
Edith Cowan University Edith Cowan University 

Research Online Research Online 

Theses : Honours Theses 

2006 

Water stress vulnerability of four Banksia species in contrasting Water stress vulnerability of four Banksia species in contrasting 

Ecohydrological habitats on the Gnangara Mound, Western Ecohydrological habitats on the Gnangara Mound, Western 

Australia Australia 

Caroline Canham 

Follow this and additional works at: https://ro.ecu.edu.au/theses_hons 

 Part of the Plant Biology Commons 

Recommended Citation Recommended Citation 
Canham, C. (2006). Water stress vulnerability of four Banksia species in contrasting Ecohydrological 
habitats on the Gnangara Mound, Western Australia. https://ro.ecu.edu.au/theses_hons/1059 

This Thesis is posted at Research Online. 
https://ro.ecu.edu.au/theses_hons/1059 

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses_hons
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses_hons?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F1059&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/106?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F1059&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses_hons/1059


Edith Cowan University 
 

 

Copyright Warning 
 
 
 
 
 

You may print or download ONE copy of this document for the purpose 

of your own research or study. 
 

The University does not authorize you to copy, communicate or 

otherwise make available electronically to any other person any 

copyright material contained on this site. 
 

You are reminded of the following: 
 

 Copyright owners are entitled to take legal action against persons 
who infringe their copyright. 

 

 A reproduction of material that is protected by copyright may be a 

copyright infringement. Where the reproduction of such material is 

done without attribution of authorship, with false attribution of 

authorship or the authorship is treated in a derogatory manner, 

this may be a breach of the author’s moral rights contained in Part 

IX of the Copyright Act 1968 (Cth). 

 

 Courts have the power to impose a wide range of civil and criminal 

sanctions for infringement of copyright, infringement of moral 

rights and other offences under the Copyright Act 1968 (Cth). 

Higher penalties may apply, and higher damages may be awarded, 

for offences and infringements involving the conversion of material 

into digital or electronic form.



Water stress vulnerability of four Banksia species in 

contrasting ecohydrological habitats on the Gnangara 

Mound, Western Australia. 

By 

Caroline Canham 

A thesis submitted in partial fulfiln1ent of the requirements for the awards 

ofBachelor of Science (Environmental Managen1ent) Honours 

At the School of Natural Sciences 

Faculty of Cmnputing, Health and Science 

Edith Cowan University, 

Joondalup 

Supervisors: 

A/Prof. Ray Froend 

Professor Will Stock 

,·Date of Subn1ission: 3rd November, 2006 



ABSTRACT 

The distribution of obligate and facultative phreatophytic vegetation reflects the 

gradient of ecohydrological habitats in a landscape. Preliminary investigations of 

Banksia vulnerability to xylem embolism have reported that obligate phreatophytes are 

more susceptible to water stress than facultative phreatophytes (Froend & Drake 2006). 

A quantitative measure of plant susceptibility to water stress is vital when establishing 

environmental water requirements. This study investigated interspecific differences in 

vulnerability to water stress for two facultative phreatophytes (B. attenuata and B. 

menziesii) and two obligate pln·eatophytes (B. ilicifolia and B. littoralis) at the same 

position along an ecohydrological gradient on the Gnangara Groundwater Mound, 

Westem Australia. In addition, intraspecific differences to water stress between 

populations that occupy contrasting ecohydrological habitats were also determined. 

Plant susceptibility to water stress was established using vulnerability curves, which 

demonstrate the xylem potentials at which vessels become embolised. Stem-specific 

and leaf-specific hydraulic conductivity, as well as Huber values (ratio of stem to leaf 

area), were also determined to support these findings. It was found that 

ecohydrological habitats are a pnmary detennining factor of plant hydraulic 

architecture, particularly vulnerability to xylem embolism. At the same ecohydrological 

habitat, where water is readily accessible there were no interspecific differences in 

vulnerability to water stress. In contrast, the facultative phreatophytes, B. attenuata and 

B. menziesii, appeared to be plastic in vulnerability to embolism in response to 

developing in a more xeric environment. Both facultative phreatophyte species were 

found to be more resistant to xylem embolism at the more xeric dune crest site in 

contrast to the bottom slope site. B. ilicifolia did not differ in vulnerability to embolism, 

supporting its classification as an obligate phreatophyte. This study highlights the 

importance of understanding site hydrological attributes when determining 

environmental water allocation for obligate and facultative phreatophytes. 
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1. Introduction 

1.1 Phreatophytic Vegetation on an Ecohydrological Gradient 

Phreatophytic vegetation is an example of a terrestrial ecosystem that develops a 

dependence upon groundwater resources (Murray et al. 2003). Phreatophytes have been 

broadly defined as plant species that depend on groundwater to some degree (Busch et 

al. 1992). As a species, an obligate phreatophyte may be defined as dependent upon 

groundwater, with all individuals of that species being dependent upon access to 

groundwater (LeMaitre et al. 1999; Eamus et a!. 2006). In contrast, a species that is 

considered a facultative phreatophyte includes individuals that are opportunistic in their 

use of groundwater. If there is groundwater readily available it will become an 

impmiant source for a facultative phreatophyte, however individuals of the same species 

will also occupy areas where groundwater is not available (Zencich 2003; O'Grady et 

al. 2006). The distribution of obligate and facultative phreatophytes can reflect a 

gradient of ecohydrological habitats. 

Ecohydrology is considered a sub-discipline of ecology and hydrology, which 

recognises the bi-directional relationship between ecological and hydrologic processes 

(Zalewski 2002). An example of this is the redistribution of water by plant roots, and 

the influence this has on the hydrological cycle (Burgess et al. 1998; Hannah et al. 

2004). Another, and the focus of this study, is the influence hydrology has on plant 

physiology including the hydraulic architecture of plants (Packman & Sperry 2000; 

Gries et al. 2003). The concept of an ecohydrological landscape encompasses both 

ecological and hydrological components of a particular environment and how these 

differ spatially (Klijn & Witte 1999). In an undulating environment it is assumed that 

there are differences in depth to groundwater and soil moisture, thus there are different 

ecohydrological habitats. Lower regions in a landscape tend to be 'wetter' than 

conditions upslope. Vegetation assemblages often reflect this gradient in water 

availability (Hatton & Evans 1998). Thus, obligate phreatophytes are often found in 

low-lying areas, whilst facultative phreatophytes are distributed throughout the 

landscape, irrespective of depth to groundwater (Zencich et al. 2002). This 

demonstrates phreatophytic vegetation distribution at different habitats along an 

ecohydrologicallandscape. 
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It has been observed that the distribution of species across an ecohydrologicallandscape 

and differences in water availability is reflected by a plants hydraulic architecture (Gries 

et al. 2003; Maherali et al., 2004; Hukin et al. 2005). Hydraulic architecture considers 

the functioning of plants as a hydraulic system (Cmiziat et al. 2002). To study this 

system the hydraulic architecture of plants is divided into a number of components. The 

most commonly studied are; hydraulic conductivity; specific conductivity; leaf specific 

conductivity; Huber value (ratio of stem cross-sectional area to leaf area); water storage 

capacitance and; vulnerability to embolism (Tyree & Ewers 1991). Vulnerability to 

embolism has become established as a means to detem1ine the water stress vulnerability 

of different plants (Tyree & Ewers 1991). In an ecohydrological gradient, habitats that 

are further from groundwater (or at the top end of the gradient) tend to be drier, or more 

xeric, than habitats at the bottom of the gradient. The plants that occupy these different 

· habitats experience differences in water stress. It may therefore be the case that there 

are differences in water stress vulnerability between plants that occur in xeric 

ecohydrological habitats and those that occur in more mesic habitats. 

1.2 Plant water availability and xylem embolism 

To understand plant response to water stress it is imp01iant to have an understanding of 

xylem cavitation and embolism. Water in plants is in constant flux, as it moves from 

the soil, through the plant, and to the atmosphere. Water movement is driven by 

evapotranspiration combined with the cohesive forces of water. The cohesion-tension 

theory (C-T theory) first suggested by Dixon & Joly (1895) is generally accepted as the 

best explanation for the ascent of sap through a plant (Sperry et al. 2003). Water has 

strong cohesive forces, meaning that its molecules are strongly attracted to each other. 

Water also has strong adhesive abilities, 'sticldng' to walls of xylem. This allows a 

continuous column of sap, from the roots of a .Plant to its leaves. The second 

component of the C-T theory is tension, which is negative pressure that occurs in xylem 

due to evaporation. Water moves from high pressures to low pressures and 

transpiration creates lower pressures in the xylem than that of the surrounding 

environment. Failures in the water column occur if tensions get too high (ie. if xylem 

potential gets too low) due to the tensile strength of water (Zimmermann 1983). 

As part of his 'air-seeding hypothesis' Zimmennann (1983) proposed that plant cell 

walls allow the wat~r column to break at particular tensions. These breaks in the water 
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column are refened to as xylem cavitations and are a consequence of both water under 

tension being in a metastable state and the structure of xylem. The vapour pressure of 

water at 20°C is -0.0023 MPa, whilst significantly lower xylem potentials are required 

to move water to the tops trees (Zimmermann 1983). The assumption that water is at 

significantly negative pressures in xylem is one of the main arguments against C-T 

theory, due to it having to be in a metastable state (Zimmermann et al. 1994; Canny 

1995). However, it has also been demonstrated empirically that this can occur 

(Packman et al. 1995). Water in xylem is thermodynamically unstable, wanting to 

change from a liquid to a vapour phase. The air seeding hypothesis suggests that the 

catalyst for this change in phase is the introduction of air into a plant cell from the 

outside, which 'seeds' cavitation (Zimmermmm 1983). Xylem pores can pull air in as 

xylem potential drops, forming a small bubble (Fig. 1.1 ). This admission of gas to the 

vessel seeds the change in state of the xylem sap, resulting in the metastable water 

changing to gas. The vapour fills the xylem, resulting in a cavitation (L. cavus, hollow). 

Cavitation is a break in the water column, blocking the ascent of sap through the vessel. 

This obstruction is referred to as an embolism (Gr. embolus, stopper). 

