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Abstract 

Rapid advancements in computer technology have facilitated the development of practical and 

economically feasible three dimensional (3D) computer-generated simulation environments that 

have been utilized for training in a number of different fields. In particular, this development has 

been heavily influenced by innovations within the gaming industry, where First Person Shooter 

(FPS) games are often considered to be on the cutting edge of gaming technology in terms of 

visual fidelity and performance. 3D simulation environments built upon FPS gaming 

technologies can be used to realistically represent real '\orld places, while also providing a 

dynamic and responsive experiential based learning environment for trainees. This type of 

training environment can be utilized effectively when training within the corresponding real 

world space may not be safe, practical, or economically feasible. 

This thesis explores the effectiveness of 3D simulation environments based on FPS gaming 

technologies to enhance the spatial awareness of trainees in unfamiliar real world spaces. The 

purpose was to identify the characteristics that contribute to effective learning within such 

environments. In order to identify these characteristics, a model was proposed representing the 

interrelationships between, and determinant factors of, the concepts of spatial cognition, 

learning within a simulation environment, and computer-generated 3D environments. 

The Location and Scenario Training System (LASTS), developed by the Royal Australian Navy, 

was evaluated to determine whether experience within the LASTS environment could benefit 

trainee submariners on Collins class submarines. The LASTS environment utilises the Unreal 

Runtime FPS game engine to provide a realistic representation of the Main Generator Room 

(MGR) on-board a Collins class submarine. This simulation was used to engage trainees in a 

simplified exercise based on the location of items relevant to a 12 Point Safety Round 

performed inside the MGR. Five trainee submariners were exposed to LASTS and then required 

to conduct the same exercise on-board a Collins class submarine. This mode of learning was 

compared to traditional non-immersive classroom teaching involving five additional trainee 

submariners who were also required to complete the same exercise inside the MGR. A mixture 

of qualitative and quantitative approaches to data collection and analysis was used to ascertain 

the effectiveness of LASTS as well as the contributing factors to this and learners' perception of 

the value of the environment. 

Results indicated that LASTS could be successfully used as a training tool to enhance the spatial 

awareness of trainee submariners with regard to the MGR on-board a Collins class submarine. 

LASTS trainees also demonstrated a better spatial understanding of the MGR environment as a 
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result oftheir experience compared to trainees who were the recipients of traditional classroom 

based training. The contributing characteristics of the proposed model were also validated with 

reference to the data gathered from the LASTS case study. This indicated that the model could 

be utilized in the design of future 3D simulation environments based on gaming technology in 

order to facilitate effective spatial awareness training. 
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1.0 Introduction 

1. 1· Background to the Study 

Computer-generated simulation environments are well recognized as learning and training tools 

due to their ability to represent any real or imaginary process, entity, or environment, including 

it's underlying behavioural characteristics. The use of computer-generated simulations for 

training purposes implies the application of a responsive system model that can be manipulated 

and interacted with by the learner, with the objective being the transfer of the skills and 

knowledge acquired within the simulation to the system being modelled. In this manner, 

learners can achieve desired learning outcomes that are situated within a culture, context, or 

activity common to both the simulation environment and the target system. 

Advances in computer technology, increased affordability of desktop computers, and the rapid 

growth of the Internet have facilitated the development of practical and economically feasible 

three dimensional (3D) computer environments. Although a relatively new technology, 3D 

environments have been employed in a number of different applications where a three 

dimensional perspective is beneficial. This three dimensional perspective offered by 3D 

environments allows them to potentially represent real world three dimensional spaces 

realistically and more intuitively than other forms of media. 3D environments can thus be used 

to simulate real world environments to provide learners with a degree of comparable experience 

before subjecting them to the real world environment. 

The technological development of 3D environments has also been heavily influenced by 

innovations within the gaming industry, where high consumer demand has driven rapid 

advancements in associated hardware and software technologies. This is particularly evident 

with regard to First Person Shooter (FPS) games, where the player is provided with a first 

person perspective of a three dimensional environment. FPS games are typically characterised 

as being on the cutting edge of gaming technology in terms of visual fidelity and performance, 

and have amongst the highest of expectations placed upon them by the gaming public. The 

abilities of 3D gaming technologies, in particular the game engines used to power FPS games, 

have not gone unnoticed, with proponents of computer based learning recognizing the potential 

of these technologies to function as simulation environments. 

The military, in particular, have made extensive use of 3D simulation environments built on FPS 

gaming technologies for learning and training purposes. The well renowned American's Army 

project for example, utilized technology from the FPS game Unreal Tournament to create a 

realistic infantry simulation designed to increase military recruitment. Technology from Unreal 
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Tournament has also been proposed as a framework for multi-agent, distributed interactive 

simulation environments for the U.S military (Manojlovich, Prasithsangaree, Hughes, Chen, & 

Lewis, 2003). Within Australia, the viability of gaming technology for military simulation has 

also been recognized by the Australian Department of Defence via the successful application of 

the Virtual Battlefield Systems (VBSl) project. VBSl has been used to support support studies 

into alternative squad level organizations, as well as tactical combined arms training, utilizing 

technology from the FPS game Operation Flashpoint (Carpenter & White, n.d.). 

1.2 Significance of the Study 

3D simulation environments allow users to experience real, recreated, abstract or imaginary 

environments that may be of impractical size, infeasible distance, prohibitive cost, or too 

significant a hazard to visit in person (Baylis, 2000). Users are able to perform actions within 

these virtual environments in ways that may not be possible, practical, safe, or ethical to do so 

in the real world environment being modelled. As such, 3D simulation environments are 

particularly well suited to training users and preparing them for real world tasks in operational 

environments that would benefit from some degree of familiarity before real world exposure. 

Thus, 3D simulation environments can be used to familiarise trainees not only with a specific 

operation or task within a real world environment, but also the environment itself. 

There is an inherent need for awareness of any operational environment in order to elicit 

effective performance from those whom operate within it. Knowledge of the environment 

entails recognition and understanding of the spatial relations between one self, the objects 

within the environment, and the structure or hierarchy of the environment itself. This spatial 

knowledge of an environment is particularly important in operational environments that rely on 

individuals being able to travel throughout them efficiently and effectively, while retaining 

locational knowledge of specific areas and objects within the environment. 3D simulation 

environments have the potential to recreate these environments realistically, such that this 

knowledge can be learned within the simulation environment and then transferred to the 

operational environment. In this fashion, trainees can develop a degree of spatial awareness of 

the real environment before they are exposed to it for the first time, or enhance and reinforce 

their already existing spatial knowledge of the environment via experience within the simulation 

environment. 

There is sufficient evidence to suggest that 3D simulation environments are capable of 

enhancing spatial awareness of real world environments via the transfer of spatial knowledge 

accumulated within a corresponding virtual environment (see Section 2.2.2 Spatial Learning in 

Virtual Environments). 
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1.3 Statement of the Problem 

Real world environments may be difficult to set up for instruction, difficult to observe in 

operation, or may have limited suitable available time, potentially making training prohibitive 

(Towne, 1995). These limitations can in turn cause problems for trainees by increasing their 

dependence on supervisory personnel, limiting the range of operational configurations 

experienced, and obscuring the behaviour of the target system (Towne, 1995), thereby 

decreasing the effectiveness of the training. Non computer training techniques and other two 

dimensional forms of multimedia can be insufficient and inconsistent with facilitating the 

development of spatial cognition in the same way as 3D simulation environments. It should be 

noted that 3D simulation environments can be used in conjunction with other forms of media 

and instructional techniques to facilitate spatial awareness of real world environments. 

However, there is some evidence to suggest that learning and transfer are more effective when 

instructional support is integrated into the simulation environment (see Section 2.3.2 Learning 

with Simulations). 

1.4 Research Questions 

The literature review conducted in Section 2.0 of this document provides a detailed theoretical 

background which has led to the formation of a set of research questions. These research 

questions are concerned with determining which characteristics of 3D simulation environments 

based on gaming technology facilitate spatial learning. The research questions are presented 

here within the introduction in order to indicate the scope and direction of the research: 

Question 1. How can the implementation of a 3D game engine environment contribute to a 

learner's development of spatial awareness of real world environments? 

Question 2. What is the nature and function of spatial cognition and the subsequent 

formation of spatial representations? 

Question 3. What are the characteristics of 3D game engine environments in terms of their 

ability to support spatial cognition? 
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2.0 Literature Review 

2.1 Introduction 

In order to determine the answers to the research questions proposed in Section 1.4, a thorough 

exploration of spatial cognition, computer assisted learning, and computer-generated 3D 

environments, including their core principles, is required. These core principles can be used to 

determine a set of criteria for evaluation. It is also necessary to identify and examine any 

interrelationships between these concepts in order to determine how spatial learning within a 3D 

simulation environment can be facilitated. 

First and foremost, an understanding as to the nature and function of spatial cognition and the 

means by which environments are represented spatially is required. The manner in which 

people perceive, organize, and encode the spatial characteristics of the environments around 

them as a mental representation also needs to be identified. Furthermore, the environmental 

factors that contribute to the formation of spatial representations must be determined in order to 

ascertain how people learn and become familiar with the spatial characteristics of the 

environments around them. It is also necessary to determine whether computer-generated 3D 

environments are compatible with, and capable of, facilitating this process. 

An understanding as to how people learn within computer-generated simulation environments is 

also necessary in order to explore how spatial information obtained within a virtual environment 

can be put to use in the real world. The nature in which this information can be transferred and 

applied to the real world environment being simulated will also require examination. 

Identification and recognition of the underlying learning theory that permeates and facilitates 

this process within computer-generated simulation environments also requires exploration. The 

role of instructional support, including it's nature and function within simulation environments 

also warrants discussion. 

An examination of the components that constitute a simulation environment in reference to the 

characteristics of 3D, and real world environments will be fundamental in determining the 

validity of computer-generated 3D environments to simulate real world spaces. A discussion of 

the various technologies capable of creating 3D environments, including a detailed examination 

of gaming technologies, and the capabilities ofFPS game engines will also be required. An in 

depth examination of the characteristics of FPS game engines and their potential contributions 

to simulating a real world space for the purposes of spatial learning will also be necessary. 

Finally, the interrelationship between these concepts will need to be identified in order to 
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determine a set of broad principles common to each of spatial cognition, computer assisted 

learning, and computer-generated 3D environments. In this fashion, a model depicting the 

relationships between spatial cognition, computer assisted learning, and computer-generated 3D 

environments can be created, detailing the characteristics of 3D simulation environments based 

on FPS game engines that support spatial cognition. A master set of criteria for evaluation 

purposes can also be derived by combining previous individual sets of criteria identified for 

each concept with respect to this model. 

2.2 Spatial Cognition 

Many of the activities we perform on a daily basis are dependent on our ability to recognise and 

conduct ourselves within the three dimensional environment around us. In order to determine 

the characteristics of 3D environments that contribute to spatial learning, it is first necessary to 

undertake a discussion regarding the manner in which knowledge about the objects and 

locations within an environment and the spatial relations between them are understood and 

encoded. This process is known as spatial cognition. 

2.2 1 The Nature and Function of Spatial Cognition 

Spatial concepts and spatial relations play a fundamental role in the cognitive structure at every 

level of representation, from the perception of objects to the perception of geometry (Olson & 

Bialystok, 1983). The spatial representation of an environment that is formed as a result of this 

cognitive process is done so in order to support movement within the environment for the 

purpose ofway:finding and navigation (Lynch, 1960; Siegel & White, 1975, Tversky 2000). 

Hart and Moore (1973) state that spatial cognition is "the knowledge and internal or cognitive 

representation of the structure, entities, and relations of space; in other words, the internalized 

reflection and reconstruction of space in thought" (p. 248). The process of spatial cognition 

entails the acquisition and development of cognitive maps, an on-going and iterative process 

comprising of "a series of psychological transformations by which an individual acquires, 

codes, recalls, and decodes information about the relative locations and attributes of phenomena 

in his everyday spatial environment" (Downs & Stea, 1973, p. 9). The cognitive map is a 

mechanism by which an individual answers two basic questions quickly and efficiently: ( 1) 

Where certain valued things are; (2) How to get to where they are from where the individual 

currently is (Downs & Stea, 1973). 

While it is generally agreed that a cognitive map is a mental representation of an external 

environment, there is some debate as to how they are characterised and encoded. Tversky 

(2000) notes that opinions on the representation of cognitive maps range from a unified 
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representation of an environment as a mental image, somewhat similar to a map on paper, to an 

ad hoc collection of information from different sources put together to solve a problem. She 

proposes that cognitive representations consist of a collage of information, consisting of 

overview, view and action knowledge: 

At a global level, the traveller needs a mental representation of an area that includes 

'here' and 'there' and regions around and between them. Let's call that 'overview' 

knowledge. Using that, the traveller determines a feasible route. Along the route, 

and especially at choice points, the traveller needs a representation of the local 

surroundings, with the information critical to the choice highlighted. Let's call that 

knowledge 'views.' At yet a finer level, the traveller needs to know how to take each 

step or each turn of the wheel, maintaining course while avoiding pitfalls and 

obstacles. We'll refer to that as 'actions'. (p. 24) 

Tversky (1993) rejects the notion of a single, coherent maplike cognitive structure, noting that 

"in many instances, especially for environments not known in detail, the information relevant to 

memory or judgement may be in different forms, some of them not maplike at all" (p. 15). She 

argues that in these cases, people's internal representations are more like collages rather than 

maps, stating that memory and judgement are systematically distorted and potentially 

contradictory and thus not easily reconcilable in a maplike structure. 

Downs and Stea (1973) argue that cognitive maps are functionally equivalent to cartographic 

maps, as opposed to structumlly equivalent: 

The focus of attention is on a cognitive representation which has the functions of 

the familiar cartographic map but not necessarily the physical properties of such a 

pictorial graphic model (Blaut, McCleary, and Blaut, 1970). (p. 11) 

They suggest that cognitive maps consist of a mixture of information regarding the location and 

attributes of phenomena. Locational information is determined by measures of distance and 

direction while attributional information consists of descriptive and evaluative information. 

Thus, an object is identified and defined by a set of attributes and pieces of locational 

information. The scale of the analysis of the problem at hand defines what is an object, and in 

turn, what is attributive and locational information, as an object at one spatial scale can become 

an attribute at another. 

The spatial knowledge used in the construction of cognitive maps can be acquired from an 

environment in a number of different ways. The primary distinction between these sources of 
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spatial knowledge is whether the information comes directly from the environment itself, or 

from some other secondary source such as a map (Darken & Peterson, 2002; Jansen-Osmann, 

2002). Downs & Stea (1973) denote these two types of information sources as direct and 

vicarious sources of information. Direct sources are experiential sources that come from first 

hand involvement in the environment. For direct sources of information, the visual, tactile, 

olfactory, and kinaesthetic sense modalities combine to provide an integrated representation of 

the spatial environment (Downs & Stea, 1973). Conversely, vicarious sources of information are 

selected and filtered through the experience of another, such that the information is distorted, 

generally in a way that is useful to the individual in their present context (Downs & Stea, 1973). 

Research on spatial cognition and cognitive mapping has yielded a number of useful theoretical 

frameworks, many of which draw from the extensive work of Jean Piaget in this area. As such, a 

number of these theories focus on the development of spatial cognition in children, but it has 

been argued that the parallels between the spatial progression in children and adults allows these 

theories to be applied universally (Siegel& White, 1975; Devlin, 2001). 

One of the most widely recognized of these theories is the Landmark, Route, Survey model 

described by Seigel and White (1975) and Thorndyke and Goldin (1983). This model 

emphasizes the role oflandmarks, or "unique patterns of perceptual events at a specific 

location" (Siegel & White, 1975, p. 23), which are initially extracted from the environment and 

act as salient cues that are static and orientation dependent (Darken & Peterson, 2002). Route 

knowledge subsequently develops as connections between landmarks become established with 

experience. Landmark and route knowledge is then organized together into highly correlated 

sets of clusters where topological information about cluster relations is apparent (Devlin, 2001). 

Finally, an overall coordinated frame of reference develops such that Euclidean properties are 

available within and across clusters (Devlin, 2001 ), enabling paths to be generated based on 

estimated relative distances and directions between any two points (Darken & Peterson, 2002). 

Werner, Krieg-Bruckner, Mallot, Schweizer and Freksa (1997) summarise accordingly: 

Landmarks are unique objects at fixed locations, routes correspond to fixed 

sequences of locations as experienced in traversing a route; survey knowledge 

abstracts from specific sequences and integrates knowledge from different 

experiences into a single model. (p. 42) 

While the individual conceptualization and representation of cognitive maps differs throughout 

the. literature, all conceptions of cognitive maps recognise that not all environmental information 

is represented; much of it is simplified, idealised or omitted all together (Tversky, 2000). Downs 

and Stea (1973) also support this contention, stating that: 
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If we compare a cognitive map with a base map of the real world (whether it be an 

aerial photograph, a cartographic map, or a scale model), we fmd that cognitive 

mapping does not lead to a duplicative photographic process with three­

dimensional colour pictures somehow "tucked away in the mind's eye," nor does it 

give us an elaborately filed series of conventional cartographic maps at varying 

spatial scales. Instead, cognitive maps are complex, highly selective, abstract, 

generalised representations in various forms. (p. 18) 

Tversky (2000) argues that because elements within a cognitive map are represented relative to 

each other and relative to a spatial reference frame, these relations can systematically distort 

spatial information, such that it becomes schematized. Realising the subjectivity of the 

individual construction of cognitive maps, Downs and Stea (1973) proposed that cognitive maps 

could be characterized as incomplete, distorted, schematized, and augmented, suggesting that 

people behave in a world of their of their own construction, irrespective of the flaws and 

imperfections in their own cognitive maps. 

2 2 1 1 Factors Influencing Spatial Cognition 

All theoretical constructs regarding spatial cognition assume the ability of movement between 

points or landmarks in an environment. Without the ability to move, an individual's spatial 

representation of an environment is severely limited. Devlin (200 1) notes that motor activity is 

the foundation of perceptual activity, the construction of perceptual space, representational 

images, and ultimately, how spatial concepts are represented. Siegel and White (1975) also 

acknowledge the central role of motor activity in the development of spatial representations, 

noting that "sensory-motor interaction with the spatial environment is necessary for correct 

perception, for experiencing the world "as it really is" (p. 23). Thus, it can be surmised that the 

ability to move freely is essential in order for an individual to form a spatial representation of an 

environment. 

For vicarious sources of spatial information, the type of medium employed to present the 

environment influences the spatial cognition process and the subsequent formation of cognitive 

representations (Delgamo, 2004; Devlin, 2001). True to Downs and Stea's (1973) discussion on 

the sources of spatial information, vicarious sources are filtered and thus distorted 

representations of the environments they represent. This is true for all vicarious sources of 

spatial information, including written descriptions, maps, photographs and 3D environments. As 

this research focuses on representing a real world space through a computer generated, three 

dimensional medium, it is important to note that this representation will always be incomplete 
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and distorted in some way. However, because the user is able to move and act within the 

confines of the 3D dimensional environment, they will be able to gain direct and experiential 

spatial knowledge of the 3D environment itself. Thus, a 3D environment representing a real 

world space will provide the user with direct spatial knowledge of the virtual environment, but 

vicarious spatial knowledge of the real world environment that it is representing. The key then 

lies in presenting a faithful representation of the real world environment with a computer 

generated 3D environment with as little distortion as possible, such that the cognitive map 

generated inside the virtual environment can be applied effectively in the real world. This 

concept of legibility or clarity is defined by Lynch ( 1960) in terms of the ease with which the 

elements of a system can be recognized and organized into a coherent pattern. Lynch (1960) 

states that a legible representation can be visually grasped as a related pattern of recognizable 

symbols, and suggests that legibility may play a key role in obtaining a sense of spatial control 

in spatial experience. Kim (2001), citing Kaplan and Kaplan (1983), also contends that legibility 

is one of the most salient aspects in an individual's effective functioning as it allows the 

individual to explore the environment extensively without becoming lost. The need for a 

visually recognizable and legible representation is supported by research by Peruch, Belingard, 

and Thinus-Blanc (2001) who argue that it is the quality, not quantity, of available virtual 

information that is more important in the construction of a spatial representation that is to be 

transferred to a real world environment. 

2.2.2 Spatial Learning in Virtual Environments 

Having examined the nature and function of spatial cognition and cognitive maps, it is now 

pertinent to explore the effectiveness of 3D environments in facilitating the development of 

spatial knowledge. A number of studies have been undertaken in this area examining the 

veracity of the acquisition of spatial knowledge in virtual environments. 

Brooks et al. ( 1999) conducted a study with an amnesia patient to see if they could be trained in 

route finding around a hospital ward utilizing a detailed non-immersive 3D environment based 

on the real unit. The patient practised selected routes within the hospital using both the 3D 

environment and the real environment itself. Within two weeks, the patient had learned the route 

practised in the virtual environment, but not the route practised in the real unit. Based on the 

results ofthe experiment, Brooks et al. (1999) surmised that training in virtual environments 

may be an effective means of teaching new information to patients with severe memory 

impairments, noting that a virtual simulation of a motor skill was sufficient to promote spatial 

learning. The knowledge gained gained by the patient in the virtual environment was also 

shown to transfer to the real world environment. 

22 



A study by Osberg ( 1997) focussed on improving the spatial processing skills of neurologically 

impaired children via experience in 3D learning environments. The study evaluated the effect of 

designing and experiencing a virtual world as a spatial processing skill enhancement method, 

and as an aid to cognitive development. Three dimensional design software was used by the 

children to develop puzzle pieces that were combined into a cohesive whole at the end of the 

study. Osberg (1997) concluded that the results of the study were consistent with the hypothesis 

that intensive 3D processing culminating in a virtual experience could enhance spatial 

processing skills and that virtual reality exhibited potential as a setting for multi-perceptual, 

experiential learning. The author suggested that "the intensive trainingmay have encouraged 

these children to contemplate spatial issues in a manner not previously experienced, and may 

have created deeper spatial understanding through the opportunity to directly manipulate objects 

and navigate through a 3-D environment" (on-line). 

In a study by Arthur, Hancock and Chrysler (1997), participants were examined on their ability 

to reproduce a complex spatial layout of objects having experienced them previously under 

different viewing conditions, including a free binocular virtual condition, a free binocular real­

world condition, and a static monocular real-world condition. The results obtained suggested 

that representations formed from the experience of virtual objects did not differ significantly 

from that ofthe actual objects. Arthur, Hancock and Chrysler (1997) suggested that this 

provided evidence that the spatial representation resulting from interactions with small-scale 

virtual environments was comparable to real-world experience. 

Peruch, Belingard, and Thinus-Blanc (2000) performed a review of studies which examined the 

transfer of spatial knowledge from virtual to real environments. The authors documented that a 

number of studies in this area had revealed that the properties of spatial representations were 

globally the same in virtual and real environments and that transfer of skill and/or spatial 

knowledge occurred to a partial or large extent. Peruch, Belingard and Thinus-Blanc (2000) then 

performed their own study using a non-immersive virtual environment in order to evaluate to 

what extent virtual training could compare to real training. Two groups of participants were 

used in the study, one group was allowed to explore a virtual representation of a university 

campus, while the second group explored the real world equivalent, after which both groups 

were tested in the virtual and real environments consecutively. The results obtained 

demonstrated that the transfer of spatial knowledge from a virtual to a real environment was 

possible to a certain extent: 

It appears that training in a pure visual mode (using a desk-top system) may be 

sufficient to acquire a coherent mental representation. Moreover, this representation 

is less well elaborated but may be as performant as the representation that may be 
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acquired in the real environment. It is likely that a representation coming from a 

virtual experience may benefit from real-world experience. In other words, spatial 

knowledge acquired in a virtual environment (on a pure visual basis) could be used 

optimally in real conditions (that is, in situations more natural and rich with respect 

to the variety of available information). (p. 262) 

A study by Waller, Hunt and Knapp (1998) examined training in six different environments (no 

training, real world, map, VE desktop, VE immersive, and VE long immersive) and then asked 

participants to apply route and configurational (survey) knowledge in a real world maze 

environment. The study demonstrated that training in a virtual environment allowed people to 

develop useful representations of a large scale navigable space. Waller, Hunt and Knapp (1998) 

found that short periods of virtual environment training were no more effective than map 

training, but virtual environment training eventually surpassed real world training with 

sufficient exposure to the training environment. 

Identifying the distinguishing characteristics of 3D learning environments and their 

contributions to spatial learning was the focus of a study by Delgarno (2004). The study used 

versions of a 3D environment modelled on a chemistry lab to test the assertion that the smooth 

display of view changes, smooth display of object motion, user control of view position and 

direction and object manipulation characteristics of 3D environments contributed to spatial 

learning. Results indicated that smooth display of view changes were found to contribute to 

spatial learning in some but not all circumstances, and that user control over view position and 

direction contributed to spatial learning only when the task carried out in the environment was 

closely aligned with the desired learning outcomes. Delgarno (2004) concluded that the 

advantages offered by 3D environments as learning tools depended on the degree to which the 

environment allowed tasks to be performed that directly aligned with the desired learning 

outcomes. 

Finally, Conroy (200 1) provides an excellent discussion of a number of studies that explored 

spatial knowledge acquisition in virtual environments. She examined studies by Goldin and 

Thorndyke (1982) and Witmer, Bailey, Knerr, and Parsons (1996) that concluded that simulation 

environments could act as adequate substitutes for real-world spatial knowledge learning. 

Conroy also documented a number of studies that argued that navigation and the spatial 

knowledge acquired in real and virtual worlds was comparable (Darken and Sibert, 1993; 

Ruddle, Payne, Jones, 1998; Tlauka and Wilson, 1996). 
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2.2.3 Summaty 

In summary, the formation of cognitive maps is a process by which the spatial information of an 

environment is internalized as a mental representation, the structure and formation of which is 

debated amongst scholars. The spatial information of an environment is acquired via the visual, 

tactile, olfactory, and kinaesthetic sensory modalities, the quality and legibility of which is an 

important factor in the formation of spatial representations. The ability to move freely 

throughout the environment is fundamental to the spatial cognition process and the subsequent 

formation of cognitive maps. 

There is a significant body of literature that supports the contention that 3D environments can 

foster the development of spatial knowledge in a manner consistent with real world 

environments. Furthermore, there is also evidence to suggest that spatial knowledge obtained 

within a 3D environment can be transferred to a real world environment, making them suitable 

environments for training purposes. 

The key aspects of spatial cognition can be represented diagrammatically as follows: 

Spatial Cognition 

Movement within 
-~ ~:~ ~ the environ:ment 

--- ----- --
--

-- ~~_i"'I ~ I.egibility of the -·-
-- - !c~~:~v:ironment 

Figure 1: Diagrammatic representation of the key aspects of spatial cognition. 

25 



The criteria for evaluating these key aspects can be derived accordingly: 

Table 1: Criteria for evaluating the key aspects of spatial cognition. 

Aspect Criterion for evaluation 

Movement within the environment Degree ofmovement permitted within the 
environment 

Legibility of the environment Ease with which elements within the 
environment are recognized 

Quality of spatial information Level of distortion between virtual 
environment and real environment 

Quality of locational and attributional 
information of phenomena within the 
environment 

2.3 Learning with 3D Simulation Environments 

Having established the manner in which spatial knowledge is constructed, it is now pertinent to 

explore the manner in which this information can be transferred from a simulation environment 

to a real world environment. 

A simulation exists in order for knowledge learned in the simulation environment to be 

transferred to the real world system (Towne, 1995). Representing the system and it's underlying 

behaviour serves to facilitate this objective, with the assumption being that a faithful 

representation will encourage knowledge transfer between the simulation environment and the 

real world system (see Section 2.4.1 for a more detailed examination of the nature and function 

of simulation environments). Alexander, Brunye, Sidman, and Weil (2005) measure the success 

of a simulation based on this degree of knowledge transfer and note that "simulator training is 

only valuable if skills addressed and improved in the virtual environment are required in the 

operational environment" (p. 2). It is the contention of this research that computer-generated 3D 

simulation environments are suitable for representing real world environments for the purpose 

of transferring spatial knowledge obtained within the virtual environment and as such, it is 

necessary to examine how these environments facilitate the transfer of knowledge to the real 

world systems they represent. A number of scholars (Delgarno, Hedberg, & Harper, 2002; 

Withers, 2005) contend that 3D environments exhibit the potential to transfer knowledge 

obtained within the virtual environment to similar real world environments via the concept of 

situated learning. 

2.3.1 Situated Cognition 

The concept of situated learning draws from Brown, Collins and Duguid's (1989) theory of 
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situated cognition, which argues that knowledge is situated within the activity, context and 

culture in which it is developed and used. Keh, Chang, Lin and Hsu (2005) write that situated 

learning is a contextual learning that takes place in problem solving environments that are 

authentic rather than decontextualized. In support of this, Dobson, Pengelly, Sime, Albaladejo, 

Garcia, Gonzales and Maseda (200 1) state that for the development of performative expertise, 

learning is best achieved, has greater chance of application, and is most likely to transfer when 

situated amongst that which shares the operational goal to which the learning is aimed. Thus it 

can be surmised that learning transfer is most effective between environments that share a 

common activity, operation or learning goal, and are similarly related in terms of context and 

culture. Based on this reasoning, a 3D simulation environment seeking to facilitate the transfer 

of spatial knowledge should employ activities or operations consistent with those within the real 

world environment it is representing. Dobson et. al. (200 1) expounds on this idea, stating that 

"when learning is situated within a community of practice the development of knowledge and of 

competence to perform well at an enterprise are manifestations of the active interplay between 

experience and ability" (p. 548). This is further reinforced by Brown, Collins and Duguid 

(1989) who argue that activities and situations are integral to cognition and learning, and that 

learning should be embedded in activity to make deliberate use of the social and physical 

context of the environment. Keh, Chang, Lin and Hsu (2005) conclude that situated learning 

seeks to build a contextual, real-life and high interactive practice environment, noting that "this 

kind of learning environment can clearly build a simulated real-life situation learning 

environment" (p. 66). 

2.3.2 Learning with Simulations 

The idea of learning being dependent on the negotiation of meaning through practice (Dobson 

et. al, 2001) is consistent with the ideas set forth in simulation based learning theory regarding 

the importance of setting tasks or objectives as part of the learning process. In support of this, 

Withers (2005) argues that learners cannot be completely self-directed in their pursuit of the 

learning objective, and require scaffolding. Tait (1994) also states that learners generally require 

support in generating and testing hypotheses which can be achieved via the provision of 

appropriate learning tasks. 

