
Edith Cowan University Edith Cowan University 

Research Online Research Online 

Theses : Honours Theses 

1997 

Modeling of fading dynamics for the indoor microwave channel Modeling of fading dynamics for the indoor microwave channel 

Mangeet Singh 
Edith Cowan University 

Follow this and additional works at: https://ro.ecu.edu.au/theses_hons 

 Part of the Signal Processing Commons 

Recommended Citation Recommended Citation 
Singh, M. (1997). Modeling of fading dynamics for the indoor microwave channel. https://ro.ecu.edu.au/
theses_hons/1015 

This Thesis is posted at Research Online. 
https://ro.ecu.edu.au/theses_hons/1015 

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses_hons
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses_hons?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F1015&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F1015&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses_hons/1015
https://ro.ecu.edu.au/theses_hons/1015


Edith Cowan University 
 

 

Copyright Warning 
 
 
 
 
 

You may print or download ONE copy of this document for the purpose 

of your own research or study. 
 

The University does not authorize you to copy, communicate or 

otherwise make available electronically to any other person any 

copyright material contained on this site. 
 

You are reminded of the following: 
 

 Copyright owners are entitled to take legal action against persons 
who infringe their copyright. 

 

 A reproduction of material that is protected by copyright may be a 

copyright infringement. Where the reproduction of such material is 

done without attribution of authorship, with false attribution of 

authorship or the authorship is treated in a derogatory manner, 

this may be a breach of the author’s moral rights contained in Part 

IX of the Copyright Act 1968 (Cth). 

 

 Courts have the power to impose a wide range of civil and criminal 

sanctions for infringement of copyright, infringement of moral 

rights and other offences under the Copyright Act 1968 (Cth). 

Higher penalties may apply, and higher damages may be awarded, 

for offences and infringements involving the conversion of material 

into digital or electronic form.



MODELING OF FADING DYNAMICS FOR 
THE INDOOR MICROWAVE CHANNEL 

BY 

Manjeet Singh 

BEng (Honours) 

Edith Cowan University 
Faculty of Science, Technology and Engineering 
Department of Computer and Communications 

Engineering 

Date of Submission: 30 January 1997 

EDITH COWAN UNIVERSITY 
LIBRARY 



ABSTRACT 

This report outlines the multipath fading phenomenon and its relationship to wireless 

system design. The work was conducted for the academic year of 1996. This report 

provides the reader with an insight into the phenomenon called fading and its relevance 

when designing wireless systems. Fading is an important consideration when wireless 

systems are to be designed. Because fading is very unpredictable and it cannot to totally 

eliminated in a wireless system, systems engineers have a hard time trying to design and 

commission efficient communication systems for a particular environment. 

Over the years, there has been a existing need worldwide to design wireless systems 

which perform efficiently under fading conditions which is introduced into the 

propagation channel. 

As Wireless Local Area Networks (WLAN) and Wireless Private Branch Exchanges 

(WPBX) have become increasingly popular, along with a whole other range of wireless 

systems such as Personal Communication Systems and cellular systems, the need to 

provide effective and efficient systems which perform well under fading conditions and 

also other conditions which degrade a system, has been the utmost challenge faced by 

systems and communications engineers. 

With all this research going into designing efficient systems for communication being 

conducted worldwide, when the opportunity was presented by my supervisor to conduct 

similar research into indoor wireless systems within the microwave region, I was very 

excited as to the prospect of conducting research in these field of interest. 

This report outlines the background theory, which the reader will find most helpful and 

then presents the measurements conducted, and finally the results and analysis of the 

conducted measurements and its important relationship to wireless systems design 

within the ISM band of 2.4 to 2.5 GHz. This study investigates the various aspects of 

fading which affect a wireless channel under the introduction of controlled motion for a 

set measurement period. 

The empirical data base consists of twenty five 20 second recordings of the continuos 

wave envelope fading waveforms with both antennas in a stationary position. 



--

Measurements were conducted in a cluttered laboratory setting at 2.4 GHz with two 

quarter wave monopole antennas with transmitter and receiver separation ranging from 

2 to 5 meters. 

Effects of controlled degrees of motion with 2 individuals walking briskly around the 

antennas was investigated. The report results are presented with statistical properties 

such a the number of crossings at a particular level, the level crossings rates and the 

average duration of fades being investigated on the fading envelopes of the 

measurements. These results and statistical analysis can be used in designing wireless 

computer communication applications, such as WLAN' s and also the results can be 

used to simulate wireless channels which use intelligent antenna systems to reduce 

fading. 
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1.1 Overview 

Chapter 1 

INTRODUCTION 

The past decade has seen a phenomenal growth in wireless communications. Wireless 

technology is permeating business and personal communications across the globe, and 

the demand is driving availability and performance to new levels. Consumers are 

demanding small hand-held or pocket communicators, to meet their wireless voice and 

data communications needs. The demand for omnipresence communications has led to 

the development of new wireless systems, like the Personal Communication Systems 

(PCS), Wireless Local Area Networks (WLAN), Wireless Private Branch Exchanges 

(WPBX) and parasitic cellular systems [25] 

Indoor radio communication covers a wide variety of situations rangmg from 

communication with individuals in offices, homes, supermarkets, factories to fixed 

stations like WLAN or WPBX inside office buildings, airports, banks and other 

locations where flexible, reconfigurable computer networks are needed on demand [3] 

[8]. 

Due to the portable (mobile) nature of radio transceivers, the need for extensive cabling 

in buildings using either twisted pair, coaxial, or optical fibre cables can be eliminated. 

This is highly desirable where user mobility is needed. The communication that is 

presently being offered by indoor radio systems include transmission of voice, data and 

video services [31]. 

The main thrust of this report is focused on the indoor microwave channel and the 

affects of multipath fading which effects propagation within the channel. The 

understanding of this channel degradation affect is paramount in designing indoor 

wireless systems. Theoretical and also the practical nature of fading is presented to give 

a better understanding of multipath fading in indoor environments. 

Assignments and technical standards on an international basis are set by two 

committees. These two committees being the International Telegraph and Telephone 
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Chapter 1 Introduction 

Consultative Committee (CCITT) and the International Radio Consultative Committee 

(CCIR).The two committees in return function under the authority of the International 

Telecommunications Union (ITU). The electromagnetic frequency spectrum is divided 

into various frequencies by the ITU. 

The microwave spectrum has been a popular choice for wireless propagation due to its 

relatively broad bandwidth, which is a desired aspect of emerging wireless 

communications. The frequency range from about 300 MHz to about 60 GHz is often 

referred to as the "microwave" band. The bands of the microwave spectrum are referred 

to as Ultra High Frequency (UHF), Super High Frequency (SHF) and Extremely High 

Frequency (EHF). 

In Australia the Spectrum Management Agency (SMA) regulates and controls the 

various frequencies used in transmission technologies. Users of microwave 

technologies must pay a licence fee depending on the equipment being used [12]. The 

SMA has allocated frequency ranges in the Industrial, Scientific and Medical (ISM) 

bands pertaining to systems operating within these bands, based on the frequencies 

designated by the ITU for use as fundamental ISM frequencies. This is based on the 

standards AS/NZS 20641: 1992 and AS/NZS 2064.2: 1992 set by Standards Australia. 

There are various frequency ranges allocated for ISM equipment, but the frequency 

range of interest in the 2.4 - 2.5 GHz frequency range for wireless systems. The 

maximum radiation limit produced by equipment within the 2.4 - 2.5 GHz frequency 

range is dependent only on safety regulations. 

The focus of this project is concerned with the effects of multipath fading in a 

temporally varying environment. Through introduction of controlled motion, we can 

see how a system reacts to this motion and what are the affects of this introduced motion 

to a wireless system. The gathered results and statistical analysis, can be used in 

designing wireless systems in relation to combating fading. Hopefully, my project 

results can be used to assist in the design of a wireless system and also to assist in 

producing simulations of a typical cluttered office environment using intelligent antenna 

systems and diversity techniques to see how feasible these simulation results are when 
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Chapter 1 Introduction 

compared to the physically measured results conducted for the various antenna 

positions. 

1.2 Outline of the Project 

Chapter 1 is the introduction of this report and deals with the emerging needs for 

wireless communication worldwide and the effect multipath fading has on wireless 

systems. The relevant standards which are set worldwide by governing bodies are 

mentioned briefly. 

Chapter 2 introduces the aims of the project, its purpose in relation to wireless systems 

and the strategy used to accomplish this project. 

Chapter 3 deals with wave propagation within a channel. The factors which affect 

waves and cause multipath fading in wireless systems is presented in length. The 

factors include the reflection, refraction, diffraction, interference and scattering of 

waves. 

Chapter 4 deals with the phenomenon of multipath fading. The multipath nature of 

waves are presented and the phenomenon of fading is also described. The types of 

fading which are evident in indoor communication channels are also presented. Finally, 

the statistical analysis needed for the results is also mentioned and explained. 

Chapter 5 deals with the measurements conducted. The measurement environment is 

mentioned, the measurement equipment is presented along with their specifications, the 

measurement system and the measurement procedure is also presented. System 

calibration is also discussed and the calibration curve is presented. 

Chapter 6 presents the important results and statistical analysis of these results. 

Statistical analysis considered includes the number of crossings at each level, the level 

crossing rates and the average duration of fades. 
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Chapter 1 Introduction 

Chapter 7 investigates the significance of the results and the statistical analysis. It also 

shows graphical representations of the number of crossings and the level crossings rates 

for each fading envelope which is presented in chapter 6. The relationship between 

fades and bit error rates is also investigated. 

Chapter 8 presents the conclusion of this report and summarises the entire report. 
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2.1 ..A.irns 

Chapter 2 

PROJECT DEFINITION 

The aim of the project was to perform a series of measurements in order to gather results 

necessary to derive a statistical model for the temporal variations of the indoor 

microwave channels attenuation for the ISM band. Analysis of these measurements will 

provide fading statistics pertaining to the indoor environment, so that a better 

understanding of channel fading for the ISM band can be grasped. By following this 

approach a better understanding of sources which contribute to fading in indoor wireless 

systems can be understood for the ISM frequency band and can be used to design 

wireless systems 

2.2 Purpose 

The intentions of this project is to gather experimental results and to statistically analyse 

these results for fading characteristics for the ISM band. The contributions form this 

results and statistical analysis can then be used towards designing wireless systems 

which perform efficiently under fading condition. Fading results were carried out for 

the ISM band because no fading results to date have been collected for the 2.4 GHz 

frequency band. Gathering experimental results was gone about in a planned fashion, 

whereby measurements were taken at a specified location being the Australian 

Telecommunications Research Institute (ATRl) / Cooperative Research Centre (CRC) 

laboratory, located at Curtin University. Measurements were carried out in a controlled 

environment whereby multipath fading was strongly present at every instant due to 

motion. This measurement environment showed the various sources which cause 

multipath fading and also clearly show to what extent they influence and degrade a 

communication channel. 

Although multipath fading in only one of the attenuation factors which effects a 

communication channel, it is by no means the least considered factor when designing 

wireless communications. Multipath fading basically arises when a radio wave is 

reflected, diffracted or scattered by an obstruction which is in its path. Obstructions can 

be either man-made (buildings, cars, aeroplanes) or natural (mountains, clouds, hills). 

5 



Chapter 2 Project Definition 

Although multipath fading is a randomly occurring phenomenon, it can severely degrade 

a communication system. Therefore, in designing wireless communication systems, we 

must incorporate this phenomenon to minimise bit error rate degradation of a system. 

Through the results and their statistical analysis on fading envelopes for the 

measurements, we can design smarter antenna systems which can decrease the BER 

introduced into a wireless system by the improvement of the SIN ratio between 

terminals. 

2.3 Strategy 

This project report followed a sequence of steps whereby the aims could be achieved 

within the required time span allocated for the academic year of 1996. These steps were 

mainly dependant on hardware availability, time availability and booking requirements. 

The end result was that these requirements were satisfied and thus, lead to the successful 

accomplishment of the project. The strategy which was used to achieve the project aims 

was as follows:-

1. Literature review on the subject matter was conducted, so that a good understanding 

of the subject matter can be achieved. 

2. A suitable location was decided on, being the ATRl/CRC laboratory. 

3. Determine the availability of all hardware needed in carrying out the project 

measurements correctly. 

4. Measurements for the different transmit and receive antenna positions were 

finalised. 

5. The measurement system was then setup to carry out the measurements. 

6. System testing and calibration was conducted at the start of each measurement. 

7. After system calibration was completed, the 20 second measurement period for the 

chosen transmit and receive antenna positions were initiated with controlled motion 

in progress during the measurement period. 

8. The 20 second fading measurements were stored onto a computer for post analysis. 

9. Any additional measurements if required were investigated at this point. Once, we 

were satisfied we had enough measurements, statistical analysis of the fading 

envelopes was then carried out. 
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Chapter 2 Project Definition 

10. Statistical analysis of fading results for all the measurement positions were then 

conducted extensively. 

11. Finalisation of the project report . 

The strategy was strictly adhered to, and the successful accomplishment of the report on 

time was achieved with minimal problems. Step 10, proved to be the most time 

consuming step in this strategy as there were large amounts of data which needed to be 

processed within a relatively short time frame. 

7 
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Chapter 3 

WAVE PROPAGATION 

Due to fact that this project deals with wireless communications, a brief discussion of 

the nature of microwave propagation is examined so that a better picture can be imaged 

when it comes to describing multipath fading. General characteristics of 

electromagnetic wave propagation is examined along with the factors which cause 

multipath fading in a channel. From this background information, when it comes to 

dealing with multipath fading a good understanding will be available. Before I go any 

further, I will reiterate that this is only a brief tutorial on aspects of radio wave 

propagation. 

3.1 Discussion 

The effect of the atmosphere on the propagation of energies in the microwave 

frequencies has been studied extensively in the past. The study of the effects of 

propagation on line-of-sight (LOS) paths began with the introduction of FM systems in 

the early 1950's [16]. The dominant mode of propagation at frequencies in the VHF 

band and higher is LOS. For terrestrial communication systems, the transmit and 

receive antennas must be in direct LOS with relatively little or no obstructions in its 

path [23]. LOS propagation is limited by the curvature of the earth. Due to this 

restriction, antenna towers must be mounted on high towers or buildings to receive LOS 

propagation [23]. LOS propagation will be discussed later on this chapter. 

Microwave propagation necessitates line-of-sight (LOS) propagation due to its 

frequency characteristics. Microwave energy travels through free space in a straight line 

in the same manner as a light beam. This should not be a surprise as microwaves are 

forms of electromagnetic energy. Microwaves can propagate through space like light 

and heat, where they spread out as they move further and further from the source. 

Microwaves travel through a vacuum at the speed of light, the same for all forms of 

electromagnetic energy [6]. 
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Chapter 3 Wave Propagation 

Due to the inherent LOS nature of microwave propagation, obstructions or structures in 

the way of signals radiated between transmit and receive antennas will be affected. Due 

to this obstructions in the path of propagation, it is likely that the signals will be 

reflected from the ground to the receiving antenna. This is especially a problem under 

severe weather conditions. This received signal arrives via many different paths along 

with the LOS path and constitutes multipath propagation, a detailed discussion about 

the nature of multipath is presented in section 4.2. The loss or gain of a signal due to 

the atmosphere is uniform across the radio channel bandwidth, under many propagation 

conditions [16]. 

A discussion of the nature of electromagnetic waves will now be conducted and 

following this, the mechanisms which govern radiowave propagation will be conducted. 

These mechanisms are vital to the understanding of fading in a propagation channel. 

3.2 Electromagnetic Radiation 

When electric power is applied to a circuit, voltages and currents are set up within it, 

with certain relations governed by the properties of the circuit itself. Similarly, power 

which is escaping into free space is governed by the characteristics of free space. Such 

power which escapes intentionally is said to have been radiated, and propagates in free 

space in the shape of what is known as an electromagnetic wave [17]. 

Free space is space which is ideal because it does not interfere with normal radiation and 

propagation of radio waves. Thus, it does not have any magnetic or gravitational fields, 

no solid bodies and no ionised particles. Although free space does not exist in the 'real 

world', it is used to approximate the propagation of waves, since it is possible to 

calculate the conditions if the space were free and then predict the effect of its actual 

properties [17]. Free space propagation is discussed in the following sub-section. 

3.2.1 Electromagnetic waves 

Electromagnetic waves are invisible. Waves in general are just means of transporting 

energy or information. Electromagnetic waves propagate through free space at a 
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velocity of light, c, which is about 3 x 108 metres per second [17]. The velocity of the 

wave slows in dense media. In pure water, the speed of the wave is about 1/9 the free 

space speed [4]. Typical examples of electromagnetic waves include radio waves, TV 

signals, radar beams and light rays. All forms of electromagnetic waves share three 

fundamental characteristics [28], 

1. all electromagnetic waves travel at high speeds (as stated above) 

2. they assume the properties of waves 

3. they radiate outward from a source, without the benefit of any 

discernible physical vehicles. 

Electromagnetic waves consists of two mutually perpendicular oscillating fields 

travelling together, as shown in Figure 3.1 [4], 

H 

Figure 3.1 

MAGNETIC FIELD 

I 

Electromagnetic wave consisting of right angle electric and 

magnetic fields. [ 4] 

One of the fields is the electric field E and the other is the magnetic field H. The 

direction of the electric field and the magnetic field are mutually perpendicular in the 

electromagnetic wave [17]. This means, the fields lie in a plane that is transverse or 

10 
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orthogonal to the direction of wave propagation. Each of the E and H is called a 

uniform plane wave because E ( or H) has the same magnitude throughout any 

orthogonal or transverse plane [28]. The polarisation, of an electromagnetic wave is 

defined as the direction of the electric field E [ 4]. This designation is especially 

convenient as it tells us the type of antenna used, either vertical or horizontal polarised. 

