
Edith Cowan University Edith Cowan University

Research Online Research Online

Theses : Honours Theses

2006

Use of a weighted matching algorithm to sequence clusters in Use of a weighted matching algorithm to sequence clusters in

spatial join processing spatial join processing

Husen Husen
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses_hons

 Part of the Numerical Analysis and Scientific Computing Commons

Recommended Citation Recommended Citation
Husen, H. (2006). Use of a weighted matching algorithm to sequence clusters in spatial join processing.
https://ro.ecu.edu.au/theses_hons/1413

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses_hons/1413

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses_hons
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses_hons?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F1413&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F1413&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses_hons/1413

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose

of your own research or study.

The University does not authorize you to copy, communicate or

otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following:

 Copyright owners are entitled to take legal action against persons
who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement. Where the reproduction of such material is

done without attribution of authorship, with false attribution of

authorship or the authorship is treated in a derogatory manner,

this may be a breach of the author’s moral rights contained in Part

IX of the Copyright Act 1968 (Cth).

 Courts have the power to impose a wide range of civil and criminal

sanctions for infringement of copyright, infringement of moral

rights and other offences under the Copyright Act 1968 (Cth).

Higher penalties may apply, and higher damages may be awarded,

for offences and infringements involving the conversion of material

into digital or electronic form.

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

Use of a Weighted Matching Algorithm to Sequence

Clusters in Spatial Join Processing

COWAN UNIVERSITY

A thesis submitted in partial fulfilment of the requirements for the

degree of

Bachelor of Science '{Software Engineering) Honours

By: Husen Husen

Student ID: 2041002

Faculty: Computing, Health and Science

· Institution: Edith Cowan University

Supervisors: Dr. Jitian Xiao and Michael Collins

Date of submission: December 2006

Abstract

One of the most expensive operations in a spatial database is spatial join processing.

This study focuses on how to improve the performance of such processing. The main

objective is to reduce the Input/Output (1/0) cost of the spatial join process by using a

technique called cluster-scheduling. Generally, the spatial join is processed in two steps,

namely filtering and refinement. The duster-scheduling technique is performed after the

filtering step and before the refinement step and is part of the housekeeping phase. The

key point of this technique is to realise order wherein two consecutive clusters in the

sequence have maximal overlapping objects.

However, finding the maximal overlapping order has been shown to be Non­

deterministic Polynomial-time (NP)-complete. This study proposes an algorithm to

provide approximate maximal overll;lpping (AMO) order in a Cluster Overlapping (CO)

graph. The study proposes the use of an efficient maximum weighted matching

algorithm to solve the problem of finding AMO order. As a result, the 1/0 cost in spatial

join processing ca,n be minimised:

11

Declaration

I certify that this thesis does not, to the best of my knowledge and belief:

(i) incorporate without acknowledgment any material previously submitted for a

degree or diploma in any institution of higher education.

(ii) contain any material previously published or written by another person except

where due reference is made in the text; or

(iii) contain any defamatory material.

I also grant permission for the Library at Edith Cowan University to make duplicate

copies of my thesis as required.

iii

Acknowledgements

I am most grateful to my two supervisors: Dr. Jitian Xiao and Michael Collins. Michael

assisted me with the application of honours study though it was very late to apply for

honours study at that time. He also provided invaluable feedback for my honours

proposal and thesis. Jitian was always very helpful for the duration of my research. He

provided support and guidance for my research. He was the most important resource in

my study.

Thanks also go to my lecturer Judy Clayden. Judy was very kind and willing to help me
. .

with the grammar checking of my research proposal.

The reviewers of my research proposal have provided valuable feedback. Thanks to

them as well. Also, a big thank you. to my fellow honours students for their sharing of

expenence.

Most importantly, I thank my family: Mum, Dad, sisters, and brothers for their support

and patience. I am very lucky to have you all during this very tough time, not to

mention the other times.

IV

Table of Contents

1 Introduction ... 1

1.1 The Background to the Study : l

1.1.1 Spatial Join Processing ... 4

1.2 The Significance of the Study : . 5

1.3 The Purpose of the Study ... 6

1.4 Statement of Research Questions ... 7

2 Review of Relevant Literature ... 9

2.1 General Literature Review ... 9

2.1.1 Filter Step 9

2.1.2 Refinement Step ... 14

2.2 Literature on Previous Findings .. 17

2.2.1 Sequencing/Scheduling Strategies ... 18

2.2.2 Clustering Strategies ... 24

2.3 Specific Studies Similar to the Current Study ... 27

3 Theoretical Framework ... 30

3 .1 Identification of Variables Impacting On the Research Questions 30

3.2 Identification of Assumptions Underpinning the Study ... 30

4 The Proposed Method ... 3 3

4.1 Maximal Weight Matching (MWM) Algorithm ... 3 3

4.2 The Complexity ofMWM Algorithm ... 36

4.3 Comparison with Other Methods ... 3 8

5 Material and Methods ... 45

5.1 Design and Procedure of the Study ... 45

5 .2 Description of Instruments Employed ... 46

5.3 Data Analysis .. 46

6 Results and Findings ... 48

7 Further Study ... 51

8 Conclusion ... 52

References .. 53

Appendix A - Definitions of Terms ... 56

Appendix B- O(n3) Weighted Matching Algorithm ... 58

Appendix C - Experimental Results ; . 61

Appendix D - CD Contents .. 65

V

List of Figures

Figure 1: Constructing ajoin index from two relations .. 2

Figure 2: Page Connectivity Graph Construction from the Hotel and Lake Join Index ... 3

Figure 3: Example of clustering .. 6

Figure 4: Example of a CO graph -.. 7

Figure 5: State of art approach vs. SID approach in refinement step 16

Figure 6: Example of weighted PCG .. 23

Figure 7: Example of Min-Cut Partition ... 24

Figure 8: Example of Matrix-based Partition .. 25

Figure 9: Execution of MST algorithm ; ... 28

Figure 10: Execution of Match based algorithm ... 29

Figure 11: Greedy matching vs. maximum weigthed macthing 31

Figure 12: Algorithm of maximum weighted matching ... 32

Figure 13: Example of invalid AMO order ... 35

Figure 14: A CO graph with ten clusters .. 38

Figure 15: Execution of MST algorithm ... 39

Figure 16: Execution of MBM algorithm .. .41

Figure 17: Execution of MWM algorithm .. 43

Figure 18: Procedure of the study ... 45

Figure 19: Comparison of total overlapping weight .. .49

Figure 20: Comparison of total saving ofl/0 cost.. .. 50

Vl

List of Tables

Table 1: Overview of filtering step approaches ... 10

Table 2: Overview ofl/0 strategies for the refinement step 18

Table 3: Example of sequence candidate pairs returned by filter step ... 18

Table 4: Execution trace ofl strategy ... 19

Table 5: Execution trace of Sorting-based strategy 20

Table 6: Execution trace of segmented strategy 20

Table 7: Execution trace of Zig-Zag strategy ... 21

Table 8: Results of experiment with 10 clusters .. 48

Table 9: Summary of experiment results : . 50

vii

1 Introduction

1. 1 The Background to the Study

Today, the use of spatial databases is increasing. These databases are used to manage

space-related data. Spatial databases support spatial data types, such as points, lines,

polygons and regions. The application of spatial databases can be found in Geographic

Information System (GIS), cryptography, image processing, urban planning, geology,

astronomy, the study of the human body and molecular structures.

One of the most important query operations in spatial databases is the spatial join,

which is the complement to the intersection join in relational database systems (Gu.ting,

1994). The spatial join operation combines two or more sets of spatial objects that

satisfy a spatial predicate, mostly intersection and distance within. The spatial join

processing can be space and time expensive due to the large size of the spatial objects

and the computationally intensive nature of spatial operations (Xiao, Zhang, & Jia,

2001).

Figure 1 represents two spatial relations: hotel (R) and lake (S). The hotel is represented

by a point attribute and the lake is represented by a polygon. An example of a spatial

join query can be 'find all hotels within 7 km of a lake'. Figure l (a) shows the spatial

attributes for hotels and lakes. Points r l , r2, r3, r4, r5, r6, and r7 represent the hotel

locations and polygons sl , s2, s3, s4, s5, and s6 represent the Minimum Bounding

Rectangle (MBR) for the lake boundaries. The circle around each hotel shows the area

within 7 km from the hotel. Figure 1 (b) shows hotel and lake relations. The hotel

relation has a unique ID, a location, and other non-spatial attributes. The lake relation

has its own unique ID, the size of its spatial object, MBR data, a pointer to the actual

spatial data, and other non-spatial attributes. To satisfy the query, a join needs to be

performed on the hotel and lake relations based on their spatial attributes. To do this, a

join index can be used to find the pairs which satisfy the query. A join index is a special

data structure that facilitates rapid join query processing and is generally used for data

sets· that are not updated frequently (Shekhar, Lu, Chawla, & Ravada, 2002). The join

index for this join containing the tuple IDs which match the spatial join predicate is

shown in Figure l (c). Each tuple in the join index represents a tuple in the table JOIN

(R, S, distance (R.Location, S.MBR) < 7 km).

1

(a) Spatial attributes of Rand S (adapfed from Poirier, 2002)

ID Location (x, y) Non-spatial data
r1 (3.4, 8.8) Name, Nb_Rooms, ...
r2 (7.2, 9.4) (. . .)
r3 (8.3, 6.4) (. . .)
r4 (9.2, 4.9) (. . .)
r5 (8.4, 1.9) (. . .)
r6 (0.9, 3.3) (. . .)
r7 (6.6, 3.2) (. . .)

ID Size (Kb) MBR Data Pointer Non-spatial data
s1 456 (3.5, 0, 6.1, 8.6) Ox9FFFO Name, Region, ...
s2 44 (...) (. . .) (...)
s3 56 (. . .) (. . .) (. . .)
s4 23 (. . .) (...) (. . .)
s5 27 (. . .) (. . .) (. . .)
s6 12 (. . .) (. . .) (...)

(b) R and S relations (from Poirier, 2002)

R.ID S.ID

r1 s1

r2 s2

r3 s3

r3 s4

r4 s4

r5 s5

r5 s6

(c) Join index of R and S relations (from Poirier, 2002)

Figure 1: Constructing a join index from two relations

2

A join index can also be represented by a bipartite graph G = (VJ, V2, E), where VJ

contains the tuple IDs of relation R, and V2 contains the tuple IDs of relation S. The

edge set E contains an edge (Vr, Vs) for Vr E R and Vs E S, if there is a tuple

corresponding to (Vr, Vs) in the join index. This graph is also known as a Page­

Connectivity Graph (PCG) in Shekhar, Lu, Chawla, and Ravada (2002) or Spatial Join

(SJ) graph in Xiao, Zhang, and Jia (2001) when the join index between two relations is

described at the page level. The PCG for the hotel and lake join index is shown in

Figure 2.

Pages on disk of relation R

al a2 a3 a4 a5

r5

Bl B2 B3

Pages on disk of relation S

(a) Page structure on disk for Join Index

(b) PCG or SJ graph

Figure 2: Page Connectivity Graph Construction from the Hotel and Lake Join Index

3

Generally, spatial data are stored in secondary storage due to the size of spatial objects.

To process a spatial query operation, spatial objects need to be fetched from secondary

storage, e.g., hard drive, into main memory for processing. Thus, this process can

involve a lot of Input/Output (I/0) cost. It is important to minimise the I/O cost

involved in a spatial join operation to maximise the efficiency of the spatial join

processing (Xiao, Zhang, & Jia, 2001).

1.1.1 Spatial Join Processing

The majority of spatial join algorithms follow a two-stage process known as filter and

refine steps (Orenstein, 1990). The filter step operates on approximations of the actual

spatial data, such as MBR. Its purpose is to eliminate most of the candidates that are riot

relevant for answering the query. The result of this step is a set of potential candidates

that are likely to satisfy the spatial predicate. The benefits of the filter step are that it

rules out many object pairs that cannot satisfy the spatial predicate without having to

fetch them from disk and it is less expensive to operate on approximations of the

geometry. Thus, it reduces the overall computation costs (Poirier, 2002).

Due to the approximation for the spatial data, the candidate sets may contain false drops,

that is, spatial objects that satisfy the filter operation but do not satisfy the actual spatial

predicate. Next, the refinement step consists of fetching the full geometry description of

the candidates into memory and eliminating those false drops by performing the spatial

operation on the actual geometry. Since the memory size is limited, it can keep only a

limited number of spatial objects for computation at a time. As a result, an object could

be fetched more than once when it is needed for spatial join operation (Xiao, Zhang, &

Jia, 2001). It is essential to schedule the object in a way that fetching is only required

once to load the object into memory in order to minimise the I/O cost.

Techniques that aim at minimising the I/O cost can contribute significantly towards

reducing the total cost of the spatial join operation. Experiments have shown that disk

accesses at the refinement step take a significant amount of time compared to the CPU

time required for spatial join (Guttman, 1984). Hence, the best technique to minimise

the I/O cost at the refinement step is required.

4

In spatial join processing, a common.method to minimise the I/O cost at the refinement

step is known as the housekeeping stage. It consists of two steps, namely:

sequencing/scheduling and clustering (Abel, Gaede, Power, & Zhou, 1999). The

sequencing step is to sequence the candidate pairs by reducing the number of duplicate

fetches before fetching them from disk. The clustering step is to partition the spatial

objects into clusters and load them into the main memory cluster by cluster.

1.2 The Significance of the Study

Due to the increasing popularity of spatial databases, researchers have focused their

efforts on improving the query processing performance of the most expensive spatial

database operation: the spatial join (Giiting, 1994). The cost of spatial join processing is

usually much more than traditional relational-join processing due to the large sizes of

spatial objects and the expensive computation of spatial predicates. The research

focuses on finding an efficient algorithm to reduce the I/O cost at the refinement step.
This may result in more efficient and faster processing of spatial join operation in

spatial databases.

Most approaches perform a housekeeping step between the filtering and refinement

steps. The advantage of the housekeeping step is to avoid fetching the same spatial

object into memory more than once. Thus, it can minimise the I/O cost at the refinement

step. One such novel housekeeping step is a combination of sequencing and clustering

steps called cluster-scheduling (Xiao, Zhang, Jia, & Zhou, 2000). First, it partitions

spatial objects into clusters such that objects sharing a cluster are closely related and can

therefore be brought into memory together for processing. Then, it schedules the cluster

loading process in order to minimise the total I/O cost at the refinement step by

minimising the number of duplicate fetches. It is essential to schedule the cluster

loading process so that two successive clusters in the sequence have maximal number of

overlapping objects. However, determining an optimal page access sequence or

Maximal Overlapping (MO) order in spatial join processing has been shown to be Non­

deterministic Polynomial-time (NP)-complete by Neyer and Widmayer (1997). So, it is

required to find a method that is very close to the optimal page access sequence, namely

Approximate Maximal Overlapping (AMO) order.

