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Abstract 

Marine Protected Areas (MPAs) are internationally recognised as a significant spatial 

management and cost-effective strategy to restore and conserve the marine ecosystems 

structure and function from human impact. MPAs have been declared with the aim to 

address a single or a set of management objectives in response to anthropogenic threats, 

such as fishing, which can have repercussions on biodiversity through indirect interactions 

or top-down control within an ecosystem or across ecosystems where consumers migrate to 

forage. However, this indirect impact of fishing remains poorly understood, and as a 

consequence, the effectiveness of MP As in conserving those ecological processes and 

broader biodiversity is also poorly understood. Therefore, this study investigated the 

potential effects of sanctuary zones (no-take MPAs) on higher-order consumers and their 

effects on benthic assemblage structure both on the reef and in adjacent seagrass meadows. 

Consumer assemblages were examined using underwater visual census (UVC) on reefs and 

seagrass meadows at a range of sites in sanctuary and fished zones in Marmion Marine 

Park (MMP) and Rottnest Island Marine Reserve (RIMP) over three seasons between July 

2009 and March 2010. Epibenthic fauna and flora were also sampled using quadrats on 

reefs and at set distances away from reefs in adjacent Amphibolis seagrass meadows over 

the same period. 

Sanctuary zones had higher mean total abundance and biomass of fish compared to 

adjacent fished zones, and while not significant, there was also a trend of higher means 

rock lobsters abundance in sanctuary zones. However, there was a high degree of 

variability among sites nested in zone, and among seasons. Kingston Reefs sanctuary zone 

contained the highest rock lobster and fish abundance, biomass, and species richness across 

all seasons. In addition, there was a trend of decreasing mean abundance, biomass, and 

species richness of fish with increasing distance away from the reef in Amphibolis 

meadows. In terms of epibenthic fauna and flora assemblages, there was no significant 

difference in their abundances and taxa richness between zones, but as with consumers, 

there was high variability among sites within zone and among seasons. As sanctuary zones 
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had substantially higher densities of consumers in close proximity to reefs than fished 

zones, it was expected that predation levels would be higher in sanctuary zones and would 

decrease with increasing distances away from the reef. However, there were no clear trends 

of decreasing epibenthic abundance and diversity with distance away from the reef. 

Furthermore, tethering experiments with gastropods, a major prey item for some consumer 

species, showed no significant differences in gastropod mortality between sites or with 

increasing distances away from the reef. Thus, a top-down effect caused by different 

abundances of consumers in sanctuary versus fished zones was not evident from the results. 

Much of the variability in higher-order consumers and epibenthic assemblage could be due 

to site-specific characteristics, including the age, size, and the geographical location of 

sanctuary zones, and the structural complexity of the habitat. The detection of consumers' 

direct influence on prey abundance, richness, and distribution could be partly masked by 

their feeding habits, and the level of mobility of higher-order consumers. This study 

highlights the level of complexity of food web structures with consideration of other 

environmental and biological factors. It also provides important baseline of biological data 

on marine ecosystems in marine parks of southwest temperate waters of W A for future 

assessments of those marine parks. To meet a MPAs objective of biodiversity conservation, 

it is crucial for managers to acknowledge all natural variations in marine ecosystems, such 

as the life-history traits of individuals, when setting objectives for a MPAs performance, as 

protection may be suitable for some species and inadequate for others. 
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1. Introduction 

1.1 Marine Protected Areas 

For many centuries, humans have been closely associated with the marine environment, 

exploiting its resources for profit, and as a result, a large proportion of the world's fisheries 

are now considered unsustainable and overexploited (Jackson et al., 2001; Lotze et al., 

2006; Byrnes et al., 2007). In an attempt to prevent the collapse of marine ecosystems and 

to restore its former structure and function, systematic strategies for the conservation of 
r 

marine ecosystems have been developed (Rodrigues et al., 2004). Marine Protected Areas 

(MPAs) are spatially delimited areas of ocean that have been implemented and have gained 

international recognition as a significant spatial management and cost-effective strategy 

(Agardy, 1994; Bohnsack, 1998; Hooker & Gerber, 2004). MPAs have been declared with 

the aim to address a single or a set of management objectives in response to anthropogenic 

threats, whether for biodiversity conservation (Micheli et al., 2004; Rodrigues et al., 2004; 

Claudet et al., 2008), the protection of spawning grounds of fish (West et al., 2009), or 

recovering overfished targeted species (Palumbi, 2001). 

To assess whether an MP A is successfully achieving its conservation objectives, research 

and monitoring of the marine ecosystem is vital. Before/after control/impact (BACI) 

designs have often been used to detect and assess changes in an ecosystem, through the 

collection of data before and after an ecological impact (Underwood, 1994; Schiel et al., 

2004; Henry et al., 2006). Lack of historical data prior to the implementation of an MPA 

makes this method difficult to use. An alternative method is using a fished zone where 

fishing activities are permitted, as a reference area to compare with MPAs. Countless 

studies have used this approach, and have documented an increase in density (Chapman & 

Kramer, 1999; Shears & Babcock, 2002; Babcock et al., 2007; Ban·ett et al., 2007), average 

size (Micheli, 1997; Babcock et al., 1999; Guidetti& Sala, 2007; Pande et al., 2008;Prado 

et al., 2008; Linares et al., 2010), and/or biomass (Denny et al., 2004; Langlois et al., 2005; 

McClanahan & Graham, 2005; Kramer & Heck Jr, 2007) of previously exploited fish and 

crustacean species within MP As. Fewer studies have documented the failure of MP As in 

meeting their objectives (Allison et al., 1998) possibly due to the lack of suitable habitat 
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(Mayfield et al., 2005), size issues (Le Quesne, 2009), the lack of reinforced management 

(Perera & Vos, 2007), or perhaps the benefits are too difficult to quantify and are often too 

slow to be realised (Agardy, 1994; Halpern & Warner, 2003). However, it is also possible 

that studies showing a lack of a response may reflect publication bias towards those studies 

showing a positive response of MPAs. 

While many MPAs have been shown to provide a significant spatial refuge for fished 

species to increase in numbers, these protected areas may also benefit the broader fisheries 

outside ,those areas. Although not the primary goal of most MPAs (Edgar et al., 2007, 

p.538), adjacent fisheries may benefit from these protected areas through a potential 

'spillover' effect, and/or larval export. 'Spillover' effect describes the export of adults and 

juveniles of targeted species from MPAs to adjacent fisheries (Russ et al., 2004; Goiii et 

al., 2006; West et al., 2009; Amargos et al., 2010; Goiii et al., 2010), whereas larval export 

is the net movement of propagules from MPAs into adjacent fished zones (Pelc et al., 

2009). A higher production of propagules (eggs and larvae) is expected following the 

protection and subsequent increase in biomass of targeted stock (Kelly et al., 2002; Willis 

et al., 2003). However, this concept of MPAs acting as a source of increased propagule 

production is debatable as it may also be due to an increased attraction of species to the 

MP A. Therefore, prior to understanding how systems respond to MPAs, it is crucial to 

grasp the fundamental concepts driving marine ecosystems. 

1.2 Marine trophodynamics 

Similar to terrestrial and freshwater ecosystems, marine ecosystems constitute a variety of 

organisms and processes that occur between the organisms and their associated habitat(s). 

Organisms can be broadly categorised into discrete trophic levels: primary producers 

forming the basis of a food web, followed by consumers that either feed on plant 

(herbivores) or animal (carnivores) material, or feed across trophic levels (omnivores), or 

feed on organic wastes or dead material of any trophic level (detrivores and scavengers) 

(Huntly, 1991). Many consumers may have close interactions to other trophic levels 

through important structuring processes such as competition, herbivory, recruitment, and 
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predation (Huntly, 1991; Wilson, 1991). Marine ecosystems are generally open with high 

levels of connectivity among habitats (Hixon et al., 2002; Edgar et al., 2007, p.537), 

forming complex and interactive food webs. Therefore, a consumer's role, and the 

interactions it has with its associated food sources, is likely to influence other species 

within its community (Connell, 1975) through direct and indirect relationships. 

Interactions in food webs have the potential to regulate a community's structure, either 

through bottom-up or top-down control (Hairston et al., 1960; Power, 1992). Bottom-up 

control ,describes how predators are limited by the availability of prey (Power, 1992), 

whereas top-down control illustrates how lower trophic levels are limited by predation 

(Hairston et al., 1960). Of particular focus, top-down control demonstrates how higher

order predators can shape the structure of the benthic assemblage by reducing two or more 

links such as herbivores and consumer numbers. This natural trophic cascade has been 

observed in coral reef systems (Graham et al., 2003; Stallings, 2008), rocky reefs (Menge, 

1995; Pinnegar et al., 2000; Shears & Babcock, 2003; O'Gorman et al., 2008), and in the 

open ocean (Frank et al., 2005). 

The level of complexity of a food web structure is crucial to understanding how ecological 

communities may respond to the effects of changes in consumer abundances (O'Gorman et 

al., 2008). A simple linear food chain generally consists of three-tiers: primary producers, 

herbivores, and predators; however, these are not frequently observed in nature (Polis, 

1991; Menge, 1995). Rather trophic interactions between species are typically dynamic, 

forming complex food webs involving four or more tiers (Polis, 1991; Pimm, 2002). 

Adding another level to the trophic system will shift the response in a trophic cascade, 

making it difficult to determine the species' response. A consumer's feeding mode further 

complicates this response. Unlike carnivores and herbivores that consume from a single 

trophic level, omnivores feed on a variety of trophic levels from p1imary producers to 

secondary consumers (Pimm & Lawton, 1978; Thompson et al., 2007), making it difficult 

to determine whether or not omnivores have an impact on lower trophic levels (Ho & 

Pennings, 2008). Furthermore, unlike diurnally active species where their movement 

patterns can be observed, many individuals are nocturnally active and their activity patterns 
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can go undetected (Nagelkerken et al., 2000; Sheperd & Clarkson, 2001; Verweij et al., 

2006). These biotic factors, however, are often too complex to quantify or experimentally 

manipulate, making it difficult to link shifts in communities to changes in consumer 

abundances. 

1.3 Impacts of fishing on marine biodiversity 

Humans have dominated most marine food webs through the exploitation of marine ,. 
resources primarily for human consumption through fishing (Jackson et al., 2001; Dulvy et 

al., 2003; Myers & Worm, 2003; Halpern et al., 2008). This activity directly removes a 

wide range of species from multiple trophic levels, particularly higher-order consumers. As 

a result, the overall abundance and biomass of important targeted and by-catch species are 

drastically reduced (Ludwig et al., 1993; Jennings & Kaiser, 1998; Myers & Worm, 2005; 

Byrnes et al., 2007). The targeted species are often large carnivores (Jennings & Kaiser, 

1998), which generally have prolonged lifespans, delayed reproduction, and low 

reproduction rates (Daytonet al., 1995; Jennings et al., 1999). Fishing activities also have 

the potential to manipulate genetic diversity, shift foraging behaviour, the age at which 

species mature, and reduce the average size of species (Policansky, 1993). 

The direct loss of consumers through fishing potentially has repercussions throughout an 

ecosystem through indirect interactions or top-down control (Jackson et al., 2001; 

Bascompte et al., 2005). Several studies have shown that over-harvesting of high-order 

predators can lead to an increase in intermediate prey and indirectly stmctured lower 

trophic levels on rocky reefs (Shears & Babcock, 2002; Clemente et al., 2008; Ban·ett et al., 

2009; Sonnenholzner et al., 2009), coral reefs (Harborne et al., 2009; Stallings, 2009), kelp 

forests (Estes et al., 1998; Babcock et al., 1999), and in seagrass meadows (Gloeckner & 

Luczkovich, 2008; Moksnes et al., 2008). Changes in species composition, abundance, and 

distribution of lower trophic levels (e.g. marine benthos) has also been evident in other 

fishe1ies such as bottom fishing for scallops and shrimp through destmctive dredging 

(Kaiser et al., 2000; Bradshaw et al., 2002; Morsan, 2009). Therefore, several components 

within a food web are influenced in response to a trophic cascade in individual systems. 
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The response of a marine system is dependent on its food web complexity. The 

restructuring of entire marine systems through trophic cascades has been documented for 

simple systems containing only a few interacting species (Estes & Duggins, 1995). 

