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a b s t r a c t

An advanced, proof-of-concept real-time plant discrimination system is presented that employs two vis-
ible (red) laser diodes (635 nm, 685 nm) and one near-infrared (NIR) laser diode (785 nm). The lasers
sequentially illuminate the target ground area and a linear sensor array measures the intensities of the
reflected laser beams. The spectral reflectance measurements are then processed by an embedded micro-
controller running a discrimination algorithm based on dual Normalised Difference Vegetation Indices
(NDVI). Pre-determined plant spectral signatures are used to define unique regions-of-classification for
use by the discrimination algorithm. Measured aggregated NDVI values that fall within a
region-of-classification (RoC) representing an unwanted plant generate a spray control signal that
activates an external spray module, thus allowing for a targeted spraying operation. Dynamic outdoor
evaluation of the advanced, proof-of-concept real-time plant discrimination system, using three different
plant species and control data determined under static laboratory conditions, shows that the system can
perform green-from-green plant detection and accomplish practical discrimination for a vehicle speed of
3 km/h.

� 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

To maximise crop yield, blanket spraying of herbicides and
insecticides is commonly used for weed and pest management.
The application of such chemicals is often done terrestrially using
an appropriately configured tractor or aerially, using a crop duster.
A cost effective system for weed control, using spot-spraying of
herbicides at appropriate periods during the cultivation cycle, is
of interest to farmers due to the associated benefits of managed
costs, reduced herbicide application and crop yield optimisation.

In recent years, the collective application of new technological
advancements and improved management practices to farming
has given rise to the field of Precision Agriculture (PA) (Zhang
et al., 2002), of which a major aspect is Site-Specific Crop
Management (SSCM) for optimised, efficient field-crop production.
The management of weeds through an agricultural crop’s growth
cycle, is one such area that has attracted considerable research
interest. Reviews by Zwiggelaar (1998) and Noble et al. (2002)
have concluded that weed/soil (green-from-brown) and crop/weed
(green-from-green) discrimination, utilising spectral reflectance
and hyperspectral/multispectral imaging techniques, has achieved

varying levels of success. In particular, spectral analysis has been
used as a method for discriminating plants from soil
(green-from-brown discrimination) (Felton and McCloy, 1992;
Brownhill, 2006). Fundamental work presented by Wang et al.
(2001) quantifies plant spectral characteristics by using five fea-
ture wavelengths and four normalised colour indices for crop/weed
(green-from-green) discrimination. The work led to the develop-
ment of an optical weed sensor capable of detecting wheat from
specific weeds under controlled laboratory conditions. More
recently, Deng et al. (2014) have investigated the application of
Support Vector Machine (SVM), Artificial Neural Network (ANN)
and Decision Tree (DT) based classifiers to compare the
classification rates for plant spectral measurements taken in the
350–760 nm visible wavelength range and the 350–2500 nm visi-
ble and NIR wavelength range. Experimentally, spectral irradiance
measurements for the test crop (corn) and weeds (Dchinochloa
crasgalli and Echinochloa crusgalli) were performed in the field,
using a handheld spectroradiometer, with results showing that
the visible light range proved adequate to meet discrimination
requirements for the given test plants. An innovative approach pre-
sented by Sahba et al. (2006) and Paap et al. (2008) demonstrated
generalised green-from-green discrimination using a novel optical
architecture, with the eventual objective of practical application of
the technology to weed treatment, using spot spraying in
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field-crop production. The application of hyperspectral measure-
ment techniques to the problem of crop/weed discrimination has
also been reported on in the literature. Shapira et al. (2010) have
investigated using ground based hyperspectral imaging to detect
grasses and broadleaf weeds among cereal and broadleaf crops.
The proximity based hyperspectral camera yielded hyperspectral
resolution with high spatial resolution, enabling considerable spec-
tral and spatial separation between crop and weed. In a different
approach, Eddy et al. (2013) have investigated the feasibility of
using reduced hyperspectral bandsets and ANN classification for
discriminating between crop-field pea (Pisum sativum), spring
wheat (Triticum aestivum), canola (Brassica napus) and weed-wild
oat (Avena fatua), redroot pigweed (Amaranthus retroflexus).
Reduced sets of narrow wave bands were created using Principal
Component Analysis and Stepwise Discriminant Analysis with
experimental results showing that plant discrimination using an
ANN classifier was feasible and could provide considerable compu-
tational savings due to the reduced data dimensionality. The draw-
back however, was the high overhead required to train the
classifier for successful operation.

