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ABSTRACT 

Sexual dimorphism of the central nervous system is a still widely debated and an area 

of much research. Conclusive evidence that anatomical and physiological differences 

in the CNS exist has been reported by post-mortem studies and magnetic resonance 

imaging (MRI). This present study seeks to contribute to the understanding of the 

differences in the brain between genders and to ascertain reasons as to why the 

literature is so varied. 

A number of structures such as the cerebral cortex, hypothalamic nuclei and the 

amygdala have proven to be significantly larger within males as opposed to females. 

The nuclei of the hypothalamus and the amygdala are involved in a variety of 

functions all closely related to sexual behaviour. The increase in size of these 

structures within males may contribute to the increase in psychosexual disorders seen 

more commonly in males. The anterior commissure and corpus callosum, two grey 

matter structures, have been shown to be larger in females, enabling females to utilise 

both hemispheres of the cerebrum when unde1iaking certain tasks, whereas males are 

seen to use one hemisphere. 

It is known that ce1iain diseases and disorders are more common or appear more 

severe in one sex compared to the other. Con-elations have been found linking disease 

prevalence and severity with androgens, yet few have reported relationships between 

brain structure and disease. Neuropsychological disorders such as autism and 

schizophrenia have been linked to the anatomical differences of the male and female 

brain, however the pathology of the majority of sexually dimorphic diseases remains 
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largely unknown. Experimental designs need to be reassessed in order to provide 

significant evidence of sexual dimorphism in these pathologies. Sex must be seen as 

an important variable that needs to be accounted for in order to contribute to the 

understanding of the functional differences exhibited by males and females. 
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CHAPTER ONE 

Introduction 

Since the 1950's, scientists have sought to produce conclusive evidence supporting 

the theory that anatomical and physiological differences exist within the central 

nervous system between genders. Evidence has been collected throughout this period 

in support of this theory, through the use of laboratory animals and the study of 

hormonal abnormalities within humans (Good et al, 2001). 

The development of the human brain in childhood and adolescence is characterised by 

progressive and regressive processes that determine the size and shape of a particular 

brain structure. In vivo studies using magnetic resonance imaging (MRI) have 

provided some of the answers that are sought in regards to sexual dimorphism of the 

brain. MRI studies have enabled researchers to conduct large sample studies on the 

human brain, providing information that small scale post mortem studies are unable to 

provide (Good et al, 2001). 

The development of two individual sexes within a species is a common trait 

throughout the animal kingdom and is referred to as sexual dimorphism. Genes and 

their interaction with specific sex hormones play a pivotal role in determining the 

gender of an individual (Kalthoff, 2001). Developmental biologists have been able to 

identify the genetic pathways that control sex determination within many species such 

as Drosophila melanogaster (fruit fly) and Caenorhabditis elegans (roundworm), yet 

identifying the same in mammalian development has proved to be more difficult 

(Goodfellow and Lovell-Badge, 1993). 
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All female oocytes carry the X chromosome so it is the males' spermatozoa that 

contributes either an X or Y chromosome and thus determines the sex of an embryo. 

A normal human male embryo has an XY genotype whilst female embryos' consist of 

an XX genotype. The Y chromosome can therefore be seen as the critical factor for 

male sex differentiation (Kalthoff, 2001). 

A region on the Y chromosome named the testis-determining factor (TDF), which 

spans :}5kb, has been determined as the region that codes for testis formation. An 

impmiant gene named the sex-determining region Y (SRY) has been located within 

the TDF and has been linked with the first stage of sexual differentiation. The SRY 

gene has a crucial role within the testes where developing Sertoli cells that will 

differentiate, nourish and protect spermatogonia (stem cells that differentiate into 

spermatozoa) are formed. Due to the lack of the Y chromosome, female gonadal 

ridges differentiate into ovarian cells (Johnson and Everitt, 2000). 
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CHAPTER TWO 

Sex Determination and the SRY Gene 

The formation of testes occurs due to the presence of the SRY gene located on the Y 

chromosome. SRY expression occurs within the pre-Sertoli cells that are located 

within the male genital ridge of a developing embryo. The SRY protein structure 

provides the only clue as to how this gene encodes testis fom1ation. It is composed of 

a single exon with a DNA binding high mobility group (HMG) box and therefore is a 

transcription factor with the ability to alter other genes in the sex determination 

pathway. The HMG box allows the SRY protein to bind to the minor groove within 

DNA, causing the DNA to bend and expose certain binding sites to other proteins that 

may be necessary in the developmental pathway (Viger et al, 2005). The majority of 

SRY mutations that occur within humans are located within the HMG box which 

emphasises the importance of the gene, yet the exact mechanism that causes SRY to 

act as a testis-determining factor still remains unclear (Harley et al, 2003). 

The first evidence of the mouse SRY gene (Sry) occurs at day 10.5 of embryo 

development and rises to peak levels at day 11.5. By day 14.5 of embryo genesis the 

S1y protein is no longer detected as the Sry expression abruptly halts. Within humans, 

the SRY protein can be detected between day 41 and 45 postovulation and can still be 

present at day 52. Unlike S1y in the mouse, human expression of SRY is not abruptly 

stopped and is located within the genital ridge and to a minor extent in the brain 

(Viger et al, 2005). 
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Experimental studies have shown that the S1y exerts its action on the supporting cell 

lineage of the developing gonad to direct the differentiation of Sertoli cells rather than 

the default female follicular cells. Yet Sry is not always necessmy for Sertoli cell 

differentiation as knockout mice (mice with the Sry gene deleted) have been seen to 

produce Sertoli cells even without the Sry gene. These studies suggest that the SRY 

gene is just one of the genes involved in male sex determination (Goodfellow and 

Lovell-Badge, 1993). 

The study of human XX sex reversal and the use of transgenic mice have been 

valuable in trying to ascertain how SRY expression is controlled. These studies have 

suggested that there are transactivating factors within the male and female genital 

ridge that recognises the SRY promoter and can express the SRY gene. Evidence 

suggests that these factors are SOX9, SF-1, WT1, DMRT1, GATA4 and DAX-1 

(Viger et al, 2005). 

2.1 Other Genes Involved in Sex Determination 

2.1.1 SOX9 

The SOX family of genes share the same homology with the HMG box of the SRY 

gene. Like the SRY gene, the HMG box enables SOX9 to act as a transcription factor 

and is able to bind and bend specific DNA sequences. A mutation in the SOX9 gene is 

responsible for causing Campomelic Dysplasia, a male to female sex reversal disease 

associated with skeletal malformations and XY gonadal dysgenesis in 75% of 

individuals. This gene has proven to be ail important sex determining gene due to its 

high conservation amongst vertebrates and the fact that the gene causes sex reversal 

when mutated. SOX9 is expressed within bone of both sexes and within the testis of 
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males which explains the phenotypic effects of this gene when it becomes mutated. 

(Knower et al, 2003). 

The SOX9 protein is located within the cytoplasm of the undifferentiated gonad in 

both sexes (Gasca et al, 2002). Yet soon after the expression of SRY, SOX9 expression 

is upregulated within the male urogenital ridge and downregulated within the 

females'. SOX9 upregulation within the male causes movement of the protein into the 

Sertoli ,cell nucleus from the cytoplasm. It is believed that this movement of the 

protein is possible through two nuclear localisation signals (NLS) located in the HMG 

box allowing the shuttling of SOX9 from the cytoplasm into the nucleus as sexual 

differentiation occurs. Once SOX9 has been shuttled into the nucleus it is then able to 

activate other genes in the sex differentiation pathway. Once the necessary genes have 

been activated SOX9 is exported out of the nucleus and back into the cytoplasm 

through the nucleus export signal (NES), also located in the HMG box (Knower et al, 

2003). 

The expression of SOX9 within the nucleus appears to be all that is required to ensure 

sexual differentiation of the male gonad. When leptomycin B, an inhibitor of nuclear 

export signals, is cultured in female gonads the result is the formation of male gonads. 

This suggests that SOX9 does not have to be exported out of the nucleus for male sex 

differentiation to occur. Female transgenic mice expressing Sox9 have been shown to 

produce normally functioning Sertoli cells and Leydig cells which suggests Sry is not 

necessary for male sexual differentiation but rather is expressed to upregulate Sox9 

expression. Therefore SOX9 is most likely the next sex determining gene after SRY in 

the sex determination pathway (Knower et al, 2003). 
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The targets of SOX9 in the sex determination pathway have been discovered using 

both in vitro and in vivo studies. Two genes, Steroidogenic Factor-1 (SF-1) and 

Mullerian Inhibiting Hormone (MIH) have been shown to be transactivated by the 

Sox9 protein and are also expressed within the gonad (Knower et al, 2003). 

2.1.2 SF-1 

SF-1 (steroidogenic factor 1) is an orphan nuclear receptor due to its unknown 

activatip.g ligand and is expressed within the gonads and adrenal glands of both sexes, 

controlling the transcription of genes that are involved in steroidogenesis (Swain et al, 

1999). Both the gonads and adrenal glands derive from the adrenogenital primordium 

(AGP) which is observable at day 9 of embryogenesis (E9) within the mouse. By El3 

the gonads and adrenals have separated from one another and are clearly visible as 

distinct organs. The gonads have differentiated into either ovaries or testes by E12 and 

by E 16 the adrenal glands have formed the cortex, medulla and functional zone of the 

organ (Valet al, 2003). 

The expression of Sf-1 (mouse SF1 gene) within the adrenal glands does not change 

from when it is first detected at E9 until the organ is developed. When the cortex and 

medulla begin to differentiate Sf-1 expression is limited to the cortex of the adrenals. 

From E18 until6 days postpartum (6dpp), steroidogenic factor-1 expression is barely 

detected. Within undifferentiated gonads Sf-1 can be detected in high levels until 

E12.5, around the same time gonads differentiate into male or female genitalia. At this 

point, expression levels rapidly decrease within the ovary and begin to increase again 

at E18. Within the testis, expression levels remain high throughout gestation, located 

within the Sertoli cells and Leydig cells. Human data regarding Steroidogenic factor-1 
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expression has not yet been obtained yet it is known that SF-1 expression is detected 

at 32 days post ovulation (32dpo ), which is the same time as the adrenogenital 

primordium appears within the urogenital ridge, therefore displaying similar 

expression patterns to those found within the mouse (Valet al, 2003). 

Studies using adult mice have shown that Sf-1 is also detected within the ventromedial 

hypothalamus (VMH) and the pituitmy gland. Homozygous knockout mice possess a 

structuJ;"ally abnormal VMH and do not express LH~ (Lutenising Hormone beta) or 

FSH~ (Follicle Stimulating Hormone beta) within gonadotrope cells. These beta 

subunits of the FSH and LH genes are responsible for the interaction of the hormone 

with the specific hormone receptor. Regardless of genotype, these mice also exhibit 

female external genitalia, lack of adrenal glands and the presence of Mullerian ducts. 

Death occurs by day 8 after birth due to acute mineralocorticoid and glucocorticoid 

deficiency as a consequence of the absent adrenals. Prior to sexual differentiation, 

these abnormalities are not present. At E12-12.5, when sexual differentiation 

normally occurs, the gonads degenerate by apoptosis. This data conveys the necessity 

of SF-1 for the differentiation and maturation of cells within the gonads and adrenals, 

and that its expression is not needed for the actual formation of these organs (Val et 

al, 2003). 