For more on polarisation, see section 3.2.3. 

3.2.2 Free Space Propagation 

According to [17], since there are no interferences or obstacles in free space, an 

electromagnetic wave will spread out in all directions from a point source at a constant 

rate. An analogy of this point, is when we switch on a light bulb and it radiates light in 

all directions. Figure 3.2 shows a spherical wavefront originating from a isotropic 

source. 

-------
Wavefront 2 

B Wavefront 1 

Ray B / 

Figure 3.2 A spherical wavefront from an isotropic source [30] 

Such a source is called an isotropic radiator. Although a true isotropic radiator does not 

exist, it can be closely approximated by an omnidirectional antenna [30]. A spherical 
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Chapter 3 Wave Propagation 

wavefront is produced by an isotropic radiator with radius R. All points which are a 

distance R from the source lie on the surface of the sphere and have equal power 

densities. For example, in Figure 3.2 points A and B are equal distance from the 

source, which means that their power densities are equal [30]. At any instant of time, 

the total transmitted power Pt is uniformly distributed over the entire surface of the 

sphere (assuming a lossless transmission medium). 

This results in the power density at any point on the sphere is the total transmitted 

power divided by the total area of the sphere [30]. 

This is mathematically represented by, 

where, 

<P= ~ 
4:rR 2 

P = power density at a distance R from an isotropic source 

Pt = total transmitted power 

R = radius of the sphere 

(3.1) 

This power density decreases as the wavefront propagates further from the source. This 

is why a signal gets weaker when the receive antenna is moved further away from the 

transmitter [6]. The total distributed power over the surface remains the same. 

According to [30], because the area of the sphere increases in direct proportion to the 

distance from the source squared, the power density is inversely proportional to the 

square of the distance from the source. This is the inverse-square law, which applies to 

all forms of radiation in free space [ 17]. 

3.2.3 Polarisation 

Up to now, we have dealt with radio propagation as if it were pure energy. Polarisation 

is a property of electromagnetic waves, which depends on the angle of rotation 

(orientation) of the transmitting antenna [6]. An antenna can be either linearly polarised 
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or circularly polarised. Linearly polarised antennas can be either horizontal or vertical 

depending on whether the antenna elements lie in a horizontal or vertical plane [30]. An 

example of linear polarisation using a dipole rod antenna is illustrated in Figure 3.3. 

Electrical 

J·j.:X-- Current 
·, Flow . 
' 

lr_/ 
· 'Current 

Intensity 

Electromagnetic Wave 

ELECTROMAGNETIC RADIATION 
FROM A DIPOLE ANTENNA 

RF Power 
From 
Transmitter ~ 

~----··' 

Figure 3.3 

(a) 

Polarisation Discrimination 

(b) 

.. --··-;? 
~ 

90° 

,f 

Maximum 
Received 
Power 

L Minimum 
Received 

r Power 

Properties of linear polarised dipole rod antennas: (a) vertically 

polarised; (b) horizontally polarised [ 6] 

From Figure 3.3 (a), the electrical current from the transmitter flows along the dipole 

antenna rod in an upwards and downwards direction, oscillating at the transmission 

frequency. As a result, the alternating current in the dipole rods produce an 
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electromagnetic wave which propagates off into space. The electrical currents in the 

rods cause the electromagnetic wave to have its electric vector component lined up in 

the same direction, which is vertical for this illustration [6]. Thus an antenna which 

radiates a vertically polarised electromagnetic wave is said to be vertically polarised 

[30]. 

Horizontal linear polarisation is produced when the dipole is rotated 90°, so that the 

direction of the electric current is horizontal. This thus produces a horizontal 

electromagnetic wave radiating off into space, as shown in Figure 3 .3 (b ). A reception 

occurs when the electric component of the incoming wave produces a current in the 

receiving antenna. 

From this illustration, we can see that if the conductors of the receiving antenna are 

improperly aligned, then the reception of the incoming wave will not occur [6]. 

Horizontally polarised transmitting and receiving antennas provide for the maximum 

amount of power to be carried ( coupled) between them. The antenna pairs are said to be 

co-polarised. A vertical polarised receiving antenna, which is perpendicular to and 

therefore cross-polarised with the transmitter, produces minimum amount of coupled 

energy [6]. 

The other type of polarisation is circular polarisation. Circular polarisation can be 

produced by combining two linearly polarised waves [26]. These two linearly polarised 

waves can be represented by vectors, where the direction of the vector is in line with the 

electric component. In circular polarisation , these two vectors are out of phase by 90° 

with respect to each other. This is done by first splitting the transmit signal in two at the 

source and delaying one of them by a quarter period before radiating them through an 

antenna. The resultant vector rotates like a corkscrew, as it propagates through free 

space [ 6]. The rotation can either be clockwise (right-handed) or counterclockwise (left­

handed), depending on which direction of rotation of the electric field vector is seen by 

an observer looking in the direction of travel of the propagation wave [ 15]. Figure 3 .4, 

shows a clockwise rotation of the electric component during circular polarisation. 
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Rotation of the electric component during the propagation of a 

circularly polarised signal [6] 

3.3 Propagation losses due to environmental properties 

When near earth propagation is dealt with, several factors which did not exist in free 

space propagation must be considered [17]. These atmospheric phenomena which can 

be random or time varying, causes a loss in the propagation path. When taken in 

consideration, these losses can and will reduce the strength of the received signal by 

causing its level to vary over time which can lead to signal fading [6]. 

Thus, electromagnetic waves propagated from a transmitter will be reflected by 

obstacles such as buildings, mountains or the ground. These waves will also be 

refracted as they pass through different layers of the atmosphere due to the difference in 

densities or differing degrees of ionisation. The electromagnetic waves can be 

diffracted around tall, massive obstructions such as mountains or hilly terrains. Waves 

can also interfere with one another after two or more waves which have travelled from 

the source meet. The energy of these waves can also be absorbed by the atoms or 

molecules in the atmosphere, which leads to a reduction of power densities. These 
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environmental effects will now be discussed in more detail, so that a good background 

is established when it comes to dealing with the fading phenomena. 

3.3.1 Reflection of waves 

Electromagnetic wave reflection occurs when an incident wave (transmitted wave) 

strikes a boundary of two media and some or all of the incident power does not enter the 

second media. Basically, any wave that does not penetrate the second media is reflected 

[30]. There is much similarity between the reflection of light by a mirror and the 

reflection of electromagnetic waves by a conducting medium [17]. Figure 3.5, shows 

the concept of reflection between two media [30]. 

Figure 3.5 

Incident I Reflected 
Wavefront Wavefront 

Medium I 

Medium2 

Reflection of an electromagnetic wave at a plane boundary of 

two mediums 

As can be seen from the diagram, because all the reflected waves remain in medium 1, 

the velocities of the incident and reflected waves are equal. Consequently, the angle of 

incidence and the angle of reflection are also equal ( B; = Br) [30]. This proof of the 
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equality of the angles of reflection and incidence follows the corresponding proof of the 

second law of reflection for light [ 1 7]. 

When a signal is transmitted or reflected off a partition, wall or object, the amount of 

phase change and signal attenuation depends on the complex transmission coefficient T 

and reflection coefficient R. These coefficients are computed from the permittivity of 

the materials E, the signal encounters. Other factors which affect the transmission and 

reflection of the signal are the angle of incidence and the relative polarisation (see 

section 3.2.3). 

The complex transmission coefficient is defined as the ratio of the transmitted to the 

electric field strengths E, IE; [29], it is the portion of the total incident power which is 

not reflected [30]. For a perfect conductor, Tis equal to zero. The reflection coefficient 

is defined as the electric intensity of the reflected wave to that of the incident wave E, I 

E;. The reflection coefficient is used to indicate the relative amplitude of the reflected 

and incident fields and also the phase shift which occurs at the point of reflection [30]. 

For a perfect conductor or reflector the reflection coefficient is equal to 1. For other 

practical conducting surfaces the reflection coefficient is less than 1, the difference is 

due to the abortion of energy of the wave by the imperfect conductor [ 1 7]. The 

transmission and reflection coefficients will be discussed further in section 4.5, when a 

mathematical model is presented. 

If a reflecting surface is not plane (ie.,it is curved) the curvature of the reflected wave is 

different to the curvature of the incident wave. When the reflective surface is plane and 

the wavefront of the incident wave is curved, the curvature of the reflected wavefront is 

the same as that of the incident wavefront [30]. 

Reflection which occurs at irregular or rough surfaces can destroy the shape of the 

wavefront. When an incident wavefront strikes a rough surface the wavefront is 

scattered in many directions, resulting in a diffused reflection. Specular reflection is 

when waves are reflected from a perfectly smooth surface, like a mirror. Semirough 

surfaces are surfaces which fall between specular and diffused reflections. Semirough 
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surfaces will not completely destroy the shape of the reflected wavefront, but there will 

be a reduction in the total power. The Rayleigh criterion states that a semirough surface 

will reflect as if it were a smooth surface, as long as the angle of incidence ( Bi) is greater 

than ).,,/8d [17]. Figure 3.6 shows reflection :from a semirough surface. 

The Rayleigh criterion can be shown mathematically as [30], 

where, 

A 
cos Bi= -

8d 

d = depth of surface irregularity 

A = wavelength of the incident wave 

Incident 
I 

Incident r=:: 
I "'-

~ ~ 
I "-

rays 

I "-. 

specular 
wavefront 

/,,x 
Specularly ' , 

(3.3) 

I 
I 

~ '-

"--~re ~ tl: e ct e d ",/ rays , 
'-

d 
~ 

l ____ - -
"---, Diffuse reflection 

Figure 3.6 Reflection :from a semirough surface [30] 
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3.3.2 Refraction of waves 

Refraction is the change in direction of a ray when it passes from one propagating 

medium to another medium which has a different density. This causes the wavefront to 

change to a new direction in the second medium and is brought about by a change in the 

wave velocity [17] [30]. Figure 3.7 shows refraction of a wavefront at a plane between 

two different mediums with different densities [30]. 

Incident 
rays 

Nonnal 
I 
I 
I -i I 

'), ~ Incident 1 
wavefonns I 

/ 
·s I 

/ I 

~I 

----~.:::__--+--~--~:;:..__ __ M_e_d_ium __ I _le_ss_d_e_ns_e ___ Media 

Refracted 
wavefront 

Figure 3.7 

Refracted 
rays 

Medium 2 more dense · Interface 

Refraction at a plane between two media [30] 

From Figure 3.7, it can be seen that ray A enters the denser medium 2, before ray B. 

Consequently, ray B propagates slower that ray A and travels the distance B-B' during 

the same time ray A travels the distance A-A', this results in a bend of the wavefront 

A'B' in a downward direction. Whenever, a ray is passed from a less dense to a more 

dense medium, it effectively bends toward the normal. If a ray passes from a more 

dense medium to a less dense medium, it effectively bends away from the normal. The 

angle of incidence B; is the angle formed between the incident wave and the normal, and 

the angle of refraction Br is the angle formed between the refracted wave and the normal 

[30]. The amount of bending or refraction of a wavefront depends on the refractive 
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index of the two materials. The refractive index is the ratio of the velocity of 

propagation of light in free space to the velocity of propagation of light in a given 

medium [30]. 

Mathematically this ratio is represented as [30], 

where, 

n = refractive index 

C 
n = -

V 

c = speed of light in free space 

v = speed of light in a given material 

(3.4) 

The effect of how an electromagnetic wave reacts when it is incident on a surface of two 

transmissive materials which have different refractive indices, can be explained with 

Snell's Law .. The angle of incidence is equal to the angle of reflection, according to 

Snell's Law. Snell's Law states that [30], 

and 

where, 

n , sin Bi = n 2 sin Br 

sin Bi n2 

sin Br 

n, = refractive index of material 1 

n2 = refractive index of material 2 

Bi = angle of incidence 

Br = angle ofrefraction 
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Also, since the refractive index is equal to the square root of its dielectric constant, 

equation (3.5b) can be shown as, 

where, 

sinB; = ~ 
sin Br ~-;-: 

& 1 = dielectric constant of medium 1 

&2 = dielectric constant of medium 2 

(3.6) 

If a boundary between two mediums are curved, refraction still takes place (17]. For 

example, if a transmission medium is more dense at the bottom and less dense at the 

top, then the rays which are travelling at the top travel faster than the rays at the bottom 

and consequently the wavefront will tilt in a downward direction as it progresses 

through the medium [30]. 

3.3.3 Diffraction of waves 

Diffraction occurs when the path between the transmitter and receiver is blocked by an 

impenetrable object [1]. Diffraction is the phenomenon that allows radio waves to 

propagate around comers [30]. When we discussed reflection and refraction of 

wavefront previously, we assumed that the dimensions of surfaces were very much 

larger in respect to the wavelength of the signal. However, when a signal passes near an 

obstruction or surface which has similar dimensions as the wavelength, simple 

geometrical analysis cannot be used to explain the results. We must therefore use 

Huygens' principle to explain the results produced by these wavefronts [30]. 

Huygens' principle states that every point on a spherical wavefront can be regarded as a 

source of electromagnetic waves from which other wavefronts are radiating outward. 

Huygens' principle is illustrated in Figure 3.8 [30]. 
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Diffraction: ( a) of a plane wavefront; (b) of a finite wavefront 

through a small slot; ( c) around the edge of an obstacle [30] 

The total field which is at successive points away from the source is then equal to the 

vector sum of these secondary wavelets [17]. As shown in Figure 3.8 (a), when 

considering a plane wavefront energy is radiated in an outward direction from each 

secondary point source (p1, p2, p3, etc.). However, due to the cancellations of the 
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secondary wavelets which happens in all directions except forward causes the wavefront 

to continue in its original direction rather than spread out. Therefore, the wavefront 

remains plane. 

When a finite wavefront is considered, the cancellation in spurious direction is no longer 

noticeable, however the wavefront must be small, which is produced by a small slot in a 

plane. As shown by Figure 3.8 (b), instead of being pushed though the slot, the 

wavefront spreads or scatters out past the small slot. This scattered wave now acts as 

Huygens' point source and proceeds in all directions [17]. This scattering affect is 

called diffraction [30]. 

Figure 3.8 (c), shows diffraction by a sharp edge of an obstacle. Only partial wavelet 

cancellation occurs. Diffraction occurs around the edge of the obstacle, which allows 

the secondary waves to progress around the corner of the edge into what is called the 

shadow zone. A similar phenomenon is experienced when a door is opened into a dark 

room, where light rays diffract around the doors edge and light up the area behind the 

door [30]. Due to shadowing RF energy can travel into rural and also urban 

environments without a LOS path. [1]. The degree of diffraction affects in any given 

case is a function of the wavelength of the signal, the size of the obstruction and its 

electromagnetic properties [ 4]. 

When the ray diffracts around corners from the transmitter and reaches the receiver, we 

can represent this mathematically as [13], 

TI D 2 (a ) 
IEf=ZoPem m 

4Jr L LnTI Ln 
(3.7) 

m m 

where, 

Ei = electric field intensity of the ith ray 

Zo = freespace wave impedance 

Pe = effective transmitted power 

Ln = length of the ray path between diffracting sites 

23 



Chapter 3 Wave Propagation 

D ( am) = diffraction coefficient for a ray bending through an angle am at an 

absorbing screen 

The diffraction coefficient D (am) can be represented mathematically as [13], 

1 [ 1 1 J D(am)= -~ 
.J21rk 2,r + am am 

(3.8) 

The summation term in the denominator of equation (3.7), accounts for the vertical 

spreading of the ray, while the product term in the denominator accounts for the 

horizontal spreading. At each comer of an obstacle, a ray bends through an angle am. 

Diffraction is also significant for wavefronts reaching receiver sites around comers at 

the end oflong hallways or rooms [13]. 

Fresnel Zones Phenomenon 

As mentioned above diffraction occurs when wavefronts encounter opaque objects in 

their path. The degree of diffraction and its harmful effects on a wavefront is frequency 

related. 

There is a minimum clearance which is required to prevent attenuation from diffraction. 

Calculations of the required clearances comes from the Fresnel wave theory [4]. This is 

the additional clearance which is added to an obstacle to maintain a strong receive signal 

at the receive antenna. 

Energy is assumed to propagate from the transmitting antenna to the receiving antenna 

along a straight path called the direct path. A wavefront expands when it travels, 

resulting in reflection, refraction, diffraction and phase changes as it passes over an 

obstacle. This in tum causes an increase or decrease in the signal level received. The 

regions where these path losses takes place are called Fresnel zones. For instance, about 

half of the signal reaching a receiver antenna passes through the first Fresnel zone. 
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Consequently, terrain features which do not intrude into the first Fresnel zone cannot 

significantly change the level of the received signal [ 16]. As can be seen from Figure 

3.9, the first Fresnel zone is the locus of points in space for which all indirect paths 

differ by half a wavelength ().../2) at most from the direct path length. 