This paper reports on recent results obtained from research into
the development of an advanced proof-of-concept real-time plant
discrimination system based on discrete spectral reflectance mea-
surements for green-from-green plant discrimination. The devel-
oped system is tested for the discrimination of Anthurium
(Anthurium andraeanum) from Sunkisses (Ipomoea batatas var. sun-
kisses) and Dandelion (Taraxacum officinale).

Experimental results show that practical green-from-green dis-
crimination at a farming vehicle speed of 3 km/h can be achieved.
At higher speeds, due to identified hardware limitations, the dis-
crimination capability and accuracy declines.

2. System overview

The real-time Plant Discrimination Unit (PDU) is comprised of
two 3-wavelength laser modules, two coated optical cavities, a
high-speed linear photodetector array in the form of a line scan

camera and an electronic circuit board housing six sub-modules,
Fig. 1. These are a laser driver, analogue and digital power supply
units, a temperature controller, a central processing unit, a spray
nozzle activator and a line scan camera driver. The PDU is robustly
packaged, using a rigid base plate and an accompanying light
weight dust cover, to overcome harsh operation conditions such
as shocks, vibrations and high temperatures.

The optoelectronic architecture of the PDU, as presented, has
the following benefits:

1. The collimated, split laser beams enable spectral reflectance
measurements to be taken from a small area of leaf of the target
plant.

2. The laser module beam combiner/optical cavity design enables
the laser beams to illuminate the same spot on the leaf, for all
wavelengths, making the measured spectral reflectance spa-
tially accurate with regards to different leaf morphologies.

3. The high dynamic range of the line scan sensor, when compared
with area scan sensors of the type used in multi-spectral
imaging, gives a better precision and a higher accuracy of the
measured spectral properties.

4. The low complexity of the discrimination algorithm means that
it is not computationally intensive, therefore providing true
real-time performance.

2.1. Vegetation illumination

Fig. 2 shows the layout of the plant discrimination unit and
illustrates how laser beams are generated to illuminate the
vegetation.

2.1.1. Beam generation
Each laser module uses three 4 mm collimated laser sources,

two red (635 nm and 685 nm) lasers and one near-infrared
(785 nm), with output power levels of 30 mW, 50 mW and
50 mW, respectively. Within a module, each laser is independently
mounted onto an alignment stage using alignment screws, so that
all laser beams are aligned along the same optical axis. Two fixed,

Fig. 1. Photograph of the developed real-time plant discrimination unit (PDU). It comprises two 3-laser modules with alignment and locking mechanisms, two optical
cavities, a high-speed linear photodetector array in the form of a line scan camera and an electronic motherboard housing six daughter-boards, namely a laser driver,
analogue and digital power supply units, a temperature controller, a central processing unit, a spray nozzle activator and a line scan camera driver.
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thin-film beam combiners are used to combine the laser beams, as
reported by Askraba et al. (2013). Once all laser beams emerging
from the laser module are collinear, overlapped and their polarisa-
tion directions are aligned, all laser stages are secured with locking
screws to prevent the lasers from moving during dynamic tests.

The collimated beams emerging from the laser module enter a
multi-spot beam generator, which consists of an optical cavity
coated with a reflective top (back) surface and non-uniform trans-
missive bottom (front) surface (Askraba et al., 2011, 2013). The
beam spot field of view coverage was improved, in comparison
to previously reported beam spot generators (Paap, 2014) by using
a longer cavity inclined at a greater angle of 23�. This configuration
increased the linear beam spacing from 12 mm in earlier proto-
types to 15 mm in the final prototype and also reduced the gap
between the two beams that are the closest to both sides of the line
scan sensor. The non-uniform transmissive front surface was a fun-
damental improvement that enhanced overall system perfor-
mance, leading to 4 mm wide collimated beams of almost similar
intensities.