Within humans there are three different SF-1 mutations that have been reported; the 

heterozygous G35E mutation, the heterozygous R255L mutation and the homozygous 

R92Q mutation. The G35E mutation causes complete sex reversal of a genotypically 

male individual and is also characterised by acute adrenal insufficiency. The R255L 

mutation causes adrenal insufficiency yet doesn't have any effect on the ovaries of 
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genotypically female individuals. The R92Q mutation causes agenesis of the right 

adrenal gland, adrenal hypoplasia of the left adrenal and complete sex reversal. It is 

clear through these abnormalities that SF-1 is necessary for the differentiation of the 

testis as well as the degeneration of the Mullerian ducts (Valet al, 2003). 

2.1.3 WTl 

The Wilm's tumor-associated gene or WTJ encodes a number of proteins that are 

involve;! in kidney and gonad development. It is necessary for the establishment of 

the bipotential gonad and for the development of the testis once they have 

differentiated. This gene which is composed of 10 exons is complex, with the 

capability of forming 24 different isoforms through the use of different start sites, 

RNA editing and splicing. Through alternative splicing within ex on 9, isoforms are 

formed either with or without the specific amino acids KTS (Lysine-Threonine

Serine). This triplet causes the loss of DNA binding capabilities by the fourth zinc 

finger. The specific isoforms that are produced are either +KTS which may possibly 

play a role in RNA processing or -KTS which are themselves transcription factors 

that activate or deactivate transcription (Morrish and Sinclair, 2002). 

Wtl expression can be detected as early as E9.5 within the mesoderm, adrenal glands, 

gonads and kidneys of developing mice. By El0.5 expression is detected within the 

coelomic epithelium of both sexes and later in development becoming localised in the 

Sertoli cells of the male and epithelial cells of the female gonad. Homozygous 

knockout mice do not survive past mid-gestation and characteristically are lacking 

gonads, adrenal glands, kidneys and have defects within their heart and spleen. 
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Heterozygous knockout mice who have either the +KTS or -KTS isoforms survive to 

birth but die shortly after due to kidney abnormalities (Morrish and Sinclair, 2002). 

Depending on which isoform is present, these knockout mice have phenotypically 

different gonads, which conveys a different function for each of the isoforms within 

sex determination. Mice with only the +KTS isoform present do not develop past the 

streak stage and degenerate by means of apoptosis. Those expressing the -KTS 

isofollll do develop gonads but all male individuals are completely sex reversed. The 

expression of Sry within those mice with only the -KTS isoforms is markedly 

decreased, therefore suggesting a role in SRY expression. These results propose that 

the -KTS isoform must be essential for the formation of the bipotential gonad and 

+KTS has a role in male sex differentiation, possibly by allowing enough Sry 

expression to ensure a male sexual pathway develops (Morrish and Sinclair, 2002). 

2.1.4DMRT1 

This doublesex and mab-3 related transcription factor 1 (DMRTJ) gene contains a 

DNA binding motif called the DM domain. This domain and its specific expression 

within the testis led researchers to believe this gene was involved in the sex 

determination pathway. The DMRTJ gene is the only gene that is conserved among 

Caenorhabditis elegans, Drosophila and mammals. The location of the human DMRTJ 

gene has been mapped to the short ann of chromosome 9 which is only 30kb from the 

mutation site which causes male to female sex reversal (Lei and Heckert, 2004). 

The expression pattem of Dmrtl within the mouse has provided a clue as to the 

function of this gene. Before gonads have differentiated the levels of Dmrtl are very 
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high. Expression levels taper off in females once their ovaries have differentiated 

whereas Dmrtl remains high within Se1ioli cells of the testis from 11.5dpp (days post 

pmium) right through to adulthood (Morrish and Sinclair, 2002). 

Dmrtl knockout m1ce did not produce sex determination or differentiation 

abnormalities until after birth. Once born, the Sertoli cells of these mice do not 

complete differentiation and eventually die, producing structurally abnormal testes 

with mjnimal seminiferous tubules. These tests show that Dmrtl is necessary for 

Sertoli cell and germ cell differentiation within postnatal testes (Lei and Heckert, 

2004). 

2.1.5 GATA4 

Studies by Lei and Heckert (2004) report that GATA4 is an essential transcription 

factor that regulates the expression of DMRTJ. Its protein is expressed within Sertoli 

cells and granulosa cells throughout gonadogenesis, being downregulated in the ovary 

once they have differentiated and remaining high within the testis. A close relative of 

the GATA family is Fog2, which must be present for Gata4 to function. This gene is 

mainly located within the brain, heart and testis and directly interacts with Gata4 to 

upregulate or downregulate its transcription (Lei and Heckert, 2004). 

When the Fog2 gene is deleted in transgenic mice, death occurs in mid-gestation due 

to severe abnormalities of the cardiac system. Another characteristic of these mice is 

that their testes fail to differentiate, which is the same abnormality seen in 

homozygous Gata4 knockout mice. These results suggest that the abnormalities in 

male gonads develop due to the loss of interaction between Fog2 and Gata4 rather 
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than the mutation on their own. The expression of Sf-1, Wt1 and Gata4 was not 

detected in the mutant mice beyond 12.5dpc in male mice. Gata4 binds to three 

control elements within the promoter of Dmrt1. Without the presence of Fog2, Dmrt1 

expression is markedly decreased. Therefore Fog2 must activate Gata4 which in tum 

activates the expression of Dmrt1 (Lei and Heckert, 2004). 

2.1.6DAX-1 

Dosage ~"sensitive sex-reversal adrenal hypoplasia congenita-critical region of the X 

chromosome, gene 1 (DAX1) is a gene located on the X chromosome and when 

duplicated can cause male to female sex reversal. Like SF-1, DAX1 is an orphan 

nuclear hormone receptor due to its unknown ligand. Once sex determination has 

occurred, Dax1 is expressed in Sertoli and Leydig cells of the testis and the somatic 

cells within the ovary. In late development and throughout adulthood, expression is 

localised to the Leydig cells within the testis and thecal and granulosa cells in the 

ovaries (Morrish and Sinclair, 2002). 

As both Sry and Dax1 are expressed within the same tissues at the same time, it is 

thought that Dax1 antagonises the function of S1y. Further evidence for this comes 

from transgenic mice studies in which the expression of Dax1 and S1y results in a 

phenotypically and genotypically female mouse. Yet if the Dax1 gene is deleted 

leaving just the S1y gene, the mouse develops as a male which confirms Dax1 inhibits 

Sry function so the genotypically female mouse can follow the female developmental 

pathway (Morrish and Sinclair, 2002). 

Numerous in vitro studies have provided evidence for Dax1 having an inhibitory 

effect on Sf-1 transcription yet the exact mechanism behind this inhibition is unclear. 
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Proposed mechanisms are protein-protein interaction, DNA binding or through the 

use of co-repressors. It is possible that a combination of all three mechanisms may be 

used to inhibit Sf-1 transcription (Crawford et al, 1998; Nachtigal et al, 1998; 

Zazopoulos et al, 1997). 
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CHAPTER THREE 

Sex Differentiation of the Reproductive System 

3.1 The Bilaminar Germ Disc 

Once an ovum has been fertilised the single cell undergoes the process of cleavage, 

which is a series of divisions that increase the cell number but not the cell size. 

Between days 7 and 10 of gestation the ovum has become a 32-64 cell blastocyst, 

consisting of an outer cellular layer named the trophoblast, an inner layer of cells 

called the inner cell mass (ICM), and a fluid filled cavity termed the blastocyst cavity 

as seen in Figure 1. The trophoblast differentiates into the embryonic placenta, whilst 

the ICM divides into two more cellular layers, the hypoblast and epiblast. Once these 

two layers have formed at the end of the second week, the developing embryo bas 

become the bilaminar germ disc. The trophoblast also undergoes morphogenetic 

changes as it divides into an outer syncytiotrophoblast layer and an inner 

cytotrophoblast layer (Larsen, 2001 ). The syncytiotrophoblast layer fom1s lacunae, in 

which the maternal blood vessels can provide nourishment. The cytotrophoblast 

differentiates into extraembryonic mesoderm that serves to provide nourishment, 

protection and a means for respiration for the developing embryo (Kalthoff, 2001 ). 

• 
··-

~-- Uterine endometrial 
epithelium 

~-- Inner cell mass 

--+----Trophoblast 

• ---=----+--- Blastocyst cavity 

-+--- Lumen of uterus 

Copyright © 2004 Pearson Education Inc. Publi shing as Benjamin Cummings 

Figure 1 - The Bilaminar Germ Disc (Marieb, E., 2006, pp 1115). 

13 



3.2 The Trilaminar Germ Disc 

3.2.1 The Primitive Streak 

At approximately day 15 of development a longitudinal groove along the midline of 

the epiblast begins to form on the bilaminar germ disc, becoming the primitive streak. 

By day 16, an elevated area of epiblast cells forms a mound at the cranial region of 

the bilaminar germ disc hence forming the primitive node. The primitive streak is an 

important structure in embryonic development as it outlines the longitudinal axis of 

the emb,ryo (Larsen, 2001). 

3.2.2 Layers of the Trilaminar Germ Disc 

The epiblast cells on either side of the primitive streak begin to proliferate and flatten 

in preparation for migration at approximately day 16. Once these cells are structurally 

capable, they migrate through the primitive streak to rest between the epiblast and 

hypoblast. The invasion of numerous epiblast cells into the hypoblast forms what will 

be called the endodermallayer. Other epiblast cells migrate between the epiblast and 

endoderm forming another layer of the trilaminar gem1 disc, the mesoderm. Once the 

endoderm and mesoderm are formed the epiblast is now termed the ectoderm layer 

and the structure has become the trilaminar germ disc as seen in Figure 2. These three 

layers differentiate to become specific organs and tissues within the embryo (Larsen, 

2001). The ectodermal layer gives rise to the dermis, brain, spine, neurones and sense 

receptors. The mesodermal layer forms the notochord, muscles, blood, bone and the 

sex organs, while the remaining endodermal layer forms the lining of the gut, lungs 

and bladder and forms the liver and pancreas (Kalthoff, 2001). 
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Figure 2- The Trilaminar Germ Disc (Martini, 2005, ppl 071). 
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During the second week of development, cells from the epiblast layer produce the 

female and male gametes. These cells will eventually detach from the ectodennal 

layer and become primordial germ cells within the yolk sac. At the 4-6 week stage the 

primordial germ cells migrate again into the wall of the gut tube and attach to the 

midline of the body wall at the 1Oth thoracic vertebral level. These cells will then 

differentiate into the future gonads (Larsen, 2001 ). 

