the water force. They found the problem of the previous method of reliability 

analysis of rock slope to derived a new approach which including possible correlations that 

between the basic random variables involved in the design equation. Two popular approaches 

had been described briefly at first which are Central Limit Theorem and Convolution Integral. 

The other simulation technique had been explained more detailed which is Monte Carlo 

simulation, and also pointed out the deficiency of no consideration of correlations between 

the basic random variables. Therefore, that was modified in this paper to determine the 

reliability of rock slope. The expression and influence diagram were presented by authors as: 

 

 

 

 

 

 

 

 

Fig. 2.4. Plane sliding and proposed influence diagram (after Tamimi et al., 1988) 
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        (2.14) 

where 

T = the bolts or cables acting as the reinforcing forces  

JRC = joint roughness coefficient 

JCS = joint compressive strength 

r = residual friction angle 

 , = dip angle of plane and the angle between bolting force and weakness 

(a) (b) 
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VU , = water force on the joint and tension crack, respectively  

 

This method carries out all possible correlations between the random variables. Using the 

computer program to select values for each variable to repeats itself until all the nodes in the 

diagram have been released. The numerical analysis was utilized to comparing the analytical 

result with the result obtained from the simulation, as the result Monte Carlo simulation is 

negligible. 

 Low (1997) presented a closed-form solution to compare several methods of 

calculating the factor of safety of wedge failure and this solution was generated from 

equations suggested by Low and Einstein (1992) as follows: 
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where     

2121 ,,,   are joint orientation angle as show in the figure below 

1wG , 2wG  = normalized water pressure parameters 

1 , 2 , 1c , 2c  = friction angle and cohesion of joints on plane A and plane B,                                                                              

respectively 

W

S



   specific density of rock 

 

 

 

 

 

 

 

 

Fig. 2.5. Notations (after Low, 1997) 

 

The Low(1997) proposed six approaches to extend the work as: 

 

  the comparison with Hoek and Bray’s (1997) stereographic projection method and 

vector algebra method to verified closed-form equations 

  closed-form equations are also allowed for the wedge sliding along a single face  

  a practical spreadsheet method is verified and applied for the calculation of the 

second-moment reliability index  

  the perspective of an expanding ellipsoid is offered as an intuitive way of perceiving 

the Hasofer-lind index 

  the sensitivity information is obtained from simple method 

  reliability indices are compared with Monte Carlo simulations 
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Rodriguez et al. (2006) presented system reliability approach to rock slope stability. Their 

considerations are in two cases include interaction force or without interaction force between 

blocks A and B separated by a vertical tension crack. They assumed that FSA greater than 1, 

this block would be stable, otherwise sliding will be occurred, which presented by Hoek and 

Bray. In the with interaction force case, they assumed block B is unstable by itself, and block 

A is stable, but extra load would be acted by block B. The authors also considered two 

different position of tension crack; one is at slope top, other one is at slope face as show 

below.  

Fig. 2.6. Geometrical definitions of the considered slope stability model (after Rodriguez, 

2006). (a) tension crack at slope top; (b) tension crack at slope face 

 

Analyses of these two cases were both based on limiting equilibrium method to compute 

the factor of safety against sliding of block A and block B. In the reliability analysis, a 

disjoint cut-set formulation was fulfilled. In addition, four failure modes associated with 

parallel sub-system. In order to compute the reliability of each parallel sub-system in the 

disjoint cut-set model, the individual components would be computed at first. The first order 

reliability method (FORM), linear programming method (LP), Monte Carlo method (MC) 

and numerical method (NM) to compare each other to point out the characteristic of each 

method. The authors concluded that FORM provide a simple and computationally efficient 

approach to present reliability computations, the computation cost of MC is much higher than 

FORM, and they show a similar result of the probability of failure, LP provide accurate 

estimations of the system failure probability and flexible way of possible failure probabilities. 
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2.6 Slope stability analysis based on stereographic method   

Rock slope stability is often influenced by structural geological features. The information 

usually appears in three dimensions with a degree of natural scatter, and for the easy of 

understanding and use of data in design, an ideal analysis technique has been found that the 

stereographic projection has ability to show the three dimensional orientation data to be 

represented in two dimensions.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.7. Main types of block failures in slopes, (a) plane failure, (b) wedge failure (c) 

toppling failure, (d) circular failure (after Hoek and Bray, 1981) 

 

 As the figures shown above, the four main types of rock failure were presented by 

stereonet. This method is useful to identify the potential failure planes by pole concentration. 

It is also named kinematic analysis.  

     Hoek (1973) presented kinematic analysis of the factor of safety of rock slope against 

the wedge failure under water forces and cohesion acting on the sliding surface. As show 

below: 
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where  

BA cc ,  = the cohesive strengths on plane A and B, respectively 

BA  , = the angle of friction on plane A and B, respectively 

rw  , = unit weight of the rock and water, respectively 

H = slope height  

BAYX ,,, = the dimensionless factors, depend upon the geometry of the wedge, as the                                                    

storeonet show below 

 

 

 

 

 

 

 

 

 

Fig. 2.8. Stereoplot of data required for wedge stability analysis (after Wyllie and Mah, 2005) 
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2.7 Conclusions  

Many researchers have previously studied slope stability, and the methods of slope stability 

analysis have been presented in 5 sections as static stability analysis, dynamic stability 

analysis, numerical modeling analysis, reliability analysis and stereographic analysis. But the 

wedge failure of rock slopes under surcharge and seismic coefficients have not been analysed 

in detail by any researchers yet. Although, the stabilizing force using anchors has been 

considered for the plane failure, it has not been considered in wedge failure analysis in the 

past studies. The limit equilibrium, vector algebra, finite element and closed-form equations 

methods have been described. Because of the confidence based on many past applications, 

the limit equilibrium method has been well accepted by the engineers. For the present work, 

the task is to analyse the slope stability and to derive an expression for the factor of safety 

against the wedge failure under the surcharge and seismic load with and without anchors for 

practical applications.  
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Chapter 3 
 

Analytical Formulation for Wedge Failure Analysis 

of Rock Slope without Anchors 

 

3.1 General   

In this chapter, the derivation of expression for the factor of safety of rock slope against the 

wedge failure without anchors is presented. The derivation considers most of the factors that 

may occur in the field conditions under earthquakes and dynamic activities. The surcharge 

load is also considered to investigate its effect on the factor of safety. Serveral special cases 

of possible field situations are analysed and discussed in detail. 

 

3.2 General wedge failure conditions and assumptions 

Figure 3.1(a) shows a three-dimensional view of a rock slope of height H with a tetrahedral 

wedge block bounded by intersecting joint planes POM (Plane 1) and OQM (Plane 2), 

which have OM  as the line of intersection. The slope is inclined to the horizontal at f , 

and OM  makes an angle of p  with the horizontal. For convenience, the top face has 

been considered as rectangle LB . Figure 3.1(b) shows a two-dimensional view of the slope 

along a vertical section passing through line OM . Figure 3.1(c) showns a two-dimensional 

view of the slope alone a vertical section perpendicular to the line of intersection passing 

through line YYʹ, as named section Y-Yʹ. 1N  and 2N  is the nomal force acting on the 

plane 1 and plane 2, respectively. Plane 1 is inclinded to vertical at 1 , and Plane 2 is 

inclined to vertical at 2 . The weight of sliding block is W , and horizontal and verticle 
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seismic forces, Wkh and Wkv , respectively ( hk  and vk are seismic coefficients) , are shown 

to act on the sliding block. A surcharge placed at the top of the slope applies a vertical 

pressure q. The horizontal and verticle seismic forces also considered on the surcharge, they 

are 2/qBDkh  and 2/qBDkv , respectively. The uplift forces due to water pressure on the 

joint plane 1 and plane 2 are 1U  and 2U , respectively. N  is the normal force acting 

perpendicular to the line of intersection in a plane. s  is the shear force. In order to sum of 

the forces acting on the line of intersection, assume the direction n perpendicular to the line 

of intersection. 

 

 

  

 

 

 

 

 

 

Fig. 3.1. (a) three-dimentional view of the rock slope 

 

 

 

 

 

 

 

 

 

Fig. 3.1. (b) two-dimentional view of the rock slope 
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Fig. 3.1. (c) vision of section Y – Y of geometry of the rock slope 

 

3.3 Analytical derivation 

The factor of safety ( FS ) of the rock slope is defined as a ratio of the resisting force rF  to 

the driving force iF  (Kovari and Fritz 1975; Hoek and Bray 1989). Thus 

i

r

F

F
FS                                                                  (3.1) 

It should be noted that rF  is the total force available to resist the block sliding on two 

wedge planes and iF  is the total force driving the rock wedge to sliding on the two planes.  