5

1.3 The Purpose of the Study

According to Shekhar, Ravada, Lu, and Chawla (1998), the cost of spatial join

computation, which uses a join-index in a secondary memory, i.e., hard drive, with

limited buffer space, depends primarily on the page access sequence used to fetch the

pages of the base relations. The determination of an optimal page access sequence such

that the join can be computed with the minimum of page re-accesses given a limited

number of buffer pages is known as Optimal Page Access Sequence with a Fixed Buffer

(OPAS-FB) problem. In spatial join processing, the OPAS-FB problem is significant

since the size of spatial data can be large and insufficient main memory capacity can

create a bottleneck (Poirier, 2002).

This study focuses at the housekeeping stage, especially at the cluster-scheduling step.

In the clustering method, the candidate pairs will be partitioned into several clusters (see

Figure 3). The result of the clustering method is a Cluster Overlapping (CO) graph. A

CO graph represents the overlapping relationships between data clusters. For example,

Figure 4(a) shows the object sizes and Figure 4(b) shows a CO graph corresponding to

the clusters in Figure 3(b). The edge weight from cluster Vl to cluster V2 is 250

(60+80+110) as objects Bl, B2, and B3 overlap in both clusters.

s id T_id
Al Bl
A2 Bl
A3 B2

A3 B3
A4 B3
A5 Bl

A6 B2
A6 B4

A7 BI
AS B3

AS B4

(a) A candidate set

" .

: Al Bl
. A.'J ---0 B2:

.I: _. _...,...=�------ - .

. _A3 er_ __ . .. ,.J B3 _.
. . ' " � '

: A4 0,,. /A) Bl .:
I A5 o---->',�--0 B2: : ... -- ,...._

'

l\� q·:/�... 0 B3 _:

• A6 O.._ ___ ... --D B l .
: _>;: .n '} : : A70 .--�-""'B.:i:
•. A8 cs···· -·-o B4 _:

(b) A candidate clustering

Figure 3: Example of clustering

6

Object ID Object size
A1 200

A2 80

A3 40

A4 30

A5 32

A6 260

A7 1 8

A8 60

B 1 60

B2 80

B3 1 1 0

B4 76

(a) Object size

V1
A1 , A2, A3,

B1 , B2, B3
250--------,

A6, A7, A8,

B1 , B3, B4

V3

430

A4, A5, A6,
B1 , B2, B3 V2

(b) CO graph from Xiao, Zhang, Jia, & Zhou (2000)

Figure 4: Example of a CO graph

The cluster-scheduling method is to schedule the cluster in a way that two consecutive

clusters have a maximum number ,of overlapping objects. Let Vi, Vi, . . . , V,1 be the

clusters generated by the clustering algorithm. The notion of Maximum Overlapping

(MO) order is defined as follows:

Given a CO graph G = (V, E, w) with V = { Vi, Vi, . . . , Vn}, a MO order among sets Vi,

Vi, . , . , v,l is a sequence (Vii, Vi2, , , . , Vin) such that r;
i

-l size(Vil ('\ Vil+l) reaches the

maximum among all permutations of V.

For example, (VJ, V2, V3) is an MO order in the CO graph in Figure 3(a) and the total

size of overlapping objects between adjacent nodes in the order is 680. To find an MO

order is to check all permutations of V to see which one makes the maximum of

{ r;·-1 size(Vi1 n Vi1+1) } . Obviously, this method has a factorial order and is not efficient

and practical. The research proposes a better algorithm to schedule the sequence of the

cluster processing. As a result, the 1/0 cost at the refinement step will be minimised.

1.4 Statement of Research Questions

Finding the MO order for a CO graph guarantees to generate the best cluster-scheduling

sequence. Unfortunately, the problem of finding an MO order in a CO graph has been

shown to be NP-complete (Xiao, Zhang, Jia, & Zhou, 2000). The overarching question

is to find an Approximate MO (AMO) order that can be used to guide the scheduling of

the spatial clusters in spatial join processing. Two areas need to be explored in order to
' , '

answer the overarching question, namely:

7

1. Will the use of Maximum Weighted Matching algorithm expedite the finding of

AMO order of a CO graph?

2. How well is the AMO order produced by the proposed method compared to

other methods, such as: Maximum Spanning Tree (MST) and Match Based

Method (MBM) in terms of 1/0 cost?

8

2 Review of Relevant Literature

2. 1 General Literature Review

According to Huang, Jones, and Rundensteiner (1998), spatial join processing is very

expensive in terms of both CPU and I/O costs for three reasons. Firstly, spatial objects

are typically represented by structures that require extensive storage. For example, a

high-resolution vector representation of a polygon may store thousands of points where

each point is represented by an x-coordinate and a y-coordinate value. Secondly, the

spatial join operation reqmres multiple scans of often large data sets. Finally,

determining a spatial relation such as the intersection of two objects 1s very

computationally intensive. It requires super-linear time complexity as a function of the

number of points used to represent each object.

The first two factors contribute to high I/O costs, whereas the third factor results in high

CPU costs. As a result, spatial join queries over large data sets usually incur a long

response time. To minimise the CPU and the I/O cost, the spatial join processing

usually executes in two steps, namely filter step and refinement step (Orenstein, 1990).

These will now be discussed.

2.1 . 1 Filter Step

Several spatial join algorithms, most of which focus on the filter step, have been

proposed, such as: R-tree family (Beckmann, Begel, Schneider, & Seeger, 1990),

seeded tree (Lo & Ravishank:ar, 1994), spatial hash join (Lo & Ravishank:ar, 1996) , and

merge join (Patel & De Witt, 1996). Most work on spatial join processing focuses on the

efficient computation of the filter step where MBRs are used for approximating the

spatial objects.

Based on the availability of spatial indexes, there are three categories of processing the

filter: availability of spatial indexes on both relations participating in the spatial join

operation, on one of the relations or on none of the relations (see Table 1) . For the first

category where spatial indexes have been built on both relations, these indexes are

generally used in the implementation of spatial join processing. The second and third

category may arise 0in a complex query where one or both operand sets might be an

9

interim result from previous operations (Mamoulis & Papadias, 2003). For example,

consider a query 'find all hotels with category 4 stars within 7km of a lake' and the

hotels and lakes are indexed on their spatial extent. If the selection part of the query is

performed first before the spatial join, the resulting hotels will be non-indexed. Thus,

this is a second category and it requires a single index join algorithm to perform the

filtering step.

Table 1 : Overview of filtering step approaches

Filtering Step Approach

I ndex on both relations
R-tree family (Beckmann, Beqel , Schneider, & Seeqer, 1 990)

Polvaon Map Random (Hoel & Samet, 1 992)

INLJ (Mamoul is & Papadias, 2003)

Bulk Loading and Matching

I ndex on one relation
Build and Match Join (Patel & De Witt, 1 996)

Sort and Match (Papadopoulos, Riaaux, & Schol l , 1 999)

Seeded Tree (Lo & Ravishankar, 1 994)

S lot Index Spatial Join (Mamoulis & Papadias, 2003)

Plane Sweeping (Arge, Procopiuc, Ramaswamy, Suel , & Vitter, 1 998)

Spatial Hash Join (Lo & Ravishankar, 1 996)

No index PBS M (Patel & DeWitt, 1 996)

S3J (Koudas & Sevcik, 1 997)

SSSJ (Arae, Procopiuc, Ramaswamv, Suel , & Vitter, 1 998)

Indexes on both relations

One of the most widely used spatial index structures is R-tree family. There are several

varieties of R-tree family in literature, such as R-tree (Guttman, 1984), R+-tree (Sellis,

Roussopoulos, & Faloutsos, 1987), and R*-tree (Beckmann, Begel, Schneider, & Seeger,

1990). According to Beckmann, Begel, Schneider, and Seeger (1990), the most efficient

of R-tree family is R*-tree. Brinkhoff, Kriegel, and Seeger (1993) presented a spatial

join algorithm where each of the relations is indexed by an R *-tree. This algorithm

synchronously traverses both trees and joins all pairs of overlapping regions. It is based

on depth-first traversal of R-trees. This join method is considered as one of the most

important ones due to its efficiency and the availability of R-trees in advanced database

management systems.

A different traversal strategy was presented by Huang, Jing, and Rundensteiner (1997)

which is superior to the depth-first traversal of Brinkhoff, Kriegel, and Seeger (1993)

when a large buffer is available. Hoel and Samet (1992) propose the use of Polygonal

Map Random (PMR) quadtrees for the spatial join and compare it against members of

the R-tree family'. lrt . subsequent work, they considered the problem of spatial joins

10

when Point Region (PR) quadtrees are on the input relations (Hoel & Samet, 1995). All

of the proposed techniques are to speed up the filter step of the spatial join.

Index on one relation

The simplest method for the case that only one input is indexed is the Indexed Nested

Loop Join (INLJ). In accordance with its relational join counterpart, INLJ applies a

window query to the R-tree for every object in the non-indexed data set (Mamoulis &

Papadias, 2003). The build and match join (Patel &De Witt, 1996) builds an R-tree from

the raw input using bulk loading and joins it with the existing tree using R-tree Join.

Sort and match (Papadopoulos, Rigaux, & Scholl, 1999) employs the Sort-Tile­

Recursive (STR) technique of Leutenegger, Edgington, and Lopez (1997) to sort the

rectangles from the non indexed input but, instead of building the packed tree, it directly

matches in memory created leaf nodes. For each produced leaf node, a window query is

executed and plane sweep is applied to join it with all leaf nodes from the existing R­

tree that intersect it.

Lo and Ravishankar (1994) discussed the case where exactly one of the relations does

not have an index. They proposed a method called Seeded Tree, which makes use of an

R-tree index already available on one data set to construct dynamically an index for the

second data set at the join time. Their work on seeded trees was the first that addressed

the problem of processing spatial joins when only one R-tree is available. Seeded trees

are R-tree-like structures, and are divided into the seed levels and the grown levels. The

nodes in the seed levels are used to guide tree growth during tree construction. The seed

levels can also be used to filter out some input data during construction, thereby

reducing tree size. They developed a technique that uses intermediate linked lists during

tree construction and significantly speeds up the tree construction process. Once the

index is constructed, the tree join algorithm of Brinkhoff, Kriegel, and Seeger (1993) is

used to perform the actual join.

Mamoulis and Papadias (2003) investigated whether existing single-index join

algorithms have certain limitations. For instance, the INLJ, which applies a window

query to the R-tree for each object in the non-indexed set, can be very expensive in

terms of both I/O and computational cost. The seeded tree join of Lo and Ravishankar

(1994), which creates an R-tree for the non-indexed data, is not appropriate in many

cases because .·· of its prohibitive I/O cost. Methods like bulk loading and matching,

11

sorting and matching apply external sorting on the non-indexed data and totally or

partially build an on-the-fly R-tree in order to join it with the existing one. Therefore,

these methods have a disadvantage in cases where the non-indexed input is an

intermediate result of an underlying operator because they need to materialize it before

processing it.

An improvement of the above algorithm has been suggested in Mamoulis and Papadias

(2003) where the available main memory is exploited more efficiently. They propose

Slot Index Spatial Join (SISJ), a hash join algorithm that overcomes most of the above

deficiencies. SISJ distributes the R-tree entries at a specific level into S partitions, called

slots, and builds an in-memory index from them. The slot index keeps for each slot the

identifiers of the nodes pointed to by the corresponding entries along with the MBR of

the entries. All data from the non-indexed input are hashed into buckets with same

extents as the slot MBRs. The hash-buckets are finally joined with the R-tree data under

the corresponding slot.

Additionally, Mamoulis and Papadias (2003) present two I/O and CPU optimisation

methods that are applied in the join phase of SISJ and significantly improve its

performance, namely a bucket ordering heuristic and a repartitioning heuristic. A bucket

ordering heuristic joins first the hash buckets with a few pages on disk in order to avoid

writing and reading again their in-memory parts. This technique reduces the number of

page accesses, especially when the non-indexed input is only slightly larger than the

available memory. A repartitioning heuristic improves the computational performance

of the algorithm and further reduces its space requirements. After the application of

these optimization methods, the overall cost of SISJ drops about 35 percent compared to

the initial implementation (Mamoulis & Papadias, 2003).

No indices

The problem of join processing also has been examined under the assumption that no

index is available. There are many efficient algorithms for computing the spatial join of

two non-indexed spatial data sets in the case where both sets fit in main memory. One

example, which derives from computational geometry, is the Plane

Sweeping (Arge, Procopiuc, Ramaswamy, Suel, & Vitter, 1998). It is used to determine

if the spatial relation specified in the join query exists between two spatial objects by

12

using rectangle intersection. A plane-sweeping algorithm for rectangle intersection only

has to find all intersections between rectangles located on the same sweepline.

Two algorithms have been proposed for the case where the data sets do not fit in main

memory. Lo and Ravishankar (1996) introduced Spatial Hast Join (SHJ) and Patel and

DeWitt (1996) proposed Partition Based Spatial Merge Join (PBSM). Both methods

divide the datasets into smaller partitions, such that each partition fits in memory, and

apply a join algorithm to each pair of partitions. PBSM replicates some of the data of

both input relations to improve join processing, whereas the spatial-hash join only

allows replication on one relation. They both introduce replication of the entities in

partitions in order to compute the join. However, the replication can result in poor

performance of the spatial join processing.

Prompted by the above problem, Koudas and Sevcik (1997) present an alternative

algorithm that requires no replication. They show the benefits of avoiding replication in

such cases. They introduced a method without data replication, called Size Separation

Spatial Join (S3J). S3J imposes a dynamic hierarchical decomposition of the space and

permits an efficient joining phase. The Dynamic Spatial Bitmap feature of S3J can be

implemented using bitmap indexing techniques already available in most relational

systems. They presented an analytical and experimental comparison of S3J with PBSM

and SHJ algorithms for computing spatial joins when indices do not exist for the data

sets involved. Using a combination of analytical techniques and experimentation with

real and synthetic data sets, they showed that S3J outperforms these two methods for a

variety of types of spatial data sets.

Arge, Procopiuc, Ramaswamy, Suel, and Vitter (1998) proposed another approach

without data replication, called Scalable Sweeping-Based Join (SSSJ). SSSJ is an

external sweep-line algorithm which tries to keep the status of the sweep-line in main

memory. SSSJ achieves both efficiency on real-life data and robustness against highly

skewed and worst-case data sets on both internal computation time and I/O transfer.

