Edith Cowan University
Research Online

Theses : Honours Theses

2009

An investigation into student reactions towards rad versus
traditional programming environments for novice developers

Pansy Colkers
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses_hons

b Part of the Programming Languages and Compilers Commons

Recommended Citation
Colkers, P. (2009). An investigation into student reactions towards rad versus traditional programming
environments for novice developers. https://ro.ecu.edu.au/theses_hons/1219

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses_hons/1219

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses_hons
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses_hons?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F1219&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F1219&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses_hons/1219

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose
of your own research or study.

The University does not authorize you to copy, communicate or
otherwise make available electronically to any other person any
copyright material contained on this site.

You are reminded of the following:

e Copyright owners are entitled to take legal action against persons
who infringe their copyright.

e A reproduction of material that is protected by copyright may be a
copyright infringement. Where the reproduction of such material is
done without attribution of authorship, with false attribution of
authorship or the authorship is treated in a derogatory manner,
this may be a breach of the author’s moral rights contained in Part
IX of the Copyright Act 1968 (Cth).

e Courts have the power to impose a wide range of civil and criminal
sanctions for infringement of copyright, infringement of moral
rights and other offences under the Copyright Act 1968 (Cth).
Higher penalties may apply, and higher damages may be awarded,
for offences and infringements involving the conversion of material
into digital or electronic form.

AN INVESTIGATION INTO STUDENT REACTIONS
TOWARDS RAD VERSUS TRADITIONAL

~ PROGRAMMING ENVIRONMENTS FOR NOVICE

DEVELOPERS

EDITH COWAN UNIVERSITY
LIBRARY

By: Pansy Colkers

Student ID: 10093283

Honours Thesis

Semester 2, 2009

Supervisor: Dr Justin Brown

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

ABSTRACT

The traditional approach to programming using text editors is widely used in many
institutions to teach introductory programming. These types of traditional programming
environments provide fundamental programming concepts for learning, especially in the

context of novice developers.

" In recent years, teaching institutions have seen a trend towards the introduction of visual

“drag-and-drop” rapid application development (RAD) environments for teaching
novice programmers. These ‘environments capture student interest in programming by
allowing the construction of workable programs within a short time frame based on
minimal pre-existing coding knowledge. However, some have argued that these visual
RAD environments might not be suitable for providing fundamental programming

concepts and syntax to novice developers.

This research examines student perceptions towards visual RAD environments in
comparison to traditional environments for learning programming for novice
developers, mainly focusing on the novice developer’s “first” programming
environment. To gather student reactions towards these programming environments,
surveys, interviews and workshops were conducted with novice, intermediate and expert
level student programmers. The results indicate that while visual RAD environments
managed to capture the majority of the participants’ interest, the traditional approach
was largely accepted as the most appropriate “first” environment for novice developers.
Another finding from this research is the participants’ perceptions of the key aspects of
learning programming, which also formed part of the deciding factors for the “first”

environment. Understanding the underlying concepts, syntax and logic of the program

workable programs quickly. The majority of participants perceived that traditional
programming environments could help novice developers with understanding
underlying concepts and syntax better than visual RAD environments. Although visual
RAD environments do not require a traditional programming environment at the early
stage of programming, the latter would become necessary as the program grows and
more complex functions are required. Overall, the visual RAD environment was still the
prefefred environment for development despite the lack of pedagogical benefits

compared with traditional environments.

1ii

COPYRIGHT AND ACCESS DECLARATION

| certify that this thesis does not, to the best of my knowledge and belief:

(i) Incorporate without acknowledgment any material previously
submitted for a degree or diploma in any institution of higher
degree or diploma in any institution of higher education;

(i) Contain any material previously published or written by another
person except where due reference is made in the text of this
thesis; or

(iii) Contain any defamatory material.

(iv) Contain any data that has not been collected in a manner
consistent with ethics approval.

The Ethics Committee may refer any incidents involving requests for ethics
approval after data collection to the relevant Faculty for action.

Table of Contents

USE OF THESIS ..o ecesseessceesssessssessssesssssessessassssssssssssesssesssssesssere i
ABSTRACT ..ttt sttt sb e et s e s b st s b sbesbe st e e sbesbesbeseesmnssnenneneas iii
COPYRIGHT AND ACCESS DECLARATION.......cococerteieniinienieniesieneesieeeneessesiessenne iv
L. INETOQUCTION c.eciiiiiiiitienicciicccicrre ettt ettt st b e s bt e s asbesbaesenanbneseesns 1
1.1. Background to the StudYccoceveririniinieriininceinreteer et 2
1.2. Purpose and Rationale of the StUAYccovveeieerririneeeineeesseeeeeseeseses s eneseneseens 4
1.3. Definitions of the Terms........cccceeverviervrerereenrenirenenreneennees e 5
1.4, Statement of Research QUESHIONS ..c.cvevvvviieeieiiiieieiee et 6
1.5. Significance of the StAYcccceveriiiiinicenr e 7

2. Literature Review.........cocoevennin. ettt s et h bbbt n bttt n e 8
2.1. Traditional Programmingccoceererviereniernerseneenienieseesieenieeseseeessesssessnesnens 8
2.2. Visual Rapid Application Development.........coeeeverivireeneeirerienieenessenieeneens 13
2.3. Teaching Programmingc.cccecereiiinieeniiriniieniiesceeannensieesosessiseenessseassnssnses 19
2.4. Learning Styles and MOtiVAtIONcccoverierieiiieniecieieniesereeeteeeseeseesesresienneen 26

3. Research Mefhgd ANA DESIZN ..vivveeririiiiriiieie et aesresre et erressbesss e beasaenseenes 28
3.1, Research Methodscovvieiveiiciniiniieccienenee et neere e 28
311, Selection PrOCESS......covvverieiriinieniisiiieieiieceie et eeeisere et esreses s siesbesnees 28
3.1.2. Survey Method.....cooviviiiiieiiiiinieeercneee et 29
313 Interview Method ... s eer s 30
3.1.4. Observational Method..........ccoveviireenieniiiniinieinneereentsie e seeeones 30

3.2, ReSearch DESIZNcoccveriiiiiiiiiiienireiniieseeseesitesesseeesieeesssesseresreesisessseasesesasecs 31
3.2.1. Participant RECTUItMENL.......cccrivririrereineneeteesereeeee e 32
322, Survey DelIVEIY ...oocviceeviiviiiiireeicieniecserree et 33
03230 Coding BXEICISES...icvevirirerienreiisierieereeteienreneestesiesstsieeaesraeseseseseesnenesssenens 34
324, INEEIVIEWS .iotiriiiiiirieiieriiite st ettt et seeste st sb st aeessesbesbe e s e s sbesreseesaesbesneon 35

. DA ADALYSIS crreroeeeereseeeeeeeeees s eeees e sses e seessesse e esess oo sseee e 36
A1 PLE-GREICISE SUIVEY ..vvvvereosesosseeesoesssossessossssosseostoesseeseesssos oo 36

v

4.1.1. DemOZIapRiCs ..ccovierririiieriiireinieiiiieeseesieeresrtenetsieeseesreesrestesstesaeeneesneesenens 36

4.1.2. Programming EXPEIiNCe.......cccceriivuiriiereerieeienienienesseeeesennsesnesseesenns 37

‘4. 1.3. Visual RAD Versus Traditional Programming Environments 39
4.1.4. LearningExperience..............................‘ ... 43
4.2, POSL-EXEICISE SUTVEY ...eeernriiririrrersirenseeiiriesasesesseessuessseessesenseesssessssesssessssessnes 46
4.2.1. Section One ...c.ccoceeciininieneeninienienreneeseseeseesnans e 46
422, SeCtion TWO coviiiiiiiiiiiiiie e re s s 51
4.2.3. Section TRICEcceovviiiiriiiiieiinitctinectesesi ettt et enne 55

5. DISCUSSION c.uteiiuiiiiiieieentiiit ettt sttt e s e st a e be e se s senesabe e bbeasbessresnsnes 63
5.1. Understanding Programming Syntax and COncepts........ccovvereervrevrarvenrersvennees 63
5.2. Understanding Underlying Logic of the Program...........cccccoovevercuinvinncvncrennens 64
5.3. Ability to Enhance FUrthercccecroiineniiniineniininccieeseeeseneneesne s 64
5.4. Ability to Build a Workable Programcccceceevievniiiiviiecieenieinnecirecieeeneenns 65
5.5, IIEETEST ..eiiiiiiiiicern ettt et saba e baesaeeene 65
5.6. Traditional Programming Environmentc.ccceeeeeeuriveneneninienenieenreneesseneenne 66
5.7. Visual RAD Environmentccocceeivniiniininiienieniiiciesceircre e 70
5.8, Learning SEQUENCEceiecuiereerierieeiitisreesieesiesreessresressreessseesersssnessessseens 72

6. CONCIUSION ..eviviiiiieiieiie ittt ettt et st esbee s e eene e e reesraneseeaaresnnens 76
6.1. Visual RAD as First ENVITONMENL......ccccucvirnirereerineineenierreneesieenneniressessseennes 76
6.2. Traditional Programming Knowlec}gg?xperience for Visual RAD 77
6.3. Preferred Programming Environmentcccovcveeveeminiiniieiniiensieenininrensiessieens 78

6.4. Student Reaction to Visual RAD versus Traditional Programming

Environmentsoovvvvveiivienieniirneeeresineiennnierseeseseen eerrererrrereeeesien b hrararreetaesenasanrrrnraes 79
6.5. Limitations of RESEArCH........cocivviiiiiiiiiiiiiiiicciie i e e e sereesbeeesnrreeens 80
6.6. Recommendations for Further Researchccoovvvvviviiiiiviiviriiiiieniieneeeeseinnns 80

T REFEIENCE LLISE rvovereerereeeereeeeeresseeseesesesesesseesessesesssseesessesesssssesessseeseseessessssssssessenenes 81
-Appendix A: Programming Example Using RADc.ccccocvviiienineninienecinenenieirenes 87
Appendix B: Pfe—ex_e_rcise QUESTIONNAITEeovvieiirvieririieiienireeereeeer ettt sresbe s seens 95
vi

Appendix C: Post-exercise QUESHIONNAITEeeviiiiiiriiisininieiii e, 99

Appendix D: Interview QUESHIONS.......ccocvviviviininiiinici 104
Appendix E: User LOgS ..o 105
Appendix F: Recruitment Notices..........ccovvvvivinninnnn, FO OO 124
For Lab WorkShOPS.......oviieiiiiiiiiiiiniinci e s 124
FOr Online WOTKSNOPSvvvvvierieeiiiintissiertresee st esireestee e ssaessbeessiresre e reseseessenenvees 124
Appendix G: Informed COonSent.........cceecveviriiniienniiieesenie it 125
Appendix H: Traditional Programming Environment EXercises......c..ccovvvvvvennrirerane. 126
Appendix I: Visual RAD Environment EXEICISESoevvevviieieininimniniiicnieninieineinn. 134
Table of Figures
Figure 2-1: PHP example to display data from databaseccccevvevverireriiineeneeneennenn 12
Figure 2-2: PHP example to display data from database with nested table.................... 13
Figure 2-3: Asp.Net example to display data from database using Visual Studio.......... 18
Figure 2-4: Traditional pathway for developerscocceevveveeniiiiniicrieniini e 20
Figure 2-5: Languages taught in Australian universities weighted by student numbers 23
Figure 2-6: How OO languages are taught in Australian universitiescc.cccoovveeerennen. 24
Figure 2-7: Teaching tools and enVironmMents.........e.eevvevvevveriiiereneieeneniseneenneeeniennes 25
Figure 3-1: Method triangulation.........cccevivviiniiniinieniiniiniirnn e 29
Figure 3-2: Research design and deliVery.......ccccvvierrennieineinirinieniieeeeee e 32
Table of Tables
Table 2-1: Results on sections course content and learning and teachingc......... 21
Table 4-1: Q2. Which of the following age groups do you fall into?..........c..ceeeerrrerrenees 37
Table 4-2: Q5. How many units have you completed in your course so far?................. 38

Table 4-3: Q14. Have you ever programmed in a visual rapid application development
environment before (such as Microsoft’s Visual Studio)?.......ccecvvevivvveriiveinininnieneannee. 39
Table 4-4: Q15. From my experience, I feel that visual RAD tools make programming

L0 1 () N 40

Vil

Table 4-5: Q16. I feel that visual RAD features and functions can (or look to) be hard to
UNAETSLANG L..veneiiiicrenieeiie ettt st se bt s st se e reseeer s a et san e 40
Table 4-6: Q17. 1 feel that traditional programming environments help me understand

the programming processes better (e.g. variable declaration, condition, loops, recursion)

... 41
. Table 4-7: Q18. I feel that learning syntax in traditional programming is (or looks)
QIFFICUIE et e e 41
Table 4-8: Q20. ThaVe ICAINEcc.vveiiiiiiieieeiiiec et errrre e e s ssrre e e s esbareeesnes 42
Table 4-9: Q21. Which environment would you prefer to learn first as a novice
PIOZIAIMIMETT o..viiiiiiiiiiiiieiniiiee ettt ean et e 42

Table 4-10: Q19. If I were asked to program a web application, I think I would prefer to

TS tovveuriereeiseteerte bt e bt e st e o be s b e s b e s bt e b e s e bbb e b e sb e et s e Rt e be e ke se R e SRR e b e bt st e s et ebeeeh e et e satesbeen 42
Table 4-11: Q22. When doing programming exercises, I prefercoovvvvvniivinnnnennns 43
Table 4-12: Q23. I find programming of any kind difficult to learn.........c.ccceceeverrenneene 44

Table 4-13: Q24. I expect to be able to program in a number of different environments
over the duration Of MY STUAIESccveririiriiiinirreii et 44
Table 4-14: Q25. Where possible, I would always like to use the same environment for
all programming tasks.c.ccociviiiiiiininii e 44

Table 4-15: Q26. From my experience, the first environment learned is still the most

IIPOTTANE ..ottt ettt sb et s e e et saesbs et e nesbesbeeseennsobenenasesnens 45
Table 4-16: Q27. In my future career, I eXPect t0......cccveverrivirerenieiieieeenenresreeeieenens 45
Table 4-17: Q1. Is this the first time you have used (seen the use of) a visual RAD

environment (certainly for building a working application)?c..cceceevevvvenienincecenennn 46
Table 4-18: Q2. Based on the (video) exercises, I feel that programming in 47
Table 4-19: Q3. Based on the (video) exercises, T feel that programming in ... 47

Table 4-20: Q4. I feel that I would be able to write loops, variables and condition
statements if [had started with visual RAD development.......c..ccccevveeerinirnrenieerenenne 48
Table 4-21: Q5. I feel that I have or would have a deeper understanding of being able to
write loops, variables and condition statements if I had started with traditional
AEVEIOPIMENL .e.uvieriiiieieiiei et s ettt et et e st e st e st et e see s b e e ssearesssessasaesseessensesraanaensensessansensens 48

Table 4-22: Q10. I feel that I learn more about actual programming syntax and concepts

Table 4-24: Q9. 1 feel that 1 have enough technical experience to use a visual RAD
environment for acfual development as presented in the (video) eXercises........coouvrereens 49
Table 4-25: Q7. 1 feel that the first environment has a significant impact on learning
PIOZIAIMNITIIE .e.eveetreiiuieeieeriterie sttt et e aresebeeeaeeesseasasaesseassstonsessaseesssessssesstassssesrsserssesnssnass 50
Table 4-26: Q8. Which programming environment do. you think should be introduced
 first to novice programmers in web application development?cccvvvverecinincnnen 50
Table 4-27: Q16. I feel that I would need more programming experience to use visual
RAD environments effeCtiVEloccviiviiriiniiiiiiice e sen st sar e srnesane e 51
Table 4-28: Q17. I feel that I would be able to program successfully in a visual RAD
environment without traditional programming Knowledgecovcunevcinininincnnnne. 52
Table 4-29: Q18. Given the nature of visual development in RAD, I feel that previous
pro gramrhing EXPETIENCE 1S NOL NECESSATY .viviriirvrrrerrereeeiniiesreeeeersrerseereserernensensessessense 52
Table 4-30: Q19. As a novice programmer, I feel that it is sufficient to program using a
visual RAD environment as long as I know what components to use and when............ 53
Table 4-31: Q20. I feel that it is not important to fully understand the underlying code
that makes the visual RAD components Workcoceeveererirneenenneenienienieneseensesnnes 53
Table 4-32: Q21. I feel that being able to build a workable program is the most
important aspect of learning programming, regardless of the environment 54
Table 4-33: Q22. I feel that learning programming syntax first is the most important
aspect of becoming a Programmer.........cocevveerverieriiniiesiieeenee e s et eee e eeens 54
Table 4-34: Q23. Regardless of traditional or visual RAD methods of web
programming, I feel that being able to learn any new environment quickly is more
important than which type of environment it iScceeceeverieenienivesieesieeseneeeeesreereennes 54
Table 4-35: Q24. Which environment do you feel is appropriate for novice developers

- for self-learning-in the web application development conteXt?cceovrmruvvrrvrreervrnee 55
Table 4-36: Q25. Which environment do you feel is appropriate for novice
programmers for classroom-based learning in web application development context? .55
Table 4-37: Q28. Which environment do you prefer for “Search” (based on the video
EXETCISES) 7 1uvieiurrierirreeeinreeriteeeireerareeesireseassesessssessresenssessbesensseesonssesssnsssessesssneesssresonseees 56
Table 4-38: Q29. Which environment do you prefer for “Edit/ Delete” (based on the
VIAEO EXETCISES)T vuveeurirrerirerreneenteentiistesseesteesestesaaesteesaessassesseeersesssesssssssessesssesssessesssensen 56
Tabie 4-39: Q30. Which environment do you prefer for “Insert” (based on the video
CBXEICISES) T uvvveeiirnrrireeeiiieeeieiraeeeeeeraeressesarrsesssessseesssseeesasareessssesbasesessssnnretsesssrbenesessssaeesanne 57
Table 4-40: Q31. Did you manage to complete the challenge exercise using visual RAD

ENVITONIMENLT,.vivieiieiiiiiiitii e ettt st st en et sbenes 57

ix

Table 4-41: Q32. Did you manage to complete the challenge exercise using traditional
ENVITONMENL? ..cuviererieriieeienreneeiecneneeninens F TP PO UTOP PP PPUOTPRPOPOROPRPOO 57
Table 4-42: Q31. Based on the video exercises, do you think you could code the
example application in a visual RAD environment?.........ccceeeevernenieninenenneneeneeneonn 58

Table 4-43: Q32. Based on the video exercises, do you think you could code the

~example application in a traditional environment?ccovevieveenieniennnenienienn 58
Table 4-44: Q33. Overall, based on these (video) exercises, I would prefer.................. 59
Table 4-45: Q34. If I had to further develop these exercises (with extra functions), I
would use 59
Table 4-46: Q35. Which set of exercises do you feel is easier to understand?............... 60

Table 4-47: Q36. 1 feel that the teaching and learning materials are more important than
the type of programming environmentsccccevveveerriesoninieiinereresessieeeeeensseesiee 60
Table 4-48: Q37. I feel that availability of useful resources (textbooks or websites)
influenced my reaction to visual RAD versus traditional programming environments..61
Table 4-49: Q38. Which environment did you feel had the most useful online (web-
based) resources (such as tutorials/code examples)?cocveecvvirieeniireneeenreenneenreeneenns 61
Table 4-50: Q39. I feel that setup and configuration issues (of the environment) could
affect my reaction to RAD versus traditional programming environments.............c...... 61
Table 5-1: Students comments on benefits of a traditional environment for programming
PIOCESSES .veuverurermeearerarienueeetosesetseasesesteuearessesatessesaesaseshesastssssersestnesstesnesastonstonaearsessessssons 67

Table 5-2: Students comments on difficulties of a traditional programming environment

... 69
Table 5-3: Ease and rapidity of programming in visual RAD environment................... 71
Table 5-4: Downfalls of visual RAD environment...........cccovvivviinicniinniiiienccnnnennenn. 72
—Table 5-5: Importance-of first environment oo 73
Table 5-6: Importance of ability to understand programming CONCepPtSocuevverrerurenn 75

1. Introduction

“Programming is a cognitively challenging task and training novices can be a

challenging undertaking” (Raadt, 2008, p. 19).