The air-seeding hypothesis is supported by observations that pore sizes and properties 

differ between species and individuals, which supports the observations that plants 

cavitate at different xylem potentials. The hydraulic vulnerability curve has become 

established as a means to compare plant susceptibility to xylem cavitation (Tyree & 

Ewers 1996). Speny et al. (1988) demonstrated a method to quantify the degree of 

embolism that has occurred in a section of plant material. Emboli result in a decrease in 

hydraulic conductance (the inverse ofhydraulic resistance), as they block the movement 

of water tlu·ough xylem. It was demonstrated that emboli could be removed, by 

flushing xylem at higher pressures, the increased conductivity therefore being a measure 

of maximum hydraulic conductance in the absence of emboli (Sperry et al. 1988). They 

also devised a flow-meter that uses low, gravity induced flows to measure the 

conductance of plant material, without removing emboli. 
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Figure. 1.1. A representation of a water filled xylem undergoing air-seeding leading 

to embolism of the vessel. The water filled xylem is under lower pressure than the 

surrounding atmosphere (A). As the pressure drops further, such as what occurs 

during water stress, air is pulled through the xylem pit pore (B). The meniscus 

reaches the lumen of the xylem (C), which acts as a catalyst to the metastable 

water. Water evaporates into the aspired air, creating a bubble (D). The size of the 

bubble increases, raising the pressure inside the xylem, resealing the pore (E). The 

bubble, or cavitation, continues to grow until the xylem is completely vapour-filled 

(F) creating an embolism and preventing the conduction of water through that 

conduit (adapted from Zimmermann1983). 
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1.3 Hydraulic vulnerability Curves 

A way to measure emboli without removing them has been established, as have 

methods for inducing cavitation in plant material. Three main methods have been 

developed: air-drying, air-injection and centrifugal force (Alder et al. 1997). The air

drying method involves dehydrating stems under laboratory conditions. 

Xylem potential is then determined using a Scholander-type pressure chamber and the 

hydraulic conductivity of the stem determined using a flow-meter based on the design 

of Sperry et al. (1988). This method entails drying stems out, which is a relatively time 

consuming process. It also requires a number of stems to achieve one vulnerability 

curve, as it is difficult to judge what the xylem potential is going to be at any particular 

state of drying (Alder et al. 1997). 

The air-injection method was developed as an alternative means of inducing cavitation 

in xylem. Stems are inserted into a specialised chamber and exposed to lmown 

pressures, which correlate with xylem potential (Cochard et al. 1992). Thus, using this 

technique lower xylem potentials can be achieved quicker than using the dehydration 

technique. There is also an advantage in knowing what xylem potential the stem is 

being exposed to (Sperry & Saliendra 1994). More recently centrifugal force has been 

used to induce xylem cavitation. This method involves placing plant stems m a 

centrifuge rotor, then spinning them on their long axis (Alder et al. 1997). The 

centrifugal force exerted on the plant stems once again corresponds with xylem 

potentials. 

A number of studies have compared results using these different methods to evaluate 

the effectiveness of their use. Sperry and Saliendra (1994) evaluated the air-injection 

method comparing it with air drying, using stems from Betula occidentalis. It was 

found that the air-injection method gave results comparable with those determined using 

the air-drying method. This is interesting because the air-drying method involves the 

aspiration of air into the xylem, through pit pores, as described by Zimmermann's air

seedinghypothesis (Zimmermann 1983). That is, air is pulled into the xylem due to 

decreasing xylem potentials. In contrast the air-injection method pushes the air in the 

xylem using increasing air pressures. It has been concluded that the two methods 

produce comparable results because it takes the same pressure differences to pull air 

into the xylem unde.r negative xylem potentials as it does to push it in under positive air 
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pressures (Sperry & Saliendra 1994). Alder et al. (1996) evaluated the centrifugal force 

technique, comparing it with both the air-injection and air-drying techniques. This 

study found that the use of centrifugal force to induce xylem emboli in stems gave 

vulnerability curves identical to those developed using the other two techniques. It was 

suggested that the mechanism behind cavitation is the same using centrifugal force as it 

is for the air-drying method; that is, air is pulled into vessels due to negative xylem 

potentials as explained by the air-seeding hypothesis. 

The vulnerability curve quantifies the degree of embolism that occurs in a plant at 

decreasing xylem potentials (therefore increasing tension on the water column). Using 

maximum hydraulic conductance it is possible to determine the percentage loss of 

conductance (PLC) that occurs as a result of emboli that are induced at decreasing 

xylem potentials. PLC is then plotted against xylem potential. Pammenter and Vander 

Willigen (1998) suggested an exponential-sigmoidal model to describe vulnerability 

data (Fig. 1.2). This functionincorporates the xylem potential at which 50% loss of 

conductance occurs (PLC5o) and coefficient a, which relates to the gradient of the curve 

at PLCso. Coeffecient a is useful as it relates xylem pit pore size to the slope of the 

curve. This relates to the air-seeding hypothesis, which states that larger pit pores are 

more vulnerable to embolism (Zimmermann 1983). Thus PLC50 values and coefficient 

a values are often used to compare vulnerability to water stress between plants. 

Hydraulic conductivity measurements, particularly stem-specific conductivity (Ks) and 

leaf-specific conductivity (KL) are often used as a measurement of plant hydraulic 

architecture (Tyree & Ewers 1991). Ks gives a measure ofhydraulic efficiency, taking 

into consideration the length and cross-sectional area of stem. It is often reported that 

higher Ks values are associated with plants that occur in areas of high water availability 

(Kolb & Davis 1994; Martinez-Vilalta et al. 2002). KL gives a measure of hydraulic 

'sufficiency' of a stem to supply water to leaves. The Huber value can also be related to 

water availability and tree hydraulic architecture. Huber (1928) demonstrated that the 

investment of stem material is related to the total leaf area that the stem supplies. The 

Httber value (as it has since been termed) is a ratio of the amount of conducting material 

to the leaf area, given as a dimensionless figure (Zimmermann 1983). A higher Huber 

value implies that there is more wood per unit ofleaf area. Plants that occur in climates 

where drought is common have generally been found to have higher Huber values than 
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those found in wetter climates and higher Huber values suggest improved plant water 

and nutrient storage capacity (Callaway et al. 1994; Cmiziat et a!. 2002). In a study 

investigating inter- and intraspecific differences between species that occupy different 

ecohydrological niches, the Huber value and hydraulic conductivity parameters may 

provide further insight in differences in hydraulic architecture. 

100 .--==~=:::::--"""""5::------------,1· 

80 ·~~·-· b•-2 

\\\ . 
60 \ 

40 

20 

0 
-5 

100 

80 

60 

40 

20 

a 

b 0 .___ __ __..____ 

-5 -4 

-2 

Water Potential {MPa} 

~1 0 

-1 0 

Figure. 1.2. The sigmoidal-exponential model developed by Pammenter 

and VanderWilligen (1998) to describe plant hydraulic vulnerability 

curve data. Equation for the line is: PLC = 100/{1+exp[a('¥x-b)]} where 

a = the gradient of a linear transformation, '¥xis xylem potential and b is 

the is '¥x where PLC = 50%. (a) demonstrates the effect of changing 

coefficient a; (b) demonstrates the effect of changing parameter b 

(Pammenter & Vander Willigen 1998). 
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Previous studies have investigated differences in hydraulic architecture between 

invasive weeds and native vegetation (Pratt & Black 2006); interspecific differences in 

contrasting climates (Maherali & DeLucia 2000); intraspecific differences along a soil

moisture gradient (Alder eta!. 1996; Lopez eta!. 2005); and interspecific differences 

between obligate phreatophytic and facultative phreatophytic vegetation (Froend & 

Drake 2006). Xylem structure, and hence vulnerability to embolism, appears to be 

related to water availability. This is particularly relevant in environments where water 

is the primary limiting factor, such as that found in Mediterranean climates 

characterised by long periods of drought (Martinez-Vilalta et a!. 2002; Vilagrosa et a!. 

2003). In these climates, soil water availability is low during drought, meaning species 

are either adapted to xeric conditions, or utilise groundwater if it is available. It has 

been established that this is the case for a number of Banksia woodland species that 

occur over the Gnangara Mound , on the Swan· Coastal Plain, south-west West em 

Australia (Dodd, eta!. 1984; Zencich eta!. 2002). 

1.4 Phreatophytes ofthe Gnangara Mound 

There is a gradient in ecohydrological habitats along the Swan Coastal Plain, overlying 

the Gnangara Groundwater Mound, with xelic conditions found at dune crest sites and 

more mesic conditions found at low-lying areas, where groundwater is more readily 

utilised by plants. The Gnangara Mound is a shallow, unconfined aquifer, covering an 

area of 2,140 k:m2 bordered by Moore River in the north, Darling Scarp to the east, 

Swan River to the south and the Indian Ocean on the west. The climate can be 

described as warm Mediterranean (Gentilli 1972). The long-term average rainfall for 

the Swan Coastal Plain is 780 mm with around 85% of rainfall received between May 

and October (Bureau of Meteorology 2006). Between May and August pan evaporation 

is lower than the rainfall received and it is during these months that recharge of the 

Gnangara aquifer occurs (Allen 1981). In contrast, during the hotter, drier months of 

smm11er, pan evaporation exceeds rainfall, with the average annual pan evaporation for 

Petih standing at 1890 mm compared to 780 mm average rainfall. It therefore becomes 

evident that water sources are a significant limiting factor for vegetation on the Swan 

Coastal Plain. This is compounded by the low water holding capacity of the soils, as 

the Swan Coastal Plain is largely comprised of deep quartzite sand dunes with low 

nutrient and water-holding capacities (McArthur & Bettenay 1974). 
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Groundwater can provide a permanent water source for vegetation if they are able to 

access it. Accessibility of groundwater can be determined by the permeability of 

sediments, rooting structure of plants and the overlying topography of the landscape. 

The undulating topography of the landscape overlying the Gnangara Mound is therefore 

significant in an ecohydrological sense with distrihution of vegetation reflecting depth 

to groundwater (Zencich et al. 2002). Vegetation is influenced by a number of edaphic 

factors including climate, soil type, topography and water availability. The vegetation 

on the Gnangara Mound has developed on low nutrient soils, with low water holding 

capacity under a Mediterranean climate typified by long, hot summers (Beard 1990). 

