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Abstract

Marine Protected Areas (MPAs) are internationally recognised as a significant spatial
management and cost-effective strategy to restore and conserve the marine ecosystems
structure and function from human impact. MPAs have been declared with the aim to
address a single or a set of management objectives in response to anthropogenic threats,
such as fishing, which can have repercussions on biodiversity through indirect interactions
or top-down control within an ecosystem or across ecosystems where consumers migrate to
forage. However, this indirect impact of fishing remains poorly understood, and as a
consequence, the effectiveness of MPAs in conserving those ecological processes and
broader biodiversity is also poorly understood. Therefore, this study investigated the
potential effects of sanctuary zones (no-take MPAs) on higher-order consumers and their
effects on benthic assemblage structure both on the reef and in adjacent seagrass meadows.
Consumer assemblages were examined using underwater visual census (UVC) on reefs and
seagrass meadows at a range of sites in sanctuary and fished zones in Marmion Marine
Park (MMP) and Rottnest Island Marine Reserve (RIMP) over three seasons between July
2009 and March 2010. Epibenthic fauna and flora were also sampled using quadrats on
reefs and at set distances away from reefs in adjacent Amphibolis seagrass meadows over

the same period.

Sanctuary zones had higher mean total abundance and biomass of fish compared to
adjacent fished zones, and while not significant, there was also a trend of higher means
rock lobsters abundance in sanctuary zones. However, there was a high degree of
variability among sites nested in zone, and among seasons. Kingston Reefs sanctuary zone
contained the highest rock lobster and fish abundance, biomass, and species richness across
all seasons. In addition, there was a trend of decreasing mean abundance, biomass, and
species richness of fish with increasing distance away from the reef in Amphibolis
meadows. In terms of epibenthic fauna and flora assemblages, there was no significant
difference in their abundances and taxa richness between zones, but as with consumers,

there was high variability among sites within zone and among seasons. As sanctuary zones
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had substantially higher densities of consumers in close proximity to reefs than fished
zones, it was expected that predation levels would be higher in sanctuary zones and would
decrease with increasing distances away from the reef. However, there were no clear trends
of decreasing epibenthic abundance and diversity with distance away from the reef.
Furthermore, tethering experiments with gastropods, a major prey item for some consumer
species, showed no significant‘ differences in gastropod mortality between sites or with
increasing distances away from the reef. Thus, a top-down effect caused by different

abundances of consumers in sanctuary versus fished zones was not evident from the results.
-

Much of the variability in higher-order consumers and epibenthic assemblage could be due
to site-specific characteristics, including the age, size, and the geographical location of
sanctuary zones, and the structural complexity of the habitat. The detection of consumers’
direct influence on prey abundance, richness, and distribution could be partly masked by
their feeding habits, and the level of mobility of higher-order consumers. This study
highlights the level of complexity of food web structures with consideration of other
environmental and biological factors. It also provides important baseline of biological data
on marine ecosystems in marine parks of southwest temperate waters of WA for future
assessments of those marine parks. To meet a MPAs objective of biodiversity conservation,
it is crucial for managers to acknowledge all natural variations in marine ecosystems, such
as the life-history traits of individuals, when setting objectives for a MPAs performance, as

protection may be suitable for some species and inadequate for others.
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1. Introduction
1.1 Marine Protected Areas

For many centuries, humans have been closely associated with the marine environment,
exploiting its resources for profit, and as a result, a large proportion of the world’s fisheries
are now considered unsustainable and overexploited (Jackson et al., 2001; Lotze ef al.,
2006; Byrnes et al., 2007). In an attempt to prevent the collapse of marine ecosystems and
to restore its former structure and function, systematic strategies for the conservation of
marine gcosystems have been developed (Rodrigues et al., 2004). Marine Protected Areas
(MPAs) are spatially delimited areas of ocean that have been implemented and have gained
international recognition as a significant spatial management and cost-effective strategy
(Agardy, 1994; Bohnsack, 1998; Hooker & Gerber, 2004). MPAs have been declared with
the aim to address a single or a set of management objectives in response to anthropogenic
threats, whether for biodiversity conservation (Micheli ef al., 2004; Rodrigues et al., 2004,
Claudet et al., 2008), the protection of spawning grounds of fish (West e al., 2009), or

recovering overfished targeted species (Palumbi, 2001).

To assess whether an MPA is successfully achieving its conservation objectives, research
and monitoring of the marine ecosystem is vital. Before/after control/impact (BACI)
designs have often been used to detect and assess changes in an ecosystem, through the
collection of data before and after an ecological impact (Underwood, 1994; Schiel et al.,
2004; Henry et al., 2006). Lack of historical data prior to the implementation of an MPA
makes this method difficult to use. An alternative method is using a fished zone where
fishing activities are permitted, as a reference area to compare with MPAs. Countless
studies have used this approach, and have documented an increase in density (Chapman &
Kramer, 1999; Shears & Babcock, 2002; Babcock et al., 2007; Barrett et al., 2007), average
size (Micheli, 1997; Babcock et al., 1999; Guidetti& Sala, 2007; Pande er al., 2008;Prado
et al., 2008; Linares et al., 2010), and/or biomass (Denny et al., 2004; Langlois et al., 2005;
McClanahan & Graham, 2005; Kramer & Heck Jr, 2007) of previously exploited fish and
crustacean species within MPAs. Fewer studies have documented the failure of MPAs in

meeting their objectives (Allison et al., 1998) possibly due to the lack of suitable habitat



(Mayfield et al., 2005), size issues (Le Quesne, 2009), the lack of reinforced management
(Perera & Vos, 2007), or perhaps the benefits are too difficult to quantify and are often too
slow to be realised (Agardy, 1994; Halpern & Warner, 2003). However, it is also possible
that studies showing a lack of a response may reflect publication bias towards those studies

showing a positive response of MPAs.

While many MPAs have been shown to provide a significant spatial refuge for fished
species to increase in numbers, these protected areas may also benefit the broader fisheries
outside those areas. Although not the primary goal of most MPAs (Edgar et al., 2007,
p.538), adjacent fisheries may benefit from these protected areas through a potential
‘spillover’ effect, and/or larval export. ‘Spillover’ effect describes the export of adults and
juveniles of targeted species from MPAs to adjacent fisheries (Russ et al., 2004; Gofii et
al., 2006; West et al., 2009; Amargos et al., 2010; Gofii et al., 2010), whereas larval export
is the net movement of propagules from MPAs into adjacent fished zones (Pelc et al.,
2009). A higher production of propagules (eggs and larvae) is expected following the
protection and subsequent increase in biomass of targeted stock (Kelly et al., 2002; Willis
et al., 2003). However, this concept of MPAs acting as a source of increased propagule
production is debatable as it may also be due to an increased attraction of species to the
MPA. Therefore, prior to understanding how systems respond to MPAs, it is crucial to

grasp the fundamental concepts driving marine ecosystems.

1.2 Marine trophodynamics

Similar to terrestrial and freshwater ecosystems, marine ecosystems constitute a variety of
organisms and processes that occur between the organisms and their associated habitat(s).
Organisms can be broadly categorised into discrete trophic levels: primary producers
forming the basis of a food web, followed by consumers that either feed on plant
(herbivores) or animal (carnivores) material, or feed across trophic levels (omnivores), or
feed on organic wastes or dead material of any trophic level (detrivores and scavengers)
(Huntly, 1991). Many consumers may have close interactions to other trophic levels

through important structuring processes such as competition, herbivory, recruitment, and



predation (Huntly, 1991; Wilson, 1991). Marine ecosystems are generally open with high
levels of connectivity among habitats (Hixon et al., 2002; Edgar et al., 2007, p.537),
forming complex and interactive food webs. Therefore, a consumer’s role, and the
interactions it has with its associated food sources, is likely to influence other species

within its community (Connell, 1975) through direct and indirect relationships.

Interactions in food webs have the potential to regulate a community’s structure, either
through bottom-up or top-down control (Hairston et al., 1960; Power, 1992). Bottom-up
control describes how predators are limited by the availability of prey (Power, 1992),
whereas top-down control illustrates how lower trophic levels are limited by predation
(Hairston et al., 1960). Of particular focus, top-down control demonstrates how higher-
order predators can shape the structure of the benthic assemblage by reducing two or more
links such as herbivores and consumer numbers. This natural trophic cascade has been
observed in coral reef systems (Graham et al., 2003; Stallings, 2008), rocky reefs (Menge,
1995; Pinnegar et al., 2000; Shears & Babcock, 2003; O’Gorman et al., 2008), and in the
open ocean (Frank et al., 2005).

The level of complexity of a food web structure is crucial to understanding how ecological
communities may respond to the effects of changes in consumer abundances (O’Gorman et
al., 2008). A simple linear food chain generally consists of three-tiers: primary producers,
herbivores, and predators; however, these are not frequently observed in nature (Polis,
1991; Menge, 1995). Rather trophic interactions between species are typically dynamjc,
forming complex food webs involving four or more tiers (Polis, 1991; Pimm, 2002).
Adding another level to the trophic system will shift the response in a trophic cascade,
making it difficult to determine the species’ response. A consumer’s feeding mode further
complicates this response. Unlike carnivores and herbivores that consume from a single
trophic level, omnivores feed on a variety of trophic levels from primary producers to
secondary consumers (Pimm & Lawton, 1978; Thompson et al., 2007), making it difficult
to determine whether or not omnivores have an impact on lower trophic levels (Ho &
Pennings, 2008). Furthermore, unlike diurnally active species where their movement

patterns can be observed, many individuals are nocturnally active and their activity patterns



can go undetected (Nagelkerken et al., 2000; Sheperd & Clarkson, 2001; Verweij et al.,
2006). These biotic factors, however, are often too complex to quantify or experimentally
manipulate, making it difficult to link shifts in communities to changes in consumer

abundances.

1.3 Impacts of fishing on marine biodiversity

Humans have dominated most marine food webs through the exploitation of marine
resourcgs primarily for human consumption through fishing (Jackson et al., 2001; Dulvy et
al., 2003; Myers & Worm, 2003; Halpern et al., 2008). This activity directly removes a
wide range of species from multiple trophic levels, particularly higher-order consumers. As
a result, the overall abundance and biomass of important targeted and by-catch species are
drastically reduced (Ludwig et al., 1993; Jennings & Kaiser, 1998; Myers & Worm, 2005;
Byrnes et al., 2007). The targeted species are often large carnivores (Jennings & Kaiser,
1998), which | generally have prolonged lifespans, delayed reproduction, and low
reproduction rates (Daytoner al., 1995; Jennings et al., 1999). Fishing activities also have
the potential to manipulate genetic diversity, shift foraging behaviour, the age at which

species mature, and reduce the average size of speciés (Policansky, 1993).

The direct loss of consumers through fishing potentially has repercussions throughout an
ecosystem through indirect interactions or top-down control (Jackson et al., 2001;
Bascompte et al., 2005). Several studies have shown that over-harvesting of high-order
predators can lead to an increase in intermediate prey and indirectly structured lower
trophic levels on rocky reefs (Shears & Babcock, 2002; Clemente et al., 2008; Barrett et al.,
2009; Sonnenholzner et al., 2009), coral reefs (Harborne et al., 2009; Stallings, 2009), kelp
forests (Estes et al., 1998; Babcock et al., 1999), and in seagrass meadows (Gloeckner &
Luczkovich, 2008; Moksnes et al., 2008). Changes in species composition, abundance, and
distribution of lower trophic levels (e.g. marine benthos) has also been evident in other
fisheries such as bottom fishing for scallops and shrimp through destructive dredging
(Kaiser et al., 2000; Bradshaw et al., 2002; Morsan, 2009). Therefore, several components

within a food web are influenced in response to a trophic cascade in individual systems.
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The response of a marine system is dependent on its food web complexity. The
restructuring of entire marine systems through trophic cascades has been documented for
simple systems containing only a few interacting species (Estes & Duggins, 1995).
Complex food webs containing many taxa and their direct and indirect effects can play a
significant role in the community stability, however there is continued uncertainty about the
mechanisms driving the cascading effects (Schmitz et al., 2004;Dunne et al., 2005; Frank et
al., 2005; O’Gorman& Emmerson, 2009). Studies on trophic cascades have generally
focused on high-order carnivores within a single habitat. However, consumers can move
across Iiabitat boundaries, and any removal of consumers in one system via fishing may

have a trophic cascade effect in adjacent systems where the target species forages.