3.4 Hormonal Regulation of Sex Differentiation 

Hom1one activity within the ovaries is not a crucial element in sex differentiation for 

females , whereas males require testosterone and Mullerian Inhibiting Hormone (MIH) 

in order to produce the male Wolffian ducts. The Wolffian system constitutes the vas 

deferens, epididymis and seminal vesicle of the male reproductive tract. The 

Mullerian system is the reproductive tract of females and includes the oviducts, 

uterus, cervix and part of the upper vagina. Between the 8111 and 10111 weeks of 

development the Se11oli cells within the testes of the male embryo begin to secrete 
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MIH. This hormone is of extreme importance as it causes the degeneration of the 

Mullerian ducts so development can follow the male pathway. If this hormone is not 

released, the Mullerian ducts will remain within the embryo producing a child with 

both male and female genitalia. The Mullerian ducts do not require the presence of 

ovaries in order to differentiate and develop. When a female embryo has its ovaries 

removed, the internal genitalia still develop as a female despite the absence of ovarian 

activity (Larsen, 2001). 

Homozygous deletions within the coding region of the MIH gene produces normal 

testes in transgenic mice, yet they are sterile due to the presence of Mullerian ducts 

that interfere with the transfer of sperm. Therefore it is clear that MIH is not necessa1y 

for testis determination as testes still develop when MIH is deleted from the genome. 

Rather it is essential for ensuring a genetically male individual has only the male 

Wolffian ducts (Morrish and Sinclair, 2002). 

MIH expression appears to be tightly regulated, with varymg expressiOn levels 

throughout development and adulthood. Within male rats, MIH is expressed in Se1ioli 

cells as soon as testes have differentiated at approximately 13dpc. After bi1ih levels 

remain high until day 5 where it drastically decreases to a low level at which it 

remains throughout adulthood. Expression of MIH in female rats can be detected at 

low levels within foetal ovaries and is expressed at higher levels after birth within 

developing follicles. Many factors have been suggested to be involved in the 

regulation of MIH expression such as SOX9, SRY, WT-1, GATA4 and DAX-1. All 

except DAX-1 and WT-1 are able to bind to a region -180bp upstream from the MIH 
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start site and expressiOn of all of these factors occurs before MIH 1s expressed 

(Watanabe et al, 2000). 

Many studies have concluded that SOX9 is the number one candidate for the 

upregulation of Mullerian inhibiting hormone. In vitro, SOX9 binds to the MIH 

promoter that has a HMG box binding site. Mice carrying homozygous mutations in 

the Sox9 binding site in the MIH gene produce a phenotype the same as those 

carrying deletions in the MIH coding region. Other evidence derives from human 

mutations in the SOX9 gene itself. These XY individuals have Mullerian-like 

stmctures due to the proposed lack of MIH protein. It is believed that the absence of 

SOX9 means MIH is not upregulated and the Mullerian stmctures remain (Morrish 

and Sinclair, 2002). The over-expression of MIH in female transgenic mice produces 

what is called the freemartin effect. If a female mouse is exposed to the blood of a 

male twin whilst developing, the female mouse somewhat develops as a male due to 

the MIH exposure. Ovarian germ cells degenerate and Sertoli cells form within 

seminiferous tubules (Lane and Donahoe, 1998). 
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CHAPTER FOUR 

Sex Differentiation Abnormalities 

4.1 Hermaphrodites 

It is evident that the presence of the SRY gene is the first step in sex differentiation 

towards a male phenotype, its absence producing a female phenotype. In rare cases 

this mechanism can fail and individuals can be born with male and female internal 

and/or external genitalia due to a mutation associated with the SRY gene. Such cases 

are termed true hermaphrodites and are genotypically a mosaic of XY, XX or XO 

cells. Due to the ambiguous external genitalia, sex is hard to determine at bilih which 

has led to many individuals being raised as the wrong sex (Queipo et al, 2002). 

Secondary hermaphrodites can arise when there is a communication failure between 

the requisite hormones, such as testosterone and MIH and the internal or external 

genitalia. This abnormality also produces an individual with a mix of female and male 

tissue types. As this form of hermaphroditism is due to a hormone abnormality, 

females tend to become more virilised and males more feminised (Johnson and 

Everitt, 2000). 

True hermaphroditism (TH) is the maJor fonn of sex reversal that produces an 

individual with both ovarian and testicular tissue regardless of genotype. This occurs 

in the form of either an ovotestis (single gonad) or a testis on one side and an ovary on 

the other. Depending on the amount of testicular tissue that is present and therefore 

the amount of MIH that is secreted, affected individuals will have varying 

development of both Wolffian and Mullerian structures (Queipo et al, 2002). Many 

studies on true hermaphrodites have shown that 60% of individuals have a 46XX 

karyotype, 33% are mosaics with a Y chromosome in a second cell line and the 
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remaining 7% have a 46XY genotype (Hadjiathasiou et al, 1994; Krob et al, 1994; 

Salas-Cortez et al, 2000). 

Only a small number of 46XX true hermaphrodite's have Y-DNA sequences therefore 

the mechanism leading to testicular tissue in these individuals is unknown. It has been 

hypothesised that mutations in X-linked or autosomal genes may cause a gain of 

function in the gene which could explain the development of male characteristics with 

the absence of SRY. In a study by Queipo and colleagues (2002), only 14% of 

testicular cells were found to have the SRY protein. It is thought that this low 

percentage of SRY is not enough to produce male genitalia and therefore leads to the 

production of ovotestes (Queipo et al, 2002). 

4.1.1 Testicular Feminisation 

Testicular feminisation (Tfm) also known as Androgen Insensitivity Syndrome, is an 

example of abnormal sex differentiation that can produce secondary hermaphrodites. 

These individuals have a 46XY karyotype yet are phenotypically female due to a lack 

of virilisation during development. This abnormality is a result of mutations occurring 

in the androgen receptor gene located on the X chromosome which causes the 

receptors themselves to be insensitive to the effects of testosterone. Endocrine 

research has shown that testosterone levels are twice as high in the testicular vein as 

opposed to the peripheral blood, signifying that testosterone biosynthesis is normal 

(Regadera et al, 1999). 

Testicular feminisation can occur in two forms, complete and incomplete. The 

complete form produces an individual with an XY genotype and is completely 
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feminised. The incomplete form produces varymg degrees of external genital 

ambiguity and feminisation, depending on the level of compromise of androgen 

receptor function (Holterhus et al, 2003) . A number of studies have focused on the 

testes of children affected with Tfm (Regadera et al, 1999, Salas-Cortes et al, 2000). 

Their findings show that the number of spem1atogonia are normal until the individual 

reaches puberty. At this stage the numbers dramatically decrease and the 

spermatogonia become hype1irophied (Regadera et al, 1999). 

,-

4.2 Congenital Adrenal Hyperplasia 

Congenital Adrenal Hyperplasia (CAH) categorises a group of recessive disorders that 

affect the biosynthesis of cmiisol by the adrenal gland (Figure 3). The severity and 

symptoms of the disorder depend on the enzyme that is affected within the cortisol 

biosynthesis pathway. The impairment in cortisol synthesis causes chronic stimulation 

of Adrenoco1iicotrophin honnone (ACTH) as there is no negative feedback to stop its 

production. This in turn causes an excess of steroid hormone precursors and affects 

the production of glucocorticoids and mineralcorticoids from the adrenal cmiex (New, 

1998). 

Figure 3 -Early human adrenal fimcti.on and androgen Nosynthesis implications 

(Goto, M eta!, 2006, p958). 
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CAH can occur in classical and non-classical forms which produce varymg 

symptoms. Classical forms are apparent in childhood with an extreme overproduction 

of cortisol precursors and sex steroids. If an individual has a severe case of the 

classical form, they suffer from excessive salt loss due to an inhibition of aldosterone 

preventing reabsorption of sodium within the kidneys. Female children are born with 

ambiguous external genitalia due to the excess exposure of androgens in utero as seen 

in Figure 4. The clitoris is enlarged resembling a penis and the labia majora tend to be 

fused together. Internally these individuals have normal ovaries, uterus and fallopian 

tubes without any Wolffian structures. Male infants do not present with obvious 

symptoms at bilih and are only diagnosed when the individual begins to lose salt 

excessively between 7-14 days after bilih. Salt wasting presents with vomiting, 

dehydration, hyponatraemia (low blood sodium concentration), hypokalaemia (low 

blood potassium concentration) and shock. Most female infants do not reach this stage 

of the illness as the ambiguous external genitalia leads to early diagnosis. (Merke and 

Bornstein, 2005). 

Figure 4- Ambiguous genitalia of female infant due to excessive androgen exposure 

(Nelson, C. and Gearhart, J., 2004). 
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The non-classical form of CAH presents without a cortisol deficiency yet individuals 

have hyperandrogenism in childhood or early adulthood. Pubarche begins early with 

60% of affected females presenting with excessive hair growth (hirsutism), 54% with 

amenorrhoea and 33% with polycystic ovaries and acne (New, M., 1998). 

4.2.1 21 Hydroxylase Deficiency 

The most common cause of CAH arises from a 21-Hydroxylase deficiency. The 21-

hydroxylase gene is located on chromosome 6p21.3 and has an active gene 
' 

(CYP21A2) and a non-active gene (CYP21AIP) that are highly homologous. Most 

mutations that cause this form of CAH arise from recombination between the active 

and non-active gene which generates non-transcribing alleles on the active gene 

(Merke and Bomstein, 2005). 

4.2.2 17 j3-Hydroxysteroid Dehydrogenase 3 Deficiency 

Another Congenital Adrenal Hyperplasia disorder that results in the development of 

secondary hermaphrodites is 17-~eta Hydroxysteroid Dehydrogenase 3 Deficiency 

(17[~eta]-HSD3). This abnormality arises from a mutation that affects the conversion 

of androstenedione to testosterone within the testes of the male embryo. Affected 

males more often than not are born with testes, the vas deferens, epididymis, 

ejaculatory ducts and female external genitalia. At birth the sex of the child is usually 

determined to be female, yet at puberty changes occur that can alter the individual's 

perceptions of their own gender. Androstenedione levels within the blood 

dramatically increase causing an increase in serum testosterone. Many affected 

individuals change their gender role from female to male after puberty due to the 

masculinization caused by testosterone (Mendonca et al, 2000). 
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4.3 Role of Sex Differentiation Abnormalities 

Defects in androgen production or function can lead to genital ambiguity at birth. 

Over-expression or under-expression of important sex hormones can have extreme 

side effects. The study of such disorders thus provides scientists with evidence of the 

strength of androgens and their effects on the body (Witchel, 2002). 

4.4 Sex Differentiation Abnormalities in Lab Animals 

Rat stlJdies have proven to be an asset in the study of brain structure, hormones and 

gender behaviours. The rodent's brain does not completely develop until after bi1ih 

therefore enabling scientists to manipulate certain brain structures or hormones before 

the brain has fully developed and observe their effects (Moir and Jessel, 1991). 