Open Banksia woodlands dominate the Bassendean Dune system, with Banksia 

attenuata and Banksia menziesii the dominant tree species (Havel 1968). In low-lying 

regions Banksia ilicifolia and Melaleuca preissiana are common, demonstrating the 

influence of topography and depth to groundwater on the distribution of species. 

Many of the species found at low-lying positions in the landscape over the Gnangara 

Mound are considered obligate phreatophytes, with their roots in contact with the 

capillary fringe (Kite & Webster 1989; Zencich et a!. 2002). Previous water source 

partitioning studies have demonstrated variation in groundwater use at contrasting 

ecohydrological habitats (Zencich et al. 2002). In low-lying areas, groundwater is 

utilised throughout the seasonal cycle by individuals of both obligate and facultative 

phreatophyte species (Zencich et al. 2002). Intraspecific differences in groundwater use 

were also observed at different locations along the ecohydrological gradient. At a site 

located high in the landscape groundwater was not utilised by B. attenuata, with stored 

soil moisture from depths of approximately 8 m being the primary water source 

(Zencich et al. 2002). In periods of low rainfall, stored soil water can become depleted 

as it declines tlu·ough evapotranspiration with decreased recharge from precipitation 

(Sham1a & Craig 1989). It is during such periods that plants become water stressed. 

There are therefore distinct differences in plant water sources and the reliability of these 

sources at contrasting locations. Over the Gnangara Mound there is a gradient in 

ecohydrological habitats, as reflected by the distribution of the different phreatophyte 

species. It is assumed that low-lying populations will experience less water stress due 

to their proximity to the reliable groundwater resource than the populations occupying 

the dune crest populations that are reliant upon stored soil water. 
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The need for Banksia vulnerability curves to quantify the physiological threshold to 

water stress has been suggested previously (Lam et al. 2004). Froend & Drake (2006) 

conducted a preliminary investigation of vulnerability curves for three Banksia species 

and a Nfelaleuca species. It was found that the obligate phreatophyte species (B. 

ilicifolia and M. preissiana) were more vulnerable to water stress than the facultative 

species (B. attenuata and B. menziesii). This is important for Banksia species on the 

Gnangara Mound where water availability is a significant limiting factor and 

groundwater management is an issue. In addition, there is a paucity of literature 

regarding intraspecific differences in vulnerability to water stress at contrasting 

ecohydrological habitats, particularly comparing obligate and facultative phreatophytes. 

1.5. Significance and aims ofthis study 

This study aims to determine the inter- and intraspecific differences in vulnerability to 

water stress for two obligate and two facultative phreatophyte species. Interspecific 

comparisons are made at the same ecohydrological habitat to minimise the influence of 

site conditions so that any observed differences may be attributable to differences 

inherent to a species. Froend and Drake (2006) suggested that vulnerability for a 

species may differ according to the availability of a consistent water source, such as that 

afforded by shallow depth to groundwater. This study determines intraspecific 

differences using individuals of the same species at the limits of their ecohydrological 

distribution. Individuals from an ecohydrological habitat where groundwater is easily 

accessible are compared with individuals that occur in a more xeric habitat, where water 

availability is less reliable. The primary objective was to establish vulnerability curves 

to test these differences, though K 5 , KL and Huber values were also investigated to 

support these findings. 

The specific hypotheses tested are: 

1. Obligate phreatophytes will demonstrate a higher PLCso value than facultative 

phreatophytes in the same ecohydrological habitat. 

2. Plants in a more mesic habitat will demonstrate a higher PLC50 value than 

individuals of the same species found higher in the landscape in a more xeric 

ecohydrological habitat. 
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2. Materials and Methods 

2.1 Species descriptions 

This study investigated the hydraulic architecture of four congeneric Banksia species; 

Banksia attenuata R.Br., Banksia menziesii R.Br., Banksia ilicifolia R.Br. and Banksia 

littoralis R.Br. According to the taxonomy established by George (1981) three of the 

species are from the same subgenus (ie. Banksia); B. attenuata (section Banksia; series 

Cyrtostylis); B. menziesii (section Banksia; series Banksia) and B. littoralis (section 

Oncostylis; series Spicigerae). B. ilicfolia belongs to the subgenus Isostylis. 

The fout study species were selected for their contrasting distribution and phreatophytic 

traits. Two obligate phreatophyte species, B. ilicifolia and B. littoralis, and two 

facultative phreatophyte species, B.· attenuata and B. menziesii, have been selected for 

this study. B. littoralis has the nanowest distribution of the study species as it is 

confined to damplands throughout the Swan Coastal Plain, occurring only in areas of 

shallow depth to groundwater (Groom et al. 2001). B. ilicifolia is generally found to be 

occUlTing at locations where depth to groundwater is less than 8 m (Arrowsmith 1992), 

thus its distribution is also restricted by groundwater availability. In contrast, the two 

facultative phreatophyte study species occupy areas where groundwater depth is in 

excess of 30 m. The four study species therefore occupy contrasting ecohydrological 

habitats. 

2.2 Site descriptions- Contrasting ecohydrological habitats 

An ecohydrological habitat refers to the hydrological and edaphic attributes that 

influence vegetation at a specific location in a landscape. A particular habitat can be 

defined by rainfall, recharge sources, depth to groundwater and soil matric potential 

(Eamus et al. 2006). Rainfall refers to both the quantity and seasonality of 

precipitation. Water recharge sources can differ between sites with some habitats 

receiving only localised recharge from precipitation, whilst other sites can receive 

regional recharge in the form of lateral groundwater flow and run-on, as well as 

loc'alised precipitation recharge. Depth to groundwater refers to the proximity of the 

saturated zone to the soil surface, and thus plant roots (Groom 2004). Depth to 

groundwater also determines the volume of the unsaturated zone within which plant 

rhizospheres .Cali develop. Spatial and temporal dynamics in soil matric potential 
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determines the accessibility, or ease of which a plant can take up water from soil. These 

parameters all contribute to plant available water content of the soil and therefore are 

the key hydrological attributes that influence vegetation. 

Sampling was conducted at six sites within a 3 km radius in the Lexia wetland system 

over the Gnangara Mound (Fig. 2.1 ). The study area is located on the Bassendean dune 

system, and the undulating geomorphology has resulted in differing ecohydrological 

habitats. The study required contrasting ecohydrological habitats to be defined. It has 

been identified that terrestrial soil water retention properties (and therefore matric 

potential of the soil at a given water content) ancl precipitation does not vary 

significantly in the Lexia area ofihe Gnangara Groundwater Mound (Lam et al. 2004). 

Thus, the defining attributes of the different ecohydrological habitats in this landscape 

are depth to groundwater and recharge sources. Sampling was conducted at sites that 

represent contrasting ecohydrological habitats within a 3 km radius (Fig. 2.1). 

Hypothesis one, investigating interspecific differences in vulnerability to xylem 

cavitation required a site with all four study species present in the same ecohydrological 

habitat, to minimise environmental influences. The selected bottom slope site had a 

shallow water table, due to its low-lying position in the landscape. By virtue of its 

position in the landscape, it is assumed this site receives regional recharge, via lateral 

flow of groundwater, as well as surface run-on and localised recharge from precipitation 

that falls directly on the site. Groundwater potentially provides a seasonally consistent 

water source for plants at this site. The implication is that water is available at high 

water potentials (closer to 0, ie. free water) for the majority of the seasonal cycle. The 

bottom slope site is situated within close proximity to a dampland, a seasonally moist, 

low-lying area, characteristic of interdunal wetlands that occur along the Swan Coastal 

Plain. B. littoralis were located within the dampland, whilst B. attenuata, B. menziesii 

and B. ilicifolia were located on the dampland embankment. Groundwater depth was 

measured using pre-existing piezometers, with depth to groundwater ranging from 1.5 

m next to the B. littoralis to 3.2 mat the embankment (Fig. 2.2). 

To address hypothesis two, which investigates intraspecific differences in vulnerability 

to xylem embolism, contrasting ecohydrological habitats were selected. B. attenuata 
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and B. menziesii were investigated at a dune crest site with a depth to groundwater of 

more than 30m, as measure using piezometers. 

Banksias at the dune crest site are likely to possess more extensive root systems than the 

bottom slope site plants, due to the relatively large volume of the unsaturated soil (Fig. 

2.2), facilitating, as well as promoting, more extensive root growth. However, B. 

attenuata and B. menziesii roots have been previously measured and it was found that 

root abundance was very low beyond a depth of 8 m (Farrington et a!. 1989). 

Groundwater depths beyond 8-9 m are therefore considered inaccessible to these species 

and they are instead reliant upon water from the unsaturated zone (Groom 2004). The 

plants at the dune crest site only receive localised recharge of their water source through 

precipitation. This has been demonstrated quantitatively through water source 

partitioning studies (Zencich et al. 2002), which showed a marked difference in the 

water availability and plant water sources at the dune crest site in contrast to the bottom 

site. 

Banksia ilicifolia is rarely found at higher elevations, and thus greater depths to 

groundwater, due to it being an obligate phreatophyte. As a consequence of its patchy 

distribution at higher locations, it was difficult to locate sufficient plants to sample at 

one site. Samples were therefore taken from single plants at four different sites within a 

1 km area. These four sites are together referred to as the mid-slope site (Fig. 2.2). It 

has previously been observed that this species generally does not occupy areas where 

depth to groundwater is greater than 8 m (Arrowsmith 1992). Therefore, though it has 

been attempted to sample the individuals at the limits of their ecohydrological range it is 

likely that the roots of these species are still in contact with the capillary fringe and/or 

groundwater. 
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2.3 Vulnerability Curves 

Sampling was conducted over a 4 month period from May to August, 2006. Stems with 

4-6 budscars, thus ranging in age from 4 to 6 years were collected (Lamont 1985; Fig. 