Clearly, there is a need for some type of instructional framework or support within a simulation 

environment in order for it to fulfil an instructive role in a satisfactory manner (Van Rosmalen, 

1994; Tait, 1994; Withers, 2005). This can take the form of an explicit procedural assignment 

tha~ sets out the learning objectives and questions to be resolved, whereby the students conduct 

experiments on the simulation to answer questions (Njoo and DeJong, 1993). Jonassen, 

Howland, Moore and Marra (2003) argue that it is the nature of this task that best determines the 
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nature of the learning the user will complete, and that in order for users to learn meaningfully, 

they must be wilfully engaged in a meaningful task. This is consistent with Alexander, Brunye, 

Sidman, and Weil's (2005) earlier comment on the need for skills addressed in the simulation 

environment to be required in the real world environment in order for the simulation to be 

successful. Delgarno (2004) also supports this contention in arguing the advantages of 3D 

learning environments in opposition to other forms of multimedia: 

The advantages of such environments over video depends on the degree to which 

the environments allow tasks to be performed that directly align with the desired 

learning outcomes. If such tasks can be identified then learning advantages can 

occur, but only if learners are explicitly advised to undertake these tasks either 

through guidance provided within the environment or as part of supporting 

materials. The free learning exploration of a 3D environment with no explicit task 

advice is unlikely to lead to learning advantages over video or interactive 

multimedia. (p. ix) 

Thus, the nature of the assignment must have some relevance not only to the real world system, 

but also to the learning objective in order to be successful. For example, a 3D simulation 

environment of a university campus might require the user to locate a list of classes on the 

virtual campus consistent with their daily timetable in order to increase their spatial awareness 

of the real world campus environment. 

Withers (2005) and Van Rosmalen (1994) argue that this instructional support framework needs 

to be interwoven into the simulation environment itself, such that the interface has two 

functions; allowing the learner to operate the simulation and helping the learner to learn from 

using the simulation. Sweller, Van Merrienboer, and Paas (1998) present a similar argument, 

suggesting that the integration of instructional information reduces the demand on working 

memory and consequently, cognitive load. Some of the technologies used to construct 3D 

simulation environments are well equipped to handle these requirements. The scripting 

languages inherent in most 3D First Person Shooter (FPS) game engines, for example, allow for 

a set of objectives to be outlined, user performance responded to and measured, and feedback 

provided, all within the simulation environment (see Section 2.4.3 for a detailed discussion on 

3D FPS game engine technology). 

2.3.3 Constructivism 

Situated learning and the provision of assignments or tasks as a form of instructional support 

rely on the ability of simulation environments to foster the development of learning via direct 
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action within the instructional environment. This learning structure encourages active 

participation by the learner within the simulation environment, with an emphasis on doing 

rather than collecting and processing information (Withers, 2005). This experiential type of 

learning is one of the prominent features of constructivist learning theory, the key assumptions 

ofwhich are outlined by Merrill (1991) as follows: 

• knowledge is constructed from experience; 

• learning is a personal interpretation of the world; 

• leaming is an active process in which meaning is developed on the basis of experience; 

• conceptual growth comes from the negotiation of meaning, the sharing of multiple; 

perspectives and the changing of our internal representations through collaborative 

learning; and 

• learning should be situated in realistic settings; testing should be integrated with the 

task and not a separate activity. 

Examining Merrill's assumptions, it is evident that constructivism shares some characteristics in 

common with situated learning and assignment based instructional support within simulation 

environments. Situated learning and the concept of negotiated meaning are key in both 

constructivist and situated cognition theories. Integrated testing is a common facet of 

constructivism and assignment based instructional support. These commonalities would suggest 

that constructivism makes for an appropriate learning theory with regard to virtual 

environments. 

The experiential learning method in constructivism is also consistent with the exploratory nature 

of 3D simulation environments (DeJong, Van Joolingen, Swaak, Veermans, Limbach, King, & 

Gureghian, 1998; Winn, 1993). Mantovani (2001) writes: 

The attraction that constructivists have for Virtual Reality is that VR provides the 

perfect tool or technology to apply their theories in the "real world". The attraction 

that VR supporters have for constructivism is that it provides a philosophical 

foundation for their activities (p. 210). 

Delgarno (2004), citing Rieber (1992), concurs, suggesting that simulation environments are 

popular with constructivists for two reasons: (1) they provide a realistic context in which 

learners can explore and experiment, allowing the learner to construct their own mental model 

of the environment, and (2) the inherent interactivity allows learners to see immediate results as 

they create models or try out their theories about the concepts modelled. 
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Within the field of constructivism, there are different opinions as to the nature of knowledge and 

the manner in which it is constructed. The degree of explicit instruction and the degree of social 

interaction that is necessary depends on the learning domain, specific learning outcomes, and 

the individual characteristics of the learner (Delgarno, 2004). Realising this, Moshman (1982) 

identified three different interpretations of constructivism: exogenous constructivism, 

endogenous constructivism and dialectical constructivism. Delgarno (2004), citing Moshman 

(1982), describes these accordingly: 

• Exogenous constructivism is the view that formal instruction, in conjunction with 

exercises requiring learners to be cognitively active, can help learners to form 

representations which they can later apply to realistic tasks. 

• Endogenous constructivism emphasizes the individual nature of each learner's 

knowledge construction process, and suggests that the role of the teacher should be to 

act as a facilitator in providing experiences which are likely to result in challenges to 

learner's existing models. 

• Dialectical constructivism is the view that learning occurs through realistic experience, 

but that learners require 'scaffolding' provided by teachers or experts as well as 

collaboration with peers. 

At first glance, the exogenous interpretation of constructivism would seem most appropriate to 

the research at hand, though the elements of dialectical constructivism relating to realistic 

experience and scaffolding also seem appropriate. Applefield, Huber and Moallem (2000) offer 

some clarification, stating that in exogenous constructivism, there is an external reality that is 

reconstructed as knowledge is formed, while dialectical constructivism views the origin of 

knowledge construction as being a result of the social intersection of people. Doolittle (1998) 

suggests that knowledge in exogenous constructivism learning is the process of building 

accurate internal models or representations of external structures in the real world, while 

dialectical constructivism defines learning as the process of building representations of external 

structures in light of the individual's beliefs, culture, prior experiences and social interactions. 

Being that this research is concerned with constructing cognitive spatial maps of real world 

places via experience within a corresponding simulation model, it would seem that the 

exogenous interpretation of constructivism is the most appropriate learning theory to adhere to. 

Delgarno (2004) acknowledges this selection, noting that 3D environments with integrated 

instructional support are consistent with applications of exogenous constructivist theory. This 

can be further justified by noting the consistencies between the exogenous interpretation of 

constructivism, integrated assessment instructional support and situated learning. Based on 

these consistencies, it can be surmised that there is a need for learning to be situated in a a 
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simulation environment that accurately reflects the real world environment it models, while also 

containing integrated and context-specific instructional support. 

2.3.4 Summary 

It has been demonstrated that the theories of situated cognition and exogenous constructivism 

rely on a simulation environment that is contextually similar to the real world environment it 

represents. This reinforces the need for the realistic and authentic representation of real world 

spaces that 3D environments can provide. Furthermore, by utilizing 3D FPS game engine 

technologies, instructional support can be embedded into the simulation environment via the 

provision of inbuilt scripting languages, which allows for behavioural responses to user actions 

by the virtual environment to be catered for. 

The key aspects of learning within a simulation environment can be represented 

diagrammatically as follows: 

Learning Within a Simulation Environment 

. Authenticity of . 
sirimlation environri:ient. 

· •. ~· • ~lD&truetiohld. 
. . .... -c..stipj)ort~ '~~; 

Figure 2: Diagrammatic representation of the key aspects of simulation based learning. 
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The criteria for evaluating these key aspects can be derived accordingly: 

Table 2: Criteria for evaluating key aspects of learning within a simulation environment. 

Aspect Criterion for evaluation 

Authenticity of simulation environment Degree ofsimilarity between simulation 
environment and real world environment in 
terms of context and culture 

Situated tasks Extent to which set tasks are situated relative 
to tasks within the real world environment 

Integrated instructional support Degree to which instructional support is 
integrated into the environment 

2.4 3D Environments 

Having ascertained the manner in which learning is conducted in computer-generated 

simulation environments, and that the theory of situated cognition allows for knowledge to be 

transferred between environments that are contextually similar, an examination of 3D 

environments and their ability to represent real world spaces is now required. This examination 

is conducted in light of the nature and function of simulations and a comparison of the 

characteristics of various 3D environment technologies to real world environments. 

2.4.1 3D Environments as Simulations 

From an instructional perspective, a simulation can be used to model any real or conceptual 

system in order to facilitate a learning objective (Mason & Rennie, 2006). Simulations can be 

used to represent a range of different scenarios, from a highly detailed, microscopic view of a 

small part of a system, to a broad macroscopic view of a system as a whole. A system may also 

be represented by a simulation in any number of ways, from a simple text based model to a fully 

immersive virtual reality environment. Regardless of the manner in which a simulation models a 

system, the goal remains the same: to represent system behaviour and respond to user actions 

such that knowledge learned in the simulation environment can be transferred to the real system 

(Towne, 1995). 

With this in mind, it becomes important to determine the type of simulation environment to 

employ that can effectively represent the behaviour of the system and respond to user actions in 

regard to the knowledge that needs to be transferred. As this research is concerned with 

transferring spatial knowledge of a simulation environment to a corresponding real world 

environment, it is necessary that the type of simulation employed be able to model the 

behaviour and faithfully mimic the reactions of the real world three dimensional space (Di 

Carlo, 2003). Itis the contention of this research that a 3D environment is an appropriate choice 
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for this task. 

This contention can be justified by examining the individual components of a simulation with 

regard to 3D environments. Towne (1995) suggests that a simulation consists of two 

components: (1) a perceptible and operable representation of the real system, and (2) an 

underlying system model that expresses the way in which the representation reacts to action 

upon it (p. xxv). This is consistent with Williams' (2003) measure of a simulation environment 

in terms of it's physical and functional fidelity. Thus, we can determine the effectiveness of a 3D 

environment to simulate a real world space in accordance with the authenticity of the interface 

and underlying behavioural model. 

The degree of fidelity required to perceivably represent a system is dependent on whether the 

representation needs to be highly realistic, and reflect the characteristics and properties of the 

real system with great accuracy, or merely at a level that suggests what happens in the real 

world (Towne, 1995; Wilson, 1997). Not all simulations are required to be high fidelity 

environments, and the level of fidelity required should be determined in reference to the desired 

learning outcome and the environment that is being modelled (Alexander, Brunye, Sidman, & 

Weil, 2005). In virtual environments, there is an increased reliance on the visual senses to 

provide information due to the fact that many other sensory cues are not present (Wilson, 1997), 

and this is especially true for desktop environments. Spatial knowledge and leaming however, is 

formed from the combined interpretation of the visual, tactile, olfactory, and kinaesthetic 

sensory modalities, which is a complementary process (Downs & Stea, 1973). It is therefore 

logical to assume that the visual information presented by a 3D environment should be of as 

high a quality as possible to compensate for the lack of tactile, olfactory, and kinaesthetic 

information provided. Visually, the 3D environment should provide a detailed, accurate and 

realistic representation of the real world space it models in order to provide as much spatial 

information via the sensory modalities as possible. 

Malhorta (2002) notes that the simulation of lighting conditions is one of the key aspects in 

creating a visually realistic representation of a real world environment. This is facilitated in 3D 

environments via the application of global (view-independent) and local (view-dependent) 

illumination methods which can be used to accurately recreate lighting conditions within a real 

world space. Shadows are also used within 3D environments to enhance realism, and are 

especially significant with regard to spatial awareness as they provide depth and perspective 

cues (Malhorta, 2002). 

The ability to texture models and other geometric shapes also allows 3D environments to 

enhance the sense of visual realism with respect to the real world system being modelled. A 
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study performed by Peruch, Belingard & Thinus-Blanc (2000) demonstrated that spatial 

learning was affected by the amount and/or quality of information available in a virtual 

environment. They compared performance in a 3D virtual environment using textured and 

untextured geometric solids. Results showed that direction and travel distance errors were 

smaller in the environments that featured textured geometric shapes. 

Research (Delgamo, 2004; Delgarno and Hedberg, 2001, Ptoska, 1995) suggests that the 

potential for realism inherent in 3D environments can establish a greater sense of presence and 

immersion, which in tum can facilitate a greater transfer of knowledge. Sadowski and Stanney 

(2002) elaborate on the relationship between realism and immersion, noting that the potential 

for realism in 3D environments serves to focus the user's attention within the virtual 

environment, enhancing involvement and thereby increasing presence. Schmidt and Young 

(1987) also support the connection between realism, immersion and knowledge transfer, but 

contend that positive learning transfer from the virtual world to the real world is possible only 

when similar stimuli and responses are available within the virtual environment. This concept of 

learning transfer being reliant on the relevance and authenticity of the stimuli and response of 

the simulation environment is consistent with Williams' (2003) measure of a simulation 

environment in terms of it's physical and functional fidelity. 

Having acknowledged the potential of 3D environments to represent real world spaces on a 

perceptible level, it is now necessary to assess 3D environments in terms of their ability to 

operate and behave consistent with real world space. Examining Williams' (2003) descriptions 

of physical and functional fidelity, we see that this includes the manipulation and feedback of 

the interface, as well as the modelling of behavioural responses within the virtual environment. 

For any given simulation, the behaviours modelled within the virtual environment must be 

contingent on the particular outcomes and goals in mind, as it is infeasible and inefficient to 

model all possible outcomes and scenarios within a simulation environment (Wilson, 1997). 

This research is interested in the transfer of spatial knowledge from a simulated environment to 

a real world system, and not the inner workings or interplay of objects within the real world 

system. Thus, the simulation environment need only model the physical properties of the real 

world environment itself, together with behaviour consistent with the manner in which an 

individual would move through the real world environment. To determine the validity of 3D 

environments to model a real world system in this manner, it is first necessary to determine the 

main characteristics of3D environments, which Delgamo and Hedberg (2001) provide as 

follows: 
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• An environment modelled using 3D vector geometry, meaning that objects are 

represented using x, y and z co-ordinates, describing their shape and position in 3D 

space. 

• Dynamic rendering of the user's view of the environment depending on their position in 

3D space. 

• Dynamic rendering of the user's view as the user moves freely through the environment. 

• A minimum degree of interaction with some of the objects within the environment, in 

that they respond to user action (e.g. a button, door etc.). 

Examining these characteristics, it is evident that 3D environments share characteristics in 

common with real world three dimensional spaces. Both environments use three dimensional 

Euclidean geometry to describe the objects within them, and as such, 3D environments can be 

used to construct scale representations of real world spaces, given appropriate plans or 

schematics. As such, dimensions, perspective and relative distances between objects within the 

virtual environment can be consistent with those in the real world. The formation of spatial 

representations of environments relies in part on information pertaining to the distance and 

direction of objects (see Section 2.4.1), thus a scale virtual representation will provide a more 

useful spatial representation to the real world environment. However, the extent to which this 

information can be applied in the real world environment can be constrained by the fact that the 

user is viewing a three dimensional environment on a two dimensional viewing plane, such as 

the screens embedded in a head-mounted-display, or a desktop monitor. 

The dynamic rendering characteristics of 3D environments provide immediate visual feedback 

to the user and, combined with the 3D vector geometry environment model, create the illusion 

of free movement within the virtual environment. This is achieved via the rotation and 

translation of the user's viewpoint within the 3D model in accordance with the manipulation of 

the mouse, keyboard or joystick in a non-immersive, desktop 3D environment, or head­

mounted-display, data gloves or other sensory devices within an immersive, virtual reality 

environment. This ability allows users to freely look and move throughout a 3D virtual 

environment in a manner consistent with a three dimensional real world space. 

The degree of interaction with objects required within the environment is typically dependent on 

the learning outcome and the real world environment being modelled (Jonassen, Howland, 

Moore, & Marra, 2003). In typical 3D environments, the user is able to interact with the 

environment simply by looking around or moving within it with the display updating 

accordingly. With regard to spatial learning, the only interactivity required in addition to this is 

the inclusion of objects that facilitate or restrict movement throughout the environment, such as 

doors, ladders or lifts. These can be modelled to scale specification as required and need only 
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exhibit behaviour that suggests what happens in the real world environment. 

2.4.2 Immersive and Non-immersive 3D Environments 

Having ascertained the potential of 3D environments to simulate real world spaces, it next 

becomes necessary to determine the type of 3D environment to employ for this purpose. 

Different types of3D environments exhibit attributes important to the simulation of real world 

spaces to varying extents at different costs and with varying levels of flexibility (Wilson, 1997), 

all of which are largely dependent on the technology used. Thus, 3D environments are broadly 

categorized according to the type of technology used in their construction as either immersive or 

non-immersive environments. 

Brooks, McNeil, Rose, Greenwood, Attree & Leadbetter (1999) characterize immersive 

environments as those that use head-mounted helmets, data gloves and body suits to present 

visual, auditory and tactile sensations ofthe computer-generated environment. Conversely, 

Brooks et. al. (1999) characterize non-immersive 3D environments as those that rely on mouse, 

keyboards and joysticks as control devices, with visual and auditory aspects of the computer­

generated environment presented via computer monitors or projectors. It is worth noting that 

some 3D environments fall between these two categories. The Fish Tank VR project (Ware, 

Arthur & Booth, 1993), for example, employed passive head tracking sensors similar to those 

seen in immersive environments, but utilized a standard desktop monitor for display purposes. 

In order to decide between an immersive or non-immersive 3D environment, it is necessary to 

evaluate the abilities of each with regard to the overall objective (Peruch, Belingard, & Thunis­

Blanc, 2000). Wilson (1997) describes this process as a number of explicit design decisions and 

concessions where the characteristics of the system are constrained by available finances and 

technical limitations. Thus, the decision between utilizing an immersive or non-immersive 

environment for the purposes of spatial learning can be made on a financial and technical basis. 

One of the common complaints levelled at immersive systems relate to their expense (Taxen & 

Naeve, 2001; Lewis & Jacobson, 2002), which Whitton (2003) attributes to the absence of a 

high-volume market or any incentive for cost reduction for hardware such as head-mounted­

displays and data gloves. Non-immersive based systems in comparison, are much more cost 

effective, making them accessible to more than just the military, universities and other 

institutions with significant financial resources. As commercial graphics cards have become 

increasingly more powerful, common desktop computers have become more capable of 

adequately supporting an increased number of 3D simulation applications (Lisle & Sartor, 

1997). A number of studies have shown that low-cost pc orientated virtual environments have 
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performed equally as well as immersive environments many times more expensive (Tam, 

Maurel, Desbiens, Marceau, Malowany & Granger, 1998; Jansen-Osmann, 2002). 

While it is generally accepted that non-immersive environments offer significant cost 

advantages over immersive environments, the technical capabilities of each system provide 

more grounds for debate when deciding which type of environment to employ. Numerous 

studies (Whitton, 2003; Cambell & Wells, 1994) have shown that the head-mounted-displays 

used in immersive 3D environments provide a greater sense of presence and immersion than 

computer monitors or projectors, owing to user view restriction, stereoscopic imaging and head 

tracking abilities. (Delgamo, 2004). However, it is worth noting that a number of researchers 

have made a distinction between physical (or objectively measurable) and psychological (or 

subjectively reported) immersion (Delgamo, 2004). It can be argued that while non-irnmersive 

environments lack the potential for physical immersion exhibited by immersive environments, 

they do exhibit potential for psychological immersion (Robertson, Card, & Mackinlay, 1993). 

Robertson, Czerwinski and Van Dantzich (1997) further note that non-immersive virtual 

environments lack the peripheral vision afforded by head-mounted displays in irnmersive 

environments, which can result in users being unaware of their surroundings or location within 

the virtual space, however Campbell & Wells (1994) contend that this is advantageous as it 

allows for quicker manipulation of the viewpoint and ease of movement. Robertson, Czerwinski 

& Van Dantzich (1997) point out that head-mounted-displays can suffer from poor display 

resolution, display jitter and lag between head movement and display response, which are not 

problems seen in non-irnmersive alternatives which typically exhibit higher resolution and 

frame rates (Cambell & Wells, 1994). 

Non-immersive environments can also suffer from a lack of natural or intuitive interaction 

metaphors within the virtual environment. Marshall & Nichols (2004) attribute this to the need 

for a combination of interfaces, a physical interface for control devices, such as mice or 

keyboards, and the virtual interface, usually comprising of a screen overlay, toolbar or prompts 

embedded within the virtual environment. Immersive environments on the other hand allow the 

user to utilise hardware that presents a potentially more intuitive control interface to that of a 

mouse or keyboard, and thus the possibility for more natural interaction metaphors. Tate & 

Sibert (1997) conducted a study using a "fly where you point" metaphor, whereby the user was 

able to point where they wanted to move to while still being able to look freely within the 

environment. Similarly, Mavrikios, Karabatsou, Fragos & Chryssolouris (2006) expound the 

benefits of using the more natural control interfaces available in irnmersive environments for 

complex manual tasks in their study which simulated welding processes inside a virtual 

environment. The control interfaces ofnon-irnmersive environments do offer some advantages 
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however, as they take advantage of users previous experience with desktop computers and their 

peripherals (Marshall & Nichols, 2004; Robertson, Card & MacKinlay, 1993). 

With regard to spatial learning, opinion is divided as to whether immersive or non-immersive 

environments are better suited to this task. Several studies conclude that both immersive and 

non-immersive environments enhance spatial awareness and understanding, but there is no clear 

and quantifiable advantage in using one over the other (Schnabel & Kvan, 2003; Patrick, 

Cosgrove, Slavkovic, Rode, Veratti, & Chiselko, 2000). Other research contends that immersive 

environments hold the advantage under certain conditions, with research by Mizell, Jones, 

Slater and Spanlang (2000) indicating that imrnersive environments have an advantage over 

non-immersive environments when the displayed object or environment surrounds the subject. 

Rosebrock and Vamplew (1999) conclude in their study on spatial knowledge in imrnersive and 

non-imrnersive environments that body movement within imrnersive environments sufficiently 

stimulates the spatial senses to enhance spatial knowledge, without requiring a simulated 

walking action. Alternatively, there is some evidence to suggest non-imrnersive 3D 

environments are better suited to spatial learning than their imrnersive counterparts. A study by 

Henry and Furness (1993) compared estimated room dimensions and object orientation 

judgements between real, imrnersive and non-imrnersive environments. Their results showed 

that imrnersive environment users underestimated the size of environments, which they 

attributed to the limited field of view and distortion around the edges of head-mounted-displays. 

It can be argued that immersive environments offer significant advantages in terms of control, 

presence and immersion, but there is evidence to suggest that this may come at the cost of 

possible ergonomic issues, such as cyber sickness and other mental and physical side effects 

(Stanney, Kennedy & Kindon, 2002; Wilson, 1997; Robertson). Non-imrnersive 3D 

environments can be seen to be significantly more cost-effective, and there is evidence that 

suggests a potential for psychological immersion and capability as facilitators of spatial 

learning, although the effectiveness of this in comparison to immersive environments is not 

completely clear. Further study is needed in order to provide more definite answers as to which 

type of environment is superior on a technical basis. However, for the purpose of this research, 

non-immersive 3D environments will be focussed on due to the ability to utilize existing 

gaming technology to create three dimensional simulation environments. 

2.4.3 Gaming Technologies 

Computer games share the same technological parentage as military simulations, though the 

development of each industry has been remarkably different (Herz & Macedonia, 2002). 

Although early game development lagged behind that of it's military sibling due to a lack of 
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fmancial and institutional support, the gaming industry has nonetheless thrived, with modem 

estimates of revenue exceeding those of the Hollywood box office (Branch, LaBarre, Szabo, 

2006; Snider, 2003). The growth in popularity in games and gaming culture has fuelled an 

unparalleled period of technological development, where computer games have expropriated the 

best in hardware and software for themselves, resulting in the most sophisticated, responsive 

and interactive simulations being built by the engines used to power games (Lewis & Jacobson, 

2002). Commercial gaming technology has now superseded military simulation technology 

(Herz & Macedonia, 2002) to the point where it is now being directly employed in fields such 

as military applications (Manojlovich, Prasithsangaree, Hughes, Chen, & Lewis, 2003; Bonk & 

Dennen, 2005; Carpenter & White, n.d.), architecture (Kemp, Kider, & Nazarian, 1998; 

Malhorta, 2002), scientific research (Lewis & Jacobson, 2002), and simulation and training 

environments (Tarr, Morris, & Singer, 2003; Wang, Lewis, & Gennari, 2003). 

The use of gaming technology in such a wide variety of applications was driven in large part by 

the development of the game engine; a modular, general purpose component of code which 

allowed content and functionality to be separated, and thus adapted to a range of different 

purposes (Lewis & Jacobson, 2002). Game engines consist of a collection of modules of 

simulation code responsible for the input and output of 3D rendering, 2D drawing, and sound, 

as well as generic physics and dynamics for the game world (Lewis & Jacobson, 2002). They 

are abstracted from game logic and level data modules, and are capable of working with 

different asset libraries (sets of models, textures and sounds), allowing developers great 

flexibility. Furthermore, game engines remove the need for intimate programming knowledge of 

3D graphics APis such as OpenGL and Direct3D and are usually bundled with development 

tools, software development kits and scripting languages (Dupire, Topol, & Cubaud, 2005; Herz 

& Macedonia, 2002), greatly simplifying the development process. 3D First Person Shooter 

(FPS) game engines in particular, have exhibited the most development in terms of visual 

quality (Gemmanchis, Cartwright and Pettit, 2005), and are subsequently of most significance 

to this research. 

With regard to simulating real world three dimensional spaces realistically, one of the most 

significant aspects of the game engine is the rendering module (often referred to as the 

rendering engine). Lewis and Jacobson identify this as the "crown jewel" (2002, p. 29) which 

incorporates all of the complex code needed to efficiently identify and render the user's view 

from a complex 3D environment model. This code is heavily optimized and refmed to deliver an 

acceptable minimum number of frames per second, with Farrell, Arnold, Pettifer, Adams, 

Graham, & MacManamon (2003) and Delgamo, Hedberg, & Harper (2002) maintaining that 

anything over fifteen frames per second is acceptable, while Malhorta (2002) suggests that a 

smooth and interactive frame rate requires twenty frames per second. Dupire, Topol and Cubaud 
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(2005) argue the importance of frame rates as a visual heuristic within 3D environments, where 

insufficient frame rates discourage discovery and investigation of the environment. Slater, 

Linakis, Usoh and Kooper (1996) also suggest that insufficient frame rates reduce immersion, 

but note that creating a more realistic, and therefore, immersive environment usually requires 

increased load on the rendering hardware in the form of greater environmental quality and 

detail. Clearly, in the realistic simulation of 3D environments, there is a need for high levels of 

visual detail to be presented at an acceptable frame rate. 3D FPS game engines are particularly 

well suited to this task as they are designed to handle the high visual and performance demands 

placed upon them by garners. 

The suitability of 3D FPS game engines to realistically represent real world spaces can be 

further demonstrated by examining other applications of the technology outside of gaming. In 

their study on geospatial virtual environments, Gernmanchis, Cartwright and Pettit (2005) 

implemented the FarCry game engine in order to model a virtual representation of a large-scale 

urban environment. A 3D FPS game engine was selected because it offered a "more interactive, 

realistic and hence a more engaging environment" (Germanchis, Cartwright, & Pettit, 2005, p. 

1 ). Alternatively, Shiratuddin and Thabet (2002) used the Unreal Tournament game engine to 

create an office walk through for visualizing construction projects. Examining both 

Gernmanchis, Cartwright and Pettit (2005), and Shiratuddin and Thabet (2002), we can 

determine a set of characteristics of 3D FPS game engines that facilitate the modelling of a 

virtual representation of a real world environment: 

• Ability to model a true 3D environment, including objects, architecture and landscape. 

• Allows the user real-time movement around the virtual environment. Collision detection 

within the environment is built in. 

• Allows the user to interact with the model, facilitated by the immediacy of the system to 

respond to user actions at a realistic frame rate. 

• Offers powerful graphics quality without diminishing performance to an unsatisfactory 

level. 

• Realistic environment visualization achieved via photo-realistic texturing, real-time 

dynamic lighting, shadows, real-time reflective and mirrored surfaces, colours and 

shade variances. 

Evidently, 3D FPS game engines are more than capable of delivering a high fidelity, realistic 

representation of a real world environment on an inexpensive desktop computer system. Users 

are able to move freely throughout the virtual environment and interact with the environment 

itself and the objects within it, the behaviours and presence of which can be specified using the 

accompanying development tools. These characteristics, combined with the comparatively low-
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cost and over the counter availability, make 3D FPS game engines an ideal application for 

developing 3D simulation environments on a standard desktop system. 

2.4.4 Summazy 

It has been argued that 3D environments based on FPS game engines are a valid means for 

simulating real world environments based on their ability to represent three dimensional spaces 

at a high visual quality while maintaining a frame rate that allows the user fluid control of the 

virtual environment. The high visual fidelity inherent in environments constructed using FPS 

game engines has the potential to enhance realism and facilitate a sense of presence and 

immersion within the virtual environment. Furthermore, it is generally well accepted that both 

immersive and non-immersive 3D environments exhibit the potential to enhance spatial 

awareness and understanding of a virtual environment. 

The key aspects ofnon-immersive FPS 3D environments can be represented diagrammatically 

as follows: 
3D Environments 

Figure 3: Diagrammatic representation of the key aspects of3D environments. 

41 



The criteria for evaluating these key aspects can be derived accordingly: 

Table 3: Criteria for evaluating key aspects of 3D FPS simulation environments. 

Aspect Criterion for evaluation 

Three dimensional representation Ability to which the environment can model 
objects, architecture and landscape in three 
dimensions 

High visual fidelity Quality of textures, lighting, shadows and 
reflections 

Immediate system response Frame rate equal to, or exceeding, twenty 
frames a second 

User control Real time movement and interaction within 
the simulation environment 

Quality of collision detection 

2.5 Contributing Factors to Spatial Learning within a 3D Simulation Environment 

Having discussed the nature and function of spatial cognition, the manner in which learning 

occurs within simulation environments, and the technical aspects of 3D simulation 

environments it is now possible to identify a set of criteria that contribute to enhancing spatial 

awareness of real world environments. 

Enhancing spatial awareness of a real world environment using a virtual representation relies on 

the formation of a cognitive map that can be transferred and used within the real world 

environment. The effectiveness of this process is contingent on the accuracy of the cognitive 

map that is formed relative to the real world environment and the extent to which the spatial 

knowledge acquired in the virtual environment is transferred. It is therefore necessary to provide 

as accurate a simulation of the real world environment as possible, both physically and 

functionally, in order to minimise the disparity between the cognitive map formed in the virtual 

environment, and one that would be formed in the real \Vorld environment. This is consistent 

with the theory of situated cognition that suggests that learning is situated, and that transfer is 

possible between environments that are similar in context, culture and operation. 

Because non-immersive 3D environments rely predominantly on the provision of visual 

information, there is a need for high visual fidelity in the simulation environment in order to 

faithfully represent the real world space realistically. The high visual fidelity inherent in non­

immersive 3D environments, particularly those that utilize FPS game technologies, creates a 

potential for a realistic environmental depiction, increasing the sense of presence, immersion, 

and ultimately facilitating the transfer of knowledge. High visual fidelity is also necessary for 

the generation of cognitive maps that rely on high quality and legible representations from 
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which to extract spatial information about the environment. 