Plane perpendicular to path TR 

Figure 3.9 Three dimensional representation of the first two Fresnel zones 

of a direct path propagation ray [ 16] 

The first Fresnel zones boundary is an ellipsoid, with the two antennas at the focal 

points. Higher order zones are also defined in a similar manner [16]. The second 

Fresnel zone contains all points that define a two segment path by which its length is 

greater than the direct path by more than ').)2, but less than 2(').)2) [16]. It is found in 

practice that only signals reflected within the first Fresnel zone have large enough 

amplitudes to produce significant interference. However, precautions are taken to keep 

these zones free of any obstacles. 
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The radius of the nth Fresnel zone at a point defined by the geometry of figure 3.9 [21], 

where, 

nM1d2 Rn= 
d1+d2 

d1,d2 = the terminal distances from the obstruction 

n = is an integer 

'A, = wavelength of the wave 

(3.9) 

In radio propagation, the receiver field R, is influenced by the obstacles which lie in, or 

close to the LOS path as shown in Figure 3.10. If the straight-edge obstacle which is 

between the transmitter (T) and receiver (R) does not encroach into the first Fresnel 

zone than the field at R is unaffected. However, if the height is increased the field 

strength at R oscillates with increasing amplitude. The point where the obstructing edge 

is just in line with T and R, the strength of the field at R is 6 dB below the free-space 

value. If the height of the obstruction is increased further, so that the LOS path is 

actually blocked, the oscillations cease and the field strength decreases steadily with 

height [21]. 
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a<=--------

............... 
....... 

......._......_ R 

>o 

Figure 3.10 Knife-edge diffraction geometry [21] 
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3.3.5 Interference of waves 

Interference occurs when two or more waves combine or add up in such a way that the 

performance of a systems is degraded. The resultant waveform is strongly dependent on 

the phases of the interfering waves. Interference is based on the principle of linear 

superposition of electromagnetic waves and occurs when two or more waves occupy the 

same point simultaneously in space. The principle of superposition, as mentioned by 

[26], states that when several waves combine at a point, the displacement of any particle 

at any given time is simply the vector sum of the displacements that each individual 

wave acting alone would give [26]. With free space propagation, a phase difference 

may exist due to the electromagnetic polarisation of two waves differ. Depending on 

the phase angles of these two wave vectors, either addition or subtraction will result 

[30]. 

Consider two sinusoidal waves of equal wavelength and amplitude, travelling in the x 

direction. One wave has a phase constant of rp, while the other has a phase constant rp = 

0. Figure 3.11 shows the effects of waves interfering constructively and destructively. 

Figure 3.1 l(a), shows the resultant waveform of two waves (y1 + y2) which are nearly in 

phase ( rp nearly equal to zero). Figure 3 .11 (b ), shows the resultant of the two waves (y1 

+ y2) which are nearly out of phase ( rp nearly 180°). By merely adding the individual 

displacements at each x in Figure 3.11 (a), we see that there is nearly complete 

reinforcement of the two waves and the resultant wave has nearly doubled the amplitude 

of the individual components of the two waves. Whereas in Figure 3.1 l(b), we see that 

there is almost complete cancellation at every point and the resultant amplitude is close 

to zero [26]. Figure 3.1 l(a) shows constructive interference, while Figure 3.1 l(b) 

shows destructive interference. 
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(a) Constructive interference of two almost in phase waves 

(b) Destructive interference of two almost 180° out of phase 

waves [26] 

If the phase difference, !J.¢ = ( ¢2 - ¢1) , between two waves is exactly zero, this means 

the two waves have the same phases everywhere. This leads to total constructive 

interference, whereby the crest of on wave falls exactly on the crest of the other and the 

valley of one wave falls on the valley of the other. The resultant amplitude is just twice 

that of either wave alone. On the other hand, if the phase difference is close to 180°, the 

resultant amplitude will be nearly zero (as shown in Figure 3.1 l(b)). However, if the 

phase difference of any two waves is exactly 180°, than the crest of one wave falls 

exactly on the valley of the other wave. This leads to a resultant amplitude of zero, 

which corresponds to total destructive interference [26]. 

3.3.6 Scattering of waves 

Scattering of waves occurs when the dimensions of the object interacting with the 

microwave is on the order of the impinging wave's wavelength or less. Following the 

physical principles of diffraction, scattering causes the energy from the transmitter to be 
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re-radiated in many different directions [1]. Scattering of waves in built-up areas 

depends on the geometry and terrain, and the radio channel between a transmitter and a 

receiver therefore has randomly time-varying characteristics [21]. Microwaves which 

can be effected by water droplets causes the signal to be scattered in many direction. 

This reduces the LOS path power level, whereby some of the signal can be sprayed back 

towards the source [ 6]. 

Scattering has proven be the most difficult propagation loss mechanism to predict in 

emerging wireless communication systems. For example, in urban microcellular 

systems, lamp posts, street lights and buildings scatter energy in many directions. 

Consequently, providing RF coverage to areas which do not receive energy via 

reflection or diffraction [ 1]. 

3.4 Line of Sight Propagation (Space Wave Propagation) 

There are four major propagation path characteristics: surface wave, space wave, 

tropospheric and sky-wave propagation [4]. Space waves and surface waves are both 

'ground waves' but behave differently, so they are split up into separate propagation 

considerations. Because microwaves follow space wave propagation paths we will 

discuss this propagation path and ignore the other three propagation paths. 

According to [17], space waves behave with merciful simplicity. Space waves depend 

on LOS conditions and they are limited in their propagation by the curvature of the 

earth. Their mode of behaviour is forced onto them because the ground wave disappears 

very close to the transmitter and their wavelengths are too short to be reflected by the 

ionosphere [17]. The space wave follows the ground wave phenomenon, but it radiates 

from an antenna many wavelengths from the earth's surface [4]. It travels in the lower 

few kilometres of the earth surface and no part of the space wave normally touches the 

surface [4][30]. Space waves include two components, which are both the direct and 

ground reflected waves as shown in Figure 3.12 [30]. 
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Figure 3.12 Multipath propagation which shows the direct and 

reflected waves of space wave propagation [30] 

The direct wave is the wave which travels in a straight line between transmitter and 

receiver. Ground reflected waves are waves which are reflected by the earth's surface or 

other obstructions as they travel between transmitter and receiver [30]. 

Space waves are affected by factors such as: wavelength, height of both transmit and 

receive antennas, distance between antennas, terrain and weather along the transmission 

path. If both the direct and reflected waves arrive at the receiver they will add 

algebraically to either increase or decrease the signal strength. There is also a phase 

shift between the two components because the two signal paths have different lengths. 

Additionally, there may also be a 180° phase reversal at the point of reflection. As a 

general rule, a phase-shift of an odd number of half wavelengths causes constructive 

interference (see section 3.3.4). A phase shift of an even number of half wavelengths 

causes destructive interference. Phase shifts which are other than half wavelengths add 

or subtract according to relative polarity and amplitude. The reflected signal constitutes 

both amplitude and phase changes. The phase change is typically 180 degrees and the 

amplitude change is a function of frequency and the nature of the reflecting surface [4]. 
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Figure 3.12, also illustrates the nature of multipath propagation, whereby the signal 

arrives via a direct path and also an ensemble of secondary paths that are reflected from 

the ground terrain. The reflected path arrives, as mentioned, at the receiver with various 

delays and thus constitutes multipath propagation. The multipath signal components 

generally have different carrier phases offsets and, hence, the waves may add 

destructively at times, resulting in the phenomenon called signal fading. A more 

elaborate discussion on the topic of multipath propagation and signal fading will be 

discussed in section 4.2 and 4.3, respectively. 

3.5 Summary of Propagation Mechanisms 

Many of the propagation mechanisms discussed earlier can be present in a transmission 

path at the same time and it is very difficult to predict which specific mechanism is 

producing the change in the signals strength. Figure 3.13, indicates which mechanisms 

affect the parameters of a signal on a communication link [15]. 

OBSERVABLE 
PARAMETER 

AMPLITUDE 

PHASE 

POLARISATION 

FREQUENCY 

PROPAGATION 
MECHANISM 

Absorption 

Scattering 

Refraction 

Diffraction 

Multipath 

Scintillation 

Fading 

Dispersion 

Figure 3.13 Radiowave propagation mechanisms and their impact on a 

communication signals parameters [15] 
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Each of these mechanisms, if present in the signal path, will affect one or more of the 

signals parameters. If a reduction in signal amplitude is received then a number of these 

mechanisms could have caused it. These include absorption, diffraction, fading, 

multipath, refraction, scattering, scintillation, or even a combination of the above. 

Therefore, when there is a variation in the signal parameters, one or several propagation 

mechanisms could be present in the link [15]. 

Finally, a glossary of the standard terms and definitions used in this chapter to explain 

propagation of waves in presented in the Appendix. These standards and terms are 

based on The New Institute of Electrical and Electronics Engineers (IEEE) Standard 

Dictionary of Electrical and Electronics Terms. 
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4.1 Introduction 

Chapter 4 

MULTIPATH FADING 

This chapter concerns itself with the main thrust of this project, which is fading in the 

indoor environment. The indoor environment is not affected by terrain features of the 

outdoor environment and atmospheric conditions, such as rain, snow, hail, fog, ice or 

clouds. But, because of the geometry of buildings such as size, shape, structure, layout 

of rooms and the type of construction materials used, electromagnetic wave propagation 

within buildings are more complex multipath structures than terrestrial radio channels 

[29]. Besides the basic building structures (such as walls, floors and ceilings), 

furnishings and people serve as scatterers ofradio waves [13]. 

This report considered multipath propagation characteristics between transmit and 

receive antennas, on the same floor of the A TRI laboratory which is situated on the 

ground floor of the New Technologies building (building no. 304) at Curtin University. 

The geometry of the laboratory includes features which can be treated separately. These 

features include, firstly, the vertical clear space between floor and ceiling, or between 

objects and the ceiling. The second feature, consists the walls and objects at which 

reflection and transmission of the signal takes place in the horizontal plane (see section 

3.3.2 and 4.5). Lastly, depending on the geometry of the objects and walls, it is also 

possible for waves which diffract around comers of obstacles to reach the receive 

antenna (see section 3.3.3) [13]. 

In this chapter we will discuss the nature of the indoor propagation channel and the 

affects of multipath fading which influences the signal propagated between transmit and 

receive antennas. Descriptions of fading channel characteristics will also be discussed, 

this is important because we will then have a better understanding of the significance of 

the fading results when they are presented in chapters 6. 
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4.2 Multipath Propagation 

Multipath propagation is affected by objects and motion of people within buildings. 

Multipath propagation occurs when the transmitted signal arrives at the receiver antenna 

via one or more paths other than the direct line of sight (LOS), each with its own degree 

of attenuation and delay. The LOS is the main wave and other waves are either 

reflected, diffracted or scattered by structures such as walls, floor, ceilings, people and 

furniture. A two path model of multipath propagation was shown in Figure 3.11 (see 

section 3.4). The number of identifiable paths recorded in the measurements at given 

points in space depend on the shape and structure of a building and the resolution of the 

measurement setup [10]. Figure 4.1, shows a picture of multipath propagation inside an 

empty room [29]. 

Wall 

Wall Wall 

Wall 

Figure 4.1 Multipath propagation inside a room [29] 

As shown in the example Figure 4.1, the waves which reflect off some interface or 

object, experiences a longer path than the direct line of sight path (bold line in Figure 

4.1) from the transmitter to the receiver. This means that the reflected signal is delayed 

relative to the direct path transmission [27]. This results in the waves combining 
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vectorialy at the receiver antenna to give a resultant signal which can be either small or 

large depending upon whether the transmitted signal combines constructively or 

destructively [21]. A receiver at one location may only experience a signal strength 

several tens of dB different from a similar receiver which is located only a short distance 

away. As a receiver is moved to several different locations or rooms within a building, 

the phase relationship between the various incoming waves change. Hence, there are 

substantial amplitude fluctuations and the signal received is said to be subject to fading 

[21] (see section 4.3). 

If the transmission of waves takes place only over two major propagation paths ( one 

direct path and one reflected path), we then refer to this as specular multipath. An 

example of specular multipath propagation was shown in Figure 3.13 (see section 3.4). 

Consequently, if there are multiple reflections with differing delays ( one direct path and 

multiple reflected paths), we then refer to this multipath propagation as diffuse 

multipath. It is much easier to reduce the effects of specular multipath using filters 

(called equalisers) than it is to reduce the effects of diffuse multipath [27]. In 

narrowband transmission the multipath medium causes phase fluctuations and also 

received signal envelope fluctuations. Whereas, in wideband pulse transmission the 

multipath medium produces a series of delayed and attenuated pulses (echoes) [10]. 

An unwanted effect of multipath is that it leads to intersymbol interference (ISi), since 

the delayed version of the waveform will extend into the next sampling interval. The 

multipath effect is well known in a television set, where it manifests itself as ghost 

images [27]. These ghost images are caused by the difference in the phase of the direct 

and reflected rays. This situation is worse near a transmitter than at a distance, due to 

the fact that the reflected rays are stronger nearby [17]. These ghost images can also 

occur in cable systems if proper attention is not paid to line terminations [27]. 

There are many affects of multipath propagation on systems. The affect of multipath 

reception, for:-

• A fast moving user is rapid fluctuations of the signal and phase (fading). 

• A Wideband ( digital) signal is dispersion and intersymbol interference. 
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• An analog television signal is "ghost" images (shifted slightly to the right). 

• A multicarrier signal is different attenuation at different sub-carriers and at different 

locations. 

• A stationary user of a narrowband system is good reception at some locations and 

frequencies, while poor reception at other locations and frequencies. 

• A satellite positioning system is strong delayed reflections, which may cause a 

severe miscalculation of the distance between user and satellite, and may lead in a 

wrong "fix". 

4.3 Fading 

Fading is the variation of the amplitude of a radio wave caused by changes in the 

transmission path. Fading can either be long-term or short-term, flat or frequency­

selective [17]. Fading is caused directly by the multipath nature of waves in an indoor 

environment. The fading phenomenon is primarily a result of the time variations in the 

phases of waves arriving at the receive antenna. 

Section 3 .4, mentioned this point whereby the waves which have been reflected, 

diffracted or scattered by obstacles arrive at the receiver terminal and thus may add 

algebraically to either increase or decrease the signal strength. Due to these phase shifts, 

two or more waves will interfere either constructively or destructively, depending on 

whether a phase shift of an odd or even number of wavelengths is encountered. When 

waves add destructively by vector addition, the resultant received signal is very small or 

practically zero [23]. At other times, the waves add constructively, which leads to a 

resultant received signal which is large. Therefore, these amplitude variations in the 

received signal, is termed signal fading, and is due, as mentioned above, to the time­

variant multipath characteristics of a channel. 

The reflected signal constitutes both amplitude and phase changes. The phase change is 

typically 180 degrees and the amplitude change is a function of frequency and the nature 

of the reflecting surface [4]. It is worth noting that, whenever there is relative motion in 

wireless channels, there exist a Doppler shift in the received signal. This Doppler shift 

being a manifestation in the frequency domain of the envelope fading in the time 
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domain. Fading and the Doppler shift (spread) are not separable, since they are both 

manifestations of the same phenomenon. 

If we consider a 'static multipath' environment, where the receiver and transmitter are 

stationary, the different propagation paths are distinguishable from one another if their 

electrical path lengths are such that the various delayed versions of a signal radiated 

from the transmitter can be recognised by the receiver in a sequentially manner. Figure 

4.2, shows the two resolvable paths where the differential time delay is greater than the 

reciprocal of the signal bandwidth [21]. 

Transmitted signal t--+ 

Figure 4.2 

I 

Received signal t --+ 

echo path 

first path 

The two resolvable paths with time delay ('c) greater than the 

reciprocal of the signal bandwidth [21] 

If we considered the transmission of an unmodulated carrier signal in a narrowband 

channel, then we would get several versions still arriving sequentially at the receiver. 

But, the effect of the differential time delays will be to introduce phase shifts between 

the component waves, and superposition of different components will then lead to 

constructive or destructive summation (at one instant of time) depending on the relative 

phases (see section 3.3 .4). 

A 'dynamic multipath' environment, is where there is a continuous change in the 

electrical length of every propagation path, caused by motion of either antenna or 
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people, and also the relative phase shifts between them change as a function of spatial 

location. Figure 4.4, shows an example of how the received amplitude of a signal varies 

in the simple case of two incoming paths with different phases [21]. This figure shows 

part of an enlarged multipath fading envelope. 
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Illustration of envelope fading as two incoming signals 

combine with varying phases [21] 

As we can see from Figure 4.3, there are some positions where constructive addition 

takes place and at other positions we see complete cancellations. In practice a more 

realistic envelope fading pattern is encountered as shown in the results of chapter 6 of 

this report. But, for now a clear understanding of the nature of multipath fading patterns 

is more important to be recognised. 

The dynamic changes or time variations in the propagation path lengths can be related 

directly to motion of people and indirectly to the Doppler effects that arise. This time 

variations of the channel occur if the antenna or components of its environment are in 

motion. 
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The rate of change of phase, caused by motion, is apparent as a Doppler frequency shift 

in each propagation path, and this arises due to the fact that the phase changes !).<jJ and 

the change in the path length fl.I are related by [21 ], 

(4.1) 

where, 

A = carrier wavelength 

Fortunately, the degree of time variations within an indoor system is much less than that 

of an outdoor mobile system. Given the conditions of a typical indoor wireless system, 

frequency spreading (Doppler shift) should be virtually nonexistent [10]. But, Doppler 

spreads of 0.1 - 6 Hz have been reported by some researchers. The change in the length 

of the path will depend on the spatial angle between any component wave and the 

direction of motion, and it is apparent that waves which arrive from directly ahead or 

behind the receiving antenna are subjected to the maximum rate of phase change [21]. 