2.3). Younger stems were generally found to be too short, too thin, or still carrying 

leaves and therefore not appropriate for the techniques used. Stem segments 

approximately 25cm in length were collected from each individual and were double

bagged in moist plastic bags, placed in a black plastic bag, kept cool and transported to 

the laboratory. They were then kept in the bags in a refrigerator at 4 oc until they were 

used. At each sampling trip 3 trees were sampled, with 3 stems taken from each tree to 

allow for problems that were often experienced in the analysis process (such as stems 

snapping or excessively low maximum conductivity values). On sampling days, 1 stem 

was processed in the laboratory and on the following day, 2 stems were processed, with 

a total of 3 stems being processed per trip. Any left-over samples were discarded within 

48 hours of collection. In total 10 vulnerability curves each were developed for B. 

attenuata at the bottom slope and the dune crest sites, 10 for B. ilicifolia at the bottom 

and midslope sites, 5 for B. menziesii at the bottom slope and dune crest sites and 5 for 

B. littoralis at the bottom slope site. 

In the laboratory stems were trimmed using secateurs under 1mM KCl in degassed 

double-distilled water. Bark was removed from the stem, once again immersed in the 

KCl solution and trimmed one final time with a sharp razor blade. Parafilm® was 

wrapped around the ends of the stem to provide a seal for the pressure collars, which 

were then attached. Bubbles were removed from the pressure collars and they were 

attached to a steady state flow meter (SSFM). The SSFM is based upon that used by 

Feild et al. (2001) and Froend and Drake (2006), using a pressure drop across PeekTM 

tubing of a known diameter in series with the stem segment (Fig 2.4). 

Using the SSFM, maximum conductivity was detennined by flushing stems to remove 

native emboli. These are emboli that are present in the stem when it is collected and can 

be quantified by measuring the conductivity of the stem before it is flushed and 

comparing with the conductivity after flushing. Stems were initially flushed with a 

perfusion solution of 1mM KCl in degassed DDI water (Zwieniecki, et al. 2001) at 100 

kPa for 15 minutes, as described by Froend and Drake (2006). After flushing, the 

conductivity of the. stem was measured. Conductivity measurement with the· SSFM 
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involves using a head pressure of less than 5kPa to pass the perfusion solution through a 

stem in series with the PeekTM tubing. When the conductance was measured after 

flushing it was often found that it was lower than the conductance measured with native 

emboli present. Thus, flushing at 50 kPa for 15 minutes was used and this resulted in 

conductivities that were higher than the initial values recorded, suggesting that this was 

a more appropriate flushing pressure. 

Figure 2.3. Annual incremental growth of stems in Banksia menziesii. By counting the budscars, the age 

of the stems can be determined. (adapted from Lamont 1985) 
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Emboli were induced by applying pressure to stems using a cavitation chamber, which 

is an adaptation of the Scholander-type pressure chamber (PMS instmments, Oregon, 

USA, Model 3005). Pressures applied to the stems are the inverse to the xylem pressure 

potential. Nitrogen gas was used to apply a desired pressure to the stem for 15 minutes. 

The pressures used to constmct the vulnerability curves were 0.5, 1, 1.5, 2, 2.5, 3, 4 and 

5 MPa. After applying pressure, stems were left for approximately 5 minutes to 

equilibrate then reattached to the SSFM. The percentage loss of conductance (PLC) 

was then calculated: 

PLC = 1 OO(kmax- k1J 
kmax 

(1) 

where kh is the volume flux density at a given xylem potential and kmax is the maximum 

volume flux density after the stem has been flushed. 

Percentage loss of conductance was plotted against the xylem potential and an 

exponential-sigmoidal function (Pammenter & Vander Willigen 1998) fitted: 

PLC = 100 I {1 + exp[a(\flx -b)]} 

(2) 

where 'f'x is xylem potential, a is related to the gradient at PLC50 and b is 'f'x where PLC 

equals 50%. 
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Figure 2.4. Schematic representation of the steady-state-flow meter. To measure stem 

conductivity a perfusion solution of 1 mM KCl in degassed, double-distilled water is 

passed through the stem and Peek resistance tubing in series at a head pressure below 5 

kPa. To remove native emboli a pressure source is used to push the perfusion solution 

through the stem at a pressure of 50 kPa for 15 minutes, flushing the stem. 

19 



A number of studies have used PLC50 to compare vulnerability to water stress, in 

particular Pammenter and Vander Willigen (1998) who incorporated it into the 

exponential-sigmoidal function to describe plant vulnerability data. Froend and Drake 

(2006) identified PLC20 as a more appropriate ·measure of differences between 

facultative and obligate phreatopbytic Banksia species. Thus PLC20 and PLC50 were 

used here to compare xylem embolism as well as coefficient a (gradient of a linear 

transformation of data, derived from the fitted exponential-sigmoidal function). 

To examine interspecific differences in these parameters at the bottom slope site 

(hypothesis 1) comparisons were made by one-way analysis of variance (ANOV A) 

using SPSS v.14.0 software. The PLC values at the different applied xylem potentials 

were also compared using one-way.ANOVA, to see if they correlated with the results 

obtained from the fitted data and to more accurately determine whether species differed 

in PLC at all or part of the range in applied pressure. If significant differences were 

found Tukey HSD post-hoc analysis was applied. 

To contrast intraspecific PLC values at different ecohydrological habitats (hypothesis 2) 

t-tests were perfonned using SPSS v.14.0 software. Data from the bottom slope site for 

B. attenuata were compared with the dune crest data for B. attenuata. This was 

repeated for B. menziesii and B. ilicifolia. The a, PLC20 and PLC5o values, as well as the 

PLC at the different xylem potentials were once again used for these comparisons. 

2.4 Hydraulic Conductivity and Huber Values 

In addition to vulnerability curves, hydraulic architecture was investigated by 

determining stem-specific conductivity (Ks), leaf-specific conductivity (KL) and Huber 

values (cross-sectional area of stem per area of leaves). Maximum hydraulic 

conductivity is detennined by flushing native emboli from the stem, then conductance is 

measured as previously described. Leaf area was also determined. Leaf material was 

removed from the stems and placed into separate plastic bags during sampling. Leaf 

area was measured in the laboratory using a WinDIAS image analysis system, which is 

a digitizing tablet that captures the image of the leaves, then calculates their area. 
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Ks gives a measure of hydraulic conductivity in relation to the length and diameter of 

the stem. It was determined from hydraulic conductivity (K11) which is calculated as: 

K, =FI(dP/dx) 

(3) 

where F is the flow (kg/s) through the plant material, dP is the pressure gradient (MPa) 

and dx is the length of the stem (m). 

Ks was determined by dividing K11 by the cross-sectional area of stem. Digital callipers 

were used to measure the diameter of the stems with bark removed and cross-sectional 

area determined. 

The Huber value was determined using the cross-sectional area (Ax) and leaf area (A1): 

(4) 

KL takes into consideration the size of the leaf area that the stem is supplying water to 

and was determined as 

(5) 

Interspecific comparisons of these K 5, KL and Huber values between these four species · 

at the same ecohydrological habitat (the bottom site) were made using one-way 

ANOV A. If significant differences were found, Tukey HSD post-hoc analysis was 

performed. t-tests were used to analyse intraspecific differences in Ks, KL and Huber 

values at contrasting ecohydrological habitats differences in Huber values within a 

species at different locations in the landscape. All statistical analyses were undertaken 

using SPSS v. 14 software. 

21 



3. Results 

3.1 Interspecific differences 

A comparison of four congeneric species at the same ecohydrological habitat (bottom 

slope site) found that there were no significant differences in vulnerability to xylem 

cavitation (Fig. 3.1; Table 3 .2). The slope of the curve, as measured by the coefficient a 

was also similar between each of the species (P=0.580), reflecting the similarities 

between the PLC20 and PLC50 values (Table 3.1 ). There was some variation, with 

PLC20 ranging from -0.41 ± 0.06 MPa for B. menziesii to -0.52 ± 0.09 MPa for B. 

attenuata and -0.52 ± 0.11 MPa for B. littoralis. PLCso values ranged from-1.29 ± 0.19 

MPa for obligate phreatophyte B. ilicifolia to -1.44 ± 0.16 MPa for the facultative 

phreatophyte B. attenuata, though these were not significantly different (P = 0.931). 

() 
....J 

100 

80 

60 

40 

20 

0.. 100 

80 

60 

40 

20 

.s -4 -3 

T 
_l' 

T 

-2 

(a) 
I 

T 
_r T 

T 

(c) 

T 

l~ 

-1 -5 

Xylem Potential (MPa) 

(b) 

I 

I 

(d) 

J 

1~ 

-4 -3 ·2 -1 

Figure 3.1. Vulnerability curves for (a) Banksia attenuata (r2=0.83; n=lO), (b) 
Banksia menziesii (r2=0.84; n=5), (c) Banksia ilicifolia (r2=0.80; n=lO) and (d) 
Banksia littoralis (r2=0.87; n=5) at low site. Data plotted is the mean± lSE. PLC is 
% loss of conductivity. Fitted curves are exponential-sigmoidal: PLC = 
100/{l+exp[a('I'x-b)]} where a= gradient of a linear transformation, 'I'x is xylem 
potential and b is the is 'I'x where PLC = 50% 
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Table 3 .1. Mean (± 1 SE) values for a (gradient) and PLC20 (xylem potential at which 
% loss of conductance = 20) and PLCso from exponential-sigmoidal curve fitted to 
data for Banksia attenuata (n=lO), Banksia menziesii (n=5), Banksiq ilicifolia (n=lO) 
and Banksia !ittoralis (n=5) at the low site. 

B. attenuata 

B. menziesii 

B. ilicifolia 

B. littoralis 

a PLC2o (MPa) PLC50 (MPa) 

1.38±0.13 

1.13 ± 0.23 

1.37 ± 0.12 

1.47 ± 0.16 

-0.52 ±0.09 

-0.41 ± 0.06 

-0.43 ± 0.07 

-0.52 ± 0.11 

-1.44 ± 0.16 

-1.40 ± 0.13 

-1.29 ± 0.19 

-1.41 ± 0.21 

Table 3.2. One-way analysis of variance (ANOVA) results comparing the parameters 
a (gradient), PLC20 (xylem potential at which% loss of conductance= 20), PLC50 and 
PLCso from exponential-sigmoidal curves fitted to data for B. attenuata, B. menziesii, 
B. ilicifolia and B. littoralis at the low site. 

a 

PLCzo 

PLCso 

df F sig. 

