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Abstract 

The movement of nutrients and organisms between habitats provide important spatial 

subsidies on local and regional scales, resulting in increased primary and secondary 

production, especially where inputs supplement habitats of relatively low levels of 

comparable resources. In coastal south-western Australia, the brown kelp, Ecklonia radiata, 

is produced in large quantities on offshore reefs from where it detaches and passes through 

neighbouring habitats. This allochthonous resource is present in large quantities in seagrass 

meadows and thereby potentially influences the trophic dynamics of this habitat, providing 

an additional food source for grazers to those produced in situ. This study investigated the 

effects of the large detached kelp on mesograzer trophic dynamics in Posidonia and 

Amphibolis seagrass meadows. Laboratory choice and no-choice feeding experiments tested 

whether preferential consumption of the kelp occurred in comparison to autochthonous 

resources by two locally abundant gastropods, Pyrene bidentata and Cimtharidus lepidus. 

Results from the feeding experiments demonstrated that both species of gastropod did not 

preferentially consume fresh or aged kelp, but the rates of consumption were generally 

similar to locally abundant periphyton and red algae that are epiphytes on seagrass leaves. 

In comparison, the gastropods consistently avoided consumption of seagrass leaves. Field 

experiments were conducted at four sites during winter to measure the effects of 

mesograzer consumption of kelp in different dominant seagrass habitats and at different 

proximities to reef to encompass a range of landscape-scale effects on seagrass meadows. 

There were no significant effects of any main factor in the field experiment, due to an 

apparen~ lack of grazing of the large detached kelp by the mesograzers in the seagrass 

meadows. High variability influenced the consistency of the results, which may have been a 

result of cage artefacts, bacterial decomposition, or physical abrasion. Overall, the results 

suggest that, although seagrass-inhabiting mesograzerS are capable of consuming detached 

E. radiata, consumption was either absent or not detected, possibly due to the high 

availability of autochthonous resources in seagrass meadows. Thus, it is possible that this 

allochthonous food source provides a negligible spatial subsidy to mesograzers in a habitat 

where comparable food resources are relatively unlimited, matching empirical thought. 

However, additional studies during different seasons and at different locations are 

necessary to further investigate these conclusions, to assess if allochthonous resources 

influence seagrass meadow trophic dynamics when in situ food limitation occurs. 

Ill 



Copyright and Access Declaration 

I certify that this thesis does not, to the best of my knowledge and belief 

(i) incorporate without acknowledgement any material previously submitted for a 

degree or diploma in any institution of higher education; 

(ii) contain any material previously published or written by another person except 

where due reference is made in the text; or 

(iii) contain any defamatory material. 

I also grant permission for the Library at Edith Cow an University to make duplicate copies 

of my thesis as required. 

Signed_ 

oated __ &_\-\-t _c___.:.t l-+-{---->.Lo_r-'------

IV 



Acknowledgements 

.First and foremost, this research has been conducted with the continual guidance of my 

three supervisors, Glenn Hyndes, Paul Lavery, and Fernando Tuya. I thank all three for 

making this research possible, for their invaluable advice and enthusiasm throughout the 

entirety of the project, and for giving me their time and support, especially at times when it 

was most critical. 

The assistance of volunteers is crucial in primary resem:ch, and without the people who 

donated their time and effort, this project would never have been completed. Thus, I 

sincerely thank Adrian Albelardo, Stacey Blane, Sharyn Burgess, Adam Gartner, Emily 

Gates, Donna Hynes, Colm Kavanagh, Lachlan MacArthur, Tomasz Machnik, Neisha 

McLure, Mick Morgan, Stephen Pendlebury, and Clyde Stotzer, for their efforts in the field 

and laboratory work. Also to my grandfather, Peter Georgis, who spent days sewing fly­

screen sleeves for the field experiment, which I then proceeded to put numerous holes in. 

I thank everyone from the Coastal Marine Ecosystem Research Group at ECU, all of whom 

have provided great advice and encouragement. Special thanks to Adam Gartner for his 

advice on the final manuscript. 

My best wishes go to my fellow Honours students, Sharyn Burgess and Marie Short. 

Special !hanks to Sharyn, for being my partner-in-crime in all the antics, stupidity, and 

laughter that carried on every day for 9 months. This year would have been a real drag 

without her camaraderie and air-of-calm whilst I was losing my mind. 

And mostly, I thank my family and friends, whose support, understanding and patience go 

unsaid, always. 

V 



Table of Contents 

Use of Thesis 

Abstract 

Copyright and Access Declaration 

Acknowledgements 

Table of Contents 

List of Figures 

List of Tables 

1. Introduction 

1.1 Spatial subsidies and trophic connectivity 

1.2 Spatial subsidies in seagrass meadows 

1.3 Grazing of macrophytes in marine habitats 

1.4 Influence of detached macrophytes on seagrass trophic dynamics 

1.5 Significance and aims of study 

2. Materials and Methods 

vi 

2.1 Field experiment 

2.1.1 Pilot study 

2.1.2 Experimental design and approach 

2.1. 3 Laboratory processing 

2.1.4 Habitat composition 

2.1.5 Data analysis 

2.2 Feeding preference experiments 

2.2.1 Pilot study 

2.2.2 Animal selection 

2. 2. 3 Macrophyte and gastropod collection 

2.2.4 Experimental design 

2.2.5 Data analysis 

2.3 Qualitative measures 

2. 3.1 Posidonia australis with periphyton visual assessment 

2.3.2 Detached Ecklonia radiata consumption visual assessment 

ii 

iii 

iv 

V 

vi 

viii 

X 

1 

1 

2 

3 

5 

6 

9 

9 

9 

10 

16 

16 

17 

18 

18 

19 

20 

21 

23 

24 

24 

25 



3. Results 27 

3.1 Field experimentation· 27 

3.1.1 Habitat composition 27 

3.1.2 Detached kelp biomass loss 28 

3.1.3 Mesograzer abundances and biomass relations with kelp consumption 30 

3.2 Feeding preference experiments 33 

3.2.1 Pyrene bidentata and Cantharidus lepidus choice feeding experiments 33 

3.2.2 Pyrene bidentata and Cantharidus lepidus no-choice feeding experiments 34 

3.2.3 Posidonia australis periphyton consumption 36 

3.2.4 Gastropod grazing on detached Ecklonia radiata 38 

4. Discussion 41 

4.1 Feeding preferences of mesograzers in seagrass meadows 41 

4.2 The importance of Ecklonia radiata for seagrass inhabiting mesograzers 43 

4.3 Pathways driving secondary production in seagrass meadows: allochthonous or 

autochthonous resource? 

4.4 Conclusions 

References 

Appendix 1 

Appendix 2 

46 

50 

53 

61 

73 

vii 



List ofFigures 

Figure 2.1 Location of Marmion Marine Park. 11 

Figure 2.2 Example of the design of a single site within a seagrass meadow, 
indicating the sampling distances (3: interface, close, far), number of 
cage treatments (2: <5mm, <20mm) and controls (2: closed, open) 
and replicates (3) randomised at each distance (n = 3). 13 

Figure 2.3 Photographs (a, b) and schematic design (c) of the closed control, 
<5mm and <20mm treatments used for the field experimentation. 14 

Figure 2.4 Detached E. radiata pegged inside a cage prior to deployment (a) 
and an open tether of detached E. radiata in situ (b). 15 

Figure 2.5 A screen-shot from Coral Point Count with Excel Extensions 
(Kohl er & Gill 2006) displaying the 10 x 10 grid overlaid the image 
with the 0.25m2 quadrat placed on the benthos. 17 

Figure 2.6 Photographs of the choice (a) and no-choice (b) feeding 
experiments. The nested design of the treatment and control cells of 
the containers used for the choice (left) and no-choice (right) feeding 
experiments (c). 23 

Figure 3.1 Percentage cover of the biophysical characteristics with proximity to 
reefs at the two Posidonia spp. sites: Wanneroo Reef (a) and 
Whitfords Rock SW (b), and the twoAmphibolis spp. sites: 
Whitfords Rock NE (c) and Wreck Rock (d). 28 

Figure 3.2 Mean (± SE, n = 3) biomass loss of detached E. radiata in Posidonia 
dominated seagrass meadows at different distances with proximity to 
reef at Wanneroo Reef (a) and Whitfords Rock SW (b), and in 
Amphibolis dominated seagrass meadows at Whitfords Rock NE (c) 
and Wreck Rock (d). 30 

Figure 3.3 Correlation between amphipod (a), isopod (b), gastropod (c), and total 
mesograzer (d) abundances and the loss of detached kelp biomass (n = 
36) in Posidonia dominated seagrass meadows. 31 

Figure 3.4 Correlation between amphipod (a), isopod (b), gastropod (c), and total 
mesograzer (d) abundances and the loss of detached kelp biomass (n = 

36) in Amphibolis dominated seagrass meadows. 31 

Figure 3.5 Correlation between amphipod (a), isopod (b), gastropod (c), and total 
mesograzer (d) AFDW (g) and the loss of detached kelp biomass (n = 

36) in Posidonia dominated seagrass meadows. 32 

viii 



Figure 3.6 Correlation between amphipod (a), isopod (b), gastropod (c), and total 
mesograzer (d) AFDW (g) and the loss of detached kelp biomass (n = 

36) in Amphibolis dominated seagrass meadows. 32 

Figure 3.7 Mean (± SE, n = 10) P. bidentata (a, b) and C. lepidus (c, d) 
macrophyte consumption (mg ind-1 daf1

) after corrections for 
autogenic loss in choice feeding experiments conducted over a 4 day 
feeding period using fresh kelp (a, c) and aged kelp (b, d). 34 

Figure 3.8 Mean (± SE, n = 10) macrophyte consumption (mg ind-1 daf1
) by P. 

bidentata (a) and C. lepidus (b), corrected for autogenic loss in no-
choice feeding experiments conducted over a 4 day feeding period. 35 

Figure 3.9 A representation of P. australis with periphyton segments after 4 day 
feeding experiments with P. bidentata (a- c) and C. lepidus (d- f). 37 

Figure 3.10 Pieces of detached E. radiata in the presence of P. bidentata at the 
start (a), after 1 week (b), and after 2 weeks (c), and in the presence of 
C. lepidus at the start (d), after 1 week (e), and after 2 weeks (f) of 
experimentation. 39 

Figure 3.11 Control pieces of detached E. radiata in the absence of P. bidentata at 
the start (a), after 1 week (b), and after 2 weeks (c), and in the absence 
of C. lepidus at the start (d), after 1 week (e), and after 2 weeks (f) of 
experimentation. 40 

Figure 4.1 Schematic model displaying the effects of allochthonous resources on 
primary consumers in recipient habitats with high productivity of 
comparable resources and recipient habitats with low productivity of 
comparable resources. 48 

IX 



List of Tables 

Table 3.1 Results ofthe 4-factor ANOVA ofthe detached E. radiata biomass loss 
(g week-1

) testing for differences (1) Treatments (fixed factor, 4 levels), 
(2) Habitats (fixed factor, 2 levels), (3) Distances (fixed factor, 3 
levels), and (4) Sites (random, 2 levels). 29 

X 



1. Introduction 

1.1 Spatial subsidies and trophic connectivity 

Boundaries between different habitats are generally imprecise and allow for the passive and 

active movement of biological and physical resources, which include organisms, organic 

matter and nutrients (Jones & Andrew 1992, Polis & Strong 1996, Valentine & Heck 2005, 

Marczak et al. 2007). In general, nutrient inputs increase primary productivity, whilst 

detrital and prey inputs produce numerical responses in consumers (Polis et al. I997). The 

movement of food and nutrients between habitats can be important where habitats of 

relatively low productivity are located adjacent to those of relatively higher primary 

productivity (Polis & Strong I996, Valentine & Heck 2005, Wernberg et al. 2006). Strong 

effects of subsidies are often seen in environments that are relatively open to neighbouring 

ecosystems ()r have a large perimeter to area ratio (Polis & Strong I996, Polis et al. I997, 

Marczak et al. 2007). Most importantly, subsidy effects appear to be the greatest when they 

subsidise a system with low levels of comparable resources, rather than just systems of 

contrasting primary productivity (Marczak et al. 2007). · 

Understanding the trophic connections within and between habitats is essential to the 

understanding of trophic dynamics of food webs (Krebs 200 I). The flow of energy through 

food webs is rarely a simple vertical process as described by linear food chains (Polis & 

Strong I996, Krebs 200 I);· rather, most food webs are reticulate and species are highly 

interconnected (Polis & Strong 1996). Many species can change trophic levels depending 

on spatial and temporal influences, further increasing the trophic complexity of food webs 

(Fairweather & Quinn 1992, Polis & Strong 1996, Polis et al. 1997). The increased 

connectivity of food webs diffuses the direct effects of productivity and consumption 

throughout trophic levels, with producers and consumers both being influenced by 

resources at multiple trophic levels (Polis & Strong I996, Krebs 2001 ). The movement 

between habitats of higher order consumers supports their abundances by consuming a vast 

array of resources from many different habitats without overexploitation (Valentine & 

Heck 2005). Physical and biological phenomena apparent at large geographical scales may 

contribute to those of small geographic scales, and vice versa (Jones & Andrew 1992, 

Anderson et al. 2005). For example, Dulvy et al. (2002) demonstrated in a coral reef habitat 



that, at small scales, epifaunal density was influenced by algal biomass, but at large scales 

predation by fish was the main contributor structuring epifaunal communities. Therefore, 

understanding the mechanisms of trophic connections - in consideration of supply, trapping 

and consumption, and export- is essential in understanding the ecology of communities for 

the effective management of the marine environment for particular species, for fisheries 

management (Fairweather & Quinn 1992), and marine conservation (Valentine & Heck 

2005). 

