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Abstract 

Geostatistics is a branch of applied mathematics that deals with spatially correlated data. 

Analysing and modelling spatially correlated data can be difficult and time consuming, 

especially for a multivariate data set. One of the techniques used to make analysis and 

modelling easier involves decorrelation, whereby a linear transformation on the sample 

variables is used to associate the spatially correlated variables with a set of decorrelated 

factors which are statistically and spatially independent. PCA was one of the first 

multivariate techniques and is mostly used as a data reduction technique. A popular 

alternative decorrelation technique often used in the mining industry is MAF. A study 

conducted by Bandarian (2008) found a relatively new decorrelation technique known 

as ACDC to be the method which produced the best spatial decorrelation for a 

multivariate moderately correlated data set consisting of four variables. 

In this thesis the PCA, MAF and ACDC methods are described and then applied to a 

multivariate data set supplied by Rio Tinto's Iron Ore Operations. Secondly, we explore 

whether it is preferable for the data set to be standardised or transformed via Gaussian 

anamorphosis to normal scores before being decorrelated. 

The data set consists of ten variables; however the three decorrelation methods were 

only applied to a subset of five variables (Fe, Ah03, Si02, LOI and Ti02) which have 

the greatest similarity from a statistical and spatial point of view. The three methods 

were applied to both standardised and normalised data. For ACDC, additional inputs 

such as weights, number of iterations, tolerance and an initial guess for the 

diagonalising matrix were explored and investigated in order to get the best spatial 

decorrelation results possible. 

The overall best spatial decorrelation was achieved by performing ACDC on the 

standardised variables, using the matrix of eigenvectors of the correlation matrix as the 

initial guess for the diagonalising matrix as well as the first four experimental 

semivariogram matrices in the decorrelation. Transforming the variables to normal 

scores before decorrelation was found to be of no benefit, as the factors that were 

derived from the normalised variables with the exception of one, were not normally 

distributed following the decorrelation. 
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1 .. Introduction 

1.1 Background and Significance 

Geostatistics is a branch of applied mathematics that deals with spatially correlated data. 

It originated in the early fifties in the mining industry, to help solve ore reserve 

estimation problems. The techniques used have evolved over time and are currently 

being used in areas such as petroleum geology, hydrogeology, hydrology, meteorology, 

oceanography, human geography, forestry, environmental control, landscape ecology 

and even epidemiology (Wackemagel, 2003). The main aim of geostatistics is to 

analyse, interpret, and derive a model from a sampled data set which may be spatially 

correlated in a study region, to provide accurate and reliable estimates of variables at 

unsampled locations. It is common that for each location under consideration there are 

several variables that may have to be analysed jointly. 

There are a variety of multivariate geostatistical techniques used today, making analysis 

and modelling of several spatially correlated variables across a study region much 

easier. One of these techniques involves decorrelation, whereby a linear transformation 

of the sample variables is used to associate the spatially correlated variables with a set 

of decorrelated factors which are statistically and spatially independent. Univariate 

geostatistical techniques can then be used to model and possibly simulate the 

uncorrelated factors, decreasing the complexity and shortcomings of multivariate 

techniques, such as decreasing the size of cokriging systems used in multivariate 

estimations or simulations. 

Principal component analysis (PCA) was one of the first multivariate techniques and is 

mostly used as a data reduction technique. Here the aim is to reduce a data set with a 

large number ofvariables to a smaller subset ofuncorrelated factors, which accounts for 

a large proportion of the variability in the original variables. PCA is based on the 

eigenvector-eigenvalue decomposition of either the variance-covariance matrix or 

correlation matrix between variables (Desbarats & Dimitrakopoulos, 2000). However, 

the problem with PCA is that it only successfully decorrelates the factors at a lag 

spacing of zero. The factors will only be uncorrelated for all lags, other than zero, in the 

case of intrinsic correlation (Wackemagel, 2003). Most data sets do not exhibit intrinsic 
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correlation and therefore the PCA method is very limited and often does not provide the 

best decorrelation results. 

The method of minimum/maximum autocorrelation factors (MAF) is another linear 

transformation technique based on PCA that decorrelates a set of variables into 

uncorrelated factors for all lag spacings, provided that the covariance function of the 

variables is characterised by a model of coregionalisation which consists of two 

structures to ensure orthogonality for all lag spacings. MAF was first developed by 

Switzer and Green (1984) as a data based approach used for multivariate spatial 

imaging. It was later shown by Desbarats and Dimitrakopoulos (2000) to be suitable for 

decorrelating variables in geostatical real data sets by applying the method to simulate a 

regionalised pore size distribution. The computational properties of MAF and 

limitations concerning a geostatistical context were later discussed by Vargas-Guzman 

and Dimitrakopoulos (2003) who also discuss extending the MAF approach to three 

covariance structures, but conclude that this is in general impossible. The method's 

current assumption of a two structure linear model of coregionalisation (2SLMC) can be 

restrictive as the model of a nugget plus one structure or two structures may be 

inadequate to model all spatial features (Bandarian, 2008). A recent study by Rondon 

and Tran (2008) in which the MAF method was used on a number of different data sets 

showing weak or non-linear correlations, also discusses a number of limitations and 

difficulties that may occur using the MAF method. A more general approach for spatial 

decorrelation is to approximately diagonalise a set of target matrices which originate 

from the experimental semivariogram matrices calculated at all relevant lag spacings. 

One of the methods which can be used to do so is the Alternating Columns and 

Diagonal Centres method, or more commonly known by its acronym ACDC. The 

ACDC method is a joint approximate diagonalisation (JAD) method. The ACDC 

method was first proposed by Y eredor in 2000 and is a relatively new linear 

transformation method. The ACDC method differs from the other JAD methods as it is 

not restricted to only finding an orthogonal diagonalising matrix (Yeredor, 2000). 

A study performed by Bandarian (2008) illustrated and compared a variety of linear 

transformation methods using a subset of the Jura data set (Goovaerts, 1997), two of the 

methods which were considered where the MAF and ACDC. The subset consisted of 

four moderately correlated variables (Cd, Co, Cr and Ni). The results found the ACDC 

method to produce the better spatial decorrelation for the multivariate Jura subset, 
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thereby rmsmg the question whether the ACDC method is the better linear 

transformation method to decorrelate any multivariate data set. 

The linear transformation method, MAF (minimum/ maximum autocorrelation factors) 

is currently used in the mining industry to reduce complexity and time devoted to 

analysing and modelling multivariate data sets·. Mining companies are often looking for 

the most cost effective methods which produce the best results. With this in mind even 

though most linear transformation methods only approximately diagonalise a 

multivariate data set, it would be cost effective to use the linear transformation method, 

whether it be ACDC or MAF, which produces the best spatial decorrelation, taking into 

account the time involved in using the linear transformation methods. 

1.2 Aims and Objectives 

The ultimate aim of this study is to compare the ACDC and MAF methods and 

determine if the ACDC method is able to approximately decorrelate a multivariate data 

set of more than four variables better than the currently used MAF method. Both 

methods will be applied to a multivariate data set from a channel iron ore deposit 

supplied by Rio Tinto's Iron Ore Operations. The factors obtained from both methods 

will be examined in order to determine which decorrelation method produces the best 

spatial decorrelation. Some of the variables in the data set are highly correlated. The 

effectiveness of both of the methods on the highly correlated data will also be 

considered. 

The multivariate data set supplied by Rio Tinto consists of ten variables. A subset 

grouping all the variables which are statistically and spatially similar will be discussed 

in order to avoid variables which may be problematic. The most important variables are 

aluminium oxide, iron and silica which will need to be modelled jointly and hence have 

to be included in the subset, while there are other variables which may not be 

appropriate to add to the subset due to geological reasons. This will be discussed further 

in the thesis. Therefore, a suitable subset needs to be explored. 

The ACDC algorithm, implemented in Matlab, allows for a variety of additional inputs 

besides the target matrices which could potentially affect the decorrelation results. The 

additional inputs such as weights, number of iterations, tolerance and an initial guess for 

the diagonalising matrix will be explored and investigated in order to get the best spatial 

decorrelation results possible using the ACDC method. 
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The decision to standardise the data set or to normalise the data before applying the 

methods is another interesting aspect which will be explored. This simple decision may 

have an effect on the decorrelation results for either method. 

1.3 Thesis Outline 

This thesis consists of five chapters and an Appendix. Chapter 2 discusses the 

theoretical framework significant to this study. This includes the multivariate random 

function model, linear model of co-regionalisation, a discussion of the linear 

transformation methods and finally how the spatial decorrelation will be assessed. 

Chapter 3 gives background information about the variables in the multivariate data set 

as well as a detailed exploratory data analysis of the data. The last few sections of 

Chapter 3 consist of the transformations of the variables and the investigation into 

suitable subsets. The results of the spatial decorrelation for all the methods are given in 

Chapter 4. The final chapter involves the discussion and conclusion. 

1.4 Software 

The main software packages used are Isatis and Matlab. Isatis is a geostastics software 

package which was mainly used to carry out exploratory data analysis, spatial data 

analysis and calculation of experimental semivariograms. The Gaussian anamorphosis 

function in Isatis was used to transform the original data to normally distributed data. 

The variables were also standardised using the corresponding population means and 

standard deviations calculated in Isatis. The MAF technique in Isatis was used to 

calculate the factors which were then analysed in Isatis. All the factors produced from 

ACDC, MAF and PCA were analysed in Isatis and SPSS. 

Matlab is an engineering/mathematical software package in which the ACDC algorithm 

has been coded by Yeredor (2004). The target matrices produced in Isatis are run 

through the ACDC algorithm in Matlab to produce a transformation matrix that will 

approximately diagonalise the data. Matlab was furthermore used to calculate the spatial 

decorrelation assessment results for all the factors as well as the graphs showing the 

results. Microsoft Word and Excel were used for presentation and data preparation 

purposes. Finally SPSS was used to investigate the relationship between the variables. 
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1.5 Notation 

The majority of the notation used in this thesis comes from Goovaerts (1997). 

A: 

a: 

bl . 
ij . 

study region 

maximum range of the semivariogram 

ACDC transformation matrix 

initial diagonalising matrix 

coefficients of the basic semivariogram model Bl (h) in the linear 

model of co-regionalisation 

Bl : co-regionalisation matrix containing the coefficients bfj of the 

semivariogram model Bl (h) in the corresponding linear model of co

regionalisation 

B: matrix of correlation coefficient 

C(O): covariance value at separation distance lhi=O 

C(h): covariance function of the random function for lag vector h 

C(h): experimental covariance function matrix of size K X K 

Cij(h): experimental cross covariance between the two random function Zi and 

Zj for a lag vector h 

C18 (·): objective function 

D: diagonal matrix 

£{·}: expected values 

F(u): factor values 

f(h): semivariogram matrix of size K x K 

f(·): experimental semivariogram matrix of size K x K 

Bl (h): lth basic semivariogram model in the linear model of co-regionalisation 
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Yij(h): experimental cross semivariogram between Zi and Zj at lag value h 

Yij(h): cross semivariogram between Zi and Zj at lag value h 

h: separation vector 

] : number of lag spacings 

K(h): spatial diagonalisation efficiency at lag h. 

K". average diagonalisation efficiency for all lags. 

K: number ofvariables 

A: eigenvalue matrix 

A.: eigenvalue 

L: number of models required to capture the spatial continuity of the 

attributes 

m: lagmeans 

subscript NS: normal scores data set 

n: number of samples in the study region A 

N (h): is the number of pairs of data locations separated by the vector h 

Q: PCA eigenvector matrix 

pij: experimental correlation coefficient between zi and Zj 

Pij(h): cross correlogram between zi and Zj for the lag vector h 

8ij: experimental covariance between zi and Zj 

CJ
2

: lag variance 

subscript St: standardised data set 

r(h): quotient of the absolute deviation from diagonality and the sum of the 

factor main diagonal entries efficiency at lag h. 
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f: the average quotient of the absolute deviation from diagonality and the 

sum of the factor main diagonal entries efficiency for all lags. 

Tr { ·}: trace of a matrix 

u: coordinate vector 

Ua: datum location 

<;(h): the measure of absolute deviation from diagonality for each lag h 

~: the average measure of absolute deviation from diagonality for all lags 

wi: . weight vector 

X: MAF eigenvector matrix 

XT: MAF transformation matrix 

Z: multivariate random valued function 

zi(ua): zrdatum values at location Ua 

zi(u): zi-datum values at location u 

z(u): vector of true values of K attributes at location u 

z(u): true value at unsampled location u 

Z(u): vector of continuous random variable at location u 

Zi(u): ith continuous random variable at location u 
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1.6 Acronyms and Abbreviations 

The acronyms and abbreviations listed below are used in the content, Figure and Tables 

throughout the thesis. 

ACDC: Alternative Columns and Diagonal Centres method 

Aluminium oxide 

Calcium oxide 

Fe: Iron 

JAD: Joint Approximate Diagonalisation 

LOI: Loss on Ignition or The measurement of water content of the ore 

MAF: Maximum/minimum autocorrelation factors 

MgO: Magnesium oxide 

Mn: Manganese 

P: Phosphorus 

PCA: Principle component analysis 

S: Sulphur 

Silicon dioxide or silica 

Titanium dioxide or Titania 

2SLMC: Two structure linear model of coregionalisation 
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2 Theoretical Framework 
In this chapter we discuss the theoretical framework appropriate for this study. The first 

part includes the geostatistical concepts relevant to the study, while the second part 

includes information about the linear model of co-regionalisation. The three linear 

transformation methods, PCA, MAF and ACDC, will also be discussed in this chapter 

along with the way in which the spatial decorrelation for each method will be assessed. 

2.1 Multivariate Random Function 

Geostatistics is based upon the concept of the random function, whereby a set of 

unknown values are regarded as realisations of spatially dependent random variables. A 

sample on a study region, A, consists of a set of measurements at specific locations for a 

number of attributes. The measurements in this region can be defined as 

{ zi(ua), Ua E A, a=l, ... , n, i=l, .. . , K}, 

where Ua is the ath sampled location for n samples and zi is defined as the lh attribute 

of K attributes. The set of values the variable zi attains on the study region A is 

defined as 

The value zi(u) can be thought of as being a realisation of the corresponding random 

variable Zi(u) at the location u inA. When we consider the study region as a whole, 

we have a set of usually dependent random variables, and can define a function from the 

study region A to the set {Zi(u): u E A}, known as a random function. 

In the multivariate case the vector, z(u) = [z1 (u), ..... , zK(u)Y of K attributes at 

location u can be viewed as a realisation of the random variable valued vector Z(u) = 

[Z1 (u), ..... ,ZK(u)f. The multivariate random function can therefore be defined as 

Z: A~ {[Z1 (u), .... , ZK(u)]: u E A}. 

Several assumptions need to be made about the multivariate random function. A random 

function is called stationary if for any separation vector h, the joint distributions of 

[Z(u1),Z(u2 ) ..... ,Z(uk)] and [Z(u1 + h),Z(u2 +h) ..... ,Z(uk +h)] are identical 

for any lag h and for any k. The assumption of stationarity is impo-ssible to test and so 
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the weaker assumption of second order stationarity is used in practice. A random 

function is said to be second order stationary if the expected mean value 

m= E{Z(u)}, 

exists and is invariant within A. Herem= [m1 (u), ..... , m~u)JT and£{·} denotes the 

mathematical expectation. The covariance function 

C(h) = E{[Z(u)- m] · [Z(u +h)- m]T} 

only depends on the separation vector h. The covariance function must be a positive 

definite function. In many cases the assumption of second-order stationarity is not met 

and a weaker hypothesis, second order stationarity of the increments Z(u)- Z(u +h) 

is assumed. When the increments are second-order stationary, the random function is 

said to be intrinsic stationary. In this case the mean 

E{Z(u +h)- Z(u)} 

exists and is equal to 0 and the semivariogram 

f(h) = ~ E {[Z(u)- Z(u +h)]· [Z(u)- Z(u + h)]T} 
2 

depends only on h. The semivariogram matrix, f(h), is a K x K positive definite, 

symmetric matrix that contains the direct semivariograms results along the main 

diagonal and the experimental cross semivariogram off the diagonal. When the 

variance-covariance matrix C(O) exists, the semivariogram matrix and covariance 

function matrix are related by 

f(h) = C(O)- C(h). 

The semivariogram function is more commonly used in practise than the covariance 

function. 
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2.2 Experimental Measures of Bivariate Relations 

The covariance and correlation coefficient are the most frequently used measures of 

bivariate relations. The experimental covariance Bij is a measure of the joint variation of 

zi and Zj around their means and it is computed as 

n 

Bij = ~ I (zi(a)- ma . (zj(a)- mj), 
a=1 

where the arithmetic means of zi and zj are denoted by mi and mj, respectively. In the 

situation when i = j the covariance becomes the variance. 

The standardised form of the experimental covariance IS the linear correlation 

coefficient Pij which provides a measure of the linear relationship between two 

variables. The experimental correlation coefficient is calculated as 

(J·. 

~ lJ E[-1,1] 
Pij = CJ· . CJ· 

l 1 

where CJi and CJj are the standard deviations of zi and Zj, respectively. The correlation 

matrix B is a matrix of correlation coefficients Pij for all pairs i,j = 1 .... K. When the 

variables have been transformed to normal scores or standardised the correlation matrix 

is equivalent to the covariance matrix. 

Spatial features of the data such as the location of extreme values, degree of continuity 

and spatial trends are often of considerable interest in geostatistics, and there are a 

variety of tools used to capture spatial continuity. In a multivariate data set consisting of 

several attributes, such as the data set that will be used for this project, there is a need to 

look at spatial cross continuity between measurements of different attributes. The cross 

covariance and cross correlation function are some of the measures of spatial continuity 

derived from the sample data that measure the similarities between colocated data. The 

experimental cross covariance function is the covariance between a pair of locations of 

different attributes, zi and Zj, separated by a vector h, which is also known as the lag. 

The experimental cross covariance function is defined as 
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with 

N(h) N(h) 

mLh = N~h) I zi(ua) 1 and 
a=1 

mj +h = N~h) I Zj(Ua +h) 1 

a=1 

where N(h) is the number of pairs of data locations separated by the vector h, while 

mLh and mj +h are the means of the zi and Zj values. When i=j this is simply lrnown as 

the experimental covariance function between data values of the same attribute 

separated by a vector h. The cross correlogram is the standardised form of the 

covariance and is given by 

E [-111] 
(]'.2 (Jf 

t -h 1 +h 

with 

where a? -h and af +h are the variances of zi and zj values. In the case where i=j the 

function is known as a correlogram and measures the similarities between data of the 

same attribute. 

The experimental cross semivariogram 1s another measure of spatial continuity, 

however unlike the covariance and correlation function, the experimental cross 

semivariogram measures the average dissimilarity between data of different attributes 

which is separated by a vector h. The experimental cross semivariogram between zi and 

Zj at lag value h is defined as 

N(h) 

Yij(h) = ZN~h) I [zi(ua)- zi(ua +h)]· [zj(ua)- zj(ua +h)]. 
a=1 

A direct semivariogram is obtained when i=j for the function fu (h). The 

semivariogram function and covariance function are lrnown to be anisotropic if their 

values depend both on the distance lhl and direction of the lag vector h. When the 

covariance and semivariogram values depend only on distance and not on direction they 

are said to be isotropic. 
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2.3 Linear Model of Co-regionalisation 

Structural analysis and modelling is performed in order to be able to compute estimates 

at unsampled locations. From the experimental semivariograms and experimental cross 

semivariograms one only gets information for specific lag vectors, so a model for all 

lags is required. A model of co-regionalisation is a model constructed from the 

experimental semivariograms and cross semivariograms which provides estimates for 

the semivariogram or covariance for any lag h. A type of model of co-regionalisation is 

the linear model of co- regionalisation. This provides a method of modelling the cross 

semivariograms of a number of variables so that the variance of any possible linear 

combination of these variables is always positive (Isaaks and Srivastava, 1989). The 

linear model of co-regionalisation defines the semivariogram model function as a KxK 

matrix of linear combination of admissible models 

L 

Yij(h) = L bfjgz(h) i,j = 1, .... . ,K 
l=O 

where each model function g1(h) is an acceptable semivariogram model (a list of 

admissible models can be found in Goovaerts, pg 88, 1997), and the coefficients bfj are 

the corresponding sills or slope coefficients of the model g1(h). The matrices B1 = 

[bfj] are required to be positive semi-definite. The number L denotes the number of 

models or structures required to capture the spatial continuity of the attributes. 

Modelling the cross variograms via a linear model of co-regionalisation for a 

multivariate data set can be very difficult, time consuming, and sometimes inaccurate 

when basic models are used for all cross semivariograms. Therefore, there is a need to 

find a way to appropriately and efficiently decorrelate spatially dependent data. 
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2.4 Linear Transformation Methods 

Transformation methods have long been used in geostatistics to spatially decorrelate 

data by transforming spatially correlated variables into a set .of decorrelated factors 

which are statistically and spatially independent. The decorrelated factors derived from 

these methods are linear combinations of the original variables and are needed to 

produce a transformation matrix which approximately diagonalises the spatial 

covariance matrix for all lags. 

2.4.1 PCA 

Principal component analysis (PCA) is the most popular multivariate data analysis 

method and dates back to the early 1900's. PCA provides a linear transformation of a 

set of correlated variables into a set of statistically uncorrelated factors (W ackernagel, 

2003). The variables are replaced by linear combinations called principal components 

which are uncorrelated at lag 0 (the vector h equals 0). The PCA method is basically an 

eigenvalue problem, which consists of the extraction of the eigenvalues and 

corresponding eigenvectors of the positive definite symmetric correlation matrix B. The 

factors are obtained by pre-multiplying the vectors of the attributes by the transposed 

eigenvector matrix 

where the eigenvectors q 11 .•. 1 qK of B make up the orthogonal matrix Q. The 

eigenvectors q11 ... 1 qK in Q are arranged in decreasing order of magnitude of the 

corresponding eigenvalues lt1 ~ lt2 ~ • • · ~ AK. The problem with PCA is that 

decorrelation is only guaranteed when the co-regionalisation matrices at different lag 

spacings are proportional, in other words it is only guaranteed when the spatial 

dependence of the variable under consideration can be modelled by a so-called intrinsic 

model of co-regionalisation. In practice this condition is rarely satisfied and therefore 

other methods may be better suited for decorrelation. 
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2.4.2 MAF 

MAF decorrelates a set of variables into uncorrelated factors for all lag spacings 

provided that the covariance function of the variables is fully characterised by a two 

structure linear model of coregionalisation (2SLMC). This assumption can be restrictive 

as using a model consisting of either a nugget plus one structure or two structures may 

be inadequate to model all cross-semivariograms (Bandarian, 2008). For this thesis we 

will concentrate on the MAF method involving the experimental semivariogram 

matrices f(·), in which the factors are derived via two successive PCA's. 