3,26 

3,26 

3,26 

0.666 

0.390 

0.147 

0.58ons 

0.761ns 

0.931 ns 

The values of the applied pressures corresponded well with the PLCzo and PLCso values 

derived from the fitted exponential-sigmoidal function. Statistical analysis of PLC at 

each applied pressure found that there were no significant differences {Table 3.3). This 

reflects the no significant differences found for data obtained from the fitted curve. 

Table 3.3. One-way ANOV A results comparing % loss of conductance data at each 
applied xylem potential for B. attenuata, B. menziesii, B. ilicifolia and B. littoralis the 
low site. Values assigned ns signifies no significant differences found. 

Xylem 
Potential d.f F sig. 
(MPa) 

-0.5 3,25 0.251 0.860ns 

-1 3,26 0.893 0.458ns 

-1.5 3,24 0.232 0.873ns 

-2 3,26 0.283 0.837ns 

-2.5 3,20 0.832 0.492ns 

-3 3,26 0.768 0.523ns 

-4 3,26 0.993 0.412ns 

-5 3,20 0.515 0.676ns 
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Stem-specific conductivity (Ks) was highest for the two obligate phreatophyte species in 

contrast to the facultative phreatophytes (Fig 3.2), though no statistically significant 

differences were observed (P= 0.252). 
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Figure 3.2. Stem-specific conductivity (Ks) values for each study species at the 
bottom slope site. Plotted values are means ± 1 SE. Same letters indicate no 
significant differences between species (df= 3,26; F =1.445; sig. 0.252) 

There were no clear trends evident in leaf-specific conductivity and Huber values in 

regards to obligate and facultative phreatophytes. Leaf-specific conductivity (KL) was 

highest for the B. ilicifolia (7.87 x 10-4 ± 4.1 x 10-5 Kg.m-1.MPa.s-1
), though the lowest 

KL value was for B. littoralis (3.65x10-4 3.1x10-5 Kg.m-1.MPa.s-1
), both of which are 

obligate phreatophytes (Fig. 3.3). However, no statistically significant differences were 

identified tlu-ough analysis using one-way ANOVA (P=0.073). A comparison ofHuber 

values for each of the four species investigated found that the obligate phreatophyte B. 

littoralis was significantly different from B. ilicifolia and B. attenuata (P=0.028). The 

facultative plu-eatophyte was neither different from B. attenuata nor B. littoralis (Fig. 

3.4). 
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Figure 3.3. Leaf-specific (KL) values for Banksia attenuata (n=l 0), Banksia menziesii 
(n=5), Banksia ilicifolia (n=lO) and Banksia littoralis (n=S) at the bottom slope site. 
Plotted values are means ± 1 SE. Same letters indicate no significant differences 
between species (df. = 3, 26; F = 2.163; sig. = 0.073) 
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Figure. 3.4. Huber values (ratio of twig cross-sectional area to leaf area) for Banksia attenuata 
(n=lO), Banksia menziesii (n=5), Banksia ilicifolia (n=lO) and Banksia littoralis (n=5) at the 
low site. Values are means± 1 SE. One-way ANOVA found significant differences between 
species (df. = 3,26; F = 3.552; sig. = 0.028) Treatments with the same letters did not differ 
significantly (P >0.05). 
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3.2 Intraspecific Differences 

Intraspecific differences in hydraulic architecture of Banksias located in contrasting 

ecohydrological habitats were investigated to address hypothesis two of this study. The 

shape of the vulnerability curves were all similar, as demonstrated by the similar values 

for the coefficient a (Table 3.4). No significant differences were identified for a though 

intraspecific differences were evident at both PLC2o and PLC50 (Table 3.5). The two 

facultative phreatophyte species, B. attenuata and B. menziesii were found to have an 

increased resistance to xylem cavitation at the more xeric dune crest site (Fig. 3.5; Table 

3.4). At the dune crest site PLC20 was higher for both B. attenuata (-1.34 ± 0.15) and B. 

menziesii ( -1.23 ± 0.13) in contrast to the individuals at the more mesic bottom slope 

site (Table 3.4). The PLC50 value for B. attenuata was -1.44 MPa at the bottom slope 

site, in contrast to -2.51 MPa at the dune crest site (P = 0.000; Table 3.4). This pattern 

was similar for B. menziesii which had a PLC50 value of -1.41 MPa at the low site and -

2.23 MPa at the dune crest site (P = 0.005). In contrast to the results for the facultative 

phreatophyte species, the obligate phreatophyte, B. ilicifolia, did not demonstrate any 

significant differences to water stress between individuals sampled at the limits of their 

ecohydrological distribution. No significant differences were observed (Table 3.5) 

though PLC20 and PLC50 were both lower at the mid slope site (Table 3.4). 

PLC values derived from an exponential-sigmoidal function fitted to the data 

conesponded with PLC values at each applied pressure. For the two facultative 

phreatophyte species, significant differences occmred at higher (less negative) xylem 

potentials. For B. attenuata significant differences were found at -1 to -3 MPa and for 

B. menziesii at -0.5, -1, -2.5 and -3 MPa (Table 3.6 & 3.7). The obligate phreatophyte, 

B. ilicifolia showed no significant differences between the bottom slope and midslope 

sites (Table 3.8). At lower xylem potentials (ie. -4 and -5 MPa), there were no 

significant differences for any of the species. 
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Figure 3.5. Vulnerability curves for bottom slope (open circles), dune crest (solid 
circles) for (a) B. attenuata (r2=0.83; r2=0.90; n=lO) (b) B. menziesii (r2=0.84; 
r2=0 .91; n=S) and bottom slope (open circles and mid slope (solid triangles) for (c) B. 
ilicifolia (r2=0.80; r2=0.87; n=lO). Data plotted is the mean± lSE. PLC is% loss of 
conductivity. Fitted curves are exponential-sigmoidal: PLC = 100/{l+exp[a('I'x-h)]} 

. where a= the gradient of a linear transformation, 'I'x is xylem potential and b is the is 
'I'x where PLC =50%. 
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Table 3.4. Mean (±lSE) values for a (gradient) and PLC20 (xylem potential at which 
% loss of conductance= 20) and PLC50 from exponential-sigmoidal curves fitted to 
data for Banksia attenuata bottom slope and dune crest sites (n=lO), B. menziesii 
bottom slope and dune crest sites (n=5) and B. ilicifolia bottom slope and mid slope 
sites (n= 1 0). 

a PLC2o PLCso 

B. attenuata 
1.39 ± 0.13 -0.52 ± 0.09 -1.44 ± 0.16 

Low Site 
B. attenuata 

1.24 ± 0.10 -1.34 ± 0.15 -2.51 ± 0.12 
Dune crest 
B. menziesii 1.14 ± 0.23 -0.42 ± 0.06 -1.41 ± 0.13 
Low Site 
B. menziesii 

1.40 ± 0.67 -1.23 ± 0.13 -2.23 ± 0.16 
Dune crest 
B. ilicifolia 

1.37 ± 0.12 -0.44 ± 0.07 -1.30 ± 0.19 
Low Site 
B. ilicifolia 

1.22 ± 0.08 -0.60 ± 0.15 -1.78±0.13 
Top Site 

Table. 3.5. Results from t-tests comparing mean values for PLC20 (xylem potential at 
which % loss of conductance = 20), PLC50 and PLC80 from exponential-sigmoidal 
curve fitted to data for Banksia attenuata bottom slope and dune crest sites (n=lO), 
B.menziesii bottom slope and dune crest sites (n=5) and B. ilicifolia bottom slope and 
mid slope sites (n= 1 0). 

Species df t sig. 

B. attenuata 

a 18 -0.904 0.378 118 

PLC2o 18 -4.828 0.000 

PLCso 18 -5.203 0.000 

B. menziesii 

a 8 -1.091 0.307 118 

PLC2o 8 5.790 0.000 

PLCso 8 3.900 0.005 

B. ilicifolia 

a 18 1.113 0.280 118 

PLC2o 18 0.966 0.347 118 

PLCso 18 2.151 0.050 118 
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Table 3.6. A comparison of % loss of conductance values at different xylem 
potentials, using t-tests to compare Banksia attenuata data from the bottom slope 
with B. attenuata data from the dune crest site. 

Xylem 
d.f t sig. 

potential (Mpa) 

-0.5 17 2.004 0.061 ns 

-1 18 2.181 0.043 

-1.5 15 3.628 0.002 

-2 18 4.841 0.000 

-2.5 8.5 2.320 0.001 

-3 11.5 2.582 0.025 

-4 18 0.160 0.875 ns 

-5 17 -0.529 0.604 ns 

Table. 3.7. A comparison of % loss of conductance values at different xylem 
potentials, using t-tests to compare Banksia menziesii data from the bottom slope 
with B. menziesii data from the dune crest site. 

Xylem 
d.f t sig. 

potential (MPa) 

-0.5 8 5.345 0.001 

-1 8 5.060 0.001 

-1.5 8 2.276 0.052 ns 

-2 8 1.217 0.258 ns 

-2.5 8 2.877 0.021 

-3 8 2.636 0.030 

-4 8 -0.236 0.819 ns 

-5 7 -0.578 0.581 ns 

Table 3.8. A comparison of % loss of conductance values at different xylem 
potentials, using t-tests to compare Banksia ilicifolia data from the bottom slope with 
B. ilicifolia data from the B. ilicifolia high sites. 

Xylem 
potential (MPa) 

-0.5 

-1 

-1.5 

-2 

-2.5 

-3 

-4 

-5 

d.f 

18 

18 

18 

17 

8.5 

18 

18 

6 

t 

0.953 

1.756 

1.037 

1.651 

1.065 

7.490 

1.066 

-0.129 

sig. 

