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ABSTRACT 

Artificial neural networks are a popular field of artificial intelligence and have 

commonly been applied to solve many prediction, classification and diagnostic tasks. 

One such task is the analysis of human chromosomes. This thesis investigates the use of 

artificial neural networks (ANNs) as automated chromosome classifiers. The 

investigation involves the thorough analysis of seven different implementation 

techniques. These include three techniques using artificial neural networks, two 

techniques using ANN s supported by another method and two techniques not using 

ANN s. These seven implementations are evaluated according to the classification 

accuracy achieved and according to their support of important system measures, such as 

robustness and validity. The results collected show that ANNs perform relatively well in 

terms of classification accuracy, though other implementations achieved higher results. 

However, ANNs provide excellent support of essential system measures. This leads to a 

well-rounded implementation, consisting of a good balance between accuracy and 

system features, and thus an effective technique for automated human chromosome 

classification. 
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1. INTRODUCTION 

1.1. Introduction to the Research 

Cytogenetics is defined as the study of chromosomes and their abnormalities 

(Jorde, Carey, Bamshad & White, 2000, p. 108) and is an important process in the 

diagnosis and treatment of human diseases (Keller, Gader, Sjahputera, Caldwell, & 

Huang, 1995, p. 125; Wang, et al., 2005, p. 2536). With cytogenetics being such a 

crucial and beneficial study, it has "evolved into a specialized discipline with 

widespread applications in both research and clinical practice, including prenatal 

screening, genetic counselling, oncology, radiation dosimetry and toxicology" 

(Carothers & Piper, 1994, p. 161). Keller, et al. (1995) support Carothers and Piper 

(1994) and state "human genetic investigations have provided some of the most 

dramatic progress in medicine in recent times" (p. 125). 

Chromosomes store the 'blueprints' of all features of every individual. Graham 

and Errington (2000) identify some important applications of chromosome analysis by 

observing that "analysis of the appearance of chromosomes is routinely undertaken in 

hospital laboratories, for example, for diagnosis of inherited, or acquired, genetic 

abnormality or the monitoring of cancer treatment" (p. 249). The smallest error or 

abnormality within chromosomes often results in a larger and much more serious human 

irregularity. In order to identify these errors within chromosomes, cytogeneticists must 

often retrieve cell samples and organise the given chromosomes into their pre

determined groups. Aberrations are often identified by abnormalities in the structure of 

a chromosome or in the number of chromosomes found in the cell (Snustad & 

Simmons, 2000, p. 142). 

1.2. Purpose of the Study 

The traditional method of manual classification of chromosomes by a human 

expert presents several difficulties. These include the shortage of experts leading to an 

increase in workload for existing experts, the large amount of time required to perform 

such a tedious and detailed task and the costs associated with such manual 

classifications, (Lemer, 1998, p. 544). 
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Computerised decision support systems aim to solve many of the problems 

outlined above. "The automatic chromosome classification is an essential component of 

such systems, since it helps to reduce the tedium and labour-intensiveness of traditional 

methods of chromosome analysis" (Martinez, Juan & Casacuberta, 2002, p. 565). By 

using a computerised decision support system, it is therefore arguable that the time of 

classification is significantly reduced and the workload of experts is decreased thus 

effectively decreasing costs. One method for automating chromosome analysis is 

through the use of artificial neural networks (ANNs). ANNs are a subset of the artificial 

intelligence (AI) field of computer science and have been widely applied in problems 

involving prediction, classification and image recognition (Patterson, 1996). This study 

will investigate the use of artificial neural networks as automatic human chromosome 

classifiers. 

1.3. Hypothesis and Research Questions 

This study has been based on the hypothesis: Artificial neural networks are an 

effective technique for classifying human chromosomes. They perform better than 

implementations that do not use artificial intelligence. 

The following research question has framed this study: Are artificial neural 

networks a suitable implementation technique for automated chromosome analysis? To 

add further depth and structure to the research, two sub-questions have been identified: 

1. How do ANNs perform in classification accuracy as compared to other 

implementations?, and 

2. How do ANN classifiers perform in system measures as compared to classifiers 

based on other processing methods? System measures, in this case, refer to 

factors such as the ability to generalise, robustness, efficiency in computational 

burden and speed, validity in real-world data and degree of human interaction 

required. 

By addressing these questions, the research will conduct a rigorous analysis of 

the different implementations of artificial neural networks in human chromosome 

classification. 
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1.4. Scope 

To thoroughly inform the research and to test the above hypothesis, this research 

will consider different implementations of techniques using ANN s and of techniques 

not using ANNs. The case studies to be considered will include: 

• three implementations of artificial neural networks; 

• two implementations using artificial neural networks supported by another 

technique; and 

• two implementations of a technique not using artificial intelligence. 

The case studies provide a general representation of the various implementation 

techniques available for chromosome classification. As such, this research aims not only 

to explore the use of artificial neural networks, but also the use of other contending 

techniques. 

1.5 Document Structure 

An introduction to the basic concepts of chromosome analysis and artificial 

neural networks will be presented in Chapter 2. Chapter 3 presents a literature review 

examining the previous and current issues of computerised chromosome analysis. The 

methodology adopted for this research will be discussed in Chapter 4. The analysis of 

the chosen case studies will be presented in Chapter 5, followed by a discussion of the 

results in Chapter 6. Chapter 7 brings to light the conclusions gained from this research 

and recommendations for future work in this area. 
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2. BACKGROUND 

This chapter presents an introduction to the basic concepts of chromosome 

classification and neural networks. The chapter is organised into two sections 

addressing these important topics. Each section will present an introduction to the topic 

and discuss the main characteristics of both chromosomes and neural networks. 

2.1. Chromosome Classification 

2.1.1. History 

Although interest in the science of genetics and trait inheritance has existed for 

thousands of years, significant observations only came about in the middle of the 191
h 

century (Emery & Mueller, 1988, p. 1; Snustad & Simmons, 2000, p. 4; Jorde, Care, 

Bamshad & White, 2000, p. 1). In 1865, Gregor Mendel, an Austrian monk, achieved 

the first scientifically valid discovery of inheritance in living beings (Snustad & 

Simmons, 2000, p. 4). Emery and Mueller (1988) report that "Mendel made his far

reaching discoveries through careful and painstaking analysis of the results of crossing 

varieties of garden pea" (p. 2). These experiments led Mendel to suggest that "every cell 

contained pairs of 'factors' and that each pair determined a specific trait" (Snustad & 

Simmons, 2000, p. 4). These factors represent what is now known as genes (Snustad & 

Simmons, 2000, p. 4). 

However, Mendel's results were not recognised until 1900, when further 

understanding was gained on cell structure and division, which in turn facilitated the 

interpretation of Mendel's results (Snustad & Simmons, 2000, p. 4). From that time, the 

study of genetics was enhanced and several developments followed. One such 

development occurred in 1994, when "Oswald Avery showed that genes are composed 

of DNA (deoxyribonucleic acid)" (Jorde, et al., 2000, p. 3). Following this 

breakthrough, James Watson and Francis Crick identified the physical structure of DNA 

in 1953 and completed the picture of inheritance and molecular genetics (Jorde, et al., 

2000, p. 3). Another important development was the identification of the correct number 

of 'chromosomes in a normal human cell; it was believed tha:t there were 48 

chromosomes until 1956, when the correct number of 46 was established (Emery & 

Mueller, 1988; p. 12). The process of chromosome classification became very popular 

and was facilitated 'by technological developments in the 1960s (Jorde, et al., 2000, p. 

3). 
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2.1.2. Introduction to Chromosomes 

Every detail of a living being IS represented by material called DNA 

(deoxyribonucleic acid), which is arranged and stored in sections referred to as genes 

(Snustad & Simmons, 2000, p. 17). These genes are arranged in bodies known as 

chromosomes. The name chromosome arises from the Greek words chromo, meaning 

colour, and soma, meaning body, thus representing a coloured body (Jorde, et al. , 2000, 

p. 6; Snustad & Simmons, 2000, p. 27). 

The molecular substance of a chromosome consists of chromatin, which 

contains DNA material, chromosomal proteins and other constituents from the cell 

nucleus (Snustad & Simmons, 2000, p. 235). Chromatin also gives the chromosomes its 

structure; Jorde, et al. (2000) state "just before a cell undergoes division, the chromatin 

condenses to form discrete, dark-staining bodies called chromosomes" (p. 6). Figure 2.1 

gives a visual representation of a highly magnified chromosome. 

Figure 2.1. A highly magnified chromosome (Snustad and Simmons, 2000, p. 
190) 

Apart from common external factors, such as hair colour, eye colour and other 

physical features, genes within a chromosome may also represent abnormalities (Jorde, 

et al., 2000, p. 6). Abnormalities generally occur due to an anomaly in a single 

chromosome structure, chromosome number, or in a cluster of chromosomes (Snustad 

& Simmons, . 2000, p. 142). By studying chromosomes within cell samples, 

cytogeneticists . are · able to identify possible abnormalities and where available 
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recommend treatments. In analysing chromosomes within a cell, cytogeneticists focus 

on the structure of the chromosomes and assigning the chromosomes into groups. 

2.1. 2.1. Structure 

The features visible on the chromosomes play an important role in chromosome 

analysis. Levitan (1988) indicates that "chromosomes can generally be differentiated in 

three ways by (1) length, (2) position of the centromere, and (3) staining characteristics" 

(p. 24). The centromere represents the area of the chromosome where the two chromatid 

sisters overlap, thus forming a constriction. The centromere divides the chromosome 

into a shorter length and a longer length, commonly referred to as p-arm and q-arm 

respectively (Snustad & Simmons, 2000, p. 141). Figure 2.1, above, also shows the two 

chromatids, the central restriction representing the centromere and the short and long 

arms of each chromatid. 

The banding pattern, or staining characteristic, IS another important 

distinguishing feature of a chromosome as it "helps greatly in the detection of deletions, 

duplications and other structural abnormalities, and it facilitates the correct 

identification of individual chromosomes" (Jorde, et al., 2000, p. 111). Levitan (1988) 

defines a band as "a part of a chromosome that is clearly distinguishable from its 

adjacent segments by appearing darker or lighter as a result of the new staining 

methods" (p. 32). The banding pattern generally identifies the number of bands in the 

chromosome, the distance between each band, the distance between the bands and the 

centromere region and the density of each band (Keller, Gader, Sjahputera, Caldwell, & 

Huang, 1995, p. 127). By using the chromosome length, centromere position and 

banding patterns, cytogeneticists are able to facilitate the process of chromosome 

classification into groups. 

2.1.2.2. Chromosome Groups 

Before appropriate image analysis and dying techniques were available, it was 

difficult to identify matching chromosomes and thus the chromoso-mes within a cell 

were first organised into seven groups by their sizes (Snustad and Simmons, 2000, p. 

141 ). Snustad and Simmons (2000) further describe the difficulty of chromosome 

analysis by stating:,· 
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Cytogeneticists could only arrange the chromosomes into groups 
according to size, classifying the largest group as A, the next largest as 
group B, and so forth. Although they could recognize seven different 
groups, within these groups it was nearly impossible to identify a 
particular chromosome. (p. 141) 

These seven groups are commonly referred to as the Denver groups, as they 

were first acknowledged at a medical conference in Denver in 1960 (Levitan, 1988, p. 

28). Nowadays, cytogeneticists may still arrange the chromosomes into their seven size 

groups and then detennine the matching, or homologue, chromosomes within each 

group. A human somatic cell (a non-reproductive cell) contains 46 chromosomes 

arranged into 23 pairs where one of the 23 pairs consists of the sex chromosomes, which 

are an X and a Y chromosome in males, or two X chromosomes in females (J orde, et 

al., 2000, p. 6). Table 2.1 presents the seven Denver groups and the chromosome classes 

belonging to each group. 

Group B 
Group C 6 - 12 and X chromosome 
Grou D 13- 15 
Group E 16- 18 
Group F 19- 20 
Group G 21 - 22 and Y chromosome 

Figure 2.2 gives a visual representation of the chromosomes arranged into their 

respective Dcnvcr groups and in c1:1romosome classes 'Nithin these groups. 
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Figure 2.2. Chromosome karyotype showing Denver groups and classes within 
these groups (Levit~m, 1988, p. 27) 

2.1.3. Chromosome Databases 

Three common databases are used for testing chromosome karyotyping systems. 

These are the Copenhagen database, the Edinburgh database and the Philadelphia 

database. These databases are used in several case studies presented by this research and 

thus will be briefly discussed. 

The Copenhagen database was collected and developed at the Rigshospitalet, in 

Copenhagen, by Lundsteen and Granum in 1976 '--- 1978 (Piper & Granum, 1989, p. 

243; Sweeney, et al., 1994, p. 19 - 20). Graham and Errington (2000) note that the 

images of the Copenhagen database were developed from "photographic negatives of 

selected cells of good appearance. Chromosomes involved in touches or overlaps were 

rejected from the data-set, so the visual 'quality' of the chromosomes was high" (p. 

251). 

The Edinburgh database was developed by Piper in Edinburgh in 1984 (Piper & 

Granum, 1989, p. 243; Sweeney, et al., 1994, p. 20). Graham and Errington (2000) 

claim that the images in the Edinburgh database were digitised from photographic 

images of cell material and were selected to have few overlapping chromosomes, thus . 

resulting in good quality data (p. 251). 
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The final database is the Philadelphia database collected at the Jefferson Medical 

College in Philadelphia in 1987 (Piper & Granum, 1989, p. 243; Sweeney, et al., 1994, 

p. 20). Graham and Errington (2000) argue that the preparation techniques used for cell 

culture in the Philadelphia database have led to poor visual quality in the chromosome 

images (p. 251). Table 2.2 shows the three different chromosome databases and presents 

the number of cells, number of chromosomes and quality of images for each database. 

Table 2.2. Chromosome databases and their contents (adapted from 
Sweene , et al., 1994, . 20) 

Copenhagen 180 8106 Good 
Edinburgh 125 5548 Fair 

Philadelphia 130 5847 Poor 

2.2. Artificial Neural Networks 

2.2.1. Introduction to Artificial Neural Networks 

Patterson (1996) defines artificial neural networks as "simplified models of the 

central nervous system. They are networks of highly interconnected neural computing 

elements that have the ability to respond to input stimuli and to learn to adapt to the 

environment" (p. 1 ). Over the years, researchers have been evolving artificial neural 

networks based on their biological counterparts. Patterson (1996) affirms that "much of 

the research work in ANN s has been inspired and influenced by our knowledge of 

biological nervous systems" (p. 6). However, artificial neural networks have not yet 

achieved full similarity to a human neural network. Negnevitsky (2002) states "a 

present-day artificial neural network (ANN) resembles the human brain much as a paper 

plane resembles a supersonic jet" (p. 165). Despite their limitations in resembling 

biological networks, artificial neural networks have been successfully applied to several 

complex problems including forecasting, diagnosis, scheduling and pattern and image 

recognition (Patterson, 1996). Several key factors of artificial neural networks will now 

be discussed, including their structure, activation and learning methods. 

2.2.2. Neural Network Structure 

Negnevitsky (2002) defines an artificial neural network as "a model of reasoning 

based- on the humart brain" (p. 164). The structure of an artificial neural network is 
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based on the structure of a biological neural network. Figure 2.3 illustrates a biological 

neural network containing two neurons. Figure 2.4 depicts a three-layer artificial neural 

network. The resemblance between the two networks is not easy to discern. However, 

these diagrams show that the flow of information in a neural network resembles the 

flow of signals in a biological neural network. 

Figure 2.3. A biological neural network (Negnevitsky, 2002, p. 164) 

Figure 2.4. An artificial neural network (Negnevitsky, 2002, p. 165) 

An artificial neural network consists of several main processing nodes called 

neurons. These neurons are typically arranged in at least three laye1s (f.Jegnevitsky, 

2002, p. 173): 

1. Input layer: the purpose of the input layer is to accept input signals and to 

redistribute these signals to the neurons in the hidden layer. 

2. Hidden layer(s): a neural network architecture often contains one hidden layer; 

however, some complex functions require more than one hidden layer. It is 

customary to keep the number of hidden layers to a minimum since "each 

additional layer mcreases the computational burden exponentially" 

(Negnevitsky, 2002, p. 174). The hidden layer is required to detect the features 

from the input signals and propagate these features to the output layer. 
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3. Output layer: the purpose of the output layer is to present the output of the 

neural network's computations. 

2.2.3. Neural Network Activation 

Artificial neural networks function by accepting input signals. Each input is 

weighted by the connection strength before reaching the processing neuron 

(Kartalopoulos, 1996, p. 40). The neuron then calculates the sum of these weighted 

input signals and the result is compared to a threshold value (Kartalopoulos, 1996, p. 

40). The output of the neuron is then dependant upon whether the sum of input signals 

is greater or less than the threshold value (Negnevitsky, 2002, p. 167). An artificial 

neural network does not automatically know the correct output to produce when faced 

with different input stimuli. Instead, the network must gradually learn the output 

required through a series of small. adjustments of the neuron weights (Negnevitsky, 

2002, p. 169). This process depicts the learning process of an artificial neural network 

and is described in detail below. 

2.2.4. Neural Network Learning 

The term learning is commonly used to represent the process that an artificial 

neural network undertakes when it is faced with new input stimuli. "Learning is the 

process by which the neural network adapts itself to a stimulus, and eventually (after 

making the proper parameter adjustments to itself) it produces a desired . response", 

(Kartalopoulos, 1996, p. 43). There are two main methods of learning: supervised and 

unsupervised learning. 

2.2.4.1. Supervised Learning 

Supervised learning involves the use of a desired output, or correct answer. The 

neural network must continually adjust its outputs until the actual output reaches the 

desired output. To begin learning, the weights of the connections in a network are 

randomly assigned from a predetermined range of values (typically between -0.5 to 0.5). 

The network learning is done by "making small adjustments in the weights to reduce the 

difference between the actual and desired outputs" (Negnevitsky, 2002, p. 169). The 

weight is either negatively or positively adjusted depending on the variance between the 

actual and desired ·outputs. This weight adjustment value is always a pre-set value 

known as the learning rate. The learning rate of a neural network plays a crucial role in 
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the time taken for the network to correctly learn its tasks. A large learning rate value 

may allow the network to learn quicker, but the network may never arrive at the desired 

response. On the other hand, a small learning rate value would result in a longer training 

period but would produce better results (Negnevitsky, 2002, p. 184). 

The most popular network training method .is the back-propagation method 

(Negnevitsky, 2002, p. 174). The back-propagation algorithm consists of two phases: 

forward flow of signals from input to output neurons, and a backward flow of weight 

adjustments from output to input neurons. Negnevitsky (2002) describes this process as: 

First, a training input pattern is presented to the network input layer. The 
network then propagates the input pattern from layer to layer until the 
output pattern is generated by the output layer. If this pattern is different 
from the desired output, an error is calculated and then propagated 
backwards through the network from the output layer to the input layer. 
The weights are modified as the error is propagated. (p. 174) 

2.2.4.2. Unsupervised Learning 

In unsupervised learning or self-organised learning, the network is not presented 

with the desired output. Kartalopoulos (1996) describes this learning method as: 

During the training session, the neural net receives at its input many 
different excitations, or input patterns, and it arbitrarily organizes the 
patterns into categories. When a stimulus is later applied, the neural net 
provides an output response indicating the class to which the stimulus 
belongs. If a class cannot be found for the input stimulus, a new class is 
generated. (p. 44) 

However, Kartalopoulos (1996) notes that although no desired target is set, the 

network is still given guidelines on how to discriminate between signals and how to 

form groups (p. 44). Kartalopoulos (1996) continues "if no guidelines have been given 

as to what type of features should be used for grouping the objects, the grouping may or 

may not be successful" (p. 45). Negnevitsky (2002) "unsupervised learning algorithms 

aim to learn rapidly. In fact, self-organising neural networks learn much faster than 

back-propagation networks, and thus can be used in real time" (p. 198). 