The ability to look, move and interact freely in three dimensions while receiving immediate 

system feedback is also necessary in order to simulate a real world space at a functional level. In 

this manner, users can act directly within the virtual environment in much the same fashion as 

they would in a real world three dimensional space, facilitating experiential based learning 

consistent with situated cognition and constructivist learning theories. The formation of 

cognitive maps also relies on the ability to move within the environment while gathering spatial 

information in three dimensions. 

Consistent with constructivist, situated cognition and simulation based learning theories, there is 

also a need for learning to be structured around a meaningful task that is contextually relevant to 

the real world environment and the knowledge that needs to be transferred. Behavioural 

responses of the system to user actions consistent with a simple task or assignment integrated 

into the simulation environment can be facilitated via the scripting languages included in FPS 

games. 

Thus, it can be surmised that the following characteristics ofnon-immersive 3D simulation 

environments that utilize FPS game technology contribute to enhancing spatial knowledge of 

the real world environments they represent: 

• User control, including the ability to look, move and interact freely throughout the 

environment. 

• 3D representation, including the ability to model 3D objects and environments. 

• High graphical fidelity, allowing the legible and realistic depiction of real world 

environments. 

• Immediacy of feedback, whereby dynamic rendering provides the illusion of fluid 

motion. 

• Integrated instructional support, whereby contextually relevant tasks or assignments can 

facilitate the transfer of knowledge to real world environments. 

These characteristics can be seen as broad principles in regard to the transfer of spatial 

knowledge obtained with a 3D FPS simulation environment to the real world environment on 

which it is modelled. These broad principles form the relational core between spatial cognition, 

learning within simulation environments, and 3D environments. The combination of these 

principles with the key aspects of each of these concepts (as depicted by Figures 1, 2, and 3) can 

be represented diagrammatically as follows: 
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Learning Within a Simulation 
Environment 

Spatial Cognition 

3D Environments 

Figure 4: Interrelationship between spatial cognition, learning within simulation environments, 

and 3D environments, with broad principles common to all three concepts in the centre. 
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A complete set of criteria for evaluation can be derived from Tables 1, 2, and 3 accordingly: 

Table 4: Criteria for evaluating primary principles of 3D environments for the transfer of spatial 

knowledge to real environments. 

Primary Principles Criterion for evaluation 

Three dimensional representation Ability with which to determine locational 
information of phenomena within the 
environment (Spatial Cognition component) 

Degree to which three dimensional 
arrangement of elements relative to assigned 
tasks in the real world are preserved within the 
simulation environment (Simulation Learning 
component) 

Ability to which the environment can model 
objects, architecture and landscape in three 
dimensions (3D Environment component) 

High visual fidelity Ability with which to determine attributional 
information of phenomena within the 
environment (Spatial Cognition component) 

Degree to which resultant presence and 
immersion compel undertaking of assigned 
tasks (Simulation Learning component) 

Quality of textures, lighting, shadows and 
reflections (3D Environment component) 

Immediacy of feedback Extent to which system response supports free 
movement and control of viewing perspective 
within the environment (Spatial Cognition 
component) 

Extent to which system response supports the 
undertaking of assigned tasks (Simulation 
Learning component) 

Frame rate equal to, or exceeding, twenty 
frames a second (3D Environmeni component) 

User control Degree of movement and control of viewing 
perspective (Spatial Cognition component) 

Degree to which controls permit the execution 
of assigned tasks within the environment 
(Simulation Learning component) 

Quality of collision detection (3D 
Environment component) 

Integrated instructional support Degree to which spatial information pertaining 
to objectives related to assigned tasks can be 
recognized and recalled (Situated Cognition 
component) 
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Degree to which instructional support is 
integrated into the environment (Simulation 
Learning component) 

Degree to which the scripting language or 
developmental tools support the creation of 
appropriate assigned tasks within the 
environment (3D Environment component) 

Table 5: Criteria for evaluating secondary principles of3D environments for the transfer of 

spatial knowledge to real environments. 

Secondary Principles Criterion for evaluation 

Authenticity of simulation environment Accuracy with which the context and culture 
of the real world environment is depicted 
within the simulation environment (Simulation 
Learning component) 

Accuracy with which the simulation 
environment represents the real world 
environment at a physical and functional level 
(3D Environment component) 

Situated tasks Degree to which situated tasks enhance spatial 
knowledge of the environment (Situated 
Cognition component) 

Extent to which assigned tasks are situated 
relative to tasks within the real world 
environment (Simulation Learning 
component) 

Legibility of the environment Ease with which elements within the 
environment are recognized (Spatial Cognition 
component) 

Ability at which elements or objects relative to 
the assigned tasks can be identified and 
recognized (Simulation Learning component) 

Quality of spatial information Level of distortion between virtual 
environment and real environment (Spatial 
Cognition component) 

Quality and detail of textures and surfaces (3D 
Environment component) 
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3.0 Methodology 

3.1 Qualitative and quantitative methods 

Before discussing the research design, sampling methods, and analysis techniques employed in 

the research undertaken as part of this paper, it is first necessary to clearly understand the 

distinction between qualitative and quantitative research methods. Babbie (1993) defines 

qualitative research as "the non-numerical examination and interpretation of observation for the 

purpose of discovering underlying meanings and patterns of relationships" (p. 537). In contrast, 

Babbie (1993) defines quantitative research as "the numerical representation and manipulation 

of observations for the purpose of describing and explaining the phenomena that those 

observations reflect" (p. 537). The difference between these two research approaches can thus 

be identified as a result of the different methods by which each approach defines problems, and 

in turn, searches for answers: 

Qualitative methods lend themselves to discovering meanings and patterns while 

quantitative methods seek causes and relationships demonstrated statistically, a 

theoretical perspective, positivism, that is concerned with facts, prediction, and 

causation and the the subjective nature of the groups or individuals of interest. 

Researchers in the qualitative mode seek understanding through inductive analysis, 

moving from specific observation to the general. Quantitative analysis, on the other 

hand, employs deductive logic, moving from the general to the specific, i.e., from 

theory to experience. (Bloland, 1992, on-line) 

Thus, it would seem that qualitative and quantitative approaches to research are diametrically 

opposed. However, adopting a research strategy that utilizes both approaches, which has been 

described as convergent methodology, or triangulation, can be beneficial (Jick, 1979). In 

summarizing the literature from proponents of triangulation, Fielding and Schreier (2001) write 

that "triangulation is possible because, if methods are systematically understood and rigorously 

used, points of connection can be identified such that both types of methods are addressing the 

same phenomenon" (on-line). Jick (1979) notes that triangulation exists as a vehicle for cross 

validation when two or more distinct methods that are used to examine the same dimension of a 

research problem are found to yield comparable data. This mixed method approach was adopted 

for the research conducted as part of this paper, although a more qualitative rather than 

quantitative method was employed. 
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3.2 Research design 

The purpose of this research was to assess the effectiveness of 3D simulation environments 

based on FPS game engines as an instructional tool to facilitate spatial learning. This assessment 

was conducted with reference to the set of evaluation criteria derived in Section 2.5 of this 

document using a case study in conjunction with the Royal Australian Navy (RAN), Australian 

Submarine Corporation (ASC), and Challenger Tafe, based at the Submarine Training and 

Systems Centre at HMAS Stirling, Garden Island. The case study examined the LASTS 

(Location and Scenario Training System) 3D simulation environment developed by the 

Computer Modelling Group, Navy Platform Systems under the supervision of Training 

Authority Submarines. The LASTS environment is a non-immersive, desktop environment that 

utilizes the FPS Unreal Runtime game engine to simulate the Main Generator Room (MGR) of 

an RAN Collins class submarine. 

Figure 5: MGR compartment of a Collins class submarine as depicted in LASTS. 
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Figure 6: An alternate view of the MGR compartment of a Collins class submarine as depicted 

in LASTS. 

The LASTS environment was examined with reference to the evaluation criteria derived from 

the model using participants from the Submarine Training and Systems Centre (STSC) based at 

HMAS Stirling, Garden Island. The twenty-one participants used in the study were selected by 

STSC from trainee, existing, and ex-submariners within the RAN, as well as training staff from 

STSC. These participants were then formed into groups as follows: 

• Nine participants composed of existing and ex-submariners who were already familiar 

with the layout of a Collins class submarine, including the MGR (designated Group A); 

• Five participants composed of trainee submariners from the Enhanced Selection Process 

(ESP) program whose previous experience on-board a Collins class submarine was 

limited (designated Group B 1 ); 

• Another group of five trainee submariners from the Enhanced Selection Process (ESP) 

program whose previous experience on-board a Collins class submarine was limited 

(designated Group B2); 

The previous experience of participants in Group B 1 and Group B2 with the MGR of a Collins 

class submarine was assumed to be limited, given that all participants within these groups were 

trainee submariners who were not yet qualified. However, it was acknowledged that, given that 

the ESP submariner training program is voluntary, these trainee participants would most likely 
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have done some research prior to joining the program regarding life on-board a Collins class 

submarine and may have come into contact with information about the MGR environment. As 

such, it was assumed that all participants in Group B 1 and Group B2 had some minimal 

familiarity with the MGR environment, either via a walk-through tour of the submarine or as a 

result of their own interest prior to joining the program. 

In addition to the three groups of participants composed of trainee, existing, and ex­

submariners, multimedia developer Andrew Widdis was also asked to participate in the study. 

Andrew had played a significant role in the development of the LASTS environment, and as 

such was requested to participate in order to provide a developer's perspective via interview 

(INT _ AW). Chief Petty officer Allistair Hogarth was also a.sked to participate in the study in 

order to evaluate the performance of participants in Group B 1 and Group B2 in undertaking a 

simplified 12 Point Safety Round (12 PSR) exercise on-board HMAS Collins. The simplified 12 

PSR was based on the RAN 12 Point Safety Round, a very specific safety process performed on 

board Collins class submarines. This simplified version of the 12 PSR required participants to 

locate a series of items relevant to the complete RAN 12 PSR within the MGR ofHMAS 

Collins. Their performance was assessed by the CPO Allistair Hogarth in accordance with their 

ability to recognise items, the degree of confidence they exhibited in locating items, and their 

general knowledge of the MGR compartment. In addition to evaluating Group B 1 and Group 

B2's performance of the simplified 12 PSR, CPO Allistair Hogarth was also asked to participate 

in an interview in order to ascertain his observations during the performance of the exercise 

(INT_CPO). 

3.3 Research Method 

The simplified 12 PSR was used as a means by which to compare the spatial awareness of 

participants in Group B 1 and Group B2 as a result of the different types of training each group 

of participants had received prior to commencing the exercise. Participants in Group B 1 were 

sat at desks in a classroom at STSC and presented with an information booklet containing the 

names, printed diagrams, and colour photographs of each item included in the simplified 12 

PSR, with each item presented on a separate page of the booklet. The printed diagrams 

consisted of a plan and cross-sectional view of the MGR which denoted the location of the item 

in question, with the plan diagram depicting the lower or upper deck of the MGR where 

appropriate. These participants were then informed by Andrew Widdis, (who was present along 

with this researcher and observing Naval officer Sub Lieutenant Ben Churcher during the 

training session), that they would be given fifteen minutes to familiarise themselves with the 

information provided in the training booklets, after which they would be taken down to HMAS 

Collins and asked to locate the same items in the MGR by CPO Allistair Hogarth. Participants 
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were also informed that CPO Allistair Hogarth would be assessing their ability to locate each 

item on a scale of 1 to 10, and that they were free to point out the location of any item at any 

time without being prompted to do so. At the conclusion of the fifteen minutes, participants 

were taken down to HMAS Collins and taken one at a time through the MGR by CPO Allistair 

Hogarth to complete the simplified 12 PSR exercise. CPO Allistair Hogarth scored each 

participants performance for each item on a separate piece of paper, which was handed to 

Andrew Widdis once the exercise was completed. At this point, participants were asked to 

complete a questionnaire, requiring them to provide a score between 0 and 10 in response to a 

series of questions (QU _ B 1 ), and then submit to an interview with this researcher (INT _ B 1 ). 

Participants in Group B2 were required to undergo the same procedure as those in Group B 1 

with regards to the simplified 12 PSR exercise on HMAS Collins, subsequent questionnaire 

(QU_B2), and interview (INT_B2), but the training they received before the exercise was 

different. This group of participants were sat in the same classroom as those in Group B 1 at 

desks with computers running the LASTS software environment in the presence of Andrew 

Widds, this researcher, and the same naval officer observer used for participants in Group B 1. 

Participants were asked to open the map file detailing the virtual MGR in the LASTS 

environment, and once loaded, were given a five minute overview of the control schema by 

Andrew Widdis ('W', 'A', 'S', and 'D' keys on the keyboard for moving forwards, left, backwards, 

and right respectively, mouse for controlling the viewing perspective, and left mouse button 

over item included in the simplified 12 PSR exercise to display its name on screen). In addition 

to this demonstration, a reference piece of paper detailing the controls for the LASTS 

environment was also provided to participants in Group B2. Participants were then informed 

that they would be given a fifteen minute training session in the LASTS environment to 

familiarize themselves with the locations of a series of items, after which they would be taken 

down to HMAS Collins and asked to locate the same items in the MGR by CPO Allistair 

Hogarth. As with participants in Group B 1, participants in Group B2 were also informed that 

CPO Allistair Hogarth would be assessing their ability to locate each item on a scale of 1 to 10, 

and that they were free to point out the location of any item at any time without being prompted 

to do so. Group B2 were also informed that they would be shown the location of the items 

included in the simplified 12 PSR exercise to be completed in the real world MGR via a walk­

through of the virtual MGR. To this end, Andrew then instructed the participants in Group B2 to 

follow him around the virtual MGR, using the wall projector at the front of the classroom which 

was connected to his computer to lead the way through the virtual environment. All participants 

were instructed to assemble at the same location, and face the same direction in the virtual 

MQR, before being led through by Andrew, who stopped at each item included in the simplified 

12 PSR to state the name of the item and point it out to participants. Participants were also 

informed that they could click on these items included in the simplified 12 PSR with the left 
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mouse button to display the name of the item on the screen, but that this functionality was 

limited to the items included in the 12 PSR exercise only. Once the walk-through had been 

completed and all participants had returned to the position where the walk-through began, they 

were given the remaining ten minutes to freely explore the virtual MGR environment. After this 

time had expired, each participant in Group B2 was then taken aboard HMAS Collins and 

required to undertake the simplified 12 PSR, questionnaire, and interview in the same manner as 

GroupB1. 

The existing and ex -submariners participants in Group A were included in the study in order to 

evaluate the effectiveness of the LASTS environment in light of their extensive experience on­

board Collins class submarines and their familiarity with the MGR. Participants were required 

to complete the walk-through exercise and freely explore the virtual MGR in the same manner 

as participants in Group B2. However, the LASTS training session involving participants in 

Group A was much more informal, with questionnaires and interviews conducted concurrently 

to the free exploration of the virtual MGR after the completion of the walk-through exercise. 

Two of the participants involved in this group had to leave prior to being interviewed, such that 

nine questionnaires were completed, but only seven interviews were conducted. 

A number of minor issues occurred during the training sessions for Group B 1 and Group B2, the 

results of which were not included in analysis. During the simplified 12 PSR exercise for 

participants in Group B 1, it was discovered that the picture corresponding to the Halon bottles 

in the training booklet was actually the pilot air cylinder, resulting in a number of participants 

indicating the incorrect item. Any results pertaining to the Pilot Air Cylinder or Halon bottles 

were subsequently not included in analysis. Participants in Group B2 had a similar issue, 

whereby the location of the Main Generator Room Hatch was not demonstrated to participants 

during their training with LASTS. As such, these participants were not able to identify the MGR 

Hatch during the simplified 12 PSR, resulting in any results pertaining to the MGR Hatch being 

removed from analysis. As a result of these errors, the items that were included for analysis 

from the simplified 12 PSR exercise were the MGR Bilge Hatch, Aft Submerged Signal Ejector, 

Aft Submerged Signal Ejector Controller, Emergency Pyrotechnic Locker, and the items 

collectively designated as Fire Fighting Equipment, consisting of the Halon Release Box, Fire 

Extinguishers, OCCABA Stowage, and Fire Fighting Hose Reel. 

A table can thus be constructed depicting the evaluation criteria, required data, and method by 

which it will be collected for both the primary and secondary principles of3D environments that 

contribute to the transfer of spatial knowledge as presented in Section 2.5 of this document. 

Note that the number included in parentheses with reference to the collection method denotes 

the specific interview or questionnaire question used to collect the data for the given evaluation 
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criteria. 

Table 6: Required data and collection methods for evaluating primary principles of 3D 

environments for the transfer of spatial knowledge 

LASTS criterion for evaluation Required Data Collection Method 

Ability with which to determine Evidence of locational QU_B2 (20) 
locational information of phenomena and evaluative QU_B1 (4) 
within the environment (Spatial Cognition knowledge of objectives 
component) relative to 12 PSR 

Degree to which three dimensional Scale value from 1 to 10 QU_A(l) 
arrangement of elements relative to QU_B2 (2) 
assigned tasks in the real world are 
preserved within the simulation Detailed description INT_A(1) 
environment (Simulation Learning 
component) 

Ability to which the environment can Detailed description INT_AW(24) 
model objects, architecture and landscape 
in three dimensions (3D Environment Scale value from 1 to 10 QU_B2 (3) 
component) QU_A(2) 

Ability with which to determine Evidence of locational QU_B2 (1) 
attributional information of phenomena and evaluative QU_B1 (1) 
within the environment (Spatial Cognition knowledge of objectives 
component) relative to 12 PSR 

Degree to which resultant presence and Detailed description INT_A (2) and (3) 
immersion compel undertaking of INT_B2 (1) and (2) 
assigned tasks (Simulation Learning 
component) 

Quality of textures, lighting, shadows and Detailed description INT_AW(21) 
reflections (3D Environment component) INT_A(4) 

INT_B2 (3) 

Scale value from 1 to 10 QU_A(3) 
QU_B2 (4) 

Extent to which system response supports Scale value from 1 to 10 QU_B2 (5) 
free movement and control of viewing QU_A(4) 
perspective within the environment 

·(Spatial Cognition component) 

Extent to which system response supports Detailed description INT_AW(20) 
the undertaking of simplified 12 PSR 
(Simulation Learning component) Scale value from 1 to 10 QU_A(4) 

QU_B2 (5) 

Frame rate equal to, or exceeding, twenty Detailed description INT_AW(18)(a)and 
frames a second (3D Environment (b) 
component) Scale value from 1 to 10 

QU_A(5) 
QU_B2 (6) 

Degree of movement and control of Scale value from 1 to 10 QU_A (6)(a) and (b) 
viewing perspective (Spatial Cognition QU_B2 (7) (a) and (b) 
component) 

Degree to which controls permit the Detailed description INT_A(5) 
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execution of 12 PSR within the INT_B2 (4) 
environment (Simulation Learning 
component) Scale value from 1 to 10 QU_A(7) 

QU_B2 (8) 

Quality of collision detection (3D Detailed description INT_AW (16) and (17) 
Environment component) INT_A(6) 

INT_B2 (5) 

Scale value from 1 to 10 QU_A(8) 
QU_B2 (9) 

Degree to which spatial information Detailed description INT_B2 (6) and (7) 
pertaining to objectives related to 12 PSR INT_B1 (1) and (2) 
can be recognized and recalled (Situated INT_CPO (1), (2), (5), 
Cognition component) and (6) 

Indication of the Comparison of 
performance of Group simplified 12 PSR for 
B2 on 12 PSR B1 andB2 

Degree to which instructional support is Scale value from 1 to 10 QU_A(9) 
integrated into the environment QU_B2 (10) 
(Simulation Learning component) 

Detailed description INT_AW(14) 

Degree to which the scripting language or Detailed description INT_AW (10), (11), 
developmental tools support the creation (12), (13) (a)- (d) 
of appropriate assigned tasks within the 
environment (3D Environment 
component) 

Table 7: Required data and collection methods for evaluating secondary principles of 3D 

environments for the transfer of spatial knowledge 

LASTS criterion for evaluation Required Data Collection Method 

Accuracy with which the context and Detailed description from INT_A(7) 
culture of the real world environment is those already experienced 
depicted within the simulation with operations on board a 
environment (Simulation Learning Collins class submarine 
component) 

Accuracy with which the simulation Scale value from 1 to 1 0 QU_A(lO) (a) and (b) 
environment represents the real world for physical and functional QU_B2 (11) (a) and 
environment at a physical and functional (b) 
level (3D Environment component) Detailed description 

INT _A (8) and (9) 
INT _ B2 (8) and (9) 

Degree to which situated tasks enhance Detailed description INT_AW(9) 
spatial knowledge of the environment INT_A(10) 
(Situated Cognition component) INT_B2 (10) 

INT_CPO (9) and (10) 

Indication of the Comparison of 
performance of Group B2 simplified 12 PSR for 
on 12PSR B1 andB2 
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Extent to which assigned tasks are Scale value from 1 to 10 QU_A(ll) 
situated relative to tasks within the real 
world environment (Simulation Learning Detailed description INT_A(ll) 
component) 

Ease with which elements within the Scale value from 1 to 1 0 QU_A(12) 
environment are recognized (Spatial QU_B2 (12) 
Cognition component) 

Ability at which elements or objects Indication of the Comparison of 
relative to the 12 PSR can be identified performance of Group B2 simplified 12 PSR for 
and recognized (Simulation Learning on 12 PSR Bl andB2 
component) 

Level of distortion between virtual Scale value from 1 to 1 0 QU_A(13) 
environment and real environment QU_B2 (13) 
(Spatial Cognition component) 

Detailed description INT_A(12) 
INT_B2 (11) 

Quality and detail of textures and surfaces Scale value from 1 to 1 0 QU_A(14) 
(3D Environment component) QU_B2 (14) 

Detailed description INT_AW(6) 
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4.0 Results and Analysis 

Analysis of the data gathered from the LASTS case study was conducted in accordance with a 

convergent methodology that incorporated a more qualitative than quantitative analysis due to 

the limited number of participants involved. A constant comparative approach was employed, 

such that the differing perspectives of participants could be compared in order to identify any 

prevalent groups or patterns, emphasizing the identification of trends rather than statistical 

evidence. Given the multiple perspectives provided by participants utilized in the LASTS case 

study, a detailed examination of the data was required in order for a complete understanding of 

the phenomena involved, reflecting the deep, case-orientated nature of qualitative analysis 

(Sandelowski, 1995; Silverman, 2005). Analysis was performed with the objective of evaluating 

the ability with which LASTS could enhance the spatial awareness of the MGR, while also 

validating the model of spatial cognition in 3D simulation environments based on FPS gaming 

technology presented in this thesis. 

Data gathered from participants in Group B 1 and Group B2 was used to compare the 

effectiveness of the LASTS environment to traditional paper based training with regard to its 

ability to enhance the spatial awareness of the real world MGR. This data, in conjunction with 

observation data provided by CPO Allistair Hogarth during the simplified 12 PSR exercise, was 

also examined in order to ascertain the nature of the spatial representations formed by each 

group of participants as a result of their respective training. 

Participants in Group A and Group B2 were used to gauge the effectiveness of the LASTS 

environment from two differing perspectives; that of individuals highly experienced and 

familiar with the real world environment being represented, and that of inexperienced 

individuals who had no existing spatial representation to call upon for the purpose of 

comparison. Data gathered from participants in Group A was also used to determine the 

authenticity of the virtual MGR as depicted by LASTS with reference to the real world MGR 

environment. 

Interview data provided by Andrew Widdis was employed during analysis in order to provide a 

developer's perspective with regard to the technical characteristics and abilities of the LASTS 

environment. The information provided during this interview also served to demonstrate the 

potential for this type of technology to be developed beyond a one room simulation of a real 

world environment. 

Analysis proceed in accordance with the three research questions proposed by this thesis with 

reference to the evaluation criteria developed in accordance with the model. The evaluation 
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criteria was used to assess the capability of the LASTS environment to act as a training tool for 

the enhancement of spatial awareness, while also as a means by which to validate each 

component of the model, along with its determinant factors outlined in the literature review. 

4.1 LASTS and Simulation Learning Transfer 

Question 1. How can the implementation of a 3D game engine environment contribute to a 

learner's development of spatial awareness of real world environments? 

The first research question aimed to determine whether spatial knowledge could be effectively 

transferred between a virtual representation and a real world environment, and if so, how this 

could be achieved. An examination of the literature relevant to this question revealed that, in 

order for this to occur, learning needed to be situated in a simulation environment that 

accurately reflected the real world environment it modelled and integrated contextual 

instructional support. 

In order to determine how spatial knowledge could be transferred from a virtual representation 

to a corresponding real world environment, it was first necessary to examine the data gathered 

from the LASTS case study for evidence of spatial knowledge transfer between LASTS and the 

real world MGR. The simplified 12 PSR exercise performed on-board the Collins class 

submarine provided evidence for gauging the effectiveness of the LASTS environment in 

comparison to more conventional paper based training methods. This exercise was conducted by 

CPO Allistair Hogarth on-board HMAS Collins and involved separate performance evaluations 

for Group B 1 and Group B2, evaluating their ability to locate a series of items within the MGR. 

Both groups of participants had minimal previous exposure to the MGR, with the most 

experienced of the participants having had two previous walk-through tours of the entire 

submarine only. CPO Allistair Hogarth evaluated the performance of each participant on a scale 

of zero to ten according to their ability to recognise items, their general submarine knowledge, 

and their confidence in performing the exercise. The scores assigned to each participant for each 

item are detailed in Table 8 below, with Figure 7 graphing the average scores for each item for 

Group B 1 and Group B2 respectively: 
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Table 8: Performance scores for participants performing the simplified 12 Point Safety Round 

as determined by CPO Allistair Hogarth. 

Trainees Bl_l B1_2 Bl_3 B1_4 B1_5 B2_1 B2_2 B2_3 B2 4 B2_5 

MGR Bilge Hatch 7 10 9 10 10 10 10 10 5 

Halon Release Bottle 10 10 10 8 9 10 10 10 9 10 

Fire Extinguishers 6 2 9 10 9 10 10 10 10 10 

OCCABA Stowage 9 9 10 9 10 10 10 10 10 10 

Fire Fighting Hose Reel 7 9 9 8 10 10 10 10 10 

AFT Submerged Signal 9 9 8 10 10 10 10 10 10 10 
Ejector 

Emergency Pyrotechnic 8 9 10 10 10 5 10 10 10 
Locker 

AFT Submerged Signal 9 9 9 10 0 10 10 10 10 10 
Ejector Controller 

Average Score 8.13 7.38 8.13 9.5 8.25 10 9.38 10 9.25 8.88 

Average Performance Scores per item for Group B 1 and Group B2 
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Figure 7: Average performance scores of the simplified 12 Point Safety Round for Group B1 

and Group B2 per item. 

As expected, Group B 1 participants performed very well, as the type of training they received 

before the simplified 12 PSR exercise was based in part on existing Navy training practices. 

However, as Figure 7 demonstrates, the average performance was better for Group B2 

participants for all items except the MGR Bilge Hatch. Examining the individual performance 

scores from Table 8, we can see the scores for participants B2 _ 4 and B2 _ 5 are much lower 

compared to their scores for all other items, which accounts for the lower average performance 
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score for Group B2 for the MGR Bilge Hatch. One possible explanation for this inconsistency is 

the manner in which the MGR Bilge Hatch was depicted within the LASTS environment. 

During the LASTS training session for Group B2, the MGR Bilge Hatch was depicted as being 

closed, with the top of the MGR Bilge Hatch textured with the same material as the surrounding 

deck plate, consistent with the real world Main Generator Room. Therefore the MGR Bilge 

Hatch may have been less noticeable and may have appeared to blend into the floor, rendering 

the MGR Bilge Hatch a less distinctive spatial landmark with regards to its relative positioning, 

orientation, and evaluative information. Figure 8 displays the MGR Bilge Hatch in the open 

position, with the deck plating texture on top of the hatch. 

Figure 8: MGR Bilge Hatch in the open position. The top of the hatch is textured with the same 

material as the deck plating, consistent with the real world MGR. 

Further evidence for the superiority of LASTS trainees over their paper based counterparts can 

be found in the following forms: 

• Group B2 participants had an average score for all items of9.5, compared to Group Bl 

participants who had an average score for all items of 8.28. 

• All Group B2 participants received a score of 10 for the Fire Extinguishers, OCCABA 

Stowage, Fire Fighting Hose Reel, AFT Submerged Signal Ejector, and AFT 

Submerged Signal Ejector Controller items. 

• Group B2 participants B2_1 and B2_3 scored 10 for all items. 

Based on the data gathered from the simplified 12 PSR exercise conducted by CPO Allistair 
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Hogarth, it is evident that, for this instance, those participants who received training using the 

LASTS environment performed the exercise more successfully than those who received 

conventional paper based training. With reference to CPO Allistair Hogarth's evaluation criteria, 

Group B2 participants collectively exhibited a greater knowledge of the submarine, possessed a 

greater ability to recognise items, and performed the exercise with greater confidence. Given the 

lack of previous experience of Group B2 participants within the real world MGR, these results 

support the contention that Group B2 participants were relying to some degree on the spatial 

representation they formed as a result of their experience within LASTS to complete the 

simplified 12 PSR. This indicates the presence of learning transfer between the virtual and real 

world MGR environments. 

The disparity of the results between Group B 1 and Group B2 further suggests that training 

within the LASTS environment was more effective in facilitating the transfer of spatial 

knowledge than the paper based training method. This contention is consistent with the theory 

of situated cognition, which submits that learning transfer is most effective between 

environments that share a common activity, operation or learning goal, and are similarly related 

in terms of context and culture. In order to determine how effective the LASTS environment 

was at facilitating the transfer of spatial knowledge, it is pertinent to examine the aspects of 3D 

game engine environments identified in the literature as supporting this process. These aspects 

are depicted along with the relevant evaluation criteria and data collection methods for the 

Simulation Learning Transfer component of the model in Table 9 below: 

Table 9: Key aspects, evaluation criteria and data collection methods for the Simulation 

Learning Transfer component of the model. 

Aspect Evaluation Criteria Data Collection Method 

Authenticity of the simulation Accuracy with which the INT_A(7) 
environment context and culture of the real 

world environment is depicted 
within the simulation 
environment 

Situated tasks Extent to which assigned tasks QU_A(ll) 
are situated relative to tasks INT_A(ll) 
within the real world 
environment 

Integrated instructional Degree to which instructional QU_A(9) 
support support is integrated into the QU_B2 (10) 

environment INT_AW(14) 

4.1.1 Authenticity of the Simulation Environment 

The theory of situated cognition suggests that the effectiveness of learning transfer is 

determined, in part, by the degree of similarity between the context and culture of the virtual 
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environment and that of the real world environment being represented. In order to gauge the 

effectiveness of the LASTS environment in this capacity, participants within Group A were 

asked to comment on the accuracy of the cultural and contextual depiction of the MGR within 

the LASTS environment. In this manner, it was hoped that the contextual and cultural accuracy 

of the LASTS environment could be evaluated by participants who were intimately familiar 

with the real world environment being depicted by the simulation. In doing so, the authenticity 

of the simulation environment could be determined with regard to its ability to support learning 

transfer. The following trends were identified from the responses given by participants within 

Group A: 

• The LASTS environment did not represent all the detail present in the real world MGR. 