In practical situations, the receive antenna will have several incoming paths, where the 

individual phases as experienced by the receive terminal will change continuously and 

randomly. This also means that the fading envelope and the RF phase will therefore 

also be random variables and a mathematical model is needed to describe the relevant 

statistics of the multipath fading channel [21]. A mathematical model of the multipath 

fading channel will be described in section 4.5. 

4.4 The Characteristics of Multipath Fading 

According to [20], it is possible to distinguish between three mutually independent and 

multiplicative propagation phenomena, which is multipath fading, shadowing and large­

scale path loss. This report is solely concerned with the affects of multipath fading in 

the indoor wireless environment, therefore, we shall discuss the nature of multipath 

fading and its direct relationship with the channel. 
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We have read, in previous sections, about the nature of multipath propagation and what 

basically affects the nature of waves propagated through wireless channels. We have 

also read about the affect of the multipath medium on waves which arrive at the receive 

terminal and thus produce fading. All, the basic characteristics mentioned above about 

multipath propagation and fading, thus combine to give the phenomenon called 

multipath fading of a wireless channel. 

Multipath propagation leads to rapid fluctuations (fading) of the phase and amplitude of 

the signal [20]. Fast and deep fading to a depth of less than 20 dB is frequent. Deeper 

fade depths, in excess of 30 dB is although less frequent, but not uncommon. For 

stationary terminals within buildings, measurements carried out by researchers have 

shown that ambient motion by people through the building causes Rician fading, with 

the ratio of specular signal power to multipath signal having a value of about 10 dB. 

This results in a typical variation ofless than 15 dB for 99.9% of the time [1]. 

Multipath fading seriously degrades the performance of communication systems 

operating inside buildings. Temporal variations which are due to the motion of people 

and equipment around the antennas (fixed or mobile) results in multipath disturbances 

and fading effects [11]. Temporal variations within the channel produces a significant 

variation to the received radio frequency signal power. This variation of the received 

signal envelope results in a changing signal-to-noise ratio (SIN) at the sampling instant 

for the received data, and thus a non-constant BER probability [31]. 

These temporal variations studies conducted by some researchers, in office buildings 

where there are many separate rooms within the buildings have shown that fading 

occurs in 'bursts' lasting tens of seconds with a dynamic range of about 30 dB [11]. 

Unfortunately, one can do little to eliminate multipath disturbances and fading effects 

[10]. More comparisons concerning the measurement environment (see section 5.2) 

will be discussed and compared once the results of this project have been presented and 

analysed in chapters 6 and 7. 
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4.4.1 Types of fading 

There are two distinct types of fading which are evident in the indoor environment, 

these being frequency selective fading and flat fading. Frequency selective fading 

occurs when a transmitted signal follows several different paths ( each arriving at the 

receiver antenna at different times), resulting in a dispersion of the received signal in 

time [7]. Frequency-selective fading caused by multipath delay spread degrades the 

communication channel by causing intersymbol interference (ISI), thus resulting in an 

irreducible bit error rate (BER) and imposing a upper limit on the data symbol rate. 

Flat fading occurs when a transmitted wave scatters off many obstacles which are close 

to the mobile unit. As a result, the phase and amplitude of each ray arriving at the 

receive antenna is different. Assuming a number of rays arrive at the receiver antenna at 

the same time, the combined effect is that these rays may add up constructively or 

destructively from reinforcement to total cancellation or fading [7]. 

In most indoor environments frequency selective fading accounts for the majority of 

fading in a channel. Flat fading is much, much less, but is present when the LOS is 

blocked due to intermittence caused by obstructions such as people or objects in the 

propagation path. This intermittence can cause severe or total loss of the received signal 

in extreme circumstances [31]. Thus for the indoor environment fading is directly 

caused by these two fading types. 

Knowledge of fading behaviour in indoor wireless channels allow bit error rate (BER) 

probabilities to be calculated based on the dynamically changing received SIN ratios. 

4.4.2 Frequency selective fading 

Lets expand on the topic of frequency selective fading in more detail. Measurements 

have shown that very small movements of the transmit or receive antenna, in the order 

of a few centimetres, results in a wide range of receive power levels due to frequency 

selective fading. By observing the received power spectrum, verification that the fading 

was indeed frequency selective rather than flat can be concluded [31]. 
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Frequency selective fading occurs when two different frequencies which are separated 

by a finite frequency range propagating in a medium do not observe the same fading. 

This fading is closely related to the time-delay spread L1 . If the time-delay spread 

equals zero than no selective fading exists [19]. 

If this two frequencies are close together, then the different propagation paths have 

approximately the same electrical length for both components, and the amplitude and 

phase variations of the frequencies will be very similar. However, as the frequency 

separation increases, the behaviour of one frequency can become uncorrelated with the 

other frequency. This is because the differential phase shifts along the various 

propagation paths are different at the two frequencies [21]. 

The extent of this decorrelation depends on the time-delay spreads, since the phases 

shifts arise from the excess path lengths. Large delay spreads, can cause the incoming 

components phase to vary over several radians even if the frequency separation is quite 

small. Signals which occupy a bandwidth greater than that over which spectral 

components are affected in a similar way will become distorted. This is due to fact, 

since the amplitude and phase of the spectral components in the received signals are not 

the same as they were in the transmitted signal. Basically, this phenomenon is called 

frequency selective fading. The bandwidth which the spectral components are affected 

in a similar way is called the coherence bandwidth [21]. 

For the two fading amplitudes to vary uncorrelately, the frequency separation should be 

greater than the coherence bandwidth, 

where, 

Be = coherence bandwidth 

11/ = I Ji - h I , two frequency difference 

~ = time delay spread 
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The coherence bandwidth will vary depending on the geometry of the indoor 

environment. Obstructions will have an impact on the time-delay spread of the 

bandwidth. 

4.5 Mathematical Modelling of the Channel 

According to [31 ], due to the multipath nature of waves in indoor environments, waves 

encounter many surfaces when propagating through the channel. These surfaces consist 

of walls, floor, ceiling and other objects such as furniture and people. At these surfaces 

the amount of energy which is transmitted through and reflected from the material is a 

function of the materials physical constants which are conductivity (cr), permittivity (E) 

and permeability (µ), as well as frequency and the angle of incidence between wave 

propagation direction and surface material. 

Two main classes of indoor propagation modelling which have been used by different 

researchers of the indoor environment, are statistical and site-specific. Both classes 

have strengths and weakness when applied to design and installation of indoor wireless 

systems. Site-specific propagation models depend on the electromagnetic wave 

propagation theory to characterise the indoor environment. They depend a great deal on 

the indoor environment to obtain accurate predictions of signal propagation. Ray 

tracing methods are used to calculate the signal strength, impulse response, rms delay 

spread and other related parameters [29]. 

In statistical modelling, on the other hand, depends on the extensive measurements and 

data collation [29]. A general statistical impulse response model for the multipath 

fading channel was first suggested by G. L. Turin (in 1956). The statistical impulse 

response model has been an approach used by many researchers to model the indoor 

wireless channel over the years. More recently the impulse response model has been 

used either directly or indirectly to model the indoor propagation channel [10]. We 

shall, therefore, use the impulse response model method to describe the nature of indoor 

propagation. 
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The multipath nature of the indoor channel can be fully described by its time and space 

varying impulse response. This impulse response approach to characterise the channel 

has been conducted by many researchers. More recently, the impulse response approach 

has been used either directly or indirectly by researches in the indoor radio propagation 

channel modelling [10]. It is mainly used in indoor measurements and modelling 

efforts. The impulse response for the indoor channel gives a measure of the severity of 

multipath propagation within the channel [31]. 

Radio waves can be modelled at discrete paths resulting in a multipath model. The 

complicated and time-varying indoor radio propagation channel can be modelled by the 

impulse response. According to [3], the complex envelope baseband equivalent for the 

impulse response of such a channel at ranger, between transmit and receive antennas 

can be mathematically modelled as, 

where, 

h( r,r) = f Ei(r) e - j 2Jif,Ti Ri<5(t- Ti) 
i=O 

i 0, is for the direct signal path (generally line of sight) between the 

transmitter and receiver. 

ti = represents the propagation delay of the ith signal component. 

E; = the electric field intensity of the ith received signal component. 

R; = the reflection coefficient of the ith received component. 

fc = carrier frequency of bandpass channel. 

(4.3) 

To fully calculate the impulse response at any range, the values of Ei and R; for the ith 

multipath radio signal needs to be known. Rican be representative of one or more 

reflections from one or more different surfaces resulting in a final composite value for 

R;. The ith multipath ray may be involved in one or more reflections as its total 

propagation delay is proportional to the distance the signal travels. 

44 



Chapter 4 Multipath Fading 

From [3], the value of E; (r) is given by, 

(4.4) 

where, 

E; (r) = electric field intensity of the ith received signal component 

r = range between transmitter and receiver 

Pr = transmitter power level 

c = speed of light 

L1 ti = delay for the discrete paths i = 1.. .. n with respect to that of the direct 

component (r/c) 

The value of E; has been shown and extensively proven by [31] to be the same value 

given for the received electric field intensity ith path, equation (4.4). Pr is the 

transmitter power level, c is the speed of light and equation ( 4.4) can be substituted into 

equation (4.3) of the impulse response to get the electric field intensity of the ith 

received signal component E; (r) [31]. 

In the introduction of this chapter (section 4.1), we mentioned that reflection and 

transmission of signals takes place in the horizontal plane or vertical plane. In the 

horizontal plane, when rays are incident on walls or obstacles they produce specularly 

transmitted and reflected rays, as well as diffuse scattering. This diffuse component is 

significant in determining the local variations to the field in the scattering site vicinity. 

However, the amplitude of the diffusing component decreases more rapidly with 

distance travelled. The diffused scattered fields are reduced by subsequent reflections or 

scatterings. The diffuse scattering component does contribute to the rapid local 

variations making up the interference patterns. We shall discuss more about the 

reflected and transmitted nature of the rays [ 13]. 

Section 3.3.1, briefly mentioned the transmission and reflection coefficients of a 

medium. We will expand on the discussion of the reflection coefficient R; because it is 

needed in the computation of the impulse response. Figure 4.6, shows the two cases 
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when electric field intensity E is perpendicular to the plane of incidence and when it is 

parallel to the plane of incidence, which depends on whether the antenna is horizontally 

or vertically polarised [29]. The reflection coefficients are real and depend on the E of 

the wave impinging on the surface, (being either perpendicular or parallel to the 

surface), they also depend on the incidence angle and upon the relative dielectric 

constant of the material (Er) [3]. 

Considering the reflection coefficient of the ith received component Ri, for dielectric 

walls, floors, and ceilings of a building, the reflection coefficient is real at high 

frequencies where the angular frequency mis large [31]. Figure 4.6(a), shows the case 

when the electric field intensity E, of a signal wave is perpendicular to the plane of 

incidence. Therefore, the complex coefficient of reflection R; for horizontal polarisation 

is [31 ], 

cos Bi - /(62 I 61) - sin 2 Bi 
R;=~~~--=~'=============== 

cosB; + .J(62 I 61) - sin 2 8; 
(4.5) 

Figure 4.6(b ), shows when E of a signal is parallel to the plane of incidence, for vertical 

polarisation the reflection coefficient R; is [31 ], 

where, 

8; = angle between the incident radio wave and the normal to the surface 

&1 = permittivity constant of the first medium (generally air) 

&2 = permittivity constant of the second medium being the walls, floor and 

ceilings 

(4.6) 

Equation (4.5) or (4.6) can be used depending on which discrete path i is being worked 

on and the polarisation used (i.e., electric field intensity E either perpendicular or 

parallel to the plane of incidence) either equation can be substituted into equation (4.3) 
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to get the reflection coefficient of the ith received component R; [31]. In the case where 

the E of a wall incident wave is perpendicular to the plane of incidence, then the 

reflection coefficient is as equation ( 4.5) and the reflection coefficients of the floor and 

ceiling of a room is as equation (4.6). From figure 4.6, E;, E, and E1 are the incident, 

reflected and transmitted electric field intensities, respectively [29). 
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A signal wave incident obliquely on a plane: 

( a) E perpendicular to plane of incidence 

(b) E parallel to plane of incidence 

The impulse response model equation ( 4.3) would represent a perfect 7 path propagation 

model if only 7 propagation delay paths exist when waves are transmitted from the 

transmit antenna and received as 7 different multipath waves at the ttl:eiver antenna in 

an empty room. The seven rays would be a direct LOS path, reflections from each of the 

side walls of a building or room, reflections from the end walls, one reflection from the 

ceiling and one reflection from the floor. This model was discussed and used by [3] in 

the measurements of impulse response for three separate buildings, but in real situations 

waves are reflected, diffracted and scattered and reach the receiving antenna by many 

paths (multipath propagation). 
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The impulse response model, equation (4.3), is a good approach for channel 

characterisation and along with the rms delay spread we can further evaluate the channel 

performance and its link with BER and the severe error burst caused by impairments to 

the channel. Although the impulse response and rms delay spread are not dealt with in 

this project, it can certainly be a topic of research by another party in the near future to 

further evaluate the wireless channels characteristics. 

4.6 Multipath Fading Distributions 

Envelope fading waveforms in a multipath environment may follow different 

distributions depending on the area covered by the measurements. These fading 

waveforms show how temporal variations effect the distributions of waves received by 

the antenna. There are six theoretical distributions which are normally encountered in 

describing multipath fading phenomenon, these being Rayleigh, Rician, Nakagami, 

Lognormal, Weibull and Suzuki distributions [5]. 

Depending on which frequency band we use, researches have indicated either a Rayleigh 

or Rician distribution is a good fit for the temporal fading data depending on the LOS 

component being present or not [3]. A brief discussion of the distributions is given in 

this section, as the Cumulative Distribution Function (CDF) of the results presented in 

Chapter 6, will be compared to the known distributions to determine which distribution 

is the best fit for the recorded data. 

4.6.1 Rayleigh Distribution 

A well accepted model for small-scale fading in the absence of a strong received 

component is the Rayleigh fading distribution. A strong received component may be the 

LOS path or a path which goes through much less attenuation when compared to the 

other arriving components [10]. This has been stated and proven by many researchers. 

This distribution has been closely related to the central chi-square distribution [23]. The 

Rayleigh probability density function (pdf) is given by [1 O], 
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r { r
2 

} p(r) = -
2 

exp --
2 

, 

a 2a 
rzO (4.7) 

where, 

a 2 = variance of the random multipath (Rayleigh parameter) 

The mean of this distribution is .J 1r I 2a and the variance is (2 - 1r I 2)a2
• The 

Rayleigh distribution is widely used to describe multipath fading because of its 

occasional empirical justifications and its elegant theoretical explanation. To explain it 

theoretically, we consider an unmodulated carrier transmitted by terminal i. It is 

assumed that the transmitted signal reaches the receiver via N directions, where the ith 

path having a complex strength r;ej O; that can be described by a phasor with an 

amplitude r; and a phase B;. The received signal r;(t) is given by [10], 

(4.8) 

The path phase B; is very sensitive to path length, changing by 2n when the path length 

changes by a wavelength. This shows that, the phase is uniformly distributed in the 

interval [0,2n). Quadrature 1 and in-phase components Q of the received signal are 

independent and by the central limit theorem, are Gaussianly distributed random 

variables. Lord Rayleigh, first investigated the joint distribution of r; and B;. These two 

variables can be shown to be [10], 

r; = ..J12 + Q2 

B; = arctan[Q / I] (4.9) 

It has been shown that even as few as six sine waves with uniformly distributed and 

independently fluctuating phases are combined, the resulting amplitude and phase very 

closely follow the Rayleigh and uniform distributions, respectively [10]. 
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4.6.2 Rician Distribution 

The Rician distribution occurs when a significant or strong path (such as the LOS path) 

exists in addition to the low level scattered paths. The Rician distribution is related to 

the non-central chi-square distribution [23]. When a strong path exist, the received 

signal vector can be considered to be the sum of two vectors: a scattered Rayleigh vector 

which has a random amplitude and phase, and a vector which is deterministic in 

amplitude and phase, representing the fixed path. The received signal vector riej Bi is 

the phasor sum of the two signals, which is the random component uei a ( with u being 

Rayleigh and a being uniformly distributed) and the fixed component v e j fJ ( v and 13 

are not random). 

S. 0. Rice, who was an outstanding engineer at Bell Telephone Laboratories [5], 

showed that the joint pdf of rand (} to be [l O], 

( ) _ r {- r2 + v2 
- 2rv cos((} - /J)} p r - 2 exp 2 , 

27rCY 2a-

r z O, -7r'5:.(B-/J)'5:.7r (4.10) 

The length and phase of the fixed path usually change, therefore p is itself a random 

variable which is uniformly distributed on [0,2n). Randomising p causes r and (} to 

become independent, (} having a uniform distribution while r has a Rician distribution 

given by the pdf [10], 

where, 

r {-r 2 

+ v
2

} ( rv) 
p(r) = (Y2 exp 2a-2 lo (Y2 ' 

10 = zeroth-order modified Bessel function of the first kind 

v = magnitude of the strong component 

rzO 

d = proportional to the power of the "scatter" Rayleigh component 
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The zero-order modified Bessel function can be shown mathematically as (19], 

a, z2n 

/o(z)- "-­='a 2 2nn!n! 