The Mohr-Coulomb failure criterion (Lambe and Whitman, 1979; Das, 2008) is  

tan)( 21 NNcAFr                                                     (3.2) 

where c  is the cohesion, A  is the total base area OPM  and OQM , and 21, NN  are the 

normal forces acting on the failure plane 1 and plane 2, and   is the angle of shearing 

resistance of the material at the failure plane. 

As Fig.3.1 (b) shows, sum of all the forces acting on the slope along the normal to the 

line of intersection is 
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  0cossincoscossincos  NQkQkQkkWF pvphppvphpn       (3.3) 

Sum all the forces acting on the slope along the t direction as shown in Fig. 3.1 (c) is 

0cos)(cos)( 222111   UNUNFt
                                  (3.4) 

N  is the normal force acting on the line of intersection of the slope (Fig.3.1 (c)) as given

222111 sin)(sin)(  UNUNN                                    (3.5) 

Sum of normal forces on plane 1 and plane 2 can be obtained from simultaneous 

equations (3.3) and (3.4) (the details are given in the appendix) as  

   UQkQkQkkWNN pvphppvphp   cossincoscossincos21
    (3.6) 

Thus the total resisting forces is given as: 

     tancossincoscossincos UQkQkQkkWcAF pvphppvphpr     (3.7) 

The total driving force is calculated as: 

pvphppvphpi QkQkQWkWkWF  sincossinsincossin                  

    phpv kkQW  c o ss i n1                                            (3.8) 

From equations (3.7) and (3.8), the factor of safety is 
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    (3.9) 

The parameters A ,W ,
sur ,  and U  are obtained as follows 

p

LLHLLLL
AAA


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sin2

)sinsin(

2

sin

2

sin 221121221121
21


                      (3.10) 

where A  is the total connect area between failure plane and rock slope, 
1  is the angle 

between 1L  and 12L , and 2 is the angle between 2L  and 12L . 

The weight of the sliding rock mass block OREP  is 
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6

BD
HVW                                                          (3.11) 

where   is the unit weight of rock mass. 

The surcharge loading on the wedge block Q  ( PQRS is a rectangular shape) is 

2

qBD
Q                                                                (3.12) 

with 

)cot(cot
tantan

fp

fp

H
HH

B 


                                     (3.13) 

where B  represent JM in Fig. 3.1 (b). 

  is called the wedge factor by Kovari and Fritz (1975) as given below: 

)sin(

coscos

21

21









                                                       (3.14) 

where 21,  are the angles between the surface A and the vertical and the angle between 

the surface B and the vertical, respectively. 

Uplift force on the sliding block due to water pressure on failure planes 1 and 2 is  

u
w

u
w

u
w A

H
A

H
A

H
UUU

366
21


                                   (3.15) 

where w  is the unit weight of water. 

The cross-sectional area (OJM ) of wedge block is 

2

BH
Au                                                                (3.16) 

Thus the equation of FS  becomes 

   

 



Chapter 3: Analytical Formulation for Wedge Failure Analysis of Rock Slope without 

Anchors 

 

Page|27 
 

 

  phpv

w

pvphp

pvphp

p

i

r

kk
qBDBD

H

BH

qBD
k

qBD
k

qBD

kk
BD

H
LLH

c

F

F
FS


















cossin1
26

tan
6)sin(

coscos

cos
2

sin
2

cos
2

cossincos
6

sin2

)sinsin( 2

21

212211



































































  (3.17) 
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  (3.18)     

Dividing by 3H , the equation becomes 
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In order to find an easy way to work on the parametric analysis, the following 

nondimensional parameters are defined: 
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3.4 Special cases 

Case 1: The joint material is cohesionless, and there are no surcharge, seismic forces and 

water force, that is 0,0,0,0,0  

vh kkqc 
 
and 0

6

)cot(cot







 fp
U

Equation (3.20) becomes 

p

FS
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

                                                           (3.21)

 

 

Case 2: The joint material is cohesive and there are no seismic forces and water in the tension 

crack, that is,

 

0,0,0,0,0  

vh kkqc   and 0U . 

Equation (3.20) becomes
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Case 3: The joint material is c -   material, and there are no seismic forces and water in the 

tension crack, that is,

 

0,0,0,0,0  

vh kkqc   and 0U . 

Equation (3.20) becomes 
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Case 4: The joint material is c -   material, and there are no seismic forces, that is,

0,0,0,0,0  

vh kkqc   and 0U . 
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Equation (3.20) becomes 
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Case 5: The joint material is c -   material, and there are only horizontal seismic forces, that 

is, ,0,0,0,0,0  

vh kkqc   and 0U .  

Equation (3.20) becomes
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Case 6: The joint material is c -   material, and there are only horizontal seismic forces, that 

is, ,0,0,0,0,0,0  

vh kkTqc  and 0U . 

Equation (3.20) becomes
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3.5 Variation of factor of safety for different special cases 

Figure 3.2 shows the variation of factor of safety of the rock slope with angle of shearing 

resistance of the joint material for several possible field situations as above case 1 to case 6, 

considering a particular set of governing parameters in their non-dimensional form as: f  

= 50°, p  = 35°, *c = 0.08, *D  = 0.6, *  = 2.5, 


21 LL 1.4, hk = 0.1, vk = 0.05, 

25.0q , , 21   = 25° and  21  30°. It is noted that the factor of safety of rock 

slope increases with an increase in  , the rate of increasing of factor of safety is higher with 

equation (3.21). As expected, the cohesion is increasing factor of safety for any  . From 

equations (3.25) and (3.26) in the line chart, it can be seen that the horizontal seismic force 

decreases the factor of safety. For the vertical seismic force, the upward direction of seismic 

force does not affect the factor of safety for this type of condition. The water force and 

surcharge both are the destabilizing forces for rock slope, and they are decreasing the factor 

of safety of the rock slope. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2. Variation of factor of safety of the rock slope with angle of shearing resistance of the 

joint material for several possible field situations 
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Figure 3.3 shows variation of factor of safety of the rock slope with cohesion of the joint 

material for several possible field situations as above case 1 to case 6, considering a particular 

set of governing parameters in their nondimensional form as f  = 50°,  p  = 35°, *D  

= 0.6, *  = 2.5,  


21 LL 1.4, hk = 0.1, vk = 0.05, 25.0q , 21   = 25°  and 

 21  30°. It is observed that the factor of safety increases almost linearly with an 

increase in cohesion. It is also noted that the factor of safety reached a highest value when 

water force and seismic force is equal to zero. The factor of safety become the lowest value 

when   is equal to zero. The vertical seismic force slightly affects the factor of safety. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.3. Variation of factor of safety of the rock slope with cohesion of the joint material for 

several possible field situations 
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3.6 Conclusions 

In this chapter, an expression for the factor of safety against the wedge failure under 

surcharge and seismic force is derived as equation (3.20), with most forces occurring in the 

real field. Six special cases are presented for several possible field situations. It was observed 

that the factor of safety of the rock slope increases with an increase in both angle of shearing 

resistance and cohesion of the joint material. The value of factor of safety of equation (3.24) 

is always greater than others, because the water force and surcharge both are destabilizing 

forces for the rock slope. The horizontal seismic force decreases the factor of safety, whereas 

the vertical seismic force slightly affects the factor of safety.
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Chapter 4 

 

Parametric Study for Wedge Failure Analysis of 

Rock Slope without Anchors 

 

4.1 General  

In this chapter, the parametric study is carried out for analysis of effect of governing 

parameters on the factor of safety which has been discussed in detail in Chapter 3. This study 

would focus on the effect on the factor of safety by increasing the surcharge for different 

governing parameters. There can be several slope geometries, and also a wide variation in 

joint and rock properties may take place in real field situations. For illustrative purpose, the 

parameters are assumed to be in the engineers’ practical data range as presented in the 

following section.  