Some internal parts and components were missing, while others were not depicted with 

sufficient enough detail; 

• The absence of sound within the LASTS environment was not consistent with the real 

world MGR. Specific reference was made to the omission of diesel motor noise as well 

as general ambient background noise from items such as the air conditioning unit; 

• The MGR depicted within the LASTS environment appeared bereft of daily human 

interaction. People were not present, many day to day items, such as tools, rags, boxes 

and stores, were missing, and the LASTS environment was clinically clean. 

The need for more detail within the LASTS environment was identified as the most prevalent 

trend amongst responses from participants in Group A. Several references were made to missing 

or insufficiently detailed internal parts and components native to the real world MGR. Three 

participants also made specific comments in relation to the omission of sound from the LASTS 

environment. These responses indicated that were inconsistencies between the context of the 

virtual MGR and that of the real world MGR. 

A number of responses from participants in Group A also referenced a lack of evidence of a 

human presence in the virtual MGR. Comments from participants in Group A indicated that the 

virtual MGR as depicted by LASTS did not appear as it would on a daily basis as part of an 

operational workspace on-board a Collins class submarine. These responses suggested a 

disparity between the culture of the virtual MGR and that of the real world MGR. 

Based on the responses from participants within Group A, it can be surmised that the 

authenticity of the LASTS environment with regard to its ability to support learning transfer 

was contextually adequate, though lacking in detail. LASTS was also identified as being 

considerably deficient in its cultural depiction of the typical working environment found within 

the real world MGR. 
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4.1.2 Situated Tasks 

Consistent with the theories of situated cognition, simulation based learning, and 

constructivism, 

learning transfer between virtual and real world environments can be achieved effectively via 

the provision of assigned tasks that are situated relative to real world learning objectives. The 

degree of this effectiveness is detennined by the extent to which the assigned tasks within the 

virtual environment are situated relative to learning objectives within the real world 

environment. 

As part of their evaluation of the LASTS environment, participants within Group A were 

required to follow the instructor around the virtual MGR stopping at and noting the location of 

each item included as part of the simplified 12 PSR exercise. The appropriateness of this task to 

real world 

operations was then determined by the questionnaire responses provided by participants in 

Group A, displayed in Table 10 accordingly: 

Table 10: Questionnaire responses between 0 and 10 from participants in Group A in relation to 

the appropriateness of the assigned task relative to real world operations. 

Group A participant A 1 A2 A3 A4 A5 A6 A7 AS A9 Avg. Range -
How appropriate to real 
world tasks within the 
MGR on-board a Collins 7 8 6 8 6 - - 7 - 7.0 2 
class submarine was the 
exercise completed within 
the LASTS simulation 
environment? 

The relative consistency exhibited amongst responses in Table 10 was also reflected during 

interview, where five of the seven participants within Group A noted that the assigned task 

within LASTS was consistent with a compartment layout or rounds type scenario within the 

MGR on-board a Collins class submarine. These types of operations were similar to the 

simplified 12 PSR carried out by participants in Group B1 and Group B2, in that they required a 

set list of items to be located and checked to ensure they were stored in the correct location and 

in proper working order. 

Additional comments by a number of participants also indicated that, while the assigned task 

within the LASTS environment was valid for rounds or compartment layout type training, the 

LASTS environment itself was not capable of replicating more technical training scenarios due 

to a general lack of detail and insufficient interactivity in the internal components depicted 
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within the virtual MGR. These comments were consistent with earlier responses from a number 

of participants in Group A relating to the authenticity of the LASTS simulation environment 

which also made reference to a deficiency in detail. This suggested that the level of detail, and 

thus, the authenticity of the simulation environment was a factor in determining the type of 

training that could be successfully implemented within the LASTS environment according to 

participants in Group A. 

4.1.3 Integrated Instructional Suvport 

Simulation based learning theory suggests that the integration of instructional support within a 

simulation environment serves to support the transfer of knowledge between the simulation and 

real world environments. The integration of an instructional support framework into a 

simulation environment allows the interface of the simulation to cater to both operational and 

learning requirements. This integration can be supported within a 3D simulation environment 

via the application of scripting languages and other developmental tools commonly inherent 

amongst FPS game engines. 

The instructional support integrated into the LASTS environment was limited to a simple 

scripting function that would display the name of a designated object on screen when the object 

was selected using the mouse. This functionality was only provided for items included as part of 

the simplified 12 PSR. 

A number of different perspectives were sought in order to evaluate the degree to which 

instructional support was integrated into the LASTS environment, with participants in Group A 

and Group B2 asked to gauge their response via respective questionnaires, and developer 

Andrew Widdis asked to respond during interview. Responses from participants in Group A and 

Group B2 are displayed in Table 11 as follows: 

Table 11: Questionnaire responses between 0 and 10 from participants in Group A and Group 

B2 in relation to the the degree to which instructional support was integrated into the LASTS 

environment. 

Group A participant A 1 A2 A3 A4 AS A6 A7 AS A9 Avg. Range 

How well is the exercise 
integrated into the LASTS 5 9 8 8 6 10 - 7 - 7.57 5 
environment? 

Group B2 participant B 1 B 2 B_3 B 4 B 5 Avg. Range -
How well is the exercise 
integrated into the LASTS 8 8 9 10 7 8.4 3 
environment? 
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During interview, Andrew Widdis indicated that the instructional support integrated into the 

LASTS environment was quite rudimentary in nature, as it was only capable of displaying the 

name of items relevant to the simplified 12 PSR. However, he also acknowledged that this 

functionality was adequate enough to provide participants using the LASTS system a visual 

reference as to the identity of these items when they were selected using the mouse. 

Comparing the different perspectives offered by responses from Group A, Group B2, and 

Andrew Widdis, it is evident that there was some diversity of opinion with regard to the degree 

to which instructional support was integrated into the LASTS environment. While the 

instructional support that was embedded within LASTS was simple, it was nonetheless the only 

means outside of the instructor led walk-through of the virtual MGR for participants to associate 

items with their corresponding names. The responses of participants within Group A suggested 

that this functionality was of more questionable value to participants already familiar with the 

real world MGR, compared to participants within Group B2 who had not had such experience. 

4.1.4 Validity of the Simulation Learning Transfer Component of the Model 

Having analysed the LASTS environment using the evaluation criteria from the Simulation 

Learning Transfer component of the model, it is now pertinent to examine the same data used in 

this analysis to assess the validity of this component itself. The data gathered as part of the 

LASTS case study will now be evaluated with reference to each aspect of the Simulation 

Learning Transfer component identified as supporting the transfer of spatial knowledge between 

3D FPS simulation environments and real world environments. 

4.1.4.1 Validity of Authenticity of the Simulation Environment 

The data gathered as part of the LASTS case study that was used to evaluate the authenticity of 

the simulation environment was provided by participants who had extensive previous 

experience within the real world location being represented by the LASTS environment. The 

participants within Group A were intimately familiar with the MGR on-board a Collins class 

submarine as a result of working within this environment and possessed detailed knowledge of 

the environment, both contextually and culturally. As such, participants within Group A were 

well qualified to evaluate the authenticity of the LASTS environment using the criteria 

established by the Simulation Learning Transfer component of the model. 

Responses from participants within Group A indicated that the level of detail present in the 

LASTS environment was the most prevalent factor in determining its authenticity with 

reference to the real world MGR. The level of contextual and cultural detail, and thus the 
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authenticity of the LASTS environment, was found to be insufficient for LASTS to act as an 

effective training tool for technical tasks. However, the authenticity of the LASTS environment 

was found to be adequate enough to act as a familiarization tool for the purpose of learning 

compartment layouts and rounds based training. This suggests that the authenticity of the 

simulation environment is a factor in determining its ability to support learning transfer. LASTS 

was deemed authentic enough for the effective transfer of spatial knowledge, but not authentic 

enough to provide knowledge that could be transferred effectively for technical operations 

training. As such, any technical operations training attempted within the LASTS environment 

would have been largely ineffective, as the virtual MGR was not authentic enough to allow 

learners to obtain knowledge that could be transferred effectively to the real world MGR 

environment.· 

4.1.4.2 Validity of Situated Tasks 

The assigned task proscribed within the LASTS environment required participants within Group 

A and Group B2 to walk around the virtual MGR while stopping and noting the location of 

items included in the simplified 12 PSR. This task was conducted by Andrew Widdis, who led 

the participants around the LASTS environment using a projector screen attached to his 

computer. The virtual walk-through was selected as a situated task within the LASTS 

environment as it was similar to the simplified 12 PSR exercise performed by participants in 

Group B 1 and Group B2 within the real world MGR. The simplified 12 PSR required 

participants to locate the same series of items under observation by CPO Allistair Hogarth. 

Responses from participants in Group A, who were familiar with the MGR on-board a Collins 

class submarine and the daily operations conducted therein, indicated that the task assigned 

within the LASTS environment was consistent with a compartment layout or rounds type 

scenario. As with the simplified 12 PSR, these operations also required knowledge of the spatial 

layout of the MGR, including the names and locations of relevant items. Thus, the task assigned 

within the LASTS environment was meaningful and situated relative to the simplified 12 PSR 

performed within the real world MGR. 

The provision of an assigned task consistent with the simplified 12 PSR may have been a factor 

in determining the more effective performance of Group B2 participants compared to those in 

Group B1 with reference to the simplified 12 PSR exercise. Group B1 participants were not 

required to perform a task that was directly related to the simplified 12 PSR as part of their 

paper based training and were asked to merely familiarise themselves with the diagrams and 

photos of relevant items within the MGR. These participants were provided training that was 

more self-directed and less guided compared to participants in Group B2, which, with reference 
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to the literature on simulation based learning, is less effective in supporting learning transfer. 

4.1.4.3 Validity of Integrated Instructional Sup_port 

While the instructional support that was integrated into the LASTS environment was identified 

as being limited and rudimentary in nature, it did provide participants with the names of items 

included in the simplified 12 PSR. This information was required by participants in Group B2 to 

complete the simplified 12 PSR exercise conducted by CPO Allistair Hogarth within the real 

world MGR. The name of each item was mentioned only once during the instructor led walk­

through for participants in Group A and Group B2, after which these participants would have 

had to rely on the name being displayed on the screen in order to associate the name with its 

corresponding item. 

Limiting the display of names to items included in the simplified 12 PSR may also have assisted 

participants within Group B2 to focus only on the items relevant to the simplified 12 PSR. This 

was consistent with the paper based training received by participants in Group B 1, who were 

provided only the names and locations of items included in the simplified 12 PSR exercise. 

Without the name display functionality integrated into the LASTS environment, participants 

within Group B2 would have had no reference outside of the instructor led walk-through as to 

the names of items included in the simplified 12 PSR. The performance of Group B2 during the 

simplified 12 PSR suggested a thorough understanding of both the identity and location of each 

item included in this exercise. This indicates that the instructional support that was integrated 

into LASTS contributed to the development of knowledge regarding items in the simplified 12 

PSR, and furthermore, that this knowledge was applicable to the completion of the exercise 

within the real world environment. 

4.1.5 Summary for Simulation Learning Transfer 

The theories of situated cognition, simulation based learning, and constructivism suggest that a 

3D game engine environment can be used to develop a learner's spatial awareness of a real 

world environment via the concept of learning transfer. Spatial knowledge obtained within a 

virtual environment can be transferred to a corresponding real world environment, as 3D FPS 

simulation environments have the capacity to provide an authentic simulation utilising situated 

tasks and integrated instructional support in order to facilitate this process. The Simulation 

Learning Transfer component of the model was derived from this theoretical construct to 

identify the key aspects of 3D FPS simulation environments that support this process, while also 

providing a set of evaluation criteria for assessment purposes. 
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Based on the responses of participants to the evaluation criteria relevant to the Simulation 

Learning Transfer component of the model, the following can be surmised in relation to the 

LASTS environment: 

• The LASTS environment provided sufficient authenticity for conducting training 

similar in nature to rounds or compartment layout type scenarios, but deficient in the 

level of detail required for more sophisticated types of training; 

• The limited level of instructional support integrated into the LASTS environment was 

identified as being adequate for trainees not familiar with the MGR to learn the names 

associated with items relevant to the simplified 12 PSR exercise, but of a more 

questionable value to participants already familiar with these items. 

Analysis of these responses provided evidence to support the validity of the Simulation 

Learning Transfer component of the model as an effective representation of the transfer process 

that is possible between a 3D FPS simulation environment and a corresponding real world 

environment. The presence ofleaming transfer between LASTS and the real world MGR was 

indicated via the effective performance of the simplified 12 PSR by participants within Group 

B2. The aspects of simulation authenticity, situated tasks, and integrated instructional support 

identified as being key in determining the effectiveness of this learning transfer of spatial 

knowledge were identified amongst the gathered data as supporting this process. 

4.2 LASTS and Spatial Cognition 

Question 2. What is the nature and function of spatial cognition and the subsequent 

formation of spatial representations? 

The second research question sought to examine the role of spatial cognition in creating a 

mental representation of the spatial characteristics of an environment and the manner in which 

these spatial representations were formed. The extensive body of literature in this area indicated 

that this process entailed the formation of a cognitive map, where by the spatial information of 

an environment was encoded as a mental representation. Freedom of movement, the legibility of 

the environment, and the quality of the spatial information available were identified as key 

factors in supporting the process of spatial cognition. While the structure and subsequent 

formation of cognitive maps was the subject of debate within the literature, there was evidence 

to support the contention that 3D simulation environments could foster the development of 

spatial knowledge in a manner consistent with real world environments. This indicated that 

spatial knowledge obtained within a 3D simulation environment could be transferred effectively 

to real world environments. 
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In order to determine the effectiveness with which spatial representations formed within a 

virtual environment could be transferred to a real world environment, an examination of the 

different types of spatial representations formed with reference to the gathered data was 

necessary. Participants within Group B 1 and Group B2 were provided with training that 

presented spatial information relative to the MGR in different ways, and as such, should have 

formed differing spatial representations of the MGR based on the information made available to 

them. After training, both groups of participants were required to complete the simplified 12 

PSR within the real world MGR under the observation of CPO Allistair Hogarth. The 

observations made by CPO Allistair Hogarth that were related during interview provided some 

insight as to the differing spatial representations of participants in Group 1 compared to 

participants in Group B2. 

CPO Allistair Hogarth stated during interview that there was a difference in the technique used 

by participants in Group B2 compared to participants in Group Bl during the simplified 12 PSR 

exercise. It was observed by CPO Allistair Hogarth that participants within Group B2 did not 

need to actually locate an item before they could confidentially identify it, unlike participants 

within Group Bl who did need to do this in order to complete the exercise. This difference in 

technique between Group B1 and Group B2 was described by CPO Allistair Hogarth as follows: 

"Group B 1 seemed to search the area for items, needing to actually move around 

looking and scanning. Group B2 displayed a greater knowledge so far as they were 

able to stand in one spot and describe the location of objects without having to go 

and touch them." 

This difference between the techniques employed by participants within Group B 1 and Group 

B2 suggests that participants within Group B2 were utilising a more effective spatial 

representation of the MGR environment to locate items specific to the simplified 12 PSR. This 

contention is further reinforced in light of additional observations made by CPO Allistair 

Hogarth that stated that the Group B2 participants were able to complete the exercise in 

approximately half the time of the Group B1 participants. 

In order to gain some kind of insight as to the differing spatial representations of the MGR 

constructed respectively by participants in Group B 1 and Group B2, the observation data can be 

evaluated with reference to the Landmark, Route, Survey model of spatial cognition. Using the 

items included as part of the simplified 12 PSR exercise as landmarks with reference to this 

model, it is evident that both groups possessed an adequate enough spatial representation to 

locate all the items included in the exercise. The technique used by Group B 1 to locate items 

suggest a less developed spatial representation at the route level, as a more eY.haustive search 
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was required by participants to find items, demonstrating that they were aware of the locations 

of items, or landmarks, but not as knowledgeable with regards to the paths between them. 

This contention is justified when considering the type of training, and therefore, spatial 

knowledge that was made available to participants in Group B 1. This group of participants was 

provided with an information booklet containing a plan and cross-sectional diagram detailing 

the location of each item included as part of the simplified 12 PSR. A photograph of each item, 

taken from within the MGR on-board a Collins class submarine, was also included in the 

information booklet. The booklet was arranged such that the diagrams and photograph for each 

item were displayed on separate pages. As such, it may have been difficult for participants in 

Group B 1 to establish routes between each landmark, as this would have required constant 

comparative reference between multiple pages in the booklet in order to be effective. This 

would have also made the formation of a spatial representation at the survey level difficult, as 

Group B 1 participants would have had a reduced capacity by which to construct a complete and 

overall view of the locations of items included as part of the simplified 12 PSR. 

Group B2 participants, on the other hand, were able to freely move throughout the virtual MGR, 

and were thus unobstructed in constructing paths between landmarks within the environment as 

they saw fit. Furthermore, the LASTS environment also allowed participants to freely construct 

these paths within the confmes of the virtual MGR, and thus allow them to abstract their entire 

experience within the LASTS environment into a single spatial representation. An indication as 

to this survey level of spatial knowledge being utilised by participants in Group B2 was 

observed during their performance of the simplified 12 PSR, whereby they did not need to rely 

on traversing the environment between items in order to locate them. Rather, they were able to 

identify the location of items from a single location without moving around. This suggests that 

participants within Group B2 were operating at the survey or configurational level with 

reference to the Landmark, Route, Survey model of spatial cognition. 

Having established an indication as to the nature of t.~e spatial representation formed by 

participants in Group B2, further examination of the gathered data is required in order to 

identify which characteristics of the LASTS environment contributed to this process. This 

examination will be conducted with reference to the Spatial Cognition component of the model 

in order to gauge the effectiveness of the LASTS environment to support the development of 

spatial representations that are transferable to real world environments. The determinant aspects, 

evaluation criteria and data collection methods for the Spatial Cognition component of the 

model are outlined for this purpose in Table 12 below: 
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Table 12: Key aspects, evaluation criteria and data collection methods for the Spatial Cognition 

component of the model. 

Aspect Evaluation Criteria Data Collection Method 

Movement within the Degree of movement QU_A (6)(a) and (b) 
environment permitted within the QU_B2 (7) (a) and (b) 

environment 

Legibility of the environment Ease with which elements QU_A(l2) 
within the environment are QU_B2 (12) 
recognized 

Quality of spatial information Level of distortion between QU_A(13) 
virtual environment and real QU_B2 (13) 
environment INT_A(l2) 

INT_B2 (11) 

Quality of locational and QU_A(l4) 
attributional information of QU_B2 (14) 
phenomena within the INT_AW(6) 
environment (3D Environment INT_A(l3) 
component) INT_B2 (12) 

4.2.1 Movement Within the Environment 

The process of spatial cognition entails the formation of a cognitive map of an environment that 

is developed using the acquisition of spatial information via the visual, tactile, olfactory, and 

kinaesthetic sensory modalities. While these sensory modalities collect information from the 

environment in different ways, they are each effective only to a certain range and under certain 

conditions. As such, the ability to move within the environment is essential to ensure that all 

possible sources of spatial information can be examined using the full gamut of senses. In order 

to gauge the capacity of the LAST environment to facilitate movement for the purposes of 

gathering spatial information, participants within Group A and Group B2 were asked to assess 

the degree to which they were able to move and control the viewing perspective within the 

virtual environment via questionnaire, the results of which are depicted in Table 13: 

Table 13: Questionnaire responses between 0 and 10 from participants in Group A and Group 

B2 in relation to the degree of movement and control of the viewing perspective within the 

LASTS environment. 

Group A participant A 1 A2 A3 A4 A5 A6 A7 AS A9 Avg. Range 

How freely were you able 
to move within the LASTS 5 - 9 9 8 10 9 5 7 7.75 5 
simulation environment? 

How effectively were you 
able to control the 8 8 9 9 8 10 9 5 7 8.1 5 
direction you were facing 
within the LASTS 
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simulation environment? 

Group B2 participant B 1 B 2 B 3 B4 B 5 Avg. Range 

How freely were you able 
to move within the LASTS 10 9 8 5 7 7.8 5 
simulation environment? 

How effectively were you 
able to control the 10 9 9 10 10 9.6 1 
direction you were facing 
within the LASTS 
simulation environment? 

Based on these responses, there was a common consensus among participants within both 

groups that suggested that the LASTS environment provided adequate freedom of movement 

within the virtual MGR. However, both groups of participants did also indicate that they were 

able to control the viewing perspectively more effectively than they were able to move within 

the environment. Group B2 participants in particular consistently rated the control of the 

viewing perspective of the LASTS environment very highly. 

4.2.2 Legibility of the Environment 

According to the Landmark, Route, Survey model of spatial cognition, the designation of 

landmarks constitutes the initial stage of development in the formation of a cognitive map of an 

environment. Spatial information obtained via the various sensory modalities are utilised to 

provide both locational and evaluative information about a landmark in order to distinguish the 

landmark and assign it an identity. As such, there is an inherent need for an environment to be 

legible such that spatial information can be recognized and extracted from it. To ascertain the 

legibility of the LASTS environment, participants within Group A and Group B2 were asked to 

rate the ease with which they were able to recognize items within the virtual MGR via 

questionnaire, the results of which are depicted in Table 14: 

Table 14: Questionnaire responses between 0 and 10 from participants in Group A and Group 

B2 in relation to the ease with which items could be recognised within the LASTS environment. 

Group A participant A 1 A2 A3 A4 AS A6 A7 A8 A9 Avg. Range 

How easily were you able 
to recognise objects within 

8 10 9 9 6 10 10 9 8 7.78 4 
the LASTS simulation 
environment? 

Group B2 participant B 1 B 2 B 3 B 4 B 5 Avg. Range 

How easily were you able 
to recognise objects within 9 10 9 10 9 9.4 1 
the LASTS simulation 
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I environment? 

The responses displayed in Table 14 suggest that both groups of participants found the LASTS 

environment to be adequately legible with regard to the ability with which they were able to 

recognise items. Further indication as to the legibility of the LASTS environment is provided 

when considering the different perspectives provided by the responses from Group A and Group 

B2. Group A participants had extensive previous experience to call upon when attempting to 

recognise items within the LASTS environment which Group B2 did not. This suggests that the 

degree to which participants within Group A were able to recognise items within LASTS would 

have been made with some reference to the real world items with which they were familiar with. 

Group B2 participants, on the other hand, would have had no such reference to draw upon, and 

as such, would have determined the ability with which they could recognise items within the 

LASTS environment based on the spatial information made available to them within the virtual 

MGRalone. 

4.2.3 Quality of Spatial Information 

As with with the legibility of an environment, the quality of the spatial information available to 

the sensory modalities is also an important factor in determining the formation of spatial 

representations. Spatial representations are formed from the combination of the information 

provided by all senses, however, non-immersive computer-generated 3D environments are 

limited in this capacity as they are not capable of providing spatial information to the tactile, 

olfactory, or kinaesthetic sensory modalities. Given the reliance of the LASTS environment on 

visual cues to provide spatial information, a number of different perspectives were examined to 

determine the quality of spatial information contained within the LASTS environment. This 

examination was conducted with reference to the value of the spatial information provided by 

the LASTS environment while taking into account any identifiable disparities between the 

spatial information provided by the virtual MGR and that of the real world MGR. To this end, 

participants within Group A and Group B2 were required to indicate the level of distortion 

present between the virtual and real world MGR via questionnaire and interview, while also 

being asked to assess the quality of the locational and attributional information of phenomena 

within the LASTS environment. Andrew Widdis was also asked to evaluate the same 

characteristics of the LASTS environment during interview. Questionnaire responses from 

participants in Group A and Group B2 with reference to the distortion present between LASTS 

and the real world MGR are displayed in Table 15 accordingly: 
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Table 15: Questionnaire responses between 0 and 10 from participants in Group A and Group 

B2 in relation to the level of distortion present between the virtual and real world MGR 

environments. 

Group A participant A 1 A2 A3 A4 AS A6 A7 AS A9 Avg. Range 

What level of distortion or 
inaccuracy did you feel 
was present between the 7 9 8 3 6 7 5 5 7 6.34 6 
LASTS simulation and the 
actual MGR on-board a 
Collins class submarine? 

Group B2 participant B 1 B 2 B 3 B 4 B 5 Avg. Range 

What level of distot1ion or 
inaccuracy did you feel 
was present between the 1 7 3 1 3 3.0 6 
LASTS simulation and the 
actual MGR on-board a 
Collins class submarine? 

The responses depicted in Table 15 are understandable given the relative levels of previous 

experience between participants in Group A and those in Group B2 within the real world MGR. 

Participants familiar with the MGR environment would be expected to be more aware of 

inconsistencies and more readily able to identify them compared to participants who were 

relatively unfamiliar with the MGR environment. 

Interview responses from participants in Group A indicated that the disparity in the level of 

detail was the most significant cause of distortion between the virtual MGR and the real world 

MGR. These responses were consistent with other comments made by participants in Group A 

with reference to the authenticity of the LASTS environment and the accuracy of the contextual 

and cultural depiction of the MGR. A number of interview responses from participants in Group 

B2 also made reference to a deficiency in detail between the virtual and real world 

environments at a contextual and cultural level. However, the most prevalent trend identified 

amongst this group of participants were references to the confines of the real world MGR 

environment not being represented accurately by LASTS. This distortion can be attributed, in 

part, to the absence of items within the virtual MGR that took up space within the real world 

MGR, such as boxes, stores, oil drums and other equipment as identified by participants in 

Group A and Group B2. Had these items been present within the virtual MGR, they would have 

reduced the amount of free space within the environment while also potentially limiting access 

to certain parts of the MGR, thus representing the confmes of the real world MGR more 

accurately. The addition of these items to the virtual MGR may have required participants to 

traverse the environment differently and may have also reduced visibility across parts of the 

environment, thereby exhibiting the the potential to alter the quality of the spatial information 

available to participants and their resultant spatial representation of the environment. 
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To gauge the quality of the locational and attributional information of phenomena within the 

LASTS environment, participants within Group A and Group B2 where asked to rate the quality 

and detail of the surfaces of objects and architecture depicted within the virtual MGR, the 

questionnaire responses to which are depicted in Table 16 as follows: 

Table 16: Questionnaire responses between 0 and 10 from participants in Group A and Group 

B2 in relation to the quality of the surfaces of objects and architecture within the LASTS 

environment. 

Group A participant A 1 A2 A3 A4 AS A6 A7 A_S A9 Avg. Range 

How would you rate the 
quality of the surfaces of 
objects and architecture 8 8 8 8 6 6 8 4 7 7.0 4 
depicted within the 
LASTS simulation 
environment? 

Group B2 participant B 1 B 2 ,B 3 B 4 B 5 Avg. Range 

How would you rate the 
quality of the surfaces of 
objects and architecture 8 8 7 8 6 7.4 2 
depicted within the 
LASTS simulation 
environment? 

Consistent with the responses in Table 16, interview data from both groups of participants also 

indicated a general level of satisfaction with the quality and detail of the surfaces and objects 

within LASTS. However, a number of participants within Group A also commented on a lack of 

detail amongst certain objects and surfaces such as cabinets and control panels, though one 

participant did suggest that this lack of detail was less relevant to familiarization training than to 

more advanced levels of training at a technical or operational level. 

Developer Andrew Widdis was also asked during interview to assess the quality and detail of 

the textures and surfaces within the LASTS environment. Andrew indicated that he telt the 

textures and surfaces to be of a reasonable level, but also acknowledged that these could be 

improved upon given more time and access to a greater volume of photographs and reference 

material pertaining to the MGR environment. 

4.2.4 Validity of the Spatial Cognition Component of the Model 

Having analysed the LASTS environment using the evaluation criteria from the Spatial 

Cognition component of the model, it is now pertinent to examine the same data in order to 

assess the validity of the the component itself. The data gathered as part of the LASTS case 
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study will now be evaluated with reference to each aspect of the Spatial Cognition component 

identified as supporting the development of spatial representations in a manner consistent with 

real world environments. 

4.2.4.1 Validity of Movement Within the Environment 

Consistent with the formation of spatial representations in real world environments, the ability 

to move freely is necessary in order to properly access and extract spatial information from a 3D 

simulation environment. With regard to the evaluation of the LASTS environment, this ability 

was assessed according to the ability with which participants could move freely throughout the 

environment and control the viewing perspective, using the keyboard and mouse respectively. 

Consistent with the real world MGR on-board a Collins class submarine, the virtual MGR 

depicted by the LASTS environment was a multi-tiered environment consisting of a lower deck 

level in conjunction with upper deck sections that were accessible via ladder. The list of items 

included as part of the simplified 12 PSR was also structured such that the items of interest were 

situated on both decks, requiring participants to traverse both levels in order to access them. 

Some of the items included as part of this list were obstructed from view from certain parts of 

the MGR compartment, again requiring movement or re-orientation in order to extract spatial 

information from the environment. The structure of the MGR environment in addition to the 

locations of the items included as part of the simplified 12 PSR made fanning an accurate 

spatial representation including the location of these items near impossible without the ability to 

move and alter the viewing perspective within the virtual MGR. Given the successful 

completion of the simplified 12 PSR exercise by Group B2, it is evident that the spatial 

representation of the MGR acquired by participants in Group B2 relied in part on the ability to 

move freely within the virtual MGR environment. This indicates that the ability to move freely 

is a determinant factor in the development of spatial representations in virtual environments. 

4.2.4.2 Validity of Legibility of the Environment 

The legibility of the LASTS environment in regard to the ability at which it supported spatial 

cognition was conducted with reference to the perspectives of Group A, who were familiar with 

the real world MGR, and that of Group B2, who were relatively unfamiliar with the real world 

MGR and Collins class submarines in general by comparison. Both groups of participants were 

asked to rate the ease with which they could identify items within the virtual MGR environment 

as depicted by LASTS. The extensive previous experience of participants in Group A with the 

real world MGR suggested that these participants had the ability to utilise their existing 

knowledge of items found within this environment to aid recognition of their virtual 

equivalents. Participants in Group B2 would not have been able to call upon such experience to 
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aid recognition. 

Given that participants in Group B2 had no equivalent reference to real world items to call upon 

when attempting to recognise items within the virtual MGR, the extent to which they were able 

to recognise items would have been reliant on their ability to extract spatial information from 

the LASTS environment. This indicates that there is an inherent need for spatial information 

throughout the virtual environment to be legible in order for it to be recognised and interpreted 

meaningfully by participants. Phenomena within the environment need to have worthwhile 

locational and attributional information assigned to them in order for them to function as 

effective landmarks as part of a spatial representation. Consistent with real world environments, 

this suggests that the legibility of the spatial information contained within a 3D simulation 

environment is a determinant factor in the formation of spatial representations within that 

environment. 