They present experimental results based on an efficient implementation of the SSSJ

algorithm, and compare it to the original as well as an optimised PBSM algorithm of

Patel and DeWitt (1996). However, a serious deficiency of SSSJ is that both input

relations have to b.e sorted first before producing the initial output tuple.

13

Dittrich and Seeger (2000) proposed several improvements of PBSM (Patel & De Witt,

1996) and S3J (Lo & Ravishankar, 1996), particularly on the impact of data redundancy

and duplicate detection on the performance of these methods. For PBSM, they present a

simple and inexpensive online method to detect duplicates in the response set There is

no need to eliminate duplicates in a final sorting phase as was suggested originally.

They also investigate the impact of different internal algorithms on the total runtime of

PBSM.

S3J has been proposed as an algorithm that avoids the problem of duplicates in the

response set by simply avoiding the generation of redundant data objects. However,

Dittrich and Seeger (2000) show that data redundancy results in substantial performance

improvements for S3J. They introduce replication of data objects and show that the total

processing cost can be reduced considerably. Duplicates in the response set can be

detected at very little cost using a slightly modified version of the method suggested for

PBSM. Moreover, they also address the problem of choosing an efficient internal

algorithm for S3J (Dittrich & Seeger, 2000). Results of a large set of experiments with

real data sets reveal that Dittrich and Seeger (2000) suggested modifications of PBSM

and S3J result in substantial performance improvements where PBSM is generally

superior to S3J.

2.1.2 Refinement Step

The refinement step can be separated into two parts:

1. Fetching full geometry description of the candidates, which are produced by the

filter step, into memory, and

2. Performing the spatial join operation on the actual geometry.

The first part implies high 1/0 cost since the size of spatial objects to be fetched from

disk to memory can be very large. The second part implies high CPU cost as the spatial

operations are computationally very intensive.

After retrieving from the candidate set a polygon-pair and its vector representations, the

refinement step determines the intersect relation between the two polygons by

processing the restricting phase and the sweeping phase (Huang, Jones, &

Rundensteiner, 1998).

14

Huang, Jones, and Rundensteiner (1998) proposed a new technique focusing on the

optimisation of the refinement step. They propose a screen-test procedure to be

executed before the plane sweep algorithm that substantially reduces the computation

required during refinement. They call this procedure Symbolic Intersect Detection (SID).

Figure 5 shows SID performs efficient true hit detection in two stages, namely clipping

stage and detection stage, to replace the restriction phase in the original refinement step.

In the clipping stage, to determine if two candidate polygons intersect, SID uses their

Overlapping MBR (OMBR) to clip all segments of the two polygons which overlap the

OMBR. SID abstracts each segment by a compact symbolic representation using only

offsets of the sides of the OBMR. In the detection stage, based on this abstract

information, SID efficiently detects situations under which two clipped segments cross

each other deterministically. When such a crossing is determined between two clipped

segments, their association polygons therefore are guaranteed to intersect. As a result,

performance is improved because further intersect computation such as the

computationally intensive plane sweep algorithm is not needed for the true hit

candidates detected by SID (Huang, Jones, & Rundensteiner, 1998).

15

INPUT: a candidate pair ot 2 polygons

: i. 1re Re.<tricting PluL�e

mark all line .segments

I

that overlap the OMBR

110

yes
: - - - - · ------------ ----- - · - - - - - - - ----------- ------------ -- - 1

.
.

. ,u, ' ' ' .
J The Sweepi11g Pllase j
: :
i I
:.'

run plane sweep algorllhm on i, the marked line segments
i 10 determine intersect !

l I
110 I

yes . . ·--------- - --------------- ------------ ·-- · · - -- - - - - ---------·

(a) The state of art of refinement step

INPUT: a candidate pair of 2 polygons

i S/D l
\ TIie C{ippi11g Stage l
: t
: : . mark all line segments tha1
1 overlap the OMBA while l j generating SCP sets j
I !
; :
l no 1 .

I
TIie Dere<:tio,1 Stage

nm S1'.nTru,.H:il::Detec ted function
to detect true hit

yes

no
! -.. :
. - - - ---- ---------- -- - - - - - - - - - ------- --------- -- - - - - ------- · ---�

!
! no
'

The Sweeping Phaxe

run plane sweep nlgorithm on
the marked l ine segments

to determine iote,-sect

1 -

(b) Refinement step with SID optimisation

Figure 5: State of art approach vs. SID approach in refinement step

Additionally, they present an analytical cost model characterising SID ' s effectiveness

under various conditions. Based on real map data, they also run experiments comparing

the performance of the state-of-the-art spatial join approach with the spatial join using

the SID optimisation. The results show that their SID optimisation effectively detects

more than 80% of the true hits with negligible overhead. Consequently, with the SID

optimisation, the time intersect computation in the refinement step is improved by over

50%, as predicted by the analytical model (Huang, Jones, & Rundensteiner, 1 998) .

1 6

2.2 Literature on Previous Findings

According to Abel, Gaede, Power, and Zhou (1999), different filter algorithms and the

presence of spatial indexes generate significant variations in the ordering of the set of

candidate pairs generated by the filtering step. To solve this problem, Patel and DeWitt

(1996) introduced a housekeeping step in between filter and refinement steps. The

housekeeping step performs sequencing of the candidate pairs before fetching them

from disk. It aims at minimising the 1/0 cost involved in the refinement phase by

reducing the number of duplicate fetches.

To minimise the overall I/O cost at the refinement step, most of techniques will provide

a housekeeping step. The housekeeping step is generally divided into two methods,

namely sequencing/scheduling and clustering.

Abel, Gaede, Power, and Zhou (1999) classified two types of refinement strategies,

namely: immediate and deferred processing. In immediate processing, candidate pairs

are tested in the refinement step as they are generated by the filter step. In this strategy,

no sequencing takes place during the housekeeping step. On the other hand, the deferred

processing orders the candidate pairs before fetching them from disk. The full set of

candidate pairs is assembled in the housekeeping step before applying the refinement

step.

Several heuristic solutions have been proposed for the OP AS-FB problem. They can be

divided into two categories, namely asymmetric and symmetric methods. An

asymmetric method favours objects from one relation, i.e., sorting the join-index on one

of the join keys, whereas a symmetric method has no preferences. An asymmetric

strategy can be advantageous if one set is much larger than the other or if the objects of

one data set are well clustered spatially (Poirier, 2002).

17

Table 2 shows varieties of housekeeping approaches that aim to minimise the I/O cost

for the refinement step.

Table 2 : Overview of l/0 strategies for the refinement step

IMMEDIATE DEFFERED

Asymmetric Svmmetric
Sorting-based Heuristic
(Valduriez, 1 987) Travell ing Salesman Heuristic
Segmented Strategy Zig-Zag Strategy (Abel, Gaede,
(Patel & DeWitt, 1 996) Power, & Zhou, 1 999)

Schedul ing &

Greedy Heuristics:
No Clustering

- FPH (Fotouhi & Pramanik, 1 989)
Na'ive Strategy - OH (Omiecinski , 1 989)

- COH (Chan & Ooi, 1 997)
AGP (Shekhar, Lu, SGP (Shekhar, Lu , Chawla, &
Chawla , & Ravada, 2002) Ravada, 2002)

Matrix Permutation (Xiao, Zhang, &
Clustering & J ia , 2001)

MST (Xiao, Zhang , Jia, & Zhou ,
Schedul ing

2000)

MBM (Xiao, 2003)

2.2. 1 Sequencing/Schedu l ing Strateg ies

The next few sections will use Table 3. It shows an example of sequence candidate pairs

returned by the filter step (Abel, Gaede, Power, & Zhou, 1999). Using this example,

suppose the buffer size is 4 and all spatial objects are the same size, namely 1 , and the

cache is initially empty.

Table 3: Example of sequence candidate pairs returned by filter step

1 r6, s3

2 r7, s1

3 r2 , s1

4 r1 , s2

5 r2 , s6

6 r1 , s3

7 r2 , s7

8 r3, s 1

9 r4, s 1

1 0 r5, s2

1 1 r2 , s5

1 2 r1 , s1

1 3 r2 , s4

18

Naive Strategy

The na'ive strategy processes candidate pairs in the order generated by the filter

algorithm. No sequencing is performed in a housekeeping step. For each candidate pair,

the spatial descriptions of objects are fetched into memory. It is assumed that the spatial

descriptions of any given pair of objects will fit into memory in order to perform the

computational geometry algorithm on them. Once the buffer is full, the replacement

policy used is least-recently-used (Poirier, 2002). To use the candidate pairs from Table

3, the na'ive strategy requires 20 load requests (see Table 4).

Table 4: Execution trace of I strategy

Candidate Pair Cache Content Number of Load ReQuests
(r6, s3) (r6, s3) 2
(r7, s1) (r6, s3, r7, s1) 2
(r2, s1) (s3, r7, s1, r2) 1
(r1, s2} (s1, r2,. r1, s2} 2
(r2, s6} (r1, s2, r2, s6} 1
(r1, s3} (r2, s6, r1, s3} 1
(r2, s7) (r1, s3, r2, s7) 1
(r3, s1) (r2 , s7, r3, s1) 2
(r4, s1} (s7, r3, s1, r4) 1
(r5, s2} (s1, r4, r5, s2) 2
(r2, s5} (r5, s2, r2, s5} 2
(r1, s1) (r2, s5, r1, s1} 2
(r2, s4) (r1, s1, r2, s4) 1
Total number of load requests : 20

Sorting-Based Strategy

This strategy is also known as the 'Simple Strategy' in (Abel, Gaede, Power, & Zhou,

1999). The sorting-based strategy, one of the deferred processing strategies, is to defer

the refinement step until all candidate pairs are available. The list of candidate pairs is

sorted according to the object identifiers of one relation. The list is then processed

sequentially and ensures that there are no duplicate fetches for objects of the .first

relation. Clearly, some objects of the second relation will have to be fetched more than

once (Poirier, 2002). Table 5 shows the sorting-based strategy outperforms the na'ive

strategy with a total number of 1 7 load requests.

19

Table 5: Execution trace of Sorting-based strategy

Candidate Pair Cache Content Number of Load Requests
(r1 , s1) (r1 , s 1) 2

(r1 , s2) (r1 , s1 , s2) 1

(r1 , s3) (r1 , s 1 , s2 , s3) 1

(r2, s1) (r2, s2, s3, s1) 1

(r2 , s4) (r2 , s3 , s1 , s4) 1

(r2 , s5) (r2 , s1 , s4, s5) 1

(r2, s6) (r2, s4, s5, s6) 1

(r2 , s7) (r2, s5, s6, s7) 1

(r3 , s1) (r3 , s6, s7, s1) 2

(r4, s1) (r4, s6, s7, s1) 1

(r5 , s2) (r5, s7, s1 , s2) 2

(r6 , s3) (r6 , s1 , s2 , s3) 2

(r7, s1) <r7 , s2 , s3, s1) 1

Total number of load requests : 1 7

Segntented Strategy

Valduriez (1987) introduced an efficient sequencing algorithm for join processing using

join indices and it was adapted by Patel and De Witt (1996) for spatial joins. A segment

is composed of a maximum number m of the first relation objects. Segmented

sequencing is an asymmetrical strategy. It guarantees that no object in R within a

segment is loaded twice. However, objects in S appearing in different segments are

likely to be fetched multiple times (Poirier, 2002). For the example in Table 3, the

segmented strategy requires 18 load requests (see Table 6).

Table 6 : Execution trace of segmented strategy

Candidate Pair Cache Content Number of Load Requests
(r1 , s1) . (r1 , r2 , r3, s1) 4

(r2 , s 1) (r1 , r2 , r3, s1) 0

(r3, s 1) (r1 , r2 , r3, s1) 0

(r1 , s2) (r1 , r2 , r3, s2) 1

(r1 , s3) (r1 , r2 , r3 , s3) 1

(r2, s4) (r1 , r2 , r3 , s4) 1

(r2 , s5) (r1 , r2 , r3 , s5) 1

(r2 , s6) (r1 , r2 , r3, s6) 1

(r2 , s7) (r1 , r2 , r3 , s7) 1

Load Next Seament

(r4, s1) (r4, r5, r6, s1) 4

(r5 , s2) (r4, r5 , r6 , s2) 1

(r6, s3) (r4 , r5 , r6, s3) 1

Load Next Segment

(r?, s 1) (r4, r5 , r7, s 1) 2

Total number of load requests : 1 8

20

Zig-Zag Strategy

The zig-zag strategy was proposed by Abel, Gaede, Power, and Zhou (1999). It is a

symmetric strategy. It dynamically alternates between the two data sets. This approach

is expected to perform best when the data sets to be joined have a similar data

distribution. The algorithm maintains two lists, F and F'. The F list contains candidate

pairs sorted by n and the F' list contains the candidate pairs sorted by Sj, If all cache

objects of one set are processed, the algorithm switches to the respective other set and

processes all cache objects of this set. For the implementation, it is necessary to extend

each entry ek = (ri, sj) E F with a flag indicating whether this pair has been processed or

not. This flag is necessary since in the course of zig-zagging some pairs may be skipped

and will have to be processed later. Also, two cursors have to be maintained along with

a list reflecting the cutTent content of the cache. Table 7 shows the total number of load

request for Zig-Zag strategy is 17 .

Table 7: Execution trace of Zig-Zag strategy

Candidate Pair Cache Content Number of Load ReQuests

(r1, s1) (r1, s1) 2
(r1, s2) (s1, r1, s2) 1
(r1, s3) (s1, s2, r1, s3) 1
R completely processed , go to S
(r2 , s1) (s2, s3, s1, r2) 1
(r3, s1) (s3, r2, s1, r3) 1
(r4, s1) (r2, r3, s1, r4) 1
(r7, s1) (r3, r4, s1, r7) 1
S completely processed , Qo to R

(r2, s4) (r4, r7, r2, s4) 2
(r2, s5) (r7 , s4, r2, s5) 1
(r2 s6) (s4, s5, r2 , s6) 1
(r2, s7) (s5, s6, r2, s7) 1
R completely processed, QO to S
(r5, s2) (s6, s7, s2 , r5) 2
(r6, s3) (s2, r5, s3, r6) 2
Total number of load requests : 1 7

Scheduling

Lim, Pheng, and Chong (2001) researched the problem of scheduling page accesses in

database join processing. Their research questions focus on two interesting problems.

First, they determine a page access sequence that uses the minimum number of buffer

pages without any page being fetched more than once. Second, they determine a page

access sequence that .minimises the number of page re-accesses for a given buffer size.

They use a graph model to represent pages from the relations that contai.n tuples to be

21

joined and present a new heuristic for the two problems. This new heuristic is based on

the concept of finding the best N-release-K sequence at each iteration. They use the

notion N-release-K to denote N pages are brought into the buffer to release K pages.