Spatial subsidies generally increase where the physical transport agents (currents and 

winds) are relatively strong (Polis & Strong, 1996, Polis et al. 1997, Tanaka & Leite 2003). 

The intensity of their effects can change through time due to episodic or seasonal variations 

(Marczak et al. 2007), such as changes to the amount of input into a habitat or changes in 

the productivity of the recipient habitat due to seasonal weather regimes. In theory, spatial 

subsidies influence all aspects of food web structure and dynamics, of which some 

predictions match empirical patterns whilst others need assessment (Polis et al. 1997). In a 

recent meta-analysis of literature reviewing the effects of spatial subsidies, Marczak et al. 

(2007) found that subsidies inconsistently affected consumer density or biomass across 

habitats, trophic and functional groups. 

1.2 Spatial subsidies in seagrass meadows 

Traditionally, seagrass ecology has focussed on seagrass habitats independent of their 

surroundings (Jernakoff et al. 1996), and linkages between reefs and adjacent seagrass beds 

in temperate environments are poorly understood (Jones & Andrew 1992). Some studies 

have considered the influence of coral-inhabiting organisms on neighbouring seagrass 

meadows (Valentine & Heck 2005), and gradient effects of invertebrates have been studied 

between reef and unvegetated habitats (Barros et al. 2001). Recent trophodynamic research 

conducted in seagrass meadows in south-western Australia have identified that brown 

algae, red algae, and periphyton, contribute the majority of carbon and nitrogen to 

mesograzers rather than live seagrass leaves (Smit et al. 2005, 2006, Hanson et al. 

unpublished data). It is unresolved whether these are derived from either autochthonous or 

allochthonous resources, or a combination of both. A few recent studies have considered 
'· 

the proximity of seagrass habitats to reefs, in relation to the effects on epiphytic macroalgal 
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assemblages (van Elven et al. 2004), drift macroalgal and fish assemblages (Wernberg et al. 

2006), and gastropod assemblages (Tuya et al., in prep.). The present study has focused on 

the trophic dynamics and connectivity involving large drift kelp detached from reefs and 

mesograzers inhabiting seagrass meadows, along gradients with proximity to reefs. These 

relationships may form trophic links between the communities and higher order consumers 

that inhabit them, thus playing an important role in food web dynamics and the 

management of marine ecosystems. 

1.3 Grazing of macrophytes in marine habitats 

Temperate rocky reefs are heterogeneous habitats, usually surrounded by vegetated 

(seagrass) and un-vegetated substrates, with sharp or gradual boundaries (Jones & Andrew 

1992, Barros et al. 2001). Predatory fauna, such as fish and crustaceans, that inhabit 

temperate rocky (and coral) reefs often use seagrass beds and unvegetated areas for 

foraging and nurseries (Jones & Andrew 1992, Valentine & Heck 2005). Many of these 

organisms rely on epifaunal mesograzers as prey (Taylor 1998, Dulvy et al. 2002, Tanaka 

& Leite 2003, Poore & Hill 2005, Crawley et al. 2006). Within the adjacent seagrass 

meadows, diverse assemblages of mesograzers (grazers between 2 mm and 2.5 cm 

[Jernakoff et al. 1996]) are often the primary consumers of detrital and fresh macrophytes, 

including brown, red, and green algae, and seagrasses (Edgar 1990a, 1990b, Duffy & Hay 

1991, Hyndes & Lavery 2005, Crawley & Hyndes 2007). The choice of a host plant by 

mesograzers may depend upon a multitude of factors including mobility and competition, 

host-plant nutritional value, refugia from predation, morphology, toughness, and chemistry, 

of which no single factor explains plant-mesograzer relations (Lubchenco & Gaines 1981 ). 

Living seagrass is traditionally understood to be a low quality food resource for marine 

invertebrates (Nielsen & Lethbridge 1989, Hyndes & Lavery 2005, Heck & Valentine 

2006), particularly in temperate seagrass habitats (Valentine et al. 1997, Valentine & Heck 

1999), where direct consumption of seagrass by marine organisms can be <5% of the total 

production (Orth & van Montfrans 1984). Seagrass food webs are often considered to be 

based on epiphytic and periphytic material that grows on seagrass leaves, providing an 

important resource for grazers (Edgar 1992, Jernakoff et al. 1996, Jernakoff & Nielson 

1997, Peterson & Heck 2001, Keuskamp 2004). Epiphytes also influence the species 
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richness and abundance of grazers through their diversity (Edgar 1990a), the provision of 

structural complexity (Tanaka & Leite 2003), and the increase in food availability (Bologna 

& Heck 1999). 

Mesograzers, particularly amphipods and gastropods, are important grazers of the 

epiphytes, periphyton, detrital matter, and particulate organic matter (POM) found in 

seagrass habitats (Nielsen & Lethbridge 1989, Hutchings et al. 1990/91, Kirkman et al. 

1990/91, Edgar & Shaw 1993, Jernakoff et al. 1996, Jernakoff & Nielson 1997). Their 

dietary preferences often overlap (Hootsmans & Vermaat 1985, Howard & Short 1986, 

Edgar 1990b) with epiphytes and periphyton being preferred to detrital resources (Nielsen 

& Lethbridge 1989, Jernakoff et al. 1996, Jernakoff & Nielsen 1997). Yet, sometimes 

dietary preferences are distinct, with specific assemblages of amphipods often being 

associated with detached macrophytes (Edgar 1990a, 1992) or POM found on the sediment 

surface (Edgar 1990b, Smit et al. 2005). Consumption of resources by the different size 

classes of mesograzers often differs (see table in Jernakoff et al. 1996), with smaller 

amphipods and isopods exhibiting much higher feeding rates than gastropods. 

Brown algae are a conspicuous component of the temperate marine ecosystems of south­

western Australia, often dominating the algal biomass (Kirkman 1984, Kendrick et al. 

1999, Wernberg et al. 2003, 2006). The consumption of brown algae is a common feature 

amongst many temperate amphipods (Hay et al. 1990, Duffy & Hay 2000, Norderhaug et 

al. 2003, Taylor & Brown 2006, Crawley & Hyndes 2007), isopods (Pennings et al. 2000, 

Taylor & Steinberg 2005), and gastropods (Steneck & Wading 1982, Steinberg & van 

Altena 1992, Wakefield & Murray 1998). Brown algae are often the preferred food source 

by mesograzers in laboratory experiments, regardless of their nutritional value, toughness, 

morphology, or phlorotannin content (Duffy & Hay 1991, Wakefield & Murray 1998). 

Many mesograzers have adapted to the plant chemicals, sometimes as a compromise to 

food quality (Duffy & Hay 1991, Cox & Murray 2006), to provide protection from fish 

predation via association (Hay et al. 1990, Duffy & Hay 1994, Poore 2005). It has also been 

suggested that many mesograzers have adapted to the chemical content of brown kelps, due 

to its abundance in local environments as the resource would be a commonly encountered 

food source as well as habitat (Wakefield & Murray 1998). Mesograzers often 

preferentially consume the algae from which they are collected (Steinberg & van Altena 
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1992) due to evolutionary adaptations (Taylor & Steinberg 2005). The mobility and the 

scales of dispersal of mesograzers is limited relative to larger grazers, thus, there is a 

greater tendency for local adaptation to the available host species (Poore 2005), whereas 

larger grazers often have a wider breadth of food preferences (Taylor & Steinberg 2005). 

Food limitation is not generally recognised as a major factor influencing grazers inhabiting 

seagrass meadows, due to the abundance of epiphytes, periphyton, and detrital resources 

(Orth & van Montfrans 1984, Jernakoff et al. 1996), although it has been suggested that 

diffuse exploitative competition is widespread (Edgar 1990b). Grazers associated with 

macrophytes rather than detritus have shown greater seasonal fluctuations in total 

populations due to the rapid changes of epiphyte biomass compared to the slowly 

decomposing pool of detrital resources (Edgar 1990b ). Furthermore, in experiments using 

mesocosms, grazing by amphipods, isopods and gastropods were demonstrated to have 

significant impacts in reducing epiphytes and periphyton growing on seagrass leaves 

(Hootsmans & Vermaat 1985, Howard & Short 1986). Conversely, field experiments in 

southern Australian seagrass meadows using grazer exclu~ion cages have demonstrated that 

there was a relative lack of real influence in controlling periphyton or epiphytes by 

amp hi pods or gastropods despite their known high grazing rates (Jernakoff & Nielsen 1997, 

Keuskamp 2004). Thus, the feeding of seagrass-inhabiting mesograzers appears variable in 

regards to the food they consume and is highly dependent on their mobility and the 

availability of epiphytes, periphyton, large detrital and particulate detrital material. 

1.4 Influence of detached macrophytes on seagrass trophic dynamics 

Many marine herbivores consume macrophytes after they have been detached from their 

substrata and become drift (Steinberg 1989), which is subject to physical and microbial 

degradation. Amphipods (Pennings et al. 2000, Norderhaug et al. 2003) and isopods 

(Pennings et al. 2000) have increased feeding preferences and survivorship on degraded 

kelp, correlated to increases in the nutritional quality and decreases in the chemical content 

of the material. Norderhaug et al. (2003) suggested that bacteria on the thalli surface played 

a key role in transferring primary production to higher trophic levels. Furthermore, the 

biofilm on subsidiary coarse woody debris has been demonstrated to be the preferred food 

source of gastropods inhabiting inter-tidal zones (Storry et al. 2006) and invertebrate 
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colonisation corresponds with the development of periphytic film or algae on artificial 

seagrass (Edgar & Klumpp 2003). 

The common brown kelp, Ecklonia radiata, is a major forest forming kelp found in 

temperate Australian reefs (Goodsell et al. 2004). Direct grazing is rarely seen on E. 

radiata growing on reefs (Kirkman 1984, Wernberg et al. 2003, Vanderklift & Kendrick 

2006), but as a detrital resource it is important for primary consumers in many Australian 

temperate marine environments (Kirkman 1984, Steinberg 1989, Kirkman & Kendrick 

1997). For example, sea urchins studied in south-west Australian reefs used detached drift 

kelp as their main food source, rather than attached macroalgae (Vanderklift & Kendrick 

2005). Detached macroalgae and seagrasses are also a valuable detrital resource in south­

west Australian unvegetated surf zones and exposed sandy beaches (Kirkman & Kendrick 

1997, Hyndes & Lavery 2005, Crawley et al. 2006, Ince et al. 2007). In sub-littoral 

unvegetated zones, detrital material has been demonstrated to increase the abundance of 

amphipods, primarily the common Allorchestes compressa (Crawley & Hyndes 2007), 

resulting in the increased abundance and biomass of invertebrate eating fish (Vanderklift & 

Jacoby 2003, Crawley et al. 2006). E. radiata·and Sargassum sp. are likely to be driving the 

production of A. compressa in these unvegetated habitats (Crawley 2006). 

1.5 Significance and aims of study 

Reef algae can be highly productive, and inputs of decomposing drift and live and dead 

organisms to adjacent seagrass meadows may provide nutrients not available in seagrass 

meadows distant from reefs (van Elven et al. 2004). In south-western Australia, Wernberg 

et al. (2006) found that the kelp, E. radiata, dominated the detached algae found in seagrass 

meadows at varying distances from the adjacent reefs. The proportion of detached kelp 

found in the seagrass meadows was often greater than twice the amount of attached kelp 

found in the adjacent reefs. Furthermore, the total biomass of the detached macrophytes 

was not always significantly higher closer to the reef than at distances greater than 300m 

away. As result, it was concluded tha,t there are likely to be local and regional linkages 

between reefs and seagrass meadows (Wernberg et al. 2006), as tagged drift kelp is known 

to travel distances up to 2 km (Kirkman & Kendrick 1997). There was a positive correlation 

between densities of herbivorous fish and the rates of consumption close to the reefs, but 

not far from the reef (Wernberg et al. 2006), suggesting that further from the reefs other 
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herbivorous taxa may be consuming the detached algae. Amphipods and gastropods are 

significant consumers of seagrass epiphytes, periphyton and detrital material (Edgar 1992, 

Jernakoff & Nielson 1997), but their grazing effects on the biomass of large detached kelp 

in these seagrass habitats remains unknown. The high abundances of these mesograzers 

potentially provide a significant source of consumption of the allochthonous brown algae. 

The broad aim of this study was to gain a further understanding of the flow of energy 

through seagrass systems, by testing the influence of an allochthonous resource on the 

trophic dynamics of seagrass habitats. Furthermore, I sought to test whether any influence 

was consistent among the different dominant seagrasses of the region. In temperate 

Western Australia, Posidonia spp. and Amphibolis spp. form dominant seagrass meadows 

(Kendrick et al. 2000, Kirkman & Kirkman 2000). Posidonia spp. have strap-shaped leaves 

which arise directly from the sediment, whilst Amphibolis spp. have long, wiry stems from 

which clusters of leaves grow at the tips (Jernakoff et al. 1996). These differences provide 

distinct architectural types in which meadows of Amphibolis spp. consist of relatively open . 

spaces below a dense leaf canopy, whereas those of Posir]onia spp. consist of a uniformly 

dense leaf canopy arising directly from the sediment (Hyndes et al. 2003). These 

differences in architecture affect the fish assemblages (Hyndes et al. ·2003), epiphyte 

diversity and biomass (Lavery & Vanderklift 2002), and may also affect the hydrodynamics 

and retention time of detrital material in seagrass meadows (Verduin et al. 2002). Together, 

this may produce differences in the availability and consumption of allochthonous 

resources by mesograzers in Posidonia and Amphibolis spp. habitats. 