The following chapter presents a literature review on several important facets of 

automated chromosome analysis, artificial intelligence in medicine and specifically the 

use of artificial neural networks. 
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3. LITERATURE REVIEW 

This chapter presents a discussion of the history and process of chromosome 

analysis and investigates the limitations of manual karyotyping. The process of 

automated karyotyping is introduced and described in detail. The computer science field 

of artificial intelligence is introduced, with a focus on artificial neural networks and 

what this offers to the task of chromosome classification. 

3.1. Chromosome Karyotyping 

3.1.1. History 

A fundamental task of chromosome analysis is karyotyping. "The visual analysis 

of chromosome images, known as karyotyping, involves counting the chromosomes and 

examining them for structural abnormalities" (Grahinn & Errington, 2000, p. 250). The 

first successful attempt at chromosome analysis was in 1882, by Flemming, who used 

basic dyes on human tissue to view the chromosomes (Winchester & Mertens, 1983, p. 

8). An improvement in the karyotyping technique came about in 1956, when Tjio and 

Levan conceived the method of pressing cells to flatten and spread the cell contents and 

increase visibility of the individual chromosomes (Winchester & Mertens, 1983, p. 9). 

The full potential of this technique was eventually realised when Tjio in association 

with Puck were able to develop cell culturing techniques, which facilitated the access to 

human chromosomes (Winchester & Mertens, 1983, p. 10). Figure 3.1 shows a highly 

magnified image of chromosomes from a human metaphase cell. 

Figure 3.1~ .·Image of chromosomes from a human metaphase cell (Lerner, 
1998, p. 544) 
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The traditional method of karyotyping involves culturing metaphase cells, 

photographing these cells, making paper cut-outs of the individual chromosomes and 

then arranging these chromosomes into pairs and assembling in order by size (De 

Robertis & De Robertis, 1980, p. 439; Winchester & Mertens, 1983, p. 11). Wang, et al. 

(2005) claim that "karyotyping is the most common procedure for analysing and 

classifying banded chromosomes from images of a metaphase cell" (p. 2536). This is 

due to the end product of karyotyping, which "defines the number and arrangement, size 

and structure of the chromosomes and assigns each chromosome to one of the 24 human 

chromosome classes" (Wang, et al., 2005, p. 2536-2537). This karyotype displays the 

chromosomes arranged in pairs and by size and therefore helps cytogeneticists identify 

missing or abnormal chromosomes. Martinez, Juan and Casacuberta (2002) emphasise 

that "producing a karyotype of a cell is of practical importance since it greatly facilitates 

the detection of abnormalities in the chromosome structure" (p. 565). A karyotype of 

human chromosomes is shown in figure 3.2. 
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Figure 3.2. A karyotype of human chromosomes from a metaphase cell 
(Lerner, 1998, p. 545) 

3.1.2. Process 

This section discusses the process of karyotyping and the common abnormalities 

found in chromosome karyotypes. The phase at which the cells are· most suitable for 

karyotyping is the metaphase stage (Lerner, 1998, p. 544). The metaphase stage is the 

second main step in cell division. During this stage, the chromatids have been 

duplicated and are now attached through the centromere. The popular use of this cell 

stage for karyotyping is due to the structure of the chromosomes at that stage. Snustad 
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and. Simmons (2000) note that "metaphase chromatids are tightly coiled and discrete, 

thus facilitating accurate chromosome counts and gross structural analysis" (p. 31 ). To 

prepare cell samples for analysis, cytogeneticists commonly stimulate the cells to start 

division until the metaphase stage is reached. The cell division is then arrested through 

the use of specified chemicals to prevent further division (Snustad & Simmons, 2000, p. 

140). Once the cell culture has been prepared, chromosome analysis begins with the 

identification of the required chromosome features, such as banding patterns. 

The banding patterns of a chromosome generally become visible through the use 

of certain dyes. Levitan (1988, p. 32) explains: 

. In the late 1960s and early 1970s new stammg techniques were 
discovered that have made is possible for human cytogenetics not only to 
specify every chromosome but even, in many cases, to identify exactly 
parts of chromosomes that. had been moved to unusual locations in the 
genome. 

This ability is supported by the banding techniques now available, which identify that 

each chromosome has a unique banding pattern (Levitan, 1988, p. 32). The several 

different banding techniques available include: 

1. Q-Banding: This teclmique uses quinacrine, a fluorescent compound that 

highlights chromosome bands when exposed to ultraviolet light (Snustad & 

Simmons, 2000, p. 140). 

2. Giernsa Banding: This technique uses the Giemsa dye, which also produces 

visible bands on the chromosome. Snustad and Simmons (2000) state that "the 

nature of the banding pattern depends on how the chromosomes were prepared 

prior to staining" (p. 141). The different banding methods include G-banding 

(Giemsa banding), which highlights dark bands similar to the Q-banding 

technique; R-banding (Reverse banding), which reverses the patterns seen in G

banding and Q-banding; and C-banding, which stains the centromere region of 

the chromosome (Jorde, Carey, Bamshad & White, 2000, p. 111; Snustad & 

Simmons, 2000, p. 141). 

Each of these banding techniques highlights different patterns on the 

chromosomes. This allows cytogeneticists to "analyse fine details of chromosome 

structure (Snustad .& Simmons, 2000, p. 141 ). Figure 3.3 displays human chromosomes 

stained using the R-banding technique. 
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Figure 3·3· R-Banding staining technique on human chromosomes (Snustad & 
Simmons, 2000, p. 141) 

3.1.3. Problems with Manual Labour 

The importance of chromosome analysis is illustrated by Cho (2000), who states: 

Cytogenetic analysis of chromosomes is widely used in many hospitals 
for genetic diagnosis of fetuses, pregnant women, and nursing mothers, 
as well as in many genetic laboratories for research with animals and 
plants. Therefore, automatic chromosome analysis has attracted much 
attention due to its potential wide application and its importance. (p. 28) 

Apart from the importance and applications of karyotyping, another difficulty in 

manual chromosome classification arises from its complex process. Carothers and Piper 

(1994) argue that "the need for automation arises from the fact that the 'traditional' (i.e. 

manual) methods of analysis are tedious and labour-intensive" (p. 161). Another reason 

behind the complexity in chromosome analysis lies in the method of collecting 

sufficient data. Carothers and Piper (1994) explain: 

Because chromosomes are frequently lost or obscured during 
preparation, several cells must usually be analysed until the observer is 
satisfied as to their chromosome constitution, or 'karyotype'. However, 
cells at the stage of division (metaphase) when the chromosomes are 
most easily analysed are relatively sparse, so that finding the required 
number may take time. (p. 161) 

Therefore, analysing chromosomes frequently involves examining several 

different cells and creating multiple karyotypes in order to gain a full understanding of 

any abnormalities. This process is repetitive and extremely time-consuming; Carothers 
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and Piper (1994) allege that even an experienced cytogeneticist could take about an 

hour to carry out typical karyotype analysis (p. 161). Therefore, cytogeneticists have 

turned to computerised chromosome analysis systems to facilitate karyotyping. 

Martinez, Juan and Casacuberta (2002) identify the need for automatic karyotyping 

systems by arguing that "automatic chromosome classification is an essential 

component of such systems, since it helps to reduce the tedium and labour-intensiveness 

of traditional methods of chromosome analysis" (p. 565). 

3.2. Computerised Chromosome Analysis 

3.2.1. Process 

The automated process ofkaryotyping was one of the earliest pattern recognition 

techniques to be computerised (Charters & Graham, 2002, p. 2080). The process of 

performing computerised chromosome analysis draws from the manual procedure for 

karyotyping. Wang, et al. (2005) identify the four main processing tasks involved in 

computerised karyotyping as "(1) image enhancement, (2) chromosome segmentation 

(detection) and alignment, (3) feature computation and selection and (4) chromosome 

classification" (p. 2537). Figure 3.4 gives a visual illustration of these tasks ·and these 

will be further discussed in separate sections below. 

Image 
f-+ 

Chromosome _. Feature _. Chromosome 
Enhancement Segmentation Selection Classification 

Figure 3·4· Four main tasks of automated karyotyping systems, adapted from 
Wang, et al. (2005, p. 2537) 

3.2.1.1. Image Enhancement 

The culturing of cells to the metaphase stage and the use of various staining and 

imaging techniques often add noise and external data to the cell image (Wang, et al., 

2005, p. 2538). The classification accuracy of automated karyotyping systems is 

dependant on the quality of the data supplied. Thus, image enhancement is a vital task 

for improving image quality and therefore improving classification accuracy. Wang, et 

al. (2005) note "the aim of image enhancement is to improve visibility of low-contrast 

chromosomes (or related features) while suppressing noise" (p. 2538). Lerner (1998) 

supports the above by stating "the preprocessing stage aims to improve the quality of 
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the cell image by techniques of noise removal, edge enhancement and/or contrast 

improvement" (p. 545). Wang, et al. (2005) argue that "image enhancement improves 

not only the display and visualization of chromosome images but also the recognition 

rate and accuracy of chromosome classification" (p. 2538). 

3.2.1.2. Chromosome Segmentation 

Chromosome images commonly contain touching or overlapping chromosomes 

(Wang, et al., 2005, p. 2538). Therefore, chromosome segmentation is vital; however, 

researchers have found difficulty in fully automating this task. Wang, et al. (2005) point 

out that "finding solutions for automated separation of chromosomes is difficult yet 

vital" (p. 2538). Lemer (1998) identifies the difficulty by stating: 

Most conventional image segmentation methods are based on either 
threshold selection, adaptive· thresholding, edge detection or matching 
with a set of prototype shapes. However, almost all of these methods 
tend to fail or lose accuracy when considering complicated images or 
those of partially occluded objects as in the case of a chromosome image. 
(p. 546) 

Lemer (1998) continues: 

Consequently, it is not surprising that in most of the published works 
concerning chromosome analysis, manually segmented databases are 
used. Neither is it surprising to find that almost all the commercial 
'automatic' chromosome analysis systems are in fact 'semiautomatic' 
and require a continuous interaction of the cytotechnician. (p. 546) 

Popescu, et al. (1999) support Lemer (1998) and acknowledge that 

"commercially available automated karyotyping systems (AKS) are semiautomatic, 

requiring human intervention to perform certain tasks. These systems are typically 

unable to perform well with chromosomes that are overlapped" (p. 62). 

One successful technique for chromosome segmentation is the use of 

knowledge-based chromosome contour searching (Wang, et al., 2005, p. 2538). This 

method uses edge detection, to remove random noise while preserving the chromosome 

edges, and contour tracking to identify the contours of connected s~gments (Wang, et 

al., 2005, p. 2538). Wang, et al. (2005) report that from a total of 124 touching and 

overlapping chromosomes, 82% ofthe clusters were successfully separated (p. 2539). 
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Lemer (1998) presents a varied technique, named the classification-driven 

partially occluded object segmentation (CPOOS) method (p. 547). This method consists 

of three stages: firstly identifYing the pixels within the image; secondly, identifying 

clusters of chromosomes based on their size; and finally creating potential separating 

lines in the chromosome clusters (Lemer, 1998, p. 547-548). Lemer (1998) argues that 

this method is superior to the thresholding technique of edge detection as it eliminates 

the "tedious, usually umeliable experimentation with threshold selection" (p. 547) The 

results produced to show an improvement over edge detection; the CPOOS method 

correctly segmented 90% of clustered chromosomes with an 8.7% rejection rate when 

tested on 46 human cell images (Lemer, 1998, p. 550). 

Another technique for chromosome segmentation is presented by Ji (1994, who 

proposes a recursive rule based segmentation procedure, "in which the rules adapt 

classification and segmentation parameters for each cell" (p. 197). Ji (1994) validates 

this approach by explaining: 

In manual segmentation techniques, it is usually possible to split a big 
cluster into individual chromosomes in 'one go'. By contrast, a single 
split in an automatic system will typically divide a cluster into just two 
new objects, and full decomposition will require recursive application of 
the algorithm. (p. 198) 

This technique proposed by Ji (1994) achieved 95.2% correct segmentation accuracy 

when tested on 256 human cells and rejected only five cells. 

3.2.1.3. Feature Selection 

Following successful cl1romosome segmentation, the features required from 

each chromosome are collected. W ang, et al. (2005) define this stage as "a search, 

among all possible transformations (or extracted features), for the best subspace that 

preserves class separability as much as possible in the lowest possible dimensional 

space" (p. 2539). The common features used are length, centromeric index and banding 

profile. The length of a chromosome is often retrieved by extracting the skeleton of the 

chromosome image, and then calculating the length (Wang, et al., 2005, p. 2539). From 

the extracted skeleton, the centromeric index can also be computed (Wang, et al., 2005, 

p. 2539). The banding profile of a chromosome can be extracted by determining 

variances in the grey-level pixels of the chromosome image, which portray the density 

profile (Wang, et al., 2005, p. 2539). 
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3.2.1.4. Chromosome Classification 

The final task in an automated karyotyping system is that of chromosome 

classification. The performance of this task is directly dependant on the performance of 

previous tasks. Chromosome classification uses the features extracted in the previous 

task to assign chromosomes to their respective groups. Wang, et al. (2005) state: 

In order to improve the performance of automated chromosome 
classification (including recognition of disordered chromosomes), 
artificial intelligence and machine learning methods have been widely 
used in the computer-assisted chromosome detection and· classification 
systems. (p. 2540) 

3.2.2. Context-Free and Context-Dependant Classification 

Two possibilities exist for chromosome classification: context-free and context

dependant classification. Context-free classification is defined by Carothers and Piper 

(1994) as "individual chromosomes are considered as independent objects, without 

regard to their context as components of a karyotype" (p. 164). Lemer (1998) supports 

the above by describing context-free classification as "the data set is classified as is and 

without a posteriori rearrangement of the chromosomes" (p. 550). This technique does 

not consider the fact that there should be two chromosomes in each class, and therefore 

assigns the chromosomes to their classes without considering matching or homologue 

chromosomes. 

Context-dependant classification, on the other hand, takes into account the a 

priori knowledge that there should be two chromosomes in each class in a normal cell 

(Lemer, 1998, p. 550). This technique is usually applied as a global constraint, which is 

commonly referred to as the karyotyping constraint. Graham and Errington (2000) state 

that "it is possible to effect significant improvement on the classification of individual 

chromosomes by application of the karyotyping constraint, namely that there are exactly 

two chromosomes in (almost) all classes" (p. 258). This technique not only reduces 

error rates but also mimics the karyotyping process used in manual classification. 

Rutovitz (1977) and Piper, et al. (1980), cited by Tso and Graham (1983), observe that a 

human operator takes into account all chromosomes within a cell and knows at the . -· 

outset how many chromosomes should be in each class (p. 489). Carothers and Piper 

(1994) support the above and point out that "human karyotypers rely strongly on 

between-chromosome comparison, and this has been shown to reduce error rates" (p. 

165) .. 
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A popular method of implementing context-dependant classification is through 

the use of the transportation algorithm. The transportation algorithm is commonly used 

for finding the most economical route passing through predetermined destinations and is 

applied in cases such as the Travelling Salesman Problem (Patterson, 1996, p. 298), and 

iri this case, context-dependant chromosome classification. Graham and Errington 

(2000) explain that "the chromosome classification problem is a special case of the 

Transportation Problem, in that the destinations (the individual chromosomes) all have a 

demand ofunity on the sources (the chromosome classes)" (p. 258). The transportation 

algorithm is not limited to only normal cells but can also analyse cells with missing or 

extra chromosomes (Tso & Graham, 1983, p. 491). 

The next section will provide a brief discussion on artificial intelligence. This 

discussion will include popular definitions and association of artificial intelligence in 

medical decision support, thus leading to medical artificial intelligence. 

3.3. Artificial Intelligence 

3.3.1. Introduction to Artificial Intelligence 

A precise definition of AI is elusive, due to the fact that related terms are 

somewhat ambiguous themselves. Patterson (1990, p. 2) argues that a full understanding 

of artificial intelligence would require a precise explanation of related terms, such as 

intelligence, knowledge, reasoning etc., and that such precise scientific definitions are 

elusive (Patterson, 1990, p. 2). Patterson's definition of artificial intelligence is 

presented as: 

AI is a branch of computer science concerned with the study and creation 
of computer systems that exhibit some form of intelligence: systems that 
learn new concepts and tasks, systems that can reason and draw useful 
conclusions . . . and systems that perform other types of feats that require 
human types of intelligence. (1990, p. 2) 

Boden (1997) cited by Negnevitsky (2002, p. 2) presents a similar definition of 

artificial intelligence as "the goal of artificial intelligence as a science is to make 

machines do things that would require intelligence if done by humans". The above 

authors all provide a common thread in the definition of AI: a computer application 

mimicking hutnan intelligence. This constitutes a main difference between conventional 

computer applicaticirts and those using artificial intelligence. Patterson (1990) asserts: 
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AI is not the study and creation of conventional computer systems. Even 
though one can argue that all programs exhibit some degree of 
intelligence, an AI program will go beyond this in demonstrating a high 
level of intelligence to a degree that equals or exceeds the intelligence 
required of a human in performing some task. (p. 3) 

This ability of artificial intelligence to mimic human intelligence has set it apart 

from other computing techniques. Several different AI techniques have been developed; 

artificial neural networks (ANNs) are one such technique. 

3.3.2. Medical Artificial Intelligence 

Clancey and Shortliffe (1984), cited by. Coiera (1996), provide an early 

definition of medical artificial intelligence as "medical artificial intelligence is primarily 

concerned with the construction of AI programs that perform diagnosis and make 

therapy recommendations" (p. 363). However, Coiera (1996) claims that "today this 

definition would be considered narrow in scope and vision" (p. 363). This arises from 

the fact that medical intelligence today covers a much larger field than just diagnosis 

and recommendations. Therefore, although the above definition was appropriate for its 

time, it now appears to limit the full power of medical intelligence (Coiera, 1996, p. 

363). 

The following definition provides a more inclusive VISIOn of medical 

informatics. Perry, Roderer and Assar (2005) paraphrase Frisse, Braude, Florance and 

Fuller (1995) and define medical informatics as: 

Being at the crossroads between biomedical science and information 
technology, with a focus on developing and delivering information 
systems that support health care, decision making, databases for 
outcomes analysis and health sciences research and administration. (p. 
220) 

Although the above definition is geared towards medical informatics in general, it does 

apply for medical artificial intelligence. Medical AI aims to achieve all the goals 

defined above by using procedures similar to those used by human experts. Artificial 

newal networks are one of the AI techniques commonly used in medis;al applications. 
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3.4. Artificial Neural Networks 

3.4.1. ANNs in Medical Decision Support 

Medical decision support is inherently complicated, due to two main sources of 

difficulty, identified by Dybowski (2000, p. 26) as: 

1. Workload: the number of experts within each specialised domain is not enough 

to manage the large load of complex data provided. 

2. Complexity: medical data can be increasing complex, so that even an 

experienced specialist may overlook certain vital details. 

Dybowski (2000) argues that the use of artificial neural networks is a natural choice for 

solving and alleviating these problems (p. 26). 

Medical decision support systems aim to act and mimic the performance of a 

human expert. Using artificial intelligence for medical decision support systems has 

been popular due to the knowledge handling characteristics of AI systems. Patterson 

(1990) describes the importance of knowledge in AI systems, and stresses that the 

acquisition of knowledge, knowledge representation, knowledge organisation and 

knowledge manipulation are all important features of any AI system (p. 14-17). 