The general formulation of MAF is first described and shown in terms of the assumed 

theoretical model. The assumption ofMAF is that the semivariogram function f(h) of a 

multivariate random function can be modelled by a 2SLMC such that 

where B0 and B1 are the symmetric positive semi-definite co-regionalisation matrices 

which contain the sills of the semivariogram models g0 (h) and g1 (h). The 

coregionalisation matrices add up to the correlation matrix 

only when the data are normalised or standardised. Therefore, as both co-regionalisation 

matrices are symmetric and therefore diagonalisable and B1 is positive definite, then B0 

and B1 = B- B0 may be diagonalised simultaneously by congruence. Two matrices A 

and S are said to be congruent if there exists a non-singular matrix X, not necessarily 

orthogonal such that S=XT AX. The 2SLMC can be expressed as 

The first PCA of the MAF method involves orthogonally diagonalising the positive 

definite symmetric correlation matrix B such that 

B = HDHT 
' 

where the columns of H are orthonormal eigenvectors of B and the corresponding 

eigenvalues A.v ... ,A.K, are arranged in order of decreasing magnitude to make up the 

diagonal matrix D. 

Premultiplying f(h) by HT and postmultiplying by H, one obtains 
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1 1 

Next, HTf(h)H is premultiplied by D-2 and postmultiplied by D-2. The 2SLMC is 

now able to be expressed as 

1 

where W = HD-2. 

The initial transformation matrix w·only decorrelates the W(u) = WTZ(u) factors at 

lag zero, like a PCA transformation matrix would. Therefore, unless intrinsic correlation 

occurs the factors would still be correlated for all lags other than zero. 

The matrix WTB0 Wand fw(h) are symmetric as 

and 

The second PCA is carried out on the symmetric matrix fw(h), resulting in the 

calculation of the orthonormal eigenvectors C and a diagonal matrix of corresponding 

eigenvalues D1 . The transpose of the eigenvector CT is able to orthogonally diagonalise 

the factors M(u) = CTW(u) for all lags (Desbarats & Dimmitrakopos, 2000). The 

orthonormal eigenvectors that would be calculated from the decomposition of WTB 0 W 

would be similar to C. Both eigenvectors are independent of the lag h. Therefore, the 

orthogonal diagonalisation offw(h) is 

where the orthogonal matrix of eigenvectors is denoted as C and the diagonal matrix of 

corresponding eigenvalues is denoted as [D1 g0 (h) + (I- D1)g1 (h)]. 
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The transformation matrix AT IS a combination of the two decompositions and IS 

calculated as 

where ATBA = I as HTH = cT C = I. Since the theorecical LMC is not available in 

practice the correlation matrix, which is equivalent to the covariance matrix in the case 

of standardised or normalised data, and the semivariogram matrix at a lag close to the 

sample spacing are used to derive A (Bandarian & Mueller, 2008, p. 1173). The 

transformation matrix AT simultaneously diagonalises B and semivariogram matrix 

chosen producing orthogonal factors at a lag of zero and lag of the semivariogram 

matrix, regardless of the suitability of the 2SLMC. 

The MAF factors are produced by putting 

F(u) = ATZ(u). 

As observed earlier, MAF can be very restrictive as the assumption of a 2SLMC being 

able to model all the cross variogram factors is not always realistic. The MAF method 

does not cope well with poorly correlated variables and non linearity between variables 

(Rondon & Tran, 2008). For this reason the correlation coefficients and linearity 

between the variables has been included in the analysis of the data set in order to check 

for such limitation. 

2.4.3 ACDC 

A more general and recent approach for spatial decorrelation is to approximately 

diagonalise a set of target matrices which originate from the experimental 

semivariogram matrices calculated at all lag spacings. One of the methods which can be 

used to do so is the Alternating Columns and Diagonal Centres method, or more 

commonly known by its acronym ACDC. The ACDC method is a joint approximate 

diagonalisation (JAD) method. Given a family of symmetric, positive definite matrices 

(M11 M2 , .... , M1) the method iteratively determines a non orthogonal diagonalising 

matrix A and a family of diagonal matrices A11 A2 , •••• , A1 such that 
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where ] denotes the number of K X K matrices and Mj = f(h)j· When the 

experimental semivariogram matrices f(h) j are used then the matrix A and diagonal 

matrices A1, A2, .... , A1 are estimates and denoted as A and A11 A2, .... , A1. The ACDC 

algorithm aims to minimise the objective function 

where w 1 , ... , w1 are non-negative weights and Tr { (Mj - A.AjA.T) T (M:j - A.A/fv)} 

denotes the trace of (Mj- A.AjA.T) T (Mj- A.AjA.T) defined as the sum of the entries on 

its main diagonal. The weights enable some of the matrices to have more of an impact 

on the approximate diagonalisation than others. The algorithm alternates between two 

phases, the alternating column phase (AC) and the diagonal centres phase (DC). The 

AC phase consists of minimising the C18 (A., A11 A2, .... , A1) with respect to a particular 

column of the diagonalising matrix A, while keeping its other columns and diagonal 

matrices A11 A2 , .... , A1 fixed (Yeredor, 2000). The DC phase consists of minimising the 

C15 (A,A11 A2, ... . ,A1) with respect to the diagonal matrices A1,A2, ... . ,A1, while the 

diagonalising matrix A remains fixed (Yeredor, 2000). 

The AC phase minimises C18 with respect to a particular column l of A (1 ~ l <K) 

calculated by the following quadratic equation 

where ak denotes the kth column of the diagonalising matrix A.= [a11 a 2, .... , ak] and 

X f) denotes the corresponding k th diagonal value of Aj while XV\s the corresponding 

diagonal value for the zth column. The unit-norm eigenvectors a and largest eigenvalue 

of P are calculated and if )l <0 then set a1 = 0, otherwise set 

~ av'i! 
az = . 

jL~ w ·.ct.W) 2 
j=l J l 

This is done to determine if P is negative definite as if it is then the a1 is set to zero to 

attain minimisation of C15 with respects to a 1. 
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The DC phase minimise the C15 with respect to the diagonal matrices A11 A2 , •••. ,A1. For 

j = 1,2, .... ,] the diagonal matrices are calculated by 

Ai = diag { [(AT A)* 8 (AT A) r1 
diag {ATMi A}} 

where 8 denotes Hadamard's (element wise) product and the superscript *represents 

conjugation, however this is not needed in the case of the semi-positive matrices. 

The ACDC algorithm alternates between the AC and DC phase until a pre-specified 

tolerance or number of iterations has been reached. The initial phase of the algorithm 

depends on the inputs added to the algorithm. If an initial guess for the diagonal 

matrices is made then the AC phase is run first. In most cases where an initial guess of 

the diagonal matrices or diagonalising matrix is not made, the DC phase is run first. 

The diagonalising matrix is automatically set to the identity matrix so that the first DC 

phase will be able to calculate the corresponding diagonal matrices (Y eredor, 2000). 

The AC phase is then run over all f columns of the diagonalising matrix, minimising the 

objective function with respect to the corresponding diagonal matrices. The improved 

diagonalising matrix is then used in the DC phase to minimise the objective with respect 

to the new calculated diagonalising matrix. 

Intelligent initial guesses for the diagonal matrices or diagonalisation matrix may 

possibly improve the quality of the ACDC algorithm. An intelligent guess for the 

diagonalisation matrix would be the matrix that diagonalises the correlation matrix. The 

reason being that the the ACDC method would just be improving the diagonalising 

matrix in which the transpose is already used as the PCA transformation matrix to 

approximately decorrelate variables. The other reason is because it is very easy and 

simple to calculate and is the basis for a few methods. 

Once the matrix A has been determined, the factors are computed by putting 

F(u) = A-1 Z(u). 

A Matlab program that implements the algorithm was published by Y eredor (2004). 

This program was used extensively throughout this thesis. The additional inputs such as 

weights, number of iterations, initial guesses for the diagonalising matrix and tolerance 

were explored to investigate the impact they made on the ACDC decorrelation results. It 

was hoped that the additional specified inputs would improve the quality of the 
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decorrelation resulting from the ACDC algorithm. The impact of the additional inputs 

and results on the data set will be discussed further on in the thesis using the 

multivariate data set supplied by Rio Tinto. 
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2.5 Methods Used to Assess Spatial Decorrelation. 

There are a variety of ways to assess how successfully the factors have been spatially 

decorrelated. For a visual assessment the cross semivariogram for each factor pair will 

be graphed in order to detect any remaining spatial correlation. Perfect decorrelation is 

shown when the experimental cross semivariogram factors are at zero for all lags. A 

quantitative method used to measure spatial decorrelation is to calculate the absolute 

deviation from diagonality ~(h), the quotient of the absolute deviation from diagonality 

and the sum of the factor main diagonal entries r(h), and the spatial diagonalisation 

efficiency K(h). 

The deviation from diagonality at lag h, ~(h), is the sum of squares of the off-diagonal 

elements of the factor experimental semivariogam matrix for all lag spacings, 

K K 

~(h)= LLCfp(h;k~j)) 2 ~ lhl > o. 
k=ljot=k 

where YF denotes the experimental sem1vanogram for the factors. Perfect spatial 

decorrelation occurs when ~(h) = 0 for all separation distances. A global measure is 

given by the average (of ~(h) calculated at I lag spacings, 

The measure of spatial decorrelation, r(h), compares the absolute sum of off-diagonal 

elements of the factor experimental semivariogram matrix fp(h) with the absolute sum 

of the diagonal elements calculated at each lag spacing h (Tercan, 1999). The formula 

for r(h) along with the average f, of r(h) calculated at 1 lag spacings, are given by 

"K "~ I" (h·k· ")I r(h) = L..k=lKL..Jo~=k YF I ~J I lhl > 0 
Lk=liYF (h;k;k)l 

and 

J 

f=yL r(hJ~ 
j=l 

respectively. For perfect decorrelation to occur r(h)=O for all lags h. 
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Finally, the spatial decorrelation efficiency function at lag h, K(h), compares the sum of 

squares of the off diagonal elements of the factor experimental semivariogram matrix 

.fp(h) to the sum of squares of the off diagonal elements of the sample experimental 

semivariogram matrix fz(h) (Tercan, 1999). It is given by 

Perfect spatial decorrelation for all separation distances or lags h occurs when K(h)=l . 

A set of matrices may be considered to be nearly in diagonal form if K(h);:::: 0.9 for all 

lags h (Xie, Myers & Long, 1995). The average of K(h) for all] lag spacing is given as 

The average calculated for flag spacings quantifies the overall spatial decorrelation. 
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3 Analysis 
This chapter discusses the exploratory and spatial analysis of the data set supplied by 

Rio Tinto. The two ways in which the ten variables have been transformed will also be 

discussed in this chapter. The last section of this chapter discusses the similarity and 

differences between the ten variables in order to determine a suitable subset which will 

be approximately decorrelated. 

3.1 Data Set Background 

The data set which will be used for the study has been supplied by Rio Tinto's Iron Ore 

operation in Western Australia. The compositional data set contains ten variables; 

aluminium oxide (Al20 3), calcium oxide (CaO), iron (Fe), the measurement of water 

content of the ore (LOI), magnesium oxide (MgO), manganese (Mn), phosphorus (P), 

sulphur (S), silicon dioxide or silica (Si02) and titanium dioxide or titania (Ti02). The 

1885 sample measurements for each of these ten attributes come from one mining bench 

in a channel iron deposit in the Pilbara region, located in the northwest of Western 

Australia, approximately 1,100 km north ofPerth. The assays are from sampling ofblast 

hole cuttings, where the patterns of the blast hole locations represent different phases of 

mining. The original co-ordinates have been transformed, but otherwise all other 

measurements are in meters. The ten variables influence the mining of iron ore as well 

as the extraction of iron, and therefore need to be analysed and modelled in order to 

successfully produce iron and subsequently steel. 

The most important variables, in terms of saleable products, are iron, alumina and silica. 

The iron content is important because it is the iron element in the ore which is 

predominantly used to make steel. The main concern for mining companies would be to 

identify, concentrate and mine in areas of the region which are rich in iron. Aluminium 

(Al), present in Al20 3, has a number of adverse effects on the furnace operation 

involved in producing iron and steel, reducing the quality of iron. Aluminium is also 

very difficult to reduce once present. Therefore, it is important to identify the locations 

of major Al20 3 concentrations in relation to iron, as potential clients are interested in a 

high iron quality. Silica promotes the formation of gray iron which is a type of iron less 

brittle and easier to finish than the more common white iron. Gray iron is preferred for 

casting and is often used for housing structures while white iron is the starting material 

for malleable cast iron. Thus, by mining companies knowing where areas of high silica 
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concentrations are in relation to iron deposits, they are more capable of producing a 

higher quality of white and gray iron (Liddelow & Dinsdale, 1996). 

The iron mineralisation occurs within the Hamersley Iron Province. The geology of this 

Province is characterised by a 2,500 million year old group of late Archaean and early 

Proterozoic rock formations known as the 'Hamersley Group'. The Hamersley group 

was formed as a result of volcanic activity, which introduced basalt rock into the area. 

Throughout its formation, ongoing transportation and weathering of the Hamersley 

group led to the existence of sedimentary rocks, such as sandstone. Also during this 

period, rocks with different chemical compositions were deposited in layers (Rio Tinto 

Iron Ore, 2009) 

3.2 Exploratory Data Analysis 

The summary statistics of the ten raw variables are given in Table 1. Each variable 

comprises of 1885 observations, with no missing data. Except for Mn and Fe, the 

variables are positively skewed. The severity of skewness differs for each variable, with 

CaO being the most skewed and Mn being the least skewed. The kurtoses for all ten 

variables are positive, indicating that the distributions are more peaked than a normal 

distribution. The severity of peaks differ for each variable, with the CaO distribution 

being the most peaked and S being the least peaked, compared to a normal distribution. 

This is further illustrated in the histograms shown in Figure 1. The histogram for Mn 

shows that the Mn distribution may be discrete. 

a e -T bl 1 S ummary s ahshc or t e ten vana t .. 1" h . bl es. 

Ab03 CaO Fe LOI MgO Mn p s Si02 Ti02 

Mean 1.561 0.059 56.887 9.75 0.077 0.02 0.034 0.007 7.131 0.106 

Median 1.21 0.06 57.18 9.73 0.07 0.02 0.033 0.007 6.97 0.07 

Standard Deviation 1.202 0.026 1.96 0.411 0.027 0.006 0.007 0.003 1.752 0.102 

Variance 1.446 0.001 3.84 0.169 0.001 0 0 0 3.069 0.01 

Kurtosis 17.595 161.846 12.967 5.479 18.622 6.716 7.566 3.681 6.676 14.681 

Skewness 3.077 8.957 -2.194 0.302 2.612 -0.229 1.521 0.981 1.11 2.932 

Range 13.02 0.61 22.27 4.4 0.32 0.06 0.057 0.017 17.46 0.85 

Minimum 0.33 0.03 38.21 7.34 0.03 0 0.022 0.002 3.49 0.01 

Lower Quartile 0.84 0.04 56.12 9.49 0.06 0.02 0.03 0.005 5.9 0.05 

Upper Quartile 1.87 0.07 58.1 9.98 0.09 0.02 0.037 0.009 8.07 0.13 

Maximum 13.35 0.64 60.48 11.74 0.35 0.06 0.079 0.019 20.95 0.86 

Count 1885 1885 1885 1885 1885 1885 1885 1885 1885 1885 
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llb samples: 1885 
Mini mum: 0.33 

Mean: 
Std. Dev.: 1.20 

!lb samples: 1885 
Minimum: 0.03 
Maximum: 
Mean: 
Std. Dev.: 0.03 

fib Samples: 1885 
Minimum: 38.21 

Mean: 
Std. Dev.: 1.96 

Nb Sampl es: 1885 
Minimum: 0 . 03 

Mean : 
Std. Dev. : 0.03 

'MgO 

Figure 1-The histograms for each of the ten variables, in alphabetical order. 

Shown in Figure 2 are the qq plots which are plotted against a lognormal distribution for 

all variables, except Mn which is plotted against a normal distribution. The qq plots of 

Al20 3, loss on ignition LOI and Si02 give the impression of following a lognormal 

distribution. The qq plot for Mn shows that it may be discrete while the qq plots for S, 

CaO, MgO and Ti02 indicate that these variables do not follow a lognormal 

distribution. A x2 goodness of fit test with twenty two degrees of freedom, using twenty 

five classes was performed. The results showed that at a five percent significance level 

Si02 was the only variable which showed significant evidence that it is lognormal 

(experimental x2 (30.55) <theoretical value (33.92)). 
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Figure 2- The qq plots for each of the ten variables, in alphabetical order. 

The matrix of the correlation coefficients is shown in Table 2. The highlighted red fields 

indicate the variables which are highly correlated (r > 0.7). The highest correlation co

efficient is between Al20 3 and Ti02 , with a correlation of0.916. The lowest correlation 

co-efficient (in terms of absolute value) is between Fe and S, with a correlation of only-

0.002. S and P are poorly correlated with all the variables, while CaO is poorly 

correlated with all the variables, except MgO. Al20 3 and Fe have the highest 

correlation, with being moderately or highly correlated with all the variables except for 

CaO, S and P. Mn has a mixture of moderate and poor correlations with other variables. 

MgO, Si02 and Ti02 have a mixture of linear correlation strengths. 
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Table 2- Correlation co-efficient matrix between the ten variables. The highlighted cells represent a 
I . ffi . h' h h 0 corre atwn coe tctent tgl er t an .7. 

Al203 CaO Fe LOI MgO Mn p s Si02 Ti02 

Al20 3 1 0.256 -0.85 0.51 0.583 -0.502 0.241 -0.106 0.541 0.916 

CaO 0.256 1 -0.169 0.003 0.704 -0.121 -0.018 -0.402 0.089 0.176 
Fe -0.85 -0.169 1 -0.465 -0.483 0.556 0.019 -0.002 -0.882 -0.753 

LOI 0.51 0.003 -0.465 1 0.248 -0.545 0.239 -0.017 0.165 0.364 
MgO 0.583 0.704 -0.483 0.248 1 -0.364 0.069 -0.424 0.316 0.424 
Mn -0.502 -0.121 0.556 -0.545 -0.364 1 0.007 0.138 -0.423 -0.313 
p 0.241 -0.018 0.019 0.239 0.069 0.007 1 -0.034 -0.258 0.278 

s -0.106 -0.402 -0.002 -0.017 -0.424 0.138 -0.034 1 0.067 -0.024 

Si02 0.541 0.089 -0.882 0.165 0.316 -0.423 -0.258 0.067 1 0.471 

Ti02 0.91-6 0.176 -0.753 0.364 0.424 -0.313 0.278 -0.024 0.471 1 

The base map showing the sample locations is displayed in Figure 3. The base map of 

the study region shows that some areas of the region have been sampled extensively 

while other areas, in particular the centre, have not been sampled as densely. 

1 00 

0 

-1 00 

-2 00 - 100 0 1 00 2 00 

X (m) 

Isatis 

Figure 3-Base map for study region. 

The spatial maps for each of the ten variables are shown in Figure 4. The colour scales 

were defined via the corresponding deciles for each variable, except for Mn which was 

based on the seven discrete values observed. The spatial map for Fe shows a region of 

very high values on the western border. The spatial maps for Al20 3, Ti02, P and LOI do 

not show any distinct areas of very high or very low values. For Si02 lower 

concentrations are located on the western border. The spatial map for CaO shows that 

the higher values are more concentrated on the western border, while the very low 

values are more concentrated in an area in the south east. This is opposite for S. The 
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spatial map for Mn appears to have predominantly lower values. The very low values of 

MgO are mainly concentrated in an area in the south east of the spatial map. 
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Figure 4- The spatial maps for each of the ten variables in alphabetical order. 
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3.3 Spatial Analysis 

The experimental semivariogram maps for each of the ten original variables were 

calculated in order to identify the spatial features of each of the ten variables. An 

average lag spacing of 15m using fifteen lags was used to obtain the experimental 

semivariogram maps shown in Figure 5. It is clear from the experimental 

semivariogram maps that the ten variables do not exhibit the same spatial behaviour. 

Some ofthe variables such as LOI, Si02,Ab03 and Fe, appear to be isotropic or weakly 

anisotropic, MgO and CaO appear to exhibit stronger anisotropy than LOI, Si02, Ab03 

and Fe. The variables which exhibit the strongest anisotropy are Mn, P and S. There is 

not a single direction of greatest continuity instead the direction of greatest continuity 

varies from N20° to Nl 00° depending on the variable. 
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Figure 5- The spatial maps for each of the ten variables in alphabetical order. The red shows areas of high 
semivariances and the blue shows areas of low semivariances. 
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3.4 Transforming the Data Set 

Two types of transformations were applied to the data set. The first was a Gaussian 

anamorphosis and the resultant transformation set will be denoted by subscript NS. The 

other transformation involved the raw data set to be standardised by subtracting the 

mean from each value in the variable and dividing the difference by the standard 

deviation. For the mean and standard deviation values used for each variable, refer to 

Table 1. The resultant standardised data will be denoted by. subscript St. Both 

transformation methods are similar as they both transform the original variables into 

variables which have a mean close to zero and standard deviation close to one. The two 

transformation methods differ as standardising the raw data does not change the shape 

of the original distribution, while the transformation of the raw data to normal scores 

changes the original distribution of the variables into a normal distribution. In addition, 

standardisation is a linear transformation, while the Gaussian anamorphosis is non

linear. The histograms of the standardised variables are shown in Figure A1 in 

Appendix 1. By comparing the histograms in Figure A1 with the histograms of the raw 

data in Figure 1 it is clear that the shape of the distributions of the variables have not 

changed. 

The transformation of the raw variables to normal scores was done in Isatis using 

Gaussian anamorphosis. The Gaussian anamorphosis fit is shown in Figure 6, while 

Table 3 contains the minimum, maximum and number of polynomials used for each 

variable, as well as the theoretical mean and variance, and the difference between the 

actual mean and theoretical mean. The parameters for each variable are shown in 

Appendix 2.1. 