For z >> 1, equation ( 4.12) can be expressed by (19], 

ez ( 1 9 ) /o(z) = ,-;;-- 1+-+ 3 + .... + 
-..12,rz 8z 128z 

(4.12) 

(4.13) 

If v in equation (4.11) goes to zero (or if v212d << r2!2d), the strong path is thus 

eliminated and the amplitude distribution then becomes Rayleigh, as expected. This 

shows, that the Rician distribution contains the Rayleigh distribution as a special case 

(10]. The Rician K-factor is defined as, K = v212d. The Rician K-factor of about 7 dB 

(K = 5) adequately describes most microcellular channels (20]. 

4.6.3 Nakagami m-Distribution 

The Nakagami distribution, which contains many other distributions as special cases, 

has generally been neglected, as most of Nakagami' s works are written in Japanese [ 1 O]. 

The Nakagami-m is a two parameter distribution, namely, involving the parameter m 

and the second moment Q. As a consequence, this distribution provides more flexibility 

and accuracy in matching the observed signal statistics. This distribution can be used to 

model fading conditions which are either more or less severe than the Rayleigh 

distribution. When we described the Rayleigh distribution we assumed that the length 

of the scatter vectors were equal and their phases to be random. A more realistic model, 

proposed by M. Nakagami in 1960, also permits the length of the scatter vectors to be 

random. 

Using the same notation for r;(t) as shown in equation (4.8), the Nakagami derived 

formula for the pdf of r is (10], 
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r~O (4.14) 

where, 

r(m) = Gamma function 

Q = E(r2) 

n2 
m=-----

E[(r2 -Q2)], 
1 

m ~ 2 . It is called the fading figure [23] 

The Nakagami distribution is a general fading distribution that reduces to a Rayleigh 

distribution for m = l and to a one-sided Gaussian distribution for m = l/2. It also 

approximates with high accuracy the Rician distribution and approaches the Lognormal 

distribution under certain conditions [ 1 O]. 

4.6.4 Weibull Distribution 

The Weibull Distribution has a pdf given by [10], 

where, 

ab(br)a-l [ (br)a] 
p(r) = ----;; --;:; exp - --;:; , 

a = shape parameter 

ro = rms value of r 

b = [(2/a)r(2/a)]1i2 is a normalisation factor 

r~O ( 4.15) 

There is no theoretical explanation for encountering this distribution, according to [ 1 O]. 

However, the Weibull distribution contains the Rayleigh distributions as a special case, 

for a = 1/2. For a = 1, it reduces to an exponential distribution. The Weibull 

distribution has provided good fit to some mobile radio fading data [10]. 
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4.6.5 Lognormal Distribution 

To explain large scale variations of the signal amplitude in a multipath fading 

environment, the Lognormal distribution has often been used. The pdf is given by [10], 

{ 
( )2} 1 lnr - µ 

p(r)= exp - 2 , 
J2;ar 2a 

r~O (4.16) 

where, 

µ=mean 

cr = standard deviation 

With this distribution, log r has a Gaussian distribution. A heuristic theoretical 

explanation for encountering the Lognormal distribution is, due to multiple reflections 

in a multipath environment, fading can be characterised as a multiplicative process. 

Multiplication of the signal amplitude gives rise to a Lognormal distribution [1 O]. 

4.6.6 Suzuki Distribution 

The Suzuki distribution is a mixture of the Rayleigh and Lognormal distributions. It 

was proposed by Suzuki to describe the mobile channel. It has the pdf [ 1 O], 

rof r ( r
2

) 1 [ (lna-µ)
2

] p(r) = -
2 

exp ---
2 

·exp -
2 

da 
o a 2a J2;a,?., 2}., 

( 4.17) 

This distribution although complicated in form, has an elegant theoretical explanation: 

one or more relatively strong signals arrive at the general location of the portable. The 

main wave, which has a Lognormal distribution, is broken up into subpaths at the 

portable site due to scattering by the local objects. Each subpath has random uniformly 

distributed phases and approximately equal amplitudes. The subpaths arrive at the 
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portable unit with approximately the same delay. The envelope sum of these 

components has a Rayleigh distribution with a Lognormal distributed parameter a, 

giving rise to the mixture distribution of ( 4.17) [ 10]. The Suzuki distribution explains 

the transition between the local Rayleigh distribution and the global Lognormal 

distribution. However, it is complicated for data reduction since the pdf is given in an 

integral form. 

4. 7 Fading Envelope Statistics 

The probability density function (pdf) and the cumulative distribution function (CDF) 

are both first-order statistics. By definition they are both not functions of time. Second­

order statistics on fades which are functions of time, consist of level crossing rates 

(LCR), average duration of fades (ADF) and fade depth [19]. A general discussion of 

these statistics will be presented in this section. These statistics will be used to analysis 

the results of chapter 6, to see how the fading patterns vary under different measurement 

parameters. 

4.7.1 Level Crossing Rate (LCR) 

The level crossing rate (LCR) N(R) is the average number of times per second that the 

signal crosses a specified threshold or level, R, with a positive slope [21]. 

It is represented mathematically as [21 ], 

00 

N(R) = Jrp(R,r)df (4.17) 
0 

where, p(R,f) is the joint pdf of r andf at r = R, and the dot indicates the time 

derivative. According to [19], the total number of crossings Cover a T-second length of 

data divided by T seconds becomes the LCR: 

N(R) = C 
T 

The LCR of a typical fading signal can be calculated and is shown in Figure 4.7. 
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4.7.2 Average Duration of Fades 

The average duration of fades (ADF) below the specified level r = R is also of interest, 

as an indoor communication system is also sensitive to the duration of time that the 

signal stays below the given threshold level [ 11]. Let r; be the duration of the ith fade. 

Then the probability that r ~ R for a total time interval oflength Tis [ 19], 

1 P[r ~ R] = - L Ti 
T 

The average fade duration Tis [19], 

T = 1 Ti = P[r ~ R] 
TN(R)L N(R) 

where, 

N(R) = level crossing rate 

r; = ith individual fade 

T = time interval 

The average duration of fades is also shown in Figure 4. 7 [ 19]. 

R 

0 

Negative 
Slope 

Positive 
Slope 

( 4.19) 

(4.20) 

Figure 4.7 Level crossing rate and the average duration of fades [ 19] 
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This thus concludes the discussion on multipath fading and its important characteristics. 

The statistical analysis and the theoretical distribution have been discussed in length and 

will be used when analysing the fading envelope waveforms in section 6. The next 

section deals with the measurements conducted at the ATRI laboratory. 
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Chapter 5 

MEASUREMENTS 

5.1 Measurement Introduction 
The measurement plan for this project consisted of collecting and analysing data for a 

specific location, which was the ATRI laboratory at Curtin University. The specific aim 

was to gather results which were influenced by temporal variations of the indoor 

environment and to statistically analyse these results, so that accurate and relevant 

multipath fading channel models could be developed [12]. 

A sufficient number of measurements were collected around the laboratory to ensure that a 

statistically accurate and warranted model could be developed. These measurements were 

conducted over a period of a week, due to some uncontrollable constraints, such as time 

and equipment demand. This did prove to be a bonus, because a slowly and carefully 

conducted measurement procedure was achieved without any mistakes. 

As, the majority of the measurement equipment was placed on a trolley ( except for the 

computer), it was easy to take measurements at antenna positions which were further away 

from the initial trolley position (near the computer terminal). The measurement 

environment is presented in section 5.2. 

One of the measurement equipment, the Aphex Systems Voltage Control Analyser had to 

be ordered and installed, as it was a vital solution to the measurement system. The rest of 

the equipment was readily available at the time of connecting up the measurement system 

and did not pose a big problem. The quarter-wave monopole antennas had to be 

constructed and calibrated at the ATRI laboratory to the specifications of CSIRO 

Australia. The antenna measurements covered the 2.3 - 2.5 GHz range only, as this was 

the measurement band being considered for this project. A constant frequency band of 2.4 

GHz was used throughout the measurements. 

The following sub-sections describe the measurement environment used for the 

measurements, the measurement equipment features and specifications are noted, the 

measurement system is explained in depth, the system calibration is noted and 

measurement procedure is outlined and discussed. 
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5.2 Measurement Environment 
Measurements were conducted at the Australian Telecommunications Research Institute 

(ATRl) laboratory, located in the new technologies building (building 314, level 1) at 

Curtin University, Bentley Campus. The measurements were carried out at the main 

laboratory, which is located on the ground floor of this three story building. The building 

is a fairly new colourful brick building, which is about 3 years old. Located on the ground 

floor of this building are, office cubicles, a spacious reception area, a kitchen, 2 

conference rooms, hallways and the big central laboratory. 

The laboratory is a rectangularly shaped room in a central position, and has other office 

rooms to its sides along the central hallway. The dimensions of the laboratory are 7.8 x 

9.95 meters. There is also, an adjoining store room which is located beside the laboratory, 

the store room and laboratory are separated by a door. Also closely located to the store 

room in a single concrete pillar, which is part of the building structure. The interior walls 

of the laboratory consist of smooth Gyprock plasterboard's on metal studs. The floor is 

carpeted, and it is constructed of concrete over corrugated steel panels. The ceiling which 

is made of non-metallic tiles has fluorescent lights and air-conditioning ducts, and is about 

3 meters in height. 

Within the laboratory, there are benches along the four sides of the laboratory walls and 

also a central bench located in the middle of the laboratory. There are computers, test and 

measurement equipment and various other accessories which are placed on these 

benchtops and on trolleys. The movement of people in this laboratory depends on the 

particular day and on the equipment or accessories being used or sort after. The floor plan 

of the laboratory is shown in Figure 5 .1 ( the Figure is not to scale). 

This measurement environment was chosen due to the availability of the laboratory and 

the relatively easy excess to equipment which is needed to carry out the measurements. 

The laboratory is a good choice because there is a lot of furniture within the laboratory and 

occasional movement of people walking in and out of the laboratory is present. In Figure 

5 .1, the black circles represent the transmitter and receiver positions for the measurements 

which were conducted in the laboratory. The antenna positions were elected at random, 

with the intention that the whole laboratory space was covered or represented. 
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Figure 5.1 Floor plan of the ATRI laboratory at Curtin University 
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5.3 Measurement Equipment 
The equipment which was used to gather the results for this report was chosen because 

they were available at the time and were relatively easy to use. The equipment used to 

gather the results consisted of, 

• 2 x Monopole Test Antenna 

• 1 x Hewlett Packard (HP) 89441A Vector Signal Analyser (VSA) 

• 1 x Hewlett Packard (HP) 89441A Radio Frequency (RF) Section 

• 1 x Two Way Splitter 

• 1 x Marconi Instruments TF 2300A FM/ AM Modulation Analyser 

• 1 x Aphex Systems VCAlOOl Voltage Control Attenuator (VCAtt) 

• 1 x AW A Crystal Oscillator 

• 1 x 3NX IBM Compatible PC, with Creative Labs Sound Blaster card 

installed 

These equipment made up the measurement system (see section 5.4) for this project. 

These equipment at the time of taking the measurements, provided the best solution for 

gathering raw fading results so that the appropriate statistical analysis could be 

conducted using available software. 

Setting up the equipment prior to system calibration and measurement did not pose a big 

dilemma, as the only equipment which was used frequently by people in the laboratory, 

was the HP vector signal analyser, its RF section and the 3NX computer. The other 

equipment belonged to my colleague, Ted Walker, who assisted me in conducting the 

measurements. As the majority of the equipment, except for the computer, was placed 

on a trolley, it was easy to move the entire test setup to various locations within the 

laboratory for the different antenna positions. This proved to be a very big advantage. 

A brief discussion on the equipment used in this project will be mentioned in the 

following sub-sections. Specifications and features of the equipment used in this project 

will be outlined. 
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5.3.1 Antenna 

The antennas used in the measurements are identical laboratory constructed quarter­

wave monopole reference antennas, constructed to CSIRO Australia model 

specifications for the frequency range of 2.3 - 2.5 GHz. The quarter-wave monopole 

antenna is an antenna which consists of one half of a half-wave dipole antenna, which is 

located on a conducting ground plane. This ground plane is assumed to be infinite and 

perfectly conducting. The monopole antenna is perpendicular to this ground plane [28]. 

The antennas were fed to coaxial cables connected to their bases. Figure 5.2 shows a 

basic picture of the laboratory constructed antenna (not to scale). 

_ Quarter-wave monopole 
......... ---

antenna (whip) 

PVCpipe/ 

RG-213 coaxial cable______. 
connected to RF section 

~ Spherical conducting plane 

.----- Plastic support wire 

Figure 5.2 Side-view of the laboratory constructed quarter-wave monopole 

antenna 

The antennas are omnidirectional radiators and either antenna can be used for 

transmitting or receiving signals because they obey the Law of Reciprocity. The 

omnidirectional measurements served to determine the nature of the radiating waves in 

the wireless channel environment between the two antennas. With obstacles located in 

different locations around the antennas, the omnidirectional nature of the measurements, 

showed the multipath nature of the received waves in the form of fading. This 
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measurements were good because they showed the expansion of the RF wave in "all 

directions" from the transmit antenna and passed through the channel being reflected, 

diffracted and scattered of obstacles and moving people located in different positions 

around the antenna. 

The features and specifications of the antennas used in the measurements are shown in 

table 5.1, 

Table 5.1: Features and Specifications of Quarter-wave Monopole Antenna 

CSIRO monopole test antenna 

Omnidirectional 

Vertical polarisation 

Assembled and calibrated using HP S-parameter test set at ATRI laboratory 

Rugged and flexible construction 

Lightweight design 

Frequency Range 2.3 - 2.5 GHz 

Gain Unity 

VSWR 1.67:1 

Radiation Pattern See Figure 5.3 

Maximum Power Output 

Construction Height 1.5 m 
(from ound to s herical conductin lane) 

Antenna Whip Height 31.25 mm 

Diameter of Spherical Conducting Plane 125 mm 

Whip and Conducting Plane Material Stainless steel 

Support Pipe Material Poly-vinyl Chloride (PVC) 
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Figure 5.3 Radiation pattern for quarter-wave monopole antenna: 

(a) Vertical pattern (side view) 

(b) Horizontal pattern (top view) 

The calibration of the antenna was conducted at the laboratory using the Hewlett 

Packard Network Analyser with the S-parameter test set option. Allowing for the 500 

calibration cable RG-213 at 1.2 dB, the quarter-wave monopole antenna was measured 

for return loss using the S-pararneter test set. The cable calibration to determine the loss 

(attenuation) of the cables, which are the same cables used in these measurements, was 

carried out by [12]. For the details on the method used to calibrate the cables, refer to 

[12]. Figure 5.4 shows the measurement setup used to measure values of the return loss 

for the frequency range of 2.3 - 2.5 GHz. 

HP network analyser 
with S-parameter test set 

::Fvj 
- - 0 

2 meter RG-213 Cable 

Quarter-wave 
monopole antenna 

Figure 5.4 Return loss measurement setup (not to scale) 
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The return loss values were measured by connecting up the antenna unit to the test set 

using the 2 meter coaxial cable. Next, the span was set for the range of 2.3 to 2.5 GHz. 

The impedance was set to son on the S-parameter test set and the measurement was 

started by pressing the sweep button. The measured values for the return loss for the 

specified frequency range was then displayed on the S-parameter test set. From these 

values the best return loss value for our laboratory constructed antenna is -30 dB. 

The return loss, is basically, where two loads are compared to see whether they are the 

same or not. In the measurement setup above, we are trying to match the characteristic 

impedance of the son calibration cable to the antenna, which acts like a load. We are 

trying to match the antenna, so that is closely resembles a son load. This is because we 

don't want any unwanted reflected power returning back to the system and being 

wasted. A perfect radiating antenna would have a Voltage Standing Wave Ratio 

(VSWR) of 1. Our VSWR for the quarter-wave monopole antenna is 1.67, as compared 

to 1. But this an acceptable value for the antenna, as a fairly good antenna would have a 

VSWR of 1.3:1. 

5.3.2 Vector Signal Analyser and RF Section 

The Hewlett Packard 89441A Vector Signal Analyser (VSA) and its Radio Frequency 

(RF) Section was used in performing measurements for the fading data. Table 5.2, 

presents some very basic specifications of the Vector Signal Analyser. To find out the 

full specifications of the VSA, please refer to the technical data handbook. 

