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Abstract 

Ca/othamnus sp. Whicher (Myrtaceae) is a narrow range endemic shrub restricted 

to ironstone soils near the town of Busselton in south-western Australia. Due to 

extensive land clearing for agriculture and mineral exploration, the species is 

fragmented over the majority of its range. In the present study, microsatellite 

markers were used to characterise levels of genetic diversity and describe levels of 

differentiation and gene flow among seven small, isolated road verge populations. 

Allelic diversity within the taxon over the six microsatellites was high (A = 17.6 ± 

1.6). Diversity within populations was considerably lower (A = 5.19 ± 1.27), and was 

positively correlated with population size. An excess of homozygotes and high 

fixation indices in all populations (mean F18 = 0.315 ± 0.13) indicated that 

inbreeding within populations was high. Estimates of the divergence in allele 

frequencies between populations (global 8 = 0.256) and genetic distance (mean 

Nei's D = 0.370) revealed a distinct genetic structure within the study sample. 

Direct estimates of gene flow, determined by assigning paternity to seed crops from 

the two largest populations, were low (2.7% and 4%), yet similar to historical 

estimates derived from the degree of differentiation between populations. However, 

due to the degree of inbreeding within these populations and their susceptibility to 

genetic drift, these historical estimates appeared to be a consequence of post 

fragmentation rates of gene flow rather than reflecting pre-fragmentation rates. Low 

levels of gene flow into the two largest populations and restricted within population 

patterns of mating were supported by high global (among population) and mean 

pairwise (within population) estimates of <Prt, which represents the degree of 

differentiation between maternally sampled pollen pools. 

The differentiation observed between populations is most likely a result of post

fragmentation processes rather than being driven by mutation and maintained by 

low levels of historical gene flow. The six natural road verge populations observed 

in this study were likely to be part of one or more larger, continuous populations 

similar to those which are located in relatively undisturbed fragment.s of natural 

vegetation. Initially, differentiation within these populations probably resulted from 

their small sizes and the heterogeneous fine scale genetic structure within the 

larger population(s) from which they originated. Further differentiation appears to 

have resulted from· ·extensive inbreeding within populations and the increased 
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vulnerability to drift associated with decreasing population size. Results from other 

studies, including that conducted on the closely related species Calothamnus 

quadrifidus (Byrne eta/., in press), suggest that fragmentation has reduced rates of 

gene flow from higher historical levels. However, the detection of some gene flow 

events across the breadth of the study site suggests that isolation itself was not 

preventing gene flow. Rather, the loss of natural vegetation may have reduced the 

abundance of bird pollinators. The conservation and evolutionary implications of 

these findings are discussed. 

iii 



Acknowledgments 

I would like to thank my supervisors, Margaret Byrne and lan Bennett for their 

guidance throughout this project. It has been a privilege to work with a geneticist of 

Margaret's calibre for the last year. I have learned a great deal about the discipline 

and am grateful for the opportunity to take on such a challenging project. I only 

hope that I have done it justice. Of all the lecturers I have had during my time at 

Edith Cowan University, lan has been the most influential. He provided me with a 

learning environment that allowed me to constantly challenge myself, and I 

suspect, that with all of the questions that I have asked over the years, this would 

have been much more work than simply spoon-feeding me. Thanks for going above 

and beyond the call of duty; I owe you a beer. 

Thanks to all of the students and staff at the Department of Environment and 

Conservation Science Division (Como), including Melissa Millar, Shelley McAurthur, 

Chris Jones and Maggie Hankinson. However, three people deserve special 

thanks. To Lyn Wong, thankyou for all of your help with sample preparation. I could 

not have done it without you. To Jane Sampson, thank you for teaching me the 

secrets to casting the perfect polyacrylamide gel. Also, your witty humour made 

even the most laborious activities enjoyable (yes, I am referring to the flicking and 

spinning!). Finally, to Bronwyn McDonald for everything; I don't know how you keep 

up with it all! 

Special thanks goes to my fellow honours students, Helen Barwick, Tonja Boyd, 

Caroline Canham, Emily Gates and Bee Parsons, who rode this strange torpedo 

with me. I could not have picked a better group of people to share this experience 

with. Good luck to you guys in everything that you do post-honours. Keep in touch. 

I would also like to thank a number of other students that I commonly encountered 

whilst traversing the corridors of building 19 in search of company, coffee of 

procrastination. These include David Blake, Craig Pentland, Megan Oman, Steven 

Danti, Tina Lamey, Nathan Rowe, Quinton Burnham and John Bunn. 'Star' 

students include Vishal Darji and Alicia Dudzinska, both of whom are one of kind; 

I'm gonna miss you two, but for very different reasons! 

To the following academic staff at ECU, Will Stock, Ray Froend, Annette Koenders 

and Pierre Horwitz, thanks for everything this year, and during the first three years 

of my undergraduate degree. Thanks also go to the SoNS technical staff, including 

iv 



Simon Collis, Clay Millar, Jon Luff, and Brad Mettam. I would also like to 

acknowledge the SoNS Centre for Ecosystem Management who contributed 

funding which assisted in the completion of this project. 

I would also like to thank my mates who did a fantastic job keeping me in touch with 

the outside world. In particular I would like to thank Danielle Stone, Ben 'rawcus' 

Caple, Damian McManus, Martin Feichtinger, Belle Pichio, Daniel Olsen and 

Robert 'McDoogle' McDonald. I would also like to thank Simon Judd, Alexander 

Watson, Alistair Swan, Dean Lewis and Anica Wilson. Although I have not been in 

regular contact with these people, I believe that they have played a critical role in 

getting me to where I am today. 

My immediate family Bob, Ann and Carla Stankowski have been amazing. I really 

could not have done it without the.ir moral, financial and emotional support. As I 

suspected, the above sentence does them no justice. In addition, I would like to 

thank other members of the family, the Giles, the Daveys and the South Australian 

Stankowski clan (particularly Uncle Steve) for words of encouragement. 

Finally, I would like to thank Elissa 'Fiippa' Zisis. I'm not sure how you kept me 

motivated from all the way over there, but you really made getting up each morning 

a hell of a lot easier. Cheers mate. Look forward to having 'that' beer with you soon. 

v 



Table of Contents 

Declaration 

Abstract 

Acknowledgements 

Table of Contents 

List of Tables 

List of Figures 

Chapter 1: Thesis overview 

1.1 The global loss of biodiversity 

1. 1. 1 Threats to global biodiversity 

1.2 The biological consequences of fragmentation 

1.2.1 The genetic consequences of fragmentation 

1. 2. 1. 1 The effects of reduced population size 

1.2.1.2 The effects of increased spatial isolation 

1.3 Gene flow 

1.3.1 Mechanisms for gene flow 

1.3.1.1 Pollen dispersal vectors 

1.3.2 The effects of fragmentation on pollen mediated gene flow 

1.4 Estimating pollen mediated gene flow 

1.4.1 Observational methods 

1.4.2 Indirect estimates from population genetic structure 

1.4.3 Direct estimates from molecular markers 

1.4.3.1 Paternity assignment 

1.4.3.2 TwoGener analysis of pollen pool structure 

1.4.3.3 Suitable genetic markers for direct gene flow 

estimates· ·. 

vi 

ii 

iv 

vi 

ix 

xi 

1 

2 

2 

3 

5 

5 

6 

6 

6 

7 

7 

7 

8 

8 

10 

11 

11 

12 



1.5 Hotspots of biodiversity 

1.5.1 The Southwest Australian Floristic Region 

1.5.2 Fragmentation in the Southwest Australian Floristic Region 

1.5.3 The species: Calothamnus sp. Whicher 

1.6 Thesis aims 

1.7 Thesis structure 

Chapter 2: General materials and methods 

2. 1 Study site and population descriptions 

2. 2 Collection of leaf material and seed samples 

2.3 Seedling establishment 

2.4 Preparation of plant material and DNA extraction 

2. 5 Microsatellite amplification and characterisation of alleles 

Chapter 3: Genetic diversity and differentiation 

3.1 Introduction 

3.2 Materials and methods 

3.3 Results 

3.3. 1 Resolution of individuals and genetic diversity 

3.3.2 Population genetic structure and differentiation 

3.4 Discussion 

Chapter 4: Gene flow 

4.1 Introduction 

4.2 Materials and methods 

4.3 Results 

vii 

13 

13 

13 

14 

15 

17 

19 

20 

28 

28 

29 

30 

32 

33 

34 

35 

35 

37 

43 

48 

49 

50 

51 



4.3. 1 Microsatellite characteristics, paternity assignment and 

outcrossing rates 

4.3.2 Gene flow 

4.3.3 Within population patterns of dispersal 

4.3.4 Pollen pool differentiation 

4.4 Discussion 

Chapter 5: General discussion 

5.1 A consequence of fragmentation? 

5. 1. 1 Influence on pattens of genetic differentiation 

15.1.21mpacts on gene flow 

5.1.3 Summary of likely fragmentation effects 

5.2 Evolutionary implications 

5.3 Implications for conservation 

5.3.1 Direct conservation outcomes for the study populations 

5.3.2 Implications for the conservation of other species in 

fragmented landscapes 

5.4 Conclusion and future research priorities 

References 

viii 

51 

52 

53 

56 

58 

67 

68 

68 

69 

71 

73 

73 

74 

74 

75 

78 



List of tables 

2.1 The characteristics of the seven populations of Ca/othamnus 

sp. Whicher examined. 

2.2 Details of primer sequence, amplification conditions and dye 

set characteristics for six microsatellite loci designed for 

Ca/othamnus quadrifidus as used in the present study of 

Ca/othamnus sp. Whicher. 

3.1 Allele diversity characteristics for six microsatellite loci in 

Ca/othamnus sp. Whicher. 

3.2 Genetic diversity statistics for seven populations of 

Calothamnus sp. Whicher based on six microsatellite loci. 

3.3 Differentiation and inbreeding estimates calculated as 

described by Weir and Cockerham (1984) among seven 

populations of Ca/othamnus sp. Whicher based on six 

microsatellite loci. 

3.4 Differentiation matrices based on pairwise estimates of 8 

between seven populations of Ca/othamnus sp. Whicher 

based on six microsatellite loci. 

4.1 Polymorphic information content (PIC), exclusion probabilities 

(Excl) and estimated frequency of null alleles (Null) for six 

microsatellite markers over seven populations of Ca/othamnus 

22 

30 

37 

38 

42 

43 

sp. Whicher. 52 

4.2 Selfing and outcrossing rates for seed crops from two 

populations of Ca/othamnus sp. Whicher as determined via 

maximum likelihood paternity assignment. 

4.3 Pairwise estimates of indirect gene flow, as the mean number 

of migrants · between populations per generation (Nm), 

ix 

53 



calculated using the Fsr method (Slatkin, 1987) for seven 

populations of Calothamnus sp. Whicher. 

4.4 Percentage of seedlings with fathers internal to the population 

and the number of different fathers for each mother plant in 

two populations of Ca/othamnus sp. Whicher. 

4.5 Number of near neighbour mating events within the Hairpin 

55 

56 

Large population of Ca/othamnus sp. Whicher. 57 

4.6 Global, among mother (within populations) and mean pairwise 

(within populations) differentiation in maternally sampled 

pollen pools (<t>n) for two populations of Ca/othamnus sp. 

Whicher. 

X 

58 



List of figures 

1.1 The biological consequences of landscape fragmentation. 

1.2 The distribution and morphology of Ca/othamnus sp. Whicher 

(B.J. Keighery & N. Gibson), including floral morphology, 

growth habit and seed capsules. 

1.3 A conceptual diagram outlining the structure of the thesis. 

2.1 Locations of the seven populations of Calothamnus sp. 

Whicher sampled in the study. 

2.2 Photograph of plants in Hairpin Medium and maps of the 

Hairpin Medium (HM), Hairpin Small (HS) and Doyle Small 

(OS) populations of Ca/othamnus sp. Whicher. 

2.3 Photographs (top: east end; bottom: west end) and a map of 

the Hairpin Large population of Calothamnus sp. Whicher. 

2.4 Photographs (top, plant 44; bottom, east end) and a map of 

the Doyle Large population of Ca/othamnus sp. Whicher. 

2.5 Photograph and a map of the Ambergate population of 

Ca/othamnus sp. Whicher. 

2.6 Photograph (from north end) and a map of the Boallia 

population of Ca/othamnus sp. Whicher. 

3.1 A single multi-stemmed individual of Calothamnus sp. 

Whicher in Hairpin Large. 

3.2 The relationship between allelic diversity (mean number of 

alleles per locus) and population size for seven populations 

of Calothamnus sp. Whicher. 

xi 

4 

16 

18 

21 

23 

24 

25 

26 

27 

36 

39 



3.3 The relationship between observed heterozygosity (mean 

H0 ) and population size for seven populations of 

Ca/othamnus sp. Whicher. 

3.4 Allele frequencies at six microsatellite loci for seven 

populations of Calothamnus sp. Whicher. 

3.5 The mean number of private alleles and rare alleles for 

seven populations of Calothamnus sp. Whicher based on six 

microsatellite loci. 

3.6 (A) UPGMA dendogram based on Nei's (1978) unbiased 

genetic distance for the four largest populations of 

Ca/othamnus sp. Whicher over six microsatellite loci and (B) 

the relationship between pairwise estimates of 8, divergence 

in allele frequencies between populations (Weir and 

Cockerham, 1984), and pairwise geographic distance for the 

same four populations. 

4.1 Patterns of pollen dispersal among seven populations of 

Ca/othamnus sp. Whicher illustrated by assigning paternity to 

progeny propagated from seed collected in two populations. 

4.2 The frequency of pollination events as a function of distance 

between pollen parents and mother trees in the Hairpin 

Large population. 

4.3 The relationship between pairwise differentiation in 

maternally sampled pollen pools (c:t:>n) and geographic 

distance for ten individuals of Ca/othamnus sp. Whicher in 

the Hairpin Large population. 

5.1 · Hypothesis regarding the effects of fragmentation on the 

genetic structure of the six natural study populations of 

Ca/othamnus sp. Whicher. 

xii 

40 

41 

42 

44 

54 

57 

59 

72 



Chapter 1: Thesis Overview 

There is no way to determine the importance of gene flow in natural 

populations because there is no direct way to estimate levels of gene flow.' 

Slatkin (1981 ). 
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Chapter 1: Thesis overview 

Chapter 1: Thesis Overview 

1.1 The global loss of biodiversity 

Current species extinction rates are between 1 00 and 1 000 times those associated 

with pre-human existence (Pimm et a/., 1995). With species disappearing at such 

an alarming rate, which itself is expected to increase (Pimm et a/., 1995; Pimm & 

Raven, 2000}, conservation biologists and ecologists are faced with the 

monumental task of maintaining a representative portion of the biological diversity 

which has evolved over the past three billion years (Redford & Richter, 1999; Myers 

et a/., 2000; Brooks et a/., 2001 ). Biological diversity, or biodiversity, is the total 

variability of life on earth; it includes genes, species, populations, and ecosystems 

(UNEP, 1995). There are many reasons for conserving biodiversity, with these 

ranging from spiritual to purely scientific (Gatto & Giulio, 2000). Perhaps the most 

compelling reason for conserving biodiversity is the fact that our subsistence, as a 

species, depends on it (Daily eta/., 1997; Gatto & Giulio, 2000). It provides us with 

resources (i.e., food, pharmaceutical products, timber and fuels) and ecosystem 

services (i.e., air and water purification, the replenishment of soil nutrients and 

climate regulation) which, at present, cannot be acquired by other means (Daily et 

a/., 1997; Gatto & Giulio, 2000). As we are uncertain to how much biodiversity is 

required to maintain these resources and services in the long-term (Walker, 1992}, 

we should make every attempt to conserve what remains. 

1. 1. 1 Threats to global biodiversity 

There are many human activities which threaten global biodiversity (Trakhtenbrot et 

a/., 2005). These include the pollution of air and water (UNEP, 1995; Estes, 1998), 

emission of greenhouse gasses (Brereton eta/., 1995; Beaumont & Hughes, 2002) 

and introduction of alien species into ecosystems (Akinyemiju, 1987; Keighery, 

1992; Philips et a/., 2003). However, the clearing of natural vegetation (a process 

which will be referred to hereafter as 'land clearing') is considered the most 

significant. This is due to the number of species lost and the pervasive nature of 

land clearing with regards to the number of terrestrial ecosystems currently affected 

(UNEP, 1995; State of the Environment, 2001 ). Natural vegetation, which can 

range in structure from open grasslands to rainforest (Goodall pers. comm.), 

provides habitat for a myriad of terrestrial organisms, both plant and animal (Pimm 

& Raven, 2000). As a result, land clearing can significantly alter the distribution and 

abundance of organisms within a landscape (Myers et a/., 2000; Brooks et a/., 
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Chapter 1: Thesis overview 

2001 ). The most obvious consequences of land clearing are the death of countless 

organisms during the disturbance event (Cogger et a/., 2003) and the loss of the 

conditions and constituents (i.e., habitat) they require to complete their lifecycle 

(Root, 1998). 

