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Abstract 

One of the most expensive operations in a spatial database is spatial join processing. 

This study focuses on how to improve the performance of such processing. The main 

objective is to reduce the Input/Output (1/0) cost of the spatial join process by using a 

technique called cluster-scheduling. Generally, the spatial join is processed in two steps, 

namely filtering and refinement. The duster-scheduling technique is performed after the 

filtering step and before the refinement step and is part of the housekeeping phase. The 

key point of this technique is to realise order wherein two consecutive clusters in the 

sequence have maximal overlapping objects. 

However, finding the maximal overlapping order has been shown to be Non­

deterministic Polynomial-time (NP)-complete. This study proposes an algorithm to 

provide approximate maximal overll;lpping (AMO) order in a Cluster Overlapping (CO) 

graph. The study proposes the use of an efficient maximum weighted matching 

algorithm to solve the problem of finding AMO order. As a result, the 1/0 cost in spatial 

join processing ca,n be minimised: 
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1 Introduction 

1. 1 The Background to the Study 

Today, the use of spatial databases is increasing. These databases are used to manage 

space-related data. Spatial databases support spatial data types, such as points, lines, 

polygons and regions. The application of spatial databases can be found in Geographic 

Information System (GIS), cryptography, image processing, urban planning, geology, 

astronomy, the study of the human body and molecular structures. 

One of the most important query operations in spatial databases is the spatial join, 

which is the complement to the intersection join in relational database systems (Gu.ting, 

1994). The spatial join operation combines two or more sets of spatial objects that 

satisfy a spatial predicate, mostly intersection and distance within. The spatial join 

processing can be space and time expensive due to the large size of the spatial objects 

and the computationally intensive nature of spatial operations (Xiao, Zhang, & Jia, 

2001). 

Figure 1 represents two spatial relations: hotel (R) and lake (S). The hotel is represented 

by a point attribute and the lake is represented by a polygon. An example of a spatial 

join query can be 'find all hotels within 7 km of a lake'. Figure l (a) shows the spatial 

attributes for hotels and lakes. Points r l ,  r2, r3, r4, r5, r6, and r7 represent the hotel 

locations and polygons sl ,  s2, s3, s4, s5, and s6 represent the Minimum Bounding 

Rectangle (MBR) for the lake boundaries. The circle around each hotel shows the area 

within 7 km from the hotel. Figure 1 (b) shows hotel and lake relations. The hotel 

relation has a unique ID, a location, and other non-spatial attributes. The lake relation 

has its own unique ID, the size of its spatial object, MBR data, a pointer to the actual 

spatial data, and other non-spatial attributes. To satisfy the query, a join needs to be 

performed on the hotel and lake relations based on their spatial attributes. To do this, a 

join index can be used to find the pairs which satisfy the query. A join index is a special 

data structure that facilitates rapid join query processing and is generally used for data 

sets· that are not updated frequently (Shekhar, Lu, Chawla, & Ravada, 2002). The join 

index for this join containing the tuple IDs which match the spatial join predicate is 

shown in Figure l (c). Each tuple in the join index represents a tuple in the table JOIN 

(R, S, distance (R.Location, S.MBR) < 7 km). 
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(a) Spatial attributes of Rand S (adapfed from Poirier, 2002) 

ID Location (x, y) Non-spatial data 
r1 (3.4, 8.8) Name, Nb_Rooms, ... 
r2 (7.2, 9.4) ( . . .  ) 
r3 (8.3, 6.4) ( . . .  ) 
r4 (9.2, 4.9) ( . . .  ) 
r5 (8.4, 1.9) ( . . .  ) 
r6 (0.9, 3.3) ( . . . ) 
r7 (6.6, 3.2) (. . .  ) 

ID Size (Kb) MBR Data Pointer Non-spatial data 
s1 456 (3.5, 0, 6.1, 8.6) Ox9FFFO Name, Region, ... 
s2 44 ( ... ) ( . . .  ) ( ... ) 
s3 56 ( . . .  ) ( . . .  ) ( . . .  ) 
s4 23 ( . . .  ) ( ... ) ( . . .  ) 
s5 27 ( . . .  ) ( . . .  ) ( . . .  ) 
s6 12 (. . . ) ( . . .  ) ( ... ) 

(b) R and S relations (from Poirier, 2002) 

R.ID S.ID 

r1 s1 

r2 s2 

r3 s3 

r3 s4 

r4 s4 

r5 s5 

r5 s6 

( c) Join index of R and S relations ( from Poirier, 2002) 

Figure 1: Constructing a join index from two relations 
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A join index can also be represented by a bipartite graph G = (VJ, V2, E), where VJ 

contains the tuple IDs of relation R, and V2 contains the tuple IDs of relation S. The 

edge set E contains an edge (Vr, Vs) for Vr E R and Vs E S, if there is a tuple 

corresponding to (Vr, Vs) in the join index. This graph is also known as a Page­

Connectivity Graph (PCG) in Shekhar, Lu, Chawla, and Ravada (2002) or Spatial Join 

(SJ) graph in Xiao, Zhang, and Jia (2001) when the join index between two relations is 

described at the page level. The PCG for the hotel and lake join index is shown in 

Figure 2. 

Pages on disk of relation R 

al a2 a3 a4 a5 

r5 

Bl B2 B3 

Pages on disk of relation S 

(a) Page structure on disk for Join Index 

(b) PCG or SJ graph 

Figure 2: Page Connectivity Graph Construction from the Hotel and Lake Join Index 
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Generally, spatial data are stored in secondary storage due to the size of spatial objects. 

To process a spatial query operation, spatial objects need to be fetched from secondary 

storage, e.g., hard drive, into main memory for processing. Thus, this process can 

involve a lot of Input/Output (I/0) cost. It is important to minimise the I/O cost 

involved in a spatial join operation to maximise the efficiency of the spatial join 

processing (Xiao, Zhang, & Jia, 2001). 

1.1.1 Spatial Join Processing 

The majority of spatial join algorithms follow a two-stage process known as filter and 

refine steps (Orenstein, 1990). The filter step operates on approximations of the actual 

spatial data, such as MBR. Its purpose is to eliminate most of the candidates that are riot 

relevant for answering the query. The result of this step is a set of potential candidates 

that are likely to satisfy the spatial predicate. The benefits of the filter step are that it 

rules out many object pairs that cannot satisfy the spatial predicate without having to 

fetch them from disk and it is less expensive to operate on approximations of the 

geometry. Thus, it reduces the overall computation costs (Poirier, 2002). 

Due to the approximation for the spatial data, the candidate sets may contain false drops, 

that is, spatial objects that satisfy the filter operation but do not satisfy the actual spatial 

predicate. Next, the refinement step consists of fetching the full geometry description of 

the candidates into memory and eliminating those false drops by performing the spatial 

operation on the actual geometry. Since the memory size is limited, it can keep only a 

limited number of spatial objects for computation at a time. As a result, an object could 

be fetched more than once when it is needed for spatial join operation (Xiao, Zhang, & 

Jia, 2001). It is essential to schedule the object in a way that fetching is only required 

once to load the object into memory in order to minimise the I/O cost. 

Techniques that aim at minimising the I/O cost can contribute significantly towards 

reducing the total cost of the spatial join operation. Experiments have shown that disk 

accesses at the refinement step take a significant amount of time compared to the CPU 

time required for spatial join (Guttman, 1984). Hence, the best technique to minimise 

the I/O cost at the refinement step is required. 
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In spatial join processing, a common.method to minimise the I/O cost at the refinement 

step is known as the housekeeping stage. It consists of two steps, namely: 

sequencing/scheduling and clustering (Abel, Gaede, Power, & Zhou, 1999). The 

sequencing step is to sequence the candidate pairs by reducing the number of duplicate 

fetches before fetching them from disk. The clustering step is to partition the spatial 

objects into clusters and load them into the main memory cluster by cluster. 

1.2 The Significance of the Study 

Due to the increasing popularity of spatial databases, researchers have focused their 

efforts on improving the query processing performance of the most expensive spatial 

database operation: the spatial join ( Giiting, 1994). The cost of spatial join processing is 

usually much more than traditional relational-join processing due to the large sizes of 

spatial objects and the expensive computation of spatial predicates. The research 

focuses on finding an efficient algorithm to reduce the I/O cost at the refinement step. 
This may result in more efficient and faster processing of spatial join operation in 

spatial databases. 

Most approaches perform a housekeeping step between the filtering and refinement 

steps. The advantage of the housekeeping step is to avoid fetching the same spatial 

object into memory more than once. Thus, it can minimise the I/O cost at the refinement 

step. One such novel housekeeping step is a combination of sequencing and clustering 

steps called cluster-scheduling (Xiao, Zhang, Jia, & Zhou, 2000). First, it partitions 

spatial objects into clusters such that objects sharing a cluster are closely related and can 

therefore be brought into memory together for processing. Then, it schedules the cluster 

loading process in order to minimise the total I/O cost at the refinement step by 

minimising the number of duplicate fetches. It is essential to schedule the cluster 

loading process so that two successive clusters in the sequence have maximal number of 

overlapping objects. However, determining an optimal page access sequence or 

Maximal Overlapping (MO) order in spatial join processing has been shown to be Non­

deterministic Polynomial-time (NP)-complete by Neyer and Widmayer (1997). So, it is 

required to find a method that is very close to the optimal page access sequence, namely 

Approximate Maximal Overlapping (AMO) order. 
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1.3 The Purpose of the Study 

According to Shekhar, Ravada, Lu, and Chawla (1998), the cost of spatial join 

computation, which uses a join-index in a secondary memory, i.e., hard drive, with 

limited buffer space, depends primarily on the page access sequence used to fetch the 

pages of the base relations. The determination of an optimal page access sequence such 

that the join can be computed with the minimum of page re-accesses given a limited 

number of buffer pages is known as Optimal Page Access Sequence with a Fixed Buffer 

(OPAS-FB) problem. In spatial join processing, the OPAS-FB problem is significant 

since the size of spatial data can be large and insufficient main memory capacity can 

create a bottleneck (Poirier, 2002). 

This study focuses at the housekeeping stage, especially at the cluster-scheduling step. 

In the clustering method, the candidate pairs will be partitioned into several clusters ( see 

Figure 3). The result of the clustering method is a Cluster Overlapping (CO) graph. A 

CO graph represents the overlapping relationships between data clusters. For example, 

Figure 4(a) shows the object sizes and Figure 4(b) shows a CO graph corresponding to 

the clusters in Figure 3(b ). The edge weight from cluster Vl to cluster V2 is 250 

(60+80+110) as objects Bl, B2, and B3 overlap in both clusters. 

s id T_id 
Al Bl 
A2 Bl 
A3 B2 

A3 B3 
A4 B3 
A5 Bl 

A6 B2 
A6 B4 

A7 BI 
AS B3 

AS B4 

(a) A candidate set 

" . 

: Al Bl 
. A.'J ---0 B2: 

.I: _. _...,...=�------ - . 

. _A3 er_ __ . .. ,.J B3 _. 
. . ' " � ' 

: A4 0,,. /A) Bl .: 
I A5 o---->',�--0 B2: : ... -- ,...._ 

' 

l\� q·:/�... 0 B3 _: 

• A6 O.._ ___ ... --D B l . 
: _>;: .n '} : : A70 .--�-""'B.:i: 
•. A8 cs···· -·-o B4 _: 

(b) A candidate clustering 

Figure 3: Example of clustering 
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Object ID Object size 
A1 200 

A2 80 

A3 40 

A4 30 

A5 32 

A6 260 

A7 1 8  

A8 60 

B 1  60 

B2 80 

B3 1 1 0  

B4 76 

(a) Object size 

V1 
A1 , A2, A3, 

B1 , B2, B3 
250--------, 

A6, A7, A8, 

B1 , B3, B4 

V3 

430 

A4, A5, A6, 
B1 , B2, B3 V2 

(b) CO graph from Xiao, Zhang, Jia, & Zhou (2000) 

Figure 4: Example of a CO graph 

The cluster-scheduling method is to schedule the cluster in a way that two consecutive 

clusters have a maximum number ,of overlapping objects. Let Vi, Vi, . . .  , V,1 be the 

clusters generated by the clustering algorithm. The notion of Maximum Overlapping 

(MO) order is defined as follows: 

Given a CO graph G = (V, E, w) with V = { Vi, Vi, . . .  , Vn},  a MO order among sets Vi, 

Vi, . , . , v,l is a sequence (Vii, Vi2, , , . ,  Vin) such that r;
i

-l size(Vil ('\ Vil+l ) reaches the 

maximum among all permutations of V. 

For example, (VJ, V2, V3) is an MO order in the CO graph in Figure 3(a) and the total 

size of overlapping objects between adjacent nodes in the order is 680. To find an MO 

order is to check all permutations of V to see which one makes the maximum of 

{ r;·-1 size(Vi1 n Vi1+1 ) } .  Obviously, this method has a factorial order and is not efficient 

and practical. The research proposes a better algorithm to schedule the sequence of the 

cluster processing. As a result, the 1/0 cost at the refinement step will be minimised. 