1.4 Habitat connectivity

Some consumers are strongly associated with a particular habitat, while others move
considerable distances into other habitats. This spatial movement between multiple habitats
presents an important trophic link between consumers and prey across habitats in a marine
landscape (Sheperd & Clarkson, 2001; Callaway & Hastings, 2002; Heithaus et al., 2002;
Bonfil ef al., 2005; Valentine et al., 2007). Foraging movements across habitat boundaries
may involve a consumer shifting from a structurally-complex shelter habitat (e.g. rocky
réefs) to another structurally complex habitat (e.g. seagrass meadows) or a less structured
habitat (e.g. unvegetated areas) as seen in the nocturnal movements of rock lobsters (Ogden
et al., 1976; Cox et al., 1997, MacArthur et al., 2008) and fish (Grober-Dunsmore et al.,
2007; Nagelkerken et al., 2008). The effects of foraging in neighbouring habitats can
propagate through reductions in prey densities and shifts in overall assemblages (Huxel &
McCann, 1998; Barros, 2005; Langlois ef al., 2005; Guidetti, 2006). Prey species have been
shown to decline in densities immediately adjacent the reef and increase with distance away
from the reef (Posey & Ambrose, 1994; Langlois et al., 2005; Wernberg et al., 2006;
Valentine et al., 2007; Vanderklift et al., 2007).

The foraging movement of higher-order consumers across habitat boundaries highlights the

complexities in trophic dynamics of marine ecosystems. Fishing activities, through the



direct removal of a consumer from one system can, therefore, potentially affect associated
prey in adjacent habitats (Valentine et al., 2008). Unfortunately, this indirect impact
remains poorly understood, and as a consequence, the effectiveness of MPAs in conserving

those ecological processes is also poorly understood.

1.5 Significance and aims of study

Despite abundant published literature on the benefits of MPAs and top-down control
globallyf there is relatively little known about these ecological processes in temperate
marine ecosystems in Western Australia (WA). The Perth metropolitan waters of southwest
WA cover approximately 14,000km?, and comprise a mosaic of habitats from limestone
rocky reefs dominated by macroalgae to seagrass meadows and unvegetated areas (Phillips,
2001). Amphibolis spp. and Posidonia spp. are the dominant canopy-forming seagrasses in
the region (Kirkman & Walker, 1989) and function as important habitats for invertebrates
and vertebrate marine organisms, and acts as an important substrate for epiphytic algal
diversity (Moncreiff & Sullivan, 2001). Seagrass-associated fauna includes amphipods,

crustaceans, nematodes, echinoderms and small fish (Jernakoff & Nielsen, 1998).

The Leeuwin Current is the dominant current in the region, with its poleward flow
transporting warm, oligotrophic waters along the continental shelf (Church et al., 1989).
This current is responsible for the tropical—températe transition zone that has promoted a
high level of species richness and endemism in the region (Hutchins & Pearce, 1994;
Roberts et al., 2002). This biodiversity hotspot has made it a highly desirable region for
commercial and recreational fishing (Department of Fisheries, 2008; Bellchambers et al.,
2009). This southwest transition region also contains an extended chain of inshore lagoons
that are considered important areas for benthic productivity and recruitment for a variety of
marine species, including consumers species targeted by fisheries (Department of

Environment and Water Resources, 2006).

As a consequeiice of continued exploitation of marine resources that has lead to significant

decline in population stocks (Mitchell & Baba, 2006), 12 marine parks have been created



under the vesting authority of The Marine Parks and Reserve Authority (MPRA) in WA.
One of the 12 Marine Parks of interest lies within the Perth Metropolitan region, Marmion
Marine Park (MMP), while an additional reserve, the Rottnest Island Marine Reserve
(RIMR) has been gazetted and governed by the Rottnest Island Authority. The key
objective of these MPAs is to have healthy and sustainable marine ecosystems through the
conservation of biological diversity (MPRA, 2009). MPRA is a statutory body reporting to
the Minister for the Environment, however, the Department of Environment and
Conservation (DEC) is primarily responsible for the daily management of the vested
waters, groviding administrative support to the MPRA (MPRA, 2009). Marine Parks allow
some level of activities to occur within different areas by implementing four management
zones consistent with the conservation of the marine environment. These zones include
general use, recreation, special purpose, and sanctuary zones. Sanctuary zones prohibit all

forms of fishing.

Fish and the western rock lobster Panulirus cygnus are abundant consumers along the
southwest WA coast, both forming important fisheries. The West Coast demersal scalefish
fishery targets over 100 fish species (Fairclough et al., 2009), and the western rock lobster
is the largest single-species fishery in Australia, annually worth AUS$250-$400 million.
The western rock lobster fishery is considered a sustainable fishery having been awarded
the Marine Stewardship Council accreditation (de Lestang & Melville-Smith, 2006).
However, due to the low puerulus settlement numbers, the rock lobster fishery has had to
review their management strategies (Caputi ef al., 2008). Demersal scalefish and rock
lobsters, which are carnivorous or omnivorous, occupy high-relief limestone reefs
dominated by macroalgal canopies, primarily by laminarian (kelps) (Searle & Semeniuk,
1985; Howard, 1989; Phillips et al., 1997; Connell & Irving, 2008) and move into the
surrounding habitats in shallow (<10m in depth) coastal waters (MacArthur et al. 2008).

The broad aim of this study was to investigate the potential effects of sanctuary zones (or
no-take zones as a form of MPAs) on higher-order consumer abundance and in turn their
effects on benthic assemblage structure both on the reef and in adjacent seagrass meadows.

It is reasonable to expect that a change in higher-order consumer abundance induced by



fishing may lead to a restructuring of benthic assemblages through changes in the intensity
of their foraging activities. Also, since those consumers display limited movement into
adjacent seagrass meadows (Willis er al., 2001; Edgar er al., 2004), the restructuring of
benthic assemblages will diminish with increasing distance away from reefs. More

specifically, my research tested the following three hypotheses:

1. The abundance, biomass and diversity of higher-order consumers would differ

between sanctuary and fished zones;

2. The abundance and diversity of epibenthic fauna and flora would differ between
sanctuary and fished zones, and would increase in abundance with increasing

distances away from the reef; and

3. Relative predation levels on gastropods in seagrass meadows would differ
between sanctuary and fished zones, with predation levels decreasing with

increasing distances away from the reef.

This study will provide baseline data necessary to assess whether the MPAs in southwest
temperate waters of WA are successfully meeting their objectives of biodiversity
conservation. It will provide some insights into how ecosystems function in response to
harvesting of higher-order consumers by humans and to protection through sanctuary
zones, and how it may affect other trophic levels. These data would contribute to the

judicious use and preservation of marine ecosystems.



2. Materials and Methods
2.1 Study sites

2.1.1 Pilot study

Prior to the selection of the sites, extensive pilot work was conducted at various locations
around Rottnest Island and Marmion Marine Park in April 2009 (Figure 2.1).Sites were
selected to represent similar habitat structure based on visual observations via drop-down
video cameras, snorkel and SCUBA diver surveys, as well as existing and current
knowledge from local residents and researchers. All sites chosen had extensive
(approximately 200m in length and of appropriate width) Amphibolis spp. seagrass
meadows adjacent to limestone rocky reef, in shallow waters (<10m depth), and exposed to

similar wind and swell conditions.

2.1.2 Study sites and general design

The study was conducted at two Marine Protected Areas (MPAs): Marmion Marine Park
(MMP) (31°49.4° S, 115°40’ E) and Rottnest Island Marine Reserve (32°0°0 S, 115°30°0
E), which were both located within the metropolitan region of the southwest coast of

Western Australia (Figure 2.1).

Marmion Marine Park (MMP) was gazetted in 1987, when it was classified as a Class A
Marine Reserve to conserve the diverse marine communities and habitats representative of
West Australia’s mid-west coast (DEC, 1992). MMP protects 9498ha of numerous shore-
paralle] intertidal limestone reef systems of low relief reef, and complex assemblages of
benthic communities, including seagrass habitats and sand. Three sanctuary zones (where
fishing if prohibited) were implemented within the MPA in 1999 (Figure 2.1). These are
‘Little Island’ (0.06km?®), “The Lumps’ (0.28km?), and ‘Boyinaboat Reef> (0.07km?), all
nested within a larger fished zone, and comprises of approximately 0.42km” or 0.44% of

the total Park.



Rottnest Island is located 18km west of Fremantle, Western Australia. Due to its
geographic isolation from the mainland and its close proximity to the Leeuwin Current, the
marine waters of Rottnest Island are ecologically and biologically unique. Therefore, the
coastal waters of Rottnest were declared a Class A Marine Reserve in 1917 with the aim to
protect representative samples of entire marine habitats, and endemic West Australian
species. The Marine Reserve (MR) covers an area of 3828ha that excludes recreational
spear fishing within 800m from the shore and commercial rock lobster fishing out to
1600m ifrom the shore. Within the MR, five sanctuary zones have been implemented, two
of whicfl have been gazetted since 1988 (Kingston Reefs 164ha, and Parker Point 89ha) and
have since been extended, and the creation of three sanctuary zones (Armstrong Bay 82ha,

Green Island 92ha, and West End 236ha) in 2007 (Figure 2.1).

At MMP, two sites of similar wave exposure and west to west-south oceanic swells were
selected, one in the Boyinaboat Reef sanctuary zone (31°49°S, 115°43’E) and the other at
an adjacent site, Wreck Rock (31°48°S, 115°43°E), a fished zone where fishing is allowed
(Figure 2.1). Four sites were selected at Rottnest Island MR. A site in the Kingston Reefs
sanctuary zone (31°59°S, 115°33°E) was paired with an adjacent fished sité at Twin Rocks
(32°00°S, 115°33°E). Both these sites were relatively exposed to south and southeast swells
and wind. An additional site at Green Island sanctuary zone (32°01°S 115°29’E) was paired
with an adjacent fished site at Rocky Bay (32°00°S, 115°28°E) (Figure 2.1) of which both
sites were sheltered from southerly winds and swell. All these sanctuary zones differ in
terms of size and the length of protection, despite having similar fishing restrictions.
Therefore, it is expected that each sanctuary site was to exhibit different responses to

protection compared to fished zones.
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The study design was based on three sets of paired sites (Figure 2.2). Within each pair, one
site was located in a sanctuary zone where extractive activities such as fishing are
prohibited and an adjacent reference site where extractive activities are permitted. All sites
were located in shallow waters, generally with depths of 4-5.0m near the reef and gradually
deepening with increasing distances away from the reef (4-10m). Twin Rocks fished zone
was the exception, with depths gradually decreasing with distance (5.5-1.1m) from the reef.
Sampling was conducted from late July 2009 to early-March 2010. This timeframe
coincidid with three different seasons, winter and spring 2009, and summer 2009-2010,

respectively, and allowed me to compare open and closed western rock lobster fishing

season, open from 15™ November to 30" June.