However, neither of these effects, the direct loss of organisms or loss of habitat, is 

considered to be the key driver of species extinction (Pimm eta/., 1995; Pimm & 

Raven, 2000). This is because landscapes rarely experience complete clearing, 

and the majority of species which were present within a landscape prior to 

disturbance, will be represented in the patches of habitat that remain (Pimm et a/., 

1995; Pimm & Raven, 2000). Landscapes such as these, which are comprised of 

discrete patches of habitat set within a highly altered landscape matrix, are referred 

to as fragmented (Saunders et a/., 1991; Hobbs & Yates, 2003). Fragmented 

landscapes are often associated vyith what Tilman et a/. (1994) refer to as an 

'extinction debt'. This term results from the observation that a large proportion of 

species within fragmented landscapes do not persist in the long term. Broadly 

speaking, these delayed extinctions are a result of significant alterations in 

landscape level characteristics and processes which result as a consequence of 

landscape fragmentation (Saunders eta/., 1991; Hobbs & Yates, 2003). 

1.2 The biological consequences of fragmentation 

The biological consequences of fragmentation have been explored in detail by a 

number of authors (Saunders et a/., 1991; Hobbs & Yates, 2003; Lowe et a/., 

2005). The most commonly sited consequences are those which have arisen from 

the principles of island biogeography. In particular, the observation that the size of 

an island is positively correlated with the number of species which it can 

accommodate (MacArthur & Wilson, 1967; Simberloff & Abele, 1982). More 

recently, authors have concentrated on identifying how fragmentation affects 

populations. Hobbs and Yates (2003) recognise four direct consequences of 

fragmentation which can influence the persistence of populations by altering 

organism abundance. These are: (i) the creation of small habitat patches, (ii) the 

alteration of landscape processes, (iii) increased isolation between patches and (iv) 

reductions in population size (Figure 1.1 ). 
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Chapter 1: Thesis overview 

Figure 1.1 The biological consequences of landscape fragmentation. Fragmentation results in four 
consequences which have implications for the persistence of populations. These are (i) the creation of 
small patches (ii) changed landscape processes (iii) increased isolation between populations and (iv) 
reduced population size. Of these, increased isolation and small populations can have direct impacts 
on the genetic structure of populations. These can operate independently (red or blue shading) or 
synergistically (purple shading), though both result in genetic erosion which ultimately results in altered 
organism abundance (N = population size; B number of births; D = number of deaths; I number of 
immigrants; E number of emigrants). Adapted from Hobbs & Yates (2003). 

•'. 
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Chapter 1: Thesis overview 

1.2. 1 The genetic consequences of fragmentation 

Although it is widely appreciated that fragmentation has had a profound impact 

upon biodiversity at the species level, a number of authors suggest that the genetic 

impacts of fragmentation are considerably worse (Tillman eta/., 1994). While some 

species will continue to persist in fragmented landscapes, it is likely that they will 

experience considerable genetic erosion as a result of the altered population 

characteristics and ecosystem processes which accompany fragmentation 

(Saunders et a/., 1991; Hobbs & Yates, 2003). Of the four consequences of 

fragmentation described above, the latter two (increased isolation between patches 

and reductions in population size) have the greatest potential to impact upon the 

genetic structure of populations (Saunders eta/., 1991; Hobbs & Yates, 2003). 

1.2.1.1 The effects of reduced population size 

Reductions in population size (i.e. the number of organisms within a population) 

can influence the genetic structure of populations in a number of ways, though all 

act to reduce genetic diversity and organism fitness, the consequence of which is 

altered organism abundance (Charlesworth & Charlesworth, 1987; Ellstrand & 

Ell am, 1993; Figure 1.1 ). The most direct consequence of reduced population size 

is the loss of genetic diversity which accompanies the loss of individuals (EIIstrand 

& Elam, 1993; Hamrick & Godt, 1996). Because the amount of diversity which can 

be maintained within a population at a given time is a function of the number of 

individuals within it, any reduction in size will reduce the maximum diversity that it 

can maintain (EIIstrand & Elam, 1993). In addition, reduced population size can 

result in increased inbreeding, which leads to reduced heterozygosity, the fixation 

of recessive lethal alleles and diminished reproductive fitness (Charlesworth & 

Chralesworth, 1987; Keller & Waller, 2002). Finally, reductions in size leave 

populations highly susceptible to stochastic processes (EIIstrand & Elam, 1993). 

Random events will ultimately influence the genetic structure of all populations to 

some degree. However, the extent of this influence is a function of population size 

(EIIstrand & Elam, 1993). In large populations (i.e. 1000 individuals), the loss of a 

few individuals is unlikely to alter the total diversity and abundance of alleles at any 

given locus. In contrast, the loss of a single individual in a small population (i.e. 10 

individuals) may have a profound impact upon population diversity (EIIstrand & 

Elam, 1993). 
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Chapter 1: Thesis overview 

1.2.1.2 The effects of increased spatial isolation 

Unlike the effects of reduced population size, which have received considerable 

research attention in the past 50 years, few authors have focused on the way that 

increased spatial isolation influences the genetic structure of populations. There is, 

however, a growing body of evidence which suggests that increases in spatial 

isolation influence the genetic structure of populations by influencing gene flow 

(Kearns eta/., 1998; Hobbs & Yates, 2003). 

1.3 Gene flow 

Gene flow, which is the movement of genes from one population to another 

(Slatkin, 1985), is one of the major factors determining the genetic structure of 

populations (Slatkin, 1985; Hamrick & Godt, 1996; Whitlock & McCauley, 1999). 

Limited gene flow often results in increased genetic differentiation between 

populations through the fixation of advantageous alleles, the long-term 

consequence of which may be speciation (Slatkin, 1985). In contrast, extensive 

gene flow has a homogenising effect, resulting in populations which share a similar 

genetic structure (Slatkin, 1985). 

1.3.1 Mechanisms for gene flow 

Gene flow can be mediated by a number of mechanisms, some of which include 

the migration of individuals, the spread of gametes and the dispersal of 

reproductive propagules (Slatkin, 1985; Lowe eta/., 2004). Due to the different life

history strategies employed by species, the primary mediator of gene flow can differ 

markedly between them. For terrestrial animals, most of which are capable of 

moving significant distances over short time scales, migration is considered the 

chief mediator of gene flow (Slatkin, 1985; Lowe eta/., 2004). Due to their mobility, 

animals are often capable of traversing large expanses of habitat, which may be of 

varying quality, in order to reach neighbouring populations (Slatkin, 1985; 

Washitani et a/., 2005). In contrast, terrestrial plants are sessile and, therefore, 

incapable of direct migration (Washitani eta/., 2005). As a result, land plants must 

rely solely on gamete or propagule dispersal for gene flow (Washitani eta/., 2005). 

For the majority of plant species, particularly those where seed dispersal is limited, 

gene flow is restricted to the dispersal of pollen (Kearns et a/., 1998; Washitani et 

a/., 2005). 
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Chapter 1: Thesis overview 

1.3.1.1 Pollen dispersal vectors 

Pollen dispersal can be facilitated by a range of abiotic and biotic agents (Richards, 

1986; Kearns et a/., 1998). However, the pollination syndrome employed can vary 

markedly within and between taxonomic groups (Richards, 1986; Ackerman, 1999). 

Abiotic agents, such as wind and water, are considered the primary vectors for 

pollen dispersal in some plant groups (i.e., wind mediated dispersal in Pinus spp.), 

but the vast majority of the world's angiosperm species (approximately 80%, or 200 

000) rely solely on biotic vectors for pollen dispersal (Kearns eta/., 1998). Most of 

these species rely on insect pollination (Kearns et a/., 1998), but birds and 

mammals are important dispersal agents for many taxa (Richards, 1986; Kearns et 

a/., 1998). 

1.3.2 The effects of fragmentation on pollen mediated gene flow 

For biological pollen vectors, the plants that they visit represent an energy source 

(with the exception of some deceptive plant species such as members of the 

Orchidaceae) (Richards, 1986; Kearns eta/., 1998; Cresswell & Osborne, 2004). 

Thus, there are a number of factors that influence whether a pollinator will visit a 

given population (Cresswell & Osborne, 2004). These include, the distance of the 

population relative to others, the quality of the interlying habitat which connects 

populations and the size of the energy resource relative to the energy spent gaining 

it (Richards, 1986). Fragmentation has the potential to increase spatial isolation 

between populations, reduce the quality of interlying habitat, and reduce the size of 

plant populations within a landscape (Saunders eta/., 1991; Hobbs & Yates, 2003). 

If any of these factors are reduced below a threshold which will be specific to the 

biological vector in question, the result may be a loss of, or a reduction in, 

pollination services (Richards, 1986; Kearns eta/., 1998). 

1.4 Estimating pollen mediated gene flow 

Because of the importance of pollination in determining the genetic structure of 

populations (Slatkin, 1985; Richards, 1986), in addition to the sensitivity of biotic 

pollination syndromes to anthropogenic disturbance (Kearns et a/., 1998), many 

authors have attempted to describe patterns of pollen dispersal for a range of 

species (See Richards, 1986 and Lowe eta/., 2004). Depending upon the methods 

used, studies can be placed into one of three categories: observational, indirect 

genetic and direct genetic (Lowe eta/., 2004). 
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1.4. 1 Observational methods 

Past estimates of pollen-mediated gene flow have generally been inferred from 

observations of pollinator behaviour or by tracking the movement of marked pollen 

grains, or pollen-analogous particles (i.e., fluorescent dye particles) (Richards, 

1986; Adler & Irwin, 2005). Studies using such methods indicate that the distances 

travelled by pollinators are generally short, with the frequency of pollination events 

decreasing in a leptokurtotic fashion as distance from the donating flower increases 

(Slatkin, 1985; Richards, 1986; Austerlitz eta/., 2004). Many authors have therefore 

suggested that pollen dispersal is unlikely to result in significant levels of long

distance gene flow (Levin & Kerster, 1974; Slatkin, 1985). 

These observational methods are associated with a number of shortcomings which 

may result in inaccurate gene flow estimates. Firstly, the methodologies associated 

with observational studies are clearly biased towards dispersal events which occur 

close to the pollen source (Lowe et a/., 2004). It is highly likely that rare, long

distance, biologically important dispersal events will be missed, resulting in an 

underestimate of gene flow (Lowe eta/., 2004). Secondly, pollinator visits to flowers 

do not always result in pollen delivery (Richards, 1986; Maki & Masuda, 1993), nor 

does the deposition of pollen onto a receptive stigma always result in fertilisation 

(Richards, 1986; Maki & Masuda, 1993). This is particularly important for species 

that employ mechanisms to reduce rates of self fertilisation or inbreeding (Newbigin 

eta/., 1994), as genetic relatedness generally decreases with increasing distance 

from an individual (Jones et a/., 2006). Thus, in these species, it is likely that 

observational techniques overestimate rates of effective pollination close to the 

pollen source. 

1.4.2 Indirect estimates from population genetic structure 

Gene flow can also be estimated indirectly from molecular data (Slatkin, 1985}. 

Indirect estimates are derived from the degree of genetic differentiation between 

populations (Ouborg et a/., 1999). Although a number of differentiation coefficients 

can be converted to estimates of gene flow (Lowe eta/., 2004), Wright's (1951) Fsr 

is most commonly used. Fsr. which is a measure of the standardised 

interpopulation variance in allele frequencies, is calculated as: 

(]'2 

F - P 
ST - [p(1- p)) 

(Equation 1) 
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Where O"; is the variance in allele frequencies among populations and p is the 

frequency of the ilh allele (Wright, 1951 ). Based on the assumptions of Wright's 

(1931) island model of migration, Slatkin (1987) described the non-linear 

relationship between gene flow, as a measure of the number of migrants entering a 

population per generation (Nm), and Fsr in the following equation: 

F - 1 
ST- (4Nm+1) 

(Equation 2) 

Where N is the effective size of each population, and m is the migration rate 

between populations. Thus one can solve for Nm by inverting equation two: 

Nm = (1-Fsr) 
4Fsr 

(Equation 3) 

Indirect methods of gene flow taken from population genetic structure, such as 

those derived from Fsr, are associated with a number of shortcomings (Whitlock & 

McCauley, 1999). Firstly, there are many other mechanisms besides gene flow 

which influence the genetic structure of populations. Indirect estimates of gene flow 

assume that these mechanisms, some of which include selection and mutation as 

well as stochastic events, have not contributed to any observed differences in 

population genetic structure; any observed differentiation between populations is 

assumed to be a result of reduced reproductive connectivity (Whitlock & McCauley, 

1999; Lowe eta/., 2005). 

Second, indirect genetic estimates are generally based upon mathematical models 

of migration which are unlikely to exist in nature (Whitlock & McCauley, 1999; Lowe 

eta/., 2005). For example, estimates of Nm derived from Fsr are generally based 

on the assumptions of the Wright's (1931) island model of gene flow. This model 

assumes that all populations contain the same number of diploid individuals, and 

that each population donates and receives migrants from all other populations at 

the same rate (Wright, 1931 ). It is unrealistic to assume that natural populations will 

be comprised of the same number of individuals. Furthermore, populations are set 

in space, and their spatial arrangement is likely to affect rates of migration between 

them (Ouborg et a/., 1999). For example, it is widely appreciated that dispersal 

rates are a fundio'n. of distance, with dispersal occurring most frequently over 
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shorter distances (Trakhtenbrot eta/., 2005). Thus, one would expect higher rates 

of migration between populations which are close together and lower rates between 

those which are located further apart (Trakhtenbrot eta/., 2005). The island model 

does not take this 'distance effect' into account (Whitlock & McCauley, 1999). Nor 

does it consider other spatial variables such as the quality of habitat connecting 

populations, or ecological (i.e. source to sink dispersal in metapopulations) and 

physical scenarios (i.e. prevailing winds or steep topography) that may result in non 

random patterns of dispersal (Whitlock & McCauley, 1999). While a number of 

other authors have proposed models of gene flow that attempt to overcome the 

simplicity of the island model (Wright, 1940; Kimura, 1953), all are associated with 

their own inherent limitations (Whitlock & McCauley, 1999). The consequence of 

these limitations is that indirect estimates are unlikely to represent actual rates of 

gene flow occuring between natural populations. 

Another significant limitation is that, depending on the lifecycle of the organism, 

patterns of gene flow may not be representative of those associated with the time 

of sampling (Whitlock & McCauley, 1999; Lowe et a/., 2005). Climatic variability, 

changes in the demographic structure of populations and human induced 

disturbance are all factors which are likely to lead to variation in patterns of gene 

flow on a range of temporal scales (Manel eta/., 2003; Kenta eta/., 2004). Thus, 

indirect estimates of Nm may be representative of gene flow which has occurred 

over a broad timescale, as organisms will persist in the environment long after the 

gene flow events have occurred (Lowe et a/., 2005). For example, in an intact 

landscape, gene flow may have occurred between two populations, but may have 

ceased following landscape fragmentation. In this situation, indirect estimates of 

Nm made subsequent to fragmentation would suggest that gene flow was still 

occurring between these populations. 

1.4.3 Direct estimates from molecular markers 

Due to the limitations of indirect genetic estimates described above, as well as 

advances in molecular and statistical methods, it is now possible to estimate gene 

flow directly using genetic markers (Ouborg et a/., 1999). Direct estimates differ 

from indirect estimates in that the source of dispersal events is determined by the 

genotypes of propagules or progeny, as opposed to established individuals (Manel 

eta/., 2003; Austerlitz eta/., 2004; Lowe eta/., 2005). As a result, direct estimates 

of dispersal represent patterns of gene flow at the time of sampling, rather than 
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indirect methods which may be confounded by historical dispersal events (Ouborg 

et a/., 1999). Also, unlike observational methods, direct methods only measure 

realised gene flow (that which results in progeny) rather than dispersal which is 

often used as a surrogate to describe gene flow (Ouborg eta/., 1999). 