 

4.2 Range of parameters  

The parametric study has been made to investigate the effects of surcharge on the stability of 

rock slope. The considered ranges of parametera as shown below: 

 

Angle of inclination of the failure plane to the horizontal              p  : 30° − 40° 

Angle of inclination of the slope face to the horizontal                f  : 40° − 60° 

Cohesion                                                    
c  : 0 – 0.16  

Angle of shearing resistance                                      : 20° − 40° 

Unit weight of rock                                             : 2.5– 2.9  

Surcharge pressure                                             q : 0 – 2.4  
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Horizontal seismic coefficient                                   hk  : 0 – 0.3  

Vertical seismic coefficient                                     vk  : -0.15 – 0.15         

Dips of planes 1 and 2                                         :, 21    3020   

 

4.3 Effect of stabilizing force for factor of safety with different value of 

governing parameters 

Figure 4.1 shows the variation of the factor of safety ( FS ) with surcharge q  for different 

dimensionless values of cohesion, c  = 0.00, 0.04, 0.08, 0.12 and 0.16; considering specific 

value of governing parameters in their nondimensional form as: f  = 50°, p  =35°, 

= 25° , D = 0.6,  = 2.5, 


21 LL 1.4, hk  = 0.1, vk = 0.05, 21   = 25°  and 

3021  . It is observed that the FS  declines sharply from 4.7 to 2.6, 3.7 to 2.3 and 

2.7 to 1.7 (with c  = 0.16, 0.12 and 0.08) as q  increases from 0 to 0.5. The FS  is 

reduced moderately as q  increases from 0.5 to 1.5; as q  increases more than 1.5, FS  

does not change much. However, once c  = 0, the factor of safety shows an increasing trend, 

from 0.6 to 1.1 as q* increases from 0 to 2.5. In particularly, the FS  is close to a stable level 

of 1.4 when c  = 0.04 with increase in q  greater than 0.5 and where the surcharge has no 

impact. The factor of safety equals to 1 that is critical value, so a horizontal line at FS  = 1 

has been drawn as a mark between the stable part above the line and the unstable part below 

the line. For this case the curve of c  = 0 always in the unstable part which is FS  < 1. As 

expected, the greater the cohesion, the greater the factor of safety. As the figure shows the 

FS  increases significantly with an increase in cohesion. 
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Fig. 4.1. Variation of factor of safety ( FS ) with surcharge ( q ) for different values of c . 

 

Figure 4.2 shows the variation of the factor of safety ( FS ) with surcharge q  for 

different value of angle of shearing resistance,   =20°, 25°, 30°, 35° and 40°; considering 

specific value of governing parameters in their nondimensional form as: f  = 50°,  p  = 

35°, c =0.08, D = 0.6,   = 2.5, 


21 LL 1.4, hk = 0.1, vk = 0.05, 21   = 25° 

and 
3021  . It is illustrated that there is a positive relationship between the factor of 

safety ( FS ) and the angle of shearing resistance, but the FS  decreases as the surcharge 

increases. When the surcharge increase from 0 to 0.5, the rate of decrease is much higher than 

the value of surcharge is greater than 0.5. The curve with a lower angle of shearing resistance 

showed this significant trend more clearly. For example, for   = 25°, the FS  decreases 

from 2.7 to 1.7 with the surcharge increasing from 0 to 0.5; whereas the increase of more than 

0.5 in surcharge does not affect the FS  a lot, the FS  decreases from 1.7 (with q  = 0.5) 

to 1.4 (with q  = 2.5). From the chart, it is also found that the FS  decreases close to 1 
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(with   =20°) when the increase in surcharge gets to 2.5. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2. Variation of factor of safety ( FS ) with surcharge ( q ) for different values of angle 

of shearing resistance ( ) 

 

Figure 4.3 shows the variation of the factor of safety ( FS ) with surcharge q* for 

different value of unit weight of rock,  = 2.5, 2.6, 2.7, 2.8, 2.9; considering specific value 

of governing parameters in their nondimensional form as: f  = 50°, p  = 35°, c  = 

0.08, D  = 0.6,  = 25°,  * = 2.5, 


21 LL 1.4, hk = 0.1, vk = 0.05, 21   = 25° 

and  
3021  . It is noted that the factor of safety goes down with an increase in 

surcharge and decreases sharply, when the surcharge is between 0 and 0.5, the FS  decreases 

at a relative higher rate for all practical values of  . For example, the FS  increases from 

2.76 to 1.72 with   = 2.9. The FS  decreases moderately as the surcharge increases over 

0.5. For example, FS  decreases by 0.2 from 1.72 to 1.52 with   = 2.9 as q  increases 

from 0.5 to 1.0. From Figure 4, a clear trend is illustrated that the factor of safety has not 
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been affected much by different unit weights of rock. The reason is that, the increase in the 

self-weight of rock gives rise to two components of the weight force. One acts on the sliding 

surface as a normal force, thus increasing the sliding resistance. The other one along the 

sliding direction acts as a driving force. Two forces go in an opposite direction, so they cancel 

each other such that the magnitude of   has little effect. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3. Variation of factor of safety ( FS )with surcharge ( q ) for different values of unit 

weight of rock (  ) 

 

Figure 4.4 shows the variation of the factor of safety ( FS ) with surcharge q* for 

different values of angle of inclination of the slope face to horizontal, f  

= 40°, 45°, 50°, 55° and 60°; considering specific value of governing parameters in their 

nondimensional form as: p  = 35° ,   = 2.5, c = 0.08 , D = 0.6,  = 25° , 




21 LL 1.4, hk  = 0.1, vk = 0.05, 21   = 25° and 
3021  . It is observed that 

the factor of safety decreases at a higher rate for the lower value of surcharge, especially, 

between 0 and 0.5. For example, the FS decreased by about 48%, from 5.8 to 3.0 with p  = 
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40°. It is also noted that for the inclination of the slope face to the horizontal greater than 50 

degrees, the FS  almost stays at the same value when a surcharge increase greater than 1, 

that is, the FS is not affected much by increasing the surcharge on steep slopes.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.4. Variation of factor of safety ( FS ) with surcharge ( q ) for different values of angle 

of inclination of the slope face to the horizontal ( f ) 

 

Figure 4.5 shows the variation of the factor of safety ( FS ) with surcharge q  for 

different values of angle of inclination of the failure plane to the horizontal, p  

= 30°, 33°, 35°, 37° and 40°; considering specific value of governing parameters in their 

nondimensional form as: f  =  50° ,   = 2.5, c  = 0.08, D = 0.6,  = 25° , 




21 LL 1.4, hk = 0.1, vk = 0.05, 21   = 25° and  
3021  . It is illustrated 

that the FS  decreases with the increase in surcharge. As surcharge increases from 0 to 0.5, 

the rate of decrease is much higher than that when the value of surcharge is greater than 0.5. 

For example, the factor of safety decreases from 3.35 to 2.0 with p  = 40° as the surcharge 

increases from 0 to 0.5; whereas when an increase in surcharge is more than 0.5, the rate of 
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decrease of factor of safety goes down, it decreases form 2.0 (with q  = 0.5) to 1.6 (with 

q  = 1). It is also observed that the highest value of the FS  with the biggest angle of 

failure plane to the horizontal when there is no surcharge, while the highest value of the FS  

with smallest angle of failure plane to the horizontal when there is a high surcharge (greater 

than 1.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.5. Variation of factor of safety ( FS ) with surcharge ( q ) for different values of angle 

of inclination of the failure plane to the horizontal ( p ) 

 

Figure 4.6 shows the variation of the factor of safety ( FS ) with surcharge q  for 

different value of horizontal seismic force, kh = 0, 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3; 

considering specific value of governing parameters in their nondimensional form as: f  

= 50°, p  = 35°,   = 2.5, c  = 0.08, D = 0.6,  = 25°, 


21 LL 1.4, vk = 0.05, 

21   = 25° and 
3021  .  It is observed that the greater value of factor of safety 



Chapter 4: Parametric Study for Wedge Failure Analysis of Rock Slope without Anchors 
 

 

Page|40 
 

comes with smaller value of horizontal seismic force, but FS  decreases as the surcharge 

increases and the FS  decreasing trend is almost the same with different kh. when the  

surcharge increases from 0 to 0.5, the rate of decrease is much higher than that for the value 

of surcharge greater than 0.5. For example, for kh = 0.15, the factor of safety decreases from 

2.5 to 1.6 when a surcharge increases from 0 to 0.5, whereas when the increase in surcharge 

is more than 0.5, the decrease of the FS  slows down. For example, it decreases from 1.6 

(with q  = 0.5) to 1.4 (with q  = 1.0). Once, kh is greater than 0.25, the FS  decreases to 

an unstable region with an increase in surcharge greater than 2. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.6. Variation of factor of safety ( FS ) with surcharge ( q ) for different values of 

horizontal seismic force (
hk ). 