" Programming is not an easy subject, especially for students new to the field. According
to Teague and Roe (2008), the failure rate for introductory programming courses has
been consistently high over the past five years compared with that of other courses such
as database systems and professional studies. The enrolment and retention of computing
students has also decreased in recent years (Clear et al., 2008), though of course there
are likely to be other factors affecting the failure rates and dropout rates beyond just the
content difficulty. Though many studies and different approaches to teaching
programming have been conducted in order to improve the quality of the introductory
programming courses and quantity of qualified programmers, little research exists in the
literature that addresses the question of what type of programming environment should
be introduced first to novice programmers. This research examines two types of
programming environments for novice programmers for web application development, a
traditional programming environment and a visual rapid application development

(RAD) environment.

Programming environments are tools that assist programmers with creating and editing
software applications and they can have major impacts on the ease and effectiveness of
learning programming languages (Vogts, Calitz & Greyling, 2008). Traditional

approaches for introductory programming courses, featuring console-based

programming exercises with traditional Mfifdéféiﬁiﬁﬁng environments, have been
challenged in terms of their relevancy within the modern programming industry given
the difficulty level and motivation factors in comparison to visual programming

environments (Schaub, 2009).

Many commercial and open-source visual programming environments are available in
today’s market and widely used in many institutions to assist in teaching programming
languages. These programming environments are referred to as visual RAD
‘environments and most of the application development tasks can be completed with

“drag and drop” actions. The term visual RAD is used in this thesis to describe a

1

programming process where a majority of the development takes place using drag and
drop components Athat are integrated using a visual interface. Most visual RAD
environments allow for different levels of abstraction, from looking at a component
visually to exposing its functionality via a textual interface. This is seen as different to
purely textual development systems, which provide little or no visual representation of
~objects and their functionality. Although visual RAD allows for ease of implementation
and rapidity to some extent, the complex features and hidden programming principles
make it unclear as to whether it is a suitable first environment for novice programmers
(Pears et al., 2007; Schaub, 2009). Conversely, traditional programming methods, also
known as hand-coding or textual-programming, provide the flexibility and knowledge
of programming concepts that visual RAD might not be able to provide (Wong, 2006).
It may be that the syntactical nature and non-visualisation of the traditional
programming environment make it difficult for novice programmers to write a complete
and error-free application (Chainini & Yamada, 1998). This research aims to examine
some of these issues by investigating student perceptions of using visual RAD

environments in comparison to traditional environments in learning programming.

1.1. Background to the Study

The approach to application development is changing in the information and
communications technology (ICT) industry, and companies rely on rapid and robust
application development environments to hasten the design and implementation of
software systems (Agarwal, Prasad, Tanniru, & Lynch, 2000).'It is unsurprising that

many universities adopt similar environments to teach programming languages to

students because in most universities it is the relevance of technology used in the
industry, rather than the pedagogical benefits of learning, that drive such decisions
(Mannila & Raadt, 2006, Pears et al., 2007; Raadt, Watson & Toleman, 2002, 2003).
Learning programming is often cognitively cﬁallenging, complex and requires
knowledge and skill in execution (Vogts et al., 2008; Weir, Vilner, Jos, & Nordstr,
2005). Programming environments are necessary for programmers to write, compile and
execute applications and perhaps have a significant impact on the process of learning

programming for novice programmers.

Textual programming, also known as traditional programming, is widely used in various
institutions in teaching introductory programming courses according to the study carried
out by Raadt et al, (2002). Many professional programmers prefer traditional
programming methods over RAD tools for the reason that it provides high levels of

fidelity (Kyrnin, n.d), that is, the ability to control and manipulate every aspect of the

program’s execution and function. Programmers have full control of the application and

they get exactly the result for which they code (Agarwal et al., 2000). Traditional
pathways of learning programming may also have some influence on the preference for
programming environments. A typical learning pathway for a developer may start with
traditional programming before progressing to the RAD tools at the later stage of the
learning phase (Schaub, 2009). Traditional programming environments focus on
teaching a programming language, whereas RAD tools focus on using programming to
implement an algorithm (Calloni & Bagert, 1994; Schaub). Having to incorporate the
syntax and logic to create a functional application is challenging for introductory
programming students. The frustration for novice programmers usually lies in the

[

syntax errors where a small little dot, ‘’, can make a big difference to running a
program successfully, and in the difficulty of locating and correcting the faulty logic
(Chainini & Yamada, 1998) while still trying to learn the logic. To minimise the effort
required to produce the working program, different types of RAD tools are created and

exploited in today’s programming field.

To increase the rapidity of application construction, programming environments with
pre-built functionalities and visual presentation of coding and processes have been

developed. These environments, or tools, are referred to in this thesis as visual RAD

—tools-and-their-funetionality and component capability over the past two decades has

improved. However, their extensive sets of features and concepts make them
challenging to adapt to, or make effective use of, not only for novice programmers but
also professional programmers (Agarwal et al., 2000; Pears et al., 2007). There are
mixed reactions in both the industry and teaching institutions to the feature sets of visual
RAD tools. Being able to show the prototype to the customer within a short period of
time is one of the major advantages that visual RAD tools can provide to companies

(Agarwal et al.). Kaneshige (2009) however, argues that visual RAD tools are not as

-easy to use as they are claimed to be. Figuring out where and why an error occurs within

a visual RAD environment can require the knowledge of a seasoned developer. The pre-

built components and functions make visual RAD tools valuable and increase the
3

expectations of customers and management but somewhat limit the scope of what a
programmer can do to provide the customised functionality that software consumers
may demand (Agarwal et al.; Peter, 2009). In addition, visual RAD tools are often
considered to be “anti-quality” due to the trade-off between speed and quality. For
some, visual RAD is considered “Rough and Dirty” (Howard, 2002, p. 27). In terms of
the pedagogy of programming language, some instructors believe that the use of visual
RAD tools hinders or masks the basic principles of programming (Raadt et al., 2002).
The novice programmer can build a functional application almost at the first try without
the knowledge of syntax and rules of the programming language underlying the actual

environment (Goldweber, Bergin, Lister & McNally, 2006).

Calloni and Bagert (1994), Calloni, Bagert and Haiduk (1997) and Cilliers, Calitz and
Greyling (2005) have experimented with the use of visual RAD tools in introductory
programming courses. These attempts have been successful, leading to a significant
increase in students’ grades, but it was not clear if this approach helped novices to
become real programmers or whether it was limited to just an improvement in the final
grades. Another undetermined factor from these studies was that they have not yet
defined which programming environment should come first. This research mainly
focuses on the students’ perceptions of these programming environments in the web

application development environment and their reactions to the learning sequence.

1.2. Purpose and Rationale of the Study

__The main purpose of this research is to examine the impact and selection of
programming environments on the teaching and learning of programming languages for
novice programmers in the area of web application development. This study aims to
improve the learning experience of programming by discovering the student point of
view on different approaches and the impact of the sequence of programming
environments on the novice developer. This research also focuses on the preferences
regarding the first environment of students when defining the learning pathway of a

novice web developer.

1.3. Definitions of the Terms

For the purpose of this study, the following definitions are used:

Visual rapid application development (RAD): RAD is a visual, drag and drop
programming environment for application developments. It is often considered to be a
“codeless” environment with visual representations of functionality without the user
needing to physically write the program code. As stated previously, in the context of
this thesis visual RAD is any environment that provides a visual representation of
coding objects and how they interact with other objects. Microsoft’s Visual Studio and
the NetBeans environment could be cons{dered prime examples of visual RAD

development systems, although they can also be programmed using a textual interface.

Traditional programming: The development of applications by hand coding or writing
in textual syntax using a text-based, non-visual interface. A traditional environment is
considered to be one where there is no visual representation of objects of any kind.
Developing an application in vi or any other text editor system would be considered a

traditional approach.

PHP (Pre-Hypertext Processor): PHP is a widely used, general purpose scripting
language that is especially suited to web development and can be embedded into

HTML.

ASP Net: (Active Server Pages): ASP.Net is a server-side script engine for dynamically

generated web pages run within the Microsoft .Net Framework.

ICT: Information and communication technology.

Visual Studio: Visual Studio is a multi-purpose development environment for all types
of applications, including web-based systems. Visual Studio places an emphasis on
visual development but also allows the developer to switch to a code-based

environment.

‘Sandstone universities: Sandstone universities are tertiary education institutions in

Australia that were established before the 1950s (Ashenden & Milligan, 1999).

Workshop: A workshop in this research is referred to as a classroom or online-based

learning area where students perform practical programming exercises.

1.4. Statement of Research Questions

* The primary research question of the study is:

“What is the student reaction to visual RAD versus' traditional programming

environments for novice programmers in a web application development context?”

Three supporting questions were defined in order to address the outcomes of the

primary research question.

As the focus on GUI-based applications in the programming industry has increased,
visual programming environments are becoming more popular in first-year introductory
programming curricula. The first supporting question examines the impact of choosing

visual RAD as the “first-environment”:

“Should visual RAD environments be taught as the ‘first environment’ to novice

programmers?”

It is apparent in traditional programming environments that the majority of functionality
has to be built from the “ground-up”, and novice programmers have to learn everything

from the syntax to the structures and principles of programming. In visual RAD

environments, the main focus is on the knowledge of how to use the pre-built

components. This leads to the second supporting question:
“Does visual RAD require pre-existing traditional programming knowledge?”’

The third supporting question aims to examine the preferences of the students for

différent programming environments:

“Which is the preferred programming environment among novice developers?”

1.5. Significance of the Study

This research focuses on the areas that are important for the future design of
introductory programming courses, an issue that remains relatively undeveloped in the
literature. These areas include the visual RAD envifonment as the first programming
| experience, pre-existing programming knowledge for visual RAD and the attitudes of
novice programmers towards different programming environments in web application
development. Little research has been carried out on the impact of visual RAD tools in
introductory programming courses for novice programmers in the context of web
application development. This research also focuses on another underdeveloped area of
the literature, that being the importance of the teaching sequence in traditional versus

visual RAD development environments.

While this thesis focuses on web applications development, the results can largely be
generalised for other types of software development where a choice needs to be made

between a traditional or visual method of development.

2. Literature Review

“Computer technologies are no longer seen as intellectual products and tools for only a

small community of specialists, but as useful tools for masses” (Pham, 1996, p. 149).

-Over the past four decades, computer programming as part of computer science has
evolved significantly with the development of new programming languages and tools to
facilitate the ease of development and the learning of programming. Still, many novice
programmers have difficulty learning programming as indicated by the increasing
failure rates in introductory programming courses (Bergin & Reilly, 2005; Clear et al.,
2008; Teague & Roe, 2008). According to Kolling and Rosenberg (1996), programming
environments contribute more towards learning programming for novice developers
than the programming languages themselves. This literature will examine the role of
programming environments in learning programming, specifically examining the issues
of the traditional programming environment and the visual RAD environment as well as

the role both of these play in the education of novice programmers.
This chapter is structured in four sections: traditional programming, rapid application

development, teaching programming, and learning styles and motivation.

2.1. Traditional Programming

“Traditional computer science courses focus on highly technical aspects of computing,

and.aim.to.provide students with fundamental knowledge on the inner working of

computer systems, and the design and development of algorithms and software” (Pham,

1996, p. 150).

Programming in textual format using text editors predominantly emphasises the
programming concepts and makes the programming process transparent to the
programmer (Wong, 2006). This type of environment has been used widely in computer
scieﬁce courses and is still being used in the majority of current programming courses

(Raadt et al., 2002, 2003; Raadt, Watson & Toleman, 2004; Vogts et al., 2008).

Programming in text-based formats without the help of visual editors has been the
traditional way of developing computer programs since the mid 1960s when the earlier
- programming languages, such as FORTRAN and PASCAL, were first introduced
(Kolling & Rosenberg, 1996; Wexelblat, 1981). This traditional style of programming is
also referred to as hand-coding, textual or text-based-prbgramming in various forms of
the literature (Calloni & Bagert, 1994; Calloni et al., 1997; Chainini & Yamada, 1998;
Wong, 2006). Traditional programming environments are primarily designed towards
developing the procedural programming techniques as they were first introduced for
such paradigms. Traditional environments have not changed much since they were first
introduced and still typically involve stand-alone tools such as an editor, compiler,
debugger and runtime environment (Kolling & Rosenberg). The developer writes the
source program in the text-editor, uses the compiler to transform it into machine

language and uses the runtime environment to view the results of the program.

As the program is to be written in the textual format using a stand-alone text-editor,
traditional programming environments require the programmer to be aware of all the
syntax and commands available for the specific programming language. Most, if not all,
programming languages allow the programmer to use traditional programming methods
to develop applications, regardless of whether they provide a visual interface or not.
Many universities are using traditional methods to teach novice programmers languages
such as C and Java (Raadt et al., 2002, 2003, 2004). According to Raadt et al. (2002,
2003, 2004), universities try to avoid the use of programming environment-specific
languages and tend to use the traditional programming environments, which include
text-editors and command-line compilers, whenever possible. The main reasons for this
~are the provision of distinct steps in the programming process and lower costs compared
with RAD environments, which can be expensive to deploy on a per-user basis (Raadt

et al., 2002, 2003, 2004).

Developing an application in a traditional programming environment involves
requirement planning and specification determination from how the output should
appear to what tasks the final program should perform. Once the requirements are set, it
is up to the programmer to develop the required application. The programmer has
‘complete control over the development process and there should not be any
environment—specifiq limitations imposed on how the application might look or how it

should function.. In other words, the programming environment should be as flexible as
9

possible so that the developer can achieve exactly what is needed in the final
application. Another major benefit of using traditional programming is the fact that it is
more compact when it comes to on-screen representation compared with the visual
development tools, especially for functions using mathematical expressions and deeply
embedded loop statements (Wong, 2006). It is easier to maintain, modify or enhance the
existing program using hand-coding, certainly at the business logic level of the
application. As discussed previously, Raadt et al.(2002) have highlighted the fact that
traditional programming emphasises the steps in the programming process, such as
loops, conditions, variable declarations, parameter passing ahd database connection
strings, unlike visual RAD environments where these processes are hidden in the
abstracted purpose that the pre-built objects and‘components represent (Chainini &
Yamada, 1998; Schaub, 2009). These basic skills are important for novice programmers
learning a programming language, and most of the time these programming concepts
can be applied across different ﬁrogramming languages. Programming using a
traditional method has high levels of fidelity, as there are fewer or no “generic”
components compared with programming in RAD. Every component typically has to be

built from the “ground up”.

Even though traditional programming offers much flexibility, it can only be
accomplished through in-depth knowledge of both syntax and logic. Therefore, it can be
difficult for novice programmers to develop an application of significant scope using
traditional methods early in their learning cycle. “Textual programming languages
contain a number of syntactic design features that help slips to occur or make them hard

to find once they have occurred” (Green & Petre, 1996, p. 23). One of the major

contributors tosoftware failure is the fact that software is intangible (Sommerville,
2007) and that little or no visual feedback in traditional programming environments can
make it difficult for novice programmers to develop and debug an application. The
result can only be seen after the program has been compiled and run. It could be said
that having environments that lack more user-friendly features, such as code auto-
complete and dynamic error checking, is not a bad thing for novice developers. Novice
developers need to learn how to write sections of code, execute them and try to fix
problematic code by correctly interpreting error messages. This process of trial and
“error, while leading to angst and frustration, can teach lessons that will remain with the

developer for the rest of their career.

10

Figure 2-1 and Figure 2-2 provide examples of two simple PHP applications that
display data from é MySql database, written using traditional programming methods.
The first application retrieves the user information from the database and displays the
result in a table (Figure 2-1). The developer needs to know all the syntax and logic to
connect to the database, and it has more lines of code cbmpared with the same process
~carried out in a visual RAD environment (discussed in the next section). Conversely, if
the programmer wishes to enhance the program to display in the same table a list of
books borrowed by the user, as in the second example (Figure 2-2), this would be a
more complicated and somewhat less intuitive task in a visual RAD environment. In a
traditional environment, it is just a matter of adding a few extra lines of codes, as shown

in Figure 2-2.

11

testing and debugging. The methodology includes requirements planning, user design
and construction and production deployment where requirements planning and user
design can sometimes be consolidated into one cycle. Agarwal et al. (2000) describe it
as a software development methodology similar to the spiral, iterative model. Agarwal
et al. (2000, p. 177) also state that RAD tools can also be classified as “a class of tools
_that allow for speedy object development, graphical user interfaces, and reusable codes
for client/ server applications. The tools enable the methodology and circumscribe what

is accomplished during a development project”.

Object-oriented, event-driven, visual programming languages have formed part of
changes in the application development trend towards higher level programming
languages, which have led to the concept of visual RAD (Agarwal et al., 2000; Honchell
& Robertson, 1996; Kolling & Rosenberg, 1996). Most of the programming tasks in
visual RAD are accomplished using tﬁe drag-and-drop icons or menu-driven interfaces.
This leads to the definition of visual RAD environments as iconic programming or
visual programming systems (Calloni & Bagert, 1994; Calloni et al., 1997; Cilliers et
al.,, 2005; Ichikawa & Hirakawa, 1990). Some visual RAD tools provide the
syntactically correct source code of the intended programming language of the given
algorithm, while others mask the underlying code and present only controls and their

developer editable properties.

A wide range of visual RAD tools is available in the market to cater for different
programming languages and types of applications. The variety of tools ranges from
planning and modelling to programming, testing and debugging. Rational Rose is an
——example of a visual RAD planning/modelling tool.-The Rational Rose programmer can
draw the architecture/design of the system by simply dragging and dropping icons to
generate the structural source code from the model drawn. Other software like
Objecteering, Eclipse UML2 Tools and Modelio are also available, and they provide
similar functionality to Rational Rose. Programming support tools, such as Borland,
Eclipse, BlueJ and NetBeans, provide some visual programming environments for Java
alongside traditional interfaces. Many of the visual RAD tools are language dependent
but some, for example Microsoft’s Visual Studio, provide the environment for more
‘than one programming language (though often the runtime environment is operating-
system dependént). Some of the popular web application development tools that provide

visual RAD te¢hniqﬁé’s include Visual Studio, Dreamweaver and Adobe’s ColdFusion.
14

Microworlds, such as Karel J Robot, Alice, Jeroo, Robocode and PigWorld, provide the
visual environment for programmers to visualise the complete program state throughout

program execution (Goldweber et al., 2006; Pears et al., 2007).