The study design consisted of six sites however, only five were examined during the winter
period (Figure 2.2). A fished site at Henrietta Rocks, located northeast of Parker Point, was
initially paired with Green Island sanctuary zone, It was removed from further analysis as
the reef was in close prbximity to an adjacent reef, potentially confounding the overall data
for higher-order consumers and benthic assemblage in seagrass meadows. Therefore, an

unbalanced design was conceived.
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Zone Site Season Distance (m) Replicate

{n=2) (n=3}) {n=3) {n=3}) (n=3}
__ | Boyinaboat
— Winter
Reef
ORF 1
Green
Sanctua —— —_ i
v island Spring 60 2
- Kingston 200 3
Reef — Summer
, .
Wreck
T Rock
Twin
Fished — Rocks
Spring
Racky
o Bay
summer

Figure 2.2. Experimental design to determine the abundance and diversity of higher-order consumers. ORF:
sampled at the reef.

2.2 Abundance of higher-order consumers
2.2.1 Pilot Study

A pilot study was conducted at Boyinaboat Reef (Figure 2.1) in June 2009 to practice
visually estimating the lengths of fish species and rock lobsters accurately. To ensure the
size estimates of each lobster was recorded accurately, the carapace length (CL) was first
visually estimated to the nearest Smm, then captured using a spring-loaded crayfish loop
and measured using a ruler. A total of eight individual P. cygnus were caught. However,
too few lobsters were caught to create a linear regression model on the association between
the estimates and true measurement, therefore, lobsters were broadly categorised as legal

(>77mm CL), non-legal (<77mm CL), or unknown (only antennae were observed). To
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ensure the total length (TL) of each fish was recorded accurately and could be applied to a
wide variety of temperate demersal fish species, the observer (Inostroza, K.) used 2D
aluminium fish figurines of known lengths (5, 10, 15, 20, 25, 30, and 40cm) (Westera et al.,
2003) as calibrations. Four randomly selected figures from the total seven known lengths
were placed at the reef and in seagrass approximately 2.5m away to obtain a length
estimate. This was performed for approximately 5-10 minutes prior to the commencement

of every underwater visual census (UVC).

7

2.2.2 Relative abundance and biomass of fish species

To estimate the relative abundance and species richness of the fish assemblage within
sanctuary and fished zones, underwater visual censuses were performed at the reef and two
distances away from the reef edge: 0, 60, and 200m in adjacent Amphibolis spp. meadows
(n=9) (Figure 2.2). These were conducted during daylight hours (between 0700 and 1200
hrs) and focused only on diurnally active non-cryptic fish species. Censuses were only
conducted when visibility was >3m, and low swells to minimise potential risks and
variations in results. Throughout the study, one observer (Inostroza, K.) conducted all

UVCs to minimise error and bias (Samoilys and Carlos, 2000).

To avoid localised disturbances caused by the presence of divers after entering the water,
both divers remained motionless on the seafloor for approximately 5-7 minutes to settle the
behavioural responses of fishes (Shepherd and Clarkson, 2001). During this time, the
observer practiced estimating and recognising fish size measurements through calibration
using 2D aluminium figurines. Three 25m x 5m belt transect (length x width, respectively)
five meters apart, were haphazardly placed parallel to whether the fish assemblages and
abundances altered between two different habitats, as previous research has shown a greater
abundance of fish species close to the reef than at greater distances away (Howard, 1989).
For each transect, the primary diver followed a compass bearing to ensure that the transect
did not deviate, while the second diver secured a tvape measure at the beginning of the

transect and followed closely behind the observer at a steady pace for 25m.To minimise
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bias in fish counts, both divers advanced at a rate of 25m” per minute, completing each

transect in approximately 12 minutes (Samoilys & Carlos, 2000).

All fish and schooling fish present within each transect were identified, counted and had
their total length (TL) recorded to within 5cm. Fish were accurately identified to the lowest
taxonomic level possible using photographic aids. Estimates of fish lengths obtained during

UVCs were converted to biomass, using allometric length-weight conversion:
W=alL? (eq. 1)

whereb;f W is weight in grams, L is total length in centimetres, and parameters a and b are
constants, sourced from published length-weight relationship (Kulbicki et al., 2005). For
species where length-weight relationships were not available, the genus or higher
taxonomic level were used, or the biomass were estimated by using a congener with a

similar body size and shape.

2.2.3 Relative abundance of western rock lobsters

To estimate the relative abundance of western rock lobster Panulirus cygnus, four replicate
10-minute searches were conducted amongst reef, crevices, and reef edge at each site. Due
to their nocturnal activities, P. cygnus generally seek shelter in reef crevices during daylight
hours (Cobb, 1981; Jernakoff et al., 1993). Each rock lobster observed was counted and
assigned to three size classes: legal (>77mm carapace length CL), non-legal (<77mm CL),
and uncertain. Those individuals were the carapace was not clearly visible but antennae

were observed, were categorised as uncertain.

2.2.4 Statistical analysis

A 4 factor mixed-model design was employed to test for differences in fish abundance,
diversity and biomass between: (1) zone (fixed factor; 2 levels); (2) site (random factor;
nested within zone, 3 levels); (3) seasons (fixed factor; 3 levels); and (4) distance (fixed

factor; 3 levels). Fish community structure, biomass, and species richness were examined
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using multivariate statistics as an unbalanced design. The data was not normally distributed
following transformation due to the unequal sample size. As permutational multivariate
analysis of variance (PERMANOVA; Anderson (2001)) is robust to data not meeting the
assumptions of traditional ANOVA, it was used to investigate differences between
dependent variables. To overcome heteroscadasticity, data were square-root (Vx)
transformed. All permutation analyses were conducted with 9999 permutations on residuals
under a reduced model. Post-hoc a prioiri pair-wise comparisons (Monte Carlo) were used

to test for differences among levels within significant factors.
7

Analyses of differences in fish assemblage structure were based on Bray-Curtis similarity
indices, and data were square-root (Vx) transformed to reduce the influence of extremely
abundant fish species. Canonical analyses of principal coordinates (CAP) were undertaken.
CAP plots allowed the examination of individual species that were likely to be responsible
for any observed differences through correlations of taxa counts with the canonical axis.
Data was constrained using two axes in a higher two-dimensional plot to separate the
groups and visualise patterns. All multivariate analyses were made using PRIMER v6 with
PERMANOVA+ add-on.

A 3-way mixed-model nested analysis of variance (ANOVA) was used to test for
differences in legal-sized and total abundance of western rock lobster. The three factors
Were: (1) zone (fixed factor; 2 levels: sanctuary and non-sanctuary zones); (2) site (random
factor; nested within zones; 3 levels: sanctuary Boyinaboat Reef, Green Island, and
Kingston Reefs; fished Wreck Rock, Twin Rocks, and Rocky Bay); and (3) seasons (fixed;
3< levels: winter, spring, and summer). Cochran’s test was used to test for homogeneity of
variances. As data met the assumptions of ANOVA, data were not transformed. Student-
Newman-Keuls (S-N-K) post-hoc tests were carried out where significant effects occurred

(p<0.05). Analyses were performed using GMaV Statistical Analysis Program.
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2.3 Impact of higher-order consumers on abundance and biomass of benthic

assemblage
2.3.1 Experimental design and approach

The study design consisted of six sites, three sites nested within sanctuary zones and three
sites nested within fished zones, examined over three seasons. Only five were examined
during the winter period as previously mentioned (Section 2.1.2). The benthic assemblages
were sampled at increasing distances from the reef at each site within sanctuary and fished
zones (Figure 2.3). A tape measure was secured to the reef edge, and placed in Amphibolis
spp. seagrass meadows adjacent to the reef out to approximately 200m. At increasing
distances away from the reef (ORF on the reef, 0SG, 15, 30, 60, 120 and 200m in seagrass),
three replicate 0.25m” (0.5m x 0.5m) quadrats were placed haphazardly in the seagrass
meadow (n=18) (Figure 2.3). Within each quadrat, all aboveground epibenthic and sessile
fauna and flora were removed and carefully placed into calico bags and frozen once

returned to the laboratory.
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Zone Site Season Distance {m) Replicate

{n=2) (n=3) {n=3) (n=7) (n=3)
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— Winter
Reef
— | 0sG 1
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Sanctuary |7 | tsland 1 Spring —| 15 2
|| Kingston- | 30 3
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4 — | 60
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Figure 2.3. Study design to determine the abundance and biomass of the benthic assemblage. ORF: sampled at

the reef; and OSG sampled in seagrass immediately following the reef.

2.3.2 Laboratory processing

Each sample was defrosted, rinsed in clean freshwater and passed through a 4mm and
0.5mm sieve to provide size-related abundance of broad taxonomic epifaunal invertebrate
groups (Jernakoff & Nielsen, 1998). All fauna were identified to the lowest possible

taxonomic level.

Seagrass were separated into species, and three shoots of each species were randomly
selected from the sample, a substantial representation of the total sample (Phillips et al.,

1997). For Amphibolis spp., all the leaf clusters were detached from the stems, and 10
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individual leaves were selected at random. The total length of the stems were measured and
cut into 20 equal portions. This allowed for the relative abundance of algae functional
groups on seagrass to be obtained. These functional groups included: articulated and
encrusting calcareous coralline, corticated terete and foliose, filamentous, and leathery
algae (Steneck & Dethier, 1994). The algae were divided into simple polyphyletic groups
based on anatomical and morphological characteristics. Using morphological attributes
rather than species can: (1) assist in detecting patterns in community structure to make
comparisons in space and time (Steneck & Dethier, 1994); (2) does not require a high level
of taxoriomic expertise; and (3) reduces sampling effort. These functional groups are
readily consumed by P. cygnus (Edgar, 1990a; Jernakoff et al., 1993) and by various
temperate fish species (Edgar & Shaw, 1995; MacArthur & Hyndes, 2007).

The presence or absence of algal functional groups on all leaves and stems were recorded
with the aid of a dissecting microscope. All algae were removed and separated into
different functional groups. For each sample, the entire seagrass sample, selected leaves
(n=10), stems (n=20), and each algal morphological group were weighed separately to the
nearest gram, dried in a 60°C oven for 24 to 48 hours and weighed again to the nearest

again to the nearest gram for dry weight (Jernakoff & Nielsen, 1998).

2.3.3 Statistical analysis

A 4 factor mixed-model design was employed to test for differences in relative abundance
and total biomass of epiphytic algae on seagrass and benthic faunal assemblage between:
(1) zone (fixed factor; 2 levels); (2) site (random factor; nested within zone, 3 levels); (3)
seasons (fixed factor; 3 levels); and (4) distance (fixed factor; 7 levels). Benthic
assemblages were examined using Permutational multivariate analysis of variance
(PERMANOVA; Anderson (2001)) and post-hoc a prioiri pair wise comparisons (Monte
Carlo) as previously mentioned above. SIMPER analyses were used to determine the
contribution of each algal functional group to the average Bray-Curtis similarities between

zones, sites nested within zones, seasons, and distances. This method identified the algal
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groups responsible for any differences that occurred between factors through the

comparison of two factors at a time.

To visualise the maximum differences between zones and other factors, canonical analysis
of principal coordinates (CAP) were undertaken. CAP plots allowed the examination of
individual species that were likely to be responsible for any observed differences through

correlations of taxa counts with the canonical axis.