 

Figure 4.7 shows the variation of the factor of safety ( FS ) with surcharge q  for 

different value of horizontal seismic force, vk  = -0.15, -0.1, -0.05, 0, 0.05, 0.1 and 0.15; 

considering specific value of governing parameters in their nondimensional form as: f  

= 50°, p  = 35°,   = 2.5, c  = 0.08, D = 0.6,  = 25°, 


21 LL 1.4, hk = 0.1, 
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21   = 25° and  
3021  . It is noted that the factor of safety goes down with an 

increase in surcharge and decreases sharply as the surcharge is between 0 and 0.5, from 2.96 

to 1.8 with vk  = -0.15. The factor of safety decreases moderately as the increase in 

surcharge is more than 0.5. For example, FS  decreases by 0.24 from 1.8 to 1.56 with vk  = 

-0.15 as q  increases from 0.5 to 1.0. A key point is that all values on the curve intersect at a 

point at q  = 1.9, and, after this point, all values of FS  on the curve reverse their orders of 

impact, for example, the highest value of FS  with vk  = -0.15 becomes the lowest value, 

and the lowest value of FS  with vk  = 0.15 turns to the highest value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.7. Variation of factor of safety ( FS ) with surcharge ( q ) for different values of 

vertical seismic force ( vk ). 

4.4 Conclusions 

The parametric study, presented in the previous section is used to investigate the effect of 
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surcharge on the stability of the rock slopes. The parametric study reveals that the factor of 

safety ( FS ) of rock slope decreases with an increase in surcharge. Lower value of surcharge 

makes the factor of safety decreases relatively faster. The FS  is relatively higher with 

greater value of cohesion and angle of shearing resistance ( ) for any surcharge. The FS  

shows a rapid decreasing trend with an increase in surcharge for greater value of cohesion 

( c ). Whereas, the FS  decreases in almost the same trend with an increase in surcharge for 

any angle of shearing resistance ( ). 

The FS  increases with an increase in unit weight of rock, but the FS  is not much 

affected by variation in unit weight of rock (  ) for any value of surcharge. The FS  

increases with a decrease in the values of angle of inclination of the slope face to the 

horizontal ( f ) for any surcharge value. Whereas, the FS  increases with an increase in the 

values of angle of inclination of the failure plane to the horizontal ( p ) for lower values of 

surcharge (less than 1.5); it increases with a decrease in p  for greater value of surcharge 

(greater than 1.5). The different directions of seismic force affect the FS  differently. The 

FS  increases with a decrease in horizontal seismic force for any value of surcharge; 

however, the FS  increases with a decrease in vertical seismic force for a value of surcharge 

less than 1.5, after this point, all values of FS  on the curve reverse their orders of impact, 

and the FS  increases with an increase in the value of vertical seismic force. 
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Chapter 5 

 

Analytical Formulation for Wedge Failure Analysis 

of Anchored Rock Slope 

 

5.1 General 

In this chapter, based on the previous study in Chapter 3, this study adds a stabilizing force 

T  as the anchor force for rock slope system to analyse the derivation of expression for the 

factor of safety. However, there are different types of anchored system for the rock slope 

against the wedge failure. Because of the wedge block has two planes, the anchors would 

stabilize it by going through planes or going through intersection line of planes, and the angle 

between anchors and planes also need to be considered. Three different anchored systems of 

rock slope have been compared to find out the largest stabilizing force against the wedge 

failure. The analytical formulation is based on the results of the comparison section to derive 

an expression for factor of safety of an anchored rock slope against wedge failure. Serveral 

special cases of possible field situations are analysed and discussed in detail. 

 

5.2 Different anchored systems for the rock slope  

5.2.1 Anchored system #1 

As shown in Fig. 5.1 1N  and 2N  are the normal force acting on the plane 1 and plane 2, 

respectively. Plane 1 is inclinded to vertical at 1 , and plane 2 is inclined to vertical at 2 . 

Anchors are perpendicular across the slope face to both planes for the stabilizing force 1T  

and 2T .  

The N  is the normal force acting on the line of intersection of the slope, given as 
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2221112222211111 coscoscoscossin)sin(sin)sin(  TTTUNTUNN 

2

2
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2
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2

11

2

1222111 cossincossinsin)(sin)(  TTTTUNUN 

21222111 sin)(sin)( TTUNUN                                 (5.1) 

 

 

 

 

 

  

 

 

 

Fig. 5.1. Two-dimentional view of the section A-A’ for system #1 

 

5.2.2 Anchored system #2 

As Fig.5.2 shows anchors perpendicular across the slope face through to the line of 

intersection for the stabilizing force T , assuming T = 1T  + 2T . The value of N  is  

TUNUNN  222111 sin)(sin)(                                 (5.2) 

If the equilibrium of forces in the directions of n and t is considered, the equations are  

 
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                 (5.3) 

and 

0cos)(cos)( 22111   UNUNFt                          (5.4)     

where 21 NN   is obtained from equations (5.2), (5.3) and (5.4):                                                                   
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Fig. 5.2. Two-dimentional view of the section A-A’ for system #2 

 

5.2.3 Anchored system #3 

As Fig. 5.3 shows anchors going through the slope face perpendicular to plane A and plane B 

for the stabilizing force 1T  and 2T , respectively. The N  is 

22221111 sin)(sin)(  TUNTUNN                             (5.6) 

If the equilibrium of forces in the directions of n and t is considered, the equations are 

 
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                      (5.7) 

and 

0cos)(cos)( 2221111   TUNTUNFt                      (5.8) 

where 
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(5.9) 

 

 

 

 

 

 

Fig. 5.3. Two-dimentional view of the section A-A’ for system #3 
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As three systems shown, for comparing the system 1 and system 2, equation (5.1) and (5.2) 

would be compared as: 

21222111 sin)(sin)( TTUNUNN  
                           (5.1) 

and 

TUNUNN  222111 sin)(sin)( 
                               (5.2)

 

Those two equations are same if assuming T = 1T  + 2T . But for the case 2 is easy to show 

in two-dimensional vision, this case would be preferred. 

The comparison of systems 2 and 3 is carried out by equationa (5.5) and (5.7) as: 
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and 
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(5.7)
 

 

The difference in the two equations is  cosT + T  and  cossinT  +T . 

Comparing the 2 equations in two parts, firstly  cosT  and  cossinT  ,  cosT  

  cossinT  because sin  always  1 and then comparing T  and T , the   is 

the key point as: 

)sin(

coscos

21

21









                                                        (5.8) 

In order to make equation simple, assume 21    or similar (the answer will not change 

much), thus:  
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111
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1

1

sin

1

cossin2

cos2

)2sin(

cos2








  will always ≥ 1                          (5.9) 

So T  always ≥ 1 T , system #2 is better than system #3. 

According to the comparison, the system two is the best option to be carried out in the 

analytical formulation section. 

 

5.3 General wedge failure conditions and assumptions 

Figure 5.4(a) shows a three-dimensional view of a rock slope of height H with a tetrahedral 

wedge block bounded by intersecting joint planes POM (Plane 1) and OQM (Plane 2), 

which have OM  as the line of intersection. The slope is inclined to the horizontal at f , 

and OM  makes an angle of p  with the horizontal. For convenience, the top face has 

been considered as rectangle LB . Figure 5.4(b) shows a two-dimensional view of the slope 

along a vertical section passing through line OM . Figure 5.1、5.2、5.3 showns three 

two-dimensional view of the slope alone a vertical section perpendicular to the line of 

intersection passing through line YYʹ for three different cases, as named section Y-Yʹ. 1N  

and 2N  is the nomal force acting on the plane 1 and plane 2, respectively. Plane 1 is 

inclinded to vertical at 1 , and Plane 2 is inclined to vertical at 2 . T  is the stabilizing 

force, different case T  acting different coordination. The weight of sliding block is W , and 

horizontal and verticle seismic forces, Wkh  and Wkv , respectively ( hk and vk  are seismic 

coefficients) , are shown to act on the sliding block. A surcharge placed at the top of the slope 

applies a downward vertical pressure q . The horizontal and verticle seismic forces also 

considered on the surcharge, they are 2/qBDkh  and 2/qBDkv , respectively. The uplift 

forces due to water pressure on the joint plane 1 and plane 2 are 1U  and 2U , respectively. 