1.4 Statement of Research Questions 

Finding the MO order for a CO graph guarantees to generate the best cluster-scheduling 

sequence. Unfortunately, the problem of finding an MO order in a CO graph has been 

shown to be NP-complete (Xiao, Zhang, Jia, & Zhou, 2000). The overarching question 

is to find an Approximate MO (AMO) order that can be used to guide the scheduling of 

the spatial clusters in spatial join processing. Two areas need to be explored in order to 
' , '  

answer the overarching question, namely: 
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1. Will the use of Maximum Weighted Matching algorithm expedite the finding of 

AMO order of a CO graph? 

2. How well is the AMO order produced by the proposed method compared to 

other methods, such as: Maximum Spanning Tree (MST) and Match Based 

Method (MBM) in terms of 1/0 cost? 
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2 Review of Relevant Literature 

2. 1 General Literature Review 

According to Huang, Jones, and Rundensteiner (1998), spatial join processing is very 

expensive in terms of both CPU and I/O costs for three reasons. Firstly, spatial objects 

are typically represented by structures that require extensive storage. For example, a 

high-resolution vector representation of a polygon may store thousands of points where 

each point is represented by an x-coordinate and a y-coordinate value. Secondly, the 

spatial join operation reqmres multiple scans of often large data sets. Finally, 

determining a spatial relation such as the intersection of two objects 1s very 

computationally intensive. It requires super-linear time complexity as a function of the 

number of points used to represent each object. 

The first two factors contribute to high I/O costs, whereas the third factor results in high 

CPU costs. As a result, spatial join queries over large data sets usually incur a long 

response time. To minimise the CPU and the I/O cost, the spatial join processing 

usually executes in two steps, namely filter step and refinement step (Orenstein, 1990). 

These will now be discussed. 

2.1 . 1  Filter Step 

Several spatial join algorithms, most of which focus on the filter step, have been 

proposed, such as: R-tree family (Beckmann, Begel, Schneider, & Seeger, 1990), 

seeded tree (Lo & Ravishank:ar, 1994), spatial hash join (Lo & Ravishank:ar, 1996) , and 

merge join (Patel & De Witt, 1996). Most work on spatial join processing focuses on the 

efficient computation of the filter step where MBRs are used for approximating the 

spatial objects. 

Based on the availability of spatial indexes, there are three categories of processing the 

filter: availability of spatial indexes on both relations participating in the spatial join 

operation, on one of the relations or on none of the relations (see Table 1) .  For the first 

category where spatial indexes have been built on both relations, these indexes are 

generally used in the implementation of spatial join processing. The second and third 

category may arise 0in a complex query where one or both operand sets might be an 
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interim result from previous operations (Mamoulis & Papadias, 2003). For example, 

consider a query 'find all hotels with category 4 stars within 7km of a lake' and the 

hotels and lakes are indexed on their spatial extent. If the selection part of the query is 

performed first before the spatial join, the resulting hotels will be non-indexed. Thus, 

this is a second category and it requires a single index join algorithm to perform the 

filtering step. 

Table 1 :  Overview of filtering step approaches 

Filtering Step Approach 

I ndex on both relations 
R-tree family (Beckmann, Beqel , Schneider, & Seeqer, 1 990) 

Polvaon Map Random (Hoel & Samet, 1 992) 

INLJ (Mamoul is & Papadias, 2003) 

Bulk Loading and Matching 

I ndex on one relation 
Build and Match Join (Patel & De Witt, 1 996) 

Sort and Match (Papadopoulos, Riaaux, & Schol l , 1 999) 

Seeded Tree (Lo & Ravishankar, 1 994) 

S lot Index Spatial Join (Mamoulis & Papadias, 2003) 

Plane Sweeping (Arge, Procopiuc, Ramaswamy, Suel ,  & Vitter, 1 998) 

Spatial Hash Join (Lo & Ravishankar, 1 996) 

No index PBS M (Patel & DeWitt, 1 996) 

S3J (Koudas & Sevcik, 1 997) 

SSSJ (Arae, Procopiuc, Ramaswamv, Suel ,  & Vitter, 1 998) 

Indexes on both relations 

One of the most widely used spatial index structures is R-tree family. There are several 

varieties of R-tree family in literature, such as R-tree (Guttman, 1984), R+-tree (Sellis, 

Roussopoulos, & Faloutsos, 1987), and R*-tree (Beckmann, Begel, Schneider, & Seeger, 

1990). According to Beckmann, Begel, Schneider, and Seeger (1990), the most efficient 

of R-tree family is R*-tree. Brinkhoff, Kriegel, and Seeger (1993) presented a spatial 

join algorithm where each of the relations is indexed by an R *-tree. This algorithm 

synchronously traverses both trees and joins all pairs of overlapping regions. It is based 

on depth-first traversal of R-trees. This join method is considered as one of the most 

important ones due to its efficiency and the availability of R-trees in advanced database 

management systems. 

A different traversal strategy was presented by Huang, Jing, and Rundensteiner (1997) 

which is superior to the depth-first traversal of Brinkhoff, Kriegel, and Seeger ( 1993) 

when a large buffer is available. Hoel and Samet (1992) propose the use of Polygonal 

Map Random (PMR) quadtrees for the spatial join and compare it against members of 

the R-tree family'. lrt . subsequent work, they considered the problem of spatial joins 
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when Point Region (PR) quadtrees are on the input relations (Hoel & Samet, 1995). All 

of the proposed techniques are to speed up the filter step of the spatial join. 

Index on one relation 

The simplest method for the case that only one input is indexed is the Indexed Nested 

Loop Join (INLJ). In accordance with its relational join counterpart, INLJ applies a 

window query to the R-tree for every object in the non-indexed data set (Mamoulis & 

Papadias, 2003). The build and match join (Patel &De Witt, 1996) builds an R-tree from 

the raw input using bulk loading and joins it with the existing tree using R-tree Join. 

Sort and match (Papadopoulos, Rigaux, & Scholl, 1999) employs the Sort-Tile­

Recursive (STR) technique of Leutenegger, Edgington, and Lopez (1997) to sort the 

rectangles from the non indexed input but, instead of building the packed tree, it directly 

matches in memory created leaf nodes. For each produced leaf node, a window query is 

executed and plane sweep is applied to join it with all leaf nodes from the existing R­

tree that intersect it. 

Lo and Ravishankar (1994) discussed the case where exactly one of the relations does 

not have an index. They proposed a method called Seeded Tree, which makes use of an 

R-tree index already available on one data set to construct dynamically an index for the 

second data set at the join time. Their work on seeded trees was the first that addressed 

the problem of processing spatial joins when only one R-tree is available. Seeded trees 

are R-tree-like structures, and are divided into the seed levels and the grown levels. The 

nodes in the seed levels are used to guide tree growth during tree construction. The seed 

levels can also be used to filter out some input data during construction, thereby 

reducing tree size. They developed a technique that uses intermediate linked lists during 

tree construction and significantly speeds up the tree construction process. Once the 

index is constructed, the tree join algorithm of Brinkhoff, Kriegel, and Seeger (1993) is 

used to perform the actual join. 

Mamoulis and Papadias (2003) investigated whether existing single-index join 

algorithms have certain limitations. For instance, the INLJ, which applies a window 

query to the R-tree for each object in the non-indexed set, can be very expensive in 

terms of both I/O and computational cost. The seeded tree join of Lo and Ravishankar 

(1994), which creates an R-tree for the non-indexed data, is not appropriate in many 

cases because .·· of its prohibitive I/O cost. Methods like bulk loading and matching, 
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sorting and matching apply external sorting on the non-indexed data and totally or 

partially build an on-the-fly R-tree in order to join it with the existing one. Therefore, 

these methods have a disadvantage in cases where the non-indexed input is an 

intermediate result of an underlying operator because they need to materialize it before 

processing it. 

An improvement of the above algorithm has been suggested in Mamoulis and Papadias 

(2003) where the available main memory is exploited more efficiently. They propose 

Slot Index Spatial Join (SISJ), a hash join algorithm that overcomes most of the above 

deficiencies. SISJ distributes the R-tree entries at a specific level into S partitions, called 

slots, and builds an in-memory index from them. The slot index keeps for each slot the 

identifiers of the nodes pointed to by the corresponding entries along with the MBR of 

the entries. All data from the non-indexed input are hashed into buckets with same 

extents as the slot MBRs. The hash-buckets are finally joined with the R-tree data under 

the corresponding slot. 

Additionally, Mamoulis and Papadias (2003) present two I/O and CPU optimisation 

methods that are applied in the join phase of SISJ and significantly improve its 

performance, namely a bucket ordering heuristic and a repartitioning heuristic. A bucket 

ordering heuristic joins first the hash buckets with a few pages on disk in order to avoid 

writing and reading again their in-memory parts. This technique reduces the number of 

page accesses, especially when the non-indexed input is only slightly larger than the 

available memory. A repartitioning heuristic improves the computational performance 

of the algorithm and further reduces its space requirements. After the application of 

these optimization methods, the overall cost of SISJ drops about 35 percent compared to 

the initial implementation (Mamoulis & Papadias, 2003). 

No indices 

The problem of join processing also has been examined under the assumption that no 

index is available. There are many efficient algorithms for computing the spatial join of 

two non-indexed spatial data sets in the case where both sets fit in main memory. One 

example, which derives from computational geometry, is the Plane 

Sweeping (Arge, Procopiuc, Ramaswamy, Suel, & Vitter, 1998). It is used to determine 

if the spatial relation specified in the join query exists between two spatial objects by 
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using rectangle intersection. A plane-sweeping algorithm for rectangle intersection only 

has to find all intersections between rectangles located on the same sweepline. 

Two algorithms have been proposed for the case where the data sets do not fit in main 

memory. Lo and Ravishankar (1996) introduced Spatial Hast Join (SHJ) and Patel and 

DeWitt (1996) proposed Partition Based Spatial Merge Join (PBSM). Both methods 

divide the datasets into smaller partitions, such that each partition fits in memory, and 

apply a join algorithm to each pair of partitions. PBSM replicates some of the data of 

both input relations to improve join processing, whereas the spatial-hash join only 

allows replication on one relation. They both introduce replication of the entities in 

partitions in order to compute the join. However, the replication can result in poor 

performance of the spatial join processing. 

Prompted by the above problem, Koudas and Sevcik (1997) present an alternative 

algorithm that requires no replication. They show the benefits of avoiding replication in 

such cases. They introduced a method without data replication, called Size Separation 

Spatial Join (S3J). S3J imposes a dynamic hierarchical decomposition of the space and 

permits an efficient joining phase. The Dynamic Spatial Bitmap feature of S3J can be 

implemented using bitmap indexing techniques already available in most relational 

systems. They presented an analytical and experimental comparison of S3J with PBSM 

and SHJ algorithms for computing spatial joins when indices do not exist for the data 

sets involved. Using a combination of analytical techniques and experimentation with 

real and synthetic data sets, they showed that S3J outperforms these two methods for a 

variety of types of spatial data sets. 

Arge, Procopiuc, Ramaswamy, Suel, and Vitter (1998) proposed another approach 

without data replication, called Scalable Sweeping-Based Join (SSSJ). SSSJ is an 

external sweep-line algorithm which tries to keep the status of the sweep-line in main 

memory. SSSJ achieves both efficiency on real-life data and robustness against highly 

skewed and worst-case data sets on both internal computation time and I/O transfer. 

They present experimental results based on an efficient implementation of the SSSJ 

algorithm, and compare it to the original as well as an optimised PBSM algorithm of 

Patel and DeWitt (1996). However, a serious deficiency of SSSJ is that both input 

relations have to b.e sorted first before producing the initial output tuple. 
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Dittrich and Seeger (2000) proposed several improvements of PBSM (Patel & De Witt, 

1996) and S3J (Lo & Ravishankar, 1996), particularly on the impact of data redundancy 

and duplicate detection on the performance of these methods. For PBSM, they present a 

simple and inexpensive online method to detect duplicates in the response set There is 

no need to eliminate duplicates in a final sorting phase as was suggested originally. 

They also investigate the impact of different internal algorithms on the total runtime of 

PBSM. 

S3J has been proposed as an algorithm that avoids the problem of duplicates in the 

response set by simply avoiding the generation of redundant data objects. However, 

Dittrich and Seeger (2000) show that data redundancy results in substantial performance 

improvements for S3J. They introduce replication of data objects and show that the total 

processing cost can be reduced considerably. Duplicates in the response set can be 

detected at very little cost using a slightly modified version of the method suggested for 

PBSM. Moreover, they also address the problem of choosing an efficient internal 

algorithm for S3J (Dittrich & Seeger, 2000). Results of a large set of experiments with 

real data sets reveal that Dittrich and Seeger (2000) suggested modifications of PBSM 

and S3J result in substantial performance improvements where PBSM is generally 

superior to S3J. 

2.1.2 Refinement Step 

The refinement step can be separated into two parts: 

1. Fetching full geometry description of the candidates, which are produced by the 

filter step, into memory, and 

2. Performing the spatial join operation on the actual geometry. 

The first part implies high 1/0 cost since the size of spatial objects to be fetched from 

disk to memory can be very large. The second part implies high CPU cost as the spatial 

operations are computationally very intensive. 