Patterson (1996) states "much of the research work in ANNs has bee inspired and 

influenced by our knowledge of biological nervous systems" (p. 6). Apart from their 

biological influences, ANN s have several other characteristics lending to their use in 

chromosome classification. These characteristics include the ability to generalise and 

handle data it has not been previously exposed to, the ability to learn and retain new 

knowledge and the ability to handle uncertainty and noise in data (Negnevitsky, 2002, p. 

250). 

Artificial neural networks have been applied to many different facets of medical 

decision support. Popular implementations of neural networks include: 

• Outcome prediction: Baxt (1995) notes "a major area of interest in health care 

policy is outcome prediction, and [artificial neural] networks have been used 

extensively for this purpose" (p. 1137). One such application is that of tumour 

behaviour prediction (Azuaje, et al., 1999; Catto, et al., 2003); 

• Signal processmg: Artificial neural networks have been used for analysing 

signal ·data Jor over a decade (Baxt, 1995, p. 1137). Signal processmg 
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implementations include analysing electroencephalograph (EEG) signals and 

electrocardiograph (ECG) signals (Silipo & Marchesi, 1998; Kangas & Keller, 

2000); and 

• Image processing: artificial neural networks have been used in image processing 

applications such as cancerous cell classification (Zhou, Jiang, Y ang & Chen, 

2002) and analysis of myocardial infarction images (Lo, Lin, Freedman & Mun, 

1998). The next section will discuss the use of artificial neural networks for the 

classification of chromosome images. 

3.4.2. ANNs in Chromosome Classification 

Computer science generally attempts to solve and automate problems that 

require extensive complex and repetitive processes. The classification of human 

chromosomes is one such problem. Carothers and Piper (1994) emphasise that the task 

of chromosome classification can be complex and tedious, due to the necessity of 

classifying several cells in order to complete a full karyotype when cell images are 

incomplete or unclear (p. 161). 

Lisboa, Ifeachor and Szczepaniak (2000) support the above and argue that 

"automated image analysis and understanding is one of the most challenging areas in 

biomedical engineering, since there is usually considerable patient-to-patient variation 

in images pertaining to similar medical conditions, adding to the other sources of noise 

already present" (p. 211 ). Artificial neural networks are well suited for these problems 

since they have the ability to handle incomplete or imprecise data (Negnevitsky, 2002, 

p. 259), which is common in images with low clarity. Baxt (1995) supports this by 

stating "one of the areas to which artificial neural networks were first adapted was 

imaging, using both features extracted by human assistance and raw data from different 

radiological techniques" (p. 1136). 

Between the various artificial intelligence techniques available, artificial neural 

networks have been very popular for the task of chromosome classification. W ang, et al. 

(2005) state: 

Among them [AI techniques], artificial neural network is the most 
popular to.ol owing to its capability of modelling the human brain 
decision making process to recognize objects based on incomplete or 
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partial information, as well as its simple topographic structure and easier 
training process. (p. 2540) 

3.4.3. Strengths and Limitations 

The use of neural networks presents several advantages. Patterson ( 1996) argues 

that neural networks: 

Exhibit a number of desirable properties not found in conventional 
symbolic computation systems including robust performance when 
dealing with noisy or incomplete input patterns, a high degree of fault 
tolerance, high parallel computation rates, the ability to generalize, and 
adaptive learning. (p. 2) 

Negnevitsky (2002) supports Patterson (1996) by stating that neural networks perform 

well in areas involving imprecision and uncertainty in data, are easily adapted to 

incorporate new knowledge, have a good learning ability and are easily maintained 

when changes are necessary (p. 259). 

Wasserman (1993) notes that "for a neural network to be useful, it must 

accommodate this variability, producing the correct output vector despite insignificant 

deviations between the input and test vectors. This ability is called generalization" (p. 

3). Patterson (1996) paraphrases Sietsma and Dow (1991) and suggests that "networks 

generalize well when trained with noise distorted training patterns" and that "training 

with random noise can dramatically improve a network's ability to correctly classify 

noisy inputs" (p. 207). 

Although powerful in their processing, artificial neural networks do have several 

limitations. One such limitation is overfitting. Patterson (1996) ~xplains that overfitting 

can develop when "a limited training set has been used repeatedly too many times in the 

training process" (p. 190). When this occurs, the neural network memorises its training 

examples and produces incorrect outputs when presented with new data (Negnevitsky, 

2002, p. 223). This leads to a lack of generalisation. However, overfitting can be 

prevented through proper network architecture and training. Negnevitsky (2002, p. 323) 

states that "the practical approach to preventing overfitting is to c4oose the smallest 

number of hidden neurons that yields good generalisation". This approach involves 

additional computations, since the network performance must be analysed with several 

different network ~rchitectures, but it does produce good results. Other approaches to 

prevent overfitting include terminating the training before the network begins to 
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memorise training data and using a sufficiently large training set (Patterson, 1996, p. 

208). 

Another problem ansmg from the structure of a neural network is the 

computational time required. By including more neurons and layers within the network, 

results produced can be more accurate but the training and execution time increases 

exponentially. Negnevitsky (2002) argues that "complex patterns cannot be detected by 

a small number of hidden neurons; however, too many of them can dramatically 

increase the computational burden" (p. 323). The back-propagation training algorithm 

also adds to the time consumption. Negnevitsky (2002) acknowledges that using back

propagation leads to extensive calculations, which in turn cause long training periods (p. 

183). 

Although the structure of the neural network is behind the ambition to resemble 

a biological neural network, it also presents a major limitation of this technique. A 

neural network is unable to explain or validate the outputs produced; this is known as 

the 'black box' characteristic. Dybowski (2000) notes "the manner in which a neural 

network derives an output value from a given feature vector is not comprehensible to 

the non-specialist, and this lack of comprehension makes the output from neural 

networks unacceptable" (p. 31 ). However, Dybowski (2000) does not discredit the use 

of ANNs altogether by arguing that the acceptance of the results produced by the 

artificial neural network would depend on the area in which it is used (p. 31 ). 

3.5. Limitations 

3.5.1. Limitations of current literature 

As demonstrated throughout this literature review, artificial neural networks 

have a long history of being applied for automated chromosome classification. Although 

many of these research endeavours consider the results produced by other 

implementations, they do not perform a complete and unbiased comparison. The article 

presented by Carothers and Piper (1994) presents a review into automated chromosome 

analysis. However, the focus of their research is on the separate tasks involved in 

chromosome analysis rather than the different implementations available (Carothers & 

Piper, 1994, p. 161). Wang, et al. (2005) also present a study into automated systems for 

chromosome classification. This research is similar to that provided by Carothers & 
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Piper (1994) in that it reviews the methods involved in chromosome classification tasks, 

rather than providing an overview of the different implementation techniques used. The 

aim of this research is to examine several different implementation techniques currently 

m use for chromosome classification, to conduct a thorough investigation into the 

results produced by each implementation and to identify outstanding issues in 

automated chromosome analysis. The methodology used to frame this research is 

discussed next. 
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4. METHODOLOGY 

4.1. Purpose 

This chapter presents the methodology used in conducting this research. This 

discussion covers the research framework used, the research design implemented, the 

data collection and analysis strategies developed and strategies used for maintaining the 

validity of the research. The data selected for this research are also briefly introduced, 

followed by a thorough analysis of this data in Chapter 5. 

4.2. Research Framework 

This research has used aspects from both the qualitative and quantitative 

research frameworks, thus leading to a mixed method approach. Punch (1998) supports 

the use of a mixed method framework by stating that "at a general level, the reasons for 

combining are to capitalize on the strengths of the two approaches, and to compensate 

for the weaknesses of each approach" (p. 246). There are different strategies for 

combining the two theoretical approaches; in this research, the two theoretical designs 

will be combined in sequence. This approach is referred to by Punch (1998) as the stage 

in the research process and is defined as "quantitative and qualitative research may be 

appropriate to different stages of a longitudinal study" (p. 247). Creswell (2003) 

presents a similar approach named the sequential exploratory strategy, which details the 

strategy factors including the implementation strategy, priority of each design, 

integration of data analysed and the overall theoretical perspective (p. 211 - 213). 

Creswell (2003) defines this strategy as follows: 

It is conducted in two phases, with the priority generally given to the first 
phase, and it may not be implemented within a prescribed theoretical 
perspective ... this model is characterized by an initial phase of qualitative 
data collection and analysis, which is followed by a phase of quantitative 
data collection and analysis ... The findings of these two phases are then 
integrated during the interpretation phase. (p. 215) 

These similar approaches from Punch (1998) and Creswell (2003) illustrate the 

importance of identifying the correct framework in conducting a research project at both 

the theoretical and applied levels. This chapter will now consider ·the qualitative and 

quantitative design strategies used within this mixed-method approach. 
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4.3. Research Design 

This research used the qualitative case study design followed by a quantitative 

observation study. In particular, a multiple (or collective) case study approach is used. A 

single case study involves an in-depth study of a particular event or individual for a 

specified period of time (Leedy & Ormrod, 2005, p. 135). A multiple case study 

consists of several individual cases, which "may be similar or dissimilar, redundancy 

and variety each important" (Stake, 2003, p. 138). Leedy and Ormrod (2.005) describe 

the purpose of a multiple case study as "to make comparisons, build theory, or propose 

generalizations" (p. 135). Figure 4.1 shows a diagrammatical representation of the 

design used in this research. 

Collect Required Cases 

Analyse First 
Analyse Second Analyse Third 

Case Study 
Case Study Group Case Study 

Group (ANNs) 
(ANNs with Group 
Support) (Non-ANNs) 

ANN (Graham Write NN and 
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Write 
2000) Report Programming Case 
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Report 
al. 1 1998) 

1999) 
Write 

ANN (Lerner1 Case 
1998) Report 

NN and 
Fuzzy Logic Write Joint 

(Keller et al, 1 
Classification Write 

Pfo..JN 1995) and Pairing 
(Oj~,::>ni ot ::>I (Sweeney et I \u•r;·~·o~) '"''J I 

al. 1 1994) 

Compare System Fe3.tures 

Al'-TALYSIS &RESULTS 

CONCLUSIONS & RECOIVII\IlENDATIONS 

Figure 4.1. The applied research design, adapted from Yin (1994, p. 49) 
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The application of a multiple case study method in this research has followed the 

approach outlined in Figure 4.1. The tasks involved identifying the cases to analyse, 

determining appropriate data collection requirements, analysing each case study, writing 

reports on each analysis and then finally comparing the data collected. The data 

collection and analysis on each case study has revolved around investigating the 

implementation method, the results produced by each implementation on a variety of 

data sets and the process of achieving optimum performance. The different experiments 

conducted and the effects of these experiments on the overall accuracy were also 

considered. 

Following the case studies, an observation study was conducted, which is 

described by Leedy and Ormrod (2005} ·as "the focus is· on a particular aspect of 

behaviour. Furthermore, the behaviour is quantified in some way" (p. 180). In respect to 

this research, the observation study was used to quantify the performance of each 

implementation technique in terms of system features. The main system features 

considered are robustness, ability to generalise, validity, speed and degree of 

automation. These features are discussed in detail in Section 4.5 Data Analysis. 

Upon completing the multiple case studies and the observation study, this 

research led to the integration phase, where the data were combined and studied. This 

phase focused on identifying the most effective automated chromosome classification 

technique based on results from performance and system feature criteria. The results 

obtained ate presented and discussed in Chapter 6. 

4.4. Data Collection 

The data collected for this study are obtained from secondary data. Leedy and 

Ormrod (2005) define primary data as "the most valid, the most illuminating, the most 

truth-manifesting" (p. 89). They go on to define secondary data as data not collected 

from the source itself but from the primary data instead (Leedy & Ormrod, 2005, p. 89). 

AHhough secondary data is considered less valid, it does have adv~ntages associated 

with its use. These include less cost for collection, easy accessibility, higher quality, and 

less time involved in collection (Punch, 1998, p. 1 07). These factors (cost, time, quality 

and accessibility) have high importance in this research of limited time span. Therefore, 

the use of secondary data has been appropriate for this study. The secondary data 
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identified for this study has been divided into three distinct case study groups, which are 

discussed below. 

4.4.1. First Case Study Group 

The first group of case studies consists of implementations describing the use of 

artificial neural networks as automated chromosome classifiers. Three case studies are 

identified: 

1. Classification of chromosomes: A comparative study of neural network and 

statistical approaches (Graham & Errington, 2000). This article presents a 

detailed description of an artificial neural rietwork implementation to human 

chromosome classification and also describes the process undertaken in 

achieving the optimal network architecture. The implementation was tested on 

the three popular chromosome databases and the performance of the system was 

compared to that of a statistical classifier. 

2. Toward a completely automatic neural-network-based human chromosome 

analysis (Lerner, 1998). This article also presents a detailed implementation of 

artificial neural networks with a focus on creating a completely automated 

system, where the implementation is able to handle overlapping chromosomes 

and requires little or no human interaction. 

3. Classification of chromosome using a probabilistic neural network (Sweeney, 

Musavi & Guidi, 1994). This article presents a varied implementation of neural 

networks: probabilistic neural networks. It also discusses the different testing 

experiments conducted and describes in detail the results produced. 

4.4.2. Second Case Study Group 

The second case study group includes implementations using artificial neural 

networks supported by another technique. Two case studies were chosen: 

1. Data-driven homologue matching for chromosome identification (Stanley, 

Keller, Gader & Caldwell, 1998). This article presents an hnplementation of 

artificial neural networks supported by dynamic programming to the task of 

automated chromosome classification. 
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2. A fuzzy logic rule-based system for chromosome recognition (Keller, Gader, 

Sjahputera, Caldwell & Huang, 1995). This article merges fuzzy logic with 

neural networks to implement a chromosome classifier. The implementation is 

tested on its accuracy of identifying chromosomes from a selected class. 

4.4.3. Third Case Study Group 

The last case study group presented here discusses implementations not using 

artificial neural networks. Two cases studies are identified and these include the 

following articles: 

1. Automatic classification of chromosomes by means of quadratically asymmetric 

statistical distributions (Ritter & Gaggermeier, 1999). This implementation uses 

statistical techniques to achieve chromosome classification. A novel 

implementation strategy is presented as different implementations are used for 

the different forms of chromosomal abnormalities. 

2. Joint classification and pairing of human chromosomes (Biyani, Wu & Sinha, 

2005). This case study also presents the use of statistical techniques for 

chromosome classification but attempts to merge the tasks of classification and 

pairing of chromosomes to achieve better performance. 

4.5. Data Analysis 

The analysis of the case studies considers two main factors: the classification 

accuracy, and the support of additional system features. The classification accuracy 

includes the different experiments conducted in testing the implementation technique 

and highlights the best results produced. Apart from achieving a high accuracy in 

chromosome classification, an effective implementation should support other important 

system features. The system should be robust and able to handle incomplete or 

imprecise data without loss of performance. Chromosome images commonly contain 

indistinct or unreliable information (Wang, et al., 2005, p. 2538) and therefore an 

automated chromosome analysis system should be able to effectively manage such data. 

In addition, the system should also be able to generalise and accept data it has not been 

trained with. Another important factor is the speed of classification. Piper, et al. (1980), 

cited in Tso and Graham (1983), note that the speed of an implementation is just as 

important as the classification accuracy (p. 495). This factor presents. a dilemma of 
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sorts: a classification may be slow but produce better results, or may be very fast but 

have low accuracy. An effective technique should find a balance between speed and 

accuracy. The accuracy of a system may be greatly influenced by the training and 

testing data used. Therefore, in selecting the most effective implementation technique, 

valid training and testing data should have been used and the system should have been 

testing using experiments that apply to real-life karyotyping tasks. The degree of 

reliance on human interaction is another important feature to be considered. Automated 

karyotyping systems attempt to reduce the load on human experts and thus should aim 

to produce a system requiring little or no human interaction to function. 

4.6. Validity 

The integrity of the results produced by this research are directly related to the 

validity of the research. Validity, in this context, is defined as "the accuracy, 

meaningfulness, and credibility- of the research project as a whole" (Leedy & Ormrod, 

2005, p. 97). In considering methods to achieve overall research validity, both internal 

and external research validity must be addressed. 

4.4.1. Internal Validity 

Leedy and Ormrod (2005) state "the internal validity of a research study is the 

extent to which its design and the data it yields allow the researcher to draw accurate 

conclusions about cause-and-effect and other relationships within the data" (p. 97). 

Leedy and Ormrod (2005) present several strategies for obtaining internal validity (p. 

98-99); of these four approaches, the triangulation strategy has been used in this 

research. Patton (1987), cited in Yin (1994), identifies four different types of 

triangulation, and of these four strategies, data triangulation is used. Leedy and Ormrod 

(2005) define data triangulation as "multiple sources of data are collected with the hope 

that they will all converge to support a particular hypothesis or theory" (p. 99). This 

strategy applies to the research at hand as different case studies are analysed and the 

results produced by these analyses are compared. If the results converge, an effective 

technique for automated chromosome classification will be identified. Leedy and 

Ormrod (2005) support the use of triangulation in mixed method approaches by stating 

"triangulation is also common in mixed-method designs, in which both quantitative and 

qualitative data are.collected to answer a single research question" (p. 99). 
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4.4.2. External Validity 

External validity is described by Punch (1998) as the extent to which the study's 

findings can be generalised (p. 30). In obtaining external validity, the replication in a 

different context technique has been considered. Leedy and Ormrod (2005) define this 

method as "another researcher who conducts a similar study in a very different context 

reaches the same conclusion" (p. 1 00). By applying this technique to the research study, 

the results of other researchers will be compared to the results produced by this 

research. If the results converge, the external validity of the research will be supported. 
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5. ANALYSIS 

This section provides an analysis of the case studies identified in this research. 

These case studies include applications of automated chromosome analysis systems 

using artificial neural networks, applications using artificial neural networks supported 

by other techniques and applications not using artificial neural networks. The articles 

presenting the different implementation methods are analysed and their techniques are 

presented and compared here. A detailed discussion and comparison of the performance 

of each technique is presented in the following chapter, Chapter 6 - Results. The 

analysis of each group of case studies is presented below. 

5.1. Artificial Neural Networks 

Artificial neural networks have been a popular choice for the implementation of 

automated karyotyping systems. Wang, et al. (2005) support this by noting that for 

chromosome classification: 

Artificial neural network is the most popular tool owing to its capability 
of modelling the human brain and decision making process to recognize 
objects based on incomplete or partial information, as well as its simple 
topographic structure and easier training process. (p. 2540) 

The articles chosen to represent the application of ANNs to chromosome 

classification are: 

• Classification of Chromosomes: A Comparative Study of Neural Networks and 

Statistical Approaches (Graham & Errington, 2000); 

• Toward a Completely Automatic Neural-Network-Based Human Chromosome 

Analysis (Lemer, 1998); and 

• Classification of Chromosomes Using a Probabilistic Neural Network 

(Sweeney, Musavi & Guidi, 1994). 

The analysis of these articles will discuss the neural network topology, training and 

testing methods and the results produced. 

5.1.1. First Case Study 

The article by Graham and Errington (2000), Classification of chromosomes: A 

comparative study of neural networks and statistical approaches, presents a discussion 

on the use of artificial neural networks as a system for chromosome classification. In 

their article, Graham and Errington (2000) use an ANN implementation as a 
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chromosome classifier and then compare the results obtained to that of a statistical 

chromosome classifier. Additionally, they experiment with different network 

architectures and different input information to achieve the optimum performance from 

the network. Their experiments included varying the chromosome features used as 

inputs, varying the network architecture and implementing the karyotyping constraint. 