4.4.1 Hormone Manipulation in Rodents 

Castration of a male rat soon after birth causes the rodent to act in a characteristically 

female maimer. The later the rat is castrated the less obvious the female behaviour as 

the brain has had time to develop along the male pathway and so adapt to the 

influence of testosterone. Administration of testosterone to the rodent at certain stages 

of development following castration has varying effects on its behaviour. If the 

testosterone is administered too early there is little effect on the developing brain, 

since it has not yet reached the stage in which it is sensitive to androgens. Once the 

brain of the rodent has completely developed, hormone manipulation has no effect on 

the brain or behaviour as it has already been fixed into a male or female pattern (Moir 

and Jessel, 1991). 
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4.4.2 Non-Human Primates 

Many studies have been conducted on rhesus monkeys in relation to androgens and 

behavioural aspects. Female monkeys that have been exposed to high levels of 

testosterone prenatally exhibit behavioural patterns of male rhesus monkeys. These 

androgenised females are capable of performing a mature mounting pattern that only 

male rhesus monkeys otherwise can achieve. Studies show that, despite this mounting 

pattern and male-like rough behaviour whilst interacting with other monkeys, 

androgenised females do not have a completely male patterned brain. They exhibit 

successful interaction with males and are able to become pregnant. Compared to 

rodents, it is clear that non-human primates do not undergo complete androgenisation, 

suggesting there is a critical androgen-sensitive period during foetal life that has yet to 

be determined (Graves, 2006; Johnson and Everitt, 2000; Keefe, 2002; Rehman et al, 

2004). 
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CHAPTER FIVE 

Variations in the Sexual Differentiation of the Central Nervous System 

Sex differentiation within the brain has been a topic of controversy for decades. 

Numerous experiments on animals have proved sexual dimorphism within certain 

structures of the brain, yet similar studies on human brains have produced mixed 

results. Different laboratory techniques, sample sizes and study methods are all 

attributed to the varying results that are published in regards to brain sexual 

dimorphism. Despite the negative aspects of this research topic the positive results 

cannot be ignored (Sommer et al, 2004). 

5.1 Cerebral Cortex 

The greater size and weight of the male cerebral cortex in comparison to the female 

cortex is a sexually dimorphic trait that has been well established for over three 

decades (Kretschmann et al, 1979). Rabinowicz and colleagues (2002) reported a 

neuronal density that is 15% higher in males than females with a greater difference 

occurring in the right hemisphere. This higher neuronal density could be a factor 

contributing to the larger size and weight of the male cortex. The greater number of 

neuronal cells present in the male cortex would suggest a corresponding greater 

number of axons. This is thought to be the reasoning behind the finding that males 

have an increased volume of white matter as opposed to females (de Courten-Myers, 

1999). 

The different cognitive abilities of males and females are attributed to the varying 

volumes of grey and white matter within the cerebrum. Females excel in verbal 
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memory tasks, speed of articulation and verbal fluency tasks whilst males perform 

better at visuospatial tasks (Sommer et al, 2004). The higher volume of grey matter 

within the female cortex is thought to contribute to the bilateralism of the female brain 

and the ability to use both hemispheres for language functions (Gur et al, 1999). 

Stroke victims have provided evidence for the bilateralism of the female brain. After 

lesions to the left hemisphere, the area associated with verbal tasks, females show less 

impairment in their verbal abilities than males. Functional activation studies have 

shown that the right hemisphere compensates for the impairment of the left 

hemisphere enabling females to regain their speech abilities earlier than males and to 

be less severely affected (Sommer et al, 2004). 

A morphometric study conducted by Rabinowicz and colleagues (1998) demonstrated 

that the female cerebral cortex consists of more neuropil than males. The neuropil is a 

conglomeration of glial processes, synaptic neurons, axons and dendrites within nerve 

cells of gray matter. This increase in neuropil volume within females suggests more 

connections between cells and a more extensive dendritic network which could 

account for the bilateralisation of both hemispheres (de Courten-Myers, 1999). 

The right ventromedial prefrontal cortex (VMPC) is another structure of the cerebrum 

that appears to be sexually dimorphic. This area is associated with emotional 

processing, social functioning, personality and decision making. In a recent study 

using functional imaging, decision making predominantly activated the right VMPC 

in males whilst the left side was activated in females. As expected, male individuals 

with lesions in the right VMPC produced severe impairments in the normal 
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functioning of this area, whilst lesions in the left produced minor results. Lesions in 

the left VMPC in females produced the same defects in social functioning whereas 

lesions in the right produced only minor disturbances (Tranel et al, 2005). 

5.1.1 Corpus Callosum 

The corpus callosum (Figure 5) is a network of over 200 million nerve fibres that 

allows the two cerebral hemispheres of the brain to communicate with each other 

(Narr et al, 2000). This structure is divided into three main parts, the anterior portion ,-

or rostrum, the central portion known as the isthmus and the posterior portion, the 

splenium. There has been much debate as to whether there are definitive sexual 

differences in the size or shape of the corpus callosum. It is understood that the 

overall size of the corpus callosum is larger in females than males and that the 

splenium region is of a more bulbous shape (Rabinowicz et al, 2002). 

Figure 5- Midsaggital section of the brain showing the corpus callosum and other 

surrounding structures (Marieb, 2006, pp458). 
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The function of the larger corpus callosum in females is thought to be related to the 

bilateralisation of the two cerebral hemispheres. This increased volume of fibres may 

permit the activation of both hemispheres via the crossing over of information through 

this dense network (Rabinowicz et al, 2002). 

5.2 Hypothalamus 

The hypothalamus contains numerous nuclei that have been repmied to be sexually 

dimorphic (Figure 6). These sex differences are thought to be related to reproductive 

behaviour, gender identity and sexual orientation, as well as differences in prevalence 

of certain disease states (Swaab et al, 2003). 
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Figure 6- Main Hypothalamic Nuclei (Marieb, 2006, pp 446). 

5.2.1 Preoptic Area of the Hypothalamus 

The preoptic area is a pmiion of the anterior hypothalamus that is divided into four 

nuclei, the lateral, medial and median preoptic nuclei and the pariventricular nucleus, 

all of which are larger in the male. The median preoptic nucleus, as well as the lateral 
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and medial divisions, are 50-70% larger in total volume in males. The lateral preoptic 

nucleus also contains 28% more neurons in males and the medial preoptic nucleus 

contains 21% more neurons. Rat studies have shown that the increase in size is due to 

an increase in neuronal numbers. The median preoptic nucleus of the male contains 

80% more neurons than females due to the sexually dimorphic nucleus found within 

this region (Madeira et al, 1999). 

,-5.2.2 Sexually Dimorphic Nucleus (SDN) 

This division of the medial preoptic area has been an important finding in this field as 

most studies convey the same results. Sexual dimorphism of the rat SDN was first 

described by Gorski and colleagues (1978) as being three to eight times larger in male 

rats than female rats (Figure 7). The human sexually dimorphic nucleus homologous 

with the rat SDN has been discovered and revealed to be twice as large in young adult 

males with twice as many cells when compared to females. The SDN is associated 

with the sexual behaviour of both males and females, and with sexual identity (Swaab 

et al, 2003). 

(A) (B) (C) (D) 

Figure 7- Sexually Dimorphic Nucleus of the preoptic area in (A) male rat, (B) 

female rat, (C) female rat perinatally treated with testosterone and (D) female 

rat treated with oestrogen (Kalthoff, 2001, p726). 
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Swaab and Hofman (1995) found that lesions within the SDN caused the male rats to 

become less masculine. However they believed the change in behaviour was so 

minute that gender identity is not a main function of the SDN, otherwise the changes 

observed would have been more significant. De Vries' (2004) study supports that of 

Swaab and Hofman (1995), reporting that lesioning of the SDN does not produce 

significant changes in the male rats' behaviour. 

In humans the age at which the SDN sexually differentiates and takes on a male or 

female pattern is between two and four years. Before this period there are no apparent 

sexual dimorphisms and the cell numbers are only 20% of the adult size. Once a 

female has reached four years of age, the cell numbers rapidly decrease whereas the 

male SDN remains at a constant until approximately 50 years of age, when the cells 

begin to die via apoptosis. Females experience their second phase of cell loss at 

approximately 70 years of age where cell numbers reduce to 10-15% of childhood 

values (Swaab et al, 2003). 

In an attempt to ascertain the effects of testosterone on the size and cell number of the 

SDN, Von Esenwein and Silke (2005), manipulated female rat brains by introducing 

testosterone propionate. The results of this proved that testosterone is important in 

sexual differentiation of the brain, in particular the SDN, as the female rats exhibited a 

decrease in lordosis (copulatory posture), increased mounting and an increase in cell 

numbers similar to that of the male rat. 
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5.2.3 Suprachiasmic Nucleus (SCN) 

The function of this nucleus is to co-ordinate circadian and seasonal rhythms in 

locomotor activity, sleep, endocrine function and sexual behaviour. It is sexually 

dimorphic in rodents and humans, but not in the same way. The male rat SCN is 

larger than the females yet it is the shape of the nucleus that differs between the 

genders in humans. In females the SCN is more elongated whilst in males it is of a 

more spherical shape (Abizaid et al, 2004; Hofman et al, 1996; Swaab, 1995). 

Studies of some homosexuals have provided evidence for the function of the sexual 

dimorphism in the SCN. Morphometric analysis showed that the volume of the SCN 

in a group of homosexual males was 1. 7 times larger with 2.1 times as many cells 

than the group of heterosexual men. Programmed cell death of the SCN cells occurs 

between 13 and 16 months after birth. As homosexuals have the same number of cells 

as 1-2 year old children it is thought homosexuals do not undergo the same apoptotic 

mechanisms within the SCN as heterosexuals (Swaab et al, 2003). Proliferation of rat 

SCN cells occurs between E 13 and E 17, peaking at E 15. This proliferation occurs 

when aromatase activity (conversion of testosterone to estradiol) is at a high within 

the hypothalamus, suggesting that estradiol can alter the number of cells that 

proliferate within the SCN. Estradiol has been confirmed as being a neuroprotective 

agent by decreasing programmed cell death which could account for the increased cell 

numbers located within the male rat SCN (Abizaid et al, 2004). 

5.2.4 Bed Nucleus of the Stria Terminalis (BNST) 

The stria terminalis is a long mass of grey matter fibres that conveys information from 

the amygdala to the hypothalamus (Chung et al, 2000). Two regions within the BNST 
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have been found to be sexually dimorphic, the darkly staining postereomedial 

component of the BNST (BNST-dspm) as well as the central division (Allen and 

Gorski, 1990, Chung et al, 2002, Garcia-Falgueras, 2005). The central division of the 

BNST (BNSTc) has been linked with transexuality as studies show that the size of 

BNSTc in male to female transsexuals is similar to that of the control group of 

females as seen in Figure 8 (K.IUijver et al, 2000). 
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Figure 8- Immunocytochemical staining of somatostatin neurons in BNSTc of (a) 

heterosexual male, (b) heterosexual female, (c) homosexual male, (d) male

to-female transsexual. The transsexual has a BNSTc similar in size to the 

female (Kruijver eta!, 2000 p 2037). 
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Sexual dimorphism in the rat BNST occurs within the first week of birth as a result of 

differences in testosterone levels. Within humans, sex differences don't reach 

significance until adulthood when it is clear the BNST is larger in males than females. 

In female rats once the BNST has fully differentiated, no amount of circulating 

testosterone can increase its volume. The bed nucleus of the stria terminalis 111 

gonadectomised male rats does not decrease in volume due to a decrease 111 

testosterone levels, suggesting that once this structure is differentiated, testosterone is 

not neyded to maintain its volume (Chung et al, 2002). 

It is believed that sex differences in the size and cell number of the bed nucleus of the 

stria terminalis within humans occurs due to increased programmed cell death 

(apoptosis) in females. A study by Chung et al (2000) has reported there is an increase 

in apoptosis within females which accounts for the smaller BNST size and cell 

number. Gonadal steroids appears to be the cause of this difference in apoptosis as 

castrated males and female rats treated with testosterone experience a decrease in 

apoptotic cell death (Chung et al, 2000). 