Specifically, the aim of the research was to determine the degree of connectivity between 

temperate rocky-reefs and adjacent seagrass habitats via consumption of large detached E. 

radiata by seagrass-associated mesograzers. I predicted that: 

1. Key mesograzers inhabiting seagrass habitats consume large detached E. radiata, 

and that this consumption differs between, (a) the different size classes of 

mesograzers, with an alteration in the magnitude of consumption, (b) between two 

distinct sea grass habitats, and (c) with varying proximity to reefs; and 

2. Mesograzers preferentially consume large detached E. radiata compared with 

locally-produced macrophytes, and this preference is affected by the resource's state 

of decomposition. 
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2. Materials and Methods 

2.1 Field experiment 

2.1.1 Pilot study 

A pilot study was conducted at Wanneroo Reef (Figure 2.1) from the 9/4/07 to the 19/4/07 

to test potential issues with the approach and design of the field experiment. The effect of 

pre-experimentation handling on the biomass of detached kelp was a priority for the pilot 

study, as the loss of kelp biomass was the main variable being tested. Since freezing 

provides a convenient method of storing Ecklonia prior to experimentation, the effects of 

freezing the kelp was examined by placing frozen and fresh material in situ for 5 and 10 

days. The frozen kelp replicates (n = 8) were completely absent after 5 days in situ, 

whereas all replicates (n = 8) of the fresh detached kelp were present after 10 days in situ, 

indicating that fresh detached kelp should be used for the experiment. The effects of fresh 

detached kelp being placed in a 4°C fridge in the experimental cages, in an esky, or in 

seawater overnight was then examined. The kelp left in c~ges at 4°C overnight lost a mean 

(± SE) biomass of 21.90 ± 1.55% (n = 2), the kelp left in the esky lost 9.43 ± 1.28% (n = 

2), while there was no loss ofbiomass of the kelp left in seawater overnight (n = 2). Thus, it 

was decided to store the fresh detached kelp in seawater overnight and prepare it directly 

prior to deployment of the experiment. 

The second major set of concerns of the pilot study were the effectiveness of the 

experimental controls and treatments, and the effect of the duration of the experimentation 

period for mesograzer recruitment and possible detached kelp consumption. Two controls 

and two treatments were tested, with three replicates of each. These were: 'closed' and 

'open' controls, and '<5mm' and '<20mm' treatments (see 2.1.2 Experimental design and 

approach for a detailed description). The expected differences between the experimental 

units were that there would be minimal biomass loss of detached kelp in the closed control, 

increased biomass loss of detached kelp in the <5mm treatment, further increased biomass 

loss of the detached kelp in the <20mm treatment, and maximum biomass loss of detached 

kelp in the open control. There were some expected significant (P < 0.05) effects between 

some of the controls and treatments; thus the design of the experimental controls and 

treatments were clarified as appropriate for the aims. A significant difference (P < 0.05) of 
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biomass loss of detached kelp between the 5 day and 10 day experimental periods was 

found. Mesograzer recruitment into the cages were high and similar between both time 

periods. The potential growth of epiphytes and/or periphyton was another concern relating 

to the time period of experimentation. No major growth was qualitatively noticed after the 

5 day time period, but a slight amount of periphyton growth was noticed after 10 days. 

Thus, considering these pilot results, it was decided to deploy the experiment for a 7 day 

time period. 

An unexpected accumulation of sand within some of the experimental cages was 

encountered at the end of both time periods during the pilot experiment. Thus, to counteract 

the accumulation of sand as a confounding factor, the cages were not placed on the {(dges of 

seagrass meadows, but were placed in areas of seagrass of similar shoot density, and were 

orientated in the same direction with the elongated faces parallel to the coastline (parallel to 

the flow of sand). 

2.1.2 Experimental design and approach 

The field experiment was located within Marmion Marine Park, Western Australia 

(31 °49.4' S, 115°44.0' E) (Figure 2.1). Marmion Marine Park is characterised by 

intermittent lines of outer and inner aeolianite limestone reef platforms parallel to the coast, 

ranging from 1 to 6 km offshore (Searle & Semeniuk 1985). These reefs are typically 

dominated by Ecklonia radiata, fucalean macroalgae, and small erect red algae (Kendrick 

et al. 1999, Wernberg et al. 2003). Extensive meadows of the seagrasses Posidonia spp. and 

Amphibolis spp. are interspersed between the reefs and unvegetated patches adjacent to 

reefs throughout the region (Kirkman & Walker 1989, Kirkman & Kirkman 2000). Six 

interspersed sites were selected within the area, with three dominated by Posidonia spp. 

and three dominated by Amphibolis spp. The sites were generally separated by 1 km, and 

were the same as those used by Wernberg et al. (2006) and Tuya et al. (In prep.). Sites 

ranged in depth from 4 to 10 m. Posidonia spp. sites were located at The Lumps, Whitfords 

Rock SW, and Wanneroo Reef, whilst Amphibolis spp. sites were located at Whitfords 

Rock NE, Wreck Rock, and Cow Rocks (Figure 2.1 ). 
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Figure 2.1 Location of Marmion Marine Park. The five reefs where the six sampling sites 
wer~ located are shown in the bottom left map. Posidonia spp. meadows are located at The 
Lumps, Whitfords Rock SW, and Wanneroo Reef; Amphibolis spp. meadows are located at 
Whitfords Rock NE, Wreck Rock, and Cow Rocks (Source: Department of Conservation 
and Land Management, 1992 [?]). 
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The field experiment was conducted from the beginning of June to mid-July, 2007. During 

this time of year, detached E. radiata is present in its highest biomass in unvegetated surf 

zones (Kirkman 1984, Kirkman & Kendrick 1997, Crawley et al. 2006), correlating to the 

time of year when the frequency of storms is the highest, resulting in increased intensity of 

seas and swell (Lemm et al. 1999). Thus, it is assumed that the biomass of the detached 

kelp will also be at its highest in seagrass meadows, due to its movement from offshore 

reefs through seagrass beds to the unvegetated shoreline (Kirkman & Kendrick 1997). Due 

to logistical constraints, experimentation took place at three different times within the six 

week period. Two randomly selected sites were set up and collected within each two week 

time period. The differences in the sampling times were not considered important to the 

independent comparison of the six sites, thus time was not incorporated into any an;;tlysis as 

a factor. 

Detached E. radiata significantly dominates the detached macroalgae accumulations at all 

six sites, and at distances of 0, 50 and >300 m from the reef (Wernberg et al. 2006). The 

greatest accumulations of detached kelp are generally found at the edge of the seagrass 

meadow and the reef (0 m), whereas highly variable accumulations are found >300 m away 

from the reef, and the lowest accumulations generally occur 50 m away from the reef 

(Wernberg et al. 2006). Accumulations of detached seagrass and red macroalgal seagrass 

epiphytes are also abundant at these sites (Wernberg, pers. comm.). In the current study, the 

distances with proximity from the reef were termed 'interface' (edge of seagrass-reef), 

'close' (approximately 50 m into seagrass meadow) and 'far' (>300 m from reef). 

Experimental units comprised two treatments and two controls, which were designed to 

restrict access to the detached E. radiata depending upon the size class of the organisms. 

The two treatments also provided smaller organisms with protectiqn from potential 

predators. The 'closed' control restricted access of fauna <0.5 mm to the detached kelp; the 

'<5 mm' treatment allowed access of fauna <5 mm to the detached kelp; the '<20 mm' 

treatment allowed access of fauna <20 mm to the detached kelp; and, the 'open' control 

allowed access of any fauna to the detached kelp. To evaluate the possible differences in 

mesograzer consumption of detached E. radiata at varying distances within seagrass 

meadows moving away from reefs, experimental units were placed in seagrass meadows at 

constant distances away from the reef, using similar criteria as Wernberg et al. (2006) and 

Tuya et al. (In prep.). Experimental distances used along each transect were located at the 
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seagrass-reef interface, close to the reef, and far from the reef. Three replicates of the two 

controls and two treatments were randomly located at each distance at each site (total n = 

216). Cages were spaced perpendicular to the transect, orientated with the elongated face 

parallel to the reef, with approximately lm between every experimental unit (Figure 2.2). 
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Figure 2.2 Example of the design of a single site within a seagrass meadow, indicating the 
sampling distances (3: interface, close, far), number of cage treatments (2: <5mm, <20mm) 
and controls (2: closed, open) and replicates (3) randomised at each distance (n = 3). 
Experimental units within a distance were spaced~ lm apart. Diagram is not to scale. 

Metal 'bait' cages (30 cm long, 12 cm wide and 14 cm high) were used to house detached 

kelp for the closed, <5mm and <20mm experimental cages (Figure 2.3). Cages were 

covered in 0.5 mm PVC fly-screen with holes systematically cut into one of the small 

vertical sides, and haphazardly along the other small vertical side and the two elongated 

sides of the <5 mm and <20 mm treatments (Figure 2.3). This reduced any hydrodynamic 

variation between the two treatments and closed control (Keuskamp 2004), but still allowed 

mesograzer recruitment. The <5 mm treatment had 56 holes cut into one of the small faces, 

five holes cut into the other small side, and ten holes cut into the two elongated sides. The 

<20 mm treatment had nine holes cut into one of the small faces, three holes cut into the 
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other small face, and four holes cut into the elongated faces. All cages had clothes pegs 

attached on the inside diagonal corners to which the detached kelp was secured, thereby 

reducing any changes to the material from physical abrasion with the cage due to 

movement by currents and surge. The cages had a plastic loop on two bottom diagonal 

corners through which large tent pegs were inserted and hammered into the sediment to 

secure them to the benthos. The open controls used tethered pieces of detached kelp 

attached to clothes pegs. Clothes pegs were attached to both ends of the detached kelp, 

which were attached to small tent pegs and hammered into the benthos following Wemberg 

et al. (2006). 

12 cm 12 cm 

Figure 2.3 Photographs (a, b) and schematic design (c) of the closed control, <5mm and 
<20mm treatments used for the field experimentation. The experimental units shown in the 
photograph (a) are randomised for two sites. Diagrams are not to scale. 

Prior to each experimental deployment, attached E. radiata was collected from Boyinaboat 

Reef (Figure 2.1 ). Approximately 60 mature individual plants of similar age, avoiding 

young plants due to their increased phenolic content (Steinberg 1989), were randomly 

collected and equally distributed amongst four large hessian bags in which they were aged 

in situ. The hessian bags had large holes cut into them to allow water to flow through the 

contents of the bag, avoiding any possibility of anoxia that could have fouled the kelp. The 

kelp was collected after four to nine days of aging, returned immediately to the laboratory 
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and placed in seawater. Approximately 100 individual secondary lamina of similar size 

(ranging from 6.00 to 19.00 g) were cut from the stipe, avoiding basal secondary lamina 

due to their increased secondary metabolite concentrations (Jennings & Steinberg 1997). 

Individual pieces were then scrubbed to remove any epiphytes (although these were very 

minimal [pers. ohs.]), rinsed in fresh water, and returned to fresh seawater which was stored 

at 19°C overnight. 

Prior to deployment of the experiment, the detached kelp was blotted to remove excess 

water prior to recording the wet weight (0.0 1 g), and was then placed in the experimental 

cages or prepared as an open control (Figure 2.4). The open controls were placed in an esky 

of seawater for transportation into the field. The experimental cages were grouped together 

according to site and proximity to reef, placed into a large hessian bag for transportation to 

the field, and constantly drenched with seawater to circumvent any possible desiccation of 

the kelp. On completion of each experimental period, experimental cages were collected 

underwater, retaining the contents of the cages for quantification in the laboratory. Calico 

bags were carefully placed over the cages, minimising any disturbance to the cages and 

fauna. Cages from each distance and site were placed into the hessian bags and continually 

drenched with seawater whilst on the boat. The open tethers were placed in plastic zip-lock 

bags containing seawater. 

Figure 2.4 Detached E. radiata pegged inside a cage prior to deployment (a) and an open 
tether of detached E. radiata in situ (b). 
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2.1. 3 Laboratory processing 

On return to the laboratory, the detached kelp was immediately rinsed clean with fresh 

water, blotted dry, and reweighed (0.01 g). The contents ofthe cages were filtered through 

a 0.5 mm sieve to remove any sand and particulate matter, and samples were placed in 70% 

ethanol and stored at 4°C prior to sorting. Closed control and <20 mm treatment fauna 

samples were sorted using a dissecting microscope to the lowest possible taxa using Wilson 

(1993), Edgar (2000), and Wells & Bryce (2000), and the hbundances of each group 

quantified (Appendix 1). The ash-free dry weight (AFDW) for each of Amphipoda, 

Isopoda, and Gastropoda was calculated as the difference between the dried (80°C for 48 

hours) and ashed (550°C for 4 hours) weights of the animals (Appendix 2) (Edgar 1990c, 

Brearley & Wells 2000). A sucrose standard of 1.000 g was used to confirm combustion 

efficiency of the organic matter in the furnaces (Kendrick & La very 2001 ). Where 1 00% 

combustion of the sucrose did not occur (mean combustion ± SE = 98.30 ± 1.59%), the 

weights of the samples were corrected using the following equation: AFDW = DW (550°C) 

x (lOO/efficiency). All samples were placed in desicca~ors for 24 hours prior to weighing 

and were weighed to 0.0001 g. 

2.1.4 Habitat composition 

The percent cover of the physical and biological features of the benthos was quantified at 

each distance at each site, to verify that the Posidonia and Amphibolis spp. sites were 

dominated by the respective seagrass types. A 0.5 x 0.5 m quadrat was haphazardly tossed 

onto the benthos and at least 10 super high quality (3072 x 2304) images were taken with 

an Olympus !l725SW digital camera. Due to issues of image quality (e.g. bad visibility, 

blurring, low light), five high quality photos from each distance within each site were 

randomly selected for analysis. The images were analysed using Coral Point Count with 

Excel Extensions (Kohl er & Gill 2006). The benthos was quantified by overlaying 10 x 1 0 

grids on each image, and assessing the substrate type at each intersection point (n = 1 00) 

(Figure 2.5). Substrate was categorised using the following descriptions: Posidonia spp., 

Amphibolis spp., Halophila spp., Heterozostera tasmanica, brown algae, red algae, green 

algae, sand, rock, tape, and unknown. 
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Figure 2.5 A screen-shot from Coral Point Count with Excel Extensions (Kohler & Gill 
2006) displaying the I 0 x 10 grid overlaid the image with the 0.25m2 quad rat placed on the 
benthos. 