5.1.1.1. Implementation Details 

In their final optimal network architecture, Graham and Errington (2000) 

combined two neural networks to conduct the chromosome classification. The first 

neural network acts as a pre-classifier. The role of this network was to accept two inputs 

representing the size and centromeric index features and to produce a Denver 

classification of the chromosomes; it therefore had seven outputs, referring to the seven 

Denver groups of chromosomes. The results of this network were then fed into the main 

neural network, which had 22 input nodes: seven inputs representing the Denver groups 

obtained from the pre-classifier and 15 inputs describing the banding features of the 

chromosome in question. This network consisted of one hidden layer containing 100 

hidden nodes and produced 24 outputs, representing the 24 chromosome classes. Figure 

5.1 portrays this network architecture. 

size c,i. 

density profile 
inputs 

I MLP 

unbanded 
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~ 7 classes i 
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Figure 5.1. Graham & Errington's neural network architecture (Graham & 
Errington, 2000, p. 254) 
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5.1.1. 2. Results 

The neural network implementation was trained and tested on the three popular 

chromosome databases: Copenhagen, Edinburgh and Philadelphia. The training 

followed the hold-out cross validation training technique, in which half the data set was 

used for training and the other half used for testing (G-raham & Errington, 2000, p. 255). 

The best classification results using context-free classification were 94.2% classification 

accuracy for the Copenhagen database, 83.0% classification accuracy for the Edinburgh 

database and 77.5% classification accuracy for the Philadelphia database (Graham & 

Errington, 2000, p. 255). Table 5.1 displays these results. The considerable difference in 

classification accuracy between databases is due to the significant difference in image 

quality within the three databases. 

Graham and Errington (2000) also experimented by adding the karyotyping 

constraint to conduct context-dependant classification. The karyotyping constraint 

specifies that "there are exactly two chromosomes in (almost) all classes" and is 

implemented as a global constraint using the transportation algorithm (Graham & 

Errington, 2000, p. 258). By adding the karyotyping constraint to the network, Graham 

and Errington (2000) were able to produce higher classification accuracy; 

"transportation rearrangement achieves misclassification rates which have not been 

bettered by any other approaches" (Graham & Errington, 2000, p. 258). The results 

produced were 95.8% misclassification for the Copenhagen database, 85.6% 

misclassification for the Edinburgh database and 81.1% misclassification for the 

Philadelphia database (Graham & Errington, 2000, p. 260). These results are also shown 

in Table 5.1. 

Copenhagen 
Database 

Edinburgh Database 
Philadelphia 

Database 

94.2% 95.8% 

83.0% 85.6% 

77.5% 81.1% 

In comparing the neural network classifier to a statistical classifier, Graham and 

Errington (2000) concluded that the neural network approach "can give a higher 

classification accuracy than a classical parametric method" (p. 261). Yet they note that 
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"while the improvement was statistically significant, however, it was still small in 

absolute terms" (Graham & Errington, 2000, p. 261). Therefore, the improvement was 

not of a significant value to make a real difference. However, other factors perta· · t mmg o 
the neural network system advocate its use over a statistical classifier. Graham and 

Errington (2000) claim that the neural network· development costs were less, time 

involved was less, less manpower was used, and that the neural network is likely to be 

more adaptable and more stable when dealing with data of different quality (p. 261). 

This is supported by Patterson (1996) who identifies several valuable characteristics of 

neural networks as learning, generalisation, robustness and parallel processing 

capabilities (p. 24-27). 

5.1.2. Second Case Study 

The second article involving the use of neural networks is: Toward a completely 

automatic neural-network-based human chromosome analysis (Lerner, 1998). In this 

article, Lerner (1998) presents his research in attempting to completely automate the 

process of chromosome classification. 

5.1. 2.1. Implementation Details 

The network architecture used by Lerner ( 1998) is similar to that of Graham and 

Errington (2000) as it also involves more than one classifier. The first classifier, a 

'group classifier', produces a Denver classification of the chromosomes. Seven 'type 

classifiers' are then used to classify the chromosomes within each of the Denver groups. 

Each of these type classifiers is trained and tested on a particular Denver group only, 

therefore acting as specialised classifiers. Lerner (1998) supports this approach Ly 

stating 

Chromosome identification by first classifying the patterns into groups 
followed by a classification in the groups and into types yields both a 
desired task decomposition and a compatibility with the common 
cytogenetic methodology, which partitions the twenty-four chromosome 
types into seven groups. (p. 54 7) 

5.1.2.2. Results 

Lerner (1998) also experimented with using different features in his neural 

network implementations. In one experiment, Lerner (1998) used sixty-six chromosome 

features, which consisted of the chromosome length and centromeric index and 64 



density profile features. This experiment was conducted usmg a two-layer neural 

network trained using the back-propagation algorithm. The network was trained and 

tested on a private database, named the Soroka5 database. However, the network was 

only required to classify five types of chromosomes, out of the total of 24 chromosome 

classes. The results produced were extremely accurate, with the network achieving an 

average of 99.3% classification accuracy. 

In another experiment, the length and centromeric index were also used but only 

15 out of the 64 density profile features were included. These features were input into a 

'group classifier', which was responsible for classifying the chromosomes into their 

respective Denver groups. This structure therefore had 17 input nodes and contained 

seven output nodes. Following this group classification, a 'type classifier' was 

implemented to classify the chromosomes into their classes within a specific Denver 

group. The inputs to this network were also the 17 chromosome features but the outputs 

ranged between two to eight nodes, depending on the number of chromosomes within 

the group under analysis. This system was trained and tested on the Edinburgh dataset 

and achieved an 83.6% classification accuracy using this implementation (Lemer, 1998, 

p. 549). 

By incorporating the transportation algorithm into this implementation, the 

results produced led to 84.5% classification accuracy (Lemer, 1998, p. 550), a slight 

improvement from the 83.6% of context-free classification. Table 5.2 displays the 

classification accuracy of context-free and context-dependant classification on both the 

Soroka5 and Edinburgh databases. 

5.1 .. 3. Third Case Study 

A different approach to applying neural networks to chromosome classification 

is that of using probabilistic neural networks. The article by Sweeney, Musavi and 

Guidi (1994), Classification of chromosomes using a probabilistic neural network, 
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describes the application of probabilistic neural networks (PNNs) to the task of 

chromosome classification. 

Sweeney, Musavi and Guidi (1994) describe PNNs as "the combination of a 

kernel based estimator for estimation of probability densities and a Bayes rule for the 

classification decision" (p. 18). Patterson (1996) supports the use of PNNs in 

classification tasks by referencing Mood and Graybill (1962) and stating "the PNN 

models the popular Bayesian classifier, a technique which minimizes the expected risk 

of classifying patterns in the wrong category" (p. 350). Sweeney, et al. (1994) 

emphasise that the advantages of a PNN implementation include fast processing time, 

simple training process and the ability to. generalise without requiring extensive training 

(p. 18). Wasserman (1993) supports this by noting "the PNN process is as much as five 

orders of magnitude faster than backpropagation" (p. 35). The fast processing time of 

the PNN is supported by large memory; this requirement is not a limitation due to 

memory being "abundant and affordable" (Sweeney, et al., 1994, p. 18). 

5.1.3.1. Implementation Details 

The structure of the PNN used by Sweeney, et al. (1994) consisted of 30 input 

features, including the normalized area, size, density, length and centromeric index 

(Sweeney, et al., 1994, p. 20). Figure 5.3 shows the architecture ofthe PNN used in this 

implementation. The values shown as X1 - X30 represent the input values. These values 

are accepted by the pattern units, shown as class 1 to class 24. Each class produces an 

output represented by Y1 to Y24. These outputs are then sent to a summation node (the 

maximum selector) which then produces the final output the network, represented by Y. 

Patterson (1996, p. 353) presents a general architecture for probabilistic neural 

networks, which is shown in Figure 5.4. The figure provided by Patterson (1996) 

provides further understanding ofthe architecture described by Sweeney, et al. (1994). 
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Figure 5·4· General probabilistic neural network architecture (Patterson, 1996, 
p. 353) 

5.1. 3. 2. Experiments 

The system was trained and tested using the three common databases: 

Copenhagen, Edinburgh and Philadelphia. However, the data -·was filtered, as 

"chromosomes from each of the databases that were either touching, overlapping, or 

unclassifiable .were excluded from the experiments" (Sweeney, et al., 1994, p. 20). This 

severely limits the real-life applicability and generalisation ability of the system as real

life chromosome images commonly contain overlapping, touching or clustered 
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chromosomes (Wang, et al., 2005, p. 2538). This requirement of pre-segmented data 

presents a significant reliance on human interaction and therefore does not propose a 

completely automated system for chromosome classification. Additionally, the use of 

isolated chromosomes affects performance accuracy as removing complex data 

facilitates the classification process and consequently leads to lower error rates. 

Two different testing and training methods were used: 

1. the hold-out technique (also known as cross-validation); and 

2. the leave-one-out technique where "one cell from the database is removed, the 

remaining cells are used for training and then the isolated cell is used for testing. 

This process is repeated for every cell in the databases" (Sweeney, et al., 1994, 

p. 20). 

The authors experimented with different training and testing techniques to 

determine the most effective performance. In addition to the two training methods 

described above, Sweeney, et al. (1994) introduced an update procedure, which "gives 

the network knowledge that there can be a maximum of two chromosomes assigned to 

each class" (p. 19). The process ofthe update procedure is described as: 

If a class has more than 2 chromosomes assigned to it, then the 2 
chromosomes with the highest estimates are kept in that class, while the 
others are assigned to a new class, one to which they were not assigned 
before, corresponding to their next highest estimates. (Sweeney, et al., 
1994, p. 19) 

This procedure is repeated a set number of times and as with the karyotyping constraint 

applied to artificial neural networks, the update procedure helps improve the 

classification accuracy of the probabilistic neural network (Sweeney, et al., 1994, p. 19). 

Sweeney, et al. (1994) used combinations of the two training techniques and the 

update procedure to conduct five different experiments for chromosome classification. 

These experiments were: 

1. PNN using the hold-out technique for training; 

2. PNN using the hold-out technique with the update procedure; 

· 3. PNN using the leave-one-out training technique; 

4. PNN using the leave-one-out technique with the update procedure; and finally, 

5. Inter-database classification, in which the network was trained with one database 

and tested ·with the remaining two databases. This experiment did not 

incorporate the use ofthe update procedure (p. 20-21). 
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5.1. 3. 3. Results 

The results achieved from conducting the above experiments showed that using 

a PNN classifier trained with the leave-one-out technique and using the update 

procedure (experiment #4) gave the best classification accuracy. This performance gave 

a 97.0% classification accuracy rate for the Copenhagen database, 84.7% classification 

accuracy for the Edinburgh database and a 78.8% classification rate for the Philadelphia 

database. These results are portrayed in Table 5.3. Sweeney, et al. (1994) had 

anticipated this experiment to outperform the rest and argue that "this is expected 

because the maximum possible number of training sets was used and the network is 

forced to assign a maximum of two chromosomes to a class" (p. 22). 

The best performance achieved without the use of the update procedure was that 

of experiment #3, using the PNN with the leave-one-out training method. The results 

produced were 95.6% accuracy for the Copenhagen database, 83.4% accuracy for the 

Edinburgh database and 77.8% accuracy for the Philadelphia database (Sweeney, et al., 

1994, p. 22). Table 5.3 shows these results. 

Copenhagen 95.6% 97.0% 
Database 
Edinburgh 83.4% 84.7% 
Database 

Philadelphia 77.8% 78.8% 
Database 

5.2. Artificial Neural Networks Supported by Other Techniques 

This section will discuss implementations that use artificial neural networks 

supported by other techniques to perform chromosome classification. The two articles 

chosen to represent these case studies are: 

• Data-driven homologue matching for chromosome identification (Stanley, 

Keller, Gader & Caldwell, 1998); and 

• A fitzzy logic rule-based system for chromosome recognition (Keller, Gader, 

Sjahputera, Caldwell & Huang, 1995). 
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5.2.1. First Case Study 

The article by Stanley, Keller, Gader and Caldwell (1998), Data-driven 

homologue matching for chromosome identification, presents the use of dynamic 

programming and neural networks to classify chromosomes. Many chromosome 

classification implementations assume two chromosomes per class, which cannot be 

applied when dealing with abnormal chromosomes (Lerner, 1998, p. 550). Stanley, et al. 

(1998) attempt to address this problem and therefore the focus of their paper is on "the 

development of image analysis techniques that are directly applicable to evaluating 

numerical aberrations evolving from structural abnormalities" (p. 452). 

5.2.1.1. Implementation Details 

To conduct chromosome classification, Stanley, et al. (1998) focus on 

identifying matching homologues and assigning them to the representative class. The 

technique is implemented using an iterative process, described by Stanley, et al. (1998) 

as: 

For the selected class, the best representative or primary chromosome is 
found within the metaphase spread. Homologue candidates are obtained 
using simple criteria. The candidates are matched to the pnmary 
chromosome for homologue determination. (p. 452) 

The process of chromosome classification uses a neural network confidence 

assignment and then dynamic programming to determine matching homologues. The 

process commences by automatically extracting chromosome features from images of 

metaphase cell spreads (Stanley et al, 1998, p. 454). The features extracted are the 

chromosome size (including length and area), the centromeric index, the banding 

pattern features and other chromosome profile features (Stanley, et al., 1998, p. 454). 

These values were entered into the neural network which then produced a confidence 

value representing the likelihood of the chromosome belonging to a certain class. "The 

initial candidates chosen were the chromosomes with confidence values greater than 

zero in the desired class" (Stanley, et al., 1998, p. 454). Candidates were then eliminated 

if their features, such as banding patterns and centromeric index ratios, were not 

representative of chromosomes belonging to the class in question (Stanley, et al., 1998, 

p. 456). "From the remaining candidates, the chromosome with the greatest margin of 

victory in neural-network confidence was chosen as the reference, prototype, or primary 
' ' 

chromosome'' (Staruey, et al., 1998, p. 456). The remaining candidates were then 
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inspected and the matching homologue was chosen usmg dynamic programming 

(Stanley, et al., 1998, p. 456). 

Figure 5.5 provides a summarised version of the algorithm used by Stanley, et 

al. (1998) in conducting homologue matching. This algorithm conducts two checks 

when performing homologue matching: firstly, the algorithm identifies the primary 

chromosome for a selected class and then determines the matching homologue. The 

second check uses the identified homologue and selects a new candidate pool from 

which the matching chromosome is found. If the matching chromosome found is the 

original primary chromosome, then the matching is complete and both chromosomes are 

assigned to the selected class. If the matching chromosome found is not the primary 

chromosome, then only the original primary chromosome is assigned to the class under 

analysis. In essence, this algorithm conducts a two-way matching, to ensure the 

homologue chromosome matches the primary chromosome and that the primary 

chromosome matches the homologue chromosome. 

Compute features for all isolated chromosomes within the metaphase spread 
Determine candidate chromosomes for the selected class 
Eliminate candidates based on banding pattern and centromeric index criteria 
If candidates remain 

Else 

Then Determine primary chromosome for selected class 
For remaining candidates 

Use dynamic programming to match primary chromosome to 
remaining candidates 

Identify confidence value ratings for each chromosome from dynamic 
programming matching 

Take chromosome with highest confidence value as the homologue 
chromosome 

Use neural network to find winning class for homologue 
Determine new candidate chromosomes using homologue class and 

primary chrornosome 
Eliminate chromosomes based on size and centromeric index 

features 
For remaining candidates 

Identify confidence values based on size and centromeric 
index features 

Take chromosome with highest confidence value as the matching 
chromosome 

If matching chromosome is primary chromosome 

Else 

Then assign primary and homologue chromosome to selected 
class 

Assign only primary chromosome to selected class 

No chromosome assigned to selected class 

Figure 5·5· Suinmarised algorithm used for homologue matching (adapted 
from Stanley, et al., 1998, p. 454). 
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The neural network was used only to produce confidence values of chromosome 

assignment ~o each class and was not used for any image processing, feature extraction 

or final chromosome assignment. In effect, the neural network was only applied to 

identify a select group of chromosome candidates for each chromosome class. The 

neural network was given inputs representing the density and shape profile distribution 

features of each chromosome and the network produced an output representing the 

confidence values for each chromosome class. 

This application is limited in its correlation with real world data as "only 

isolated chromosomes within metaphase spreads . were of interest for this study" 

(Stanley; et al., 1998, p. 454). Metaphase spreads commonly contain chromosomes that 

are overlapping or touching (Wang, et al., 2005, p. 2538). By eliminating such data, the 

application eliminates a large source of uncertainty and also eliminates a large set of 

actual real-life data. 

5.2.1.2. Results 

Three experiments were performed to test the accuracy of this implementation: 

1. The first experiment involved identifying matching chromosomes from a 

selected class. Stanley, et al. (1998) illustrate the importance of such a 

classification by arguing that "the ability to find chromosomes coming from a 

specific class is important for karyotyping and anomaly detection" (p. 459). In 

this experiment, sixteen chromosome 17s were placed within a metaphase 

spread. Of these sixteen chromosomes, four pairs were homologous. The 

application was able to correctly identify all four matching homologues, thus 

leading to a 100% accuracy rate. 

2. The second experiment tested the ability of the system to identify the matching 

homologues for a selected class from a metaphase spread. The system was tested 

in identifying the class 17 chromosomes using 55 metaphase spreads. Of these 

55 metaphase spreads, 53 had two chromosome 17s and the remaining 2 spreads 

had only one chromosome 17 (Stanley, et al., 1998, p. 459). The best 

performance of this system achieved a correct identification of the chromosomes 

of class 17 in 49 of the 55 metaphase spreads, thus leading to an 89.1% accuracy 

rate (Stanley, et al., 1998, p. 459-460). 



3. The third experiment used a neural-network supported by the transportation 

algorithm to identify the homologues of class 17 from within a metaphase 

spread. This experiment is essentially the same as the second experiment but the 

only variance is in the implementation technique. This technique correctly found 

the homologues in 44 of the 55 metaphase spreads, leading to an 80% accuracy 

rate (Stanley, et al., 1998, p. 460). 

Table 5·4· Percentage of classification accuracy of the three 
eriments described above 

Experiment 2 89.1% 
Experiment 3 80% 

Although this implementation achieves a high rate of classification accuracy, the 

testing was limited to identifying only one chromosome class out of the total of 24 

classes and only 55 metaphase images were used. This presents a rather small data set as 

other implementations have used large databases containing over three times the amount 

of cell images (Piper & Granum, 1989, p. 244; Sweeney, et al., 1994, p. 20). 

5.2.2. Second Case Study 

Another implementation of chromosome classification uses an artificial neural 

network supported by a fuzzy logic system. This implementation is described by Keller, 

Gader, Sjahputera, Caldwell and Huang (1995) in their article: Afitzzy logic rule-based 

system for chromosome recognition. 

Keller, et al. (1995) acknowledge that "uncertainty abounds in every phase of 

computer vision" and that this uncertainty is commonly due to noise, imprecise 

computations and ambiguous interpretations (p. 126). As chromosome classification is a 

highly sensitive technique, a small additional noise introduced in a cell image could lead 

to different representation of the chromosome structure and features (Ritter & 

Gaggermeier, 1999, p. 1001). 

Negnevitsky (2002) notes that real-life data is often "incomplete, inconsistent, 

uncertain, or all. tl:)ree. In other words, information is often unsuitable for solving a 

problem" (p. 55) Fuzzy systems are capable of handling such uncertainty (Nguyen & 
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Walker,-1997, p. 11; Negnevitsky, 2002, p. 259). This ability to handle uncertainty and 

imprecise data makes a fuzzy logic implementation suited to that of chromosome 

classification. 

5.2.2.1. Implementation Details 

Keller, et al. (1995) identify two possible ways in which to merge the fuzzy 

logic system with the neural network classifier: 

1. an independent check on the results of the neural network classifier; or 

2. a pre-classifier to place the chromosome image into its Denver group, and then 

allow specially devised neural networks to resolve within group ambiguity. (p. 

129-130). 