The anchoring stabilizing system is considered as force T  inclined at an angle   to 

normal at the joint plane OM . N  is the normal force acting perpendicular to the line of 
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intersection in a plane. S is the shear force. In order to have the sum of the forces acting on 

the line of intersection, the direction n is assumend perpendicular to the line of intersection. 

 

 

 

 

 

 

 

 

Fig. 5.4. (a) three-dimentional view of the rock slope 

 

5.4 Analytical Derivation 

The factor of safety ( FS ) of the rock slope is defined as a ratio of the resisting force rF  to 

the driving force iF  (Kovari and Fritz 1975; Hoek and Bray 1989). Thus 

i

r

F

F
FS                                                                 (5.10) 

It should be noted that rF  is the total force available to resist the block sliding on two 

wedge planes and iF  is the total force driving the rock wedge to sliding on the two planes.  

The Mohr-Coulomb failure criterion (Lambe and Whitman, 1979; Das, 2008) is  

tan)( 21 NNcAFr                                                    (5.11) 

where c  is the cohesion, A is the total base area OPM  and OQM , and 21, NN  are the 

normal forces acting on the failure plane 1 and plane 2, and   is the angle of shearing 
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resistance of the material at the failure plane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.4. (b) two-dimentional view of the rock slope 

 

As Fig.5.4 (b) shows, sum of all the forces acting on the slope along the normal to the line of 

intersection is 
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                        (5.12) 

Sum of all the forces acting on the slope along the t direction as shown in Fig. 5.2, the 

equation is  

0cos)(cos)( 222111   UNUNFt                               (5.13) 

N  is normal force acting on the line of intersection of the slope (Fig.5.2) as given below  

TUNUNN  222111 sin)(sin)(                         (5.14) 

Sum of normal forces on plane 1 and plane 2 can be obtained from simultaneous 

equations (5.12), (5.13) and (5.14) (the details are given in the appendix) as  
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Thus the total resisting forces is given as: 
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The total driving force is calculated as: 
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From the equations (5.16) and (5.17), the factor of safety is 
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      (5.18) 

The parameters A , W , 
sur ,   and U  are obtained as follows: 

p
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               (5.19) 

where A  is the total connect area between failure plane and rock slope. 1  is the angle 

between 1L  and 12L , and 2 is the angle between 2L  and 12L . 

The weight of the sliding rock mass block OREP is 

6

BD
HVW                                                          (5.20) 

where   is the unit weight of rock mass. 

The surcharge loading on the wedge block Q ( PQRS  is a rectangular shape) is 
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2
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Q                                                                (5.21) 

with 
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where B  represent FM in Fig. 5.4 (b). 

  is called the wedge factor by Kovari and Fritz (1975) as given below: 

)sin(

coscos

21

21









                                                       (5.23) 

where 21,  are the angles between the surface A and the vertical and the angle between 

the surface B and the vertical, respectively. 

Uplift force on the sliding block due to water pressure on failure planes 1 and 2 is  

u
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where w  is the unit weight of water. 

The cross-sectional area (OJM) of wedge block is 

2

BH
Au                                                                (5.25) 

Thus the equation of FS  becomes 
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Dividing by 3H , the equation becomes: 
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In order to find an easy way to work on the parametric analysis, the following 

nondimensional parameters are defined: 
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5.5 Special Cases 

Case 1: The joint material is cohesionless, and there are no surcharge, seismic forces and 

water force, that is, ,0,0,0,0,0,0  

vh kkTqc  and 0
6

)cot(cot
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
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

 fp
U . 

The equation (5.29) becomes 
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                                                         (5.30) 

 

Case 2: The joint material is cohesionless, and there is no seismic forces and water in the 

tension crack, that is, 0,0,0,0,0,0 *  

vh kkTqc  and 0U . 
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The equation (5.29) becomes 
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Case 3: The joint material is cohesive and there are no seismic forces and water in the tension 

crack, that is,

 

0,0,0,0,0,0 *  

vh kkTqc   and 0U . 

The equation (5.29) becomes 
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Case 4: The joint material is c -   material, and there are no seismic forces and water in the 

tension crack,

 

0,0,0,0,0,0 *  

vh kkTqc   and 0U . 

The equation (5.29) becomes 
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Case 5: The joint material is c -   material, and there are no seismic forces, that is,

0,0,0,0,0,0 *  

vh kkTqc   and 0U .  

The equation (5.29) becomes 
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Case 6: The joint material is c -   material, and there are only horizontal seismic forces, that 

is, 0,0,0,0,0,0 *  

vh kkTqc   and 0U . 

The equation (5.29) becomes 
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Case 7: The joint material is c -   material, and there are only horizontal seismic forces, that 

is, 0,0,0,0,0,0 *  

vh kkTqc  and 0U . 

The equation (5.29) becomes 
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5.6 Variation of factor of safety for different special cases 

Figure 5.2 shows the variation of factor of safety of the rock slope with angle of shearing 

resistance of the joint material for several possible field situations as above case 1 to case 7, 

considering a particular set of governing parameters in their non-dimensional form as: f  

= 50°, p  = 35°, *c = 0.08, *D  = 0.6,   = 2.5, 
*

2

*

1 LL 1.4, hk = 0.1, vk = 0.05, 

25.0q , 01.0T , 21   = 25°,  10° and 
3021  . It is noted that the factor 

of safety of rock slope increases with an increase in , the rate of increase of factor of safety 

is higher for the greater value of  . As expected, the cohesion and stabilizing force increase 

the factor of safety for any  . From equations (5.35) and (5.36), it can be seen, the 

horizontal seismic force affects the factor of safety slightly with an increase in  ; the 

rightward seismic force make factor of safety of this slope higher for any . For the vertical 

seismic force, the upward direction of seismic force decrease the factor of safety for any  . 

The water force and surcharge are both destabilizing forces for rock slope. Hence, they are 

decreasing the factor of safety of rock slope. 

Figure 5.3 shows the variation of factor of safety of the rock slope with cohesion of the 

joint material for several possible field situations for the case 1 to 7, considering a particular 

set of governing parameters in their nondimensional form as f  = 50°,  p  = 35°, *D  

= 0.6,   = 2.5, 
*

2

*

1 LL 1.4, hk = 0.1, vk = 0.05, 25.0q , 01.0T , 21   = 25°, 

 10° and 
3021  . It is observed that the factor of safety increases almost linearly 

with an increase in cohesion. It also notes that the factor of safety reaches highest value when 

water force and seismic force equal to zero. The factor of safety becomes the lowest value 

when   equal to zero.  
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Fig. 5.5. Variation of factor of safety of the rock slope with angle of shearing resistance of the 

joint material for several possible field situations 

 

 

 

 

 

 

 

 

 

 

Fig. 5.6. Variation of factor of safety of the rock slope with cohesion of the joint material for 

several possible field situations 

5.7 Conclusions 

In this chapter, the nondimensional expression for the factor of safety against the wedge 

failure under surcharge and seismic force with anchors is derived as equation (5.20), with 

most forces which occur in the real field. Seven special cases are presented for several 
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possible field situations. It is observed that the factor of safety of the rock slope increases 

with an increase in both angle of shearing resistance and cohesion of the joint material. The 

value of factor of safety of equation (5.24) is always greater than others, because the water 

force and surcharge both are destabilizing forces for the rock slope. The horizontal seismic 

force decreases the factor of safety, whereas the vertical seismic force slightly affects the 

factor of safety. 
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Chapter 6 

 

Parametric Study for Wedge Failure Analysis of 

Anchored Rock Slope 

 

6.1 General  

In this chapter, the parametric study is carried out for investigating the effects of governing 

parameters on the factor of safety which has been discussed in detail in Chapter 5. Effect of 

stabilizing force on the factor of safety with different values of governing parameters is also 

considered. There can be several slope geometries, and also a wide variation in joint and rock 

properties may take place in real field situations. For illustrative purpose, the parameters are 

assumed to be in the engineers’ practical data range as presented in the following section.  