Complex food webs containing many taxa and their direct and indirect effects can play a 

significant role in the community stability, however there is continued uncertainty about the 

mechanisms driving the cascading effects (Schmitz et al., 2004;Dunne et al., 2005; Frank et 

al., 2005; O'Gorman& Emmerson, 2009). Studies on trophic cascades have generally 

focused on high-order carnivores within a single habitat. However, consumers can move 
f' 

across habitat boundaries, and any removal of consumers in one system via fishing may 

have a trophic cascade effect in adjacent systems where the target species forages. 

1.4 Habitat connectivity 

Some consumers are strongly associated with a particular habitat, while others move 

considerable distances into other habitats. This spatial movement between multiple habitats 

presents an important trophic link between consumers and prey across habitats in a mmine 

landscape (Sheperd & Clarkson, 2001; Callaway & Hastings, 2002; Heithaus et al., 2002; 

Bonfil et al., 2005; Valentine et al., 2007). Foraging movements across habitat boundaries 

may involve a consumer shifting from a structurally-complex shelter habitat (e.g. rocky 

reefs) to another structurally complex habitat (e.g. seagrass meadows) or a less structured 

habitat (e.g. unvegetated areas) as seen in the nocturnal movements of rock lobsters (Ogden 

et al., 1976; Cox et al., 1997; MacArthur et al., 2008) and fish (Grober-Dunsmore et al., 

2007; Nagelkerken et al., 2008). The effects of foraging in neighbouring habitats can 

propagate through reductions in prey densities and shifts in overall assemblages (Huxel & 

McCann, 1998; Barros, 2005; Langlois et al., 2005; Guidetti, 2006). Prey species have been 

shown to decline in densities immediately adjacent the reef and increase with distance away 

from the reef (Posey & Ambrose, 1994; Langlois et al., 2005; Wernberg et al., 2006; 

Valentine et al., 2007; Vanderklift et al., 2007). 

The foraging movement of higher-order consumers across habitat boundaries highlights the 

complexities in trophic dynamics of marine ecosystems. Fishing activities, through the 
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direct removal of a consumer from one system can, therefore, potentially affect associated 

prey in adjacent habitats (Valentine et al., 2008). Unfortunately, this indirect impact 

remains poorly understood, and as a consequence, the effectiveness of MP As in conserving 

those ecological processes is also poorly understood. 

1.5 Significance and aims of study 

Despite abundant published literature on the benefits of MPAs and top-down control 
r 

globally, there is relatively little known about these ecological processes in temperate 

marine ecosystems in Western Australia (WA). The Perth metropolitan waters of southwest 

WA cover approximately 14,000km2
, and comprise a mosaic of habitats from limestone 

rocky reefs dominated by macroalgae to seagrass meadows and unvegetated areas (Phillips, 

2001). Amphibolis spp. and Posidonia spp. are the dominant canopy-forming seagrasses in 

the region (Kirkman & Walker, 1989) and function as important habitats for invertebrates 

and vertebrate marine organisms, and acts as an important substrate for epiphytic algal 

diversity (Moncreiff & Sullivan, 2001). Seagrass-associated fauna includes amphipods, 

crustaceans, nematodes, echinoderms and small fish (Jernakoff & Nielsen, 1998). 

The Leeuwin CulTent is the dominant culTent in the region, with its poleward flow 

transporting warm, oligotrophic waters along the continental shelf (Church et al., 1989). 

This culTent is responsible for the tropical-temperate transition zone that has promoted a 

high level of species richness and endemism in the region (Hutchins & Pearce, 1994; 

Roberts et al., 2002). This biodiversity hotspot has made it a highly desirable region for 

commercial and recreational fishing (Department of Fisheries, 2008; Bellchambers et al., 

2009). This southwest transition region also contains an extended chain of inshore lagoons 

that are considered important areas for benthic productivity and recruitment for a variety of 

marine species, including consumers species targeted by fisheries (Department of 

Environment and Water Resources, 2006). 

As a consequefice of continued exploitation of marine resources that has lead to significant 

decline in population stocks (Mitchell & Baba, 2006), 12 marine parks have been created 
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under the vesting authority of The Marine Parks and Reserve Authority (MPRA) in W A. 

One of the 12 Marine Parks of interest lies within the Perth Metropolitan region, Marmion 

Marine Park (MMP), while an additional reserve, the Rottnest Island Marine Reserve 

(RIMR) has been gazetted and governed by the Rottnest Island Authority. The key 

objective of these MPAs is to have healthy and sustainable marine ecosystems through the 

conservation of biological diversity (MPRA, 2009). MPRA is a statutory body reporting to 

the Minister for the Environment, however, the Department of Environment and 

Conservation (DEC) is primarily responsible for the daily management of the vested ,. 
waters, providing administrative support to the MPRA (MPRA, 2009). Mmine Parks allow 

some level of activities to occur within different areas by implementing four management 

zones consistent with the conservation of the marine environment. These zones include 

general use, recreation, special purpose, and sanctuary zones. Sanctuary zones prohibit all 

forms of fishing. 

Fish and the western rock lobster Panulirus cygnus are abundant consumers along the 

southwest WA coast, both forming important fisheries. The West Coast demersal scalefish 

fishery targets over 100 fish species (Fairclough et al., 2009), and the western rock lobster 

is the largest single-species fishery in Australia, annually worth AUS$250-$400 million. 

The western rock lobster fishery is considered a sustainable fishery having been awarded 

the Marine Stewardship Council accreditation (de Lestang & Melville-Smith, 2006). 

However, due to the low puerulus settlement numbers, the rock lobster fishery has had to 

review their management strategies (Caputi et al., 2008). Demersal scalefish and rock 

lobsters, which are carnivorous or omnivorous, occupy high-relief limestone reefs 

dominated by macroalgal canopies, primarily by laminarian (kelps) (Searle & Semeniuk, 

1985; Howard, 1989; Phillips et al., 1997; Connell & Irving, 2008) and move into the 

surrounding habitats in shallow (<1Om in depth) coastal waters (MacArthur et al. 2008). 

The broad aim of this study was to investigate the potential effects of sanctuary zones (or 

no-take zones as a form of MPAs) on higher-order consumer abundance and in turn their 

effects on benthic assemblage structure both on the reef and in adjacent seagrass meadows. 

It is reasonable to expect that a change in higher-order consumer abundance induced by 
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fishing may lead to a restructuring of benthic assemblages through changes in the intensity 

of their foraging activities. Also, since those consumers display limited movement into 

adjacent seagrass meadows (Willis et al., 2001; Edgar et al., 2004), the restructuring of 

benthic assemblages will diminish with increasing distance away from reefs. More 

specifically, my research tested the following three hypotheses: 

1. The abundance, biomass and diversity of higher-order consumers would differ 

between sanctuary and fished zones; 

:l. The abundance and diversity of epibenthic fauna and flora would differ between 

sanctuary and fished zones, and would increase in abundance with increasing 

distances away from the reef; and 

3. Relative predation levels on gastropods in seagrass meadows would differ 

between sanctuary and fished zones, with predation levels decreasing with 

increasing distances away from the reef. 

This study will provide baseline data necessary to assess whether the MP As in southwest 

temperate waters of WA are successfully meeting their objectives of biodiversity 

conservation. It will provide some insights into how ecosystems function in response to 

harvesting of higher-order consumers by humans and to protection through sanctuary 

zones, and how it may affect other trophic levels. These data would contribute to the 

judicious use and preservation of marine ecosystems. 
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2. Materials and Methods 

2.1 Study sites 

2.1.1 Pilot study 

Prior to the selection of the sites, extensive pilot work was conducted at various locations 

around Rottnest Island and Marmion Marine Park in April 2009 (Figure 2.l).Sites were 

selected to represent similar habitat structure based on visual observations via drop-down 

video c,ameras, snorkel and SCUBA diver surveys, as well as existing and current 

knowledge from local residents and researchers. All sites chosen had extensive 

(approximately 200m in length and of appropriate width) Amphibolis spp. seagrass 

meadows adjacent to limestone rocky reef, in shallow waters (<lOrn depth), and exposed to 

similar wind and swell conditions. 

2.1.2 Study sites and general design 

The study was conducted at two Marine Protected Areas (MPAs): Marmion Marine Park 

(MMP) (3F49.4' S, 115°40' E) and Rottnest Island Marine Reserve (32°0'0 S, 115°30'0 

E), which were both located within the metropolitan region of the southwest coast of 

Western Australia (Figure 2.1). 

Marmion Marine Park (MMP) was gazetted in 1987, when it was classified as a Class A 

Marine Reserve to conserve the diverse marine communities and habitats representative of 

West Australia's mid-west coast (DEC, 1992). MMP protects 9498ha of numerous shore

parallel intertidal limestone reef systems of low relief reef, and complex assemblages of 

benthic communities, including seagrass habitats and sand. Three sanctuary zones (where 

fishing if prohibited) were implemented within the MPA in 1999 (Figure 2.1). These are 

'Little Island' (0.06km2
), 'The Lumps' (0.28km2

), and 'Boyinaboat Reef' (0.07km2
), all 

nested within a larger fished zone, and comprises of approximately 0.42km2 or 0.44% of 

the total Park. 
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Rottnest Island is located 18km west of Fremantle, Western Australia. Due to its 

geographic isolation from the mainland and its close proximity to the Leeuwin Current, the 

marine waters of Rottnest Island are ecologically and biologically unique. Therefore, the 

coastal waters of Rottnest were declared a Class A Marine Reserve in 1917 with the aim to 

protect representative samples of entire marine habitats, and endemic West Australian 

species. The Marine Reserve (MR) covers an area of 3828ha that excludes recreational 

spear fishing within 800m from the shore and commercial rock lobster fishing out to 

1600m from the shore. Within the MR, five sanctuary zones have been implemented, two ,. 
of which have been gazetted since 1988 (Kingston Reefs 164ha, and Parker Point 89ha) and 

have since been extended, and the creation of three sanctuary zones (Armstrong Bay 82ha, 

Green Island 92ha, and West End 236ha) in 2007 (Figure 2.1). 

At MMP, two sites of similar wave exposure and west to west-south oceanic swells were 

selected, one in the Boyinaboat Reef sanctuary zone (31 °49' S, 115°43 'E) and the other at 

an adjacent site, Wreck Rock (31 °48'S, l15°43'E), a fished zone where fishing is allowed 

(Figure 2.1). Four sites were selected at Rottnest Island MR. A site in the Kingston Reefs 

sanctuary zone (31 °59'S, 115°33'E) was paired with an adjacent fished site at Twin Rocks 

(32°00'S, 115°33'E). Both these sites were relatively exposed to south and southeast swells 

and wind. An additional site at Green Island sanctuary zone (32°01 'S 115°29'E) was paired 

with an adjacent fished site at Rocky Bay (32°00'S, 115°28'E) (Figure 2.1) of which both 

sites were sheltered from southerly winds and swell. All these sanctuary zones differ in 

terms of size and the length of protection, despite having similar fishing restrictions. 

Therefore, it is expected that each sanctuary site was to exhibit different responses to 

protection compared to fished zones. 
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Figure 2.1. Locations of Marmion Marine Park (MMP) and Rottnest Island Marine Reserve (MR). Sanctuary 
zones are located at Boyinaboat Reef in MMP, and Kingston Reefs and Green Island in Rottnest Island MR; 
fished zones are located at Wreck Rock in MMP, and Twin Rocks and Rocky Bay in Rottnest Island MR. 
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The study design was based on three sets of paired sites (Figure 2.2). Within each pair, one 

site was located in a sanctuary zone where extractive activities such as fishing are 

prohibited and an adjacent reference site where extractive activities are permitted. All sites 

were located in shallow waters, generally with depths of 4-S.Om near the reef and gradually 

deepening with increasing distances away from the reef (4-lOm). Twin Rocks fished zone 

was the exception, with depths gradually decreasing with distance (5.5-l.lm) from the reef. 