0.353 ns 

0.096 115 

0.313 ns 

0.117 115 

0.316 ns 

0.153 115 

0.300 ns 

0.902 115 

29 



Stem-specific conductivity (Ks) was highest at the more xeric site for each of the study 

species. This difference was statistically significant for B. menziesii with a higher Ks at 

the dune crest site in contrast to the bottom slope site (P=0.009). There were no 

significant differences found for B. attenuata or B. ilicifolia, though Ks was higher for 

each of these species at the dune crest and mid slope site respectively (Fig. 3.6). 
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Figure 3 .6. Stem-specific hydraulic conductivity (Ks) for (a) Banksia attenuata 
(n=lO), (b) Banksia menziesii (n=5) and (c) Banksia ilicifolia (n=lO) at contrasting 
ecohydrological habitats. Plotted values are means± lSE. Different letters indicate 
significant differences between sites, B. menziesii (df. = 8; t = -3.391; sig. = 0.009) 
and no significant differences for B. attenuata (df. = 18; t = -1.754; Sig. = 0.096) and 
B. ilicifolia (df:.= 18; t= -1.754; Sig. = 0.096) 
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Leaf-specific conductivity (KL) values was determined to be slightly higher at the dune 

crest site for the two facultative :phreatophyte species (B. attenuata and B. menziesii). 

For the obligate phreatophyte, B. ilicifolia, KL was lower at the mid-slope site in contrast 

to the bottom slope site for the (Fig. 3.7). These differences were not found to be 

statistically significant. 
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Figure 3.7. Leaf-specific hydraulic conductivity (KL) for (a) Banksia attenuata 
(n=lO), (b) Banksia menziesii (n=5) and (c) Banksia ilicifolia (n=lO) at contrasting 
ecohydrological habitats. Plotted values are means± lSE. Same letters indicate no 
significant differences being identified between sites: B. attenuata (df. = 18; t = -

0.696; sig. = 0.495); B. menziesii (df. = 8; t = -1.49; sig. = 0.175) and B. ilicifolia (df. 
= 17; t = 1.044; sig. = 0.311). 
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Similar to K1 values, Huber values were determined to be higher at the dune crest site in 

comparison to the bottom slope site for the two facultative phreatophyte species (Fig. 

3.8). The Huber value was lower for B. ilicifolia at the mid-slope site in contrast to the 

bottom slope site, also reflecting the results for K1 values. However, none of these 

differences were dete1mined to be statistically significant. 
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Figure 3 .8. Huber values (ratio of twig cross-sectional area to leaf area) for (a) 
Banksia attenuata (n=10), (b) Banksia menziesii (n=5) and (c) Banksia ilicifolia 
(n= 1 0) at contrasting locations in the landscape in relation to the ecohydrological 
gradient. Plotted values are means ± 1 SE. Same letters indicate no significant 
differences between sites: B. attenuata (df. = 18; t = 1.090; sig. = 0.290); B. menziesii 
(df. = 8; t = -1.089; sig. = 0.308) and B. ilicifolia (df. = 17; t = 1.234; sig. = 0.234) 
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4. Discussion 

4.1 Interspecific differences in vulnerability to xylem cavitation 

The hydraulic architecture of individuals of four Banksia species was investigated at the 

same ecohydrological habitat (bottom slope ·site) to minimise confounding 

environmental factors. Many studies on hydraulic architecture have compared riparian 

species with more xeric species and there is general agreement that riparian species are 

more vulnerable to xylem cavitation (Tyree et al. 1992; Lopez, eta!. 2005). There have 

been suggestions that this pattem might also apply to obligate and facultative 

phreatophytes (Froend & Drake 2006). Froend and Drake (2006) reported that the 

obligate phreatophyte species B. ilicifolia and Melaleuca preissiana were more 

vulnerable to xylem embolism than the facultative phreatophyte species B. attenuata 

and B. menziesii. However, contrary to the preliminary findings of Froend and Drake 

(2006), this more comprehensive study showed both congeneric obligate and facultative 

phreatophyte species, in the same ecohydrological habitat, have the same vulnerability 

to xylem embolism. 

Preliminary findings also demonstrated consistently lower PLC values than those 

determined in this study (Froend & Drake 2006). Froend and Drake (2006) suggested 

that PLC20 is a more appropriate point of comparison. However, this cunent study 

compared the actual values determined for each applied pressure and found that the 

differences (or lack thereof) that were evident at PLC20 were also present at PLC50 . 

Since the majority of other studies compare PLC50 values (Pammenter & Vander 

Willigen 1998; Martinez-Vilalta et al. 2002; Maherali et al. 2004), these are used to 

make comparisons in this study. PLC50 for B. attenuata was determined to be -2.69 MPa 

by Froend and Drake (2006), compared to -1.44 MPa and -2.51 MPa at the bottom slope 

and dune crest, respectively. The discrepancies were larger still for B. menziesii and B. 

ilicifolia. Froend and Drake (2006) reported a PLC50 of -3.24 MPa for B. menziesii, 

much lower than the -2.23 MPa at the dune crest site in this study. This was similar for 

B. ilicifolia, with a PLC50 value of -2.84 MPa compared to -1.78 MPa at the mid-slope 

site in this cunent study. The differences in vulnerability curves may be an artefact of 

the different methods used to induce embolism in stems. The previous study used the 

air-drying method to detennine vulnerability curves, meaning that several stems (n = 4) 

were used to produce one curve. In contrast, the air-injection method used in this study 

33 



allows for a curve to be made from one stem through a series of different applied 

pressures. More replications of full vulnerability curves can therefore be made in the 

same amount of time it takes to make one full curve using the air-drying method. 

Conespondingly, the differences may be attributed to the disparity in number of 

replicates for each point on the curve. For example, at -1 MPa on the bottom slope B. 

ilicifolia vulnerability curve there are 10 replicates. In contrast, at this xylem potential 

on the curve for the same species in the Froend and Drake (2006) study only one data 

point is detem1ined. 

Others have also found that vulnerability curves detennined using the air-drying method 

give more resistant curves than those developed using the air-injection method. 

Packman and Speny (2000) compared the two methods when determining the 

vulnerability curve for Larrea tridentata. The air-injection method gave a more 

vulnerable curve than the air-drying method. Similarly Lopez et al. (2005) found that 

PLC50 was lower using the air-drying method in contrast to the air-injection method 

when determining the vulnerability curves for Cordia alliodora. However, Speny and 

Saliendra (1994) found that vulnerability curves determined with both techniques were 

"indistinguishable" from each other. Therefore, air-injection is a valid method for 

inducing xylem cavitation, though vulnerability curves may vary from those obtained 

using air-drying or centrifugal force and this should be acknowledged in the 

interpretation of results. 

It should also be noted that in the current study, there was consistently more variation 

(ie. larger standard error) in PLC at the higher xylem potentials. This has generally not 

been addressed in the literature and does not always appear to occur, inespective of the 

method used to induce cavitation. Similar to the results of this cunent study, Hacke et 

al. (2006) reported vulnerability curves that had larger standard enors at less negative 

xylem potentials, though they used centrifugal force. Vulnerability curves for Acer 

grandidentatum detennined using the air-injection method had consistently large 

standard errors at each xylem potential (Alder et al. 1996). Vilagrosa et al. (2003) used 

the· air-drying method and reported vulnerability curves that had larger standard enors 

in the middle section of the curve (approx. PLC20 to PLC80). There may therefore be no 

significance in the pattem of standard errors observed in this current study. 
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The age of the stems used may have contributed to the relatively high PLC50 values 

reported in this study in comparison to the results of Froend and Drake (2006). It has 

been reported that embolised xylem can become refilled and that they often undergo a 

cavitation and refilling cycle. Cavitation fatigue has been observed previously, with 

stems that have undergone a cavitation-refilling· cycle being found to be more 

vulnerable than stems that had not experienced water-stress. It has been suggested that 

this is due to weakened interfibrillar bonds in the pit membrane of xylem that have been 

exposed to water-stress (Hacke & Sperry 2001 ). It may be the stems used in this current 

study (aged 4 to 6 years) demonstrated some degree of cavitation fatigue. However, as 

it was a comparative study and used similar aged plant material to make inter- and 

intraspecific comparisons, the influence of cavitation fatigue on the interpretation of 

results should be minimal. 

The absence of interspecific differences between obligate and facultative species shown 

in this study may be further explained. The distinction between phreatophyte types 

could be confounded if the study species are congeneric with associated similarities in 

xylem structure. Cavender-Bares et al. (2004) suggested that closely related species 

that inhabit similar environmental conditions will exhibit similar phenotypic traits. The 

four species in this study show different distributional ranges along the ecohydrological 

gradient. However, at a single ecohydrological habitat the effects of site conditions on 

plant development appear to be important. At the bottom slope site all four species, 

both obligate and facultative phreatophytes, developed in conditions where access to 

water is relatively umestricted, with water available at higher water potentials (closer to 

0 MPa) for the majority of the seasonal cycle. Water is less likely to be a limiting factor 

at the lower ecohydrological habitat and as a consequence there may be no selection 

pressure for xylem resistant to cavitation (Lopez et al. 2005). It is probable the 

relatedness of the species, combined with them all having the same exposure to water 

stress (ie. at the same ecohydrological habitat), is the strongest explanation for the lack 

of variation in vulnerability to xylem embolism. 

There was some interspecific variation in the other parameters of hydraulic architecture 

that were measured. Huber values were found to be significantly lowest for B. littoralis, 

which suggests that this species invests less sapwood in proportion to leaf area. This is 

supported by the low KL values observed for B. littoralis. Edwards (2006) reported that 
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there was no correlation between Ks and KL for Pereskia species. It was suggested that 

Huber value, and thus carbon allocation, may be more closely related to KL than 

hydraulic architecture, as measured by Ks (Edwards 2006). B. littoralis may therefore 

be relatively efficient in water transport without having to invest in wood (ie. increase 

its stem diameter). In contrast B. attenuata had a relatively low Ks value, but a higher 

KL and a statistically significant higher Huber value than B. littoralis. This suggests that 

B. attenuata has invested more stem area to support its leaves. These differences 

demonstrate that there is some interspecific variation in hydraulic architecture, despite 

there being no significant differences in vulnerability to xylem cavitation. 