Each page access sequence is uniquely expressed as a sequence of segments, where

each instance of a page release marks the end of a segment. While the sequence of

pages in a segment is fetched, no pages in the buffer can be made available until the last

page in the segment is fetched. This is the basis of their new heuristic. Their

experimental results show that their new heuristic performs well, especially when

comparing to Chan and Ooi Heuristic (COH) (Chan & Ooi, 1997).

Spatially-Augmented Greedy Heuristic (SAGH)

Poirier (2002) proposed a technique called Spatially-Augmented Greedy Heuristic

(SAGH). The method efficiently produces a page access sequence that results in a good

buffer utilisation as well as disk I/O cost for spatial join processing of non-uniform

sized spatial objects. He introduced the method based on the traditional relational join

greedy heuristics but it accounts for the size of spatial objects. Some of the traditional

relational join greedy heuristics are Fotouhi and Pramanik Heuristic (FPH) (Fotouhi &

Pramanik, 1989), Omiecinski Heuristic (OH) (Omiecinski, 1989), and COH (Chan &

Ooi, 1997). These greedy heuristics are symmetric and do not require any sorting of the

join-keys of either relation. They select the next page or the next set of pages to be

fetched into memory based on the pages already in memory and the remaining edges to

be processed in a PCG. The selection is often based on the number of neighbours in

memory and the number of neighbours on disk. The greedy heuristics generally perform

well, are easy to implement, and do not require any pre-processing like sorting or

clustering.

22

V w(V)
A l

Al 15
A2 560
A3 6
A4 151 Bl

AS 804 A3

A6 45 B2

Bl 10
B2 6 B3

B3 A5

A6

(a) Nodes and their weights (b) a PCG (froni Xiao, Zhang, & Jia, 200 1)

Figure 6 : Example of weighted PCG

In the SAGH, each node of the PCG will be assigned a weight, which corresponds to

the size of each spatial object, i.e: weighted PCG = (V, E, w). Figure 6 shows an

example of weighted PCG with the weight for each node. According to Poirier (2002),

the SAGH chooses ri E R and Sj E S from the PCG to load in the buffer such that:

• (ri , Sj) is connected

• The sum of the degree of ri and Sj is minimal

• In case of a tie, select ri and Sj with the smallest combined size

• (ri , Sj) not processed yet

Then, the buffer is added with the new node p using the following strategy :

• Find a node q in the buffer who has the smallest non-resident degree (but not

zero)

• If there is none, use load policy described above

• Find the node p such that :

o (q, p) is connected and not processed;

o p has the smallest non-resident degree;

o p fits in memory; and then

o resolves tie by selecting p with smallest size

• If p does not fit in memory, go to next smallest non-resident degree and repeat

same procedure

• If no neighbour of q fits in memory, select smallest non-resident degree, even

though it does not fit in memory

• Resolve tie by selecting p with smallest size

If a node in memory has to be replaced, then choose the node that:

23

• has the smallest non-resident degree;

• · is not connected to the new node; and then

• resolves ties by expelling the node with the largest size.

Poirier (2002) proved that his SAGH method can compete with the clustering method of

Xiao, Zhang, and Jia (2001) by indirectly comparing the SAGH with the Na"ive strategy

and the Sorting-based heuristic. Moreover, the SAGH heuristic has small pre-processing

requirements compared to clustering methods where objects have to be clustered.

2.2.2 Clustering Strategies

Shekhar, Lu, Ravada, and Chawla (1998) introduced an off-line spatial clustering

technique based on min-cut graph partitioning of the bipartite PCG for the join index.

The technique can minimise the length of the page access sequence, given a fixed buffer

size. Consequently, 1/0 cost can be reduced. A min-cut node partition of a graph G = (V,

E) partitions the nodes in V into disjoints subsets while minimising the number of edges

in the cut-set. The cut-set of a min-cut partition is the set of edges whose incident nodes

are in two different partitions. Figure 7 shows an example of PCG with its

corresponding min-cut partition. In this schema, an optimal 1/0 page access sequence

would be obtained if all node clusters were edge disjoint, i.e. the cut-set is empty, and

assuming that each cluster can fit into memory.

a) PCG

Vl

(b) Min-Cut Partition (from Poirier, 2002)

Figure 7: Example of Min-Cut Partition

They used datasets from the Sequoia 2000 project (Stonebraker, Frew, & Dozier, 1993)

to do their experiments. The result of the experiments shows that the graph partitioning

method outperforms .the methods based on sorting and greedy heuristics (Shekhar, Lu,

Ravada, & Chawla, 1 998). However, it is not clear whether their method really

24

outperforms the greedy heuristics since the pre-processing time is not accounted in their

experiments. The greedy heuristics have no pre-processing step whereas their method

has to convert PCG into a hyper-graph and perform a min-cut partitioning of this hyper­

graph.

Xiao, Zhang, and Jia (2001) proposed a clustering method that aims to minimise the 1/0

cost at the refinement stage of spatial join processing. They formalise the problem by

using a graph model. Then, from the graph model a matrix-based algorithm is

developed to cluster objects such that the objects in the same cluster are closely related.

Their method is derived from the Bond Energy Algorithm (BEA) and then they modify

it for the candidate-cluster purpose. Similar to the graph partitioning approach, the

candidate pairs in their approach are clustered into disjoint sets before each cluster is

scheduled in an efficient manner. However, instead of using a graph partitioning

method, they use a matrix permutation and decomposition heuristic. The sum of all

spatial objects inside a cluster has to be smaller or equal to the buffer size.

Figure 8 shows an example of how the matrix-based method partitions the weighted

PCG with the buffer size 1024 bytes.

A2
size

B l

A3

D2 --> --
A4 113

B3

n::i

(a) Weighted PCG (from Xiao, Zhang, & Jia, 200 1) (b)Clustering with buffer = 1024

Figure 8: Example of Matrix-based Partition

25

From their experiments, their method can save 20% and 35% of I/O cost to the case of

sorting method and no clustering method respectively (Xiao, Zhang, & Jia, 2001).

However, it would be beneficial to perform the experiments using data sets from real

GIS applications instead of generated artificial data for more reliable results and

acceptability by practitioners in the industry. Today, there are already other methods

that can save more 1/0 cost. However, many of them use this clustering method in

addition to their proposed methods.

Shekhar, Lu, Chawla, and Ravada (2002) introduced two new heuristics to solve the

OP AS-FB problem. The first one is the Asymmetric Graph Partitioning (AGP) method.

AGP method is an improvement over a sorting-based method for spatial join. However,

its buffer can be poor since . it gives almost the entire buffer space to one relation. The

second one is Symmetric Graph Partitioning (SGP) method which uses clustering for

the pages of both relations. Both AGP and SGP methods rely on min-cut graph

partitioning of the PCG, a technique they proposed previously in Shekhar, Lu, Ravada,

and Chawla (1998). The difference between the SGP and AGP methods is that SGP

method clusters pages from both tables with no preference to either one. Thus, SGP

method minimises the page accesses on both relations.

Once again, they did their experiments using real map datasets from the Sequoia 2000

project (Stonebraker, Frew, & Dozier, 1993). They compare their SGP method with the

greedy heuristics, namely FPH, OH, and COH, for symmetric processing regarding

buffer size, page size, and edge ratio. The result of their experiments shows that SGP

method outperforms the greedy heuristics when the memory size is relatively small

(Shekhar, Lu, Chawla, & Ravada, 2002). However, since this new method is relied on

min-cut graph partitioning, it is not clear whether the SGP method really outperforms

the greedy heuristics since the pre-processing time for graph partitioning is not

accounted in their experiments.

26

2.3 Specific Studies Similar to the Current Study

Xiao, Zhang, Jia, and Zhou (2000) proposed a new graph-based cluster-scheduling

technique called Maximum Spanning Tree (MST). The idea of this method is to

schedule the resulting clusters, which have been generated by the clustering techniques

(Shekhar, Lu, Ravada, & Chawla, 1998; Xiao, Zhang, & Jia, 2001), in a way that two

consecutive clusters in the sequence have maximal number of overlapping objects. Thus,

there is no need to load those overlapping objects when processing the next cluster since

they are already in the memory. Consequently, the 1/0 cost can be minimised, this being

the key issue for their cluster-scheduling technique.

The MST algorithm is used to produce an AMO order. The algorithm consists of three

steps: find a maximum weight spanning tree T of the CO graph, conduct a depth-first

search (DFS) on T, and construct an AMO order according to the output of previous

step. The complexity of the MST algorithm is O(m2log2m), where m = max(IVJ, IEI).

From their simulation, they found that if the spatial join operations are processed cluster

by cluster according to the sequences produced by their algorithm, over 50% of the

fetching time used for fetching those overlapping objects can be saved.

Figure 9 shows an example of how the MST method works. In this example, the MST

method has an AMO order with total overlapping weight of 31 (this will be compared

with the next method).

YS

5
9

{22-36}

V4 V6

. (�) A CO graph (from Xiao, Zhang, Jia, & Zhou, 2000)

27

V V 6

5 ®-6-® 9

5

(b) A maximum spanning tree (c) A dept-first-search of T

Figure 9: Execution of MST algorithm

(d) Approximation to MO

Xiao (2003) introduced a new efficient method that produces a better sequence of AMO

than the original algorithm, MST, he proposed previously (Xiao, Zhang, Jia, & Zhou,

2000). The new method is called a match based method (MBM). The MBM pseudo­

code is :

Algorithm: matchBasedAMO(G)

Input : G = (V, E, w); a CO graph with V = {Vi, Vi; Vi, . . . , Vn}
Output : Vu, Vi2, . . . , Vin; AMO order of G

Begin

1. Find a maximal match M of G using Greedy matching algorithm;

2 . If no matching was found, return;

3 . Add all matching into AMO;

4. Coarsen G by collapsing matching nodes of M to produce a coarser graph G ';

5. matchBasedAMO(G ');

6. return;

End

The MBM method uses a greedy matching algorithm to find the maximum weight

matchings in a CO graph. The greedy matching algorithm is an approximation

algorithm for solving the weighted matching problem and has a performance ratio of Yi

to optimal matching (Doratha & Hougardy, 2003). It can be implemented with a

running time O(JEI log I V]) if the edges of G are sorted in a pre-processing step by

decreasing weight.

28

The pseudo-code for greedy matching algorithm:

Greedy Matching (G = (V, E, w))
M=<l>

While E ;z!() do begin

let e be the heaviest edge in E

. add e t M

remove e and all edges incident to e from E

End

Simulations have been conducted to demonstrate the saving of I/O cost in spatial join by

using the match based algorithm. The result shows that over 67% of the fetching time

used for fetching those overlapping objects can be saved.

Use of the same CO graph in Figure 9(a), this MBM produces an AMO order with a

total overlapping weight of 3 3, which is a better result than the MST method (see Figure

10).

(a) greedy matching (b) coarser graphs (c) AMO order

Figure 10: Execution of Match based algorithm

Xiao (2003) presents his algorithm and compares it with three other methods:

overlapping-free scheduling (OFS), random-overlapping scheduling (ROS), and the

MST. The OFS method fetches objects, cluster by cluster, into memory for the join

operations. After a cluster of objects are processed, the data in the memory are cleared

before the next cluster is fetched. The ROS method fetches objects, cluster by cluster, in

a random way, that is, a cluster is selected randomly. If the objects in the cluster are not

in the memory, they are fetched into memory. The experiment results are reliable as he

runs the experiments ten times and takes the average of the results. However, most of

the datasets in his experiments are generated artificially and only a small proportion of

datasets are from real applications.

29

3 Theoretical Framework

3. 1 Identification of Variables Impacting On the Research

Questions

There are several variables that impact the result of the research, namely:

• CO graph

Each CO graph used in the research was produced by a clustering method of

matrix permutation (Xiao, Zhang, & Jia, 2001). Use of different clustering

· methods can produce a different CO graph. The CO graph is the main input data

used in the experiments.

• Spatial data used

Due to budget constraints, spatial data used in the experiments were generated

artificially.

• The size of spatial data and clusters

The size of spatial data and clusters affect the cost of I/O m spatial join

processmg.

• The number of clusters

The number of clusters affects the AMO order and total amount of overlapping

weight between two clusters.

• Time constraints

The research only took two semesters of study

3.2 Identification of Assumptions Underpinning the Study

The study uses one of the concepts of graph theory, namely Maximum Weighted

Matching. A maximum weighted matching problem is defined by a graph G consisting

of a set V of vertices or nodes and a set of E of edges and the weights w. It is

represented in the following equation, G = (V, E, w). A matching on a graph is a set of

edges such that no two of which meet at a common vertex. A maximum weighted

matching is a matching for which the sum of the weights of the edges is maximal

(Witwear, 2002).

Since the MBM method uses a greedy matching algorithm, which only has a

performance ratio of 1 :2 to maximum weighted matching, there 1s a room for

30

improvement if the maximum weighted matching algorithm is used instead of the

greedy matching algorithm. Figure 11 shows a comparison of maximal matching result

between greedy matching . method and maximum weighted matching method. The

greedy matching method finds 4 matchings with the total weight of 108 (32+28+28+20)

whereas the maximum weighted matching method finds 5 matchings with the total

weight of 124 (28+24+28+24+20). Thus, it can be said that using the maximum

weighted matching algorithm will find a better AMO order with more total overlapping

weight between clusters in a CO graph than using the greedy matching algorithm.

.

�2a-(5)
24

T G)---2�32� 28 A)-2a--@

24 1)6

�
2s--(if

2
�

@
(a) An example of weighted graph

Ai)-2--@
24

I
G)-2s-@-32� 28 A)-2c-@

24 I ,
16

�
2--&

24

(b) greedy matching method (c) maximum weighted matching method

Figure 11 : Greedy matching vs. maximum weigthed macthing

The first polynomial algorithm for the weighted matching problem was introduced by

Edmonds (1965). Its run time complexity is O(n2m), where n and m denote the number

of vertices and edges in the graph respectively. Since then Edmonds' algorithm has

been studied by a number of researchers. Gabow (1973) and Lawler (1976) have

developed O(n3) implementation of Edmonds' algorithm. According to Vink:emeier and

Hougardy (2005), the fastest implementations of Edmonds' algorithm are due to Cook

and Rohe (1999) and Mehlhom & Schafer (2001) with a time complexity of O(nm log

n).

31

Figure 12 summarises the algorithm of maximum weighted matching in pseudo-code

(Witwear, 2002). See the Appendix B for more details about maximum weighted

matching algorithm.