Sampling was conducted from late July 2009 to early-March 2010. This timeframe 

coincided with three different seasons, winter and spring 2009, and summer 2009-2010, 
I" 

respectively, and allowed me to compare open and closed western rock lobster fishing 

season, open from 15th November to 301
h June. 

The study design consisted of six sites however, only five were examined during the winter 

period (Figure 2.2). A fished site at Henrietta Rocks, located northeast of Parker Point, was 

initially paired with Green Island sanctuary zone, It was removed from further analysis as 

the reef was in close proximity to an adjacent reef, potentially confounding the overall data 

for higher-order consumers and benthic assemblage in seagrass meadows. Therefore, an 

unbalanced design was conceived. 
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Figure 2.2. Experimental design to determine the abundance and diversity of higher-order consumers. ORF: 
sampled at the reef. 

2.2 Abundance of higher-order consumers 

2.2.1 Pilot Study 

A pilot study was conducted at Boyinaboat Reef (Figure 2.1) in June 2009 to practice 

visually estimating the lengths of fish species and rock lobsters accurately. To ensure the 

size estimates of each lobster was recorded accurately, the carapace length (CL) was first 

visually estimated to the nearest 5mm, then captured using a spring-loaded crayfish loop 

and measured using a ruler. A total of eight individual P. cygnus were caught. However, 

too few lobsters were caught to create a linear regression model on the association between 

the estimates and true measurement, therefore, lobsters were broadly categorised as legal 

(>77mm CL), non-legal (<77mm CL), or unknown (only antennae were observed). To 
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ensure the total length (TL) of each fish was recorded accurately and could be applied to a 

wide variety of temperate demersal fish species, the observer (lnostroza, K.) used 2D 

aluminium fish figurines of known lengths (5, 10, 15, 20, 25, 30, and 40cm) (Westera et al., 

2003) as calibrations. Four randomly selected figures from the total seven known lengths 

were placed at the reef and in seagrass approximately 2.5m away to obtain a length 

estimate. This was pe1formed for approximately 5-10 minutes prior to the commencement 

of every underwater visual census (UVC). 

2.2.2 Relative abundance and biomass offish species 

To estimate the relative abundance and species richness of the fish assemblage within 

sanctuary and fished zones, underwater visual censuses were performed at the reef and two 

distances away from the reef edge: 0, 60, and 200m in adjacent Amphibolis spp. meadows 

(n=9) (Figure 2.2). These were conducted during daylight hours (between 0700 and 1200 

hrs) and focused only on diurnally active non-cryptic fish species. Censuses were only 

conducted when visibility was >3m, and low swells to minimise potential risks and 

variations in results. Throughout the study, one observer (Inostroza, K.) conducted all 

UVCs to minimise error and bias (Samoilys and Carlos, 2000). 

To avoid localised disturbances caused by the presence of divers after entering the water, 

both divers remained motionless on the seafloor for approximately 5-7 minutes to settle the 

behavioural responses of fishes (Shepherd and Clarkson, 2001). During this time, the 

observer practiced estimating and recognising fish size measurements through calibration 

using 2D aluminium figurines. Three 25m x 5m belt transect (length x width, respectively) 

five meters apart, were haphazardly placed parallel to whether the fish assemblages and 

abundances altered between two different habitats, as previous research has shown a greater 

abundance of fish species close to the reef than at greater distances away (Howard, 1989). 

For each transect, the primary diver followed a compass bearing to ensure that the transect 

did not deviate, while the second diver secured a tape measure at the beginning of the 

transect and followed closely behind the observer at a steady pace for 25m.To minimise 
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bias in fish counts, both divers advanced at a rate of 25m2 per minute, completing each 

transect in approximately 12 minutes (Samoilys & Carlos, 2000). 

All fish and schooling fish present within each transect were identified, counted and had 

their total length (TL) recorded to within 5cm. Fish were accurately identified to the lowest 

taxonomic level possible using photographic aids. Estimates of fish lengths obtained during 

UVCs were converted to biomass, using allometric length-weight conversion: 

(eq. 1) 

f' 

whereby W is weight in grams, L is total length in centimetres, and parameters a and b are 

constants, sourced from published length-weight relationship (Kulbicki et al., 2005). For 

species where length-weight relationships were not available, the genus or higher 

taxonomic level were used, or the biomass were estimated by using a congener with a 

similar body size and shape. 

2.2.3 Relative abundance of western rock lobsters 

To estimate the relative abundance of western rock lobster Panulirus cygnus, four replicate 

10-minute searches were conducted amongst reef, crevices, and reef edge at each site. Due 

to their nocturnal activities, P. cygnus generally seek shelter in reef crevices during daylight 

hours (Cobb, 1981; Jernakoff et al., 1993). Each rock lobster observed was counted and 

assigned to three size classes: legal (> 77mm carapace length CL), non-legal ( <77mm CL), 

and uncertain. Those individuals were the carapace was not clearly visible but antennae 

were observed, were categorised as unce11ain. 

2.2.4 Statistical analysis 

A 4 factor mixed-model design was employed to test for differences in fish abundance, 

diversity and biomass between: (1) zone (fixed factor; 2 levels); (2) site (random factor; 

nested within zone, 3 levels); (3) seasons (fixed factor; 3 levels); and (4) distance (fixed 

factor; 3 levels). Fish community structure, biomass, and species richness were examined 
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using multivariate statistics as an unbalanced design. The data was not normally distributed 

following transformation due to the unequal sample size. As permutational multivariate 

analysis of variance (PERMANOVA; Anderson (2001)) is robust to data not meeting the 

assumptions of traditional ANOV A, it was used to investigate differences between 

dependent variables. To overcome heteroscadasticity, data were square-root ('/x) 

transformed. All permutation analyses were conducted with 9999 permutations on residuals 

under a reduced model. Post-hoc a prioiri pair-wise comparisons (Monte Carlo) were used 

to test for differences among levels within significant factors. 
r 

Analyses of differences in fish assemblage structure were based on Bray-Curtis similarity 

indices, and data were square-root ("'-lx) transformed to reduce the influence of extremely 

abundant fish species. Canonical analyses of principal coordinates (CAP) were undertaken. 

CAP plots allowed the examination of individual species that were likely to be responsible 

for any observed differences through correlations of taxa counts with the canonical axis. 

Data was constrained using two axes in a higher two-dimensional plot to separate the 

groups and visualise patterns. All multivariate analyses were made using PRIMER v6 with 

PERMANOVA+ add-on. 

A 3-way mixed-model nested analysis of variance (ANOVA) was used to test for 

differences in legal-sized and total abundance of western rock lobster. The three factors 

were: (1) zone (fixed factor; 2levels: sanctuary and non-sanctuary zones); (2) site (random 

factor; nested within zones; 3 levels: sanctuary Boyinaboat Reef, Green Island, and 

Kingston Reefs; fished Wreck Rock, Twin Rocks, and Rocky Bay); and (3) seasons (fixed; 

3 levels: winter, spring, and summer). Cochran's test was used to test for homogeneity of 

variances. As data met the assumptions of ANOV A, data were not transformed. Student

Newman-Keuls (S-N-K) post-hoc tests were carried out where significant effects occurred 

(p<0.05). Analyses were performed using GMa V Statistical Analysis Program. 
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2.3 Impact of higher-order consumers on abundance and biomass of benthic 

assemblage 

2.3.1 Experimental design and approach 

The study design consisted of six sites, three sites nested within sanctuary zones and three 

sites nested within fished zones, examined over three seasons. Only five were examined 

during the winter period as previously mentioned (Section 2.1.2). The benthic assemblages 

were sampled at increasing distances from the reef at each site within sanctuary and fished 

zones (Figure 2.3). A tape measure was secured to the reef edge, and placed in Amphibolis 

spp. seagrass meadows adjacent to the reef out to approximately 200m. At increasing 

distances away from the reef (ORF on the reef, OSG, 15, 30, 60, 120 and 200m in seagrass), 

three replicate 0.25m2 (0.5m x 0.5m) quadrats were placed haphazardly in the seagrass 

meadow (n=18) (Figure 2.3). Within each quadrat, all aboveground epibenthic and sessile 

fauna and flora were removed and carefully placed into calico bags and frozen once 

returned to the laboratory. 
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Figure 2.3. Study design to determine the abundance and biomass of the benthic assemblage. ORF: sampled at 

the reef; and OSG sampled in seagrass immediately following the reef. 

2.3.2 Laboratory processing 

Each sample was defrosted, rinsed in clean freshwater and passed through a 4mm and 

0.5mm sieve to provide size-related abundance of broad taxonomic epifaunal invertebrate 

groups (Jernakoff & Nielsen, 1998). All fauna were identified to the lowest possible 

taxonomic level. 

Seagrass were separated into species, and three shoots of each species were randomly 

selected from the sample, a substantial representation of the total sample (Phillips et al., 

1997). For Amphibolis spp., all the leaf clusters were detached from the stems, and 10 
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individual leaves were selected at random. The total length of the stems were measured and 

cut into 20 equal portions. This allowed for the relative abundance of algae functional 

groups on seagrass to be obtained. These functional groups included: articulated and 

encmsting calcareous coralline, corticated terete and foliose, filamentous, and leathery 

algae (Steneck & Dethier, 1994). The algae were divided into simple polyphyletic groups 

based on anatomical and morphological characteristics. Using morphological attributes 

rather than species can: (1) assist in detecting patterns in community stmcture to make 

comparisons in space and time (Steneck & Dethier, 1994); (2) does not require a high level 
f' 

of taxonomic expertise; and (3) reduces sampling effort. These functional groups are 

readily consumed by P. cygnus (Edgar, 1990a; Jemakoff et al., 1993) and by vadous 

temperate fish species (Edgar & Shaw, 1995; MacArthur & Hyndes, 2007). 

The presence or absence of algal functional groups on all leaves and stems were recorded 

with the aid of a dissecting microscope. All algae were removed and separated into 

different functional groups. For each sample, the entire seagrass sample, selected leaves 

(n=10), stems (n=20), and each algal morphological group were weighed separately to the 

nearest gram, dded in a 60°C oven for 24 to 48 hours and weighed again to the nearest 

again to the nearest gram for dry weight (Jemakoff & Nielsen, 1998). 

2.3.3 Statistical analysis 

A 4 factor mixed-model design was employed to test for differences in relative abundance 

and total biomass of epiphytic algae on seagrass and benthic faunal assemblage between: 

(1) zone (fixed factor; 2 levels); (2) site (random factor; nested within zone, 3 levels); (3) 

seasons (fixed factor; 3 levels); and (4) distance (fixed factor; 7 levels). Benthic 

assemblages were examined using Permutational multivadate analysis of valiance 

(PERMANOVA; Anderson (2001)) and post-hoc a prioiri pair wise comparisons (Monte 

Carlo) as previously mentioned above. SIMPER analyses were used to determine the 

contdbution of each algal functional group to the average Bray-Curtis similadties between 

zones, sites nested within zones, seasons, and distances. This method identified the algal 
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groups responsible for any differences that occurr-ed between factors through the 

comparison of two factors at a time. 

To visualise the maximum differences between zones and other factors, canonical analysis 

of principal coordinates (CAP) were undertaken. CAP plots allowed the examination of 

individual species that were likely to be responsible for any observed differences through 

con-elations of taxa counts with the canonical axis. 

f' 

2.4 Predation and its effect with increasing distance from reef edge 

2.4.1 Pilot Study 

A pilot study was conducted to test logistical problems associated with tethering, which 

was repeated twice. Gastropod death caused by tethering artefacts was of primary concern 

(Aronson & Heck Jr, 1995; Aronson et al., 2001). The gastropods Pyrene bidentata 

(Collumbellidae) and Cantharidus lehmanni (Trochidae) were used for the pilot studies and 

the tethering experiments. Both are epifaunal species, common to south-western Australia 

coastal environments, and were selected because both occmTed in high abundances at the 

reef and in seagrass meadows in the benthic assemblage studies. Numerous adult 

gastropods were collected from Posidonia spp. and Amphibolis spp. meadows at Wreck 

Rock in MMP. The species were transported to the laboratory in an esky and placed into an 

aerated seawater aquarium (20 x 15 x lOcm; length, width, and height, respectively), and 

fed on epiphytic Posidonia spp. and Amphibolis spp stems and leaves for two days prior to 

experimentation. This allowed them to acclimatised to the laboratory conditions with a 

16°C room temperature, and reduce any stress levels. 