2.1.2. Line scan sensor
The stability of the measured reflected laser intensities was cru-

cial to ensuring low false alarm rates as well as reliable and repeat-
able system performance. Accordingly, responsivity and switching
speed were critical parameters in the choice of line scan sensor. A
Hamamatsu S9227-03 CMOS linear image sensor, comprising a
single line of 512 photodiodes, was used in the PDU shown in
Fig. 1. In comparison to previously used sensors (Paap, 2014), the
S9227-03 exhibited much lower variation in pixel response,
Fig. 3, which yielded robust and repeatable measurements of spec-
tral properties.

System tests revealed that the outdoor performance of the line
scan sensor was noticeably degraded by ambient light, which, if
bright enough, caused the sensor to saturate, negating any form
of reliable spectral measurement. To address this problem and to
remove much of the broadband solar noise, a dual band-pass opti-
cal filter (Fig. 4) with pass-bands specified at 648 ± 43 nm and
783 ± 29 nm for the red (635 nm, 685 nm) and NIR (785 nm) wave-
lengths respectively, was designed and fitted to the front of the
sensor (Askraba et al., 2013; Paap, 2014).

Experimental outdoor tests with and without the solar filter,
show an average reduction of ambient light in the order of
65–75%, as shown in Fig. 5.

From a system perspective, the solar filter effectively increased
the sensor dynamic range, which in turn improved the optical
signal-to-noise ratio (OSNR) of the measured spectral reflectance
signal levels. For captured unfiltered/filtered measurements, the
difference in the noise bandwidths of the data prevents direct com-
parison of signal-to-noise ratio improvements. A relative measure
of the improvement in dynamic range is possible by defining the
figure-of-merit (q):

q½i� ¼ S½i�
S½i� þ NAmbient½i�

for i ¼ 1::512

where S[i] is the raw 10-bit signal value at pixel i and NAmbient[i] is
the raw 10-bit background noise value at pixel i. Defining
qUnfiltered and qFiltered as the figures-of-merit for unfiltered and fil-
tered spectral reflectance measurements respectively, a measure
of the relative improvement in the dynamic range is given by:

Fig. 2. Layout of the real-time plant discrimination unit, illustrating (laser) optical path and 4 mm collimated multi-spot beam generation over an approximate span of
450 mm.
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DDR ¼
qFiltered

qUnfiltered

Experimental results illustrating the relative dynamic range
improvement obtained on using the solar filter are presented in
Figs. 6–8. The data was captured on an overcast day with a mea-
sured ambient light level of 4000 lux and an S9227-03 exposure
time of 0.25 ms. The PDU, mounted on a static holding frame, cap-
tured reflectance levels from a uniform green test card placed
950 mm vertically beneath the PDU, with the card sequentially illu-
minated by the individual 635 nm, 685 nm and 785 nm lasers.

It is important to point out that the relative improvement
of dynamic range is dependent upon the measurement
conditions – laboratory, with artificial lighting; outdoors full shade,
part shade, overcast or full sun with clear skies. Real-world
statistical characterisation of the improvement in dynamic range
is therefore complex.

2.2. Control unit

The control unit of the PDU encompasses the modules and
functionality that allow for intelligent control of the optics unit,
targeted spraying and external communications with the PDU.

2.2.1. Microcontroller
To perform successful discrimination and targeted spraying in

real-time at adequate farming vehicle speeds, all requisite data
acquisition and calculations must be completed within a fixed time
frame. Failure to do so would mean that the system could inadver-
tently spray crops and not detected weeds.

For a collimated beam diameter of 4 mm, the processing time
was constrained by the fact that on performing a measurement,
the microcontroller must complete all calculations before the plat-
form moves forward by 4 mm to the next measurement position.
Fig. 9 shows the constrained processing time versus vehicle speed,
for a 4 mm collimated beam diameter. It is clear from Fig. 9 that,
for an initial target vehicle speed of 10 km/h, a processing time
of 1.440 ms per discrimination cycle is required.