Honchell and Robertson (1996) have highlighted that the widespread availability of pre-
written, object-oriented visual RAD software modules saves the cost of training,
troubleshooting and maintenance of applications and promotes the use of reusable
components across standardised applications. It also makes it possible to share the
workload among programmers, as it is able to provide the standardised look and feel of
the application by making use of the existing templates and objects. Sharing of
workload and easy drag and drop features should, in theory, result in reduced
development time for medium to large applications. The Multi-User Programming
Pedagogy for Enhancing Traditional Study (MUPPETS) is a visual object-oriented
system design aimed at introducing students to building complex 3D applications
visually, while also giving them console access to the underlying classes and code
(Egert, Bierre, Phelps & Ventura, 2006). The feedback from the system is very visual
and is provided immediately as the developer programs it. Testing and debugging can
occur while still in the visual interface. The major benefit of visual RAD tools is that
almost anyone can program the application, as little or no syntax knowledge is required
to create a simple application (Rode, 2004). The developer needs only to know what
“function” they need to perform and then locate the required pre-built components and

drag them into the interface for application-specific customisation.

These do-it-yourself visual RAD tools promise application development without
—requiring“real”developers, an issue that-has-raised concerns about the future of
programmers and programming in the ICT industry (Kaneshige, 2009). Goldweber et al.
(2006) provide an example of the Alice Programming Environment, an interactive 3D
microworld designed to facilitate the learning of computer programming by large
portions of the general population. It is easy enough for the student developer to
successfully program in Alice almost immediately. A basic program would be unlikely
to fail because there is no syntax to master and the programmer can only select legal
choices/statements/commands through the iconic interface. Even though the program
‘might not fail syntactically, it might not work as intended or solve the problem at hand.
The generalised plug and play components offered in visual RAD environments may

not function éxactly ‘as the application requires them to, which can cause major
15

challenges to design applications that fit a given requirement (Peter, 2009). Levels of
fidelity for problefn solving could be lower with visual RAD tools compared with
traditional programming methods. Visual RAD objects are often developed to be
“flexible” and “generic” to suit as many scenarios as possible, which in turn can cause
the problem of them not being able to provide the outcome that a developer wants but
rather the closest approximation that the RAD tool can deliver. The level of
programming in visual RAD environments tends to be more limited and most
commonly centres on creating forms and manipulating databases (Wong, 2006). In
particular, developing forms interfaces for managing database content is an extremely
code-intensive practice and is one of the reasons that this thesis has focused on the web

application development aspect of coding.

From the list of risks involved in using RAD identified by Agarwal et al. (2000), one of
the key drawbacks is the unrealistic e){pectations of management regarding how quickly
systems can be constructed using such approaches. “With ICT budgets being squeezed,
along with the growing dysfunctional relationship between ICT staff and managers ...
the promise of cheap ‘codeless’ development that sidesteps ICT resonates loudly with
business people” (Kaneshige, 2009, p. 43). In fact, developing applications using visual
RAD has many limitations and sometimes a small but complex customisation involving
underlying business logic on a form submission, or when displaying data from data
sources, could take longer than writing the whole program using traditional methods. In
some cases, the extensive set of concepts and features provided in visual RAD tools
makes it hard to learn and is often problematic for novice programmers trying to
understand the provided functionality (Pears et al., 2007). Interface complexity and the
—sheer number-of options and permutations can make visual RAD tools difficult to use

for novices beyond just the drag and drop level.

The following example describes the steps involved in programming a simple Asp.Net
application in Microsoft’s Visual Studio environment (Figure 2-3). Compared with the
example using a traditional method (Figure 2-1), the example in Figure 2-3 displays the
same result in four simple steps with no Asp.Net syntax knowledge required. However,
to diéplay the nested table, such as that in Figure 2-2, programming in Visual Studio is
much more complicated and requires the developer to know the detailed functionality of

each component in order to customise the look and feel. Asp.Net applications require

16

many complicated steps to accomplish the same task that can be done with 15 lines of

codes in PHP (Appendix A).

17

2.3. Teaching Programming

It is apparent from the literature that computer programming is a difficult subject and
failure rates are consistently higher than for other topics (Lahtinen, AlaMutka &
HannuMatti, 2005). Teague and Roe’s (2008) research indicates that introductory

programming units have had high failure rates over the past five years compared with
| their counterparts such as database systems and system-architectures. Numerous studies
have been conducted to identify the cause of the high failure rates in introductory
programming courses and to make the comprehension of programming easier for novice
programmers. Such studies include revising the current programming curricula,
programming exercises, programming language and pfo gramming environments used to
teach the novice developers (Giordano & Carlisle, 2006; Goldweber et al., 2006;
Mannila & Raadt, 2006; Mclver & Conway, 1996; Milne & Rowe, 2002; Pears et al.,
2007; Raadt et al., 2002, 2004; Schulte & Bennedsen, 2006).

Introductory programming courses were first designed to teach the three main aspects of
programming: problem solving, describing algorithmic solutions to a problem and
verifying the algorithm (Gries, 1974, 2006). Although the work by Gries is now
outdated from a technical Standpoint, the concept of what novice programmers should
~ learn has not changed since 1974. Over the last three decades, a great deal of research
has been conducted on the different approaches to introductory programming. Figure
2-4 represents a traditional pathway for developers in many programming courses. Most
developers start with learning traditional programming in their introductory courses,
after which they learn visual RAD programming techniques and use traditional and/or

visual RAD tools as required.

19

Question Code Students ~Teachers

N | Avg | Std | N | Avg | Std
THE COURSE CONTENTS '
What kind of issues vou feel difficult in learning programming?
Using program development environment Il 533 [243 1096 | 33 | 261 | 0,90
Gaining access to computers/networks 2 536 [2,11 | 0,95) 32) 197 | 0,78
Understanding programming structures I3 | 550 292 | 1,02 | 33 | 327 | 0,67
Leaming the programnung language syntax I4 SRR [275 [101 [33 2,70 | 073
Designing a program to solve a certain fask I5 5551 312 | 098 | 33 397 | 0,73
Dividing functionality mto procedures I6 | 543 3,10 | 1,09 | 31 | 4,06 | 0,63
Finding bugs from my own program I7 540 | 328 | 1,03 | 33| 301 | 077
Which programming concepts have been difficult for you to learn? '
Vanables (lifetime, scope) Cl 54112101097 [34 | 241 | G, 70
Selection structures C2 | 5521198000 | 34 (2381070
Loop structures C3 [5512000987 34| 279|091
Recursion Cd [512322] 1,03] 31| 400 | 0,96
Arrays C5 13261270 | 115|133)34 071
Pointers, references ' Co | 5318 | 2,50 | 1,04 | 32 | 444 | 0,56
Parameters C7 | 513 260 | 109] 32| 347 | 0,76
Structured data types C8 | 406|200 | 103 | 31| 345 | 0,81
Abstract data types , Co | 400 3,02 | 1,10] 31 | 4.06 | 0.81
Input/output handling Clo [51912096 | 1,04 | 32| 375 | .88
Error handling Cl11 | 481 | 333 | 1,01] 32 | 4,13 | 0,79
Using language libraries Cl2 | 465|304 | 1,09] 32| 3,88 | 0,71

LEARNING AND TEACHING PROGRAMMING
When de you feel that you learn issues about programming’

In lectures S1 43 1301 | 1,01 | 33321192
In exercise sessions in small groups 52 310 | 344 | 1,10 | 32 | 3.84 | 099
In practical sessions 83 S14 | 377 11031 3 435 | 0,75
While studying alone 54 546 1 370 1 106) 3 342 10,72

1
While working alone on programnung coursework 5S4 5300398 | 100 | 33 | 400 | 0,70

What kind of materials have helped/would help vou in learning programming?

Programming course book MI | 515335103]33]330 088
Lecture notes/copies of transparencies M2 530 | 330 | 1,05 | 34| 347 | 071
Exercise questions and answers M3 | 523 333 [10734) 3,62 1,02
Examyple programs M4 | 351 [410 | 0,86 | 34 | 424 | 0,65
Still prctures of programnung strocfures M3 | 400 1 315) 1,00 | 30) 370 L 075
Interactive visualizations MG | 3121333) 1,03 27| 407 | .87

(Lahtinen et al., 2005)

Table 2-1: Results on sections course content and learning and teaching

Novice programmers tend to approach programming “line-by-line” and often learn in a
“context specific” (Lahtinen et al., 2005) style, where they find out how to perform a
certain function as it is required. This suggests a targeted, rather than holistic, approach
to learning programming for some novice developers. Lister et al. (2004) have
conducted a study on the reading and tracing skills of novice programmers and the

results agree with those of Lahtinen et al., that most novice programmers use the “line-

21

by-line” approach to developing a program. Lahtinen et al., also highlight that novice
programmers often experience difficulty in combining the syntax and semantics of
individual statements into larger, valid programs. Therefore, it is important to combine
the concept knowledge and programming structures in the learning process so that
novice developers can go beyond algorithmic programming into true applications

development.

Given the increased popularity of visual RAD tools over the past decade, many
institutions are looking at ways to change the existing learning pathway and introduce
visual RAD at the introductory level. Goldweber et al. (2006) recommended using
visual programming environments, such as robotics systems or 3D microworlds, to
teach novice programmers. Haden (2006) emphasises the use of game programming to
teach traditional programming skills. Anténio José Mendes aims to achieve success with
the students of a CS1 course with tﬁe use of visual environments such as BlueJ and
Karnel J. and Robot (Weir et al., 2005). Lahtinen et al. (2005) argue that whatever the
approach, it is important that students learn the basic structure of programming, such as
loops, variables, recursion and parameter passing, at some point. These programming
processes are largely hidden behind the layers of abstraction in visual RAD tools. This
has raised concerns that novice programmers are not able to learn these basic processes
if RAD tools are introduced at the introductory level (Raadt et al., 2002, 2003, 2004).
To this end, the literature suggests that some middle ground must be found between the
core coding skills of the traditional approach and the use of RAD environments and

methods in the application development community.

22

All Universities Sandstone Universities Non-Sandstone Universities

(Raadt et al., 2002)

Figure 2-5: Languages taught in Australian universities weighted by student

numbers

Many languages have been taught in introductory programming courses in different
institutions over the past four decades, with Java, C, and C++ on top of the list of
languages taught today (Pears et al., 2007). According to the research by Dale (2005),
Raadt et al. (2002), Schulte and Bennedsen (2006), many universities around the world
use Java for their introductory programming courses and VB and C++ are the second
most common languages. It is worth noting that there is a clear distinction between the
languages taught by sandstone universities and non-sandstone universities. Non-
commercial languages, such as Eiffel and Haskell, are taught mostly in sandstone
universities (Figure 2-5). The difference in language choices between sandstone and
non-sandstone universities could be due to the fact that sandstone universities focus on
~-the-pedagogical benefits of language in-choosing the programming language, while nen-
sandstone universities focus on the industry relevance, marketability and student
demand for a language (Raadt et al.). In general, most of the universities across the
world make the language choice based on ‘“the factors such as faculty preference,
industry relevance, technical aspects of the language, and the availability of useful tools

and materials”(Pears et al., 2007, p. 207).

23

How OQQ Languages are Taught

C+t

Taught OO
[TaughtProcecural

(Raadt et al., 2002)

Figure 2-6: How OO languages are taught in Australian universities

It is interesting to note that though 86% of the above-mentioned languages are object-
oriented programming (OOP) languages, less than half are taught using an objects early
approach except for Java. Figure 2-6 shows 70% of Java instructors are using the
object-oriented approach, but the rest are asking their students to ignore the class
declaration in Java until later (Raadt et al., 2002). This contradicts the findings of Dale
(2005), where more than 50% of Java instructors teach the step-wise approach rather
than an object-oriented approach (OO). Procedural programming provides a learning
environment that emphasises the basic programming concepts, such as looping,
“iteration, recursion and variable - declarations; ~which— are important for-novice
programmers (Lahtinen et al., 2005). On the other hand, OO focuses on abstraction
ability, inheritance and polymorphism. Even though many universities emphasise the
importance of abstraction in OO, Or-Bach and Lavy (2004) point out in their study that
students are struggling with high levels of abstraction. Only 4 out of 46 students could
provide the highest level of abstraction for a given algorithm, while the majority could
only provide a very low level of abstraction. This finding would seem to indicate that
there may be merit in teaching programming fundamentals rather than programming
‘fundamentals and advanced concepts at the same time, which may rule out a mixture of

traditional and Visual RAD in the same unit of learning.

24

Environments or Tools Used
Weighted by Student Numbers Taught

BlueJ
4%

Functional Env
9%

QOther Tool
10%

No Tool
45%

| Other IDE
/] 13%

(Raadt et al., 2002)

Figure 2-7: Teaching tools and environments

“Programming at all levels of experience need to work within environments which give
them access to the tools which they must use to accomplish their tasks” (Pears et al.,

2007, p. 210).

Raadt et al. (2002) highlight in their research that the majority of instructors choose to
use simple text editors and command-line compilers for their introductory courses, the
main reason being that teaching complex environments takes up most of the valuable
time to teach the tool rather than the programming language itself. Other than simple

editors, Figure 2-7 shows the other types of tools being used at some universities in

introductory programming courses. Despite the fact that many RAD tools are widely
available on the market, text editors and command-line-compilers are often preferred if
the language permits. The main reasons for this, according to Raadt et al. (2002, p. 334),
are “cost for students, time required to familiarise students with the environments, and
the blurring of distinct steps in the programming process”. Pears et al. (2007) also point
out that many of the RAD tools are designed to fit professionals’ needs and tend to be
too complicated and confusing for the novice programmer. The extensive set of
concepts and features, errors and warning messages may be hard for the novice

programmer to understand.

25

Calloni et al. (1997), following on from the research carried out in 1994 (Calloni &
Bagert, 1994), state otherwise, arguing that using the iconic approach to teach first year
programming is more effective compared with the normal text editor, hand-coding
approach. Based on the comparison of teaching the integrated BACCII++ and C++ to
C++ only to first-year students, they found that integrating both tools and language to
teach the first-year students resulted in better marks in their final exam and in the
overall course (Calloni et al.). Similar results were produced in the research carried out
by Cilliers et al. (2005), where B# and Delphi IDE were compared. However, these
studies did not describe the level of difficulty of the assessments and workshops and

thus were not able to conclude if visual RAD helps novices to be better programmers.

The reason that Raadt et al’s (2002) research results vary from those of Cilliers et al.
(2005) and Calloni et al. (1997) coulld be that the former is based on perceptions from
the teachers’ points of view and is generalised for many different programming
languages. On the other hand, the research of Cilliers et al. and Calloni et al. focuses on
the outcome of the students’ exam results. These results are based on specific
programming languages and students have the knowledge of both language and
environment, a factor that might contribute to such positive outcomes. Essentially, it
may be that Calloni’s research better describes the ability of students to pass an exam

rather than exit as practical programmers.

24. Learning Styles and Motivation

_According to Jenkins (2002), learning style and motivation are two possibilities that

make programming difficult for novice programmers to learn.

Classifications of learning styles vary across different researchers and their context of
research. In general, there are four dimensions of learning styles: sensing-intuitive,
visual-verbal, active-reflective and sequential-global (Papaeconomou, Zijlema &
Ingwersen, 2008; Parvez & Blank, 2007). Bohlen and Ferratt (1993) have used Kolb’s
Leafning Style Model to determine a learner’s predominant learning style for end-user
learning of computer software. Galpin, Sanders and Chen (2007) have used the same

method to study the impact on the method of teaching in a South African university.

26

Kolb’s Learning Style Model includes four types of learners: convergers, assimilators,
divergers and accommodators (Bohlen & Ferratt, 1993; Galpin et al., 2007). Convergers
and assimilators prefer abstract conceptualisation, which is highly relevant to learning
visual RAD environments. Divergers and accommodators have strengths opposite to
those of convergers and assimilators; they prefer concrete experience. For these types of
learners, it is perhaps the effectiveness of the learning materials and not the type of
programming environment that has a primary influence. However, given that the
majority of existing learning materials for programming, such as those in textbooks and
on the web, are based largely on traditional environments, this environment may be

better suited to these types of learners.
“Motivation of students is a key issue if they are to learn”(Jenkins, 2001, p. 53).

Three factors of motivation by Entwiéle, as quoted by Jenkins (2001), include extrinsic:
the desire to perform in order to attain rewards; intrinsic: deriving from an interest in the
subject and achievement: that is, competitiveness. Many different factors influence
student motivation in learning programming, such as prior experience, programming
environment, exercises, teachers, peers and requirements for job or study, for example
(Bergin & Reilly, 2005; Jenkins; Mamone, 1992; Walter, Forssell, Barron & Martin,
2007). Research by (Halland & Malan, 2003) indicates that teachers of introductory
programming courses perceive that visual RAD environments are fun for the students
and that this could keep them interested in programming. Students can see more reward
more quickly with visual RAD environments, whereas in a traditional environment there
is lots of conceptual groundwork to cover before students can see a given result. With
~—traditional text-based environments, it can be a-daunting task to write hundreds of lines

of code before the application can be fully, or even partially, visualised.

Learning styles are raised here as they are often discussed in the same context and
literature as that dealing with motivation. Given that this thesis examines student
perceptions of different approaches to programming, motivation is considered an
important area of the literature to address. The analysis chapters will show that
motivation is indeed very important to novice developers and that the different

-approaches to programming do influence student motivations.

27

3. Research Method and Design

Colléction of data to support the given topic is the most important part of a research
project. Choosing appropriate research methods and design is a crucial part of gathering
reliable and useful data in order to address research questions. Understanding the
_research methodology for a given piece of research helps a great deal in choosing the
actual research methods and design. Research methodology answers the question of
how the research should be conducted and research methods include the tools to collect
the data, such as interviews and focus groups (Dawson, 2006). A combination of
different methods, both qualitative and quantitative, was used to conduct this research.
This combination of methods, also known as triangulation of a multi-method approach,
provides for a more complete dataset to gather data required for the research. Dawson
believes that a triangulation of research approaches is a good way of conducting
research, as it allows the researcher to work against the weaknesses of two or more

methodologies by allowing one set of findings to complement those of the others.

3.1. Research Methods

3.1.1. Selection Process

There are a number of ways to gather student reactions to the use of visual RAD versus
traditional programming environments for novice programmers. One common way of
approaching this would be by having two introductory programming classes, one of
which would be taught using a visual RAD environment only and the other, using a

traditional programming environment only. Comparing the results of the students from

these two classes over a teaching period would provide a good understanding of the
comparative effectiveness of the different programming environments. This
experimental approach has been used in numerous studies, for example, those of Calloni
and Bagert, Calloni et.al. and Cilliers et al. (Calloni & Bagert, 1994; Calloni et al.,
1997, Cilliers et al., 2005). Due to the time frame of this research, however, this
approach was deemed too lengthy. Other effective methods, such as observation,
questionnaires and interview approaches, were considered for this research. These
methods, when used in conjunction with one another, were envisaged as suitable for

providing useful data regarding student responses to the proposed research questions

28

and at the same time it overcomes the limitation of the possible dead-end answers that a
respondent may give when providing responses to open-ended questions (McNeill &
Chapman, 2005). To acquire the maximum number of participants, the surveys were
conducted online and anonymously. Pre-workshop surveys and post-workshop surveys
were conducted to gather the students’ perceptions of their programming experience and
~ thoughts on visual RAD versus traditional programming environments. The quantitative
and qualitative data gathered from the survey method helped to answer the majority of

the research questions in this research.