4.2.4.3 Validity of Quality of Spatial Information 

Evaluating the quality of the spatial information available in the LASTS environment involved 

examining the distortion present between the virtual and real world MGR environments, while 

also evaluating the quality of the locational and attributional information contained within 

LASTS. Given that non-irnmersive 3D environments such as LASTS rely heavily on the visual 

sensory modalities to impart information, this evaluation focussed on the visual aspects of the 

LASTS environment. 

A comparison of the collective performances of Group B 1 and Group B2 with regard to the 

simplified 12 PSR indicated that Group B2 participants were more confident, more efficient, 

and more successful than Group B1 participants. Group B2 participants also were observed 

utilising a more effective technique to locate and identify items included in the simplified 12 

PSR. This suggested that participants in Group B2 had a more advanced spatial representation 

of the MGR environment than participants in Group Bl. 

Group B 1 participants received a booklet with a separate set of diagrams and photos for each 

item included as part of the simplified 12 PSR to extract spatial information from in order to 

develop a spatial representation of the MGR. The spatial representation developed as a result of 

utilising this spatial information was characterised as being reliant on exhaustive search 

techniques to locate and identify items, suggesting that it was operating at the landmark level of 

the Landmark, Route, Survey model of spatial cognition. Group B2 participants, on the other 

hand, received their spatial information via interaction with a computer generated three 

dimensional model of the MGR environment. Group B2 participants were collectively 
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characterised as forming spatial representations that were more efficient, and did not require 

them to move around the real world MGR in order to locate and identify items as part of the 

simplified 12 PSR. This suggested that the spatial representations of participants in Group B2 

were operating at the survey level of the Landmark, Route, Survey model of spatial cognition. 

Based on the spatial representations formed by Group B 1 and Group B2 with reference to the 

disparity between the spatial information that was available to each group respectively, it is 

reasonable to assume that the quality of the spatial information is a determinant factor in the 

development of spatial representations in 3D simulation environments. This contention can be 

supported via an examination of the simplified 12 PSR performance scores for each item for 

Group B2. Referring to Figure 7, and assuming that the LASTS environment provided better 

quality spatial information than the paper based booklet, it is reasonable to expect that LASTS 

trainees would average a higher score on all items than those participants using the paper based 

training method. However, this was not the case, as Group B2 averaged higher scores than 

Group B1 for all items except the MGR Bilge Hatch. Previous analysis has indicated that this 

may have occurred due to the MGR Bilge Hatch being difficult to distinguish from the 

surrounding deck plate when closed. This indicates that there was a lower quality of spatial 

information pertaining to the MGR Bilge Hatch available to participants in Group B2 which 

subsequently resulted in a poorer performance of the simplified 12 PSR for this item. This 

suggests that the quality of spatial information is a factor in determining the spatial 

representation of a 3D simulation environment. 

4.2.5 Summary for Spatial Cognition 

While there are a number of different competing theories relating to the manner in which spatial 

representations are characterised and encoded, it is generally well accepted amongst scholars 

that cognitive maps exist as a mental representation of an external environment. The Landmark, 

Route, Survey model of spatial cognition suggests that cognitive maps are formed around 

landmarks and the paths between them which can be collated into a single model of the 

environment at the survey or configurational level. Research into spatial cognition within 

computer-generated 3D environments has indicated that there is little difference in the way 

spatial representations are formed in virtual environments compared to real world environments. 

As such, computer generated 3D environments exhibit potential for fostering the effective 

transfer of spatial knowledge to real world environments. However, as with real world 

environments, the formation of an effective spatial representation is dependent on being able to 

move freely within a legible environment which contains quality spatial information. The 

Spatial Cognition component of the model was derived from this theoretical construct to 

identify the key aspects of 3D game engine environments that support this process while also 

providing a set of evaluation criteria for assessment purposes. 
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Based on the responses of participants to the evaluation criteria relevant to the Spatial Cognition 

component of the model, the following can be surmised in relation to the LASTS environment: 

• The LASTS environment provided a sufficient degree of freedom of movement and 

control of the viewing perspective for participants to effectively gather spatial 

information throughout the environment; 

• Participants, particularly those in Group B2, found the LASTS environment to be 

legible enough to facilitate the effect recognition of items within the virtual MGR; 

• A general deficiency in detail and failure to represent the spatial confmes of the real 

world MGR were identified amongst participants as being the most prevalent causes of 

distortion between the virtual and real world MGR; 

• ·A general consensus amongst participants was arrived at with regard to the quality and 

detail of the surfaces and textures within the LASTS environment, which were regarded 

as being of a generally high standard, though lacking in some minor detail. 

With reference to the data gathered as part of the LASTS case study, there is evidence to suggest 

the validity of the Spatial Cognition component of the model as an effective representation of 

the process of developing spatial representations within 3D game engine environments. The 

performance of participants in Group B2 with regard to the simplified 12 PSR indicated that the 

participants were using a spatial representation formed as a result of their experience in the 

LASTS environment to complete the exercise. The ability to move freely within the 

environment, in conjunction with the legibility and quality of spatial information, were 

identified with reference to the gathered data as supporting the development of the spatial 

representation of LASTS formed by participants. This was consistent with the same determinant 

aspects identified within the Spatial Cognition component of the model. 

4.3 LASTS and 3D Environments 

Question 3. What are the characteristics of 3D game engine environments in terms of their 

ability to support spatial cognition? 

The third and fmal research question focussed on ascertaining which characteristics of 3D FPS 

simulation environments could be identified as supporting spatial cognition. Answers to the first 

two research questions indicated that spatial knowledge could be transferred effectively between 

a simulation environment and a corresponding real world environment that were contextually 

siinilar. Thus, it became necessary to determine which characteristics of non-immersive 3D 

simulation environments based on FPS gaming technology made them capable of representing 

real world environments in order to support this process. 
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A preliminary analysis of the gathered data indicated that the LASTS environment provided an 

adequate representation of the real world MGR from the perspective of both experienced and 

trainee submariners, as evidenced by the questionnaire responses from participants in Group and 

Group B2 in Table 17 below: 

Table 17: Questionnaire responses between 0 and 10 from participants in Group A and Group 

B2 in relation to the quality of the surfaces of objects and architecture within the LASTS 

environment. 

Group A participant A 1 A2 A3 A4 AS A6 A7 AS A_9 Avg. Range 

Your overall impression of 
the LASTS environment to 
represent the MGR of a 7 9 9 8 4 10 10 7 8 8.0 6 
Collins class submarine for 
the purposes of training? 

Group B2 participant B 1 B 2 B 3 B 4 B 5 Avg. Range 

Your overall impression of 
the LASTS environment to 
represent the MGR of a 9 9 10 8 9 9.0 2 
Collins class submarine for 
the purposes of training? 

An examination of the literature relevant to the third research question revealed that computer­

generated 3D environments were a valid means by which to simulate real world environments 

based on their ability to represent three dimensional spaces at a high visual quality while 

maintaining a frame rate that allowed the user fluid control of the virtual environment. These 

aspects of computer-generated 3D environments were used to evaluate the LASTS environment 

in order to determine the capability of the LASTS environment to represent the real world MGR 

on-board a Collins class submarine. The determinant aspects, evaluation criteria and data 

collection methods for the 3D environment component of the model are outlined for this 

purpose in Table 18 as follows: 
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Table 18: Key aspects, evaluation criteria and data collection methods for the 3D environment 

component of the model. 

Aspect Evaluation Criteria Data Collection 
Method 

Three dimensional Ability to which the environment INT_AW(24) 
representation can represent objects, architecture QU_B2 (3) 

and landscape in three dimensions QU_A(2) 

High visual fidelity Quality of textures, lighting, INT_AW (21) 
shadows and reflections INT_A(4) 

INT_B2 (3) 
QU_A(3) 
QU_B2 (4) 

Immediate system response Frame rate equal to, or exceeding, INT_AW (18)(a) and 
twenty frames a second (b) 

QU_A(5) 
QU_B2 (6) 

User control Real time movement and interaction QU_A (6)(a) and (b) 
within the simulation environment QU_B2 (7) (a) and (b) 
(Spatial Cognition component) 

Quality of collision detection INT_AW (16) and (17) 
INT_A(6) 
INT_B2 (5) 
QU_A(8) 
QU_B2 (9) 

4.3.1 Three Dimensional Representation 

Consistent with real world spaces, computer-generated 3D environments utilise Euclidean 

geometry to describe the shape and position of objects within them using a set of co-ordinates 

operating in three dimensions. As such, 3D environments can be used to construct scale 

representations of real world environments that replicate the dimensions, perspectives, and 

relative distances between objects in a manner consistent with the real world environment being 

modelled. In order to evaluate the ability of the LASTS environment to represent objects and 

architecture native to the real world MGR on-board a Coilins class submarine in three 

dimensions, participants from Group A and Group B2 were asked to rate this ability on a scale 

of 0 to 10 in their respective questionnaires. Andrew Widdis was also asked to respond to the 

same criteria during interview in order to provide a developer perspective. Questionnaire 

responses in relation to this aspect of the LASTS environment are displayed in Table 19 as 

follows: 
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Table 19: Questionnaire responses between 0 and 10 from participants in Group A and Group 

B2 in relation to the quality of the surfaces of objects and architecture within the LASTS 

environment. 

Group A participant A 1 A2 A3 A4 AS A6 A_7 A8 A_9 Avg. Range 

How well did the LASTS 
simulation environment 
three dimensionally model 7 9 9 9 7 7 9 4 8 7.7 5 
the objects and architecture 
of the MGR on-board a 
Collins class submarine? 

Group B2 participant B 1 B2 B 3 B 4 B 5 Avg. Range 

How well did the LASTS 
simulation environment 
three dimensionally model 8 8 9 10 8 8.6 2 
the objects and architecture 
of the MGR on-board a 
Collins class submarine? 

The questionnaire responses depicted in Table 19 indicated a general level of satisfaction 

amongst both groups of participants with regard to the three dimensional depiction of objects 

and architecture by the LASTS environment. In support of this response, Andrew Widdis stated 

during interview that all of the objects and architecture within the LASTS environment had 

been derived from CAD (Computer Aided Design) data from the real world MGR on-board a 

Collins class submarine. As such, the objects and architecture within the LASTS environment 

would have been depicted accurately with reference to their real world counterparts, preserving 

the real world dimensions, perspectives and distances to scale. This is of particular relevance to 

the process of spatial cognition, which uses information pertaining to the distance and direction 

of objects within an environment in the formation of spatial representations. As such, any spatial 

representation formed in a virtual environment that provides a scale representation of the real 

world environment it represents will be able to be transferred more effectively to the real world 

environment. 

4.3.2 High visual fidelity 

Given the nature of spatial cognition, there is an inherent need for simulation environments to 

provide as a high a quality of spatial information as possible to the sensory modalities in order 

for meaningful spatial representations to be constructed. As non-immersive 3D simulation 

environments such as LASTS are predominantly reliant on the visual senses to impart 

information, it stands to reason that the visual information provided by a 3D simulation 

environment should be of as high a quality as possible in order to compensate for the lack of 

tactile, olfactory, and kinaesthetic information provided. In order to determine the ability of the 
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LASTS environment to act in this capacity, participants from Group A and Group B2 were 

asked to evaluate the quality of the textures, lighting, shadows, and reflections of the LASTS 

environment via respective questionnaires and interviews. Developer Andrew Widdis was also 

asked to respond during interview. The questionnaire responses from participants in Group A 

and Group B2 are displayed in Table 20 as follows: 

Table 20: Questionnaire responses between 0 and 10 from participants in Group A and Group 

B2 in relation to the quality of the textures, lighting, shadows, and reflections within the LASTS 

environment. 

Group A participant A 1 A2 A3 A4 A_S A6 A7 AS A_9 Avg. Range - -
How well did the textures, 
lighting, shadows, and 
reflections within the 6 8 9 9 7 4 5 3 8 6.5 6 
LASTS simulation 
environment serve to 
create a high quality 
visual experience? 

Group B2 participant B 1 B 2 B3 B 4 B_S Avg. Range -
How well did the textures, 
lighting, shadows, and 
reflections within the 8 7 7 7 7 7.2 1 
LASTS simulation 
environment serve to 
create a high quality 
visual experience? 

Consistent with the questionnaire data in Table 20, interview responses from participants in 

Group A and Group B2 indicated a general level of satisfaction with the visual elements of the 

LASTS environment. However, a number of discrepancies were identified amongst responses: 

• Two participants within Group A made reference to a deficiency in detail in some of the 

textures in the virtual MGR. One of these participants illustrated that the absence of 

cream coloured textures to replicate the paint on most of the machinery in the real world 

MGR diminished the lighting in the virtual MGR, as the cream paint in the real world 

MGR reflected the light and thus served to better illuminate the environment; 

• A discrepancy between the lighting in the virtual MGR and that of the real world MGR 

was also identified by a participant in Group B2; 

In support of the textures, lighting, shadows, and reflections within the LASTS environment, 

three participants from Group B2 made references referring to their ability to successfully 

recognise elements of the virtual MGR during their assessment of the visual characteristics of 

the LASTS environment. This general level of satisfaction with the visual elements amongst 

participants in Group A and Group B2 was also reflected in comments made by Andrew Widdis 
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during interview. 

4.3.3 Immediate System Response 

The dynamic rendering characteristics of 3D simulation environments allow them to provide 

immediate visual feedback in response to user actions within the virtual environment. Combined 

with the 3D vector geometry environment model utilised by 3D simulation environments, 

keyboard and mouse input provided by the user can be responded to in a manner that creates the 

illusion of free movement within the virtual environment. This ability allows users to freely 

look and move within the virtual environment in a manner consistent with a real world three 

dimensional space, which is necessary for the formation of spatial representations that can be 

transferred effectively to real world environments. In order to assess the immediacy of LASTS 

to respond to user input, participants in Group A and Group B2 were asked to rate the speed 

with which the LASTS environment updated the display in response to their actions, the results 

of which are represented in Table 21. Developer Andrew Widdis was also asked to comment on 

the immediacy of LASTS to respond to changes in input during interview. 

Table 21: Questionnaire responses between 0 and 10 from participants in Group A and Group 

B2 in relation to the speed with which LASTS updated the visual display in response to user 

action. 

Group A participant A 1 A2 A3 A4 AS A6 A_7 AS A_9 Avg. Range 

How quickly did the 
LASTS simulation 8 10 9 9 8 10 9 9 9 9.0 2 
environment update the 
display in response to 
your actions? 

Group B2 participant B 1 B 2 B 3 B 4 B 5 Avg. Range -
How quickly did the 
LASTS simulation 9 9 10 10 9 9.4 1 
environment update the 
display in response to 

I your actions? 

The consensus in opinion amongst participants in Group A and Group B2 as depicted by the 

data in Table 21 can be explained with reference to comments made by Andrew Widdis during 

interview. Andrew stated that the average frame rate for the LASTS environment was between 

40 and 50 frames per second. With reference to the relevant literature on computer-generated 

3D environments, this frame rate is more than adequate for facilitating the illusion of movement 

within a 3D environment in a smooth and interactive manner. 
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4.3.4 User control 

The ability for the user to control their experience within a 3D simulation environment is an 

important factor in facilitating the effective representation of real world environments. 

Meaningful representation requires that users be able to move throughout the virtual space while 

interacting with the objects within it in a manner consistent with a three dimensional real world 

space. To ascertain the level of user control within the LASTS environment, participants from 

Group A and Group B2 were asked to rate the degree of movement and control of the viewing 

perspective, and also evaluate the quality of the collision detection within the LASTS 

environment. Andrew Widdis was also asked to provide a developer perspective with regard to 

the quality of the collision detection within the LASTS environment. 

Having previously evaluated the degree of movement and control of the viewing perspective as 

part of the Spatial Cognition component of the model (see Table 12), no further data collection 

was necessary in order to evaluate the degree of user control provided by the LASTS 

environment. Previous analysis of responses from participants in Group A and Group B2 

indicated that the LASTS environment had provided a sufficient degree of freedom of 

movement and control of the viewing perspective for participants to effectively gather spatial 

information throughout the environment. This suggests that these participants had sufficient 

enough control within the LASTS environment to construct a spatial representation of the 

virtual MGR in a manner consistent with the construction of spatial representations within real 

world environments. 

Collision detection was evaluated due to its influence on user control, as the ability to detect and 

respond to interaction between the user and the virtual space determines the manner in which 

the user engages with the environment, and thus, the degree of control over their experience. 

This aspect of the LASTS environment was determined to be adequate, with reference to the 

questionnaire results displayed in Table 22 below, with a more detailed response being elicited 

via interview. 

Table 22: Questionnaire responses between 0 and 10 from participants in Group A and Group 

B2 in relation to the effectiveness of the collision detection within the LASTS environment. 

Group A participant A 1 A2 A3 A4 AS A6 A7 A8 A9 Avg. Range 

How effectively did the 
LASTS simulation 
environment respond to 3 9 9 7 7 10 10 6 8 7.67 7 
contact or collisions with 
objects and architecture as 
you were moving through 
the environment? 

Group B2 participant B 1 B 2 B 3 B 4 B 5 Avg. Range - -
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How effectively did the 
LASTS simulation 
environment respond to 8 7 7 8 7 7.4 1 
contact or collisions with 
objects and architecture as 
you were moving through 
the environment? 

As part of being asked to evaluate the quality of collision detection present within LASTS 

during interview, participants from Group A and Group B2 were also asked to assess the ability 

of the LASTS environment to replicate the confines of the real world MGR. This was done in 

order to determine whether user control within the virtual MGR was consistent with that within 

the real world MGR as a product of the spatial confines of the environment. 

Interview data from participants in Group A revealed a number of common trends amongst 

responses in relation to the quality of collision detection and accuracy to which the confines of 

the real world MGR were replicated within the LASTS environment: 

• Three of the seven participants interviewed commented that the absence of equipment 

in the virtual MGR reduced the clutter and subsequently diminished the accuracy with 

which the confines of the real world MGR were depicted by LASTS; 

• Four of the participants within Group A also made reference to the absence of tactile 

sensation within the virtual MGR to indicate when they had collided or rebounded off 

an object, with one participant suggesting that a visual cue, such as a flash of colour, 

could be used to indicate a collision; 

A number of minor problems were also identified with the collision detection around some of 

the diesel engines and the ladder between deck sections by two of the participants in Group A. 

Similarly, two respondents from Group B2 also made reference to minor collision issues with 

the ladder and other objects within the virtual MGR. Collectively though, Group B2 participants 

indicated greater satisfaction with the quality of the collision detection and replication of the 

spatial confines of the real world MGR than Group A during interview. The only other issue 

identified by participants in Group B2 consistent with responses from Group A was that of the 

need for visual cues to aid in identifying collisions with objects, with one participant suggesting 

that a visual reference such, as a hand, may have been beneficial in this regard. 

During interview, Andrew Widdis indicated that the collision detection within the LASTS 

environment was of a reasonable standard that was capable of being improved upon given 

sufficient time to perform optimization techniques. Andrew suggested that this would require 

the creation of a dynamic avatar object to represent the user within the virtual environment that 

was of a relative size and scale to the virtual MGR environment. 
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4.3.5 Validity ofthe 3D Environment Component of the Model 

Having analysed the LASTS environment using the evaluation criteria from the 3D 

Environment component of the model, it is now pertinent to use the same gathered data to 

assess the validity of 3D Environment component itself. The data gathered as part of the LASTS 

case study will now be examined with reference to each aspect of this component identified as 

supporting the valid representation of real world three dimensional environments. 

4.3.6 Validity of Three Dimensional Representation 

Given the three dimensional nature of real world environments, it stands to reason that 

computer-generated 3D environments can be used to accurately represent the dimensions, 

perspectives, and distances contained within real world environments to scale, provided that 

such information is available during the development of the virtual environment. 

Andrew Widdis stated during interview that detailed information, available as derived CAD 

data, was utilized during development to create a scale representation of the MGR. In this 

fashion, the same information used in the design and manufacture of the real world MGR was 

also applicable and able to be utilized in the construction of a virtual representation inside a 

three dimensional computer-generated environment. The CAD data expressed the dimensions, 

perspectives, and relative distances of the MGR on-board a Collins class submarine in three 

dimensions. These three dimensional properties of the MGR were successfully replicated by the 

LASTS environment according to participants in Group A and Group B2. This demonstrates that 

the three dimensional representation inherent in computer-generated 3D environments is a 

determinant factor in the valid representation of real world environments. 

4.3.7 Validity of High Visual Fidelity 

FPS games are typically considered to be on the cutting edge of gaming technology with regard 

to the quality of their visual elements. These games rely on providing the user with an 

immersive and engaging first person experience within the gaming environment, requiring an 

authentic and highly detailed visual representation in order to facilitate this process. The engines 

used to power these games commonly rely on the application of textures, shadows, lighting, and 

reflection effects in order to achieve the high quality visuals inherent in most FPS games. While 

the visual characteristics provided by FPS game engines make them ideal for creating engaging 

game environments, they also lend themselves well to the development of simulation 

environments with the potential to accurately represent real world environments with a high 

visual fidelity. 
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Three of the five respondents in Group B2 indicated that they were adequately able to recognise 

elements of the virtual MGR during their assessment of the textures, lighting, shadows, and 

reflections within the LASTS environment. This suggests that these participants found that the 

high quality visual characteristics of the LASTS environmt;nt assisted in creating a 

representation of the real world MGR in which the items within it, and the environment itself, 

were recognisable. This indicates that the high visual fidelity inherent in 3D FPS environments 

contributes to the valid representation of real world environments. 

4.3.8 Validity oflmmediate System Response 

In order for a simulation environment to meaningfully represent a real world environment it 

must be able to respond to user input and changing conditions in a manner consistent with the 

real world environment it is representing. This entails replicating the ability to move, look, and 

interact freely within a real world environment that responds immediately to change within the 

confines of a simulation environment. 3D FPS simulation environments are capable in this 

regard, as the underlying game engines that power these environments are designed to handle 

the high visual demands placed upon them by FPS environments while still being responsive 

enough to not diminish game play. 

Comments obtained during interview with Andrew Widdis revealed that the average frame rate 

for the LASTS environment was more than adequate for creating the illusion of movement 

within the virtual MGR. Information provided by participants in Group A and Group B2 also 

indicated that the LASTS environment was very responsive in updating the display as a result of 

user input. Collating these responses, it is evident that the LASTS environment was responsive 

enough to create the illusion of movement as provided by changes in the position and 

orientation of the participant within the virtual MGR. Thus, the illusion of movement provided 

by the LASTS environment as a result of the continuous and responsive update of the display 

facilitated movement within the virtual MGR in a manner consistent with the real world MGR. 

Participants within the LASTS environment could look and move throughout the virtual MGR 

and immediately observe changes to their position and orientation. This suggests that the 

immediacy of the system response provided by 3D FPS simulation environments is a 

determinant factor in the valid representation of real world environments. 

4.3.9 Validity of User Control 

A valid representation of a real world environment by a simulation requires that the method of 

interaction between individuals and the real world environment be replicated by some means 
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within the virtual environment. In much the same way as individuals are able to exert influence 

on the environment around them in the real world, so too must virtual environments replicate 

this ability in order to provide a valid representation. True to all FPS 3D environments, 

participants using the LASTS environment were given the ability to control their position and 

orientation within the environment using a first person viewing perspective and input from the 

mouse and keyboard. In this manner, the LASTS environment was able to replicate the means 

by which people were able to move and look within the real world MGR environment. 

The degree of control afforded to participants within the LASTS environment was evaluated in 

terms of how well they were able to control their movement and viewing perspective with 

reference to interaction with the objects around them within the virtual MGR. Responses from 

participants indicated that the LASTS environment provided sufficient control over movement 

and the viewing perspective, despite the identification of some issues relating to collision 

detection, including the accuracy with which the spatial confmes of the real MGR were 

represented by the LASTS environment: Having established the presence of user control within 

the LASTS environment, the need for such a presence in order to provide a valid representation 

of a real world environment is self evident. Given the three dimensional nature of real world 

environments, there is an inherent need for the ability to look and move freely in order to 

operate within, and extract meaning from, the environment. This indicates that the ability of the 

user to control their position and orientation within a 3D FPS simulation environment is a 

determinant factor in the valid representation of real world environments. 

4.3.10 Summary for 3D Environments 

Proponents of computer based learning contend that computer-generated 3D environments 

based on FPS gaming technology are a valid means by which to simulate three dimensional real 

world environments. Spatial cognition and simulation based learning theories suggest that the 

transfer of spatial representation is most effective when the disparity between the virtual and 

real world enviromnent is minimised. As such, the virtual representation provided by a 3D 

simulation environment must be valid in order for meaningful transfer to be achieved. It has 

been argued that 3D environments based on FPS game engines are a valid means for simulating 

real world environments based on their ability to represent three dimensional spaces at a high 

visual quality while maintaining a frame rate that allows the user fluid control of the virtual 

environment. The high visual fidelity inherent in environments constructed using FPS game 

engines exhibits the potential to enhance realism and facilitate a sense of presence and 

immersion within the virtual environment. The 3D Environment component of the model was 

derived from this theoretical construct to identify the key aspects of 3D game engine 

environments that support the representation of real world three dimensional environments. 
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Based on the responses of participants to the evaluation criteria relevant to the 3D Environment 

component of the model, the following can be surmised in relation to the LASTS environment: 

• The LASTS environment provided an accurate, thr.ee dimensional representation of the 

MGR on-board a Collins class submarine that was consistent with the dimensions, 

perspectives, and distances of the real world environment; 

o A general level of satisfaction was evident amongst participants with regard to the 

ability of the LASTS environment to depict the objects and architecture native to the 

real world MGR in three dimensions.; 

o Participants collectively demonstrated a general level of satisfaction with the visual 

elements of the LASTS environment, although a number of issues were identified as a 

result of a deficiency in the detail of textures within the virtual MGR; 

o The LASTS environment was deemed to be very responsive with regard to the 

immediacy of the feedback it provided, with participants consistently rating this 

attribute of the environment very highly; 

o Participants indicated a general level of satisfaction with regard to the freedom of 

movement and control of the viewing perspective afforded by the LASTS environment. 

However, a number of prevalent issues were identified with the replication of the 

confines of the real world MGR by LASTS owing to the absence of items that altered 

the confines of the virtual MGR, and the absence of tactile sensation; 

o Overall, participants rated the degree of control they were afforded within the LASTS 

environment as satisfactory, while also acknowledging that this degree of control was 

diminished to some degree during their interaction with objects in a manner that was 

not entirely consistent with that of the real world MGR. 

With reference to the data gathered as part of the LASTS case study, there is evidence to suggest 

the veracity of the 3D Environment component of the model as an effective depiction of the 

valid representation of real world environments using 3D FPS simulation environments. The 

overall effectiveness of the LASTS environment to represent the real world MGR was indicated 

via the positive responses of both trainee and experienced submariner participants. The aspects 

of three dimensional representation, high visual fidelity, immediate system response, and user 

control, acknowledged as being factors in the validity of representation of real world 

environments by 3D FPS environments, were identified amongst the gathered data as supporting 

this process. 
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4.4 Validating the· combined Model 

Having independently demonstrated the veracity of the Simulation Learning Transfer, Spatial 

Cognition, and 3D Environment components of the model, it is now appropriate to evaluate the 

validity of the combined model with reference to the data gathered as part of the LASTS case 

study. Recalling that the model consists of five primary principles common to all three 

components of the model, and four secondary principles common to two components of the 

model, an examination of the gathered data can be conducted with reference to the evaluation 

criteria identified for each principle respectively. 

4.4.1 Three Dimensional Representation as a Primary Principle of the Model 

Three Dimensional Representation was designated a primary principle of the model as it was 

identified as being a determinant factor with reference to spatial cognition, simulation based 

learning transfer, and the valid representation of real world spaces using virtual environments: 

• The formation of spatial representations of real world environments requires extraction 

of spatial information pertaining to the location and orientation of phenomena in three 

dimensions; 

• Learning transfer between virtual and real world environments requires an authentic 

representation to be provided by the virtual environment on a physical and function 

level, necessitating a three dimensional representation; 

• A computer-generated 3D environment is a valid means by which to represent the three 

dimensional characteristics of real world environments; 

With reference to the LASTS environment, the evaluation criteria and data collection methods 

for the Three Dimensional Representation principle of the model are outlined in Table 23 

accordingly: 

Table 23: Evaluation criteria and data collection methods for the Three Dimensional 

Representation primary principle of the model. 

Criterion for evaluation Collection Method 

Ability with which to determine locational information of QU_B2 (20) 
phenomena within the environment (Spatial Cognition QU_Bl (4) 
component) 

Degree to which three dimensional arrangement of elements QU_A(l) 
relative to assigned tasks in the real world are preserved within QU_B2 (2) 
the simulation environment (Simulation Learning component) INT_A(l) 

Ability to which the environment can model objects, architecture INT_AW(24) 
and landscape in three dimensions (3D Environment component) QU_B2 (3) 
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QU_A(2) 

4.4.1.1 Spatial Cognition Component of Three Dimensional Representation 

In order to determine the ability of participants to determine locational information within the 

MGR environment, participants from Group B1 and Group B2 were required to mark the 

locations of items included as part of the simplified 12 PSR on a series of diagrams after the 

completion of the simplified 12 PSR exercise. To complete the map marking exercise, 

participants from Group B 1 and Group B2 would have relied upon their respective spatial 

representations of the MGR environment, formed as a result of their training together with their 

experience in completing the simplified 12 PSR. Given that both groups of participants 

completed the same exercise within the real world MGR, it is reasonable to assume that the 

differences between their respective spatial representations after having completed the 

simplified12 PSR could be attributed to the differences in training received by the two groups 

of participants. As such, the map marking exercise provides some indication as to determine the 

ability with which each group of participants were able to determine locational information of 

phenomena within the MGR environment. 

The diagrams used during the map marking exercise were the same as those used by Group B 1 

as part of the paper based training they received prior to the exercise, albeit with one minor 

modification whereby all the top down diagrams were presented such that they detailed the 

lower level of the MGR. This diagram is depicted by Figure 9 accordingly: 
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Figure 9: Questionnaire diagram used by participants in Group Bland Group B2 to mark the 

locations of items included in the simplified 12 PSR exercise. 