Table 3- Minimum, maximum and number of polynomials used for each Gaussian anamorphosis fit. 
Number of Theoretical % error between Theoretical % error between 

Min Max polynomials Mean Means Variance Variances 

Al203 0 14 60 1.56 0.06406 1.445 0.06307 

CaO 0 0.7 40 0.06 1.69492 0.001 32.70000 

Fe 37 62 60 56.89 0.00527 3.836 0.09977 

LOI 7 12 50 9.75 0.00000 0.169 0.12249 

MgO 0 0.4 40 0.08 3.89610 0.001 27.80000 

Mn 0 0.07 50 0.02 0.00000 0.000 0.00000 

p 0 0.081 50 0.03 11.76471 0.000 0.00000 

s 0 0.022 40 0.01 42.85714 0.000 0.00000 

Si02 3 22 40 7.13 0.01402 3.067 0.06918 

Ti02 0 0.88 50 0.11 3.77358 0.010 4.00000 
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The criteria used to determine the number of polynomials were to compare the 

theoretical means and variances to the actual mean and variance, shown in Table 1 and a 

visual inspection of the Gaussian anamorphosis fit for each variable. The smaller the 

percentage error the better, however even though there appear to be a few high 

percentage errors the slight decrease in percentage error when using a larger number of 

polynomials does not warrant using the larger number of polynomials. The small 

percentage difference shows how similar the actual means and variances are to the 

theoretical mean and variance values, justifying the number of polynomials chosen. The 

allowable range for the transformed variable was set to [ -4,4]. The histograms showing 

that the variables have a normal distribution with a mean of zero and standard variation 

of approximately one can be viewed in Figure A2 in Appendix 2. 

;; 0.3 
~ so 

; o.os 

~ 0.2 

~ 0.5 

Figure 6-Gaussian anamorphosis for each of the ten variables in alphabetical order. 
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3.5 Subsets 

The exploratory and spatial data analysis has shown how diverse the ten variables are; 

· therefore using the MAF and ACDC algorithm on all ten variables may not be practical 

for simulation or kriging. Instead a subset of variables needed to be selected. As the 

most important variables, in terms of saleable products, are Fe, Ah03 and Si02, the 

subset has to contain these three variables. 

A Principal Component Analysis (PCA) and factor analysis using the correlation matrix 

in SPSS was performed on the ten normal score variables. The normal scores were used 

since the PCA and factor analysis are more robust when the distributions of the 

variables are normal. The scree plot and correlation circle in Figure 7 show that most of 

the information concerning the variability of the ten normal score variables is contained 

in the first two principal components. The correlation circle of the two factors shows 

that LOI, Ab03, Ti02 and Si02 are closely related. This relationship is further 

highlighted by the factor pattern matrix shown in Table 4. The factor pattern matrix 

contains the correlation coefficient between the variables and factors, therefore 

measuring the importance of the variables to the factors, independent of the other 

variables. 

Scree Plot 

6 7 

Component Number 

'" 0 

Factor Plot 

C•O 
0 

~ ' 
~ oo+-----"------j----'o'-----rnr----,,.=.o,o;"""'--1 
~ 0 

s 
0 

Factor1 

0
s102 

Figure 7- The scree plot (left) and correlation circle (right). 

The factor pattern matrix in Table 4 has fewer loadings than the original factor matrix 

and therefore is easier to interpret as it only shows the highest loading for each variable. 

The table shows that most of the variability for Fe, Ah03, Ti02, Si02, LOI and Mn is 

present in factor one, while the variability for CaO, MgO and S can be explained in 

factor two. The variability of P must be explained in one of the other factors, showing 

that the statistical aspects of the variable are different to all the other variables. It would 

be logical to produce two subsets, the first subset would consist of the group of 
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variables similar to that shown in factor one while the other subset would consist of the 

variables shown in factor two, leaving P out. 

Table 4 F - actor pattern matnx or t e two a . ~ h t: ctors .. 

Factor 

1 2 

Fe -0.964 

Alz03 0.879 

Ti02 0.784 

Si02 0.649 

LOI 0.511 
Mn -0.427 
p 

CaO 0.867 

MgO 0.802 

s -0.702 

The PCA and factor analysis is a good way to determine which variables can be 

grouped with each other, yet the spatial and statistical analysis has to be considered also 

before a subset can be decided on. The group of variables shown in factor one appears 

to make up a reasonable subset, with the exception of Mn. The reason for excluding Mn 

from the subset is that it is statistically and spatial very different from the other 

variables. The main concern with Mn is that it has a discrete distribution and will have 

many detection limit values which may affect the normal score transformation and 

hence the decorrelation. The subset of variables which was decided on was Fe, Ab03, 

Si02, LOI and Ti02. These five variables were choosen because they make up the most 

reasonable subset of more than four variables, which most importantly, show the most 

similarity in statistical and spatial features. 
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3.6 Linearity 

The MAF method does not cope well with non linear correlations or poorly correlated 

variables (Rondon & Tran, 2008). Therefore, the correlation of the normal scores and 

standardised variables were checked by examining the scatter plots between the five 

variables in the subset, as shown in Figures 8 and 9. The corresponding correlation 

coefficients are displayed in Table 5 and Table 6. The scatter plots and correlation 

coefficients indicate varying degrees of linearity in the bivariate relationships between 

the five variables. Linearity between the variables is better shown on the scatter plots 

between the nonlial score variables than the scatter plots of the standardised variables. 

The reason for this is that the normal score variables no longer have the extreme values 

that the standardised variables have, as the presence of extreme values affects the 

correlation coefficients and the shape of the scatter diagrams. 

Table 5- The correlation coefficients for the five transformed normal scores 

NS AhO~ Fe Si02 Ti02 LOI 

Al203 1 -0.70229 0.3954 0.92189 0.52522 

Fe -0.70229 1 -0.88765 -0.66213 -0.43529 

Si02 0.3954 -0.88765 1 0.39257 0.13802 

Ti02 0.92189 -0.66213 0.39257 1 0.3887 

LOI 0.52522 -0.43529 0.13802 0.3887 1 

Table 6- The correlation coefficients for the five standardised variables 

St Al203 Fe Si02 Ti02 LOI 

Al203 1 -0.84969 0.54139 0.91626 0.51003 

Fe -0.84969 1 -0.88243 -0.75286 -0.46455 

Si02 0.54139 -0.88243 1 0.47099 0.16513 

Ti02 0.91626 -0.75286 0.47099 1 0.36436 

LOI 0.51003 -0.46455 0.16513 0.36436 1 

There is little difference in the correlation coefficients between the normal score 

variables and standardised variables. Both of the tables show LOI to have the poorest 

correlation with the other variables. This is further illustrated by the weak linear 

relationship in the scatter plots which involve LOI. The scatter plots of Si02 with Ti02 

and Al20 3 also show only weak correlation. The correlation coefficient between Ab03 

and Fe show the two variables to have a strong negative relationship; however the 

scatter plot between the two variables does not appear linear, with the upper values 

showing a linear relationship but not the lower values. 

35 



0 

~I 

0 

~I 

0 

. I 

"' 

-4 _,!----!-----:!-+----!:--7--7-!--~ 

-4 -4!----!-----:!:--+----!:--7--7-!--~ 

s 
~I 

0 

~ I 
:i 

+ + 

Figure 8- The scatter plots and correlation coefficients between each of the five transformed normal score 
variables in the subset. 
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subset. 
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3. 7 Analysis of Experimental Semivariograms. 

The experimental cross semivariogram of the normal scores and standardised subset are 

shown in Fig1:1re 10. The figures show that the experimental cross semivariograms are 

correlated as expected. The experimental direct semivariogram of the normal scores and 

standardised subset is shown in Figure 11. A 3SLMC consisting of a nugget and two 

acceptable semivariogram models '-''Ould be appropriate to capture the spatial variability 

of the variables. 
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Figure 10- The experimental cross semivariograms of the five normal scores (left) and standardised (right) 
variables. 
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Figure 11- The experimental direct semival"iograms of the five normal scores (left) and standardised (right) 
variables. 

The average distance for each lag and experimental semivariogram matrices using the 

normal scores and standardised variables can be viewed in Table Al and A2 in 

Appendix 3. The corresponding eigenvalues for each of the experimental 

semivariogram matrices are also shown in Tables A1 and A2. The eigenvalues for each 

experimental semivariogram matrix are positive demonstrating that the experimental 

semivariogram matrices, using the five normal scores and standardised variables 

respectively, are positive definite. 
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4 Results 
In this chapter the results obtained throughout the study are presented. The average 

spatial decorrelation results, transformation matrix and analysis of the factors for each 

method will first be discussed separately. The final section will compare the spatial 

decorrelation results and experimental cross semivariograms for all the methods. 

4.1 Decorrelation Results 

The PCA, MAF and ACDC methods were applied to the normal scores and 

standardised variables for the subset, Al20 3 , Fe, Si02, Ti02 and LOI to determine 

which of the methods decorrelates the subset better. The factors produced from each 

method were assessed for spatial decorrelation using a number of criteria. These criteria 

include a visual assessment ofthe experimental cross semivariograms ofthe factors and 

plots of the absolute deviation from diagonality S'(h), the quotient of the absolute 

deviation from diagonality and the sum of the factor main diagonal entries r(h) and the 

spatial diagonalisation efficiency K(h) for every lag. The final criterion is a comparison 

of~' the average absolute deviation from diagonality for all lags, f, an average of the 

quotient of the absolute deviation from diagonality and the sum of the factor main 

diagonal entries for all lags, and R, the average spatial diagonalisation efficiency for all 

lags. 

4.1.1 PCA Decorrelation Results 

The PCA transformation using the normal scores and standardised scores was computed 

using Isatis. The correlation matrix of the normal scores is 

1 -0.702 0.395 0.922 0.525 

-0.702 1 -0.888 -0.662 -0.435 

BNs= 0.395 -0.888 1 0.393 0.138 

0.922 -0.662 0.393 1 0.389 

0.525 -0.435 0.138 0.389 1 

The diagonal matrix of eigenvalues DrcANs and matrix of eigenvectors Q NS of BNs are 
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13.2545 0 0 0 

0 I DPcA,~ ~ 
1.0122 0 0 0 

0 0.6400 0 0 ' 
0 0 0.0657 0~0~77 0 0 0 

and 

0.4995 -0.2914 -0.3244 0.7085 0.2416 

-0.5131 -0.3250 -0.1737 -0.1130 0.7670 

QNs= 0.3927 0.6743 0.2085 -0.1020 0.5807 ' 

0.4789 -0.2269 -0.5185 -0.6711 0.0079 

0.3220 -0.5507 0.7432 -0.1566 0.1273 

respectively. The PCA transformation matrix when using the normal score variables is 

the transpose of the eigenvector matrix Q and was calculated to be 

0.4995 -0.5131 0.3927 0.4789 0.3220 

-0.2914 -0.3250 0.6743 -0.2269 -0.5507 
Q~s= -0.3244 -0.1737 0.2085 -0.5185 0.7432 . 

0.7085 -0.1130 -0.1020 -0.6711 -0.1566 
0.2416 0.7670 0.5807 0.0079 0.1273 

The histograms of the PCA factors using the normal scores subset are shown in Figure 

12. The distributions ofthe factors do not appear to follow a normal distribution. This is 

supported by Kolmogorov-Smimov statistics with a Lilliefors significance level test of 

normality, in Table 7, showing that there is significant evidence that the factors are not 

normally distributed (sig.<0.05). The scatter plots and corresponding correlation 

coefficients between the factors, shown in Appendix 4.1, confirm that the factors are 

uncorrelated. 
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Figure 12- The histograms of the PCA factors using the normal scores subset. 

Table 7- The Kolmogorov-Smirnov statistics test of normality results for all the PCA factors using the normal 
scores subset. 

Kolmogorov-Smimov 

Statistic df Sig. 

F1 PCA NS 0.032457 1885 0 
- -

F2 PCA NS 0.022559 1885 0.026 
- -

F3 PCA NS 0.084104 1885 0 
- -

F4 PCA NS 0.047189 1885 0 
- -

F5 PCA NS 0.037647 1885 0 

The correlation matrix for the standardised scores is 

1 -0.85 0.541 0.916 0.510 

-0.85 1 -0.882 -0.753 -0.465 

Bst= 0.541 -0.882 1 0.471 0.165 

0.916 -0.753 0.471 1 0.364 

0.510 -0.465 0.165 0.364 1 

The diagonal matrix of eigenvalues DpcAst and matrix of eigenvectors Q st of Bs1 are 

and 

3.4632 
0 

DpcAst = 0 
0 
0 

0 
0.8857 

0 
0 
0 

0 
0 

0.5774 
0 
0 
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0.505 0.1385 -0.3394 -0.6989 -0.3494 

-0.5197 0.1936 -0.2077 0.1586 -0.79 

Q st= 0.4069 -0.5783 0.467 0.1988 -0.4923 ' 

0.4688 0.0715 -0.5987 0.6455 -0.0038 

0.2992 0.777 0.5149 0.1736 -0.1069 

respectively. The PCA transpose matrix when using the subset which had been 

standardised is 

0.505 -0.5197 0.4069 0.4688 0.2992 

0.1385 0.1936 -0.5783 0.0715 0.777 
QT-

St -0.3394 -0.2077 0.467 -0.5987 0.5149 

-0.6989 0.1586 0.1988 0.6455 0.1736 

-0.3494 -0.79 -0.4923 -0.0038 -0.1069 

The histograms of the PCA factors using the standardised subset are shown in Figure 

13. The distributions of the factors do not appear to follow a normal distribution, with 

factors 1 and 3 appearing severely skewed and factors 2, 4 and 5 appearing as though 

they may be slightly skewed. The scatter plots and corresponding correlation 

coefficients between the factors, shown in Appendix 4.2, confirm that the factors are 

uncorrelated. 

~ 0. 4 

~ ! 0.3 
l 0.10 

Figure 13- The histograms of the PCA factors using the standardised subset. 
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The measures of spatial decorrelation from the PCA transformation can be viewed in 

Table 8. 

Table 8-The PCA average spatial decorrelation measures using both the normal scores and standardised 
subset. 

( f R 
Normal Scores Subset PCA 0.0393 0.1168 0.9938 

Standardised Subset PCA 0.0182 0.076 0.9975 

4.1.2 MAF Decorrelation Results 

The MAF transformation was computed using Isatis. The MAF was performed using 

the corresponding correlation matrix and the experimental semivariogram matrix for a 

lag spacing of 15m. The correlation matrix of the normal scores used in the MAF 

method is denoted as BNs and the correlation matrix for the standardised score is 

denoted as Bst· The choice of 15m was made because this lag spacing best reflected the 

data spacing. The experimental variance/covariance matrix of the normal scores for a 

lag spacing of 15m (h=15m) used in the MAF is 

1.81595 -1.29358 0.72332 1.63417 1.03795 

-1.29358 1.61754 -1.36892 -1.19928 -0.73897 

C(h)Ns= 0.72332 -1.36892 1.53154 0.69563 0.144 ' 
1.63417 -1.19928 0.69563 1.63087 0.90966 

1.03795 -0.73897 0.144 0.90966 1.63043 

and the experimental variance/covariance matrix for the standardised scores is 

1.78711 -1.55377 1.00519 1.62297 0.99212 

-1.55377 1.69742 -1.43589 -1.37398 -0.78994 

C(h)st= 1.00519 -1.43589 1.58067 0.8607 0.19738 

1.62297 -1.37398 0.8607 1.64359 0.8461 

0.99212 -0.78994 0.19738 0.8461 1.64241 

The MAF transformation matrix for the normal scores subset is 

-1.3636 1.8751 0.0589 1.9508 -0.9432 

-0.4533 0.8892 -4.0597 0.9263 -1.8273 
xT-Ns- -0.6262 -0.2707 -2.9026 0.9741 -1.7503 ' 

1.8943 -1.0675 -1.2877 -0.7616 0.6582 

-0.6058 -0.3019 -1.1859 -0.2511 0.475 
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while the MAF transformation matrix using the standardised subset is 

-1.564 3.369 -2.0569 -2.0027 -1.1812 

-0.1431 3.2215 -7.8644 -2.1563 -2.0236 
xT-s- -0.2403 1.002 -5.0363 -1.8031 -1.7193 . 

2.0505 -1.06 -1.0208 0.3565 0.7166 

-0.429 -0.1816 -1.6203 -0.0204 0.5043 

The histograrns of the MAF factors using the normal scores subset and standardised 

subset are displayed in Figure 14 and Figure 15, respectively. MAF factor 2 using the 

normal scores subset appears to be the only MAF factor which may follow a normal 

distribution. This is confirmed by the Kolmogorov-Smimov statistics with a Lilliefors 

significance level test of normality (see Table 9) showing that at a 5% significance level 

there is enough evidence to suggest that factor 2 may be normally distributed 

(sig.>0.05). The distributions of the MAF factors using the standardised subset appear 

to be skewed, with factor 4 showing to be severely skewed. 

n_MAF_us 

: •.lS 
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Figure 14- The histograms of the MAF factors using the normal scores subset. 
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Figure 15- The histograms of the MAF factors using the standardised subset. 

Table 9- The Kolmogorov-Smirnov statistics test of normality results for all the MAF factors using the normal 
scores subset 

Kolmogorov-Smimov 

Statistic Df Sig. 

F1 MAF NS 0.06471 1885 0 
- -

F2 MAF NS 0.020641 1885 0.059 
- -

F3 MAF NS 0.0309 1885 0 
- -

F4 MAF NS 0.039033 1885 0 
- -

F5 MAF NS 0.039735 1885 0 

The scatter plots and corresponding correlation coefficients between the MAF factors 

using the normal scores and standardised variables are shown in Appendix 4.3 and 4.4, 

respectively. The scatter plots and corresponding correlation coefficients confirm that 

the factors are uncorrelated. 

The results of the average spatial decorrelation measures for the MAF factors using the 

normal score subset and standardised subset are shown in Table 10. The spatial 

decorrelation from the MAF transformation performed better than that from PCA (Table 

8) for all the measures, except for r using the standardised subset. 

Table 10- The MAF average spatial decorrelation measures using both the normal score subset and 
standardised subset. 

( f R 
Normal Sco:t;es Subset MAF 0.0164 0.0907 0.9976 

Standardised Subset MAF 0.0177 0.0797 0.9978 
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4.1.3 ACDC Decorrelation Results 

The ACDC method was performed in Matlab. The target matrices to be diagonalised 

consisted of fifteen symmetric positive definite matrices, calculated from the 

experimental semivariograms of the five normal scores or standardised variables 

respectively using a lag spacing of 15m. The ACDC function in Matlab was executed 

initially using the call [A,D,Nit,Cls]=acdc(M,w,TOL), where A is the diagonalising 

matrix, D is the K X ] matrix of diagonal values, Nit is the number of full iterations, 

Cis is the vector of Nit Cis values, M is the array of target matrices (K X K X ]), w 

(1 x]) is the weight vector, TOL is the tolerance which was set to lxl0-16
• The initial 

diagonalising matrix was not specified in the call; therefore it was automatically set to 

the identity matrix. The ACDC function call in Matlab specifying the initial guess for 

the diagonalising matrix Ao, was [A,D,Nit,Cls]=acdc(M,w,TOL,AO). The original 

ACDC algorithm written by Yeredor (2004) was changed slightly, as the maximum 

number of allowed full iterations was increased from 50 to 100,000. The MATLAB 

code used can be viewed in Appendix 6. 

The weight vector plays a significant part in the ACDC algorithm as it contains the 

weights assigned to the corresponding target matrices. The weight vector was used to 

systematically reduce the number of semivariogram matrices used in the 

diagonalisation. The first weight vector ensured that all fifteen target matrices were 

included; the next weight vector was reduced to that the first fourteen matrices were 

approximately simultaneously diagonalised by making the weight of the last target 

matrix zero. For every subsequent ACDC performed the last non zero weight was set to 

zero until only the first target matrix remained. This process was carried out both for the 

normal scores subset and standardised subset. The weight vectors and resulting values 

of ~, f and R using the normal score subset and standardised subset are summarised in 

Table 11 and Table 13, respectively. 

With respect to ~and f , the best decorrelation for ACDC using the normal scores was 

obtained using the first eleven semivariogram matrices, while for R the use of the first 

thirteen semivariogram matrices yielded the best result. These values are highlighted on 

Table 11 by having a border around them. The percentage difference between the values 

for~~ f and R using thirteen or eleven semivariogram matrices was 117.03%, 90.86%, 

0.11 %, respectively. Therefore using the first eleven semivariogram matrices yielded 

the best results for ACDC using the normal scores. A visual inspection of the cross 
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semivariogram factors and spatial decorrelation plots (see Appendix 5) confirmed the 

conclusion. The f value using the first eleven semivariogram matrices is lower than the 

corresponding MAF f value ( :::0.0907). The R. using the first thirteen semivariograms is 

higher than the corresponding MAF R. value ( ;::£).9976). 

Table 11- The ACDC weights and corresponding average spatial decorrelation values using the normal scores 
b Th b d . d' h b . I d I . l £ h l su set. e or ers m 1cate t e est spatia ecorre atwn va ues or t at co umn. 

Number ofExp. Weight vector Average Spatial Decorrelation Values 
semivariogram 
matrices used ( f K 

15 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1] 0.0656 0.136 0.9893 
14 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 0] 0.076 0.1548 0.9874 
13 [1 1 1 1 1 1 1 1 1 1 1 1 1 0 0] 0.0726 0.1567 I 0.9981 
12 [1 1 1 1 1 1 1 1 1 1 1 1 0 0 0] 0.1361 0.1559 0.9783 
11 [1 1 1 1 1 1 1 1 1 1 1 0 0 0 0] 0.019 I 0.0588 I 0.997 
10 [1 1 1 1 1 1 1 1 1 1 0 0 0 0 0] 0.0507 0.1099 0.9924 
9 [1 1 1 1 1 1 1 1 1 0 0 0 0 0 0] 0.0578 0.112 0.9915 
8 [1 1 1 1 1 1 1 1 0 0 0 0 0 0 0] 0.0592 0.1073 0.9913 
7 [1 1 1 1 1 1 1 0 0 0 0 0 0 0 0] 0.0434 0.1377 0.9937 
6 [1 1 1 1 1 1 0 0 0 0 0 0 0 0 0] 0.0461 0.1125 0.9933 
5 [1 1 1 1 1 0 0 0 0 0 0 0 0 0 0] 0.1188 0.16 0.9829 
4 [1 1 1 1 0 0 0 0 0 0 0 0 0 0 0] 0.0677 0.1476 0.9903 
3 [1 1 1 0 0 0 0 0 0 0 0 0 0 0 0] 0.0938 0.1727 0.9865 
2 [1 1 0 0 0 0 0 0 0 0 0 0 0 0 0] 0.3753 0.398 0.9458 
1 [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 0.2839 0.251 0.959 

For ACDC the transformation matrix is the inverse of the diagonalising matrix A. The 

ACDC transformation matrix using the normal scores subset and including the first 

eleven matrices is given as 

1.584 -0.4104 -0.0845 -1.025 -0.5786 
0.606 2.2174 1.3374 0.4762 0.3463 

A-I= 
NS 

-1.4133 -3.0201 -2.6701 0.8501 0.7002 

-2.5549 -1.8318 -1.5408 2.6954 -0.9458 

-1.7193 1.9411 2.9292 1.6409 1.2326 

The histograms of the corresponding factors are displayed in Figure 16. The 

distributions of the factors do not appear to be normal. This is supported by 

Kolmogorov-Smimov statistics with a Lilliefors significance level test of normality, in 

Table 12, showing that there is significant evidence that the factors are not normally 

distributed (sig.<0.05). The scatter plots and corresponding correlation coefficients 

between the factors, shown in Appendix 4.5, confirm that the factors are uncorrelated. 
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Figure 16- The histograms of the ACDC factors using the normal scores subset and first eleven experimental 
semivariogram matrices. 