5.4 The Anterior Commissure 

This structure is a small bundle of nerve fibres between the two cerebral hemispheres 

much like the corpus callosum. As females appear to use both hemispheres more often 

than males it is thought that the anterior commissure would therefore be larger in 

females than males. Many studies have concluded that the anterior commissure is on 

average 12% larger in females than in males (Allen and Gorski, 1992; Moir and 

Jesse!, 1991; Swaab and Hofman, 1995), whilst others have reported no sex 

differences in rats or humans (Bishop and Wahlsten, 1999; Highley et al, 1999; Jones 
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et al, 1997). The anterior commissure is not present in all individuals but is present in 

approximately 78% of females and 68% of males, again more evidence for the 

bilateralisation of the female brain (Swaab et al, 2003). More studies need to be 

conducted on the anterior commissure, with larger sample sizes and more thorough 

statistical analysis in order for a conclusion to be made on the sexual dimorphism of 

this structure (Lasco et al, 2002). 

5.5 Amygdala 

The amygdala is an almond shaped structure comprised of numerous nuclei located 

within three regions, the basolateral nuclei, corticomedial nucleus and the central 

nucleus (Bear et al, 2001). Once total brain size has been taken into account the 

human amygdala is much larger in males than females (Cahill et al, 2004; Durston et 

al, 2001; Goldstein et al, 2001 ). Within rats, the posterodorsal component of the 

medial amygdala has been found to be 50-80% larger in males (Cooke et al, 1999), 

with an increased volume of neurons in the posteromedial region (Rasia-Filho et al, 

2000). 

The amygdala's role within the brain is to receive afferent signals from the olfactory 

bulb and project them to the hypothalamus, stria terminalis, preoptic area and the 

remainder of the limbic system (Cooke et al, 1999). It is also implicated in sexual 

arousal, reproductive behaviour, emotional memory and fear (Hamann, 2005). 

Females and males process emotionally arousing events differently as revealed by 

positron emission tomography (PET) and functional magnetic resonance imaging 

(fMRI). Long te1m memory for arousing material was found to be located within the 

right hemisphere of the amygdala in males and the left hemisphere in females (Cahill 
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et al, 1996, 2001, 2004; Canli et al, 2002). In a study by Cahill and colleagues (2001), 

males and females watched either highly aversive or neutral films whilst their brain 

activity was measured with PET. When asked about these films at a later date (long 

term memory), the same results were produced, the left hemisphere in females was 

activated whilst the right hemisphere was activated in males. 

Psychological studies have shown that there are sex differences in emotionally related 

behav~our. Females are said to retain more vivid memories for an emotional event and 

are able to recall them at a quicker rate. The greater prevalence of anxiety and 

depression in females has been postulated to be due to this enhanced ability to 

remember details of certain events (Hamann, 2005). Bilateral lesions in the amygdala 

reduce long term memory of emotional events but do not affect memory for neutral 

events. This provides evidence that the amygdala's role in memory is for events that 

are emotionally arousing as opposed to neutral events (Cahill et al, 2004). 

Kluver and Bucy (1939) recognised that rhesus monkeys with damaged temporal 

lobes had a distinct behavioural pattern. Normal fear and anger responses were lost, 

they were unable to visually recognise objects and exhibited an increase in sexual 

behaviour. This was later called the Kluver-Bucy syndrome and has been recognised 

in humans with temporal lobe damage. Humans also experience a somewhat dulling 

of all the emotions, not just fear and anger as in rhesus monkeys. As the entire 

temporal lobe was removed, structures other than the amygdala could account for 

some of these odd behavioural characteristics. The inability of the rhesus monkeys to 

recognise objects, would be due to the loss of the visual areas within the temporal 
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lobes, yet the emotional and sexual behavioural characteristics are believed to be 

attributed to the loss of amygdaloid function. (Bear et al, 2001 ). 

Appetitive sexual behaviour, which is the motivation and enthusiasm exhibited to 

receive a sexual reward, is a sexually dimorphic trait within rats. The amygdala is 

essential for male appetitive sexual behaviour but does not play a role in female 

appetitive sexual behaviour. Lesions to the medial amygdala in male rats decreased 

their ability to respond to sexual cues from the female whereas these lesions within 

the female did not affect her sexual behaviour (Hamam1, 2005). 
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CHAPTER SIX 

Sexually Dimorphic Distribution of Disease 

Throughout the long history of human disease, ce11ain diseases and disorders have 

more commonly affected one sex than the other. The question is whether this pattem 

of disease distribution is due to sexual dimorphism or to another as yet undiscovered 

mechanism. A number of correlations have been found between certain diseases and 

the levels of circulating androgens yet few workers have reported a relationship 

between brain structure and the incidence of disease. 

6.1 Schizophrenia 

Schizophrenia is a psychiatric disorder in which individuals experience episodes of 

hallucinations, delusions, psychosis and paranoia leading to social withdrawal, 

impaired attention and cognitive dysfunction (Cyr et al, 2002). A study by 

Angermeyer and Kuhn (1988) examined 36 research papers on schizophrenia and the 

age of onset between genders. All except three showed that males develop 

schizophrenia at an earlier age than females. More recent studies have published 

similar results and conclude that not only are the incidence rates for the disease lower 

in females but they also respond better to treatment, exhibit better social functioning 

and develop less severe symptoms than males (Bryant et al, 1999; Cyr et al, 2002; 

Nopoulos et al, 1997; Takahashi et al, 2000). 

It has been proposed that the reason females are not affected as severely and as early 

as males is due to the protective role of oestrogen (Cyr et al, 2002; Fink et al, 1998; 

Hafner et al 1991; Hafner, 2003; Sumner et al, 1999). It is known that relapse rates 
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increase when oestrogen levels are low in the female menstrual cycle, and decrease 

when oestrogen levels are high (Cyr et al, 2002). Short-term applications of oestrogen 

in rats produces a weak neuroleptic effect by reducing the affinity of dopamine 

receptors. A reduction in dopamine receptor sensitivity has been shown to have 

neuroprotective and antipsychotic effects which may be the reason female 

schizophrenics have a better prognosis in terms of age of onset and disease severity 

(Hafner, 2003) 

Many studies have found that the . parietal lobe may be a factor in the cause and 

severity of schizophrenia (Frederikse et al, 2000; Kaplan et al, 1993; Wigal et al, 

1997). The parietal lobe is associated with perception, attention, recognition and 

visuospatial processing, all of which are abnormal in schizophrenic patients. The 

volume of the inferior parietal lobe is much larger in healthy males than in females 

yet in male schizophrenics the volume is significantly smaller when compared to 

female schizophrenics. Therefore abnormalities in inferior parietal volume appear to 

be limited to male schizophrenics. The left side of the brain, which nonnally 

dominates rn healthy male individuals, tends to lack in function in male 

schizophrenics, whereas no such finding has been made in female schizophrenics. It is 

believed that the bilateral brains of females' enables those affected with schizophrenia 

to cope better with the disease, leading to different disease expression between 

genders (Frederikse et al, 2000). 

Wright and colleagues (2000) conducted a meta-analysis on 58 studies that had aimed 

to determine the influence of brain morphology in schizophrenia. Of the 58 studies 

from 1988 to 1998, nine of them referred to schizophrenia and gender, all of which 

38 



did not prove significant differences in brain structure between male and female 

schizophrenics. Ventricular enlargement was slightly greater in male schizophrenics 

but was not of great statistical significance (Wright et al, 2000). Despite the large 

number of studies that were reviewed by Wright and his colleagues (2000), the data 

that was used is between 8 and 18 years old. This must be kept in mind when 

reviewing this study as many advances in experimental techniques and data analysis 

have been made since these studies were conducted, therefore the results obtained in 

these S8 studies may not be reliable. 

6.2 Autoimmune Disease 

Autoimmune diseases occur as a result of immune responses being generated against 

self-antigens due to a breakdown in the mechanism that allows the immune system to 

recognise 'self from 'non-self. All autoimmune diseases such as systemic lupus 

erythematosus, multiple sclerosis, rheumatoid arthritis, Sjogren syndrome and 

scleroderma are significantly predominant in females as seen in Table 1. (Rubin, 

2001). 

AUTOIMMUNE DISEASE FEMALE TO MALE RATIO 

Hashimoto Thyroiditis 26:1 

Graves Disease 4 to 8:1 

Systemic Lupus Erythematosus 9 to 13:1 

Sjogren Syndrome 9:1 

Juvenile Onset of Myasthenia Gravis: 

- White patients 2 to 14:1 

- Black Patients 1:1 

Scleroderma 3 to 4:1 

Table 1 -Female to male ratio's of common autoimmune diseases (modified from 

Ahmed eta!, 1999). 
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6.2.1 Systemic Lupus Erythematosus (SLE) 

SLE is a multisystemic inflammatory disease which predominantly affects the joints, 

kidneys, skin (Figure 9) and serous membranes. Although these are the most common 

sites affected in SLE, almost any organ can be affected as immune complexes can 

deposit in any tissue or organ. An important feature of SLE is the development of 

autoantibodies against nucleic acids which are able to cause damage via numerous 

mechanisms. Antinuclear antibodies bind to free DNA, forming complexes that are 

deposi}ed m glomeruli, walls of arterioles and joint synovia causmg 

glomerulonephritis, arteriole fibrosis and mihritis respectively. Autoantibodies to 

platelets, red blood cells, muscles and skin are also produced causing the 

multisystemic disease (Tizard, 1995). 

Figure 9- Female adolescent with facia/lesions as a result of Systemic Lupus 

E1ythematosus (Tizard, 1995, p498). 

The immune system in females is more enhanced than that of males with a better B

cell mediated immunity, higher immunoglobulin levels, stronger antibody responses 

and an increased resistance to certain infections. It is believed that sex hormones play 

a vital role in systemic lupus erythematosus as the disease worsens at particular 
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periods of hormone changes when oestrogen levels are high (Osman, 2003). 

According to Yacoub Wasef (2004), before puberty the female to male ratio of SLE is 

3: 1, during childbearing years it ranges from 10: 1 to 15: 1 and after menopause the 

ratio is 8:1. Male and female SLE patients have abnormal hydroxylation of oestrogen 

which produces 16 alpha-hydroxyesterone. This compound covalently bonds with 

proteins such as erythrocytes and lymphocytes, resulting in antibody production 

(Wasef, 2004). 

Female SLE patients have lower androgen levels than healthy females and an 

increased oxidation of testosterone whereas male patients have normal androgen 

levels and normal oxidation of testosterone. Gonadectomised female and male mice 

have been reported to have an enhanced immune response to endotoxins. Testosterone 

treatment reverses this immune response suggesting a protective role of testosterone 

in autoimmune diseases (Gaillard et al, 1998). 