 

6.2 Range of parameters  

The parametric study has been made to investigate the effects of surcharge on the stability of 

rock slope. The considered ranges of parameters are shown below: 

 

Angle of inclination of the failure plane to the horizontal              p  : 30° − 45° 

Angle of inclination of the slope face to the horizontal                f  : 40° − 60° 

Cohesion                                                    c : 0 – 0.16 

Angle of shearing resistance                                      : 20 – 40  

Unit weight of rock                                             : 2.0– 2.8  

Surcharge pressure                                             q : 0 – 1.6  

Horizontal seismic coefficient                                    hk  : 0 – 0.4 
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Vertical seismic coefficient                                      vk  : -0.15 – 0.15 

Dips of planes 1 and 2                                         :, 21    3020   

Stabilizing force                                              *T : 0 – 0.16  

 

6.2.1 Effect of stabilizing force  

Fig. 6.1 shows the variation of factor of safety ( FS ) with stabilizing force ( T ) for different 

values of cohesion (
c ) of the joint material along the sliding surface (

c ) as 
c  = 0.00, 0.04, 

0.08, 0.12 and 0.16; considering specific value of governing parameters in their 

nondimensional form as: f = 50°, p  = 35°,   = 2.5, , *D = 0.6,  = 25°, *q =0.5, 


*

2

*

1 LL 1.4, hk = 0.1, vk = 0.05,   = 10°, 21   = 25° and 
3021  . It is 

noticed that the factor of safety increases nonlinearly with an increase in stabilizing force 

when 0* c . The rate of increase is almost the same with an increase in stabilizing force for 

different values of cohesion with 0* c . When 0* c , the FS  increases linearly with an 

increase in T . The greater value of the FS  occurs with greater value of cohesion.  

Fig. 6.2 shows the variation of factor of safety ( FS ) with stabilizing force ( T ) for 

different values of inclination of the slope face to the horizontal ( f ) as f  

= 40°, 45°, 50°, 55° and 60°; considering specific value of governing parameters in their 

nondimensional form as: p  = 35°,   = 2.5, 
c = 0.08, *D = 0.6,  = 25°, *q =0.5, 


*

2

*

1 LL 1.4, hk = 0.1, vk = 0.05,   = 10°, 21   = 25° and 
3021  . It is 

noticed that the factor of safety increases with an increase in the stabilizing force. The greater 

value of f  makes the factor of safety smaller. The FS  increases significantly when the 

f  = 40°. When f  = 50°, 55° and 60°  , the FS  increases almost linearly with an 

increase in the stabilizing force.  
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Fig. 6.1. Variation of factor of safety ( FS ) with stabilizing force ( T ) for different values of 

cohesion of the joint material along the sliding surface (
c ). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.2. Variation of factor of safety ( FS ) with stabilizing force ( T ) for different values of 

inclination of the slope face to the horizontal ( f ). 
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Fig. 6.3 shows the variation of the factor of safety ( FS ) with the stabilizing force ( T ) 

for different values of angle of inclination of failure plane to the horizontal ( p ) as p  

= 30°, 33°, 35°, 37° and 40°; considering specific value of governing parameters in their 

nondimensional form as: f  = 50°,   = 2.5, c = 0.08, *D = 0.6,  = 25°, *q =0.5, 


*

2

*

1 LL 1.4, hk = 0.1, vk = 0.05,   = 10°, 21   = 25° and 
3021  . It is 

observed that the factor of safety increases sharply with an increase in the stabilizing force. 

The FS  also increases with an increase in the inclination of failure plane to the horizontal 

( p ). The increase rate is the highest when p = 40°. It is also noted that the value of p  

between 30° and 40°, does not affect the FS  much without stabilizing force.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.3. Variation of factor of safety ( FS ) with stabilizing force ( T ) for different values of 

angle of inclination of failure plane to the horizontal ( p ). 
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Fig. 6.4 shows the variation of factor of safety ( FS ) with stabilizing force ( T ) for 

different values of horizontal seismic coefficient ( hk ) as kh = 0, 0.05, 0.1, 0.15, 0.2, 0.25 and 

0.3; considering specific value of governing parameters in their nondimensional form as: f  

= 50°, p  = 35°,   = 2.5, c = 0.08, *D = 0.6,  = 25°, *q =0.5, 
*

2

*

1 LL 1.4, 

vk = 0.05,   = 10°, 21   = 25° and 
3021  . It is noticed that the factor of 

safety increases almost linearly with an increase in the stabilizing force. The increasing rates 

are very similar for all range of horizontal seismic coefficient as figure shows. The FS  

increases with a decrease in horizontal seismic force.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.4. Variation of factor of safety ( FS ) with stabilizing force ( T ) for different values of 

horizontal seismic coefficient ( hk ). 
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Fig. 6.5 shows the variation of factor of safety ( FS ) with stabilizing force ( T ) for 

different values of vertical seismic coefficient ( vk ) as kv = -0.15, -0.1, -0.05, 0, 0.05, 0.1 and 

0.15; considering specific value of governing parameters in their nondimensional form as: 

f  = 50°, p  = 35°,   = 2.5, c = 0.08, *D = 0.6,  = 25°, *q =0.5, 
*

2

*

1 LL 1.4,

hk = 0.1,   = 10°, 21   = 25° and 
3021  . It is noted that the factor of safety 

increases significantly with an increase in the stabilizing force. The downward seismic force 

as positive value, it makes the FS  decrease. The FS  increases with a decrease in vertical 

seismic force. It is also noted that the vk  does not affect factor of safety much without 

stabilizing force. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.5. Variation of factor of safety ( FS ) with stabilizing force ( T ) for different values of 

vertical seismic coefficient ( vk ). 

 

Fig. 6.6 shows the variation of factor of safety ( FS ) with stabilizing force ( T ) for 

different values of unit weight of rock (  ) as   = 2.5, 2.6, 2.7, 2.8 and 2.9; considering 
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specific value of governing parameters in their nondimensional form as: f  = 50°, p  = 

35°, c = 0.08, *D = 0.6,  = 25°, *q =0.5, 
*

2

*

1 LL 1.4, hk = 0.1, vk = 0.05,   = 

10°, 21   = 25° and 
3021  . It is noticed that the factor of safety increase sharply 

with an increase in the stabilizing force. The FS  increases very little with an increase in the 

unit weight of rock. The reason is that, the increase in the self-weight of rock gives rise to 

two components of the weight force. One acts on the sliding surface as a normal force, thus 

increasing the sliding resistance. The other one along the sliding direction acts as a driving 

force. Two forces go in an opposite direction, so they cancel each other such that the 

magnitude of   has little effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.6. Variation of factor of safety ( FS ) with stabilizing force ( T ) for different values of 

unit weight of rock (  ). 
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Fig. 6.7 shows the variation of factor of safety ( FS ) with stabilizing force ( T ) for 

different values of shearing resistance of the joint material along the sliding surface ( ) as  

  =20°, 25°, 30°, 35° and 40°; considering specific value of governing parameters in their 

nondimensional form as: f  = 50°, p  = 35°,   = 2.5, c = 0.08, *D = 0.6,  = 

25° , *q =0.5, 
*

2

*

1 LL 1.4, hk = 0.1, vk = 0.05,   = 10° , 21   = 25°  and 

3021  . It is observed that the factor of safety increases with an increase in the 

stabilizing force. The FS  also increases with an increase in the angle of shearing resistance 

of the joint material along the sliding surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.7. Variation of factor of safety ( FS ) with stabilizing force ( T ) for different values of 

shearing resistance of the joint material along the sliding surface ( ). 
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6.2.2 Effect of angle of inclination of the slope face to the horizontal 

Fig. 6.8 shows the variation of factor of safety ( FS ) with angle of inclination of the slope 

face to the horizontal ( f ) for different set values of horizontal ( hk ) and vertical ( vk ) 

seismic coefficients as 0.4, -0.2; 0.3, -0.15; 0.2, -0.1; 0.1, -0.05; 0, 0; 0.1, 0.05; 0.2, 0.1; 0.3, 

0.15 and 0.4, 0.2; considering specific value of governing parameters in their nondimensional 

form as: p  = 35°,   = 2.5, c = 0.08, *D = 0.6,  = 25°, *q =0.5, 
*

2

*

1 LL 1.4, 

*T =0.05,   = 10°, 21   = 25° and 
3021  . It is noticed that the factor of 

safety decreases sharply with an increase in the angle of inclination of the slope face to the 

horizontal. The decreasing rate is higher between range of 40°  and 45° . When the 

horizontal and vertical seismic coefficients both equal to 0, the value of the FS  is always 

bigger than other set of seismic coefficient. It proves that the seismic coefficients are the 

negative affect for the slope stability. In addition, the value of the FS  is bigger with 

negative value of vertical seismic coefficient for the same value of horizontal seismic 

coefficient. It may be because the negative vertical seismic coefficient supplies an uplift force 

to resist rock block sliding.  