2.1.5 Data analysis 

The data from The Lumps (Posidonia spp.) and Cow Rocks (Amphibolis spp.) were not 

incorporated into the analyses. The interface site at The Lumps contained only 14% 

Posidonia spp. cover and was dominated by sand (65%), and therefore not representative of 

a seagra_ss habitat. Large losses of the experimental cages occurred at Cow Rocks. Of the 

nine cages at each distance, three were lost at the seagrass-reef interface, seven were lost at 

the close distance, and four were lost at the far distance. Presumably, this was due to 

localised hydrodynamic conditions at this site, where large surge and very strong currents 

were noticed during the deployment and retrieval of the experiment. At the four sites used 

in the study, three experimental units were lost. These were a <5mm treatment from the 

seagrass-reef interface and a <20mm treatment from the far distances at Whitfords Rock 

NE, and a <20mm treatment from the close distance at Wreck Rock. These missing values 

were replaced with the average of the two remaining replicate treatments from each 

distance at each site (Underwood 1997). 
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Differences between the initial and final wet weights of the detached kelp were used to 

calculate the amount of biomass loss. The biomass loss of the detached kelp was evaluated 

by testing the differences between the categories of predictive factors using univariate 

ANOVA. Permutational Analysis of Variance (PERMANOVA, Anderson 2005) was used 

to partition univariate variability, using permutations to calculate the p-values. The data 

were analysed using a mixed effects, four-factor ANOVA model, incorporating the factors: 

(1) Treatment (fixed factor with four levels: closed, <5 mm, <20 mm, open), (2) Habitat 

( orthogonal to treatments and fixed factor with 2 levels: Posidonia spp. vs Amphibolis 

spp.), (3) Distance ( orthogonal to the previous factors and fixed factor with three levels: 

interface, close, far), and (4) Site (random factor )with two levels nested in Habitat). The 

data were transformed prior to analysis using Ln (x + 1) to meet the requirements of 

homogeneity using Cochran's test, conducted in GMA V statistical package. Univariate 

analysis was based on Euclidean distances and the p-values were calculated from 9999 

unrestricted permutations of the data. Analysis was performed using Primer & 

PERMANOVA+P4 statistical package. 

Correlations testing the abundances and the bi9mass of the mesograzer groups versus the 
I 

loss of the detached kelp biomass· within the !Posidonia spp. and Amphibolis spp. habitats 

were conducted by calculating the R2 values in Microsoft Excel. The mesograzer 

abundances and biomass were plotted against the detached kelp biomass loss using fauna 

data from the closed control and <20 mm treatment cages. Mesograzers were categorised 

into the groups of Amphipoda, Isopoda, Gastropoda, and total mesograzers. The closed 

control and <20 mm treatment data were combined, and the nested sites were combined 

within each habitat. 

2.2 Feeding preference experiments 

2.2.1 Pilot study 

Multiple pilot studies were conducted to test logistical problems associated with laboratory 

feeding experiments. Animal death was a major concern prior to experimentation, but the 

pilot studies indicated that death was minimal. The amount of individuals per treatment cell 

was tested, by using 5, 10, and 15 individuals per cell for choice feeding exper}ments. It 
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was determined that 15 individuals for choice and 5 individuals for no-choice feeding 

experiments was optimal. These numbers were appropriate in terms of detecting 

consumption without overcrowding the individual cell, which could possibly force 

macrophyte consumption upon individuals, aggression or competition between individuals 

(Peterson & Renaud 1989), but allowed the chance for individuals to encounter macrophyte 

material. 

It was desired to have equal initial weights of all macrophytes to allow a comparison using 

percentage for the choice feeding trials. However, due to large differences in the density of 

the macrophytes used, the initial weights could not be identical between groups, as this 

would have provided a greater area of some material to the consumers, which may have 

biased results. Rather, the 2-dimensional surface area of the macrophytes were similar, 

allowing an equal chance for the gastropods to encounter each food source (Wakefield & 

Murray 1998). The gastropods commuted regularly and rapidly during the experimental 

periods, especially when first placed in the treatment cells with the macrophytes, thus the 

encounter ofmacrophytes was not problematic. 

\ 
I 

Starved versus satiated choice feeding trials were conducted by comparing the consumption 

of macrophytes by gastropods that were removed from holding tanks without food or 

removed from holding tanks containing a mixture of macrophytes. In the first trial, starved 

individuals consistently consumed more than satiated individuals, but in the second trial 

satiated individuals sometimes consumed more than starved individuals. Both trials were 

not statistically significant (P > q.05). Due to the inconsistency of these results, and 

following the literature where starvation of gastropods in feeding trials is often used 

(Steinberg & van Altena 1992, Chavanich & Harris 2002, Cox & Murray 2006, Storry et al. 

2006), it was determined that the starvation period of 48 hours was preferable to clear the 

gut contents of the gastropods and assure that consumption occurred. 

2.2.2 Animal selection 

The gastropods Pyrene bidentata (Collumbellidae) and Cantharidus lepidus (Trochidae) 

were used in the choice and no-choice feeding experiments. Both species of gastropod are 

common to south-western Australian coastal environments and can occur in very high 
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numbers (Nielsen & Lethbridge 1989, Edgar 1990a, 1990b, 2000, Tuya et al., in prep.), 

thus they are likely to be important in community ecology. Individuals of the two species 

also commonly occurred in the cages from the field experiment (Appendix 1 ). Furthermore, 

the abundances of P. bidentata in Amphibolis spp. and Posidonia spp. seagrass meadows 

tends to decrease with distance moving away from the reef, while the abundances of C. 

lepidus show the inverse pattern (Tuya et al., in prep.). 

It was intended to conduct choice and no-choice feeding experiments using amphipods, due 

to their high abundances found in the cages from the field experiment (Appendix 1). 

Amphipods are also known to be very mobile and abundant in seagrass meadows and 

important in community dynamics throughout the region (Edgar 1990a, 1990b, Edg~r 1992, 

Jernakoff & Nielson 1997). Multiple attempts using .several different collection methods 
.· 

/ 

were conducted to collect amphipods, but these attempts gathered inadequate numbers of 

individuals of a single or multiple species. Individuals that were collected (~50) were stored 

in aquaria with a mixture of macrophyte resources, with the expectation that breeding may 

occur to· supply individuals for use in experimentation. Unfortunately, breeding did not 

occur. Thus, amphipod feeding preference experiments were not conducted. 

2.2.3 Macrophyte and gastropod collection 

Macrophytes and gastropods used in the feeding preference experiments were collected and 

used for experimentation from the 12/7/07 to the 27/8/07. Adult P. bidentata and C. lepidus 

individuals were collected from Posidonia spp. and Amphibolis spp. seagrass meadows in 

Shoalwater Bay, located approximately 60km south of Marmion Lagoon. The body whorl 

of P. bidentata and C. lepidus individuals selected for experimentation ranged from 11 to 

16 mm and 9 to 15 mm, respectively. Animals were transported to the laboratory where 

they were housed in 4.7 L (30 cm long x 16 cm wide x 19 cm high) aquaria and fed on a 

mixture of macrophytes (including E. radiata, Sargassum sp., Posidonia spp., Amphibolis 

spp., Rhodophyta spp. and Chlorophyta spp.) for a minimum of seven days prior to 

experimentation, which allowed them to acclimatise to laboratory conditions before use in 

experimental trials. To assure independence, no individual gastropod was used for more 

than a single feeding trial. All aquaria were aerated using air stones, housed in a laboratory 
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at 19°C room temperature, and illuminated with 36 W Sylvania daylight fluorescent lights, 

with 12 hours light and 12 hours darkness, providing ea 5 ~-tmol m-2 s-1
• 

Macrophytes used in the feeding trials included fresh E. radiata, aged E. radiata, Posidonia 

australis with no epiphytic or periphytic growth, P; australis with periphytic growth only, 

and Hypnea sp. These macrophytes were selected as they are readily available in the habitat 

frequented by P. bidentata and C. lepidus. Ecklonia radiata was collected from Boyinaboat 

reef and aged in situ for seven days, using the same method described for the field 

experiment. Posidonia australis and Hypnea sp. were collected from Shoalwater Bay. All 

macrophytes were collected a day prior to experimentation, placed in an esky filled with 

seawater, and returned to the laboratory. Macrophytes were sorted, scrubbed cleaned of 

epiphytes (although these were very minimal [pers. obs.]), rinsed in freshwater, and stored 

overnight in aerated seawater at 19°C to emulate environmental sea temperature. 

Periphyton found on Posidonia spp. leaves consists of bacteria, diatoms, cyanobacteria, 

crustose red algae, and other organic matter (Jernakoff et al. 1996, Smit et al. 2006). 

Hypnea sp. was used as a food so{,Jrce to represent re~ algae (Rhodophyta), which is 
\ 

commonly found as a seagrass epiphyte (van Elven et al. 2004). 

2.2.4 Experimental design 

Choice feeding experiments were conducted in aerated 1.4 L plastic containers (13 cm long 

x 13 cm wide x 9.5 cm high) (Figure 2.6a and c), while no-choice feeding experiments 

were conducted in aerated 770 mL plastic containers (15 cm long x 10 cm wide x 6.5 cm 

high) (Figure 2.6b and c). A treatment cell containing animals and a control cell without 

animals were nested within a single container (Prince et al. 2004), with 500 ~-tm fly-screen 

mesh separating the two cells. This mesh width was large enough to allow water to flow 

between the two chambers, but small enough to restrict the animals and any food debris 

within their respective chamber. This nested design ensures that external and internal 

factors jointly affect the control and experimental foods (Prince et al. 2004). 

For choice and no-choice feeding experiments, experimentation occurred over 96 hours, 

providing sufficient tinie to detect grazing effects (Crawley & Hyndes 2007) and minimise 

autogenic changes in macrophyte materials (Peterson & Renaud 1989). Animals were 
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starved for 48 hours prior to experimental trials to clear the gut contents of the animals, 

ensuring the animals would consume food during the feeding experiments and minimising 

the possibility that any food recently consumed would influence food choice. Two 

treatments were used for choice feeding trials: (1) fresh kelp, seagrass without periphyton, 

seagrass with periphyton, and red algae; and (2) aged kelp, seagrass without periphyton, 

seagrass with periphyton, and red algae. Macrophytes were randomly placed into the 

treatment and control cells, with 15 individuals of either P. bidentata or C. lepidus 

randomly selected from the housing tanks, and placed in the treatment cells. For no-choice 

feeding experiments, a single macrophyte type of fresh kelp, aged kelp, seagrass without 

periphyton, seagrass with periphyton, or red algae was placed into the treatment and control 

cells, with 5 individuals of either P. bidentata or C. lepidus randomly selected from the 

housing tanks placed in the treatment cells. There were 10 replicates for each choice and 

no-choice feeding experiment. The initial blotted wet weights of the macrophytes ranged 

between 1.00-1.50 g for fresh and aged kelp, 0.15-0.30 g for seagrass without periphyton, 

0.20-0.40 g for seagrass with periphyton, and 1.00-1.50 g for red algae. 
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Figure 2.6 Photographs of the choice (a) and no-choice (b) feeding experiments. The nested 
design of the treatment and control cells of the containers used for the choice (left) and no­
choice (right) feeding experiments (c). Diagrams are not to scale. 

2. 2. 5 Data analysis 

The differences between the initial and final wet weights ofthe different macrophytes were 

used to calculate the amount (mg) of material consumed, and converted to mg per 

individual per day. Control chambers were used to determine autogenic changes to 

macrophytes in the absence of mesograzers (Peterson & Renaud 1989), and the nested 

design avoids complications of randomly assigning controls with treatments (Roa 1992), or 

of comparing the means of two multivariate samples that may not have the same covariance 

(Manly 1993). Thus, the consumption of each macrophyte is calculated as its loss in 

biomass (blotted wet weight) as (TprcTpost)- (Cpre-Cpost), where T is the treatment cell and 
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C is the control cell found in a single container (following Prince et al. 2004). Where the 

biomass loss of the control was more than the treatment, resulting in 'negative 

consumption', the value was replaced by 0 for statistical analysis. 

For the choice feeding experiments, the amount of material consumed can not be treated as 

independent due to the presence of multiple macrophytes in a single cell (Peterson & 

Renaud 1989). Thus, a multivariate Hotelling's f! test was used to determine any 

significant difference between the mean amounts of each food consumed per individual per 

day (Roa 1992, Manly 1993), where the null hypothesis is based on no food preference by 

the consumer (Crawley & Hyndes 2007). For ail choice feeding experiments, Hotelling's 

trace multivariate statistic was used to test whether there were significant grazing 

preferences using SPSS v.14.0 software. Hotelling's f! was then calculated by multiplying 

the value for Hotelling's trace by (n-g), where n is the sample size (40) and g is the number 

of groups ( 4 ), while the F value, degrees of freedom and level of significance remained the 

same in all tests (Crawley & Hyndes 2007). 

For the no-choice feeding experiments, PERMANOVA was used to determine any 

significant difference in the grazing rates based on Euclidean distances; p-values were 

calculated from 9999 unrestricted permutations of the data. When appropriate, pair-wise 

comparisons were performed using 9999 unrestricted permutations of the data, using 

Primer & PERMANOVA+P4 statistical package. For both choice and no-choice feeding 

experiments, when necessary, the data was transformed using Ln (x + 1) to meet the 

requirements of homogeneity using Cochran's test, conducted in GMA V statistical 

package. 