After retrieving from the candidate set a polygon-pair and its vector representations, the 

refinement step determines the intersect relation between the two polygons by 

processing the restricting phase and the sweeping phase (Huang, Jones, & 

Rundensteiner, 1998). 
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Huang, Jones, and Rundensteiner (1998) proposed a new technique focusing on the 

optimisation of the refinement step. They propose a screen-test procedure to be 

executed before the plane sweep algorithm that substantially reduces the computation 

required during refinement. They call this procedure Symbolic Intersect Detection (SID). 

Figure 5 shows SID performs efficient true hit detection in two stages, namely clipping 

stage and detection stage, to replace the restriction phase in the original refinement step. 

In the clipping stage, to determine if two candidate polygons intersect, SID uses their 

Overlapping MBR (OMBR) to clip all segments of the two polygons which overlap the 

OMBR. SID abstracts each segment by a compact symbolic representation using only 

offsets of the sides of the OBMR. In the detection stage, based on this abstract 

information, SID efficiently detects situations under which two clipped segments cross 

each other deterministically. When such a crossing is determined between two clipped 

segments, their association polygons therefore are guaranteed to intersect. As a result, 

performance is improved because further intersect computation such as the 

computationally intensive plane sweep algorithm is not needed for the true hit 

candidates detected by SID (Huang, Jones, & Rundensteiner, 1998). 
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(b) Refinement step with SID optimisation 

Figure 5: State of art approach vs. SID approach in refinement step 

Additionally, they present an analytical cost model characterising SID ' s  effectiveness 

under various conditions. Based on real map data, they also run experiments comparing 

the performance of the state-of-the-art spatial join approach with the spatial join using 

the SID optimisation. The results show that their SID optimisation effectively detects 

more than 80% of the true hits with negligible overhead. Consequently, with the SID 

optimisation, the time intersect computation in the refinement step is improved by over 

50%, as predicted by the analytical model (Huang, Jones, & Rundensteiner, 1 998) .  
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2.2 Literature on Previous Findings 

According to Abel, Gaede, Power, and Zhou (1999), different filter algorithms and the 

presence of spatial indexes generate significant variations in the ordering of the set of 

candidate pairs generated by the filtering step. To solve this problem, Patel and DeWitt 

(1996) introduced a housekeeping step in between filter and refinement steps. The 

housekeeping step performs sequencing of the candidate pairs before fetching them 

from disk. It aims at minimising the 1/0 cost involved in the refinement phase by 

reducing the number of duplicate fetches. 

To minimise the overall I/O cost at the refinement step, most of techniques will provide 

a housekeeping step. The housekeeping step is generally divided into two methods, 

namely sequencing/scheduling and clustering. 

Abel, Gaede, Power, and Zhou (1999) classified two types of refinement strategies, 

namely: immediate and deferred processing. In immediate processing, candidate pairs 

are tested in the refinement step as they are generated by the filter step. In this strategy, 

no sequencing takes place during the housekeeping step. On the other hand, the deferred 

processing orders the candidate pairs before fetching them from disk. The full set of 

candidate pairs is assembled in the housekeeping step before applying the refinement 

step. 

Several heuristic solutions have been proposed for the OP AS-FB problem. They can be 

divided into two categories, namely asymmetric and symmetric methods. An 

asymmetric method favours objects from one relation, i.e., sorting the join-index on one 

of the join keys, whereas a symmetric method has no preferences. An asymmetric 

strategy can be advantageous if one set is much larger than the other or if the objects of 

one data set are well clustered spatially (Poirier, 2002). 
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Table 2 shows varieties of housekeeping approaches that aim to minimise the I/O cost 

for the refinement step. 

Table 2 :  Overview of l/0 strategies for the refinement step 

IMMEDIATE DEFFERED 

Asymmetric Svmmetric 
Sorting-based Heuristic 
(Valduriez, 1 987) Travell ing Salesman Heuristic 
Segmented Strategy Zig-Zag Strategy (Abel, Gaede, 
(Patel & DeWitt, 1 996) Power, & Zhou, 1 999) 

Schedul ing & 

Greedy Heuristics: 
No Clustering 

- FPH (Fotouhi & Pramanik, 1 989) 
Na'ive Strategy - OH (Omiecinski , 1 989) 

- COH (Chan & Ooi, 1 997) 
AGP (Shekhar, Lu, SGP (Shekhar, Lu , Chawla, & 
Chawla ,  & Ravada, 2002) Ravada, 2002) 

Matrix Permutation (Xiao, Zhang, & 
Clustering & J ia ,  2001 ) 

MST (Xiao, Zhang , Jia, & Zhou , 
Schedul ing 

2000) 

MBM (Xiao, 2003) 

2.2. 1 Sequencing/Schedu l ing Strateg ies 

The next few sections will use Table 3. It shows an example of sequence candidate pairs 

returned by the filter step (Abel, Gaede, Power, & Zhou, 1999). Using this example, 

suppose the buffer size is 4 and all spatial objects are the same size, namely 1 ,  and the 

cache is initially empty. 

Table 3: Example of sequence candidate pairs returned by filter step 

1 r6, s3 

2 r7, s1  

3 r2 , s1  

4 r1 , s2 

5 r2 , s6 

6 r1 , s3 

7 r2 , s7 

8 r3, s 1  

9 r4, s 1  

1 0  r5, s2 

1 1  r2 , s5 

1 2  r1 , s1  

1 3  r2 , s4 
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Naive Strategy 

The na'ive strategy processes candidate pairs in the order generated by the filter 

algorithm. No sequencing is performed in a housekeeping step. For each candidate pair, 

the spatial descriptions of objects are fetched into memory. It is assumed that the spatial 

descriptions of any given pair of objects will fit into memory in order to perform the 

computational geometry algorithm on them. Once the buffer is full, the replacement 

policy used is least-recently-used (Poirier, 2002). To use the candidate pairs from Table 

3, the na'ive strategy requires 20 load requests (see Table 4). 

Table 4: Execution trace of I strategy 

Candidate Pair Cache Content Number of Load ReQuests 
(r6, s3) (r6, s3) 2 
(r7, s1) (r6, s3, r7, s1) 2 
(r2, s1) (s3, r7, s1, r2) 1 
(r1, s2} (s1, r2,. r1, s2} 2 
(r2, s6} (r1, s2, r2, s6} 1 
(r1, s3} (r2, s6, r1, s3} 1 
(r2, s7) (r1, s3, r2, s7) 1 
(r3, s1) (r2 , s7, r3, s1) 2 
(r4, s1} (s7, r3, s1, r4) 1 
(r5, s2} (s1, r4, r5, s2) 2 
(r2, s5} (r5, s2, r2, s5} 2 
(r1, s1) (r2, s5, r1, s1} 2 
(r2, s4) (r1, s1, r2, s4) 1 
Total number of load requests : 20 

Sorting-Based Strategy 

This strategy is also known as the 'Simple Strategy' in (Abel, Gaede, Power, & Zhou, 

1999). The sorting-based strategy, one of the deferred processing strategies, is to defer 

the refinement step until all candidate pairs are available. The list of candidate pairs is 

sorted according to the object identifiers of one relation. The list is then processed 

sequentially and ensures that there are no duplicate fetches for objects of the .first 

relation. Clearly, some objects of the second relation will have to be fetched more than 

once (Poirier, 2002). Table 5 shows the sorting-based strategy outperforms the na'ive 

strategy with a total number of 1 7 load requests. 
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Table 5: Execution trace of Sorting-based strategy 

Candidate Pair Cache Content Number of Load Requests 
(r1 , s1 ) (r1 ,  s 1 ) 2 

(r1 ,  s2) (r1 , s1 , s2) 1 

(r1 ,  s3) (r1 , s 1 , s2 , s3) 1 

(r2,  s1 ) ( r2, s2, s3, s1 ) 1 

(r2 , s4) (r2 ,  s3 , s1 ,  s4) 1 

( r2 , s5) (r2 ,  s1 , s4, s5) 1 

(r2, s6) (r2, s4, s5, s6) 1 

(r2 ,  s7) (r2, s5, s6, s7) 1 

(r3 ,  s1 ) (r3 , s6, s7, s1 ) 2 

(r4, s1 ) (r4, s6, s7, s1 ) 1 

( r5 , s2) (r5, s7, s1 , s2) 2 

(r6 , s3) (r6 ,  s1 , s2 , s3) 2 

(r7, s1 ) <r7 , s2 , s3, s1 ) 1 

Total number of load requests : 1 7  

Segntented Strategy 

Valduriez (1987) introduced an efficient sequencing algorithm for join processing using 

join indices and it was adapted by Patel and De Witt (1996) for spatial joins. A segment 

is composed of a maximum number m of the first relation objects. Segmented 

sequencing is an asymmetrical strategy. It guarantees that no object in R within a 

segment is loaded twice. However, objects in S appearing in different segments are 

likely to be fetched multiple times (Poirier, 2002). For the example in Table 3, the 

segmented strategy requires 18 load requests (see Table 6). 

Table 6 :  Execution trace of segmented strategy 

Candidate Pair Cache Content Number of Load Requests 
(r1 , s1 ) . (r1 , r2 ,  r3, s1 ) 4 

(r2 ,  s 1 ) ( r1 , r2 , r3, s1 )  0 

(r3, s 1 ) (r1 , r2 ,  r3, s1 ) 0 

( r1 ,  s2) (r1 ,  r2 , r3, s2) 1 

(r1 , s3) (r1 , r2 , r3 , s3) 1 

(r2,  s4) (r1 , r2 , r3 ,  s4) 1 

(r2 ,  s5) (r1 , r2 , r3 , s5) 1 

(r2 , s6) (r1 , r2 , r3, s6) 1 

( r2 , s7) (r1 , r2 ,  r3 , s7) 1 

Load Next Seament 

(r4, s1 ) ( r4, r5, r6, s1 ) 4 

(r5 ,  s2) (r4, r5 , r6 ,  s2) 1 

(r6, s3) (r4 , r5 ,  r6, s3) 1 

Load Next Segment 

(r?, s 1 ) (r4, r5 , r7, s 1 ) 2 

Total number of load requests : 1 8  
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Zig-Zag Strategy 

The zig-zag strategy was proposed by Abel, Gaede, Power, and Zhou (1999). It is a 

symmetric strategy. It dynamically alternates between the two data sets. This approach 

is expected to perform best when the data sets to be joined have a similar data 

distribution. The algorithm maintains two lists, F and F'. The F list contains candidate 

pairs sorted by n and the F' list contains the candidate pairs sorted by Sj, If all cache 

objects of one set are processed, the algorithm switches to the respective other set and 

processes all cache objects of this set. For the implementation, it is necessary to extend 

each entry ek = (ri, sj) E F  with a flag indicating whether this pair has been processed or 

not. This flag is necessary since in the course of zig-zagging some pairs may be skipped 

and will have to be processed later. Also, two cursors have to be maintained along with 

a list reflecting the cutTent content of the cache. Table 7 shows the total number of load 

request for Zig-Zag strategy is 17 . 

Table 7: Execution trace of Zig-Zag strategy 

Candidate Pair Cache Content Number of Load ReQuests 

(r1, s1) (r1, s1) 2 
(r1, s2) (s1, r1, s2) 1 
(r1, s3) (s1, s2, r1, s3) 1 
R completely processed , go to S 
(r2 ,  s1) (s2, s3, s1, r2) 1 
(r3, s1) (s3, r2, s1, r3) 1 
(r4, s1) (r2, r3, s1, r4) 1 
(r7, s1) (r3, r4, s1, r7) 1 
S completely processed , Qo to R 

(r2, s4) (r4, r7, r2, s4) 2 
(r2, s5) (r7 , s4, r2, s5) 1 
(r2 s6) (s4, s5, r2 , s6) 1 
(r2, s7) (s5, s6, r2, s7) 1 
R completely processed, QO to S 
(r5, s2) (s6, s7, s2 , r5) 2 
(r6, s3) (s2, r5, s3, r6) 2 
Total number of load requests : 1 7  

Scheduling 

Lim, Pheng, and Chong (2001) researched the problem of scheduling page accesses in 

database join processing. Their research questions focus on two interesting problems. 

First, they determine a page access sequence that uses the minimum number of buffer 

pages without any page being fetched more than once. Second, they determine a page 

access sequence that .minimises the number of page re-accesses for a given buffer size. 

They use a graph model to represent pages from the relations that contai.n tuples to be 
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joined and present a new heuristic for the two problems. This new heuristic is based on 

the concept of finding the best N-release-K sequence at each iteration. They use the 

notion N-release-K to denote N pages are brought into the buffer to release K pages. 

Each page access sequence is uniquely expressed as a sequence of segments, where 

each instance of a page release marks the end of a segment. While the sequence of 

pages in a segment is fetched, no pages in the buffer can be made available until the last 

page in the segment is fetched. This is the basis of their new heuristic. Their 

experimental results show that their new heuristic performs well, especially when 

comparing to Chan and Ooi Heuristic (COH) (Chan & Ooi, 1997). 