6.2.3 Effect of angle of inclination of failure plane to the horizontal  

Fig. 6.9 shows the variation of factor of safety ( FS ) with angle of inclination of failure plane 

to the horizontal ( p ) for different set values of horizontal ( hk ) and vertical ( vk ) seismic 

coefficients as 0.4, -0.2; 0.3, -0.15; 0.2, -0.1; 0.1, -0.05; 0, 0; 0.1, 0.05; 0.2, 0.1; 0.3, 0.15 and 

0.4, 0.2; considering specific value of governing parameters in their nondimensional form as: 

f  = 50°,   = 2.5, 
c = 0.08, *D = 0.6,  = 25°, *q =0.5, 

*

2

*

1 LL 1.4, *T =0.05, 

  = 10° , 21   = 25°  and 
3021  . It is observed that the factor of safety 

increases moderately with an increase in stabilizing force between 30° and 42°, and it rises 

sharply after 42°. The value of the FS  is the greatest when kh = 0, kv = 0. The lowest value 

of the FS  occurs when kh = 0.4, kv = 0.2. From the figure as can be seen, the rock anchor is 

a good way to stabilize the unstable slope. 
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Fig. 6.8. Variation of factor of safety ( FS ) with angle of inclination of the slope face to the 

horizontal ( f ) for different set values of horizontal ( hk ) and vertical ( vk ) seismic 

coefficients. 

 

 

 

  

 

 

 

 

 

 

 

 

Fig. 6.9. Variation of factor of safety ( FS ) with angle of inclination of failure plane to the 

horizontal ( p ) for different values of horizontal ( hk ) and vertical ( vk ) seismic coefficients.  
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6.2.4 Effect of unit weight of rock 

Fig. 6.10 shows the variation of factor of safety ( FS ) with different nondimensional values 

of unit weight of rock (  ) for different set values of horizontal ( hk ) and vertical ( vk ) 

seismic coefficients as 0.4, -0.2; 0.3, -0.15; 0.2, -0.1; 0.1, -0.05; 0, 0; 0.1, 0.05; 0.2, 0.1; 0.3, 

0.15 and 0.4, 0.2; considering specific value of governing parameters in their nondimensional 

form as: f  = 50°, p  = 35°, c = 0.08, *D = 0.6,  = 25°, *q =0.5, 
*

2

*

1 LL 1.4, 

*T =0.05,   = 10°, 21   = 25° and 
3021  . It is noted that the factor of safety 

almost stays the same with an increase in unit weight of rock for any set of seismic 

coefficient. It may because the unit weight of rock affects the resisting force and driving force 

similarly.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.10. Variation of factor of safety ( FS ) with different nondimensional values of unit 

weight of rock (  ) for different values of horizontal ( hk ) and vertical ( vk ) seismic 

coefficients. 
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6.2.5 Effect of surcharge 

Fig. 6.11 shows the variation of factor of safety ( FS ) with nondimensional values of 

surcharge ( q ) for different values of horizontal ( hk ) and vertical ( vk ) seismic coefficients as 

0.4, -0.2; 0.3, -0.15; 0.2, -0.1; 0.1, -0.05; 0, 0; 0.1, 0.05; 0.2, 0.1; 0.3, 0.15 and 0.4, 0.2; 

considering the specific value of governing parameters in their nondimensional form as: f  

= 50°, p  = 35°,   = 2.5, c = 0.08, *D = 0.6,  = 25°, 
*

2

*

1 LL 1.4, *T =0.05, 

  = 10° , 21   = 25°  and 
3021  . It is observed that the factor of safety 

decreases nonlinearly with an increase in surcharge. It decreases sharply as surcharge 

increases from 0 to 0.5. The FS  is reduced moderately as *q  increases after 0.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.11. Variation of factor of safety ( FS ) with nondimensional values of surcharge ( *q ) 

for different values of horizontal ( hk ) and vertical ( vk ) seismic coefficients. 
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6.2.6 Effect of stabilizing force 

Fig. 6.12 shows the variation of factor of safety ( FS ) with nondimensional values of 

stabilizing force ( *T ) for different values of horizontal ( hk ) and vertical ( vk ) seismic 

coefficient as 0.4, -0.2; 0.3, -0.15; 0.2, -0.1; 0.1, -0.05; 0, 0; 0.1, 0.05; 0.2, 0.1; 0.3, 0.15 and 

0.4, 0.2; considering the specific value of governing parameters in their nondimensional form 

as: f  =  50° , p  = 35° ,   = 2.5, c = 0.08 , *D = 0.6,  = 25° , *q =0.5, 


*

2

*

1 LL 1.4,   = 10°, 21   = 25° and 
3021  . It is noted that the factor of 

safety increases moderately with an increase in stabilizing force. The value of the FS  is the 

greatest when seismic forces are zero.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.12. Variation of factor of safety ( FS ) with different nondimensional values of 

stabilizing force ( *T ) for different values of horizontal ( hk ) and vertical ( vk ) seismic 

coefficient. 
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6.2.7 Effect of inclination of stabilizing force to the normal at the failure 

plane 

Fig. 6.13 shows the variation of factor of safety ( FS ) with inclination of stabilizing force to 

the normal at the failure plane ( ) for different values of horizontal ( hk ) and vertical ( vk ) 

seismic coefficients as 0.4, -0.2; 0.3, -0.15; 0.2, -0.1; 0.1, -0.05; 0, 0; 0.1, 0.05; 0.2, 0.1; 0.3, 

0.15 and 0.4, 0.2; considering the specific value of governing parameters in their 

nondimensional form as: f  = 50°, p  = 35°,   = 2.5, c = 0.08, *D = 0.6,  = 25°, 

*q =0.5, 
*

2

*

1 LL 1.4, 21   = 25° , *T =0.05,   = 10°  and 
3021  . It is 

observed that the factor of safety increases with an increase in inclination of stabilizing force 

to the normal at the failure plane. The FS  arrives a peak value when the   increases to 

80°.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.13. Variation of factor of safety ( FS ) with inclination of stabilizing force to the 

normal at the failure plane ( ) for different values of horizontal ( hk ) and vertical ( vk ) 

seismic coefficients. 
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6.2.8 Effect of cohesion of the joint material along the sliding surface 

Fig. 6.14 shows the variation of factor of safety ( FS ) with cohesion of the joint material 

along the sliding surface ( c ) for different values of horizontal ( hk ) and vertical ( vk ) seismic 

coefficients as 0.4, -0.2; 0.3, -0.15; 0.2, -0.1; 0.1, -0.05; 0, 0; 0.1, 0.05; 0.2, 0.1; 0.3, 0.15 and 

0.4, 0.2; considering the specific value of governing parameters in their nondimensional form 

as: f  =  50° , p  = 35° ,   = 2.5, *D = 0.6,  = 25° , *q =0.5, 
*

2

*

1 LL 1.4, 

21   = 25°, *T = 0.05,   = 10° and 
3021  . It is observed that the factor of 

safety increases linearly with an increase in cohesion. It may due to linear relationship of 

cohesion with shear strength as defined by the Mohr-Coulomb failure criterion. The greater 

value of the FS  occurs with the lower value of seismic coefficients.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.14. Variation of factor of safety ( FS ) with cohesion of the joint material along the 

sliding surface (
c ) for different values of horizontal ( hk ) and vertical ( vk ) seismic 

coefficients. 
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6.2.9 Effect of angle of shearing resistance of the joint material along the 

sliding surface 

Fig. 6.8 shows the variation of factor of safety ( FS ) with angle of shearing resistance of the 

joint material along the sliding surface ( ) for different values of horizontal ( hk ) and vertical 

( vk ) seismic coefficients as 0.4, -0.2; 0.3, -0.15; 0.2, -0.1; 0.1, -0.05; 0, 0; 0.1, 0.05; 0.2, 0.1; 

0.3, 0.15 and 0.4, 0.2; considering specific value of governing parameters in their 

nondimensional form as: f  = 50°, p  = 35°,   = 2.5, c = 0.08, *D = 0.6, *q =0.5, 


*

2

*

1 LL 1.4, 21   = 25°, *T = 0.05,   = 10° and 
3021  . It is noted that the 

factor of safety increases almost linearly with increase in angle of shearing resistance. It may 

due to linear relationship of the Mohr-Coulomb failure criterion.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.15. Variation of factor of safety ( FS ) with angle of shearing resistance of the joint 

material along the sliding surface ( ) for different values of horizontal ( hk ) and vertical ( vk ) 

seismic coefficients. 
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6.3 Conclusions 

The parametric study, presented in the previous sections, is used to investigate the effects of 

stabilizing force on the stability of rock slope. It also indicates that the effects of several other 

parameters on the factor of safety ( FS ) of rock slope. The factor of safety of rock slope 

increases with an increase in stabilizing force. The FS  increases linearly with an increase in 

the stabilizing force when 0* c . The FS  increases significantly with an increase in the 

stabilizing force when f  = 40°, the rate of increase is much greater than that for values of 

angles other than between 40° to 60°. The FS  increases with an increase in the angle of 

inclination of failure plane to the horizontal. The seismic loads as the destabilizing forces 

make the FS  decrease. The FS  decreases with an increase in seismic coefficient. 