4.2 Intraspecific differences in vulnerability to xylem embolism 

To address hypothesis 2 of the study, intraspecific differences in hydraulic architecture, 

particularly vulnerability to xylem embolism, associated with different ecohydrological 

habitats were determined. Other studies have suggested that plants that occupy drier 

habitats are more resistant to xylem cavitation (Engelbrecht et al. 2000; Pinol & Sala 

2000; Froend & Drake 2006). It was thus expected that trees sampled at the dune crest 

site (the drier habitat) would be more resistant to xylem cavitation. The results obtained 

generally agree with this hypothesis, with both facultative phreatophyte species (B. 

attenuata and B. menziesii) being more resistant at the dune crest site compared to the 

bottom slope site. However, the obligate phreatophyte, B. ilicifolia, was found to have 

no significant intraspecific differences in vulnerability at two contrasting 

ecohydrological habitats. The primary difference between these sites is the availability 

of a reliable water source, in particular groundwater. Individuals of the two facultative 

species at the dune crest site have experienced drier conditions, having to access water 

at lower potentials than the individuals at the bottom slope site. Plants at the dune crest 

site are reliant upon precipitation, with localised recharge of stored soil moisture being 

their only water source. Over summer this water source is depleted through 

transpiration and is not recharged again until the next precipitation event and it is during 

this period that plants experience the most water stress. Even during wetter months, 

water is less accessible to plants at the dune crest site compared to the bottom slope site 

(Zencich et al. 2002). At the dune crest site water is quick to infiltrate, with the coarse 

sands having a low water-holding capacity. There is therefore less plant available 

water, particularly during summer, at the dune crest site than the bottom slope site. A 

higher resistance to xylem cavitation is a beneficial trait for an individual that occurs in 
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an enviromnent where water availability is more limiting (Maherali et al. 2004). B. 

attenuata and B. menziesii at the dune crest site have developed in conditions where 

water is less available and more variable in contrast to individuals of the same species at 

the bottom slope site and have xylem that are more resistant to water stress induced 

cavitation. It appears that these two species have been able to adjust their hydraulic 

architecture to be able to inhabit this more variable and xeric environment, as indicated 

by decreased vulnerability to water stress. It may be infened that ontogeny, rather than 

phylogeny, is having a greater influence on plant vulnerability to water stress as 

illustrated by the B. attenuata and the B. menziesii that established in the drier, water 

limited environment being more resistant. 

Water availability has become established as a determining factor of hydraulic 

architecture with many studies demonstrating interspecific differences in vulnerability 

to xylem embolism in relation to water availability. Hacke et al. (2000) conducted a 

study similar to this cunent one, comparing inter- and intraspecific differences in 

vulnerability to xylem embolism for plants that experience varying degrees of water 

stress. The phreatophytic species Chrysothamnus nauseosus was compared with a 

'summer green' group and a drought deciduous group that drops its leaves during 

summer drought. It was found that the phreatophytic species was most vulnerable to 

embolism and this was attributed to it not having experienced drought, as it has access 

to a reliable water source. In contrast, C. viscidiflorus, a shallow rooted summer 

evergreen which has limited access to water over summer, was more resistant to xylem 

cavitation. This supports the observations in this study that the facultative phreatophyte 

species at the dune crest site were more resistant to cavitation than individuals of the 

same species at the bottom slope site. The primary difference between the populations 

is access to a reliable water resource and it appears that some plants are able to adjust 

their vulnerability to xylem cavitation in response to water availability. Similarly, a 

comparison of sub-species of Artemisia tridentate in the Great Basin of North America 

found that there was a gradient of resistance to xylem embolism in conelation with 

water availability (Kolb & Sperry 1999). The sub-species that occuned in an arid 

envirom11ent was significantly less vulnerable to xylem cavitation than the sub-species 

that occmTed in a mesic environment. Brodribb and Hill (1999) compared hydraulic 

architecture of 10 conifer species that occupied different climates. At one extreme 

Actinostrobus qcuminatus, a semi-arid shrub from Western Australia, which occupies a 
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habitat where mean quarterly rainfall is 14 mm had a PLCso value of -14.2 MPa. In 

contrast Dacrycmpus dacrydiodes, a rainforest tree from New Zealand which grows in 

an areas with a mean quarterly rainfall of 378 mm had a PLCso value of -2.3 MPa. This 

pattem was similar for the other 8 species in the study, which suggests that water 

availability is a primary detennining factor of vulnerability to xylem cavitation. 

The majority of studies, such as the ones previously discussed, investigate differences in 

vulnerability to water stress between species in contrasting environments. More 

relevant to this current study are investigations of intraspecific differences in 

vulnerability to water stress. Alder et al. (1996) fom1d that there was an increase in root 

cavitation resistance for Acer grandidentatum at a more xeric upslope site in contrast to 

individuals of the same species at a more mesic downslope site. Similarly, Pockman & 

Sperry (2000) compared riparian and upland populations of Baccharis sarothroides and 

Prosopis velutina. It was once again found that the upland populations of each species 

were less vulnerable to xylem embolism than the populations at the 'wetter' riparian 

site. Holste et al. (2006) conducted a glasshouse experiment, testing the effect of 

different enviromnental conditions on the hydraulic architecture of Phaseolus vulgaris. 

The study found that plants exposed to dry conditions, therefore water stress, during 

development were less susceptible to xylem cavitation than the well-watered control 

plants. There is thus a strong trend between water availability and resistance to xylem 

embolism and the results for B. attenuata and B. menziesii in this current study agree 

with this trend. 

The lack of significant differences between the populations of B. ilicifolia may be due to 

of a number of factors. B. ilicifolia does not occupy areas that are vastly different from 

each other in terms of water availability since it has a limited distribution. It only occurs 

in areas where depth to groundwater less than about 8 m (Arrowsmith 1992). It may be 

that this species does not experience the same degree of water stress as B. attenuata and 

B. menziesii due to its relative proximity to groundwater and the capillary fringe. It may 

be expected that the similarity of water availability at sites colonized by B. ilicifolia and 

its year round use of groundwater (Zencich et a!. 2002) is reflected in the similarities in 

vulnerability to xylem embolism. However, the more constrained distribution of B. 

ilicifolia may in fact be a consequence of a lack of plasticity in its ability to alter xylem 

structure. These results may further confirm the classification of B. ilicifolia as an 
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obligate phreatophyte, since it appears that it requires a reliable water source due to its 

inability to alter its xylem structure. 

The vulnerability curves determined in this study were all of a similar shape, as 

reflected by coefficient a values. The coefficient a relates to xylem stmcture, 

particularly the distribution ofthe largest pit pore in each vessel, whilst PLC50 relates to 

the mean maximum size of pit pores for all vessels (Pammenter & Vander Willegen 

1998). The similarities in a observed in this study may reflect the relatedness of the 

congeneric species used, indicating that xylem stmcture is similar between species. It 

may be inferred that the main difference between the more resistant dune crest 

individuals and the bottom slope trees is the mean maximum pit pore size. For example 

B. attenuata at the dune crest site may have larger pit pores than bottom slope B. 

attenuata (as indicated by PLC50), but the distribution of pores is similar (as indicated 

by a). 

It was originally expected that the trees that have a more reliable access to water would 

exhibit higher Ks values, in accordance with the theory of safety vs. conducting 

efficiency (Zimmermann 1983). A number of studies have found that in habitats where 

water availability is not a limiting factor species will exhibit high Ks values (Kolb & 

Davis 1994; Martinez-Vilalta et al. 2002). It is thought that higher specific conductivity 

in plants is related to increased susceptibility to xylem embolism. High specific 

conductivity can be related to wider xylem vessels and larger interconduit pit pores. 

According to the air seeding hypothesis, larger pores are more likely to permit air into a 

vessel as xylem potential decreases, thus making xylem with larger pores more likely to 

cavitate (Zimmermmm 1983; Hacke et al. 2006). Contrary to expectation, the dune 

crest populations all exhibited higher Ks values than the bottom slope trees, with B. 

menziesii in particular having statistically significant higher Ks values. However, others 

have repmied similar results. Pockman and Sperry (2000) found that Tamarix 

ramosissima was relatively resistant to xylem cavitation and had a high specific 

conductivity. Maherali and DeLucia (2000) found that Ponderosa pines that occurred in 

a desert had higher Ks than individuals of the same species that grew in a montane habit. 

However, no significant differences in vulnerability to xylem embolism were found. It 

was suggested that the Ks values were associated with the higher evaporative demand at 

the desert site, thus. a need to transport water more efficiently. It may be noted that 
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there is no strong evolutionary relationship between specific conductivity (Ks) and 

vulnerability to embolism in angiosperms, despite the fact that there is an established 

relationship between pit pore size and vulnerability to embolism (Maherali et al. 2004). 

This has been attributed to the influence of other traits, which also determine specific 

conductivity, but do not necessarily relate to xylem cavitation, such as increased vessel 

length. It has been proposed that in some cases a correlation between resistance to 

xylem embolism and high specific conductivity is due to an increase in hydraulic 

efficiency (Maherali et al. 2004). This allows a plant to maintain the water column at 

increasingly negative xylem potentials, avoiding cavitation (Maherali & DeLucia 2000). 

Thus, this study of Banksia agrees with earlier studies that showed no trend between Ks 

and vulnerability to xylem embolism (Kavanagh, et al. 1999; Maherali et al. 2004). 

Xylem reinforcement may be better, correlated with vulnerability to embolism than the 

diameter of the conduit, with studies repmiing that plants with more resistant xylem 

also have thicker secondary xylem walls (Hacke & Sperry 2001; Holste et al. 2006). 

This suggests that the facultative phreatophyte species (B. attenuata and B. menziesii) at 

the dune crest site may have thicker secondary xylem walls, or more reinforcing, than 

the individuals of the same species at the bottom slope site. The reinforcement of 

xylem may help increase resistance to xylem cavitation, particularly for plants that 

experience regular water stress (Holste et al. 2006). However, it is often found that Ks 

decreases as a trade-off to thickened xylem walls (Pitterman et al. 2006). This was not 

found in this study, since the more resistant xylem at the dune crest habitat were also 

found have higher Ks values. It may therefore be inferred that xylem wall thickening 

was not associated with the increased resistance to xylem cavitation, though this would 

have to be confim1ed through further studies of xylem anatomy. 