Table 12- The Kolmogorov-Smirnov statistics test of normality results for all the ACDC factors using the 
normal scores subset and fi I · I · · · 1rst e even expenmenta sem1vanogram matnces. 

Kolmogorov-Smimov 

Statistic Df Sig_. 

F1 ACDC NS 0.025149 1885 0.008 -

F2 ACDC NS 0.044756 1885 0 
- -

F3 ACDC NS 0.044239 1885 0 
- -

F4 ACDC NS 0.054831 1885 0 -

F5 ACDC NS 0.022927 1885 0.022 

With respect to (and R, the best decorrelation for ACDC using the five standardised 

variables was obtained using the first seven semivariogram matrices, while for i the 

use of the first nine semivariograms yielded the best result. The percentage difference 

between the values for (, i and K using seven or nine semivariogram matrices was 

15.51%, 17.6% and 0.08%, respectively. A visual inspection of the experimental cross 

semivariogram factors and spatial decorrelation plots (see Appendix 5) between using 

seven or nine semivariogram matrices showed the decorrelation using seven 

semivariogram matrices to be better than that using nine semivariogram matrices. 

Therefore using the first seven semivariogram matrices yielded the best results for 

ACDC using the five standardised variables. None of three average spatial decorrelation 

values in Table 13 were better than the corresponding MAF average spatial 
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decorrelation values, therefore the MAF method is the better method when using just 

the standardised variables. 

Table 13- The ACDC weights and corresponding average assessment values using the standardised subset. The 
b d . d" t h b . 1 d 1 . 1 ~ h 1 or ers m 1ca e t e est spatia ecorre atwn va ues or t at co umn. 

Number ofExp. Weight vector Average Spatial Decorrelation Values 
sem1vanogram 
matrices used ( f R 

15 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1] 758480 1.8403 -100410 
14 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 0] 11948000 0.8145 -1582100 
13 [1 1 1 1 1 1 1 1 1 1 1 1 1 0 0] 105820000 0.7761 -14008000 
12 [1 1 1 1 1 1 1 1 1 1 1 1 0 0 0] 21018000 0.7986 -2781900 
11 [1 1 1 1 1 1 1 1 1 1 1 0 0 0 0] 0.4708 0.3566 0.9364 
10 [1 1 1 1 1 1 1 1 1 1 0 0 0 0 0] 0.2866 0.2218 0.9618 
9 [1 1 1 1 1 1 1 1 1 0 0 0 0 0 0] 0.0382 I 0.0793 I 0.9951 
8 [1 1 1 1 1 1 1 1 0 0 0 0 0 0 0] 0.0394 0.0997 0.9952 
7 [1 1 1 1 1 1 1 0 0 0 0 0 0 0 0] 0.0327 I o.o946 I 0.9959 
6 [1 1 1 1 1 1 0 0 0 0 0 0 0 0 0] 0.0379 0.1118 0.9954 
5 [1 1 1 1 1 0 0 0 0 0 0 0 0 0 0] 0.0686 0.1083 0.992 
4 [1 1 1 1 0 0 0 0 0 0 0 0 0 0 0] 0.1138 0.1738 0.9867 
3 [1 1 1 0 0 0 0 0 0 0 0 0 0 0 0] 0.193 0.2137 0.977 
2 [1 1 0 0 0 0 0 0 0 0 0 0 0 0 0] 0.2199 0.2534 0.974 
1 [1 0 0 0 0 b 0 0 0 0 0 0 0 0 0] 0.3312 0.2716 0.9596 

The ACDC transformation matrix 

2.5068 4.3366 3.068 -0.2417 0.5622 

-1.2471 -7.5238 -4.2105 -1.7231 -1.9398 
A-1= 

St 2.7725 1.6742 0.1346 -1.2494 -0.326 

-1.2477 -0.0761 -0.3075 2.0621 -0.6093 

-1.9128 -4.9115 -3.386 0.3537 0.0682 

is the transformation matrix calculated when the ACDC method including the first 

seven experimental semivariogram matrices is used on the standardised subset. The 

histograms of the ACDC factors are displayed in Figure 17 and show all the 

distributions of the factors to be skewed. The scatter plots and corresponding correlation 

coefficients between the factors, shown in Appendix 4.6, confirm that the factors are 

uncorrelated. 
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Figure 17- The histograms of the ACDC factors using the standardised subset. 

The effect of using an initial guess for the diagonalising matrix Ao with the ACDC 

algorithm was also explored in conjunction with changing the weights as done 

previously. The initial guess decided on was the eigenvector matrix obtained from the 

PCA using the normal scores and standardised subset. The PCA eigenvalue matrix was 

chosen because the transpose of the PCA already transforms the variables into 

approximately uncorrelated factors , therefore the ACDC method would improve on the 

PCA eigenvalue matrix. The PCA eigenvector matrix when using the normal score 

subset was calculated to be 

0.4995 -0.2914 -0.3244 0.7085 0.2416 

-0.5131 -0.3250 -0.1737 -0.1130 0.7670 

AoNs=QNs= 0.3927 0.6743 0.2085 -0.1020 0.5807 

0.4789 -0.2269 -0.5185 -0.6711 0.0079 

0.3220 -0.5507 0.7432 -0.1566 0.1273 

The PCA eigenvector matrix using the standardised subset is 

0.505 0.1385 -0.3394 -0.6989 -0.3494 

-0.5197 0.1936 -0.2077 0.1586 -0.79 

Aost=Qst= 0.4069 -0.5783 0.467 0.1988 -0.4923 . 

0.4688 0.071 5 -0.5987 0.6455 -0.0038 

0.2992 0.777 0.5149 0.1736 -0.1069 

The results of the average spatial decorrelation measures using the ACDC method on 

either the normal scores subset or standardised subset while changing the weights, as 
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well as including the initial diagonalising matrix A0NS or A08t for the corresponding 

subset are shown in Table 14 and 16, respectively. 

All three average spatial decorrelation results (Table 14) using the first ten, nine, six and 

five experimental semivariogram matrices are better than the corresponding average 

spatial decorelation results obtained for the MAF, shown in Table 10. In addition, the 

values (and K. using thirteen, twelve, eleven and eight semivariogram matrices are 

better than the corresponding MAF ( (::0.0164) and K. values (;:£).9976), but not for the 

values off, which was lowest using the first seven experimental semivariogram 

matrices. Overall, because there are so many options of good spatial decorrelations, the 

experimental cross semivariograms of the factors and spatial decorrelation plots were 

also examined to determine which number of included experimental semivariogram 

matrices gives the overall best ACDC spatial decorrelation using the normal scores and 

A0NS. The experimental cross semivariograms for every factor calculated with the 

corresponding spatial decorrelation plots are shown in Appendix 5. The experimental 

cross semivariogram factors and spatial decorrelation plots using the first ten, nine, six 

and five matrices were compared and the best decorrelated cross semivariogram factors 

resulted using the first nine semivariogram matrices. The reason for choosing the first 

nine experimental semivariogram matrices was because the experimental cross 

semivariograms of the factors appear to be more decorrelated for the first eight lags. For 

most of the ACDC experimental cross semivariogram factors using the matrixA0 NS' 

there is a linlc between the number of experimental semivariogram matrices used for 

decorrelation and the number of lags showing excellent spatial decorrelation. 

51 



Table 14- The ACDC weights and corresponding average assessment values using the normal scores subset 
and the matrix A0 The borders indicate the best spatial decorrelation values for that column M~' 

Number ofExp. Weight vector Average Spatial Decorrelation Values 
semtvanogram 
matrices used ( f R 

15 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1] 207230 1.9721 -31720 
14 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 0] 0.0173 0.1633 0.9972 
13 [1 1 1 1 1 1 1 1 1 1 1 1 1 0 0] 0.0139 0.1455 0.9978 
12 [1 1 1 1 1 1 1 1 1 1 1 1 0 0 0] 0.013 0.1021 0.998 
11 [1 1 1 1 1 1 1 1 1 1 1 0 0 0 0] 0.0117 0.0909 0.9982 
10 [1 1 1 1 1 1 1 1 1 1 0 0 0 0 0] 0.0132 0.0894 0.9981 
9 [1 1 1 1 1 1 1 1 1 0 0 0 0 0 0] 0.0147 0.0883 0.9979 
8 [1 1 1 1 1 1 1 1 0 0 0 0 0 0 0] 0.0087 I 0.0934 I 0.9987 
7 [1 1 1 1 1 1 1 0 0 0 0 0 0 0 0] 0.0172 0.0876 0.9975 
6 [1 1 1 1 1 1 0 0 0 0 0 0 0 0 0] 0.0151 0.0813 0.9978 
5 [1 1 1 1 1 0 0 0 0 0 0 0 0 0 0] 0.0144 I 0.0782 I 0.9979 
4 [1 1 1 1 0 0 0 0 0 0 0 0 0 0 0] 0.0226 0.0933 0.9968 
3 [1 1 1 0 0 0 0 0 0 0 0 0 0 0 0] 0.0338 0.1102 0.9951 
2 [1 1 0 0 0 0 0 0 0 0 0 0 0 0 0] 0.0775 0.1974 0.9888 
1 [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 0.0282 0.1008 0.9959 

The ACDC transformation matrix using the normal scores, A0 N8matrix and including 

the first nine experimental semivariogram matrices is 

2.364 1.3825 1.5983 -1.3335 -0.4226 

1.9548 3.012 1.2632 -0.3682 0.4095 
-1 

A NS = -1.3222 0.418 0.1076 2.1648 -0.4263 
AoNs -0.2409 0.6133 0.5944 0.3454 0.3787 

-0.003 -1.4094 -1.176 -0.0893 -0.1312 

The histograms of the factors using the normal scores subset and matrix AoNs are shown 

in Figure 18. The distributions of the factors do not appear to be normal. This is 

supported by Kolmogorov-Smimov statistics with a Lilliefors significance level test of 

normality, in Table 15, showing that there is significant evidence that the factors are not 

normally distributed (sig.<0.05). The scatter plots and corresponding correlation 

coefficients between the factors, shown in Appendix 4. 7, confirm that the factors are 

uncorrelated. 
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Figure 18- The histograms of the ACDC factors using the normal scores subset, the matrix AoNs and first nine 
experimental semivariogram matrices. 

Table 15- The Kolmogorov-Smirnov statistics test of normality results for all the ACDC factors using the 
normal scores subset the matrix A and first nine experimental semivariogram matrices. 

' ONs 

Kolmogorov-Smimov 

Statistic Df Sig. 

F1_ACDC_NS+A0 0.024361 1885 0.011 
F2_ACDC_NS+A0 0.05146 1885 0 
F3_ACDC_NS+A0 0.063552 1885 0 
F4_ACDC_NS+A0 0.039039 1885 0 

F5 ACDC NS+A0 0.052242 1885 0 

The best spatial decorrelation measures for ACDC using the standardised variables and 

Aost are obtained using the first four experimental semivariogram matrices (Table 16). 

The average spatial decorrelation resulting from using the first four experimental 

semivariogram matrices is also overall the best spatial decorrelation result achieved. 

The values of (and K. using eight, six and one experimental semivariogram matrix are 

better than the value of ( ( :::0.0177) for MAF and the value of K. for MAF ( ~.9978). 

The value off using five semivariogram matrices was better than the corresponding 

PCA value off ( :::0.0760). 

When the matrix A0 5t and the first experimental semivariogram matrix in the ACDC 

algorithn1 were used the average spatial decorrelation results were very similar to the 

results calculated from the MAF method used on the standardised variables. 
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Table 16- The ACDC weights and corresponding average assessment values using the standardised subset, the 
matrix A081 and first four experimental semivariogram matrices. The borders indicate the best spatial 

decorrelation values for that column. 

Number ofExp. Weight vector Average Spatial Decorrelation Values 
semivariogram 
matrices used ( f R 

15 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1] 374650 1.8683 -49593 
14 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 0] 741010 1.6695 -98073 
13 [1 1 1 1 1 1 1 1 1 1 1 1 1 0 0] 1250500 1.4464 -165470 
12 [1 1 1 1 1 1 1 1 1 1 1 1 0 0 0] 1321300 1.0632 -174780 
11 [1 1 1 1 1 1 1 1 1 1 1 0 0 0 0] 152240 1.1424 -20134 
10 [1 1 1 1 1 1 1 1 1 1 0 0 0 0 0] 0.0432 0.2018 0.9943 
9 [1 1 1 1 1 1 1 1 1 0 0 0 0 0 0] 0.0256 0.0916 0.9964 
8 [1 1 1 1 1 1 1 1 0 0 0 0 0 0 0] 0.0103 0.0823 0.9986 
7 [1 1 1 1 1 1 1 0 0 0 0 0 0 0 0] 0.0186 0.0922 0.9975 
6 [1 1 1 1 1 1 0 0 0 0 0 0 0 0 0] 0.0153 0.0956 0.9981 
5 [1 1 1 1 1 0 0 0 0 0 0 0 0 0 0] 0.0203 0.0729 0.9976 
4 [1 1 1 1 0 0 0 0 0 0 0 0 0 0 0] 0.0076 I 0.0612 I 0.9991 
3 [1 1 1 0 0 0 0 0 0 0 0 0 0 0 0] 0.0201 0.082 0.9976 
2 [1 1 0 0 0 0 0 0 0 0 0 0 0 0 0] 0.0219 0.1077 0.9974 
1 [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 0.0177 0.0792 0.9978 

The factors of the ACDC method using the standardised subset, Aost matrix and 

including the first four experimental semivariogram matrices were calculated using the 

transformation matrix 

3.2673 4.9355 3.8439 -0.1762 0.9583 

-0.5603 -1.8103 -1.8559 0.144 0.3372 
-1 

A St = 2.3918 3.5799 1.6771 -0.2971 0.0895 
Aost -0.8222 -0.481 -0.3298 0.8346 -0.1925 

0.0178 -1.654 -1.1417 -0.5042 -0.4807 

The histograms of the ACDC factors are shown in Figure 19. The distributions of 

factors show all the factors to be skewed with factors 1, 3 and 4 being severely skewed. 

The scatter plots and corresponding correlation coefficients between the factors, shown 

in Appendix 4.8, confirm that the factors are uncorrelated. 
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Figure 19- The histograms of the ACDC factors using the standardised subset and the matrix Aost· 

4.2 Comparison of Results 

Graphs of all the values (, f and K. calculated from the factor semivariogram matrices 

that were produced by the three methods using the normal scores subset and 

standardised subset are shown in Figure 20. Here the values (, f and K. are treated as 

functions of the number of zeros in the weight vector. The three graphs on the left 

correspond to the normal scores, those to the right corresponds to standardised 

variables. The graphs in Figure 20 further illustrate the best spatial decorrelation 

discussed in the previous section for each different ACDC method performed. 

0 _ 1[Averag~e ~Results using Normal Scores 
~ACDC 0.08 ~ ACDC+AONS 

g( 0.06 --MAF 

"' - -PCA 
~ :~~~ c__ _ __ ___J 
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Figure 20- The plots of all the average spatial decorrelation results. The x axes title 'Number of Zeros' 
represent the number of zeros present in the weight vector, as shown in Tables 11, 13, 14 and 16. 
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In general, the decorrelation results for ACDC are better when the data are transformed 

to normal scores prior to the the application of the algorithm. For both approaches, 

ACDC with the use of the diagonalising matrix of the correlation matrix as the initial 

guess outperforms ACDC with the identity matrix as the intial diagonaliser. For the 

normal scores variables the ACDC method performs at least as well as MAF, as long as 

more than the first four experimental semivariogram matrices are used. For the 

standardised variables, the ACDC method shows worse decorrelation than MAF when 

the ACDC algorithm is initialised with the identity matrix. The performance is 

comparable to MAF, when the initialising matrix is the diagonalising matrix of the 

correlation matrix and no more than eleven experimental semivariogram matrices are 

used for calculating the transformation matrix. At eleven lags, most of the 

semivariograms and cross-variograms ofmost ofthe variables have reached the sill. The 

experimental cross semivariograms ?f the PCA and MAF factors as well as the factors 

of the ACDC methods which produced the best decorrelation measures are shown in 

Figure 21. 

Perfect spatial decorrelation occurs when the experimental cross semivariogram factors 

are equal to zero for all lags. For PCA the spatial decorrelation is good for the majority 

of the factors except for two or three factor pairs which still exhibit correlation. For 

MAF, the spatial decorrelation is perfect at the second lag with the other lags showing 

slight correlation between the factor pairs. The ACDC factors which included an initial 

diagonalising matrix showed the best spatial decorrelation for both the normal scores 

and standardised scores. The best overall spatial decorrelation was obtained by the 

ACDC factors including the Aost using the standardised subset, while the worst spatial 

decorrelation was shown by the experimental cross semivariogram factors for the 

ACDC factors pairs using the standardised subset. 

The plots of the corresponding measures of spatial decorrelation (((h), r(h) and K(h)) 

are displayed in Figure 22. The plots of K(h) appear to be very similar for all the plots. 

The MAF spatial decorrelation plot for ((h) and r(h) is perfect at the second lag with 

a slight increase occurring after the eleventh lag. For all the MAF and ACDC 

((h) and r(h) plots, the values of ((h) and r(h) increase after the eleventh lag and 

eighth lag for the ACDC using the normal scores and the matrix A0 NS' with varying 

severity of increase. The best decorrelation plot is the ACDC transformation on the 

standardised subset which included the matrix Aost· 
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Figure 21- The experimental cross semivariograms of the factors obtained for each of the methods 
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Figure 22- The plots of the spatial decorrelation ({(h), r(h) and K(h)) for every lag for all the factors. 
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5 .. Discussion and Conclusion 
In this chapter the various transformation methods and effectiveness for spatial 

decorrelation will be reviewed, and a conclusion will be made on which of the methods 

seemed to be the most effective for the data set. 

Linear transformation methods can be used to transform spatially correlated variables 

into spatially decorrelated factors which can then be modelled and simulated using 

univariate geostatistical techniques, which have less complexity than multivariate 

techniques. Linear transformation methods, such as PCA and MAF, are established 

techniques used for spatial decorrelation in geostatistics; however these methods have 

limitations, such as not performing well with poorly correlated data, which has led to 

the exploration of other linear transformation methods. In this thesis we looked at 

whether a more general and recent approach for spatial decorrelation using the ACDC 

method is able to decorrelate a multivariate data set of more than four variables better 

than the currently used MAF method. The ACDC method is appealing as it has no 

distributional requirements and there is no joint modelling required. In addition, we also 

explored whether it is beneficial to transform the variables into normal scores rather 

than standardised scores before decorrelating the variables. 

PCA is very convenient and easy to implement, yet it is very limited as spatial 

decorrelation is only guaranteed when the spatial dependence of the variables under 

consideration can be modelled by an intrinsic model of co-regionalisation. Although, 

the method still provided reasonable spatial decorrelation, it may be more suited to 

performing multivariate data analysis prior to decorrelation via other methods (e.g. 

MAF or ACDC).For example, PCA was used to select the variable subset to be 

decorrelated, and to provide an initial guess for a diagonalising matrix in the ACDC 

method. The spatial decorrelation was acceptable, considering that the data are not 

intrinsically correlated, with only a few factor pairs showing correlation. The factors 

obtained from applying the PCA method on the standardised variable appeared to have 

better spatial decorrelation than those obtained from the PCA method using the 

transformed normal scores. 

The MAF method has been shown to overcome the limitations of the PCA provided that 

the covariance function of the variables is fully characterised by a 2SLMC. In this thesis 

the MAF method involved an experimental variance/covariance matrix and the 

correlation matrix in which the factors were derived via two successive PCAs. The 
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spatial decorrelation obtained using MAF achieved better decorrelation results than 

PCA and the ACDC using the standardised variables. The MAF using the standardised 

variables achieved slightly better decorrelation results than the MAF using the normal 

scores. 

The MAF method does not cope well with poor correlation and non linear correlations 

between variables. Poor correlation was exhibited between LOI and the other four 

variables; this may have affected the efficiency of the MAF method. However, the 

spatial decorrelation was good overall, so the impact of LOI on the results cannot have 

been that strong. 

The ACDC method is a more general approach to the spatial decorrelation of a set of 

variables, and is not constrained to determining an orthogonal transformation matrix. 

The ACDC method was used to simultaneously approximately diagonalise a set of up to 

fifteen experimental semivariogram matrices calculated for lag spacings in multiples of 

15m. The ACDC method showed the best and worst spatial decorrelation in comparison 

to PCA and MAF. The spatial decorrelation for the ACDC factors using the 

standardised variables showed the worst spatial decorrelation, regardless of how many 

experimental semivariogram matrices were included in the joint-daigonalisation. On the 

other hand, the ACDC factors using normal scores and including the first eleven 

experimental semivariogram matrices achieved better decorrelation results than the 

PCA and MAF factors. The best spatial decorrelation results using the standardised 

variables and normal scores were obtained when the initial diagonalising matrix A05t 

and AoNs were included in the ACDC method. The overall best spatial decorrelation 

was achieved between the ACDC factors that were calculated using the standardised 

variables using the ACDC method which used the diagonalising matrix Aost of the 

correlation matrix and the first four experimental semivariogram matrices. 