3.1.3. Interview Method

According to Newman and Benz (1998), quoted from Patton (1990), a research
interview can be characterised as a strategy to find out from people things that cannot be
observed directly. Through probes, follow-up questions and non-verbal cues, data
collected can be enhanced through the interview process (Newman & Benz). The
limitation of this method depends on the interviewer’s ability to execute these tasks, and
the validity of the data collected could be influenced by the subjective bias of the
interviewer that affects their interpretation of the data (Newman & Benz). Interviews
can be in the form of structured, unstructured or semi-structured questions (Dawson,
2006; Newman & Benz). Structured interviews collect standardised data from all the
participants and unstructured interviews are used to gain holistic understanding of the
interviewees’ points of view with respect to a given situation (Dawson; Newman &
Benz). Semi-structured interviews allow interviewers to gather data that can be

compared and contrasted with other interviews. The validity of the data collected

through interviews can be enhanced by using the structured or semi-structured
approaches. This research used the semi-structured approach to collect the students’

perceptions towards visual RAD and traditional programming environments.

3.1.4. Observational Method

According to Newman and Benz (1998), the observational method is the most frequent
‘data-collection method used for qualitative research. Clough and Nutbrown (2002),
quoted from Cohen, Mannion and Morrison (2000), state that observational data allows

the researcher to look at the “live” data from “live” situations. There are two types of
’ 30

observational methods, participant observation and direct, or non-participant,
observation (Dawson, 2006; Newman & Benz). Participant observation involves the
researcher as a member of the studied group and the researcher is “involved in the lives
of the peoplé being observed”(Dawson, 2006, p. 33). Direct, or non-participant
observation, involves looking at the interaction of subjécts in a given situation. Non-
participant observation is a better approach in terms of the validity of the data gathered
compared with participant observation according to Newman and Benz. This research
gathered data using a non-participant observational method where the researcher
observed the reaction of students to a given programming environment within a
computer lab and via online workshops based on the click-stream events and in-class
observations. In-class observations provided the basic information on the questions
asked and problems encountered during workshops. The click-stream was captured for
all of the students’ mouse-clicks on the back and next navigations and help links to
determine the time taken to compléte the tasks and how they approached different

problems at different levels.

Essentially, this research was based on a multi-method approach, with the hope of
capturing the core data using the survey methodology and providing triangulation of
those results by comparing them with results gained via the interview and participant
observation methods. As the following chapters will show, this methodology was only

partially successful due to technical and participant issues.

3.2. Research Design

An online workshop and three lab-based workshops were conducted to observe
students’ reactions towards visual RAD and traditional programming environments.
Pre- and post-questionnaires delivered during these workshops (Appendix B and C) and
interviews (Appendix D) supported the data gathered from the observations. All the
information gathered was anonymous and logs (Appendix E) of user actions,
timestamps and survey responses were all stored in a backend database. The
triangulation of these different methods provided sufficient and useful data for this
research in answering the main research question: “What is the student reaction to
visual RAD versus traditional programming environments for novice programmers in a

web application development context?”

31

aimed specifically at online participants only. Of both the in-class and online groups, a
total of 29 participants completed both pre- and post-surveys and the rest of the
participants just completed some parts of the pre-survey. Althbugh six students
registered to participate in a follow-up interview, only one participant turned up for the

interview session.

3.2.2. Survey Delivery

At the start of the workshop, consent to participate in the research was gathered
(Appendix G) before an online survey (Appendix B) was conducted to gather the
demographic information of the participants, including age, gender and their current
course of study. This survey also included the programming and learning experience of
the participants, such as their previous experience with languages and environments,
their perceptions of their own “level”, i.e. novice through to expert, and their existing
preferences for languages or environments. After the survey, step-by-step coding
exercises on traditional programming and visual RAD environments were conducted,
whereby in-class participants developed a small, functional web application and online
participants watched a series of videos on building the same web application using the
same instructional materials. A post-survey (Appendix C) was carried out to gather
students’ perceptions towards visual RAD versus traditional environments based on the
completed programming exercises. This survey also addressed any problems
experienced by students during the exercises, student confidence in developing further

web applications using each environment and the changes in preferences identified in

the pre-exercise survey. The survey data provided the majority of data that formed the

analysis for addressing all three supporting questions.

Although the pre- and post-surveys provided much useful information on students’
perceptions and provided both qualitative and quantitative data, it appeared to cause
survey fatigue with many of the participants due to having to answer so many questions.
Many of the online participants left after the pre-exercise survey without even
completing the programming exercises. However, overall, the survey data provided
enough quality data upon which to base the outcomes of this research. Unfortunately,
due to time constraints arising from the development of the surveys, workshop materials

and the system-that managed the integration and delivery of both, a pilot study was not

33

conducted. In hindsight, some of the survey fatigue and timing issues might have been

corrected had there been time for an initial “dry run” of the research design.

3.2.3. Coding Exercises

‘ Coding exercises used the PHP scripfing language with the EditPlus text editing tool as
the traditional programming environment (Appendix H) and Microsoft Visual Studio
2008 with ASP.Net programming environment for the visual RAD exercises (Appendix
D). The choice of these environments was largely influenced by the web application
programming environment within the school’s curriculum as well as the availability of
both with minimal setup requirements. Both of these environments were pre-installed in
the school’s labs. It was assumed for this research that student perceptions and reactions
could be generalised for traditional programming environments and visual RAD
environments based on their use of EditPlus and Visual Studio 2008. In a larger study
within the context of a longer time frame, a truer comparison of “what makes a visual
RAD environment” could be carried out before undertaking a comparison with different

types of environments.

Participants were given three database-driven web development exercises for each of
the environments. The sequence of environments differed between the participants. It
was designed in such a way that half of the participants started with the traditional
programming environment followed by the RAD environment; the other half of the
participants were provided with the environments in the reverse order. The first exercise

provided the step-by-step instructions to connect to Microsoft’s Access database and

display the data from a database using the PHP language. An identical exercise was
conducted in the visual RAD environment using drag-and-drop rather than code
techniques. After the basic level, participants were asked to enhance the first exercise to
allow editing and deleting of the records from the table. The third exercise involved

inserting new records into the database.

Participants were allowed to navigate through the exercises with “Next” and “Back”
‘buttons, and some hyperlinks to online resources from Google search were also
provided. All the click events were recorded against generated user ids to keep track of

the time taken for each exercise and to observe each participant’s action on each step.

34

The observation data from coding exercises provided some useful information to
support the data seen in the survey responses, although the overall outcome of this
participant observation had less impaét than had been hoped for. This was particularly
true in terms of the entirely online participants, who tended to skip sections of the video

instructions and jump ahead to later sections.

Some technical issues with Microsoft Visual Studio setup for the in-class workshops
were encountered on the day of data collection. Although 1.5 hours was allocated for
each of the in-class sessions, it was not enough and resulted in a change to the format of

delivery to a more a more instructor-led rather than student-led approach.

3.2.4, Interviews

Participants were asked to provide their email addresses if they wish to participate in the
follow-up interview to gather more detailed qualitative data. An email was sent out to
those participants who provided one with the time and place for the one-on-one
interview scheduled a week after the lab workshops. As stated, only one participant took
part in an interview with just a single comment from that interview contributing to the

final thesis.

35

4. Data Analysis

The focus of this chapter is the analysis of the data gathered from the pre- and post-
exercise surveys collected from three in-class workshops and the online session.
Participants in the in-class workshops were asked to fill in these surveys before and
“after they had attempted two sets of programming exercises, while the online
participants were presented with the similar surveys before and after the video
demonstration of the same sets of exercises. The click-stream events that were also
captured during the sessions for each participant were initially intended to be used to
identify the behavioural trend between traditional exercises and visual RAD exercises.
Due to the time constraints during the lab sessions, the exercises were demonstrated on
screen, and almost 90% of the in-class participants followed the on-screen instructions
rather than doing the work on their. own. Therefore, the behavioural trend is not as

conclusive as was originally hoped.

4.1. Pre-exercise Survey

This section examines the responses to the pre-exercise survey questions from both in-
class and online participants. The pre-exercise survey consists of four sub-sections:
demographics, programming experience, perception of visual RAD versus traditional
programming environments and learning experience. The same set of instruments was
given to all participants. The main purpose of this first survey was to gain an

understanding of each participant’s current level of expertise and experience with the

~programming environments and to gather their reaction to these environments.

4.1.1. Demographics

A total of 64 students from the school participated in this research, 16 of whom were
drawn from the in-class sessions and 48 from the online session. Only 29 of the 64
participants completed the exercises and participated in the post-survey. The data from

the participants who did not complete the exercises was not analysed in this chapter.

36

Of the 29 participants who had completed the exercises, 90% were male and the rest
were female. The majority of the participants (31%) were aged between 18 and 21,
followed by 22 to 25 (24%), with another 24% being over the age of 30 (Table 4-1). A

small percentage were either under 18 years of age or in the 26-29 years of age range.

Table 4-1: Q2. Which of the following age groups do you fall into?

< 18 years 18-21 22-25 26-29 30+ years
Lab 0 5 5 1 1
Online 3 4 2 2 6

While this research was aimed at the novice programmers, it also included those with
intermediate and expert levels in order to gain a maximum number of respondents and
to examine the differences in perceptions between participants with various levels of
expertise. A majority of the students who participated in this research (31%) were first-
year undergraduate students, while 24% were in their second year and the rest were
third-year and post-graduate students. A total of 55% of the participants were studying
for a Bachelor of Computer Science qualification, while a further 17% were enrolled in
a Bachelor of Information Technology course. The rest of the participants were drawn
from post-graduate studies, honours studies and other courses. A total of 76% of the
participants were studying on campus, while 7% were studying online and 17% were
studying in mixed mode. Regardless of their current mode of study, 79% preferred to
study on campus while the other 21% preferred the mixed mode. No participant selected

online as the preferred mode of study. This could be because most of the participants

preferred using the step-by-step instructions or following the lecturci’s -on-screen

examples while performing the programming tasks (Table 4-11).

4.1.2. Programming Experience

In this section, participants were asked about their level of experience in programming
environments and tools. Of the participants, 80% indicated that they had experience in
at least one programming language and 66% of participants had done programming
beforé becoming a university student. Only 41% of the participants had experience in

web application development. Despite their previous experience in programming, 58%

37

of those who had done programming before coming to university rated themselves as

novices.

Many of the participants had used Java, C and C++ programming languages, and some
had experience in web application development languages such as HTML, ASP, PHP
.and ASP.Net. Visual RAD environments, such as NetBeans and Visual Studio, were the
most common programming environments overall among the participants. Although
some of the participants had answered that they had learned traditional environments
first, they did not list any traditional environment as the programming tool that they had
used before. This is probably because some programming units or learning materials
made use of the code view of visual RAD environments to teach the basic programming

principles; thus the participants had trouble distinguishing between the two.

When the participants were asked to rate their level of experience as a programmer,
52% rated themselves as novice; 41% as intermediate and 7% as expert. Table 4-2
indicates that while 45% of the first-year participants rated themselves as novices, the
other 55% thought that they had an intermediate level of programming experience. On
the other hand, the majority of the second-year students (6 out of 7) thought they were
at the novice level. Looking back at the number of programming units completed for
those second-year participants, many of them had done at least two to three
programming units during their course of study. The third-year students who rated
themselves as novice programmers had completed three to five programming units. One
of them commented later in the survey that he was not interested in programming and

the other indicated that programming was not the focus of his current course and his

previous programmiing experience was out of date. These could be the reasons for rating

themselves as novices,

Table 4-2: Q5. How many units have you completed in your course so far?

First, Other
Some or
Some first second and (honours
all of the
. and second- some of the and
first-year .
. year units third-year postgrad
units) .
units studies) <Blanks>
Novice 5 6 2 0 2
Intermediate/Expert 6 1 5 2 0

38

4.1.3. Visual RAD Versus Traditional Programming Environments

In this section, students were asked about their pérceptions of the visual RAD
environment versus traditional programming environment based on their previous
| experience. Overall, a majority agreed that visual RAD environments are easier and that
they would prefer to use the visual RAD environment. However, in terms of the first
environment for novice programmers, a traditional programming environment was the

preferred choice among the participants.

Table 4-3 shows that a majority (55%) of the novice programmers did not have any
previous experience in the visual RAD environment. Perhaps they had not done any

programming at all or had just started with a traditional programming environment.

Table 4-3: Q14. Have you ever programmed in a visual rapid application

development environment before (such as Microsoft’s Visual Studio)?

Yes No
Novice 6 9
Intermediate/Expert 10 4

Table 4-4 shows that a majority (59%) of the participants agreed that, based on their

experience, the visual RAD environmentwryryiédé”'Wpﬂr'ovgramming easier. Most of the
participants liked visual RAD due to the ability to find and fix errors quickly and the
ability to design the user interface easily. Many of the participants who had answered
“Neutral” mentioned that they had never used the visual RAD environment before. Only
one participant strongly disagreed with the statement based on the reason that visual
RAD could add unnecessary code that creates application “bloat”. Overall, it seems that

both novice and intermediate/expert participants had similar views on this.

39

Table 4-4: Q15. From my experience, I feel that visual RAD tools make

programming easier

Strongly . Strongly
Agree Neutral Disagree .
agree } disagree
Novice 4 5 - B 0 0
Intermediate/Expert 5 3 5 0 1

Table 4-5 shows that while novice developers were equally split between the perception
of their ability to understand visual RAD features and functions, many of the
intermediate and expert level developers disagreed that visual RAD features are hard to
understand. This relates to the second supporting research question: “Does RAD require
pre-existing traditional knowledge?” Some of the comments from participants indicated
that the developers need to have a b’asic understanding of programming and what the
tools can do before they start to program, and only that knowledge would help them to
understand the RAD features and functions more readily. This could be one of the
reasons that 55% of the participants preferred a traditional environment as the first
environment, as indicated in Table 4-9. In addition to this, 66% of the participants also
felt that traditional programming helped them understand the programming processes,
such as conditions, loops and variable declarations, better (Table 4-6). They felt that
traditional programming environments give the programmer a better understanding of
the language overall and the workings of the processes, which gives the programmer

greater control when it comes to error debugging.

Table 4-5: Q16. I feel that visual RAD features and functions can (or look to) be

hard to understand

Strongly ' . Strongly
Agree Neutral Disagree .
agree disagree
Novice 0 4 7 4 0
Intermediate/Expert 0 2 5 7 0

40

Table 4-6: Q17. I feel that traditional programming environments help me
understand the programming processes better (e.g. variable declaration, condition,

loops, recursion)

Strongly . Strongly
Agree Neutral Disagree .
agree disagree
Novice 5 4 5 1 0
Intermediate/Expert 7 3 1 2 0

Table 4-7 shows that a majority of the intermediate/expert level developers (64% of
intermediate/expert developers) found learning syntax in a traditional environment
difficult, whereas many of the novices (40% of them) indicated otherwise. This appears
to contradict their responses to the statement “I find programming of any kind difficult
to learn”, as shown in Table 4-12. Again, this could be related to the finding that many
of the novice programmers (47% of them) were not interested in programming, which

reduced their engagement with the learning process.

Table 4-7: Q18. I feel that learning syntax in traditional programming is (or looks)

difficult

Strongly . Strongly
Agree Neutral Disagree .
agree disagree
Novice 1 3 5 6 0
Intermediate/Expert 3 _ 6 1 3 1

More than 70% of the participants had learnt a traditional programming environment

first and 10% of the participants had learnt both environments around the same time (

Table 4-8). Only one participant indicated that he had learnt a visual RAD environment
first. This participant indicated that he had done programming before becoming a
university student, where he was most likely exposed to a visual RAD environment. He
seemed to favour the visual RAD environment in general, as most of his answers on
preference between the traditional and visual RAD environments indicated the latter.

Apart from this participant, overall responses indicated traditional environments are the

41

preferred pathway among the developers. Table 4-9 indicates that 55% of the
participants preferred to learn the traditional environment first. This relates to the first
supporting question: “Should RAD be taught as the ‘first environment’?” Tt seems that
most of the participants felt traditional environments would be a better “first
environment” for novices compared with visual RAD ehvironments. However, when it
.comes to web application development, many of the participants preferred to use visual
RAD environments, as shown in Table 4-10. This could be largely due to the visual
RAD environment providing an easier and faster development system for the user
interface. The integration with HTML and the need for state management in user-
specific environments for web applications could also be easily handled in visual RAD
environments with built-in functionality, unlike traditional environments where these

tasks are tedious and time-consuming to code manually.

Table 4-8: Q20. I have learnt

Traditional
. RAD first Same time Neither
first
Novice 10 0 1 4
Intermediate 11 1 2

Table 4-9: Q21. Which environment would you prefer to learn first as a novice

programmer?

Traditional RAD No preference
Novice _ 8 4 3
Intermediate 8 4 2

Table 4-10: Q19. If I were asked to program a web application, I think I would

prefer to use

Traditional RAD Not sure
Novice 2 4]

" Intermediate 4 7 3

42

Participants who preferred the traditional environment to be the first environment for
novice programmers felt that novices should know the basics of programming, which
are usually hidden in visual RAD tools, and once the developer knows how to program
in a traditional environment, it would be easier to program in visual RAD environments.
However, those who preferred a visual RAD environment to be the first environment
~argued that being able to write a workable program faster in visual RAD could maintain
the interest of novices in programming and that it was easier to grasp the concepts for
starting out. With visual RAD programming environments, working programs could
more easily be put together, which increased the confidence and enthusiasm of learners

(Halland & Malan, 2003).

4.1.4. Learning Experience

In this section, participants were asked about their experience in learning programming,.
Table 4-11 shows that 41% of participants preferred step-by-step instructions while
doing programming exercises and 24% preferred to follow the lecturer’s on-screen
examples. The other 34% preferred to work on their own or to use textbook and online

resources.

Table 4-11: Q22. When doing programming exercises, I prefer

textbook and
Step-by- Lecturer’s To work on .
online
step example my own
- resources
Novice 8 4 2 1
Intermediate/Expert 4 3 5 2

Table 4-12 shows that while 47% of the novices agreed that programming is difficult to
learn, another 33% thought it was not difficult. A majority of the intermediate and
expert participants (71%) found that programming is not difficult. The difference in
these reactions seems to be impacted somewhat by the interest in programming in
‘general. Some of the participants who found it hard to learn commented that they are

not interested -in programming and it is hard to understand the logic-driven side of

43

programming, such as arrays, buffers and loops. Participants who felt that programming
is not difficult found it interesting and rewarding to learn and easy to apply the
knowledge across different programming languages, as it follows a defined set of rules

apart from slight differences in syntax.

Table 4-12: Q23. I find programming of any kind difficult to learn

Strongly . Strongly
Agree Neutral Disagree .
agree disagree
Novice 3 4 3 3 2
lntermedia’ce/Expert 0 3 1 8 2

Although the majority of the participénts (72%) expected to learn a number of different
environments during their studies, they (55%) preferred to use the same environment for
all programming tasks (Table 4-13 and Table 4-14). Some comments indicated that they
found it better to be proficient in one environment rather than knowing many

environments, yet not mastering any of them.

Table 4-13: Q24. I expect to be able to program in a number of different

environments over the duration of my studies

Strongly . Strongly
Agree Neutral Disagree .
agree disagree
Novice a L 3 5 0
Intermediate/Expert 5 7 1 1 0

Table 4-14: Q25. Where possible, I would always like to use the same environment

for all programming tasks.