However, the different unit weights of rock does not affect the FS  significantly. The 

increase in the angle of shearing resistance triggers an increase in the FS .  

Increasing f  and *q  makes the FS  decrease; whereas, the FS  increases with an 

increase in *T , p ,  , c  and  . It is also found, the FS  almost remains stable with 

an increase in * .    
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Chapter 7 
 

Summary and Conclusions 
 

 

7.1 Summary  

The stability of natural and man-made slopes is a very important task for civil and mining 

engineers, because the potential rock-falls result in a significant cost and serious personnel 

safety problem to the operators. In these situations, the slope stability assessment becomes 

crucial for the engineering work and for the economy. As the geological discontinuities exist 

in all rock types, the rock mass is generally governed by the geometrical distribution and 

mechanical properties of the discontinuities. The slope failure types have been classified by 

engineers in 5 types, such as plane failure, circular failure, wedge failure, toppling failure and 

buckling failure. Many researchers make a great effort in slope stability analysis, which has 

been well documented in the literature (Hoek and Bray 1981; Aydan et al. 2008; Aydan and 

Kumsar 2010; Nawari et al. 1997). Furthermore, the wedge failure of rock slope is probably 

the most common type of failure in rock sliding (Hoek and Bray, 1981). In order to analyse 

the stability of rock slope against the wedge failure, some of the methods have been applied 

for the wedge failure analysis, such as stereographic method, closed-form method, reliability 

method and limit equilibrium method (Hoek et al. 1973; Low and Einstein, 1992; Bjerager, 

1990; Ling and Cheng, 1997).  

The limit equilibrium approach for the estimation of the factor of safety of the rock slope 

against the wedge failure, is well accepted by the engineers, mainly because of simplicity in 

the development of explicit expressions and their frequent applications over a long period of 

time. Hoek and Bray (1981) presented the most basic limit equilibrium method to analyse the 

slope stability. FHWA (1989) reports that a factor of safety of 1.3 is adequate for low slopes 

and a factor of safety of 1.5 is required for critical slopes adjacent to major highways. Ling 

and Cheng (1997) extend the expression of factor of safety against the wedge failure under 

seismic coefficient. Kumsar et al. (2000) considered both water and seismic forces in the 
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wedge failure system. Basha et al. (2013) developed an expression for the factor of safety of 

rock slope against the wedge failure under water and seismic forces more clearly. As in the 

past studies, the anchor force and surcharge have not been mentioned; the expression of the 

factor of safety against the wedge failure under surcharge and seismic load has been derived 

in two systems, with anchors and without anchors in the present work. Several special cases 

of the factor of safety for different simplified field situations are presented in this thesis. 

The graphical presentations for most of the practically occurring parameters within the 

typical ranges in the parametric study indicates the effects of governing parameters on the 

factor of safety. As the parametric study shows that the surcharge would always be a 

destabilizing force when the *c  is not zero, the factor of safety ( FS ) decreases with an 

increase in surcharge. However, when *c = 0, the FS increases slightly with an increase in 

surcharge. The *T  would always be a stabilizing force that makes the FS  to increase with 

an increase in *T . The parametric study also shows how other governing parameters affect 

the factor of safety. As the p  increases, the FS  increases while it deceases with an 

increase in the f . It also observed that the FS  decreases with an increase in 
hk  and vk , 

separately, while it increases with an increases in the following parameters:  , *c  and  . 

However, *  does not affect the FS  significantly.  

 

7.2 Conclusions  

Based on the results of this study, the following conclusions are made: 

  The expression for the factor of safety of a rock slope against the wedge failure under 

surcharge and seismic loads without anchors is given by equation (3.20), incorporating 

most of the practically occurring destabilizing forces. 

  Six special cases of the equation (3.20) based on possible situations in the field have 

been presented.  

  The factor of safety increases with an increase in both cohesion and the angle of shearing 

resistance for any possible field situation case. The value of the factor of safety of 
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equation (3.24) is always greater than others, because the water force and surcharge both 

are destabilizing forces for the rock slope. The horizontal seismic force decreases the 

factor of safety, whereas the vertical seismic force slightly affects the factor of safety. 

  The factor of safety of rock slope decreases with an increase in surcharge. For the lower 

values of surcharge, the factor of safety decreases relatively faster. 

  The factor of safety is relatively higher with greater value of cohesion and angle of 

shearing resistance with any surcharge. The factor of safety shows a rapid decreasing 

trend with an increase in surcharge for greater values of cohesion. 

  The factor of safety decreases with almost the same trend with an increase in surcharge 

for any angle of shearing resistance. 

  The factor of safety increases with an increase in unit weight of rock, but the factor of 

safety is not much affected by variation in unit weight of rock for any value of surcharge. 

  The factor of safety increases with an increase in the values of angle of inclination of the 

slope face to the horizontal. While the FS  increases with an increase in the values of 

angle of inclination of the failure plane to the horizontal ( p ) for lower values of 

surcharge (less than 1.5); it increases with a decrease in p  for greater value of 

surcharge (greater than 1.5). 

  The analytical expression of the factor of safety of rock slope against the wedge failure 

under surcharge and seismic load with anchors has been presented as equation (5.28). 

The seven special cases of equation (5.28) for possible field situations have been 

illustrated. 

  The graphical analysis of seven special cases illustrated that the factor of safety of the 

rock slope increases with an increase in both angle of shearing resistance and cohesion of 

the joint material. The value of factor of safety of equation (5.24) is always greater than 

others, because the water force and surcharge both are destabilizing forces for the rock 

slope. For seismic force, the horizontal one decreases the factor of safety, whereas the 

vertical seismic force slightly affects the factor of safety. 
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  The parametric study of anchored rock slope against the wedge failure is graphically to 

investigate the effect of stabilizing force on the factor of safety. It is also indicated that 

the effects of other parameters for factor of safety of rock slope. 

  The factor of safety increases linearly with an increase in the stabilizing force when 

0* c . The factor of safety increases significantly with an increase in the stabilizing 

force when f  = 40°, the increase rate is much greater than that for values of angles 

other than between 40° to 60°. The factor of safety increases with an increase in the 

angle of inclination of failure plane to the horizontal. 

  The seismic forces as the destabilizing forces make the factor of safety decrease. It 

decreases as the seismic coefficient increases. However, the different unit weights of 

rock do not affect the factor of safety much. An increase in the angle of shearing 

resistance triggers an increase the factor of safety.  

  Increasing f  and q  makes the factor of safety decrease; while the factor of safety 

increases with an increase in T , p ,  , *c  and  . In general, *  affect the factor 

of safety differently to others. 

  The unit weight of rock *  does not affect the factor of safety significantly. 

7.3 Recommendations for future work 

The problems concerning the slope stability have been studied for several decades. The slope 

stability analysis is very important for many areas, such as road construction, dam installation 

and mine excavation. In this study, the factor of safety against the wedge failure under 

seismic and surcharge loads with anchors and without anchors have both been analysed. The 

parametric study is also presented to analyse the effect of several parameters on the factor of 

safety for both systems. The current research work can be extended further to consider the 

following: 

 

 Development of a generalised expression for other failure modes including toppling 

failure or buckling failure under surcharge and seismic load conditions. 
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 Identify the analytical results by comparison with the results obtained from the 

numerical analysis. 

 Analyse the wedge failure of anchored rock slope under surcharge and seismic load 

sconditions by reliability or stereographic analysis method. 

 If possible, using the experimental results compare the value of factor of safety 

obtained from analytical study. 

 Effects of other reinforcing techniques on the stability of rock slopes. 

 Providing some design charts for real field projects, those that are more convenient for 

engineers.  
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Appendix 
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222111 sin)(sin)(  UNUNN                                     (3) 

From equation (2) 
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From equation (2) 
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From equation (1), as 
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Substitute N to equation (11), as 
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