2.3 Qualitative measures 

2. 3.1 Posidonia australis with periphyton visual assessment 

A qualitative assessment was conducted to determine what the gastropods were consuming 

on the Posidonia australis with periphyton food source. Super high quality (3072 x 2304) 

images of sections of the seagrass leaves were taken using an Olympus SZX12 dissecting 

microscope with an Olympus LG-PS2 camera. Seagrass leaves from the choice feeding 
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trials using P. bidentata and C. lepidus were used. Images were visually assessed to 

determine if there was any scarring on the seagrass tissue, inferring consumption of the 

seagrass material, or if there was any obvious loss of periphyton due to grazing. 

2.3.2 Detached Ecklonia radiata consumption visual assessment 

A qualitative assessment was conducted to determine the effects of P. bidentata and C. 

lepidus grazing on detached E. radiata. Kelp aged for 12 days (7 days in situ and 5 days in 

the laboratory) was cut into similarly sized (9 cm long x 4 cm wide) pieces and placed in 

treatment and control cells, using the same containers as the choice feeding experiments. 

Three replicates for each gastropod species, P. bidentata and C. lepidus, with 30 

individuals in each treatment, were used to determine any scarring effects on kelp. The high 

density of gastropods per treatment was used to increase the chances of high grazing on the 

macrophyte. Images of the detached kelp were taken at the beginning, after one week, and 

after two weeks of the feeding trials. The kelp was blotted dry, placed on a light table, and 

super high quality (3072 x 2304) images were taken with an Olympus f!725SW digital 

camera. A selection of one P. bidentata and one C. lepidus treatment and a control at each 

time interval are presented in the results. 
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3. Results 

3.1 Field experimentation 

3.1.1 Habitat composition 

Posidonia spp. was the dominant seagrass habitat surrounding Wanneroo Reef (Figure 

3.1a) and Whitfords Rock SW (Figure 3.1b), with it covering >67.0% of the area at all 

distances within the sites. The percent cover of Posidonia spp. at Wanneroo Reef was 

88.5% at the interface and far from the reef, and 75.0% close to the reef. Posidonia spp. 

cover was slightly lower at Whitfords Rock SW, increasing from 67.1% at the seagrass-reef 

interface, to 72.4 and 77.0% close to the reef and far from the reef, respectively. At 

Wanneroo Reef, the cover of Heterozbstera tasmanica was 14.0%, green algae 3.5%, and 

sand 2.8%, close to the reef. Sand made up 9.0% and 8.5% of the benthos at the seagrass­

reef interface and far from the reef, respectively. At Whitfords Rock SW, sand covered 

between 17.0 and 20.0% of the benthos at all distances. The cover of red algae was 6.4% 

and green algae was 5.6% at the seagrass-reef interface. Green algae contributed 4.0% to 

the cover close to the reef. 

At Whitfords Rock NE (Figure 3.1c) and Wreck Rock (Figure 3.1d), Amphibolis spp. was 

the dominant seagrass habitat, with it covering >64.0% of the total area at all distances 

within the sites. The Amphibolis spp. cover at Whitfords Rock NE was 65.0% at the 

seagrass-reef interface and close to the reef, and 75.0% far from the reef. At Wreck Rock, 

Amphibolis spp. cover was 70.8% at the seagrass-reef interface, 63.1% close to the reef, 

and 67.5% far from the reef. Red algae contributed 25.0% cover close to the reef, 8.3% far 

from the reef, and 4.0% at the seagrass-reef interface at Whitfords Rock NE. Green algal 

cover was 8. 7% at the seagrass-reef interface, and 2.0% close to the reef and far from the 

reef. Sand covered 18.0, 5.3, and 13.5%, at the seagrass-reef interface, close to the reef, and 

far from the reef, respectively. The red algal cover at Wreck Rock was 28.0% close to the 

reef, 19.5% at the seagrass-reefinterface, and 9.5% far from the reef. Sand cover was 8.0% 

at the. seagrass-reef interface and close to the reef, and 20.5% far from the reef. 
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Figure 3.1 Percentage cover ofthe biophysical characteristics with proximity to reefs at the 
two Posidonia spp. sites: Wanneroo Reef (a) and Whitfords Rock SW (b), and the two 
Amphibolis spp. sites: Whitfords Rock NE (c) and Wreck Rock (d). Other includes rock and 
tape. 

3.1.2 Detached kelp biomass loss 

Treatments, habitats, or distances with proximity to reef had no significant effect on the 

biomass loss of detached E. radiata at any of the four sites (Table 3.1 ). There was a 

significant site within habitat effect, and an interaction between site within habitat and 

treatment (Table 3.1 ), indicating inconsistent responses to treatments from site to site. The 

loss of detached kelp biomass ranged between 0.00 to 9.12 g week-1 across all treatments, 

habitats, and distances with proximity to the reefs. 

In all treatments and distances, the loss of the kelp biomass at the two Posidonia spp. sites 

was similar, ranging between a mean of 0.62 to 3.65 g week-1 at Wanneroo Reef (Figure 

3.2a), and 0.46 to 2.19 g week-1 at Whitfords Rock SW (Figure 3.2b). Between the two 

Amphibolis spp. sites, the biomass loss of the detached kelp was different. At Whitfords 

Rock NE (Figure 3.2c), the biomass loss ranged between a mean of 0.25 and 1.99 g week-1 
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across all treatments and distances, similar to the values of the two Posidonia spp. sites. In 

comparison, at Wreck Rock (Figure 3.2d), the biomass loss of detached kelp was higher 

across all treatments and distances at a mean of0.83 and 5.47 g week-1
• These higher values 

at Wreck Rock are the likely cause of the significant treatment by site within habitat 

interaction. The overall mean detached kelp loss was much higher at Wreck Rock (2.86 g 

week-1
) than Whitfords Rock NE (1.01 g week-1

), or the two Posidonia spp. sites, 

Wanneroo Reef (1.45 g week-1
) and Whitfords Rock SW (1.02 g week-1

). 

Table 3.1 Results of the 4-factor ANOVA of the detach~d E. radiata biomass loss (g week-
1
) testing for differences among (1) Treatments (fixed factor, 4 levels), (2) Habitats (fixed 

factor, 2 levels), (3) Distances (fixed factor, 3 levels), and (4) Sites (random, 2 levels). Data 
was transformed using Ln (x + 1) prior to analysis. ns = (P > 0.05). 

Source 1 df I MS 1 Pseudo-F I P (perm) 

treatment 3 0.1082 0.2714 ns 

habitat 1 0.7853 0.2957 ns 

distance 2 0.3954 3.1146 ns 

site (habitat) 2 2.6554 16.6130 0.0001 

treatment x habitat 3 0.8075 2.0263 ns 

treatment x distance 6 0.2031 0.7917 ns 

habitat x distance 2 0.1947 1.5335 ns 

treatment x site (habitat) 6 0.3985 2.4930 0.0248 

distance x site (habitat) 4 0.1269 0.7942 ns 

treatment x habitat x distance 6 0.2302 0.8975 ns 

treatment x distance x site (habitat) 12 0.2565 1.6046 ns 

1 

Res 96 0.1598 

143 Total 
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Figure 3.2 Mean(± SE, n = 3) biomass loss of detached E. radiata in Posidonia dominated 
seagrass meadows at different distances with proximity to reef at Wanneroo Reef (a) and 
Whitfords Rock SW (b), and in Amphibolis dominated seagrass meadows at Whitfords 
Rock NE (c) and Wreck Rock (d). 

3.1.3 Mesograzer abundances and biomass relations with kelp consumption 

Neither the abundances nor biomass (AFDW) of th~ amphipods, isopods, gastropods, and 

combined mesograzers, in the closed control and <20mm treatment cages, at the end of the 

experiment showed any correlation to the biomass loss of the detached E. radiata in the 

Posidonia spp. or Amphibolis spp. habitats, with all R2 values less than 0.175 (Figures 3.3 

and 3.4) and less than 0.1045 (Figures 3.5 and 3.6) for abundances and AFDW, 

respective! y. 
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mesograzer (d) abundances and the loss of detached kelp biomass (n = 36) in Amphibolis 
dominated seagrass meadows. 
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3.2 Feeding preference experiments 

3.2.1 Pyrene bidentata and Cantharidus lepidus choice feeding experiments 

In choice feeding trials, Pyrene bidentata displayed. a significant grazing preference 

(Hotelling's Y = 1639.512, F = 68.312, P = 0.000) when provided with fresh kelp, red 

algae, and seagrass with and without periphyton (Figure 3.7a). Fresh kelp, seagrass with 

periphyton and red algae were consumed at similar mean rates of 0.53 to 0.75 mg ind-1 

day"1
. There was no difference in preference among these three food sources, contrasting 

seagrass without periphyton, which was not consumed. Similarly, this species displayed a 

significant grazing preference (Hotelling's Y = 671.436, F = 27.976, P = 0.001) when 

provided with aged kelp, red algae, and seagrass with and without periphyton (Figure 3.7b). 

Red algae, seagrass with periphyton, and aged kelp were consumed at mean rates of 2.62, 

1.27, and 0.94 mg ind-1 day"1
, respectively, whilst seagrass without periphyton was 

consumed at a mean of 0.17 mg ind-1 day"1
• Again, this species displayed a grazing 

preference towards the two macroalgal and seagrass with periphyton food sources, while 

they avoided the seagrass without periphyton material. 

Cantharidus lepidus displayed a significant feeding preference (Hotelling's Y = 232.128, F 

= 9.673, P = 0.009) when provided with fresh kelp, red algae, and seagrass with and 

without periphyton in choice feeding trials (Figure 3.7c). A preference for seagrass with 

periphyton was observed, with a mean consumption at 1.41 mg ind-1 day"1
• Fresh kelp was 

consumed at a rate of 0.39 mg ind-1 day"1
, whilst there was no consumption of either 

seagrass without periphyton or red algae. Cantharidus lepidus also displayed a significant 

feeding preference (Hotelling's Y = 1185.408, F = 49.391, P = 0.000) when provided with 

aged kelp, red algae, and seagrass with and without periphyton in choice feeding trials 

(Figure 3.7d), which contrasted the trials with fresh kelp. Red algae was consumed in the 

highest amount at a mean of 3.64 mg ind-1 day"1
; seagrass with periphyton and aged kelp 

were consumed at mean rates of 1.55 and 0.95 mg ind-1 day"1
, respectively, whilst seagrass 

without periphyton was consumed at a mean of 0.24 mg ind-1 day"1
• 

In the~e choice feeding trials, both P. bidentata and C. lepidus appear to feed preferentially 

on the two macroalgal and seagrass with periphyton food sources, whilst avoiding the 

seagrass without periphyton material. 
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Figure 3.7 Mean (± SE, n = 10) P. bidentata (a, b) and C. lepidus (c, d) macrophyte 
consumption (mg ind-1 day"1

) after corrections for autogenic loss in choice feeding 
experiments conducted over a 4 day feeding period using fresh kelp (a, c) and aged kelp (b, 
d). Fresh kelp = fresh E. radiata; Aged kelp = 7 day aged E. radiata; Seagrass without 
periphyton = P. australis without periphyton; Seagrass with periphyton = P. australis with 
periphyton; Red algae = Hypnea sp. 

3.2.2 Pyrene bidentata and Cantharidus lepidus no-choice feeding experiments 

Pyre ne bidentata displayed a significant difference in the grazing rates (F = 6.4197, P = 

0.000) between the food types (Figure 3.8a). Post-hoc analysis revealed no significant 

differences in consumption between fresh kelp, aged kelp, seagrass with periphyton, and 

red algae, but did reveal a significant difference between the consumption of these four 

food sources and seagrass without periphyton material. Fresh and aged kelp, seagrass with 

periphyton, and red algae were all consumed between a mean of2.00 to 7.21 mg ind-1 day"1
, 

whilst there was no consumption of seagrass without periphyton (Figure 3.8a). 
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Cantharidus lepidus displayed significant differences (F = 3.5817, P = 0.0162) in the 

grazing rates between food sources (Figure 3.8b). Post-hoc analysis revealed no significant 

difference between the consumption of fresh kelp, aged kelp, seagrass without periphyton, 

and red algae, but a significant difference between these four food sources and seagrass 

with periphyton. Seagrass with periphyton was consumed at a mean rate of 3.61 mg ind-1 

day-1
, whilst fresh kelp, aged kelp, seagrass without periphyton, and red algae, were all 

consumed between a mean of 0.33 to 1.10 mg ind-1 dai1 (Figure 3 .8b ). 
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Figure 3.8 Mean (± SE, n = 10) macrophyte consumption rates (mg ind-1 dai1
) by P. 

bidentata (a) and C. lepidus (b), corrected for autogenic loss in no-choice feeding 
experiments conducted over a 4 day feeding period. Data was transformed using Ln (x + 1) 
prior to analysis. Bars labelled with the same letter are not significantly different (post-hoc 
analysis P > 0.05). Fresh kelp = fresh E. radiata; Aged kelp = 7 day aged E. radiata; 
SeagrC\SS without periphyton = P. australis without periphyton; Seagrass with periphyton = 
P. australis with periphyton; Red algae= Hypnea sp. 
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3.2.3 Posidonia australis periphyton consumption 

The micrographs of the Posidonia australis segments with periphyton from the Pyrene 

bidentata and Cantharidus lepidus choice feeding experiments (Figure 3.9) do not show 

any obvious grazing scars on the seagrass tissue itself. Rather, the periphyton is patchy in 

distribution, possibly due to the gastropod grazing. The segments of seagrass in the P. 

bidentata trials lost 20 mg (Figure 3~9a), 50 mg (Figure 3.9b), and 30 mg (Figure 3.9c), 

whilst the segments of the seagrass in C. lepidus trials lost 90 mg (Figure 3.9d), 120 mg 

(Figure 3.9e), and 40 mg (Figure 3.9f). These results further support the lack of preference, 

or the avoidance, of seagrass material presented to the gastropods in the quantitative choice 

and no-choice feeding experiment results. 
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a. Pyrene bidentata d. Cantharidus lepidus 

e. 

c. f. 