The ACDC decorrelation results using the matrix A05t and first experimental 

semivariogram matrix on the standardised data set was similar to the decorrelation 

results obtained when the MAF method was used on the standardised variables. This is 

not a surprise as the matrices used in the ACDC method are similar to the matrices used 

in the MAF method, suggesting consistency between the ACDC method and the MAF 

method. 
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Overall, the ACDC method has been the best method to use on either transformed 

subsets. However, the choice of the number of experimental semivariogram matrices to 

include may need to be explored further, as there was no distinct pattern for the exact 

number of experimental semivariogram matrices that need to be included. The ACDC 

method is still relatively new and therefore it is unknown how the ACDC method may 

decorrelate large multivariate data sets consisting of a variety of variables with different 

statistically and spatial features. 

With regard to transforming the variables before applying the transformation methods, 

the results for the standardised data were superior to those for the normalised data, with 

the exception of the ACDC method using only the standardised data. The 

transformation methods applied to the standardised variables achieved better spatial 

decorrelation than the transformation methods applied to the normal scores. This was 

also observed by Bandarian (2008) who applied MAF and ACDC to a subset of the Jura 

data set. Another reason not to transform the variables to normal scores is that the 

variables that were transformed to normal scores before being decorrelated, for the 

exception of MAF factor 2, did not yield normally distributed factors following the 

decorrelation. If a Gaussian algorithm is used for simulating the factors, the factors 

would still need to be further transformed to normal scores. Therefore the factors would 

have to be back-transformed three times. 
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Appendix 1 - Standardised Variables 
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Figure Al- The histograms for the standardised variables in alphabetical order. 
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Appendix 2- Normal Scores 
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Figure A2- The histograms of the normal score variables in alphabetical order. 
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2.1 Anamorphosis Parameters Files 

========== Parameter File Print========== 
Point Anamorphosis 

================== 
Number of variables = 1 
Number of Polynomials= 60 
Raw Variable %AI203 : 

Distribution Type =Standard 
Dispersion Law used = None 
Raw Variable Format = Decimal, Length = 10, Digits= 2 (Unit: "%") 
Mean (model) = 1.56% 
Mean (Exp.) = 1.56% 
Point Variance (model) = 1.445088 
Point Variance (Exp.) = 1.445984 
Gaussian Variable Name = Ana_AI203% 
Gaussian Mean (Exp.) = 0.000 
Gaussian Variance (Exp.)= 0.999 
Interval of Definition: 
Zmin = 0.00% 
Zmax = 14.00% 
Ymin = -4.645223 
Ymax = 4.354389 
Lower Left Control PointY = -4.000000 
Upper Right Control PointY= 4.000000 
Lower Left Control Point Z = 0.00% 
Upper Right Control Point Z = 14.00% 
Normalized coefficients for the Hermite polynomials: 

0 1 2 

0+ 1.562 -1.021 0.576 
5+ 0.046 -0.054 0.017 
10+ -0.001 0.013 -0.002 
15+ 0.005 -0.007 0 
20+ -0.005 0.007 0 
25+ 0.004 -0.008 0 
30+ -0.006 0.009 0.002 
35+ 0.01 -0.008 -0.007 
40+ -0.012 0.002 0.011 
45+ 0.01 0.005 -0.012 
50+ -0.003 -0.01 0.006 

55+ -0.005 0.009 0.002 

========== End of Parameter File Print ========== 
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3 4 

-0.248 0.045 
0.016 -0.019 

-0.008 0.005 
0.007 -0.004 

-0.007 0.004 
0.008 -0.005 

-0.011 0.003 
0.011 0.003 

-0.007 -0.009 
-0.001 0.012 
0.008 -0.008 

-0.008 0.001 



========== Parameter File Print========== 
Point Anamorphosis 

================== 
Number of variables = 1 
Number of Polynomials= 40 

Raw Variable %Ca0 : 

Distribution Type =Standard 
Dispersion Law used = None 
Raw Variable Format = Decimal, Length = 10, Digits = 2 (Unit: "%") 
Mean (model) = 0.06% 
Mean (Exp.) = 0.06% 
Point Variance (model) = 0.000673 
Point Variance (Exp.) = 0.000685 

Gaussian Variable Name = Ana_CaO% 
Gaussian Mean (Exp.) = 0.000 
Gaussian Variance (Exp.)= 0.999 

Interval of Definition: 
Zmin = 0.00% 
Zmax = 0.70% 
Ymin = -4.257693 
Ymax = 4.596678 

Lower Left Control PointY = -4.000000 
Upper Right Control PointY= 4.000000 
Lower Left Control Point Z = 0.00% 
Upper Right Control Point Z = 0.70% 
Normalized coefficients for the Hermite polynomials: 

0 1 2 

0+ 0.059 -0.02 0.008 
5+ -0.006 0 0.004 
10+ 0.002 -0.002 0 
15+ 0 0.001 -0.001 
20+ 0 -0.001 0 
25+ 0 0 0 
30+ 0 0 0 

35+ 0 0 0 

==========End of Parameter File Print========== 
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3 4 

-0.008 0.009 
-0.003 0 
0.001 -0.001 

-0.001 0.001 
0 0 
0 0 
0 0 

0 0 



==========Parameter File Print========== 
Point Anamorphosis 

================== 
Number of variables = 1 
Number of Polynomials=:= 60 

Raw Variable %Fe : 

Distribution Type =Standard 
Dispersion Law used = None 
Raw Variable Format = Decimat Length = 10, Digits = 2 (Unit: "%") 
Mean (model) = 56.89% 
Mean (Exp.) = 56.89% 
Point Variance (model) = 3.836169 
Point Variance (Exp.) = 3.840118 

Gaussian Variable Name = Ana_Fe% 
Gaussian Mean (Exp.) = 0.000 
Gaussian Variance (Exp.)= 0.999 
Interval of Definition: 
Zmin = 37.00% 
Zmax = 62.00% 
Ymin = -3.776427 
Ymax = 4.402786 

Lower Left Control PointY = -4.000000 
Upper Right Control PointY= 4.000000 
Lower Left Control Point Z = 37.00% 
Upper Right Control Point Z = 62.00% 
Normalized coefficients for the Hermite polynomials: 

0 1 2 

0+ 56.887 -1.812 -0.628 
5+ 0.049 0.09 0.024 
10+ 0.004 0.021 -0.002 
15+ 0.017 0.009 -0.008 
20+ 0.009 0.009 -0.002 
25+ 0.009 0.011 -0.004 
30+ 0.007 0.007 0 
35+ 0.007 0.012 -0.002 
40+ 0.012 0.008 -0.007 
45+ 0.013 0.006 -0.012 
50+ 0.015 -0.003 -0.016 

55+ 0.009 -0.011 -0.013 

========== End of Parameter File Print ========== 
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3 4 

-0.349 -0.137 
-0.022 -0.024 
-0.021 -0.002 
-0.012 -0.002 
-0.012 -0.006 
-0.012 -0.002 
-0.008 -0.007 
-0.014 -0.003 
-0.012 0 
-0.012 0.008 
-0.003 0.015 

0.007 0.015 



========== Parameter File Print========== 
Point Anamorphosis 

================== 
Number of variables = 1 
Number of Polynomials= 50 

Raw Variable %LOI : 

Distribution Type =Standard 
Dispersion Law used = None 
Raw Variable Format = Decimal, Length = 10, Digits = 2 (Unit: "%") 
Mean (model) = 9.75% 
Mean (Exp.) = 9.75% 
Point Variance (model) = 0.168793 
Point Variance (Exp.) = 0.168805 

Gaussian Variable Name = Ana_LOI% 
Gaussian Mean (Exp.) = 0.000 
Gaussian Variance (Exp.)= 0.999 

Interval of Definition: 
Zmin = 7.00% 
Zmax = 12.00% 
Ymin = -4.306025 
Ymax = 4.499673 

Lower Left Control PointY = -4.000000 
Upper Right Control PointY= 4.000000 
Lower Left Control Point Z = 7.00% 
Upper Right Control Point Z = 12.00% 
Normalized coefficients for the Hermite polynomials: 

0 1 2 

0+ 9.75 -0.406 0.027 
5+ -0.004 -0.011 0.013 
10+ -0.003 -0.003 -0.005 

15+ -0.002 -0.006 0 
20+ 0.002 -0.002 -0.004 

25+ 0 -0.004 -0.001 

30+ 0 -0.001 -0.002 

35+ 0 -0.003 -0.001 

40+ -0.002 -0.002 0.001 

45+ -0.001 -0.001 0 

========== End of Parameter File Print========== 
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3 4 

-0.051 -0.01 
0.012 -0.004 

0.004 0.008 
0.002 0.002 
0.001 0.005 
0.002 0.002 

0 0.003 

0.002 0.002 
0.001 0 

0.001 0.001 



========== Parameter File Print========== 
Point Anamorphosis 

================== 
Number of variables = 1 
Number of Polynomials= 40 

Raw Variable %Mg0 : 

Distribution Type =Standard 
Dispersion Law used = None 
Raw Variable Format = Decimal, Length = 10, Digits = 2 (Unit: "ppm") 
Mean (model) = 0.08ppm 
Mean (Exp.) = 0.08ppm 
Point Variance (model) = 0.000722 
Point Variance (Exp.) = 0.000730 

Gaussian Variable Name = Ana_MgO% 
Gaussian Mean (Exp.) = 0.000 
Gaussian Variance (Exp.)= 0.999 

Interval of Definition: 
Zmin = O.OOppm 
Zmax = 0.40ppm 
Ymin = -4.306025 
Ymax = 4.402786 

Lower Left Control PointY = -4.000000 
Upper Right Control PointY= 4.000000 
Lower Left Control Point Z = O.OOppm 
Upper Right Control Point Z = 0.40ppm 
Normalized coefficients for the Hermite polynomials: 

0 1 2 

0+ 0.077 -0.024 0.009 
5+ 0 -0.002 0.001 
10+ 0 0 0 
15+ 0 0 0 
20+ 0 0 0 

25+ 0 0 0 
30+ 0 0 0 

35+ 0 0 0 

========== End of Parameter File Print ========== 
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3 4 

-0.005 0.004 
0 -0.001 
0 0 
0 0 
0 0 
0 0 
0 0 

0 0 



========== Parameter File Print========== 
Point Anamorphosis 

================== 
Number of variables = 1 
Number of Polynomials = 50 

Raw Variable %Mn: 

Distribution Type =Standard 
Dispersion Law used = None 
Raw Variable Format = Decimal, Length = 10, Digits= 2 (Unit: "%") 
Mean (model) = 0.02% 
Mean (Exp.) = 0.02% 
Point Variance (model) = 0.000032 
Point Variance (Exp.) = 0.000034 

Gaussian Variable Name = Ana_Mn% 
Gaussian Mean (Exp.) = 0.000 
Gaussian Variance (Exp.)= 0.999 

Interval of Definition: 
Zmin = 0.00% 
Zmax = 0.07% 
Ymin = -2.597642 
Ymax = 4.209395 

Lower Left Control Point Y = -4.000000 
Upper Right Control PointY= 4.000000 
Lower Left Control Point Z = 0.00% 
Upper Right Control Point Z = 0.07% 
Normalized coefficients for the Hermite polynomials: 

0 1 2 

0+ 0.02 -0.005 0 

5+ 0.001 0.001 -0.001 

10+ 0 -0.001 0 
15+ 0 0 0 
20+ 0 0 0 
25+ 0 0 0 
30+ 0 0 0 

35+ 0 0 0 
40+ 0 0 0 

45+ 0 0 0 

========== End of Parameter File Print ========== 
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-0.001 
-0.001 
0.001 

0 
0 
0 
0 

0 
0 

0 

4 

0 
0.001 

0 
0 
0 
0 
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========== Parameter File Print========== 
Point Anamorphosis 

================== 
Number of variables = 1 
Number of Polynomials= 50 

Raw Variable %P : 

Distribution Type =Standard 
Dispersion law used = None 
Raw Variable Format = Decimal, Length = 10, Digits = 2 (Unit: "%") 
Mean (model) = 0.03% 
Mean (Exp.) = 0.03% 
Point Variance (model) = 0.000042 
Point Variance (Exp.) = 0.000042 

Gaussian Variable Name = Ana_P% 
Gaussian Mean (Exp.) = 0.000 
Gaussian Variance (Exp.)= 0.999 

Interval of Definition: 
Zmin = 0.00% 
Zmax = 0.08% 
Ymin = -4.354389 
Ymax = 4.354389 

lower left Control PointY = -4.000000 
Upper Right Control PointY= 4.000000 
lower left Control Point Z = 0.00% 
Upper Right Control Point Z = 0.08% 
Normalized coefficients for the Hermite polynomials: 

0 1 2 

0+ 0.034 -0.006 0.002 

5+ 0 0 0 
10+ 0 0 0 
15+ 0 0 0 
20+ 0 0 0 
25+ 0 0 0 

30+ 0 0 0 
35+ 0 0 0 
40+ 0 0 0 

45+ 0 0 0 

========== End of Parameter File Print========== 
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3 

-0.001 
0 
0 
0 
0 
0 

0 
0 
0 

0 

4 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 



========== Parameter File Print========== 
Point Anamorphosis 

================== 
Number of variables = 1 
Number of Polynomials= 40 

Raw Variable %5 : 

Distribution Type =Standard 
Dispersion Law used = None 
Raw Variable Format = Decimal, Length = 10, Digits = 2 (Unit: "%") 
Mean (model) = 0.01% 
Mean (Exp.) = 0.01% 
Point Variance (model) = 0.000007 
Point Variance (Exp.) = 0.000007 

Gaussian Variable Name = Ana_S% 
Gaussian Mean (Exp.) = 0.000 
Gaussian Variance (Exp.)= 0.999 

Interval of Definition: 
Zmin = 0.00% 
Zmax = 0.02% 
Ymin = -4.742394 
Ymax = 4.354389 

Lower Left Control Point Y = -4.000000 
Upper Right Control PointY= 4.000000 
Lower Left Control Point Z = 0.00% 
Upper Right Control Point Z = 0.02% 
Normalized coefficients for the Hermite polynomials: 

0 1 2 

0+ 0.007 -0.003 0.001 
5+ 0 0 0 
10+ 0 0 0 
15+ 0 0 0 
20+ 0 0 0 
25+ 0 0 0 
30+ 0 0 0 

35+ 0 0 0 

========== End of Parameter File Print========== 
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========== Parameter File Print========== 
Point Anamorphosis 

================== 
Number of variables = 1 
Number of Polynomials= 40 

Raw Variable %Si02 : 

Distribution Type =Standard 
Dispersion Law used = None 
Raw Variable Format = Decimal, Length = 10, Digits= 2 (Unit: "%") 
Mean (model) = 7.13% 
Mean (Exp.) = 7.13% 
Point Variance (model) = 3.066877 
Point Variance (Exp.) = 3.068877 

Gaussian Variable Name = Ana_Si02% 
Gaussian Mean (Exp.) = 0.000 
Gaussian Variance (Exp.)= 0.999 

Interval of Definition: 
Zmin = 3.00% 
Zmax = 22.00% 
Ymin = -4.451214 
Ymax = 4.645223 

Lower Left Control Point Y = -4.000000 
Upper Right Control PointY= 4.000000 
Lower Left Control Point Z = 3.00% 
Upper Right Control Point Z = 22.00% 
Normalized coefficients for the Hermite polynomials: 

0 1 2 

0+ 7.131 -1.707 0.346 
5+ -0.013 -0.035 0.029 
10+ 0.005 -0.001 0.007 
15+ 0.01 0.005 -0.01 
20+ -0.008 0 0.007 
25+ 0.007 -0.001 -0.006 
30+ -0.006 0 0.005 

35+ 0.004 0.001 -0.003 

========== End of Parameter File Print========== 
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3 4 

-0.137 0.106 
-0.009 -0.007 
-0.004 -0.01 
0.003 0.006 

-0.005 -0.004 
0.004 0.003 

-0.002 -0.003 

0.001 0.002 



========== Parameter File Print ========== 
Point Anamorphosis 

================== 
Number of variables = 1 
Number of Polynomials= 50 

Raw Variable %Ti02 : 

Distribution Type = Standard 
Dispersion Law used = None 
Raw Variable Format = Decimal, Length = 10, Digits= 2 (Unit: "%") 
Mean (model) = 0.11% 
Mean (Exp.) = 0.11% 
Point Variance (model) = 0.010400 
Point Variance (Exp.) = 0.010412 

Gaussian Variable Name = Ana_Ti02% 
Gaussian Mean (Exp.) = 0.000 
Gaussian Variance (Exp.)= 0.999 

Interval of Definition: 
Zmin = 0.00% 
Zmax = 0.88% 
Ymin = -4.306025 
Ymax = 4.402786 

Lower Left Control Point Y = -4.000000 
Upper Right Control PointY= 4.000000 
Lower Left Control Point Z = 0.00% 
Upper Right Control Point Z = 0.88% 
Normalized coefficients for the Hermite polynomials: 

0 1 2 

0+ 0.106 -0.085 0.051 
5+ 0.007 -0.005 0 
10+ 0 0.001 -0.001 
15+ 0 0 0 
20+ 0 0 0 
25+ 0 0 0 
30+ 0 0 0 
35+ 0 0 0 
40+ 0 0 0 

45+ 0 0 0 

========== End of Parameter File Print========== 
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3 4 

-0.02 0 
0.003 -0.002 

0 0.001 
0 0 
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Appendix 3 - Average Distances, Experimental 

Semivariogram Matrices and Eigenvalues 
Table Al- The average distance, experimental semivariogram matrices using the normal scores and 
corresponding eigenvalues. 

Average Distance Matrix Eigenvalues 

Al203 Fe Si02 Ti02 LOI 

AI20 3 0.8517 -0.6108 0.3467 0.7624 0.5083 0.0188 

6.959 Fe -0.6108 0.7558 -0.6458 -0.5632 -0.3632 0.04 

Si02 0.3467 -0.6458 0.7283 0.3322 0.0739 0.3217 

Ti02 0.7624 -0.5632 0.3322 0.7568 0.4439 0.7916 

LOI 0.5083 -0.3632 0.0739 0.4439 0.782 2.7024 

AhOl Fe Si02 Ti02 LOI 

AI20 3 0.9073 -0.6464 0.3615 0.8164 0.5184 0.0222 

16.721 Fe -0.6464 0.8083 -0.6841 -0.5992 -0.369 0.0431 

Si02 0.3615 -0.6841 0.7652 0.3476 0.0718 0.3577 

Ti02 0.8164 -0.5992 0.3476 0.8147 0.4544 0.8385 

LOI 0.5184 -0.369 0.0718 0.4544 0.8145 2.8486 

Al203 Fe Si02 Ti02 LOI 

AI20 3 0.9416 -0.6642 0.3649 0.8559 0.5165 0.0252 

30.822 Fe -0.6642 0.8345 -0.7007 -0.6238 -0.3656 0.0489 

Si02 0.3649 -0.7007 0.784 0.3563 0.0626 0.3959 

Ti02 0.8559 -0.6238 0.3563 0.8722 0.449 0.8709 

LOI 0.5165 -0.3656 0.0626 0.449 0.8382 2.9296 

Al203 Fe Si02 Ti02 LOI 

Al203 0.9719 -0.6753 0.3637 0.8859 0.5243 0.0264 

45.331 Fe -0.6753 0.8512 -0.7134 -0.6367 -0.3607 0.0548 

Si02 0.3637 -0.7134 0.7998 0.3578 0.0499 0.4208 

Ti02 0.8859 -0.6367 0.3578 0.9154 0.4486 0.9099 

LOI 0.5243 -0.3607 0.0499 0.4486 0.8616 2.988 

Al203 Fe Si02 Ti02 LOI 

Al203 0.9941 -0.6928 0.3775 0.9137 0.5333 0.0271 

60.155 Fe -0.6928 0.8779 -0.7367 -0.6559 -0.3732 0.0577 

Si02 0.3775 -0.7367 0.8221 0.3748 0.0551 0.4569 

Ti02 0.9137 -0.6559 0.3748 0.9578 0.4462 0.9317 

LOI 0.5333 -0.3732 0.0551 0.4462 0.8991 3.0779 
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Table Al continued- The average distance, experimental semivariogram matrices using the normal scores and 
corresponding eigenvalues. 

AhO"l Fe Si02 Ti02 LOI 

Al20 3 1.0116 -0.7026 0.3821 0.9323 0.5407 0.0271 
75.159 Fe -0.7026 0.8968 -0.7546 -0.6651 -0.3804 0.0595 

Si02 0.3821 -0.7546 0.8404 0.3804 0.0584 0.487 

Ti02 0.9323 -0.6651 0.3804 0.9834 0.4441 0.955 

LOI 0.5407 -0.3804 0.0584 0.4441 0.9297 3.1333 

AhOJ Fe Si02 Ti02 LOI 

Al20 3 1.0163 -0.6996 0.3805 0.9387 0.543 0.0272 

90.052 Fe -0.6996 0.8976 -0.7602 -0.6621 -0.383 0.0611 

Si02 0.3805 -0.7602 0.8491 0.3796 0.0626 0.5159 

Ti02 0.9387 -0.6621 0.3796 0.9984 0.4357 0.9674 

LOI 0.543 -0.383 0.0626 0.4357 0.9536 3.1434 

AhOJ Fe Si02 Ti02 LOI 

Al20 3 1.0223 -0.7013 0.3836 0.9473 0.5453 0.0267 

104.986 Fe -0.7013 0.9099 -0.7809 -0.6665 -0.384 0.063 

Si02 0.3836 -0.7809 0.8772 0.3859 0.0652 0.536 

Ti02 0.9473 -0.6665 0.3859 1.0158 0.432 0.9914 

LOI 0.5453 -0.384 0.0652 0.432 0.9677 3.1758 

AhOJ Fe Si02 Ti02 LOI 

Al20 3 1.0201 -0.7085 0.393 0.9437 0.5445 0.0269 

120.005 Fe -0.7085 0.9268 -0.802 -0.6722 -0.389 0.0638 

Si02 0.393 -0.802 0.9035 0.3954 0.0722 0.5551 

Ti02 0.9437 -0.6722 0.3954 1.0151 0.421 1.0047 

LOI 0.5445 -0.389 0.0722 0.421 0.9875 3.2025 

AhOJ Fe Si02 Ti02 LOI 

Al20 3 1.0314 -0.7222 0.4063 0.9518 0.5556 0.0268 

135.021 Fe -0.7222 0.9402 -0.815 -0.6851 -0.3995 0.0641 

Si02 0.4063 -0.815 0.9156 0.4086 0.0807 0.5591 

Ti02 0.9518 -0.6851 0.4086 1.0233 0.4243 1.0069 

LOI 0.5556 -0.3995 0.0807 0.4243 1.0026 3.2562 

Al203 Fe Si02 Ti02 LOI 

Al20 3 1.0275 -0.7256 0.4122 0.9445 0.5469 0.0264 

149.904 Fe -0.7256 0.9514 -0.8276 -0.6883 -0.4005 0.0648 

Si02 0.4122 -0.8276 0.9272 0.4164 0.087 0.5758 

Ti02 0.9445 -0.6883 0.4164 1.017 0.4056 1.005 

LOI 0.5469 -0.4005 0.087 0.4056 1.0097 3.2607 

79 



Table Al continued- The average distance, experimental semivariogram matrices using the normal scores and 
corresponding eigenvalues. 