The microcontroller chosen to meet the processing time
requirement was the Microchip dsPIC33F, which is a 16-bit, 40
MIPS digital signal controller with a modified Harvard architecture
and direct support for both integer and Q15/Q30 fractional arith-
metic. Theoretically, the microcontroller was capable of executing
57,600 instructions in 1.440 ms, which proved adequate for the

Fig. 4. Measured optical transmittance of the dual band-pass solar filter designed to
reduce sensor noise due to ambient light level. Transmission characteristics of
T635 = 95.7%, T685 = 96.1% and T785 = 95.8% were achieved for an incident angle of 0�,
and T635 = 95.1%, T685 = 85.8% and T785 = 98.7% for an incident angle of 20�.
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Fig. 6. (a) 635 nm wavelength raw 10-bit unfiltered/filtered spectral reflectance measurements. It is clear from the presented data that the solar filter effectively reduces the
level of measured background noise due to the ambient light. (b) The relative improvement to the peak signal dynamic range, which can be attributed to the use of the dual
band-pass solar filter.

Fig. 7. (a) 685 nm wavelength raw 10-bit unfiltered/filtered spectral reflectance measurements. It is clear from the presented data that the solar filter effectively reduces the
level of measured background noise due to the ambient light. (b) The relative improvement to the peak signal dynamic range which can be attributed to the use of the dual
band-pass filter.
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low overhead discrimination algorithm, written in the C program-
ming language.

The line scan data was acquired through a single channel of the
multiplexed 13-channel on-chip analogue-to-digital converter,
configured for 10-bit, 500 ksps operation. At 500 ksps operation,
a single sensor read of 512-pixels took a time of 1.024 ms and this
was a hardware-related limitation for operating the PDU at higher
speeds. This is because four sensor reads are performed on a per
scan basis amounting to a total sensor access time of 4.096 ms,
which, after factoring in the processing time required by the dis-
crimination algorithm, effectively limits the current vehicle speed
at which the prototype PDU can operate, to around 3.5 km/h
(Fig. 9).

3. Algorithm development and testing

Reliable and repeatable classification performance for real-time
plant discrimination, using discrete spectral reflectance measure-
ments, requires the identification of a set of spectral reflectance
features for the target crops/weeds.

3.1. Spectral reflectance and defined discrimination parameters

The line scan sensor captures the diffuse, reflected light inten-
sity from illuminated targets at the wavelengths (k) 635 nm,
685 nm and 735 nm. The inferred target reflectance (Holland
et al., 2012) for the individual beam-spots i, denoted as Rk[i], is cal-
culated using the expression:

Fig. 8. (a) 785 nm wavelength raw 10-bit unfiltered/filtered spectral reflectance measurements. It is clear from the presented data that the solar filter effectively reduces the
level of measured background noise due to the ambient light. (b) The relative improvement to the peak signal dynamic range which can be attributed to the use of the dual
band-pass filter.
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Rk½i� ¼ Vk½i�Nk½i� for i ¼ 1::512

where Vk[i] is the measured sensor response, in digital numbers of
the ith beam and Nk[i], a normalisation factor for each beam, calcu-
lated as:

Nk½i� ¼
Pref

Pk½i�

The value Pref is a reference beam optical power (BOP) and Pk[i], the
optical power of the ith beam at wavelength k.

With reference to a typical reflectance spectrum for a healthy
plant leaf shown in Fig. 10, it is possible to define a set of features
that, collectively, can be used for plant discrimination.

Various identified features are defined as follows:

1. Slopes S1 and S2: These measurements provide for
green-from-green discrimination (Sahba et al., 2006; Paap
et al., 2008) and are defined as:

S1,
R635 � R685

k685 � k635

and

S2,
R785 � R685

k785 � k685

2. Normalised Difference Vegetation (or Vegetative) Index (NDVI):
The NDVI is a dimensionless quantity that provides a measure
of whether the target under observation contains live vegeta-
tion or not. Healthy, living plants absorb most of the visible
light that falls on them and reflect the NIR portion. In particular,
the most defining information on vegetation is given by the dif-
ference in measured reflectance between the visible red and
NIR wavelengths, as illustrated by the ‘‘red edge’’ of Fig. 10.
Using these two bands, the NDVI is defined as:

NDVI,
RNIR � RRED

RNIR þ RRED

For the two red lasers of 635 nm and 685 nm wavelengths, it is
possible to define the following NDVIs:

NDVI635,
R785 � R635

R785 þ R635

and

NDVI685,
R785 � R685

R785 þ R685

On an individual basis NDVI685 can be used for
green-from-brown discrimination (Paap, 2014).