6.2.2 Rheumatoid Arthritis (RA) 

This autoimmune disease differs between sex as well as age. Prevalence rates in 

females increase from menarche reaching a peak at menopause, whereas it is rare for 

males to have RA under the age of 45, with numbers steadily increasing in older 

males before reaching numbers similar to that of females. Androgens are thought to 

play a major role in this autoimmune disease as male patients exhibit low testosterone 

levels. Dehydroepiandrosterone (DHEA), an adrenal gland product which is the major 

androgen in females has also been found to be in low levels in RA patients. Between 

20 and 30 years of age, DHEA levels reach a peak and decrease thereafter (Wilder, 

1996). Despite evidence for a role of DHEA in rheumatoid arthritis, oestrogen and 
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progesterone deficiency are also thought to be involved due to the menopausal peak 

of the disease and the fact that oral oestrogen contraceptives can alter the disease 

onset and severity (Olsen et al, 2002). 

6.3 Autism 

Autism is a neurodevelopmental disorder characterised by deficits in social 

interaction, stereotyped repetitive behaviours, language impairments and diminished 

cognitive abilities which must be apparent by three years of age (American 
' 

Psychiatric Association, 1994). This disorder is divided into three categories 

depending on the level of cognitive dysfunction. Low-functioning autism has an IQ of 

less than 70, high-functioning autism has an IQ above 70 and Asperger syndrome 

which is similar to high-functioning autism, without the language deficits (Powell, 

2004). It has been clearly established that autism is four times more prevalent in 

males than females and Asperger syndrome is ten times more common in males, yet 

the underlying mechanisms are largely unknown (Gillberg et al, 1999; Hertz-Picciotto 

et al, 2006; Powell, 2004; Stone et al, 2004). 

Few studies have referred to autism and the effects of gender, other than the higher 

male to female prevalence rates. Thompson et al (2003) conducted a literature review 

of autism to ascertain the number of studies that analysed data on female and male 

autistic patients. During the period 1990 and 1992 (see Table 2), there were 392 

studies found within the Psychlit database, 119 of which provided infom1ation on 

prevalence rates among males and females. Of these 119 articles, 57 were conducted 

using just one sex with small sample sizes, 20 analysed variables separately for each 
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gender and 3 out of these 20 analysed intellectual differences between males and 

females with autism (Thompson et al, 2003). 

LITERATURE SEARCH FROM 1990-1992 

Search for "Autism" produced= 392 Articles 

Article information Percent of 392 Articles 

Information about males VS females 30% 

Single sexed articles with small sample size 15% 

Analysis of variables separately for genders 5% ,-

Female and male IQ considered <1% 

Table 2- Number of articles with gender specific information with regard to autism 

froml990-1992 (adaptedfi'om Thompson et al, 2003). 

The same search was conducted for the period 2000-2002 which produced 563 

articles on autism (see Table 3). Of these articles, 134 contained information on the 

number of males and females within the study, and 76 of these consisted of small 

sample sizes of just one sex. The separate analysis of variables for males and females 

was only 12 as opposed to the 20 found in 1990-1992. Over this 10 year period there 

was only an increase of 171 miicles and a 3% decrease in the number of studies that 

analysed variables separately for each gender (Thompson et al, 2003). This analysis of 

articles by Thompson and colleagues suggests that the information available on 

autism has a bias towards males. This needs to change in order to obtain a clear 

understanding of the mechanisms leading to the development and symptoms of 

autism. 
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LITERATURE SEARCH FROM 2000-2002 

Search for "Autism" produced= 563 articles 

Article Information Percent of 563 Articles 

Information about males VS females 24% 

Single sexed articles with small sample size 13% 

Analysis of variables separately for genders 2% 

Table 3 -Number of articles with gender specific information with regard to autism 

fi·mn 2000-2002 (adapted from Thompson et al, 2003). 

A theory behind the behavioural aspects of the autistic brain is one that involves an 

extreme masculinisation of the brain. Baron-Cohen (2002) has suggested that there 

are two types of brains; the empathising brain and the systemising brain. The 

empathising brain or female brain, is able to identify thoughts and behaviours of 

others and is therefore able to respond accordingly. The systemising brain or male 

brain, analyses certain aspects of a system to detennine the behavioural consequence 

of an action. There is evidence to suggest the autistic brain is a highly masculinised 

systemising brain with an impairment in empathising. Behaviours such as 'mind 

reading' (ability to understand and predict behaviour of others), reading facial 

expressions, eye contact, language development and social interaction are all superior 

behaviours in females. Males score lower in all such behaviours, with autistic patients 

scoring even lower (Baron-Cohen, 2002). 

Some individuals with Asperger syndrome or high functioning autism have special 

abilities in mathematical calculations, music and memory of statistics and numbers, 

all of which are characteristics of a systemising brain common in males. Attention to 

detail, preference for factual and structured information, collecting and organising 
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objects as well as hobbies such as train spotting due to the structured fonnatted 

timetables are all common in autistic individuals as well as being characteristic of a 

systemising male brain (Baron-Cohen, 2002). 

Due to a lack of gender based studies on autism, a definitive answer can not be made 

with regard to sexually dimorphic brain structures in accounting for the difference in 

male-female prevalence rates. Several structures such as the amygdala, hippocampus, 

cerebe~lum and cerebrum have all been implicated in the pathogenesis of autism 

(Herbert, 2005; Schumann et al, 2004). Macroencephaly occurs in 20% of autistic 

children compared to 3% of the normal population (Dementieva et al, 2005; Deutsch 

et al, 2003). This enlargement of the brain appears to be apparent in children yet is not 

maintained in adulthood (Aylward et al, 2002; Curchesne et al, 2001). Further 

research is needed on the gender differences in autism to create a better understanding 

of the disease and its development. A male-female prevalence ratio of 4:1 is a 

significant difference and the reason for this should be ascertained (Stone et al, 2004). 

6.4 Parkinson's Disease 

This neurological disease is between 2 and 3 times more common in males than 

females (Baldereschi et al, 2000; Bower et al, 1999; Czlonkowska et al, 2005; 

Milanov et al, 2001; Van Den Eeden et al, 2003). Parkinson's disease (PD) is 

characterised by selective degeneration of dopamine neurons within the substantia 

nigra pars compacta producing a decrease in dopamine levels and a loss of 

neuromelanin (the dark pigmentation found in dopaminergic neurons) as seen m 

Figure 10 (Fahn et al, 2004). The substantia nigra inhibits the function of the cerebral 

nuclei with the release of dopamine. A decrease in dopamine production causes the 
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cerebral nuclei to become overactive, producing an increase in muscle tone and other 

characteristic symptoms of Parkinson's disease such as stooped posture, slowed 

voluntary movements, rigidity and muscle tremors (Cotran et al, 1999). 

Figure 10- Midbrain section of the substantia nigra showing the loss of pigmentation 

in Parkinson 's disease (WebPath,2006). 

An accepted theory behind the lower prevalence of PD in females IS agam the 

neuroprotective role of oestrogen. Studies in which rodents were treated with 

neurotoxins such as 6-hydroxydopamine or 1-methyl-4-phenyl-1,2,3,6 

tetrahydropyridine (MPTP) and subsequently treated with oestrogen showed a 

decrease in dopaminergic neuron loss (Czlonkowska et al, 2005). Females are 

reported to have greater dopamine neuronal density within the caudate nucleus which 

could be another explanation as to why females do not develop PD as often and as 

severely (Becker, 1999; Walker et al , 2000). 
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Numerous studies have reported increased cytokine levels within cerebrospinal fluid 

and the striatum of Parkinson's patients (Czlonkowska et al, 2005; Hunot et al, 1997; 

Le et al, 1999). Pro-inflammatory cytokines such as interferon-gamma (IFN-y), 

interleukin-1 beta (IL-l~) and tumour necrosis factor-alpha (TNF-a) are evident 

within the striatum of PD patients, suggesting a role of the inflammatory response in 

the pathogenesis of Parkinson's disease (Nagatsu et al, 2000; Nagatsu, 2002). 

Evidence from oestrogen studies have shown that it decreases production of certain 

cytokines such as IL-l~, TNF-a as well as interleukin-6 (IL-6) and that these pro

inflammatory cytokines also increase after menopause or if oestrogen levels are 

reduced (Bemard-Poenaru et al, 2001; Cantatore et al, 1995; Rogers et al, 2001). 

The dopaminergic toxin MPTP (1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine) has 

also been used to establish inflammatory responses within the CNS. Mice injected 

with the toxin exhibited an increase in the pro-inflammatory cytokine TNF-a within 

the striatum yet there was a higher expression of this factor in the male mice than the 

female. TNF -a was found 6 hours after administration of MPTP whereas it took 1 day 

for the protein to be located within female mice (Cesielska et al, 2003). TNF- a is a 

powerful neurotoxin and may initiate and sustain the inflammatory response in 

Parkinson's disease leading to degeneration of dopaminergic neurons (Czlonkowska 

et al, 2005). 

The majority of Parkinson's cases occur sporadically with unknown causes yet 10% 

of cases are said to be familial (Falm et al, 2004). The SRY gene found on the Y 

chromosome has recently been reported to influence the production of dopamine in 

the substantia nigra. Studies in which the SRY gene was deleted from one side of the 
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substantia nigra in male mice showed that in that portion, there was a 38% decrease in 

dopaminergic neurons. These mice also exhibited Parkinson's like motor functions in 

the one side controlled by the substantia nigra that had been altered (Gramling, 2006). 

6.5 Cardiovascular Disease 

In general, premenopausal females appear to have a lower prevalence of 

cardiovascular disease and show a better prognosis than males. Between the ages of 

45 and-64, 39% more males die from heart disease than females yet after 65 years of 

age, the rate of death for women exceeds that of males by 22% (Leinwand, 2003). The 

diastolic function of the heart, i.e. the phase in which the chamber fills with blood 

preparing for contraction (systole) is more efficient in females than in males. Systolic 

function is also superior in females due to increased thickness in the heart wall 

(Leinwand, 2003). Men show poorer contractility, myocardial thi1111ing and inferior 

chamber dilation when compared to females (Adams et al, 1999; Legget et al, 1996; 

Leinwand, 2003). 

Hypertension, which is classified as having a constant elevated blood pressure, is 

more common in men of 30-45 years than age matched women. Male rats have 

greater vascular contraction than female rats and ovariectomised females have a 

greater vascular contractility than intact females, suggesting a role of oestrogen in the 

physiological control mechanisms of hypertension (Khalil, 2005). Support for this 

theory arises from statistics that show postmenopausal women suffer from 

hypertension at the same rates as men (Czubryt et al2006; Khalil, 2005). 
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Myocardial infarction (MI), in which necrosis of an area within the heart occurs due 

to ischaemia, is another cardiovascular disease that occurs in greater numbers in men 

than premenopausal women. Atherosclerosis is a common cause of myocardial 

infarction yet as this occurs in women much later in life; women experiencing MI's 

are also significantly older than males (Czubryt et al, 2006). Although women 

experience MI's less often than men, it is reported that young or middle aged women 

who suffer aMI have an increased mortality rate compared with men (Czubryt et al, 

2006; Naccarino et al, 2000). Stromberg and Martensson (2003) have reported that 

myocardial infarctions in women are more severe and heart failure is more likely to 

occur as a consequence. 

Before puberty the number and size of cardiac cells, or myocytes, are approximately 

the same in both genders yet it is reported that the absolute mass of the male heart is 

15-30% larger than that of post-pubertal females. This suggests that some hormonal 

influence which occurs during puberty causes male myocytes to enlarge producing a 

heart of greater mass (Leinwand, 2003). 