Spatially-Augmented Greedy Heuristic (SAGH) 

Poirier (2002) proposed a technique called Spatially-Augmented Greedy Heuristic 

(SAGH). The method efficiently produces a page access sequence that results in a good 

buffer utilisation as well as disk I/O cost for spatial join processing of non-uniform 

sized spatial objects. He introduced the method based on the traditional relational join 

greedy heuristics but it accounts for the size of spatial objects. Some of the traditional 

relational join greedy heuristics are Fotouhi and Pramanik Heuristic (FPH) (Fotouhi & 

Pramanik, 1989), Omiecinski Heuristic (OH) (Omiecinski, 1989), and COH (Chan & 

Ooi, 1997). These greedy heuristics are symmetric and do not require any sorting of the 

join-keys of either relation. They select the next page or the next set of pages to be 

fetched into memory based on the pages already in memory and the remaining edges to 

be processed in a PCG. The selection is often based on the number of neighbours in 

memory and the number of neighbours on disk. The greedy heuristics generally perform 

well, are easy to implement, and do not require any pre-processing like sorting or 

clustering. 
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(a) Nodes and their weights (b) a PCG (froni Xiao, Zhang, & Jia, 200 1)  

Figure 6 :  Example of  weighted PCG 

In the SAGH, each node of the PCG will be assigned a weight, which corresponds to 

the size of each spatial object, i.e: weighted PCG = (V, E, w). Figure 6 shows an 

example of weighted PCG with the weight for each node. According to Poirier (2002), 

the SAGH chooses ri E R  and Sj E S from the PCG to load in the buffer such that: 

• (ri , Sj) is connected 

• The sum of the degree of ri and Sj is minimal 

• In case of a tie, select ri and Sj with the smallest combined size 

• (ri , Sj) not processed yet 

Then, the buffer is added with the new node p using the following strategy : 

• Find a node q in the buffer who has the smallest non-resident degree (but not 

zero) 

• If there is none, use load policy described above 

• Find the node p such that : 

o ( q, p) is connected and not processed; 

o p has the smallest non-resident degree; 

o p fits in memory; and then 

o resolves tie by selecting p with smallest size 

• If p does not fit in memory, go to next smallest non-resident degree and repeat 

same procedure 

• If no neighbour of q fits in memory, select smallest non-resident degree, even 

though it does not fit in memory 

• Resolve tie by selecting p with smallest size 

If a node in memory has to be replaced, then choose the node that: 
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• has the smallest non-resident degree; 

• · is not connected to the new node; and then 

• resolves ties by expelling the node with the largest size. 

Poirier (2002) proved that his SAGH method can compete with the clustering method of 

Xiao, Zhang, and Jia (2001) by indirectly comparing the SAGH with the Na"ive strategy 

and the Sorting-based heuristic. Moreover, the SAGH heuristic has small pre-processing 

requirements compared to clustering methods where objects have to be clustered. 

2.2.2 Clustering Strategies 

Shekhar, Lu, Ravada, and Chawla (1998) introduced an off-line spatial clustering 

technique based on min-cut graph partitioning of the bipartite PCG for the join index. 

The technique can minimise the length of the page access sequence, given a fixed buffer 

size. Consequently, 1/0 cost can be reduced. A min-cut node partition of a graph G = (V, 

E) partitions the nodes in V into disjoints subsets while minimising the number of edges 

in the cut-set. The cut-set of a min-cut partition is the set of edges whose incident nodes 

are in two different partitions. Figure 7 shows an example of PCG with its 

corresponding min-cut partition. In this schema, an optimal 1/0 page access sequence 

would be obtained if all node clusters were edge disjoint, i.e. the cut-set is empty, and 

assuming that each cluster can fit into memory. 

a) PCG 

Vl 

(b) Min-Cut Partition (from Poirier, 2002) 

Figure 7: Example of Min-Cut Partition 

They used datasets from the Sequoia 2000 project (Stonebraker, Frew, & Dozier, 1993) 

to do their experiments. The result of the experiments shows that the graph partitioning 

method outperforms .the methods based on sorting and greedy heuristics (Shekhar, Lu, 

Ravada, & Chawla, 1 998). However, it is not clear whether their method really 
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outperforms the greedy heuristics since the pre-processing time is not accounted in their 

experiments. The greedy heuristics have no pre-processing step whereas their method 

has to convert PCG into a hyper-graph and perform a min-cut partitioning of this hyper­

graph. 

Xiao, Zhang, and Jia (2001) proposed a clustering method that aims to minimise the 1/0 

cost at the refinement stage of spatial join processing. They formalise the problem by 

using a graph model. Then, from the graph model a matrix-based algorithm is 

developed to cluster objects such that the objects in the same cluster are closely related. 

Their method is derived from the Bond Energy Algorithm (BEA) and then they modify 

it for the candidate-cluster purpose. Similar to the graph partitioning approach, the 

candidate pairs in their approach are clustered into disjoint sets before each cluster is 

scheduled in an efficient manner. However, instead of using a graph partitioning 

method, they use a matrix permutation and decomposition heuristic. The sum of all 

spatial objects inside a cluster has to be smaller or equal to the buffer size. 

Figure 8 shows an example of how the matrix-based method partitions the weighted 

PCG with the buffer size 1024 bytes. 

A2 
size 

B l  

A3 

D2 --> --
A4 113 

B3 

n::i 

(a) Weighted PCG (from Xiao, Zhang, & Jia, 200 1 )  (b )Clustering with buffer = 1024 

Figure 8: Example of Matrix-based Partition 
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From their experiments, their method can save 20% and 35% of I/O cost to the case of 

sorting method and no clustering method respectively (Xiao, Zhang, & Jia, 2001). 

However, it would be beneficial to perform the experiments using data sets from real 

GIS applications instead of generated artificial data for more reliable results and 

acceptability by practitioners in the industry. Today, there are already other methods 

that can save more 1/0 cost. However, many of them use this clustering method in 

addition to their proposed methods. 

Shekhar, Lu, Chawla, and Ravada (2002) introduced two new heuristics to solve the 

OP AS-FB problem. The first one is the Asymmetric Graph Partitioning (AGP) method. 

AGP method is an improvement over a sorting-based method for spatial join. However, 

its buffer can be poor since . it gives almost the entire buffer space to one relation. The 

second one is Symmetric Graph Partitioning (SGP) method which uses clustering for 

the pages of both relations. Both AGP and SGP methods rely on min-cut graph 

partitioning of the PCG, a technique they proposed previously in Shekhar, Lu, Ravada, 

and Chawla (1998). The difference between the SGP and AGP methods is that SGP 

method clusters pages from both tables with no preference to either one. Thus, SGP 

method minimises the page accesses on both relations. 

Once again, they did their experiments using real map datasets from the Sequoia 2000 

project (Stonebraker, Frew, & Dozier, 1993). They compare their SGP method with the 

greedy heuristics, namely FPH, OH, and COH, for symmetric processing regarding 

buffer size, page size, and edge ratio. The result of their experiments shows that SGP 

method outperforms the greedy heuristics when the memory size is relatively small 

(Shekhar, Lu, Chawla, & Ravada, 2002). However, since this new method is relied on 

min-cut graph partitioning, it is not clear whether the SGP method really outperforms 

the greedy heuristics since the pre-processing time for graph partitioning is not 

accounted in their experiments. 
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2.3 Specific Studies Similar to the Current Study 

Xiao, Zhang, Jia, and Zhou (2000) proposed a new graph-based cluster-scheduling 

technique called Maximum Spanning Tree (MST). The idea of this method is to 

schedule the resulting clusters, which have been generated by the clustering techniques 

(Shekhar, Lu, Ravada, & Chawla, 1998; Xiao, Zhang, & Jia, 2001), in a way that two 

consecutive clusters in the sequence have maximal number of overlapping objects. Thus, 

there is no need to load those overlapping objects when processing the next cluster since 

they are already in the memory. Consequently, the 1/0 cost can be minimised, this being 

the key issue for their cluster-scheduling technique. 

The MST algorithm is used to produce an AMO order. The algorithm consists of three 

steps: find a maximum weight spanning tree T of the CO graph, conduct a depth-first 

search (DFS) on T, and construct an AMO order according to the output of previous 

step. The complexity of the MST algorithm is O(m2log2m), where m = max(IVJ, IEI). 

From their simulation, they found that if the spatial join operations are processed cluster 

by cluster according to the sequences produced by their algorithm, over 50% of the 

fetching time used for fetching those overlapping objects can be saved. 

Figure 9 shows an example of how the MST method works. In this example, the MST 

method has an AMO order with total overlapping weight of 31 (this will be compared 

with the next method). 

YS 

5 
9 

{22-36} 

V4 V6 

. (�) A CO graph (from Xiao, Zhang, Jia, & Zhou, 2000) 
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(b) A maximum spanning tree (c) A dept-first-search of T 

Figure 9: Execution of MST algorithm 

( d) Approximation to MO 

Xiao (2003) introduced a new efficient method that produces a better sequence of AMO 

than the original algorithm, MST, he proposed previously (Xiao, Zhang, Jia, & Zhou, 

2000). The new method is called a match based method (MBM). The MBM pseudo­

code is : 

Algorithm: matchBasedAMO( G) 

Input : G = (V, E, w); a CO graph with V = {Vi, Vi; Vi, . . .  , Vn} 
Output : Vu, Vi2, . . . , Vin; AMO order of G 

Begin 

1. Find a maximal match M of G using Greedy matching algorithm; 

2 .  If no matching was found, return; 

3 .  Add all matching into AMO; 

4. Coarsen G by collapsing matching nodes of M to produce a coarser graph G '; 

5. matchBasedAMO(G '); 

6. return; 

End 

The MBM method uses a greedy matching algorithm to find the maximum weight 

matchings in a CO graph. The greedy matching algorithm is an approximation 

algorithm for solving the weighted matching problem and has a performance ratio of Yi 

to optimal matching (Doratha & Hougardy, 2003). It can be implemented with a 

running time O(JEI log I V]) if the edges of G are sorted in a pre-processing step by 

decreasing weight. 
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The pseudo-code for greedy matching algorithm: 

Greedy Matching (G = ( V,  E, w)) 
M=<l> 

While E ;z!() do begin 

let e be the heaviest edge in E 

. add e t M  

remove e and all edges incident to e from E 

End 

Simulations have been conducted to demonstrate the saving of I/O cost in spatial join by 

using the match based algorithm. The result shows that over 67% of the fetching time 

used for fetching those overlapping objects can be saved. 

Use of the same CO graph in Figure 9(a), this MBM produces an AMO order with a 

total overlapping weight of 3 3, which is a better result than the MST method ( see Figure 

10). 

(a) greedy matching (b) coarser graphs (c) AMO order 

Figure 10: Execution of Match based algorithm 

Xiao (2003) presents his algorithm and compares it with three other methods: 

overlapping-free scheduling (OFS), random-overlapping scheduling (ROS), and the 

MST. The OFS method fetches objects, cluster by cluster, into memory for the join 

operations. After a cluster of objects are processed, the data in the memory are cleared 

before the next cluster is fetched. The ROS method fetches objects, cluster by cluster, in 

a random way, that is, a cluster is selected randomly. If the objects in the cluster are not 

in the memory, they are fetched into memory. The experiment results are reliable as he 

runs the experiments ten times and takes the average of the results. However, most of 

the datasets in his experiments are generated artificially and only a small proportion of 

datasets are from real applications. 
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3 Theoretical Framework 

3. 1 Identification of Variables Impacting On the Research 

Questions 

There are several variables that impact the result of the research, namely: 

• CO graph 

Each CO graph used in the research was produced by a clustering method of 

matrix permutation (Xiao, Zhang, & Jia, 2001). Use of different clustering 

· methods can produce a different CO graph. The CO graph is the main input data 

used in the experiments. 

• Spatial data used 

Due to budget constraints, spatial data used in the experiments were generated 

artificially. 

• The size of spatial data and clusters 

The size of spatial data and clusters affect the cost of I/O m spatial join 

processmg. 

• The number of clusters 

The number of clusters affects the AMO order and total amount of overlapping 

weight between two clusters. 

• Time constraints 

The research only took two semesters of study 

3.2 Identification of Assumptions Underpinning the Study 

The study uses one of the concepts of graph theory, namely Maximum Weighted 

Matching. A maximum weighted matching problem is defined by a graph G consisting 

of a set V of vertices or nodes and a set of E of edges and the weights w. It is 

represented in the following equation, G = (V, E, w). A matching on a graph is a set of 

edges such that no two of which meet at a common vertex. A maximum weighted 

matching is a matching for which the sum of the weights of the edges is maximal 

(Witwear, 2002). 