1.4.3.1 Paternity assignment 

The most commonly used direct method to measure pollen dispersal is paternity 

assignment. The aim of paternity assignment is to identify which father, from a 

sample of potential fathers, contributed the gamete which resulted in a given 

fertilisation event (Jones & Arden, 2003; Austerlitz eta/., 2004). As assignment is 

based on male-haplotype information, the technique requires that the genotypes of 

all potential fathers are known (Lowe eta/., 2004). Also, the mother's genotype is 

required prior to assignment, in order to reveal the paternal contribution (Lowe et 

a/., 2004). Paternity assignment techniques are well suited to studies of plants, 

because seed is often retained on the plant. Therefore, the identity of the mother 

plant is known at the time that seed is sampled (Austerlitz et a/., 2004). After 

progeny are genotyped and the maternal haplotype identified, paternity can be 

assigned via a number of methods. Most common is the exclusion method, which 

eliminates potential fathers based on a genetic mismatch (Wilmer eta/., 1999). Due 

to laboratory genotyping errors, and the high mutation rates associated with 

neutrally selective genetic markers, other more conservative assignment 

techniques have also been developed. For example, the maximum likelihood 

approach of Marshal eta/. (1998) allows mismatches and, based on the frequency 

of alleles within the total sample, assigns paternity to the 'most likely' male within a 

confidence interval which can be established by the user. 

1.4.3.2 TwoGener analysis of pollen pool structure 

The biggest drawback in the use of paternity analysis is the need to exhaustively 

sample all potential fathers in the study area. As a result, paternity analysis is not 

suited to the study of gene flow in species which are numerous within a landscape. 

In contrast, the TwoGener analysis of Smouse et a/. (2001) does not attempt to 

assign paternity to offspring, and therefore does not require exhaustive sampling of 

potential fathers. Rather, it is a variation of analysis of molecular variance (AMOVA; 

Excoffier eta/.! 1992) that compares pollen pools sampled by female plants; seeds 

collected from plants represent replicates, while the maternal plants represent 

strata for comparison. Male haplotype variation within and between plants is 
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converted to an interclass correlation measure of pollen pool structure referred to 

as <Pn. Thus, <Pn is similar to Wright's (1951) Fsr, though enables within population 

comparisons to be made. 

1.4.3.3 Suitable genetic markers for direct gene flow estimates 

Both of the above techniques are dependent upon molecular markers to provide a 

basis on which individuals and their genetic contributions can be identified (Ouborg 

eta/., 1999; Austerlitz eta/., 2004). Generally, two different types of markers are 

used. The majority of studies, particularly earlier ones, utilised isozymes. lsozymes, 

which are neutrally selective structural variants of functional enzymes, are relatively 

inexpensive to assay and can be applied to most species (Nybom, 2004). However, 

because polymorphism is generally low, with two or three structural variants 

existing for each enzyme, a high number of markers must be assayed to provide 

the exclusion probabilities required to confidently assign paternity, or reveal pollen 

pool differentiation in the TwoGener analysis (Nybom, 2004). 

More recently, authors have turned to the use of microsatellite markers when 

making direct estimates of gene flow (Ouborg eta/., 1999; Nybom, 2004). This is 

for a number of reasons. Firstly, they are located in the non coding regions of the 

genome and, as a result, are highly polymorphic. Levels of diversity exceeding 15 

alleles per locus are routinely reported in the literature (Elliot & Byrne, 2005; Fitch 

et a/., 2005; Revaldaves et a/., 2005; Spies et a/., 2005). These high levels of 

polymorphism have produced the highest exclusion probabilities achieved in 

studies involving paternity assignment (Burczyk eta/., 2004). In addition, different 

microsatellite alleles are characterised by differences in their length, as opposed to 

other DNA markers which differ only in sequence (Ouborg eta/. 1999). As a result, 

alleles can be distinguished using standard electrophoretic techniques (Ouborg, et 

a/., 1999). The disadvantage associated with microsatellite markers comes with the 

need to develop 'species specific' primers which enable their amplification via the 

polymerase chain reaction (Nybom, 2004). This process is both time consuming 

and expensive. 

1.5 Hotspots of biodiversity 

Biodiversity, at the level of the species, is not distributed homogenously across the 

globe (Brooks et a/., 2001 ). Rather, the vast majority of species are concentrated 

within 25 global biodiversity 'hotspots' (Myers et a/., 2000; Brooks et a/., 2001 ). 

12 



Chapter 1: Thesis overview 

Collectively, these hotspots once covered 12% of the Earth's surface. Now, after 

extensive land clearing, they account for only 1.4% of the land (Brooks et a/., 

2001 ). Despite this, between 50% and 75% of all threatened plants and 57% of 

threatened animals are hotspot endemics (Brooks et a/., 2001 ). One of these 

biodiversity hotspots is the Southwest Australian Floristic Region (Myers et a/., 

2000; Hopper & Gioia, 2004 ). 

1.5.1 The Southwest Australian Floristic Region 

The Southwest Australian Floristic Region (SAFR), which is located in the 

southwest corner of Western Australia, is unique in that it has extremely high floral 

diversity and endemism (Hopper, 1979; Hopper et a/., 1996; Hopper & Gioia, 

2004 ), yet exhibits few of the characteristics thought to be synonymous with high 

levels of botanical richness (Hopper & Gioia, 2004 ). The region is essentially flat, 

with few significant topographical features (Hopper & Gioia, 2004) and is 

associated with nutrient deficient soils and simple rainfall patterns (Hopper & Gioia, 

2004). However, a number of authors have identified key geohistorical features of 

the SAFR which largely explain current patterns of diversity (Beard et a/., 2000; 

Hopper & Gioia, 2004 ). Firstly, a lack of geological activity and past variation in 

rainfall patterns has resulted in the formation of a complex soil mosaic comprised 

mainly of nutrient deficient sands and laterites (Beard eta/., 2000; Coates, 2000; 

Hopper & Gioia, 2004). Specialisation of flora to edaphic heterogeneity, which is 

maintained even at the local scale (Hopper & Gioia, 2004 ), has resulted in high 

floral(3-diversity, and, consequently, many endemic species (Hopper, 1979; Hopper 

& Gioia, 2004 ). These evolutionary patterns have been made more evident by a 

lack of catastrophic disturbance events (such as glaciation, volcanism, and 

mountain upiifting) which are typically associated with mass extinction (Coates, 

2000). 

1.5.2 Fragmentation in the Southwest Australian Floristic Region 

Land clearing has been practised in south-western Australia since 1845 (Main, 

1993). The intensity of clearing reached its peak in the mid 20th century (Main, 

1993) resulting in the loss of approximately 89% of natural vegetation in the SAFR 

(Myers et a/., 2000). As a result of this habitat loss, and the high degree of 

endemism within the region, many taxa are no longer represented within pristine 

habitat and are now fragmented across their distributions (Coates, 2000; Myers et 

a/., 2000; Brooks eta/., 2001 ). 
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1.5.3 The species: Calothamnus sp. Whicher 

One species that fits this profile, in that it is a narrow endemic which persists in a 

highly fragmented landscape, is the woody shrub, Ca/othamnus sp. Whicher (B.J. 

Keighery & N. Gibson) (Myrtaceae). Although it was previously classified as the 

common, widespread species Calothamnus quadrifidus, C. sp. Whicher was 

recently declared a distinct taxonomic unit based on morphology (Western 

Australian Herbarium, 2006). The species is restricted to a small area of south

western Australia near the town of Busselton (Figure 1.2), and is represented in 

approximately 25 populations, the size of which ranges from thousands of 

individuals to three individuals (Western Australian Herbarium, 2006). More than 

half of these populations are small (<150 individuals) and are confined to road 

verges where little or no remnant vegetation is present (Western Australian 

Herbarium, 2006). Because of its demographic situation and narrow geographic 

range, the conservation status of C. sp. Whicher has been upgraded to priority four, 

which is reserved for species that are rare, but are not immediately threatened by 

any identifiable factors (Western Australian Herbarium, 2006). 

Like C. quadrifidus, C. sp. Whicher grows to a height of 2-3 meters and flowers 

profusely between June and December (winter - spring) (Western Australian 

Herbarium, 2006; Figure 1.2). The hermaphroditic flowers are semi-tubular, 

pendulous, born in cauliflorous inflorescences, and are generally confined to one 

side of the stem (Ford et a/., 1979; Western Australian Herbarium, 2006; Figure 

1.2). While pollination has not been formally studied in C. sp. Whicher, the 

pollination mechanism has been described as unspecialised across the genus 

(Western Australian Herbarium, 2006). However, flower colour (red) and structure 

are indicative of bird pollination (Ford et a/., 1979). This has been confirmed by a 

number of studies, particularly those which have concentrated on C. quadrifidus. 

(Collins et a/., 1984; Hopper and Burbidge, 1986; Yates et a/., in press A). Of the 

many bird species that visit members of the genus, honeyeater species (family 

Meliphagidae) are most commonly observed (Hopper and Burbidge, 1986; Yates et 

a/., in press A), and studies have demonstrated that these birds are capable of 

carrying considerably more pollen than other biological vectors. Collins eta/. (1984) 

have demonstrated that pollination can also result from honey possums (Tarsipes 

rostratus) and European honey bees (Apis me/litera). 

No study of mating system has been conducted on C. sp. Whicher, yet the species 

is expected to have a mixed mating system similar to that observed in C. 
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quadrifidus (Yates et a/., in press A), as well as a number of other myrtaceous 

species (Hopper & Moran, 1981; Sampson et a/., 1995; Millar et a/., 2000). Thus, 

the species is expected to be predominately outcrossing with low to intermediate 

rates of self fertilisation. Seed is held on the plant in dehiscent woody capsules 

which persist for many years after flowering (Western Australian Herbarium, 2006; 

Figure 1.2). The seed itself is minute, non-endospermous and has no 

morphological characteristics which may aid in dispersal by wind or water (Western 

Australian Herbarium, 2006). 

1.6 Thesis aims 

Most authors now agree that, as well as having an understanding of the 

demographic status of a species, an understanding of its genetic characteristics is 

essential when forming an effective conservation plan (Hamrick & Godt, 1996). This 

thesis aims to describe the genetic scenario associated with seven isolated, road 

verge populations of Calothamnus sp. Whicher. The primary aim is to illustrate 

patterns of gene flow among these isolated populations. This will be achieved via 

paternity assignment techniques and a TwoGener analysis of pollen pool structure. 

The molecular data required for these analysis will be obtained from microsatellite 

markers. This data will also enable an investigation into patterns of genetic diversity 

and differentiation among the study populations. 

In addition to having direct outcomes for the conservation of C. sp. Whicher, the 

outcomes of this thesis will also have implications for the management of other 

species in fragmented landscapes. To date, most direct investigations into plant 

gene flow have concentrated on rainforest tree species which rely on insect or wind 

pollination (see review by Burczyket a/., 2004). As plants species exist at a variety 

of scales and employ varying breeding systems and pollination syndromes, it is 

necessary to investigate how fragmentation affects gene flow in species with 

differing life history strategies. This study of C. sp. Whicher will further contribute to 

our general understanding of patterns of pollen dispersal in bird pollinated species. 

Thus, the conclusions drawn in this thesis may be extrapolated to other species 

with similar life-histories. 
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Figure 1.2 (A) The distribution and (B) morphology of Calothamnus sp. Whicher (B.J . Keighery & N. 
Gibson), including (a) floral morphology, (b) growth habit and (c) seed capsules. Figure A adapted 
from the Western Australian Herbarium (2006). 
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1.7. Thesis structure 

This thesis has a conventional structure (Figure 1.3). The following chapter 

(Chapter 2) describes the conceptual structure of the project and the materials and 

methods which were associated with sample collection, DNA extraction and 

microsatellite characterisation. The only methods which are not included in this 

chapter are those associated with the analysis of data; these are included in later 

chapters. 

Chapter 3 is concerned with describing the genetic structure of the study 

populations. All populations were expected to have similar levels of diversity, with 

the exception of very small populations (< 10 individuals), where diversity was 

expected to be much lower as a result of sampling effect. Genetic differentiation 

between populations was also expected to be low considering their close 

geographical proximities to each other. 

Chapter 4 is dedicated to describing patterns of pollen dispersal within and 

between the study populations. The mating system of C. sp. Whicher is also 

described. Given the findings of gene flow and mating system studies performed by 

Byrne eta/. (in press) on Calothamnus quadrifidus, gene flow into the two assayed 

populations was expected to be high. In addition, Ca/othamnus sp. Whicher was 

expected to have a mixed mating system with similar rates of outcrossing to that 

exhibited by C. quadrifidus. Also, patterns of within population dispersal were 

expected to reflect those observed in other bird pollinated species. 

The final chapter, chapter 5, consists of a general discussion, the aim of which was 

to discuss the genetic diversity and gene flow components of the study together. It 

is here that the results of the study will be considered in light of habitat 

fragmentation. In addition, the evolutionary and conservation implications of the 

work are discussed. The thesis concludes with recommendations for future 

research. 
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Figure 1.3 A conceptual diagram outlining the structure of this thesis. 
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Chapter 2: General materials and methods 

2. 1 Study site and population descriptions 

The study was undertaken approximately 300 km south of Perth, Western 

Australia, within 15 km of the town of Busselton (Figure 2.1 ). Climate in the area is 

Dry Mediterranean with cool, wet winters and hot, dry summers. The mean annual 

rainfall in Busselton is 864 mm, with the wettest period being from May to 

September (Bureau of Meteorology, pers comm). 

The study site was located in an area referred to as the Busselton Ironstones, 

which consists of approximately 1 200 hectares of ironstone soils which are unique, 

as they have only been observed at three locations on the Swan Coastal Plain. 

They are characterised by a shallow heavy clay or sandy layer over an 

impermeable layer of ferricrete which can be several meters thick (Tille & Lantzke, 

1990; Gibson eta/., 2000). As a result, they are prone to waterlogging in periods of 

heavy rainfall. In addition to their unique physical and hydrological characteristics, 

these soils are also associated with a unique flora (English, 1999; Gibson et a/., 

2000) consisting of a number of endemic species (11 recorded to date; Gibson et 

a/., 2000). Extensive land clearing for agricultural production and mineral 

exploration has seen over 90 % (1 080 hectares) of their associated vegetation 

cleared in the last century (English, 1999). What remains exists as remnant islands 

surrounded by a matrix of agricultural production. 

Seven populations of Ca/othamnus sp. Whicher, a priority species endemic to the 

Busselton Ironstones, were selected for use in this study (Figures 2.1-2.6; Table 

2.1 ). A population was defined as a discrete group of individuals which was isolated 

from conspecifics by more than 50 m. The number of reproductive individuals in the 

study populations ranged from three (Doyle Small and Hairpin Small) to 83 (Doyle 

Large), with straight line distances between populations ranging from 150m to 5.8 

km. Six of the populations were located on disturbed road-verges where weeds 

were prolific and there was little or no natural vegetation. Individuals were present 

at much higher densities in these populations than in other populations in larger 

veg~tation remnants which were surveyed prior to the study. In most cases, the 

foliage of plants formed a single canopy. The single population located in native 

vegetation, Ambergate, was located in Ambergate Reserve, which occupied an 

area of approximately 75 ha. Habitat type and quality varied markedly throughout 

the reserve, though C. sp. Whicher was located over a small area which had an 
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Figure 2.1 Locations of the seven populations of Calothamnus sp. Whicher sampled in the study. 
HM, Hairpin Medium; HS, Hairpin Small; HL, Hairpin Large; DL, Doyle Large; OS, Doyle Small; A, 
Ambergate; B, Boallia. The Grey shaded areas in the site map represent remaining native 
vegetation. 
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Table 2.1 The characteristics of the seven populations of Calothamnus sp. Whicher examined. 

Number of 
Latitude Longitude samples Habitat type 

Population collected 

Hairpin Medium 33° 43' 49.8" 115° 15' 50.2" 12 Roadside 

Hairpin Small 33° 43' 50.8" 115° 15' 53.8" 3 Roadside 

Hairpin Large 33° 43' 53.0" 115° 16' 00.5" 99 Roadside 

Doyle Large 33° 44' 13.4" 115° 17' 22 .2" 44 Roadside 

Doyle Small 33° 44' 13.3" 115° 17' 28.7" 3 Roadside 

Ambergate 33° 44' 24.4" 115° 29' 30.9" 67 Native vegetation 

Boallia 33° 45' 02.6" 115° 16' 0.76" 41 Roadside 

Seedling 
Seed collected? Recruitment? 
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Figure 2.2 Photograph of plants in Hairpin Medium and maps of the Hairpin Medium (HM), Hairpin 
Small (HS) and Doyle Small (DS) populations of Calothamnus sp. Whicher. The photograph is 
representative of all three populations. Black dots represent the locations of individual plants, while 
the dashed oval represents multiple, tightly packed plants. The grey line represents the road. 
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Figure 2.3 Photographs (top: east end; bottom: west end) and a map of the Hairpin Large population 
of Calothamnus sp. Whicher. Black dots represent the locations of individual plants, while the dashed 
oval represents multiple, tightly packed plants. The grey line represents the road. 
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Figure 2.4 Photographs (top, plant 44; bottom, east end) and a map of the Doyle Large population of 
Calothamnus sp. Whicher. Black dots represent the locations of individual plants, while the dashed 
oval represents multiple, tightly packed plants. The grey line represents the road. 
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Figure 2.5 Photograph and a map of the Ambergate population of Calothamnus sp. Whicher. Black 
dots represent the locations of plants. The grey line represents the road , while the dashed line 
represents a walking path. 
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Figure 2.6 Photograph (from north end) and a map of the Boallia population of Calothamnus sp. 
Whicher. Black dots represent the locations of individual plants, while the dashed oval represents 
multiple, tightly packed plants. The grey line represents the road. 
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overstory of Eucalyptus marginata with a diverse understorey of woody and 

herbaceous taxa. Individuals were present at a much lower density in Ambergate 

than in the other sampled populations, and other remnant populations surveyed 

during the study. This observation, the difference in soil type in Ambergate, the 

proximity of plants to walking paths (Figure 2.5) and an atypical vegetation 

community all suggest that it is a planted population (M. Byrne & N. Gibson, pers. 

comm.). 