3. Red Difference Index (RDI): This index is similar to the NDVI but
is defined for the two red wavelengths as follows:

RDI,
R635 � R685

R635 þ R685

Note that not all of the identified parameters are necessarily
suitable for green-from-green discrimination. The slope values
S1 and S2 provided reliable green-from-green discrimination
under static conditions in a controlled laboratory environment.
However, in a dynamic outdoor environment it was found that
platform dynamics and factors affecting reflection, such as the
distance of the sensor from the leaf, the orientation of the leaf
and the exposure time of the line scan sensor, collectively
resulted in varying reflected laser intensities, which thwarted
the usefulness of these two parameters. Data normalisation
was able to remove many of the aforementioned factors and
the NDVI635 and NDVI685 parameters were more reliable dis-
criminants than the RDI parameter. It was experimentally found
that, when an incident beam was illuminating a leaf, the vari-
ability in the red laser peak values led to errors in the measured
spectral properties. With low red peak values, the variance of the
RDI parameter was significantly larger than those of the NDVI
parameters. This discovery discounted the use of the RDI param-
eter as a discriminant.

3.2. Discrimination algorithm

Fig. 11 shows a functional block diagram that details the data
processing stages of the discrimination algorithm on a per scan
basis, where, as illustrated, a single scan consists of:

1. Ambient light level measurement, with all lasers turned off.
2. 635 nm red laser reflectance measurement.
3. 685 nm red laser reflectance measurement.
4. 785 nm NIR laser reflectance measurement.

On a per scan basis, the individual measured reflectance levels
were then adjusted by subtracting the measured background to
produce three independent 512 element data vectors denoted by

V
!

635, V
!

685 and V
!

785. Using a defined peak threshold, Tpeak, peak

detection on the adjusted V
!

785 values was performed. The peak

detection algorithm scanned the V
!

785 data for values above Tpeak,
performing two operations, namely, (1) single peak identification,
representative of either a full leaf strike or ground strike, and (2)
dual peak identification, representative of a partial leaf strike. For
detected peaks corresponding to full leaf or ground strikes, the
start pixel index, end pixel index and local maximum value were
stored. Detected dual peaks corresponding to partial leaf strikes
were flagged, as the peak information could not be used further
by the discrimination algorithm. On completion, the output of
the peak detection algorithm was a 1 � 30 vector denoted by

V
!

785 PKs. Using the valid located peaks stored in V
!

785 PKs the corre-

sponding peak values in the V
!

635, V
!

685 and V
!

785 vectors were
extracted and the inferred target reflectance values calculated
using measured BOP values stored in a lookup table (LUT).
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Finally, using the measured reflectance values, the corresponding

30 element NDVI635 and NDVI685 vectors, denoted by X
!

NDVI635 and

Y
!

NDVI685 , were calculated.
A green-from-brown test eliminated non-plant NDVI measure-

ments, with subsequent plant discrimination achieved by classify-
ing the calculated bivariate NDVI values for detected green plant
material according to a predetermined Region-of-Classification
(RoC) LUT. Depending upon the number of plant species N to be
discriminated, the RoC LUT contained N parallelogram
co-ordinate values that defined unique non-overlapping regions
in NDVI635 and NDVI685 space. The discriminator output was an

N � 30 vector denoted by Z
!

Classified, that contained all of the
NDVI635 and NDVI685 data pairs allocated to one of the N possible
predetermined regions-of-classification, where the vector length
was determined by the maximum possible number of measure-

ments on a per scan basis. Z
!

Classified was then processed for plant
strikes, where a strike was deemed to have happened when mea-
sured NDVI values from an unwanted plant fell within a specified
RoC. To reduce the false alarm rate of the algorithm and to improve
the PDU’s robustness and reliability, the strike detection algorithm
was based on a running strike aggregate counter, which averaged
the NDVI measurements of all of the individual beam strikes for
a particular RoC. If a specified detection threshold Taggregate was
exceeded, the strike was deemed valid and a plant spray signal
generated.