Table 5.2: Specifications of the HP Vector Signal Analyser 

Range 

Span (i) Scalar Mode 

(ii) Vector mode 

Resolution Bandwidth (RBW) 

Frequency 

64 

2 MHz - 2650 MHz 

(i) 1 Hz - 2.648 GHz 

(ii) 1 Hz - 7 MHz 

312 µHz - 3 MHz 
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Amplitude 

Input Range 

Input port Impedance 

Types 

Frequency Range 

Maximum offset from center frequency 

Amplitude (CW source type) 

(i) Range 

(ii) Typical Maximum 
Amplitude 

(iii) Amplitude Resolution 

Source Port Connector 

Range 

Span 

Center Frequency Tuning Resolution 

Resolution Bandwidth (RBW) 

Source 

-50 dBm to + 25 dBm 

50 n (75 n with option 1D7) 

CW (fixed sine), random noise, periodic 

chirp, arbitrary 

2 MHz - 2650 MHz 

3.5 MHz 

(i) -40 dBm to + 13 dBm 

(ii) +17 dBm 

(iii) 0.1 dB 

Type-N 

de- 10 MHz 

1.0 Hz - 10 MHz 

0.001 Hz 

312 µHz - 3 MHz 

Amplitude 

Input Range (500 input) -30 dBm to +24 dBm 

Input port Impedance (IF section only) 50 n 175 n 

Connector BNC 

Source 

Scalar mode types CW (fixed sine), arbitrary 

Vector mode types CW, random noise, periodic chirp, arbitrary 

Source Frequency Resolution 25 µHz 

Return loss (IF section only) >20dB 
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5.3.3 Marconi Instruments Modulation Analyser 

The TF2300A modulation analyser is primarily used for measurements of FM deviation 

but it also measures AM depth. With its wide range of deviation frequency, modulation 

bandwidth and carrier frequency, this instrument is suitable for applications to fixed and 

mobile point-to-point communications, broadcasting, telemetry and multi-channel link 

equipment in the HF, VHF and UHF. The Marconi analyser can be operated from the 

mains power or a nominal 24 V battery for mobile purposes. The specifications of the 

modulation analyser are shown in table 5.3, 

Table 5.3: Specifications for the modulation analyser 

Frequency Range 4 MHz - 1000 MHz 

Maximum Input 3 V rms (200 mW) 

Center Frequency Tuning Resolution Nominally 50 n 

L°'al Oscillator 

Variable Frequency Operation 5.5 - 11 MHz and 22 - 44 MHz 

Calibration Accuracy ±3% 

IF Output 

Frequency 1.5 MHz 

Amplitude approx. 250 - 750 m V EMF 

Output Impedance Nominally 10 kn 

Power Requirements 

AC Mains 190 V -260 V 

External Battery 21.5 - 30 V DC 

Dimensions and Weight 

Height 19 cm 

Width 47cm 

Depth 36cm 

Weight 13.6 kg 
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5.3.4 Aphex Systems Voltage Control Attenuator 

The Aphex Systems VCAI001 ultra-low distortion VCAtt is the nearest device to a 

variable potentiometer. The VCAl 001 operates as a class "A" amplifier at all times and 

all parameters are exceptionally stable against temperature changes. The VCAtt, which 

was ordered from America, was primarily needed to change the DC voltage from the 

Marconi Instruments Modulation Analyser to an AC voltage because the sound blaster 

only accepts AC voltage due to its blocking capacitor within its circuitry. Table 5.4, 

shows the features and specifications for the VCA1001 VCAtt, 

Table 5.4: Features and specifications for the VCAI001 Voltage Control Attenuator 

Ultra low noise 

Reduced external parts count 

Ultra low noise 

Super low control feedthrough 

Wide bandwidth 

Bipolar power supplies 

Wide dynamic range 

Wide attenuation range 

Maximum Input Level -21 dBu 

Slew Rate 120 V/µs 

Output at Clipping 0+21 dBu 

Noise (20 Hz -20 KHz) -90 dBu 

DC Electrical Characteristics 

Recommended Supply Volts Bipolar 15 V DC 

Positive Supply Current 7 .65 mA 

Negative Supply Current 7.75 mA 
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5.3.5 3NX Computer 

The computer which was used to sample and store the data was a 3NX 80486 computer. 

The Creative Labs sound blaster card was installed in the computer to sample the 

amplitude modulated 100 Hz sinusoid for all the relevant fading data, produced for the 

20 second measurement period. 

5.3.6 Coaxial Cables 

The coaxial cables used in this project consisted of, 

• 2 x 2m RG-213 Coaxial Cables 

• 1 x 20m RG-213 Coaxial Cable 

One 2 meter cable was used as the calibration cable, while the other 2 meter RG-213 

cable was used in the measurements and was connected to the receive antenna. The 

RG-213 cables were chosen due to their flexibility and the minimal cost associated with 

their purchase [12]. 

The 20 meter cable was chosen because of its relatively long length which was needed 

due to the topology of the laboratory, that would have rendered the 2 meter cable 

unsuitable. The 20 meter cable was connected to the transmit antenna and this antenna 

was placed at various positions across the laboratory (see Figure 5.1), so that the fading 

measurements can be conducted easily. This proved to be a bonus, as the trolley and its 

equipment did not have to be moved consistently around the laboratory. 

5.4 Measurement System 

The measurement method or setup for the fading measurements was implemented using 

the equipment represented in Figure 5.5. This is the block diagram of the 2.4 GHz band 

measurement system. Measurements were conducted using this measurement setup. 

Before any measurements were started, the system was calibrated using one of the 2 

meter RG-213 coaxial cables with known attenuations losses connected to the cable on 

either end. More on the system calibration will be mentioned in section 5.5. 
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Figure 5.5 Block diagram of the 2.4 GHz band measurement system 
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After thorough calibration of the system, the measurements were started for the 20 

second measurement period. The span on the Vector Signal Analyser (VSA) was set to 

10 MHz, the resolution bandwidth was set at 300 KHz and the source type was a fixed 

sine (CW). The transmit section of the VSA is used to send a 5.725 MHz baseband 

signal (IF signal) into the RF section up converter, which basically up converters this 

signal frequency into the frequency which is to be transmitted, being 2.4 GHz. Next, 

the unmodulated 2.4 GHz carrier frequency (RF signal) is transmitted from the transmit 

antenna through the multipath propagation channel and is received at the receive 

antenna. The transmit power used during the measurements is set to provide a mean 

receive signal power of about -67 dBm. The transmit power was around -10 dBm to -15 

dBm. Both the transmit and receive antennas (gain is unity) being used are quarter­

wave monopole antennas, which is specified by CSIRO Australia. The display on the 

VSA shows the signal spectrum produced when movements occur near the antennas. 

The receive signal fluctuates when more movement or less movement occurs. 

Because the transmit and receive sections of the VSA are co-located, the need for carrier 

recovery from the transmitted signal is eliminated. This ensures a noise free phase 

estimate which is free from fluctuations and full coherent reception [31]. 

From the receive antenna the 2.4 GHz signal is then down converted at the RF section, 

back to the original baseband frequency of 5.725 MHz and this frequency is than fed 

into a two way splitter. The splitter halves the receive power (3 dB loss), where one 

half of the receive power goes to the receive section of the VSA and the other half is fed 

to the Marconi Instruments Modulation Analyser. The purpose of the splitter is to see 

what the carrier is doing (i.e., carrier to noise) in the VSA and to take sample readings 

of error tables, eye patterns, vector constellation diagrams and other useful information. 

The baseband frequency is then fed into the Marconi Instruments Modulation Analyser 

(MIMA) which has a IF output frequency of 1.5 MHz. On the MIMA, the RF input 

level knob was turned all the way to the maximum level, the tune oscillator and adjust 

level was set to 1. The MIMA, basically, acts as a peak detector, whereby it detects the 

levels of the propagated RF signal and gives this signal a DC control voltage (0 - 80 

m V), which is directly proportional to the RF signals amplitude. This DC control 
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voltage results from the envelope detection of the down converted baseband signal by 

the MIMA. The MIMA changes the AC voltage fluctuation to a DC voltage through its 

internal circuitry. When the RF signal amplitude increases this produces a higher output 

DC amplitude and when the RF signal amplitude is decreased, this produces a lower 

output DC amplitude. This DC voltage is then used to control the Voltage Control 

Attenuator (VCAtt). 

This DC voltage is fed into the Aphex Systems VCAlOOl VCAtt, before it goes into the 

sound blaster within the computer. The VCAtt's main purpose is to respond to the DC 

voltage fed into it. The VCAtt attenuates and amplifies the DC control voltage, which 

is assigned to pin 9 (VC) on the VCAtt chip. The VCAtt changes the DC amplitude 

fluctuations, from the MIMA, back into an AC amplitude fluctuation because the sound 

blaster card which is used to sample and store the data, only accepts AC voltage due to 

its blocking capacitor within its circuitry. At the same time a 100 Hz sinusoidal carrier 

from an AW A oscillator is assigned to pin 2 (input 1) on the VCAtt chip. The DC 

control voltage amplitude modulates the 100 Hz sinusoid, when they are assigned to 

their respective pins. The amplitude modulation is achieved by assigning the DC 

control voltage to pin 9 and the 100 Hz sinusoid to pin 2 of the VCAtt chip, and the 

output which is assigned to pin 17 on the chip, outputs the 100 Hz amplitude modulated 

carrier. This 100 Hz amplitude modulated signal is then fed into the sound blaster. This 

amplitude modulated 100 Hz carrier accurately reflects the fading of the 2.4 GHz carrier 

wave, when propagated between the transmitter and receiver. 

Finally, the 100 Hz signal (from pin 17) is fed into the sound blaster which samples the 

data and this data is stored on the computers hard disk for post analysis. The sound 

blaster accepts frequencies in the range of 30 Hz - 20 kHz. The 100 Hz carrier is over­

sampled at 11.025 kHz rate. The sampling rate was chosen at 11025 samples/s, because 

the period for the 100 Hz is, T = 0.01 seconds. This means, that there are 111 samples 

in one period of 0.01 seconds. This are more than enough samples to carefully track all 

the peaks and troughs of the sinusoid (99% accuracy), which is represented by the 100 

Hz carrier. A higher sampling rate could have been chosen (40 kHz), but then we would 

have more samples within each period and this directly results in more data being 

produced. Due to the limited capacity of the computers hard disk, we could not choose 
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a higher sampling rate. A lower sampling rate ( 4 kHz) may not have been sufficient 

enough to carefully track all the peaks and throughs of the sinusoid. Therefore, the 

11.025 kHz sampling rate was chosen keeping in mind the limited capacity of the hard 

disk and more importantly, the number of samples (sampling rate) needed to carefully 

represent the fading. 

The audio option was chosen, and the left and right channel gains were set to 1 on the 

sound blaster. Next, the start button was pressed and temporal fading data was recorded 

for the 20 second measurement period. Once, the recording of the data is finished, we 

can view the fading signature on the monitor. The sound blaster produces a wave 

signature and waveform graph which can be seen by enlarging a particular area on the 

wave signature. The sound blaster is a good indicator of the effects of movement which 

causes fading through temporal variations. The data was saved on the hard disk in the 

sound blaster format, which was a .wav file format. 

5.5 Measurement System Calibration 

The measurement system was calibrated thoroughly prior to taking any measurements 

for the day. The 2 meter RG-213 calibration coaxial cable was connected to attenuators 

at the input and output ports of HP 89441 A RF section. A 10 dB attenuator was 

connected to the input port, while a 40 dB attenuator was connected to the output port at 

the RF section. This is a realistic reference to start from when antennas are not used. 

These attenuators are connected for calibration purposes, so that, a realistic situation is 

created, whereby the attenuators give the system attenuation losses. These are similar 

losses which are experienced by the system when the monopole antennas are connected 

up to the input and output ports of the RF section via their respective coaxial cables, 

with the propagation path inserted. 

With the calibration cables and the attenuators connected to their respective ports, the 

system was ready for calibration measurements. Initially the source was set to provide a 

mean receive signal power of -63 dBm as shown on the vector signal analyser (VSA), 

because this level is yet to be affected by noise and interference as can be seen in Figure 
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5.6. After setting up the source level and other measurement settings, the start button on 

the sound blaster was pressed and the measurement was taken for a period of 1.5 to 2 

seconds for the specific source level. 

After the first measurement, the next measurement was taken for the same period of 

time, but for a different receive level being -64 dBm. The next measurement was taken 

when the receive level was set to -65 dBm. Following this level, the next level was set 

to -67 dBm and the measurement taken. This same procedure was followed by 

incrementing the source level by 1 or 2 dBm, for measurements down to -92 dBm. As 

shown in Figure 5.6, at -88 dBm the calibration data is deeply affected by noise and 

interference. Figure 5.6 gives us a window of opportunity because by setting the source 

on the VSA around the -65 to -70 dBm mark, we can ensure that the received fading 

data is not greatly affected by noise. Therefore, most of our fading measurements had a 

source setting of -67 dBm. 

Figure 5.6 was produced by writing a few lines of code in a high-performance numeric 

computation and visualisation software package called Matlab, version 4.2c.1 created by 

The Mathworks Inc. Section 6.2, shows and explains the procedure which was followed 

and the software which was written to produce Figure 5.6 and also the fading patterns, 

which are shown in section 6.3 for the different antenna positions. The procedure used 

to obtain the system calibration data and its associated software code written to produce 

Figure 5.6 in section 6.2, is the same procedure which is used to produce the fading 

patterns as shown in section 6.3. 
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Figure 5.6 System calibration data for fading measurements 

5.6 Measurement Procedure 

The measurements were conducted over a week to collect all the data samples for the 25 

fading measurements. At first, different antenna positions were considered, but were 

then discarded because these antenna positions did not represent the entire laboratory 

space. Finally, after some deliberation with my colleague the measurements were 

conducted for the antenna positions as shown in Figure 5.1 (see section 5.2). 

After deciding on the location of the antennas within the laboratory, the measurements 

were ready to be taken. On arrival at the laboratory on any specific day, the equipment 

was setup (as shown in Figure 5.5). Next, the system was calibrated. Finally, the 

antennas were connected to the measurement system and the measurements were ready 

to be commenced. 
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The antenna positions for obtaining the fading data were conducted as follows. Firstly, 

the measurement for a specific position for the transmit and receive antenna was 

conducted (eg. Tx = B, Rx = A). For the next measurement, the receiver position 

remained the same (eg. A), while the transmitter was moved to a new position (eg. C). 

Following this measurement, the same pattern was conducted, whereby the receiver 

remained in the same position (eg. A), but the transmitter was moved to a new position 

(eg. D). This same pattern was followed until all the positions were covered by the 

transmit antenna, these being positions B, C, D, E, F and G. After this, the receiver was 

moved to a new position (eg. B) and the transmitter was positioned at the other 

positions, A, C, D, E, F and G, and the measurements were performed for these new 

locations. This procedure was followed until all the positions were represented by the 

receiver (from A - G) and its subsequent transmitter positions. The distance between 

the transmit and receive antenna positions were about 2 to 5 meters, depending on 

where the transmit and receive antennas were positioned. An extra position H was 

incorporated as one of the measuring positions, as there was activity present around this 

positions as it was near a computer terminal. 

The basic procedure for attainment of the fading data was as follows:-

1. The system was setup and calibrated. 

2. The transmit and receive antennas were placed in their respective positions (as 

mentioned above). 

3. After everything was ready, the start button on the sound blaster was pressed. 

4. A controlled environment was initiated (where temporal variations are known, 

people ranging from 1 to X persons are moving around the receive antenna in close 

proximity). 

5. The measurement was taken for a period of about 20 seconds (shown on the sound 

blaster). 

6. At the 20 second mark, the measurement was stopped and the sampled data was 

stored on the hard disk for post analysis. 

7. Steps 2 - 6 are repeated until all the antenna positions have been covered for that 

particular day. 

8. Steps 1 - 6 are commenced, if the measurements are conducted on a different day. 
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It should be noted, that step 1 only needed to be commenced if the measurements were 

being commenced on a different day. All the measurements were not conducted in a 

single day, due to time constraints, demands placed on the equipment by other people 

and the lengthy nature of the measurement procedure. 

Each recording described above corresponds to 20 seconds of channel temporal 

variations. During each 20 seconds, care was taken to have a continuos motion of the 

same or similar nature (ie. walking fast, body movements and occasional jumping). As 

mentioned, the sound blaster was used to sample and store data in the computer. This 

data will be statistically analyse to see the significance of the fades for the particular 

antenna positions. 

Once the measurement was taken we could view the sound blaster signature or by 

clicking/enlarging a particular spot on the waveform signature we can produce a 

corresponding wave pattern on the graph to get a visual of the wave (sinusoid) pattern. 

Using the sound blaster is a very useful way to show the characteristics of the 

measurements. By viewing either the wave pattern from the graph or the wave signature, 

we can see how movement of people causes fading to occur in a channel. The greater 

the sine wave amplitude the more movements occurred. 

Next, statistical analysis of the data samples was required. The results of these 

statistical analysis are shown in sections 6 and 7. The analysis considered includes the 

level crossing rate and the average fade duration for each of the fading data samples and 

fade depth. The measurement environment, system and procedure have been described, 

it is now time to examine the results and develop statistical models for the fading data 

samples. This will be carried out in chapter 6. 

76 



Chapter 6 

RESULTS AND ANALYSIS 

6.1 Introduction 

The 20 second recordings of the narrowband temporal fading data is analysed 

extensively and the results are presented in the following sub-sections. The results will 

be divided in their specific sections so that understanding can be facilitated. 

All the results were produced in Matlab 4.2c. l, as it was the most efficient and reliable 

software available at the time to produce the results and their statistical analysis. The 

procedure and software used to produce the fading patterns and the cumulative 

distribution functions will be presented in the following sub-section (section 6.2). The 

procedure and software used to produce the measurement system calibration data 

(Figure 5.6) for the fading measurements, as mentioned in section 5.5, will also be 

shown. 

6.2 Procedure and Software Code 

The code which was written in Matlab, was used to produce the fading patterns as 

shown in section 6.3 and also for the system calibration data (figure 5.6). After the 

measurements were concluded, the post analysis was started. To produce the fading 

patterns, the 100 Hz amplitude modulated carrier was sampled and saved by the sound 

blaster as its .wav file format. Next, a procedure which is similar to demodulating an 

AM signal using a rectifier detector was implemented. The rectifier detection is a 

I 

noncoherent method of AM demodulation. After this procedure was finished, the data · i 

is imported into Matlab, where code is written to produce the fading graphs. I will 

discuss how the fading patterns were produced in a step by step format, starting with the 

procedure and, than I will show and explain the software code used to produce the 

fading patterns. 