To tether the gastropods, the outer shell of each individual was dried using paper towels, 

avoiding any contact with the soft body residing in the shell. A 15cm long monofilament 

line as suggested by Barbeau and Scheibling (1994), with a slipknot at each end was placed 

around the shell and glued using cyanoacrylate. A cable tie was placed at the other end of 

the line to act as a weight. For each gastropod species, one tethered and untethered 

individual were placed into a small tank (10 x 10 x 15cm; length, width, and height, 
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respectively) (n=12). Three small tanks were then placed within a larger aerated aquarium 

(20 x 15 x lOcm; length, width, and height, respectively) (n=4), and fed Amphibolis spp. 

stems and leaves with epiphytes. Invertebrates were observed everyday for seven days to 

determine the number of surviving tethered individuals. Temperature and pH levels were 

observed once a day over this period, with minor fluctuations between 18-18.4 oc and pH 

8.01-8.07. Pilot work determined there were no mortalities for either tethered or untethered 

individuals for both species. 

2.4.2 Experimental design 

The tethering experiment was located at two sanctuary and two fished sites at Rottnest 

Island MR, since earlier UVCs at those sites had demonstrated a greater abundance and 

diversity of fish species and abundance of rock lobsters compared to sites in Marmion 

Marine Park (see Results). The four sites were located at Kingston Reefs and Green Island 

sanctuary zones, and Twin Rocks and Rocky Bay fished zones. 

Adult P. bidentata and C. lehmanni individuals were collected from Posidonia spp from 

Twin Rocks in February 2010. Five individuals of each species were deployed at distances 

of 0 (reef), 15, 60, and 200m (n=160) in Amphibolis spp. seagrass meadows adjacent to 

limestone rocky reef. Each individual was tethered using a 15cm nylon monofilament line 

looped to a stainless steel tent peg, which was 16.5cm in height. Each tethered individual 

was left out for four days. 

Dming the retlieval, not all tethers were located as a result of bad weather and therefore 

major changes were made to the objectives and overall statistical analysis. The tethered 

gastropods were classified into two broad categories: (1) dead (missing shell, with or 

without intact nylon loop attached); and (2) alive with intact and/or damaged shells 

(Barbeau & Scheibling, 1994). 
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2.4.3 Statistical analysis 

A Kruskal-Wallis H test was employed to test for differences in predation and its potential 

effect with increasing distances away from the reef between: (1) site (4 levels); (2) distance 

(4levels), and (3) gastropod species (2levels). This non-parametric analysis was employed, 

as there was missing data, creating an unbalanced design and resulted in data not being 

normally distributed following transformation. Kruskal-Wallis test was used, as data does 

not need to meet the assumptions of normality or homogeneity of variance of traditional 

ANOV .fl... All univariate analyses were made using SPSS Statistical Package. 
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3. Results 

3.1 Abundance and diversity of higher-order consumers 

3.1.1 Legal-sized and total abundance of rock lobster 

The mean relative abundance of legal-sized lobsters in sanctuary zones was 9.46 ± 1.38 

individuals lOmin-\ compared to 1.58 ± 0.33 individuals 10min-1 in fished zones. Although 

a greater mean abundance of legal-sized rock lobsters was found in sanctuary zones 

compared to adjacent fished zones, statistics revealed no significant zone effect (F=3.05, 

p>0.05; Table 3.1). However, a difference in site nested within zone was found to be 

significant (F=21.48, p<0.001; Table 3.1). This was due to the variability between sites 

nested within sanctuary zones as indicated by SNK post-hoc tests. Kingston Reefs 

sanctuary zone had a significantly greater overall abundance of rock lobsters (16.75 ± 0.69 

individuals 10min-1
), while Boyinaboat Reef sanctuary zone had the lowest overall lobster 

abundance (2.5 ± 0.18 individuals lOmin-1
) (Figure 3.1A). There were no differences in the 

abundance oflobsters within fished zones (Figure 3.1A). 

The mixed-model nested ANOV A also demonstrated a significant site nested within zone x 

season interaction (F=2.54, p<0.05; Table 3.1). Seasonal variability was observed within 

and between sites nested within sanctuary zones as shown by SNK post-hoc tests. Kingston 

Reefs sanctuary zone was the only site to show a significant seasonal effect, as a greater 

abundance of lobsters were observed in summer (21.25 ± 4.07 individuals 10min-1
) and 

spring (21.0 ± 1.08 individuals 10min-1
) compared to winter (mean 8.0 ± 2.48 SE 

individuals 10min-1
). All other sites nested within sanctuary and fished zones had relatively 

constant lobster abundance over the seasons. Seasonal variability between sanctuary zones 

was also observed, as Kingston Reefs displayed a greater abundance of legal-sized lobsters 

in summer (21.25 ± 4.07 individuals 10min1
), while Boyinaboat Reef had the lowest lobster 

abundance over all seasons (2.5 ± 0.18 individuals 10min-1
; Figure 3.1A). This 

demonstrated a high degree of spatial and temporal variability. 
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The mean relative abundance of all rock lobsters, including legal and below legal size, was 

16.72 ± 2.20 individuals 10min-1 in sanctuary zones, compared to 3.0 ± 0.56 individuals 

10min-1 in fished zones. Total abundance of lobsters showed a similar pattern to the legal

size lobster, as the legal-size lobsters made up a large proportion of the total abundances of 

lobsters. A greater mean abundance of rock lobsters were observed in sanctuary zones 

compared to fished zones, however, statistics indicated no significant zone effect (F=4.20, 

p>0.05; Table 3.1). There was however, variability between sites as highlighted by the 

significant site nested within zone effect (F=23.73, p<0.001; Table 3.1). This was primarily 
r 

due to the variability between sites nested within sanctuary zones as demonstrated through 

SNK post-hoc analyses. Kingston Reefs sanctuary zone had a significantly higher relative 

total mean abundance of lobsters (28.75 ± 3.60 individuals lOmin-1
; Figure 3.1B), whereas 

Boyinaboat Reef sanctuary zone had the overall lowest abundance of lobsters (5.67 ± 1.25 

individuals 10min-1
; Figure 3.1B). No statistical differences in total mean abundance of 

lobsters were observed for sites nested within fished zones, as all fished sites showed 

relatively low abundances of lobsters (3.0 ± 0.56 individuals 10min-1
; Figure 3.1B). 
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Figure 3.1. Mean (+S.E.) abundance of (a) legal-sized, and (b) total abundance of western rock lobster (P. 
cygnus) per 10 minute timed search in sanctuary zones: Boyinaboat Reef (B), Green Island (G), and Kingston 
Reefs (K), and in fished zones: Wreck Rock (W), Twin Rocks (T), and Rocky Bay (R). 
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Table 3.1. ANOV A comparing the mean abundances of legal-sized (> 77mm CL; carapace length) and total 
abundance of rock lobsters (P.cygnus).Legal-size abundance Cochran's test: C= 0.2745 not significant (ns). 
Total abundance Cochran's test: C= 0.2626 ns. Z: zones, S(Z): sites nested within zone, and Se: seasons. 

Legal-size abundance (ind. lOmin-1
) Total abundance (ind. lOmin-1

) 

Source df MS F p MS F p 

z 1112.3472 3.64 0.1291 3389.3889 4.20 0.1097 

S(Z) 4 305.7222 21.48 0.0000*** 806.5556 23.73 0.0000*** 
f' 

Se 2 110.3889 3.05 0.1036 276.2639 4.09 0.0599 

Zx Se 2 24.8889 0.69 0.5301 165.0139 2.44 0.1488 

S(Z) x Se 8 36.1806 2.54 0.0200* 67.6181 1.99 0.0654 

Residual 54 14.2361 33.9907 

Total 71 

*p<0.05, **p<O.Ol, ***p<0.005 

3.1.2 Fish species abundance, biomass, and species richness 

A total of 6,543 fish species belonging to 68 species and representing 30 families were 

recorded at the reef and in adjacent Amphibolis spp. seagrass meadows over the study 

period. The families occurring in greatest abundance over all sites and all three seasons 

were Labridae (45.5% of total individuals), Pomacentridae (15.4%), and Kyphosidae 

(13.1 %). Families with the greatest number of species belonged to Labridae (15 species), 

and Kyphosidae (6 species). Numerically, the most abundant fish species observed over all 

sites were the western king wrasse Coris auricularis (Labridae, 0.08±0.94 individuals m2
; 

total 17.9%), brownfield wrasse Halichoeres brownfieldi (Labridae, 0.07±0.93 individuals 

m2
; 16.7%), brown-spotted wrasse Notolabrus parilus (Labridae, 0.05±0.44 individuals m2

; 

10.9% ), and the schooling carnivorous Pempheris klunzingeri (Pempheridae, 0.04±1.31 

individuals m2
; 10.1%). 
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Mean fish abundances ranged up to 1.65 individualsm-2 across all sampling occasions. 

Species richness per site varied from 7 to 30 species (18.67±2.02) over three seasons. Fish 

biomass ranged up to 2,120.4 grams m2 across zones, sites, seasons, and distance from reef. 

Based on fish taxa, categorised into three different feeding modes, 16.18% of the total 

number of species were omnivores (11 species) and, 20.59% of species herbivores (14 

species). Carnivorous species encompassed the greater proportion of total species (63.24%, 

43 species), of which 16.18% was invertivores (11 species). Fish species were further 

categorised into fishing importance: 16 species were not targeted by fishermen (23.9% of ,. 
the total), five were considered by-catch species (7.5%), 37 species were recreationally 

caught (55.2%), and nine were commercially targeted species (13.4%). 

PERMANOVA demonstrated a significant multivariate interaction between the factors site 

nested within zone x season x distance for total mean abundance of fish (MS=3626.1, 

p<O.OOl; Table 3.2). The same complex interaction between the main factors was shown 

for fish biomass (MS=2.4294, p<0.001; Table 3.2) and fish species richness (MS=232.83, 

p<0.05; Table 3.2). This demonstrated the high degree of spatial and temporal vatiability, 

making it difficult to separate patterns from noise, however, some patterns were detectable 

as shown below. 

A significant zone effect was detected (MS=14017.0, p<0.05; Table 3.2), however, this was 

masked over by a significant site nested within zone effect (MS=l1147.0, p<0.001; Table 

3.2). This was due to the high variability between all sites nested within sanctuary and 

fished zones. Although not figuratively clear, all fished zones had a greater abundance of 

fish (Wreck Rock 0.42 ± 1.26individuals m2
; Twin Rocks 0.39 ± 0.73individuals m2

; 

Rocky Bay 0.41 ± 1.34 individuals m2
) than adjacent sanctuary zones, with the exception of 

Kingston Reefs, which was the primary driver of fish abundance throughout all seasons 

(0.64 ± 1.79 individuals m2
; Figure 3.2). Boyinaboat Reef had relatively low total mean fish 

abundance over all seasons (0.19 ± 1.86 individuals m2
; Figure 3.2). The overall results 

were further complicated by the interactive terms with season. Rocky Bay was the main 

driver of fish abundance during the spring, while Wreck Rock dominated summer (Figure 

3.2). The majority of the variation in the fish abundance among sites was due to large 

27 



schools of fish including the skipjack trevally Pseudocaranx wrighti, buffalo bream 

Kyphosus cornelli, and rough bullseye P. klunzingeri,and solitary swimmers such as the 

rainbow cale Odax acroptilus and old wife Enoplosus armatus. 