3.3. Test methodology

The performance of the developed PDU was evaluated under
static and dynamic conditions with three broad leafed, potted
plant species Anthurium (Anthurium andraeanum), Sunkisses
(Ipomoea batatas var. sunkisses) and Dandelion (Taraxacum
officinale).

For static tests, a vertically adjustable frame, shown in Fig. 12,
was built to hold the PDU under test. Control data for determining
the three regions-of-classification were captured under laboratory
conditions using the 15 beams from one side of the PDU (Fig. 2).
Experimentally, to reduce the measured reflectance of the scat-
tered NIR wavelength, each sample leaf was placed on a 4 mm
thick clear acrylic stage located on the floor. By adjusting the
height of the PDU, the sample leaves were positioned at a distance
of 900 mm above the sensor. To ensure that the reflectance mea-
surements made were dominated by diffuse reflection and not
biased by specular reflection captured by the line scan sensor, each

leaf was tilted 25� with respect to the incident light. A single mea-
surement trial, consisting of NDVI measurements for each of the
individual 15 beams, was recorded for three different locations
on the sample leaves, with care taken to avoid leaf midrib mea-
surements. This generated a total of 45 static (NDVI635, NDVI685)
measurement sets per sample leaf.

Dynamic outdoor tests were conducted with the PDU mounted
on a frame attached to a motorised quad bike (Fig. 13). An alu-
minium shroud with plastic brushing down to the ground on the
sides was used to block the ambient light level. The three test
plants were placed in the ground along a defined test circuit and
the quad bike driven around the circuit at an average speed of
3 km/h. On each pass of a detected test plant, the measured
NDVI values were recorded.

Regions-of-classification defined using control data measured
under laboratory conditions, offered a worst case test scenario
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Fig. 11. Functional block diagram detailing the data processing stages of the discrimination algorithm implemented on the dsPIC33F embedded digital signal controller, on a
per scan basis.

Fig. 12. Illustration of the static experimental setup used for plant spectral
reflectance measurements.
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for evaluating the dynamic performance of the experimental
proof-of-concept system. The capability of the system to discrimi-
nate the test plants outdoors, under different ambient lighting
using NDVI values, calculated in real-time from dynamic spectral
reflectance measurements, directly tests the practical validity of
the dual NDVI discrimination approach.

4. Results and discussion

4.1. Static plant characterisation

Plotting the calculated bivariate NDVI635, NDVI685 values in the
form of a scatter plot, for the measured test plant control data,
revealed distinct, non-overlapping clusters, where the data groups
displayed a definite linear dependency. This observed dependency
can be attributed to the common 785 nm peak value used in the
calculation of both NDVI parameters, which results in a weak pos-
itive correlation between the two values.

With reference to Fig. 14, which shows a scatter plot of
(NDVI635, NDVI685) values for a single cluster of Anthurium, it is

clear from the plotted data that it is possible to use a rectangle,
rotated rectangle or parallelogram to define a unique RoC. A paral-
lelogram based RoC provided an optimal enclosure to the data
spread, with the lower and upper limits of the parallelogram spec-
ified by min{NDVI685} and max{NDVI685}, respectively.

The angled sides of the parallelogram were determined
through the application of regression analysis. A linear fit was
performed on the data and the standard error (S) of the regres-
sion was calculated. In practical terms, the RoC determined from
the measured control data, represents the range that a single
new measurement is likely to fall within. Statistically, this range
can be estimated using the standard error of the regression, to
give a prediction interval. By linearly scaling S, it was possible
to define an RoC so that it encompassed all of the control
data for a test plant, without intersecting neighbouring
regions-of-classification. Following this procedure, Fig. 15 shows
the scatter plots for measured (NDVI635, NDVI685), for Anthurium,
Sunkisses and Dandelion, under laboratory conditions. Three
distinct regions-of-classification were clearly defined in Fig. 15
using scaling factors of 4, 5 and 3, which correspond to predic-
tion intervals of 99.99%, 99.99% and 99.73% for Anthurium,
Sunkisses and Dandelion, respectively.

In the experiments, the defined regions-of-classification
were, at the lowest level, the decision rule for plant classification
and subsequent strike event generation for dynamic system
operation.