1 cm 

Figure 3.9 A representation of P. australis with periphyton segments after 4 day feeding 
experiments with P. bidentata (a- c) and C. lepidus (d- f). 
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3. 2. 4 Gastropod grazing on detached Ecklonia radiata 

Grazing by Pyrene bidentata and Cantharidus lepidus individuals on detached Ecklonia 

radiata appears to create small circular holes through the thallus (Figure 3.10). After prior 

aging for 12 days, at the beginning of the experiment, the thalli had very few signs of 

degradation and no apparent holes or grazing scars in the epidermal layers or through the 

tissue (Figure 3.10a and d). After one week of experimentation in the presence of P. 

bidentata individuals (Figure 3.1 Ob),· obvious grazing marks were present, with four holes 

fully through the thallus and nine holes apparently through the epidermis. This increased to 

16 holes fully through the thallus, and six through the epidermis, after two weeks of 

experimentation (Figure 3.10c). 

Similar results were observed in grazing experiments with C. lepidus individuals. Grazing 

marks appeared on the detached kelp thallus with one hole fully through the thallus and 

nine holes through the epidermis (Figure 3.10e). After two weeks of experimentation, the 

number of holes fully through the thallus was two, and additionally a large portion of an 

edge of the thallus was removed, and 18 epidermal holes were present (Figure 3.10f). The 

other two P. bidentata and two C. lepidus replicates (not shown) all had similar signs of 

grazing scars on the thallus of the detached E. radiata after one and two weeks of 

experimentation. 

The controls of detached E. radiata (Figure 3.11), absent of P. bidentata or C. lepidus 

individuals, showed no signs of grazing scars in the form of holes. Rather, the thallus 

degraded in a much more diffuse manner. It appears that the thalli in both controls degraded 

as a result of decomposition, where the tissue of the thalli has simply started to break-up 

and erode. Signs of degradation appeared after one week of experimentation (Figure 3.llb 

and d), and increased after two weeks (Figure 3.11 c and e). 
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a. Pyrene bidentata d. Cantharidus lepiclus 

2cm 

Figure 3.10 Pieces of detached E. radiata in the presence of P. bidentata at the start (a) , 
after 1 week (b), and after 2 weeks (c), and in the presence of C. lepidus at the start (d), 
after 1 week (e), and after 2 weeks (f) of experimentation. 
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a. d. 

b. e. 

c. f. 

2cm 

Figure 3.11 Control pieces of detached E. radiata in the absence of P. bidentata at the start 
(a), after 1 week (b), and after 2 weeks (c), and in the absence of C. lepidus at the start (d), 
after 1 week (e), and after 2 weeks (f) of experimentation. 
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4. Discussion 

The aim of this research was to determine if large detached Ecklonia radiata provides an 

important trophic connection between temperate reef and seagrass habitats through its 

consumption via mesograzers that inhabit seagrass meadows, and to determine whether this 

changes between two distinct seagrass habitats and with proximity to reefs. To evaluate its 

importance in trophic connectivity, it was determined whether there was: (1) any potential 

consumption of the resource by key mesograzers that inhabit seagrass meadows through 

feeding preferences; and (2) any evidence of consumption by mesograzers in seagrass 

meadows. 

4.1 Feeding preferences of mesograzers in seagrass meadows 

Choice and no-choice feeding experiments showed that the gastropods Pyrene bidentata 

and Cantharidus lepidus both consumed the kelp E. radiata when it was fresh and aged. 

The rate of consumption for this allochthonous resource was often similar to the 

autochthonous resources, i.e. periphyton on seagrass leaves and epiphytic red algae, that are 

present in seagrass meadows. The consumption of kelp by these two gastropod species is 

also supported by results from the qualitative feeding experiment, which demonstrated that 

both ofthese gastropod species are capable of producing obvious large grazing scars on the 

thallus of the kelp. Thus, although the gastropods did not consume the allochthonous 

resources in a preferential manner to the autochthonous resources, they are obviously 

capable of consuming E. radiata. Given the known accumulation of detached kelp within 

seagrass meadows (Wernberg et al. 2006), the consumption observed in the laboratory 

experiments ·indicates that the resource has the potential to act as a spatial subsidy for P. 

bidentata and C. lepidus in seagrass meadows. 

Since gastropods in rocky-reef habitats often exhibit preferences for brown macroalgae 

compared to other red and green algae (Wakefield & Murray 1998, Cox & Murray 2006, 

Toth et al. 2007), it was expected that P. bidentata would show a preference for the E. 

radiata as it is abundantly found on reefs (Tuya et al., in prep.), whereas C. lepidus would 

show a preference for autochthonous material in seagrass meadows as it is abundant in 
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seagrass meadows further from reefs (Tuya et al., in prep.). Furthermore, the rachiglossan 

radulae of P. bidentata is a robust and versatile structure for food gathering (Nielsen & 

Lethbridge 1989), whereas the rhipidoglossan radulae of C. lepidus is less capaqle of 

scraping very tough substrata (Steneck & Watling 1982). The general consumption of the 

macroalgal and periphytic resources by the gastropods indicates that these herbivores have 

low selectivity in their food choice, perhaps due to their relative low mobility compared to 

amphipod and isopod mesograzers, which can show selective feeding (Edgar 1992, Cruz­

Rivera & Hay 2000, Crawley & Hyndes 2007), or that the nutritional quality of all these 

resources meets the requirements of the gastropods (Jernakoff et al. 1996, Jernakoff & 

Nielsen 1997). 

The feeding preference experiments indicated no strong preference by the gastropods P. 

bidentata or C. lepidus for aged E. radiata over autochthonous resources. The influence of 

secondary metabolites, specifically phlorotannins (Steinberg 1989), was not apparent, with 

fresh kelp and kelp aged for seven days consumed at similar rates in both species. It has 

been demonstrated that some isopods and amphipods show strong feeding preferences to 

wrack compared to fresh brown algae (Pennings et al 2000, Taylor et al. 2002, Norderhaug 

et al. 2003), possibly due to the leaching out of secondary metabolites (Pennings et al. 

2000, Norderhaug et al. 2003). However, generally, mesograzers do not exhibit deterred 

consumption as a result of phlorotannins produced by brown algae, with amphipods (Duffy 

& Hay 1991, 1994, 2000, Taylor & Brown 2006), isopods (Jormalainen et al. 2001), and 

gastropods (Wakefield & Murray 1998, Norderhaug et al. 2003) all demonstrating feeding 

preferences towards brown algae containing secondary metabolites. The gastropods used in 

the feeding experiments in this study did not have any preference towards the aged kelp 

compared to the fresh kelp. This may be a reflection of the general tolerance that Australian 

mesograzers seem to show to secondary metabolites produced by macrophytes, which are 

greater than those produced by macroalgae in the northern hemisphere (Taylor & Steinberg 

2005). 

No-choice feeding experiments showed that kelp was consumed at a higher mean rate by P. 

bidentata than C. lepidus (1.5 vs 0.8 mg ind-1 dai1
), possibly reflecting its much higher 

densities on reefs relative to seagrass meadows and the structure of its radula (see above). 

Allowing for the grazing rates of these two species, the gastropods would consume <0.1 g 
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m·2 day"1 of the total biomass of detached kelp in seagrass meadows, in relation to their 

densities (Tuya et al., in prep.) found in Posidonia and Amphibolis spp. meadows at the 

different proximities to the reefs. Considering this is quantified per day, and the input of 

detached kelp is not likely to dramatically increase on a daily basis, their consumption over 

time may have a higher impact, especially if the resource is retained in a small area. 

Amphipods and isopods exhibit preferences for brown algae (Duffy & Hay 1991, 

Wakefield & Murray 1998) at much higher grazing rates than gastropods in feeding 

experiments (see table in Jernakoff et al. 1996). For example, the common south-western 

Australian gammarid amphipod Allorchestes compressa displays a strong preference for 

brown algae and is capable of consuming 3 mg ind-1 day"1 of E. radiata in choice feeding 

experiments (Crawley & Hyndes 2007). Amphipods and isopods are abundant in seagrass 

meadows of the region (Orth & van Montfrans 1984, Jernakoff et al. 1996), and although 

the grazing rates of these mesograzers were not quantified in this study, it is likely that they 

also consume E. radiata and at higher rates than the gastropods in this study. The direct 

quantification of seagrass inhabiting amphipods and isopod is an important area of future 

study for the understanding of mesograzer trophic dynamics in seagrass meadows. The 

higher abundances and mobility of amphipods and isopods in seagrass meadows 

(Hutchings et al. 1990/91, Kirkman et al. 1990/91, Edgar & Shaw 1993, Brearley & Wells 

2000), relative to gastropods, may have an increased effect on the consumption of detached 

E. radiata in seagrass meadows. Kelp being transported into seagrass meadows from reefs 

therefore has the potential to subsidise secondary production in this habitat. 

4.2 The importance of Ecklonia radiata for seagrass inhabiting mesograzers 

In contrast to the laboratory feeding experiments, the field experiment indicated no effect of 

mesograzer size class, seagrass species, or proximity to reefs on the biomass loss of large 

detached kelp over a week. The results from the field experiment consistently displayed 

high variability across all treatments and sites, which may have confounded any potential 

effects resulting from possible detached kelp consumption. The loss of detached kelp 

biomass across all treatments and sites ranged from 0.00-9.15 g week-1
, with a mean(± 

SE) of 1.58 ± 0.14 g week-1
• This high degree of variability may be a result of differential 
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grazing by mesograzers which are heterogeneously distributed in seagrass meadows, or 

other biological or physical factors, such as microbial interactions or physical abrasion. 

The lack of effect between the closed and open controls infers that biomass loss of kelp is 

due to an influence or influences of factors that equally affected the kelp regardless of 

mesograzers. Microbial decomposition (Kirkman & Kenrick 1997, Norderhaug et al. 2003) 

may have influenced the loss of kelp biomass, as partially supported by the different levels 

of (potential) microbial decomposition of E. radiata observed in the qualitative feeding 

experiments. The thalli of kelp in the absence of grazers showed variable degrees of 

degradation, whereas none of the kelp in the presence of grazers had indications of bacterial 

degradation, possibly due to the grazers feeding on the biofilm on the surface of the thalli, 

as well as the thalli itself (Storry et al. 2006). Although the pieces of kelp thalli used in the 

field experiment were scrubbed and washed prior to experimentation, the influence of 

microbial decomposition prior to and during experimentation may have influenced the 

variability in the loss ofkelp biomass. 

Physical abrasion (Kirkman 1984, Kirkman & Kenrick 1997, Lavery et al. 2007) could also 

influence the loss of kelp biomass. The mean loss of kelp biomass was similar between 

three ofthe four sites (1.01- 1.45 g ~eek- 1 ) when offshore swell and wave conditions were 

1.3-1.6 m and 1.2-1.4 m, respectively (Department of Planning and Infrastructure, · 

unpublished data). However, the mean loss of kelp biomass was much higher at Wreck 

Rock (2.86 g week-1
) when swell and wave conditio'ns were 2.1 m and 1.2 m, respectively 

(Department of Planning and Infrastructure, unpublished data). Furthermore, the loss of 

kelp biomass was generally much higher in the cages than the open tethers at this site. 

Despite efforts to reduce abrasion by securing the kelp by two of its ends inside of the cage, 

the kelp may have been continually knocked against the sides of the cages, resulting in 

increased physical erosion. This suggests that the swell could have influenced the physical 

abrasion and, thus, the overall loss of kelp biomass. 

Wernberg et al. (2006), who used the same sites and distances from reef as this study, 

found that tethered fresh kelp generally lost <1 0% biomass over a five day period at most 

distances at most sites. Wernberg et al. (2006) also found that at some distances at some 

sites there was 25 -7 5% loss of kelp biomass, which was positively correlated to densities 
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of herbivorous fish at the seagrass-reef interface. Similarly, in the present study, the aged 

kelp open tethers lost a mean of 14% over a seven day period, while 6/36 pieces of 

detached kelp lost between 30 - 80% biomass, but this was not restricted to the open 

tethers. Of the closed control and two treatments, 111108 replicates lost between 30- 80%. 

The lack of significant difference in the loss of the kelp biomass between the closed and 

open controls, and the <5mm and <20mm treatments, suggests that mesograzers were not 

the main influence on the loss of kelp biomass in the experiment. Furthermore, since this 

lack of difference occurred in both open and closed treatments, grazing by fish was not 

influencing the results. 