Al203 Fe s'io2 Ti02 LOI 

Al203 1.0312 -0.7219 0.4127 0.9387 0.5472 0.0256 

164.941 Fe -0.7219 0.9497 -0.8343 -0.6832 -0.3988 0.0653 

Si02 0.4127 -0.8343 0.9372 0.418 0.0918 0.5829 

Ti02 0.9387 -0.6832 0.418 1.0064 0.3944 1.0059 

LOI 0.5472 -0.3988 0.0918 0.3944 1.008 3.2529 

AI20 3 Fe Si02 Ti02 LOI 

AI20 3 1.0228 -0.7128 0.403 0.9254 0.54 0.0254 

179.968 Fe -0.7128 0.9575 -0.8464 -0.6765 -0.3968 0.0677 

Si02 0.403 -0.8464 0.9537 0.4136 0.0943 0.6091 

Ti02 0.9254 -0.6765 0.4136 0.9985 0.3726 1.0195 

LOI 0.54 -0.3968 0.0943 0.3726 1.0186 3.2295 

AhO~ Fe Si02 Ti02 LOI 

Al203 1.0297 -0.716 0.4067 0.9269 0.5411 0.0255 

194.881 Fe -0.716 0.9671 -0.8579 -0.6764 -0.4069 0.071 

Si02 0.4067 -0.8579 0.9665 0.4149 0.1081 0.6289 

Ti02 0.9269 -0.6764 0.4149 1.0045 0.3656 1.0142 

LOI 0.5411 -0.4069 0.1081 0.3656 1.0226 3.2508 

AhO~ Fe Si02 Ti02 LOI 

Al203 1.0196 -0.7049 0.3985 0.9197 0.5273 0.0262 

209.877 Fe -0.7049 0.9753 -0.8704 -0.6671 -0.4137 0.0722 

Si02 0.3985 -0.8704 0.984 0.4089 0.1208 0.6653 

Ti02 0.9197 -0.6671 0.4089 1.0052 0.3468 1.0128 

LOI 0.5273 -0.4137 0.1208 0.3468 1.0266 3.2342 
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Table A2- The average distance, experimental semivariogram matrices using the standardised and 
corresponding eigenvalues. 

Avera~eLa~ Matrix Ei~envalues 

Al203 Fe Si02 Ti02 LOI 

Al203 0.8678 -0.7567 0.4924 0.7814 0.4993 0.0045 
6.959 Fe -0.7567 0.8199 -0.6951 -0.6676 -0.3898 0.0363 

Si02 0.4924 -0.6951 0.7645 0.4234 0.0984 0.2661 

Ti02 0.7814 -0.6676 0.4234 0.7797 0.4296 0.7292 

LOI 0.4993 -0.3898 0.0984 0.4296 0.7858 2.9816 

AhOl Fe Si02 Ti02 LOI 

AI20 3 0.8951 -0.7778 0.5033 0.8127 0.4962 0.0059 

16.721 Fe -0.7778 0.8492 -0.7184 -0.6877 -0.3948 0.0393 

Si02 0.5033 -0.7184 0.7908 0.4309 0.0986 0.3092 

Ti02 0.8127 -0.6877 0.4309 0.8229 0.4232 0.76 

LOI 0.4962 -0.3948 0.0986 0.4232 0.8211 3.0649 

AhOl Fe Si02 Ti02 LOI 

Al203 0.8865 -0.7614 0.4835 0.8128 0.4794 0.007 

30.822 Fe -0.7614 0.8397 -0.7115 -0.678 -0.3825 0.0436 

Si02 0.4835 -0.7115 0.7941 0.416 0.0856 0.3479 

Ti02 0.8128 -0.678 0.416 0.8425 0.4025 0.7851 

LOI 0.4794 -0.3825 0.0856 0.4025 0.8399 3.0191 

AI20 3 Fe Si02 Ti02 LOI 

AI20 3 0.8807 -0.7511 0.4693 0.8108 0.478 0.0077 

45.331 Fe -0.7511 0.8353 -0.7074 -0.6712 -0.3776 0.0469 

Si02 0.4693 -0.7074 0.7951 0.4064 0.0751 0.3672 

Ti02 0.8108 -0.6712 0.4064 0.8534 0.3941 0.8088 

LOI 0.478 -0.3776 0.0751 0.3941 0.8596 2.9935 

AbOl Fe Si02 Ti02 LOI 

Al203 0.917 -0.7776 0.4838 0.8477 0.4914 0.0078 

60.155 Fe -0.7776 0.8638 -0.7291 -0.6968 -0.3928 0.0496 

Si02 0.4838 -0.7291 0.8155 0.4229 0.0811 0.3997 

Ti02 0.8477 -0.6968 0.4229 0.8996 0.3953 0.8334 

LOI 0.4914 -0.3928 0.0811 0.3953 0.8989 3.1042 

AhOl Fe Si02 Ti02 LOI 

Al203 0.9524 -0.8032 0.4959 0.8835 0.5068 0.0077 

75.159 Fe -0.8032 0.8882 -0.7457 -0.7233 -0.4089 0.0517 

Si02 0.4959 -0.7457 0.831 0.4376 0.0881 0.4256 

Ti02 0.8835 -0.7233 0.4376 0.9435 0.3999 0.8514 

LOI 0.5068 -0.4089 0.0881 0.3999 0.9315 3.21 
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Table A2 continues- The average distance, experimental semivariogram matrices using the standardised and 
corresponding eigenvalues. 

Al203 Fe Si02 Ti02 LOI 

Al203 0.9694 -0.812 0.4982 0.902 0.5157 0.0076 

90.052 Fe -0.812 0.8978 -0.7548 -0.7317 -0.4193 0.0523 

Si02 0.4982 -0.7548 0.8436 0.4395 0.0942 0.4527 

Ti02 0.902 -0.7317 0.4395 0.9679 0.3996 0.8664 

LOI 0.5157 -0.4193 0.0942 0.3996 0.9582 3.2578 

Ah_01 Fe Si02 Ti02 LOI 

Al203 0.9855 -0.8283 0.513 0.9191 0.5203 0.0076 

104.986 Fe -0.8283 0.9234 -0.7842 -0.7473 -0.426 0.054 

Si02 0.513 -0.7842 0.88 0.4535 0.0991 0.473 

Ti02 0.9191 -0.7473 0.4535 0.9917 0.3992 0.8866 

LOI 0.5203 -0.426 0.0991 0.3992 0.973 3.3323 

Ah01 Fe Si02 Ti02 LOI 

AI20 3 1.0235 -0.8623 0.5385 0.9495 0.5306 0.0077 

120.005 Fe -0.8623 0.9622 -0.8201 -0.7731 -0.4386 0.0562 

Si02 0.5385 -0.8201 0.9184 0.4724 0.1091 0.4977 

Ti02 0.9495 -0.7731 0.4724 1.0216 0.3995 0.9071 

LOI 0.5306 -0.4386 0.1091 0.3995 0.9966 3.4537 

Al201 Fe Si02 Ti02 LOI 

Ai20 3 1.0458 -0.89 0.562 0.9628 0.5479 0.0077 

135.021 Fe -0.89 0.995 -0.8484 -0.7929 -0.4555 0.0581 

Si02 0.562 -0.8484 0.9434 0.4905 0.1218 0.4971 

Ti02 0.9628 -0.7929 0.4905 1.0323 0.4098 0.9124 

LOI 0.5479 -0.4555 0.1218 0.4098 1.0088 3.5501 

Al201 Fe Si02 Ti02 LOI 

AI20 3 1.0238 -0.8783 0.5616 0.9392 0.5349 0.0077 

149.904 Fe -0.8783 0.9926 -0.8548 -0.7819 -0.4491 0.0614 

Si02 0.5616 -0.8548 0.9536 0.4918 0.1245 0.5016 

Ti02 0.9392 -0.7819 0.4918 1.0156 0.3922 0.9117 

LOI 0.5349 -0.4491 0.1245 0.3922 1.007 3.5102 

Ah_03 Fe Si02 Ti02 LOI 

AI20 3 1.0364 -0.8917 0.5753 0.9443 0.5382 0.0075 

164.941 Fe -0.8917 1.0111 -0.8761 -0.79 -0.4526 0.0655 

Si02 0.5753 -0.8761 0.9772 0.5027 0.131 0.5105 

Ti02 0.9443 -0.79 0.5027 1.0263 0.386 0.9116 

LOI 0.5382 -0.4526 0.131 0.386 1.002 3.5579 
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Table A2 continued- The average distance, experimental semivariogram matrices using the standardised and 
corresponding eigenvalues. 

Al203 Fe Si02 Ti02 LOI 

Al203 1.0284 -0.8837 0.5693 0.9307 0.5313 0.0075 

179.968 Fe -0.8837 1.0109 -0.8821 -0.7804 -0.4504 0.0704 

Si02 0.5693 -0.8821 0.9905 0.4982 0.1345 0.5308 

Ti02 0.9307 -0.7804 0.4982 1.0221 0.3665 0.9133 

LOI 0.5313 -0.4504 0.1345 0.3665 1.0025 3.5323 

Ah01 Fe Si02 Ti02 LOI 

Al203 1.0581 -0.9078 0.5867 0.9522 0.5393 0.0075 

194.881 Fe -0.9078 1.0374 -0.9053 -0.7969 -0.465 0.0771 

Si02 0.5867 -0.9053 1.0122 0.5088 0.1512 0.5548 

Ti02 0.9522 -0.7969 0.5088 1.0537 0.3676 0.9073 

LOI 0.5393 -0.465 0.1512 0.3676 1.0066 3.6213 

Al203 Fe Si02 Ti02 LOI 

Al203 1.0559 -0.9007 0.5804 0.9486 0.5301 0.0076 

209.877 Fe -0.9007 1.0368 -0.9086 -0.7897 -0.4698 0.0843 

Si02 0.5804 -0.9086 1.0193 0.5048 0.1633 0.5911 

Ti02 0.9486 -0.7897 0.5048 1.0695 0.3472 0.8981 

LOI 0.5301 -0.4698 0.1633 0.3472 1.0093 3.6097 
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Appendix 4 - Scatter Plots and Correlation Coefficients of 

Factors 

4.1 PCA Factors using Normal Scores 

Scatter plots 
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4.2 PCA Factors usin.g Standardised Variables 

Scatter plots 
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4.3 MAF Factors using Normal Scores 

Scatter plots 
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4.4 MAF Factors usi~g Standardised Variables 

Scatter plots 
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4.5 ACDC Factors using J~ormal Scores 

Scatter plots 

Correlation Matrix: 

VARIABLES 

F1 ACDC NS -

F2 ACDC NS - -

F3 ACDC NS - -

F4 ACDC NS - -

F5 ACDC NS 

·• + 

+ 
+ 

F1 ACDC 
NS 

1 

0 

-0.01 

-0.02 

-0.01 

+ . 

F2 ACDC -
NS 

0 

1 

-0.05 

0.03 

-0.08 

+ 
+ 

F3 ACDC 
-

NS 

-0.01 

-0.05 

1 

0 

0.02 

88 

F4 ACDC 
NS 

-0.02 

0.03 

0 

1 

-0.05 

+ + 

\ + 

F5 ACDC 
NS 

-0.01 

-0.08 

0.02 

-0.05 

1 



4.6 ACDC Factors u~ing Standardised Variables 

Scatter plots 
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4.7 ACDC Factors using Normal Scores and Matrix AoNs 

Scatter plots 
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4.8 ACDC Factors us.ing Standardised Variables and Matrix 

Aost 
Scatter plots 
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Appendix 5- Experimental Cross Semivariograms and Spatial 

Decorrelation Plots of the ACDC Factors 

ACDC using Normal scores, weight vector [1 1 1 1 1 1 1 1 1 1 1 1·1 1 1] 
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Lagh(m) 
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ACDC using Normal scores, weight vector [1 1 1 1 1 1 1 1 1 1 1 1 0 0 0] 

-+- AC1 -AC2 
--+- AC1-AC3 

--+- AC2-AC4 

AC3-AC4 
--+-- AC1-ACS 
--t- AC2-ACS 
-+- AC3-AC5 
-+- AC4-AC5 
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0.8 

0.7 

_§ 0.6 
iii 1 05 

0 0.4 

0.3 

0.1 
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0 50 100 150 200 
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ACDC using Normal scores, weight vector [1 1 1 1 1 1 1 1 1 1 1 0 0 0 0] 

0. 1 

-O. 
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Lagh(m) 

-+-AC1-AC2 
-+- AC 1-AC3 
-+- AC2-AC3 
-+- AC 1-AC4 
-+- AC2-AC4 

AC3-AC4 
-+- AC 1-AC5 
----.- AC2-AC5 
-+- AC3-AC5 
-+- AC4-AC5 

0.9 

0.8 

0.7 

~ 0.6 
Qj 

~ 0.5 

0 0.4 

0.3 

0.2 

lag h (m) 

ACDC using Normal scores, weight vector [1 1 1 1 1 1 1 1 1 1 0 0 0 0 0] 

0.9 

--+- AC1-AC2 0.8 
-.-- AC1-AC3 
--+- AC2-AC3 0.7 
->-- AC1-AC4 

--+- AC2-AC4 
AC3-AC4 

0.6 

-;- AC1-AC5 

--+- AC2-AC5 0.5 

--+- AC3-AC5 
--+- AC4-AC5 0.4 

0.3 

0.2 

-0.2 0. 1 

.o.25 oL_ _____ so:':-------1~oo:------~, so-=--------:"200~ 0 
0 

Lagh (m) lag h (m) 
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ACDC using Normal scores, weight vector [1 1 1 1 1 1 1 1 1 0 0 0 0 0 0] 

.0.25 

100 
Lagh(m) 

150 

-+- AC 1-AC2 
-+- AC 1-AC3 
-+- AC2-Ac:J 
--t-- AC 1-AC4 

-+- AC2-AC4 
AC3-AC4 

-+-AC1-AC5 
-+- AC2-ACS 
_._ ACJ-ACS 
-+- AC4-ACS 

200 

0.9 

0.8 

0.7 

c 
0.6 0 

iii 

1 0.5 

~ 0.4 

0.3 

0.2 

0.1 

ACDC using Normal scores, weight vector [1 1 1 1 1 1 1 1 0 0 0 0 0 0 0] 

-0.25 

50 100 
Lagh(m) 

150 200 

0.9 
-+- AC1-AC2 
--AC1-AC3 0.8 
-+- AC2-AC3 

--+- AC1-AC4 0.7 
-+- AC2-AC4 

AC3-AC4 0 0.6 
-+-AC1-AC5 "' -+- AC2-AC5 1 0.5 
-+- Ac:J.ACS 
-+- AC4-AC5 0 0.4 

0.3 

0.1 

Lag h (m) 

ACDC using Normal scores, weight vector [1 1 1 1 1 1 1 0 0 0 0 0 0 0 0] 

0.15 

0.1 

-0 1 

-0 15
L_ ____ ~50 _______ 1 00~----~150~--~2~00 

Lag h (m) 

-+- AC1-AC2 
--AC1-AC3 
-+- AC2-AC3 
-+- AC1-AC4 
-+- AC2-AC4 

AC3-AC4 
-+-AC1-AC5 
-+- AC2-AC5 
-+- AC3-AC5 
-+- AC4-AC5 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 
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ACDC using Normal scores, weight vector [1 1 1 1 1 1 0 0 0 0 0 0 0 0 0] 

ACDC using Normal scores, weight vector [1 1 1 1 1 0 0 0 0 0 0 0 0 0 0] 

0.9 

0.4 
--+- AC1-AC2 0.8 
_...__ AC1 -AC3 

0.3 
--+- AC2-AC3 0.7 
-~ AC1 -AC4 

0.2 

--+- AC2-AC4 c 
0.6 AC3-AC4 

0 

ro 
-+-AC1-ACS 1 0.5 --+- AC2-ACS 
--+- AC3-ACS 
--+- AC4-ACS 

0 0.4 

0.3 

0.2 

0.1 

Lag h {m) 

ACDC using Normal scores, weight vector [1 1 1 1 0 0 0 0 0 0 0 0 0 0 0] 

-+- AC1 -AC2 0.9 

0.1 -+- AC1 -ACJ 
0.8 -+- AC2-ACJ 

-- AC1-AC4 
0.7 

-+- AC2-AC4 
AC~AC4 

0.6 
-+- AC1-AC5 
-+- AC2-AC5 

0.5 
-~ AC~ACS 

-+- AC4-AC5 
0.4 

.0.2 

50 100 150 200 
Lag h(m) Lag h {m) 
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ACDC using Normal scores, weight vector [1 1 1 0 0 0 0 0 0 0 0 0 0 0 0] 

0.2 

0.15 

-0.15 

-0.2 

.o.
25
':----::so:-----:1-::oo------:-!1so=---20::-o::

Lag h (m) 

-+- AC1-AC2 
_.,__ AC1-AC3 
-+- AC2-AC3 
-+- AC1 -AC4 
-+- AC2-AC4 

AC3-AC4 
--+- AC1 -AC5 
-+- AC2-AC5 
-+- AC3-AC5 
-+- AC4-AC5 

0.9 

0.8 

0.7 

0 0.6 
1a 

~ 0.5 
hl 

. 0 0.4 

0.3 

Lag h (m) 

ACDC using Normal scores, weight vector [1 1 0 0 0 0 0 0 0 0 0 0 0 0 0] 

-+-- AC1-AC2 0.9 
-+-- AC1 -AC3 
-+-- AC2-AC3 0.8 
--+- AC1-AC4 
-+-- AC2-AC4 0.7 

AC3-AC4 
-+-- AC1-AC5 .Q 0.6 
-+-- AC2-ACS iii 

;:/ 
a; 

-+-- AC3-AC5 ~ 0.5 
-+-- AC4-AC5 

0 0.4 

0.3 ./if 
0.2 / 

/' 

/Jil 
0.1 -~)" 

0 
0 50 100 150 

Lag h (m) Lag h (m) 

ACDC using Normal scores, weight vector [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 

-.;..- AC1 -AC2 
-!-- AC1-AC3 
--+- AC2-AC3 0.9 

-+- AC1 -AC4 

--+- AC2-AC4 0.8 

AC3-AC4 0.7 
-.;..- AC1 -ACS 

--+- AC2-ACS 0.6 
--+- AC3-ACS 
--+- AC4-ACS 0.5 

0.4 

-0.4 
0.3 

-0.5 

50 100 150 200 150 
Lag h (m) Lag h (m) 
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ACDC using Normal scores and AoNs matrix, weight vector [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1] 

-+- AC1-AC2 
-<>-- AC1-AC3 

-+- AC2-AC3 
--AC1-AC4 
--AC2-AC4 

AC3-AC4 
-+- AC1-AC5 
-+- AC2-AC5 
-t-- AC3-AC5 
-+- AC4-AC5 

Lag h (m) 
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0.8 
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_Q 0.6 
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Qj 

~ 0.5 
g 
0 0.4 

0.3 

0 . 2f~ . 