The article by Keller, et al. (1995) describes the implementation of the first 

approach, an independent check on the classification of two classes of chromosomes: 

class 16 and class 18. The features used for chromosome classification inClude the 

centromeric index, relative length, and three banding pattern values for the number of 

bands, band spacing and band intensity (Keller, et al., 1995, p. 127). For this 

preliminary test, Keller, et al. (1995) required a total of seventy-four (74) rules: 

• 25 rules representing the class 16 confidence using centromeric index and 

length; 

• 25 rules representing class 18 confidence using centromeric index and length; 

and, 

• three sets of 8 rules (total of 24 rules) representing the confidence of class 16 

and 18 based on three different band density values. (p. 131) 

Figure 5.6 displays the fuzzy sets used to represent vanous membership 

functions for the centromeric index ratio. Keller, et al. (1995) describe their usage of the 

centromeric index as "the ratio of the short arm to the long arm of a chromosome, and 

so, is a value scaled into the interval [0, 1]" (p. 128). Keller, et al. (1995) have not 

identified the bounding limits of each fuzzy set but the total range would of necessity be 

between 0 and 1. 
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CENTROMERIC INDEX 

Figure 5.6. Fuzzy sets representing centromeric index (adapted from Keller, et 
al., 1995, p. 128). 

Figure 5.7 provides an example of one rule used to identify the confidence of 

class 18 chromosomes based on the values of various chromosome features. As 

described above, Keller, et al. (1995) used seventy-four such rules; each rule produces 

its individual confidence value and "the fuzzy inference mechanism aggregates these 

values to produce final results for each class" (Keller, et al., 1995, p. 129). 

IF relative length is SMALL 
subtelocent:ric confidence is HIGH 
P-band is ONE 
Q-band is T\YO 
distam:e(Pl) is MEDIUM 
length(Pl) is LARGE 
distance(Ql) is SMALL 
length(Ql) is MEDIUM 
distance(Q2) is LARGE 
length(Q2) is MEDIUM 

THEN chromos()me 18 confidence is LARGE 

AND 
AND 
AND 
AND 
AND 
Ai~D 

AND 
AND 
AND 

Figure 5·7· Fuzzy rule for identify class 18 chromosome confidence (Keller, et 
al., 1995, p. 129). 

5.2.2.2. Results 

The system correctly classified all chromosome 16 images, and 87% of 

chromosome 18 images (Keller, et al., 1995, p. 131). By integrating these values to 

achieve overall classification accuracy, Keller, et al. (1995) were able to achieve a 

100% reliability of classification with a 23% rejection rate (p. 131). 

49 



Table 5·5· Classification accuracy in classifying class 16 and class 
18 chromosomes 

Chromosome 16 100% 
Chromosome 18 87% 

Although this application achieved a high rate of correct classification, it does 

have several limitations. The tests experiment with the classification of only two 

chromosome classes and do not test the system performance in classifying the full 24 

chromosome classes and producing a karyotype. Additionally, the testing data used pre

processed information, which would require a human expert to manually extract all 

necessary features for each individual chromosome. This still places a large reliance on 

the human expert. 

Another possible area of improvement lies within the merger of neural networks 

and fuzzy logic. In the system presented by Keller, et al. (1995), the two techniques are 

not merged but rather executed in sequence with no collaboration between data. 

Although such an implementation still takes advantage of the characteristics of each 

individual AI technique, it does not take advantage of the enhanced performance offered 

by integrating the two techniques. Negnevitsky (2002, p. 266) states that "fuzzy logic 

and neural networks are natural complementary tools in building intelligent systems". 

The reasoning behind this argument is that fuzzy logic supports the weaknesses in 

neural networks and neural networks supplement the weaknesses of fuzzy logic. 

Negnevitsky (2002) argues that: 

Integrated neuro-fuzzy systems can combine the parallel computation 
and learning abilities of neural networks with the human-like knowledge 
representation and explanation abilities of fuzzy systems. As a result, 
neural networks become more transparent, while fuzzy systems become 
capable of learning. (p. 267) 

Given the strong advantages of fully merging fuzzy logic and neural networks, it 

is expected that an integrated system would perform better than a system using only one 

technique. This expectation is supported by Catto, et al. (2003) in their study. Catto, et 

al. (2003) investigated the use of an integrated neuro-fuzzy system fo-r the prediction of 

tumour behaviour. Their results showed that the integrated neuro-fuzzy system achieved 

higher accuracy than a stand-alone artificial neural network in most of the test cases 

(Catto, et al., 2003, p. 4175). 
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5.3. Non-ANN Techniques 

Several automated karyotyping implementations use techniques that do not 

involve any form of artificial intelligence. These techniques commonly rely upon 

complex statistical distributions and mathematical equations to identify chromosomes 

within a metaphase spread. This section will discuss two such implementations: 

• Automatic classification of chromosomes by means of quadratically asymmetric 

statistical distributions (Ritter & Gaggermeier, 1999); and 

• Joint classification and pairing of human chromosomes (Biyani, Wu & Sinha, 

2005). 

5.3.1. First Case Study 

The first article not using AI is Automatic classification of chromosomes by 

means of quadratically asymmetric statistical distributions (Ritter & Gaggermeier, 

1999). The aim of this article is to "study whether algorithms can achieve human 

performance in a complex, clear-cut, and highly specific image-recognition task as the 

present one [of chromosome classification]" (Ritter & Gaggermeier, 1999, p. 998). 

5. 3.1.1. Implementation Details 

In designing their system, Ritter and Gaggermeier (1999) decided to implement 

three different classifiers, one for each of the possible structural abnormalities in 

chromosomes. They support this decision by noting that "some cells may contain 

abnormal constellations and sometimes there are artefacts of preparation and culture. 

These aberrations usually cause a cell to contain fewer or additional chromosomes", 

(Ritter & Gaggermeier, 1999, p. 1001). Given the common abnormalities found within 

human chromosome cells, Ritter and Gaggermeier (1999) then conclude that "it is clear 

that we need three classifiers: one for cells with 46 chromosomes, and two classifiers 

for cells with one missing and one extra chromosome, respectively" (p. 1001 ). The three 

individual classifiers will be briefly described below: 

1. The first classifier deals with cells containing the correct number of 

chromosomes ( 46) and it is assumed that these cells have the correct homologue 

pairing or two chromosomes per class (Ritter & Gaggermeier, 1999, p. 1001). 

"After numbering the 46 chromosomes in an arbitrary way, the classification 

task consists in finding a correct assignment [of chromosomes to their respective 

classes]", (Ritter & Gaggermeier, 1999, p. 1002). The process of assignment is 
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achieved using probability and likelihood estimation (Ritter & Gaggermeier, 

1999, p. 1002). 

2. The second classifier works on cells with one missing chromosome, therefore 

having a total of 45 chromosomes. In this case, a dummy chromosome is 

introduced in order to increase the total chromosome number to 46 (Ritter & 

Gaggermeier, 1999, p. 1002). The classification is also based on a probability 

and likelihood estimation (Ritter & Gaggermeier, 1999, p. 1002). 

3. The third classifier is used for cells with one extra chromosome, thus having 4 7 

chromosomes in total. This classifier functions on the assumption that an extra 

chromosome would indicate either one of the five well-known anomalies. To 

represent these known anomalies, an additional class is introduced to each of the 

chromosome numbers which represent these abnormalities (Ritter & 

Gaggermeier, 1999, p. 1003). The likelihood of chromosomes belonging to a 

particular class is also calculated using probability functions (Ritter & 

Gaggermeier, 1999, p. 1003). 

While such a tailored approach would provide a more specified and detailed 

procedure for each of the three numerical aberrations, it does come with its limitations. 

The abnormality in chromosome number would have to be previously identified in order 

to activate the correct classifier. This requires additional computations to be performed 

by the cytogenetic expert. Additionally, the three classifiers described above do not 

cater for all possible chromosomal abnormalities. Other chromosomal abnormalities 

exist, including cases where individuals have an additional set of chiomosomcs or 

several additional chromosomes leading to 48 or 49 total chromosomes (Emery & 

Mueller, 1988, p. 125-139; Jorde, Carey, Bamshad & White, 2000, p. 112-121; Snustad 

& Simmons, 2000, p. 142-151). 

In this implementation, all chromosomes are assumed to be independent and 

therefore only context-free classification is conducted. Ritter & G~ggermeier (1999) 

acknowledge that using context-free classification does not improve misclassification 

probability but they also argue that catering for homologous (matching) chromosomes 

"makes only a small difference" (p. 1 002). 

52 



5. 3.1. 2. Results 

To train and test their system, Ritter and Gaggermeier (1999) used the 

Copellhagen chromosome data set. The system used twenty-four (24) features for each 

chromosome; these features included the size, density, centromeric index, banding 

pattern and others (Ritter & Gaggermeier, 1999, p. 1005). These features were pre

extracted and therefore this implementation does not offer any automatic image 

manipulation functions. This also places a restriction on the application of this 

implementation as before being able to classify data, the cytogeneticist must first extract 

features from all chromosomes within the cell. As mentioned previously, Ritter and 

Gaggermeier (1999) identify one main goal of their research as to "study whether 

algorithms can achieve human performance in a complex, clear-cut, and highly specific 

image-recognition task as the present one [of chromosome classification]" (p. 998). 

However, from the descriptions provided, it is clear that the implementation presented 

by Ritter and Gaggermeier (1999) does not present an image recognition system but 

rather a pattern recognition application as the implementation does not accept 

chromosome images but chromosome features. 

Despite these limitations, the research does present reasonable results. The 

system was tested using the cross-validation approach and the results obtained showed 

that 17.5% of chromosome cells were misclassified, leading to an 82.5% correct 

classification rate (Ritter & Gaggermeier, 1999, p. 1005-1 006). 

5.3.2. Second Case Study 

Another application of a non-artificial intelligence technique to the task of 

chromosome classification is presented by Biyani, Wu and Sinha (2005) in their article 

Joint classification and pairing of human chromosomes. The main aim of this article is 

to attempt to improve the classification and pairing of chromosomes by combining the 

two tasks. "Better performance can be expected for both classification and pairing if one 

can combine the two properties, or jointly optimize the statistical decisions of 

chromosome classification and homologue pairing" (Biyani, et al., 2005, p. 105). The 

individual process of classification and pairing are first discussed before examining the 

integrated approach. 
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5.3.2.1. Implementation Details 

Classification of chromosomes to their respective classes uses maximum 

likelihood estimation with the transportation algorithm. For cells with less than 46 

chromosomes, dummy values are introduced into the data to represent these missing 

chromosomes. This requirement is necessary as using the transportation algorithm 

assumes that all classes have two chromosomes and in the case of missing 

chromosomes, the dummy values are needed to equalise the data. The classification 

process is based on two types of chromosome features: 

1. Scalar features including "chromosome size, length, intensity, centromeric 

ratios, the number of bands in the banding profile" (Biyani, et al., 2005, p. 1 03), 

and; 

2. A vector feature that represents the banding profile of the chromosome (Biyani, 

et al., 2005, p. 103). 

The pairing of homologues involves identifying two matching chromosomes for 

all chromosome classes. The process of pairing homologous chromosomes is conducted 

using maximum likelihood estimation with a graph matching algorithm (Biyani, et al., 

2005,p.104). 

Biyani, et al. (2005) differentiate between the process of classification and 

pairing by stating that "although the transportation algorithm for chromosome 

classificatio_n and the maximum-weight graph matching algorithm for homologue 

pairing are both based on maximum likelihood estimation, they rely on different 

statistical properties of chromosome data" (p. 104). This difference in data is portrayed 

in the representation of chromosome features. Biyani, et al. (2005) explain: 

The transportation algorithm utilizes the property that the features ... of a 
given class fall within an expected range of variations, whereas the graph 
matching algorithm exploits the property that within a cell two 
chromosomes· of a given class have similar features. (p. 1 04) 

5.3.2.2. Results 

The system was tested on two databases: a private database ·consisting of 350 

cells and the popular Copenhagen database (Biyani, et al., 2005, p. 108). The 

chromosome features used include chromosome length, area, density, centromeric index 

and others (Biyani; et al., 2005, p. 108). These features were pre-extracted and thus 
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require extensive im~ge processing by a human expert or external automated system 

before classification. 

Testing the implementation followed the hold-out technique, where the data set 

was split into two halves and training was conducted on the first subset of data, while 

the other was used for testing and then visa versa. Several experiments were conducted 

to test the performance of this implementation in the individual tasks of classification 

and pairing and then the combined classification and pairing process. The classification 

of chromosomes from the Copenhagen database using the transportation algorithm 

achieved 98.1% classification accuracy, which is .the highest result produced from all 

implementations discussed in this research. 

The following chapter will examine and compare the results produced by each 

implementation. Other system features will also be considered and the most effective 

technique for chromosome classification will be identified and discussed. 
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6. RESULTS 

This chapter presents an evaluation of the case studies analysed according to the 

performance accuracy in chromosome classification and various system factors such as 

robustness and validity. The most suitable implementation will then be identified and 

discussed. 

6.1. Performance Comparisons 

A main factor in identifying the most effective implementation technique is the 

performance accuracy. This section discusses the performance accuracy of all identified 

case studies and compares the results retrieved. 

6.1.1. Implementations using ANNs 

The three case studies using artificial neural networks have tested their systems 

using both context-free and context-dependant classification. Therefore, a distinction is 

made between the two different methods and each technique is discussed in a separate 

section below. 

6.1.1.1. Context-Free Classification 

As previously defined in the Literature Review, context-free classification is 

conducted when "individual chromosomes are considered as independent objects, 

without regard to their context as components of a karyotype" (Carothers & Piper, 1994, 

p. 164). The results produced by each case study are presented in Table 6.1. This table 

shows that two different implementations achieved comparable results. The ANN 

technique provided by Lemer (1998) achieved the highest classification accuracy on the 

Edinburgh database while the PNN implementation by Sweeney, Musavi and Guidi 

(1994) achieved the highest classification accuracy on the remaining two databases. 

Table 6.1. Context-free classification accurac 

Sweeney, ~t al. 
(1994)' 

94.2% 

95.6% 

83.0% 

83.6% 

83.4% 

77.5% 

77.8% 



The accuracy results shown in Table 6.1 show that there is only a small margin 

of difference between each of the three implementations. This accuracy difference 

ranges from 0.2% to 1.4% and is a very small margin. Graham and Errington (2000) had 

compared their results to those obtained by Lerner (1998) and they propound that this 

small improvement in accuracy could be due to the more carefully chosen density 

features used for classification (Graham & Errington, 2000, p. 262). This could lead to 

the assumption that artificial neural network as chromosome classifiers have achieved 

their optimal performance, and any further improvements on this performance would be 

based on improvements in image processing and feature selection and extraction 

techniques (Ritter & Gaggermeier, 1999, p. 1007). 

6.1.1.2. Context-Dependant Classification 

The second popular method of classification is context-dependant cl~ssification. 

This technique gives the network knowledge that there must be two chromosomes per 

class in a normal cell (Lerner, 1998, p. 550. It is generally applied in the form of a 

global constraint, thus affecting all assignments of chromosomes to classes. Using 

context-dependant classification results in better chromosome assignment and therefore 

higher classification accuracy (Tso, Kleinschmidt, Mitterreiter & Graham, 1991, p. 118; 

Graham & Errington, 2000, p. 258). 

Table 6.2 shows the misclassification error rates achieved for context-dependant 

classification. These results show that the PNN implementation by Sweeney, et al. 

(1994) achieved the best classification accuracy for two out of the three databases, the 

Copenhagen and ·Edinburgh databases, \Vhile the Al'JN approach by Graham and 

Errington (2000) obtained the best performance for the Philadelphia database. 

Lerner 
Sweeney, et al. 97.0% 84.7% 78.8% 

For context-dependant classification, there is also only a small degree of 

variation in the classification accuracy, with the range being between 0.2% to 2.3%. By 

comparing the results shown in Table 6.1 to those of Table 6.2 above, it is evident that 

using context:-dependant classification has indeed improved the classi.fication for all 
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implementations on all testing data. This improvement varies between 0.9% (a rather 

insignificant improvement shown by Lemer's ANN implementation) to 3.6% (a much 

more substantial improvement shown by the Graham and Errington' s ANN). 

6.1.2. Implementations using ANNs with a Supporting Technique 

The second group .of case studies presents the use of artificial neural networks 

supported by other techniques. The two case studies from this group have conducted 

different experiments in testing their implementation and· therefore each case study is 

discussed in a separate section below. 

6.1.2.1. First Case Study 

Stanley, Keller, Gader and Caldwell (1998) present a data-driven technique 

supported by neural networks and test their system using three experiments. The 

experiments are reviewed below and the results produced are shown in Table 6.3. 

1. The first experiment involved identifying four homologous chromosome pairs 

from a total of 16 chromosomes. The chromosome class selected was class 1 7 

and the implementation, using neural networks supported by . dynamic 

programming, correctly identified all four pairs, thus achieving a 100% accuracy 

rate. 

2. The second experiment involved finding chromosomes from a selected class 

from a completely metaphase spread image using neural networks supported by 

dynamic programming. Again, the class selected was class 17 and the 

implementation identified the chromosomes of class 17 in 49 of the 55 

metaphase spreads, thus leading to an 89.1% accuracy rate. 

3. The third experiment was similar to that of experiment two, except a neural 

network implementation supported by the transportation algorithm was used. 

This implementation identified chromosomes of class 17 in_44 out of the 55 

metaphase spreads, resulting in 80% classification accuracy. 
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Experiment 2 
Experiment 3 80% 

These experiments show that the classification accuracy of neural network 

implementations can be improved by using dynamic programming to assist in 

homologue matching. The neural network and dynamic programming implementation 

system achieved 89.1% classification accuracy compared to only 80% accuracy by the 

neural network with the transportation algorithm. However, the tests conducted are not 

thorough as they only test the performance of the implementation in identifying class 17 

chromosomes. It cannot be assumed that the implementation will achieve the same error 

rates if applied to identifying chromosomes of a different class or identifying a complete 

karyotype from a metaphase spread: Additionally, only 55 cell images were used; other 

case studies have tested their implementations using databases consisting of between 

125 to 180 metaphase cells (Piper & Granum, 1989, p. 244; Sweeney, et al., 1994, p. 

20; Graham & Errington, 2000, p. 251). 

6.1.2.2. Second Case Study 

Keller, Gader, Sjahputera, Caldwell and Huang (1995) used a fuzzy logic rule

based system as an independent check on the results produced by a neural network. The 

implementation was tested on its ability to identify chromosomes of a selected class 

when presented with the given features. The data consisted of features extracted from 23 

chromosomes of class 16 and 30 chromosomes of class 18 (Keller, et al., 1995, p. 131 ). 

The system was able to correctly classify all class 16 chromosomes and 87% of class 18 . 

chromosomes (Keller, et al., 1995, p. 131). These results are shown in Table 6.4. 

Table 6.4. Classification accuracy of class 16 and class 18 
chromosomes 

Chromosome 16 100% 

Chromosome 18 87% 

As these experiments involved only identifying chromosomes from a selected 

class, it is assumed that context-free classification is conducted as no mention of 
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homologue matching is given. From the results shown in Table 6.4, the classification 

accuracy of this implementation is higher than most results produced by the ANN 

implementations. However, the results cannot be directly comparable as the tests 

conducted on this implementation are rather limited. The system was only tested in 

identifying two out of a total 24 chromosome classes: The performance of the system in 

producing a ·full karyotype from metaphase cells cannot be generalised based on the 

performance achieved in these experiments. 

6.1.3. Implementations not using ANNs 

The last case studies presented did not use artificial neural networks in their 

implementations of chromosome classification. Again, each case study will be discussed 

individually as different experiments and tests were conducted. 

6.1.3.1. First Case Study 

This implementation by Ritter and Gaggermeier (1999) used probability and 

likelihood. estimations to conduct chromosome classification. A variety of experiments 

were conducted and all were tested using the Copenhagen database. The best 

implementation achieved 82.5% classification accuracy. 