Statistics revealed a significant distance effect (MS=14351.0, p<O.Ol; Table 3.2). In 

general, there was a trend of decreasing mean abundance of fish with increasing distance 

away from the reef, as indicated through post-hoc Monte Carlo pair-wise comparisons (the 

reef and 200m, p=0.0186). In spring, Boyinaboat Reef sanctuary zone, Green Island 

sanctuary zone, Wreck Rock fished zone, and Twin Rocks fished zone displayed this 

pattern, however, this was not the case for Kingston Reefs sanctuary zone and Rocky Bay 

fished zone (Figure 3.2). Both Kingston Reefs and Rocky Bay had a significantly greater 

abundance of fish at 200m than 60m away from the reef (Figure 3.2). The same pattern of 

greater fish abundance at 200m was observed in summer for Twin Rocks and Rocky Bay 

(Figure 3.2). Both Green Island and Kingston Reefs had a greater abundance of fish at 60m 

away from the reef than at the reef (Om) and 200m away in Amphibolis spp. meadows 

(Figure 3.2). Therefore, fish species significantly differed in abundance with increasing 

distances away from the reef, however, this varied across sanctuary and fished sites and 

seasons. 
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Figure 3.2. Mean (+S.E.) fish species abundance over three seasons in Amphibolis spp. meadows with 
proximity to the reef: 0 (on the reef), 60, and 200m, in sanctuary zones: Boyinaboat Reef (B), Green Island 
(G), and Kingston Reefs (K), and fished zones: Wreck Rock (W), Twin Rocks (T), and Rocky Bay (R). NS= 
not sampled. 
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There was a significant zone effect for fish biomass (MS=8702.4, p<0.001; Table 3.2) as 

sanctuary zones had a slightly greater biomass of fish (277 .87 ± 7.26 grams m2
) than fished 

zones (217.27 ± 14.50 grams m2
). However, the separation between zones was unclear due 

to the high degree of variability between sites nested within zone (MS=3.48, p<0.001; 

Table 3.2). Twin Rocks had the greatest fish biomass during the winter, and Rocky Bay 

was the main driver for fished sites in summer (Figure 3.3). Kingston Reefs sanctuary zone 

had the greatest fish biomass over all seasons (520.33 ± 16.81 grams m2
), and is primarily 

responsible for driving the zone effect (Figure 3.3). Both MMP sites had relatively low 
t' 

biomass for fish (Boyinaboat Reef sanctuary zone 96.14 ± 2.89 grams m2
; Wreck Rock 

fished zone 78.22 ± 2.67 grams m\ Majority of the variation in fish biomass among sites 

was due to large schooling fish, including herbivorous kyphosids K.sydneyanus and K. 

cornelli. 

As previously seen in fish abundance, similar patterns were observed with total mean fish 

biomass and increasing distances away from the reef (MS=4.29, p<0.001; Table 3.2). The 

reef had a significantly greater biomass than 60m (p=0.025) and 200m (p=0.0095) away in 

Amphibolis spp. meadows, as indicated by post-hoc Monte Carlo pair-wise comparisons. 

This pattern was also observed for fish species richness. A change in fish biomass with 

proximity to the reef however, cannot be applied to all sites due to complex interactions 

between sites and distances. Statistics also show a significant variability in fish biomass 

with seasons (MS=2.40, p<0.05; Table 3.2). With the exception of Kingston Reefs 

sanctuary zone, spring demonstrated an overall relatively lower biomass (total mean 442.69 

± 39.94 grams m2
) than winter (1,654.36 ± 121.04 grams m2

) and spring (1,368.87 ± 74.46 

grams m2
) however, there was difficultly disentangling patterns due to the complexity of 

interactions. 
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Figure 3.3. Total mean ( +S.E.) biomass of fish species over three seasons in Amphibolis spp. meadows with 
proximity to the reef: 0, 60, and 200m, over six sites in sanctuary zones: Boyinaboat Reef (B), Green Island 
(G), Kingston Reefs (K), and in fished zones: Wreck Rock (W), Twin Rocks (T), and Rocky Bay (R). NS= 
not sampled. 
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Although there was no clear zone effect for species richness (MS=102.30; p>0.05; Table 

3.2), PERMANOV A indicated a significant difference between sites nested within zones 

(MS=1147.10, p=0.001; Table 3.2). This was due to the high degree of variability in 

species richness between all sites nested within sanctuary and fished zones as indicated by 

post-hoc Monte Carlo pair-wise comparisons. All sites had relatively similar species 

richness (ranging from 0.13 to 0.15 species m2
), excluding both Kingston Reefs and Rocky 

Bay. Rocky Bay appears to be the main driver for fished zones (0.19 ± 0.03 individual 

species m2
) whereas Kingston Reefs was driving high species richness for sanctuary zones 

{f' 

(0.18 ± 0.03 individual species m2
) (Figure 3.6). In general, there was no clear signal of 

increased species richness of fish in sanctuary zones. 

Fish species richness was significantly influenced by increasing distances away from the 

reef (MS=7645.7, p<0.001; Table 3.2). In general, species richness was greatest at the reef 

and declined with increasing distances away from the reef. Although this was the outcome 

for most sites, this was not the case for Green Island and Rocky Bay during spring, and 

Green Island and Twin Rocks in summer. The same or greater species tichness was 

observed at 200m away in Amphibolis spp. meadows than at 60m in seagrass (Figure 3.4). 

Furthermore, fish species richness fluctuated with seasons (MS=1698.80, p<0.05; Table 

3.2), as post-hoc Monte Carlo pair-wise comparisons demonstrated a relatively lower total 

mean species richness in winter (0.05 ± 0.01 individual species m2
) and greatest in summer 

(0.17 ± 0.02 individual species m2
). This does not hold tme for all sites, due to within site 

variability (Figure 3.4). 
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Figure 3.4. Mean (+S.E.) fish species richness over three seasons in Amphibolis spp. meadows with 
proximity to the reef: 0, 60, and 200m, in sanctuary zones: Boyinaboat Reef (B), Green Island (G), and 
Kingston Reefs (K), and fished zones: Wreck Rock (W), Twin Rocks (T), and Rocky Bay (R). NS= not 
sampled. 
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Table 3.2. Results of a PERMANOV A, examining mean fish species abundance, total biomass, and species 
richness. Analyses were conducted using Bray-Curtis similarity on square-root ('Jx) transformed data with 
9999 permutations on residuals under a reduced model. 

Abundance Biomass Species richness 

(ind/125m2) (g/125m2
) (spp/125m2

) 

Source df MS p(perm) MS p(perm) MS p(perm) 

z 1 14017.0 0.0248* 8702.4 0.0001*** 102.30 0.7935 

S(Z) 4 11147.0 0.0001*** 3.4798 0.0001*** 1147.10 0.0001*** 

Se 2 7066.3 0.0977 2.4013 0.0132* 1698.80 0.0192* 

D 2 14351.0 0.0047** 4.2935 0.0006*** 7645.70 0.0005*** 

ZxSe 2 7336.0 0.0748 1.0326 0.4507 482.97 0.2011 

ZxD 2 4377.5 0.6227 1.1908 0.2889 418.09 0.3432 

SexD 2 2671.3 0.6971 1.238 0.3104 320.40 .0.2896 

S(Z) x Se 7 4569.0 0.0001*** 2.6436 0.0001*** 261.08 0.013* 

S(Z) xD 8 5344.6 0.0001*** 2.9911 0.0001*** 365.98 0.0005*** 

Zx SexD 2 4448.3 0.2884 1.2441 0.3119 182.01 0.5612 

S(Z) x Se s D 7 3626.1 0.0001*** 2.4294 0.0001*** 232.83 0.0222* 

Residual 75 1337.9 98.74 

Total 114 
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3.1.3. Fish species assemblages 

The canonical analysis of principle coordinates (CAP) ordination displayed no clear 

separation between zones, sites nested within zone, distances, or seasons, shown by the 

high degree of overlap in samples from the two types of zones based on fish abundances 

(Figure 3.5). Six species in particular, P. klunzingeri, Parma mccullochi, K. cornelli, 

Austrolabrus maculatus, N. parilus, and C. auricularis, were shown to be relatively higher 

contributors to mean fish abundance. This was indicated by their correlations (Pearson's r= 

0.5) with the canonical axes, and the same correlation will be used throughout all CAP 

plots. C. auricularis and N. parilus appear to be the representative species at Kingston 

Reefs sanctuary zone, and P. klunzingeri was representative of Wreck Rock and Rocky Bay 

fished zone (Figure 3.5). The remaining three fish species, P. mccullochi, K. cornelli, and 

A. maculatus were found across various sites (Figure 3.5). 
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Figure 3.5. Canonical analysis of principle coordinates (CAP) ordination based on square-root ('/x) Bray
Curtis similarities on mean fish species abundance across six sites nested within two zones, and over three 
seasons in Amphibolis spp. meadows with proximity to the reef: 0, 60, and 200m. A species correlation plot 
(Pearson correlation set at 0.5) is placed over the ordination. 

The results of the CAP analysis on mean fish biomass further supported these complex 

interactive effects among between zones, sites, distance and season, as the canonical axes 

showed no clear separation between sites nested within zones, seasons, or distances (Figure 

3.6). Five species in particular, Dactylophora nigricans, K. cornelli, C. auricularis, N. 

parilus, and P. mccullochi, were the overall biggest contributors. The mean fish biomass at 

Kingston was primarily driven by K. cornelli, C. auricularis, and N. parilus, whereas P. 

mccullochi appeared to be the key contributor of the biomass at MMP sites, Boyinaboat 

Reef sanctuary zone and Wreck Rock fished zone (Figure 3.6). The outlier (top-left corner) 

depicts Rocky Bay fished zone with a relatively low biomass of fish (2 species, D. 

nigricans and Gen·es subfasciatus) during spring at 200m away from the reef (Figure 3.6). 
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3.2 Benthic fauna 

3.2.1 Abundance, biomass andfamily level richness benthic fauna 

A total of 60 families of benthic taxa were observed over the study period, belonging to 18 

classes from eight phyla. A wide range of invertebrate and vertebrate groups were recorded 

from polychaetes (Annelida) to crustaceans (Arthropoda) and sponges (Porifera). The most 

abundant macroinvertebrate fauna observed across all sites at the reef and in seagrass 

meadows were the gastropods (64.04% total mean abundance), ascidians (15.61 %), and the 
r 

malacostracans (13.27%). Mean benthic fauna abundance ranged from 0 to 143.7 

individuals 0.25m2 across all sampling occasions (Figure 3.7), and the family level richness 

per site varied from 0 to 12 species over all three seasons (Figure 3.8). 

PERMANOV A failed to detect a significant zone effect on the benthic assemblage 

(MS=19382.0, p>0.05), however, a significant difference among sites nested within zones 

was observed (MS=32284.0, p<0.001; Table 3.3). This was due to the high degree of 

variability between all sites nested within sanctuary and fished zones. Benthic faunal 

abundance was greatest at both sites within Marmion Mmine Park (MMP), as Boyinaboat 

Reef appeared to be driving the faunal abundance of sanctuary zones whereas Wreck Rock 

was the primary driver of the fished zone over all three seasons (Figure 3.7). This was a 

result of malacostracans and gastropods occurring in high abundances at these two sites. 

Ascidians were also found to be consistently more abundant MMP sites and almost non

existent at Rottnest Island Marine Reserve (RIMR) sites. Despite the strong abundance 

pattems observed at MMP, no clear conclusions can be made considering the complex 

nature of interactions between the main factors (Table 3.3; Figure 3.7). 

There was a significant interaction between the factors site nested within zone x season x 

distances for the benthic faunal assemblage (MS=2810.5, p<0.001; Table 3.3). This 

complex interaction was also observed for family level richness (MS=681.12, p<0.05; 

Table 3.3). It demonstrates the high degree of spatial and temporal vm·iability causing 

difficulty in disentangling pattems from noise however, some pattems were detected. 
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Statistics demonstrated a significant distance effect (MS=7695.8, p<0.05; Table 3.3). Post

hoc Monte Carlo pair-wise comparisons indicated significant differences in the faunal 

abundance between seagrass immediately adjacent to the reef (OSG) and 60m (p=0.0279), 

OSG and 200m (p=0.0278), and between 15m and 60m into the seagrass (p=0.0296). There 

was an overall decreasing trend of benthic faunal abundance with increasing distance away 

from the reef. This however was not clearly portrayed due to complex interactions between 

the main factors. For instance, Green Island, Wreck Rock and Rocky Bay showed the 

opposite trend in winter, as with Boyinaboat Reef and Twin Rocks in summer (Figure 3.7). 
. r 

In summer, Rocky Bay showed an increase in faunal abundance with increasing distances 

away from the reef primarily driven by Cantharidus spp (Trochidae) (Figure 3.7). 