0.1 7""""-'?,~~ 
0 ~'"-= -,.-
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ACDC using Normal scores and AoNs matrix, weight vector [1 1 1 1 1 1 1 1 1 1 1 1 1 1 0] 

0.9 

--t-- AC 1-AC2 
0.8 

_...._ AC1-AC3 

-+- AC2-AC3 0.7 
-+- AC1-AC4 
-+- AC2-AC4 0 0.6 

AC3-AC4 ~ 
-+- AC1 -ACS ~ 0.5 
-+- AC2-AC5 g 
--AC3-AC5 0 0.4 
-+- AC4-ACS 

0.3 

0.2 

0.1 

0 
0 50 100 150 200 

Lag h (m) 

ACDC using Normal scores and AoNs matrix, weight vector [1 1 1 1 1 1 1 1 1 1 1 1 1 0 0] 

0.9 

-+- AC1-AC2 
--.-- AC1-AC3 

0.8 

-+- AC2-AC3 
0.7 

- t - AC1-AC4 

-+- AC2-AC4 
0.6 AC3-AC4 

-+-- AC1-AC5 

-+-- AC2-AC5 0.5 

--.-- AC3-ACS 
-+-- AC4-AC5 0.4 

0.3 

0.1 

Lagh(m) 

97 



ACDC using Normal scores and AoNs matrix, weight vector [1 1 1 1 1 1 1 1 1 1 1 1 0 0 0] 

0.06 ""' 

0.04 I '\....-

-0.08 

50 100 150 
Lag h (m) 

-+- AC1-AC2 
0.9 

-t- AC1-AC3 
0.8 

-+- AC2-AC3 
- - AC1-AC4 0.7 
-+- AC2-AC4 

AC3-AC4 
0 0.6 

--+- AC1-AC5 ~ 
-+- AC2-AC5 1 0.5 
--+- AC3-AC5 
-+- AC4-AC5 0 0.4 

0.3 

0.2 

Lag h (m) 

ACDC using Normal scores and AoNs matrix, weight vector [1 1 1 1 1 1 1 1 1 1 1 0 0 0 0] 

-+- AC1-AC2 
0.9 

---.- AC1 -AC3 
0.8 

-+- AC2-AC3 
--<- AC1-AC4 0.7 
-+- AC2-AC4 

AC3-AC4 0 0.6 
--+- AC 1-AC5 iij 

-+- AC2-AC5 1 0.5 
--+-- AC3-AC5 
-+- AC4-AC5 0 0.4 

0.3 

0.2 

Lag h (m) 

ACDC using Normal scores and AoNs matrix, weight vector [1 1 1 1 1 1 1 1 1 1 0 0 0 0 0] 

50 100 150 
Lag h (m) 
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--+- AC1-AC2 
--+- AC1-AC3 
--+- AC2-AC3 
-+- AC1-AC4 

--+- AC2-AC4 
AC3-AC4 

---+-- AC1-AC5 

--+- AC2-AC5 
--+- AC3-AC5 
--+- AC4-AC5 
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0.7 

0.6 

0.5 
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0 ~ 
0 50 100 
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ACDC using Normal scores and AoNs matrix, weight vector [1 1 1 1 1 1 1 1 1 0 0 0 0 0 O] 

-0.12 

-0.14o.._ --~50:---1"-:00 _____ 150'c:---2,-c00.,-

Lagh(m) 

-+- AC1-AC2 
-.- AC1-AC3 
-+- AC2-AC3 
-.- AC1-AC4 
-+- AC2-AC4 

AC3-AC4 
-+- AC1-AC5 
--t- AC2-AC5 
-.- AC3-AC5 
-+- AC4-AC5 

0.9 

0.8 

0.7 

~ 0.6 

1 0.5 

0 0.4 

0.3 

0.2 

Lag h (m) 

ACDC using Normal scores and AoNs matrix, weight vector [1 1 1 1 1 1 1 1 0 0 0 0 0 0 0] 

-+- AC1-AC2 0.9 
__.__ AC1-AC3 

-+- AC2-AC3 0.8 

--+-- AC1-AC4 

-+- AC2-AC4 0.7 

AC3-AC4 c 
0.6 --AC1-AC5 

0 

iii 
-+- AC2-AC5 1 0.5 -..- AC3-AC5 
-+- AC4-AC5 0 0.4 

0.3 

0.2 

0.1 

Lag h (m) 

ACDC using Normal scores and AoNs matrix, weight vector [1 1 1 1 1 1 1 0 0 0 0 0 0 0 0] 

0.9 

0.06 ~ -+- AC1-AC2 
--AC1-AC3 0.8 

-+- AC2-AC3 
- ~- AC1-AC4 0.7 

-+- AC2-AC4 
AC3-AC4 0.6 

-+- AC1-AC5 
-+- AC2-AC5 0.5 
--+-- AC3-AC5 
-+- AC4-AC5 0.4 

0.3 

-0.1 

-0.12 0.1 

-0.14 
0 50 100 150 200 

Lagh (m) Lag h (m) 
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ACDC using Normal scores and AoNs matrix, weight vector [1 1 1 1 1 1 0 0 0 0 0 0 0 0 0] 

0.06 

0.04 

-0.12 
0:-----,so=----1.,.:-00::-----::150:::------::20::-o 

lag h (m) 

-+- AC1-AC2 
-t- AC1-AC3 
-+- AC2-AC3 
-+-- AC1-AC4 
-+- AC2-AC4 

AC3-AC4 
-+-- AC1-AC5 
-+- AC2-AC5 
-+-- AC3-AC5 
-+- AC4-AC5 

0.9 

0.8 

0.7 

.~ 0.6 
iii 

1 0.5 

0 0. 4 

0.3 

0.1 

ACDC using Normal scores and AoNs matrix, weight vector [1 1 1 1 1 0 0 0 0 0 0 0 0 0 0] 

0.05 
-+-- AC1-AC2 
-+-- AC1-AC3 
-+-- AC2-AC3 0.9 

-+-- AC1-AC4 
-+-- AC2-AC4 0.8 

AC3-AC4 0.7 
-+-- AC1-AC5 

--AC2-AC5 .§ 0.6 
-+-- AC3-AC5 iii 

~ 
Qj 

-+-- AC4-AC5 5 0. 5 
hl 
0 0.4 

0.3 

0.2 

0.1 

-0. 1 0 
50 100 150 200 0 sb 

Lag h (m) Lag h (m) 

ACDC using Normal scores and AoNs .matrix, weight vector [1 1 1 1 0 0 0 0 0 0 0 0 0 0 0] 

0.04 

0.02 

o P* t ~ 
-ll.02 

-ll.04 

'2 -ll.06 
-.:. 

-ll.OB 

-ll .1 

-ll. 12 

-{),14 

-ll.16 

50 100 
Lagh (m) 

150 200 

0.9 

-+- AC1-AC2 
-t-AC1-AC3 0.8 

-+- AC2-AC3 
-+- AC1-AC4 0.7 

-+- AC2-AC4 
AC3-AC4 0.6 

-+- AC1-AC5 
-+- AC2-AC5 0. 5 
-.- AC3-AC5 
-+- AC4-AC5 0.4 

0.3 

0.2 

0.1 

0 
0 50 

100 



ACDC using Normal scores and AoNs matrix, weight vector [1 1 1 0 0 0 0 0 0 0 0 0 o o OJ 

0.,. 
-0.05 

;;:. -0.1 

-0.15 

-0.2 

50 100 150 200 
Lag h (m) 

-+- AC1-AC2 
-+- AC1-AC3 

-+- AC2-AC3 
-+- AC1-AC4 

-+- AC2-AC4 
AC3-AC4 

-+- AC1-AC5 

-+- AC2-AC5 
-+- AC3-AC5 
-+- AC4-AC5 

0.9 

0.8 

0.7 

.§ 0.6 
-ro 
a; 

~ 0.5 

0 0.4 

0.3 

Lag h (m) 

ACDC using Normal scores and AoNs matrix, weight vector [1 1 0 0 0 0 0 0 0 0 0 0 0 0 OJ 

0.9 
-+- AC1 -AC2 
-+- AC1 -AC3 0.8 

0.1 

-+- AC2-AC3 
0.05 -+- AC1 -AC4 0.7 

-+- AC2-AC4 

~ -Q.1 

AC3-AC4 0 0.6 
-+-AC1-AC5 ~ 
-+- AC2-AC5 i 0.5 
-+- AC3-AC5 
-+- AC4-AC5 ~ 0.4 

-0.05 

-0.15 0.3 

0.2 
-0.2 

0.1 
-0.25 

0 
0 

Lag h (m) 

ACDC using Normal scores and AoNs matrix, weight vector [1 0 0 0 0 0 0 0 0 0 0 0 0 0 OJ 

-+- AC1-AC2 0.9 
-t-- AC1-AC3 
-+- AC2-AC3 0.8 
-+- AC1 -AC4 
-+- AC2-AC4 0. 7 

AC3-AC4 
--+--- AC1-AC5 0.6 
-+- AC2-AC5 
--+- AC3-AC5 0.5 
-+- AC4-AC5 

0.4 

0.3 

-0.1 
0.2 

-0.15 

50 100 150 200 
Lag h (m) 
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ACDC using Standardised scores, weight vector [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1] 

-t- AC1-AC2 
-..._ AC1-AC3 

-t- AC2-AC3 
-t- AC1-AC4 

0 __ .. ------

~=e:=¥¥4 I ! ¥ t-44 =-- ~~~:~~ 
-1 00 

\~-········· 
-400 

~ :::: ~\:. 
-500 ~ 

50 100 150 200 
Lag h (m) 

-t- AC1-AC5 

---+-- AC2-AC5 
--o-- AC3-AC5 
---+-- AC4-AC5 

X 105 

10~----~----~----~----~~ 

-2 '-------'------~------'-----~-:-' 
0 50 100 150 200 

Lag h (m) 

ACDC using Standardised scores, weight vector [1 1 1 1 1 1 1 1 1 1 1 1 1 1 0] 

ot:trtiiiiJiiiJii 
-500 

-1000 

~-1500\ 
-2000 

-2500 ~ 

50 100 150 200 
Lag h (m) 

---+-- AC1 -AC2 
-t- AC1 -AC3 
---+-- AC2-AC3 
-t- AC1-AC4 

-t- AC2-AC4 
AC3-AC4 

---+-- AC1-AC5 
---+-- AC2-AC5 
--AC3-AC5 
-t- AC4-AC5 

X 106 

14 .-----~~--~----~----~~ 

12 

10 

; / 
~ 4 
0 

-4'-------'-------:-'-------'-----~-:-' 
0 50 100 150 200 
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ACDC using Standardised scores, weight vector [ 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0] 

o * l l I iIi t44- I I l 1>4 
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-2000 

-3000 

~-4000\ 
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-6000 

-7000 
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-8000 
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---+-- AC2-AC3 
-t- AC1-AC4 

- AC2-AC4 
AC3-AC4 

-+- AC1-AC5 

---+-- AC2-AC5 
-t- AC3-AC5 
-t- AC4-AC5 

X 107 

14.-----~----~----~----~~ 

12 /A'---~~-"~· 
10 

4 '7 

0,~~+-+-+-~~~-+-+~~~~ 

-2LI ~___:::~il=Et::::§::~~~:::::=:~:--~~ 
0 50 100 150 200 

Lag h (m) 
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ACDC using Standardised scores, weight vector [1 1 1 1 1 1 1 1 1 1 1 1 0 0 0] 

0 t I I 4- i4~ i#4 bi 1 ! I I --- AC1-AC2 

-500 

-1000 

-1500 

-3000 

-3500 

50 100 
Lag h (m) 

150 200 

--AC1-AC3 

--- AC2-AC3 
- -• - AC1-AC4 
--- AC2-AC4 

AC3-AC4 
--- AC1-AC5 
--- AC2-AC5 
-~AC3-AC5 

--- AC4-AC5 
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0 

16 

1 
:;J 
0 

X 107 

2.5,.------,--=----,------,----,-, 

150 200 

ACDC using Standardised scores, weight vector [ 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0] 

Lag h (m) 

--- AC1-AC2 
-+- AC1-AC3 

--- AC2-AC3 
-+- AC1-AC4 

--- AC2-AC4 
AC3-AC4 

--+- AC1-AC5 

-....- AC3-AC5 
--- AC4-AC5 

0.8 

0.7 

~ 0.6 
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~ 0.5 
:;J 
0 0.4 
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OOL---~50~-~1~00--~150~. -~2~00~ 
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ACDC using Standardised scores, weight vector [1 1 1 1 1 1 1 1 1 1 0 0 0 0 0] 

0.2 
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200 

--- AC1-AC2 
-+- AC1-AC3 

--- AC2-AC3 
-~ AC1-AC4 

--- AC2-AC4 
AC3-AC4 

--+- AC1-AC5 
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---- AC3-AC5 
--- AC4-AC5 

oL---~--~--~~--~ 
0 50 100 150 200 

Lag h (m) 
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ACDC using Standardised scores, weight vector [1 1 1 1 1 1 1 1 1 0 0 0 0 0 0] 

--+------ AC1-AC2 

0.1 --+------ AC1-AC3 

--+------ AC2-AC3 0.9 

--+------ AC1 -AC4 

----+------ AC2-AC4 
0.8 

AC3-AC4 
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--+------ AC1-AC5 

--+------ AC2-AC5 0.6 

~ 
----+------ AC3-AC5 

--+------ AC4-AC5 0.5 
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ACDC using Standardised scores, weight vector [1 1 1 1 1 1 1 1 0 0 0 0 0 0 0] 
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--+------ AC1-AC3 0.9 

--+------ AC2-AC3 

--+------ AC1 -AC4 0.8 

--+------ AC2-AC4 
AC3-AC4 0.7 

--+------ AC1-AC5 
0 0.6 

--+------ AC2-AC5 ~ 
--+------ AC3-AC5 i 0.5 
--+------ AC4-AC5 
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-0.2'------~---'------'-------'--
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ACDC using Standardised scores, weight vector [1 1 1 1 1 1 1 0 0 0 0 0 0 0 0] 

--+------ AC1 -AC2 
-+---- AC 1-AC3 0.9 
--+------ AC2-AC3 

--.-- AC1-AC4 0.8 

--+------ AC2-AC4 
AC3-AC4 0.7 

--+------ AC1-AC5 

--+------ AC2-AC5 
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--+------ AC3-AC5 
0.5 

--+------ AC4-AC5 
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0.3 

0.1 
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ACDC using Standardised scores, weight vector [1 1 1 1 1 1 0 0 0 0 0 0 0 0 0] 

0.1 

50 100 150 200 
Lag h (m) 

--AC1-AC2 
--.- AC1-AC3 

--AC2-AC3 

- • · ··- AC1-AC4 
--AC2-AC4 

AC3-AC4 
-+- AC1-AC5 

--AC2-AC5 
-t-- AC3-AC5 
--AC4-AC5 
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0.7 

.2 0.6 
iii 
~ 
~ 0.5 

0 0.4 

0.3 

ACDC using Standardised scores, weight vector [ 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0] 
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ACDC using Standardised scores, weight vector [1 1 1 1 0 0 0 0 0 0 0 0 0 0 0] 
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ACDC using Standardised scores, weight vector [1 1 1 0 0 0 0 0 0 0 0 0 0 0 0] 

-+- AC1-AC2 
-+- AC1-AC3 
-+- AC2-AC3 0.9 
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ACDC using Standardised scores, weight vector [1 1 0 0 0 0 0 0 0 0 0 0 0 0 0] 
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Lag h (m) 

ACDC using Standardised scores, weight vector [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 

-+- AC1-AC2 
-o-- AC1 -AC3 

-+- AC2-AC3 0.9 

--t AC1-AC4 
-+- AC2-AC4 0.8 

AC3-AC4 0.7 
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106 



ACDC using Standardised scores and A05t matrix, weight vector [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1] 

I + j 

~--t 100 &:::::::: 
50 .,.........,
~·--t-4-t-4~-+' _.___,.__. 

0 t:n: EE-rn rn 
-50 . . . 

-100 

~-150 ". 

-200 +. ., -+- 1 1 t ; + I 1 + t --+-

-250 

-300 

-350 

-400 
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Lag h (m) 