2.2 Collection of parental leaf material and seed samples 

Leaf material was collected from all reproductive plants in the seven study 

populations on the 28th and 29th of March (autumn}, 2006. Reproductive plants were 

identified in each population by the presence of seed capsules on the plant. Each 

plant was allocated a number and marked with flagging tape to enable subsequent 

identification. Approximately 20 g of leaf material was cut from each and placed in a 

sealable plastic bag with the air removed. Samples were kept cool (-4 °C) in the 

field by storing them in an insulated container with ice. As it was not always 

possible to determine which rootstock stems originated from, some 'individuals' 

were sampled multiple times to ensure that all potential fathers had been sampled 

(Table 2.1 ). On arrival at the laboratory, 120 mg of leaf material was taken from 

each sample and stored at -80 °C prior to DNA extraction. 

Seed was collected from ten randomly selected mother plants in Hairpin Large and 

Doyle Large by collecting capsules from multiple branches (approximately ten) at a 

range of heights and positions to avoid sampling bias. Capsules were only 

collected from the most terminal position on the branch in an attempt to obtain a 

sample that reflected seed produced in the previous year (the assumption being 

that all plants flowered in the previous year). Each sample was placed in a seed 

envelope which was stored in dark, dry conditions for ten days, and then placed in 

an oven for 24 hours at 27 °C to accelerate the drying process. To ensure that all 

seed was liberated from the open capsules, each sample was transferred to a glass 

beaker and shaken vigorously. The capsules were then discarded, and the seed 

transferred to a second envelope, which was stored in a dark, cool environment. 

2.3 Seedling establishment 

Approximately 50 seeds from each mother plant were germinated in a temperature 

controlled greenhowse (set at 25-30 °C) on a soil mix comprised of equal parts of 

Bailey's premium ·potting mix, perlite and white sand. Approximately one month 
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after germination, 20 seedlings from each tray were transferred to individual 100 ml 

pots containing Bailey's premium potting mix. 

2.4 Preparation of plant material and DNA extraction 

DNA was extracted from adult and seedling material (fifteen seedlings from each of 

the 20 mothers) using Qiagen DNeasy™ plant mini extraction kits with a modified 

protocol. Each 120 mg sample was ground in liquid nitrogen using a mortar and 

pestle until a fine powder was obtained. The ground material was then transferred 

to an eppendorf tube containing 400 1-11 of Qiagen cell lysis buffer 'AP1'. Three IJI of 

Qiagen 'RNase A' was also added, and the sample vortexed and placed in a 65 °C 

water bath for 10 minutes to facilitate cell lysis. During incubation, each sample was 

mixed by inversion at three minute intervals. After adding 120 1-11 of Qiagen 

precipitation buffer 'AP2' each sample was placed on ice for 10 minutes to 

precipitate proteins and polysaccharides. Precipitates were then pelleted by 

centrifugation (5 minutes at 13 000 rpm) and the lysate transferred to the Qiagen 

'QIAashredder mini spin column' which was then centrifuged (2 minutes at 13 000 

rpm) to remove remaining precipitates and cell debris. The flow through captured in 

each QIAashredder collection tube was then transferred to a new eppendorf tube, 

and 1.5 volumes of Qiagen DNA precipitation buffer 'AP3' was added. This mixture 

was then applied to the same Qiagen 'DNeasy mini spin column' in two separate 

650 !JI aliquots (this was the maximum capacity of the column) and centrifuged at 8 

000 rpm. The flow through was discarded and the DNeasy mini spin column 

transferred to a new collection tube. Two wash steps were then conducted, each of 

which involved pipeting 500 IJI of Qiagen buffer 'AW' into the column. The column 

was then centrifuged (8 000 rpm for one minute for the first wash and 13 000 rpm 

for two minutes on the second wash) and the flow through discarded. DNA was 

eluted twice (in two separate tubes) by transferring the DNeasy mini spin columns 

to a 1.5 ml eppendorf tube and applying 50 1-11 of Qiagen elution buffer 'AE' directly 

onto the spin column membrane to which the DNA was bound. After incubating at 

room temperature for 5 minutes, the columns were spun at 8 000 rpm. Extracted 

DNA was stored at -20 °C. 

The concentration of all extracted parental and seedling DNA samples was 

determined using a DyNA Quant™ 200 fluorometer (Hoefer Pharmacia Biotech) 

using the low range assay (designed for samples with a concentration between 10 

and 500 ng/IJI) anq. an 85 ng/IJI DNA standard. Samples with a concentration over 

· 25 ng/IJI were diluted to 20 ng/IJI using sdH20, while the samples under 25 ng/IJI 
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were used in subsequent procedures undiluted. The quality of extracted DNA was 

determined by subjecting a random selection of parental and seedling samples, 

along with 5 1-11 aliquots of 100 ng/IJI Hind Ill/Lambda DNA molecular weight marker 

(GeneWorks), to electrophoresis on 1% agarose gels for 1 hour at 80 volts (V) 

using a Bio-Rad PowerPac™ 300. Gels were stained for 20 minutes in a 1 IJg/ml 

solution of ethidium bromide, de-stained in DH20 and viewed under ultraviolet light. 

2.5 Microsatellite amplification and characterisation of alleles 

Six microsatellite loci were amplified via the polymerase chain reaction (PCR) using 

primers developed for Ca/othamnus quadrifidus (Elliot and Byrne, 2005; See Table 

2.2 for primer sequences). Each 15 1-11 PCR reaction contained the following 

constituents: 50 mM KCI, 20mM Tris HCI (pH 8.4), 0.2 mM of each DNTP, 0.3 mM 

forward and reverse primer, 0.5 units of Taq polymerase, either 1 or 1.5 mM MgCb 

(Table 2.2) and 20 ng of Ca/othamnus sp. Whicher DNA (except for samples which 

had a concentration lower than 25 ng/IJI where 1 1-11 of DNA was added). 

Amplification of all loci was achieved using a single PCR programme comprised of 

the following steps: an initial denaturation period of 96 °C for 2 min: 20 cycles of 30 

s at 94 °C (denaturation), 30 s at 69.5 °C with a step down of 0.5 °C per cycle 

(annealing), 30 s at 72 °C (extension), and 10 cycles of 30 s at 94 °C 

(denaturation), 30 s at 60 °C (annealing), 30 s at 72 °C (extension) with a final 

extension period of 2 minutes at 72 °C. 

Table 2.2 Details of primer sequence, amplification conditions and dye set characteristics 
for six microsatellie loci designed for Ca/othamnus quadrifidus (Elliot & Byrne, 2005) as 
used in the present study of Ca/othamnus sp. Whicher. 

Locus Primer sequences (5'-3') 
MgCI2 Dye colour (5' Multiplex 
{mM) forvvard primer) set 

CQ 1.7 
F:CCGCAGTATCACTCCTTTATCC 

1.0 VIC (green) R:CTCCCCAAACCTGCCTATTC 

CQ 1.10 
F:TGCCCACATACTTCCAGAAC 

1.0 VIC (green) 2 R:CTAAACCGTCCCAAGACTCC 

CQ4.3 
F:CGTGAGTTCAGGGGAGCTATG 

1.5 6-FAM (blue) 1 R:CCGATTTTCGTTTCTTCAGG 

CQ 5.11 
F:CGCACAACAGAGGTCAGAAG 

1.5 NED (yellow) 1 R:TCCATAGCATCCAGGAAACCC 

CQ6.1 
F:GCGTCAACGCTTCACTTTAC 

1.0 NED (yellow) 2 R:ATTTGTTGAAGGCGACGAAC 

CQ6.7 
F:CAAGACTTGGCCTTTTGCTC 

1.0 6-FAM (blue) 2 R:AACACGACCTGCAAAACCAG 
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To ensure that DNA amplification conditions were optimal, preliminary products 

were combined with 3 !JI of 5 x loading buffer and electrophoresed on 8%, non

denaturing polyacrylamide gels for three hours at 400 V. Power for electrophoresis 

was provided by a Gibco BRL PS3002 power supply. Gels were stained for 20 

minutes in a 1 !Jg/ml solution of ethidium bromide, de-stained for 20 minutes in de

ionised water and viewed under UV light. The size of fragments was estimated by 

comparing them to 5 !JI aliquots of GeneWorks® pUC19/Hpall DNA molecular 

weight marker. 

To enable products to be analysed on Applied Biosystems 96-well capillary 

sequencer at Murdoch University, subsequent PCR reactions were conducted with 

fluorescently labelled forward primers (Table 2.2). Three different dyes were used, 

6-FAM (CQ4.3 and CQ6.7), VIC (CQ1.7 and CQ1.10) and NED (CQ5.11 and 

CQ6.1 ), to enable products to be combined and analysed in sets. Each well on the 

96-well sequencer plate contained 12.85 !JI of formamide, 0.15 !JI of GS 500-250 

Liz size standard (Applied Biosystems) and 1 !JI of three different PCR products 

(CQ1.7, CQ4.3 & CQ5.11 in analysis set one; CQ1.1 0, CQ6.1 and CQ6.7 in 

analysis set two). Chromatograms were viewed using ABI Gene Mapper software 

(Applied Biosystems) and microsatellite alleles were determined for each individual. 
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Chapter 3: Genetic Diversity and Differentiation 

3.1 Introduction 

Assessing levels of genetic diversity within and among natural populations has 

been a major focus of population genetics since its conception (Hamrick & Godt, 

1996). This is a consequence of two observations. Firstly, the genetic structure of 

populations is one of the key factors governing their ability to persist over long 

timescales as high levels of genetic variability are associated with outcrossing and 

high levels of morphological and physiological plasticity (EIIstrand & Elam, 1993; 

Frankham, 1995; Newman & Pilson, 1997). It is this plasticity which enables 

populations to adapt following shifts in environmental conditions (Amos & Harwood, 

1998). Secondly, the distribution of diversity within and between populations can 

provide insight regarding the historic evolutionary processes that have shaped, and 

may continue to shape, current population relationships (Hamrick et a/., 1992; 

Krauss, 1997). Some of these processes include founder events, genetic 

bottlenecks and the presence of reproductive barriers which result in inter

population divergence (Hamrick eta/., 1992; Amos & Harwood, 1998). 

Population genetic structure can be influenced by a number of intrinsic and 

extrinsic factors (Hamrick et a/., 1992; Amos & Harwood, 1998). Intrinsic factors 

(some of which include life form, fecundity and mating system) are those which are 

an inherent feature of a given species (Hamrick eta/., 1992; Marcelo eta/., 2002). 

In contrast, extrinsic factors (including population size, population structure and any 

number of ecological processes and interactions) are those associated with the 

surrounding environment (Hamrick eta/., 1992; Amos & Harwood, 1998). 

One extrinsic factor which appears to be a significant determinant of genetic 

structure in woody plants is the breadth of their geographical range (Hamrick eta/., 

1992). Because they encompass a broad geographical area, common species are 

more likely to exhibit high diversity and differentiation as a result of adaptation to a 

range of environments, or as a consequence of isolation by distance (Hamrick et 

a/., 1992; Coates et a/., 2003). In contrast, endemic species, which are 

characterised by having narrow geographical distributions, would be expected to 

exhibit low genetic variation as a result of adaptation to a narrow range of 

environmental conditions (Hamrick eta/., 1992; Coates eta/., 2003). 
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These hypotheses have held in many studies which have compared levels of 

diversity in narrow range endemic species and their more common congeners 

(Hamrick & Godt, 1996; Gitzendanner & Soltis, 2000; Coates et a/., 2003). 

However, there are also examples where narrow range endemics and common 

species have been associated with similarly high levels of diversity (Edwards & 

Wyatt, 1994; Young & Brown, 1996; Coates eta/., 2003). Thus there appears to be 

no definitive relationship between the geographic range occupied by a species and 

the levels of genetic diversity maintained. In addition, the effects of landscape 

fragmentation further confound diversity estimates reported in the literature, as 

many studies have also demonstrated decreased genetic diversity and increased 

differentiation in species following land clearing (see review by Young eta/., 1996). 

The major aims of this chapter were to quantify genetic diversity within and among 

remnant populations of C. sp. Whi~her, and to characterise the pattern of genetic 

diversity and interpopulation differentiation. As a result of the geographic proximity 

of populations, and assuming a mixed mating system similar to that observed in the 

closely related species Ca/othamnus quadrifidus, two hypotheses were proposed: 

(i) that similar levels of diversity would be observed within and among populations, 

with the exception of the very small populations (<1 0 plants) where diversity was 

expected to be significantly lower due to sampling effect, and (ii), that differentiation 

between populations would be low, with no significant relationship between genetic 

distance and geographical distance. 

3.2 Materials and Methods 

The genotypes of all reproductive plants in all seven study populations were 

determined for six microsatellite loci. All sampling and microsatellite 

characterisation techniques were described in chapter two. 

Allelic diversity parameters, including the mean number of alleles per locus (A), 

percentage polymorphic loci (P), observed heterozygosity (Ho), expected 

heterozygosity (HE) and Wright's (1978) fixation index (Fis), were estimated using 

the program POPGENE (Yeh eta/., 1997). Wright's (1951) F statistics, including, F, 

an overall inbreeding coefficient (analogous to F1r), e, divergence in allele 

frequencies among populations (analogous to Fsr) and f, degree of inbreeding 

within populations . (analogous to F18), were calculated across populations as 

described by Weir and Cockerham (1984) using FSTAT (Gaudet, 2001); ninety-five 
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percent confidence intervals for each parameter were estimated by bootstrapping 

over loci (1000 bootstraps). Pairwise estimates of 8 were obtained between all 

populations using the same program. The relationship between pairwise genetic 

distance and geographic distance was explored via linear regression, and the 

significance of the relationship tested using a Mantel (1967) randomization test 

(999 permutations) in GENALEX 6 (Peakall & Smouse, 2006). Unweighted pair group 

method with arithmetic average (UPGMA) hierarchical cluster analysis was 

performed on Nei's (1978) unbiased estimates of genetic distance with the program 

GOA (Lewis & Zaykin, 2001 ), and the results illustrated as a dendogram using 

TREEVIEW (Rod eric, 2001 ). 

As Lavene's test indicated that variances were heterogenous, and this could not be 

rectified via transformation, the mean number of private alleles (those observed in 

only a single population) and rare .alleles (which were defined as having a global 

frequency of less than 5%) were compared across populations using the non

parametric Kruskai-Wallis test for three or more independent samples. Pearson's 

correlation coefficient was used to explore the relationships between population 

size and the mean number of alleles per locus and population size and observed 

heterozygosity. The relationships were initially investigated for all seven study 

populations, and the analyses repeated following the removal of the Ambergate 

population, which was believed to be a planted population from an unknown seed 

source, and then once more without Doyle Small and Hairpin Small in order to 

remove bias associated with their small sample sizes. Significant relationships were 

further explored via regression analysis. All routine data analysis was performed 

using SPSS version 11. Results were considered statistically significant when 

outside 95% confidence intervals (P < 0.05). 

3.3 Results 

3.3.1 Resolution of individuals and genetic diversity 

In total, 271 tissue samples were assayed to reveal a total of 245 distinct 

genotypes. Identical genotypes were observed for 26 samples. Twenty-two of these 

were observed between samples which were closely located in the field and 

suspected to be from the same individual at the time of collection. The vast majority 

of these matches were in Hairpin Large, where samples 1 to 19 appeared to be 

collected from a single plant regenerating from ground coppice (Figure 3.1 ). Other 

matches that were from immediately adjacent stems included Ambergate samples 

38 & 39, and Boallia samples 5 and 6, and 13 and 14. These matches were 
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assumed to represent the same individuals and only one of each was retained for 

further analysis. The remaining four pairs of identical genotypes (Ambergate 3 & 

56, Boallia 2 & 25, 12 & 33, 31 & 42) were from plants not adjacent in the field. 

Thus they were likely to represent full sibs and were retained. This left a total of 250 

genotyped individuals for subsequent analysis. 