This performance accuracy is positive and is comparable with results achieved 

by other implementations. It is important to note that all experiments conducted only 

context-free classification, and as compared with the previous case studies, this 

accuracy result is only 0.5% - 1.0% lower than the previously discussed ANN 

approaches. However, this implementation was reliant upon pre-extracted features from 

chromosome databases and therefore did not present any technique to automatically 

segment chromosome images and extract the required features (Ritter & Gaggermeier, 

1999, p. 1005). 

6.1.3.2. Second Case Study 

Biyani, Wu and Sinha (2005) used maximum likelihood estimation as the basis 

for jointly classifying and pairing human chromosomes. They conducted experiments 

on two different data sets in testing their implementation. The first experiment, 
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conducted on a private database, tested the accuracy of the implementation in the 

individual tasks of classification and pairing. The results are shown in Table 6.5. 

Table 6.5. qassification and pairing accuracy for female and 
male data sets 

Female Set 94.25% 89.56% 
Male Set 94.1% 90.1% 

The data from this data set was divided into two individual sets for the female 

and male categories separately. This distinction is necessary due to the difference in 

chromosome classes between male and female cells (Biyani, et al., 2005, p. 108). As 

shown in Table 6.5, the difference between the gender sets is negligible; however the 

difference between the classification and pairing tasks is significant. 

The second experiment tested the ability of the sy.stem to perform a complete 

karyotype and used the Copenhagen database of chromosome images. The best 

classification accuracy achieved was 98.1 %, which was obtained by using the 

transportation algorithm. This result is outstanding and is comparable with the results 

produced by human expert cytogeneticists which usually lie in the range of 0.1 to 3.0% 

misclassification (Lundsteen, Lind & Granum, 1976, cited by Jennings & Graham, 

1993, p. 959) 

Although these results show the highest classification accuracy from all 

presented case studies, the implementation presented here used only pre-extracted 

features from the database and therefore did not offer any image segmentation and 

feature extraction procedures. This also places a large reliance on the human expert. 

Additionally, by omitting these tasks, the implementation removes a large area of error, 

as using pre-extracted data removes a large margin for error. 

6.1.4. Outcome 

This section discusses all the results presented in previous sections and 

compares performance accuracy m order to determine the best classifier 

implementation. As several implementations used different databases and different 

classification techniques, an accurate comparison is difficult to obtain. However, four 
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main cases are considered, including context-free classification using ANNs, context

dependant classification using ANNs, classification using ANNs supported by another 

technique and finally classification using a non-ANN teclmique. Since several different 

databases were used, only one database is chosen in order to level the comparisons. The 

Copenhagen database was used in most implementations and therefore all results 

presented here are based on classification accuracy achieved using this database. 

As the case studies presented using artificial neural networks used both context

free and context-dependant classification to test the implementations, both teclmiques 

will be considered. For the artificial neural network context-free classification, Lemer's 

(1998) method produced the best results with 83.6% misclassification. For context

dependent classifications, the probabilistic neural network performed best on the 

Copenhagen database, with a 97.0% misclassification rate. The investigation into 

implementations using artificial neural networks supported by another technique 

showed that the data-driven homologue matching technique presented by Stanley, et al. 

(1998) performed best, with an 89.1% correct classification rate. From the non-neural 

network techniques, the best classification performance achieved a 98.1% correct 

classification rate, using the joint classification and pairing method presented by Biyani, 

et al. (2005). These results are all shown in Table 6.6. 

Table 6.6. Context-dependant classification accuracy usmg Copenhagen 
database .......,.,...,......,...,......,._ 

Context-Free (NN) ANN 83.6% 
b 

Context-Dependant (NN) Probabilistic Neural 97.0% 
Network 

ANN with Support 89.1% 

Non-ANN 98.1% 
Pairin 

By assessing only performance criteria as presented in these case studies, the 

best' classification accuracy is achieved by the joint classification and-pairing technique 

by Biyani, et al. (2005). However, as these case studies have all relied upon several 

different databases using images of varying quality and have used different testing 

experiments, the classification accuracy is not sufficient in assessing the most effective 
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chromosome classifier. Therefore, other system measures must be considered; these are 

discussed in the following section. 

6.2. System Measures Comparisons 

Although the accuracy of the classifiers is a crucial feature, other system 

qualities are important and must be considered when determining the most effective 

chromosome classifier. These characteristics include the ability to generalise, 

robustness, efficiency in computation burden and speed, validity in real-world data and 

degree of reliance on human interaction. These are discussed in separate sections below. 

6.2.1. Ability to Generalise 

An important feature of artificial neural networks is the ability to generalise 

when faced with new data. Patterson (1996) asserts that "generalization is an essential 

trait of intelligent behavior" (p. 25). Patters on (1996) describes generalisation as "ANN s 

generalize when they compute or recall full patterns from partial or noisy input patterns, 

when they recognize or classify objects not previously trained on, or when they predict 

new outcomes from past behaviors" (p. 25). Generalisation, however, can be limited by 

poor network architecture or training methods. The result is overfitting, which occurs 

when the neural network becomes specialised and limited within its training data and 

produces incorrect responses when faced with new data. Overfitting can be avoided by 

using proper training techniques and introducing noisy data (Patterson, 1996, p. 208). 

Probabilistic neural networks are also capable of generalising to new data. 

Sweeney, et al. (1994) state "the network generalizes to any new incoming training 

patterns without having to repeat an extensive training process" (p. 18). Wasserman 

(1993) supports this by stating "inputs that are similar, but not identical to those in the 

training set will, within limits, be correctly classified" (p. 36). 

However, fuzzy systems on their own do not generalise and adapt well when 

faced with new data (Negnevitsky, 2002, p. 267). The use of a nemal network with a 

fuzzy system can overcome this limitation since, as described above, neural networks 

have good generalisation abilities, if set up correctly. 



When implemented and trained correctly, maximum likelihood estimators 

(MLE) are also able to generalise. Eliason (1993) indicates that "as the sample size 

grows large, the MLE tends toward the properties of an unbiased estimator" (p. 20). 

However, the NIST/SEMATECH e-Handbook of Statistical Methods (n.d. a) argues 

that "maximum likelihood estimates can be heavily biased for small samples". 

Therefore, in determining the extent of generalisation given by maximum likelihood 

estimation, the sample size plays a crucial role. Therefore, given the large size of 

chromosome samples in the popular chromosomes, it is arguable that the MLE 

implementations have sufficient data to reach a satisfactory unbiased state. 

6.2.2. Robustness 

The practice of chromosome analysis will often deal with uncertain or 

incomplete data. This is due to the process of chromosome culturing, which may often 

lead to extra particles among the chromosomes, and of imaging techniques, which can 

create images of low clarity (Wang, et al., 2002, p. 2538). Cho (2000) supports the 

above by noting that "it is difficult to get a clear microscopic chromosome image due to 

the variation of cell culturing conditions, chromosome staining, and microscope 

illumination" (p. 28). 

Patterson (1990) defines robustness as "the ability of a learning system to 

function with umeliable feedback and with a variety of training examples, including 

noisy ones" (p. 364). As chromosome images will unavoidably contain indistinct areas, 

chromosome analysis systems must be equipped to handle these ambiguities. Among 

the case studies presented in this research, the use of artificial neural networks is 

appropriate for handling· incomplete or uncertain data. Patterson (1996) reports that 

ANNs "continue to perform well when part of the network.is disabled or presented with 

noisy data" (p. 27). Negnevitsky (2002) also affirms that artificial neural networks are 

capable of tolerating uncertainty and imprecision in data (p. 259). This ability is 

provided by the structure of the neural networks; Patterson (1996) describes: 

This is possible because the 'knowledge' stored in an ANN is distributed 
over many neurons and interconnections, not just a single or ~.few units. 
Consequently, concepts or mappings stored in an ANN have some 
degree of redundancy built in through this distribution of knowledge. (p. 
27) 



Probabilistic neural networks are also robust; Patterson (1996) states "PNN 

networks also tolerate noisy samples and they can work with sparse samples too" (p. 

354). Wasserman (1993) supports the above by claiming "erroneous, noisy or 

incomplete training or data inputs do not have a disproportionate effect on the 

classification accuracy" (p. 36). 

Another technique effective in terms of its robustness, is fuzzy logic. 

Negnevitsky (2002) defines fuzzy logic as "logic that is used to describe fuzziness" (p. 
. . 

87). It is therefore evident that fuzzy systems should perform well when dealing with 

uncertain or ambiguous data. Merging fuzzy logic with neural networks leads to a high 

powered system. Negnevitsky (2002) states "fuzzy logic and neural networks are natural 

complementary tools in building intelligent systems" (p. 266). 

The use of maximum likelihood estimation also allows for interpretation of 

abnormal data. The NIST/SEMATECH e-Handbook of Statistical Methods (n.d. b) 

notes that apart from transforming the abnormal data into normal ranges, the main 

alternative is to "use a fitting criterion that directly takes the distribution of the random 

errors into account when estimating the unknown parameters. Using these types of 

fitting criteria, such as maximum likelihood, can provide very good results". However, 

MLE does present complications as it is harder to use than other techniques 

(NIST/SEMATECH e-Handbook of Statistical Methods, n.d. b) 

6.2.3. Efficiency in Computation Burden and Speed 

A manual classification by a cytotechnician is a long and tedious process 

(Carothers & Piper, 1994, p. 161). Therefore, one ofthe aims of automated chromosome 

analysis is to lessen the computational requirements and accelerate the process. 

The artificial neural network technique for chromosome analysis presents some 

problems with computational burden. The popular network training technique, the back 

propagation algorithm, performs well but is slow and complex. Kartalopoulos (1996) 

notes that "the algorithm suffers from extensive calculations and, hence, slow training 

speed" (p. 81 ). This computational burden has limited the applicability of neural 

networks and Kartalopoulos (1996) argues that the back-propagation algorithm is not 

suitable for many real-time applications (p. 82). Sweeney', et al. (1994) acknowledge the 

disadvantages of the back-propagation algorithm and claim "since chromosome 
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classification takes very large data sets with high dimensional input and output spaces, 

the timeto train a BP [back propagation] network could take many hours of computing 

time (pg. 18). 

The probabilistic neural network technique includes the advantages of neural 

network robustness while easing the training process. Sweeney, et al. (1994) argue that 

"the significant advantages of the PNN classifier are its speed and simplicity of the 

training process" (p. 18). Patterson (1996) supports the above by stating "one of the 

main advantages of the PNN is the speed with which it can be trained. No iterative 

procedures are used and no feedback paths are required in the training process" (p. 354). 

Kartalopoulos (1996) states that a "PNN simply stores the training patterns, avoiding 

the iterative process. It therefore learns very fast, but large data sets require large 

networks" (p. 1 05). A comparison given by Specht (1990), cited in Patterson (1996), 

shows that a probabilistic neural network was trained 200,000 times faster than a 

multilayer feedforward neural network trained with the back propagation algorithm (p. 

354). 

The maximum likelihood estimation implementations are based on complex 

algorithms and therefore can be computationally expensive. The NIST/SEMATECH e

Handbook of Statistical Methods (n.d. c) acknowledges this factor by noting that the 

procedure ofMLE is "complicated and computationally intensive". 

6.2.4. Validity in Real-World Data 

Although previous factors focused on the characteristics of the implementation 

techniques used, this characteristic is dependant upon the process of training and testing. 

An important characteristic of a classifier is the ability to associate with real-life 

situations and still perform well. Validity irr this purpose can be seen as validity of 

testing data and validity of testing experiments 

6.2.4.1. Validity ofTesting Data 

To correctly assess the performance of the classifier, the system should be tested 

with a wide range of data. The data should represent the various cases appearing in real

life data. 
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Several implementations did not consider data containing touching or 

overlapping chromosomes. These implementations include: 

• the PNN implementation by Sweeney, et al. (1994), 

• the neural network and fuzzy logic technique by Keller, et al. (1995), 

• the data-driven technique by Stanley, et al. (1998), 

• the statistical distribution approach by Ritter and Gaggermeier (1999), 

• the neural network approach by Graham and Errington (2000), and; 

• the joint classification and pairing technique by Biyani, et al. (2005). 

The only technique to offer a system to manage touching or overlapping 

chromosomes was the ANN approach provided by Lemer (1998). All other 

· implementations excluded data which contained chromosomes that were touching or 

overlapping. This severely skews the results produced by the testing experiments. 

Logically, if given data of high quality, the system should generally perform better than 

when dealing with data of low quality. This is confirmed in the classification accuracy 

results. When systems were tested with the Copenhagen database, which is considered 

to be a database of high quality, all implementations performed better than when tested 

with the Philadelphia database, a database of low quality. Only Lemer's (1998) 

technique offers an implementation capable of dealing with real-life data, which 

commonly consist of chromosomes that are touching or overlapping (Wang, et al., 2005, 

p. 2538). 

6.2.4.2. Validity ofTesting Experiments 

Another factor in testing the performance of a classifier is t.~c variety of testing 

experiments conducted. The system implemented should be capable of identifying 

chromosome homologues and producing a full karyotype. Therefore, the system testing 

should cover a range of experiments and assess the performance in analysing 

chromosomes from full metaphase spreads, not just isolated images. 

Stanley, et al. (1998) conducted two different experiments on_their system. The 

first was identifying matching homologues and the second was identifying 

chromosomes of a selected class from a metaphase spread. However, in both 

experiments, the. p~rformance of the system was only tested in identifying chromosomes 

of one class, class 17. No reference is made on the performance of the system .in 
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classifying other chromosome classes. Additionally, Stanley, et al. (1998) did not test 

the system's ability in carrying out a full analysis and producing a full karyotype, which 

is the most common chromosome analysis technique (Wang, et al., 2005, p. 2536). 

Keller, et al. (1995) conducted similar experiments in identifying chromosomes of class 

16 and 18 only and did not test the functionality of the system in producing a full 

karyotype. The remaining case studies all conducted experiments on testing the 

systems' performance in achieving a correct complete karyotype. 

6.2.5. Degree of Human Reliance 

One major criticism of automated chromosome analysis is the reliance of these 

systems on human intervention in many phases of the analysis. Wang, et al. (2005) state 

"although several commercialized software and systems have been developed, they are 

mostly semi-automatic products : .. the interaction of a skilled laboratory technician is 

required to check the results and manually complete the karyotyping" (p. 2541). Piper 

and Granum (1989) support this important feature by stating that several error rates 

should "be treated with some caution since they depend substantially on the extent of 

prior interaction" (p. 242). Several case studies presented in this research have a large 

reliance on human interaction to facilitate data processing whether in feature extraction 

or chromosome segmentation. 

The case studies relying on pre-extracted features and thus not incorporating any 

automated chromosome segmentation or feature selection are: 

• the probabilistic neural network technique by Sweeney, et al. (1994), 

• the fuzzy logic implementation by Keller, et al. (1995), 

• the statistical distribution implementation by Ritter & Gaggermeier (1999), 

• the neural network approach by Graham and Errington (2000), and; 

• the joint classification and pairing approach by Biyani, et al. (2005). 

All above case studies deal with the values of the chromosome features and thus 

involve a great deal of data pre-processing which must be done by a human expert. 

Given that these systems cannot perform a fully automated chromosome analysis from 

metaphase spread image to karyotype, they can be seen as cytogenetic aids, rather than 

complete systems. 
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The case study by Stanley, et al. (1998), usmg the data driven technique, 

presents an automation of the feature extraction task. However, only isolated 

· chromosomes were used in that study and therefore no attempt is made at automating 

chromosome segmentation (Stanley, et al., 1998, p. 454). Lemer (1998) presents the 

only case study to provide a fully automatic chromosome segmentation system, which is 

capable of independently segmenting chromosomes and extracting features as well as 

conducting the actually chromosome analysis. 

6.2.6. Outcome 

In order to effectively compare the presented implementations, it has been 

necessary to construct a suitable framework for evaluation. of system measures. This· 

framework is presented using a rating scale consisting of the values of 0, 1 and 2, where 

· 0 indicates a lack of the system measure under comparison and 2 indicates a strong 

possession of this characteristic. Each implementation was rated according to the scale 

described above; the rating was based solely on the information provided in each article 

and is used simply to facilitate the comparison and applies to this research and these 

case studies only. The implementation with the highest overall score was found to be 

the best implementation in terms of system features. 

Table 6.7 presents the results ofthis comparison. There are a total offive system 

features under comparison and each feature may be assigned a maximum of two points 

leading to an overall total of 10 points. The rating scale and detailed results of each 

implementation are presented in detail in Appendix A. 

6g 



ANN 
(Graham & Errington, 2 2 0 0 1 0 5/10 

2000 

ANN 
2 2 0 1 1 2 8/10 

(Lerner, 1998) 

PNN 
(Sweeney, et al., 2 2 2 0 1 0 7/10 

19 
Data-Driven 

Homologue Matching 2 1 0 0 0 1 4/10 
(Stanley, et al., 1998) 

Fuzzy Logic Rule-
Based System 1 2 1 0 0 0 4/10 

(Keller, et al., 1995) 

Quadratically 
Asymmetric Statistical 

Distributions 2 2 0 0 1 0 5/10 
(Ritter & 

Ga ermeier 1999 

Joint Classification and 
Pairing 2 2 0 0 1 0 5/10 

(Biyani, et al., 2000) 

By assessing each implementation according to the various system factors, the 

artificial neural network implementation presented by Lemer (1998) produced the best 

overall results. This implementation performed well in most of the system features 

including generalisability, robustness, validity, human operator interaction but only 

suffered from expensive computational burden. 

6.3. Best Classifier Performance 

6.3.1. Best Classifier Implementation 

The seven·. implementations have been assessed in terms of accuracy of 

chromosome classification and on five additional system measures. In order to achieve 
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an overall rating indicating the most effective implementation technique, the 

classification accuracy of each implementation has been combined with the ratings 

assigned from the system measure framework. Both factors are given equal weighting, 

thus leading to an averaged total score. These scores are shown in Table 6.8. 

Table 6.8. Overall implementation scores 

ANN 
85.6% 

5 67.80°/o (Graham & Errington, 2000) (50%) 

ANN 
84.5% 

8 82.75°/o 
( Lerner, 1998) (80%) 

PNN 
84.7% 7 77.35°/o (Sweeney, et al., 1994) (70%) 

Data-Driven Homologue 
4 64.55°/o 

Matching 89.1% 
(40%) 

(Stanley, et al., 1998) 

Fuzzy Logic Rule-Based 
4 63.50°/o 

System 87% 
(40%) 

(Keller, et al., 1995) 

Quadratically Asymmetric 
5 

Statistical Distributions 82.5% 
(50%) 

66.25°/o 
(Ritter & Gaggermeier, 1999) 

Joint Classification and Pairing 
98.1% 

5 74.050/o 
(Biyani, et al., 2000) (50%) 

Although the most accurate chromosome classifier was the joint classification 

and pairing technique presented by Biyani, et al. (2005), its lack of support of important 

system measures has limited its effectiveness. The main limitation of this technique is 

the validity of system testing and reliance on human interaction. The data used in 

training and testing this implementation was already pre-processed, as only values for 

chromosome features were used. This implementation does not offer automation of any 

of the image processing techniques, such as feature extraction and chromosome 

segmentation and therefore places a large reliance on human expert interaction. The 
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PNN implementation presents a very effective technique for classifying human 

chromosomes but is only partially automated and therefore still requires extensive time 

and effort from cytogeneticists. The other implementations did have their individual 

strengths and limitations but did not have a high overall rating. 

The artificial neural network implementation presented by Lemer (1998) 

presents a completely automated approach to classify chromosomes in which feature 

extraction and chromosome segmentation as well as final classification are all 

computerised. This ANN approach out-performed other implementations in regard to 

system measures. Lemer' s ANN approach accepts chromosome images containing 

overlapping and touching chromosomes, and consequently the data is more valid. 