Furthermore, there was a significant difference in the faunal abundances among seasons 

(MS=15053.0, p<0.05; Table 3.3). In general, summer had the greatest total mean faunal 

abundance (201.76 ± 6.18 individuals 0.25m2
) in comparison to winter, which 

demonstrated the lowest abundance of fauna (71.71 ± 4.73 individuals 0.25m2
) (Figure 

3.7). 
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Table 3.3. Results of a PERMANOV A, examining benthic faunal abundance and family level richness. 
Analyses were conducted using Bray-Curtis similarity on square-root (--/x) transformed data with 9999 
permutations on residuals under a reduced model. 

Abundance 

(ind/0.25m2) 

Source df MS p(perrn) 

z 19382.0 0.7471 

S(Z) 4 32284.0 0.0001*** 

Se 
I" 

2 15053.0 0.0482* 

D 5 7695.8 0.0116* 

ZxSe 2 5129.6 0.7756 

ZxD 5 3724.0 0.4464 

SexD 10 2397.0 0.7958 

S(Z) x Se 7 7559.6 0.0001*** 

S(Z) x D 20 3826.3 0.0001*** 

ZxSexD 10 1912.3 0.9740 

S(Z) x Se s D 34 2810.5 0.0001*** 

Residual 189 1470.6 

Total 289 

Family level richness 

(spp/0.25m2) 

MS p(perm) 

376.60 0.896 

2226.00 0.0001*** 

3538.10 0.3169 

1436.50 0.0091** 

1462.00 0.7342 

747.19 0.3565 

733.63 0.3611 

2762.90 0.0001*** 

687.19 0.0340* 

808.95 0.2422 

681.12 0.0157* 

546.37 
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Figure 3.7. Total mean (+S.E.) abundance of benthic taxa over three seasons in Amphibolis spp. meadows 
with proximity to the reef: ORF, OSG, 15, 30, 60, 120, and 200m, in sanctuary zones: Boyinaboat Reef (B), 
Green Island (G), and Kingston Reefs (K), and in fished zones: Wreck Rock (W), Twin Rocks (T), and Rocky 
Bay (R). *= not sampled. 
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3.2.2. Benthic fauna assemblages 

The CAP plots were separated into seasons as a result of the numerous data points, and the 

focus of the study was to establish patterns in benthic assemblages between sanctuary and 

fished zones, and among distances away from reefs. The CAP ordinations displayed no 

clear separation of the fauna samples between sanctuary and fished zones, and among sites 

nested within zones, and distances, for each seasons (Figure 3.8). In winter, sponges 

(Porifera) and dove shells (Columbellidae) were the high contributors to the faunal 

assembrages at Boyinaboat Reef sanctuary zone, however, no other patterns could be 

detected for this season (Figure 3.8). In spring, five groups in particular, hermit crabs 

(Paguroidea), prawns (Dendrobranchiata), polychaete worms (Nereidae), ascidians 

(Ascidiacea), and sponges (Porifera) appear to be contributing the greatest to the faunal 

assemblages at Wreck Rock fished zone and Twin Rocks fished zone (Figure 3.8). 

Gastropods showed a stronger correlation towards Boyinaboat Reef sanctuary zone than 

any other site (Figure 3.8). In summer, ascidians were the key contributing fauna in 

distinguishing Boyinaboat Reef sanctuary zone from other sites (Figure 3.8). Hermit crabs 

(Paguroidea) and turban snails (Turbinidae) formed the predominant faunal assemblage for 

both Wreck Rock and Twin Rocks fished zone (Figure 3.8). 
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Figure 3.8. Canonical analysis of principle coordinates (CAP) ordination using Bray-Curtis similarities on 
benthic faunal abundances across six sites nested within two zones, and over three seasons in Amphibolis spp. 
meadows with proximity to the reef: OSG, 15, 30, 60, 120, and 200m. A family-level correlation plot (Pearson 
correlation set at 0.5) is placed over the ordination. Data were square root (--/x) transformed. 

Zones or seasons had no significant effect on the benthic faunal richness as indicated by 

PERMANOVA (Table 3.3). There was a significant distance and sites nested within zones 

effect, and an interaction between sites within zone and season, and between site within 

zone and distance, implying a variable response of benthic richness across sites, distances 

and seasons (Table 3.3). Despite the significant distance effect (MS=1436.50, p<O.Ol; 

Table 3.3), no clear trend of decreasing taxa richness with increasing distance away from 

the reef was observed (Figure 3.9). Post-hoc Monte Carlo pair-wise comparisons further 

validated this lack of trend (p>0.05). 

Benthic faunal richness varied across all sites. Both sites within MMP displayed an overall 

greater family level richness (Boyinaboat Reef sanctuary zone 6.77 ± 0.62 individual 
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species 0.25m2
; Wreck Rock fished zone 7.33 ± 0.79 individual species 0.25m2

) compared 

to the relatively low benthic richness at sites at RIMR, which ranged from 2.99 to 4.12 

individual species 0.25m2 (Figure 3.9). Boyinaboat Reef was driving the high benthic 

richness in spring as was Wreck Rock in summer, though distinguishing this pattern across 

distances and seasons was difficult to visualise due to the interaction terms (Figure 3.9). 

Gastropod and malacostracan groups are likely responsible for the variation in faunal 

richness between sites. 96 different species of gastropods were found across all sites, while 

malacostracans had 25 species. Gastropods largely comprised three commonly observed 
r 

species: Pyrene bidentata (Columbellidae), Cantharidus lehmanni (Trochidae), and an 

unknown gastropod species; while malacostracans were predominately hermit crabs, 

occupying empty P. bidentata shells. 
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Figure 3.9. Total mean (+S.E.) family level richness of benthic taxa at family level over three seasons in 
Amphibolis spp. meadows with proximity to the reef: ORF, OSG, 15, 30, 60, 120, and 200m, in sanctuary 
zones: Boyinaboat Reef (B), Green Island (G), and Kingston Reefs (K), and in fished zones: Wreck Rock 
(W), Twin Rocks (T), and Rocky Bay (R). *= not sampled. 
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3.3 Benthic flora 

3.3.1 Relative abundance, biomass and taxa richness of epiphytic algae 

For percentage relative abundance of epiphytic algae, there was no zone, season, or 

distance from reef effect (Table 3.4), but there was a significant sites nested within zone 

effect (MS=6596.4; p<O.OOl; Table 3.4) which interacted with season (MS=1057.7, 

p<0.05; Table 3.4). This highlights the variability in the relative abundance of epiphytic 

algae over sites and seasons. All sites had a relatively high percentage relative abundance 
r 

of encrusting calcareous algae on seagrass leaf blades. Corticated terete algae also 

demonstrated a similar pattern, however, its percentage abundance fluctuated over sites and 

seasons. Articulated calcareous algae were also observed over all sites excluding 

Boyinaboat Reef where it infrequently occurred. Articulated calcareous algae were the 

predominate epiphytic algae on Amphibolis spp. seagrass leaves at Green Island particularly 

in summer where a two-fold increase was observed since winter (25.69 ± 4.23% 0.25m2 in 

winter to 50.14 ± 5.20% 0.25m2 in summer). In winter and summer, both Boyinaboat and 

Kingston Reefs sanctuary zones had similar epiphytic abundances; while Wreck Rock and 

Rocky Bay fished zones had similar epiphytic algal abundances and remained the same 

throughout the seasons. 
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Table 3.4. Results of a PERMANOV A examining the percentage relative abundance and total mean biomass 
of epiphytic algal assemblage. Analyses were conducted using Bray-Curtis similarity on square-root (--lx) 
transformed data with 9999 permutations on residuals under a reduced model. 

% Relative abundance Biomass 

(%/0.25m2) (g DW /0.25m) 

Source df MS p(perm) df MS p(perm) 

z 1 1382.9 0.8728 1 6547.4 0.7091 

S(Z) 4 6596.4 0.0001*** 4 12942 0.0001*** 

Se 2 1546.4 0.2467 2 7067.3 0.2944 
r 

D 5 116.5 0.9735 5 1577.9 0.3849 

Zx Se 2 1144.2 0.4065 2 8863 0.2158 

ZxD 5 590.9 0.1933 5 1272.3 0.6223 

SexD 10 398.4 0.2152 10 1092.6 0.3598 

S(Z) x Se 7 1057.7 0.0105* 7 5503.4 0.0001*** 

S(Z) X D 20 406.5 0.6386 20 1489.4 0.0001*** 

Zx SexD 10 389.2 0.2313 10 1475.7 0.0539 

S(Z) x Se s D 35 306.1 0.9838 35 1014.2 0.0001*** 

Residual 525 458.7 204 638.6 

Total 626 305 

3.3.2. Epiphytic algal assemblages 

Similar to faunal assemblages, CAP analyses were carried out on data from each season 

separately. No clear separation can be made between zones, sites, seasons, or distances in 

the CAP plots due to the high degree of overlap (Figure 3.10). In winter, filamentous algae 

were the only distinguishable epiphytic algae to be contributing the greatest at Green Island 

sanctuary zone (Figure 3.10). A similar pattern was observed in spring, as filamentous 

algae was the key contributing epiphytic algae in Green Island sanctuary zone (Figure 

3.10). No other patterns could be distinguished. The percentage relative abundance of 

epiphytic algae in summer also demonstrated a high degree of overlap, making it difficult 

to distinguish any patterns between sanctuary and fished zones (Figure 3.10). 
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Figure 3.10. Canonical analysis of principle coordinates (CAP) ordination using Bray-Curtis similarities on 
the percentage relative abundance of epiphytic algae across six sites nested within two zones, and over three 
seasons in Amphibolis spp. meadows with proximity to the reef: OSG, 15, 30, 60, 120, and 200m. A species 
correlation plot (Pearson correlation set at 0.5) is placed over the ordination. Data were square root ('Jx) 
transformed. 

Similar to the relative abundance, there was no zone, season, or distance from reef effect, 

but there was an interaction between sites nested within zones and season for biomass of 

epiphytic algae, but in the case of biomass, there were also interactions between sites nested 

within zones and distance and among sites nested within zones, season and distance 

(MS=12942.0, p<O.OOl; Table 3.4). This indicates a high degree of variability in epiphytic 

biomass in seagrass meadows. 

Encrusting calcareous algae was the main contributor to the overall biomass at most sites as 

indicated by SIMPER analyses, ranging from 34.69% at Rocky Bay fished zone to 54.67% 

at Boyinaboat Reef sanctuary zone. Twin Rocks fished zone was the exception, as 

articulated calcareous algae was the most influential algal group and accounted for the 
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observed difference in biomass (579.35 ± 121.72 grams DW 0.25m2
; 52.52% ). Articulated 

calcareous algae also contributed greatly to the overall biomass of Green Island and 

Kingston Reefs sanctuary zones. Corticated terete were also a discriminating algal 

functional group, contributing great biomass to all sites, ranging from 13.68% at Twin 

Rocks to 33.09% at Boyinaboat Reef. 

The total mean algal biomass varied across seasons, as articulated calcareous algae was a 

key contributor to biomass in winter and summer, while corticated terete was greatest 

during 1he spring. Encrusting, articulated calcareous, and cmticated terete were the 

dominant algal groups found at all distances away from the reef. Due to high degree of 

variability between sites and seasons however, no conclusions can be drawn to determine 

whether there is a difference in epiphytic biomass between sanctuary and fished zones. 