In iti a l Sol ution :

l et lvl b e the em pty matc h i n g

Yu = max{ we/2 : e E E } for each vertex u E G

l a be l each vertex u E g eve n
for e a c h vertex r E G {

}

i f r is matched or Yr = O conti n u e
let Br be t h e on ly b lossom o f T

repeat {

if a n vertex ,u+ E T with Yu = O exists {

let P be the a ltern ati ng path from u to r
rep lace Jl/I by m EB P

e lse i f a n edge ,uv with u+ E T and 1r1w = o

exists {

case v* f/:. T: g row step
case v+ E T: sh ri n k step
case v+ f/:. T: a u gment step

else i f there exists a n odd b lossom B- E T

With ZB = 0

expa nd step for B
else {

determ i ne J
perform d u a l adj ustment

}
} u nt i l r is matched or Yr = O

Figure 12: Algorithm of maximum weighted matching

It has been identified by Xiao (2003) that the problem of finding maximum weighted

matching in a non bipartite graph can guide the finding of AMO order in a CO graph.

Thus, applying the maximum weighted matching algorithm to the proposed study may

result in finding a better sequence of maximum overlapping clusters such that the sum

of the edge weights of the edges or paths in the CO graph reaches the maximum. Hence,

·· the 1/0 cost in spatial join processing can be minimised.

32

4 The Proposed Method

4. 1 Maximal Weight Matching (MWM) Algorithm

The study proposes a new method called Maximal Weight Matching (MWM). This new

MWM method is a cluster-scheduling method. It is similar to MST and MBM methods

in the sense that their main objective is to find a better algorithm that produces a better

sequence of clusters to guide the scheduling of clusters processing in a spatial join ,

processmg.

The MWM algorithm can be described in the following pseudo-code:

Algorithm: mwmAMO(G)

Input: G = (V, E, w); a CO graph with V = {Vi, Vi, Vi, . . . , Vn}

Output: Vu, V;2, . . . , V;n; AMO order of G

Begin

1. Find a maximal match M of G using maximum weighted matching algorithm;

2. If no matching was found, return;

3. Add all matching into AMO;

4. Coarsen G by collapsing matching nodes of M to produce a coarser graph G ';

5. mwmAMO(G ');

6. return;

End

The MWM method uses a recursive algorithm (see step 5). It can be separated into three

main parts. In the first part, a maximal match M of G is produced using a maximum

weighted matching algorithm (see algorithm details in Appendix B). Edges in M are

taken as the initial AMO order.

In the second part, the graph G is coarsened by collapsing the matching nodes. At this

step, each pair of matching nodes are combined to form a single node of the next level

coarser graph G ' = (V', E ', w '). Nodes in V' are all in the form of either v = {vi, Vj} ,

where Vi and Vj E V are matched in M, i.e., (vi, Vj) EM, or v = {vi}, where Vi E V is not

matched in M, i.e., (vi) �M. That is:

33

The node v of form { Vi, Vj} in V' is called a nmltinode in Xiao (2003).

E' and w' are then defined such that the edge between any pair of multinodes v' and v"

corresponds to an edge in E whose two endpoints are in v ' and v", respectively, and

whose weight is maximal among all edges connecting nodes in between the multinodes

v' and v", if such an edge exists. In other word, after collapsing the matching nodes, the

edge with the highest weight is taken, among all edges connecting nodes in between the

multinodes, to connect the new multinodes. In particular,

• For each pair of multinodes v'E V' and v" E V', v' ;zfy", if v' = {v'i, v1} , v" = {v"i,

v '1} , then (v', v') E E' if and only if w '(v', v ') ;cO, where w '(v ', v ') = max

{w(u1,u2) I u1 E v', u2 E v", (u1, u2) E E} (I)

• For each unmatched node v = { vi} E V', if there exists a multinode v ' = { v 'i , v 1)

such that (vi, v 'i) E E or (vi, v1,) E E, then (v, v) E E ' and w '(v, v) = max {w(vi,

u) I u E v', (vi, u) E E} (II)

It is important to note that any pair of unmatched nodes is not connected in both G and

G'.

After the graph G' is built, the maximum weighted matching algorithm is applied to G'

again to produce a maximal match M'. The next level of coarser graph G" = (V", E", w')

can be built by the following procedure:

1. For each pair of matched nodes v ', v" E M',

(1) If both v ' and v" are multinodes, i.e., each contains two nodes, say v' = {v'i, v1}

and v" = {v"i, v '1} , then choose a pair of nodes u ' and u" such that u ' E v ', u "'E

v" and w(u ', u ') = max {w(u1, u2)I u1 E v ', u2 E v", (u1, u2) E E} ;cO,

i) add (u ', u ") to AMO, and

ii) collapse the matched nodes v ' and v" by creating a new multinode {v',

v"} = {v'i, VJ, v"i, v '1} ,

(2) If v ' contains two nodes and v " contains only one node, say v ' = {v'i, v1} and v " =

{v"k} , then choose u E v' such that w(u, v''k) = max{w(v'i, v"k), w(v1, v"k)},

i) add (u ', v"k) to AMO, and

ii) collapse nodes v' and v" by creating a new multinode {v', v"} = {v'i,
I II } Vj, V k

(3) If v ' contains one node only and v" contains two nodes, similar to the case of (2).

(4) The V" is created for the graph G" which containing all multinodes created from

the above steps.

34

2. For E" and w", there are some remaining processes. These are:

(1) define E" and w" similarly as those in (I) and (II), and

(2) check whether the edges in E" can potentially violate the rule of AMO order,

that is, no cluster in an AMO order can have an edge degree more than 2, or no

cluster in an AMO order can be linked to more than two other clusters. For

example, in Figure 13 the cluster V3 is connected to more than two other

clusters, which are cluster Vl , V2, and V5, or it has an edge degree 3. Thus, it is

not a valid AMO order. If there is an edge in E" can potentially violate the rule,

the edge is removed from the graph and go to step (1) again otherwise E" and w"

are :finalised for the graph G ".

Figure 13: Example of invalid AMO order

The above matching and collapsing process continues until no further matching can be

found. Finally, the algorithm produces the AMO order according to the AMO output

from the above procedure.

35

4.2 The Complexity of MWM Algorithm

This section analyses the complexity of the proposed MWM algorithm detailed in

section 4.1. For a given CO graph with n nodes, line 1 requires at most O(n3) time as it

implements the Edmond's algorithm shown in Lawler, Lenstra, Kan, and Shmoys

(1985). Line 3 needs O(n2
) time as it scans at most once for each node to find its

matching node. Lines 4 has the complexity of O(n2) because, for each matched node, it

needs no more than once scanning to combine to its matched one to form a ultimode

of the next level coarser graph. So the total complexity of lines 1-4 is O(n3). Line 5

completes the recursive execution of the algorithm.

Let g(n) be the complexity function of the algorithm. First, consider the best case of the

execution (that is all nodes in G were matched in step 1). Denote f(n) as the complexity

of this case. For an ideal matching, each node is matched, thus the next level of coarser

graph has n/2 nodes. In this case, the recurrence formula for the complexity function

will be

{o
f(n) = a.n3

a.n3 + f(n / 2)

if n <.;;, l
if n > l and no further match exists
if n > l and further match exists

where a is a constant. As the collapsing reduces half the number of available

(multi)nodes, either n ::;I or (n > 1 and no further match exists) will become true after

running the algorithm recursively for some rounds. Therefore, for a large n, according to

the recurrent property of/ (n), we have

f(n) = a.n3 + J{ii) = a.n3 + a.{iiJ + !(%)= . . . = a{ n3 + {iiJ + {%J + + 1) + f(l)

This equation is valid for any n that is a power of 2, say n = 2k. Thus, we have

f(n) = an3 .(l + h3 + }i2.3 + }i3 .3 + + /i3(H))+ f(l)

Recalling that /(1) �. 0, we get f(n) = % .a.n3 , or

36

f(n) = O(n3) (III)

If n is not a power of 2, there must exist k such that 2k < n -;;,,2(k + 1). Therefore, we

have % .a.n3
s f(n) s % .8a.n3 , which still leads to formula (III).

Secondly, consider the case where some unmatched (multi)nodes produced in step 1 of

the MWM algorithm. Denote F(n) as the complexity of the algorithm in this case.

Without loss of generality, assume that the average number of matching pairs is n/4 (::::::

(1 + 2 + . . . + n/2) I (n/2)). After collapsing, the next level of coarser graph will have

3n/4 multinodes. In this case, we can get a recurrent function as

{o
F(n) = a.n 3

a.n3 + F(3n / 4)

if n s 1
if n > 1 and no fitrther match exists
if n > 1 and further match exists

where F(3n/4) is the complexity of the matching and collapsing process on the next

level coarser graph. In the worst case, every recursive execution of the algorithm would

produce a (next level) coarser graph whose number of multinodes is about four thirds of

that of the current graph. After k times of recursive execution:, either the number of the

(multi)nodes of the graph becomes 1, or no further match can be found from the graph.

So, for simplicity, we can assume that nGJ = I , or n = l (! J J for some k. According

to the recurrent relation of F(n), we can derive

3 (3) 3 (3)
3

(3
2
J F(n) = a.n + F

4
n = a.n + a.

4
n + F -=r- n =

3 (3
3

3
6 39

J
64 3 = a.n 1+

4,3
+ � +

4-9
+ ... =

37
.a.n

Or

(IV)

Following the .discussion above, it can be shown that that formula (IV) holds for any n

(Xiao, 2003). As the .complexity of the algorithm is always greater-than-or-equal-to f(n),

and less-than.:or-equal-to F(n), i.e., O(n 3) = f(n) s g(n) s F(n) s O(n3) , then the

37

complexity of g(n) = O(n3). The first research question will be quantified by the above

means.

4.3 Comparison with Other Methods

To show how the proposed method works, the example of a CO graph with ten clusters

in Figure 14 is used. As per research question 2, the example will also be used to

compare to other methods, namely MST and MBM.

849 628

. ®-71 0-@--230-(a)-as1-(i){ .)Q)

� � "soo 662

896 859 �

© � .
736

®
Figure 14: A CO graph with ten clusters

By applying the MST algorithm to the CO graph, the first step produces a maximum

weight spanning tree T of the graph as shown in Figure 15(a). Suppose that the second

step begins at cluster 9 in Figure I5(a). The result of the depth-first search of T is shown

in Figure 15(b), where the numbers nearby the clusters are the traversal order numbers.

In the third step, an AMO order is produced as shown in shown in Figure 15(c), which

is 97178767771075747372, with the total overlapping weight of 4721.

38

�

®-11 --(i}-23o-(s}-s57--(7)('
849 '''>a

� � "aoo 662
896 859 �

cb 4
736

(a) Maximal weighted spanning tree T

(b) A dept-first search of T

/D · -.,.
®·······---7 10--······--·CD·--····-230 --····· ·®

· ··
-;;:0

......

896 859
d

662

®···-- ®·/
736

(c) An AMO order produced by MST

Figure 15: Execution of MST algorithm

39

By applying the MBM algorithm to the CO graph in Figure 14, an AMO order was

produced as shown in Figure 16(e), which is 179727374""75710777876, with

the total overlapping weight of 5348. The following shows the execution steps of the

MBM algorithm (corresponding to Figure 16):

(a) The first step of the MBM algorithm uses the greedy matching algorithm to find

the maximal match M. There are four pairs of matched nodes found:

• cluster 6 matches cluster 8 with edge weight 896

• cluster 7 matches cluster 10 with edge weight 859

• cluster 1 matches cluster 9 with edge weight 710

• cluster 3 matches cluster 2 with edge weight 662

Initial overlapping weight: 3127

Initial AMO order: (6, 8), (7, 10), (1, 9), (3, 2).

(b) The greedy matching algorithm is performed at the first level coarser graph.

There are two pairs of matched nodes found:

• cluster 7 matches cluster 8 with edge weight 857

• cluster 4 matches cluster 3 with edge weight 628

Overlapping weight: 4612

AMO order: (6, 8), (7, 10), (1, 9), (3, 2), (7, 8), (4, 3).

(c) The greedy matching algorithm is performed at the second level coarser graph.

There is a pair of matched nodes found:

• cluster 5 matches cluster 10 with edge weight 736

Overlapping weight: 5348

AMO order: (6, 8), (7, 10), (1, 9), (3, 2), (7, 8), (4, 3), (5, 10).

It is important to point out that the edges (7, 4) and (7, 2) with edge weights of

849 and 800 respectively, have been removed from the graph because they can

potentially violate the rule of AMO order. Cluster 7 has been connected to

cluster 10 in (a) and cluster 8 in (b), thus all edges that are incident to cluster 7

have to be removed to prevent producing an invalid AMO order. If the edge (7,

4) is not removed, the next matching will find cluster 7 matches to cluster 4,

instead of cluster 10 matches cluster 5, because the weight of edge (7, 4) is 849

and it is heavier than the weight of edge (10, 5) which is 736 only. Thus, this

will produce an invalid AMO order since the cluster 7 will have an edge degree

3.

The same thing also happens to edge (1, 8).

40

(d) The greedy matching algorithm is performed at the third level coarser graph.

There is no pair of matched nodes found. The recursive algorithm part stops here.

(e) The final compiled AMO order is 1 79"'727374757 10777876 with the

total overlapping weight of 5348.

(a) First pairs of matched nodes (b) A coarser graph and its pairs of matched nodes

e 8 @ 8
736

cb
(c) Next level coarser graph and its pair of matched nodes (d) No matched nodes found

.�}·······71Q G)
!
1

I
l I l '
! '
!
l
l
I
I

i

@) /
/

736 /

�)/ �-

/

i. Q!

(e) An AMO order produced by MBM

Figure 16: Execution of MBM algorithm

41

By applying the MWM algorithm to the CO graph in Figure 14, an AMO order was

produced as shown in Figure 17(e), which is 27374777107576787179, with

the total overlapping weight of 5570. The following shows the execution steps of the

MWM algorithm (corresponding to Figure 17):

(a) The first step of the MWM algorithm uses. the maximum weighted matching

algorithm to find the maximal match M. There are five pairs of matched nodes

found:

• cluster 1 matches cluster 9 with edge weight 710

• cluster 2 matches cluster 3 with edge weight 662

• cluster 4 matches cluster 7 with edge weight 849

• cluster 5 matches cluster 10 with edge weight 736

• cluster 6 matches cluster 8 with edge weight 896

Initial overlapping weight: 3853

Initial AMO order: (1, 9), (2, 3), (4, 7), (5, 10), (6, 8).

(b) The maximum weighted matching algorithm is performed at the first level

coarser graph. There are two pairs of matched nodes found:

• cluster 7 matches cluster 10 with edge weight 859

• cluster 1 matches cluster 8 with edge weight 230

Overlapping weight: 4942

AMO order: (1, 9), (2, 3), (4, 7), (5, 10), (6, 8), (7, 10), (1, 8).