.
2.4 Predation and its effect with increasing distance from reef edge

2.4.1 Pilot Study

A pilot study was conducted to test logistical problems associated with tethering, which
was repeated twice. Gastropod death caused by tethering artefacts was of primary concern
(Aronson & Heck Jr, 1995; Aronson et al., 2001). The gastropods Pyrene bidentata
(Collumbellidae) and Cantharidus lehmanni (Trochidae) were used for the pilot studies and
the tethering experiments. Both are epifaunal species, common to south-western Australia
coastal environments, and were selected because both occurred in high abundances at the
reef and in seagrass meadows in the benthic assemblage studies. Numerous adult
gastropods were collected from Posidonia spp. and Amphibolis spp. meadows at Wreck
Rock in MMP. The species were transported to the laboratory in an esky and placed into an
aerated seawater aquarium (20 x 15 x 10cm; length, width, and height, respectively), and
fed on epiphytic Posidonia spp. and Amphibolis spp stems and leaves for two days prior to
experimentation. This allowed them to acclimatised to the laboratory conditions with a

16°C room temperature, and reduce any stress levels.

To tether thé gastropods, the outer shell of each individual was dried using paper towels,
avoiding any contact with the soft body residing in the shell. A 15cm long monofilament
line as suggested by Barbeau and Scheibling (1994), with a slipknot at each end was placed
around the shell and glued using cyanoacrylate. A cable tie was placed at the other end of
the line to act as a weight. For each gastropod species, one tethered and untethered

individual were placed into a small tank (10 x 10 x 15cm; length, width, and height,
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respectively) (n=12). Three small tanks were then placed within a larger aerated aquarium
(20 x 15 x 10cm; length, width, and height, respectively) (n=4), and fed Amphibolis spp.
stems and leaves with epiphytes. Invertebrates were observed everyday for seven days to
determine the number of surviving tethered individuals. Temperature and pH levels were
observed once a day over this period, with minor fluctuations between 18-18.4°C and pH
8.01-8.07. Pilot work determined there were no mortalities for either tethered or untethered

individuals for both species.

7

2.4.2 Experimental design

The tethering experiment was located at two sanctuary and two fished sites at Rottnest
Island MR, since earlier UVCs at those sites had demonstrated a greater abundance and
diversity of fish species and abundance of rock lobsters compared to sites in Marmion
Marine Park (see Results). The four sites were located at Kingston Reefs and Green Island

sanctuary zones, and Twin Rocks and Rocky Bay fished zones.

Adult P. bidentata and C. lehmanni individuals were collected from Posidonia spp from
Twin Rocks in February 2010. Five individuals of each species were deployed at distances
of 0 (reef), 15, 60, and 200m (n=160) in Amphibolis spp. seagrass meadows adjacent to
limestone rocky reef. Each individual was tethered using a 15cm nylon monofilament line
looped to a stainless steel tent peg, which was 16.5cm in height. Each tethered individual

was left out for four days.

During the retrieval, not all tethers were located as a result of bad weather and therefore
major changes were made to the objectives and overall statistical analysis. The tethered
gastropods were classified into two broad categories: (1) dead (missing shell, with or
without intact nylon loop attached); and (2) alive with intact and/or damaged shells
(Barbeau & Scheibling, 1994).
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2.4.3 Statistical analysis

A Kruskal-Wallis H test was employed to test for differences in predation and its potential
effect with increasing distances away from the reef between: (1) site (4 levels); (2) distance
(4 levels), and (3) gastropod species (2 levels). This non-parametric analysis was employed,
as there was missing data, creating an unbalanced design and resulted in data not being
normally distributed following transformation. Kruskal-Wallis test was used, as data does
not need to meet the assumptions of normality or homogeneity of variance of traditional

ANOVA. All univariate analyses were made using SPSS Statistical Package.
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3. Results
3.1 Abundance and diversity of higher-order consumers
3.1.1 Legal-sized and total abundance of rock lobster

The mean relative abundance of legal-sized lobsters in sanctuary zones was 9.46 + 1.38
individuals 10min™, compared to 1.58 + 0.33 individuals 10min™ in fished zones. Although
a greater mean abundance of legal-sized rock lobsters was found in sanctuary zones
compared to adjacent fished zones, statistics revealed no significant zone effect (F=3.05,
p>0.05; Table 3.1). However, a difference in site nested within zone was found to be
significant (F=21.48, p<0.001; Table 3.1). This was due to the variability between sites
nested within sanctuary zones as indicated by SNK post-hoc tests. Kingston Reefs
sanctuary zone had a significantly greater overall abundance of rock lobsters (16.75 + 0.69
individuals IOmin’I), while Boyinaboat Reef sanctuary zone had the lowest overall lobster
abundance (2.5 # 0.18 individuals IOmin'l) (Figure 3.1A). There were no differences in the

abundance of lobsters within fished zones (Figure 3.1A).

The mixed-model nested ANOVA also demonstrated a significant site nested within zone x
season interaction (F=2.54, p<0.05; Table 3.1). Seasonal variability was observed within
and between sites nested within sanctuary zones as shown by SNK post-hoc’tests. Kingston
Reefs sanctuary zone was the only site to show a significant seasonal effect, as a greater
abundance of lobsters were observed in summer (21.25 = 4.07 individuals IOmin’l) and
spring (21.0 + 1.08 individuals 10min™) compared to winter (mean 8.0 = 2.48 SE
individuals 10min™). All other sites nested within sanctuary and fished zones had relatively
constant lobster abundance over the seasons. Seasonal variability between sanctuary zones
was also observed, as Kingston Reefs displayed a greater abundance of legal-sized lobsters
in summer (21.25 + 4.07 individuals 10min'), while Boyinaboat Reef had the lowest lobster
abundance over all seasons (2.5 + 0.18 individuals IOmin'l; Figure 3.1A). This

demonstrated a high degree of spatial and temporal variability.
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The mean relative abundance of all rock lobsters, including legal and below legal size, was
16.72 + 2.20 individuals 10min™ in sanctuary zones, compared to 3.0 + 0.56 individuals
10min™ in fished zones. Total abundance of lobsters showed a similar pattern to the legal-
size lobster, as the legal-size lobsters made up a large proportion of the total abundances of
lobsters. A greater mean abundance of rock lobsters were observed in sanctuary zones
compared to fished zones, however, statistics indicated no significant zone effect (F=4.20,
p>0.05; Table 3.1). There was however, variability between sites as highlighted by the
significant site nested within zone effect (F=23.73, p<0.001; Table 3.1). This was primarily
due to tyl;e variability between sites nested within sanctuary zones as demonstrated through
SNK post-hoc analyses. Kingston Reefs sanctuary zone had a significantly higher relative
total mean abundance of lobsters (28.75 + 3.60 individuals 10min™; Figure 3.1B), whereas
Boyinaboat Reef sanctuary zone had the overall lowest abundance of lobsters (5.67 + 1.25
individuals 10min™; Figure 3.1B). No statistical differences in total mean abundance of
lobsters were observed for sites nested within fished zones, as all fished sites showed

relatively low abundances of lobsters (3.0 = 0.56 individuals 10min™'; Figure 3.1B).

24



30 & Winter
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O Summer

Mean abundance of legal-sized rock lobsters
(ind 10min™)

Total mean abundance of rock lobsters
{ind 10min-t)

Sanctuary Zone Fished Zone

Figure 3.1. Mean (+S.E.) abundance of (a) legal-sized, and (b) total abundance of western rock lobster (P.
cygnus) per 10 minute timed search in sanctuary zones: Boyinaboat Reef (B), Green Island (G), and Kingston
Reefs (K), and in fished zones: Wreck Rock (W), Twin Rocks (T), and Rocky Bay (R).
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Table 3.1. ANOVA comparing the mean abundances of legal-sized (>77mm CL; carapace length) and total
abundance of rock lobsters (P.cygnus).Legal-size abundance Cochran’s test: C= 0.2745 not significant (ns).
Total abundance Cochran’s test: C= 0.2626 ns. Z: zones, S(Z): sites nested within zone, and Se: seasons.

Legal-size abundance (ind. 10min™) Total abundance (ind. 10min™)
Source df MS F p MS F p
y/ 1 1112.3472  3.64 0.1291 3389.3889  4.20 0.1097
S(Z) 4 3057222 2148  0.0000%* 806.5556  23.73 ' 0.0000%%:

7

Se 2 110.3889 3.05 0.1036 276.2639 4,09 0.0599
Zx Se 2 24.8889 0.69 0.5301 165.0139 2.44 0.1488
S(Z) x Se 8 36.1806 2.54 0.0200* 67.6181 1.99 0.0654
Residual 54 14.2361 33.9907
Total 71

#p<0.05, **p<0.01, **¥<0.005

3.1.2 Fish species abundance, biomass, and species richness

A total of 6,543 fish species belonging to 68 species and representing 30 families were
recorded at the reef and in adjacent Amphibolis spp. seagrass meadows over the study
period. The families occurring in greatest abundancé over all sites and all three seasons
were Labridae (45.5% of total individuals), Pomacentridae (15.4%), and Kyphosidae
(13.1%). Families with the greatest number of species belonged to Labridae (15 species),
and Kyphosidae (6 species). Numerically, the most abundant fish species observed over all
sites were the western king wrasse Coris auricularis (Labridae, 0.08+0.94 individuals m’;
total 17.9%), brownfield wrasse Halichoeres brownfieldi (Labridae, 0.07+0.93 individuals
m; 16.7%), brown-spotted wrasse Notolabrus parilus (Labridae, 0.05+0.44 individuals m?;
10.9%), and the schooling carnivorous Pempheris klunzingeri (Pempheridae, 0.04+1.31
individuals m? 10.1%).
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Mean fish abundances ranged up to 1.65 individualsm™ across all sampling occasions.
Species richness per site varied from 7 to 30 species (18.67+2.02) over three seasons. Fish
biomass ranged up to 2,120.4 grams m? across zones, sites, seasons, and distance from reef.
Based on fish taxa, categorised into three different feeding modes, 16.18% of the total
number of species were omnivores (11 species) and, 20.59% of species herbivores (14
species). Carnivorous species encompassed the greater proportion of total species (63.24%,
43 species), of which 16.18% was invertivores (11 species). Fish species were further
categorised into fishing importance: 16 species were not targeted by fishermen (23.9% of
the totefl), five were considered by-catch species (7.5%), 37 species were recreationally

caught (55.2%), and nine were commercially targeted species (13.4%).

PERMANOVA demonstrated a significant multivariate interaction between the factors site
nested within zone x season x distance for total mean abundance of fish (MS=3626.1,
p<0.001; Table 3.2). The same complex interaction between the main factors was shown
for fish biomass (MS=2.4294, p<0.001; Table 3.2) and fish species richness (MS=232.83,
p<0.05; Table 3.2). This demonstrated the high degree of spatial and temporal variability,
making it difficult to separate patterns from noise, however, some patterns were detectable

as shown below.

A significant zone effect was detected (MS=14017.0, p<0.05; Table 3.2), however, this was
masked over by a significant site nested within zone effect (MS=11147.0, p<0.001; Table
3.2). This was due to the high variability between all sites nested within sanctuary and
fished zones. Although not figuratively clear, all fished zones had a greater abundance of
fish (Wreck Rock 0.42 + 1.26individuals m2; Twin Rocks 0.39 + 0.73individuals mz;
Rocky Bay 0.41 + 1.34 individuals m*) than adjacent sanctuary zones, with the exception of
Kingston Reefs, which was the primary driver of fish abundance throughout all seasons
(0.64 = 1.79 individuals m*; Figure 3.2). Boyinaboat Reef had relatively low total mean fish
abundance over all seasons (0.19 + 1.86 individuals m?; Figure 3.2). The overall results
were further complicated by the interactive terms with season. Rocky Bay was the main
driver of fish abundance during the spring, while Wreck Rock dominated summer (Figure

3.2). The majority of the variation in the fish abundance among sites was due to large
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schools of fish including the skipjack trevally Pseudocaranx wrighti, buffalo bream
Kyphosus cornelli, and rough bullseye P. klunzingeri,and solitary swimmers such as the

rainbow cale Odax acroptilus and old wife Enoplosus armatus.