Since the MBM method uses a greedy matching algorithm, which only has a 

performance ratio of 1 :2 to maximum weighted matching, there 1s a room for 
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improvement if the maximum weighted matching algorithm is used instead of the 

greedy matching algorithm. Figure 11 shows a comparison of maximal matching result 

between greedy matching . method and maximum weighted matching method. The 

greedy matching method finds 4 matchings with the total weight of 108 (32+28+28+20) 

whereas the maximum weighted matching method finds 5 matchings with the total 

weight of 124 (28+24+28+24+20). Thus, it can be said that using the maximum 

weighted matching algorithm will find a better AMO order with more total overlapping 

weight between clusters in a CO graph than using the greedy matching algorithm. 
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(b) greedy matching method ( c) maximum weighted matching method 

Figure 11 :  Greedy matching vs. maximum weigthed macthing 

The first polynomial algorithm for the weighted matching problem was introduced by 

Edmonds (1965). Its run time complexity is O(n2m), where n and m denote the number 

of vertices and edges in the graph respectively. Since then Edmonds' algorithm has 

been studied by a number of researchers. Gabow (1973) and Lawler (1976) have 

developed O(n3) implementation of Edmonds' algorithm. According to Vink:emeier and 

Hougardy (2005), the fastest implementations of Edmonds' algorithm are due to Cook 

and Rohe (1999) and Mehlhom & Schafer (2001) with a time complexity of O(nm log 

n). 
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Figure 12 summarises the algorithm of maximum weighted matching in pseudo-code 

(Witwear, 2002). See the Appendix B for more details about maximum weighted 

matching algorithm. 

In iti a l  Sol ution :  

l et lvl b e  the em pty matc h i n g  

Yu = max{ we/2 : e E E }  for each  vertex u E G 

l a be l  each vertex u E g eve n  
for e a c h  vertex r E G { 

} 

i f  r is matched or Yr = O conti n u e  
let Br be t h e  on ly b lossom o f  T 

repeat { 

if  a n  vertex ,u+ E T with Yu = O exists { 

let P be the a ltern ati ng  path from u to r 
rep lace Jl/I by m EB P 

e lse i f  a n  edge ,uv with u+ E T and  1r1w = o 

exists { 

case v* f/:. T: g row step 
case v+ E T: sh ri n k  step  
case v+ f/:. T: a u gment step 

else i f  there exists a n  odd b lossom B- E T 

With ZB = 0 

expa nd step  for B 
else { 

determ i ne J 
perform d u a l  adj ustment 

} 
} u nt i l  r is matched or Yr = O 

Figure 12: Algorithm of maximum weighted matching 

It has been identified by Xiao (2003) that the problem of finding maximum weighted 

matching in a non bipartite graph can guide the finding of AMO order in a CO graph. 

Thus, applying the maximum weighted matching algorithm to the proposed study may 

result in finding a better sequence of maximum overlapping clusters such that the sum 

of the edge weights of the edges or paths in the CO graph reaches the maximum. Hence, 

·· the 1/0 cost in spatial join processing can be minimised. 
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4 The Proposed Method 

4. 1 Maximal Weight Matching (MWM) Algorithm 

The study proposes a new method called Maximal Weight Matching (MWM). This new 

MWM method is a cluster-scheduling method. It is similar to MST and MBM methods 

in the sense that their main objective is to find a better algorithm that produces a better 

sequence of clusters to guide the scheduling of clusters processing in a spatial join , 

processmg. 

The MWM algorithm can be described in the following pseudo-code: 

Algorithm: mwmAMO(G) 

Input: G = (V, E, w); a CO graph with V = {Vi, Vi, Vi, . . .  , Vn} 

Output: Vu, V;2, . . .  , V;n; AMO order of G 

Begin 

1. Find a maximal match M of G using maximum weighted matching algorithm; 

2. If no matching was found, return; 

3. Add all matching into AMO; 

4. Coarsen G by collapsing matching nodes of M to produce a coarser graph G '; 

5. mwmAMO(G '); 

6. return; 

End 

The MWM method uses a recursive algorithm (see step 5). It can be separated into three 

main parts. In the first part, a maximal match M of G is produced using a maximum 

weighted matching algorithm (see algorithm details in Appendix B). Edges in M are 

taken as the initial AMO order. 

In the second part, the graph G is coarsened by collapsing the matching nodes. At this 

step, each pair of matching nodes are combined to form a single node of the next level 

coarser graph G '  = (V', E ', w '). Nodes in V' are all in the form of either v = {vi, Vj} ,  

where Vi and Vj E V are matched in  M, i.e., (vi, Vj) EM, or v = {vi}, where Vi E V is not 

matched in M, i.e., (vi) �M. That is: 
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The node v of form { Vi, Vj} in V' is called a nmltinode in Xiao (2003). 

E' and w' are then defined such that the edge between any pair of multinodes v'  and v"  

corresponds to an edge in E whose two endpoints are in v '  and v", respectively, and 

whose weight is maximal among all edges connecting nodes in between the multinodes 

v'  and v", if such an edge exists. In other word, after collapsing the matching nodes, the 

edge with the highest weight is taken, among all edges connecting nodes in between the 

multinodes, to connect the new multinodes. In particular, 

• For each pair of multinodes v'E V' and v"  E V', v' ;zfy", if v' = {v'i, v1} ,  v" = {v"i, 

v '1} ,  then (v', v') E E' if and only if w '(v', v ') ;cO, where w '(v ', v ') = max 

{w(u1,u2) I u1 E v', u2 E v", (u1, u2) E E} (I) 

• For each unmatched node v = { vi} E V', if there exists a multinode v '  = { v 'i , v 1 ) 

such that (vi, v 'i) E E or (vi, v1,) E E, then (v, v) E E ' and w '(v, v) = max {w(vi, 

u) I u E v', (vi, u) E E} (II) 

It is important to note that any pair of unmatched nodes is not connected in both G and 

G'. 

After the graph G'  is built, the maximum weighted matching algorithm is applied to G' 

again to produce a maximal match M'. The next level of coarser graph G" = (V", E", w') 

can be built by the following procedure: 

1. For each pair of matched nodes v ', v" E M', 

(1) If both v '  and v"  are multinodes, i.e., each contains two nodes, say v' = {v'i, v1} 

and v"  = {v"i, v '1} ,  then choose a pair of nodes u '  and u"  such that u '  E v ', u "'E 

v" and w(u ', u ') = max {w(u1, u2)I u1 E v ', u2 E v", (u1, u2) E E} ;cO, 

i) add (u ', u " )  to AMO, and 

ii) collapse the matched nodes v '  and v" by creating a new multinode {v', 

v"} = {v'i, VJ, v"i, v '1} ,  

(2) If v '  contains two nodes and v "  contains only one node, say v '  = {v'i, v1} and v "  = 

{v"k} ,  then choose u E v' such that w(u, v''k) = max{w(v'i, v"k), w(v1, v"k)}, 

i) add (u ', v"k) to AMO, and 

ii) collapse nodes v' and v" by creating a new multinode {v', v"} = {v'i, 
I II } Vj, V k 

(3) If v '  contains one node only and v"  contains two nodes, similar to the case of (2). 

( 4) The V" is created for the graph G" which containing all multinodes created from 

the above steps. 
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2. For E" and w", there are some remaining processes. These are: 

(1) define E" and w"  similarly as those in (I) and (II), and 

(2) check whether the edges in E" can potentially violate the rule of AMO order, 

that is, no cluster in an AMO order can have an edge degree more than 2, or no 

cluster in an AMO order can be linked to more than two other clusters. For 

example, in Figure 13 the cluster V3 is connected to more than two other 

clusters, which are cluster Vl ,  V2, and V5, or it has an edge degree 3. Thus, it is 

not a valid AMO order. If there is an edge in E" can potentially violate the rule, 

the edge is removed from the graph and go to step (1) again otherwise E" and w" 

are :finalised for the graph G ". 

Figure 13: Example of invalid AMO order 

The above matching and collapsing process continues until no further matching can be 

found. Finally, the algorithm produces the AMO order according to the AMO output 

from the above procedure. 
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4.2 The Complexity of MWM Algorithm 

This section analyses the complexity of the proposed MWM algorithm detailed in 

section 4.1. For a given CO graph with n nodes, line 1 requires at most O(n3) time as it 

implements the Edmond's algorithm shown in Lawler, Lenstra, Kan, and Shmoys 

(1985). Line 3 needs O(n2
) time as it scans at most once for each node to find its 

matching node. Lines 4 has the complexity of O(n2) because, for each matched node, it 

needs no more than once scanning to combine to its matched one to form a ultimode 

of the next level coarser graph. So the total complexity of lines 1-4 is O(n3). Line 5 

completes the recursive execution of the algorithm. 

Let g(n) be the complexity function of the algorithm. First, consider the best case of the 

execution (that is all nodes in G were matched in step 1). Denote f(n) as the complexity 

of this case. For an ideal matching, each node is matched, thus the next level of coarser 

graph has n/2 nodes. In this case, the recurrence formula for the complexity function 

will be 

{o 
f(n) = a.n3 

a.n3 + f(n / 2) 

if n <.;;, l  
if n > l and no further match exists 
if n > l and further match exists 

where a is a constant. As the collapsing reduces half the number of available 

(multi)nodes, either n ::;I or (n > 1 and no further match exists) will become true after 

running the algorithm recursively for some rounds. Therefore, for a large n, according to 

the recurrent property of/ (n), we have 

f(n) = a.n3 + J{ii) = a.n3 + a.{iiJ + !(%)= . . .  = a{ n3 + {iiJ + {%J + . . . . + 1) + f(l) 

This equation is valid for any n that is a power of 2, say n = 2k. Thus, we have 

f(n) = an3 .(l +  h3 + }i2.3 + }i3 .3 + . . . .  + /i3(H) )+ f(l) 

Recalling that /(1) �. 0, we get f(n) = % .a.n3 , or 
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f(n) = O(n3 ) (III) 

If n is not a power of 2, there must exist k such that 2k < n -;;,,2(k + 1). Therefore, we 

have % .a.n3 
s f(n) s % .8a.n3 , which still leads to formula (III). 

Secondly, consider the case where some unmatched (multi)nodes produced in step 1 of 

the MWM algorithm. Denote F(n) as the complexity of the algorithm in this case. 

Without loss of generality, assume that the average number of matching pairs is n/4 ( ::::::  

(1 + 2 + . . .  + n/2) I (n/2)). After collapsing, the next level of coarser graph will have 

3n/4 multinodes. In this case, we can get a recurrent function as 

{o 
F(n) = a.n 3 

a.n3 + F(3n / 4) 

if n  s 1 
if n > 1 and no fitrther match exists 
if n > 1 and further match exists 

where F(3n/4) is the complexity of the matching and collapsing process on the next 

level coarser graph. In the worst case, every recursive execution of the algorithm would 

produce a (next level) coarser graph whose number of multinodes is about four thirds of 

that of the current graph. After k times of recursive execution:, either the number of the 

(multi)nodes of the graph becomes 1, or no further match can be found from the graph. 

So, for simplicity, we can assume that nGJ = I , or n = l ( ! J J for some k. According 

to the recurrent relation of F(n), we can derive 

3 ( 3 ) 3 ( 3 )
3 

( 3
2 
J F(n) = a.n + F 

4 
n = a.n + a. 

4 
n + F  -=r- n = .... 

3 ( 3
3 

3
6 39 

J 
64 3 = a.n 1+

4,3
+ � +

4-9
+ ... = 

37
.a.n 

Or 

(IV) 

Following the .discussion above, it can be shown that that formula (IV) holds for any n 

(Xiao, 2003). As the .complexity of the algorithm is always greater-than-or-equal-to f(n), 

and less-than.:or-equal-to F(n), i.e., O(n 3 ) = f(n) s g(n) s F(n) s O(n3 ) , then the 
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complexity of g(n) = O(n3). The first research question will be quantified by the above 

means. 

4.3 Comparison with Other Methods 

To show how the proposed method works, the example of a CO graph with ten clusters 

in Figure 14 is used. As per research question 2, the example will also be used to 

compare to other methods, namely MST and MBM. 

849 628 

. ®-71 0-@--230-(a)-as1-(i){ . )Q) 

� � "soo 662 

896 859 � 

© � . 
736 

® 
Figure 14: A CO graph with ten clusters 

By applying the MST algorithm to the CO graph, the first step produces a maximum 

weight spanning tree T of the graph as shown in Figure 15(a). Suppose that the second 

step begins at cluster 9 in Figure I5(a). The result of the depth-first search of T is shown 

in Figure 15(b ), where the numbers nearby the clusters are the traversal order numbers. 

In the third step, an AMO order is produced as shown in shown in Figure 15(c), which 

is 97178767771075747372, with the total overlapping weight of 4721. 
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(a) Maximal weighted spanning tree T 

(b) A dept-first search of T 
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( c) An AMO order produced by MST 

Figure 15: Execution of MST algorithm 
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By applying the MBM algorithm to the CO graph in Figure 14, an AMO order was 

produced as shown in Figure 16(e), which is 179727374""75710777876, with 

the total overlapping weight of 5348. The following shows the execution steps of the 

MBM algorithm (corresponding to Figure 16): 

(a) The first step of the MBM algorithm uses the greedy matching algorithm to find 

the maximal match M. There are four pairs of matched nodes found: 

• cluster 6 matches cluster 8 with edge weight 896 

• cluster 7 matches cluster 10 with edge weight 859 

• cluster 1 matches cluster 9 with edge weight 710 

• cluster 3 matches cluster 2 with edge weight 662 

Initial overlapping weight: 3127 

Initial AMO order: (6, 8), (7, 10), (1, 9), (3, 2). 