Although a significant volume of evidence has supported the role of oestrogen in 

protecting the cardiovascular system, studies of hormone replacement therapy (HRT) 

regimes has suggested otherwise. Post-menopausal women taking oestrogen and 

progesterone supplements have shown that these hormones provided no additional 

protection against cardiovascular disease, contradicting earlier reports on HRT 

(Harman et al, 2005; Manson et al, 2001). Paradoxically HRT has been associated 

with an increase in certain cardiovascular disease such as Cerebrovascular Accident 

(CVA) commonly known as stroke. A timing hypothesis has been proposed to 
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account for the results of HRT that contradict the beneficial results of oestrogen in 

pre-menopausal women and to account for the positive results of HRT in previous 

studies. It is believed that HRT needs to be administered during or soon after 

menopause in order for the hormones to have an effect. A delay in treatment is 

thought to allow atherosclerotic lesions to become too advanced for hormone 

replacement to have a beneficial effect (Hannan et al, 2005; Mendelsohn et al, 2005). 

The U$e of rodents in the study of cardiovascular disease has not been highly 

successful as studies have produced conflicting results and are not comparable, 

making it difficult to draw appropriate conclusions. Various studies have been 

conducted on the papillary muscles of rats, yet the age of the rats and methods for 

measurement all differed, making comparisons difficult. The papillary muscles of 6 

month old rats had been studied and it was concluded that males had a slower 

contraction and relaxation rate. Another study using the papillary muscle of an 

isolated working heart preparation concluded that males had an increased cardiac 

output. Experiments on rats younger than 6 months old produced no varying 

differences in the cardiovascular system between genders. It is clear that experiments 

need to be conducted in a systematic manner, using the same strain of rodent, the 

same sampling technique and rats of the same age, in order to reach suitable 

conclusions (Leinwand, 2003). 

The age of the rodents at the time of cardiovascular testing is especially important if 

the results are to be compared with the human cardiovascular system. As shown by 

Leinwand (2003), complete sexual differentiation of the human cardiovascular system 

may not occur until adulthood. In rodents the comparable age would be 10 to 12 
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months yet most studies are performed when the rodent is 6 months of age or 

younger, which may explain why experiments have produced results that have 

indicated no sexual differentiation in heart structure or function. 

6.6 Alzheimer's Disease 

This neurodegenerative disease is the leading cause of dementia worldwide, 

characterised by extracellular deposition of amyloid plaques and the presence of 

intracellular neurofibrillary tangles (NFTs) within the brain (Bates, 2005; Gandy, 

2005; Spires et al, 2005). Memory loss is the first symptom of Alzheimer's disease, 

followed by a decline in all cognitive abilities. In the end stage of the disease, motor 

functions are affected and patients become bedridden (Spires et al, 2005). 

The formation of amyloid plaques mainly occurs within the hippocampus, neocortex 

and amygdala of affected individuals. Neurofibrillary tangles (NFTs) are found within 

the hippocampus, neocortex, amygdala and within several thalamic and hypothalamic 

nuclei. The degree of neuronal loss within the brain is directly correlated with the 

extent of NFT formation. In the end stages of the disease approximately 90% of 

prefrontal cortex neurons have died and 70% of the neurons within the hippocampus 

suffer the same fate, causing the severe dementia seen in Alzheimer's patients (Spires 

et al, 2005). 

Although a majority of Alzheimer's cases are sporadic, approximately 1% of cases 

occur due to an autosomal dominant inheritance. The first gene associated with 

Alzheimer's disease was found in the amyloid precursor protein (APP) gene yet 

genetic linkage studies have discovered mutations in the presenilin 1 and 2 genes on 
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chromosome 14 and 1 respectively. The presenilin genes are involved in the 

production of amyloid ~ by forming the active site of the y-secretase complex that in 

tum cleaves the amyloid precursor protein. Once APP is cleaved it forms the amyloid 

~ that aggregates to form the characteristic plaques of Alzheimer's disease (Spires et 

al, 2005). 

Oestrogens have a profound role within the central nervous system in protecting 

neuronal cells. Some studies of oestrogen replacement therapy and Alzheimer's 

disease have shown that oestrogen decreases the presence of amyloid ~' in tum 

decreasing plaque development. In vivo and in vitro studies have shown that 

testosterone increases the presence of amyloid ~ and increases its toxicity within the 

hippocampal region of the brain. Once women enter menopause and oestrogen levels 

decrease, the neuroprotective role of oestrogen is diminished, which may lead to the 

higher prevalence of Alzheimer's seen in women (Bates et al, 2005). 

Two major cholinergic nuclei within the basal forebrain, the vertical limb of the 

diagonal band of Broca (VDB) and the nucleus basalis of Meynert (NBM), have been 

implicated in the pathology of Alzheimer's. The cholinergic neurons within these 

nuclei are significantly decreased in male and female Alzheimer patients. As memory 

and other cognitive functions are a main role of the cholinergic system, it is believed 

that this decrease in neurons causes many of the symptoms seen in Alzheimer's 

disease (Ishunina et al, 2002). Within humans (Donahue et al, 2000; Ishunina and 

Swaab, 2001), and animals (Ishunina et al, 2002; Mufson et al, 1999), the function of 

the cholinergic neurons is largely influenced by sex hormones. The number of 

androgen receptors within the VDB and NBM are significantly lower in female 
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Alzheimer patients as opposed to males, which may account for the increased risk of 

Alzheimer's in females (Ishunina et al, 2002). 

In general, studies report a higher incidence and prevalence rate of Alzheimer's 

disease in women (Bonsignore et al, 2002; Yue et al, 2005) yet when examined 

closely, several variables have not been accounted for. There are a variety of 

explanations that may account for the inconsistencies in research results with regard 

to disease incidence and prevalence between genders. The fact that females are known 

to survive longer than males and are therefore more susceptible to diseases associated 

with ageing is an important variable that needs to be assessed when reporting data. 

Females with Alzheimer's disease are reported to survive longer compared to males, 

therefore there may be more females alive to participate in studies than there are 

males. These two factors produce a selection bias due to the under-representation of 

males within Alzheimer's disease studies (Bonsignore et al, 2002). 
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CHAPTER SEVEN 

Methods 

This literature review involved the analysis of journal articles that were accessed 

through the Edith Cowan University online database collection. Numerous databases 

were scrutinised to ensure this review was based on the latest and most current 

information regarding this topic. The main database engines used for this study were: 

• Biomed Central 

• Pubmed Central 

• Pro Quest 

• Oxford Journals 

• Science Direct 

• Ovid Online 

• Google 

Other databases such as BMJ Journals Online and Cochrane were excluded from this 

study as initial searches were unproductive in relation to this topic. All journal articles 

used in this study were chosen for their relevance to sex determination, sex 

differentiation, sex abnormalities, brain structure between genders or gender-related 

diseases. The date of publication was a critical element when choosing articles for 

inclusion in this review as the topic is continually progressing. Papers from 2006 were 

initially reviewed but few existed so it was necessary to widen the search between the 

years 2000 and 2006. Reference lists from relevant journal articles were investigated 

and used to collaborate results of current studies. 
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The search tenns used that produced the most useful articles included: sex 

determination, sex differentiation, SRY gene, SOX9 gene, SF-1 gene, WT-1 gene, 

DMRTl gene, GATA4 gene, DAX-1 gene, sex abnormalities, hermaphrodites 

testicular feminization, androgen insensitivity syndrome, Congenital Adrenal 

Hyperplasia, 21 Hydroxylase Deficiency, 17~-Hydroxysteroid Dehydrogenase 3 

Deficiency, brain sex, brain structure and gender, brain differentiation, hypothalamus 

and gender, amygdala and gender, corpus callosum and gender, cerebral cortex and 

gender•; brain structure and hormones, Schizophrenia and gender, Alzheimer's and 

gender, Autism and gender, Autoimmune disease and gender, sexually dimorphic 

disease. 
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CHAPTER EIGHT 

Results 

8.1 Cerebral Cortex 

Males have a greater volume and weight of the cerebral cortex than females, with a 

neuronal density that is 15% higher (Reiss et al, 1996; De Courten-Myers, 1999; 

Rabinowicz et al, 2002; Witelson et al, 2006). White matter volumes are on average 

larger ,in males and grey matter volumes are larger in females (De Comien-Myers, 

1999). The female cerebral cortex has been found to consist of more neuropil than 

males, producing more cell to cell connections and a more extensive dendritic 

network (Rabinowicz et al, 1998). Activation of the ventromedial prefrontal cortex 

also differs between males and females. Males tend to use the right hemisphere of the 

ventromedial cmiex for emotional processing and decision making, whereas females 

use the left hemisphere (Tranel et al, 2005). 

8.2 Corpus Callosum 

The literature regarding sexual dimorphism of the corpus callosum is controversial 

but the majority of studies agree that the corpus callosum is larger in females and of a 

more spherical shape than that of the male as seen in Table 4 (De Lacoste-Utamsing 

et al, 1982; Rabinowicz et al, 2002; Smith, 2005). This increase in fibres connecting 

the two hemispheres is one theory underlying the bilateralisation of the female brain 

(Rabinowicz et al, 2002). 
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8.3 Hypothalamus 

There are several nuclei that are sexually dimorphic within the hypothalamus (Swaab 

et al, 2003). The preoptic area of the anterior hypothalamus contains four nuclei, the 

lateral, medial, median preoptic nuclei and the pariventricular nucleus which are 

larger in male brains. The lateral, median and medial preoptic nuclei are 50-70% 

larger in males (Table 4). The male lateral preoptic nucleus contains 28% more 

neurons whilst the medial preoptic nucleus contains 21% more neurons accounting for 

the increase in size. The male medial preoptic nucleus contains 80% more neurons 

due to the highly sexually dimorphic nucleus within this region (Madeira et al, 1999). 

The sexually dimorphic nucleus (SDN) of the medial preoptic area is 3-8 times larger 

in male rats than female rats. The human SDN is approximately twice as large in 

young males as females, with twice the number of cells (Gorski et al, 1978; Madeira 

et al, 1999; Swaab et al, 1992; Swaab et al, 2003; Von Esenwein et al, 2005). Before 

the age of two years, there are no sexual differences in the size or neuronal number of 

the sexually dimorphic nucleus (Swaab et al, 2003). 

The suprachiasmic nucleus (SCN) of the hypothalamus is larger in the male rat yet in 

humans it is only the shape that differs. The female SCN has an elongated shape 

whilst the males' is more spherical (Swaab, 1995; Hofman, 1996; Abizaid et al, 

2004). In male homosexuals the volume of the SCN is 1.7 times larger with 2.1 times 

as many cells as heterosexuals (Swaab et al, 2003). 

The Bed Nucleus of the Stria Terminalis (BNST) has two sexually dimorphic regions, 

the darkly staining postereomedial component of the BST (BST-dspm) and the central 
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division (Allen and Gorski, 1990, Chung et a1, 2002, Garcia-Falgueras, 2005). The 

BNST as a whole is larger in males compared to females (Table 4) yet these 

differences do not reach significant values until adulthood (Chung et al, 2002). 