Strongly . Strongly
Agree Neutral Disagree .
agree disagree
- Novice 3 3 5 3 1

Intermediate/Expert 2 8 2 1 1

44

Table 4-15 shows 52% of the participants agreed that the first environment is the most
important. One interesting comment from the participant who disagreed with the
statement was that the most commonly used environment for the development is more
important than the first environment. Another participant argued that it is neither the
environment nor the language that is most important, but rather it was the fundamentals
_that he had learnt, such as variables and iterations, that were most important. However,
many of the participants agreed that the first environment set the foundation for
understanding programming and could be the motivation for the developer to continue

programming.

Table 4-15: Q26. From my experience, the first environment learned is still the

most important

Strongly . Strongly
Agree Neutral Disagree .
agree disagree
Novice 4 5 4 2 0
Intermediate/Expert 1 5 3 5 0

Table 4-16 indicates that a majority of the novices (53% of novices) were not sure if
they would be involved in programming in their future career, but a majority of
intermediate and expert participants seemed confident that they would be doing

programming of some sort in their future career.

Table 4-16: Q27. In my future career, I expect to

Program lam
Do Program
. when | not
programming as career
have to sure
Novice 2 4 1 8

Intermediate/Expert 5 3 5 1

In summary, participants’ perceptions based on their programming background before

the programming -exercises indicated that while the traditional programming

45

environment should be taught as the first environment for the novices, the visual RAD
environment is still the preferred choice for web application development among all
levels of expertise. It seems that while programming processes and basic programming
principles are important for novices, the ability to create the user interfaces easily and

quickly in visual RAD environment influenced the overall preference.

4.2, Post-exercise Survey

The post-exercise survey consists of three sections, each primarily focusing on one of
the research questions discussed in Chapter One. Participants went directly to the post-
exercise survey upon the completion of watching/doing the programming exercises

described in Chapter Three.

4.2.1. Section One

This section focuses on the first supporting question “Should visual RAD environments
be taught as the ‘first environment’ to novice programmers?” It also looked at the
efficiency and pedagogical benefits of a visual RAD environment versus traditional

programming environments.

Table 4-17 indicated that 45% of the participants, the majority of whom were novices,
had never used the visual RAD environment before. This is consistent with, and

reinforces, a similar question asked in the pre-survey (Table 4-3).

Table 4-17: Q1. Is this the first time you have used (seen the use of) a visual RAD

environment (certainly for building a working application)?

Yes No
Novice 8 7
Intermediate/Expert 5 9

Overall, more than 65% of the participants agreed that the visual RAD environment is

‘quickér and easier'fhan traditional programming environments (Table 4-18 and Table
: 46

4-19), primarily because the pre-built components in visual RAD provide a head start in
creating an application. One participant mentioned that even though the visual RAD
environment is easier compared with a traditional environment, it is necessary to

understand the underlying code generated by the visual RAD components.

Table 4-18: Q2. Based on the (video) exercises, I feel that programming in

RAD is quicker than traditional is quicker

Equally quick
traditional than RAD qualyq
Novice 10 4 3
Intermediate/Expert 10 2 , 2

Table 4-19: Q3. Based on the (vided) exercises, I feel that programming in

RAD is easier than Traditional is easier

Equally eas
traditional than RAD quatly y
Novice 9 | 4
Intermediate/ Expert 10

Table 4-20 shows that overall, 34% of participants felt that they would not be able to
write loops, variable and condition statements if they had started with a visual RAD
development, while 28% of them thought they would. The decision is much clearer on
the issue of the traditional environment, where 55% felt they would have a better
understanding of writing loops, variables and conditions if they had started with a
traditional environment (Table 4-21). Only 10% disagreed with this statement. This
could be correlated to a question in the pre-survey (Table 4-6), where 66% thought
traditional programming environments helped them understand the programming
process better. One of the novice programmers commented that he had started with the
traditional programming environment, which gave him a solid foundation for the flow
control, and he felt that the focus on a visual RAD environment was more on the form

components rather than control structures. A majority (68%) of the participants agreed

that they learnt more about programming syntax and concepts using traditional

environments (Table 4-22).

47

Table 4-20: Q4. I feel that I would be able to write loops, variables and condition
statements if I had started with visual RAD development |

Strongly . Strongly
Agree Neutral Disagree .
agree disagree
Novice 0 5 5 5 0
Intermediate/Expert 0 3 6 5 0

Table 4-21: QS. I feel that I have or would have a deeper understanding of being
able to write loops, variables and condition statements if I had started with

traditional development

Strongly , . Strongly
Agree Neutral Disagree .
Agree Disagree
Novice 4 6 5 0 0
Intermediate/Expert 4 2 5 2 1

Table 4-22: Q10. I feel that I learn more about actual programming syntax and

concepts using

RAD Traditional Equally
Novice 4 7 4
Intermediate/Expert 1 10 3

Table 4-23 demonstrates that while a high percentage (40%) of the novices felt that they
would feel confident in using traditional environments, intermediate and expert
participants thought otherwise. Reason given by one of the novices was that the
traditional environment was the only environment he had learnt so far and therefore he
would feel more confident using it. Intermediate participants felt that the visual RAD
environment was much more user friendly and could help to guide novices to create a

working web application.

48

Table 4-23: Q6. In web application development, I feel confident as a novice

developer to use

RAD Traditional Equally
Novice 5 6 4
Intermediate/Expert 9 1 4

Table 4-24 shows that 66% of the participants believed they had enough technical
experience to use a visual RAD environment for actual development. One of the
participants again mentioned that visual RAD made the implementation easier;,
however, it was his traditional knowledge that helped him debug the errors in a visual

RAD environment.,

Table 4-24: Q9. 1 feel that I have enougﬁ technical experience to use a visual RAD

environment for actual development as presented in the (video) exercises

Strongly Strongly
Agree Neutral Disagree .
agree disagree
Novice 2 7 4 2 0
Intermediate/Expert 3 7 2 2 0

Table 4-25 shows that more than 70% agreed that the first environment has a significant
impact on learning programming. It serves as-the first-impression of the programming
experience for novice programmers. A positive experience with the first environment
could maintain the interest of the novice developer in programming. The first
environment could also act as the foundation for subsequent learning. It is important
that novice programmers understand the basic concepts of programming early in the

learning stage (Raadt, 2008).

49

Table 4-25: Q7. 1 feel that the first environment has a significant impact on

learning programming

Strongly o Strongly
Agree Neutral Disagree]
agree disagree
Novice 5 8 1 0 1
Intermediate/Expert 3 5 2 3 1

While 47% of the novice participants thought traditional environments should be
introduced first to the novice programmer in web application development, 40% thought
that visual RAD should be first introduced (Table 4-26). Intermediate and expert
participants were equally divided between visual RAD and traditional environments as a
first environment. Their opinions seem to have changed after working on or watching
the programming exercises. In the pre-exercise survey, the traditional environment was
the preferred choice as the first environment by far. However, it could also be that this
time the question was more specifically expressed towards the first environment for web
application development. When asked about the preferred environment for web
application development in general in the pre-exercise survey, visual RAD was the

preferred choice compared to a traditional environment.

Table 4-26: Q8. Which programming environment do you think should be

introduced first to novice programmers in web application development?

Does not
RAD Traditional
matter
Novice 6 7 2
Intermediate/Expert 6 6 2

Visual dialogs, step-by-step wizards, integration of different components into one
environment and the ability to create a program by drag-and-drop without worrying
about code were some of the many aspects of visual RAD environments that
participants felt would help novice developers learn programming. However, many of

the participants _alsoA agreed that visual RAD environments could be quite confusing for

50

novices with feature overload and a significant part of the programming concepts
hidden behind the pre-built functions. Conversely, in traditional environments these are
apparent to the developers, even though functionality needs to be built from the “ground
up”. It seems that while developers understood the importance of the basic
programming principles and concepts for novice programmers, the drag-and drop
approach of a visual RAD environment provided for quicker and easier development of
a web application. Overall, a slightly higher percentage of participants (45%) felt that

traditional environments were still the more suitable choice to be the first environment

in web application development compared with visual RAD environments.

4.2.2. Section Two

This section focuses on the second supporting question: “Does RAD require pre-

existing traditional programming knowledge ?”

Table 4-27 indicates that many (46%) of the novices felt they would need more
programming experience to use visual RAD effectively. This could be because many of
them had never used the visual RAD or they had very minimal programming experience
in general. However, many of them indicated in Section One (Table 4-24) that they had
enough technical experience to use the visual RAD as presented in the workshops. This
could be because the exercises were guided step-by-step and they were fairly simple and
basic programming tasks. However, the majority (53%) of the novices believed that
they would require the traditional programming knowledge to program successfully in a

visual RAD environment (Table 4-28).

Table 4-27: Q16. I feel that I would need more programming experience to use

visual RAD environments effectively

Strongly Strongly

Agree Neutral Disagree . <blank>
agree disagree
Novice 2 5 4 2 0 2
Intermediate/Expert 1 4 3 4 1

51

Table 4-28: Q17. 1 feel that I would be able to program successfully in a visual

RAD environment without traditional programming knowledge

Strongly Strongly

Agree Neutral Disagree . <blank>
agree disagree
Novice 0 i 3 7 1 3
Intermediate/Expert 0 6 2 3 2 1

It is interesting to note that while a majority (53%) of the novice programmers felt that
previous programming experience is necessary when using a visual RAD environment,
intermediate and expert participants (43%) seemed bto think otherwise (Table 4-29).
However; many agreed in their comments that novice developers could program a basic
application in visual RAD without previous experience, but that they would definitely
require programming knowledge in order to implement more complex, higher-level

applications.

Table 4-29: Q18. Given the nature of visual development in RAD, I feel that

previous programming experience is not necessary

Strongly . Strongly
Agree Neutral Disagree . <blank>
agree disagree
Novice 0 2 3 6 2 2
Intermediate/Expert 0 6 4 3 0 1

The opinion of intermediate and expert participants on what knowledge was required to
program in a visual RAD environment differed from that of the novice developers. As
indicated in Table 4-30 and Table 4-31, intermediate and expert participants (43%) did
not seem to care about the underlying code that makes the visual RAD work; rather,
they (50%) felt that it was sufficient to program using a visual RAD environment as
long as a developer knows what components to use and when. However, one of the
intermediate participants argued that it is important to know the underlying code to
overcome the limitations of the visual RAD environment, otherwise a programmer
would be limited to only the functionality of the pre-built components that the
environment could offer.

52

Table 4-30: >Q19. As a novice programmer, I feel that it is sufficient to program

using a visual RAD environment as long as I know what components to use and

when
Strongl Strongl
i Agree Neutral Disagree . i <blank>
agree disagree
Novice 0 5 1 5 2 2
Intermediate/Expert 2 5 3 2 1 1

Table 4-31: Q20. I feel that it is not important to fully understand the underlying

code that makes the visual RAD components work

Strongly . Strongly
Agree Neutral Disagree . <blank>
agree disagree
Novice 0 1 2 5 5 2
Intermediate/Expert 1 5 3 2 2 1

As indicated in Table 4-32, a majority (52%) of the participants felt that being able to
build a workable program is the most important aspect in learning programming
regardless of the environment, mainly because that is what is required to produce an end
result. Visual RAD environments are superior in this respect compared with traditional
environments, where it requires great effort to cover conceptual groundwork to build a
program that is workable. In a visual RAD environment, if the correct components are
placed together correctly, a workable application, or part of one, should result. More
participants (59%) agreed that learning syntax first is the most important aspect of
becoming a programmer (Table 4-33). This reinforces the previous finding that
traditional environments should be the first environment for novices. Many participants
agreed that to become a “real” programmer, it is important to start with the very basics
of programming. One participant commented that the program might be workable but it

could be “clunky and inefficient” if the programmer did not understand the underlying

programming language that drove it.

53

Table 4-32: Q21. I feel that being able to build a workable program is the most

important aspect of learning programming, regardless of the environment

Strongly Strongly

Agree Neutral Disagree . <blank>
agree ; disagree
Novice 3 6 3 - 1 0 2

Intermediate/Expert 1 5 3 3 1

Table 4-33: Q22. I feel that learning programming syntax first is the most

important aspect of becoming a programmer

Strongly . Strongly
Agree Neutral Disagree . <blank>
agree disagree
Novice 6 4 2 1 0 2
Intermediate 4 3 3 1 1

On the whole, 62% agreed that the ability to learn new environments quickly is more

important than the type of environment it is (Table 4-34). They felt that it is essential for

a programmer to be versatile in the different programming environments that they may

came across in the workplace. This is probably the reason that a majority of participants

expected to learn different programming environments during their course of study.

Table 4-34: Q23. Regardless of traditional or visual RAD methods of web

____programming, I feel that being able to learn any new environment quickly is more

important than which type of environment it is

Strongly) Strongly
Agree Neutral Disagree . <blank>
agree disagree
Novice 1 9 1 2 0 2
Intermediate/Expert 2 6 5 0 0

In terms of learning environments, 38% of participants agreed that visual RAD
environments are more suited to self-learning in terms of web application development

(Table 4-35). ‘This ‘could be due to some of the functionality in a visual RAD
| 54

environment being based on step-by-step wizards, which can make it easier for novice
developers to work on their own. Traditional environments on the other hand, are
perceived fo be more suited to classroom-based learning (Table 4—36) due to their
“blank canvas” starting point. The basic concepts, theories and syntax in traditional
programming probably require more guidance from an instructor compared with visual

RAD environments.

Table 4-35: Q24. Which environment do you feel is appropriate for novice

developers for self-learning in the web application development context?

RAD Traditional Equally <blank>
Novice 6 6 1 2

Intermediate/Expert 5 .3 5

Table 4-36: Q25. Which environment do you feel is appropriate for novice

programmers for classroom-based learning in web application development

context?
RAD Traditional Equally <blank>
Novice 4 7 1 3
Intermediate 4 5 4

. Overall, many of the participants felt that basic applications developed in visual RAD
environments, as presented in the workshops, would not require pre-existing traditional
programming knowledge. However, to be able to implement better functional and
customised, or more complex and larger applications, it would necessary to have

underlying traditional knowledge.

4.2.3. Section Three

This section focuses on the third supporting question: “Which is the preferred

programming environment among novice developers?” Many of these questions are

55

related to the programming exercises that participants watched or completed during

their workshop sessions.

The participénts were presented with three programming exercises for each of the
programming environments. The first exercise involved conducting a basic search from
a database, developing a table based on the keyword entered and displaying the results
in an HTML table. The second exercise involved editing and deleting the records in the
table, and the third exercise involved adding new records. Table 4-37 through

Table 4-39 indicate that a majority of the participants preferred the visual RAD
environment for these exercises. Even though it is quite evident that in some exercises a
traditional environment seemed easier and in other exercises visual RAD seemed easier,
most of the participants gave the same preference for all three questions. Only three
participants changed their answers from one question in the pre-survey to the

subsequent question in the post-survey.

Table 4-37: Q28. Which environment do you prefer for ‘“Search” (based on the

video exercises)?

RAD Traditional Both <blank>
Novice 6 3 3 3
Intermediate 7 4 0 3

Table 4-38: Q29. Which environment do you prefer for “Edit/ Delete” (based on

the video exercises)?

RAD Traditional Both <blank>
Novice 5 4 3 3
Intermediate/Expert 6 3 1 4

56

Table 4-39: Q30. Which environment do you prefer for “Insert” (based on the

video exercises)?

RAD Traditional . Both <blank>
Novice 4 5 3 3
Intermediate/Expert 7 4 0 3

Participants from the in-class sessions were given an optional challenge exercise in both
the visual RAD and traditional environments. Many of them did not attempt the
exercises due to the time constraint discussed earlier. Only four managed to complete
the challenge in the visual RAD environment and five completed the challenge using
the traditional environment (Table 4-41 and Table 4-42). It should be noted that though
these participants indicated that they completed the challenge exercises, they did not

upload the code in the optional upload area provided to them.

Table 4-40: Q31. Did you manage to complete the challenge exercise using visual

RAD environment?

Yes No <blank>
Novice 2 4 1
Intermediate/Expert 2 3 0

Table 4-41: Q32. Did you manage to complete the challenge exercise using

traditional environment?

Yes No <blank>
Novice 3 3 1
Intermediate/Expert 2 3 0

57

Instead of the challenge exercises, online participants were asked if they thought they
would be able to code the example applications in these environments. Table 4-42 and
Table 4-43 showed that 35% felt they could code in a visual RAD environment and

47% thought they could do so in a traditional environment.

Table 4-42: Q31. Based on the video exercises, do you think you could code the

example application in a visual RAD environment?

Yes No <blank>
Novice 3 3 2
Intermediate/Expert 3 2 4

Table 4-43: Q32. Based on the video exercises, do you think you could code the

example application in a traditional environment?

Yes No <blank>
Novice 3 3 2
Intermediate 5 1 3

Overall, 31% of participants preferred the visual RAD environment based on the
programming exercises and 24% preferred the traditional environment.

Table 4-44 shows that novices are equally divided between the visual RAD and

traditional environments, while intermediate and expert participants seem to prefer the
visual RAD environment. Many of the participant preferences did not change much
from the pre-survey when they were asked about their preferred environment for web
application development. Only one participant who selected the traditional environment
as the preferred choice in the pre-survey changed to the visual RAD environment as the

overall preference for the given programming exercises.

58

Table 4-44: Q33. Overall, based on these (video) exercises, I would prefer

RAD Traditional Both <blank>
Novice 4 4 _ 4 3
Intermediate/Experts 5 3 3 3

Even though the majority of participants preferred the visual RAD over traditional
environment, 41% (mostly novices) would use the traditional environment if they had to
further develop the exercises (Table 4-45). This might be based on the same reason that
they had only learnt a traditional environment so far in their courses and would not feel

confident enough to program in a visual RAD environment.

Table 4-45: Q34. If I had to further develop these exercises (with extra functions), I

would use

RAD Traditional Both <blank>
Novice 4 8 0 3
Intermediate/Expert 6 4 0 4

Table 4-46 indicates that most of the participants (34%) found that the traditional

exercises were easier to understand, primarily because they had prior knowledge in the

traditional programming. It could also be that because in the exercises, the participants
were primarily required to copy and paste code to a file, while in the visual RAD
environment they actually had multiple steps to follow in detail to achieve a similar
result. For example, the search function in the traditional environment required four
selections of code to be copied and pasted into a single .php file, while in the visual
RAD environment it meant dragging a datasource control, aligning this with the correct
database and database table, dragging a gridview control, then linking the two together,
after which a textbox control had to be integrated with the datasource search method.
While these steps were all done visually, it could be that the cognitive load required to

read and apply the correct sequence was higher than that of copy/paste.

59

Table 4-46: Q35. Which set of exercises do you feel is easier to understand?

RAD Traditional Both = <blank>
Novice 3 5 4 3
Intermediate/Expert 5 5 1 4

Table 4-47 shows that 41% of the participants agreed that teaching and learning
materials are more important than the type of programming environments. This
correlates with question Q37 (

Table 4-48), where 38% of participants agreed that availability of useful resources
influenced their reaction to these. programming environments. Overall, a large
percentage of participants (34%) agreed that the traditional environment has the most
useful online resources (Table 4-49). This is probably because with visual RAD
environments, it is hard to find examples where the actual visual interface is used as the
basis for instruction. A large number of textbooks and online tutorials might purport to
demonstrate step-by-step instructions in, say, Microsoft Visual Studio, but may have all

the examples presented in code-behind mode only.