Figure 3.1 A single multi-stemmed individual of Calothamnus sp. Whicher in Hairpin Large. 
As it was not possible to determine if all of the stems were originating from the same root 
stock, 19 separate tissue samples were collected and assayed. All samples had the same 
genotype over six microsatellite loci. 

In total, 106 alleles were observed over the six microsatellite loci. All loci exhibited 

high variability, with the number of alleles per locus ranging from 13 ( CQ 1. 7 and 

6.1) to 22 (CQ5.11) with a mean of 17.6 ± 1.6 (Table 3.1 ). The mean number of 

alleles per locus (A) varied markedly between the six natural populations, with 

estimates ranging from 1.83 ± 0.31 in Doyle Small to 7.50 ± 1.06 in Doyle Large 

and a mean of 4.33 ± 0.78 (Table 3.2). Diversity was considerably higher in 

Ambergate than in any of the natural populations (11.67 ± 1.35). Statistically 

significant relationships were observed between the mean number of alleles per 

locus and population size when all populations were included (r = 0. 785; P = 

0.037), when Ambergate was excluded (r = 0.949; P = 0.004) and following the 

further exclusion of Doyle Small and Hairpin Small (r = 0.953; P = 0.047) (Figure 

3.2). All loci were polymorphic within populations, except for CQ 6.1 which was 

monomorphic in the Boallia population (Table 3.2). Observed heterozygosity was 

considerably lower (mean 0.349 ± 0.05) than expected heterozygosity (mean 0.530 
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± 0.05) in all populations, translating to high fixation indices for all populations 

(mean F,s 0.315 ± 0.13). No significant relationships were observed between 

observed heterozygosity and population size (P > 0.05; Figure 3.3). 

Table 3.1 Allelic diversity characteristics for six microsatellite loci in Ca/othamnus sp. 
Whicher. n, number of samples assayed; A number of alleles observed; standard error in 
parenthesis. 

Locus n A 
Allele size range 

(base pairs) 

CQ 1.7 271.0 13.0 90-120 

CQ 1.10 267.0 20.0 90-128 

CQ4.3 268.0 21.0 102-152 

CQ 5.11 271.0 22.0 133-185 

CQ 6.1 248.0 13.0 87-129 

CQ6.7 263.0 17.0 104-152 

Mean 17.6(1.6) 

3.3.2 Population genetic structure and differentiation 

For all loci, the most frequent allele(s) varied between the seven populations 

(Figure 3.4 ). For example, five out of the seven populations had the same dominant 

allele at locus 1.7 (allele 7), while a different dominant allele was observed in the 

two remaining populations (Hairpin Medium and Ambergate). There was no 

consistent pattern in the presence of dominant alleles between populations over all 

six loci. Ambergate generally had most variability spread over a large number of 

alleles which were present at low frequencies, while most other populations had 

distinct dominant alleles (Figure 3.4 ). The number of private alleles per locus 

differed between populations (X2 = 22.57 df = 6; P = 0.01 ), with mean values 

ranging from 0.33 ± 0.21 to 1.80 ± 0.79 for the six natural populations, while 

Ambergate had a mean value of 5.33 ± 0.8. The same trend was observed for the 

mean number of rare alleles (X2 = 22.59 df = 6; P = 0.01) with the mean number 

being three times greater in Ambergate than in any other population (value of 8.33 

± 1.96 for Ambergate vs. mean of 1.55 ± 0.32 for the remaining 6 pops; Figure 3.5). 

A Weir and Cockerham (1984) estimate of divergence in allele frequency across 

populations revealed high genetic differentiation within the study sample (8 = 0.256; 

Table 3.3). Marked genetic differentiation was also evident from pairwise estimates 

of 8 between all populations, with values ranging from 0.104 between Doyle Large 

and Doyle Small to ·o.348 between Hairpin Medium and Doyle Small, with a mean 
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Figure 3.2 The relationship between allelic diversity (mean number of alleles per locus) and 
population size for seven populations of Calothamnus sp. Whicher. Correlations performed for (a) all 
populations, (b) with Ambergate removed and (c) with Ambergate and Doyle Small and Hairpin Small 
removed · · 
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Figure 3.3 The relationship between mean observed heterozygosity and population size for seven 
populations of Ca/othamnus sp. Whicher. Correlations performed for (a) all populations, (b) with 
Ambergate removed and. (c) with Ambergate and Doyle Small and Hairpin Small removed. 
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Figure 3.4 Allele frequencies at six microsatellite loci for seven populations of Calothamnus sp. Whicher. 
Alleles are ordered according to their size. HM, Hairpin medium; HS, hairpin Small; HL, Hairpin Large; DL, 
Doyle Large; DS, Doyle Small; A, Ambergate; B, Boallia. Axis titles on plot one hold for all plots. 
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estimate of 0.287 ± 0.10 (Table 3.3). Although there was a modest relationship 

between this pairwise differentiation and geographic distance when the four largest 

populations were examined (? = 0.56) it was not statistically significant according to 

a Mantel randomization test (P = 0.130; Figure 3.6). 

10 

C=:J Private alleles 
C=:J *Rare alleles 

8 

en 
Q) 

Q) 

ro 
6 -0 .... 

Q) 
..c 
E 
::l 

4 c: 
c: 
ctl 
Q) 

2: 

2 

HM HS HL DL OS A 8 

Population 

Figure 3.5 The mean number of private alleles and rare alleles over six microsatellite 
loci for seven populations of Calothamnus sp. Whicher. The means were significantly 
different within treatments based on non-parametric analysis (Kruskai-Wallis X2 = 22.57 
and 22.59, df = 6 for private alleles and rare alleles respectively; P = 0.01 for both 
treatments). Vertical bars represent the standard error around each mean. *Rare alleles 
were defined by having a frequency lower than 5% over all populations. HM, Hairpin 
Medium; HS, Hairpin Small; HL, Hairpin Large; DL, Doyle Large; OS, Doyle Small; A, 
Ambergate; B, Boallia. 

Table 3.3 Differentiation and inbreeding estimates calculated as described by Weir & 
Cockerham (1984) among seven populations Ca/othamnus sp. Whicher, based on six 
microsatellite loci. F, Overall inbreeding coefficient (analogous to F1r), 8, divergence in 
allele frequencies among populations (analogous to Fsr), f, degree of inbreeding within 
populations (analogous to F1s). Ninety-five percent confidence intervals are presented 
below indices. 

F 

0.469 

0.398 - 0.545 

8 

0.256 

0.220- 0.300 

f 

0.349 

0.191 - 0.375 

Unbiased estimates of pairwise genetic distance (Nei's D, 1978) also indicated 

distinct genetic differentiation between populations of C. sp. Whicher. Estimates 

derived from the four large populations were high, ranging from 0.366 between 
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Hairpin Large and Boallia to 0.876 observed between Doyle Large and Ambergate, 

with a mean distance of 0.37 ± 0.59. A UPGMA dendogram of population 

relationships is presented in Figure 3.6. This indicates that Ambergate was distinct 

from the natural populations. 

Table 3.4 Differentiation matrix based on pairwise estimates of 8, divergence in allele 
frequencies among populations (analogous to Wright's (1931) FsT), between seven 
populations of Calothamnus sp. Whicher over six microsatellite loci. Estimates with an 
asteric include one or more populations with a sample size lower than 12. 

HM HS HL DL DS A B 

HM 0.000 

HS 0.232* 0.000 

HL 0.201* 0.105* 0.000 

DL 0.206* 0.116* 0.088 0.000 

DS 0.348* 0.260* 0.195* 0.104 0.000 

A 0.167* 0.205* 0.171 0.185 0.328* 0.000 

B 0.341* 0.178* 0.141 0.147 0.227* 0.219 0.000 

3.4 Discussion 

The principal aims of this chapter were (i) to characterise the levels of genetic 

diversity within and among seven populations of Calothamnus sp. Whicher and (ii) 

to determine the amount of differentiation between them. Although global allelic 

diversity was high over all six loci (17.6 ± 1.6), allelic diversity in the six natural 

populations was lower (mean A = 4.33 ± 0.77), but similar to levels observed in 

other woody species with restricted geographical distributions. For example, 

England et a/. (2002) observed 3.46 ± 0.20 alleles per locus (six microsatellites) 

over seven populations of Grevil/ea macleayana, while Jones et a/. (2005) 

observed 6.3 alleles per locus (six microsatellites) over three populations of 

Eucalyptus morrisbyi. However, these levels were much lower than those reported 

for microsatellite studies of woody taxa with broader distributions. For example, 

Rossetto eta/. (1999) observed a mean of 38.7 alleles across three populations of 

the widespread Melaleuca a/ternifolia (Myrtaceae), while Holman et a/. (2003) 

observed an average of 16.3 alleles over five microsatellite loci in a Eucalyptus 

popu/nea - E. brownii hybrid zone. Geographic range has been described 

previously as a factor affecting levels of allelic diversity in species. For example, in 

an extensive review of the allozyme literature (322 woody taxa), Hamrick et a/. 

(1992) found that endemic species maintained approximately 70% less diversity 
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· Figure 3.6 (A) UPGMA dendogram based on Nei's (1978) unbiased genetic distance for 
the four largest populations of Calothamnus sp. Whicher over six microsatellite loci and 
(B) the relationship between pairwise estimates of 8, divergence in allele frequencies 
between populations (Weir and Cockerham, 1984), and pairwise geographic distance for 
the same four populations. The significance of the regression in plot 8 was determined 
using a Mantel (1967) randomisation test (999 permutations). 
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than widespread species. These observations appear to be a consequence of the 

low environmental heterogeneity experienced by species which have limited 

geographic distributions (Hamrick eta/., 1992). Hamrick eta/. (1992) also suggest 

that geographic distribution is good predictor of within population diversity, as 

endemics often occur in small isolated populations where gene flow is limited and 

the effects of drift are amplified. 

Population size does appear to be a factor influencing allelic diversity in this 

species. The relationship between population size and allelic diversity is widely 

appreciated and has been observed in a number of plant species. For example, 

Coates et a/. (unpublished data) found a positive correlation between the mean 

number of alleles per locus and population size in Calothamnus quadrifidus and 

Eucalyptus wandoo, both of which were within a fragmented landscape. Similarly, 

Luijten et a/. (2000) observed a positive relationship between allelic diversity and 

population size in Arnica montana (Asteracea) (see Young et a/., 1996 for more 

examples). According to Ellstrand and Elam (1993), population size affects levels of 

genetic diversity because the effects of genetic drift and inbreeding increase with 

decreasing population size. But levels of diversity in very small populations can 

also be low as a result of sampling effect, as population size dictates the maximum 

level of allelic diversity that a population can maintain (Amos & Harwood, 1998). In 

this study, levels of allelic diversity were correlated with population size, even when 

the very small populations (Hairpin Small and Doyle Small) were excluded. Thus, 

this relationship suggests that smaller populations had lower allelic diversity, 

presumably as a result of sampling. 

In contrast, levels of observed heterozygosity (Ho) were not associated with 

population size. Although a number of authors have observed a positive correlation 

between Ho and population size in plants (Fisher et a/., 2000; Paschke et a/., 

2002), this has not been the case for the majority of studies (Luijten et a/., 2000). 

According to Amos & Harwood (1998), levels of heterozygosity are less sensitive to 

changes in population size than levels of allelic diversity. This is because 

heterozygosity is not directly dependent upon the number of individuals in a 

population, as is the case with allelic diversity (Amos & Harwood, 1998). Instead, 

heterozygosity is controlled by patterns of mating (i.e. rates of outcrossing and self 

fertilisation), though these are influenced by population size to some degree. 
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Considering the close proximities of the study populations, global and pairwise 

estimates of differentiation were high. Generally, differentiation of this nature is 

observed between populations over vast geographical distances, and is a 

consequence of limited gene flow, diversifying selection in response to variation in 

local environmental conditions or founder events (Amos & Harwood, 1998; Hamrick 

et a/., 1992). However, the levels of differentiation and genetic distance observed 

between populations in this study were similar to those observed in other 

threatened species in fragmented landscapes (Les eta/., 1991; van Trueren eta/., 

1991; Dolan, 1984; Raijman et a/., 1994; Godt et a/., 1996; Fischer & Matthies, 

1998). For example, Hoebee & Young (2001) observed high genetic differentiation 

(Fsr = 0.204 ± 0.040) and intermediate distance (Nei's D = 0.15) between 

populations of the endangered shrub, Grevi/lea iaspicula. England et a/. (2002) also 

found similar patterns of diversity (Fsr = 0.204; Nei's, 1978 D ranging from 0.118 -

0.713) in another rare Grevil/ea species, Grevil/ea macleayana. Not only do these 

species have similar life history strategies to Ca/othamnus sp. Whicher, in that they 

are long-lived, bird-pollinated woody shrubs, the study populations were similar in 

size and located over a similar geographical distance to those in the present study. 

The extent of differentiation and genetic distance observed in these studies has 

been attributed to limited gene flow. This also seems to be the case for the 

populations in this study, as the observed differentiation is unlikely to be a result of 

adaptation to local conditions considering their close proximity and restriction to a 

specific soil type. However, the pattern of differentiation was not explained by a 

simple isolation by distance model. 

In addition to limited gene flow between the study populations, the high levels of 

differentiation between them appears to be a consequence of high levels of self 

fertilisation or bi-parental inbreeding, as high F1s values were observed within and 

among populations. Some selfing would be expected considering the mixed mating 

systems exhibited by myrtaceous species. For example, Yates et a/. (in press A) 

observed low (0.1 0) to moderate (0.45) rates of self fertilisation in the closely 

related shrub, Ca/othamnus quadrifidus, while Sampson et a/. (1995) observed 

similar rates in the bird-pollinated mallee, Eucalyptus rameliana. However, the high 

fixation indices obtained in this study indicate that rates of selfing may be higher in 

these populations. 

It is also likely thqt the effects of genetic drift have played a major role in the 

observed patterns of differentiation. All of the populations (with the. exception of 
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Ambergate) are located on severely degraded roadsides which are surrounded by 

expanses of agricultural matrix. Based on their locations (> 250 m apart), the 

heavily modified state of the interconnecting 'habitat', and the large areas occupied 

by other populations which exist in natural vegetation, it is also likely that the three 

smallest populations were once connected to the nearby larger populations (Hairpin 

Small and Medium with Hairpin Large, and Doyle Small with Doyle Large). Through 

a combination of drift and inbreeding, it is possible these populations may have 

diverged as a consequence of land clearing. 

The data obtained in this study also enables a test of the hypothesis that the 

population in Ambergate reserve was planted. The high allelic diversity in 

Ambergate, and the high degree of divergence from other populations, does 

support this hypothesis. Moreover, the high number of private alleles in this 

population suggests that the seed used to establish the population was collected 

outside of this study area. 

The results of this study indicate that the selected populations of Calothamnus sp. 

Whicher had high levels of among population diversity, yet considerably lower 

levels of diversity within populations. In addition, considerable genetic 

differentiation was observed between populations. This differentiation appears to 

be a consequence of long-term reproductive isolation between populations, 

considerable levels of inbreeding and the effects of random genetic drift. Such a 

scenario was not expected for these populations considering the life history 

strategy of this species. However, it would appear that bird pollination and the long 

life span of adults have not buffered these populations against genetic change. 
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Chapter 4: Gene flow 

4.1 Introduction 

Gene flow is a major factor that impacts upon the genetic structure of populations 

and species (Slatkin, 1985). Although this concept has been central to studies of 

population genetic structure for decades, paternity assignment techniques have 

recently broadened our understanding of gene flow and the factors that affect it 

(Adams eta/., 1992). 

A large proportion of the paternity assignment studies performed on plants have 

focused on estimating pollen dispersal between economically important species 

and their wild relatives (Wang et a/., 2004; Chen et a/., 2004; Otero-Arnaiz et a/., 

2005). More recently, studies have focused on patterns of pollen-mediated gene 

flow in natural populations. These studies (White et a/., 2002; Dunphy et a/., 2004; 

Oostermmeijer & De Knegt, 2004; Byrne et a/., in press) have demonstrated 

patterns of gene flow which contradict a number of the existing paradigms 

associated with pollen dispersal. It appears that for many species, pollen travels 

significantly further than originally estimated. For example, White et a/. (2002) 

observed gene flow events over a maximum distance of 4.5 km in the insect 

pollinated tropical forest tree, Swietenia humilis; an estimate ten times greater than 

those determined for insect pollinated tropical trees from pollinator observations. A 

number of studies also suggest that increased spatial isolation has little impact 

upon pollen immigration rates (Trapnell & Hamrick, 2005; Byrne eta/., in review). 