(c) The maximum weighted matching algorithm is performed at the second level

coarser graph. There is a pair of matched nodes found:

• cluster 4 matches cluster 3 with edge weight 628

Overlapping weight: 5570

AMO order: (1, 9), (2, 3), (4, 7), (5, 10), (6, 8), (7, 10), (1, 8), (4, 3).

It is important to point out that the edges (8, 7) and (7, 2) with edge weights of

857 and 800 respectively, have been removed from the graph because they can

violate the rule of AMO order. Cluster 7 has been connected to cluster 4 in (a)

and cluster 10 in (b), thus all edges that are incident to cluster 7 .have to be

removed to prevent producing an invalid AMO order. As the edge (7, 2) is

removed, the edge (4, 3) with the edge weight of 628 will appear to link the

multinodes.

(d) The maximum weighted matching algorithm is performed at the third level

coarser graph. There is no pair of matched nodes found. The recursive algorithm

part stops here.

42

(e) The final compiled AMO order is 2737477710757678"71 "79 with the

total overlapping weight of 5570.

� 949 629

�m--(�)-23�}-as?-0){ /I)
J

T)oo on2
896 859 �

cb �
736

(a) First pairs of matched nodes

@)-,-@)--a,,�-------@
859

(b) A coarser graph and its pairs of matched nodes

8 8
(c) Next level coarser graph and its pair of matched nodes (d) No matched nodes found

® ,,,. ,,.710 , , . C0" , , 230".,, . . �)

!
!

S96

·., ········o
� .. �.

859

·-.. ,.(�)

(?\ /
\��1···

(e) An AMO order produced by MWM

Figure 17: Execution ofMWM algorithm

43

To summarise this example, the total overlapping weight of:

(a) MST method is 4721;

(b) MBM method is 5348; and

(c) MWM method is 5570.

Thus, from this comparison the initial findings are:

(a) MBM produces 13.28% more overlapping weight than MST;

(b) MWM produces 17 .98% more overlapping weight than MST; and

(c) MWM produces 4.15% more overlapping weight than MBM.

Clearly, MWM provides the best method of those compared.

44

5 Material and Methods

5. 1 Design and Procedure of the Study

Figure 18 shows the overview of phases of the study. It started with literature review

phase focusing on spatial join processing and different approaches to minimise the I/O

cost involved in the process. Also, the graph theory of maximum weighted matching

and its algorithm were studied both in bipartite and non bipartite graphs. The next phase

is data collection/data generation. In this phase, spatial data were generated artificially.

Then, these spatial datasets were clustered into CO graphs for further analysis by using

a program that implements matrix-based algorithm of Xiao, Zhang, & Jia (2001).

Literature
Review

Data Collection/Data
Generation

CO Graph
Generation

Develop Program

Thesis Writing

Result Analysis

Conduct Experiment

1---.i Test the Program

Figure 18 : Procedure of the study

Next, a program was developed and tested during the second semester of the study. It

was written in Java and implements the proposed algorithm and other methods, namely

MST and MBM. It accepts the CO graph as an input and produces an output of AMO

order for each method. The resulting AMO order can be used to guide the sequencing of

the spatial join processing. After successful testing of the program, experiments were

conducted and results were collected and analysed. Finally, the result of the experiments

were interpreted and reported in this document.

45

5.2 Description of Instruments Employed

The research was conducted using an experiment research method. The experiment

employed the use of a personal computer with JDK 1.5 installed and a Java IDE,

Eclipse. Both of JDK 1.5 and Eclipse are open sourc� tools that are free to use under the

GPL license. These tools were used to develop a program for the experiments. The

program implements all the algorithms used in the study, such as MST, MBM, and the

proposed MWM methods. Some main functionalities of the program are:

• random CO graphs generation;

• manual creation of CO graphs;

• storing of a CO graph in an XML file; and

• producing an AMO order and the total overlapping weight for each method in a

text file.

5.3 Data Analysis

Experiments were conducted after successful 'testing of the program. The experiments

used the random generated CO graphs from ten clusters to a hundred clusters. For each

cluster number, the experiments were conducted ten times with a different CO graph

and the average result was taken. The collected results from each experiment are the

AMO order and the total overlapping weight for each method. From the collected

results, the performance of each method was compared by using the following three

formulas:

MWM - MST l . MWM over MST = xl 00%
MST

MWM -MBM
2. MWM over MBM = xl 00%

MBM

MBM -MST 3. MBM over MST = xl 00%
MST

The first one is used to calculate how much percentage that the proposed MWM method

outperforms the MST method in term of the total overlapping weight produced by each

method. The second one is used to compare the proposed MWM method with the MBM.

The last one is used to compare the MBM with the MST method.

46

Since all of the objects need to be fetched into the memory for the refinement step, for

simplicity, the 1/0 cost can be referred as the total size of objects that are fetched into

the memory for processing. Thus, the amount of total overlapping weight found in each

method is the amount of 1/0 cost that can be saved if the clusters are processed in the

sequence as the AMO order produced by each method because there is no need to fetch

these overlapping objects when processing the next cluster as they are already in the

memory.

47

6 Resu lts and F ind ings

Before conducting experiments, there are two steps to be done, namely data collection

and data clustering. The spatial data used in the experiments were artificially generated

and then clustering of these data was performed using the clustering method of matrix­

based algorithm of Xiao, Zhang, & Jia (2001). The result of the clustering method is CO

graphs. These CO graphs were used as the main input for the experiments. From each of

the CO graph, the experiment was conducted to find an AMO order and its total

overlapping weight of each method, namely MST, MBM, and the proposed MWM.

The experiments were conducted to compare the proposed MWM method with MST

and MBM methods. The experiments are to show how much the 1/0 cost can be saved

by using MWM method and how well it can save the 1/0 cost comparing to MST and

MBM methods.

Table 8 shows the experiment results with ten clusters CO graphs. There were ten

experiments conducted with a different number of edges connecting the clusters. For

example, for ten edges, the total overlapping weight produced by MST, MBM, and

MWM method are 4721, 5348, and 5570 respectively. Thus, MBM outperforms MST

by 13.28% and the proposed MWM method outperforms MST and MBM by 17.98%

and 4.15% respectively. The average results for ten clusters CO graphs showed that the

proposed MWM method can potentially produce 5.59% and 16.91 % more total

overlapping weight comparing to MBM and MST respectively.

Table 8: Results of experiment with 10 clusters

Cluster MWM over MWM over MBM over
Number Edqe MST MBM MWM MBM MST MST

1 0 1 0 4721 5348 5570 4 . 1 5% 1 7.98% 1 3 .28%
1 0 1 5 3869 4027 4302 6 .83% 1 1 . 1 9% 4.08%
1 0 20 5596 6405 6648 3 .79% 1 8 .80% 1 4.46%
1 0 22 541 6 61 22 6536 6 .76% 20.68% 1 3 .04%
1 0 25 5624 6782 71 44 5 .34% 27.03% 20.59%
1 0 30 5774 601 5 6532 8.60% 1 3. 1 3% 4 . 1 7%
1 0 33 5575 61 20 6300 2 .94% 1 3 .00% 9 .78%
1 0 35 6542 7442 7882 5 .91 % 20.48% 1 3.76%
1 0 40 6686 7035 7548 7.29% 1 2 .89% 5.22%
1 0 45 6944 7583 791 0 4 .31 % 1 3 .91 % 9.20%

Averaqe: 5674.7 6287.9 6637.2 5 .59% 1 6 .9 1 % 1 0 .76%

48

Figure 1 9 shows the results of the Table 8 in a bar chart. It can be seen that the proposed

method performs all the time better than the other two methods. For example, when the

edge number is 35, the total overlapping weight found by MST and MBM are 6542 and

7442 respectively while it is 7882 by using the proposed method.

Cluster Number = 1 0

8000 -r---------------------------------==---i

7000 +---------------1-f-------------j

6000 +---------l

I
5000 �

·� 4000 >-"'
'C

J9 3000 f-

o

2000 f-

1 000 >- f--

0 � __,.... .__

1 0 1 5

-

20

_,-- _ -

- -

-

22 25 30 33
Edge number

-
f----- f--

f-- f--

35 40

Figure 19 : Comparison of total overlapping weight

45

Table 9 shows the summary result of the experiments. For each cluster number, there

were ten experiments conducted and the average results are shown in the table. For

example, for ten clusters, the average of total overlapping weight produced by MST,

MBM, and MWM method are 5674.7, 6287 .9 , and 6637 .2 respectively and the

percentage average of performance comparison for each method is also shown in the

table (see Appendix C for details of each experiment).

49

Table 9 : Summary of experiment results

Cluster MWM over MWM over M BM over
number MST MBM MWM MBM MST MST

1 0 5674 .7 6287 .9 6637.2 5 .59% 1 6 .91 % 1 0 . 76%

20 9509 .8 1 040 1 .4 1 1 038.9 6 . 1 2% 1 6 . 1 8% 9 .49%

30 1 4068 .9 1 5 1 03 .9 1 5708 .7 4 .05% 1 2 . 1 1 % 7 . 77%

40 1 7592 .4 1 8980 .3 1 981 9 4 .34% 1 3 .28% 8 .60%

50 2 1 539 .5 23530 24431 .6 3 .75% 1 4 .09% 1 0 .00%

60 3 1 01 1 .8 33060 . 1 34424 .5 4 . 1 1 % 1 1 .05% 6 .67%

70 380 1 1 4 1 2 1 1 . 5 42448 .2 3 .03% 1 2 .28% 8 .98%

80 38738 .5 41 552 . 1 42870 .6 3 .20% 1 0 .69% 7 .28%

90 41 586 . 7 44306 .5 45569 .5 2 .78% 9 .78% 6 .82%

1 00 4300 1 .9 47588 .9 4851 7 .4 1 .94% 1 2 .95% 1 0 .80%

Average 3 .89% 1 2 .93% 8 . 72%

Figure 20 shows the average total amount of VO cost can be saved by each method in a

line chart. As expected, the proposed method performs all the time better than the other

two methods. On average, there are 1 2 .93% saving comparing with the MST and 3.89%

saving comparing with the MBM. For example, when the cluster number is 50, the

average saving of l/0 cost by MST and MBM are 2 1 539. 5 and 23530 respectively while

it is 24431 .6 by using the proposed method.

AMO Order Comparison

60000

50000

- 40000

-+- MST

g> 30000 -- MBM
·;: MWM

t- 20000

1 0000

0
1 0 20 30 40 50 60 70 80 90 1 00

Cluster number

Figure 20: Comparison of total saving of 1/0 cost

50

7 Further Study

The main limitation of the study is the use of generated artificially spatial data in the

experiments due to budget constraints. Another limitation is the time frame of the

research. The research only took two semesters of study. Finally, the research does not

cover the clustering method.

To overcome these limitations, future research can be done which may include:

(a) The use ofreal world spatial data in the experiments;

(b) Covering the concept of clustering technique and perform the clustering to the

real spatial data; and

(c) The implementation of a new cluster-scheduling method that uses other types of

algorithms such as Ant Colo�y Optimisation algorithm or Genetic algorithms to

find a better sequence to schedule the cluster loading process in the spatial join

processmg.

5 1

8 Conclusion

The cost of the spatial join processing is far greater than relational join processing. The

reasons are the size of spatial objects is generally very large and it requires expensive

computations of spatial join predicates. Generally, the spatial join processing is

processed in two steps: filtering and refinement steps. Since the filtering step operates

on approximations of the actual spatial data, the result is not final but a set of candidates

that are likely to satisfy the spatial join predicate. In the refinement step, full geometry

descriptions of these candidates are fetched into memory and then the spatial join

operation is performed on the actual geometry. Fetching these spatial objects from disks

into the memory requires a lot of 1/0 cost. The objective of this research is to minimise

the 1/0 cost at the refinement step so that the spatial join query can be performed

efficiently.

A cluster-scheduling technique is one the most successful techniques to minimise the

1/0 cost of a spatial join processing. The main point of this technique is to partition the

candidate sets, which are a result from the filter step, into several clusters and then to

schedule the processing of the clusters in an order such that the two consecutive clusters

in the sequence have maximal number of overlapping objects. Thus, there is no need to

fetch these overlapping objects again when processing the next cluster because they are

already in the memory. Consequently, the 1/0 cost can be minimised.

The proposed MWM method is based on the cluster-scheduling technique. It performs

better than other cluster-scheduling methods, namely MST and MBM, in terms of

producing a better AMO order to guide the cluster scheduling. The experiments have

been conducted and the results have shown that, in terms of 1/0 cost, MWM

outperforms MST by 13% and MBM by 4%.

The proposed MWM method is a new method that can further minimise the 1/0 cost of

spatial join processing. Hence, it results in faster and more efficient processing of a

spatial join query in spatial databases. As the demand of using spatial databases is

increasing, this proposed method is certainly significant.

52

References

Abel, D. J., Gaede, V., Power, R. A., & Zhou, X. (1999). Caching Strategies for Spatial
Joins. Geoinformatica, 3(1), 33 - 59

Arge, L., Procopiuc, 0., Ramaswamy, S., Suel, T., & Vitter, J. S. (1998). Scalable
Sweeping-Based Spatial Join. Proceedings of the 2l1z International Conference
on Very Large Data Bases, 570-581.

Beckmann, N., Begel, H. P., Schneider, R., & Seeger, B. (1990). The R*-tree: An
Efficient and Robust Access Method for Points and Rectangles. Proc. ACM
SIGMOD Int. Conf on Management of Data, 322-331.

Black, P. E. (2005). Dictionary of Algorithms and .Data Structures Retrieved 7 June,
2006, from http://www.nist.gov/dads/

Brinkhoff, T., Kriegel, H. P., & Seeger, B. (1993). Efficient Processing of Spatial Joins
Using R-Trees. In Proceeding of the 1993 ACM SIGMOD Int. Conf on
Management of Data, 237-246.

Chan, C. Y., & Ooi, B. C. (1997). Efficient Scheduling of Page Access in Index-Based
Join Processing. IEEE transactions on knowledge and data engineering, 9(6),
1005-1011.

Cook, W. J., Cunningham, W. H., Pulleyblank, W. R., & Schrijver, A. (1998).
Combinatorial Optimization. New York: John Wiley & Sons, Inc.

Cook, W. J., & Rohe, A. (1999). Computing Minimum-Weight Perfect Matchings.
INFORMS journal on computing, 11(2), 138.

Dittrich, J. P., & Seeger, B. (2000). Data Redundancy and Duplicate Detection in
Spatial Join Processing. Proceedings of the 161

/z International Conference on
Data Engineering, 535.