Table 4-47: Q36. I feel that the teaching and learning materials are more

important than the type of programming environments

Strongly . Strongly
) Agree “Neutrali Disagree . zblanks
agree disagree
Novice 1 4 6 1 0 3
Intermediate/Expert 1 6 4 0 0

60

Table 4-48: Q37. I feel that availability of useful resources (textbooks or websites)

influenced my reaction to visual RAD versus traditional programming

environments
Strongly . Strongly
Agree Neutral Disagree . <blank>
agree disagree
Novice 1 4 6 1 0 3
Intermediate 1 5 4 0 1

Table 4-49: Q38. Which environment did you feel had the most useful online (web-

based) resources (such as tutorials/code examples)?

RAD Traditional Both <blank>
Novice 2 5 5 3
Intermediate/Expert 2 5 3

Even though these exercises did not require the participants to set up and configure their
environments, 48% of participants agreed that this could affect their reaction to the
programming environment (Table 4-50). In most cases, visual RAD was deemed as
having an advantage over a traditional environment in this area because most of the
visual RAD environments are also integrated development environments and everything
can be installed from a single package. In traditional environments, the compiler,

database, editor and debugging tools are often separate items that need to be configured

together.

Table 4-50: Q39. I feel that setup and configuration issues (of the environment)

could affect my reaction to RAD versus traditional programming environments

Strongly Strongly

Agree Neutral Disagree . <blank>
agree _ disagree
~ Novice 1 8 2 1 0 3
Intermediate/Expert 1 4 3 2 1

61

The quantitative analysis within this chapter indicates that the visual RAD environment
was the preferred choice for all of the programming exercises and overall web
application development, despite better _availability of resources in traditional
environments. In terms of pedagogical benefits, participants found that traditional
environments are still the most appropriate environment novice developers. The
following chapter will provide further context to the quantitative results presented in

this chapter.

62

5. Discussion

This chapter discusses the findings from this study based on the three main focuses of
this research: the traditional environment, the visual RAD environment and the learning

sequence of these programming environments.

The findings confirm the current trend in programming courses, which is starting the

learning phase with a traditional programming environment first followed by visual
RAD in later stages. This sequence still appears to be the preferred pathway for novice
developers in learning programming for web application development even though the

intermediate and expert developers were equally split on the preferred choice.

Based on the qualitative data from participants, the following factors have been

identified as important aspects of learning programming:

Understanding programming syntax and concepts
Understanding underlying logic of the program
Ability to enhance further

Ability to build workable program

A

Interest.

5.1. Understanding Programming Syntax and Concepts

A majority of the participants indicated in the survey responses that understanding the

programming concept is the most important aspect of learning programming. Basic

~ programming concepts learnt in introductory programming courses includes loops,

variable declaration, recursion, conditions and objects. Understanding how and why the
program behaves in certain ways is the foundation to understanding more complex and
difficult programs. Gries (1974, 2006) argues that understanding programming concepts
at the introductory programming level is the main focus of traditional programming
courses and he believes that it should still be the case. Although many participants in
this study agreed that they would be able to use these programming concepts if they had

started with a visual RAD environment, more of them felt that a traditional environment

helped them understand these concepts more fully. Open-ended survey responses

indicate that it is because the traditional environment forced them to manually program

“from .scratch”, that- they could absorb the knowledge better. The fear of hidden
| 63

programming concepts is always a challenge in introducing visual RAD in introductory
programming courses (Schaub, 2009; Tew, McCracken, & Guzdial, 2005). It is argued
in Tew et al. that these programming syntax and concepts could have a remarkable
impact on the retention of novice programming students, and the focus should be more
on inviting and retaining students, Although, as indicated in Chapter Two, learning the
. programming concept and syntax is generally perceived to be one of the most difficult

aspects of learning programming (Lahtinen et al., 2005).

5.2. Understanding Underlying Logic of the Program

Understanding the underlying logic of a program can be derived through different
approaches. With traditional environments, this could be done by reading the lines of
code and trying to understand how the program works. With visual RAD, it could be
done by identifying the links between different controls and experimenting with their
settings until something works. A majority of participants agreed that it requires a great
deal of understanding of how the components work in a visual RAD environment to
make them work correctly. Mannila (2006) argues that there is very little correlation
between the ability to write code and read the code. Although students may understand
the programming syntax and concepts, it does not mean that they would be able to
understand what the program does and the logic behind it. Some participants indicated
that this is the most important aspect in learning programming, i.e. to be able to develop

or modify existing application code and structures.

5.3. Ability to Enhance Further

Most of the participants agreed that the ability to enhance the existing program is one of
the key aspeéts in learning programming. Software is rarely a one-off project, as it
requires new functions and enhancements as user requirements evolve (Sommerville,
2007). The ability to enhance further relies heavily on the ability to read and understand
the underlying programming logic. Many of the participants agreed that traditional

programming environments give the programmer complete control and do not limit the

64

ability to enhance further. A visual RAD tool, on the other hand, can be limited by the

controls the environment provides.

5.4. Ability to Build a Workable Program

Most participants felt that the ability to build a workable program quickly is one of the
most important aspects in learning programming. With traditional programming
environments, it can take hundreds or thousands of lines of code to create even a small
workable and functional program. With visual RAD, this can quickly be done through
simple drégging and dropping of icons given that the appropriate controls are available.
As indicated in the research carried out by Halland and Malan (2003), teachers and
students found it more rewarding and'interesting to work in visual RAD because of this.
It was argued by some participants that although the program might be workable, the
program might not function as expected if the student developer does not understand the
underlying structure and logic. However, others argued that it is the workable result that
the clients want in the programming industry. As is apparent in the literature, it is this
aspect of visual RAD programming that makes it popular among non-programmers

(Kaneshige, 2009; Rode, 2004).

5.5. Interest

Many participants found the traditional programming environment non—motivating and
daunting because it requires numerous lines of code to achieve even tiny outcomes and
is difficult to debug along the way. Tew et al. (2005) provided a strong argument that
interest and motivation should be the first priority'in the selection of environment in
introductory programming course design. Visual RAD provides an environment that
allows for the building of workable programs quickly and keeps the programmer
motivated to further develop the program. Many of the participants in this study
indicated that they would use the visual RAD tool for future developments in web
vapplication developments even though many of them had no prior experience in using

these tools. Findings.from this thesis and the associated literature may be indicative of

65

reasons why researchers are trying to introduce visual RAD environments into
introductory programming courses (Chainini & Yamada, 1998; Goldweber et al., 2006;
Halland & Malan, 2003; Seals, 2005). |

5.6. Traditional Programming Environment

The traditional programming environment was perceived as a good learning tool for
novice programmers. A majority of novice and intermediate participants felt that
traditional programming environments provide better pedagogical benefits compared
with visual development. Developing the program “from scratch” helped them
understand the concepts and flow of the application and gave them confidence to

enhance the program further.

Table 5-1 shows the comments from some participants regarding the benefits of
traditional programming in learning programming processes such as variable

declarations, loops and recursions.

“If there are any errors or something isn't displaying right you have the ability to find the
problem and correct it.”

_ Participant #3: Lab, Male, 22 — 25, BITHons, expert, Completed

“They give the programmer complete control.”

Participant #10: Lab, Male, 18 — 21, BCompSc, intermediate, Completed

“Have a better understanding of the workings of the processes.”

Participant #18: Online, Male, 30+, BSc(CompSc), intermediate, Completed

+“Working with the-skeleton-I-guess you-get-a feel-of what is-happening behind the scenes, so
when it comes time to figuring out what might be wrong with a program you have a head start

because you know what is interacting with what.”

Participant #25: Online, Male, 26 — 29, BCompSc, novice, Completed

“I did start with traditional development, and it did give me a solid grasp of flow control.”

Participant #11: Lab, Male, 22 - 25, BCompSc, novice, Completed

“An understanding of the logic behind programming does help.”

Participant #22: Online, Male, 18 — 21, BCompSc, intermediate, Completed

66

“I think knowing the processes behind the visual interface helps get a better understanding of

how the program actually is functioning.”

_ Participant #24: Online, Male, 22 — 25, CompSc/CreatMusTech, novice, Completed

“Since I would need to write more code in a non-RAD environment, I guess that I would

achieve a better understanding of loops, variables and condition statements.”

Participant #28: Online, Male, 30+, MCompSc, intermediate, Completed

Table 5-1: Students comments on benefits of a traditional environment for

programming processes

The above participant comments indicate that being able to see the code in traditional
programming environments helps students to see the underlying logic and design of the
application that they are building. Although the textual interface makes it harder to
visualise the application and debug the syntactical errors, many agreed that it is easier to
debug the logical error in traditional programming environment compared with visual
RAD. This could be because traditional programming environments are primarily
designed for more linear programming, especially for the exercises provided to
participants in this research (Kolling & Rosenberg, 1996). Although Mannila (2006)
argues that novice developers have problems reading code and understanding logic,
most of the time the business logic is in close proximity to where it is required within a
traditionally developed application. In other words, calculation code is typically near
input code within a procedurally written application. Visual RAD tools on the other
hand, have very abstract interfaces and the code of the components are largely hidden,

or the code that influences and controls one object may be discretely separated from

another control upon which it is dependent (Caliéni & Bagert, 1994). Debugging the
logical error requires understanding of what the controls do, how they work, how they

interact and in what context they sit.

Although three of the participants (one novice and two intermediate level developers)
had largely negative responses towards the traditional environment during the pre-
survey, some of the responses changed during the post-survey. One of these participants

indicated early in the pre-survey that:

“No point using traditional, waste of time. Same thing done with visual RAD, better

67

convenience, development atmosphere and gives you more control over your project without
wasting time.”

 Participant #14: Online, Male, 18 — 21, BInfoTech, novice, Completed

However, this participant’s answer changed during the post survey and he indicated that
- it would indeed require traditional programming knowledge to program in a visual RAD
environment. His answers were probably influenced by the tone of the questions rather
than the programming exercises, as the click stream indicated that this participant had
spent very little time on the programming exercises. Nonetheless, all three participants’
overall preferences still leaned towards the visual RAD rather than traditional

programming environment.

Most participants agreed that traditional environments fulfil the first three aspects listed
earlier in this chapter (understanding programming syntax and concepts, understanding
underlying logic of the program and ability to enhance further). However, it is also
evident that traditional environments are somehow more difficult to learn because of the
syntax and having to build the program “from scratch”. It could take hours to build a
workable program in a traditional environment. These factors could portray the
impression to novice developers that programming is difficult. While it is important to
learn the basics of programming at an early stage, it is also important to keep the
interest and enthusiasm of the new programmers in order for them to continue with
programming. Bergin and Reilly (2005) found in their research that motivation has a
huge impact on performance in learning programming. The findings in this thesis

indicate that participants seem to be more enthusiastic in developing web applications

with visual RAD rather than traditional environments. Table 5-2 illustrates some

negative reactions from participants in regards to a traditional environment.

“Not easy to picture layout.”

_ Participant #7; Lab, Male, 18 — 21, CompSc, novice, Completed

“No error checking or correction—makes it difficult to learn and even harder to keep
learning.”

_ Participant #9: Lab, Male, 18 — 21, BCompSc, novice, Completed

“The necessity to learn a complex and exacting syntax.”

Participant #11: Lab, Male, 22 — 25, BCompSc, novice, Completed

68

“...can be hard to initially understand basics and fundamentals.”

Participant #15 :'Online, Female, < 18, BCompSc, novice, Completed

“It-can be difficult to know how the program will look when working with just text. And

know just what libraries already exist for use.”

Participant #24: Online, Male, 22 — 25, CompSc/CreatMusTech, novice, Completed

“In more complex applications—such as a web application that deals with HTML code and
another language—a novice programmer may strziégle to absorb and properly understand

all of this new information at once.”

Participant #15: Online, Female, < 18, BCompSc, novice, Completed

“All the syntax can be daunting.”

Participant #26: Online, Male, 18 — 21, BCompSc, intermediate, Completed

Table 5-2: Students comments on difficulties of a traditional programming

environment

As the comments indicate, many novice participants found the traditional programming
complex and difficult to learn, mainly because of the syntax and the non-visualisation of
the application. Results indicate that although intermediate and expert participants felt
that programming was not difficult, they felt that it is difficult to learn syntax in a
traditional programming environment. The traditional programming environments often
lack basic help in writing programs, such as syntax checking and displaying of available
objects and methods, which makes it harder, especially for the novice programmers, to
build a workable program in a short time frame. During the in-class workshops, the

code samples for traditional programming exercises were provided to the participants.

Even though they were only required to copy and paste the code from the instructions to
the text editor, some of the participants encountered syntax problems such as missing a
‘7 or ‘}’. It took them a while to figure out the problem, or in some cases, they resorted

to restarting the code from the beginning.

In terms of the learning resources available, a traditional programming environment has
some advantages over visual RAD environments. Writing a program in traditional
programming environments is limited only by the programming language, unlike a
visual RAD environment, where it is constrained by both language and the

environment/software. There are more tutorials and code samples available online for

69

traditional programming environments. Even though participants agreed with this
perception, they indicated that regardless of the availability of training resources, a

majority still preferred the visual RAD environment overall.

While a traditional environment appears to be the more suitable environment for novice
- developers in terms of learning programming, its ability to boost the interest and

motivation of the new programmers seems far behind that of visual RAD environments.

5.7. Visual RAD Environment

The responses to visual RAD environments were largely positive. A majority of
participants liked the rapidity of building a workable program and the ability to
visualise the application even before it is completely built. Even though many of the
participants indicated that they had never used the visual RAD environment before, it
still gave them an impression that it would be better suited to web application

development compared with traditional programming environments.

Table 5-3 details some of the comments from participants in regards to the ease and

rapidity of programming in visual RAD environments.

“Find and fix common errors quickly, due to better error output.”
“Usually pretty self-explanatory interfaces.”
Participant #9: Lab, Male, 18 — 21, BCompSc, novice, Completed

“RAD tools make component-based programming easier, especially when form design is

involved.”
“I don't think tools like Visual Studio are hard to use.”

Participant #11: Lab, Male, 22 — 25, BCompSc, novice, Completed

“Spares the trouble of writing code to create the user interface, which saves a lot of time in a
working environment under strict time constraints.”

“It's fairly simple if you have a basic understanding of programming languages and what
you're doing.”

_ Participant #19: Online, Male, 30+, BInfoTech, intermediate, Completed

-“Shows where errors are, easier to navigate and integratable with other tools.”

- Participant #24: Online, Male, 22 — 25, CompSc¢/CreatMusTech, novice, Completed

70

“Visual RAD tools make interface design much easier: trying to make a GUI in Java using
JErames, and coding each element on the screen, is a nightmare. RAD environments can also

take care of some very 'fiddly' aspects of programming, e.g. database connectivity.”

_ Participant #27: Online, Male, 18 — 21, CompSc, expert, Completed

“Palettes with drop on form capabilities and abilities to change properties, code events and
procedures with ease.”

_ Participant #29: Online, Male, 30+, BSc, intermediate, Completed

Table 5-3: Ease and rapidity of programming in visilal RAD environment

Based on the comments, it seems evident that the drag-and-drop feature in visual RAD
environments makes it quicker to implement an applications graphical user interface.
Not having to write code “from scratch” gives the programmer a head start in the
application development process. However, the downfall is that it can be very unclear to
the programmer what is happening behind these drag-and-drop components. This could
cause problems if customisation of the standard component is required. In such a
situation, more extensive knowledge of programming processes would be necessary in
order to understand how things work. The survey responses indicate that a majority of
the participants felt that they would not be able to write loops, conditions and variable

declarations if they had started with visual RAD.

“I think it's not good to highly depend on RAD environment for novice programmer.”

Participant #5: Lab, Male, 18 — 21, BInfoTech, intermediate, Completed

“Can get confusing.”

__Participant #7: Lab, Male, 18 — 21, CompSc, novice, Completed

“Working with components so much doesn't help you when you have to code the whole thing
yourself.”

Participant #11: Lab, Male, 22 — 25, BCompSc, novice, Completed

“Logic errors. RAD seems to be more suited to lazy developers and to encourage a lack of

pseudocode development”

_ Participant #12: Lab, Male, 22 — 25, BCompSc, novice, Completed

“...overload of toolbarsficons”

- Participant #13: Online, Male, 26 — 29, I'T, novice, Completed

71

“Not having an understanding of the logic behind the application.”
. Partici pant #22: Online’, Male, 18 — 21, BCompSc, intermediate, Completed

“That a lot of the programming is hidden behind prebuilt functions and buttons.”

Participant #24: Online, Male, 22 — 25, CompSc/CreatMusTech, novice, Completed

“As in question 11, the drag and drop doesn't teach novices the basic structure of a program,
q g p prog

which makes it hard to go from a RAD to a traditional environment”

Participant #22: Online, Male, 18 — 21, BCompSc, intermediate, Completed

Table‘5-4: Downfalls of visual RAD environment

Table 5-4 shows the disadvantages of visual RAD environments for novice developers
as perceived by the participants. Most indicated that hidden coding logic in visual RAD
is the major downfall, as a novice developer would require a knowledge of basic
programming in order to progress further as a developer. During the in-class workshops,
though step-by-step instructions were provided, many of the participants struggled with
the configuration of the components and where to make the changes, mainly because of
the interface complexity and a lack of understanding of how the components work.
Visual RAD environments provide numerous features and components and each
component has numerous properties. Trying to understand all these can be quite
daunting to a novice developer. Although understanding the toolbars and icons could
come with experience in using the environment, understanding the logic behind the
components and their functionality requires knowledge of fundamental programming

concepts.

5.8. Learning Sequence

One main focus of this research was to investigate the impact and selection of first
programming environments. Survey results show that most of the participants learnt
traditional programming environments as their first environment. Only one participant
(Participant #6: Lab, Male, 18 — 21, BCompSc, intermediate, Completed) indicated that
he learnt visual RAD before a traditional environment. As shown in Chapter Four, this
participant appeared to have learnt a visual RAD environment before becoming a
university student. He still preferred the first environment for almost all of the aspects

mentioned covered within the survey. Apart from this participant, there were mixed

72

reactions between novices and intermediate/expert participants on the important aspects

of learning programming.

A majority of the participants agreed that the first environment has a major impact on
learning programming. It sets an important foundation for the whole learning process of
programming. Table 5-5 shows some comments from participants in regards to the

importance of the first environment.

“A bad IDE can put you off a language for good.”
 Participant #9: Lab, Male, 18 — 21, BCompSc, novice, Completed

“The first environment you are exposed to always relates to every environment you are exposed
to subseqdently. 7

Participant #12: Lab, Male, 22 - 25, BCompSc, novice, Completed

“It forms the foundation of your thought processes to the field.”
Participant #24: Online, Male, 22 — 25, CompSc/CreatMusTech, novice, Completed

“What you learn first will often leave you thinking that that was the 'right' way of doing things,
and anything you learn after must be 'wrong', because it's different.”