(b) The greedy matching algorithm is performed at the first level coarser graph. 

There are two pairs of matched nodes found: 

• cluster 7 matches cluster 8 with edge weight 857 

• cluster 4 matches cluster 3 with edge weight 628 

Overlapping weight: 4612 

AMO order: (6, 8), (7, 10), (1, 9), (3, 2), (7, 8), (4, 3). 

( c) The greedy matching algorithm is performed at the second level coarser graph. 

There is a pair of matched nodes found: 

• cluster 5 matches cluster 10 with edge weight 736 

Overlapping weight: 5348 

AMO order: (6, 8), (7, 10), (1, 9), (3, 2), (7, 8), (4, 3), (5, 10). 

It is important to point out that the edges (7, 4) and (7, 2) with edge weights of 

849 and 800 respectively, have been removed from the graph because they can 

potentially violate the rule of AMO order. Cluster 7 has been connected to 

cluster 10 in (a) and cluster 8 in (b), thus all edges that are incident to cluster 7 

have to be removed to prevent producing an invalid AMO order. If the edge (7, 

4) is not removed, the next matching will find cluster 7 matches to cluster 4, 

instead of cluster 10 matches cluster 5, because the weight of edge (7, 4) is 849 

and it is heavier than the weight of edge (10, 5) which is 736 only. Thus, this 

will produce an invalid AMO order since the cluster 7 will have an edge degree 

3. 

The same thing also happens to edge (1, 8). 
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( d) The greedy matching algorithm is performed at the third level coarser graph. 

There is no pair of matched nodes found. The recursive algorithm part stops here. 

(e) The final compiled AMO order is 1 79"'727374757 10777876 with the 

total overlapping weight of 5348. 

(a) First pairs of matched nodes (b) A coarser graph and its pairs of matched nodes 

e 8 @ 8 
736 

cb 
(c) Next level coarser graph and its pair of matched nodes (d) No matched nodes found 
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( e) An AMO order produced by MBM 

Figure 16: Execution of MBM algorithm 
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By applying the MWM algorithm to the CO graph in Figure 14, an AMO order was 

produced as shown in Figure 17(e), which is 27374777107576787179, with 

the total overlapping weight of 5570. The following shows the execution steps of the 

MWM algorithm (corresponding to Figure 17): 

(a) The first step of the MWM algorithm uses. the maximum weighted matching 

algorithm to find the maximal match M. There are five pairs of matched nodes 

found: 

• cluster 1 matches cluster 9 with edge weight 710 

• cluster 2 matches cluster 3 with edge weight 662 

• cluster 4 matches cluster 7 with edge weight 849 

• cluster 5 matches cluster 10 with edge weight 736 

• cluster 6 matches cluster 8 with edge weight 896 

Initial overlapping weight: 3853 

Initial AMO order: (1, 9), (2, 3), (4, 7), (5, 10), (6, 8). 

(b) The maximum weighted matching algorithm is performed at the first level 

coarser graph. There are two pairs of matched nodes found: 

• cluster 7 matches cluster 10 with edge weight 859 

• cluster 1 matches cluster 8 with edge weight 230 

Overlapping weight: 4942 

AMO order: (1, 9), (2, 3), (4, 7), (5, 10), (6, 8), (7, 10), (1, 8). 

( c) The maximum weighted matching algorithm is performed at the second level 

coarser graph. There is a pair of matched nodes found: 

• cluster 4 matches cluster 3 with edge weight 628 

Overlapping weight: 5570 

AMO order: (1, 9), (2, 3), (4, 7), (5, 10), (6, 8), (7, 10), (1, 8), (4, 3). 

It is important to point out that the edges (8, 7) and (7, 2) with edge weights of 

857 and 800 respectively, have been removed from the graph because they can 

violate the rule of AMO order. Cluster 7 has been connected to cluster 4 in (a) 

and cluster 10 in (b ), thus all edges that are incident to cluster 7 .have to be 

removed to prevent producing an invalid AMO order. As the edge (7, 2) is 

removed, the edge (4, 3) with the edge weight of 628 will appear to link the 

multinodes. 

( d) The maximum weighted matching algorithm is performed at the third level 

coarser graph. There is no pair of matched nodes found. The recursive algorithm 

part stops here. 
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(e) The final compiled AMO order is 2737477710757678"71 "79  with the 

total overlapping weight of 5570. 
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(a) First pairs of matched nodes 
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(b) A coarser graph and its pairs of matched nodes 
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( e) An AMO order produced by MWM 

Figure 17: Execution ofMWM algorithm 
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To summarise this example, the total overlapping weight of: 

(a) MST method is 4721; 

(b) MBM method is 5348; and 

(c) MWM method is 5570. 

Thus, from this comparison the initial findings are: 

(a) MBM produces 13.28% more overlapping weight than MST; 

(b) MWM produces 17 .98% more overlapping weight than MST; and 

( c) MWM produces 4.15% more overlapping weight than MBM. 

Clearly, MWM provides the best method of those compared. 
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5 Material and Methods 

5. 1 Design and Procedure of the Study 

Figure 18 shows the overview of phases of the study. It started with literature review 

phase focusing on spatial join processing and different approaches to minimise the I/O 

cost involved in the process. Also, the graph theory of maximum weighted matching 

and its algorithm were studied both in bipartite and non bipartite graphs. The next phase 

is data collection/data generation. In this phase, spatial data were generated artificially. 

Then, these spatial datasets were clustered into CO graphs for further analysis by using 

a program that implements matrix-based algorithm of Xiao, Zhang, & Jia (2001). 

Literature 
Review 

Data Collection/Data 
Generation 

CO Graph 
Generation 

Develop Program 

Thesis Writing 

Result Analysis 

Conduct Experiment 

1---.i Test the Program 

Figure 18 :  Procedure of the study 

Next, a program was developed and tested during the second semester of the study. It 

was written in Java and implements the proposed algorithm and other methods, namely 

MST and MBM. It accepts the CO graph as an input and produces an output of AMO 

order for each method. The resulting AMO order can be used to guide the sequencing of 

the spatial join processing. After successful testing of the program, experiments were 

conducted and results were collected and analysed. Finally, the result of the experiments 

were interpreted and reported in this document. 
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5.2 Description of Instruments Employed 

The research was conducted using an experiment research method. The experiment 

employed the use of a personal computer with JDK 1.5 installed and a Java IDE, 

Eclipse. Both of JDK 1.5 and Eclipse are open sourc� tools that are free to use under the 

GPL license. These tools were used to develop a program for the experiments. The 

program implements all the algorithms used in the study, such as MST, MBM, and the 

proposed MWM methods. Some main functionalities of the program are: 

• random CO graphs generation; 

• manual creation of CO graphs; 

• storing of a CO graph in an XML file; and 

• producing an AMO order and the total overlapping weight for each method in a 

text file. 

5.3 Data Analysis 

Experiments were conducted after successful 'testing of the program. The experiments 

used the random generated CO graphs from ten clusters to a hundred clusters. For each 

cluster number, the experiments were conducted ten times with a different CO graph 

and the average result was taken. The collected results from each experiment are the 

AMO order and the total overlapping weight for each method. From the collected 

results, the performance of each method was compared by using the following three 

formulas: 

MWM - MST l .  MWM over MST = xl 00% 
MST 

MWM -MBM 
2. MWM over MBM = xl 00% 

MBM 

MBM -MST 3. MBM over MST = xl 00% 
MST 

The first one is used to calculate how much percentage that the proposed MWM method 

outperforms the MST method in term of the total overlapping weight produced by each 

method. The second one is used to compare the proposed MWM method with the MBM. 

The last one is used to compare the MBM with the MST method. 
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Since all of the objects need to be fetched into the memory for the refinement step, for 

simplicity, the 1/0 cost can be referred as the total size of objects that are fetched into 

the memory for processing. Thus, the amount of total overlapping weight found in each 

method is the amount of 1/0 cost that can be saved if the clusters are processed in the 

sequence as the AMO order produced by each method because there is no need to fetch 

these overlapping objects when processing the next cluster as they are already in the 

memory. 
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6 Resu lts and F ind ings 

Before conducting experiments, there are two steps to be done, namely data collection 

and data clustering. The spatial data used in the experiments were artificially generated 

and then clustering of these data was performed using the clustering method of matrix­

based algorithm of Xiao, Zhang, & Jia (2001). The result of the clustering method is CO 

graphs. These CO graphs were used as the main input for the experiments. From each of 

the CO graph, the experiment was conducted to find an AMO order and its total 

overlapping weight of each method, namely MST, MBM, and the proposed MWM. 

The experiments were conducted to compare the proposed MWM method with MST 

and MBM methods. The experiments are to show how much the 1/0 cost can be saved 

by using MWM method and how well it can save the 1/0 cost comparing to MST and 

MBM methods. 

Table 8 shows the experiment results with ten clusters CO graphs. There were ten 

experiments conducted with a different number of edges connecting the clusters. For 

example, for ten edges, the total overlapping weight produced by MST, MBM, and 

MWM method are 4721, 5348, and 5570 respectively. Thus, MBM outperforms MST 

by 13.28% and the proposed MWM method outperforms MST and MBM by 17.98% 

and 4.15% respectively. The average results for ten clusters CO graphs showed that the 

proposed MWM method can potentially produce 5.59% and 16.91 % more total 

overlapping weight comparing to MBM and MST respectively. 

Table 8: Results of experiment with 10 clusters 

Cluster MWM over MWM over MBM over 
Number Edqe MST MBM MWM MBM MST MST 

1 0  1 0  4721 5348 5570 4 . 1 5% 1 7.98% 1 3 .28% 
1 0  1 5  3869 4027 4302 6 .83% 1 1 . 1 9% 4.08% 
1 0  20 5596 6405 6648 3 .79% 1 8 .80% 1 4.46% 
1 0  22 541 6 61 22 6536 6 .76% 20.68% 1 3 .04% 
1 0  25 5624 6782 71 44 5 .34% 27.03% 20.59% 
1 0  30 5774 601 5 6532 8.60% 1 3. 1 3% 4 . 1 7% 
1 0  33 5575 61 20 6300 2 .94% 1 3 .00% 9 .78% 
1 0  35 6542 7442 7882 5 .91 % 20.48% 1 3.76% 
1 0  40 6686 7035 7548 7.29% 1 2 .89% 5.22% 
1 0  45 6944 7583 791 0 4 .31 % 1 3 .91 % 9.20% 

Averaqe: 5674.7 6287.9 6637.2 5 .59% 1 6 .9 1 % 1 0 .76% 
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Figure 1 9  shows the results of the Table 8 in a bar chart. It can be seen that the proposed 

method performs all the time better than the other two methods. For example, when the 

edge number is 35, the total overlapping weight found by MST and MBM are 6542 and 

7442 respectively while it is 7882 by using the proposed method. 
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Figure 19 :  Comparison of total overlapping weight 
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Table 9 shows the summary result of the experiments. For each cluster number, there 

were ten experiments conducted and the average results are shown in the table. For 

example, for ten clusters, the average of total overlapping weight produced by MST, 

MBM, and MWM method are 5674.7, 6287 .9 ,  and 6637 .2 respectively and the 

percentage average of performance comparison for each method is also shown in the 

table (see Appendix C for details of each experiment). 
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Table 9 :  Summary of experiment results 

Cluster MWM over MWM over M BM over 
number MST MBM MWM MBM MST MST 

1 0  5674 .7  6287 .9 6637.2 5 .59% 1 6 .91 % 1 0 . 76% 

20 9509 .8  1 040 1 .4 1 1 038.9 6 . 1 2% 1 6 . 1 8% 9 .49% 

30 1 4068 .9  1 5 1 03 .9 1 5708 .7  4 .05% 1 2 . 1 1 % 7 . 77% 

40 1 7592 .4 1 8980 .3  1 981 9 4 .34% 1 3 .28% 8 .60% 

50 2 1 539 .5  23530 24431 .6  3 .75% 1 4 .09% 1 0 .00% 

60 3 1 01 1 .8 33060 . 1  34424 .5  4 . 1 1 % 1 1 .05% 6 .67% 

70 380 1 1 4 1 2 1 1 . 5 42448 .2 3 .03% 1 2 .28% 8 .98% 

80 38738 .5 41 552 . 1  42870 .6  3 .20% 1 0 .69% 7 .28% 

90 41 586 . 7  44306 .5 45569 .5  2 .78% 9 .78% 6 .82% 

1 00 4300 1 .9  47588 .9 4851 7 .4 1 .94% 1 2 .95% 1 0 .80% 

Average 3 .89% 1 2 .93% 8 . 72% 

Figure 20 shows the average total amount of VO cost can be saved by each method in a 

line chart. As expected, the proposed method performs all the time better than the other 

two methods. On average, there are 1 2 .93% saving comparing with the MST and 3.89% 

saving comparing with the MBM. For example, when the cluster number is 50, the 

average saving of l/0 cost by MST and MBM are 2 1 539. 5 and 23530 respectively while 

it is 24431 .6  by using the proposed method. 