Figures 10 through 14 represent the locations of items as marked by participants in Group B 1 

and Group B2 respectively for the MGR Bilge Hatch, AFT Submerged Signal Ejector, AFT 

Submerged Signal Ejector Controller, Emergency Pyrotechnic Locker, and Fire Fighting 

Equipment. For each of these figures, yellow circles represent the actual locations of items, 

while blue and pink crosses are used to indicate the locations marked by participants in Group 

B 1 and Group B2 respectively. The locations depicted by the yellow circles were taken from the 

diagrams in the training booklet presented to Group B 1 as part of their training prior to the 

simplified 12 PSR exercise. Note that Figures 10 through 14 do not represent instances where 

participants did not provide a mark to indicate the location of an item, and that multiple 

markings for different participants in the same location were difficult to replicate on a single 

diagram. 
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Figure 10: Collective map markings for Group Bl and Group B2 for the MGR Bilge Hatch. 
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Figure 11: Collective map markings for Group B 1 and Group B2 for the AFT Submerged 

Signal Ejector. 
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Figure 12: Collective map markings for Group Bl and Group B2 for the AFT Submerged 

Signal Ejector Controller. 
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Figure 13: Collective map markings for Group Bland Group B2 for the Emergency 

Pyrotechnics Locker. 
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Figure 14: Collective map markings for Group Bland Group B2 for the Fire Fighting 

Equipment. 
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Given that participants in Group B 1 were already familiar with the plan and cross-sectional 

diagrams of the MGR as a result of their training, it would have been reasonable to assume that 

these participants would have been noticeably superior in the map marking exercise compared 

to those in Group B2. However, results of the map marking exercise collectively suggested that: 

• Participants in Group B 1 and Group B2 exhibited a similar degree of accuracy in their 

ability to mark the locations of items included in the simplified 12 PSR; 

• Participants from Group Bl had a tendency to be more accurate when marking the 

locations of items on the cross-sectional diagram than on the plan diagram. This 

tendency was also made evident during interview, whereby two of the participants made 

mention of a preference for the cross-sectional diagram over the plan diagram. 

Group B2 participants, on the other hand, were more consistent between the cross-sectional and 

plan diagrams used as part of the map marking exercise. They also had no previous experience 

with the diagrams used as part of the map marking exercise, and as such would have been 

relying solely on their cognitive map of the MGR environment in order to complete the 

exercise. The comparable performance of the map exercise, consistency of accuracy between 

cross-sectional and plan diagrams, and the lack of familiarity with the diagrams themselves 

exhibited by Group B2 suggests 

a greater spatial awareness of the MGR environment in three dimensions as a result of their 

experience within the LASTS environment. The map marking exercise indicates that 

participants in Group B2 were able to abstract the three dimensional spatial representation they 

formed within the LASTS environment and apply it with a comparable level of accuracy to 

representations of the MGR presented from differing perspectives. This suggests that the three 

dimensional representation provided by the LASTS environment was a determinant factor in the 

formation of an effective three dimensional cognitive map of the MGR environment. 

4.4.1.2 Simulation Learning Component of Three Dimensional Representation 

The extent to which the three dimensional arrangement of items included in the simplified 12 

PSR exercise was preserved within the LASTS environment was evaluated from the 

perspectives of trainee and experienced submariners. Participants in Group A and Group B2 

were asked to gauge the accuracy with which the locations of items included in the simplified 

12 PSR were reflected within the LASTS environment on a scale ofO to 10. Participants in 

Group A were also asked to respond to the degree of this accuracy during interview. Responses 

to the questionnaire are displayed in Table 24 accordingly: 
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Table 24: Questionnaire responses between 0 and 10 from participants in Group A and Group 

B2 in relation to the accuracy with which the locations of items included in the simplified 12 

PSR were reflected within the LASTS environment 

Group A participant A 1 A2 A3 A4 AS A6 A7 A_8 A9 Avg. Range 

How accurately were the 
locations of objects used as 
part of the exercise on- 8 8 9 8 7 7 9 6 9 7.9 3 
board the Collins class 
submarine reflected within 
the LASTS simulation 
environment? 

Group B2 participant B 1 B 2 B 3 B 4 B 5 Avg. Range 

How accurately were the 
locations of objects used as 
part of the exercise on- 10 9 10 10 8 9.4 2 
board the Collins class 
submarine reflected within 
the LASTS simulation 
environment? 

Consistent with the data displayed in Table 24, interview responses from participants in Group 

A were very positive, indicating that all items included in the simplified 12 PSR were in their 

correct locations within the virtual MGR. These positive responses from experienced 

submariners, coupled with the fact that the virtual MGR was derived from the CAD data, 

provide strong evidence to indicate that the locations of items included in the simplified 12 PSR 

were represented very accurately by the LASTS environment. This accuracy is further 

evidenced in light of the effective completion ofthe simplified 12 PSR exercise by participants 

in Group B2. These participants were able to successfully locate and identify the series of items 

included in the simplified 12 PSR as a result offorming a spatial representation that included 

the same items in the same locations within the virtual MGR. Thus, the three dimensional 

representation of objects within the LASTS environment was determinant in facilitating the 

effect transfer of knowledge pertaining to the location of these objects in three dimensional 

space to the real world MGR. 

4.4.1.3 3D Environment Component of Three Dimensional Representation 

Having already analysed the ability with which objects and architecture are represented in three 

dimensions as part of the 3D environment component of the model, no further analysis is 

necessary in order to reaffirm that three dimensional representation is a determinant factor in the 

valid representation of real world environments with 3D FPS simulation environments. 
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4.4.1.4 Summary for Three Dimensional Representation 

Based on the data gathered as part of the LASTS case study, there is evidence to suggest that 

three dimensional representation is a determinant factor in spatial cognition, learning transfer, 

and the valid representation of real world environments using 3D simulation environments 

based on FPS gaming technology. This is consistent with the Three Dimensional Representation 

principle, which was identified as being a key aspect of the Spatial Cognition, Simulation 

Learning Transfer, and 3D Environment components of the model. 

4.4.2 High Visual Fidelity as a Primary Principle of the Model 

High visual fidelity was designated a primary principle of the model as it was identified as 

being a determinant factor with reference to spatial cognition, simulation based learning 

transfer, and the valid representation of real world spaces using virtual environments: 

• Non-immersive 3D environments rely on visual elements to impart spatial information, 

therefore these visual elements need to be of high quality to facilitate spatial cognition; 

• High visual fidelity has the potential to increase the sense of presence and immersion, 

thereby facilitating the transfer of knowledge; 

• The high visual fidelity inherent in 3D environments based on FPS gaming technology 

creates the potential for the realistic depiction of real world environments. 

With reference to the LASTS environment, the evaluation criteria and data collection methods 

for the High Visual Fidelity principle of the model are outlined in Table 25 accordingly: 

Table 25: Evaluation criteria and data collection methods for the High Visual Fidelity primary 

principle of the model. 

Criterion for evaluation Collection Method 

Ability with which to determine attributional information of QU_B2 (1) 
phenomena within the environment (Spatial Cognition QU_B1 (1) 
component) 

Degree to which resultant presence and immersion compel INT_A (2) and (3) 
undertaking of assigned tasks (Simulation Learning component) INT_B2 (1) and (2) 

Quality of textures, lighting, shadows and reflections (3D INT_AW (21) 
Environment component) INT_A(4) 

INT_B2 (3) 
QU_A(3) 
QU_B2 (4) 
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4.4.2.1 Spatial Cognition Component of High Visual Fidelity 

Ascertaining the ability with which attributional information of phenomena could be determined 

within the MGR environment entailed participants in Group B1 and Group B2 providing written 

descriptions of the items included as part of the simplified 12 PSR as part of their respective 

questionnaires. Consistent with the map marking exercise, participants were asked to provide 

these written descriptions immediately after completing the simplified 12 PSR within the real 

world MGR. As such, participants from Group B1 and Group B2 would have been drawing on 

the spatial representations formed as a result of their respective training in conjunction with 

their experience in completing the simplified 12 PSR within the real world MGR. Given that 

both groups of participants completed the same exercise within the real world environment, 

differences in the written descriptions provided by each group of participants can be attributed, 

in part, to the differences in their respective training. 

The written descriptions provided by participants in Group B 1 and Group B2 were examined for 

the frequency of specific references to colour, shape, size, relative position, and function for the 

items included in the simplified 12 PSR exercise. This information is tabulated in Table 26 as 

follows: 

Table 26: Frequency of references to colour, shape, size, relative position, and function amongst 
written descriptions of items included in the simplified 12 PSR by Group B1 and Group B2. 

Group Colour Shape Size Relative Function 
Position 

B1 14 6 6 17 8 

B2 4 6 8 46 11 

With reference to Table 26, a number of observations can be made with reference to the item 

description exercise: 

e Participants in Group B 1 and Group B2 provided a similar nu.tnber of references to 

shape, size, and function in their descriptions of items included in the simplified 12 

PSR; 

• Group B 1 participants providing more references to colour; 

• Group B2 participants provided more references to relative position; 

Given the superior performance of Group B2 participants in completing the simplified 12 PSR 

exercise, the disparity in the frequency of references to the relative position of items suggests 

th~t Group B2 participants had a better spatial awareness of the MGR environment. However, it 

should be noted that references to the relative position of items are locational spatial 

information, and not attributional. 
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The disparity in the frequency of references to colour between Group B 1 and Group B2 may be 

explained in light of the fact that Group B 1 participants were provided with actual photos of the 

real world items during training, while participants in Group B2 were instead provided with 

virtual representations of these items contained within the virtual MGR. During interview, all 

five participants in Group B 1 made reference to colour being used as a source of attributional 

spatial information by which to locate and identify items included in the simplified 12 PSR. 

However, the frequency of references to shape, size, and function within the written descriptions 

of items by Group B 1 and Group B2 were similar. This demonstrates a similar degree of ability 

with which to determine attributional information among participants in Group B 1 and Group 

B2 for three of the four attributional categories observed in the written descriptions of 

participants. Assuming that the differences between the attfibutional information obtained by 

participants in Group B 1 and Group B2 were the result, in part, of their respective types of 

training, it is reasonable to suggest that the photographs and virtual depictions of items provided 

a similar degree of attributional information to participants. This suggests that the high visual 

fidelity inherent within the LASTS environment was required in order to provide a comparable 

level of attributional information to that of a colour photograph. This demonstrates the need for 

high quality visual elements within 3D FPS simulation environments in order to facilitate the 

formation of effective spatial representations. 

4.4.2.2 Simulation Learning Component of High Visual Fidelity 

In order to assess the effect that the high visual fidelity had on presence, immersion, and 

ultimately knowledge transfer, participants from Group A and Group B2 were asked during 

interview whether they felt a sense of presence and immersion during their experience within 

the virtual MGR, and to what extent this compelled them to engage with the LASTS 

environment. The interview responses from these participants are summarised as follows: 

• Responses from Group A in regard to a sense of presence and immersion were varied, 

ranging from non existent, to some level of presence and immersion, to a definite sense 

of presence and immersion; 

• The subsequent extent to which a sense of presence motivated Group A to engage with 

LASTS was also varied, ranging from no degree of engagement, to some degree of 

engagement, to a high degree of engagement; 

• The degree to which immersion compelled participants in Group A to engage with 

LASTS was identified as being little, to some; 

• Responses from participants in Group B2 tended to be more positive, confirming some 

degree of presence and immersion and resultant desire to engage with the LASTS 

environment; 
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Based on the responses given by participants in Group A and Group B2, it is evident that 

collectively, Group B2 experienced a greater degree of presence, immersion, and desire to 

engage with the LASTS environment as a result, compared to Group A. Given the deficiency in 

graphical detail identified by participants in Group A, it is J,"easonable to assume that these 

participants may have experienced a greater sense of presence and immersion, and been 

subsequently more compelled to engage with the LASTS environment, had the visual elements 

within the virtual MGR been of higher quality. Furthermore, given the familiarity with the MGR 

environment of participants in Group A, the visual fidelity of the environment would have been 

a more determinant factor in their desire to engage compared to participants in Group B2. 

Participants in Group B2 were relatively unfamiliar with the MGR environment and would 

therefore have been more willing to engage with it in order to explore an unfamiliar space 

compared to participants in Group A. This suggests that the visual fidelity inherent within a 3D 

virtual environment is a factor in determining the willingness of users to engage with the 

environment. Given that engaging with the LASTS environment included the provision of the 

instructor led walk-through, which was intended to replicate the simplified 12 PSR in order to 

provide an assigned task for the purpose of learning transfer, the gather data indicates that the 

visual elements of the virtual environment effected the desire to engage with said task, and thus 

the degree of learning transfer. This suggests that the high visual fidelity inherent within 3D FPS 

simulation environments is a determinant factor in facilitating the transfer of knowledge 

between the virtual environment and the real world. 

4.4.2.3 3D Environment Component of High Visual Fidelity 

Having already analysed the quality of textures, lighting, shadows, and reflections as part of the 

3D environment component of the model, no further analysis is necessary in order to reaffirm 

that high visual fidelity is a determinant factor in the valid representation of real world 

environments with 3D FPS simulation environments. 

4.4.2.4 Summary for High Visual Fidelity 

Based on the data gathered as part of the LASTS case study, there is evidence to suggest that 

high visual fidelity is a determinant factor in spatial cognition, learning transfer, and the valid 

representation of real world environments using 3D simulation environments based on FPS 

gaming technology. This is consistent with the High Visual Fidelity principle, which was 

identified as being a key aspect of the Spatial Cognition, Simulation Learning Transfer, and 3D 

Environment components of the model. 
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4.4.3 Immediacy of Feedback as a Primary Principle of the Model 

Immediacy of Feedback was designated a primary principle of the model as it was identified as 

being a determinant factor with reference to spatial cognition, simulation based learning 

transfer, and the valid representation of real world spaces using virtual environments: 

• Spatial cognition requires the ability to look and move freely within an environment in 

order to be effective. The immediacy of feedback provided by 3D FPS simulation 

environments creates the illusion of movement, thus supporting this process; 

• The immediacy of feedback inherent in 3D FPS simulation environments allows users 

to move and interact freely within the virtual environment in much the same way as 

they would in the real world, thus facilitating experiential based learning consistent with 

situated cognition and constructivist learning theories; 

• Iriunediate system feedback is necessary in order to replicate interaction within real 

world environments at a functional level. 

With reference to the LASTS environment, the evaluation criteria and data collection methods 

for the Immediacy of Feedback principle of the model are outlined in Table 27 accordingly: 

Table 27: Evaluation criteria and data collection methods for the Immediacy of Feedback 

primary principle of the model. 

Criterion for evaluation Collection Method 

Extent to which system response supports free movement and QU_B2 (5) 
control of viewing perspective within the environment (Spatial QU_A(4) 
Cognition component) 

Extent to which system response supports the undertaking of INT_AW(20) 
assigned task (Simulation Learning component) QU_A(4) 

QU_B2 (5) 

Frame rate equal to, or exceeding, twenty frames a second (3D INT_AW (18)(a) and (b) 
Environment component) QU_A(5) 

QU_B2 (6) 

4.4.3.1 Spatial Cognition and Simulation Learning Components oflmmediacy ofFeedback 

Determining the extent to which the system response of the LASTS environment supported free 

movement and control of the viewing perspective involved participants in Group A and Group 

B2 quantifying this extent on a scale of 0 to 10 in their respective questionnaires. The responses 

pn>Vided to this question were also used to determine the extent to which this system response 

supported the completion of the instructor led assigned walk-through task within the LASTS 

environment. These responses are displayed in Table 28 accordingly: 
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Table 28: Questionnaire responses between 0 and 10 from participants in Group A and Group 

B2 in relation to the extent to which the system response of the LASTS environment supported 

free movement and control of the viewing perspective. 

Group A participant A 1 A2 A3 A4 A5 A6 A7 AS A9 Avg. Range 

How responsive to your 
actions did you find the 
LASTS simulation 8 10 9 8 6 6 9 7 8 7.9 3 
environment and to what 
degree did this enable you 
to complete the exercise? 

Group B2 participant B 1 B2 B 3 B 4 B 5 Avg. Range -
How accurately were the 
locations of objects used 
as part of the exercise on- 8 9 10 9 8 8.8 2 
board the Collins class 
submarine reflected 
within the LASTS 
simulation environment? 

With reference to Table 28, feedback indicated a general level of satisfaction with the 

responsiveness of the LASTS environment that reflected the successful performance of the 

assigned walk-through task within the virtual MGR by all participants. Based on the positive 

evaluation provided by participants, and the successful completion of the walk-through exercise 

within the LASTS environment, it is reasonable to conclude that the system response of the 

LASTS environment was sufficient enough to support the undertaking of the assigned task 

within the virtual MGR. Had the LASTS environment been deficient with regard to the speed 

with which it responded to user input, the illusion of free movement within the virtual MGR 

would have been compromised. This in tum would have diminished the ability with which 

participants were able to form spatial representations, and furthermore reduced their ability to 

perform the assigned walk-through task within the virtual environment. This suggests that 

immediate system response is required in order to create the illusion of movement necessary for 

forming spatial representations within a virtual environment, and also for undertaking assigned 

tasks involving any interaction with the virtual environment for the purpose of supporting 

learning transfer. 

4.4.3.2 3D Environment Component oflmmediacy of Feedback 

Having already analysed the frame rate criteria as part of the 3D environment component of the 

model, no further analysis is necessary in order to reaffirm that the immediacy of system 

feedback is a determinant factor in the valid representation of real world environments with 3D 

FPS simulation environments. 
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4.4.3.3 Summary for Immediacy of Feedback 

Based on the data gathered as part of the LASTS case study, there is evidence to suggest that the 

immediacy of system feedback is a determinant factor in spatial cognition, learning transfer, and 

the valid representation of real world environments using 3D simulation environments based on 

FPS gaming technology. This is consistent with the Immediacy of Feedback principle, which 

was identified as being a key aspect of the Spatial Cognition, Simulation Learning Transfer, and 

3D Environment components of the model. 

4.4.5 User Control as a Primary Principle of the Model 

User Control was designated a primary principle of the model as it was identified as being a 

determinant factor with reference to spatial cognition, simulation based learning transfer, and 

the valid representation of real world spaces using virtual environments: 

• The ability to look and move freely is required in order to extract spatial information 

from an environment and subsequently form spatial representations; 

• Control over interaction with the virtual environment is needed in order to replicate real 

world tasks with meaningful assigned tasks within the virtual environment. User control 

is also necessary for experiential based learning; 

• The ability to exercise control over interaction within the virtual environment is 

necessary in order to replicate the same control inherent with experience in real world 

environments. 

With reference to the LASTS environment, the evaluation criteria and data collection methods 

for the User Control principle of the model are outlined in Table 29 accordingly: 

Table 29: Evaluation criteria and data collection methods for the Immediacy of Feedback 

primary principle of the model. 

Criterion for evaluation Collection Method 

Degree of movement and control of viewing perspective (Spatial QU_A(6) (a) and (b) 
Cognition component) QU_B2 (7) (a) and (b) 

Degree to which controls permit the execution of assigned task INT_A(5) 
within the environment (Simulation Learning component) INT_B2 (4) 

QU_A(7) 
QU_B2 (8) 

Quality of collision detection (3D Environment component) INT_AW (16) and (17) 
INT_A(6) 
INT_B2 (5) 
QU_A(8) 
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4.4.5.1 Spatial Cognition Component of User Control 

Having already analysed the degree of movement and control of viewing perspective as part of 

the Spatial Cognition component of the model, no further analysis is necessary in order to 

reaffirm the determinant nature ofuser control in the formation of spatial representations. 

4.4.5.2 Simulation Learning Component of User Control 

In order to determine the degree to which the controls used by the LASTS environment 

permitted the execution of the instructor led walk-through within the virtual MGR, participants 

from Group A and Group B2 were asked to gauge this degree on a scale of 0 to 10 and also 

provide a more detailed response during interview. Questionnaire responses for Group A and 

Group B2 are detailed in Table 30 as follows: 

Table 30: Questionnaire responses between 0 and 10 from participants in Group A and Group 

B2 in relation to effectiveness of the control schema within the LASTS environment. 

Group A participant A 1 A2 A3 A4 AS A_6 A_7 A_S A_9 Avg. Range 

How effective were the 
controls (the mouse and 
keyboard) in permitting 7 10 9 9 6 8 10 9 9 9.0 3 
the completion of the 
exercise within the 
LASTS environment? 

Group B2 participant B 1 B 2 B 3 B 4 B 5 Avg. Range 

How effective were the 
controls (the mouse and 
keyboard) in permitting 10 9 10 10 8 9.4 2 
the completion of the 
exercise within the 
LASTS environment? 

In keeping with the questionnaire responses detailed in Table 28, interview responses from 

participants in both Group A and Group B2 were also very positive, with no prevalent issues 

identified with the control schema. Based on the collective positive feedback provided by both 

groups of participants, as well as the successful completion of the walk-through exercise by all 

participants using LASTS, it is reasonable to infer that the control schema used by LASTS was 

adequate enough to allow the completion of the assigned task within the environment. The 

successful completion of the simplified 12 PSR exercise by participants in Group B2 provides 

evidence to suggest that the assigned task undertaken within the LASTS environment, which 

was identified as being consistent with a compartment layout or rounds type scenario similar to 
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the simplified 12 PSR by participants in Group A, facilitated the transfer of spatial knowledge to 

the real world MGR. Given the consistent positive response provided in relation to the degree of 

control afforded by the LASTS environment, it can be concluded that this degree of control 

exercised some degree of influence in the transfer of spatial knowledge between environments. 

This suggests that user control is necessary within a 3D simulation environment in order for 

users to undertake meaningful and appropriate assigned tasks so as to support the transfer of 

knowledge to the real world environment being modelled. 

4.4.5.3 3D Environment Component of User Control 

Having already analysed the quality of collision detection within the LASTS environment as 

part of the 3D Environment component of the model, no further analysis is necessary in order to 

reaffirm the determinant nature of user control in the valid representation of real world 

environments by 3D FPS simulation environments. 

4.4.5.4 Summary for User Control 

Based on the data gathered as part of the LASTS case study, there is evidence to suggest that 

user control is a determinant factor in spatial cognition, learning transfer, and the valid 

representation of real world environments using 3D simulation environments based on FPS 

gaming technology. This is consistent with the User Control principle, which was identified as 

being a key aspect of the Spatial Cognition, Simulation Learning Transfer, and 3D Environment 

components of the model. 

4.4.6 Integrated Instructional Support as a Primary Principle of the Model 

Integrated Instructional Support was designated a primary principle of the model as it was 

identified as being a determinant factor with reference to spatial cognition, simulation based 

learning transfer, and the valid representation of real world spaces using virtual environments: 

• The provision of assigned tasks consistent with the development of spatial awareness 

can be used to guide the formation of spatial representations within the virtual 

environment; 

• Learning needs to be structured around a meaningful task that is contextually relevant to 

the real world environment and the knowledge that needs to be transferred; 

. • Integrated instructional support in the guise of assigned tasks can be integrated into 3D 

FPS simulation environments via the provision of the scripting languages included in 

FPS games. 
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With reference to the LASTS environment, the evaluation criteria and data collection methods 

for the Integrated Instructional Support principle of the model are outlined in Table 31 

accordingly: 

Table 31: Evaluation criteria and data collection methods for the Integrated Instructional 

Support primary principle of the model. 

Criterion for evaluation Collection Method 

Degree to which spatial information pertaining to items related INT_B2 (6) and (7) 
to the simplified 12 PSR can be recognized and recalled INT_B1 (1) and (2) 
(Spatial Cognition component) INT_CPO (1), (2), (5), and (6) 

Comparison of simplified 12 
PSR for B 1 and B2 

Degree to which instructional support is integrated into the QU_A(9) 
environment (Simulation Learning component) QU_B2 (10) 

INT_AW (14) 

Degree to which the scripting language or developmental tools INT_AW (10), (11), (12), (13) 
support the creation of appropriate assigned tasks within the (a)- (d) 
environment (3D Environment component) 

4.4.6.1 Spatial Cognition Component oflntegrated Instructional Support 

Evaluating the degree to which spatial information pertaining to items included in the simplified 

12 PSR could be recognized and recalled entailed examining the ability with which participants 

in Group B 1 and Group B2 responded to the simplified 12 PSR, as well as interviewing these 

participants and CPO Allistair Hogarth regarding their respective performances. 

Previous analysis of the simplified 12 PSR exercise revealed that Group B2 participants 

exhibited greater knowledge of the submarine, possessed a greater ability to recognise items, 

and performed the simplified 12 PSR exercise with greater confidence than Group B1 

participants as evaluated by CPO Allistair Hogarth. In relation to the ability with which each 

group was able to recognize and recall spatial information relevant to the items included in the 

12 PSR, the following was elicited from comments made by CPO Allistair Hogarth during 

interview: 

• Group B 1 were somewhat slow and got confused between FWD and AFT; 

• Group B2 were more efficient than Group B1 at recognizing items and possessed a 

greater sense of space; 

• Group B 1 relied on information within the photographs provided during training and 

did not make a good association with the items and their location. These participants 

instead scanned the space for the actual item that matched the photo; 

• Group B2 made use of the MGR space as a whole to locate items, and then made the 
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comparison between the real world item and the equivalent virtual item as depicted by 

LASTS in order to identify it. 

These responses indicate that participants in Group B 1 did not possess sufficient locational 

spatial information of items included in the simplified 12 PSR, and instead relied on an 

exhaustive search to compare the attributional information provided by the photograph to items 

in the MGR in order to identify them. These observations were reflected in comments made by 

participants in Group B 1 during interview, indicating a reliance on colour to identify items, 

which was also manifested during the item recognition exercise whereby Group B 1 participants 

exhibited a higher frequency of responses to colour in their descriptions compared to Group B2. 

Interview responses from Group B 1 also suggested a reliance on their memory of the 

photographs and diagrams provided during training in order to find items, rather than an overall 

spatial awareness of the environment. 

In contrast to Group B 1, responses from CPO Allistair Hogarth indicated that Group B2 

participants utilized locational spatial information to locate items, and attributional information 

to identify them during the simplified 12 PSR exercise. The greater confidence observed by 

CPO Allistair Hogarth amongst participants in this group compared to those in Group B 1 was 

also reflected in the comments made by Group B2 participants during interview. Group B2 

indicated a collective high degree of confidence in their ability to recognise and recalllocational 

and attributional spatial information of items included in the simplified 12 PSR. 

While the instructional support provided within the LASTS environment was somewhat limited 

and rudimentary in nature, it did serve to provide an association between the identity of the item 

and its locational and attributional spatial information. This integration allowed the identity of 

each item and its associated locational and attributional spatial information to be presented 

collectively to participants using the LASTS environment. Participants in Group B2 however, 

were presented with the identity and associated locational and attributional spatial information 

of each item as separate elements on each page of the trai...'ling booklet. Given that CPO Allistair 

Hogarth identified a deficiency in the ability of participants in Group B1 to associate the 

identity of items included in the simplified 12 PSR with the relevant spatial information, this 

suggests that the integration of the scripted naming display function into the LASTS 

environment served to provide a better collated and combined set of spatial information for each 

item included in the 12 PSR. This in turn suggests that the integration of instructional support 

into 3D FPS simulation environments can support the development of spatial representations 

provided said support is relevant to spatial cognition. 
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4.4.6.2 Simulation Learning Component of Integrated Instructional Support 

Having already evaluated the degree to which instructional support was integrated into the 

LASTS environment as part of the Simulation Learning Transfer component of the model, no 

further analysis is necessary in order to reaffirm the determinant nature of integrated 

instructional support in the facilitation of learning transfer. 

4.4.6.3 3D Environment Component oflntegrated Instructional Support 

In order to evaluate the scripting language and development tools made available as part of the 

Unreal Runtime game engine, LASTS developer Andrew Widdis was asked to comment as to 

their ability to support the creation of assigned tasks. During interview, Andrew acknowledged 

that the scripting languages and development tools did support the creation of assigned tasks 

within the virtual environment, but the complexity and functionality of said tasks was dependent 

on the amount of development time available and knowledge and expertise with the scripting 

language and development tools. Andrew also stated that these scripts and tools could be used to 

to emulate some of the standard tasks performed on-board Collins class submarines, including 

item check-lists and emergency scenarios requiring a series of tasks to be completed in order to 

achieve an end result. This suggests that the scripting languages and development tools provided 

by FPS game engines can be utilized to create instructional support that is integrated into the 

virtual environment in the form of assigned tasks. Furthermore, this instructional support is 

capable of replicating real world tasks and scenarios, thereby exercising the potential to enhance 

the validity of the representation of the real world environment being depicted. 

4.4.6.4 Summary for Integrated Instructional Support 

Based on the data gathered as part of the LASTS case study, there is evidence to suggest that 

integrated instructional support is a determinant factor in spatial cognition, learning transfer, and 

the valid representation of real world environments using 3D si..uulation environments based on 

FPS gaming technology. This is consistent with the Integrated Instructional Support principle, 

which was identified as being a key aspect of the Spatial Cognition, Simulation Learning 

Transfer, and 3D Environment components of the model. 

4.4. 7 Authenticity of the Simulation Environment as a Secondary Principle of the Model 

Authenticity of the Simulation Environment was designated a secondary principle of the model 

as it was identified as being a determinant factor with reference to simulation based learning 

transfer and the valid representation of real world spaces using virtual environments: 
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• The degree of similarity between the context and culture of the virtual environment and 

that of the real world environment being represented is a factor in the effectiveness of 

learning transfer; 

• Physical and functional authenticity is required for the valid depiction of real world 

environments by 3D FPS simulation environments. 

With reference to the LASTS environment, the evaluation criteria and data collection methods 

for the Authenticity of the Simulation Environment principle of the model are outlined in Table 

32 accordingly: 

Table 32: Evaluation criteria and data collection methods for the Authenticity of the Simulation 

Environment principle of the model. 

Criterion for evaluation Collection Method 

Accuracy with which the context and culture of the real world INT_A(7) 
environment is depicted within the simt,llation environment 
(Simulation Learning component) 

Accuracy with which the simulation environment represents QU_A (10) (a) and (b) 
the real world environment at a physical and functional level QU_B2 (11) (a) and (b) 
(3D Environment component) INT _A (8) and (9) 

INT _ B2 (8) and (9) 

4.4. 7.1 Simulation Learning Component of Authenticity of the Simulation Environment 

Having already evaluated the accuracy of the contextual and cultural depiction provided by the 

LASTS environment as part of the Simulation Learning Transfer component of the model, no 

further analysis is necessary in order to reaffrrm the determinant nature of the authenticity of the 

simulation environment in the facilitation of learning transfer. 

4.4. 7.2 3D Environment Component of Authenticity of the Simulation Environment 

In order to determine the accuracy with which LASTS represented the real world MGR on a 

physical level, participants in Group A and Group B2 were asked to rate the ability of the 

LASTS environment to represent the scale, positioning and orientation of the real world MGR 

on a scale of 0 to 1 0. The same participants were also asked to provide a response during 

interview as to the accuracy with which LASTS portrayed the look and feel of the real world 

MGR, and the degree to which this subsequently provided a realistic impression of scale, 

positioning, and orientation. Questionnaire responses are presented in Table 33 as follows: 
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Table 33: Questionnaire responses between 0 and 10 from participants in Group A and Group 

B2 in relation to the ability with which LASTS represented the scale, positioning, and 

orientation of the real world MGR. 