Participant #26: Online, Male, 18 — 21, BCompSc, intermediate, Completed

Table 5-5: Importance of first environment

Programming is generally accepted as a challenging subject within the literature.
However, the findings from this research indicate that intermediate and expert

developers thought otherwise. This is likely to be because they feel proficient at

programmiﬁg and, at this point in time, it seems ééiéy“fb them. Open-ended responses
revealed that many of these intermediate and expert developers enjoy programming and
they had a solid amount of programming experience upon which to base their
confidence in their own programming capability. On the other hand, many of the
novices indicated that they found programming difficult. Although not many of these
participants provided the reason for this, some responses indicated that they were very
new-to programming and did not have enough confidence or were simply not interested

in programming.

73

As mentioned previously, there are many important aspects of learning programming
that need to be considered when selecting the first programming environment. Many of
the participants considered the ability to understand programming concepts and syntax
as the most important aspects of learning programming, and almost 60% agreed that

they learned more with traditional programming environments. For traditional

. programming, as most of the programs have to be hand-coded, it is necessary to know

the programming processes before starting to code the application. In a visual RAD
environment, code competency it is not required until a later stage when the developer
needs to further enhance pre-existing features. Almost 50% of the participants agreed
that being able to build a workable program is the most important aspect of environment
selection. Most of the comments indicated that, at the end of the day, the output is all
that matters, especially for the novices, to keep them motivated and interested in

programming.

Table 5-6: Importance of ability to understand programming concepts shows the

comments from participants in regards to the important aspects of programming.

“...understanding the languages concepts and syntax is more important.”

Participant #3: Lab, Male, 22 — 25, BITHons, expert, Completed

“Learning programming concepts first helps more.”

_ Participant #15: Online, Female, < 18, BCompSc, novice, Completed

* “The most important part of learning is to understand concepts and how things work.”

“You may be able to create a workable program, but that program might be clunky and
inefficient because you never took the time to learn a more detailed understanding of the

language.”

Participant #24: Online, Male, 22 — 25, CompSc/CreatMusTech, novice, Completed

Participant #27: Online, Male, 18 — 21, CompSc, expert, Completed

“Programming LOGIC is far more important to learn—syntax can be easily learned once
programming logic and techniques are properly under.”

“Visual RAD environments tend to hide information. For example: using a wizard to retrieve
records from a database table as opposed to writing the code to establish the connection and
execute SQL statements. The wizard does not help learning in this instance.”

You can build a workable program using a drag-and-drop technique in a Visual RAD
environment with almost no programming knowledge. Therefore you are not so much a

programmer—you are someone who just knows how to use a specific tool.

- Participant #28: Oﬁline, Male, 30+, MCompSc, intermediate, Completed

74

“No matter which environment you use, you still need to know the basics of programming
syntax and concepts. RAD would be easier to learn but also easier to skip over vital
programming concepis.”

“Learning the basics is always the best way to go... and it all starts at the syntax level as far as
Icantell.”

“A workable program is all the client wants aint it?”

Participant #29: Online, Male, 30+, BSc, intermediate, Completed

Table 5-6: Importance of ability to understand programming concepts

One of the interesting findings from this research is that in all three questions, with
regards to pre-existing knowledge for visual RAD environments, many of the
participants agreed that a visual RAD environment requires the knowledge of a
traditional programming environmeﬁt, even though some of them preferred to have
visual RAD as the first environment. It might be that a developer could successfully
work in visual RAD as a novice, but in order to fully make use of the features provided
in the environment, they might require more comprehensive knowledge of
programming. Participants indicated that their previous experience in traditional

programming helped them understand more of the visual RAD environment,

The visual RAD environment was by far the preferred environment for web application
development among the participants. However, there are differing opinions on the first
environment for web application versus the first environment for other types of
applications. Participant #10 (Lab, Male, 18 — 21, BCompSc, intermediate, Completed)

said during the interview, “I would use RAD for more interface-oriented applications

like web applications but traditional for more lbgié oriented applications like games.”
During the pre-survey, when asked about the preferred first environment for novice
developers in general sense, 55% preferred a traditional environment and only 28%
preferred visual RAD. However, when asked about the preferred first environment for
novice developers for web application development during the post-survey, the figures
changed noticeably. A larger number of the participants (45%) preferred a traditional
environment compared to visual RAD. However, overall, it is still preferable to have

learned a traditional environment first before the visual RAD for the novice developers,

mainly because of their current experience with the traditional environment as well as

the pedagogical benefits of it.

75

6. Conclusion

The goal of this study was to examine the impact and selection of visual RAD
environments for novice developers in learning web application development. This
chapter will summarise the findings and discussion in the context of the three

supporting questions and primary research question.

6.1. Visual RAD as First Environment

Supporting question # 1: “Should visual RAD environments be taught as the ‘first

environment’ to novice programmers?”

The results of this research provided very positive feedback towards the visual RAD
environment from novice, intermediate and expert programmers. Most of them found
programming in visual RAD motivating and exciting, as they were able to see the
results quickly. This finding correlates well with the previous literature from Halland
and Malan (2003). Fast development and visualisation of the application in visual RAD
tools help students build applications easily and almost error-free (given application
complexity). However, the participants were concerned that visual RAD might not be
suitable as a first programming environment for novice developers, mainly due to the
hidden programming concepts. This issue of visual RAD has been raised by previous
researchers in the introductory programming field, as discussed in the literature review.
One of the main advantages of a visual RAD environment, the reduction of code cutting

and related syntax complexity (Dann, Cooper, & Pausch, 2005), becomes the major

disadvantage in selécting visual RAD in programming courses. Many participants
believed that a traditional programming environment is required to develop core
programming skills. This relates to a similar study conducted within the Alice
programming environment for game development by Sykes (2007), where he concluded
this to be one of the major disadvantages of the visual programming environment.
However, visual RAD was described as a rewarding and enjoyable environment by
many of the participants. According to the literature, visual RAD is believed to help in
attracting novice developers’ interest in programming (Haden, 2006; Seals, 2005;
vSykes',). Another solution, as explored by other researchers in order to achieve both

benefits, is to introduce both environments at the same level (Calloni et al., 1997;

76

Cilliers et al., 2005). Although it showed solid results in student performance in exams,
one must take into consideration the amount of time spent to introduce each of the
environments to novice programmers to a usable level. Introducing both at the same
time could confuse students in understanding the basics of these environments. So when
it comes down to selecting visual RAD as a first environment, it is a matter of a trade-
~off between pedagogical benefits and capturing student interest to enhance the success

rates of the introductory programming courses.

If based on the participants’ reactions from this research alone, visual RAD
environments should not be taught as a first environment to novice programmers,

although it perhaps should be introduced as early as possible thereafter.

6.2. Traditional Programming Knowledge Experience for Visual RAD

Supporting question # 2: “Does visual RAD require pre-existing traditional

programming knowledge?”

Although a few problems were encountered by participants at first in familiarising
themselves with the components and functions provided by the visual RAD
environment, many of them (based on the observation in labs) managed to solve the
programming problems presented in the workshops. The responses also indicated that
many of the novice participants felt confident in using the visual RAD and believed they
had enough technical experience for the given exercises. Many of the visual RAD
environments, especially in terms of web development, are designed to require little or

no programming knowledge to build simple data-driven applications (Goldweber et al.,

2006; Kaneshige, 2009; Rode, 2004). However this can only be accomplished with a
thorough understanding of the components and functions provided in the given visual
RAD tool. Based on observation during the in-class workshops, the first problem
encountered in the visual RAD exercises for many of the participants was locating the
correct component to use. Although step-by-step instructions were given, a slight
difference in the display of toolbox and property dialogs from sample screenshots could
easily confuse them. This was mainly because they did not have the in-depth
‘understanding of what each component was used for and how the basic structure of the
visual RAD tool worked. Although this problem was later reduced as they continued

with the exercises, 4 majority of the novice participants indicated that they would not

77

feel confident in vusing the visual RAD to enhance further on the programming
exercises, especially without examples to follow. The responses showed that it is
important to fully understand the components in visual RAD environments and that
traditional programming knowledge was nécessary, especially if they were to enhance
the program beyond the base visual RAD capabilities. For basic functional web

~applications this is not necessary, but the limitations of visual RAD would become
apparent when the project grew bigger and more complex functionality was required.
Kaneshige argues in his article that “real”/proficient programmers are still required to
develop and maintain complex applications. The graphical drag and drop only approach
of the visual RAD environment seems to be unrealistic in “real-world” problems, which
facilitated many of the RAD tools to implement both graphical and code views (Peter,
2009; Sykes, 2007; Wong, 2006).

Developing basic and generic functional web applications might not require traditional
programming experience, but for real-world applications and larger enterprise solutions,

traditional programming experience is a must.

6.3. Preferred Programming Environment

Supporting question # 3: “Which is the preferred programming environment among

novice developers?”

Participant preferences in programming environments differed according to the aspect
of the programming. Many of the responses indicated that visual RAD was the preferred

environment for overall web development due to the easier integration with GUI

components and the convenience of visualising forms without the need to code for
hours. The ability to build workable programs quickly, along with interactive and
interesting ways of developing programs, also contributed to this. Nevertheless,
participants believed that the preference would be different for different types of
programs. Based on the interview response from a novice developer, a traditional
environment is preferred for game programming. This is in contrast to the previous
literature, where visual RAD was believed to be a better environment to introduce game
programming for novice developers (Dann et al., 2005; Goldweber et al., 2006; Haden,
2006; ‘Sykes, 2007; Walter et al., 2007). Overall, responses indicated that visual RAD

was preferred more: for GUI-based applications. However, in terms of learning,

78

traditional environments provided better learning of fundamental concepts and the
syntax of programming (Halland & Malan, 2003; Raadt et al., 2002, 2003). It was the
preferred “first environment” for all types of programming tasks mainly for that reason.
Most of the intermediate and expert level participants believed that the traditional

environment is the better environment for learning the basics of programming.

~ Based on the context of this research being web application development, visual RAD
was the preferred programming environment to use among both novice and expert level

participants, but traditional was the preferred first environment to learn.

6.4. Student Reaction to Visual RAD versus Traditional Programming

Environments

The primary research question of the study was: “What is the student reaction to visual
RAD versus traditional programming environments for novice programmers in a web

application development context?”

Student reaction to visual versus traditional programming environments was very
positive and indicated that visual RAD environments have an important role to play in
terms of the learning experience of novice developers. While it seems evident that
novice developers still feel the need to learn traditional programming environments
first, it appears that in the long term, a majority of the participants in this study see
themselves as developing in visual environments. The ability to use pre-built controls,
or objects that visualise complex interface features, along with the rapidity of

development and prototyping, are seen as the key benefits of visual environments.

Participants also experienced a higher level of motivation when using the visual
environment presented in this study, as they went from a “blank slate” to functional web
applications in a matter of minutes. Experiencing such progress so quickly seems to be
an important factor for novice programmers, who can quickly become exasperated when
working with more traditional environments, which have significant learning overheads
in terms of integrating code to generate both client and server-side functionality. In
would seem that web applications in particular are well disposed to visual
_environments, as the messy integration of HTML, server-side code and database

connectivity is'handled in stand-alone, pre-configured objects.

79

6.5. Limitations of Research

As stated in Chapter Three, this research was generalised for different programming
environments based on the experiment using one programming language and one tool

for each of the programming environments. It is possible that participant reactions

" might vary if different languages or tools were used. However, due to the time and

resource limitations it was not possible to increase the scope of the experiment or the
number of environments used. While this study employed different levels of students
with different programming expertise, the sample size could be considered quite small
to allow for generalisation of the results. The large number of survey questions did
somewhat offset the small number of participants; however, this led to the issue of
survey fatigue, which subsequently impacted the number of fully completed surveys.
Many of the findings relied heavily on participants’ prior knowledge and experience and
on only three programming exercises, which could have had significant impact on
participants’ reactions, especially for visual RAD, as many of the novice programmers
were not exposed to the visual RAD environment previously. Better understanding of
the impact and selection of these programming environments could be further
developed. However, this study has produced some interesting findings and could easily

be expanded into a larger study.

6.6. Recommendations for Further Research

Visual RAD environments were found to provide a positive environment for

programming web_applications, although many of the participants had not used the

environment before participating in this research. It would be more appropriate to
conduct the workshops over a defined period of an introductory programming course
with exposure to different types of visual RAD programming environments for more in-
depth perspectives on these environments. It would also be better to monitor student
performance in subsequent programming courses as the impact of the first environment

is felt.

80

7. Reference List

Agarwal, R., Prasad, I., Tanniru, M., & Lynch, J. (2000). Risks of rapid application
development. Communications of the ACM, 43(11), 177-188.

Ashenden, D., & Milligan, S. (1999). The good universities guide: Universities, TAFE
and private colleges in 2000. Subiaco: The Australian; Hobsons Australia Pty
Ltd.

Babbie, E. R. (2000). The practice of social research (9th ed.). Belmont, CA:
Wadsworth/Thompson Learning.

Bergin, S., & Reilly, R. (2005). The influence of motivation and comfort-level on
learning to program. Paper presented at the 17th Annual Workshop of the
Psychology of Programming Interest Group, University of Sussex, Brighton,
United Kingdom. ’

Bohlen, G. A., & Ferratt, T. W. (1993). The effect of learning style and method of
instruction on the achievement, efficiency and satisfaction of end-users learning
computer software. Proceedings of the 1993 Conference on Computer Personnel
Research (pp. 273-283), St Louis, Missouri, United States.

Calloni, B. A., & Bagert, D. J. (1994). Iconic programming in BACCII vs. textual
programming: which is a better learning environment? SIGCSE Bull., 26(1),
188-192.

Calloni, B. A., Bagert, D. J., & Haiduk, H. P. (1997). Iconic programming proves
effective for teaching the first year programming sequence. Proceedings of the
Twenty-eighth SIGCSE Technical Symposium on Computer Science Education
(pp. 262-266), San Jose, California, United States.

Chainini, D. S., & Yamada, E. M. (1998). United States Patent No. 5760788.

Cilliers, C., Calitz, A., & Greyling, J. (2005). The effect of integrating an iconic
programming notation into CS1. Proceedings of the 10th Annual SIGCSE
Conference on Innovation and Technology in Computer Science Education (pp.
108-112), Caparica, Portugal.

Clear, T., Edwards, J., Lister, R., Simon, B., Thompson, E., & Whalley, J. (2008). The
teaching of novice computer programmers: bringing the scholarly-research
approach to Australia. Proceedings of the Tenth Conference on Australasian
Computing Education - Volume 78 (pp. 63-68), Wollongong, NSW, Australia.

Clough, P., & thbrown, C. (2002). A student's guide to methodology: SAGE

» Publicafions, London, United Kingdom.
81

Cohen, L., Mannion, L., & Morrison, K. (2000). Research methods in education (5th
ed.). London: RoutledgeFlamer.

Dale, N. (2005). Content and emphasis in CS1. SIGCSE Bulletin, 3 7(4), 69-73.

Dann, W., Cooper, S., & Pausch, R. (2005). Learning to program with Alice. New
York: Prentice Hall.

Dawson, D. C. (2006). A practical guide to research methods: A user-friendly manual
for mastering research techniques and projects (2nd ed.). Oxford, United
Kingdom: How to Books Ltd. ’

Egert, C., Bierre, K., Phelps, A., & Ventura, P. (2006). Hello, M.U.P.P.E.T.S.: using a
3D collaborative virtual environment to motivate fundamental object-oriented
learning. Paper presented at the Companion to the 21st ACM SIGPLAN
Symposium on Object-oriented Programming Systems, Languages, and
Applications, Portland, Oregon, USA.

Galpin, V. C., Sanders, 1. D., & Chén, P.-y. (2007). Learning styles and personality
types of computer science students at a South African university. Proceedings of
the 12th Annual SIGCSE Conference on Innovation and Technology in
Computer Science Education (pp. 201-205), Dundee, Scotland.

Giordano, J. C., & Carlisle, M. (2006). Toward a more effective visualization tool to
teach novice programmers. Proceedings of the 7th Conference on Information
Technology Education (pp. 115-122), Minneapolis, Minnesota, USA.

Goldweber, M., Bergin, J., Lister, R., & McNally, M. (2006). A comparison of different
approaches to the introductory programming course. Paper presented at the
Australasian Computing Education Conference, Hobart, Tasmania, Australia.

Green, T., & Petre, M. (1996). Usability analysis of visual programming environments:

a ‘cognitive dimensions’ framework. Journal of Visual Languages and
Computing.

Gries, D. (1974). What should we teach in an introductory programming course?
SIGCSE Bulletin, 6(1), 81-89.

Gries, D. (2006). What have we not learned about teaching programming? Computer,
39(10), 81-82.

Haden, P. (2006). The incredible rainbow spitting chicken: teaching traditional
programming skills through games programming. Paper presented at the
. Australasian Computing Education.

Halland, K., & Malan, K. (2003). Reflections by teachers learning to program.

AProceec:iings b’f the 2003 Annual Research Conference of the South African
' 82

Institute of Computer Scientists and Information Technologists on Enablement
Through Téchnology (pp. 165-172), Port Elizabeth, South Africa.

Honchell, J. W., & Robertson, T. L. (1996). Is the role of applied programming
languages changing? Paper presented at the 26th Annual Conference on
Frontiers in Education, 1996. FIE '96, Utah, United States.

- Howard, A. (2002). Rapid application development: rough and dirty or value-for-money
engineering? Communications of ACM, 45(10), 27-29.

Ichikawa, T., & Hirakawa, M. (1990). Iconic programming: where to go? Software,
IEEE, 7(6), 63-68.

Jenkins, T. (2001). The motivation of students of programming. Proceedings of the 6th
Annual Conference on Innovation and Technology in Computer Science
Education (pp. 53-56), Canterbury, United Kingdom.

Jenkins, T. (2002). On the difficulty of learning to program. Paper presented at the 3rd
Annual Conference of the LTSN Centre for Information & Computer Science.

Kaneshige, T. (2009). A future without programming. Information Age, April/May
2009, 42-44.

Kinnunen, P., & Malmi, L. (2008). CS minors in a CS1 course. Proceedings of the
Fourth International Workshop on Computing Education Research (pp. 79-90),
Sydney, Australia.

Kolling, M., & Rosenberg, J. (1996). An object-oriented program development
environment for the first programming course. Proceedings of the Twenty-
seventh SIGCSE Technical Symposium on Computer Science Education (pp. 83-
87), Philadelphia, Pennsylvania, United States.

Kyrnin, J. (n.d). WYSIWYG vs. hand coding, the great debate. Journal. Retrieved

March-5;-2009; from-About.com:
http://webdesign.about.com/cs/htmleditors/a/aa021400a.htm
Lahtinen, E., AlaMutka, K., & HannuMatti, J. (2005). A study of the difficulties of

novice programmers. Proceedings of the 10th Annual SIGCSE Conference on

Innovation and Technology in Computer Science Education (pp.14-18), Ballarat,
Victoria, Australia.

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M. (2004). A

| multi-national study of reading and tracing skills in novice programmers. Paper

presented at the Working Group Reports from ITiCSE on Innovation and

Technology in Computer Science Education, Leeds, United Kingdom.

33

Mamone, S. (1992). Empirical study of motivation in a entry level programming course.
ACM SIGPLAN Noices, 27(3), 54-60.

Mannila, L. (2006). Progress reports and novices' understanding of program code.
Proceedings of the 6th Baltic Sea Conference on Computing Education
Research: Koli Calling 2006 (pp. 27-31), Uppsala, Sweden.