The first step of this procedure consisted of finding a program (software) which would 

convert the fading information which is stored in the .wav file format and convert it into 
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a more useful form of information, such as a data file. A program called Sox was found 

on the internet to serve the purpose of converting the .wav file format into a useful data 

file. This Sox program converts the sound blasters .wav file format (eg. crc.wav) into a 

data file format (eg. atri.dat). When the Sox program is used on the .wav file format, the 

resultant is a table of data. This data table consists of two columns, one time column (in 

seconds) and one voltage column (in volts). The time column represents the 

measurement period of about 20 seconds and the voltage column represents the 

information of the fading data samples. 

Each fading data file represented about 8 megabytes of data, when conversion was done 

from a .wav file format to a .dat file format by the program. The command which was 

used to convert the .wav file format to the .dat file format using the Sox program at the 

MS-DOS prompt, is as follows (this is an example of the command used):-

where, 

C:\> sox -t.wav test.wav -t.dat record.dat 

Sox = the Sox.exe command which is used to convert the formats. 

-t.wav = is the input file switch in the .wav file format from the sound blaster. 

test.wav = is the input file name, which is named prior to the commencement of 

the measurements. 

-t.dat = is the output file switch in the .dat file format, which is converted to the 

data file. 

record.dat = is the name of the output file, which is the file with the data of 

time vs voltage. 

The result of the Sox command is to produce a table of time versus voltage for various 

ranges of the data. The data basically shows, that at a certain time period there is an 

equivalent voltage level which is shown and this voltage level directly corresponds to 

the amplitude of the sinusoid wave for that particular time. This table of data is needed, 

so that software can be written to produce the fading graphs. From this fading graphs, 

statistical analysis can be conducted. Before, I go any further, I will mention that due to 

the large amounts of data which are produced when the above conversion is carried out, 

it is impossible to present these data files in this report as one data file alone takes up 
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about 8 megabytes of hard disk space. It is regretted that the files take up so much 

space, but it is worth it because if we had sampled the 100 Hz frequency at a lower 

sampling rate, then we might not have produced the entire fading envelope with all its 

peaks showing. 

The next step which was implemented in this procedure was to suppress the positive 

half of the amplitude modulated 100 Hz carrier frequency. A rectifier detector works in 

the similar manner. The reason that the positive half is suppressed and not the negative 

half is because the negative and positive halves of the sinusoid are mirror images of 

each other. The negative half was chosen because the program used to suppress the 

sinusoid works easier with negative values. The program which was used to collect all 

the negative halves of the sinusoid was Turbo Grep version 3 .0, produced by Borland 

International (1991 ). At the time of retrieving the information, this program proved to 

be the best solution to the problem at hand. The command used to retrieve the 

information sought after consisted of applying the following command at the MS-DOS 

prompt. An example is illustrated, 

where 

C:\> grep " " record.dat > record.m 

grep = the program used to retrieve the necessary information 

record.dat = is the file, which contains the data of time vs voltage 

record.m = is the output file which contains only the negative voltage values 

which has been saved with a different prefix ( .m ) as this is needed 

by Matlab in this format. 

Once this procedure was completed, it was time to write code in Matlab to produce the 

fading information graphs. The code written to produce the fading patterns was as 

follows:-

load record.m; 

recordT = record(:, 1 ); 

recordL = record(:,2); 
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[b,a} = butter(S,40/5512.5); (line 4) 

fade= filter(b,a,recordL); (line 5) 

m = mean(fade); (line 6) 

Im= 72.5 * m - 63; (line 7) 

y = 72.5 * fade - 63; (line 8) 

n = -1 * (Im - y); (line 9) 

plot(recordT,n) (line 10) 

I will explain the meaning of each line number, as it used to produce the fading patterns. 

The rectified data values are loaded into Matlab using the load command, which is 

represented by line 1. Line 2, is to define an array called recordT (which is an example 

in this case) and this array is equated to the time column of the data file which is called 

record. Line 3, is to define another array called recordL, and this array is equated to the 

voltage (level) column of the data file. 

Line 4, is where a 5th order Butterworth filter with a 3 dB cut-off frequency at 40 Hz 

divided by half the sampling rate (5512.5 Hz) is created or used on the sampled data to 

filter out the modulated 100 Hz carrier frequency. This is done because we want to 

regain the original fading envelope produced when the measurement was carried out. 

This Butterworth filter with its inputs is then equated to two vectors b and a ( examples 

in this case). A 5th order Butterworth filter was decided on as it has a sharp cut-off 

frequency and we want to eliminate the 100 Hz to regain the original fading envelope. 

Line 5, is where we apply the Matlab filter function with the inputs of the newly created 

vectors [b,a] of the Butterworth filter and the voltage column array recordL, to create a 

new array variable called/ade. The filter function uses a digital filter which filters the 

data in recordL (the voltage data file) with the filter described by vectors a and b to 

create the filtered data which is fade. 

Line 6, is where we take the mean of the newly created and filtered array fade. This 

mean represents a one number linear mean of the entire array. Since, Line 6 represents a 

linear mean, we need to convert this linear mean ( in volts) to a logarithmic mean (dBm) 

to view the fading envelope in more detail. Line 7, creates the logarithm of the mean m 
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and the equation which represents Line 7 was calculated from our calibration curve, 

Figure 5.6. The received level of -63 dBm was chosen as the starting level because we 

wanted to have a 30 dB margin, so that if any deep fades occurred within the channel 

during propagation, they could have been clearly distinguished as a deep fade without 

being affected by noise and interference. 

Line 8, creates a new variable y using our calibration data, to convert the fade variable to 

a logarithmic function. The variable y represents a non-normalised logarithmic value. 

Line 9, creates a normalised value n, whereby the log of the mean lm is subtracted from 

y and the product is multiplied by -1. The product is multiplied by -1 to provide the 

correct sign sense when the fading envelope is produced. If the product is not 

multiplied by -1, the fading envelope will be inverted and it will show the wrong fading. 

Line 10, plots the two variables and the fading envelope or graph is produced. Section 

6.3, shows the various fading envelopes for the measurements conducted. 

The calibration data curve was produced using the same procedure as explained above, 

but the code written to produce the calibration curve was a little bit different than the 

code written to produced the fading envelopes. A few lines were excluded form the 

code. The curve was produced using the following lines of code:-

load calibration.m; 

recordL = record(:,2); 

[b,a] = butter(5,40/5512.5); 

fade= filter(b,a,recordL); 

y = 72.5 * fade - 63; 

plot (y) 

The lines for the code above are exactly the same as the lines of code used to produced 

the fading envelope. The explanation for each line of the code used to produce the 

calibration curve has been discussed above, as the lines of code are exactly the same. 

The procedure and software code used to produce the fading patterns has been discussed 

in length and it is time to present the fading envelopes and their corresponding statistics. 

These fading envelopes are shown in the following section. 
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6.3 Results of The Statistical Analysis: Fading 
Envelopes and Statistical Data 

The 20 seconds recordings of the narrowband temporal fading data were analysed 

thoroughly and their results presented in this section. As mentioned in section 5.6, the 

measurements were conducted in a systematic order for all the antenna positions as 

described in section 5.6, but only ten results for different antenna positions are presented 

in this section. This is due to the relatively tight time constraints which had to be 

worked with and also the large amounts of data which had to be analysed for each 

particular measurement. But, the results which are presented accurately represent the 

entire laboratory for the transmit and receive antenna positions used in the 

measurements. 

The outlook of the presentation will follow a format, whereby the fading envelopes will 

be presented for the various transmit and receive antenna positions and this will be 

followed by the statistical properties of that particular fading envelope. Following the 

presentation of the figures and tables, a discussion for that particular figure and table 

will be conducted. This format, thus ensures a clear understanding of the statistical 

analysis of the particular fading envelope and their relevance to the project. 

Figures 6.1 to 6.10, displays the envelope fading waveforms for the different transmit 

and receive positions at the ATRI laboratory. Tables 6.1 to 6.10, present the statistical 

properties for each of their corresponding figures. The statistical parameters presented 

include the number of crossings, the level crossing rates (LCR) and the average duration 

of fades (ADF) for each particular level or threshold ( dB). These parameters show the 

characteristics of fading for each particular figure. See sections 4.7.1 and 4.7.2 to 

refresh your memory on the level crossing rates and the average duration of fades, and 

the formulas which are used to represent these statistics. The values for the LCR and 

ADF were calculated using equations ( 4.18) and ( 4.20), respectively. 

By viewing the fading envelopes one by one, now, we can see the typical fading patterns 

which are produced, when a channel is affected by temporal variations. There are no 
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surprises at this point. Some deep fades are seen on some fading envelopes, while on 

others the fades are relatively straight forward. 

6.3.1 Transmitter Position E and Receiver position A 
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Figure 6.1 Temporal fading envelope for Tx position E and Rx position A 

Table 6.1: Statistical parameters of Figure 6.1 

6 13 0.7508 1.1839 

3 37 1.8050 0.3786 

-3 35 1.7075 0.2525 

-6 20 0.9757 0.1196 

-9 13 0.0463 0.0793 

-12 8 0.3903 0.0489 
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Figure 6.1, shows the fading envelope for the transmit antenna position E and the 

receive antenna position A, when the measurement was conducted. See Figure 5.1 for 

the antenna placements in the laboratory. As we can see from the fading envelope, there 

are various constructive and destructive interferences which occur within the 20 second 

measurement period, which are caused by temporal variations due to motion of people 

or objects. See section 4.3 for explanations of interferences in relation to signal fading. 

In the measurements conducted, majority of the motion was initiated or conducted by 

myself and my colleague. Motion which was contributed by other people working 

within the room at any particular time was minimal. Motion which was conducted 

included walking briskly, waving of arms and occasionally jumping around the 

antennas. These movements are shown in the fading envelopes as constructive or 

destructive interferences. The line of sight path was blocked a few times during the 20 

second measurement period. 

Figure 6.1, shows a typical fading envelope, with rapid movements occurring within the 

first 12 seconds of recording. After 12 seconds less rapid movement can be visualised 

from the fading envelope. A dynamic fading range for this measurement is about 25 dB. 

Deep fades of around 14 dB below the mean value can be seen from Figure 6.1. A big 

enhancement of 11 dB can be seen at the 10.5 second mark, this signal enhance could 

possibly be due to intermittence which may have been caused by either my colleague or 

I standing in the way (blocking) of a major out of phase propagation path within the 

propagation channel. 

Examining the statistical parameters of Table 6.1, we can see that there are more 

crossings around the -3 dB and 3 dB levels of Figure 6.1. This is due to the fact that, 

when motion was being conducted, during the measurement period, we were not 

affecting any important propagation paths for the 20 seconds of data recording. The 

important propagation paths include the LOS path and the major reflected paths within a 

channel. This thus, shows a greater LCR for the -3 dB and 3 dB levels, when compared 

to the other levels. The LCR can be directly related to activity (motion), with lots of 

activity being conducted the LCR increases at all levels. The O dB level has the most 

number of crossings for Figure 6.1 with 38. 
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The LCR of Table 6.1 represent statistical values for the 20 seconds of measurement. 

These values are statistically valid if we have a long enough sampling period. Our 

measurements were conducted for a 20 second period and this measuring period is valid, 

as we can clearly present fading envelopes and their statistical analysis for the 

measuring period with 40 to 80 fades as mentioned by [32]. 

For example, for the -3 dB level we got a LCR of 1.7075 crossings per second, this 

means that on average there are 1.7075 crossings per second which cross the -3 dB level 

with a positive slope within the 20 second measurement period. Although, we cannot 

get 1.7075 of a crossing, these LCR represent statistical values for a valid measuring 

period of 20 seconds. We may get, say, 2 crossings or 3 crossings in any particular 

second within the 20 seconds, but this is not what the LCR represents. The LCR just 

represents an average which is statistically valid for a particular level, of the total 

measuring period of 20 seconds. 

The average duration of fades (ADF) also shows a direct relationship to the activity 

being conducted within the propagation channel during the measurement period. The 

greater the activity the greater the value of the ADF, in general. The ADF is related to 

the rate of the temporal variations, how fast the temporal variations are occurring within 

the propagation channel. It is basically in relation with the velocity of the physical 

changes which are occurring in the propagation channel (i.e. people moving, trolleys 

moving, people running, fans switched on etc.). 

From Table 6.1, we can see that the 6 dB level has the highest ADF value 1.1839 

seconds, when compared with the other levels. It must be stipulated that the values for 

the ADF are just averages for a particular level, of the 20 second measuring period. For 

the -12 dB level the ADF is about 0.05 seconds, as the fading envelope crosses this level 

8 times. 

As can be seen from Figure 6.1, there are medium to wide duration's between the 

negative and positive slopes of the 6 dB level. Thus, by adding these individual 

duration's and dividing them by the total number of crossings we would get a larger 

value for the ADF at that particular level of 6 dB. For the -12 dB level, there are only a 
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handful of fades which cross the this level and with relatively smaller duration's 

between individual fades, when computed we would get a smaller ADF for this 

particular level. 

6.3.2 Transmitter position D and Receiver position A 
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Figure 6.2 Temporal fading envelope for Tx position D and Rx position A 

Table 6.2: Statistical parameters of Figure 6.2 

3 9 0.4391 0.7489 

-3 16 0.7806 0.1428 

-6 3 0.1463 0.1556 

-9 1 0.0488 0.2750 
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From Figure 6.2, we can straight away see a relatively medium fade around the 5 second 

mark. This could have been due to many waves which may have been reflected, edge 

scattered of objects or our body parts, or diffracted, and thus combined at the receive 

antenna to produce the destructive interference seen in the figure. The other fades are 

relatively small or shallow. 

The dynamic range of the fading envelope is around 15 dB, thus showing that in this 

measurement there weren't any deep fades, only one relatively medium fade around the 

5 second mark. 

The LCR once again shows a greater number of crossings at the - 3 dB and 3 dB levels 

when compared to the other levels. The O dB level has got the most number of 

crossings with 26. For the O dB level the LCR was calculated to be 1.27 crossings per 

second. The number of crossings, the LCR and the ADF for each level is presented in 

Table 6.2. 
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6.3.3 Transmitter position C and Receiver position A 
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Figure 6.3 Temporal fading envelope for Tx position C and Rx position A 

Table 6.3: Statistical parameters of Figure 6.3 

6 13 0.6343 1.0388 

3 45 2.1955 0.3068 

-3 43 2.0979 0.0940 

-6 21 1.0246 0.0772 

-9 10 0.4879 0.0683 

-12 2 0.0976 0.1212 
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Figure 6.3 shows use the fading envelope of the particular antenna positions. As we can 

see, there was lots of activity within the 5 to 15 second mark, as me and my colleague 

would have really started getting into our motions ( especially me) with brisk walking, 

arm movements and jumping occasionally. This motion is clearly represented on the 

fading envelope as there are more rapid fades within this particular 10 second period 

than any other period. Couple of deep fades happened around the 15 second mark and 

also a few enhancements around the 6 second mark. 

By looking at the envelope, a dynamic fading range of about 24 dB can be inferred for 

Figure 6.3. Figure 6.3 represents a good fading envelope with lots of rapid fades and 

occasional deep fades. The statistical parameters of Figure 6.3 are presented in Table 

6.3. There were 43 crossings and 45 crossings for the -3 dB and 3 dB levels 

respectively. Most of this crossings would have occurred within the 5 and 15 second 

marks. There were 64 crossings at the O dB level, with a LCR of 3.1225 crossings per 

second for the O dB level. 

The ADF for the levels are basically consistent with the number of times a particular 

fade crosses a level. For example, the duration of each fade in the -3 dB level is 

relatively small, and there are a lot of crossings through the -3 dB level, thus we have a 

small value for the ADF for the entire 20 second period in relation to the -3 dB level. 

But at the -12 dB level, because there are only two crossings at this level, we get a 

slightly bigger ADF when compared to the -3 dB level. 

As can be seen from the number of crossings for each individual level, we can see that 

the number of crossings get less and less as the we move further away from the O dB 

level. This is because medium to deep fades do not occur as often as the shallower 

fades for any particular fading envelope analysed. Deep fades only occur when a 

significant propagation path is affected by motion of people or objects. Deep fades are 

unwanted in any propagation channel as they produce very high bit error rates (BER). 
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6.3.4 Transmitter position B and Receiver position A 
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Figure 6.4 Temporal fading envelope for Tx position B and Rx position A 

Table 6.4: Statistical parameters of Figure 6.4 

3 50 2.2812 0.2909 

-3 38 1.8097 0.0775 

-6 18 0.8572 0.0883 

-9 7 0.3334 0.1434 

-12 6 0.2857 0.0924 

- 15 4 0.1905 0.1477 

- 18 4 0.1905 0.1120 

- 21 3 0.1429 0.1157 

- 24 3 0.1429 0.0813 

- 27 2 0.0953 0.0446 
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On first inspection of Figure 6.4, we can see a number of medium to deep fades. The 

two deepest fades occurring around the 5 second and 10 second mark. As mentioned in 

section 6.3.3, deep fades are unwanted in any wireless system. They cause the fades to 

enter the noise region and any information which is within these information carrying 

signals will be affected by these deep fades in the noise region. These deep fades will 

produce very high BER (produce thousands of errors). These fades which start to get 

close or are within the noise region, will degrade the signal to noise ratio (SIN). 

Basically, these deep fades causes a very poor SIN to be encountered. Fades which are 

20 dB below the mean value are of concern due to the fades approaching the noise 

region. At -27 dB, the fades are well into the noise region and can be very costly in 

relation to information lost. 