The CAP plots displayed no similarities in epiphytic algal assemblages among factors, as 

the points for each sample from different zones and distances for each season were 

relatively indistinguishable (Figure 3.11). In winter, a separation occurred along the CAP2 

axis, although no patterns could be distinguished. Articulated calcareous algae were the key 

contributors to Kingston Reefs and Twin Rocks, whereas encrusted calcareous algae was 

observed at all sites (Figure 3.11). The CAP plot for spring showed articulated calcareous 

algae to be the dominant algal assemblage for Twin Rocks and Green Island (Figure 3.11). 

Wreck Rock fished zone had a greater biomass of leathery algae, while encrusting 

calcareous algae were predominantly observed at Wreck Rock and Rocky Bay. The three 

outliers located on the top-left comer are the relatively low epiphytic biomass observed at 

60m and 120m in Amphibolis spp. seagrass meadows at Wreck Rock (Figure 3.11). In 

summer, leathery algae were the key contributors of Wreck Rock, Boyinaboat Reef, and 

Green Island (Figure 3.11), while encrusting calcareous algae were regarded as relatively 

high contributors at Wreck Rock (Figure 3.11). 
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Figure 3.11. Canonical analysis of principle coordinates (CAP) ordination using Bray-Curtis similarities on 
the total mean biomass of epiphytic algal assemblages across six sites nested within two zones, and over three 
seasons in Amphibolis spp. meadows with proximity to the reef: OSG, 15, 30, 60, 120, and 200m. A species 
correlation plot (Pearson correlation set at 0.5) is placed over the ordination. Data were square root 
transformed. 

3.4Predation and its effect with increasing distance from reef edge 

3.4.1 Predation and its effect with increasing distance from reef edge 

The Kmskal-Wallis tests showed no significant site differences in gastropod mortality with 

increasing distances away from the reef, with the exception of Rocky Bay fished zone 

(N=40, p<0.05; Table 3.5). A greater number of gastropods were recorded alive 60m away 

from the reef (three C. lehmanni and four Pyrene bidentata were alive) compared to one 

live P. bidentata at the reef (Tukeys HSD test, p=0.034). Furthermore, gastropod mortality 

did not differ significantly between species across sites (Table 3.5). 
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Table 3.5. Results of the Kruskal-Wallis test examining the mortality of two gastropod species over four sites 
and at increasing distances away from the reef. 

Distance away from reef Gastropod species 

N df Chi-Square p N df Chi-Square p 

Green Island 30 2 2.231 0.3280 30 1 1.115 0.2910 

Kingston Reefs 40 3 4.680 0.1970 40 2.080 0.1490 

Rocky Bay 40 3 8.113 0.0440* 40 1 2.444 0.1180 

Twin Rocks 30 2 1.812 0.4040 30 1 0.518 0.4720 
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4. Discussion 

The objectives of this study were to determine whether abundances, biomass, species 

diversity of higher-order consumers differed in sanctuary zones in response to protection 

from fishing, and to document the response of the epibenthic assemblage structure in 

relation to any changes in consumers. Such empirical data are useful in assessing the 

success, if any, of sanctuary zones with reduced fishing mortality, in addition to gaining a 

better understanding of the flow-on effect to lower trophic levels in marine food webs. 

f' 

4.1. Abundance and diversity of higher-order consumers 

The results from underwater visual censuses (UVCs) demonstrated that sanctuary zones 

had higher mean total abundance and biomass of fish compared to adjacent fished zones, 

although there was high variability among sites and seasons. Despite the lack of 

significance, there was a trend of higher means of rock lobsters in sanctuary zones than 

fished zones. Similar conclusions have been reached in numerous global studies examining 

the positive responses of fish and lobsters to MP As (Shears & Babcock, 2002; Denny et al., 

2004; Langlois et al., 2005; Babcock et al., 2007; Pande et al., 2008; Stockwell et al., 

2009). However, in this study, the effect of zone was dependent on site and season. 

Although all sites were of similar structural complexity based on extensive pilot surveys, 

there were inevitable intrinsic differences among sites based on location and orientation to 

prevailing conditions, regardless of their level of protection from fishing. These 

environmental factors are likely to reflect patterns of fish assemblages and rock lobsters in 

temperate reef systems. Also, any effect of reserve protection will depend on a range of 

other factors, including the design, the size, and the length of protection of each sanctuary 

zone (Halpern & Warner, 2002; Graham et al., 2003; Claudet et al., 2008). 

Larger sanctuary zones are likely to harbour more individuals because they encompass 

greater area in comparison to smaller sanctuary zones (Halpem, 2003). The degree in which 

a species is protected is dependent on their movement pattems, and the degree of 

compliance with MP A regulations. The sedentary nature of rock lobster may increase of 
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legal and total mean abundance inside sanctuary zones. Using acoustic telemetry, 

MacArthur et al. (2008) reported nocturnally active Panulirus cygnus moving from reef 

crevices out to approximately 60m to forage in seagrass meadows. Other studies have 

recorded similar movements into surrounding habitats in P. argus (Bertelsen and Hornbeck, 

2009), P. elephas (Follesa et al., 2009), and Jasus edwardsii, with a small density of 

lobsters moving outside the reserve dependent on sex and size of the individual (Freeman et 

al., 2009). Similar results have been documented for fish. While some temperate fish 

species display high site fidelity, such as the senator wrasse Pictilabrus lacticlavius (Edgar 
f' 

et al., 2004) and pink snapper Pagrus auratus (Willis et al., 2001), many mobile fish 

demonstrate extensive and overlapping home ranges that venture beyond the sanctuary 

boundaries (Wetherbee et al., 2004; Topping et al., 2005; Kingsford & Carlson, 2010). This 

may help explain the low abundances and biomass of fish and lobsters observed at 

Boyinaboat Reef. Compared to both Green Island and Kingston Reefs sanctuary zones, 

which protect 92 and 164 hectares, respectively, Boyinaboat Reef located within the 

Marmion Marine Park (MMP) is a relatively small sanctuary zone protecting an area of 7.4 

hectares. It would thereby offer a limited refuge to highly mobile species, crossing the 

reserve boundaries and potentially making them vulnerable to fishing pressures (Solandt et 

al., 2003). Schooling fish species such as the skipjack trevally Pseudocaranx wrightii 

(Carangidae) were observed at Boyinaboat Reef and are particularly vulnerable to fishing 

mortality, as they are a highly mobile pelagic species displaying diel and seasonal 

movement between habitats (Afonso et al., 2009). On the contrary, Kingston Reefs 

sanctuary zone offers a larger spatial protection that is closely associated with the relatively 

higher abundance of higher-order consumers. Adult male western blue gropers Achoerodus 

gouldii (Labridae) reaching lengths over one meter, and tarwhine Rhabdosargus sarba 

(Sparidae) were observed at this protected site, as they use protected inshore reefs and 

neighbouring islands as nursery habitats (Hesp & Potter, 2003; Shepherd & Brook, 2007; 

Coulson, 2008, p. 3). This suggests that small protected areas will only benefit individuals 

that restrict their movements to a localised home range during a part of their life cycle. 

Effective protection of mobile species such as lutjanids and carangids may be compromised 

in a small sanctuary zone due to their relatively large home ranges (Kramer & Chapman, 
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1999). It is difficult, however, to quantify their diel or seasonal movement patterns without 

acknowledging their individual characteristics and life histories. 

The age of a sanctuary zone may also have an overriding influence on the current effect of 

those zones on consumer abundance and biomass, based on the recovery rate of consumers 

from previous fishing pressures. In my study, the sanctuary zones varied in age, as Green 

Island was established in 2007, Boyinaboat Reef in 1999, and Kingston Reefs was gazetted 

in 1988, making it the oldest of the three sanctuary zones. Some studies have documented a 

rapid irrcrease in species biomass within one to three years after MP A establishment 

(Roberts & Hawkins, 1997; Halpern & Warner, 2002; Halpern, 2003; Denny et al., 2004), 

while other studies have shown consumers to respond after longer time frames (Russ & 

Alcala, 2003; Barrett et al., 2007; Pande et al., 2008). 

Slow-growing species with prolonged lifespan, and species with infrequent or highly 

variable recruitment levels, will more likely take longer to respond to reserve protection 

than shmt-lived, fast-growing species (Russ & Alcala, 1998; Jennings et al., 1999; 

McClanahan et al., 2006). For example, the results from this study showed that Kingston 

Reefs was the only sanctuary zone to have recorded the slow-growing and commercially 

important (McAuley & Simpfendorfer, 2003) western blue groper Achoerodus gouldii. 

With its no-take policy strongly enforced by the Rottnest Island Authority (RIA) since its 

establishment in 1988, a wide range of targeted species (both commercial and recreational) 

were observed at Kingston Reefs, including foxfish Bodanius frenchii, baldchin groper 

Choerodon rubescens, and Australian herring Arripis georgianus. These species have only 

been observed at Kingston Reefs compared to the other sanctuary zones that have been 

protected for shorter periods. These results however, are confounded by a combination of 

variables, such as the size of the sanctuary zone, and must therefore not be studied in 

isolation. This also highlights the importance of considering life-history traits when setting 

objectives for a MPAs performance, as protection may be suitable for some species and 

inadequate for others. 
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Fisheries generally exploit species high in the trophic food web, and a majority of these 

higher-order consumers are slow-growing carnivores. These species are therefore expected 

to respond slower to reserve protection compared to less targeted herbivores that respond 

faster to protection (Friedlander & DeMartini, 2002). Focusing solely on the response of 

targeted species to protection may not reflect a sanctuary zone's impact at a broader 

community scale, leading to possible bias and misinterpretation of data. It is, therefore, 

essential to observe the community as a whole as the intention of most MP As is to protect 

biota at the community level rather than individuals species (Micheli et al., 2004; 
r 

Rodrigues et al., 2004). Additional analyses were done separately on trophic groups' 

herbivores, omnivores, and carnivores, however, all trophic groups did not appear to 

respond clearly to protection in MP As, and were therefore excluding from the Results. 

The geographical location of a sanctuary zone may also influence patterns observed for 

higher-order consumers. Since this study was conducted over broad spatial scales, and 

results showed a high level of spatial variability in all parameters, population dynamics 

may respond to the different hydrodynamics along the west coast of W A. The study region 

is in a tropical-temperate transition zoning caused by the southward flowing Leeuwin 

Current. This may attribute to the transportation of larvae originating in warmer northern 

waters and dispersed to the southern region through the Leeuwin Current (Hutchin & 

Pearce, 1994).This may help explain the overall high fish diversity recorded at Kingston 

Reefs sanctuary zone and Rocky Bay fished zone. Of the 68 fish species recorded, only 

four were tropical, reef-associated species Thalossoma lutescens (Labridae), T. lunare 

(Labridae), Scarus ghobban (Scaridae), and Anampses geographicus (Labridae). These 

species were only recorded at Rottnest Island and in low abundances. 