Statistics revealed a significant distance effect (MS=14351.0, p<0.01; Table 3.2). In
general, there was a trend of decreasing mean abundance of fish with increasing distance
away from the reef, as indicated through post-hoc Monte Carlo pair-wise comparisons (the
reef and 200m, p=0.0186). In spring, Boyinaboat Reef sanctuary zone, Green Island
sanctuary zone, Wreck Rock fished zone, and Twin Rocks fished zone displayed this
pattern, however, this was not the case for Kingston Reefs sanctuary zone and Rocky Bay
fished zone (Figure 3.2). Both Kingston Reefs and Rocky Bay had a significantly greater
abundance of fish at 200m than 60m away from the reef (Figure 3.2). The same pattern of
greater fish abundance at 200m was observed in summer for Twin Rocks and Rocky Bay
(Figure 3.2). Both Green Island and Kingston Reefs had a greater abundance of fish at 60m
away from the reef than at the reef (Om) and 200m away in Amphibolis spp. meadows
(Figure 3.2). Therefore, fish species significantly differed in abundance with increasing
distances away from the reef, however, this varied across sanctuary and fished sites and

s€asons.
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Figure 3.2. Mean (+S.E.) fish species abundance over three seasons in Amphibolis spp. meadows with
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(G), and Kingston Reefs (K), and fished zones: Wreck Rock (W), Twin Rocks (T), and Rocky Bay (R). NS=
not sampled.
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There was a significant zone effect for fish biomass (MS=8702.4, p<0.001; Table 3.2) as
sanctuary zones had a slightly greater biomass of fish (277.87 + 7.26 grams m?) than fished
zones (217.27 + 14.50 grams mz). However, the separation between zones was unclear due
to the high degree of variability between sites nested within zone (MS=3.48, p<0.001;
Table 3.2). Twin Rocks had the greatest fish biomass during the winter, and Rocky Bay
was the main driver for fished sites in summer (Figure 3.3). Kingston Reefs sanctuary zone
had the greatest fish biomass over all seasons (520.33 + 16.81 grams m?), and is primarily
responsi})le for driving the zone effect (Figure 3.3). Both MMP sites had relatively low
biomas; for fish (Boyinaboat Reef sanctuary zone 96.14 + 2.89 grams m?% Wreck Rock
fished zone 78.22 + 2.67 grams m”). Majority of the variation in fish biomass among sites
was due to large schooling fish, including herbivorous kyphosids K.sydneyanus and K.

cornelli.

As previously seen in fish abundance, similar patterns were observed with total mean fish
biomass and increasing distances away from the reef (MS=4.29, p<0.001; Table 3.2). The
reef had a significantly greater biomass than 60m (p=0.025) and 200m (p=0.0095) away in
Amphibolis spp. meadows, as indicated by post-hoc Monte Carlo pair-wise comparisons.
This pattern was also observed for fish species richness. A change in fish biomass with
proximity to the reef however, cannot be applied to all sites due to complex interactions
between sites and distances. Statistics also show a significant variability in fish biomass
with seasons (MS=2.40, p<0.05; Table 3.2). With the exception of Kingston Reefs
sanctuary zone, spring demonstrated an overall relatively lower biomass (total mean 442.69
+39.94 grams m?) than winter (1,654.36 + 121.04 grams m?) and spring (1,368.87 + 74.46
grams m?) however, there was difficultly disentangling patterns due to the complexity of

interactions.

30



300000 1 \inter l
250000 A
200000 -
150000 -
100000
50000 -

NS NS NS .
0 T T 1

[

300000
Spring
250000 -
200000 -+
150000 A

100000

50000 -

O 1 ¥ 1] S

Total mean biomass of fish species (g/125m%) *

300000 -
Summer
250000 -
200000 -~
150000 -

100000 -

50000 -+

0 - TS S

B G KWT R B G KWT R B G KWT R

Sanctuary  Fished Sanctuary  Fished Sanctuary  Fished
0 . 60 200

Zones, sites and distances away from the reef {m)
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Although there was no clear zone effect for species richness (MS=102.30; p>0.05; Table
3.2), PERMANOVA indicated a significant difference between sites nested within zones
(MS=1147.10, p=0.001; Table 3.2). This was due to the high degree of variability in
species richness between all sites nested within sanctuary and fished zones as indicated by
post-hoc Monte Carlo pair-wise comparisons. All sites had relatively similar species
richness (ranging from 0.13 to 0.15 species m?), excluding both Kingston Reefs and Rocky
Bay. Rocky Bay appears to be the main driver for fished zones (0.19 + 0.03 individual
species m®) whereas Kingston Reefs was driving high species richness for sanctuary zones
(0.18 if0.0B individual species m”) (Figure 3.6). In general, there was no clear signal of

increased species richness of fish in sanctuary zones.

Fish species richness was significantly influenced by increasing distances away from the
reef (MS=7645.7, p<0.001; Table 3.2). In general, species richness was greatest at the reef
and declined with increasing distances away from the reef. Although this was the outcome
for most sites, this was not the case for Green Island and Rocky Bay during spring, and
Green Island and Twin Rocks in summer. The same or greater species richness was
observed at 200m away in Amphibolis spp. meadows than at 60m in seagrass (Figure 3.4).
Furthermore, fish species richness fluctuated with seasons (MS=1698.80, p<0.05; Table
3.2), as post-hoc Monte Carlo pair-wise comparisons demonstrated a relatively lower total
mean species richness in winter (0.05 = 0.01 individual species m?) and greatest in summer
(0.17 £ 0.02 individual species m?). This does not hold true for all sites, due to within site

variability (Figure 3.4).
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Table 3.2. Results of a PERMANOVA, examining mean fish species abundance, total biomass, and species
richness. Analyses were conducted using Bray-Curtis similarity on square-root (¥x) transformed data with
9999 permutations on residuals under a reduced model.

Abundance Biomass Species richness
(ind/125m?) (g/125m?) (spp/125m?)
Source df MS p(perm) MS p(perm) MS p(perm)
1 14017.0 0.0248* 8702.4 0.0001*** 102.30 0.7935
4 11147.0 0.0001 #*= 3.4798 0.0007 *** 1147.10  0.0001***
- 2 7066.3 0.0977 24013 0.0132%* 1698.80 0.0192*
2 14351.0 0.0047%% 4.2935 0.0006*** 764570 0.0005%**
2 7336.0 0.0748 1.0326 0.4507 482.97 0.2011
2 4371.5 0.6227 1.1908 0.2889 418.09 0.3432
2 2671.3 0.6971 1.238 0.3104 320.40 .0.2896
S(Z) x Se 7 4569.0 0.0001 *** 2.6436 0.0007 *#* 261.08 0.013*
S(Z)xD 8 5344.6 0.0001 *** 2.9911 0.0001%** 365.98  0.0005%**
ZxSexD 2 4448.3 0.2884 1.2441 0.3119 182.01 0.5612
S(Z)yxSesD 7 . 36261 0.0001*** 2.4294 0.0001 *=* 232.83 0.0222*
Residual 75 13379 ) 98.74
114
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3.1.3. Fish species assemblages

The canonical analysis of principle coordinates (CAP) ordination displayed no clear
separation between zones, sites nested within zone, distances, or seasons, shown by the
high degree of overlap in samples from the two types of zones based on fish abundances
(Figure 3.5). Six species in particular, P. klunzingeri, Parma mccullochi, K. cornelli,
Austrolabrus maculatus, N. parilus, and C. auricularis, were shown to be relatively higher
contributors to mean fish abundance. This was indicated by their correlations (Pearson’s r=
0.5) with the canonical axes, and the same correlation will be used throughout all CAP
plots. C. auricularis and N. parilus appear to be the representative species at Kingston
Reefs sanctuary zone, and P. klunzingeri was representative of Wreck Rock and Rocky Bay
fished zone (Figure 3.5). The remaining three fish species, P. mccullochi, K. cornelli, and

A. maculatus were found across various sites (Figure 3.5).
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Figure 3.5. Canonical analysis of principle coordinates (CAP) ordination based on square-root (¥x) Bray-
Curtis similarities on mean fish species abundance across six sites nested within two zones, and over three
seasons in Amphibolis spp. meadows with proximity to the reef: 0, 60, and 200m. A species correlation plot
(Pearson correlation set at 0.5) is placed over the ordination.

The results of the CAP analysis on mean fish biomass further supported these complex
interactive effects among between zones, sites, distance and season, as the canonical axes
showed no clear separation between sites nested within zones, seasons, or distances (Figure
3.6). Five species in particular, Dactylophora nigricans, K. cornelli, C. auricularis, N.
parilus, and P. mccullochi, were the overall biggest contributors. The mean fish biomass at
Kingston was primarily driven by K. cornelli, C. auricularis, and N. parilus, whereas P.
mccullochi appeared to be the key contributor of the biomass at MMP sites, Boyinaboat
Reef sanctuary zone and Wreck Rock fished zone (Figure 3.6). The outlier (top-left corner)
depicts Rocky Bay fished zone with a relatively low biomass of fish (2 species, D.

nigricans and Gerres subfasciatus) during spring at 200m away from the reef (Figure 3.6).
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3.2 Benthic fauna
3.2.1 Abundance, biomass and family level richness benthic fauna

A total of 60 families of benthic taxa were observed over the study period, belonging to 18
classes from eight phyla. A wide range of invertebrate and vertebrate groups were recorded
from polychaetes (Annelida) to crustaceans (Arthropoda) and sponges (Porifera). The most
abundant macroinvertebrate fauna observed across all sites at the reef and in seagrass
meadows were the gastropods (64.04% total mean abundance), ascidians (15.61%), and the
malacosiracans (13.27%). Mean benthic fauna abundance ranged from O to 143.7
individuals 0.25m” across all sampling occasions (Figure 3.7), and the family level richness

per site varied from O to 12 species over all three seasons (Figure 3.8).

PERMANOVA failed to detect a significant zone effect on the benthic assemblage
(MS=19382.0, p>0.05), however, a significant difference among sites nested within zones
was observed (MS=32284.0, p<0.001; Table 3.3). This was due to the high degree of
variability between all sites nested within sanctuary and fished zones. Benthic faunal
abundance was greatest at both sites within Marmion Marine Park (MMP), as Boyinaboat
Reef appeared to be driving the faunal abundance of sanctuary zones whereas Wreck Rock
was the primary driver of the fished zone over all three seasons (Figure 3.7). This was a
result of malacostracans and gastropods occurring in high abundances at these two sites.
Ascidians were also found to be consistently more abundant MMP sites and almost non-
existent at Rottnest Island Marine Reserve (RIMR) sites. Despite the strong abundance
patterns observed at MMP, no clear conclusions can be made considering the complex

nature of interactions between the main factors (Table 3.3; Figure 3.7).