There was no clear trend in an intraspecific comparison of Huber values and leaf 

specific hydraulic conductance between the bottom slope, mid slope and dune crest 

sites. It was expected that a higher Huber value would be associated with increased 

resistance to xylem embolism. A high Huber value means that there is more conducting 

wood per unit ofleafmaterial (Tyree & Ewers 1991). If xylem vessels are reinforced to 

provide better resistance to cavitation, then it would be expected that there is more 

wood as this material provides the reinforcement. Also, it is often found that plants in 

more xeric enviromnents have smaller leaf area, in response to less water availability 
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(Mencuccini 2003). This would also increase Huber values such as those found for B. 

menziesii at the dune crest site; however this was not statistically significant. There was 

little difference in Huber values between the dune crest and bottom slope sites for B. 

attenuata and the mid and bottom slope sites for B. ilicifolia. Leaf-specific conductivity 

gives a measure of the sufficiency of a stem to supply water to the leaves distal to the 

stem. B. menziesii had the largest KL out of the study species, which correlates with the 

Huber value that was observed. It appears that B. menziesii at the dune crest site has a 

large investment in wood area in relation to leaf area. The large Huber value may be 

required to maintain the large supply of water to the leaves, as indicated by KL. It 

should be noted that KL and Huber values for B. menziesii had a large standard error and 

that these differences were not found to be significantly different. 

4. 3 Phenotypic Plasticity 

The overall appearance of an organism is a result of its genotype and its interaction with 

the environment during development; resulting in its phenotype. Phenotypic plasticity 

refers to the ability of an organism to modify the expression of its genotype in response 

to its environment (Bradshaw 1965). The dry conditions experienced by the B. 

attenuata and B. menziesii populations at the dune crest site appear to have contributed 

to increased resistance to xylem cavitation. Water availability is not a limiting factor 

for trees at the bottom slope site and there may be no selection pressure for more 

resistant xylem. In contrast, resistant xylem is beneficial at a site where water 

availability is an issue, such as at the dune crest site. Facultative phreatophytes, B. 

attenuata and B. menziesii, appear to be more 'plastic' in response to environmental 

conditions in contrast to obligate phreatophyte species. 

A limited number of studies have suggested phenotypic plasticity in vulnerability to 

xylem embolism in response to a gradient of water availability and/or climate. Sperry 

and Ikeda (1997) found that roots of Psuedotsuga menziesii at a more xeric upslope site 

were more vulnerable than roots from a down-slope site. It was suggested that this 

species is plastic in its ability to make adjustments to vulnerability to xylem embolism. 

Maherali et al. (2002) found that differences in hydraulic architecture in Ponderosa 

pines in contrasting climates are not due to ecotypic divergence. It was found that there 

was some genetic differentiation among populations, but it was not attributable to 

geographic distance. or differences in climate (Maherali et al. 2002). It was instead 
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concluded that differences in the hydraulic architecture between populations was due to 

phenotypic plasticity in response to different environmental conditions. 

The Lexia study site is a heterogenous environment with regards to the undulating sand 

dunes over the superficial aquifer. There are differences in the depth to groundwater 

and the distribution of the dominant canopy species reflects this. It appears that B. 

attenuata and B. menziesii have sufficient plasticity in hydraulic architecture, in 

particular xylem resistance to embolism, to occupy a broaderrange in ecohydrological 

habitat. The obligate phreatophyte, B. ilicifolia does not demonstrate this plasticity. 

Facultative phreatophytic species, such as B. attenuata and B. menziesii, may be able to 

occupy areas without access to groundwater since they are able to adjust their hydraulic 

architecture. In contrast, the vulnerability curve for B. ilicifolia did not differ between 

sites, suggesting that this obligate phreatophyte is less plastic in its hydraulic 

architecture. 

4.4 Conclusions 

This study has shown that ecohydrological habitats can determine hydraulic 

architecture, particularly vulnerability to xylem embolism. At the same ecohydrological 

habitat where water is readily accessible (bottom slope site) there were no interspecific 

differences in vulnerability to water stress. It appears that there is no selection pressure 

for resistant xylem in the more mesic environment where plants experience little water 

stress. In contrast, the facultative phreatophytes, B. attenuata and B. menziesii, 

appeared to be plastic in vulnerability to embolism in response to developing in a more 

xeric environment. B. ilicifolia did not differ in vulnerability to embolism, supporting 

its classification as an obligate phreatophyte. 

4. 5 Consequences for management 

An understanding of phreatophyte response to decreased water availability is essential 

for detem1ining ecological water requirements for environmental water allocation. The 

results of this study suggest that vulnerability curves may be usefully incorporated into 

future research that contributes to groundwater management. Vulnerability curves are 

an inexpensive and logistically viable surrogate to in situ groundwater drawdown 

experiments to get an indication of plant response to decreased water availability 

(Froend &Drake2006). Vulnerability curves provide a quantitative measure of relative 
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vulnerabilities to water stress, data that is necessary for the quantitative modelling of 

Banksia woodland response to groundwater drawdown. This quantitative measure of 

plant susceptibility to groundwater drawdown combined with quantitative 

measurements of environmental attributes provides for a more sophisticated capacity for 

vegetation response modelling and water resource management. 

This study has built upon the results of Froend and Drake (2006), providing a more 

comprehensive study of interspecific differences in xylem cavitation for four co

occurring Banksia species. This cmrent study, contrary to preliminary investigations, 

demonstrates that at the same location all four Banksia species have the same response 

to water stress. In an ecohydrological habitat where a reliable water source is almost 

constant, such as that afforded by the bottom slope site, there is insufficient antecedent 

environmental pressure to develop. significant differences in vulnerability to xylem 

cavitation between species. Development of hydraulic architecture in such a habitat 

confyrs an elevated susceptibility to cavitation if and/or when water availability is 

reduced. Thus, all four Banksia species are relatively vulnerable to any future decreases 

in groundwater levels. If changes in water availability persist the data from this study 

suggest that obligate phreatophytes would be lost from low-lying areas, whilst 

facultative phreatophytes would re-establish under these drier conditions. Long-tem1 

monitoring of Banksia woodland on the Gnangara Mound has previously identified 

changes in the overstorey composition in response to a gradual decline in groundwater 

(Groom et al. 2000, Groom et al. 2001). h1 particular, a decline in the obligate 

phreatophyte, B. ilicifolia, and the replacement of this species with the more water 

stress tolerant facultative phreatophytes, B. attenuata and B. menziesii has been 

observed (Groom et al. 2000). It may be inferred that this is in part due to the ~ack of 

plasticity in hydraulic architecture for B. ilicifolia as suggested by the results obtained 

in this study. 

Froend and Drake (2006) also suggested that there may be intraspecific variation in 

vulnerability to water stress in relation to different locations on an ecohydrological 

gradient. This study has demonstrated that there are intraspecific differences, 

highlighting the importance of site hydrological attributes in determining plant 

vulnerability to water stress, as was also inferred by Zencich et al. (2002). The results 

from this study may feed into the larger research programme investigating Banksia 
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response to groundwater decline over the Gnangara Mound. The main contribution of 

this study is an understanding of intraspecific differences for facultative phreatophytes 

and the impQiiance of site hydrological attributes in determining plant susceptibility to 

decreased water availability. 

4. 5 Study limitations and suggestions for fitrther research 

This study focussed on determining the vulnerability curves for obligate and facultative 

phreatophytes. Vulnerability curves give an indication of how plants may respond to 

water stress, but as discussed previously, there are limitations in the methods used to 

determine them. As demonstrated, there can be discrepancies between studies that used 

different methods to induce cavitation, Sl}Ch as the differences between Froend and 

Drake (2006) and this current study. These differences should be aclmowledged in the 

interpretation of data. Also, this study only looked at stem vulnerability to embolism. 

It is often noted that roots are more vulnerable to xylem embolism and may be more 

limiting to a plant than xylem in the stem (Tyree & Ewers 1991; Sperry & llceda 1997; 

·Kavanagh et al. 1999). Future studies may wish to investigate this further to determine 

if Banksia roots are more vulnerable to embolism than the stems and to determine if this 

is more limiting to the plant. 

There are a number of parameters that may be measured to support the findings of this 

study. Previous studies have investigated the relationships between water availability 

and vessel characteristics (February et al. 1995). An investigation of xylem structure, 

particularly diameter and secondary xylem wall thickening would provide considerable 

support for the observations made in this study and provide more detail on the hydraulic 

architecture of Banksia species. The methodologies used for this could be similar to 

Pittennann et al. (2006). Transverse hand-sections of xylem should be made, dyed with 

toluidene blue, mounted on a slide and analysed under a microscope. Images of xylem 

tissues should be taken with microscope mounted camera. Image analysis software may 

then be used to measure xylem diameter and xylem wall thickness. This information 

then may be correlated with the vulnerability to xylem cavitation observed in this study. 

Whilst xylem structure is extremely relevant in determining plant vulnerability to water 

stress, it has been demonstrated that stomatal control can also prevent embolism (Davies 

& Zhang 1991). · It.has been previously demonstrated that there can be a correlation 
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between greater stomatal control and resistance to xylem embolism (Rood & Mahoney 

1990; Sparks & Black 1999). Further studies may investigate if this correlation exists 

for the more resistant dune crest Banksia populations, determining if they have 

increased stomatal control in response to a drier environment. 

Fmiher research into the phenotypic plasticity in hydraulic architecture of Banksia 

species in response to decreased water availability may also be desirable. A relatively 

simple way of doing this would be a glasshouse trial, similar to that conducted by 

Holste et al. (2006). Individuals of B. attenuata, B. menziesii and B. ilicifolia should be 

grown in a controlled environment and in the same soil type. The control plants would 

be kept well watered, whilst the treatment plants would be kept under dry conditions. 

Vulnerability curves and xylem anatomy measurements could then be made. Based on 

the observations made in this study it would be hypothesized that individuals of the 

facultative species, B. attenuata and B. menziesii, grown under dry conditions will be 

more vulnerable to xylem embolism, whilst the obligate phreatophyte may not survive 

in the drier conditions, or does not differ between the control and the treatment. 
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