The vast majority of these studies have investigated patterns of gene flow in 

common species which are associated with broad geographical distributions (Lowe 

eta/., 2004). Those which have focused on rare species have mainly examined 

insect-pollinated tropical trees (Lowe eta/., 2004). Tropical trees are characterised 

by low density distributions and rarely form clumped populations which are 

common in temperate species (Lowe et a/., 2004). Thus, one would expect the 

pollen dispersal vectors associated with tropical species to be well adapted for long 

distance dispersal (Lowe eta/., 2004). 

In Western Australia, many bird pollinated species rely on honeyeaters as pollen 

vectors (family Melaphigidae). These species are considered generalists as they 

are known to visit r.nany plant species. For example, Hopper and Burbridge (1986) 

observed the New Holland and Brown Honeyeaters feeding from over 65 native 
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taxa. A number of studies also report that honeyeater abundance is associated with 

flower abundance (Paton, 2000). More specifically, more honeyeaters were 

observed in areas where there were more flowers (Paton, 2000). Because rare 

endemic species are often geographically restricted and are represented by fewer 

individuals, this may influence the way that they are visited by avian pollinators. 

This chapter has three aims: (i) to describe patterns of gene flow into and between 

the two study populations in which seedlings were assayed, (ii) to describe the 

mating system employed by this species and (iii) to describe and compare patterns 

of pollen dispersal within the two study populations. Given the findings of mating 

system and gene flow studies performed on the closely related species, 

Ca/othamnus quadrifidus, the following three hypothesis were formed: (i) that gene 

flow into and between the two sampled populations would be similarly high, (ii) that 

Ca/othamnus sp. Whicher would exhibit a mixed mating system with similar rates of 

outcrossing to that exhibited by C. quadrifidus and (iii) that patterns of within 

population dispersal would reflect those observed in other bird pollinated species. 

4.2 Materials and Methods 

The genotypes of all plants in all seven study populations were determined for six 

microsatellite loci. In addition, seed samples were collected in Hairpin Large and 

Doyle Large from ten randomly selected mother plants. Fifteen seedlings from each 

mother were then genotyped at the same six microsatellite markers. All sampling 

and microsatellite characterisation techniques are described in chapter two. 

Paternity for each seedling was assigned using the maximum likelihood approach 

in CERVUS version 2.0 (Marshall eta/., 1998). The log-likelihood statistic, l1 (Delta), 

was obtained using the default simulation settings. Confidence intervals for 

stringent and relaxed assignment were set at 95 and 80% respectively. Outcrossing 

rate was determined as 1 - s where sis the proportion of selfed progeny. The level 

of pollen immigration in each population, t0 , was determined as 1 - (ti + s) where ti is 

the proportion of outcross events resulting from pollen intrinsic to the populations. 

The number of migrants entering each population per generation (Nm) was 

estimated as t0 x (2n) where n is the number of reproductive plants in the 

population. A historical estimate of gene flow was also made indirectly as the 

number of migrants (Nm) between populations using the Fsr method (Slatkin, 1987) 

in GENALEX6 (Peakall & Smouse, 2006). 
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Differentiation of maternally sampled pollen pools was assessed by calculating 

global, within population and pairwise among population estimates of, <l>tt, using the 

TWOGENER analysis of Smouse et a/. (2001) in GENALEX 6. Probability values based 

on the deviation of estimates from zero were obtained via 999 permutations. The 

relationship between pollen pool differentiation and geographic distance in Hairpin 

Large was investigated via linear regression, and the significance of the 

relationship tested via a Mantel (1967) randomization test (999 permutations) using 

the same program. Mean pairwise pollen pool differentiation between Hairpin Large 

and Doyle Large was compared via a t-test using SPSS version 11. Prior to 

performing the t test, data were tested for normality and homogeneous variances 

using the Shapiro-Wilks and Lavene's tests, respectively. 

Comparisons of the mean percentage of progeny resulting from self-fertilisation, 

internal outcrossing and pollen immigration between the two populations, as well as 

the mean number of outcrossed seedlings with internal fathers and the mean 

number of different fathers per mother, were also made using t tests. Results were 

considered significant when outside 95% confidence intervals (P < 0.05). 

4.3 Results 

Microsatellite characteristics, paternity assignment and outcrossing rates 

Polymorphic information content was high over the six microsatellite loci, with 

values ranging from 0.514 for CQ 6.1 to 0.872 for CQ4.3, with a mean of 0.683 ± 

0.056 (Table 4.1 ). Individual exclusion probabilities ranged from 0.385 for CQ1.7 to 

0.767 for CQ4.3. The total exclusion probability obtained over all six markers was 

0.991. The frequency of null alleles at each locus ranged from 0.178 to 0.415 with a 

mean of 0.293 ± 0.038 (Table 4.1 ). 

Of the 285 progeny analysed, paternity assignment identified a pollen source for 

246 (86%) within 80% confidence intervals. Of the 40 unresolved progeny, 31 

(78%) had paternal haplotypes which were consistent with self fertilisation. For 

these samples, paternity was assigned to the mother plant. For the remaining nine 

progeny (6%), paternity was assumed to have arisen from the pollen parent with 

the highest likelihood score. 

Outcrossing rates were highly variable between mother plants with values ranging 

from 7% to 100% percent (Table 4.2), with a mean of 44.4 ± 6.3 across all 20 

mothers. The internal outcross rate was higher in Hairpin Large (51.3 ± 9.9) than in 
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Doyle Large (37 .6 ± 7 .6), though this was not significantly different (t dt18 = 1.1 02; P 

= 0.285). 

Table 4.1 Polymorphic information content (PIC), exclusion probabilities (Excl) and 
estimated frequency of null alleles (Null) for six microsatellite markers over seven 
populations of Calothamnus sp. Whicher. 

Locus PIC Excl Null 

CQ 1.7 0.587 0.385 0.415 

CQ 1.10 0.756 0.592 0.322 

CQ4.3 0.872 0.767 0.178 

CQ 5.11 0.777 0.635 0.365 

CQ6.1 0.514 0.347 0.285 

CQ6.7 0.519 0.411 0.193 

Mean 0.683 (0.056) 0.293 (0.038) 

Total 0.991 

4.3. 1 Gene flow 

Direct estimates of gene flow into both populations were very low (Figure 4.1; Table 

4.2). For Hairpin Large only 2.7% of pollinations were a result of pollen immigration, 

with less than 1% of pollination events resulting from pollen originating from Hairpin 

Small (158m), Boallia (2.18 km), Doyle Large (2.23 km) and Ambergate (5.5 km) 

(Figure 4.1 ). Although pollen was received from fewer populations and over shorter 

distances, 4% of pollinations within Doyle Large resulted from immigrant pollen, 

with 2% originating from Doyle Small (148 m), 1% from Hairpin Large (2.23 km) 

and 1% from Boallia (2.47 km). Rates of pollen immigration did not differ 

significantly between the two populations. (t df1B = -0.483; P = 0.635). 

The mother plants which received extrinsic pollen were generally located on the 

periphery of the population which was closest to the pollen source. For example, 

mother number 99, which was the eastern most plant in Hairpin large, received 

pollen from Doyle Large which was located to the east. Similarly, mother number 

56, which was located on the southern periphery of Hairpin Large, received pollen 

from Boallia, which was located directly south. 
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Table 4.2 Selfing and outcrossing rates for seed crops from two populations of 
Ca/othamnus sp. Whicher as determined via maximum likelihood paternity assignment. n 
= number of seedlings assayed. 

Selfing rate 
Internal 

Apparent pollen 
Population n outcross rate 

Mother (%) 
(%} 

immigration (%) 

Hairpin 1 15 93 7 0 
Large 

22 15 53 40 7 

28 13 54 46 0 

35 15 67 33 0 

45 15 33 67 0 

49 15 7 93 0 

56 15 47 40 13 

62 15 0 100 0 

79 15 27 73 0 

99 14 79 14 7 

Mean 14.7 (0.2) 46.0 (9.4) 51.3 (9.9) 2.7 (1.5) 
Doyle 2 15 67 33 0 
Large 

4 15 53 47 0 

8 15 7 80 13 

12 15 60 20 20 

17 14 71 22 7 

26 15 60 40 0 

29 15 80 20 0 

36 15 67 33 0 

38 4 25 75 0 

44 15 93 7 0 

Mean 13.8 (1.1) 58.3 (8.0) 37.6 (7.6) 4 (2.25) 

Indirect estimates of the number of migrants between the seven study populations 

were indicative of moderate historical gene flow (Table 4.3). Pairwise estimates 

between the six natural populations ranged from 0.556 between Boallia and Hairpin 

Medium to 3.438 between Doyle Large and Doyle Small, with a mean value of 

1.551 ± (0.158). The mean estimate of Nm between the three largest populations 

was 2.160 ± 0.365. This was similar to the estimates of Nm calculated from direct 

pollen immigration rates for Hairpin Large and Doyle Large (4.40 and 3.52 

respectively). 

4.3.2 Within population patterns of dispersal 

For both of the assayed populations, the majority of pollinations (97 and 96% for 

Hairpin Large and Doyle Large, respectively) resulted from pollen <:>f an intrinsic 
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Table 4.3 Pairwise estimates of indirect gene flow, as the mean number of migrants 
between populations per generation (Nm), calculated using the Fsr method (Slatkin, 1987), 
for six natural populations of Ca/othamnus sp. Whicher. HM, Hairpin Medium; HS, Hairpin 
Smail; HL, Hairpin Large; DL, Doyle Large; OS, Doyle Small; B, Boallia. Mean Nm = 1.551 
± 0.158; mean Nm between the three large populations (estimates denoted in bold)= 2.16 
± 0.365. 

HM 

HM 0.000 

HS 

HL 

DL 

OS 

B 

0.826 

0.983 

0.970 

0.748 

0.556 

HS 

0.000 

2.048 

2.112 

1.248 

1.310 

HL 

0.000 

2.890 

1.748 

1.762 

. DL 

0.000 

3.438 

1.828 

OS 

0.000 

0.816 

B 

0.000 

source (Figure 4.1; Table 4.2). The mean number of outcrossed seedlings was 

higher in Hairpin Large (8.0 ± 1.44) than in Doyle Large (5.1 ± 1.16) (Table 4.4). 

However, due to the variation observed between mothers, no statistically significant 

difference was observed (t dt1a = 1.570; P = 0.134 ). Similarly, no significant 

difference was observed when the percentage of outcrossed seedlings with internal 

fathers (Hairpin Large= 91.3% ± 4.03; Doyle Large= 92.7% ± 4.01; t dt1a = -0.246; 

P = 0.808) or the number of different fathers contributing pollen to each mother 

were compared (Hairpin Large = 4.6 ± 0.65; Doyle Large = 3.1 ± 0.43; t dt1a = 1.91; 

P = 0.072) (Table 4.4). 

Analysis of the dispersal events within Hairpin Large over distance classes 

revealed that the vast majority of pollination events (76%) resulted from a pollen 

parent located less than 1 0 m from the mother plant (Figure 4.2). Of these 106 

progeny, 67 (63%) were a result of self fertilisation, while the remaining 39 (37%) 

were outcrossed. Although longer distance dispersal events were recorded across 

the 50 m breadth of the population, the number of pollinations generally decreased 

with increasing distance between plants (with the exception of the 21-30 m class 

which was associated with more pollinations than the 11-20 m class) (Figure 4.2). 

For Hairpin Large, the number of near neighbour matings as a percentage of 

outcrossed events was highly variable among the ten Hairpin Large mothers, with 

values ranging from. 0 to 70%, and a mean value of 36.1% ± 8.8. However, when 
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assessed over all events, this mean value decreased to 23% ± 6.6, with individual 

values ranging from 0 to 60% (Table 4.5). 

Table 4.4 Percentage of seedlings with fathers internal to the population and the number of 
different fathers for each mother plant in two populations of Calothamnus sp. Whicher. 

Number of Percentage of outcrossed Number of 
Population Mother outcrossed seedlings with different 

seedlings internal fathers fathers 

Hairpin Large 1 1 100 

22 7 86 3 

28 6 100 5 

35 5 100 4 

45 10 100 5 

49 14 100 6 

56 8 88 6 

62 15 100 7 

79 11 73 7 

99 3 66 2 

mean 8.0 (1.44) 91.3 (4.03) 4.6 (0.65) 

Doyle Large 2 5 100 3 

4 7 100 4 

8 14 86 6 

12 6 66 4 

17 4 75 3 

26 6 100 2 

29 3 100 3 

36 5 100 3 

38 3 100 2 

44 1 100 1 

mean 5.1 (1.16) 92.7 (4.01) 3.1 (0.43) 

4.3.3 Pollen pool differentiation 

Pollen pool differentiation among all 20 mothers from both populations was high 

and significantly different from zero (<t>rt = 0.505; P = 0.001) (Table 4.6). Significant 

differentiation was also observed within populations, though differentiation was 

lower in Hairpin Large than in Doyle Large (0.358 vs 0.543; P = 0.001 for both 

estimates). Pairwise differentiation between mothers within populations was also 

variable with values in Hairpin Large ranging from 0.046 to 0.624, while those in 

Doyle Large ranged from 0.028 to 0.808. Mean pairwise <l>rt was significantly higher 

in Doyle Large ···than in Hairpin Large (0.515 ± 0.028 vs. 0.344 ± 
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Figure 4.2 The frequency of pollination events as a function of distance between pollen 
parents and mother trees in the Hairpin Large population. n = 141. 

Table 4.5 Number of near neighbour mating events within the Hairpin Large population 
of Calothamnus sp. Whicher. 

Near neighbour matings 
Near neighbour matings Mother n over outcrossed events 

{%} 
over all events (%) 

15 0 0 

22 15 57 29 

28 13 67 31 

35 15 0 0 

45 15 70 47 

49 15 36 33 

56 15 38 20 

62 15 60 60 

79 15 0 0 

99 14 33 7 

mean 14.7 (0.21) 36.1 (8.8) 22.7 (6.6) 
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± 0.019; t = 2.538 dt18; P = 0.021) (Table 4.4). Although differentiation was lower at 

all scales (globally, within populations and mean pairwise) when selfed progeny 

were removed from the analysis, mean pairwise estimates of <Prt still differed 

significantly between the two study populations. No statistically significant 

relationships were observed between pairwise estimates of <Prt between mother 

plants in Hairpin Large and geographic distance for all pollination events (? = 

0.055; P = 0.062), or when selfed progeny were removed (? = 0.001; P = 0.380; 

Figure 4.3). 

Table 4.6 Global, among mother (within populations) and mean pa1rw1se (within 
populations) differentiation in maternally sampled pollen pools (ct>rt) for two populations of 
Ca/othamnus sp. Whicher. 

Population 

Hairpin Large Doyle Large 

Global ct>rt 0.505* 

Global ct>rt 
0.364* outcross events only 

Among mothers ct>rt 0.358* 0.543* 

Among mothers ct>rt 
0.267* outcross events only 0.349* 

aMean pairwise ct>ft 0.344 (0.019) 0.515 (0.028) 

aMean pairwise ct>ft 0.231 (0.019) outcross events only 
0.348 (0.025) 

*Values differ from 0 at the 0.001 alpha-level. 
a Mean pairwise values were significantly different (P < 0.000). 

4.4 Discussion 

The six hyper-variable microsatettite markers, which were designed for the closely 

related species, Calothamnus quadrifidus, have enabled the assignment of 

paternity to the majority of progeny with a high level of confidence in Calothamnus 

sp. Whicher. The multilocus exclusion probability of 0.991 obtained here was 

similar to that obtained in other studies of paternity which have employed 

microsatellite markers (White eta/., 2002, 0.983; Otero-Arnaiz eta/., 2005, 0.960; 

Byrne eta/., in press, 0.998). Moreover, it exceeded the total exclusion probabilities 

obtained in studies which employed approximately twice the number of isozyme 

markers (Dunphy et a/., 2004, 0.940 using 11 markers; Schuster & Mitton, 1999, 

0.880 using 10 markers). Such data clearly emphasize the superiority of 

microsatellite markers in studies of parentage analysis. However, 
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Figure 4.3 The relationship between pairwise differentiation in maternally sampled pollen 
pools (<1>11) and geographic distance for ten individuals of the woody shrub, Calothamnus 
sp. Whicher in the Hairpin Large population. Pairwise estimates of <1>11 in the first plot were 
based on the genotypes of 13 to 15 progeny for each mother over six microsatellite loci. 

·Estimates in the second plot were derived from outcrossed events only. The significance 
of the regression in each plot was tested using a Mantel (1967) randomization test (999 
permutations). n = 45 in both plots. 
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even with the high exclusion probability obtained, the maximum likelihood 

assignment approach was unable to assign paternity to a number of progeny that 

had genotypes consistent with self fertilisation. This was a consequence of the high 

levels of genetic similarity observed between plants within populations (see chapter 

3). Given the high levels of self pollination within the assigned progeny, it was 

assumed that the progeny with unassigned paternity but with genotypes consistent 

with self fertilisation resulted from self pollination, rather than pollination from 

another plant. Therefore, outcrossing rates may be underestimated by 2. 7% in 

Hairpin Large and 20% in Doyle Large. Similarly, ambiguous paternity could not be 

resolved for nine outcrossed progeny in Doyle Large. The assumption that paternity 

arose from the parent with the highest likelihood score is most conservative, and in 

all but one situation, paternity was assigned to a pollen parent intrinsic to the 

population. However, if pollination actually occurred from an outside pollen source, 

this assumption may have led to an underestimate of pollen immigration into Doyle 

Large by up to 6%. 