4.2. Dynamic performance

Two dynamic tests were performed. In the first, each plant was
passed over 5 times at a speed of 3 km/h. Due to differences in
plant sizes, a total of 916 NDVI measurements for Anthurium,
305 for Dandelion and 560 for Sunkisses were captured. The results
obtained are presented in the form of scatter plots Figs. 16–18,
with two scatter plots given per test plant. The first scatter plot dis-
plays the discrimination of the dynamic measurements for the test
plant based on the defined regions-of-classification. The second
scatter plot illustrates the spread of the measurements by plotting
those that, whilst identified as green, fall outside the defined
regions-of-classification. In the operational context of the
proof-of-concept system, these results emphasise the effectiveness
of adopting the regions-of-classification definition for accurate
green-from-green plant discrimination.

It is clear from Figs. 16–18 that the control data captured under
laboratory conditions resulted in sub-optimal regions-of-classification
for testing the outdoor operation of the proof-of-concept system.
Furthermore, the spread of the measurements for the individual test

Fig. 13. Dynamic experimental setup used for plant spectral reflectance measure-
ments. The PDU used is that shown in Fig. 1 and the visible plant is an Anthurium.

Fig. 14. Grouped Anthurium NDVI values calculated from the measured control
data. Performing a linear fit to the points yields a reasonable coefficient of
determination (R2) and enables the determination of a parallelogram RoC using the
calculated standard error (S) of the regression. For the illustrated RoC, 68% of
observations should fall within ±S from the regression line, which is a quick
approximation of the 68% prediction interval.
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plants illustrates the complexity arising from data variability obtained
on performing dynamic measurements outdoors, under real-world
conditions.

In the second test, two trials, consisting of 2 scans per plant per
trial, were conducted at a vehicle speed of 3 km/h. In this test, dual
NDVI measurements falling within the defined regions-of-classification

Fig. 16. (a) The discrimination of Anthurium at 3 km/h, using dual NDVI measurements calculated in real-time. Misclassification occurred with Anthurium NDVI values
falling in the regions-of-classification for Sunkisses and Dandelion. However, through data aggregation the plant is identified as Anthurium. (b) Dual NDVI measurements that
fall outside the defined regions-of-classification. These measurements illustrate the data spread arising from the complexities of performing dynamic measurements outdoors
under real-world conditions.

Fig. 17. (a) The discrimination of Dandelion at 3 km/h, using dual NDVI measurements calculated in real-time. Misclassification occurred with Dandelion NDVI values falling
in the RoC for Sunkisses, however, through data aggregation the plant cannot be identified as Dandelion. (b) Dual NDVI measurements that fall outside the defined regions-of-
classification.
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were aggregated, with an experimental aggregation threshold used
to generate a single plant strike decision. The aggregation thresh-
old was manually set so that the effects of threshold level on system
performance could be ascertained. Measured dual NDVI values falling
outside the regions-of-classification were ignored. In the first trial,
Anthurium and Dandelion were the target plants, while in the second
trial, the target plants were Sunkisses and Dandelion. For ease of
interpretation, the results obtained are presented in the form of scatter
plots in Figs. 19–22, with two scatter plots given per test plant. The first

scatter plot displays the distribution of the accepted dual NDVI values
calculated from the measured spectral reflectance, with respect to the
defined regions-of-classification. The second scatter plot illustrates the
discrimination algorithm output after aggregating and thresholding
the accepted NDVI values.

Fig. 19(a) shows the distribution of the calculated dual NDVI
values for Anthurium, for a vehicle speed of 3 km/h. It is noticed
that with no NDVI aggregation, overlap of the regions-of-
classification leads to the misclassification of Anthurium as

Fig. 18. (a) The discrimination of Sunkisses at 3 km/h, using dual NDVI measurements calculated in real-time. Misclassification occurred with Sunkisses NDVI values falling in
the RoC for Dandelion, however, through data aggregation the plant is identified as Sunkisses, (b) dual NDVI measurements that fall outside the defined regions-of-
classification.