Additionally, the ANN approach provides good generalising abilities and performs well 

when data is incomplete or uncertain, which is common in metaphase images (Cho, 

2000, p. 28; Wang, et al., 2002, p. 2538). Overall, the ANN approach by Lemer (1998) . 

provides a well-rounded implementation, offering a good balance between classification 

accuracy and system features and therefore portraying the most effective technique for 

automated chromosome classification. 

6.3.2. Strengths and Limitations of this Technique 

The use of an ANN for chromosome classification presents several advantages 

including robustness and the ability to generalise. Additionally, the approach used by 

Lemer (1998) resulted in a fully automatic system with little or no reliance on human 

experts and a well-trained system which could easily be applied within the medical field 

without much need for adaptation. 

The ANN approach by Lemer (1998), however, does present several limitations. 

One such limitation is computational burden. A neural network trained using a back

propagation algorithm requires extensive training and consequently takes up much time 

(Kartalopoulos, 1996, p. 81). However, this limitation is outweighed by the strong 

support of additional system features and satisfactory classification performance .. 

Another limitation of artificial neural networks is their 'black box' structure, 

thus preventing them from explaining or validating the given outputs (Dybowski, 2000, 

p. 31). For many implementation examples, a system should be able to explain the given 

results and display the reasoning behind the outputs. Again, this characteristic does not 
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pose a large limitation as the reasoning behind assigning chromosomes to classes is not 

as important as producing a correct karyotype. 

The following chapter, Conclusions and Recommendations, presents a 

discussion on the possible improvements for automated chromosome systems. Also, the 

conclusions drawn from this research are discussed and the original research questions 

are re-assessed as related to the results achieved. 
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7. CONCLUSIONS AND RECOMMENDATIONS 

7 .1. Research Outcomes 

This research has conducted an analysis of various implementation techniques 

for automated human chromosome classification. The different implementations have 

included techniques using artificial neural networks, techniques using artificial neural 

networks supported by another method and techniques not using artificial neural 

networks. The main research question structuring this investigation was: Are artificial 

neural networks a suitable implementation technique for automated chromosome 

analysis? In order to address this research question, the two sub-questions identified 

must be considered first. 

7 .1.1. Classification Accuracy 

The first sub-question framing this research was How do ANNs perform in 

classification accuracy as compared to other implementations? In comprehensively 

addressing this question, this research has analysed the various experiments conducted 

on the identified implementations and has compared the accuracy results. The outcome 

of this investigation found that artificial neural networks performed well as automated 

chromosome classifiers, but did not perform as well as other techniques. The best 

classification accuracy achieved by a neural network approach was 97% from the 

probabilistic neural network. However, the statistical approach offering a joint 

classification and pairing technique achieved a 98.1% misclassification. Therefore, in 

addressing this question, this research has found that artificial neural networks do not 

perform as well as other techniques when only classification accuracy is considered. 

However, the implementations presented have been based on various data sets and 

differing testing experiments and comparing only classification accuracy does not 

present a complete analysis of the systems. Hence, to conduct a well-rounded 

comparison, the system measures offered by each implementation must also be 

compared; these are discussed next. 

7 .1.2. System Measures 

The second sub-question identified for this research was How do ANN classifiers 

perform in system . measures as compared to classifiers based on other processing 

methods? The system measures that were analysed include the ability to generalise, 
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robustness, efficiency in computational burden and speed, validity in real-world data 

and degree of human interaction required. In terms of these system measures, artificial 

neural networks proved to be an effective implementation as compared to the other 

techniques presented in this research. Artificial neural networks offer good generalising 

abilities and stability and robustness even when dealing with incomplete data. The ANN 

implementation by Lerner (1998) offered a completely automated approach to 

chromosome classification and thus required little or no human interaction and 

maintained validity with real-world data. Several other implementations presented in 

this research did not put forward completely automated systems and relied heavily on 

pre-extracted chromosome features and consequently human interaction. 

7 .1.3. Overall Assessment 

This research has attempted to investigate whether the artificial neural networks 

are an effective computing technique for human chromosome classification. The 

investigation has found that artificial neural networks offer acceptable classification 

accuracy while maintaining high support of desirable features. Wang, et al. (2005) claim 

that artificial neural networks are a popular tool for detecting and classifying 

chromosomes (p. 2540) This research has supported the above claim; it is found that 

artificial neural networks do indeed present an effective technique for human 

chromosome classification. 

7 .2. Limitations 

This research has investigated several different implementation approaches for 

automated chromosome classification. However, the research presented does have 

several limitations. 

This research has considered a small representative of the various 

implementation techniques available for chromosome analysis. From these case studies, 

it has been shown that artificial neural networks are an effective technique for human 

chromosome classification. This gives room for more research work, as the various 

implementation techniques not considered in this study could be investigated and 

compared to the effectiveness of ANNs. 
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Although all case studies were concerned with chromosome classification, the 

implementations used different testing data, different testing experiments and different 

classification processes. This introduces a measure of complexity into the comparisons 

as a level evaluation is not directly applicable. However, this research has shed light on 

the use of both classification accuracy and system measures as criteria for thoroughly 

evaluating performance of automated chromosome classifiers. 

7.3. Recommendations and Further Work 

The most effective artificial neural network implementation identified through 

this study has produced satisfactory results in both accuracy and system measures. 

However, there are several recoinmendations and possible improvements, not only for 

this implementation but for the ,field of automated chromosome classification as a 

whole. These improvements include advances in the imaging techniques and in 

implementation techniques. 

7.3.1. lmaging Techniques 

Automated chromosome analysis begins with an image of a metaphase cell. 

Therefore, the quality of that image will affect the entire classification process. In order 

to facilitate and improve classification accuracy, enhancements in imaging techniques 

are required. Wang, et al. (2005) claim "the performance of the systems can be 

improved when the slides are well-prepared, the microscope has good optical quality 

and the camera can digitize the image with sufficient clarity and resolution" (p. 2540). 

A clear, high resolution image will provide a more accurate representation of the 

chromosomes in that cell and thus will lead to a more accurate classification due to 

lower occurrences of noise and uncertainty within that image. 

7.3.2. Image Processing Techniques 

Another area for improvement in automated karyotyping systems lies within the 

task of processing the metaphase cell image. As chromosomes are commonly 

overlapping or touching, improvements in these Image processmg techniques will 

consequently lead to improvements in classification accuracy. Carothers and Piper 

(1994) identify "poorly segmented or severely distorted chromosomes" as a cause of 

high error rates (1).169). Ritter and Gaggermeier (1999) support the above and confirm 

that "in order to remove more classification errors it will, however, be necessary to take 
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another look at image processing" (p. 1007). Wang, et al. (2005) confirm that the 

performance of automated karyotyping systems is directly influenced by the results of 

chromosome segmentation (p. 2540) by observing that error rates were substantially 

increased when classification involved touching or overlapping chromosomes (p. 2541). 

7 .3.3. Feature Selection 

The selection of chromosome features also plays an important role in final 

classification accuracy. Tso and Graham (1983) suppose that "better discrimination 

might be achieved by including more chromosome measurements" (p. 495). This is 

supported by Piper and Granum (1989) who also note that possible enhancements in 

classification accuracy can be achieved through improved feature selection (p. 254). 

These assumptions have been supported by Graham and Errington (2000) who observe 

that the improvement of Lemer's (1998) ANN to their ANN implementation "might be 

due to the more carefully chosen density features" (p. 262). 

7 .3.4. Network Architecture 

A further area of improvement for automated classification accuracy lies within 

the implemented neural network structure. Cho (2000), in reference to the back

propagation training algorithm, claims "better training algorithms to reduce training 

times are needed" (p. 32). A faster and less complex training process would improve the 

usefulness of artificial neural networks in real-time applications. 

Additionally, a change in the method of reporting results could be investigated. 

Several implementations presented in this research produce a karyotype of all 

chromosome cells and rely on the cytogeneticist to review the outputs in order to 

identify possible wrong classifications. A practical improvement on this method would 

be the generation of a system that classifies all possible chromosomes and alerts the 

human operator to potential errors or abnormalities when faced with a difficult or 

unlikely classification. Stanley, et al. (1998) support the above by arguing that "with the 

purpose of aiding a cytogenetic expert, making no decision for chromosome assignment 

is better than an incorrect assignment" (p. 452). 

Finally, as technology constantly advances and improves, the applications using 

it will grow alongside it. Artificial neural networks have been presented as a viable and 
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effective technique for the classification of human chromosomes. Enhancements in the 

technology of imaging techniques and further research into the artificial neural network 

frameworks will arguably result in improvements in their applicability. 



REFERENCES 

Azuaje, F., Dubitzky, W., Lopes, P., Black, N., Adamson, K., Wu, X., & White, J.A. 

(1999). Predicting coronary disease risk based on short-term RR interval 

measurements: A neural network approach [Electronic Version]. Artificial 

Intelligence in Medicine, 15, 275-297. 

Baxt, W.G. (1995). Application of artificial neural networks to clinical medicine. 

[Electronic Version] The Lancet, 346, 1135-1138. 

Biyani, P., Wu, X., & Sinha, A. (2005). Joint classification and pairing of human 

chromosomes [Electronic Version]. IEEE/ A CM Transactions on Computational 

Biology and Bioinformatics, 2(2), 102-109. 

Carothers, A., & Piper, I. (1994). Computer-aided classification ofhuman 

chromosomes: A review. Statistics and Computing, 4, 161-171. 

Catto, J.W.F., Linkens, D.A., Abbod, M.F., Chen, M., Burton, J.L., Feeley, K.M., & 

Hamdy, F.C. (2003). Artificial Intelligence in Predicting Bladder Cancer 

Outcome: A Comparison ofNeuro-Fuzzy Modeling and Artificial Neural 

Networks [Electronic Version]. Clinical Cancer Research, 9, 4172-4177. 

Charters, G.C., & Graham, J. (2002). Disentangling chromosome overlaps by 

combining trainable shape models with classification evidence [Electronic 

Version]. IEEE Transactions on Signal Processing, 50(8), 2080-2085. 

Cho, J.M. (2000). Chromosome classification using backpropagation neural networks: 

A process that overcomes nonlinearity problems to correctly classify giemsa

stained human chromosomes [Electronic Version]. IEEE Engineering in 

Medicine and Biology, 19(1), 28-33. 

Coiera, E.W. (1996). Artificial intelligence in medicine: The challenges ahead. 

[Electronic Version] Journal of the American Jvfedical Informatics Association, 

3, 363,.366. '' 

79 



-
Creswell, J. (2003). Research design: Qualitative, quantitative and mixed method 

approaches (2nd Ed). Thousand Oaks, California: Sage Publications Limited. 

De Robertis, E.D.P., & De Robertis, E.M.F. (1980). Cell and molecular biology (ih 

Ed). Philadelphia: Saunders College. 

Dybowski, R. (2000). Neural computation in medicine: Perspectives and Prospects. In: 

Malmgren, H., Borga, M., & Niklasson, L. (Eds). Artificial neural networks in 

medicine and biology: Proceedings of the ANNIMAB-1 Conference, Gotenborg, 

Sweden, 13-16 May 2000 (p. 26-36). 

Eliason, S.R. (1993). Maximum likelihood estimation: Logic and practice. (Sage 

University Paper series on Quantitative Applications in the Social Sciences, 07-

096). Newbury Park, California: Sage Publications Limited. 

Emery, A.E.H., & Mueller, R.F. (1988). Elements of medical genetics (ih Ed). 

Edinburgh: Churchill Livingstone. 

Graham, J., & Errington, P.A. (2000). Classification of chromosomes: A comparative 

study of neural network and statistical approaches. In: Lisboa, P.J.G., Ifeachor, 

E. C., & Szczepaniak, P.S. (Eds). Artificial neural networks in biomedicine (p. 

249-265). London: Springer-Verlag Limited. 

Ji, L. (1994). Fully automatic chromosome segmentation [Electronic Version]. 

Cytometry, 17, 196-208. 

Jorde, L.B., Carey, J.C., Bamshad, M.J., & White, R.L. (2000). Medical genetics (2nd 

Ed). St. Louis, Missouri: Mosby Inc. 

Kangas, L.J., & Keller, P.E., (2000). Neurometric assessment of adequacy of 

intraoperative anaesthetic. In: Lisboa, P.J.G., Ifeachor, E.C., Szczepaniak, P.S. 

(Eds ). Artificial neural networks in biomedicine (p. 81-91 ). London: Springer

V erlag Limited. 

So 



Kartalopoulos, S.V. (1996). Understanding neural networks andfitzzy logic: Basic 

concepts and applications. New Jersey: IEEE Press. 

Keller, J.M., Gader, P., Sjahputera, 0., Caldwell, C.W., Huang, H-M.T. (1995). A fuzzy 

logic rule-based system for chromosome recognition [Electronic Version]. 

Eighth IEEE Symposium on Computer-Based Medical Systems (CBMS'95) (p. 

125-132). 

Leedy, P.D., & Ormrod, I.E. (2005). Practical research: Planning and design (8th Ed). 

Upper Saddle River, New Jersey: Pearson Education Limited. 

Lerner, B. (1998). Toward a completely automatic neural-network-based human 

chromosome analysis [Electronic Version]. IEEE Transactions on Systems, Man 

and Cybernetics, 28( 4), 544-552. 

Levitan, M. (1988). Textbook of human genetics. New York: Oxford University Press. 

Lisboa, P.J.G., Ifeachor, E.C., & Szczepaniak, P.S. (Eds). (2000). Artificial neural 

networks in biomedicine. London: Springer-Verlag Limited. 

Lo, S-C.B., Lin, J-S.J., Freedman, M.T., & Mun, S.K. (1998). Application of artificial 

neural networks to medical image pattern recognition: Detection of clustered 

microcalcifications on mammograms and lung cancer on chest radiographs 

[Electronic Version]. Journal ofVLSI Signal Processing, 18, 263-274. 

Martinez, C., Juan, A., & Casacuberta, F. (2002). Using recurrent neural networks for 

automatic chromosome classification [Electronic Version]. In J.R. Dorronsoro 

(Eds). Artificial neural networks: International conference on artificial neural 

networks 2002, Lecture notes in computer science (p. 565-570). Springer

Verlag. 

NIST/SEMATECH e-Handbook of Statistical Methods (n.d. a). Retrieved November 3, 

200 5, from http:/ /www.itl.nist. gov I div8 9 8/handbook/ apr/ section4/ apr412 .htm 

81 



NIST/SEMATECH e-Handbook of Statistical Methods (n.d. b). Retrieved November 3, 

2005, from http:/ /www.itl.nist.gov/ div898/handbook/pmd/section4/pmd453 .htm 

NIST/SEMATECH e-Handbook of Statistical Methods (n.d. c). Retrieved November 3, 

2005, from http:/ /www.itl.nist. gov I div8 9 8/handbook/ apr/ section4/ apr4 22 .htm 

Negnevitsky, M. (2002). Artificial intelligence: A guide to intelligent systems. Essex, 

England: Pearson Education Limited. 

Nguyen, H.T., & Walker, E.A. (1997). A first course infitzzy logic. Boca Raton, 

Florida: CRC Press. 

Patterson, D.W. (1990). Introduction to artificial intelligence and expert systems. 

Englewood Cliffs, New Jersey: Prentice Hall Inc. 

Patterson, D.W. (1996). Artificial neural networks: Theory and applications. Singapore: 

Prentice Hall Limited. 

Perry, G.J., Roderer, N.K., Assar, S. (2005). A current perspective on medical 

informatics and health sciences librarianship [Electronic Version]. Journal of the 

Medical Library Association, 93, 199-205. 

Piper, J., & Granum, E. (1989). On fully automatic feature measurement for banded 

chromosome classification [Electronic Version]. Cytometry, 10,242-255. 

Popescu, M., Gader, P., Keller, J., Klein, C., Stanley, J., & Caldwell, C. (1999). 

Automatic karyotyping of metaphase cells with overlapping chromosomes 

[Electronic Version]. Computers in Biology and Medicine, 29, 61-82. 

Punch, K.F. (1998). Introduction to social research: Quantitative and qualitative 

approaches. London: Sage Publications Limited. 

Ritter, G., & Gaggermeier, K. (1999). Automatic classification of chromosomes by 

means of quadratically asymmetric statistical distributions. Pattern Recognition, 

32, 997-1008. 

82 



Silipo, R., & Marchesi, C. (1998). Artificial neural networks for automatic ECG 

analysis [Electronic Version].JEEE Transactions on Signal Processing, 46(5), 

1417-1425. 

Snustad, D.P. & Simmons, M.J. (2000). Principles of genetics (2nd Ed). New York: John 

Wiley & Sons. 

Stake, R.E. (2003). Case studies. In: Denzin, N.K., & Lincoln, Y.S. (Eds). Strategies of 

qualitative inquiry (2nd Ed., p. 134-164). Thousand Oaks: Sage Publications 

Limited. 

Stanley, R.J., Keller, J.M., Gader, P., Caldwell, C.W. (1998). Data-driven homologue 

matching for chromosome identification [Electronic Version]. IEEE 

Transactions on Medicallmaging, 17(3), 451-462. 

Sweeney, W.P., Musavi, M.T., & Guidi, J.N. (1994). Classification of chromosomes 

using a probabilistic neural network [Electronic Version]. Cytometry, 16, 17-24. 

Tso, M., & Graham, J. (1983). The transportation algorithm as an aid to chromosome 

classification. Pattern Recognition Letters, I, 489-496. 

Tso, M., Kleinschmidt, P., Mitter, I., & Graham, J. (1991). An efficient transportation 

algorithm for automatic chromosome karyotyping. Pattern Recognition Letters, 

12,117-126. 

Wang, X., Zheng, B., Wood, M., Li, S., Chen, W., & Liu, H. (2005). Development and 

evaluation of automated systems for detection and classification of banded 

chromosomes: current status and future perspectives [Electronic Version]. 

Journal of Physics D: Applied Physics, 38, 2536-2542. 

Wasserman, P.D. (1983). Advanced methods in neural computing. New York: Van 

Nostrand Reinhold. 

Winchester, A.M., & Mertens, T.R. (1983). Human genetics (41
h Ed). Ohio: Charles E. 

Merrill Publishing Company. 



Yin, R.K. (1994). Case study research: Design and methods (2nd Ed). Thousand Oaks, 

California: Sage Publications Limited. 

Zhou, Z., Jiang, Y., Yang, Y., & Chen, S. (2002). Lung cancer cell identification based 

on artificial neural network ensembles. [Electronic Version] Artificial 

Intelligence in Medicine, 24, 25-36. 



APPENDIX A 

This section describes and presents the rating framework used in this research. The 

rating framework was developed to serve as a method of standardising the comparisons 

of all presented case studies. The system measures under comparison are 

1. Ability to generalise 

2. Robustness 

3. Efficiency in computational burden and speed 

4. Validity 

5. Degree of Human Reliance 

In regards to validity, two main kinds of validity are considered. These are: 

1. Testing data validity: this considers whether the data used in testing the 

implementation is viable and applicable with real-world data. 

2. Testing experiments validity: this factor is considers whether the experiments 

conducted on the implementation are the type of functionality required for a 

typical real-world automated chromosome classifier. 

The rating values are in the range of [0,2]. A rating of 0 implies that the implementation 

does not offer good support of the measure in question while a rating of 2 indicates a 

good presence of that system measure. Given that there are a total of five system 

measures under comparison, the total possible score is ten (two points for each measure; 

this includes validity, where each sub-factor is rated out of only one point, giving a total 

oftwo points). 