Maximum likelihood assignment of pollen parents to seed crops revealed limited 

gene flow into the two assayed populations, with pollen immigration rates of 2. 7% 

and 4% for Hairpin Large and Doyle Large, respectively. These rates are 

considerably lower than those reported in most other direct studies of gene flow, 

including those determined for tropical (White et a/., 2002; Dunphy et a/., 2004; 

Ward et a/., 2005) and temperate (Byrne et a/., in review) insect pollinated trees, 

herbaceous species (Otero-Arnaiz et a/., 2005) and the bird pollinated orchid, 

Lae/ia rubescens (Trapnel & Hamrick, 2005). In addition, rates of gene flow 

observed here are considerably lower than those observed in the closely related 

species Ca/othamnus quadrifidus (mean pollen immigration rate of 30% over three 

populations; Byrne eta/., in press). While this was largely unexpected, there are a 

number of possible explanations for the observed difference. The first is associated 

with the size of the populations examined in each study. Theory predicts that the 

influence of extrinsic pollen on pollination events in a population will be largely 

determined by the number of flowers which are visited subsequent to the arrival of 

a pollinator into a population (Cresswell & Osbourne, 2004). This is a consequence 

of the fact that extrinsic pollen brought into a population will be rapidly depleted 

during the pollinator's initial floral visits (EIIstrand & Elam, 1993; Cresswell & 

Osbourne, 2004), after which time all subsequent pollinations will be a result of 

pollen intrinsic to the population (EIIstrand & Elam, 1993; Cresswell & Osbourne, 
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2004 ). Thus, as the number of flower visits increases, the ratio of extrinsic 

pollinations to intrinsic pollinations is continually reduced (Cresswell & Osbourne, 

2004; demonstrated by Broyles eta/., 1994; White eta/., 2002; Trapnell & Hamrick, 

2005). Many factors influence the number of flowers visited by a pollinator within a 

population or patch, a phenomenon referred to as pollinator residence (Cresswell & 

Osbourne, 2004 ). Of these, Cresswell and Osbourne (2004) suggest that the most 

important is the number of flowers available within the patch. In most cases, the 

number of flowers within a population would be expected to increase with 

increasing population size (Cresswell & Osbourne, 2004). One may therefore 

expect higher pollinator residence within populations that contain a greater number 

of flowering individuals, or plants with larger canopies (Pyke, 1984; Cresswell & 

Osbourne, 2004). In their study of C. quadrifidus, Byrne et a/. (in press) 

concentrated on populations which ranged in size from one plant to 23 plants. In 

this study, paternity assignment was performed on progeny derived from 

populations of 44 and 83 individuals. Thus, the larger populations here may have 

lead to greater pollinator residence, and consequently a lower proportion of 

progeny resulting from pollen immigration. However, this hypothesis is not 

supported by the positive relationship between population size and pollen 

immigration observed by Byrne eta/. (in press) in C. quadrifidus. 

Although not investigated in this study, another possible explanation for the limited 

gene flow is a low abundance of avian pollinators in the study area. Birds, 

particularly honeyeaters, have been described as the primary pollen vectors within 

the genus Ca/othmanus (Ford eta/., 1979; Collins eta/., 1984; Yates eta/., in press 

A). Of all biological pollen vectors, birds are considered one of the most effective 

with regards to their ability to mediate gene flow, as they are capable of travelling 

large distances over sub-optimal habitat (Low et a/., 2004; Trapnell & Hamrick, 

2005). The presence of some long dispersal distance events in this study (up to 

5.55 km) suggests that birds are capable of traversing the distance between any 

pair of the study populations despite extensive fragmentation. This is also 

supported by previously recorded observations of honeyeater flight between 

fragments that were isolated by up to 12.5 km (Ford eta/., 2000). A decrease in the 

abundance of birds may be linked to lack of suitable habitat in the study area. This 

is supported by a number of ecological studies of bird-pollinated species. For 

example, Paton (2000) observed significantly fewer honeyeaters in heavily 

fragmented areas . of South Australia compared to areas which were largely 

undisturbed. The study also demonstrated significant pollinator limitation in these 

61 



Chapter 4: Gene flow 

fragmented areas for a number species (primarily Astroloma and Grevil/ea) which 

were naturally bird pollinated (Paton, 2000). Similarly, Watson et a/. (2003) 

observed a reduction in species richness and functional groups of birds in a 

fragmented woodland in south eastern Australia. In the present study, neither of the 

sampled populations was connected to natural vegetation, and there was very little 

remnant vegetation in the immediate study area, providing little shelter or food for 

large bird populations. Ambergate Reserve represented the only significant 

vegetation remnant in the study area and, apart from a small population of C. sp. 

Whicher, there were few mass flowering, bird pollinated species present in the 

reserve. This is a very different scenario to that associated with the study 

performed by Byrne et a/. (in press) on C. quadrifidus. Although their study was 

also conducted in a fragmented landscape, the area contained many populations of 

the study species, some of which were large with more than 1000 individuals 

(Byrne et a/., in press; Yates et al., in press A). If Calothamnus sp. Whicher did 

represent a primary food resource for bird species in the study area prior to 

fragmentation, the clearing of the species would have removed an important food 

resource, resulting in reduced honeyeater abundance. 

Although a number of authors have suggested that indirect estimates of gene flow 

(based on population genetic structure) are unlikely to represent those actually 

occurring between natural populations (Whitlock & McCauley, 1999; Lowe et a/., 

2005), estimates of the mean number of migrants between populations described 

here are in some agreement with rates of Nm estimated from the pollen 

immigration rates revealed by paternity analysis (Hairpin Large = 4.4; Doyle Large 

= 3.52). Most estimates, including the mean pairwise estimate between the three 

large populations (2.16 ± 0.365), fall within the range of 1 - 4 migrants per 

generation, where theory predicts a moderate to slow rate of homogenisation over 

time (Wright, 1931). In contrast, one-third of values were less than zero, where 

theory suggests differentiation over time (Wright, 1931). These results should be 

interpreted with caution, as the populations and data obtained in this study violate 

some assumptions of Wright's (1931) island model of migration. These include 

differences in the size of populations studied (with some containing only three 

individuals) as well as significant variation in the distances between populations. 

Otherwise, these low indirect rates do suggest that the rates of gene flow obtained 

directly over a single year are representative of historical patterns. 
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As expected, the patterns of mating revealed in this study indicate that C. sp. 

Whicher employs a mixed mating system similar to that exhibited by a number of 

other self compatible myrtaceous species (Sampson et a/., 1995; Burczyk et a/., 

2002; Millar eta/., 2000; Yates & Ladd, 2004). The mean outcrossing rate obtained 

for C. sp. Whicher (0.44) was considerably lower that that observed across 

populations of other myrtaceous species, including Eucalyptus marginata (0.81; 

Millar et a/., 2000), Eucalyptus regans (0.84; Burczyk et a/., 2002), Eucalyptus 

rameliana (0.83; Sampson eta/., 1995) and Eucalyptus wandoo (0.74; Byrne eta/., 

in review). In addition, outcrossing rates in C. sp. Whicher were lower than those 

obtained in a study of mating system of Calothamnus quadrifidus (0.71; Yates et 

a/., in press A). Considering the many parallels between these two taxa, with 

regards to their morphology and the ecological settings of the studied populations 

(as both were situated in fragmented landscapes), there is no obvious reason why 

C. sp. Whicher was associated with higher rates of self-fertilisation. Yates eta/. (in 

press A) included a broader range of population sizes in their study of the mating 

system of C. quadrifidus (22-2014 individuals), yet no relationship between 

population size and outcrossing rates were observed. 

One possibility that may explain the high rates of self fertilisation observed in this 

study is that post-zygotic seed abortion mechanisms are not present in C. sp. 

Whicher. Post-zygotic seed abortion is a feature of many myrtaceous species, 

though is not ubiquitous among the family (James & Kennington, 1993). Such seed 

abortion systems result in a mating system which is more outcrossing than would 

be expected from pollinator observations (James & Kennington, 1993), as 

heterozygous seed is selected for within the capsule. However, a number of 

authors have suggested that, in eucalypts, the post-zygotic selection against 

homozygotes may be restricted to mass flowering species, as opposed to those 

which produce solitary flowers (James & Kennington, 1993; Sampson et a/., 1995; 

Sampson, 1998). If this holds for other members of family Myrtaceae, one would 

expect that both C. quadrifidus and C. sp. Whicher would exhibit similar rates of 

post-zygotic selfed seed abortion, as they are closely related and are both mass 

flowering. An investigation of seed production in C. quadrifidus by Yates eta/. (in 

press B) observed a decrease in seed production with decreasing population size, 

which is indicative of post-zygotic seed abortion following increased rates of 

inbreeding. A similar investigation will be undertaken in C. sp. Whicher with the 

expectation that similar seed abortion rates will be observed (Yates, pers comm). 
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It is more likely that the low rates of outcrossing observed in this study are a 

consequence of extensive pollination by insects - primarily European bees (Apis 

me/litera). In addition to pollination by birds, it has been demonstrated that effective 

pollination in Ca/othamnus can also result from foraging by bees (Collins et a/., 

1984 ). The patterns of plant mating associated with these two different pollen 

vectors differ markedly (Richards, 1986; England et a/., 2001 ). Studies of 

honeyeater foraging behaviour report extensive between plant movement, the 

result of which is a plant mating system with high levels of outcrossing (Richards, 

1986; Paton, 2000). Such foraging patterns have even been observed in 

populations where plant density is high and within plant or near neighbour 

movement would be expected assuming an optimal pattern of foraging (England et 

a/., 2001). For example, in a pollination study of the bird pollinated species, 

Eucalyptus stoatei, Hopper and Moran (1981) report that most intertree bird 

movements were between trees farther apart than nearest neighbours. In contrast, 

bees are typically associated with large bouts of within plant activity, followed by 

migration to a nearby plant (Richards, 1986; England et a/., 2001 ). These patterns 

are often associated with high levels of selfing (Richards, 1986). High level of 

pollination by bees is also supported by the patterns of pollen dispersal observed in 

Hairpin Large. The vast majority of pollination events resulted from self pollination 

(48%), or from a pollen parent within 10 m of the pollen parent (28%). Many 

authors have suggested significant disruption of plant mating systems by exotic 

bees, both in Australia (Paton, 1993; 2000) and at a global scale (Huryn, 1997), 

and recent studies have aimed at quantifying these impacts. For example England 

et a/. (2001) examined the influence of bees on Grevillea mac/eayana, a rare, 

naturally bird-pollinated shrub in eastern Australia. Their results suggest that the 

sheer abundance and high activity of exotic bees greatly outnumbered the pollen 

contributions made by honeyeater species - even though bees were far less 

effective at mediating effective pollination due to floral morphology. In addition, 

Paton (1993; 2000) suggests that masses of foraging bees are capable of removing 

up to 80% of floral resources from species which are naturally bird pollinated. In 

one case, this resource decline was linked to a reduced density of the New Holland 

Honeyeater (Paton, 1993). High activity by bees combined with reduced 

abundance of avian pollinators may explain the within population patterns of mating 

observed in these populations of C. sp. Whicher. While the occurrence of 

pollination events across the 50 m breadth of the population suggests that birds still 

play a role in the,. dispersal of pollen within populations, these longer distance 

dispersal events may be a result of pollen carryover by bees. 
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The observation that global pollen pool differentiation was higher among 

populations than within them indicates that mothers are not receiving pollen 

randomly from a global pool. Rather, these values suggest that mothers are 

primarily receiving pollen from within their respective populations. In addition, within 

population values of <t>n were also high, suggesting that pollen movement within 

populations was restricted. These observations are in strong agreement with the 

patterns of pollen dispersal revealed by paternity analysis. While the removal of 

selfed genotypes did reduce the global (0.364), within population (Hairpin Large = 

0.267; Doyle Large= 0.349) and mean pairwise estimates of <Prt, (Hairpin = 0.231; 

Doyle = 0.348) differentiation was still higher than that observed in other studies of 

myrtaceous species (Eucalyptus wandoo: mean <Prt over four populations. = 0.097; 

Byrne et a/., in review; Calothamus quadrifidus: mean <Prt over 3 populations = 

0.224; Byrne et a/., in press). Moreover, the degree of pollen pool differentiation 

between mothers was not related to geographic distance in Hairpin Large (with and 

without selfed events). Therefore, closer mothers do not appear to be sampling 

more similar pollen pools as would be expected considering the restricted patterns 

of within population mating revealed by paternity analysis. A more likely explanation 

for the high pairwise estimates of <t>n is asynchronous flowering among individuals. 

Asynchronous flowering would result in heterogeneity in flowering time and 

intensity, both among individuals and populations. This is a common feature of 

many mass-flowering myrtaceous species (Law eta/., 2000; Keatley eta/., 2004). 

Floral induction in C. sp. Whicher mainly occurs between the months of July and 

December (Western Australian Herbarium, 2006) and flowering intensity and 

periodicity vary markedly between individuals. Moreover, low intensity flowering has 

been observed as late as March (Stankowski, pers obs). 

Within population and mean pairwise estimates of pollen pool differentiation were 

significantly higher in Doyle Large than in Hairpin Large. This may be a 

consequence of the linear shape of Doyle Large, where all but 1 plant was confined 

to single side of the road. In Hairpin Large, where plants lined both road verges, 

30% of internally outcrossed events arose from pollen originating from the opposite 

side of the road. Thus, it appears that the linear shape of the Doyle Large 

population has resulted in more restricted patterns of mating than those observed 

in Hairpin Large. This is also supported by a lower mean number of fathers 

associated with the seed produced in Doyle Large. 
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In conclusion, the results of this chapter have revealed limited gene flow into and 

between the two assayed populations. This may be a consequence of high 

pollinator residence, or a lack of avian pollinators in the study area. High global 

self-fertilisation rates suggest that pollination by insects (most probably European 

bees) may be occurring at high levels. This is supported by within population 

patterns of mating, as the vast majority of outcross events were a result of pollen 

donated from a parent within 1 0 m of the mother plant. These patterns of pollen 

dispersal are supported by high global, within population and mean pairwise 

estimates of pollen pool differentiation which are indicative of limited gene flow and 

restricted within population pollen dispersal. 
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Chapter 5: General Discussion 

The results of this study have revealed low levels of within population genetic 

diversity, high genetic differentiation and limited gene flow between the study 

populations. Such a scenario is contrary to what was expected considering the 

geographical arrangement of these populations and the pollination syndrome of the 

species. Extensive gene exchange between populations was expected due to their 

close proximities to one another, and the mobility of bird pollinators. As a 

consequence, genetic divergence between the populations was expected to be low. 

5.1 A consequence of fragmentation? 

In addition to being an endemic species with a narrow geographical distribution, 

Ca/othamnus sp. Whicher has been fragmented over most of its range (Western 

Australian Herbarium, 2006). Of the remaining 25 populations, the six selected for 

this study are located in the area where fragmentation is most severe (Western 

Australian Herbarium, 2006). None of the populations are in direct contact with 

significant amounts of remnant vegetation and there is little native vegetation in the 

study area. As a result, it is likely that landscape scale fragmentation has played a 

primary role in shaping the current genetic structure of these populations. But as 

there are no records of genetic diversity or gene flow for these populations prior to 

land clearing, it is not possible to directly determine the effects of fragmentation. 

However, these effects can be hypothesised by discussing the results of this study 

in light of others which have examined the effects of fragmentation on genetic 

structure and gene flow. 

5. 1. 1 Influence on patterns of genetic differentiation 

The literature is replete with studies which have investigated the effects of 

fragmentation on levels of genetic diversity and patterns of differentiation (Hogbin 

eta/., 1997; Luijten eta/., 2000; England eta/., 2002; Pither eta/., 2003; Lowe et 

a/., 2005; Prentice eta/., 2006). Theoretically, fragmentation is expected to have a 

marked impact on the genetic structure of populations (Hobbs & Yates, 2003; Lowe 

et a/., 2005). The removal of large expanses of vegetation from an area has the 

potential to significantly reduce the size of natural populations and leave them 

exposed to stochastic processes (Hobbs & Yates, 2003; Lowe eta/., 2005). This is 

particularly true for species which are represented in large continuous populations 

(Lowe eta/., 2005) .. For such species, fragmentation often leads to the formation of 

a series of smaller populations which, depending upon the fine scale genetic 
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structure within the population prior to clearing, may display markedly different 

genetic structures (Lowe et a/., 2005). Such appears to be the case in the 

temperate tree Tetrao urogal/us (Segelbacher et a/., 2003). This species, which 

once occupied a relatively continuous distribution across northern Europe, has now 

been fragmented across the majority of its range. In recently fragmented areas, 

Segelbacher et a/. (2003) observed significant levels of differentiation between 

populations which was attributed to the fragmentation of a previously larger 

continuous population. So appears to be the case for Calothamnus sp. Whicher. 