Fig. 19. (a) Distribution of the dual NDVI values calculated from the real-time spectral reflectance measurements for Anthurium, for a vehicle speed of 3 km/h. With no data
aggregation the misclassification of Anthurium as Sunkisses and Dandelion, degrades system performance. (b) Correct discrimination algorithm output for a data aggregation
threshold of 15. The single point is the calculated mean of the bivariate (NDVI635, NDVI685) data.
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Sunkisses and Dandelion, thus degrading the accuracy of the PDU.
Fig. 19(b) shows the distribution of the NDVI values for Anthurium
when the discrimination algorithm included data aggregation with
a threshold of 15. In this case, a single point, representing the
mean of the bivariate (NDVI635, NDVI685) data, is displayed in the
RoC of Anthurium, indicating a correct discrimination result.

Fig. 20(a) shows the distribution of the dual NDVI values calcu-
lated from the spectral reflectance measurements for Sunkisses, for
a vehicle speed of 3 km/h. With no data aggregation, overlap is
seen between the regions-of-classification for Sunkisses and
Dandelion, leading to the misclassification of Sunkisses as
Dandelion. Using data aggregation with a threshold of 3, a single
point can be attained in the RoC of Sunkisses, as displayed in
Fig. 20(b).

The distribution of the dual NDVI values for Dandelion is shown
in Fig. 21(a), for a vehicle speed of 3 km/h. Again, the overlap
between the regions-of-classification for Dandelion and Sunkisses

is overcome using data aggregation with a threshold of 7, as evi-
denced from Fig. 21(b).

Finally, it is important to mention that when the vehicle speed
was increased to 6 km/h, the aggregation algorithm failed to
discriminate between Dandelion and Sunkisses even when thresh-
olding has been optimised. In this case, the distribution of the dual
NDVI values for Dandelion is shown in Fig. 22(a).

The overlap between the regions-of-classification for
Dandelion and Sunkisses cannot be overcome using strike
aggregation with an optimum threshold of 10, as evidenced from
Fig. 22(b). This is attributed to the real-time processing
constraint discussed in Section 2.2.1. The improvement of the
discrimination accuracy at high vehicle speeds requires (i) a
higher speed, low noise, high sensitivity line scan sensor, (ii) a
faster analogue-to-digital converter, and (iii) reduction of the
exposure time of the sensor, which depends on the output laser
intensities.

Fig. 20. (a) Distribution of the dual NDVI values calculated from the real-time spectral reflectance measurements for Sunkisses, for a vehicle speed of 3 km/h. With no data
aggregation the misclassification of Sunkisses as Dandelion, degrades system performance. (b) Correct discrimination algorithm output for a data aggregation threshold of 3.
The single point is the calculated mean of the bivariate (NDVI635, NDVI685) data.

Fig. 21. (a) Distribution of the dual NDVI values calculated from the real-time spectral reflectance measurements for Dandelion, for a vehicle speed of 3 km/h. With no data
aggregation the misclassification of Dandelion as Sunkisses, degrades system performance. (b) Correct discrimination algorithm output for a data aggregation threshold of 7.
The single point is the calculated mean of the bivariate (NDVI635, NDVI685) data.
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5. Conclusion

The performance of an advanced real-time plant discrimination
system, employing two red laser diodes (635 nm, 685 nm) and one
near-infrared laser diode (785 nm) in conjunction with a linear
sensor array, has been investigated experimentally. Experimental
results have shown that the use of dual Normalised Difference
Vegetation Indices (NDVI) in conjunction with data aggregation
and threshold optimisation significantly enhances the
green-from-green discrimination capability of the plant discrimi-
nation system.

The outdoor performance of the advanced real-time plant
discrimination system has been evaluated, using three different
plant species, Anthurium, Sunkisses and Dandelion. Experi-
mental results have demonstrated that the system can attain
reliable plant detection and practical discrimination at a vehicle
speed of 3 km/h.

Future work is focusing on (a) achieving high detection accu-
racy at a target vehicle speed of 10 km/h, by addressing known sys-
tem limitations, (b) further researching the concept of aggregating
and thresholding plant NDVI measurements within defined
regions-of-classification with the objective of statistically based
automated threshold determination, for making single plant strike
decisions, and (c) the statistical determination of optimal
regions-of-classification for calibrating the PDU in-situ, prior to
use.
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