AMO Order Comparison 

60000 

50000 

- 40000 

-+- MST 

g> 30000 -- MBM 
·;: MWM 

t- 20000 

1 0000 

0 
1 0  20 30 40 50 60 70 80 90 1 00 

Cluster number 

Figure 20:  Comparison of total saving of 1/0 cost 
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7 Further Study 

The main limitation of the study is  the use of generated artificially spatial data in the 

experiments due to budget constraints. Another limitation is the time frame of the 

research. The research only took two semesters of study. Finally, the research does not 

cover the clustering method. 

To overcome these limitations, future research can be done which may include: 

(a) The use ofreal world spatial data in the experiments; 

(b) Covering the concept of clustering technique and perform the clustering to the 

real spatial data; and 

( c) The implementation of a new cluster-scheduling method that uses other types of 

algorithms such as Ant Colo�y Optimisation algorithm or Genetic algorithms to 

find a better sequence to schedule the cluster loading process in the spatial join 

processmg. 
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8 Conclusion 

The cost of the spatial join processing is far greater than relational join processing. The 

reasons are the size of spatial objects is generally very large and it requires expensive 

computations of spatial join predicates. Generally, the spatial join processing is 

processed in two steps: filtering and refinement steps. Since the filtering step operates 

on approximations of the actual spatial data, the result is not final but a set of candidates 

that are likely to satisfy the spatial join predicate. In the refinement step, full geometry 

descriptions of these candidates are fetched into memory and then the spatial join 

operation is performed on the actual geometry. Fetching these spatial objects from disks 

into the memory requires a lot of 1/0 cost. The objective of this research is to minimise 

the 1/0 cost at the refinement step so that the spatial join query can be performed 

efficiently. 

A cluster-scheduling technique is one the most successful techniques to minimise the 

1/0 cost of a spatial join processing. The main point of this technique is to partition the 

candidate sets, which are a result from the filter step, into several clusters and then to 

schedule the processing of the clusters in an order such that the two consecutive clusters 

in the sequence have maximal number of overlapping objects. Thus, there is no need to 

fetch these overlapping objects again when processing the next cluster because they are 

already in the memory. Consequently, the 1/0 cost can be minimised. 

The proposed MWM method is based on the cluster-scheduling technique. It performs 

better than other cluster-scheduling methods, namely MST and MBM, in terms of 

producing a better AMO order to guide the cluster scheduling. The experiments have 

been conducted and the results have shown that, in terms of 1/0 cost, MWM 

outperforms MST by 13% and MBM by 4%. 

The proposed MWM method is a new method that can further minimise the 1/0 cost of 

spatial join processing. Hence, it results in faster and more efficient processing of a 

spatial join query in spatial databases. As the demand of using spatial databases is 

increasing, this proposed method is certainly significant. 
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Appendix A - Defi n it ions of Terms 

Term Description Source 
Algorithm A detailed sequence of problem-solving (Howe, 2006) 

procedure, especially an established, recursive 
computational procedure for solving a problem in 
a finite number of steps. 

AMO order Approximate Maximum Overlapping order. A (Xiao, Zhang, 
sequence, which is close to MO order, represents Jia, & Zhou, 
clusters loading process to minimise the 1/0 cost 2000) 
of fetching objects. 

Bipartite graph A graph is bipartite if its nodes can be partitioned (Cook, 
into two sets V 1 and V 2 so that every edge joins a Cunningham, 
node in VI to a node in V 2· Pulieyblank, & 

Schrijver, 1 998) 
CO graph · Cluster Overlapping graph. A weighted graph (Xiao, Zhang, 

represents the overlapping relationships between Jia, & Zhou, 
data clusters. 2000) 

GIS Geographic Inform�tion System. A computer (Howe, 2006) 
system for capturing, storing, checking, 
integrating, manipulating, analysing, and 
displaying data related to some space. 

GPL General Public Licence. The licence is intended to (Howe, 2006) 
guarantee the freedom to share and change free 
software. The GPL allows users to distribute the 
software and its source code freely. 

Hyper graph A hyper graph G can be defined as a pair (V, E), (Black, 2005) 
where V is a set of vertices, and E is a set of hyper 
edges between the vertices. Each hyper edge is a 
set of vertices: E = { {u, v, .. . } E 2V} . Hyper 
edges are undirected. 

1/0 Input/Output. Communication between a (Howe, 2006) 
computer and its users, its storage devices, other 
computers (via a network) or the outside world. 
Important aspects of 1/0 are throughput, latency, 
and whether the communications is synchronous 
or asynchronous (using some kind of buffer). 

MBM Match Based Method. MBM uses a greedy (See page 28) 
matching algorithm to find an AMO order in a CO 
graph. 

MBR Minimum Bounding Rectangle. A common used (Xiao, Zhang, 
method to approximate spatial objects. Jia, & Zhou, 

2000) 
MO order Maximum Overlapping order. An MO order in a (Xiao, Zhang, 

CO graph is a permutation of nodes in the graph Jia, & Zhou, 
such that the total size of overlapping objects 2000) 
between adjacentnodes reaches the maximum. 

. MST Maximum Spanning Tree. MST schedules clusters (Xiao, Zhang, 
in three steps: find a maximum weight spanning Jia, & Zhou, 
tree, conduct a depth-first-search of the tree, and 
construct an AMO order. 

2000) 

MWM Maximal Weight Matching. MWM uses a (Se� page 33) 
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maximum weighted matching algorithm to find an 
AMO order in a CO graph. 

NP Non-deterministic Polynomial-time. The (Black, 2005) 
complexity class of decision problems for which 
answers can be checked by an algorithm whose 
run time is polynomial in the size of the input. 

NP-complete A problem is NP-complete if it is both NP (Black, 2005) 
(verifiable in non-deterministic polynomial time) 
and NP-hard (any NP-problem can be translated 
into this problem). 

NP-hard A problem is NP-hard if solving it in polynomial (Black, 2005) 
time would make it possible to solve all problems 
in class NP in polynomial time. 

OPAS-FB Optimal Page Access Sequence with Fix Buffer. It (Lim, Pheng, & 
concerns with finding the optimal page access Chong, 2001) 
sequence that minimises the number of page re-
accesses given a fixed buffer size. 

Path graph A path graph G = (V, E) with n nodes is a graph in (Xiao, 2003) 
which nodes in V can be listed as a sequence v1, 
V2, . . .  , Vn-1 , Vn such that (v1, V2), (v2, V3), . . .  , (vn-1 , 
Vn) are the only edges of E. 

PCG Page Connectivity Graph. A bipartite graph (Shekhar, Lu, 
represents a join index between two relations at Chawla, & 
the page level. Ravada, 2002) 

Quadtree A four-way tree where each node corresponds to a (Vassilakopoulos 
sub-quadrant of the quadrant of each parent node & Corral, 2005) 
(the root corresponds to the whole space). 

R-tree A balance multiway tree for secondary storage, (Vassilakopoulos 
where each node is related to a MBR, the & Corral, 2005) 
minimum rectangle that bounds the data elements 
contained in the node. The MBR of the root 
bounds all the data stored in the tree. 

Weighted A graph having a weight or number associated (Black, 2005) 
graph with each edge. 
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Appendix B - O(n3) Weighted Matching Algorithm 

The following Weighted Matching algorithm with the running time complexity of O(n3) 

is implemented in the program developed for the experiments. It is adopted from Lawler 

(1976). The steps are: 

Step O (Start) 

The graph G = (N, A) is given, with a weight wu for each arc (i, j). Let W = Yi max 

{wu} , Set ui = W, ,1 = 1l'i = Ti = + oo and b(i) = i for each node i E N. For each node pair 

i, j set C(i, j) = <I>. Set X = <I>. There are no blossoms and no nodes are labelled. 

Step 1 (Labelling) 

(1.0) Apply the label "S: <I>" to each exposed node. 

(1.1) If there is no node i with an unscanned S-label or an unscanned T-label with 1l'i = 0 

go to Step 4. Otherwise, find such a node i. If the label is an S-label, go to Step 1.2; if it 

is a T-label, go to Step 1.3. 

(1.2) Scan the S-label on node i by carrying out the following procedure for each arc (i, 

j) l2: X incident to node i: 

• If b(i) = bG), do nothing; otherwise continue. 

• If node b(j) has an S-label and wii = 0, backtrace from the S-labels on nodes i 

and j. If different root nodes are reached, go to Step 2; if the same root node 

is reached, go to Step 3. 

• If node b(j) has an S-label and wii > 0, then carry out the following 

procedure. Set 

. 
{ 

l _ } rb(j) = mm rb(j) ' 2 
wi/ • 

Find C(b(i), bO)) = (p, q). If wii < wpq ' then set C(b(i), b(J)) = (i, j). 

• If node bO) has no S-label and wii < 1i'b(i), then apply the label "T:i, j" to bO), 

replacing any existing T-label, and set 1i'b(i) = wii . 

• . If node bO) has no S-label and wii < Tj, then set Tj = wii and set JO) = i. 

• When the scanning of node i is complete, return to Step 1.1. 

(1.3) Scan the T-label on node i (where 7ri = 0) by carrying out the following procedure 

for the unique arc (i, j) E X incident to node i. 
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• If b(i) = bO), do nothing; otherwise continue. 

• If node j has a T-label and 71} = 0, backtrace from the T-labels on nodes i and 

j. If different root nodes are reached, go to Step 2; if the same root node is 

reached, go to Step 3. 

• Otherwise, give node j the label "S:i. " The S-labels on all nodes within the 

outermost blossom with base node j are now considered to be unscanned. 

• Return to Step 1.1. 

Step 2 (Augmentation) 

An augmenting path has been found in Step 1.2, 1.3, or 4.2. Augment the matching X. 

Correct labels on nodes in the augmenting path, as described in the text. Expand 

blossoms with zero dual variables, resetting the blossom numbers. Remove labels from 

all base nodes. The remaining labels are set to the "scanned" state. Set ,1 = ?ri = Ti = + oo, 

for all i, and C(i, j) = <I>, for all i, j. Go to Step 1.0. 

Step 3 (Blossoming) 

A blossom has been formed in Step 1.2, 1.3, or 4.2. Determine the membership and base 

node of the new blossom, as described in the text. Supply the missing labels for all 

nodes, except the base node, in the new blossom. Reset the blossom numbers. Set the z­

variable 1.0 zero for the new blossom. 

Let b be the base node of the new blossom, and I be the set of ( old) base nodes 

contained in the blossom. Let J be the complementary set of base nodes. For each j E J, 

find arc C(i, j) = (p', q'), for which wp'q' = lJ?.in{wpq I C(i, j) = (p, q)}, and set C(b, j) = 
!Ef 

(p', q'). Then set r b = lJ?.in{ w pq I C(b, j) = (p, q)}. 
JEJ 

Return to Step 1.2, 1.3, or 4.2, as appropriate. 

Step 4 (Revision of Dual Solution) 

(4.1) Let Ks denotes the set of S-blossoms and KT denotes the set of T-blossoms, i.e., 

outermost blossoms whose base nodes b have T-labels with 7rb = 0. 

Find 

<h = min {ui} 

o2 = Yi min { Z k I k E K r }  

03 = min {ri I b(i) = i} 
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04 = min { '/Ti I 7ri > 0} 

o = min { 0 1 ,  02, 03 ,  04} .  

Set Ui = Ui - o , for each node i such that b(i) has an S-label. 

Set Ui = Ui + o, for each node i such that b(i) has a T-label and 7rb(i) = 0. 

Set ,1 = ,1 - 2o, for each node i such that b(i) = i. 

Set '/Ti = '/Ti - o, if '/Ti > 0. 

Set Ti = Ti - o, for each node i such that 7rb(i) > 0. 

Set zk = zk - 2o, for each blossom k E KT. 

Set zk = zk + 2o, for each blossom k E Ks. 

If o = o 1 halt; X is a maximum weight matching, and the values of Ui, Zk yield an 

optimal solution. 

If o = o2, carry out the following procedure to expand each T-blossom k for which Zk = 

0. Determine the blossoms nested immediately within the T-blossom and reset b(i) for 

all nodes within the blossom. Remove labels from all new base nodes within the 

blossom. For each new base node b, find Ti = min {Tj lb(J) = b},  and if Ti < +  oo ,  apply 

the (unscanned) label "T:t(i), i "  to b and set '1Tb = Ti. Remaining labels on nodes within 

the blossom are in a "scanned" state. 

( 4.2) If )b > 0, for all base nodes b, go to Step 1.1. Otherwise, find a base node b for 

which )b = 0 and a base node b' such that w
ii 

== 0 for (i, j) = C(b, b '). Backtrace from 

the S-labels on i and j. If different root nodes are reached, go to Step 2. If the same root 

node is reached, go to Step 3, later returning to Step 4.2. 
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Append ix C - Experimental Resu lts 

All results of the experiments are shown in the following tables. The MST, MBM, and 

MWM columns show the amount of total overlapping weight produced by each method 

respectively. To know how they are calculated, see the example in section 4.3. The 

cluster number is the number of nodes whereas the edge is the number of links 

connecting nodes in a CO graph. 