There was a significant interaction between the factors site nested within zone x season x
distances for the benthic faunal assemblage (MS=2810.5, p<0.001; Table 3.3). This
complex interaction was also observed for family level richness (MS=681.12, p<0.05;
Table 3.3). It demonstrates the high degree of spatial and temporal variability causing

difficulty in disentangling patterns from noise however, some patterns were detected.
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Statistics demonstrated a significant distance effect (MS=7695.8, p<0.05; Table 3.3). Post-
hoc Monte Carlo pair-wise comparisons indicated significant differences in the faunal
abundance between seagrass immediately adjacent to the reef (0SG) and 60m (p=0.0279),
0SG and 200m (p=0.0278), and between 15m and 60m into the seagrass (p=0.0296). There
was an overall decreasing trend of benthic faunal abundance with increasing distance away
from the reef. This however was not clearly portrayed due to complex interactions between
the main factors. For instance, Green Island, Wreck Rock and Rocky Bay showed the
opposite trend in winter, as with Boyinaboat Reef and Twin Rocks in summer (Figure 3.7).
In sum;ler, Rocky Bay showed an increase in faunal abundance with increasing distances
away from the reef primarily driven by Cantharidus spp (Trochidae) (Figure 3.7).
Furthermore, there was a significant difference in the faunal abundances among seasons
(MS=15053.0, p<0.05; Table 3.3). In general, summer had the greatest total mean faunal
abundance (201.76 = 6.18 individuals O.25m2) in comparison to winter, which
demonstrated the lowest abundance of fauna (71.71 + 4.73 individuals O.25m2) (Figure

3.7).
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Table 3.3. Results of a PERMANOVA, examining benthic faunal abundance and family level richness.
Analyses were conducted using Bray-Curtis similarity on square-root (Vx) transformed data with 9999
permutations on residuals under a reduced model.

Abundance Family level richness

(ind/0.25m?) (spp/0.25m?)
Source df MS p(perm) MS p(perm)
Z 1 19382.0 0.7471 376.60 0.896
S(Z) 4 32284.0 0.0001 **=* 2226.00 0.0001 ***
Se 4 2 15053.0 0.0482* 3538.10 0.3169
D 5 7695.8 0.0116* 1436.50 0.0091 %=
Zx Se 2 5129.6 0.7756 1462.00 0.7342
ZxD 5 37240 0.4464 747.19 0.3565
SexD 10 2397.0 0.7958 733.63 0.3611
S(Z) x Se 7 7559.6 . 0.0001*** 2762.90 0.0001 ***
S(Z)xD 20 3826.3 0.0001*** 687.19 0.0340*
ZxSexD 10 1912.3 0.9740 808.95 0.2422
S(ZyxSesD 34 2810.5 0.0007 #** 681.12 0.0157*
Residual 189 1470.6 546.37
Total 289
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Figure 3.7. Total mean (+S.E.) abundance of benthic taxa over three seasons in Amphibolis spp. meadows
with proximity to the reef: ORF, 0SG, 15, 30, 60, 120, and 200m, in sanctuary zones: Boyinaboat Reef (B),
Green Island (G), and Kingston Reefs (K), and in fished zones: Wreck Rock (W), Twin Rocks (T), and Rocky
Bay (R). *= not sampled.
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3.2.2. Benthic fauna assemblages

The CAP plots were separated into seasons as a result of the numerous data points, and the
focus of the study was to establish patterns in benthic assemblages between sanctuary and
fished zones, and among distances away from reefs. The CAP ordinations displayed no
clear separation of the fauna samples between sanctuary and fished zones, and among sites
nested within zones, and distances, for each seasons (Figure 3.8). In winter, sponges
(Porifera) and dove shells (Columbellidae) were the high contributors to the faunal
assemblages at Boyinaboat Reef sanctuary zone, however, no other patterns could be
detected for this season (Figure 3.8). In spring, five groups in particular, hermit crabs
(Paguroidea), prawns (Dendrobranchiata), polychaete worms (Nereidae), ascidians
(Ascidiacea), and sponges (Porifera) appear to be contributing the greatest to the faunal
assemblages at Wreck Rock fished zone and Twin Rocks fished zoné (Figure 3.8).
Gastropods showed a stronger correlation towards Boyinaboat Reef sanctuary zone than
any other site (Figure 3.8). In summer, ascidians were the key contributing fauna in
distinguishing Boyinaboat Reef sanctuary zone from other sites (Figure 3.8). Hermit crabs
(Paguroidea) and turban snails (Turbinidae) formed the predominant faunal assemblage for

both Wreck Rock and Twin Rocks fished zone (Figure 3.8).
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Figure 3.8. Canonical analysis of principle coordinates (CAP) ordination using Bray-Curtis similarities on
benthic faunal abundances across six sites nested within two zones, and over three seasons in Amphibolis spp.
meadows with proximity to the reef: 0SG, 15, 30, 60, 120, and 200m. A family-level correlation plot (Pearson
correlation set at 0.5) is placed over the ordination. Data were square root (¥x) transformed.

Zones or seasons had no significant effect on the benthic faunal richness as indicated by
PERMANOVA (Table 3.3). There was a significant distance and sites nested within zones
effect, and an interaction between sites within zone and season, and between site within
zone and distance, implying a variable response of benthic richness across sites, distances
and seasons (Table 3.3). Despite the significant distance effect (MS=1436.50, p<0.01;
Table 3.3), no clear trend of decreasing taxa richness with increasing distance away from
the reef was observed (Figure 3.9). Post-hoc Monte Carlo pair-wise comparisons further

validated this lack of trend (p>0.05).

Benthic faunal richness varied across all sites. Both sites within MMP displayed an overall

greater family level richness (Boyinaboat Reef sanctuary zone 6.77 + 0.62 individual
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species 0.25m*; Wreck Rock fished zone 7.33 + 0.79 individual species 0.25m?) compared
to the relatively low benthic richness at sites at RIMR, which ranged from 2.99 to 4.12
individual species 0.25m* (Figure 3.9). Boyinaboat Reef was driving the high benthic
richness in spring as was Wreck Rock in summer, though distinguishing this pattern across
distances and seasons was difficult to visualise due to the interaction terms (Figure 3.9).
Gastropod and malacostracan groups are likely responsible for the variation in faunal
richness between sites. 96 different species of gastropods were found across all sites, while
malacostracans had 25 species. Gastropods largely comprised three commonly observed
speciesj Pyrene bidentata (Columbellidae), Cantharidus lehmanni (Trochidae), and an

unknown gastropod species; while malacostracans were predominately hermit crabs,

occupying empty P. bidentata shells.
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Figure 3.9. Total mean (+S.E.) family level richness of benthic taxa at family level over three seasons in
Amphibolis spp. meadows with proximity to the reef: ORF, 0SG, 15, 30, 60, 120, and 200m, in sanctuary
zones: Boyinaboat Reef (B), Green Island (G), and Kingston Reefs (K), and in fished zones: Wreck Rock
(W), Twin Rocks (T), and Rocky Bay (R). *= not sampled.
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3.3 Benthic flora
3.3.1 Relative abundance, biomass and taxa richness of epiphytic algae

For percentage relative abundance of epiphytic algae, there was no zone, season, or
distance from reef effect (Table 3.4), but there was a significant sites nested within zone
effect (MS=6596.4; p<0.001; Table 3.4) which interacted with season (MS=1057.7,
p<0.05; Table 3.4). This highlights the variability in the relative abundance of epiphytic
algae over sites and seasons. All sites had a relatively high percentage relative abundance
of encrﬁsting calcareous algae on seagrass leaf blades. Corticated terete algae also
demonstrated a similar pattern, however, its percentage abundance fluctuated over sites and
seasons. Articulated calcareous algae were also observed over all sites excluding
Boyinaboat Reef where it infrequently occurred. Articulated calcareous algae were the
predominate epiphytic algae on Amphibolis spp. seagrass leaves at Green Island particularly
in summer where a two-fold increase was observed since winter (25.69 + 4.23% 0.25m’ in
winter to 50.14 + 5 20% 0.25m? in summer). In winter and summer, both Boyinaboat and
Kingston Reefs sanctuary zones had similar epiphytic abundances; while Wreck Rock and
Rocky Bay fished zones had similar epiphytic algal abundances and remained the same

throughout the seasons.
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Table 3.4. Results of a PERMANOVA examining the percentage relative abundance and total mean biomass
of epiphytic algal assemblage. Analyses were conducted using Bray-Curtis similarity on square-root (Vx)
transformed data with 9999 permutations on residuals under a reduced model.

% Relative abundance Biomass
(%/0.25m?) (g DW/0.25m)

Source daf MS p(perm) df MS p(perm)
Z 1 1382.9 0.8728 1 6547.4 0.7091
S(Z) 4 6596.4 0.0001*** 4 12942 0.0001***
Se 2 15464 0.2467 2 7067.3 0.2944
D . 5 116.5 0.9735 5 1577.9 0.3849
Zx Se 2 1144.2 0.4065 2 8863 0.2158
ZxD 5 590.9 0.1933 5 1272.3 0.6223
SexD 10 398.4 0.2152 10 1092.6 0.3598
S(Z) x Se 7 1057.7 0.0105% 7 5503.4 0.00071 ***
SZ)xD 20 406.5 0.6386 20 1489.4 0.00071 *#*
ZxSexD 10 389.2 0.2313 10 1475.7 0.0539
S(Z)xSesD 35 306.1 0.9838 . 35 1014.2 0.0001***
Residual 525 458.7 204 638.6
Total 626 305

3.3.2. Epiphytic algal assemblages

Similar to faunal assemblages, CAP analyses were carried out on data from each season
separately. No clear separation can be made between zones, sites, seasons, or distances in
the CAP plots due to the high degree of overlap (Figure 3.10). In winter, filamentous algae
were the only distinguishable epiphytic algae to be contributing the greatest at Green Island
sanctuary zone (Figure 3.10). A similar pattern was observed in spring, as filamentous
algae was the key contributing epiphytic algae in Green Island sanctuary zone (Figure
3.10). No other patterns could be distinguished. The percentage relative abundance of
epiphytic algae in summer also demonstrated a high degree of overlap, making it difficult

to distinguish any patterns between sanctuary and fished zones (Figure 3.10).
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Figure 3.10. Canonical analysis of principle coordinates (CAP) ordination using Bray-Curtis similarities on
the percentage relative abundance of epiphytic algae across six sites nested within two zones, and over three
seasons in Amphibolis spp. meadows with proximity to the reef: 0SG, 15, 30, 60, 120, and 200m. A species
correlation plot (Pearson correlation set at 0.5) is placed over the ordination. Data were square root (Vx)
transformed.

Similar to the relative abundance, there was no zone, season, or distance from reef effect,
but there was an interaction between sites nested within zones and season for biomass of
epiphytic algae, but in the case of biomass, there were also interactions between sites nested
within zones and distancé and among sites nested within zones, season and distance
(MS=12942.0, p<0.001; Table 3.4). This indicates a high degree of variability in epiphytic

biomass in seagrass meadows.

Encrusting calcareous algae was the main contributor to the overall biomass at most sites as
indicated by SIMPER analyses, ranging from 34.69% at Rocky Bay fished zone to 54.67%
at Boyinaboat Reef sanctuary zone. Twin Rocks fished zone was the exception, as

articulated calcareous algae was the most influential algal group and accounted for the
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observed difference in biomass (579.35 + 121.72 grams DW 0.25m?: 52.52%). Articulated
calcareous algae also contributed greatly to the overall biomass of Green Island and
Kingston Reefs sanctuary zones. Corticated terete were also a discriminating algal
functional group, contributing great biomass to all sites, ranging from 13.68% at Twin

Rocks to 33.09% at Boyinaboat Reef.

The total mean algal biomass varied across seasons, as articulated calcareous algae was a
key contributor to biomass in winter and summer, while corticated terete was greatest
during the spring. Encrusting, articulated calcareous, and corticated terete were the
dominant algal groups found at all distances away from the reef. Due to high degree of
variability between sites and seasons however, no conclusions can be drawn to determine

whether there is a difference in epiphytic biomass between sanctuary and fished zones.