· Doratha, E . D., & Hougardy, S. (2003). A Simple Approximation Algorithm for the
Weighted Matching Problem. Information Processing Letters, 85(4), 211-213.

Edmonds, J. (1965). Path, Tree, and Flower. Journal of Math, 1 7, 449-467.

Fotouhi, F., & Pramanik, S. (1989). Optimal Secondary Storage Access Sequence for
Performing Relational Join. IEEE Transactions on Knowledge and Data
Engineering 1(3), 318-328 .

Gabow, H. N. (1973). Implementation of Algorithms for Maximum Matching on
Nonbipartite Graphs. Unpublished PhD thesis, Stanford University.

Giiting, R. H. (1994). An introduction to spatial database systems. The VLDB Journal
3(4), 357-399.

Guttman, A. (1984). R-trees: a dynamic index structure for spatial searching.
Proceedings of the 1984 ACM SIGMOD international conference on
Manag{!ment.of data, 47-57.

53

Hoel, E. G., & Samet, H. (1992). A Qualitative Comparison Study of Data Structures
for Large Linear Segment Databases. In Proc. ACM-SIGMOD International
Conference on Management of Data, 205-214.

Hoel, E. G., & Samet, H. (1995). Benchmarking Spatial Join Operations with Spatial
Output. Proc. of the 2ist Intl. Conf on Very Large Databases, 606-618.

Howe, D. (2006). FOLDOC: Free On-Line Dictionary of Computing. Retrieved 7 June
2006, from http://foldoc.org/

Huang, Y. W., Jing, N., & Rundensteiner, E. A. (1997). Spatial Joins Using R-trees:
Breadth-First Traversal with Global Optimizations. Proceedings of the 23rd

VLDB Conference, 396-405.

Huang, Y. W., Jones, M., & Rundensteiner, E. A. (1998). Symbolic Intersect Detection:
A Method for Improving Spatial Intersect Joins. Geoinformatica, 2(2), 149-174.

Koudas, N., & Sevcik, K. C. (1997). Size Separation Spatial Join. Proceedings of the
1997 ACM SIGMOD international conference on Management of data 324-335.

Lawler, E. L. (1976). Combinatoria!Optimization: Networks and Matroids. New York:
Holt, Rinehart, and Winston.

Lawler, E. L., Lenstra, J. K., Kan, A. H. G. R., & Shmoys, D. B. (1985). The Travelling
Salesman Problem. Essex: John Wiley and Sons.

Leutenegger, S. T., Edgington, J. M., & Lopez, M. A. (1997). STR: A Simple and
Efficient Algorithm for R-Tree Packing. Proc. Int 'l Conf Data Eng, 497-506.

Lim, A., Pheng, K. L., & Chong, 0. W. (2001). Page access scheduling in join
processing. Data & knowledge engineering, 3 7(3), 267-284.

Lo, M. L., & Ravishankar, C. V. (1994). Spatial Joins Using Seeded Trees. Proceedings
of the 1994 ACM SIGMOD international conference on Management of data,
209-220.

Lo, M. L., & Ravishankar, C. V. (1996). Spatial Hash-Joins. Proceedings of the 1996
ACM SIGMOD international conference on Management of data, 247-258.

Mamoulis, N., & Papadias, D. (2003). Slot Index Spatial Join. IEEE Transactions on
Knowledge and Data Engineering, 15(1), 211-231.

Mehlhom, K., & Schafer, G. (2001). Implementation of O(nm log n) Weighted
Matchings in General Graphs: The Power of Data Structures. Paper presented
at the Proceedings of the 4th International Workshop on Algorithm Engineering,
Springer-V erlag.

Neyer, G., & Widmayer, P. (1997). Singularities Make Spatial Join Scheduling Hard.
Lecture Notes in Computer Science, 1350 293-302.

Omiecinski, E. R. (1989). Heuristics for Join Processing Using Nonclustered Indexes.
IEEE Trans. Softw. Eng. , 15(1), 18-25.

54

Orenstein, J. (1990). A comparison of spatial query processing techniques for native and
parameter spaces. In ACM SIGMOD Int. Conf on Management of Data, 326-
336.

Papadopoulos, A., Rigaux, P., & Scholl, M. (1999). A Performance Evaluation of
Spatial Join Processing Strategies. Proc. Int 'l Symp. Large Spatial Databases,
286-307.

Patel, J., & DeWitt, D. (1996). Partition based spatial-merge join. In Proc. of ACM
SIGMOD, 259-270.

Poirier, G. (2002). Spatially Augmented Greedy Heuristic for Efficient 1/0 in Spatial­
join Processing of Non-uniform-sized Spatial objects. Retrieved 1 April, 2006,
from http://www.cgl.uwaterloo.ca/�gpoirier/cs741/Spatia1Join.pdf

Sellis, T., Roussopoulos, N., & Faloutsos, C. (1987). The R+-Tree: A Dynamic Index
for Multi-Dimensional Objects. In Proc. IEEE International Conf on Very
Large Databases, 507-518.

Shekhar, S., Lu, C. T., Chawla, S., . & Ravada, S. (2002). Efficient Join-Index-Based
Spatial-Join Processing: A Clustering Approach. IEEE transactions on
knowledge and data engineering, 14(6), 1400.

Shekhar, S., Lu, C. T., Ravada, S., & Chawla, S. (1998). Optimizing Join Indexed
Based Join Processing: A Graph Partitioning Approach. Proceedings of the 1 ih

IEEE Symposium on Reliable Distributed Systems, 302-310.

Stonebraker, M., Frew, J., & Dozier, J. (1993). The SEQUOIA 2000 Project. In
Proceedings of the Third International Symposium on Large Spatial Databases,
397-412.

Valduriez, P. (1987). Join Indices. ACM Trans. Database Syst., 12(2), 218-246

Vassilakopoulos, M., & Corral, A. (2005). Spatio-Temporal Indexing Techniques.
Encyclopedia ·of Database Technologies and Applications, 652-657.

Vinkemeier, D. E. D., & Hougardy, S. (2005). A linear-time approximation algorithm
for weighted matchings in graphs. ACM Transactions on Algorithms, 1(1), 107-
122.

Witwear, C. (2002). Maximum Weighted Matching Algorithm. Retrieved May 2, 2006,
from http://www. tbi. uni vie. ac. at/Leere/Slides/814 23 6/ws02/xtina0 .pdf

Xiao, J. (2003). An Efficient Algorithm for Scheduling Spatial Join Operations in
Spatial Database Systems. Software Engineering and Applications, 397.

Xiao, J., Zhang, Y., & Jia, X. (2001). Clustering Non-uniform-sized Spatial Objects to
Reduce 1/0 Cost for Spatial-join Processing. The Computer Journal, 44(5), 384-
397.

Xiao, J., Zhang, Y., Jia, X., & Zhou, X. (2000). A Schedule of Join Operations to
Reduce I/O Cost in Spatial Database Systems. Data and Knowledge Engineering,

. 35, 299:-307., .

55

Appendix A - Defi n it ions of Terms

Term Description Source
Algorithm A detailed sequence of problem-solving (Howe, 2006)

procedure, especially an established, recursive
computational procedure for solving a problem in
a finite number of steps.

AMO order Approximate Maximum Overlapping order. A (Xiao, Zhang,
sequence, which is close to MO order, represents Jia, & Zhou,
clusters loading process to minimise the 1/0 cost 2000)
of fetching objects.

Bipartite graph A graph is bipartite if its nodes can be partitioned (Cook,
into two sets V 1 and V 2 so that every edge joins a Cunningham,
node in VI to a node in V 2· Pulieyblank, &

Schrijver, 1 998)
CO graph · Cluster Overlapping graph. A weighted graph (Xiao, Zhang,

represents the overlapping relationships between Jia, & Zhou,
data clusters. 2000)

GIS Geographic Inform�tion System. A computer (Howe, 2006)
system for capturing, storing, checking,
integrating, manipulating, analysing, and
displaying data related to some space.

GPL General Public Licence. The licence is intended to (Howe, 2006)
guarantee the freedom to share and change free
software. The GPL allows users to distribute the
software and its source code freely.

Hyper graph A hyper graph G can be defined as a pair (V, E), (Black, 2005)
where V is a set of vertices, and E is a set of hyper
edges between the vertices. Each hyper edge is a
set of vertices: E = { {u, v, .. . } E 2V} . Hyper
edges are undirected.

1/0 Input/Output. Communication between a (Howe, 2006)
computer and its users, its storage devices, other
computers (via a network) or the outside world.
Important aspects of 1/0 are throughput, latency,
and whether the communications is synchronous
or asynchronous (using some kind of buffer).

MBM Match Based Method. MBM uses a greedy (See page 28)
matching algorithm to find an AMO order in a CO
graph.

MBR Minimum Bounding Rectangle. A common used (Xiao, Zhang,
method to approximate spatial objects. Jia, & Zhou,

2000)
MO order Maximum Overlapping order. An MO order in a (Xiao, Zhang,

CO graph is a permutation of nodes in the graph Jia, & Zhou,
such that the total size of overlapping objects 2000)
between adjacentnodes reaches the maximum.

. MST Maximum Spanning Tree. MST schedules clusters (Xiao, Zhang,
in three steps: find a maximum weight spanning Jia, & Zhou,
tree, conduct a depth-first-search of the tree, and
construct an AMO order.

2000)

MWM Maximal Weight Matching. MWM uses a (Se� page 33)

56

maximum weighted matching algorithm to find an
AMO order in a CO graph.

NP Non-deterministic Polynomial-time. The (Black, 2005)
complexity class of decision problems for which
answers can be checked by an algorithm whose
run time is polynomial in the size of the input.

NP-complete A problem is NP-complete if it is both NP (Black, 2005)
(verifiable in non-deterministic polynomial time)
and NP-hard (any NP-problem can be translated
into this problem).

NP-hard A problem is NP-hard if solving it in polynomial (Black, 2005)
time would make it possible to solve all problems
in class NP in polynomial time.

OPAS-FB Optimal Page Access Sequence with Fix Buffer. It (Lim, Pheng, &
concerns with finding the optimal page access Chong, 2001)
sequence that minimises the number of page re-
accesses given a fixed buffer size.

Path graph A path graph G = (V, E) with n nodes is a graph in (Xiao, 2003)
which nodes in V can be listed as a sequence v1,
V2, . . . , Vn-1 , Vn such that (v1, V2), (v2, V3), . . . , (vn-1 ,
Vn) are the only edges of E.

PCG Page Connectivity Graph. A bipartite graph (Shekhar, Lu,
represents a join index between two relations at Chawla, &
the page level. Ravada, 2002)

Quadtree A four-way tree where each node corresponds to a (Vassilakopoulos
sub-quadrant of the quadrant of each parent node & Corral, 2005)
(the root corresponds to the whole space).

R-tree A balance multiway tree for secondary storage, (Vassilakopoulos
where each node is related to a MBR, the & Corral, 2005)
minimum rectangle that bounds the data elements
contained in the node. The MBR of the root
bounds all the data stored in the tree.

Weighted A graph having a weight or number associated (Black, 2005)
graph with each edge.

57

Appendix B - O(n3) Weighted Matching Algorithm

The following Weighted Matching algorithm with the running time complexity of O(n3)

is implemented in the program developed for the experiments. It is adopted from Lawler

(1976). The steps are:

Step O (Start)

The graph G = (N, A) is given, with a weight wu for each arc (i, j). Let W = Yi max

{wu} , Set ui = W, ,1 = 1l'i = Ti = + oo and b(i) = i for each node i E N. For each node pair

i, j set C(i, j) = <I>. Set X = <I>. There are no blossoms and no nodes are labelled.

Step 1 (Labelling)

(1.0) Apply the label "S: <I>" to each exposed node.

(1.1) If there is no node i with an unscanned S-label or an unscanned T-label with 1l'i = 0

go to Step 4. Otherwise, find such a node i. If the label is an S-label, go to Step 1.2; if it

is a T-label, go to Step 1.3.

(1.2) Scan the S-label on node i by carrying out the following procedure for each arc (i,

j) l2: X incident to node i:

• If b(i) = bG), do nothing; otherwise continue.

• If node b(j) has an S-label and wii = 0, backtrace from the S-labels on nodes i

and j. If different root nodes are reached, go to Step 2; if the same root node

is reached, go to Step 3.

• If node b(j) has an S-label and wii > 0, then carry out the following

procedure. Set

.
{

l _ } rb(j) = mm rb(j) ' 2
wi/ •

Find C(b(i), bO)) = (p, q). If wii < wpq ' then set C(b(i), b(J)) = (i, j).

• If node bO) has no S-label and wii < 1i'b(i), then apply the label "T:i, j" to bO),

replacing any existing T-label, and set 1i'b(i) = wii .

• . If node bO) has no S-label and wii < Tj, then set Tj = wii and set JO) = i.

• When the scanning of node i is complete, return to Step 1.1.

(1.3) Scan the T-label on node i (where 7ri = 0) by carrying out the following procedure

for the unique arc (i, j) E X incident to node i.

58

• If b(i) = bO), do nothing; otherwise continue.

• If node j has a T-label and 71} = 0, backtrace from the T-labels on nodes i and

j. If different root nodes are reached, go to Step 2; if the same root node is

reached, go to Step 3.

• Otherwise, give node j the label "S:i. " The S-labels on all nodes within the

outermost blossom with base node j are now considered to be unscanned.

• Return to Step 1.1.

Step 2 (Augmentation)

An augmenting path has been found in Step 1.2, 1.3, or 4.2. Augment the matching X.

Correct labels on nodes in the augmenting path, as described in the text. Expand

blossoms with zero dual variables, resetting the blossom numbers. Remove labels from

all base nodes. The remaining labels are set to the "scanned" state. Set ,1 = ?ri = Ti = + oo,

for all i, and C(i, j) = <I>, for all i, j. Go to Step 1.0.

Step 3 (Blossoming)

A blossom has been formed in Step 1.2, 1.3, or 4.2. Determine the membership and base

node of the new blossom, as described in the text. Supply the missing labels for all

nodes, except the base node, in the new blossom. Reset the blossom numbers. Set the z­

variable 1.0 zero for the new blossom.

Let b be the base node of the new blossom, and I be the set of (old) base nodes

contained in the blossom. Let J be the complementary set of base nodes. For each j E J,

find arc C(i, j) = (p', q'), for which wp'q' = lJ?.in{wpq I C(i, j) = (p, q)}, and set C(b, j) =
!Ef

(p', q'). Then set r b = lJ?.in{ w pq I C(b, j) = (p, q)}.
JEJ

Return to Step 1.2, 1.3, or 4.2, as appropriate.