--+-- AC1-AC2 
___.____ AC1-AC3 

--+-- AC2-AC3 
___.____ AC1-AC4 

--+-- AC2-AC4 
AC3-AC4 

--+--AC1-AC5 
- AC2-AC5 
--+-- AC3-AC5 
--+-- AC4-AC5 

X 105 
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~ 

I 
~~~ 

-1 
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Lag h (m) 

-· --'V-'ir 

200 

ACDC using Standardised scores and A05t matrix, weight vector [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0] 
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t-+----,,~ __ ,.__. ______ __.__;- ·------· 

- 100 ~, ••• 

_-200 ~ 
~ 

-300 

-400 
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Lag h (m) 
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ACDC using Standardised scores and A0 5t matrix, weight vector [1 1 1 1 1 1 1 1 1 1 1 1 1 0 0] 
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--+-- AC1-AC4 
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-+-- AC1-AC5 
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-+- AC3-AC5 
- AC4-AC5 
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ACDC using Standardised scores and Aost matrix, weight vector [ 1 1 1 1 1 1 1 1 1 1 1 1 0 0 OJ 

X 105 

~++1111111111 

ot=tl!!iilii I! iTt 
16 

-+-- AC1-AC2 
-+- AC1-AC3 14 
-+-- AC2-AC3 
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ACDC using Standardised scores and Aost matrix, weight vector [1 1 1 1 1 1 1 1 1 1 1 0 0 0 OJ 
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ACDC using Standardised scores and Aost matrix, weight vector [1 1 1 1 1 1 1 1 1 1 0 0 0 0 OJ 
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ACDC using Standardised scores and A05t matrix, weight vector [1 1 1 1 1 1 1 1 1 0 0 0 0 0 0] 

-+-- AC1-AC2 
-+-- AC1-AC3 
-+-- AC2-AC3 0.9 

0.1 -+-- AC1-AC4 
-+-- AC2-AC4 0.8 

AC3-AC4 0.7 
-+-- AC1-AC5 
-+-- AC2-AC5 c 

0.6 0 

:2 -+-- AC3-AC5 

1 ;;:: -+-- AC4-AC5 0.5 

0 0.4 

0.3 

-0.1 

150 200 

ACDC using Standardised scores and A05t matrix, weight vector [1 1 1 1 1 1 1 1 0 0 0 0 0 0 0] 
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ACDC using Standardised scores and A05t matrix, weight vector [1 1 1 1 1 1 1 0 0 0 0 0 0 0 0] 

-+-- AC1-AC2 
-----.- AC1-AC3 

-+- AC2-AC3 0.9 

--AC1-AC4 

-+-- AC2-AC4 0.8 

AC3-AC4 0.7 

-+-- AC2-AC5 0.6 
-+-- AC3-AC5 
-+-- AC4-AC5 0.5 
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ACDC using Standardised scores and A05t matrix, weight vector [1 1 1 1 1 1 0 0 0 0 0 0 0 0 OJ 

0.12 -+- AC1-AC2 
-+- AC1-AC3 

0.1 -+- AC2-AC3 0.9 

-+- AC1-AC4 
0.08 -+- AC2-AC4 0.8 
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-+- AC4-AC5 i 0.5 
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ACDC using Standardised scores and A05t matrix, weight vector [1 1 1 1 1 0 0 0 0 0 0 0 0 0 OJ 
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ACDC using Standardised scores and A05t matrix, weight vector [1 1 1 1 0 0 0 0 0 0 0 0 0 0 OJ 
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ACDC using Standardised scores and A05t matrix, weight vector [1 1 1 0 0 0 0 0 0 0 0 0 0 0 0] 

--t- AC1 -AC2 
--t- AC1-AC3 
--t- AC2-AC3 0.9 

-t-- AC1 -AC4 

--t- AC2-AC4 0.8 

AC3-AC4 0.7 
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--t- AC2-AC5 .2 0.6 
---- AC3-AC5 ;;; 

a; 
--+-- AC4-AC5 ~ 0.5 
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ACDC using Standardised scores and A05t matrix, weight vector [1 1 0 0 0 0 0 0 0 0 0 0 0 0 0] 
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Appendix 6- MATLAB CODES 

6.1 ACDC code 
function [A,Lam,Nit,Cls]= ... 

acdc(M,w,TOL,AO,LamO); 

%acdc: appoximate joint diagonalization 
%(in the direct Least-Squares sense) of 
%a set of Hermitian matrices, using the 
%iterative AC-DC algorithm. 
9,-
0 

%the basic call: 
%[A,Lam]=acdc(M); 
9,-
0 

%Inputs: 
9,-
0 

%M(N,N,K) - the input set of K NxN 
% "target matrices". Note that 
% all matrices must be 
% 
% 
9,-
0 

9,-
0 

% 
% 
% 

Hermitian (but need not be 
positive-definite) . If they 
are not Hermitian, an 
equivalent problem can always 
be formulated using Hermitian 
matrices. 

%Outputs: 
% 
%A(N,N) - the diagonalizing matrix. 
% 
%Lam(N,K) - the diagonal values of the K 
% diagonal matrices. 
9,-
0 

%The algorithm finds an NxN matrix A and 
%K diagonal matrices 
% L (: r :I k) =diag (Lam (:, k)) 
%such that 
% c_{LS}= 
% \sum_k\IM(:, :,k)-A*L(:, :,k)*A'\I_FA2 
%is minimized. 
% 

%-----------------------------------------
% Optional additional input/output 
% parameters: 
%-----------------------------------------
% 
%[A,Lam,Nit,Cls]= 
% acdc(M,w,AO,LamO); 
% 
%(additional) Inputs: 
9,-
0 

%w(K) - a set of positive weights such that 
% C_{LS}= 
% \ s urn_ k \ w ( k) I M ( : , : , k) -A* L ( : , : , k) *A ' \ I_ FA 2 
% Default: w=ones(K,l); 
9-
0 

%AO - an initial guess for A 
% default: eye(N); 
% 
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%Lam0 - an initial guess for the values of 
% Lam. If specified, an AC phase is 
% run first; otherwise, a DC phase is 
% run first. 
S-o 

%(additional) Outputs: 
So 

%Nit - number of full iterations 
% 
%Cls - vector of Nit Cls values 
S-o 

%-----------------------------~-----------
% Additional fixed processing parameters 
%-----------------------------------------
% 
%TOL -
S-o 

S-o 

% 
% 
% 

a tolerance value on the change of 
c_{Ls}. AC-DC stops when the 
decrease of C_{LS} is below tal. 
Originally set to: 

10A-3/(N*N*sum(w)); 

%MAXIT - maximum number of allowed full 
S-o iterations. 
S-o Originally set to: 50; 
S-o 

%INTLC - number of AC sweeps to interlace 
% de sweeps. 
% Originally set to: 1. 
% 
%-----------------------------------------
% 
%Note that the implementation here is 
%somewhat wasteful (computationally) , 
%mainly in performing a full eigenvalue 
%decomposition at each AC iteration, 
%where in fact only the largest eigenvalue 
%(and associated eigenvector) are needed, 
%and could be extracted e.g. using the 
%power method. However, for small N (<10), 
%the matlab eig function runs faster than 
%the power method, so we stick to it. 

%-----------------------------------------
%version R1.0, June 2000. 
%By Arie Yeredor arie@eng.tau.ac.il 
S-o 

%rev. R1.1, December 2001 
%forced s=real(diag(S)) rather than just s=diag(S) 
%in the AC phase. S is always real anyway; however, 
%it may be set to a complex number with a zero 
%imaginary part, in which case the following 
%max operation yields the max abs value, rather 
%than the true max. This fixes that problem. -AY 
S-o 

%Permission is granted to use and 
%distribute this code unaltered. You may 
%also alter it for your own needs, but you 
%may not distribute the altered code 
%without obtaining the author's explicit 
%consent. 
%comments, bug reports, questions 
%and suggestions are welcome. 
S-o 
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%References: 
%[1] Yeredor, A., Approximate Joint 
%Diagonalization Using Non-Orthogonal 
%Matrices, Proceedings of ICA2000, 
%pp.33-38, Helsinki, June 2000. 
%[2] Yeredor, A., Non-Orthogonal Joint 
%Diagonalization in the Least-Squares 
%Sense with Application in Blind Source 
%Separation, IEEE Trans. On Signal Processing, 
%vol. 50 no. 7 pp. 1545-1553, July 2002. 

[N N1 K]=size(M); 
if N-=N1 

error('input matrices must be square'); 
end 
if K<2 

error('at least two input matrices are required'); 
end 

if exist('w', 'var') & -isempty(w) 
W=W(:) i 

if length(w)-=K 
error('length of w must equal K') 

end 
if any(w<O) 

error('all weights must be positive'); 
end 

else 
w=ones(K,1); 

end 

if exist('AO', •var') & -isempty(AO) 
[NAO,Nc]=size(AO); 
if NAO-=N 

error('AO must have the same number of rows as the target 
matrices') 

else 

end 

end 

AO=eye (N); 
Nc=N; 

if exist('LamO', •var') & -isempty(LamO) 
[NLO,'KLO]=size(LamO); 
if NLO-=Nc 

error('each vector in LamO must have M elements') 
end 
if KLO-=K 

error('LamO must have K vectors') 
end 
if -isreal(LamO) 

error('LamO must be real') 
end 
skipAC=O; 

else 
skipAC=1; 

end 

%-----------------------------------------
% here's where the fixed processing
% parameters are set (and may be 
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% modified) : 
%-----------------------------------------
%TOL=le-3/(N*N*sum(w)); 
%MAXIT=50; 
MAXIT=lOOOOO; 
%MAXIT=1000000; 
INTLC=l; 

%-----------------------------------------
and this is where we start working 

%-----------------------------------------

Cls=zeros(MAXIT 1 1); 
Lam= zeros (N r K) ; 
A=AO; 
for Nit=l:MAXIT 

if -skipAC 

%AC phase 
for nsw=1:INTLC 

for 1=1:Nc 
P=zeros (N) ; 
for k=l:K 

D=M ( : I : I k) i 

for nc=[l:l-1 1+1:Nc] 
a=A(: rnc); 
D=D-Lam(ncrk)*a*a'; 

end 

end 
P=P+w(k)*Lam(l 1 k)*D; 

[V S] =eig (P) ; 
s=real(diag(S)); 
[vix 1 mix]=max(s); 
if vix>O 

%R1.1 - ay 

al=V(: 1 mix); 
%this makes sure the 1st nonzero 
%element is positive 1 to avoid 
%hopping between sign changes: 
fnz=find(al-=0); 
al=al*sign(al(fnz(l))); 
lam=Lam (lr :) ; 
f=vix/((lam.*lam)*w}; 
a=al*sqrt(f); 

else 
a=zeros(Nr1); 

end 
A (: r 1) =a; 

end %sweep 
end %interlaces 

end %skip AC 
skipAC=O; 

%DC phase 
AtA=A' *A; 
AtA2=AtA.*conj (AtA); 
G=inv(AtA2); 
for k=1:K 

Lam(: /k) =G*diag(A' *M(: I: rk) *A) i 

L=diag(Lam(: 1 k)); 
D=M(: I: /k) -A*L*A' i 

Cls(Nit)=Cls(Nit)+w(k)*sum(sum(D.*conj (D))); 
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end 

if Nit>l 
if abs(Cls(Nit)-Cls(Nit-l))<TOL 

break 
end 

end 

end 
Cls=Cls(l:Nit); 

6.2 Spatial Decorrelation Code Using ACDC method. 
%Start of Spatial Decorrelation ACDC m file -
%%%%%Getting the matrices into MATLAB 
clear 
X=xlsread('F:\ACDC_Standardised.xls', '5v'); %%%excel spreadsheets 
%X=xlsread('F:\ACDC3V.xls', '3v_loi+Ti02'); 

m=size(X,l); 

% Inputs 
dim=5; % Number of compunds 
lag=15; % Number of lags/matrices. 
StartH=6.959; % start of H 
EndH=209.877; % last H 
Xmin=O; % min x axis value 
Xmax=211; % max x axis value 

p=O; 
for i=l:dim 

p=p+i; 
end 

counter=l; 
B=zeros(p*lag,l); 
for i=l:m 

if isnan(X(i,2)) II isnan(X(i,3)) 

end 

else 
B(counter)=X(i,3); 
counter=counter+l; 

end 

display(counter) 
display(counter-p*lag) 

Fred=zeros(dim,dim,lag); 

counter=l; 
for c=l:dim 

for r=l:c 
for j=l:lag 

Fred(r,c,j)=B(counter); 
Fred(c,r,j)=Fred(r,c,j); 
counter=counter+l; 

end 
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end 
end 

display(counter-1) 
M=Fred 

%Getting the off diagonal values from the expeimental semivariogram 
matrices 
m=zeros(O.S*dim*(dim+1) ,lag); 
figure 
counter=1; 
for counter1=1:dim 

end 

for counter2=1:counter1 

end 

for i=1:lag 
m(counter,i)=M(counter2,counter1,i); 

end 
counter=counter+1; 

%%%%%%%%%%%%%%%%%%Experimental Cross semivariograms 
counter=1; 
mr=zeros(O.S*dim*(dim-1),lag); % mr=off diagonal values of exp 
semivariogram 

· md=zeros (dim, lag); % md=diagonal values of exp. 
semivariograms 
for i=1:0.5*dim*(dim+1) 

end 

if i==0.5*counter*(counter+1) 
md(counter, :)=m(i, :) ; 
counter=counter+1; 

else 
mr(i+1-counter, :)=m(i, :) ; 

end 

hold on 
l=linspace(StartH,EndH,lag); 
z=zeros(lag,1); 
plot (l,mr, '-*') 
plot(l,z, 'k--') 
xlabel ('Lag h (m) ') 
ylabel ('\gamma (h) ' ) 
hold off 
Ymin=(min(min(mr)))*1.1; 
Ymax=(max(max(mr)))*1.1; 
axis ( [Xmin Xmax Ymin Ymax]) 

%%%%%%%%%%%Legends for variables 
legendS= legend('Fe & Al_20_3', 'Si0_2 & Al_20_3'i 'SiO 2 & Fe', 'TiO 2 
& Al_20_3', 'Ti0_2 & Fe', 'Ti0_2 & Si0_2', 'Al_20_3 & LOI', 'LOI & 
Fe', 'LOI & Si0_2', 'LOI & Ti0_2', 'Location', 'NEO'); 

%%%%%%%%Titles 
h=Title('Cross Semivariograms of Standardised Variables') 
%h=Title('Cross Semivariograms of Normal Score Variables') 
set(h, 'FontSize',12, 'FontWeight', 'bold'); 

%%%%%%%%%%%%% ACDC Algorithms 

A0=[0.505 0.1385 -0.3394 -0.6989 -0.3494; 
matrix using standardised data 

-0.5197 0.1936 -0.2077 0.1586 
0.4069 -0.5783 0.467 0.1988 
0.4688 0.0715 -0.5987 0.6455 

-0.79; 
-0.4923; 
-0.0038; 
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0.2992 0.777 0.5149 0.1736 -0.1069]; 

%AO= [ 0.4995 -0.2914 -0.3244 0.7085 0.2416 %PCA eigenvector 
matrix using normal scores data 
% -0.5131 -0.3250 -0.1737 -0.1130 0.7670 
% 0.3927 0.6743 0.2085 -0.1020 0.5807 ; 

% 0.4789 -0.2269 -0.5185 -0.6711 0.0079; 
% 0.3220 -0.5507 0.7432 -0.1566 0.1273 l ; 

w=[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; %%%weigh vector 
NitTemp=1; 
TOL=1e-16; 

[A,D,Nit,Cls]=acdc(M,w,TOL); %%%%%%%%%% ACDC with no AO 
[A,D,Nit,Cls]=acdc(M,w,TOL,AO); %%%%%%%%%%ACDC with an AO 

%%%%%%%%%%%End of ACDC 

inv(A) %%%% transformation matrix 

display(M) % matrices of experimental semivariogram matrices 
b3=zeros(dim,dim,lag); 
for i=1:lag 

b3(:, :,i)=inv(A)*M(:, :,i)*inv(A 1
); %%Obtaining the Factor 

matrices 
end 
display(b3) % decorrelated factor matrices 

%%%%%%Getting the cross validation decorrelated Factor values from the 
matrices into vectors for plotting ) 

b=zeros(0.5*dim*(dim+1) ,lag); 

counter=1; 
for counter1=1:dim 

for counter2=1:counter1 
for i=1:lag 

b(counter,i)=b3(counter2,counter1,i); 

end 
end 

end 
counter=counter+1; 

figure 
counter=1; 
br=zeros(0.5*dim*(dim-1) ,lag); 
bd=zeros(dim,lag); 
for i=1:0.5*dim*(dim+1) 

end 

if i==0.5*counter*(counter+1) 
bd(counter, :)=b(i, :) ; 
counter=counter+1; 

else 
br(i+1-counter, :)=b(i, :) ; 

end 

hold on 
l=linspace(StartH,EndH,lag); 
z=zeros(lag,1); 
plot ( 1, br I I *- I ) 

plot(l,z, 1 k-- 1 ) 

xlabel ( 1 Lag h (m) 1 ) 

ylabel ( 1 \gamma (h) 1 
) 

% br=off diagonal factor values 
% bd=diagonal factor values 
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hold off 
Ymin=(min(min(br)))*1.1; 
Ymax=(max(max(br)))*1.1; 
axis([Xmin Xmax Ymin Ymax]) 
legendS= legend('AC1-AC2' 1 'AC1-AC3' 1 'AC2-AC3' 1 'AC1-AC4' 1 'AC2-
AC4'1 'AC3-AC4' I 'AC1-AC5'/ 'AC2-AC5'/ 'AC3-AC5' I 'AC4-
AC5' 1 'Location' 1 'NEO'); 
br; 

% Zeta values and plot 
yy=(br) ."2; 
zeta=sum(yy)*2 
figure 
l=linspace(StartH 1EndH 1lag) ;%****???? 
z=zeros(lag 11); 
plot(l 1zeta 1 'g-v' 1 1 1 Z 1 'k--') 
xlabel ('Lag h (m) ' ) 
ylabel('\zeta(h) ') 
z1=min(zeta) 
z2=max (zeta); 
Ymin=z1-(z1*0.1); 
Ymax=z2+(z2*0.1); 
axis([Xmin Xmax Ymin Ymax]) 
legend('\zeta(h) 1

1 'Location'/ 'NEO'); 

% Average Zeta Value 
Avezeta=sum(zeta)/lag 

%Tau Values and plot 
xx= sum(abs(br))*2; 
rr=sum (abs (bd)) ; 
tau= (xx) . I (rr) 
figure 
l=linspace(StartH 1EndH 1lag) ;%****???? 
z=zeros(lag 11); 
plot (1 1 tau/' r-*' 1 1 1 Z 1 'k--') 
xlabel ('Lag h (m) ') 
ylabel ( ' \tau (h) ' ) 
z1=min (tau); 
z2=max (tau); 
Ymin=z1-(z1*0.1); 
Ymax=z2+(z2*0.1); 
axis ( [Xmin Xmax Ymin Ymax]) 
legend('\tau(h) ' 1 'Location' 1 'NEO'); 

%Average Tau 
AveTau=sum(tau)/lag 

% Kappa Value and plot 
·jj=(mr) ."2; 
ori=sum(jj)*2; 
ii=zeta./ori; 
kappa=1-ii 
figure 
l=linspace(StartH1EndH 1lag); 
z=zeros(lag 11); 
plot(l 1kappa 1 'b-S 1 1l 1Z 1 'k--') 
xlabel ('Lag h (m) ') 
ylabel ( ' \kappa (h) ' ) 

z1=min(kappa); % very high negative values 
z2=max (kappa); 
Ymin=z1+(z1*0.1); 
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Ymax=z2-(z2*0.1); 
zl=min(kappa); % positive 
z2=max (kappa) ; 
Ymin=zl-(zl*O.l); 
%Ymin=O; 
Ymax=z2+(z2*0.1); 
axis([Xmin Xmax Ymin Ymax]) 
legend('\kappa(h) ','Location', 'NEO'); 

%Average Kappa 
AveKappa=sum(kappa)/lag 

%Plot for all spatial decorrelation measures 
figure 
linspace(StartH,EndH,lag); 
z=zeros(lag,l); 
plot(l,kappa, 'b-s' ,l,tau, •r-*' ,l,zeta, 'g-v' ,l,z, 'k--') 
xlabel ('Lag h (m) • ) 
ylabel('Decorrelation') 
Ymin=[]; 
Ymax=[]; 

% zl=min(kappa); % Very negative values 
% z2=max(zeta); 
% Ymin=zl+(zl*O.l); 
% Ymax=z2+(z2*0.1); 

Ymin=O; 
Ymax=l.OS; 
axis([Xmin Xmax Ymin Ymax]) 
%% Create legend 
legendl = legend('\kappa(h) ', '\tau(h) ', '\zeta(h) ','Location', 'NEO'); 
%%%%%%%%%%%%%Titles 

%h=Title('ACDC using Normal scores and AO_N_S') 
%h=Title('ACDC using Normal scores') 
h=Title('ACDC using Standardised scores and AO_S') 
%h=Title('ACDC using Standardised scores') 
set(h, 'FontSize' ,12, 'FontWeight', 'bold'); 

%%%%%%%% Eigenvalues of Experimental semivariogram matrices 
for i=l:lag 

eig (M ( : , : , i) ) 
end 

%%%%%%%%%%Average Spatial Decorrelation Measures 
Avezeta 
AveTau 
AveKappa 

%%%%%%%%%%%Plot the direct semivariograms 
m=zeros(O.S*dim*(dim+l) ,lag); 
figure 
counter=l; 
for counterl=l:dim 

for counter2=l:counterl 
for i=l:lag 

m(counter,i)=M(counter2,counterl,i); 

end 
end 

end 
counter=counter+l; 

counter=l; 
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mr=zeros(0.5*dim*(dim-1) ,lag); % mr=off diagonal values of exp 
semivariogram 
md=zeros(dim,lag); % md=diagonal values of exp. semivariograms 
for i=1:0.5*dim*(dim+l) 

end 

if i==0.5*counter*(counter+l) 
md(counter, :)=m(i, :) ; 
counter=counter+l; 

else 
mr (i+l-counter, :) =m (i, :) ; 

end 

hold on 
l=linspace(StartH,EndH,lag) ;%****???? 
z=zeros(lag,l); 
plot (l,md, '-*') 
plot (l, z, 'k-- ') 
xlabel ('Lag h (m) ' ) 
ylabel ('\gamma (h) ' ) 
hold off 
Ymin=(min(min(md))); 
Ymax=(max(max(md)))*l.l; 
axis([Xmin Xmax Ymin Ymax]) 

%Legends 
legendS = 
legend('Al 20_3', 'Fe', 'Si0_2', 'Ti0_2', 'LOI', 'Location', 'NEO'); 
%h=Title('Experimental Direct Semivariograms of Standardised 

Variables ' ) 
h=Title('Experimental Direct Semivariograms of Normal Score 
Variables' ) 
set(h, 'FontSize' ,12, 'FontWeight', •bold'); 

6.3 Spatial Decorrelation Code Using MAF and PCA Factors 
%M-File used to obtain MAF and PCA spatial decorrelation results 
clear; 
A=xlsread('F:\MAF&PCA_5V.xls', 'MAF5_S'); 
stats 

m=size(A,l); 

% Inputs 
dim=5; % Number of compunds 
lag=15; % Number of lags/matrices. 
StartH=6.959; %start of H 
EndH=209.877; % last H 
Xmin=O; % min x axis value 
Xmax=210; % max x axis value 

p=O; 
for i=l:dim 

p=p+i; 
end 

counter=l; 
B=zeros(p*lag,l); 
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for i=1:m 
if isnan(A(i,2)) II isnan(A(i,3)) 

else 

end 
end 

B(counter)=A(i,3) i 

counter=counter+1i 

display(counter) 
display(counter-p*lag) 

Fred=zeros(dim,dim,lag) i 

counter=1i 
for c=1:dim 

for r=1:c 
for j=1:lag 

Fred(r,c,j)=B(counter) i 

Fred(c,r,j)=Fred(r,c,j) i 

counter=counter+1i 
end 

end 
end 

display(counter-1) 

b3=Fred 
display(b3) % decorrelated matrices 

%Getting the cross validation decorrelated values from the matrices 
into 
%vectors for plotting 

b=zeros(0.5*dim*(dim+1) ,lag) i 

counter=1i 
for counter1=1:dim 

for counter2=1:counter1 
for i=1:lag 

b(counter,i)=b3(counter2,counter1,i) i 

end 
end 

figure 

end 
counter=counter+1i 

counter=1i 
br=zeros(O.S*dim*(dim-1) ,lag) i % br=off diagonal values 
bd=zeros(dim,lag) i % bd=diagonal values 
for i=1:0.5*dim*(dim+1) 

end 

if i==0.5*counter*(counter+1) 
bd(counter, :)=b(i, :) i 

counter=counter+1i 
else 

br (i+1-counter, :) =b (i, :) i 

end 

hold on 
l=linspace(StartH,EndH,lag) i 

z=zeros(lag,1) i 
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plot (l,br, '*-') 
plot(l,z, 'k--') 
xlabel ('Lag h (m) ' ) 
ylabel ('\gamma (h) ' ) 
hold off 
%end of boogie 
Ymin=-0.1S 
Ymax=0.1S 
%Ymin=(min(min(br)))*1.1; 
%Ymax=(max(max(br)))*1.1; 
axis([Xmin Xmax Ymin Ymax] )% might need to change (,, min value of b 
and maximum value of b) 

%LEGENDS 

legendS= legend('M1-M2'r 'M1-M3'r 'M2-M3', 'M1-M4', 'M2-M4', 'M3-M4 1 , 'M1-
MS'r 'M2-MS' 1 'M3-MS'r 'M4-MS', 'Location'r 'NEO'); 
%legendS= legend('PC1-PC2', 'PC1-PC3', 'PC2-PC3', 'PC1-PC4 1 , 'PC2-
PC4', 'PC3-PC4', 'PC1-PCS', 'PC2-PCS', 'PC3-PCS', 'PC4-
PCS'r 'Location'r 'NEO'); 
%h=Title('Cross Semivariograms of MAF Factors using Normal Scores'); 
h=Title('Cross Semivariograms of MAF Factors using Standardised 
Scores') 
set(h 1 'FontSize',12, 'FontWeight', 'bold'); 
br 
% zeta 
yy=(br) .A2; 
zeta=sum(yy)*2 
figure 
l=linspace(StartH,EndH,lag) ;%****???? 
z=zeros(lag 1 1); 
plot(l 1 zeta, 'g-v',l,z, 'k-- 1 ) 

xlabel ( 'Lag h (m) ' ) 
ylabel ( '\gamma (h) ' ) 
%z1=min (zeta); 
z2=max(zeta); 
Ymin=O; 
%Ymin=z1-(z1*0.1); 
Ymax=z2+(z2*0.2); 
axis ( [Xmin Xmax Ymin Ymax] ) 
legend('\zeta(h) ','Location', 'NEO'); 

% Average Zeta 
AveZeta=sum(zeta)/lag 

%tau 
xx= sum(abs(br))*2; 
rr=sum(abs(bd)); 
tau=(xx) ./(rr) 
figure 
l=linspace(StartH,EndH,lag) ;%****???? 
z=zeros(lag 1 1); 
plot(l,tau 1 'r-*' ,l,z, 'k-- 1 ) 

xlabel ('Lag h (m) ') 
ylabel ( '\gamma (h) 1 ) 

%z1=min (tau) ; 
z2=max (tau); 
%Ymin=z1-(z1*0.1); 
Ymin=O; 
Ymax=z2+(z2*0.1); 
axis([Xmin Xmax Ymin Ymax]) 
legend('\tau(h) ','Location', 'NEO'); 
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%Average Tau 
AveTau=sum(tau)/lag 

%Get the experimental semivariogram 
Al=xlsread('F:\ACDC_Standardised.xls', 'Sv'); %Original experimental 
semivariogram results 
%Al=xlsread('F:\ACDC3V.xls', '3v_loi+Ti02'); 

m=size(Al,l); 

% Inputs 
dim=5; % Number of compunds 
lag=15; %Number of lags/matrices. 
StartH=6.959; .% start of H 
EndH=209.877; % last H 
Xmin=O; % min x axis value 
Xmax=210; % max x axis value 

p=O; 
for i=l:dim 

p=p+i; 
end 

counter=l; 
B=zeros(p*lag,l); 
for i=l:m 

if isnan(Al(i,2)) II isnan(Al(i,3)) 

end 

else 
B(counter)=Al(i,3); 
counter=counter+l; 

end 

display(counter) 
display(counter-p*lag) 

counter=l; 
for c=l:dim 

for r=l:c 
for j=l:lag 

Fredl(r,c,j)=B(counter); 
Fredl(c,r,j)=Fredl(r,c,j); 
counter=counter+l; 

end 
end 

end 

display(counter-1) 
M=Fredl 

%kappa 

% Start of getting the off diagonal values from the origianl 
experimental 
% semivariograms matrices 
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m=zeros(O.S*dim*(dim+l) ,lag); 

counter=l; 
for counterl=l:dim 

for counter2=1:counterl 
for i=l:lag 

m(counter,i)=M(counter2,counterl,i); 

end 
end 

end 
counter=counter+l; 

counter=l; 
mr=zeros(O.S*dim*(dim-l),lag); % mr=off diagonal values of exp 
semivariogram 
md=zeros(dim,lag); % md=diagonal values of exp. semivariograms 
for i=l:O.S*dim*(dim+l) 

end 

if i==0.5*counter*(counter+l) 
md(counter, :)=m(i, :) ; 
counter=counter+l; 

else 
mr(i+l-counter, :)=m(i, :) ; 

end 

%end of getting values and start of kappa 

j j = ( mr) . "'2 ; 
ori=sum(jj)*2; 
ii=zeta./ori; 
kappa=l-ii 
figure 
l=linspace(StartH,EndH,lag) ;%****???? 
z=zeros(lag,l); 
plot(l,kappa, 'b-s',l,z, 'k--') 
xlabel ('Lag h (m) ' ) 
ylabel ( '\gamma (h) ' ) 
%zl=min(kappa) 
z2=max (kappa) ; 
%Ymin=Zl-(zl*O.Ol) 
Ymin=O; 
Ymax=z2+(z2*0.1); 
axis([Xmin Xmax Ymin Ymax]) 
legend('\kappa(h) ','Location', 'NEO'); 

%Average Kappa 
AveKappa=sum(kappa)/lag 

%plot all averages 
figure 
linspace(StartH,EndH,lag); 
z=zeros(lag,l); 
plOt ( l, kappa I I b- S I I 1, taU I I r- * I 1 l, Zeta 1 I g -V I I 1, Z 1 I k- - I ) 

xlabel ('Lag h (m) ' ) 
ylabel('Decorrelation') 
Ymin=[]; 
Ymax=[]; 
zl=min(zeta); 
Ymin=zl-(zl*O.S); 
Ymax=max(kappa)*l.l; 
axis( [Xmin Xmax Ymin Ymax]) 
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%% Create legend 
legendl = legend('\kappa(h) ', '\tau(h) ', '\zeta(h) ','Location', 'NEO'); 
%h=Title('MAF using Normal scores') 
h=Title('MAF using Standardised scores') 
set(h, 'FontS~ze' ,12, 'FontWeight', 'bold'); 
for i=l:l5 

eig (M ( : , : , i) ) 
end 

AveZeta 
A veT au 
AveKappa 

126 


	Comparison and application of three decorrelation methods PCA, MAF and ACDC
	Recommended Citation