The CAP plots displayed no similarities in epiphytic algal assemblages among factors, as
the points for each sample from different zones and distances for each season were
relatively indistinguishable (Figure 3.11). In winter, a separation occurred along the CAP2
axis, although no patterns could be distinguished. Articulated calcareous algae were the key
contributors to Kingston Reefs and Twin Rocks, whereas encrusted calcareous algae was
observed at all sites (Figure 3.11). The CAP plot for spring showed articulated calcareous
algae to be the dominant algal assemblage for Twin Rocks and Green Island (Figure 3.11).
Wreck Rock fished zone had a greater biomass of leathery algae, while encrusting
calcareous algae were predominantly observed at Wreck Rock and Rocky Bay. The three
outliers located on the top-left corner are the relatively low epiphytic biomass observed at
60m and 120m in Amphibolis spp. seagrass meadows at Wreck Rock (Figure 3.11). In
summer, leathery algae were the key contributors of Wreck Rock, Boyinaboat Reef, and
Green Island (Figure 3.11), while encrusting calcareous algae were regarded as relatively

high contributors at Wreck Rock (Figure 3.11).
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Figure 3.11. Canonical analysis of principle coordinates (CAP) ordination using Bray-Curtis similarities on
the total mean biomass of epiphytic algal assemblages across six sites nested within two zones, and over three
seasons in Amphibolis spp. meadows with proximity to the reef: 0SG, 15, 30, 60, 120, and 200m. A species
correlation plot (Pearson correlation set at 0.5) is placed over the ordination. Data were square root
transformed.

3.4Predation and its effect with increasing distance from reef edge

3.4.1 Predation and its effect with increasing distance from reef edge

The Kruskal-Wallis tests showed no significant site differences in gastropod mortality with
increasing distances away from the reef, with the exception of Rocky Bay fished zone
(N=40, p<0.05; Table 3.5). A greater number of gastropods were recorded alive 60m away
from the reef (three C. lehmanni and four Pyrene bidentata were alive) compared to one
live P. bidentata at the reef (Tukeys HSD test, p=0.034). Furthermore, gastropod mortality

did not differ significantly between species across sites (Table 3.5).
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Table 3.5. Results of the Kruskal-Wallis test examining the mortality of two gastropod species over four sites
and at increasing distances away from the reef.

Distance away from reef Gastropod species
N df Chi-Square r N df Chi-Square p
Green Island 30 2 2.231 0.3280 30 1 1.115 0.2910
Kingston Reefs 40 3 4.680 0.1970 40 1 2.080 0.1490
Rocky Bay 40 3 8.113 0.0440* 40 1 2.444 0.1180
Twin Rocks 30 2 1.812 0.4040 30 1 0.518 0.4720
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4. Discussion

The objectives of this study were to determine whether abundances, biomass, species
diversity of higher-order consumers differed in sanctuary zones in response to protection
from fishing, and to document the response of the epibenthic assemblage structure in
relation to any changes in consumers. Such empirical data are useful in assessing the
success, if any, of sanctuary zones with reduced fishing mortality, in addition to gaining a

better understanding of the flow-on effect to lower trophic levels in marine food webs.
7
4.1. Abundance and diversity of higher-order consumers

The results from underwater visual censuses (UVCs) demonstrated that sanctuary zones
had higher mean total abundance and biomass of fish compared to adjacent fished zones,
although there was high variability among sites and seasons. Despite the lack of
significance, there was a trend of higher means of rock lobsters in sanctuary zones than
fished zones. Similar conclusions have been reached in numerous global studies examining
the positive responses of fish and lobsters to MPAs (Shears & Babcock, 2002; Denny et al.,
2004; Langlois et al., 2005; Babcock et al., 2007; Pande et al., 2008; Stockwell er al.,

2009). However, in this study, the effect of zone was dependent on site and season.

Although all sites were of similar structural complexity based on extensive pilot surveys,
there were inevitable intrinsic differences among sites based on location and orientation to
prevailing conditions, regardless of their level of protection from fishing. These
environmental factors are likely to reflect patterns of fish assemblages and rock lobsters in
temperate reef systems. Also, any effect of reserve protection will depend on a range of
other factors, including the design, the size, and the length of protection of each sanctuary

zone (Halpern & Warner, 2002; Graham et al., 2003; Claudet et al., 2008).

Larger sanctuary zones are likely to harbour more individuals because they encompass
greater area in comparison to smaller sanctuary zones (Halpern, 2003). The degree in which
a species is protected is dependent on their movement patterns, and the degree of

compliance with MPA regulations. The sedentary nature of rock lobster may increase of
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legal and total mean abundance inside sanctuary zones. Using acoustic telemetry,
MacArthur er al. (2008) reported nocturnally active Panulirus cygnus moving from reef
crevices out to approximately 60m to forage in seagrass meadows. Other studies have
recorded similar movements into surrounding habitats in P. argus (Bertelsen and Hornbeck,
2009), P. elephas (Follesa et al., 2009), and Jasus edwardsii, with a small density of
lobsters moving outside the reserve dependent on sex and size of the individual (Freeman et
al., 2009). Similar results have been documented for fish. While some temperate fish
species display high site fidelity, such as the senator wrasse Pictilabrus lacticlavius (Edgar
et al., 2f004) and pink snapper Pagrus auratus (Willis et al., 2001), many mobile fish
demonstrate extensive and overlapping home ranges that venture beyond the sanctuary
boundaries (Wetherbee et al., 2004; Topping et al., 2005; Kingsford & Carlson, 2010). This
may help explain the low abundances and biomass of fish and lobsters observed at
Boyinaboat Reef. Compared to both Green Island and Kingston Reefs sanctuary zones,
which protect 92 and 164 hectares, respectively, Boyinaboat Reef located within the
Marmion Marine Park (MMP) is a relatively small sanctuary zone protecting an area of 7.4
hectares. It would thereby offer a limited refuge to highly mobile species, crossing the
reserve boundaries and potentially making them vulnerable to fishing pressures (Solandt et
al., 2003). Schooling fish species such as the skipjack trevally Pseudocaranx wrightii
(Carangidae) were observed at Boyinaboat Reef and are particularly vulnerable to fishing
mortality, as they are a highly mobile pelagic species displaying diel and seasonal
movement between habitats (Afonso et al., 2009). On the contrary, Kingston Reefs
sanctuary zone offers a larger spatial protection that is closely associated with the relatively
higher abundance of higher-order consumers. Adult male western blue gropers Achoerodus
gouldii (Labridae) reaching lengths over one meter, and tarwhine Rhabdosargus sarba
(Sparidae) were observed at this protected site, as they use protected inshore reefs and
neighbouring islands as nursery habitats (Hesp & Potter, 2003; Shepherd & Brook, 2007;
Coulson, 2008, p. 3). This suggests that small protected areas will only benefit individuals
that restrict their movements to a localised home range during a part of their life cycle.
Effective protection of mobile species such as lutjanids and carangids may be compromised

in a small sanctuary zone due to their relatively large home ranges (Kramer & Chapman,
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1999). It is difficult, however, to quantify their diel or seasonal movement patterns without

acknowledging their individual characteristics and life histories.

The age of a sanctuary zone may also have an overriding influence on the current effect of
those zones on consumer abundance and biomass, based on the recovery rate of consumers
from previous fishing pressures. In my study, the sanctuary zones varied in age, as Green
Island was established in 2007, Boyinaboat Reef in 1999, and Kingston Reefs was gazetted
in 1988, making it the oldest of the three sanctuary zones. Some studies have documented a
rapid imcrease in species biomass within one to three years after MPA establishment
(Roberts & Hawkins, 1997; Halpern & Warner, 2002; Halpern, 2003; Denny et al., 2004),
while other studies have shown consumers to respond after longer time frames (Russ &

Alcala, 2003; Barrett et al., 2007, Pande et al., 2008).

Slow-growing species with prolonged lifespan, and species with infrequent or highly
variable recruitment levels, will more likely take longer to respond to reserve protection
than short-lived, fast-growing species (Russ & Alcala, 1998; Jennings et al., 1999;
McClanahan et al., 2006). For example, the results from this study showed that Kingston
Reefs was the only sanctuary zone to have recorded the slow-growing and commercially
important (McAuley & Simpfendorfer, 2003) western blue groper Achoerodus gouldii.
With its no-take policy strongly enforced by the Rottnest Island Authority (RIA) since its
establishment in 1988, a wide range of targeted species (both commercial and recreational)
were observed at Kingston Reefs, including foxfish Bodanius frenchii, baldchin groper
Choerodon rubescens, and Australian herring Arripis georgianus. These species have only
been observed at Kingston Reefs compared to the other sanctuary zones that have been
protected for shorter periods. These results however, are confounded by a combination of
variables, such as the size of the sanctuary zone, and must therefore not be studied in
isolation. This also highlights the importance of considering life-history traits when setting
objectives for a MPAs performance, as protection may be suitable for some species and

inadequate for others.
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Fisheries generally exploit species high in the trophic food web, and a majority of these
higher-order consumers are slow-growing carnivores. These species are therefore expected
to respond slower to reserve protection compared to less targeted herbivores that respond
faster to protection (Friedlander & DeMartini, 2002). Focusing solely on the response of
targeted species to protection may not reflect a sanctuary zone’s impact at a broader
community scale, leading to possible bias and misinterpretation of data. It is, therefore,
essential to observe the community as a whole as the intention of most MPAs is to protect
biota atv the community level rather than individuals species (Micheli er al., 2004;
Rodriguies et al., 2004). Additional analyses were done separately on trophic groups’

herbivores, omnivores, and carnivores, however, all trophic groups did not appear to

respond clearly to protection in MPAs, and were therefore excluding from the Results.

The geographical location of a sanctuary zone may also influence patterns observed for
higher-order consumers. Since this study was conducted over broad spatial scales, and
results showed a high level of spatial variability in all parameters, population dynamics
may respond to the different hydrodynamics along the west coast of WA. The study region
is in a tropical-temperate transition zoning caused by the southward flowing Leeuwin
Current. This may attribute to the transportation of larvae originating in warmer northern
waters and dispersed to the southern region through the Leeuwin Current (Hutchin &
Pearce, 1994).This may help explain the overall high fish diversity recorded at Kingston
Reefs sanctuary zone and Rocky Bay fished zone. Of the 68 fish species recorded, only
four were tropical, reef-associated species Thalossoma lutescens (Labridae), T. lunare
(Labridae), Scarus ghobban (Scaridae), and Anampses geographicus (Labridae). These

species were only recorded at Rottnest Island and in low abundances.