Step 4 (Revision of Dual Solution)

(4.1) Let Ks denotes the set of S-blossoms and KT denotes the set of T-blossoms, i.e.,

outermost blossoms whose base nodes b have T-labels with 7rb = 0.

Find

<h = min {ui}

o2 = Yi min { Z k I k E K r }

03 = min {ri I b(i) = i}

59

04 = min { '/Ti I 7ri > 0}

o = min { 0 1 , 02, 03 , 04} .

Set Ui = Ui - o , for each node i such that b(i) has an S-label.

Set Ui = Ui + o, for each node i such that b(i) has a T-label and 7rb(i) = 0.

Set ,1 = ,1 - 2o, for each node i such that b(i) = i.

Set '/Ti = '/Ti - o, if '/Ti > 0.

Set Ti = Ti - o, for each node i such that 7rb(i) > 0.

Set zk = zk - 2o, for each blossom k E KT.

Set zk = zk + 2o, for each blossom k E Ks.

If o = o 1 halt; X is a maximum weight matching, and the values of Ui, Zk yield an

optimal solution.

If o = o2, carry out the following procedure to expand each T-blossom k for which Zk =

0. Determine the blossoms nested immediately within the T-blossom and reset b(i) for

all nodes within the blossom. Remove labels from all new base nodes within the

blossom. For each new base node b, find Ti = min {Tj lb(J) = b}, and if Ti < + oo , apply

the (unscanned) label "T:t(i), i " to b and set '1Tb = Ti. Remaining labels on nodes within

the blossom are in a "scanned" state.

(4.2) If)b > 0, for all base nodes b, go to Step 1.1. Otherwise, find a base node b for

which)b = 0 and a base node b' such that w
ii

== 0 for (i, j) = C(b, b '). Backtrace from

the S-labels on i and j. If different root nodes are reached, go to Step 2. If the same root

node is reached, go to Step 3, later returning to Step 4.2.

60

Append ix C - Experimental Resu lts

All results of the experiments are shown in the following tables. The MST, MBM, and

MWM columns show the amount of total overlapping weight produced by each method

respectively. To know how they are calculated, see the example in section 4.3. The

cluster number is the number of nodes whereas the edge is the number of links

connecting nodes in a CO graph.

Experiment with 10 clusters
Cluster MWM over MWM over MBM over
Number Edge MST MBM MWM MBM MST MST

1 0 1 0 4721 5348 5570 4 . 1 5% 1 7.98% 1 3 .28%
1 0 1 5 3869 4027 4302 6 .83% 1 1 . 1 9% 4.08%
1 0 20 5596 6405 6648 3 . 79% 1 8 .80% 1 4 .46%
1 0 22 541 6 61 22 6536 6 . 76% 20 .68% 1 3 .04%
1 0 25 5624 6782 71 44 5 .34% 27.03% 20.59%
1 0 30 5774 60 1 5 6532 8 .60% 1 3. 1 3% 4 . 1 7%
1 0 33 5575 61 20 6300 2 .94% 1 3 .00% 9 .78%
1 0 35 6542 7442 7882 5 .91 % 20 .48% 1 3 . 76%
1 0 40 6686 7035 7548 7 .29% 1 2 .89% 5 .22%
1 0 45 6944 7583 791 0 4 .31 % 1 3 .91 % 9.20%

Averaqe: 5674 .7 6287.9 6637 .2 5.59% 1 6 .91 % 1 0 .76%

Experiment with 20 clusters
Cluster MWM over MWM over MBM over
Number Edge MST MBM MWM MBM MST MST

20 20 7 1 61 7635 7922 3 .76% 1 0 .63% 6.62%
20 25 7649 8357 9029 8 .04% . 1 8.04% 9.26%
20 30 7485 8091 8603 6 .33% 1 4.94% 8 . 1 0%
20 35 9258 1 0658 1 1 556 8 .43% 24.82% 1 5 . 1 2%
20 40 9928 1 0898 1 1 752 7.84% 1 8.37% 9.77%
20 45 8426 9657 1 0 1 25 4 .85% 20. 1 6% 1 4 .61 %
20 50 1 1 21 3 1 1 851 1 2723 7 .36% 1 3 .47% 5 .69%
20 55 1 0996 1 21 04 1 2431 2 .70% 1 3 .05% 1 0 .08%
20 60 1 2050 1 2840 1 3839 7. 78% 1 4 .85% 6.56%
20 65 1 0932 1 1 923 1 2409 4.08% 1 3.51 % 9 .07%

Averaqe: 9509 .8 1 040 1 .4 1 1 038.9 6 . 1 2% 1 6 . 1 8% 9.49%

Experiment with 30 clusters
Cluster MWM over MWM over MBM over
Number Edqe MST MBM MWM MBM MST MST

30 30 9831 1 1 440 1 2052 5 .35% 22.59% 1 6 .37%
30 35 1 1 055 1 1 435 1 1 909 4 . 1 5% 7 .73% 3.44%
30 40 1 341 2 1 41 03 1 51 1 4 7 . 1 7% 1 2 .69% 5 . 1 5%
30 45 1 2564 1 4363 1 4696 2.32% 1 6 .97% 1 4 .32%
30 50 1 5226 1 6998 1 7480 2 .84% 1 4 .80% 1 1 .64%
30 55 1 5064 1 6672 1 71 06 2 .60% 1 3 .56% 1 0 .67%
30 60 1 5050 1 5526 1 61 32 3 .90% 7 . 1 9% 3 . 1 6%
30 65 1 4959 1 5654 1 61 35 3.07% 7.86% 4.65%
30 70 1 5647 1 6862 1 7307 2 .64% 1 0 .61 % 7 .77%
30 75 1 7881 1 7986 1 91 56 6 .51 % 7 . 1 3% 0 .59%

Average: ' 1 4068.9 1 5 1 03 .9 1 5708 .7 4.05% 1 2 . 1 1 % 7 .77%

61

Experiment with 40 clusters
Cluster MWM over MWM over MBM over
Number Edge MST MBM MWM MBM MST MST

40 40 1 1 387 1 2258 1 2687 3 .50% 1 1 .42% 7 .65%

40 45 1 4889 1 7476 1 81 55 3 .89% 21 .94% 1 7.38%

40 50 1 371 1 1 621 3 1 6633 2 .59% 21 .3 1 % 1 8 .25%

40 55 1 9629 20824 21 564 3.55% 9.86% 6.09%

40 60 1 8584 1 9526 209 1 7 . 7 . 1 2% 1 2 .55% 5.07%

40 65 1 6093 1 7842 1 8324 2 .70% 1 3 .86% 1 0 .87%

40 70 1 7723 1 9376 2031 1 4 .83% 1 4 .60% 9 .33%

40 75 21 993 22990 23898 3 .95% 8 .66% 4 .53%

40 80 1 9226 201 72 2 1 6 1 2 7 . 1 4% 1 2 .4 1 % 4 .92%

40 85 22689 231 26 24089 4 . 1 6% 6 . 1 7% 1 .93%

Average: 1 7592.4 1 8980 .3 1 981 9 4 .34% 1 3 .28% 8 .60%

Experiment with 50 clusters
Cluster MWM over MWM over MBM over
Number Edge MST MBM MWM MBM MST MST

50 50 1 5702 1 7875 1 821 3 1 .89% 1 5 .99% 1 3 .84%

50 55 1 73 1 6 20682 2 1 051 1 .78% 21 .57% 1 9 .44%

50 60 1 9896 22553 23087 2 .37% 1 6 .04% 1 3 .35%

50 65 20967 23233 23690 1 .97% 1 2 .99% 1 0 .81 %

50 70 1 9587 22734 24435 7.48% 24.75% 1 6 .07%

50 75 26802 27600 28740 4. 1 3% 7 .23% 2 .98%

50 80 20960 2220 1 23362 5 .23% 1 1 .46% 5.92%

50 85 271 38 27554 29028 5 .35% 6.96% 1 .53%

50 90 241 84 27228 28078 3 . 1 2% 1 6 . 1 0% 1 2 .59%

50 95 22843 23640 24632 4 .20% 7 .83% 3.49%

Average : 2 1 539.5 23530 24431 .6 3 .75% 1 4.09% 1 0 .00%

Experiment with 60 clusters
Cluster MWM over MWM over MBM over
Number Edge MST MBM MWM MBM MST MST

60 80 271 75 29042 301 02 3 .65% 1 0 .77% 6 .87%

60 90 251 63 271 76 28248 3.94% 1 2 .26% 8.00%

60 1 00 29339 3221 3 3291 9 2 . 1 9% 1 2 .20% 9.80%

60 1 1 0 31 862 33742 34748 2 .98% 9 .06% 5.90%

60 1 20 33489 351 98 36732 4 .36% 9 .68% 5. 1 0%

60 1 30 3 1 1 43 32563 34637 6 .37% 1 1 .22% 4 .56%

60 1 40 3341 6 3591 8 37680 4 .91 % 1 2 .76% 7 .49%

60 1 50 34569 36296 37651 3 .73% 8 .92% 5.00%

60 1 60 3 1 860 3385 1 34957 3 .27% 9 .72% 6.25%

60 1 70 321 02 34602 36571 5 .69% 1 3 .92% 7 .79%

Average: 3 1 0 1 1 .8 33060 . 1 34424.5 4 . 1 1 % 1 1 .05% 6 .67%

62

Experiment with 70 clusters
Cluster MWM over MWM over MBM over
Number Edge MST MBM MWM MBM MST MST

70 90 2791 8 31 1 72 31 833 2 . 1 2% 1 4.02% 1 1 .66%

70 1 1 0 31 1 02 341 80 35951 5 . 1 8% 1 5 .59% 9 .90%

70 1 30 30647 38222 391 99 2.56% 27.90% 24.72%

70 1 50 3781 0 39273 40544 3 .24% 7.23% 3.87%

70 1 70 38332 41 465 42544 . 2 .60% 1 0 .99% 8 . 1 7%

70 1 90 39600 41 894 4331 5 3.39% 9.38% 5 .79%

70 2 1 0 41 8 1 8 42779 4431 8 3 .60% 5 .98% 2 .30%

70 230 42776 4741 3 48873 3.08% 1 4 .25% 1 0 .84%

70 250 43770 47508 48336 1 .74% 1 0 .43% 8 .54%

70 270 46337 48209 49569 2 .82% 6.97% 4.04%

Average: 3801 1 41 21 1 .5 42448.2 3.03% 1 2 .28% 8.98%

Experiment with 80 clusters
Cluster MWM over MWM over MBM over
Number · Edge MST MBM MWM MBM MST MST

80 1 00 3238 1 34742 35855 3.20% 1 0 .73% 7 .29%

80 1 1 0 34576 38444 38979 1 .39% 1 2 .73% 1 1 . 1 9%

80 1 20 35270 371 98 3950 1 6. 1 9% 1 2.00% 5.47%

80 1 30 3881 2 40395 41 028 1 .57% 5 .71 % 4.08%

80 1 40 39363 42472 43921 3.41 % 1 1 .58% 7 .90%

80 1 50 41 086 42205 4381 8 3 .82% 6.65% 2 .72%

80 1 60 391 00 42795 44077 3 .00% 1 2 .73% 9 .45%

80 1 70 42684 46322 4691 5 1 .28% 9 .91 % 8 .52%

80 1 80 41 430 4349 1 45421 4.44% 9.63% 4.97%

80 1 90 42683 47457 491 91 3.65% 1 5 .25% 1 1 . 1 8%

Average: 38738.5 41 552 . 1 42870 .6 3.20% 1 0 .69% 7.28%

Experiment with 90 clusters
Cluster MWM over MWM over MBM over
Number Edge MST MBM MWM MBM MST MST

90 1 00 30025 3437 1 35046 1 .96% 1 6 .72% 1 4 .47%

90 1 1 0 37294 39753 40938 2 .98% 9.77% 6.59%

90 1 20 38608 39922 40662 1 .85% 5.32% 3 .40%

90 1 30 41 00 1 44286 4535 1 2 .40% 1 0 .61 % 8.01 %

90 1 40 42037 46058 47057 2 . 1 7% 1 1 .94% 9.57%

90 1 50 42097 45622 46365 1 .63% 1 0 . 1 4% 8 .37%

90 1 60 44784 4651 9 47708 2.56% 6 .53% 3.87%

90 1 70 45938 4831 1 49462 2.38% 7.67% 5 . 1 7%

90 1 80 48377 5071 5 53686 5.86% 1 0 .97% 4.83%
90 1 90 45706 47508 49420 4.02% 8 . 1 3% 3 .94%

Average : 41 586.7 44306.5 45569.5 2 .78% 9 .78% 6.82%

: • ' ,.

63

Cluster
Number EdQe

1 00 1 00

1 00 1 1 0

1 00 1 20

1 00 1 30

1 00 1 40

1 00 1 50

1 00 1 60

1 00 1 70

1 00 1 80

1 00 1 90

Average :

i ' .
,' '

MST

36677

39200

4 1 271

37322

38688

45528

48052

47270

48678

47333

4300 1 .9

Experiment with 100 clusters
MWM over MWM over MBM over

MBM MWM MBM MST MST

42920 43868 2 .21 % 1 9.61 % 1 7 .02%

44525 451 95 1 .50% 1 5 .29% 1 3 .58%

4561 8 4621 6 1 .31 % 1 1 .98% 1 0 .53%

401 1 8 41 008 2 .22% 9 .88% 7.49%

42653 43335 1 .60% 1 2 .0 1 % 1 0 .25%

51 353 521 24 1 .50% 1 4 .49% 1 2 .79%

491 88 501 82 2.02% 4 .43% 2 .36%

53043 541 45 2.08% 1 4 .54% 1 2 .21 %

54882 56040 2 . 1 1 % 1 5. 1 2% 1 2 .74%

51 589 53061 2.85% 1 2 . 1 0% 8 .99%

47588.9 4851 7.4 1 .94% 1 2 .95% 1 0 .80%

64

Appendix D - CD Contents

The attached CD contains the following:

1. Folder ' AMO'

This folder contains everything for a user who is interested to run the program. It
has two components:

• AMO: an executable JAR file which is the program itself.

• Folder 'project' which is the folder for storing the generated xml file.

2. User manual
The user manual covers the installation and program guides.

3 . Folder 'Experiment results'

This folder contains two main parts:
• All of the graphs used in the experiment and their results for all the methods.
• 'AMO Comparison' is an MS Excel file containing all the collected results,

their summary in tables, and charts to show the performance comparison of

each method.

65

	Use of a weighted matching algorithm to sequence clusters in spatial join processing
	Recommended Citation

	20151201073438404
	20151201073932568
	20151201074318423
	20151201074354456
	20151201074653887