Group A participant A 1 A2 A3 A4 AS A6 A_7 AS A9 Avg. Range 

How accurately does the 
LASTS simulation 
environment represent the 6 8 8 9 5 10 8 7 9 6.63 5 
scale, positioning, and 
orientation of the MGR 
on-board a Collins class 
submarine? 

Group B2 participant B 1 B 2 B 3 B 4 B 5 Avg. Range -
How accurately does the 
LASTS simulation 
environn1ent represent the 10 7 8 10 9 8.8 3 
scale, positioning, and 
orientation of the MGR 
on-board a Collins class 
submarine? 

Consistent with the responses detailed in Table 33, interview responses from participants in 

Group A suggested a general level of satisfaction with the scale, positioning, and orientation in 

the LASTS environment with reference to the real world MGR. These responses indicated that 

the LASTS environment was adequately accurate in its depiction of the physical characteristics 

of the real world MGR, however, a number of minor issues were identified during interview: 

• Two of the participants in Group A identified issues in relation to the clutter and spatial 

confmes of the environment not being depicted accurately; 

• One participant in Group B2 also made reference to the inability of the LASTS 

environment to reflect the confines of the real world MGR. 

Evaluating the accuracy with which the LASTS environment represented the real world MGR 

on a functional level required participants in Group A and Group B2 to rate the ability of the 

LASTS environment to depict the manner in which people operated within the real world MGR 

on-board a Collins class submarine on a scale ofO to 10. Participants were also asked to 

comment on the accuracy of the LASTS environment to depict the functional behaviour of the 

real world MGR, with reference to behaviour and response within the virtual MGR. 

Questionnaire responses from participants are depicted by Table 34 accordingly: 
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Table 34: Questionnaire responses between 0 and 10 from participants in Group A and Group 

B2 in relation to the the accuracy of operations within LASTS with reference to the real world 

MGR. 

Group A participant A 1 A2 A3 A4 AS A6 A7 AS A9 Avg. Range -
How accurately is 
operating within the 
MGR on-board a Collins 8 8 8 8 6 - 9 6 7 7.5 3 
class submarine depicted 
within the LASTS 
environment? 

Group B2 participant B 1 B 2 B 3 B 4 B 5 Avg. Range 

How accurately is 
operating within the 
MGR on-board a Collins 8 8 9 10 7 8.4 3 
class submarine depicted 
within the LASTS 
environment? 

Interview responses from participants in: Group A were very consistent, with all participants 

indicating that LASTS was more static than the real world MGR. These participants also 

suggested that there was little to no real functionality within the LASTS environment, save for 

the ability to move within the virtual MGR, which was identified as being satisfactory given the 

purpose of the environment. Responses from participants in Group B2 during interview were 

consistent with those of Group A with regard to the perceived lack of functionality and general 

static nature of the LASTS environment. Two of the five participants in Group B2 also indicated 

that the level of functionality provided by the LASTS environment was sufficient for the 

purpose of compartmental familiarization and locating items. 

The responses from participants in Group A and Group B2 in relation to the authenticity of the 

LASTS environment can be summarised as follows: 

• The physical characteristics of the real world MGR were represented in the virtual 

MGR at an adequate enough level to provide a realistic impression of scale, positioning, 

and orientation; 

• The LASTS environment was observed to be static, offering no real functionality 

between the user and the environment except for the ability to traverse the environment 

and display the names of items included in the simplified 12 PSR on the screen as they 

were selected with the mouse; 

• Both groups of participants tended to acknowledge that, with reference to the responses 

in Table 32, while there was very little functionality provided by the LASTS 

environment, the functionality that was provided was sufficient enough for the purpose 

of developing environmental awareness of the MGR environment. 
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Given the different perspective provided by participants in Group A and Group B2 in relation to 

their experience within the real world MGR, it is somewhat self evident that the authenticity of 

the simulation environment is a factor in determining the validity with which the simulation 

environment represents the real world environment it is modelling. Both groups of participants 

were able to make observations and evaluations regarding the LASTS environment with 

reference to the real world MGR, identifying discrepancies where they existed and confirming 

valid aspects of the virtual environment in light of their experience. This indicates that the 

authenticity of the simulation environment is a factor in the valid representation of real world 

environments. 

4.4.7.3 Summary for Authenticity of the Simulation Environment 

Based on the data gathered as part of the LASTS case study, there is evidence to suggest that the 

authenticity of the simulation environment is a determinant factor in learning transfer, and the 

valid representation of real world environments using 3D simulation environments based on 

FPS gaming technology. This is consistent with the Authenticity of the Simulation Environment 

principle, which was identified as being a key aspect of the Simulation Learning Transfer, and 

3D Environment components of the model. 

4.4.8 Situated Tasks as a Secondary Principle of the Model 

Situated Tasks were designated a secondary principle of the model as it was identified as being a 

determinant factor with reference to spatial cognition and simulation based learning transfer: 

• Situated tasks relevant to the development of spatial awareness can be used to guide the 

formation of spatial representations; 

• There is a need for learning to be structured around a meaningful task that is 

contextually relevant to the real world environment and the knowledge that needs to be 

transferred. 

With reference to the LASTS environment, the evaluation criteria and data collection methods 

for the Situated Tasks principle of the model are outlined in Table 35 accordingly: 
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Table 35: Evaluation criteria and data collection methods for the Situated Tasks principle of the 

model. 

Criterion for evaluation Collection Method 

Degree to which situated tasks enhance spatial knowledge of INT_AW(9) 
the environment (Spatial Cognition component) INT_A(lO) 

INT_)32 (10) 
INT_CPO (9) and (10) 
Comparison of simplified 12 
PSR for B 1 and B2 

Extent to which assigned tasks are situated relative to tasks QU_A(ll) 
within the real world environment (Simulation Learning INT_A(ll) 
component) 

4.4.8.1 Spatial Cognition Component of Situated Tasks 

Ascertaining the degree to which the instructor led walk-through of the virtual MGR enhanced 

the spatial awareness of the MGR environment entailed the elicitation of interview responses 

from participants in Group A and Group B2, as well as Andrew Widdis and CPO Allistair 

Hogarth in order to provide a variety of different perspectives for evaluation. 

Participants in Group A were asked to provide a response as to how effective they felt the walk­

through exercise would be in developing the spatial awareness of submariners within the real 

world MGR environment. Feedback provided by participants in Group A collectively indicated 

a very positive response in relation to the effectiveness of the instructor led walk-through ofthe 

virtual MGR for new trainee submariners. Two of the participants in Group A also suggested 

that the effectiveness ofthe walk-through exercise could be increased further by subjecting new 

trainees to a tour of the real world MGR prior to using the LASTS environment, so as to provide 

a sense of contextual awareness. Collective responses to the same interview question were also 

very positive from participants in Group B2, who indicated that the walk -through of the virtual 

MGR was the next best thing to performing a walk-through in the real world MGR given the 

limited time available for training on an actual Collins class submarine. 

Developer Andrew Widdis indicated during interview that he felt the instructor led virtual walk­

through of the LASTS environment was of great benefit in enhancing the spatial awareness of 

trainee submariners of the real world MGR. Andrew suggested that trainees would have a 

greater sense of confidence and appreciation of space within the MGR environment as a result 

of their experience within the LASTS environment. This contention was justified in the 

performance evaluation of participants in Group B2 undertaking the simplified 12 PSR by CPO 

Allistair Hogarth, who confirmed that Group B2 were more confident and had a better spatial 

understanding of the MGR environment compared to participants in Group Bl. 
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Given the collective positive response to the instructor led walk-through task within the LASTS 

environment as a facilitator of spatial awareness from the perspectives of trainee submariners, 

experienced submariners, the LASTS developer, and CPO Allistair Hogarth, it is reasonable to 

contend that this task would have a positive influence on the development of spatial awareness 

of the MGR environment. Furthetmore, the superiority demonstrated by Group B2 in 

performing the simplified 12 PSR exercise compared to Group B1 may have been in some part 

the result of the provision of the virtual walk-through, as Group B 1 participants had no such 

situated task to complete during their training. This suggests that situated tasks are a factor in 

the formation of spatial representations in 3D FPS simulation environments, provided that said 

tasks are relevant to the process of spatial cognition, which as demonstrated in previous 

analysis, was the case with regard to the LASTS environment. 

4.4.8.2 Simulation Learning Component of Situated Tasks 

Having already evaluated the extent to which the instructor led virtual walk-through was 

relevant to real world tasks on-board a Collins class submarine as part of the Simulation 

Learning component of the model, no further analysis is necessary in order to reaffirm the 

determinant nature of the situated tasks in the facilitation of learning transfer. 

4.4.8.3 Summary for Situated Tasks 

Based on the data gathered as part of the LASTS case study, there is evidence to suggest that the 

provision of situated tasks are a determinant factor in spatial cognition and learning transfer. 

This is consistent with the Situated Tasks principle, which was identified as being a key aspect 

of the Spatial Cognition and Simulation Learning Transfer components of the model. 

4.4.9 Legibility of the Environment as a Secondary Principle of the Model 

The legibility of the simulation environment was designated a secondary principle of the model 

as it was identified as being a determinant factor with reference to spatial cognition and 

simulation based learning transfer: 

• The formation of spatial representations relies upon spatial information to be legible in 

order to be extracted and interpreted meaningfully; 

• A simulation environment needs to be legible in order for users to recognize it as the 

representation of a given real world environment such that effective learning transfer 

can occur. 
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With reference to the LASTS environment, the evaluation criteria and data collection methods 

for the Legibility of the Environment principle of the model are outlined in Table 36 

accordingly: 

Table 36: Evaluation criteria and data collection methods for the Legibility of the Environment 

principle of the model. 

Criterion for evaluation Collection Method 

Ease with which elements within the environment are QU_A(12) 
recognized (Spatial Cognition component) QU_B2 (12) 

Ability at which elements included in the simplified 12 PSR Comparison of simplified 12 
can be identified and recognized (Simulation Learning PSR for B 1 and B2 
component) 

4.4.9.1 Spatial Cognition Component ofLegibility of the Environment 

Having already evaluated the ease with which items within the LASTS environment could be 

recognized, no further analysis is necessary in order to reaffirm the determinant nature of the 

legibility of the simulation environment in the process of spatial cognition. 

4.4.9.2 Simulation Learning Component of Legibility of the Environment 

Previous analysis regarding the simplified 12 PSR has demonstrated that Group B2 participants 

were capable in their ability to identify and recognize items included in the exercise, and that 

this ability was developed via their experience within the LASTS environment. This process 

entailed the development of a spatial representation of the virtual MGR, which was then 

transferred and utilized in order to complete the simplified 12 PSR within the real world MGR. 

In order for this to occur, the LASTS environment had to provide a legible representation such 

that participants in Group B2 could successfully make the association between elements in the 

virtual MGR and the actual equivalents in the real world MGR. This indicates the need for a 

simulation environment to be legible so as to support learning transfer between virtual and real 

world environments. 

4.4.9.3 Summary for Legibility of the Environment 

Based on the data gathered as part of the LASTS case study, there is evidence to suggest that the 

legibility of the simulation environment is a determinant factor in spatial cognition and learning 

transfer. This is consistent with the Legibility of the Environment principle, which was 

identified as being a key aspect of the Spatial Cognition and Simulation Learning Transfer 
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components of the model. 

4.4.10 Quality of Spatial Information as a Secondary Principle of the Model 

The quality of spatial information available within a 3D FPS simulation environment was 

designated a secondary principle of the model as it was identified as being a determinant factor 

with reference to spatial cognition and the valid representation of real world spaces using virtual 

environments: 

• The quality of spatial information is a key factor in the formation of spatial 

representations; 

• The characteristics of 3D FPS simulation environments allow them to provide high 

quality spatial information to the visual sensory modalities. 

With reference to the LASTS environment, the evaluation criteria and data collection methods 

for the Quality of Spatial Information principle of the model are outlined in Table 3 7 

accordingly: 

Table 37: Evaluation criteria and data collection methods for the Legibility of the Environment 

principle of the model. 

Criterion for evaluation Collection Method 

Level of distortion between virtual environment and real QU_A(13) 
environment (Spatial Cognition component) QU_B2 (13) 

INT_A(12) 
INT_B2 (11) 

Quality and detail of textures and surfaces (3D Environment QU_A(14) 
component) QU_B2 (14) 

INT_AW(6) 
INT_A(13) 
INT_B2 (12) 

4.4.1 0.1 Spatial Cognition Component of Quality of Spatial Information 

Having already evaluated the level of distortion between LASTS and the real world MGR, no 

further analysis is necessary in order to reaffirm the determinant nature of the quality of spatial 

information in the process of spatial cognition. 

4.4.1 0.2 3D Environment Component of Quality of Spatial Information 

Previous analysis pertaining to the quality and detail of textures and surfaces within the LASTS 

environment with respect to the Spatial Cognition component of the model indicated that 
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participants regarded them as being of a generally high standard, though lacking in some minor 

detail. Given the reliance on visual elements to impart information inherent amongst 3D FPS 

simulation environments such as LASTS, it is evident that the quality of spatial information 

available to participants within the LASTS environment was of an adequate enough level to 

support the process of spatial cognition. The performance of the simplified 12 PSR by Group B2 

provides evidence to indicate the utilization of spatial representations formed as a result of 

experience within the LASTS environment. These representations were formed via the 

extraction and interpretation of spatial information within the virtual MGR, information that 

was presented via the visual capabilities of the LASTS environment. This indicates that the 

quality of spatial information available for the formation of spatial representations is dependent 

on the visual capabilities of the 3D FPS simulation environment. 

4.4.10.3 Summaty for Quality of Spatial Information 

Based on the data gathered as part of the LASTS case study, there is evidence to suggest that the 

quality of spatial information is a determinant factor in spatial cognition and the ability with 

which a 3D FPS simulation environment can support the process of spatial cognition in a 

manner consistent with the real world environment it represents. This is consistent with the 

Quality of Spatial Information principle, which was identified as being a key aspect of the 

Spatial Cognition and 3D Environment components of the model. 

4.4.11 Combined Model Summary 

The data gathered as part of the LASTS case study has provided evidence to indicate the 

veracity of the model proposed in relation to the third research question, which sought to 

determine which characteristics of 3D simulation environment based on FPS gaming technology 

enhanced spatial awareness in real world environments. This model proposed that a 3D FPS 

simulation environment could be used to enhance the spatial awareness of real world 

environments via the formation of a cognitive map that could be tra..'lsferred and used within the 

real world environment being represented. The determinant principles identified by the model as 

supporting this process were used to derive evaluation criteria by which to assess the 

effectiveness of the LASTS environment, and also the validity of the principles and components 

themselves. Analysis of the data gathered in relation to this evaluation criterion has suggested 

that these principles, and the model itself, offer a valid representation of the key characteristics 

of 3D FPS simulation environments involved in the enhancement of spatial awareness in real 

world environments. 
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5.0 Findings and Conclusion 

The LASTS case study was undertaken in order to validate the model of spatial cognition in 3D 

FPS simulation environments proposed by this research. To this end, the LASTS environment 

was assessed in its ability to enhance the spatial awareness .of the real world MGR in 

accordance with criteria derived from the model. Findings and conclusions can thus be drawn 

with reference to the effectiveness of the LASTS environment to act in this capacity, and the 

validity of the proposed model to represent the process of spatial cognition in 3D simulation 

environments based on FPS gaming technology. 

5.1 Evaluation of the LASTS Environment 

Based on analysis performed on the data gathered as part of the LASTS case study, the 

following findings can be stated in relation to the ability of the LASTS environment to enhance 

the spatial awareness of submariners in the MGR on-board a Collins class submarine: 

• While both LASTS and paper based trainees performed well in the simplified 12 PSR, 

trainee submariners using the LASTS environment demonstrated a greater knowledge 

of the submarine, possessed a greater ability to recognise items, and performed the 

simplified 12 PSR exercise with greater confidence than those trainees who received 

paper based training. LASTS trainees also completed the simplified 12 PSR exercise in 

approximately half the time of paper based trainees. 

• Observations made by CPO Allistair Hogarth during the simplified 12 PSR exercise 

suggested that participants who had used the LASTS environment were operating with 

a more developed spatial awareness of the MGR environment than those trainees who 

received paper based training. Analysis of these observations with reference to the 

Landmark, Route, Survey model of spatial cognition suggested that participants who 

received paper based training were operating at the lower landmark level of spatial 

cognition, while those trainees who used LASTS were operating at the high su..'"Vey 

level of spatial cognition. Evidence indicating a greater spatial awareness of participants 

who used the LASTS environment was also made evident during the item description 

exercise, whereby LASTS participants provided more references to the relative 

positioning of items in their descriptions than non LASTS participants. 

• The LASTS environment provided an accurate, three dimensional representation of the 

MGR on-board a Collins class submarine that was consistent with the dimensions, 

perspectives, and distances of the real world environment. 

• LASTS provided sufficient freedom of movement and control of the viewing 

perspective for participants to effectively gather spatial information within the virtual 
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MGR environment. 

• The LASTS environment was responsive enough in its ability to provide feedback to 

participants in response to their input to allow them to complete the walk-through 

exercise within the virtual MGR. 

• LASTS provided sufficient authenticity for conducting training similar in nature to 

rounds or compartment layout type scenarios, but deficient in the level of detail 

required for more sophisticated types of training. 

• The limited level of instructional support integrated into the LASTS environment was 

identified as being adequate for trainees not familiar with the MGR to learn the names 

associated with items relevant to the simplified 12 PSR exercise, but of a more 

questionable value to participants already familiar w-ith these items. 

• A general deficiency in detail and failure to represent the spatial confines of the real 

world MGR were identified by participants as being the two most prevalent causes of 

discrepancy between the virtual and real world MGR environments. 

• The lack of detail perceived in the LASTS environment, particularly by participants 

with extensive experience on-board Collins class submarines, was found to diminish the 

cultural depiction of the LASTS environment, whereby any indication as to human 

presence within the virtual MGR was absent. 

• The graphical and visual elements ofthe LASTS environment were satisfactory for 

imparting spatial information, but did not provide a great sense of presence or 

immersion amongst participants. 

• Trainee submariner participants tended to have a more optimistic view ofthe LASTS 

environment compared to participants with extensive experience on-board a Collins 

class submarine, both in questionnaire and interview. 

While these findings identify both positive and negative aspects of the LASTS environment, 

they more importantly indicate that the LASTS environment was successful in enhancing the 

spatial awareness of the MGR environment for participants in the study who were not familiar 

with the MGR on-board a Collins class submarine. Analysis of the data gathered as part of the 

case study provided evidence to indicate the utilization of a spatial representation developed as 

a result of experience in the LASTS environment. Furthermore, this spatial representation 

appeared to be functioning at the survey level of the Landmark, Route, Survey model of spatial 

cognition, and encompassed a solid understanding of the spatial characteristics of the MGR 

environment. 

Simulation environments built upon FPS gaming technology such as LASTS exhibit great 

potential as spatial awareness training tools for real world environments. As evidenced by the 

LASTS case study, participants were successfully able to learn the spatial characteristics of an 
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environment they had little familiarity with without needing to travel to the real world 

environment itself in order to do so. Furthermore, this was achieved on relatively low cost 

desktop computer environments using software that is adaptable from proven FPS gaming 

technology. In an environment such as a Collins class submarine, this type of training is 

invaluable given the possibility of limited access to the real world environment as a result of 

time constraints, deployment, or logistical considerations. While LASTS consisted only of a one 

room representation of a Collins class submarine, this environment can be expanded given 

sufficient time and resources to depict a complete Collins class submarine. This depiction could 

also include representation of some of the operations performed on-board a Collins class 

submarine using the scripting abilities inherent in FPS game engines. A complete model would 

allow trainees to form spatial representations that span across multiple compartments, thus 

providing them with the knowledge required to traverse the whole submarine efficiently and 

effectively. 

5.2 The Model of Spatial Cognition in 3D FPS Simulation Environments 

The model of spatial cognition in 3D FPS simulation environments proposed by this research 

was used as a foundation by which to evaluate the effectiveness of the LASTS environment to 

enhance the spatial awareness of the real world MGR. Analysis of the data gathered in relation 

to this evaluation criteria indicated that the LASTS environment exhibited all the characteristics 

required to support spatial learning transfer to the real world MGR to some degree. This 

assessment reflected the results of the simplified 12 PSR exercise performed within the real 

world MGR, whereby participants who had used the LASTS environment were successfully 

able to locate and identify a series of items as a result of the spatial representation they had 

formed within the virtual MGR. Thus, the model proposed by this research was validated with 

reference to an existing 3D FPS simulation environment that effectively enhanced spatial 

awareness of the real world environment it represented. 

Beyond the evaluation of existing 3D FPS simulation environments, the model proposed by this 

research exhibits potential as an effective tool by which to inform the design of future products. 

In this capacity, the model could assist in the development of 3D simulation environments based 

on FPS gaming technology by providing a design framework consisting of the interrelated 

components and principles validated via the LASTS case study. In this manner, the principles of 

the model could function as a list of necessary features that are known to determine the ability 

with which the 3D FPS simulation environment is able to enhance the spatial awareness of the 

real world environment it is representing. As such, development of these features would be a 

priority; the presence and effectiveness of which could be determined using the evaluation 

criteria derived from the model. Thus, by implementing the model developed in accordance 

with this research as a tool by which to inform design, the development of future 3D FPS 
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simulation environments with the objective of enhancing spatial awareness of real world 

environments can be focussed on features that are known to contribute to the effectiveness of 

this outcome. 

5.3 Limitations ofthe Study 

The following limitations to this study were identified and acknowledged as having the potential 

to affect the results: 

• LASTS did not feature any audio, and as such, participants in the study would have 

been unable to obtain any auditory information from the LASTS environment that may 

have assisted them in forming a cogent spatial representation. No conclusions may be 

drawn with reference to the effect of audio cues in the development of spatial 

representations in 3D FPS simulation environments as a result; 

• The MGR was the only room that was fully detailed within the LASTS environment. 

Broad ranging conclusions about the effectiveness of the LASTS system for an entire 

Collins class submarine can not be drawn. 

• The previous experience with the real world MGR environment by participants in 

Group Bland Group B2 had the potential to affect results. However, given that these 

participants were asked during interview to detail the extent of this experience, which 

was subsequently identified as minimal, comparative results between Group B 1 and 

Group B2 still remain valid as the previous experience amongst all participants in these 

groups was similar. Ideally, it would be preferable to use participants who had no 

familiarity whatsoever with the real world environment, but this was difficult given the 

voluntary nature of the ESP training program. 

• The sample size was too small to support any detailed statistical analysis. However, 

trends and patterns were identified within the results that supported the validity of the 

model proposed by this research. 

• The sample size was too small to draw any major conclusions with reference to the 

ability of 3D FPS simulation environments to support spatial cognition in real world 

environments, or the validity of the model proposed by this research. 

• Of the twenty-one participants involved in this study, only one was female. No female 

participants were involved in the evaluation of the LASTS environment. 

5.4 Further Research 

A number of areas for potential future research were also identified during the course of the 

LASTS case study: 
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• The speed at which participants using the LASTS environment were able to complete 

the simplified 12 PSR exercise compared to participants who received the paper based 

training was unexpected. The time taken to complete an exercise appropriate to spatial 

cognition in a real world environment may provide. some indication as to the nature and 

effectiveness of the spatial representation formed as a result of experience within a 3D 

FPS simulation environment; 

• The inability of the LASTS environment to replicate the spatial confines of the real 

world MGR via the provision of tactile sensation was identified as one of the more 

prevalent discrepancies between the virtual and real world MGR environments. Given 

that non-immersive environments such as LASTS rely on the visual medium to impart 

information, replicating the spatial confines of a real world environment may be 

achievable via the provision of a visual reference to indicate collisions or proximity to 

objects in the virtual environment; 

• Given the rudimentary nature of.the instructional support that was integrated into the 

LASTS environment, further research is required in order to explore the extent to which 

the scripting languages and development tools inherent in FPS game engines can be 

used to support spatial cognition; 

• The role of sound in a three dimensional environment as a source of spatial information 

and its subsequent role in the formation of spatial representations; 

5.5 Conclusion 

While the number of participants involved in this study were insufficient for the results to be 

statistically significant, the evidence provided does indicate that the LASTS environment is a 

suitable training tool for developing spatial awareness of the MGR on-board a Collins class 

submarine for trainee submariners. Trainees using the LASTS environment demonstrated an 

effective spatial understanding of the MGR environment as a result of their experience within 

the virtual MGR. 

The model of spatial cognition in 3D FPS simulation environments proposed by this research 

that attempted to identify and represent the characteristics that support the process of spatial 

cognition was validated via analysis of the data gathered as part of the LASTS case study. As 

such, this model has the potential to aid in the design and development of future 3D simulation 

environments based on FPS gaming technology with the objective of enhancing spatial 

awareness in real world environments. 
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Appendices 

Appendix A- Interview Transcripts for Group A 

Please note that the term 'the exercise' refers to the simplified 12 Point Safety Round. 

( 1) How accurately were the locations of objects used as part of the exercise on-board the 
Collins class submarine reflected within the LASTS simulation environment? Were these 
objects arranged correctly relative to other objects around them? Was everything where it 
was supposed to be? 

Al -Pretty close, accurate. Everything was where is was supposed to be. 

A2 - Pretty accurate. 

A3 -Very good. Everything that was there was where it was supposed to be, 
although more detail would be better. Some items are missing. 

A4 - Pretty much spot on. 

A5 -Placement is quite accurate. Nothing is out of order for what is there 
(implying that some items are missing). 

A6- Same as A5 (both stokers). Felt that some detail was missing. 

A 7 - Pretty good. Easy enough to find my way around. Major parts are in the right 
spots. Seemed OK. Looked like the MGR of a Collins class submarine. 

(2) Did you feel a sense of being 'present' in the LASTS simulation environment, such that 
you felt as though you had a physical presence within the virtual environment? To what 
extent did this compel you to engage with the LASTS simulation environment? 

Al - Sort of, not overly, like playing a FPS. Some degree of engagement due to 
presence. 

A2-No. 

A3- No, good realism, but no real sense of presence once you have served on a boat. 

A4 - To an extent, sort of realistic, can relate to being there. 

A5- You do feel a sense of presence. You feel like you're walking through. Bou..11d to 
see what you want to interact with. 

A6-. 

A 7- Yes, I certainly did. I wanted to find out what else I could do. 

(3) Did you feel a sense of immersion within the LASTS simulation environment, such that 
you felt a sense of involvement or absorption within the virtual environment? To what 
extent did this compel you to engage with the LASTS simulation environment? 

Al -A little bit, which provided some degree of engagement. 

A2-No. 
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A3- Not really in light of having served on a boat. 

A4 - Sort of, can relate to being there. 

AS - Certainly to an extent. 

A6-

A 7 - Not really, happy to navigate around, but that was it. 

(4) How would you rate the quality of the textures, lighting, shadows, and reflections within 
the LASTS simulation environment? 

Al -Good. 9/10. 

A2-Good. 

A3 - Good to very good. 

A4 -Pretty good. Everything was nicely rendered. 

AS -Textures good. Rocker cover shapes were not right, kit missing from diesels (pipes 
and exhaust manifold are missing). Some textures are low grade, such as those on the 
keyboards and screens, which need a high degree of clarity. 

A6-. 

A 7 - Pretty good. Colours are slightly skewed, there is paint missing. The cream colour 
paint in the real MGR (missing from LASTS) creates a more illuminated space as it 
reflects the fixed lighting. 

(S) How effective were the controls (the mouse and keyboard) in permitting the completion 
of the exercise within the LASTS simulation environment? Did the controls create any 
barriers to completing this task? 

Al -Good. Easy to use, no problems. 

A2 - Seemed OK, no barriers. 

A3 - Good, no problems. 

A4 - Good, no problems. 

AS - Easy stuff. Anyone with any 3D games experience will find this easy. 

A6- No problems, the controls were fine. 

A7- No problems, easy enough (non gamer). 

( 6) How would you rate the quality of the LASTS simulation environment to detect and 
respond to contact or collisions between your virtual self and objects within the 
environment? How well did the LASTS simulation environment replicate the confmes of 
the Main Generator Room on-board a Collins class submarine? 

Al -Didn't really have any problems. The real MGR seems more cluttered with gear 
lying around. 
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A2 - Seems OK, you don't hit your head as you would in the real MGR. Confmes were 
not realistically replicated. 

A3- You don't bump I rebound off anything. Scale and confmes were both OK. 

A4- Not too bad. When you come to a stop you could have a flash of colour when you 
hit your head. Confines not too bad, difficult to replicate. Couldn't get down the sides of 
the motors unless you crouched, which is the same as in real MGR. 

AS -Fairly good, a few hangings on diesel motors and some other areas. There was no 
tactile sensation. The height (of the viewing perspective) was not quite right. Adding 
some more pipe work would replicate the confines better. 

A6 -No great problems. 

A 7 - Some areas were difficult to access, such as the ladders. I was able to access some 
areas that I would not be able to in the real MGR, such as under the SSE. Confines were 
OK, nothing is going to be perfect in this environment. Toolboxes were missing (in 
relation to confines). 

(7) How accurately is the context and culture of a real world Main Generator Room on­
board a Collins class submarine depicted within the LASTS simulation environment? Are 
there any elements present within the real world Main Generator Room that are missing that 
could impact on the effectiveness of training within the LASTS simulation environment? 

AI -More boxes missing, seems good. 

A2- It's not hot. There is no sound (real MGR is noisy), doesn't smell, minor bits and 
pieces and gauges, more detail, internals etc. 

A3 -Not very similar due to access restrictions, people and contractors missing. 
Freedom of access is good. Lot more detail in naming displays. 

A4 -Pretty good, needs sound, valves, pipes, more detail. 

AS -Add rags, day to day items, such as tools and spanners. The real MRG has buckets 
and boxes everywhere when seagoing (stores). There is no lived in look. No parts are 
lying around, not giving a day to day feel. No danger tags. 

A6- Many day to day items are missing. Needs more detail is this regard. 

A7- Need the noise of diesels, air conditioning, and the ambient noise is missing. 
Clinically clean, not generally a perfectly clean environment. 

(8) How accurately do you feel the LASTS simulation environment represented the actual 
Main Generator Room on-board a Collins class submarine in terms of the look and feel of 
the simulation environment? How well did the look and feel of the simulation environment 
give a realistic impression of scale, positioning, and orientation of the real world Main 
Generator Room on-board a Collins class submarine? 

AI - Pretty close, fairly accurate. 

A2 -All right, wandering around would be OK, but it is no substitute for real world 
experience. Wouldn't unleash a new sailor by themselves in the MGR after simulation. 

A3 - Realism is great in light of training context. Scale etc. is good. Can't depict 
confmes, 
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crawling under things etc. 

A4 - Pretty good, scale etc. was very good. 

A5- No paint on rockers or other things (should be cream colour). Parts are missing, 
valves, pipes. Scale, positioning, and orientation are excellent. 

A6 -·The clutter wasn't replicated. 

A7- Yes, all good. 