Much of the variability in higher-order consumers could also be explained by site-specific 

characteristics. Kingston Reefs is relatively exposed to southerly and easterly winds and 

swell, influencing the distribution of vegetation cover (Wernberg et al., 2003, 2005). Low 

quantities of Ecklonia radiata (Laminariales) and other brown algae were recorded on the 

reef, which form an important food source for herbivorous species, including kyphosids 

(Clements & Choat, 1997; Morgan & Clements, 2002). The high structural complexity of 
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the reefs that incorporates many crevices and cracks (Garda-Charton & Perez-Ruzafa, 

1998, 2001), offers more ecological niches for fish species, particularly labrids (Tuya et al., 

2009). Twin Rocks is another exposed fished site with relatively simple-structured reefs 

dominated by E. radiata canopies. Vast quantities of detached E. radiata were located at 

the base of the reefs, potentially attracting higher-order consumers through the increase of 

macroinvertebrates, as seen in wrack accumulation on the beach (Ince et al., 2007). Both 

Green Island and Rocky Bay are relatively protected sites, but the reefs at Green Island are 

structurally complex, increasing the variety of microhabitats for inhabitants, as seen in coral 
I" 

reefs (Chabanet et al., 1997). Greater habitat complexity is often associated with greater 

species richness and abundance, potentially reducing predation and competition (Cote et 

al., 2001; Almany, 2004). Rocky Bay had Caulerpa spp. dominated, simple-structured 

reefs, and unlike all other sites examined, the water depth abruptly declined to 10-15m at 

the reef. This increase in depth may correlate with the higher fish abundance, diversity and 

biomass found at the reef, reflecting possible feeding and habitat preference (Buxton & 

Smale, 1989). Boyinaboat Reef is situated in close proximity to Hillarys Boat Harbour, a 

popular recreational destination. It is subjected to numerous and uncontrollable external 

stressors such as boat trafficking and fishing, as craypots were placed immediately adjacent 

to the sanctuary-zone boundary (K. Inostroza personal observation). Hence, the 

geographical location could be responsible for the overall lower high-order consumer 

biomass recorded at this site. Wreck Rock has a structurally complex reef offering 

numerous microhabitats, however it is subjected to recreational fishing pressures, having 

strong effects on the higher-order consumer population. This may reflect the variable 

abundances of rock lobsters and fish recorded at Wreck Rock. Habitat variables were not 

measured in this study, however, such differences in site characteristics (spatial patterns 

and habitat structure) may confound the effect of fishing protection. 
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4.2. Impact of higher-order consumers on benthic assemblage 

Natural predation by consumers was expected to be substantially higher in sanctuary zones 

than fished zones following the cessation of fishing and would decrease with increasing 

distances away from the reef. This should then be reflected in the epibenthic assemblage 

and tethering experiment. However, as stated above, clear difference in consumer 

assemblages between sanctuary and fished zones were not clear, and there were also no 

clear differences in the epibenthic fauna and flora assemblages between zone types. 

Furthermore, although greater densities of fish and lobsters were found in close proximity 

to macroalgal-dominated reefs across all sites (Howard, 1989; Harman et al., 2003; 

Kingsford & Carlson, 2010), no trends of decreasing epibenthic abundance and diversity 

were detected. The ability to detect a consumer's direct influence on prey abundance, 

richness, and distribution is difficult, due in part to their feeding habits. For instance, reef

associated herbivorous kyphosids feed on a wide range of macroalgae, predominantly 

phaeophtyes (Ecklonia radiata) (Clements & Choat, 1997; Morgan & Clements, 2002). 

Both Kyphosus sydneyanus and K. cornelli contributed the greatest biomass at the 

structurally complex reefs across all sites, potentially placing a vast amount of grazing 

pressure on macroalgae on the reef and epiphytic algae on adjacent Amphibolis spp. 

meadows. The negative influence carnivores or omnivores have on their prey will vary with 

species and their level of mobility (MacArthur & Hyndes, :2007). For example, lobsters are 

generalist consumers with small-scale foraging mobility (MacArthur et al., 2008). A wide 

range of food sources have been detected through the analyses of lobster stomach content, 

ingesting large quantities of coralline algae, molluscs, and crustaceans (Edgar, 1990a,b; 

Jernakoff et al., 1993). Equivalent studies on temperate fish species have shown that most 

mullids are carnivorous consuming decapods and amphipods (Platell et al., 1998), while 

labrids are omnivorous, feeding on small epiphytic invertebrates including molluscans, 

crustaceans, and plant material (MacArthur & Hyndes, 2007). Labrids contributed 

substantially to the total abundance offish in this study (45.5%), feeding on a range of prey 

species across different trophic levels, making their impact on the benthic assemblage 

difficult to detect. However, no distinct pattern could be detected in the epibenthic 
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assemblage with increasing distances away from the reef. The lack of detection reflects the 

small-scale patchiness in benthic assemblages of temperate reef systems. This could have 

been overcome by increasing the number of replicate transects to incorporate this 

variability in the benthic assemblage. Furthermore, theory indicates that omnivores stabilise 

food webs (Krivan, 2000; Emmerson & Yearsley, 2004) through top-down and bottom-up 

processes, reducing the probability of trophic cascades (Bascompte et al., 2005; Thompson 

et al., 2007). This may help explain the lack of a significant zone effect on epibenthic 

faunal assemblages. 
f' 

It was hypothesised that epibenthic abundances would increase with distance away from the 

reef since a greater concentration of consumers near the reef have limited mobility out into 

seagrass meadows to forage. This pattern in epibenthic assemblages did not match the 

results of this study, nor was it reflected in the tethering experiments with gastropods. 

Instead, the epibenthic abundances fluctuated over distances. These results are contrary to 

studies conducted by Langlois et al (2005) and Tuya et al (2010), which demonstrated 

higher predation of tethered prey in seagrass meadows adjacent to reef. Both studies 

concluded that this was likely to be due to greater abundances of predators near the reef. 

Predation intensity also varied considerably between molluscan prey species, Cantharidus 

lepidus and Pyrene bidentata, which can be strongly correlated with shell morphology 

(Edgar, 1990b). No differences in predation rates between gastropods C. lehmanni and P. 

bidentata were reported in this study, due to the experimental limitations including the lack 

of labelling. Green Island and Kingston Reefs in RIMR were the only sanctuary zones to 

demonstrate an overall lower abundance and family-level richness of epibenthic fauna. 

Since 60.09% of total fish species observed at Green Island, and 72.20% of fish species at 

Kingston Reefs were carnivores, these species may be driving the low epibenthic 

assemblage through foraging activities in Amphibolis spp. meadows. Contrary to my 

results, Langlois et al. (2006) confirmed this predatory pattern on bivalves through caging 

experiments, and tethering urchins (2005). A possible explanation for the lack of predatory 

interactions is the overlapping diets of many fish species (Edgar & Shaw, 1995). 
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Despite the numerous empirical studies demonstrating trophic cascades as a result of MP A 

protection (Estes et al., 1998; Babcock et al., 1999; Shears & Babcock, 2002; Clemente et 

al., 2008; Gloeckner & Luczkovich, 2008; Moksnes et al., 2008; Barrett et al., 2009; 

Sonnenholzner et al., 2009), this pattern was not obvious from my studies. An increase in 

higher-order consumer abundances was not reflected at lower trophic levels across seagrass 

meadows, demonstrating the complexity of food web structures (Polis & Strong, 1996). 

This may also be a result of examining the entire epibenthic assemblages rather than other 

studies that focus on a small subset of a community. For instance, Barrett et al (2009) 
r 

examined the changes in macroalgal density in Tasmanian MRs in response to rock 

lobsters, urchins, and abalone abundances, while Tuya et al (2010) also demonstrated the 

predatory effects of fish species on a small selection of gastropod species. While these 

studies have shown possible trophic cascades in individuals groups, my study displayed no 

evidence of a trophic cascade over the entire epibenthic assemblage. Trophic cascades are 

assumed to be masked when entire communities are measured (Tessier & Woodruff, 2002). 

Therefore, to examine how the epibenthic assemblage responds to predation by higher

order consumers must take into account other environmental and biological factors. 

4.3. Management implications 

This study provides the type of baseline biological data on marine ecosystems that are 

necessary to assess whether the sanctuary zones in southwest temperate waters of W A are 

successfully meeting their objectives of biodiversity conservation. It also provides some 

insight into how ecosystems function in response to harvesting of higher-order consumers 

by humans in fished areas and to protection through sanctuary zones. Abundance and 

family-level richness for epibenthic fauna and algal epiphytes did not differ between fished 

and unfished zones, however, significant heterogeneity was observed across sites in this 

study, suggesting that each sanctuary zone functions in different ways. Therefore, in order 

to successfully meet the management objectives set for a sanctuary zone, fmther research is 
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required on community demography and their physical and ecological processes that 

influence biodiversity across varying spatial scales. 

To meet a MPAs objective of biodiversity conservation, managers must acknowledge the 

natural variations in marine ecosystems, including life history traits of individual species, 

daily or nocturnal or seasonal movements, recruitment patterns, and their trophic level in 

the food web. Taking these factors into consideration would provide realistic expectations 

concerning the conservation benefits of MPAs. A key determinant of differences in higher

order consumers in response to protection may be caused by the sanctuary zone design. The 

size and boundaries of a sanctuary zone needs to incorporate multiple habitats, whether 

used for shelter, nursery, and foraging that may form some part of an organism's life cycle. 

The size of the sanctuary zone, along with its time of protection and location, may 

influence the abundance and diversity of higher-order consumers, enhancing its usefulness 

in conservation and potentially for fisheries management. The objectives of some MPAs 

offer minimal benefits to fisheries management through a spillover of propagules and adults 

across the sanctuary boundaries following the cessation of fishing, however ,this still 

remains relatively unquantified and requires further research (Russet al., 2004; Gofii et al., 

2006; West et al., 2009; Amarg6s et al., 2010; Gofii et al., 2010). With a lack of a long

term historical context of an ecosystem, further efforts should be employed in long-term 

and continuous monitoring over large-spatial scales. This will provide crucial temporal and 

spatial data to appreciate the impacts of fishing and how fishing may affect other trophic 

levels in a food web. This also emphasises the need for improved and enforcement of 

sanctuary zone status to ensure the judicious use and preservation of marine ecosystems. 
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Appendix 

Table 3.6. List of all fish species (in alphabetical order) recorded at all six sites within sanctuary and fished 
zones at the reef and at different distances in Amphibolis spp. meadows across three seasons. 

Family Species Fishing Trophic 

Importance Level 

Aplodactylus Aplodactylus westralis R H 

Apogonidae Apogon rueppelli R z 

Apogon victoriae B c 

Aracanidae Anoplocapros amygdaloides N c 

Arripidae Arripis georgianus C/R c 

Blennidae Omobranchus germaini N 0 

Paradennius intermedius N 0 

Belonidae Hyporhamphus melanochir c 0 

Carangidae Pseudocaranx dentex CIR ZJC 

Pseudocaranx wrightii CIR z 

Pseudocaranx wrightii juveniles CIR z 

Chaetodontida Chelmonops truncatus N c 

Cheliodactylidae Cheilodactylus gibbosus N 0 

Cheilodactylusrubrolabiatus R c 

Dactylophora nigricans R 0 

Gerreidae Parequula melboumensis R ZJD 

Gerres subfasciatus R c 

Heterdontidae Heterodontus portusjacksoni R c 

Kyphosidae Girella zebra R H 

Girella tephraeops R H 

Kyphosussydneyanus B H 

Kyphosus comelli B H 
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Scorpis georgiana R z 

Tilodon sexfasciatum R c 

Labridae Achoerodus gouldii c c 

Anampses geographicus N ZJC 

Austrolabrus maculatus R c 

Bodianus frenchii C/R c 

Choerodon spp. R c 

Choerodon rubescens R c 

Coris auricularis R c 

Coris auricularis juveniles N c 

Dotolabrus alieni N H 

Eupetrichthys angustipes N z 

Halichoeres brownfieldi N c 

Thalassoma lutescens R c 

Opthalmolepis lineolata R c 

Pictilabrus laticlavius R c 

Pseudolabrus biserialis R c 

Notolabrus parilus R c 

Thalassoma lunare R c 

Monacanthidae Meuschenia hippocrepis R 0 

Penicipelta vittiger R H 

Scobinichthys granulatus R 0 

Mullidae Parupeneus signatus R z 

Upeneichthys lineatus R c 

Upeneichthys vlagmingii R c 

Odacidae Odax acroptilus R 0 

Odax cyanomelas R H 

Parodax caninis N H 
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Ostraciontidae Aracana aurita R 0 

Pataecidae Aetapcus maculatus R c 

Pinguipedidae Parapercis haackei N H 

Pempheridae Pempheris klunzingeri R c 

Pempheris multiradiata B c 

Platycephalidae Leviprora inops R c 

Plesiopidae Trachinops brauni N z 

Trachinops noarlungae N z 

Pomacentridae Chromis klunzingeri B z 

Parma mccullochi R H 

Parma occidentalis R H 

Scaridae Scarus ghobban R H 

Serranidae Epinephelus armatus C/R z 

Sparidae Chrysophrys auratus c c 

Rhabdosargus sarba R 0 

Terapontidae Pelsartia humeralis R 0 

Tetraodontidae Torquigener pleurogramma N HID 

Urolophidae Urolophus testaceus N c 
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