8.4 Anterior Commissure 

The majority of studies report that the anterior commissure is 12% larger in females 

than males (Moir and Jessel, 1991; Allen and Gorski, 1992; Swaab and Hofman, 

1995).,Some have reported no sexual dimorphism in rat or human studies (Jones et al, 

1997; Bishop et al1999; Highley et al, 1999). This structure is only present in 78% of 

females and 68% of males (Swaab et al, 2003). 

8.5 The Amygdala 

This structure is significantly larger in males than females (Goldstein et al, 2001, 

Durston et al, 2001, Cahill et al, 2004). Rat studies show that the posterodorsal region 

of the medial amygdala is 50-80% larger in males (Cooke et al, 1999), with a larger 

number of neurons in the posteromedial region (Rasia-Filho et al, 2000). 
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Table 4- Summary of Sexually Dimorphic Brain Structures in Humans. 

Study Year Brain Sexual Size Difference 

Structure Dimorphism 

Reiss et al. 1996 Cerebrum Yes 10% > in human 

males 

De Courten-Myers. 1999 Cerebrum Yes ;::::: 10% >in 

human males 

Rabinowicz et al. 2002 Cerebrum Yes 15% >inhuman 

males 

Witelson et al 2006 Cerebrum Yes 9-12% >in 

human males 

De Lacoste-Utamsing 1982 Corpus Yes >inhuman 

et al. Callosum females 

Allen et al. 1991 Corpus No -

Callosum 

Denenberg et al. 1991 Corpus Yes > posterior region 

Callosum in human males 

Holloway et al. 1993 Corpus No -

Callosum 

Rabinowizc et al. 2002 Corpus Yes >in females 

Callosum 

Smith 2005 Corpus Yes >in females 

Callosum 

Madeira et al 1999 PAOH Yes > in human males 

Gorski et al. 1978 SDN Yes >in males 

Swaab et al. 1992 SDN Yes >in males 

Swaab et al. 2003 SDN Yes >in males 

Von Esenwein et al 2005 SDN Yes >in males 

Swaab. 1995 Suprachiasmic Yes difference in 

Nucleus shape 

Hofman et al. 1996 Suprachiamic Yes difference in 

Nucleus shape 
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Abizaid et al. 2004 Suprachiasmic 

Nucleus 

Allen et al. 1990 BNST 

Chung et al. 2000 BNST 

Chung et al. 2002 BNST 

Garcia-Falgueras 2005 BNST 

Moir and Jessel 1991 Anterior 

Commissure 

Allen and Gorski 1992 Anterior 

:/ Commissure 

Swaab and Hofman 1995 Anterior 

Commissure 

Jones et al. 1997 Anterior 

Commissure 

Bishop et al. 1999 Anterior 

Commissure 

Highley et al. 1999 Anterior 

Commissure 

Goldstein et al. 2001 Amygdala 

Durston et al. 2001 Amygdala 

Cahill et al. 2004 Amygdala 

PAOH =Preoptic Area ofthe Hypothalamus 

SDN =Sexually Dimorphic Nucleus of the Hypothalamus 

BNST =Bed Nucleus of the Stria Tenninalis 

Yes difference in 

shape 

Yes >in males 

Yes >in males 

Yes >in males 

>in males 

Yes 12% >females 

Yes 12% >in females 

Yes 12% >in females 

No -

No -

No -

Yes >in males 

Yes >in males 

Yes >in males 
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CHAPTER NINE 

Discussion 

Although there are a number of brain structures that are universally accepted as being 

sexually dimorphic, various studies report no significant differences in structure or no 

con-elating function to such differences. Cerebral size has been found to be larger in 

males (De Courten-Myers, 1999; Rabinowicz et al, 2002; Reiss et al, 1996; Witelson 

et al, 2006) yet this does not produce a con-esponding increase in intelligence or 

higher function of the cerebral cortex in men. The corpus callosum and anterior 

commissure are bundles of nerve fibres that connect the two cerebral hemispheres. 

These fibre networks are larger in females and are directly con-elated with an increase 

in cerebral function (Denenberg et al, 1991; Rabinowicz et al, 2002; Smith, 2005). 

The larger interhemispheric connection in females is believed to contribute to the 

bilateralisation of the female brain (Rabinowicz et al, 2002) and may be a factor 

behind the decreased prevalence and severity associated with diseases such as 

schizophrenia, mental retardation and stroke. 

Observations of the nuclei within the hypothalamus have consistently reported sexual 

dimorphism with regard to size of ce1iain nuclei. The preoptic area of the 

hypothalamus (Madeira et al, 1999), the sexually dimorphic nucleus (Gorski et al, 

1978; Swaab et al, 1992; Swaab et al, 2003; Von Esenwein et al, 2005), 

suprachiasmic nucleus (Abizaid et al, 2004; Hofman et al, 1996) and the bed nucleus 

of the stria terminalis (Allen et al, 1990; Chung et al 2000; Chung et al, 2002; Garcia

Falgueras, 2005) have been identified as being larger in males as opposed to females. 

The most significant sexual dimorphism has been found within the sexually 

dimorphic nucleus (SDN). This structure is almost twice as large within human adult 
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males and 3-8 times larger in the male adult rat. The function of the SDN has been 

associated with sexual behaviour and identity within both sexes yet the larger nucleus 

in males is thought to cause a corresponding increase in sexual appetitive behaviour 

common to the male sex (Swaab et al, 2003). 

The amygdala, which is involved in emotional processing, memory, fear responses 

and reproductive behaviour, is significantly larger in both human and rat males 

(Hamann, 2005). PET imaging has revealed that the male amygdala is stimulated to a 

higher degree with regard to arousing material and is also linked to the increased 

sexual appetitive behaviour exhibited by the male gender (Hamman et al, 2005). A 

variety of sexual disorders, all of which are more common in males, have been linked 

to an abnormality within the amygdala (Gomez, 1991). Lesions within the amygdala 

support the role of the amygdala in abnormal sexual behaviours as these individuals 

exhibit a failure to recognise social norms in regards to sexual behaviour and are 

prone to a range of paraphilia's such as voyeurism, exhibitionism, paedophilia and 

fetishism (Bezeau et al; 2004; Kafka et al, 2002). 

The presence of sex differences in morbidity and mortality rates are clear as seen in 

this present study (Bren, 2005; Gesensway, 2001; Pi1111, 2003; Rieker et al, 2005; 

Wizema1111 et al, 2001). However the mechanism(s) behind these differences needs 

more thorough research. Sex hormones play an important role in sex differentiation 

both in development and throughout life, forming a basis behind the sexually 

dimorphic disease patterns that are becoming evident (Rieker et al, 2005; Wizema1111 

et al, 200 1). The significance of hormone production and maintenance can be shown 

through sex differentiation abnormalities in which the lack of a hormone or its loss of 
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function can produce devastating effects (Witchel, 2002) such as testicular 

feminisation (Holterhus et al, 2003) and congenital adrenal hyperplasia (Merke and 

Bomstein, 2005). 

Prima1y hermaphrodites arise due to a mutation which causes an individual to be born 

with internal and/or external genitalia of both sexes. Due to ambiguous external 

genitalia, individuals may not be raised according to their chromosomal sex. Once 

puberty arises, these individuals begin to think according to the sex of their brain and 

not necessarily their external genitalia, causing serious mental anguish and identity 

problems (Salas-Cortes et al, 2000). Testicular feminisation is an example of a 

secondary hem1aphrodite that arises due to abnormal androgen receptors. These 

individuals exhibit ambiguous genitalia as well as feminisation, both of which are 

directly correlated with the degree of androgen receptor function (Holterhus et al, 

2003). 

Although it is evident that many sex differences are due to the action of hormones, it 

is unlikely they are the sole cause. There are genes located on the X chromosome that 

are expressed at increased levels within females despite X chromosome activation. 

Genes that are located on theY chromosome, such as the SRY gene, may also play a 

role in sexual dimorphism leading to differences in the central nervous system and 

affecting disease patterns (Leinwand, 2003). 

From conception, it appears males are disadvantaged with a greater risk of brain 

damage, congenital deformities, still birth and cerebral palsy. After birth, 

developmental disorders such as autism, attention deficit hyperactivity disorder and 
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stuttering are all more common in males (Hertz-Picciotto, 2006; Kraemer, 2000; 

Powell, 2004; Stone et al, 2004), as well as other diseases such as schizophrenia (Cyr 

et al, 2002), cardiovascular disease (Leinwand, 2003) and Parkinson's disease 

(Czlonkowska et al, 2005). Although a majority of diseases appear to be more 

common in males, there are some diseases more prevalent in females such as 

autoimmune diseases (Rubin, 2001) and Alzheimer's disease (Ott et al, 2001). 

This study has shown that females fare better in terms of prevalence and severity of 

numerous diseases due to the neuroprotective role of oestrogen. Evidence to support 

the role of oestrogen arises through oestrogen knockout mice and human studies in 

which the incidence of disease increases for females once they have reached 

menopause and a corresponding decrease in oestrogen occurs (Hafner et al, 2003; 

Khalil, 2005; Rogers et al, 2001). 

Researchers have recognised that the majority of organs within the body, not just 

those of the reproductive system, are sexually dimorphic in structure and in some 

cases function (Kraemer, 2000). These dimorphisms lead to a different prevalence of 

disease states, different symptoms and different pharmacological treatments. Females 

and males differ in regards to drug absorption, distribution and excretion. Therefore 

studies on drug treatments need to use gender as an important variable in their 

analysis that must be accounted for (Bren, 2005). 

A majority of research has failed to produce data on females and males as a separate 

population despite the evidence that females and males differ significantly in normal 

physiology and pathological functions. In 2001, the Institute of Medicine published a 
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report concerning gender differences in medicine and the importance of gender 

related studies (Wizemann et al, 2001). Since this report, the number of studies that 

include sex as a variable have dramatically increased providing a better understanding 

of the basis behind certain mechanisms and disease pathologies. The report also states 

that journals should encourage authors to publish sex related data, whether it be of 

significance or not, in order to create a better understanding of sex differences 

(Kreeger, 2002). 

The approach to companng males and females, whether it be anatomical or 

physiological, is in need of more efficient study parameters. The knowledge of the 

test subject's biology as well as the environment in which the study is occurring are 

important factors when studying sex related differences. As sex steroids can have a 

dramatic affect on sexually dimorphic traits it is not sufficient to measure females at 

random times within the ovarian cycle. Comparing males with two or more groups of 

females where the oestrous cycle is known would show whether males and females 

differ in a certain trait and at what time of the ovarian cycle the differentiation occurs. 

Sex differences may be overlooked in simple studies consisting of one male and one 

female group, as certain traits may only differ at certain times of the oestrous cycle. If 

. tested at the wrong time of the oestrous cycle, sex differences may not be seen, 

therefore producing negative results (Becker et al, 2005). 

An individual's sex does not just determine their physical appearance but can 

influence their cognitive abilities, behaviour and all aspects of disease ranging from 

susceptibility, to drug treatments. It is for these reasons that research on normal 

structure and functioning as well as disease states should include sex as a key 
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variable, therefore producing data on both genders instead of males and females being 

included in the same category (Wizemann et al, 2001). This study has concluded there 

are several sexual dimorphic stmctures within the brain as well as the reproductive 

system, and that many disease states differ with regard to prevalence and severity 

between genders. It is clear that males are no longer the superior sex but rather just 

one half of the bigger picture. 
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