(9) How accurately did the LASTS simulation environment depict the functional behaviour 
of the real world Main Generator Room? Did objects function within the LASTS simulation 
environment as they do in real life? Did the LASTS simulation environment behave and 
respond to your actions as you would expect within the real world Main Generator Room? 

Al -LASTS was more static than the real world MGR. 

A2 -Not really, pretty static. 

A3- Static. No real functionality. Walking around was OK, but no interaction with 
systems. 

A4 - Lack of functionality. 

A5- No functionality, static. No exhaust railings. 

A6 - Functionality level fine for navigating through the boat if more rooms were 
complete. Would be fine for initial training, but not adequate for more technical or 
higher level training. 

A 7 -No functionality. Movement functionality OK though. 

(10) How effective do you feel the exercise within the LASTS simulation environment 
would be in assisting the development of your environmental awareness of the Main 
Generator Room? Do you feel that this exercise would be beneficial in developing the 
environmental awareness of trainees who had not yet been inside the Main Generator Room 
on-board a Collins class submarine? 

Al - Help them a lot, help them find items. Wouldn't need to ask questions of 
experienced crew. 

A2 - Effective, good as a start out thing. Defmitely help trainees. A good tool. 

A3 -For trainees, absolutely huge benefit. Qualified submariners would not receive 
much benefit. Yes, better than nothing. Trainees would benefit from a guided tour of the 
real MGR first in terms of better developing their situational awareness. 

A4 - Real effective. Good for new trainees. 

A5 - In conjunction with tour of real submarine would be good for set of rounds type 
scenario. Need to walk through first in order to put everything in context. 

A6-. 

A 7 - Very, very effective. Very beneficial for initial course for those who had not been 
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on-board in terms of learning the locations of equipment. 

(11) How appropriate do you feel the exercise within the LASTS simulation environment 
was in relation to actual operations on-board a Collins class submarine within the Main 
Generator Room? 

AI- Yes, compartment layouts. 

A2 -Yes, rounds. Trainees need to find items in a trainee book, compartment layout. 

A3 -Need to be linked to actual activity, much more interactive and task orientated. 

A4 - Pretty good. 

AS -For rounds in the MGR, not that massive as gauges are missing etc (unable to get 
read out of gauges for rounds in the MGR which is required to check Halon bottle 
pressure etc.). Well suited to a familiarization or rol.mds type scenario, such as a casing 
sentry in harbour type situation. Not suited to engineering related tasks, as there 
is not enough detail such as fuel lines, injectors etc. 

A6 - OK for familiarization scenario. 

A7- Yes, appropriate for non marine technician type scenarios (such as those described 
by AS and A6). 

(12) What distortion or inaccuracies did you feel were present between the virtual 
representation of the Main Generator Room and the real world one? 

AI -Couldn't really pick anything out. 

A2 - It's a cartoon! Clean up minor details. 

A3 - Pretty good, but separation is there between computer and real world. 

A4- None really. 

AS- Paint is missing. Some of the colours were wrong (fire extinguishers). Some items 
were in the wrong location. Missing components, such as Emergency Air Breathing 
System. Diesel detail is lacking. Cabling and pipe work is not replicated, which does 
not accurately represent the confines or the clutter of the MGR (sub safe tool boxes also 
missing). 

A6-. 

A 7 - It is missing a few items, which need to be added before it is ready as a real 
training tool. 

(13) How would you rate the quality and detail of the surfaces of the objects and 
architecture within the LASTS simulation environment? 

Al-Good. 

A2 - Some objects looked like shapes, such as the cabinets, due to a lack of detail. 

A3-Good. 
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A4- 8/10. 

A5 - Deck plating textures were excellent, as were those for the Halon release. Some 
textures did not reflect the cream paint colour throughout the MGR. All pretty good. 

A6-. 

A 7 - Pretty good, more detail required on the control panels. This is not hugely 
important for new trainees, but an operators course would require more clarity. 

(14) Given your previous experience on-board Collins class submarines, do you think that 
the LASTS environment could be successfully used to increase the environmental 
awareness of trainees prior to them getting on-board the submarine? 

A1 -Help them a lot. 

A2- Yes. 

A3 - Defmitely. 

A4- Yes. 

A5 - Casting sentry doing his rounds would find this useful, not enough detail or 
functionality for an engineer to do a round. Defmitely useful for trainees. They would 
be able to find their way around more easily. 

A6-. 

A 7 - Definitely. There is not always a submarine available alongside for training. 
LASTS is a submarine alongside. 

( 15) What previous experience, if any, have you had with desktop computers? 

A1- Yes. 

A2 -I hate them. 

A3- Yes. 

A4- Yes. 

A5- Yes. 

A6- Yes. 

A7-Some. 

( 16) What previous experience, if any, have you had with three dimensional computer 
software? 

Al- Yes, games. 

A2 -A bit. 

A3-Games. 

A4-Games 
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A5- Yes. 

A6- Not greatly. 

A 7 - Some, not really. 

(17) What previous experience, if any, have you had with computer simulated training 
environments? 

A1 -Yes, not 3D. 

A2- Yes. 

A3 -Not much. 

A4- Yes, LASTS is heaps better. 

A5- Yes. 

A6- Yes. 

A7- Yes. 

(18) Have you previously been on-board a Collins class submarine? 

AI- Yes. 

A2- Yes. 

A3- Yes. 

A4- Yes. 

A5- Yes. 

A6- Yes. 

A7- Yes. 

(19) How familiar are you with the Main Generator Room of a Collins class submarine? 

A1 - Can fmd my way around. 

A2- Very. 

A3-Good. 

A4 - Pretty familiar. 

A5- Yes. 

A6- Yes. 

A7-Some. 
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Appendix B - Interview Transcripts for Group Bl 

Please note that the term 'the exercise' refers to the simplified 12 Point Safety Round. 

(1) How effectively were you able to recognize and recall the locations of objects used as 
part of the exercise? 

B 1 -Visually, I could find the items well, but I could not describe them well. I needed 
to look around to get my bearings and familiarise myself in order to find the items. 

B2- Found it pretty easy. Recalling information was easier than recognizing. I was 
working from memory primarily. 

B3 -Pretty good except for fire hose, which was more hidden than presented in 
diagrams. 

B4 - Pretty good. Could recognise some items without being prompted. 

BS - Good, recall from memory easier. 

(2) How effectively were you able to recognize and recall evaluative information of objects 
used as part of the exercise, such as their colour or shape? 

B 1 - Colour, association, relative size, and visual recognition to find things. 

B2 -Easy. Colours of control boxes, ejector (AFT SSE) shape stood out, looked like an 
inverted R2D2. 

B3 - Pretty good. Colour of emergency equipment stood out (bright colours, yellow or 
red). 

B4 - Very well. Red colour fire extinguisher. Pilot air cylinder depicted two Halon 
bottles (this participant spotted the error). 

BS - Colour stands out in grey environment. 

(3) To what degree do you feel that training you received prior to getting on-board the 
Collins class submarine assisted you in completing the exercise? 

B1- Needed to be longer, but it helped to form a mental image. 

B2 - Training quite helpful, generally helped to assist in exercise. 

B3 - Good, helpful. Easier than a computer. 

B4 - Still fresh in our mind. More time would have been beneficial, but was helpful. 

BS - 30% helpful, not enough time. 

(4) How well do you feel that the diagrams, photographs and descriptions of the Main 
Generator Room provided during training assisted you in recognizing the objects that 
needed to be found as part of the simplified 12 PSR on-board the Collins class submarine? 

B 1 - I wouldn't have found them without visual aid emphasis. 

B2 -Preferred the diagrams. Photos helped in identifying unfamiliar items. 
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B3 -All good apart from flre hose photo of ftre hose showed hose in unexpected 
location. 

B4 - Diagrams helped, pictures helped more, which were something visual to help. 

B5 - Layout was flne. One bottle picture was incorrect. The focus I highlight was on the 
wrong item. 

(5) How effective do you feel the provided training was in developing your environmental 
knowledge of the Main Generator Room? 

B 1 - The diagrams helped me to picture where I was in the environment. I found the 
side on perspective diagram to be the best. Diagrams as a whole for recognition, 
pictures to see what the item looked like. 

B2 -Fair idea oflayout due to diagrams. Top down and side view both helpful to 
compare and develop a mental representation. 

B3 - The diagrams were good. The side view diagram was the most helpful. 

B4 - Very helpful. Diagrams veiy helpful. Understanding of environment as a result of 
two diagrammatic representations (top and side). 

B5- References to direction helped (arrows pointing forward and aft). Once I had a 
reference and knew what I was looking for, I was OK. 

All participants had been on a walk through before. 
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Appendix C - Interview Transcripts for Group B2 

Please note that the term 'the exercise' refers to the simplified 12 Point Safety Round. 

(1) Did you feel a sense of being 'present' in the LASTS simulation environment, such that 
you felt as though you had a physical presence within the virtual environment? To what 
extent did this compel you to engage with the LASTS simulation environment? 

B2 _1 -Present, previous experience with FPS. Standard amount of presence consistent 
with FPS. Compelled action within environment. 

B2 _ 2 -Not to the extent that I had a physical presence, this did not effect my 
willingness to engage. Realism was engaging. 

B2_3- Yeh, yes. 

B2 _ 4 - Just like playing a game, try and see what you can do (compelled due to 
presence). 

B2_5- Yeh, good, free motion made you want to look around as opposed to static. 

(2) Did you feel a sense of immersion within the LASTS simulation environment, such that 
you felt a sense of involvement or absorption within the virtual environment? To what 
extent did this compel you to engage with the LASTS simulation environment? 

B2_1- Yes, standard I compatible with normal FPS game. 

B2 _ 2 -Not really, no barrier to engagement. 

B2 _3 -Yes, yes. 

B2 _ 4- Not totally immersive, but good as you can wander round. 

B2 _5- Not sure, always aware it was just a game. Ambient sound might be good. 

(3) How would you rate the quality of the textures, lighting, shadows, and reflections within 
the LASTS simulation environment? 

B2 _1 - 8/10, little bit pixelated, all very square. 

B2 _ 2 - Brilliant graphics, knew what you were looking at, realistic. 

B2 3- 7/10. 

B2 _ 4 - Quite different to real sub (refit perhaps?). Lighting biggest issue compared to 
real, could still work out what was what though. 

B2 _5 -Pretty good, knew what everything was looking at. A bit sterile, too clean, not a 
real issue though. 

(4) How effective were the controls (the mouse and keyboard) in permitting the completion 
of the exercise within the LASTS simulation environment? Did the controls create any 

· barriers to completing this task? 

B2 _1 - Controls were good, no barriers. 
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B2_2- Good, controls were easy to familiarise with, no barriers (No FPS experience). 

B2_3- Good, started floating near end ('You now feel lighter'). 

B2_ 4- No problems. 

B2 _ 5 - Good. Mouse good for looking around. Keyboard familiar due to games. Got 
stuck in a few places. 

(5) How would you rate the quality of the LASTS simulation environment to detect and 
respond to contact or collisions between your virtual self and objects within the 
environment? How well did the LASTS simulation environment replicate the confines of 
the Main Generator Room on-board a Collins class submarine? 

B2_1 -7/10, catching on objects a minor issue. 

B2 _2 - Good, couldn't fit through spaces you would normally not be able to. Accurate 
depiction of where you can and can't go. 

B2 _3- Good, very well replicated confmes ofMGR. 

B2_ 4- Pretty good, collision zone seemed slightly outside virtual self. No visual 
reference (i.e. gun, hand as in FPS). 

B2 _ 5 -Pretty good, ladder base a bit touchy. 

(6) How effectively were you able to recognize and recall the locations of objects used as 
part of the exercise? 

B2 _1 -Very well, didn't have to move anywhere, rattled them all off. 

B2_2- Everything was in the same location (virtual and real), aid to memory. 

B2_3- Very easy. 

B2 _ 4 - Very well, pretty simple compartment. 

B2_5- Got them all, missed and forgot bilge hatch, otherwise easy. 

(7) How effectively were you able to recognize and recall evaluative information of objects 
used as part of the exercise, such as their colour or shape? 

B2 _1 - Pretty well. 

B2_2- Pretty accurate, objects right size and colour (OCCABA). 

B2_3- Very well. Fire extinguisher at aft was red in sim, orange in real MGR. 

B2 _ 4 -Very well, I knew what I was looking for, matched virtual to real. 

B2_5- Really good, tour not as good as with a sim before hand. 

(8) How accurately do you feel the LASTS simulation environment represented the actual 
Main Generator Room on-board a Collins class submarine in terms of the look and feel of 
the simulation environment? How well did the look and feel of the simulation environment 
give a realistic impression of scale, positioning, and orientation of the real world Main 
Generator Room on-board a Collins class submarine? 
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B2 _1 -Pretty well, pretty good. 

B2 _ 2 - Sim felt roomier, no sense of objects next to you in sim. Sim didn't reflect the 
confines of the environment. 

B2_3- 8/10, good. 7/10 or 8/10 for scale, positioning etc. 

B2 _ 4 -Accurate, very good. 

B2_5- Pretty good, more sterile. Spatially, port and starboard, forward and aft not 
overly evident, may be due to the symmetrical nature of the MGR. 

(9) How accurately did the LASTS simulation environment depict the functional behaviour 
of the real world Main Generator Room? Did objects function within the LASTS simulation 
environment as they do in real life? Did the LASTS simulation environment behave and 
respond to your actions as you would expect within the real world Main Generator Room? 

B2 _1 -All static, not realistic. All objects within real MGR static anyway (no 
movement). 

B2 _ 2 -It did, not a whole lot of functionality. For what we were doing (finding 
objects), yes it did. 

B2_3- Sim would be better ifyou could open hatches, doors etc, otherwise good. 

B2 _ 4- No real functionality, apart from click for ID of item. 

B2_5- Not much to interact with, save the ladder base. Not much functionality, but it 
suits it's purpose. 

(10) How effective do you feel the exercise within the LASTS simulation environment 
would be in assisting the development of your environmental awareness of the Main 
Generator Room? Do you feel that this exercise would be beneficial in developing the 
environmental awareness of trainees who had not yet been inside the Main Generator Room 
on-board a Collins class submarine? 

B2 _1 - Pretty good, unobstructed view of environment, easier. Yes, beneficial. 

B2 _2 - Very effective, considering limited time available on actual boat. Had good 
mental picture of where everything would be when I got down there. 

B2 _3 -Very good. Best thing you could do short of taking them into the real MGR. 

B2 _ 4 -Really good way of doing a walk through without doing a real one. Good 
familiarization tool. Good for pre-posting. Effective and hugely beneficial for new 
trainees. 

B2_5- Very effective, needs to be coupled with real world training, good head start. 
Sim got enough info and realism for new trainees to get on-board sub and know what 
they were looking at. 

( 11) What distortion or inaccuracies did you feel were present between the virtual 
representation of the Main Generator Room and the real world one? 

B2 _1 - Size, cramped not represented. Other people and activities not represented. 
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B2 _ 2 - Spatial confines of the environment. Very clean also. 

B2_3 -Pretty good, no glaring oversights. 

B2 _ 4- Fire extinguisher (wrong type), collision detection, some places you can crawl 
into in real life that you couldn't in sim. 

B2_5- Some smaller miscellaneous objects (oil drums, tools) not present in sirn. 

(12) How would you rate the quality and detail of the surfaces of the objects and 
architecture within the LASTS simulation environment? 

B2_1- Not too bad, 6/10. 

B2_2- Very good. 

B2 3-6/10. 

B2 _ 4 -Best I've seen on a defence computer. Very good. 

B2_5- Very good, good representation. 

(13) How effective do you feel training in the LASTS simulation environment was in 
developing your knowledge of the Main Generator Room environment on-board the Collins 
class submarine? 

B2 _1 -Pretty good. 

B2 _ 2- Highly effective, position and orientation (forward and aft). 

B2 _3 -Very effective. 

B2 4- Good. 

B2_5- Very effective, spotted all items with no difficulty. 

(14) What previous experience, if any, have you had with desktop computers? 

B2 1 -Reasonable amount. 

B2 _ 2 -Win apps, basic. 

B2 3 -A little. 

B2_ 4- Yes, software engineering. 

B2_5- Yes, above average. 

(15) What previous experience, if any, have you had with three dimensional computer 
software? 

B2 1 -Reasonable amount. 

B2 2 -No. 

B2_3- Not really. 
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B2 4- Yes. 

B2 _5 -Yes, games. 

(16) What previous experience, if any, have you had with computer simulated training 
environments? 

B2 1-Notalot. 

B2 2- No. 

B2 3- No. 

B2 4- Yes. 

B2 5- Yes. 

(17) Have you previously been on-board a Collins class submarine? 

B2_1- Yes, once. 

B2 _ 2 -Walk around only. 

B2 3- Twice. 

B2 4- Yes. 

B2 5- Yes. 

(18) How familiar are you with the Main Generator Room of a Collins class submarine? 

B2 _1 -Walkthrough once. 

B2 _ 2 -Brief walkthrough, no real familiarity. 

B2 3 -Never been there. 

B2 _ 4 -Not overly, walkthrough only. 

B2_5 -A couple ofwalkthroughs. 
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Appendix D - Questionnaire Transcripts for Group A 

Please rate these following concepts on a scale of 1 to 10, with 1 being the lowest value, and 10 
being the highest value: 

Note that each score refers to each participant in Group A in turn, with the first score being 
listed for participant A 1, the second for A2, and so on. 

Please note that the term 'the exercise' refers to the simplified 12 Point Safety Round. 

( 1) How accurately were the locations of objects used as part of the exercise on-board the 
Collins class submarine reflected within the LASTS simulation environment? · 

Scores: 8 8 9 8 7 7 9 6 9 
Average~ 7.9 

(2) How well did the LASTS simulation environment three dimensionally model the objects 
andarchitecture of the Main Generator Room on-board a Collins class submarine? 

Scores: 7 9 9 9 7 7 9 4 8 
Average~ 7.7 

(3) How well did the textures, lighting, shadows and reflections within the LASTS 
simulation environment serve to create a high quality visual experience? 

Scores: 6 8 9 9 7 4 53 8 
Average ~ 6.5 

(4) How responsive to your actions did you find the LASTS simulation environment and to 
what degree did this enable you to complete the exercise? 

Scores: 8 10 9 8 6 6 9 7 8 
Average~ 7.9 

(5) How quickly did the LASTS simulation environment update the display in response to 
your actions? 

Scores: 8 10 9 9 8 10 9 9 9 
Average~ 9.0 

(6) (a) How freely were you able to move within the LASTS simulation environment? 

Scores: 5-9 9 8 10 9 57 
Average~ 7.75 

(b) How effectively were you able to control the direction you were facing within the 
LASTS simulation environment? 

Scores: 8 8 9 9 8 10 9 5 7 
Average ~ 8.1 

(7) How effective were the controls (the mouse and keyboard) in permitting the completion 
of the exercise within the LASTS simulation environment? 

Scores: 7 10 9 9 8 10 10 9 9 
Average~ 9.0 

146 



(8) How effectively did the LASTS simulation environment respond to contact or collisions 
with objects and architecture as you were moving throughout the envirot1ment? 

Scores: 3 9 9 7 7 10 10 6 8 
Average~ 7.67 

(9) How well is the exercise integrated into the LASTS simulation environment? 

Scores: 59 8 8 6 10-7-
Range: 5 
Average~ 

(10) (a) How accurately does the LASTS simulation environment represent the scale, 
positioning , and orientation of the Main Generator Room on-board a Collins class 
submarine? 

Scores: 6 8 8 9 5 10 8 7 9 
Average ~ 6.625 

(b) How accurately is operating within the Main Generator Room on-board a Collins class 
submarine depicted within the LASTS simulation environment? 

Scores: 8 8 8 8 6 - 9 6 7 
Average~ 7.5 

(11) How appropriate to real world tasks within the Main Generator Room on-board a 
Collins class submarine was the exercise completed within the LASTS simulation 
environment? 

Scores: 7 8 6 8 6-- 7-
Average~ 7.0 

(12) How easily were you able to recognize objects within the LASTS simulation 
environment? 

Scores: 8 10 9 9 6 10 10 9 8 
Average ~ 8. 78 

(13) What level of distortion or inaccuracy did you feel was present between the LASTS 
simulation environment and the actual Main Generator Room on-board a Collins class 
submarine? 

Scores: 7 9 8 3 6 7 55 7 
Average ~ 6.34 

(14) How would you rate the quality of the surfaces of objects and architecture depicted 
within the LASTS simulation environment? 

Scores: 8 8 8 8 6 6 8 4 7 
Average~ 7.0 

(15) The degree of your previous experience with desktop computers? 

Scores: 10 10 9 9 4 8 10 8 8 
Average ~ 8.4 
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( 16) The degree of your previous experience with three dimensional software? 

Scores: 4 10 9 8 4 6 10 4 8 
Average ~ 7.0 

(17) Your overall impression of the LASTS environment to represent the Main Generator 
Room of a Collins class submarine for the purposes oftraining? 

Scores: 7 9 9 8 4 10 10 7 8 
Average ~ 8.0 
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Appendix E - Questionnaire Transcripts for Group Bl 

(1) Please describe the following items in any terms you wish. Please be as descriptive as 
possible. 

1. MGR Room Bilge Hatch 

B 1 1 - Forward hatch. 

B 1_ 2 - Starboard, forward of the mmz(?) 

B 1_ 3 - Metal square on floor between generator one and three opposite to pilot air 
cylinder. 

B 1_ 4 - See through grate hatch into the bilge room. 

B1_5 -Access to bilge. 

2.MGRHatch 

B 1 1 -Hatch in to machine room. 

B1 2 -Hatch. 

B 1_ 3 - Main entrance to generator room. 

B4 -Round hatch leading to the casing. 

B5 -Access from casing to MGR. 

3. Aft SSE 

B 1_1 - Outboard white round shape going into the bulkhead. 

B 1_ 2 - Cylinder looking. 

B 1_3 -Big white box next to SSE controller opposite MGR hatch ladder. 

B 1_ 4- Ejector system on a 45 degree angle cylindrical in shape. 

B 1_5 -Fire the signals from. 

4. Aft SSE Controller 

B 1_1 - Outboard out aft ladder bay small blue box shaped. 

B 1 2 - Blue box with buttons. 

B1_3- Smaller grey box next to SSE opposite MGR hatch ladder. 

B 1_ 4 - Gray box of controls adjacent to Aft SSE. 

B1_5- The signal controller. 

5. Pyrotechnics Locker 

B 1~ 1 - White locker under ladder bay 3 large boxes. 
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B 1 2 -White cabinet with two ha1ons. 

B1_3- Large white locker next to MGR hatch ladder opposite AFT SSE controller. 

B1_ 4- Large rectangular box at top of the MGR walkway. 

B1_5- Holds the signals. 

6. Fire fighting Equipment 

B 1_1 - Red in colour boxes. Occabas x 2, 2 x fire extinguishers. 

B 1_ 2 - OCABBA red boxes x 2, fire extinguishers, fire hose reel. 

B 1_ 3 -All marked red, stands out from other equipment. 

B 1_ 4 - Red fire extinguishers and two red OCABBA boxes port and starboards. 
Black hose reel port side. 

B1_5- No response. 

Please rate these following concepts on a scale of 1 to 10, with 10 being the highest value and 1 
being the lowest: 

Please note that the term 'the exercise' refers to the simplified 12 Point Safety Round. 

(2) How effective was the training lesson you received before going on-board the Collins 
class submarine in preparing you to complete the exercise? 

B1 1 -7 

B1 2-4 

B1 3-7 

B1 4-7 

B1 5-5 

(3) How effective do you feel the training lesson was in developing your environmental 
knowledge of the real world Main Generator Room on-hoard a Collins class submarine? 

B1 1 -7 

B1 2-4 

B1 3-7 

B1 4-6 

B1 5-7 

(4) Mark the following items on the diagrams provided below 
See Figures 11 through 14. 
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Appendix F- Questionnaire Transcripts for Group B2 

(1) Please describe the following items in any terms you wish. Please be as descriptive as 
possible. 

1. MGR Room Bilge Hatch 

B2 _1 - Small rectangular checker plate hatch between centre and port main 
generators. 

B2 _ 2 - Hatch embedded in deck plates between central I stb engines. 

B2_3- Hatch allowing access to the MGR bilge. At fwd end of compartment. 

B2 _ 4 - Deck plate fwd between centre line and stbd. 

B2 _ 5 - Deck plate, silver rectangular towards fwd end of catwalk blw diesels. 

2.MGRHatch 

B2 1 -Aft access to sub. 

B2 _ 2 - Hatch leading to casing from landing where AFT SSE I controller is located. 

B2 _3 -Access to compartment via this hatch brings you into the aft end of 
the compartment. 

B2 -Aft deckhead above aft SSE. 

B2 -Up ladder bay AFT (port) and up to casing. White ladder bay is green 
and white with diagonal stripes on side. 

3.Aft SSE 

B2 _1 - Cylindrical shaped automatic launcher. 

B2 _ 2 - Signal ejection tube on upper landing with controller controlling it to the 
left. 

B2 _3 -This is just near (stbd side) of the MGR hatch ladder. 

B2 _ 4 -After part of the compartment on platform starboard side. 

B2 _5 - Stbd side, looks around the size of 44 gallon drum. Painted white with 
various valves I attachments. Connects with casing stbd side aft MGR. 

4. Aft SSE Controller 

B2 _1 - Control panel located forward of launcher. 

B2_2- To the port side of ejection tube, small rectangular control box. 

B2_3- When facing the aft SSE this controller is on your left hand side. 

B2 4- Fwd of the SSE. 
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B2_5- Fwd of the SSE panel, faces aft. Lines of circular lights I buttons. Panel 
grey I green. 

5. Pyrotechnics Locker 

B2 1 - White locker. 

B2 _ 2 -Large white locker located opposite AFT SSE, lower locker of two. 

B2_3- When you come down the MGR hatch ladder this locker is directly behind 
you. Has a sign on it saying 'SHIP CAT'. 

B2 _ 4 -After part of the compartment on platform port side. 

B2_5- White locker under MGR hatch aft of space, rectangular with round edges. 
4 Y2 to 5 foot high. 

6. Fire fighting Equipment 

B2_1- Fire extinguishers, hose reel, Halon, OCCABAs. 

B2 2 - 1 x foam ext at exit of tunnel bulkhead. 2 x OCCABA at aft end of 
compartment, 1 X fire hose reel at aft, port end, 1 X foam ext next to hose reel 
1 x ext next to SSE. 

B2 _3 -With the two halon release activation point and the two OCCABAs. There 
is also 3 fire extinguishers and a hose. 

B2 _ 4 - 2 x OCCABA on after part of the generators, aft port side. Aft hose, dry 
chem ext next to pyro locker, Halon centreline aft bulkhead. Aft ext port side. 
Aft and stbd side fwd. 

B2_5- Extinguishers (on escape tunnel 76 bulkhead, near fire hose reel, near 
SSE controller panel, just below Halon release box, red panel on aft bulkhead). 
OCCABA stowage, hard up against diesels on aft crossdeck passage (near halon 
box I hose reel). Hose reel stbd side aft black reel. 

Please rate these following concepts on a scale of 1 to 10, with 10 being the highest value and 1 
being the lowest: 

Note that each score refers to each participant in Group B2 in turn, with the first score being 
listed for participant B2_1, the second for B2 _ 2, and so on. 

Please note that the term 'the exercise' refers to the simplified 12 Point Safety Round. 

(2) How accurately were the locations of objects used as part of the exercise on-board the 
Collins class submarine reflected within the LASTS simulation environment? 

Scores: 10 9 10 10 8 
Average: 9.4 

(3) How well did the LASTS simulation environment three dimensionally model the objects 
and architecture of the Main Generator Room on-board a Collins class submarine? 

Scores: 8 8 9 10 8 
Average: 8.6 
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(4) How well did the textures, lighting, shadows and reflections within the LASTS 
simulation environment serve to create a high quality visual experience? 

Scores: 8 7 7 7 7 
Average: 7.2 

(5) How responsive to your actions did you find the LASTS simulation environment and to 
what degree did this enable you to complete the exercise? 

Scores: 8 9 10 9 8 
Average: 8.8 

(6) How quickly did the LASTS simulation environment update the display in response to 
your actions? 

Scores: 9 9 10 10 9 
Average: 9.4 

(7) (a) How freely were you able to move within the LASTS simulation environment? 

Scores: 10 9 8 57 
Average: 7.8 

(b) How effectively were you able to control the direction you were facing within the 
LASTS simulation environment? 

Scores: 10 9 9 10 10 
Average: 9.6 

(8) How effective were the controls (the mouse and keyboard) in permitting the completion 
of the exercise within the LASTS simulation environment? 

Scores: 10 9 10 10 8 
Average: 9.4 

(9) How effectively did the LASTS simulation environment respond to contact or collisions 
with objects and architecture as you were moving throughout the environment? 

Scores: 8 7 7 8 7 
Average: 7.4 

(10) How well is the exercise integrated into the LASTS simulation environment? 

Scores- 8 8 9 10 7 
Range-3 
Average - 8.4 

(11) (a) How accurately does the LASTS simulation environment represent the scale, 
positioning , and orientation of the Main Generator Room on-board a Collins class 
submarine? 

Scores: 10 7 8 10 9 
Average: 8.8 

(b) How accurately is operating within the Main Generator Room on-board a Collins class 
submarine depicted within the LASTS simulation environment? 
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Scores: 8 8 9 10 7 
Average: 8.4 

(12) How easily were you able to recognize objects within the LASTS simulation 
environment? 

Scores: 9 10 9 10 9 
Average: 9.4 

(13) What level of distortion or inaccuracy did you feel was present between the LASTS 
simulation environment and the actual Main Generator Room on-board a Collins class 
submarine? 

Scores: 1 7 3 1 3 
Average: 3 

(14) How would you rate the quality of the surfaces of objects and architecture depicted 
within the LASTS simulation environment? 

Scores: 8 8 7 8 6 
Average: 7.4 

(15) How effective was the training lesson you received before going on-board the Collins 
class submarine in preparing you to complete the simplified 12 PSR? 

Scores: 9 9 10 8 8 
Average: 8.8 

(16) How effective do you feel the training lesson was in developing your environmental 
knowledge of the real world Main Generator Room on-board a Collins class submarine? 

Scores: 9 9 10 8 8 
Average: 8.8 

(17) Your overall impression of the LASTS environment to represent the Main Generator 
Room of a Collins class submarine for the purposes of training? 

Scores: 9 9 10 8 9 
Average: 9.0 

(18) The degree of your previous experience with desktop computers? 

Scores: 7 8 7 10 8 
Average: 8.0 

(19) The degree of your previous experience with three dimensional software? 

Scores: 9 6 5 10 8 
Average: 7.6 

(20) Mark the following items on the diagrams provided below 
1. MGR Room Bilge Hatch 
2. Pilot Air Cylinder 
3. MGRHatch 
4. Aft SSE 
5. Aft SSE Controller 
6. Pyrotechnics Locker 

154 



7. Fire fighting Equipment 
See Figures 11 through 14. 
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