Evidence of large detached kelp consumption by mesograzers is further complicated by the 

lack of correlations between kelp biomass loss and mesograzer abundances or biomass in 

the cages, in the Posidonia or Amphibolis dominated seagrass meadows, indicating that the 

consumption of the material was limited. The abundances of amphipods, isopods, and 

gastropods were rarely associated with biomass loss of kelp. For example, one of the 

treatments had a total of 120 (0.05 g AFDW) amphipods, 407 (0.29 g AFDW) isopods, and 

eight (0.19 g AFDW) gastropods at the time of collection, but the weight loss of the kelp 

over a week was only 0.2%. Conversely, another treatment had 15 (0.02 g AFDW) 

amphipods, two (0.01 g AFDW) isopods, and no gastropods at the time of collection, but 

the weight loss of the kelp was 78.5%. Thus, it appears that large detached kelp was not 

greatly consumed by the mesograzers inhabiting seagrass meadows, through the correlative 

inference from the experimental data of detached kelp consumption by mesograzers in the 

experimental units. Caution must be exercised in such comparisons, since mesograzer 

abundances may reflect neither true abundances nor the numbers of mesograzers in the 

cages over the week. Biophysical factors such as predation, competition, fitness, resource 

availability, mobility, currents, or disturbance may have influenced the populations of taxa 

in the cages throughout the experimentation period, and at the conclusion of the 

experiment. It is also possible that the more mobile animals were residing in the cages for 

shelter during the day, and feeding away from the cages at night, as has been observed in 

some invertebrates which display diurnal feeding movement (Edgar 1992, Taylor 1998). 
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4.3 Pathways driving secondary production in seagrass meadows: allochthonous or 

autochthonous resource? 

The previous discussion indicates that E. radiata that is transported into seagrass meadows 

can be consumed by key mesograzers, but the field experiment provides no evidence that 

this form of production contributes substantially to secondary production in these habitats. 

How then, can these apparently complicating results be reconciled? The lack of clarity in 

the results of this study may be related to the availability of alternative, autochthonous food 

resources, the season in which the study was conducted, or the time period of the 

experimentation. Seagrass meadows can be highly productive habitats with a high diversity 

of food resources for grazers, including seagrass, epiphytic macroalgae, periphyton and 

detritus (Orth & van Montfrans 1982, Jernakoffet al. 1996). 

The magnitude of consumer response to allochthonous resources is not affected by recipient 

habitat productivity or the ratio of productivity between donor and recipient habitats, but is 

significantly related to the ratio of subsidy resources to equivalent resources in the recipient 

habitat (Polis & Strong 1996, Marczak et al. 2007). In this case, the most likely equivalent 

autochthonous resources are seagrass periphyton and epiphytes. Seagrass does not appear to 

provide a direct source of food to mesograzers, as indicated by the avoidance of this food 

source by the two gastropod species in the feeding experiments (seagrass leaves without 

periphyton), and the lack of grazing scars observed on seagrass with periphyton. This 

avoidance has also been shown for the amphipod A. compressa in the region (Crawley and 

Hyndes 2007), further supporting that seagrass material either can not be consumed or is 

avoided by mesograzers. The resource may not be able to be consumed due to physical 

toughness of the resource (Lubchenco & Gaines 1981, Steneck & Wading 1982, Jernakoff 

et al. 1996). Alternatively, it may be avoided due to the relatively poor nutritional value of 

the resource compared to the macroalgal and periphytic resources in the feeding 

experiments or those found in seagrass meadows (Lubchenco & Gaines 1981, Hootsmans 

& Vermatt 1985, Howard & Short 1986, Jernakoff et al. 1996). Presumably, it is the latter, 

as indicated by the minor consumption of seagrass leaves observed in some of the choice 

and no-choice feeding experiments .. In temperate environments, seagrass material is rarely 

consumed directly by grazers (Jernakoff et al. 1996, MacArthur & Hyndes 2007), whereas 

in tropical habitats seagrass consumption by fish and urchins grazing can be high 
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(Valentine et al. 1997, Valentine & Heck 1999, Kirsch et al. 2002). The lack of grazing 

scars on the P. australis tissue and the patchy spatial distribution of the periphytic material, 

and the lack of grazing of the seagrass without periphyton in the choice and no-choice 

feeding experiments, infers that the consumption of the seagrass with periphyton was 

towards periphyton, rather than seagrass tissue. This is not surprising, as periphyton is 

known to be an important food resource for gastropods inhabiting seagrass meadows in 

temperate seagrass meadows (Hootsmans & Vermatt 1985, Howard & Short 1986, Nielsen 

& Lethbridge 1989, Jemakoff & Nielsen 1997, Nelson 1997, Keuskamp 2004, Smit et al. 

2006). 

The presence of periphytic and epiphytic macroalgal autochthonous resources in seagrass 

meadows (Jemakoffet al. 1996, Lavery & Vanderklift 2002, van Elven et al. 2004) appears 

to be the strongest influence in determining the lack of consumption of detached kelp by 

mesograzers in seagrass meadows (Figure 4.1). The non-preferential consumption by the 

gastropods between the fresh and aged kelp, seagrass with periphyton, and red algae, 

provides further explanation to the lack of consumption by mesograzers found in the field 

experiment. The results of the feeding experiments using gastropods, in regards to the 

results of field experimentation, can be extrapolated, albeit with caution, to include the 

other mesograzers, amphipods and isopods, as the dietary preferences of these groups often 

overlaps in seagrass habitats (Hootsmans & Vermatt 1985, Howard & Short 1986, Edgar 

1990b, Jernakoff & Nielsen 1997, Smit et al. 2005, 2006). When considering food 

consumption in the field, if a grazer is able to fulfil its nutrient requirements without having 

to leave its host plant, thereby minimising the risk of predation (Taylor 1998), then the 

individual would likely graze on resources readily available to it (Lubchenco & Gaines 

1981). Conversely, in habitats where autochthonous food supply limits the abundances and 

productivity of primary consumers, such as unvegetated habitats, the magnitude of primary 

consumer response to allochthonous resources is greatly increased, even with an increased 

risk of predation (Figure 4.1) (Kirkman & Kendrick 1997, Stapp & Polis 2003, Vanderklift 

& Jacoby 2003, Hyndes & Lavery 2005, Crawley et al. 2006, Crawley & Hyndes 2007, 

Ince et al. 2007). 
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Donor habitats 
with j primary 
productivity 

Recipient habitats with 
i comparable resources 

l 
Primary consumers: 

abundance: little effect 
production: little effect 

e.g. Detached 
macro algae 

Recipient habitats with 
t comparable resources 

Primary consumers: 
i abundance 
i production 

Figure 4.1 Schematic model displaying the effects of allochthonous resources on primary 
consumers in recipient habitats with high productivity of comparable resources (this study) 
and recipient habitats with low productivity of comparable resources (Kirkman & Kendrick 
1997, Stapp & Polis 2003, Vanderklift & Jacoby 2003, Hyndes & Lavery 2005, Crawley et 
al. 2006, Crawley & Hyndes 2007, Ince et al. 2007). The weight of the lines represents the 
magnitude of effects. 

Generally, food limitation has not been recognised as a maJor limiting factor for 

mesograzers inhabiting seagrass meadows (Jernakoff et al. 1996), most likely due to the 

abundance of epiphytic, periphytic, detrital and particulate material found in the habitat 

(Edgar 1990a, Jernakoff et al. 1996, Lavery & Vanderklift 2002, Heck & Valentine 2006). 

Yet, it has been found that the epifaunal populations associated with epiphytes and 

periphyton can be food limited (Edgar 1990b ). Thus, the lack of evidence of significant 

consumption of the detached kelp resulting from this study may be related to there being no 

resource limitation for primary consumers in the seagrass habitats. The mesograzers were 

most likely consuming locally abundant epiphytes, periphyton, small drift, or particulate 

organic matter (POM) in the field, or even that which was trapped inside the cages, rather 

than the experimental detached kelp. 
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The feeding experiments with the gastropods indicated that feeding on the large detached 

kelp occurs, and at similar rates to other food sources. Additionally, in the field, the 

consumption of smaller rather than larger fragments of kelp by mesograzers may occur, due 

to ease of consumption. Particularly, smaller particles may be preferred by amphipods and 

isopods due to their smaller mouthparts. Gastropods are less mobile and often exhibit more 

generalist feeding than amphipods (Jernakoff & Nielsen 1997). The functional morphology 

of their mouthparts allows amphipods to exploit a wider variety of food types, shapes and 

sizes than gastropods, but they can also selectively feed on smaller and softer food due to 

their mobility (Jernakoff & Nielsen 1997). Edgar (1990a) found that the secondary 

production of invertebrate fauna, comprising predominantly two species of amp hi pods, was 

highly correlated with POM bound at the sediment surface, rather than the biomass of drift 

macrophytes or seagrass rhizomes. Thus, whilst this study focussed on the consumption of 

large detached kelp in seagrass meadows, the influence of allochthonous derived POM is an 

important area of further investigation. 

Edgar (1992) suggested that the presence of guilds of mobile amphipods, which feed on 

decaying plants, are widely distributed in south-west Australian coastal habitats. 

Mesograzer abundances usually peaks in spring/summer, and are at their least in winter in 

seagrass beds, with the seasonal abundances of amphipods fluctuating over orders of 

magnitude (Edgar 1990a, 1990b, Jernakoff et al. 1996). Large populations of Tethygenia 

sp. amphipods have been recorded to move into Amphibolis seagrass beds from 

unvegetated habitats on two occasions in summer, which coincided with the dieback of 

shallow seagrass and its associated epiphytes (Edgar 1992). Thus, the magnitude of 

consumption of large detached kelp by amphipods inhabiting seagrass meadows may be 

related to the season, with increased consumption possibly occurring in spring/summer. 

Spatial subsidies generally increase consumer densities or biomass in most habitats (Polis 

& Strong 1996, Polis et al. 1997, Crawley & Hyndes 2007, Ince et al. 2007, Marczak et al. 

2007), with detritivores having the largest significant mean effect in all habitats (Marczak 

et al. 2007). Thus, if large detached kelp were a highly important subsidy for seagrass 

habitats, the immediate likely effect would be the consumption of the resource resulting in 

the increase in the density of detritivores, including mesograzers. Possibly, there was little 

indication of detached kelp consumption by mesograzers in the field experiment as a result 
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of other abundant food resources (Figure 4.1 ). During winter, the time of year the study was 

conducted, the amount of detached E. radiata is at its highest due to early winter storms 

which tear segments or whole plants from the substrate (Kirkman 1984). As Polis & Strong 

(1996) express, to examine the effect of a spatial subsidy, the analysis of the abundance of 

various consumers can be observed through the manipulation of detritus by its removal or 

addition. Thus, as well as adding an allochthonous resource to the habitat, material already 

found in the sites at the time of installation and throughout the experimentation period 

could have been removed and controlled. Conducting the research in summer when storms 

are rare, resulting in decreased seas and swell (Lemm et al. 1999), would likely reduce the 

amount of ambient detrital material that could potentially alter the amount of detached kelp 

consumed in experimental units. Epifaunal abundances are also highest during this season 

(Edgar 1990a, 1990b, Jernakoff et al. 1996). These factors may potentially lead to different 

results related to the loss of detached kelp biomass through the. consumption by 

mesograzers. 

4.4 Conclusions 

This study has shown that, although the gastropods P. bidentata and C. lepidus can 

consume the brown algae E. radiata, there was no evidence of an influence of large 

detached kelp as a spatial subsidy (sensu Polis et al. 1997) for mesograzer trophic dynamics 

in the seagrass meadows in south-western Australia. These mesograzers exhibit similar 

preferences for kelp, red algae and periphyton. Thus, while E. radiata dominates the 

detrital macroalgae found in seagrass meadows (Wernberg et al. 2006), it is possible that 

this is a result of abundant autochthonous resources and POM found in the seagrass 

meadows studied during the time of experimentation, which may change according to 

location and/or season. Thus, extrapolating the lack of E. radiata consumption in seagrass 

meadows by the test species used here to all mesograzers and times should be made with 

caution, as this could potentially change when similar autochthonous resource are low in 

abundance or biomass. Further investigations are needed at different locations and times of 

the year to quantify any changes in the consumption of the resource. Furthermore, its 

importance as a contributor to the POM pool found on the sediment surface in seagrass 

meadows needs to be quantified, to estimate its importance to trophic dynamics of the 

micro- and macro-fauna who exploit this resource. Thus, the role of large detached E. 
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radiata in seagrass meadows as a food source for mesograzers is clearly possible, but 

whether the possibility is realised is still uncertain. It is possible that kelp contributes to the 

trophic dynamics of seagrass meadows through other mechanisms, or during other seasons 

and at other locations. 
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Appendix 1 

Fauna abundance sheets from closed control and <20mm treatment cages from Wanneroo 
Reef, Whitfords Rock SW, Whitfords Rock NE, and Wreck Rock. 