After allocating a complete rating for each implementation, the system measure ratings 

are converted into a percentage (e.g. 8/10 converts to 80% ). That percentage is 

combined with the performance accuracy percentage and each factor is given equal 

weighting. The sum of these percentages is then divided in half to give an overall rating 

of the implementation under comparison. 
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A.1. Ratings of ANN Implementations 

A.1.1. First Case Study 

Case Study: Classification of chromosomes: A comparative study of 
neural network and statistical approaches (Graham & 
Errington, 2000). 

FACTOR RATING 
Ability to Generalise 2 

Robustness 2 

Efficiency in Computational Burden & 0 
Speed 

Validity 
Testing Data 0 

Testing Experiments 1 

Degree of Human Reliance 0 

TOTAL 5/10 

Explanations: 

Each of the features provided above will be briefly discussed and validated here. 

A. Ability to generalise: The ANN implementation by Graham & Errington (2000) 

has been assigned a 2 for its ability to generalise. Patterson (2000) claims that 

generalisation is an important characteristic of artificial neural networks (p. 25) 

and Negnevitsky supports this claim by noting that ANNs are efficient at 

generalising and adapting to new input data (p. 259). 

B. Robustness: A score of2 has also been assigned to the measure of robustness. 

This is validated by Patterson (1996), who reports that ANNs "continue to 

perform well when part of the network is disabled or presented with noisy data" 

(p. 27). Negnevitsky (2002) also confirms that artificial neural networks are 

capable of tolerating uncertainty and imprecision in data (p. 259). 

C. Efficiency in Computational Burden and Speed: Kartalopoulos (1996) notes that 

"the algorithm suffers from extensive calculations and, hence, slow training 
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speed" (p. 81 ). Therefore, a score of 0 has been assigned to this factor as training 

neural networks using the back-propagation algorithm is computationally 

expensive. 

D. Validity: 

a. Testing Data: This ANN implementation has relied upon the use of pre

extracted chromosome features and therefore has been assigned a 0 in 

regard to the use of valid testing data. 

b. Testing Experiments: Testing this implementation focused on the task of 

analysing a complete set ofchromosomes and consequently producing a 

karyotype, which is the most popular chromosome amilysis technique 

(Wang, et al., 2005, p. 2536). This implementation was allocated a score 

of 1 for its support of valid testing experiments. 

E. Degree of Human Reliance: This ANN implementation has not presented any 

techniques for automated image processing or automated chromosome 

segmentation and is largely reliant upon human operators to conduct these tasks. 

It is therefore assigned a 0 for this feature. 

In total, the ANN implementation provided by Graham and Errington (2000) has scored 

a total of five points out of a possible ten. In completing the comparison, this score is 

converted to a percentage and then combined with the classification accuracy to 

determine an overall rating. This is depicted below: 

Overall Rating = (Classification Accuracy + System Measures Rating) -;- 2 

= (85. 6% + 50%) -;- 2 

= 67.80% 

Therefore, the ANN implementation by Graham and Errington (2000) has been assigned 

an overall rating of 67.80%. 



A.1.2. Second Case Study 

Case Study: Toward a Completely Automatic Neural-Network-Based 
Human Chromosome Analysis (Lerner, 1998); 

FACTOR RATING 
Ability to Generalise 2 

Robustness 2 

Efficiency in Computational Burden & 0 
Speed 

Validity: 
Testing Data 1 

Testing Experiments 1 

Degree of Human Reliance 2 

TOTAL 8/10 

Explanations: 

Each of the features provided above will be briefly discussed and validated here. 

A. Ability to generalise: The ANN implementation by Lerner (1998) has also been 

assigned a 2 for its ability to generalise. For a discussion on the reasoning 

behind this rating, please refer to Section A.l.l in Appendix A. 

B. Robustness: A score of2 has also been assigned to the measure ofrobustness. 

Again, the reasoning behind this rating has been previously discussed; please 

refer to Section A.l.l in Appendix A. 

C. Efficiency in Computational Burden and Speed: This ANN implementation has 

been given a score of 0 for the factor of efficiency in computational burden and 

speed. The reasoning behind this rating is also previously discussed in Section 

A.l.l in Appendix A. 

D. Validity: 

a. · Testing Data: This ANN implementation has used images of human 

· m~taphase cells and therefore is valid in terms of real-life data. It has 

been given a score of 1 for this factor. 
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b. Testing Experiments: This implementation was allocated a score of 1 for 

its support of valid testing experiments. The reasoning behind this rating 

is also provided in the explanations given to the ANN implementation by 

Graham and Errington (2000). 

E. Degree of Human Reliance: This ANN implementation has presented a 

completely automated system for human chromosome classification and 

therefore has provided techniques for automatic feature extraction and 

chromosome segmentation. It has therefore been assigned a rating of 2 points. 

In total, the ANN implementation presented by Lemer (1998) has scored a total of eight 

points out of a possible ten. In completing the comparison, this score is converted to a 

percentage and then combined with the classification accuracy to determine an overall 

rating. This is depicted below: 

Overall Rating = (Classification Accuracy + System Measures Rating) 7 2 

= (84.5% + 80%) 7 2 

= 82.75% 

Therefore, the ANN implementation by Lemer (1998) has been assigned an overall 

rating of 82.75%. 
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A.1.3. Third Case Study 

Case Study: Classification of Chromosomes Using a Probabilistic 
Neural Network (Sweeney, Musavi & Guidi, 1994) 

FACTOR RATING 
Ability to Generalise 2 

Robustness 2 

Efficiency in Computational Burden & 2 
Speed 

Validity: 
_ Testing Data 0 

Testing Experiments 1 

Degree of Human Reliance 0 

TOTAL 7/10 

Explanations: 

Each of the features provided above will be briefly discussed and validated here. 

A. Ability to generalise: The PNN implementation by Sweeney, et al. (1994) has 

been assigned a 2 for its ability to generalise. This is due to the fact that 

Sweeney, et al. (1994) state "the network generalizes to any new incoming 

training patterns without having to repeat an extensive training process" (p. 18). 

B. Robustness: A score of2 has also been assigned to the measure of robustness. 

This is validated by Patterson (1996) who states that "PNN networks also 

tolerate noisy samples and they can work with sparse samples too" (p. 354). 

C. Efficiency in Computational Burden and Speed: This PNN implementation has 

been given a score of 2 has been assigned for the factor of efficiency in 

computational burden and speed. Sweeney, et al. (1994) argue that "the 

significant advantages of the PNN classifier are its speed and s-implicity of the 

training process" (p. 18). Patterson (1996) supports the above by stating "one of 

the main advantages of the PNN is the speed with which it can be trained" (p. 

354) .. 
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D. Validity: 

a. Testing Data: This PNN implementation has relied upon the use of pre

extracted chromosome features and therefore has been assigned a 0 for 

its use of valid testing data. 

b. Testing Experiments: This implementation was allocated a score of 1 for 

its support of valid testing experiments as it was focused on assessing the 

performance of the system in analysing a complete set of chromosomes 

and producing a full karyotype. 

E. Degree of Human Reliance: This PNN implementation has not presented any 

techniques for automated image processing or automated chromosome 

segmentation and is largely reliant upon human operators to conduct these tasks. 

It is therefore assigned a 0 for this feature. 

In total, the PNN implementation presented by Sweeney, et al. (1994) has scored a total 

of seven points out of a possible ten. In completing the comparison, this score is 

converted to a percentage and then combined with the classification accuracy to 

determine an overall rating. This is depicted: 

Overall Rating = (Classification Accuracy + System Measures Rating) 7 2 

= (84.7% + 70%)...;.. 2 

= 77.35% 

Therefore, the PNN implementation by Sweeney, et al. (1994) has been assigned an 

overall rating of77.35%. 
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A.2. Ratings of Implementations Using ANNs Supported by 

Other Techniques 

A.2.1. First Case Study 

Case Study: Data-driven homologue matching for chromosome 
identification (Stanley, Keller, Gader & Caldwell, 1998) 

FACTOR RATING 
Ability to Generalise 2 

Robustness 1 

Efficiency in Computational Burden & 0 
Speed 

Validity: 
Testing Data 0 

Testing Experiments 0 

Degree of Human Reliance 1 

TOTAL 4/10 

Explanations: 

Each of the features provided above will be briefly discussed and validated here. 

A. Ability to generalise: The use of dynamic programming allows the 

implementation to adapt to the data at hand and neural networks are effective in 

generalising (Negnevitsky, 2002, p. 259). Therefore, this implementation has 

been given a score of 2 for generalisability. 

B. Robustness: A score of 1 has also been assigned to the measure of robustness. 

Neural networks are capable of accepting incomplete or ambiguous data 

(Patterson, 1996, p. 27), while algorithmic programmes generally require exact 

parameters in order to function. 

C. Efficiency in Computational Burden and Speed: This implementation has been 

given a rating of 0 for efficiency as training neural networks is computationally 

expensive (Kartalopoulos, 1996; p. 81) 
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D. Validity: 

a. Testing Data: This implementation has relied upon the use of pre

extracted chromosome features and therefore has been assigned a 0 in 

regard to the use of valid testing data. 

b. Testing Experiments: Stanley, et al. (1998) only tested their system on 

the ability to identify one chromosome class and did not assess the 

performance of producing a complete karyotype. Therefore, the rating 

for this factor is 0. 

E. Degree of Human Reliance: This implementation has not presented any 

techniques for automated image processing or automated chromosome 

segmentation and is largely reliant upon human operators to conduct these tasks. 

It is therefore assigned a 0 for this feature. 

In total, the data-driven homologue matching technique presented by Stanley, et al. 

(1998) has scored a total of four points out of a possible ten. In completing the 

comparison, this score is converted to a percentage and then combined with the 

classification accuracy to determine an overall rating. This is depicted: 

Overall Rating = (Classification Accuracy + System Measures Rating) 7 2 

= (89.1% + 40%) 7 2 

= 64.55% 

Therefore, the data-driven homologue matching implementation by Stanley, et al. 

(1998) has been assigned an overall rating of 64.55%. 
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A.2.2. Second Case Study 

Case Study: A fuzzy logic rule-based system for chromosome 
recognition (Keller, Gader, Sjahputera, Caldwell & 
Huang, 1995) 

FACTOR RATING 
Ability to Generalise 1 

Robustness 2 

Efficiency in Computational Burden & 1 
Speed 

Validity: 
Testing Data 0 

Testing Experiments 0 

Degree of Human Reliance 0 

TOTAL 4/10 

Explanations: 

Each of the features provided above will be briefly discussed and validated here. 

A. Ability to generalise: Fuzzy systems do not generalise and adapt well when 

faced with new data (Negnevitsky, 2002, p. 267). However, neural networks do 

generalise well. As only half the implementation technique supports the ability 

to generalise, this implementation has been assigned a score of 1 for 

generalisabilti y. 

B. Robustness: The neural network approach supported by fuzzy logic has been 

given a score of 2 for robustness. Both neural network and fuzzy logic are well 

equipped to handle incomplete or ambiguous data (Patterson, 1996, p. 27; 

Negnevitsky, 2002, p. 87) 

· C. Efficiency in Computational Burden and Speed: Training a neural network can 

be computationally expensive; therefore, this fuzzy-neural implementation has 

been given a score of 1 for the factor of efficiency in computational burden and 

speed, 
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D. Validity: 

a. Testing Data: This implementation has relied upon the use ofpre

extracted chromosome features and therefore has been assigned a 0 in 

regard to the use of valid testing data. 

b. Testing Experiments: In testing this implementation, the experiments 

involved identifying chromosomes from only two out of the total 23 

classes and did not test the functionality of the system in producing a full 

karyotype Therefore, a rating of 0 has been assigned to this factor. 

E. Degree of Human Reliance: This fuzzy-neural implementation has not presented 

any techniques for automated image processing or automated chromosome 

segmentation and is largely reliant upon human operators to conduct these tasks. 

It is therefore assigned a 0 for this feature. 

In total, the fuzzy-neural implementation presented by Keller, et al. (1995) has scored a 

total of four points out of a possible ten. In completing the comparison, this score is 

converted to a percentage and then combined with the classification accuracy to 

determine an overall rating. This is depicted: 

Overall Rating = (Classification Accuracy + System Measures Rating) -;- 2 

= (87% + 40%) -;- 2 

= 63.50% 

Therefore, the fuzzy logic implementation supported by neural networks as presented by 

Keller, et al. (1995) has been assigned an overall rating of63.50%. 
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A.3. Ratings of Non-ANN Implementations 

A.3.1. First Case Study 

Case Study: Automatic classification of chromosomes by means of 
quadratically asymmetric statistical distributions (Ritter 
& Gaggermeier, 1999) 

FACTOR RATING 
Ability to Generalise 2 

Robustness 2 

Efficiency in Computational Burden & 0 
Speed 

Validity: 
Testing Data 0 

Testing Experiments 1 

Degree of Human Reliance 0 

TOTAL 5/10 

Explanations: 

Each of the features provided above will be briefly discussed and validated here. 

A. Ability to generalise: The use of maximum likelihood estimation, as presented 

by Ritter and Gaggermeier (1999), supports the ability to generalise. Eliason 

(1993) indicates that "as the sample size grows large, the MLE tends toward the 

properties of an unbiased estimator" (p. 20). Therefore, this implementation has 

been given a rating of 2 for this factor. 

B. Robustness: This implementation has been assigned a score of 2 for its support 

of robustness. The NIST/SEMATECH e-Handbook of Statistical Methods (n.d. 

b) claims that the use of maximum likelihood estimation can accept unknown or 

incomplete information. 

C. Efficiency in Computational Burden and Speed: The maximum likelihood 

estimation i11;1plementations are based on complex algorithms and therefore can 

be computationally expensive (The NIST/SEMATECH e-Handbook of 



-
Statistical Methods, n.d. c)~ Therefore, this implementation has been given a 

score of 0 for efficiency. 

D. Validity: 

a. Testing Data: This implementation has relied upon the use of pre

extractedchromosome features and therefore has been assigned a 0 in 

regard to the use of valid testing data. 

b. Testing Experiments: Testing this implementation focused on the task of 

analysing a complete set of chromosomes and consequently producing a 

karyotype, which is the most popular chromosome analysis technique 

(Wang, et al., 2005, p. 2536). This implementation was allocated a score 

of 1 for its support ofvalid testing experiments. 

E. Degree of Human Reliance: This statistical implementation has not presented 

any techniques for automated image processing or automated_chromosome 

segmentation and is largely reliant upon human operators to conduct these tasks. 

It is therefore assigned a 0 for this feature. 

In total, implementation presented by Ritter and Gaggermeier (1999) has scored a total 

of five points out of a possible ten. In completing the comparison, this score is 

converted to a percentage and then combined with the classification accuracy to 

determine an overall rating. This is depicted: 

Overall Rat(ng = (Classification Accuracy + System Measures Rating) + 2 

- (8? saJ:o + r::no/~) ...!... ? 
- "-• / ...,JIJ /U/ • -

= 66.25% 

Therefore, the implementation presented by Ritter and Gaggermeier (1999) has been 

assigned an overall rating of 66.25%. 
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A.3.2. Second Case Study 

Case Study: Joint classification and pairing of human chromosomes 
(Biyani, Wu & Sinha, 2005) 

FACTOR RATING 
Ability to Generalise 2 

Robustness 2 

Efficiency in Computational Burden & 0 
Speed 

Validity: 
Testing Data 0 

Testing Experiments 1 

Degree of Human Reliance 0 

TOTAL 5/10 

Explanations: 

Each of the features provided above will be briefly discussed and validated here. 

A. Ability to generalise: Biyani, et al. (2005) use maximum likelihood estimation as 

the basis for chromosome classification and pairing. This supports the ability to 

generalise and thus has been assigned a score of 2. Please refer to Section A.3 .1 

in Appendix A for a validation of this rating. 

B. Robustness: This implementation has been assigned a score of2 for its support 

of robustness. For validation of this rating, please refer to Section A.3.1 in 

Appendix A. 

C. Efficiency in Computational Burden and Speed: The use of maximum likelihood 

estimation does present problems in efficiency and therefore this implementation 

has been assigned a rating of 0 for this factor. Please refer to Section A.3 .1 in 

Appendix A for a validation of this rating. 



-
D. Validity: 

a. Testing Data: This implementation has relied upon the use of pre

extracted chromosome features and therefore has been assigned a 0 in 

regard to the use of valid testing data. 

b. Testing Experiments: Testing this implementation focused on the task of 

analysing a complete set of chromosomes and consequently producing a 

karyotype, which is the most popular chromosome analysis technique 

(Wang, et al., 2005, p. 2536). This implementation was allocated a score 

of 1 for its support of valid testing experiments. 

E. Degree of Human Reliance: This statistical implementation has not presented 

any techniques for automated image processing or·automated chromosome 

segmentation and is largely reliant upon human operators to conduct these tasks. 

It is therefore assigned a 0 for this feature. 

In total, the joint classification and pairing technique presented by Biyani, et al. (2005) 

has scored a total of five points out of a possible ten. In completing the comparison, this 

score is converted to a percentage and then combined with the classification accuracy to 

determine an overall rating. This is depicted: 

Overall Rating = (Classification Accuracy + System Measures Rating) -;- 2 

= (98.1% +50%) -;- 2 

= 74.05% 

Therefore, the implementation presented by Biyani, et al. (2005) has been assigned an 

overall rating of74.05%. 
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Artificial Intelligence: 

APPENDIX 8 

8.1. GLOSSARY 

"The goal of artificial intelligence (AI) as a science is to 

make machines do things that would require intelligence if 

done by humans" (Boden, 1997, cited in Negnevitsky, 

2002, p. 2) 

Artificial Neural Networks: "Simplified models of the central nervous system. They 

are networks of highly interconnected neural computing 

elements that have the ability to respond to input stimuli 

and to learn to adapt to the environment" (Patterson, 1996, 

p. 1) 

Banding Pattern: 

Centromere: 

Centromeric Index: 

Chromosome: 
) 

Chromosome Band: 

The banding pattern generally identifies the number of 

bands in the chromosome, the distance between each band, 

the distance between the bands and the centromere region 

and the density of each band (Keller, Gader, Sjahputera, 

Caldwell, & Huang, 1995, p. 127)- see also Chromosome 

Band 

The centromere represents the area of the chromosome 

where the two chromatid sisters join together (Snustad & 

Simmons, 2000, p. 27) 

"The ratio of the length of the short arm to the whole 

length of the chromosome" (Cho, 2000, p. 29) 

Thread-like bodies consisting of DNA material arranged in 

sections called genes. Humans have 46 chromosomes in a 

normal cell (Jorde, Carey, Bamshad & White, 2000, p. 6) 

"A part of a chromosome that is clearly distinguishable 

from its adjacent segments by appearing darker or lighter 
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Cytogenetics: 

Denver Groups: 

Homologue: 

Karyotype: 

Karyotyping Constraint: 

Metaphase: 

as a result of the new staining methods" (Levitan, 1988, p. 

32) 

The study of chromosomes and their abnormalities (Jorde, 

Carey, Bamshad & White, 2000, p. 108) 

Seven chromosome groups (Group A- Group G) first 

identified at a medical conference in Denver, in 1960. 

Chromosomes are arranged in these groups in decreasing 

order of size (Levitan, 1988, p. 28) 

"A chromosome pair" (Stanley, Keller, Gader & Caldwell, 

1998, p. 451) 

"A layout of chromosome images organised by decreasing 

size in pairs" (Lemer, 1998, p. 544) 

The karyotyping constraint specifies that "there are 

exactly two chromosomes in (almost) all classes" (Graham 

& Errington, 2000, p. 258) 

"The stage ofa cell at which the chromosomes are most 

suitable for analysis" (Lemer, 1998, p. 544) 

Transportation Algorithm: The transportation algorithm is commonly used for finding 

the most economical route passing through predetermined 

destinations (Patterson, 1996, p. 298) and is applied in 

chromosome classification to implement the karyotyping 

constraint - See also Karyotyping Constraint. 
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