Mannila, L., & Raadt, M. d. (2006). An objective comparison of languages for teaching
introductory programming. Proceedings of the 6th Baltic Sea Conference on
Computing Education Research: Koli Calling 2006 (pp. 32-37), Uppsala,
Sweden.

Martin, J. (1991). Rapid application development. New York: Macmillan Publishing
Company.

Mclver, L., & Conway, D. (1996). Seven deadly sins of introductory programming
language design. Paper presented at the International Conference on Software
Engineering: Education and Pfactice (SE:EP '96), Victoria, Australia.

McNeill, P., & Chapman, S. (2005). Research methods (3rd ed.). Abingdon,
Oxfordshire; New York: Routledge.

Milne, 1., & Rowe, G. (2002). Difficulties in learning and teaching programming: Views
of students and tutors. Education and Information Technologies, 2(Volume 7,
Number 1/March, 2002), 55-66.

Newman, L., & Benz, C. R. (1998). Qualitative-quantitative research methodology:
Exploring the interactive continuum: Southern Illinois University Press,
Carbondale, Illinois, United States.

Or-Bach, R., & Lavy, L. (2004). Cognitive activities of abstraction in object orientation:
an empirical study. SIGCSE Bulletin, 36(2), 82-86.

Papacconomou,-C:; Zijlema, A. F., & Ingwersen, P. (2008). Searchers' relevance
judgments and criteria in evaluating web pages in a learning style perspective.
Proceedings of the Second International Symposium on Information Interaction
in Context (pp. 123-132), London, United Kingdom.

Parvez, S. M., & Blank, G. D. (2007). A pedagogical framework to integrate learning
style into intelligent tutoring systems. Journal of Computing in Small Colleges,

~22(3), 183-189.

Patton, M. Q. (1990). Qualitative evaluation and research methods (2nd ed.). Newbury
Park, CA: Sage Publications.

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J. (2007). A

“survey. of lz:té‘rature on the teaching of introductory programming. Paper
’ 84

presented at the Working Group Reports on ITiCSE on Innovation and
Technology in Computer Science Education, Dundee, Scotland.

Peter, K. (2009). The value of visual design in software development. Interactions,
16(1), 66-68.

Pham, B. (1996). The changing curriculum of computing and information technology in
Australia. Proceedings of the 2nd Australasian Conference on Computer Science
Education (pp. 149-154), Melbourne, Australia

Raadt, M. D. (2008). Teaching programming strategies explicitly to novice
programmers. Unpublished doctoral dissertation, University of Southern
Queensland, Queensland, Australia. ,

Raadt, M. D., Watson, R., & Toleman, M. (2002). Language trends in introductory
programming courses. Proceedings of the Informing Science + IT Education
Conference (pp. 329-337), Co;k, Ireland.

"~ Raadt, M. D., Watson, R., & Toleman, M. (2003). Language tug-of-war: industry
demand and academic choice. Proceedings of the fifth Australasian conference
on Computing education - Volume 20 (pp. 137-142), Adelaide, Australia.

Raadt, M. D., Watson, R., & Toleman, M. (2004). Introductory programming: what's
happening today and will there be any students to teach tomorrow? Proceedings
of the sixth conference on Australasian computing education - Volume 30 (pp.
277-282), Dunedin, New Zealand.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming:
A review and discussion. Computer Science Education, 13(2), 137 - 172.

Rode, J. (2004). Nonprogrammer web application development. Paper presented at the
CHI '04 Extended Abstracts on Human Factors in Computing Systems, Vienna,

Austria.

Schaub, S. (2009). Teaching CS1 with web applications and test-driven development.
SIGCSE Bulletin., 41(2), 113-117.

Schulte, C., & Bennedsen, J. (2006). What do teachers teach in introductory
programming? Proceedings of the Second International Workshop on
Computing Education Research (pp. 17-28), Canterbury, United Kingdom.

Seals, C. (2005). Visual programming for novice programmer teachers. Proceedings of
the 2005 Conference on Diversity in Computing (pp. 26-27), Albuquerque, New
Mexico, USA.

Sommerville, L. (20Q7). Software Engineering (8th ed.). England: Pearson Education

Limitedi.. N
85

Sykes, E. R. (2007). Determining the effectiveness of the 3D Alice programming
environment at the computer science I level. Journal of Educational Computing
Research 36(2), 223 - 244. |

Teague, D., & Roe, P. (2008). Collaborative learning — towards a solution for novice
programmers. Paper presented at the Tenth Australasian Computing Education
Conference (ACE2008), Wollongong, Australia.

Tew, A. E., McCracken, W. M., & Guzdial, M. (2005). Impact of alternative
introductory courses on programming concept understanding. Proceedings of the
First International Workshop on Computing Education Research (pp. 25-35),
Seattle, Washington, USA. »

Vogts, D., Calitz, A., & Greyling, J. (2008). Comparison of the effects of professional
and pedagogical program development environments on novice programmers.
Proceedings of the 2008 Annual Research Conference of the South African
Institute of Computer Scienti&ts and Information Technologists on IT Research
in Developing Countries: Riding the Wave of Technology (pp. 286-295),
Wilderness, South Africa.

Walter, S. E., Forssell, K., Barron, B., & Martin, C. (2007). Continuing motivation for
game design. Paper presented at the CHI '07 Extended Abstracts on Human
Factors in Computing Systems, San Jose, California, USA.

Weir, G. R. S,, Vilner, T., Jos, A., & Nordstr, M. M. (2005). Difficulties teaching Java
in CS1 and how we aim to solve them. Proceedings of the 10th annual SIGCSE
Conference on Innovation and Technology in Computer Science Education (pp.
344-345), Monte de Caparica, Portugal.

Wexelblat, R. L. (Ed.). (1981). History of programming languages. Pennsylvania:

Academic Press.
Wong, W. (2006). Graphical and text-based programming: complementary, not
competitive. Journal. Retrieved February 26, 2009, from Electronic Design:

http://electronicdesign.com/Articles/Index.cfm?AD=1& ArticleID=13241

86

Appendix B: Pre-exercise Questionnaire

Informed Consent »»> Pre-Exercise Questionnaire >> Setup and Configuration »> Traditional Exercises »> RAD Exercises »»> Challenge
Exercise »> Post-Exercise Survey >> End of Warkshop

DEMOGRAPHICS

The following questions concemn the demographic data.

1) What is your gender?
@ Male

@ Female

2) What of the following age groups do you fall into?
) < 18 years
€18 - 21 years
522 - 26 years
7 26 — 29 years
130+ years

3) What is the current course that you are enrolled in?

4) Please specify your major field of study, if any,

5) How many units have you completed?
© Some or all of the first year units
) First and second year units

1 First, second and some of the third year units

6) My main mode of study is;
©» On-Campus
1 Online
© Both

7) My preferred mode of study is;
& On-Campus

&5 Online
@ Both

BT

95

Informed Consent »» Pre-Exercise Questionnaire => Setup and Configuration >> Traditional Exercises »> RAD Exercises »> Challenge
Exercise »> Post-Exercise Survey >> End of Workshop

PROGRAMMING EXPERIENCE
The following questions concern your previous experience with programming languages and environments.

8) Qf}bgrggjtlgryﬂpl;"hﬂany_g»Ep}n}pleted so far, how many have had programming in them?

9) Have you used any programming languages before?
£ Yes
1 No

10} Have you done any web application development befare?
© Yes

) No

11) Please specify the programming languages that you have used before (e.g. PHP, ASP, ASP Net, Java, C, C++)

-

-

12) Please specify the tools that you have used to program (e.g. Text editor, Visual Studio, Blued, Eclipse)

&

13) How would you rate your experience as a programmer?
) Novice
@ Intermediate

) Expert

Next

96

Informed Consent »> Pre-Exercise Questionnaire »> Setup and Configuration >> Traditional Exercises >> RAD Exercises »» Chsllenge
Exercise »> Post-Exercise Suvey >» End of Workshop

RAPID APPLICATION DEVELOPMENT VERSUS TRADITIONAL PROGRAMMING ENVIRONMENTS

Traditional programming environment refers to the environment used for programming in text-based format without any visual-aid. A typical
example of traditional programming emvironment would be text-editor.

Rapid Application Development {RAD) environment refers to the drag-and-drop, visual, iconic programming enviranment which has 'pre-built
components' or features’ to help with the application development. Microsoft's Visual Studio is an example of RAD environment.

The following questions concern your thoughts and experiences with working with visual RAD environments versus traditional programming
environments.

14) Have you ever programmed in a visual Rapid Application Development environment before (such as Microsoft's Visual Studio)?
) Yes
3 No

Please describe: -

16) | feel that visual RAD tools make programming easier
Strongly Disagree Disagree Agree Strongly Agree Neutral

& 5}] [[

Please describe: -

16) | feel that visual RAD features and functions can be hard to understand.
Strongly Disagree Disagree Agree Strongly Agree Neutral

[] [iy 3]

Please describe: -

17) 1 feel that traditional programming environments help me understand the programming processes better (e.g. variable declaration, condition,
loops, recursion).
Strongly Disagree Disagree Agree Strongly Agree Neutral

[[(G} [& 5]

Please describe: -

18) I feel that learning syntax in traditional programming is difficult.
Strongly Disagree Disagree Agree Strongly Agree Neutral

O [L]] (@8

Piease describe: -

19} if | were asked to program a web application, | think | would prefer to use
22 Traditional programming environment

1 Visual RAD environment

Please explain: -

20} T have iearnt
& Traditional programming environment first
€ Visual RAD environment first
€+ Both approximately at the same time
& Neither of them

21) Which environment would you prefer to learn first as a novice programmer?
2 Traditional programming environment
5 Visual RAD environment

@ Mo Preference

Please explain: -

Mext

97

Informed Consent »> Pre-Exercise Quastionnaire >» Setup and Configuration »> Traditional Exercises >»> RAD Exercises »> Challenge
Exercise »» Post-Exercise Survey »>»> End of Workshop

Learning Experience

The following questions concern your leaming experience in intraductory programming courses.

22} When doing programming exercises, | prefer to
@ follow step-by-step written instructions
© follow a lecturer's on-screen example
© wark on a solution on my own

€ use a textbook and online resources

23} | find programming of any kind difficult to learn.

Strongly Disagree Disagree Agree Strongly Agree

[) I)

Please describe:

24} | expect to be able to program in a number of different environments over the duration of my studies.
Strongly Disagree Disagree Agree) Strongly Agree

& & & &

Please describe:

25} Where possible, | would always fike to use the same environment for all programming tasks.
Strongly Disagree Disagree Agree Strongly Agree

[] [[

Please describa:

26) From my experience, the first environment learned is still the most important.
Strongly Disagree Disagree Agree Strongly Agree

(6] 4 [)

Fy

s

#

-

#

-

Please describe:

27} In my future career, | expect to
1 do programming
> program when | have to

&) program as career

i Tam not sure

P

98

Next

Appendix C: Post-exercise Questionnaire

Informed Consent >> Pre-Exercise Questionnaire »>> Setup and Configuration »> RAD Exercises >»> Traditional Exercises >> Challenge Exercise >> Past.
Exercise Survey => End of Workshop

SECTION 1

The following questions concern your thoughts on Visual RAD versus Traditional programming environments based on completing the programming exercises.

1) Is this the first time you have used a visual RAD environment {certainly for building a working application)?
©) Yes
& No
2) Based on the exercises, | feel that programming in
& Visual RAD environment is quicker than Traditional environment
€ Traditional is quicker than Visual RAD environment

@ I found each was equally quick to use

Please describe: -

3} Based on the exercises, | feel that programming in
@ Visual RAD environment is easier than traditiona! environment
i7i Traditional is easier than visual RAD environment

€ t found that both were about as easy to use as the other

Please describe: ’ =

4) i feel that | would be able to write loops, variables and condition statements if | had started with visual RAD development.
Strongly Disagree Disagree Agree Strongly Agree Meutral

[] (@] [y [

-

Please describe: -

5) | feel that | have or would have a deeper understanding of being able to write loops, variables and condition statements if | had started with
Traditional development.

Strongly Disagree Disagree Agree Strongly Agree Neutral

€ © & & &

N
Please describe: -
6) In web application development, | feel confident as a novice developer to use

& Visual RAD environment rather than traditional environment

@) Traditional environment rather than visual RAD environment

7 Both equally

Please describe: -

7) 1 feel that the first environment has a significant impact on learning programming.
Strongly Disagree Disagree Agree Strongly Agree Neutral

(] [[[59] 9]

Please describe: -

8) Which programming environment do you think should be introduced first to novice programmers in web application development?
€ Visual RAD environment
i Traditional environment
& Does not matter

Please describe: -

9) | feel that | have enough technical experience to use a visual RAD environment for actual development as presented in this workshop.
Strongly Disagree Disagree Agree Strongly Agree Heutral

(5] & @] &y (@

-~

Please describe: -

99

10} I feel that | learn more about actual programming syntax and concepts using
£ Visual RAD environment

& Traditional environment

& Both Equally

Please describe: A

11) Which aspects of RAD do you think would help novice developers in learning programming?

&

s

-

13} Which aspects of traditional progr: ing environment do you think woutd help novice developers in {earning programming?

#

-

14) Which aspects of traditional programming environment do you think is not suitable for novice developers?

»

-

15) Which aspects do you think are important in choosing the first environment for novice developers?

P

-

Informed Consent »> Pre-Exercise Questionnaire »> Setup and Configuration >> RAD Exercises »> Traditional Exercises »> Challenge Exercise »> Post-
Exercise Surey >= End of Workshop

SECTION 2

The following questions concern your thoughts on RAD versus traditional programming environments based on completing the programming exercises.

16) 1 feel that | would need more programming experience to use visual RAD environments effectively.
Strongly Disagree Disagree Agree Strongly Agree Meutral

) [[[@

Please describe: -

17) | feel that | would be able to program successfully in a visual RAD environment without traditional programming knowledge
Strongly Disagree Disagree Agree Strongly Agree Neutral

& @ & €

Please describe: -

18) Given the nature of visual development in RAD, | feel that previous programming experience is not necessary.
Strongly Disagree Disagree Agree Strongly Agree Meutral

5 & & & &

BPS—

Please describe: -

19) As a novice programmer, | feel that it is sufficient to program using a visual RAD environment as long as | know what components to use and

when.
Strongly Disagree Disagree Agree Strongly Agree Neutral
& & [[} (&
Please describe: -

100

20} | feel that it is not important to fully understand the underlying code that makes the visual RAD components work,

Strongly Disagree Disagree - Agree Strongly Agree Neutral
@ & [[[
Please describe: -

21} | feel that being able to build a workable program is the most important aspect of learning programming, regardiess of the environment.
Strongly Disagree Disagree Agree Strongly Agree Meutral

@ & & & &

Please describe: -

22} 1 feel that learning programming syntax first is the most important aspect of becoming a programmer.

Strongly Disagree Disagree Agree Strongly Agree MNeutral
@ & o @
Please describe: -

23) Regardless of Traditional or visual RAD methods of web programming, ! feel that being able to learn any new environment quickly is more
important than which type of environment it is.
Strangly Disagree Disagree Agres Strongly Agree eutral

[& @] (@] &)

Piease describe: -

24) Which environment do you feel is appropriate for novice developers for self-learning in web application development context?
£ Visual RAD environment

© Traditional environment

iy Equally as appropriate

Piease describe: -

25} Which environment do you feel is appropriate for novice programmers for classroom-based learning in web application development context?
@ Visual RAD environment
@ Traditional environment

& Equally as appropriate
Please describe: -

26) Which key aspects do you feel are important in learning progr ing?

#

-

27} Which aspects of RAD do you feel require traditional programming knowledge?

».

Next

101

Informed Consent >> Pre-Exercise Questionnaire >>
Exercise Survey »» End of Workshop

SECTION 3

onfiguration »> RAD Exercises >>

raditional Exercises >> Challenge Exercise »» Pgst,

The following questions concern your thoughts on RAD versus traditional programming environments based on completing the programming exercises

28) Which environment do you prefer for 'Search' exercise?
&1 Visua! RAD environment
© Traditional environment
"y Both about the same

Please describe: -

29) Which environment do you prefer for 'Edit/ Delete’ exercise?
1 Visual RAD environment
 Traditional environment
¢ Both about the same

Please describe: -

30} Which environment do you prefer for 'Insert’ exercise?
@ Visual RAD environment
& Traditional environment
© Both about the same

Piease describe: -

31) Did you manage to complete the challenge exercise using visual RAD environment?
i Yes

& No

Piease discuss any problem encountered: -

32) Did you manage to complete the challenge exercise using traditional environment?
© Yes
&1 No

Please discuss any problem encountered: N

33) Overall, based on these exercises, | prefer
& Visual RAD Environment
€ Traditional Environment

J Both about the same

Piease describe: -

34) If 1 had to further develop these exercises (with extra functions), | would use

s Visual RAD Environment

i Traditional Environment

Please describe: -

35) Which set of exercises do you feel is easier to understand?
& Visual RAD Environment
& Traditional Environment

¢ Both about same

Please describe: -

102

36) | feel that the teaching and learning materials are more important than the type of programming environments.
Strongly Disagree Disagree Agree Strongly Agree Neutral

i (] [& @

»

Please describe: -

37) | feel that availability of useful resources {textbooks or websites) influenced my reaction to visual RAD versus traditional programming

environments.
Strongly Disagree Disagree Agree Strongly Agres Neutral
] & [& ©
Please describe: -

38) Which environment did you feel had the most useful online (web based) resources (such as tutorials / code examples)?
) Visual RAD Environment

& Traditional Environment

@ Both about same

Please describe: -
39) 1 feel that setup and configuration issues (of the environment) could affect my reaction to RAD versus Traditional progr ing enviro t
Strongly Disagree Disagree Agree Strongly Agree Neutral
8]] [L) &
Please describe: ~

40} Please provide any additional factors that has influenced your reaction to RAD versus Traditional programming environments

-

41} Any additional comments on RAD versus Traditional progr ing enviro t

Informed Consent >> Pre-Exercise Questionnaire »> Setup and Configuration >» RAD Exercises >> Traditional Exercises >> Challenge Exercise >> Post-
Exercise Survey >> End of Workshap

THANK YOU FOR YOUR PARTICIPATION.......

Please leave your email address below, if you would like to participate in a face-to-face interview to discuss further on the Programming environments and this
workshop.

103

Appendix D: Interview Questions

1) Given your indicated level of experience, how much actual development have

you done in each of these environments?
-IF LITTLE OR NONE: How did you find these two methods as a first try?

-IF LOTS OF EXPERIENCE: Were you formally taught one or both of these

environments or did you learn them on your own?
Can you explain that further?

2) Regardless of your level of expertise, which of the two techniques would you
prefer to use if you were asked to develop a genuine web application Can you

explain that further?

3) Given the two techniques shown, which would you like to see in your 1* year

programming units and why? Can you explain further?

4) Can you see any disadvantages to one technique being taught before the other?

Please explain further.

5) Given the abstracted nature of Visual RAD tools, do you think a traditional
coding background is actually necessary before going into Visual RAD? Please

explain further.

6) Do you think course structures need to take into account which units teach
traditional coding and which teach visual RAD and so that a logical sequence

exists? Please explain further.

7) Do you think these iwssues only apply to comﬁuter science students or to anyone

studying in the area of IT? Please explain.

8) Finally, at this time which environment do you prefer and why? Please explain.

104

	An investigation into student reactions towards rad versus traditional programming environments for novice developers
	Recommended Citation