Site: Wanneroo Reef 
Distance: Interface 

Cnidaria Anthozoa 
Annelida Polychaete 
Other Worms 
Chelicerata 
Crustacea Ostracoda 

Copepoda 
Amphipoda 

Isopoda 
Cumacea 
Nebaliacea 
Tanaidacea 
Mysidacea 
Decapoda 

Mollusca Polyplacophora 
Gastropoda 

Bivalve 
Cephalopod 

Echinodermata Crinoidea 
Asteroid ea 
Ophuiroidea 
Echinoidea 
Holothuroidea 

Chordata Fish 
Unknown 

Gammarid 
Caprellid 
Cerapid 

Pyrene bidentata 
Cantharidus lepidus 
Prothalotia lehmanni 
Thalotia conica 
Thalotia chlorostoma 
Australium squamiferum 
Other 

Abundance per cage 
Closed reps <20mm reps 
1 2 3 1 2 3 

1 1 1 
1 1 

3 2 9 8 4 

53 21 178 93 47 97 

3 1 1 7 1 5 

1 1 1 
2 4 1 3 

2 1 12 10 5 

1 1 2 
1 

1 
6 21 10 22 

1 1 

8 2 

1 1 
1 
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Site: Wanneroo Reef 
Distance: Close 

Cnidaria Anthozoa 
Annelida Polychaete 
Other Worms 
Chelicerata 
Crustacea Ostracoda 

Copepoda 
Amphipoda 

Isopoda 
Cumacea 
Nebaliacea 
Tanaidacea 
Mysidacea 
Decapoda 

Mollusca Polyplacophora 
Gastropoda 

Bivalve 
Cephalopod 

Echinodermata Crinoidea 
Asteroid ea 
Ophuiroidea 
Echinoidea 
Holothuroidea 

Chordata Fish 
Unknown 

62 

Gammarid 
Caprellid 
Cerapid 

Pyrene bidentata 
Cantharidus lepidus 
Prothalotia lehmanni 
Thalotia conica 
Thalotia chlorostoma 
Australium squamiferum 
Other 

Abundance per cage 
Closed reps <20mm reps 
1 2 3 1 2 3 

1 2 1 3 2 
2 

1 
8 1 8 25 17 

7 
78 64 23 62 70 41 

1 

6 5 14 54 12 12 
1 

4 1 7 4 1 

1 1 9 13 19 
1 1 1 

6 7 

1 
2 

4 8 6 11 18 11 

10 2 

3 
1 



Site: Wanneroo Reef 
Distance: Far 

Cnidaria Anthozoa 
Annelida Polychaete 
Other Worms 
Chelicerata 
Crustacea Ostracoda 

Copepoda 
Amphipoda 

Isopoda 
Cumacea 
Nebaliacea 
Tanaidacea 
Mysidacea 
Decapoda 

Mollusca Polyplacophora 
Gastropoda 

Bivalve 
Cephalopod 

Echinodermata Crinoidea 
Asteroid ea 
Ophuiroidea 
Echinoidea 
Holothuroidea 

Chordata Fish 
Unknown 

Gammarid 
Caprellid 
Cerapid 

Pyrene bidentata 
Cantharidus lepidus . 
Prothalotia lehmanni 
Thalotia conica 
Thalotia chlorostoma 
Australium squamiferum 
Other 

Abundance per cage 
Closed reps <20mm reps 
1 2 3 1 2 3 

4 6 13 1 1 
1 

2 3 
3 14 12 12 78 

1 
16 8 14 34 27 81 

1 4 4 
5 2 5 6 28 

4 
3 1 1 

1 5 1 8 

2 1 

8 8 13 

1 

1 
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Site: Whitfords Rock SW 
Distance: Interface 

Cnidaria Anthozoa 
Annelida Polychaete 
Other Worms 
Chelicerata 
Crustacea Ostracoda 

Copepoda 
Amphipoda 

I so pod a 
Cumacea 
Nebaliacea 
Tanaidacea 
Mysidacea 
Decapoda 

Mollusca Polyplacophora 
Gastropoda 

Bivalve 
Cephalopod 

Echinodermata Crinoidea 
Asteroid ea 
Ophuiroidea 
Echinoidea 
Holothuroidea 

Chordata Fish 
Unknown 

64 

Gammarid 
Caprellid 
Cerapid 

Pyrene bidentata 
Cantharidus lepidus 
Prothalotia lehmanni 
Thalotia conica 
Thalotia chlorostoma 
Australium squamiferum 
Other 

Abundance per cage 
Closed reps <20mm reps 
1 2 3 1 2 . 3 

1 
14 9 12 7 9 11 
5 32 4 

1 1 1 
10 23 2 
2 3 1 6 
39 25 14 79 100 70 

1 4 1 6 
3 4 5 12 7 

1 2 2 
2 3 

1 1 3 2 

1 1 6 11 1 

2 
1 

3 
52 1 37 40 16 

1 2 

1 

1 



Site: Whitfords Rock SW 
Distance: Close 

Cnidaria Anthozoa 
Annelida Polychaete 
Other Worms 
Chelicerata 
Crustacea Ostracoda 

Copepoda 
Amphipoda 

Isopoda 
Cumacea 
Nebaliacea 
Tanaidacea 
Mysidacea 
Decapoda 

MoJlusca Polyplacophora 
Gastropoda 

Bivalve 
Cephalopod 

Echinodermata Crinoidea 
Asteroid ea 
Ophuiroidea 
Echinoidea 
Holothuroidea 

Chordata Fish 
Unknown 

Gammarid 
Caprellid 
Cerapid 

Pyrene bidentata 
Cantharidus lepidus 
Prothalotia lehmanni 
Thalotia conica 
Thalotia chlorostoma 
Australium squamiferum 
Other 

Abundance per cage 
Closed reps <20mm reps 
1 2 3 1 2 3 

1 1 1 
2 18 7 4 23 5 

37 2 35 1 
1 2 4 1 

5 13 5 5 
2 8 3 2 

46 37 62 115 45 42 
1 

2 1 2 
2 5 6 12 5 
3 2 2 

2 1 2 

1 1 4 26 8 
1 

6 
4 2 2 

2 
1 

3 17 9 32 25 21 
4 4 1 

1 
1 
1 

1 
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Site: Whitfords Rock SW 
Distance: Far 

Cnidaria Anthozoa 
Annelida Polychaete 
Other Worms 
Chelicerata 
Crustacea Ostracoda 

Copepoda 
Amphipoda 

Isopoda 
Cumacea 
Nebaliacea 
Tanaidacea 
Mysidacea 
Decapoda 

Mollusca Polyplacophora 
Gastropoda 

Bivalve 
Cephalopod 

Echinodermata Crinoidea 
Asteroid ea 
Ophuiroidea 
Echinoidea 
Holothuroidea 

Chordata Fish 
Unknown 

66 

Gammarid 
Caprellid 
Cerapid 

Pyrene bidentata 
Cantharidus lepidus 
Prothalotia lehmanni 
Thalotia conica 
Thalotia chlorostoma 
Australium squamiferum 
Other 

Abundance per cage 
Closed reps <20mm nips 
1 2 3 1 2 3 

10 5 8 19 3 
7 2 29 1 
1 1 1 
27 4 5 20 3 
3 2 5 
43 69 48 56 109 67 

2 4 7 1 
6 4 9 10 11 20 
1 5 1 1 4 1 
1 
14 3 

4 10 1 
3 1 5 11 12 

3 
3 1 

1 
1 1 1 
2 2 

8 7 4 5 17 11 

1 

1 

1 1 
10 



Site: Whitfords Rock NE 
Distance: Interface 

Cnidaria Anthozoa 
Annelida Polychaete 
Other Worms 
Chelicerata 
Crustacea Ostracoda 

Copepoda 
Amphipoda 

Isopoda 
Cumacea 
Nebaliacea 
Tanaidacea 
Mysidacea 
Decapoda 

Mollusca Polyplacophora 
Gastropoda 

Bivalve 
Cephalopod 

Echinodermata Crinoidea 
Asteroid ea 
Ophuiroidea 
Echinoidea 
Holothuroidea 

Chordata Fish 
Unknown 

Gammarid 
Caprellid 
Cerapid 

Pyrene bidentata 
Cantharidus lepidus 
Prothalotia lehmanni 
Thalotia conica 
Thalotia chlorostoma 
Australium squamiferum 
Other 

Abundance per cage 
Closed reps <20mm reps 
1 2 3 1 2 3 

1 6 1 
6 8 8 3 

3 4 32 3 

8 5 4 3 1 18 
2 6. 7 9 7 
45 70 63 89 66 I24 

1 1 
1 3 
6 2 2 3 3 3 
3 1 1 5 

I 1 3 I 

1 1 li 22 I8 

2 
3 2 

1 

6 3 8 13 2 51 
2 4 

I 

1 

1 
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Site: Whitfords Rock NE 
Distance: Close 

Cnidaria Anthozoa 
Annelida Polychaete 
Other Worms 
Chelicerata 
Crustacea Ostracoda 

Copepoda 
Amphipoda 

Isopoda 
Cumacea 
Nebaliacea 
Tanaidacea 
Mysidacea 
Decapoda 

Mollusca Polyplacophora 
Gastropoda 

Bivalve 
Cephalopod 

Echinodermata Crinoidea 
Asteroidea 
Ophuiroidea 
Echinoidea 
Holothuroidea 

Chordata Fish 
Unknown 

68 

Gammarid 
Caprellid 

. Cerapid 

Pyrene bidentata 
Cantharidus lepidus 
Prothalotia lehmanni 
Thalotia conica 
Thalotia chlorostoma 
Australium squamiferum 
Other 

Abundance per cage 
Closed reps <20mmreps 
I 2 3 I 2 3 
2 I 6 3 
38 6 7 5 3 
27 4 2 I 3 

2 2 2 
14 3 3 11 11 
1 6 6 11 
52 76 124 86 118 93 

2 1 3 
5 1 8 7 2 8 
3 I 

1 I 1 

1 22 2 2 
I 

1 3 

1 1 

41 28 18 18 29 
3 2 4 

1 2 

I 1 

1 



Site: Whitfords Rock NE 
Distance: Far 

Cnidaria Anthozoa 
Annelida Polychaete 
Other Worms 
Chelicerata 
Crustacea Ostracoda 

Copepoda 
Amphipoda 

Isopoda 
Cumacea 
Nebaliacea 
Tanaidacea 
Mysidacea 
Decapoda 

Mollusca Polyplacophora 
Gastropoda 

Bivalve 
Cephalopod 

Echinodermata Crinoidea 
Asteroid ea 
Ophuiroidea 
Echinoidea 
Holothuroidea 

Chordata Fish 
Unknown 

Gammarid 
Caprellid 
Cerapid 

Pyrene bidentata 
Cantharidus lepidus 
Prothalotia lehmanni 
Thalotia conica 
Thalotia chlorostoma 
Australium squamiferum 
Other 

Abundance per cage 
Closed reps <20mm reps 
1 2 3 1 2 NA 

3 5 
2 2 3 63 55 

4 .1 12 1 
3 1 3 
10 3 7 21 4 
1 1 2 
90 94 110 194 115 

4 5 
8 14 11 60 407 
1 2 

6 
1 3 2 1 

1 2 1 8 10 
1 1 2 

1 
1 1 

6 14 22 14 7 
3 
1 
1 
11 1 

1 2 1 
1 

1 2 
1 2 
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Site: Wreck Rock 
Distance: Interface 

Cnidaria Anthozoa 
Annelida Polychaete 
Other Worms 
Chelicerata 
Crustacea Ostracoda 

Copepoda 
Amphipoda 

Isopoda 
Cumacea 
Nebaliacea 
Tanaidacea 
Mysidacea 
Decapoda 

Mollusca Polyplacophora 
Gastropoda 

Bivalve 
Cephalopod 

Echinodermata Crinoidea 
Asteroidea 
Ophuiroidea 
Echinoidea 
Holothuroidea 

Chordata Fish 
Unknown 
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Gammarid 
Caprellid 
Cerapid 

Pyrene bidentata 
Cantharidus lepidus 
Prothalotia lehmanni 
Thalotia conica 
Thalotia chlorostoma 
Australium squamiferum 
Other 

Abundance per cage 
Closed reps <20mm reps 
1 2 3 1 2 3 

3 10 1 1 9 6 
5 15 3 

1 1 2 
2 

1 
18 11 9 25 30 33 

13 
2 2 1 4 10 20 

1 

1 32 41 19 

3 
10 3 

1 

1 13 21 10 
1 5 

1 4 

1 
1 

1 



Site: Wreck Rock 
Distance: Close 

Cnidaria Anthozoa 
Annelida Polychaete 
Other Worms 
Chelicerata 
Crustacea Ostracoda 

Copepoda 
Amphipoda 

Isopoda 
Cumacea 
Nebaliacea 
Tanaidacea 
Mysidacea 
Decapoda 

Mollusca Polyplacophora 
Gastropoda 

Bivalve 
Cephalopod 

Echinodermata Crinoidea 
Asteroid ea 
Ophuiroidea 
Echinoidea 
Holothuroidea 

Chordata Fish 
Unknown 

Gammarid 
Caprellid 
Cerapid 

Pyrene bidentata 
Cantharidus lepidus 
Prothalotia lehmanni 
Thalotia conica 
Thalotia chlorostoma 
Australium squamiferum 
Other 

Abundance per cage 
Closed reps <20mm reps 
1 2 3 1 2 NA 

1 3 
2 1 2 14 
2 8 32 

1 
1 6 

36 31 15 63 97 

1 5 
1 6 2 4 12 

1 
1 1 

3 1 16 9 

2 
5 1 

1 1 9 8 

6 
1 

1 
1 

2 
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Site: Wreck Rock 
Distance: Far 

Cnidaria Anthozoa 
Annelida Polychaete 
Other Worms 
Chelicerata 
Crustacea Ostracoda 

Copepoda 
Amphipoda 

Isopoda 
Cumacea 
Nebaliacea 
Tanaidacea 
Mysidacea 
Decapoda 

Mollusca Polyplacophora 
Gastropoda 

Bivalve 
Cephalopod 

Echinodermata Crinoidea 
Asteroid ea 
Ophuiroidea 
Echinoidea 
Holothuroidea 

Chordata Fish 
Unknown 
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' 

Gammarid 
Caprellid 
Cerapid 

Pyrene bidentata 
Cantharidus lepidus 
Prothalotia lehmanni 
Thalotia conica 
Thalotia chlorostoma 
Australium squamiferum 
Other 

Abundance per cage 
Closed reps <20mm reps 
1 2 3 1 2 3 

1 1 3 3 
16 9 27 13 35 36 
8 2 8 3 25 
1 1 2 3 

1 11 7 

20 2 9 17 37 43 
1 

2 1 
18 4 12 15 24 9 

2 
3 3 

3 

2 4 2 8 12 29 

1 
3 1 6 

1 1 

1 16 9 
1 

1 1 
5 4 

1 
2 1 
1 

1 1 



Appendix 2 

Amphipod, isopod, and gastropod AFDW (g) from closed control and <20mm treatment 
cages from Wanneroo Reef, Whitfords Rock SW, Whitfords Rock NE, and Wreck Rock. 
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Site: Whitfords Rock SW 
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close 

distance from reef 
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Site: Whitfords Rock NE 
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Site: Wreck Rock 
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