There is some evidence suggesting that many of the natural study populations of C. 

sp. Whicher were connected prior to fragmentation. The majority of this evidence 

comes from other relatively undisturbed populations of this species in the vicinity of 

the study area (Western Australian Herbarium, 2006). Those found in large, 

relatively undisturbed fragments of natural vegetation are comprised of thousands 

of individuals and encompass large areas of several ha (Western Australian 

Herbarium, 2006). Similarly large, low density populations of the closely related 

species Ca/othamnus quadrifidus were observed by Yates et a/. (in press A) in 

large vegetation remnants, while smaller discreet populations were found in heavily 

disturbed roadsides, presumably as a result of fragmentation. Considering the 

close geographical proximities of the C. sp Whicher populations examined in this 

study, and the high level of clearing on road verges, it is possible that many of 

these populations were once physically connected. Thus, much of the 

differentiation observed between the study populations may be a reflection of fine 

scale genetic structure within a once larger population which was subsequently 

divided. Although it is reasonable to assume that large populations would exhibit 

some internal structure (as seed dispersal distances generally decay rapidly with 

increasing distance from the mother plant; see Howe & Smallwood, 1 982), there is 

no data regarding the fine scale genetic structure of large populations of 

Calothamnus sp. Whicher. However, there are large extant populations which 

would allow this to be explored. 

5.1.2/mpacts on gene flow 

Fragmentation is expected to have deleterious impacts on patterns of gene flow, as 

fragmentation generally results in increased spatial isolation between populations 

(Hobbs & Yates, 2003; Lowe eta/., 2005). As the vast majority of pollinator visits 

occur over short distances, with the frequency of visits decaying in a leptokurtotic 

fashion as distance. from the pollen source increases (Richards, 1 986), it has been 

hypothesised that rates of gene flow in fragmented landscapes would be 
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considerably lower than in those which are intact (Slatkin, 1985; Kearns et a/., 

1998; Lowe et a/., 2005). Recently, a number of authors have used direct genetic 

techniques to describe the effects of landscape fragmentation on patterns of pollen 

mediated gene flow (White eta/., 2002; Sork eta/., 2002; Dick eta/., 2003; Trapnell 

& Hamrick, 2005; Byrne eta/., in press; Byrne eta/., in review). In contrast to widely 

accepted expectations (Slatkin, 1985), the vast majority of these studies have 

demonstrated that rates of gene flow in fragmented landscapes are high (Burczyk 

eta/., 2004; Lowe eta/., 2005). In fact, some studies actually suggest that isolated 

populations receive immigrant pollen at a much higher rate than those in intact 

landscapes, with the rate of pollen immigration increasing with decreasing 

population size {Trapnell & Hamrick, 2005). For example, White et a/., (2002) 

examined the effects of fragmentation in the tropical tree, Swietenia humilis in 

fragmented and intact tropical forest. In addition to observing considerably higher 

rates of pollen immigration into isolated populations (61 %) than into populations 

associated with intact forest (36%), the highest rates were associated with smaller 

populations. Similarly, Trapnell & Hamrick (2005) observed high levels of pollen 

immigration (up to 43%) into fragmented populations of the neontropical epiphytic 

orchid, Laelia rubescens. They also observed higher rates of gene flow associated 

with populations which contained fewer individuals. 

These observations suggest that the current patterns of gene flow between the 

populations of Calothamnus sp. Whicher examined in this study are likely to reflect 

those which occurred prior to fragmentation. This is supported by the similarity in 

historical estimates of gene flow and the direct estimates from paternity analysis. 

However, given the high levels of inbreeding detected within these populations, and 

the hypothesis that the initial differentiation resulted from the subdivision of larger 

populations which exhibited fine scale genetic heterogeneity, one must question 

how 'historical' these indirect estimates are. The high density of plants within the 

road verge populations (relative to the densities exhibited within remnant 

populations) suggests that there has been significant post fragmentation 

regeneration. The excess of homozygotes and significant allele frequency 

differences between populations suggest that this regeneration has occurred from 

intrinsic genetic stocks (EIIstrand & Elam, 1993). As a result, these historical 

estimates are more likely to be indicative of limited post fragmentation gene flow 

rather than an indicator of gene flow rates prior to fragmentation. 
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Rates of gene flow determined for species with similar life history strategies and 

pollination syndromes may provide a more accurate indication of whether 

fragmentation has affected rates of gene flow in this species (Lowe eta/., 2004). 

Rates of gene flow observed among the C. sp. Whicher populations are 

significantly lower than the rates observed in other bird pollinated species (Trapnell 

& Hamrick, 2005; Byrne eta/., in press). In fact, the rates observed in this study are 

amongst the lowest reported in the literature. This suggests that fragmentation may 

have influenced gene flow in this species, yet the detection of some gene flow 

events across the breadth of the study site suggests that the level of isolation alone 

does not prevent gene flow. A possible explanation for the within population 

patterns of dispersal and high rates of self fertilisation is that the extensive loss of 

vegetation in the study area has significantly reduced the abundance of bird 

pollinators (Richards, 1986; England et a/., 2001 ). Current pollinator observations 

would be required to confirm this hypothesis. Fragmentation is likely to have 

affected avian pollinator abundance if the abundance of pollinators is lower in 

heavily fragmented areas than in larger, relatively undisturbed vegetation fragments 

containing C. sp. Whicher. In addition, a study of pollen dispersal could be 

conducted in these larger intact populations. The use of paternity analysis in such a 

study would be impractical due to the need to sample all of the potential fathers in 

the surrounding area. In contrast, the TwoGener analysis of Smouse et a/. (2001) 

would be ideal, as it enables dispersal characteristics to be inferred from the pollen 

pools sampled by maternal plants. 

5. 1.3 Summary of likely fragmentation effects 

It does appear that fragmentation has significantly influenced the genetic 

characteristics of the study sample (Figure 5.1 ). The six natural road verge 

populations observed in this study were likely to be part of one or more larger, 

continuous populations similar to those which are located in relatively undisturbed 

fragments of natural vegetation. Initially, differentiation within these populations was 

probably derived as a result their small sizes and the heterogeneous fine scale 

genetic structure within the larger population(s) from which they originated. Further 

differentiation appears to have resulted from extensive inbreeding within 

populations and the increased vulnerability to drift associated with decreasing 

population size. Results from other studies, including that conducted on the closely 

related species, Calothamnus quadrifidus (Byrne et a/., in press), suggest that 

fragmentation. has reduced rates of gene flow from higher historical levels. The 

detection of some gene flow events across the breath of the study ~ite suggests 
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Figure 5.1 Hypothesis regarding the effects of fragmentation on the genetic structure of the six natural 
study populations. Fragmentation appears to have reduced the size of populations resulting in reduced 
genetic diversity, increased inbreeding, high interpopulation differentiation and increased vulnerability 
to stochastic events. In addition, fragmentation has markedly reduced the amount of habitat in the 
study area (smaller patches), resulting in fewer avian pollinators. The consequences of this has been 
reduced gene flow. Dashed lines represent possible pathways. Grey boxes and arrows represent 
demographic consequences which have not directly influenced genetic structure, though these appear 
to have reduced post fragmentation regeneration. Adapted from Hobbs & Yates (2003). 

72 



Chapter 5: General discussion 

that spatial isolation itself was not preventing gene flow. Rather, the loss of natural 

vegetation appears to have reduced the abundance of bird pollinators. 

5.2 Evolutionary implications 

Given the patterns of diversity, differentiation and gene flow revealed in this study, 

what is in store for these populations in the future? Although high allelic diversity 

exists among the study populations, diversity within them is considerably lower. 

According to estimates of Nm derived from paternity analysis, a slow to moderate 

homogenisation of genetic structure between populations is expected (Wright, 

1931 ). This, however, is dependent upon levels of seed set and recruitment within 

populations (Slatkin, 1985). Recruitment was only observed in one of the 

populations (Hairpin Large). There may be several explanations for this. High levels 

of disturbance on roadsides combined with extensive weed invasion would be likely 

to limit recruitment success. High population densities provide little opportunity for 

recruitment in more central areas of the populations where weeds are less 

abundant due to competition with adult plants. The populations are also associated 

with little or no remnant vegetation which would provide a buffer against 

disturbance and weed invasion (Williams & West, 2000). As a consequence of 

limited recruitment, homogenisation of genetic structure between the study 

populations is unlikely. In addition, the study populations are highly susceptible to 

the effects of drift as they are quite small. Given their current circumstances, a 

further decline in the size of these populations is expected as a consequence of 

genetic erosion (through drift and inbreeding), limited recruitment and ecological 

processes which may threaten adult plants. For the smaller populations, extinction 

in the near future is foreseeable. 

5.3 Implications for conservation 

Recently, there has been a shift away from the classical predicted theory regarding 

the effects of fragmentation on population genetic structure (Lowe et a/., 2005; 

Byrne et a/., in review). This shift in thinking has been inspired by the observation 

that the decrease in gene flow associated with increasing isolation is not as strong 

as the increase in gene flow associated with small population size. (White et a/., 

2002; Trapnell & Hamrick, 2005). Many authors have suggested that these high 

levels of post fragmentation gene flow provide small isolated populations with large 

effective population. sizes, potentially negating the effects of inbreeding - a 

phenomenon which has been referred to as 'genetic rescue' (White. et a/., 2002; 
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Trapnell & Hamrick, 2005; Byrne eta/., in review). The work presented in this thesis 

largely contradicts these observations, and therefore has direct implications for the 

conservation of this species. In addition, it may provide information which will 

contribute to the conservation of other species in similar ecological scenarios. 

5.3.1 Direct conservation outcomes for the study populations 

The greatest threat to these populations is their vulnerability to stochastic 

processes (i.e. road grading and fire) and ecological threats (i.e. weed invasion) 

(EIIstrand & Elam, 1993). For the very small populations, the most effective 

management action would be to increase their size. Due to the extensive 

disturbance in these areas, seedlings originating from other populations should be 

introduced (Lesica & Allendorf, 1999). This would increase levels of diversity and 

should result in reduced levels of inbreeding (EIIstrand & Elam, 1993). Although the 

introduction of seedlings into a population from an exogenous source can lead to 

outbreeding depression (as well suited gene combinations are diluted resulting in 

less fit progeny), local adaptation in this species is unlikely due to its restricted 

geographical distribution and association with a specific substrate (Lesica & 

Allendorf, 1999). In addition to increasing their size, threatening processes in these 

heavily disturbed roadside environments must be controlled. For example, the 

extensive weed invasion which may be a factor limiting recruitment (Williams & 

West, 2000). In addition, native vegetation, including additional populations of C. sp 

Whicher, should be restored as this will buffer the populations against disturbance 

and will provide food and shelter for bird pollinating species (Paton, 2000). 

5.3.2 Implications for the conservation of other species in fragmented landscapes 

One of the most important outcomes of this thesis is the observation that the effects 

of fragmentation on gene flow are idiosyncratic- even when species with similar 

life history strategies and pollination syndrome are examined. To date, most 

authors have concentrated on capturing variation in gene flow patterns associated 

with different plant groups, which has lead to an extrapolation of these findings to 

other species in fragmented landscapes with similar life history strategies 

(EIIstrand, 1992; Lowe eta/., 2005; Burczyk eta/., 2004). The comparison of the 

findings of this study with the gene flow study performed by Byrne eta/. (in press) 

indicate that variability in ecological setting may have more influence on patterns of 

gene flow than the inherent variability associated with different plant types. Thus, 

researchers and .rnanagers should exercise caution when making generalisations 

regarding the effects of fragmentation on gene flow, even between re.lated species 
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or between populations of the same species. Ideally, where an understanding of 

gene flow patterns is seen as a vital component in a conservation plan, a gene flow 

study should be conducted specifically for that situation/species. 

The findings reported in this study also have implications for the way that 

populations themselves are defined. The population concept is central to the 

studies of ecology, evolutionary biology and conservation biology, as it describes 

the biological unit at which conspecific organisms interact and, collectively, evolve 

(Waples & Gaggiotti, 2006). There have been numerous attempts to identify 

characteristics which distinguish populations (Waples & Gaggiotti, 2006). Despite 

some variation, all biological definitions are based on cohesion between organisms 

of the same species - physical and/or reproductive (Waples & Gaggiotti, 2006). In 

this study, a population was defined as a discrete group of individuals isolated by 

conspecifics by more than 50 m; reproductive connectivity was not assumed. The 

lack of reproductive connectivity between these populations may have implications 

for those attempting to define populations in fragmented landscapes. Due to the 

close proximities of these populations they may not have been classified as 

separate under a definition which placed more emphasis on reproductive 

connectivity, as high levels of gene exchange between them may have been 

assumed. 

5.4 Conclusion and future research priorities 

The aims of this thesis were to describe patterns of genetic diversity and gene flow 

among seven populations of the rare, bird pollinated shrub, Ca/othamnus sp. 

Whicher, in a fragmented landscape. Considering studies performed on the more 

common, but closely related species, Calothamnus quadrifidus (Byrne et a/., in 

press), high levels of gene flow were expected between populations. As a 

consequence, levels of genetic differentiation between the populations were 

expected to be low. In contrast to these expectations, gene flow among the study 

populations was limited and differentiation between the study populations was high. 

The low levels of gene flow and genetic diversity appear to be a consequence of 

fragmentation. The differentiation between populations is possibly a consequence 

of fine scale variability following the subdivision of a much larger continuous 

population (or populations), followed by high levels of post fragmentation 

inbreeding and the effects of drift. Low levels of gene flow may be attributed to a 

decrease in the abundance of avian pollinators in the study area, presumably as a 
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result of extensive habitat loss; observations of pollinator behaviour will be required 

to support or refute this hypothesis. 

While this thesis has revealed insight into the genetic scenario associated with 

these study populations, and the idiosyncratic nature of fragmentation with respect 

to its effects on gene flow, it has also highlighted the need for further research. In 

regard to C. sp. Whicher, this would include: 

1. Investigating the effects of population size on patterns of gene flow. Due to 

the costs and time required to produce microsatellite profiles, and the need 

to exhaustively sample all potential fathers in the study area, small seed 

samples could only be collected from a limited number of mothers within two 

of the study populations. Thus, the patterns of pollen dispersal observed 

here may not illustrate those associated with the other populations in the 

study area, since other studies have suggested that smaller populations 

may be associated with higher rates of pollen immigration (i.e. White eta/., 

2002; Trapnell & Hamrick, 2005) 

2. Investigating temporal variability in patterns of gene flow. In this study, 

paternity analysis was only conducted with seed crops from the previous 

years flowering. Therefore, the patterns of gene flow illustrated in this study 

may not represent those observed in other years. Although other studies 

that used paternity analysis to illustrate temporal variation in pollen dispersal 

reported consistent results between years (i.e., Trapnell & Hamrick 2005), 

this may not be the case for Calothamnus sp. Whicher. 

3. Conducting a pollinator observation study. This would support or refute the 

hypothesis that low levels of gene flow are a consequence of a decline in 

the abundance of bird pollinators in the study area. This study would also 

reveal if high levels of insect pollination are responsible for the within 

population patterns of mating which were observed. 

4. Investigating the effects of high self fertilisation rates on seedling abortion 

and fitness. This will further inform managers as to the implications of the 

mating patterns observed in this study. 

5. Undertaking a large scale study of mating system in Calothamnus sp. 

Whicher. This should include populations of varying sizes and densities, and 

should . also include road verge populations and some located in intact 

remnant vegetation. This will identify factors which promote a mating system 

with high levels of outcrossing. 
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In regard to gene flow more generally, research should concentrate on examining 

the way that fragmentation influences gene flow. This may be achieved by: 

1. Conducting studies of gene flow on populations both prior and subsequent 

to fragmentation. Although this would require careful planning and a suitable 

study area, such studies would remove many of the confounding factors 

which are apparent in studies of gene flow conducted in already fragmented 

landscapes. 

2. Studying the same species within a range of different post fragmentation 

scenarios. This will control variation in mating system, life form and 

pollination syndrome which is apparent between species, as these inherent 

differences often confound ecological effects. This may enable researchers 

to 'tease apart' the consequences of fragmentation which affect patterns 

gene flow and identify those which that have the greatest influence upon 

them. 
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