Experiment with 10 clusters 
Cluster MWM over MWM over MBM over 
Number Edge MST MBM MWM MBM MST MST 

1 0  1 0  4721 5348 5570 4 . 1 5% 1 7.98% 1 3 .28% 
1 0  1 5  3869 4027 4302 6 .83% 1 1 . 1 9% 4.08% 
1 0  20 5596 6405 6648 3 . 79% 1 8 .80% 1 4 .46% 
1 0  22 541 6 61 22 6536 6 . 76% 20 .68% 1 3 .04% 
1 0  25 5624 6782 71 44 5 .34% 27.03% 20.59% 
1 0  30 5774 60 1 5  6532 8 .60% 1 3. 1 3% 4 . 1 7% 
1 0  33 5575 61 20 6300 2 .94% 1 3 .00% 9 .78% 
1 0  35 6542 7442 7882 5 .91 % 20 .48% 1 3 . 76% 
1 0  40 6686 7035 7548 7 .29% 1 2 .89% 5 .22% 
1 0  45 6944 7583 791 0 4 .31 % 1 3 .91 % 9.20% 

Averaqe:  5674 .7  6287.9 6637 .2 5.59% 1 6 .91 % 1 0 .76% 

Experiment with 20 clusters 
Cluster MWM over MWM over MBM over 
Number Edge MST MBM MWM MBM MST MST 

20 20 7 1 61  7635 7922 3 .76% 1 0 .63% 6.62% 
20 25 7649 8357 9029 8 .04% . 1 8.04% 9.26% 
20 30 7485 8091 8603 6 .33% 1 4.94% 8 . 1 0% 
20 35 9258 1 0658 1 1 556 8 .43% 24.82% 1 5 . 1 2% 
20 40 9928 1 0898 1 1 752 7.84% 1 8.37% 9.77% 
20 45 8426 9657 1 0 1 25 4 .85% 20. 1 6% 1 4 .61 % 
20 50 1 1 21 3 1 1 851  1 2723 7 .36% 1 3 .47% 5 .69% 
20 55 1 0996 1 21 04 1 2431 2 .70% 1 3 .05% 1 0 .08% 
20 60 1 2050 1 2840 1 3839 7. 78% 1 4 .85% 6.56% 
20 65 1 0932 1 1 923 1 2409 4.08% 1 3.51 % 9 .07% 

Averaqe: 9509 .8 1 040 1 .4 1 1 038.9 6 . 1 2% 1 6 . 1 8% 9.49% 

Experiment with 30 clusters 
Cluster MWM over MWM over MBM over 
Number Edqe MST MBM MWM MBM MST MST 

30 30 9831 1 1 440 1 2052 5 .35% 22.59% 1 6 .37% 
30 35 1 1 055 1 1 435 1 1 909 4 . 1 5% 7 .73% 3.44% 
30 40 1 341 2 1 41 03 1 51 1 4 7 . 1 7% 1 2 .69% 5 . 1 5% 
30 45 1 2564 1 4363 1 4696 2.32% 1 6 .97% 1 4 .32% 
30 50 1 5226 1 6998 1 7480 2 .84% 1 4 .80% 1 1 .64% 
30 55 1 5064 1 6672 1 71 06 2 .60% 1 3 .56% 1 0 .67% 
30 60 1 5050 1 5526 1 61 32 3 .90% 7 . 1 9% 3 . 1 6% 
30 65 1 4959 1 5654 1 61 35 3.07% 7.86% 4.65% 
30 70 1 5647 1 6862 1 7307 2 .64% 1 0 .61 % 7 .77% 
30 75 1 7881 1 7986 1 91 56 6 .51 % 7 . 1 3% 0 .59% 

Average: ' 1 4068.9 1 5 1 03 .9 1 5708 .7  4.05% 1 2 . 1 1 %  7 .77% 
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Experiment with 40 clusters 
Cluster MWM over MWM over MBM over 
Number Edge MST MBM MWM MBM MST MST 

40 40 1 1 387 1 2258 1 2687 3 .50% 1 1 .42% 7 .65% 

40 45 1 4889 1 7476 1 81 55 3 .89% 21 .94% 1 7.38% 

40 50 1 371 1 1 621 3 1 6633 2 .59% 21 .3 1 % 1 8 .25% 

40 55 1 9629 20824 21 564 3.55% 9.86% 6.09% 

40 60 1 8584 1 9526 209 1 7 . 7 . 1 2% 1 2 .55% 5.07% 

40 65 1 6093 1 7842 1 8324 2 .70% 1 3 .86% 1 0 .87% 

40 70 1 7723 1 9376 2031 1 4 .83% 1 4 .60% 9 .33% 

40 75 21 993 22990 23898 3 .95% 8 .66% 4 .53% 

40 80 1 9226 201 72 2 1 6 1 2 7 . 1 4% 1 2 .4 1 %  4 .92% 

40 85 22689 231 26 24089 4 . 1 6% 6 . 1 7% 1 .93% 

Average:  1 7592.4 1 8980 .3  1 981 9 4 .34% 1 3 .28% 8 .60% 

Experiment with 50 clusters 
Cluster MWM over MWM over MBM over 
Number Edge MST MBM MWM MBM MST MST 

50 50 1 5702 1 7875 1 821 3 1 .89% 1 5 .99% 1 3 .84% 

50 55 1 73 1 6 20682 2 1 051  1 .78% 21 .57% 1 9 .44% 

50 60 1 9896 22553 23087 2 .37% 1 6 .04% 1 3 .35% 

50 65 20967 23233 23690 1 .97% 1 2 .99% 1 0 .81 % 

50 70 1 9587 22734 24435 7.48% 24.75% 1 6 .07% 

50 75 26802 27600 28740 4. 1 3% 7 .23% 2 .98% 

50 80 20960 2220 1 23362 5 .23% 1 1 .46% 5.92% 

50 85 271 38 27554 29028 5 .35% 6.96% 1 .53% 

50 90 241 84 27228 28078 3 . 1 2% 1 6 . 1 0% 1 2 .59% 

50 95 22843 23640 24632 4 .20% 7 .83% 3.49% 

Average :  2 1 539.5 23530 24431 .6  3 .75% 1 4.09% 1 0 .00% 

Experiment with 60 clusters 
Cluster MWM over MWM over MBM over 
Number Edge MST MBM MWM MBM MST MST 

60 80 271 75 29042 301 02 3 .65% 1 0 .77% 6 .87% 

60 90 251 63 271 76 28248 3.94% 1 2 .26% 8.00% 

60 1 00 29339 3221 3 3291 9 2 . 1 9% 1 2 .20% 9.80% 

60 1 1 0  31 862 33742 34748 2 .98% 9 .06% 5.90% 

60 1 20 33489 351 98 36732 4 .36% 9 .68% 5. 1 0% 

60 1 30 3 1 1 43 32563 34637 6 .37% 1 1 .22% 4 .56% 

60 1 40 3341 6 3591 8 37680 4 .91 % 1 2 .76% 7 .49% 

60 1 50 34569 36296 37651 3 .73% 8 .92% 5.00% 

60 1 60 3 1 860 3385 1 34957 3 .27% 9 .72% 6.25% 

60 1 70 321 02 34602 36571 5 .69% 1 3 .92% 7 .79% 

Average:  3 1 0 1 1 .8 33060 . 1  34424.5 4 . 1 1 % 1 1 .05% 6 .67% 
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Experiment with 70 clusters 
Cluster MWM over MWM over MBM over 
Number Edge MST MBM MWM MBM MST MST 

70 90 2791 8 31 1 72 31 833 2 . 1 2% 1 4.02% 1 1 .66% 

70 1 1 0 31 1 02 341 80 35951 5 . 1 8% 1 5 .59% 9 .90% 

70 1 30 30647 38222 391 99 2.56% 27.90% 24.72% 

70 1 50 3781 0 39273 40544 3 .24% 7.23% 3.87% 

70 1 70 38332 41 465 42544 . 2 .60% 1 0 .99% 8 . 1 7% 

70 1 90 39600 41 894 4331 5 3.39% 9.38% 5 .79% 

70 2 1 0 41 8 1 8 42779 4431 8 3 .60% 5 .98% 2 .30% 

70 230 42776 4741 3 48873 3.08% 1 4 .25% 1 0 .84% 

70 250 43770 47508 48336 1 .74% 1 0 .43% 8 .54% 

70 270 46337 48209 49569 2 .82% 6.97% 4.04% 

Average: 3801 1 41 21 1 .5 42448.2 3.03% 1 2 .28% 8.98% 

Experiment with 80 clusters 
Cluster MWM over MWM over MBM over 
Number · Edge MST MBM MWM MBM MST MST 

80 1 00 3238 1 34742 35855 3.20% 1 0 .73% 7 .29% 

80 1 1 0 34576 38444 38979 1 .39% 1 2 .73% 1 1 . 1 9% 

80 1 20 35270 371 98 3950 1 6. 1 9% 1 2.00% 5.47% 

80 1 30 3881 2 40395 41 028 1 .57% 5 .71 % 4.08% 

80 1 40 39363 42472 43921 3.41 % 1 1 .58% 7 .90% 

80 1 50 41 086 42205 4381 8 3 .82% 6.65% 2 .72% 

80 1 60 391 00 42795 44077 3 .00% 1 2 .73% 9 .45% 

80 1 70 42684 46322 4691 5 1 .28% 9 .91 % 8 .52% 

80 1 80 41 430 4349 1 45421 4.44% 9.63% 4.97% 

80 1 90 42683 47457 491 91 3.65% 1 5 .25% 1 1 . 1 8% 

Average: 38738.5 41 552 . 1  42870 .6 3.20% 1 0 .69% 7.28% 

Experiment with 90 clusters 
Cluster MWM over MWM over MBM over 
Number Edge MST MBM MWM MBM MST MST 

90 1 00 30025 3437 1 35046 1 .96% 1 6 .72% 1 4 .47% 

90 1 1 0 37294 39753 40938 2 .98% 9.77% 6.59% 

90 1 20 38608 39922 40662 1 .85% 5.32% 3 .40% 

90 1 30 41 00 1 44286 4535 1 2 .40% 1 0 .61 % 8.01 % 

90 1 40 42037 46058 47057 2 . 1 7% 1 1 .94% 9.57% 

90 1 50 42097 45622 46365 1 .63% 1 0 . 1 4% 8 .37% 

90 1 60 44784 4651 9 47708 2.56% 6 .53% 3.87% 

90 1 70 45938 4831 1 49462 2.38% 7.67% 5 . 1 7% 

90 1 80 48377 5071 5 53686 5.86% 1 0 .97% 4.83% 
90 1 90 45706 47508 49420 4.02% 8 . 1 3% 3 .94% 

Average :  41 586.7 44306.5 45569.5  2 .78% 9 .78% 6.82% 

: • ' ,. 
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Cluster 
Number EdQe 

1 00 1 00 

1 00 1 1 0  

1 00 1 20 

1 00 1 30 

1 00 1 40 

1 00 1 50 

1 00 1 60 

1 00 1 70 

1 00 1 80 

1 00 1 90 

Average :  

i ' . 
,' ' 

MST 

36677 

39200 

4 1 271 

37322 

38688 

45528 

48052 

47270 

48678 

47333 

4300 1 .9 

Experiment with 100 clusters 
MWM over MWM over MBM over 

MBM MWM MBM MST MST 

42920 43868 2 .21 % 1 9.61 % 1 7 .02% 

44525 451 95 1 .50% 1 5 .29% 1 3 .58% 

4561 8 4621 6 1 .31 % 1 1 .98% 1 0 .53% 

401 1 8  41 008 2 .22% 9 .88% 7.49% 

42653 43335 1 .60% 1 2 .0 1 % 1 0 .25% 

51 353 521 24 1 .50% 1 4 .49% 1 2 .79% 

491 88 501 82 2.02% 4 .43% 2 .36% 

53043 541 45 2.08% 1 4 .54% 1 2 .21 % 

54882 56040 2 . 1 1 %  1 5. 1 2% 1 2 .74% 

51 589 53061 2.85% 1 2 . 1 0% 8 .99% 

47588.9 4851 7.4 1 .94% 1 2 .95% 1 0 .80% 
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Appendix D - CD Contents 

The attached CD contains the following: 

1. Folder ' AMO' 

This folder contains everything for a user who is interested to run the program. It 
has two components: 

• AMO: an executable JAR file which is the program itself. 

• Folder 'project' which is the folder for storing the generated xml file. 

2. User manual 
The user manual covers the installation and program guides. 

3 .  Folder 'Experiment results' 

This folder contains two main parts: 
• All of the graphs used in the experiment and their results for all the methods. 
• 'AMO Comparison' is an MS Excel file containing all the collected results, 

their summary in tables, and charts to show the performance comparison of 

each method. 
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