Much of the variability in higher-order consumers could also be explained by site-specific
characteristics. Kingston Reefs is relatively exposed to southerly and easterly winds and
swell, influencing the distribution of vegetation cover (Wernberg ef al., 2003, 2005). Low
quantities of Ecklonia radiata (Laminariales) and other brown algae were recorded on the
reef, which form an important food source for herbivorous species, including kyphosids

(Clements & Choat, 1997; Morgan & Clements, 2002). The high structural complexity of
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the reefs that incorporates many crevices and cracks (Garcfa-Charton & Pérez-Ruzafa,
1998, 2001), offers more ecological niches for fish species, particularly labrids (Tuya et al.,
2009). Twin Rocks is another exposed fished site with relatively simple-structured reefs
dominated by E. radiata canopies. Vast quantities of detached E. radiata were located at
the base of the reefs, potentially attracting higher-order consumers through the increase of
macroinvertebrates, as seen in wrack accumulation on the beach (Ince et al., 2007). Both
Green Island and Rocky Bay are relatively protected sites, but the reefs at Green Island are
structurally complex, increasing the variety of microhabitats for inhabitants, as seen in coral
reefs (thabanet et al., 1997). Greater habitat complexity is often associated with greater
species richness and abundance, potentially reducing predation and competition (Coté et
al., 2001; Almany, 2004). Rocky Bay had Caulerpa spp. dominated, simple-structured
reefs, and unlike all other sites examined, the water depth abruptly declined to 10-15m at
the reef. This increase in depth may correlate with the higher fish abundance, diversity and
biomass found at the reef, reflecting possible feeding and habitat preference (Buxton &
Smale, 1989). Boyinaboat Reef is situated in close proximity to Hillarys Boat Harbour, a
popular recreational destination. It is subjected to numerous and uncontrollable external
stressors such as boat trafficking and fishing, as craypots were placed immediately adjacent
to the sanctuary-zone boundary (K. Inostroza personal observation). Hence, the
geographical location could be responsible for the overall lower high-order consumer
biomass recorded at this site. Wreck Rock has a structurally complex reef offering
numerous microhabitats, however it is subjected to recreational fishing pressures, having
strong effects on the higher-order consumer population. This may reflect the variable
abundances of rock lobsters and fish recorded at Wreck Rock. Habitat variables were not
measured in this study, however, such differences in site characteristics (spatial patterns

and habitat structure) may confound the effect of fishing protection.

59



4.2. Impact of higher-order consumers on benthic assemblage

Natural predation by consumers was expected to be substantially higher in sanctuary zones
than fished zones following the cessation of fishing and would decrease with increasing
distances away from the reef. This should then be reflected in the epibenthic assemblage
and tethering experiment. However, as stated above, clear difference in consumer
assemblages between sanctuary and fished zones were not clear, and there were also no
clear differences in the epibenthic fauna and flora assemblages between zone types.
Furthermore, although greater densities of fish and lobsters were found in close proximity
to macroalgal-dominated reefs across all sites (Howard, 1989; Harman et al., 2003;
Kingsford & Carlson, 2010), no trends of decreasing epibenthic abundance and diversity
were detected. The ability to detect a consumer’s direct influence on prey abundance,
richness, and distribution is difficult, due in part to their feeding habits. For instance, reef-
associated herbivorous kyphosids feed on a wide range of macroalgae, predominantly
phaeophtyes (Ecklonia radiata) (Clements & Choat, 1997; Morgan & Clements, 2002).
Both Kyphosus sydneyanus and K. cornelli contributed the greatest biomass at the
structurally complex reefs across all sites, potentially placing a vast amount of grazing
pressure on macroalgae on the reef and epiphytic algae on adjacent Amphibolis spp.
meadows. The negative influence carnivores or omnivores have on their prey will vary with
species and their level of mobility (MacArthur & Hyndes, 2007). For example, lobsters are
generalist consumers with small-scale foraging mobility (MacArthur et al., 2008). A wide
range of food sources have been detected through the analyses of lobster stomach content,
ingesting large quantities of coralline algae, molluscs, and crustaceans (Edgar, 1990a,b;
Jernakoff et al., 1993). Equivalent studies on temperate fish species have shown that most
mullids are carnivorous consuming decapods and amphipods (Platell ef al., 1998), while
labrids are omnivorous, feeding on small epiphytic invertebrates including molluscans,
crustaceans, and plant material (MacArthur & Hyndes, 2007). Labrids contributed
substantially to the total abundance of fish in this study (45.5%), feeding on a range of prey
species across different trophic levels, making their impact on the benthic assemblage

difficult to detect. However, no distinct pattern could be detected in the epibenthic
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assemblage with increasing distances away from the reef. The lack of detection reflects the
small-scale patchiness in benthic assemblages of temperate reef systems. This could have
been overcome by increasing the number of replicate transects to incorporate this
variability in the benthic assemblage. Furthermore, theory indicates that omnivores stabilise
food webs (Krivan, 2000; Emmerson & Yearsley, 2004) through top-down and bottom-up
processes, reducing the probability of trophic cascades (Bascompte et al., 2005; Thompson
et al., 2007). This may help explain the lack of a significant zone effect on epibenthic

faunal assemblages.
7

It was hypothesised that epibenthic abundances would increase with distance away from the
reef since a greater concentration of consumers near the reef have limited mobility out into
seagrass meadows to forage. This pattern in epibenthic assemblages did not match the
results of this study, nor was it reflected in the tethering experiments with gastropods.
Instead, the epibenthic abundances fluctuated over distances. These results are contrary to
studies conducted by Langlois er al (2005) and Tuya et al (2010), which demonstrated
higher predation of tethered prey in seagrass meadows adjacent to reef. Both studies
concluded that this was likely to be due to greater abundances of predators near the reef.
Predation intensity also varied considerably between molluscan prey species, Cantharidus
lepidus and Pyrene bidentata, which can be strongly correlated with shell morphology
(Edgar, 1990b). No differences in predation rates between gastropods C. lehmanni and P.
bidentata were reported in this study, due to the experimental limitations including the lack
of labelling. Green Island and Kingston Reefs in RIMR were the only sanctuary zones to
demonstrate an overall lower abundance and family-level richness of epibenthic fauna.
Since 60.09% of total fish species observed at Green Island, and 72.20% of fish species at
Kingston Reefs were carnivores, these species may be driving the low epibenthic
assemblage through foraging activities in Amphibolis spp. meadows. Contrary to my
results, Langlois et al. (2006) confirmed this predatory pattern on bivalves through caging
experiments, and tethering urchins (2005). A possible explanation for the lack of predatory

interactions is the overlapping diets of many fish species (Edgar & Shaw, 1995).
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Despite the numerous empirical studies demonstrating trophic cascades as a result of MPA
protection (Estes et al., 1998; Babcock et al., 1999; Shears & Babcock, 2002; Clemente et
al., 2008; Gloeckner & Luczkovich, 2008; Moksnes er al., 2008; Barrett et al., 2009;
Sonnenholzner et al., 2009), this pattern was not obvious from my studies. An increase in
higher-order consumer abundances was not reflected at lower trophic levels across seagrass
meadows, demonstrating the complexity of food web structures (Polis & Strong, 1996).
This may also be a result of examining the entire epibenthic assemblages rather than other
studies that focus on a small subset of a community. For instance, Barrett ef al (2009)
examingd the changes in macroalgal density in Tasmanian MRs in response to rock
lobsters, urchins, and abalone abundances, while Tuya et al (2010) also demonstrated the
predatory effects of fish species on a small selection of gastropod species. While these
studies have shown possible trophic cascades in individuals groups, my study displayed no
evidence of a trophic cascade over the entire epibenthic assemblage. Trophic cascades are
assumed to be masked when entire communities are measured (Tessier & Woodruff, 2002).
Therefore, to examine how the epibenthic assemblage responds to predation by higher-

order consumers must take into account other environmental and biological factors.

4.3. Management implications

This study provides the type of baseline biological data on marine ecosystems that are
necessary to assess whether the sanctuary zones in southwest temperate waters of WA are
successfully meeting their objectives of biodiversity conservation. It also provides some
insight into how ecosystems function in response to harvesting of higher-order consumers
by humans in fished areas and to protection through sanctuary zones. Abundance and
family-level richness for epibenthic fauna and algal epiphytes did not differ between fished
and unfished zones, however, significant heterogeneity was observed across sites in this
study, suggesting that each sanctuary zone functions in different ways. Therefore, in order

to successfully meet the management objectives set for a sanctuary zone, further research is
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required on community demography and their physical and ecological processes that

influence biodiversity across varying spatial scales.

To meet a MPAs objective of biodiversity conservation, managers must acknowledge the
natural variations in marine ecosystems, including life history traits of individual species,
daily or nocturnal or seasonal movements, recruitment patterns, and their trophic level in
the food web. Taking these factors into consideration would provide realistic expectations
concerning the conservation benefits of MPAs. A key determinant of differences in higher-
order consumers in response to protection may be caused by the sanctuary zone design. The
size and boundaries of a sanctuary zone needs to incorporate multiple habitats, whether
used for shelter, nursery, and foraging that may form some part of an organism’s life cycle.
The size of the sanctuary zone, along with its time of protection and location, may
influence the abundance and diversity of higher-order consumers, enhancing its usefulness
~ in conservation and potentially for fisheries management. The objectives of some MPAs
offer minimal benefits to fisheries management through a spillover of propagules and adults
across the sanctuary boundaries following the cessation of fishing, however ,this still
remains relatively unquantified and requires further research (Russ et al., 2004; Goiii et al.,
2006; West et al., 2009; Amargés et al., 2010; Goiii et al., 2010). With a lack of a long-
term historical context of an ecosystem, further efforts should be employed in long-term
and continuous monitoring over large-spatial scales. This will provide crucial temporal and
spatial data to appreciate the impacts of fishing and how fishing may affect other trophic
levels in a food web. This also emphasises the need for improved and enforcement of

sanctuary zone status to ensure the judicious use and preservation of marine ecosystems.
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Appendix

Table 3.6. List of all fish species (in alphabetical order) recorded at all six sites within sanctuary and fished
zones at the reef and at different distances in Amphibolis spp. meadows across three seasons.

Family Species Fishing Trophic
Importance Level
Aplodactylus Aplodactylus westralis R H
Apogonidae Apogon rueppelli R zZ
Apogon victoriae B C
Aracanidae Anoplocapros amygdaloides N C
Arripidae Arripis georgianus C/R C
Blennidae Omobranchus germaini O
Paradennius intermedius 0O
Belonidae Hyporhamphus melanochir O
Carangidae Pseudocaranx dentex C/R zZ/IC
Pseudocaranx wrightii C/R Z
Pseudocaranx wrightii juveniles C/R z
Chaetodontida Chelmonops truncatus N C
Cheliodactylidae Cheilodactylus gibbosus N 0
Cheilodactylusrubrolabiatus R C
Dactylophora nigricans R 0
Gerreidae Parequula melbournensis R Z/D
Gerres subfasciatus R C
Heterdontidae Heterodontus portusjacksoni R C
Kyphosidae Girella zebra R H
Girella tephraeops R H
Kyphosus sydneyanus B H
Kyphosus cornelli B H
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Labridae

Monacanthidae

Mullidae

Odacidae

Scorpis georgiana
Tilodon sexfasciatum
Achoerodus gouldit
Anampses geographicus
Austrolabrus maculatus
Bodianus frenchii
Choerodon spp.
Choerodon rubescens
Coris auricularis

Coris auricularis juveniles
Dotolabrus alleni
Eupetrichthys angustipes
Halichoeres brownfieldi
Thalassoma lutescens
Opthalmolepis lineolata
Pictilabrus laticlavius
Pseudolabrus biserialis
Notolabrus parilus
Thalassoma lunare
Meuschenia hippocrepis
Penicipelta vittiger
Scobinichthys granulatus
Parupeneus signatus
Upeneichthys lineatus
Upeneichthys vlagmingii
Odax acroptilus

Odax cyanomelas

Parodax caninis
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Ostraciontidae
Pataecidae
Pinguipedidae

Pempheridae

Platycephalidae

Plesiopidae

Pomacentridae

Scaridae
Serranidae

Sparidae

Terapontidae
Tetraodontidae

Urolophidae

Aracana aurita
Aectapcus maculatus
Parapercis haackei
Pempheris klunzingeri
Pempheris multiradiata
Leviprora inops
Trachinops brauni
Trachinops noarlungae
Chromis klunzingeri
Parma mccullochi
Parma occidentalis
Scarus ghobban
Epinephelus armatus
Chrysophrys auratus
Rhabdosargus sarba
Pelsartia humeralis
Torquigener pleurogramma

Urolophus testaceus
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