As can be expected the dynamic fading range for this envelope is around 3 5 dB, thus 

telling us that deep fades have occurred. Deep fades can be cause by absorption of the 

waves by our bodies, intermittence, waves being edge scattered of our bodies and 

reflections. The two almost similar deep fades which occurred around the 5 and 10 

second marks, can be contributed to the intermittence effect caused by blocking of 

important paths by standing within the propagation paths. They were produced by our 

bodies being in a similar position when the waves were encountered. 

From Table 6.4, we can see that more crossings occurred around the -3 dB and 3 dB 

levels, with 26 crossings and 50 crossings respectively. The greatest number of 

crossings occurred at the O dB level, with 66 crossings. The LCR for the O dB level is 

3.1432 crossings per second. From visual inspection of Figure 6.1, 3 crossings per 

second is a statistically valid value for the 20 second measurement period, at O dB. The 

ADF for each level is also shown in Table 6.4, and these values show no surprises on 

inspection. 
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6.3.5 Transmitter position F and Receiver position A 
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Figure 6.5 Temporal fading envelope for Tx position F and Rx position A 

Table 6.5: Statistical parameters of Figure 6.5 

3 26 1.2382 0.6487 

-3 35 1.6668 0.0894 

-6 10 0.4762 0.0493 

-9 1 0.0476 0.0874 

-12 1 0.0476 0.0390 
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Figure 6.5, represents constant rapid motion for the 20 second measurement period. A 

noticeable, medium fade down to the level of 14 dB can be seen around the 14 second 

mark of the measurement period. The other fades are fairly shallow with not much 

variations in their fading. 

The dynamic range for the fading envelope of Figure 6.5 is about 19 dB, thus 

concluding that there are no deep fades present on the fading envelope. Figure 6.5, 

represents a fairly constant rapid motion fading envelope with lots of constant activity 

happening throughout the 20 seconds of measurement time. 

On viewing Table 6.5, we can see once again that more number of crossings which are 

occurring around the -3 dB and 3 dB levels, with O dB having the highest number of 

crossings. The number of crossings at the O dB level is 53, while at the -3 dB and 3 dB 

level there 35 and 10 crossings per second, respectively. There is only one crossing at 

the -9 dB and -12 dB levels, as would be expected because this levels represent the one 

medium fade which occurs around the 14 second mark of Figure 6.5. 

The LCR of the O dB level consists of 2.5241 crossings per second, on inspection of the 

fading envelope, this represents a statistically realistic value for the LCR. The LCR for 

the 3 dB level is 1.2382 crossings per second and at the -3 dB level the LCR is 1.6668 

crossings per second. 

The ADF of each level is also presented in Figure 6.5, they represent typically valid 

values for the fading envelope in consideration For the 3 dB level, the average duration 

of fades is around the 0.65 seconds, while at the -12 dB level the ADF is lower in its 

value. For a statistically valid length of measurement period the statistical parameters of 

Table 6.1, accurately represent the fading envelope. 
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6.3.6 Transmitter position H and Receiver position A 
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Figure 6.6 Temporal fading envelope for Tx position Hand Rx position A 

Table 6.6: Statistical parameters of Figure 6.6 

3 43 2.0979 0.2107 

-3 19 0.9270 0.1604 

-6 16 0.7806 0.1214 

-9 10 0.4878 0.1286 

-12 9 0.4391 0.0985 

- 15 6 0.2927 0.0850 

- 18 4 0.1952 0.0907 

- 21 4 0.1952 0.0603 

- 24 2 0.0976 0.0689 

- 27 1 0.0488 0.0312 
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Figure 6.6 shows a few medium and also deep fades which have occurred during the 20 

second measurement period. As mentioned is section 6.3.4, deep fades are unwanted in 

a communication system, but they are not preventable from occurring in a channel. 

Deep fades can only be reduced to lesser fades depths by introducing special techniques 

which utilise intelligent antenna systems and space diversity techniques, working in 

combination with each other. 

A deep fade occurred around the 5 second mark and also the 12 second mark of the 

fading envelope. Around the 7 to 11 second marks there were rapid motions occurring 

as represented by the shorter more rapid fades. Prior to this rapid fades, medium fades 

and then 2 deep fades occurred from the O to 7 second mark. More medium to deep 

fades occurred from the 11 second mark to the 16 second mark. As mentioned earlier 

they, can be produced by single affects or a combination of affects such as absorption of 

the waves by our bodies, intermittence, waves edge scattering off our bodies and 

reflections. 

The statistical parameters of Figure 6.6 are presented in Table 6.6. As we can see there 

are lots of crossings at the 3 dB level with 43 crossings and also at the O dB level with 

44 crossings. This would be predicted as there are more constant rapid motions crossing 

these two levels, then any other levels. As mentioned in section 5.6, the transmit 

antenna was positioned at position H, which was close to a computer terminal which 

always had one individual working at the terminal, thus we can suffice that some of 

these medium to deep fades could have been caused by this person working at his 

terminal, in combination with my colleague and I introducing motion in a controlled 

manner. 

The dynamic fading range for this envelope fading is 31 dB, which tells us that fairly 

deep fades occurred in the system during the measurement period. For any wireless 

system with typical worst case receive levels of -88 dB or more will be affected by 

medium and also deep fades as the system will be approaching the noise region and 

these fades will degrade the SIN ratio severely, thus producing very high BER. For a 

system designer, fades of -20 dB or less below the mean receive value should not be 
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Chapter 6 Results and Analysis 

acceptable values and must be improved for the system to function properly when errors 

are introduced in the systems channel. 

6.3. 7 Transmitter position E and Receiver position C 
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Figure 6.7 Temporal fading envelope for Tx position E and Rx position C 

Table 6.7: Statistical parameters of Figure 6.7 

3 8 0.3810 0.8959 

-3 23 1.0953 0.1013 

-6 9 0.4286 0.0953 

-9 7 0.3333 0.0795 

-12 6 0.2857 0.0606 

-15 3 0.1429 0.0383 

-18 1 0.0476 0.0027 
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Chapter 6 Results and Analysis 

Figure 6. 7, represents a different kind of fading envelope. At the start there are constant 

slower motions in progress, after the 9 second mark of the measurement period more 

rapid motion was initiated, with a medium fade occurring around the 8 second mark, 

while a whole string of medium to deep fades occurred from the 13 to 16 second marks. 

Towards the end of the period we see very small fades produced, as this would have 

represented the end of the measurement, an we would have toned down our motion. 

From the 10 to 16 second mark, there would have been brisk motion which would have 

affected important propagation paths, thus producing a whole string of medium to deep 

fades. 

The dynamic range of the fading envelope is 21 dB, which shows that there were some 

medium to deep fades which occurred within the system during the measurement period. 

The statistical properties of Figure 6.7, are presented in Table 6.7. Once again, the O dB 

level has the most number of crossings with 58. The LCR for -3 dB is 23 crossings, 

while the 3 dB level only has 8 crossings. This is because there are more fades 

occurring below the mean value, and only a few enhancements above the mean value for 

this particular measurement. There are 2.76 crossings per second at the O dB level and 

about 1.1 crossings per second at the -3 dB level. 

At the -18 dB level the deep fade crosses this level once, with a relatively small LCR 

and ADF. The ADF for the 3 dB level is about 0.9 seconds, while the -3 dB level has an 

ADF of 0.1 seconds. This is due to the lesser number of crossings crossed for the 3 dB 

level and with relatively small duration's between the crossings, we have a ADF close 

to 1 second. While at the -3 dB level, we have smaller duration of fades for each 

individual fade but a larger number of crossings at this level, thus we have a smaller 

ADF value, which is close to 0.1 seconds. 
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Chapter 6 Results and Analysis 

6.3.8 Transmitter position G and Receiver position C 
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Figure 6.8 Temporal fading envelope for Tx position G and Rx position C 

Table 6.8: Statistical parameters of Figure 6.8 

6 6 0.2857 3.229 

3 42 2.0002 0.4148 

-3 36 1.7144 0.1336 

-6 29 1.3811 0.0890 

-9 22 1.0477 0.0630 

-12 9 0.4286 0.4068 

- 15 6 0.2857 0.0314 

- 18 2 0.0952 0.0803 

- 21 2 0.0952 0.0635 

- 24 1 0.0476 0.0285 
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Figure 6.8 represents the fading envelope for the antenna positions mentioned above. 

The fading envelope represents medium and a couple of deep fades around the 3 to 4 

second mark of the measurement period. There are small fades which occurred for the 

first 2 seconds followed by the two deep fades, an then the envelope tapered off to 

medium fades and then onto a few enhancements around the 10 second mark. 

Following this the envelope exhibited smaller fades, then progresses onto medium fades 

continuing on to the finish. This shows how our movements varied within the 20 

seconds of measurement. Rapid motion occurred, constant motion occurred at times 

and also intermittent affects occurred throughout the measurement period. 

The dynamic range of fades for this envelope is similar to that of Figure 6.6, with a 

range of 31 dB. The deepest fade depth occurred at -25 dB below the mean value. This 

dynamic fading range once again tells us that, deep fading occurred within the system 

during measurement time. The dynamic fading range represents a good indication of the 

amount of fading which is produced within a system when motion is present. 

Table 6.8, represents the statistical parameters of Figure 6.8. The number of crossings 

of the O dB level is 52, while the -3 dB and 3 dB levels show 36 and 42 crossings, 

respectively. The LCR for the O dB level was 2.5 crossing per second, while the -3 dB 

and 3 dB levels had LCR of about 1. 7 and 2.0 crossings per second, respectively. 

As shown in Table 6.8, the ADF for the 6 dB level was fairly large at 3.23 seconds. As 

can be seen from Figure 6.8, the duration's of each individual fade at this level is fairly 

large, some even having duration's of up to 10 seconds long. Due to this large 

duration's of individual fades and the small number of crossings at this level, we are 

presented with a large ADF for this particular level. As we progress down the levels, at 

-24 dB the deep fade only crosses this level once, with a small duration of fade, thus 

producing a relatively small ADF. 
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6.3.9 Transmitter position G and Receiver position D 
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Figure 6.9 Temporal fading envelope for Tx position G and Rx position D 

Table 6.9: Statistical parameters of Figure 6. 9 

-3 13 0_6191 0.1626 

-6 4 0.1905 0.1665 

-9 3 0.1429 0.1241 

-12 2 0.0953 0.1308 

- 15 2 0.0953 0.0755 

- 18 1 0.04763 0.0959 

- 21 1 0.04763 0.0744 

- 24 1 0.04763 0.0569 
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Chapter 6 Results and Analysis 

On first sight of Figure 6.9, one thing is clear, there is a deep fade at the initial stages of 

the measurement period., around the 1.5 second mark. Next to this deep fade there is a 

medium fade which also occurred around the 1 to 2 second mark. The rest of the 

envelope fades represent constant motion, showing very little deviation form the mean 

value. 

This deep fade which crossed the -25 dB level could have been myself blocking the 

LOS path at that instant of time and then moving away and partially blocking this 

important path again. This is possible, because the way the antennas are positioned they 

are directly facing each other with a distance of about 1 to 1.5 meters. Most of the 

motion is around the antennas which are in close proximity to each other, blocking LOS 

paths did happen once or twice during the measurement period. This kind of motion is 

good in the context of measurements being conducted, as they show how a WLAN or 

WPBX system will operate, when the system is introduced to severe motion and/or 

intermittence effects produced by people in the way of propagation paths carrying 

important information to the receive terminal. 

Table 6.9 represents the statistical properties of Figure 6.9. The number of crossings at 

the O dB level is 4 7. There are no crossings at the 3 dB level and there are 13 crossings 

at the -3 dB level. This shows that most of the fades deviated 1 or 2 dB on either side of 

the mean value. The LCR for the O dB level is 2.2 crossings per second, which is fairly 

accurate. The ADF of the fades at each individual level do not pose any baffling values 

to surprise the reader. 
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Transmitter position G and Receiver position E 
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Figure 6.10 Temporal fading envelope for Tx position G and Rx position E 

Table 6.10: Statistical parameters of Figure 6.10 

3 4 0.1951 3.1832 

-3 23 1.1221 0.1259 

-6 11 0.5366 0.0790 

-9 5 0.2439 0.0709 

-12 2 0.0976 0.0404 
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Figure 6.10, shows the constant to rapid motion occurring during the measurement 

period. Medium fades occurred around the 10 to 20 second marks of the measurement 

period. This could have been my colleague or myself walking more briskly or waving 

our arms more intensively during this period , with occasional blocking of propagation 

paths which are important. 

The dynamic range for this envelope fade is around 18 dB, thus telling us that medium 

fades occurred during the measuring time. Table 6.10 shows the statistical parameters 

of Figure 6.10. The number of crossings at the O dB level is 36 and the crossings at the -

3 dB level is 23. There weren't many crossings at the 3 dB levels as majority of the 

fades occurred just above the mean value and lots of fades occurred below the mean 

value. 

The ADF for the 3 dB level is thus quite large, due to the small number of crossings and 

the large number of duration's between fades. There is a 11 second duration in the last 

enhancement at the 3 dB level, this would have contributed greatly to the large value of 

the total individual fade duration's for the 3 dB level. 

This, thus concludes the discussion of the fading envelopes and their statistical 

parameters. To see a better pictorial representation of the number of crossings and the 

LCR for each of the figures in more detail, I have presented them graphically using 

Microsoft Excel 5.0 in section 7, as they contribute to the important conclusions which 

are drawn form the results and statistical analysis of this section. 

Before, proceeding to section 7, I mentioned in section 4.6 that the cumulative 

distribution functions for each of the fading envelopes presented in this section will be 

compared to the known theoretical distributions as mentioned in section 4.6. 

Unfortunately, due to time consuming efforts which was needed to analysis these fading 

statistics and the time constraints involved in getting this report ready on time, I regret 

to say that the comparison of the data with known theoretical distributions was not 

possible. This is very unfortunate, as we would have seen how closely our fading 

envelopes relate to known theoretical distributions and which distribution matches our 

data most accurately. 
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Chapter 7 

SIGNIFICANCE OF RESULTS 

7.1 Introduction 

The results and analysis of the fading envelopes and their statistical parameters have 

been discussed in section 6. The importance of these parameters when critically 

analysing fading envelopes are very important, as they give a good indication of how a 

system will perform under multipath fading conditions with temporal variations 

introduced in the channel. These results can show important system properties which 

need to be considered for fading conditions when a system is to be designed. The 

important properties of the fading envelopes will be discussed in this section. Pictorial 

representations of the number of crossings and the LCR, and the mean statistical 

parameters of the combined fading envelopes for the various levels will be shown 

graphically to facilitate understanding. 

Following this a discussion of various aspects of the fading envelopes and their 

parameters in relation to BER and SIN ratio for wireless systems will be conducted. 

This is to show how these parameters of the fading envelopes can be used in 

consideration when designing WLAN' s and other wireless systems for the ISM band of 

2.4 GHz. 

7.2 Graphical Representation of the Number of 

Crossings 

The graphical representation of the number of crossings of each of the fading envelopes 

is shown in this section, it basically, lets the reader interpret the values which are 

presented in Tables 6.1 to 6.10 pictorially. This shows the importance of the number of 

crossings at each level and its relationships with BER. The number of crossings for 

each threshold as represented in Tables 6.1 to 6.10 (see section 6.3), are shown in 

Figures 7.1 to 7.4. I grouped them together, so that there would less graphs to be 

presented and thus ease understanding. 
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As can be seen from Figure 7 .1 to 7.4, the values generally start off at lower crossings 

and then rise sharply to the O dB level and then taper off towards the positive dB values. 

This is the general shape for all the number of crossings of Tables 6.1 to 6.10. The 

shape kind of follows a Gaussian distribution or a bell curve shape. This is to be 

expected depending on whether or not an envelope has deep fades or medium fades, 

there will be less crossings at the deep fades and slightly more at the medium fades and 

majority around the smaller or shallower fades, which are around the -3 dB and 3 dB 

levels. All the fading envelopes of section 6.3, have the greatest number of crossings at 

the O dB level, as can be seen when inspecting Figures 7 .1 to 7.4. This should be 

expected, because the fading envelopes were normalised to a mean value of O dBm. 

Most of the fades or enhancements will occur above or below the mean value of O dBm. 

One important conclusion which can be drawn from Figures 7.1 to 7.4, in respect to the 

number of crossings, is that if a wireless system (say a WLAN), was operating at the 

typical worst case receive level of -88 dBm and this typical worst case receive level was 

set to equal our O dB threshold, we would have a maximum fade margin of typically 7 

dB before our receive system enters the noise region. At this level of -95 dB, our SIN 

ratio would be almost zero and the system would be running thousands of errors (very 

high BER) as the system is completely degraded. If there was information within these 

deep fades they would be unrecognisable by a detector at the receiver terminal and the 

information will be decoded as noise as it closely resembles the noise of the typical front 

end receiver. Thus, deep fades or even medium fades can be very costly in regards to 

information being propagated across wireless channels depending on the receive levels 

being used. 

This is the case with mobile phones, whereby, they have typical receive levels of -88 

dBm and if any fades occur 7 to 8 dB below this mean value, the system will be in the 

noise region and we can sometimes experience this by the hissing noise which is 

apparent in the phone. Thus, when we move slightly to the left or right this noise 

disappears, and we get a clearer signal. We can increase this receive level, by increasing 

the power level at the transmit terminal. With a greater receive level this will ensure a 

greater fade margin before a signal enters the noise region and thus better reception. 

But, the down side of raising the power is that, the battery of the mobile phone needs to 
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operate at a higher rate, as we are using more of the batteries power and thus, decreasing 

its life expectancy before recharging is required. Raising the power level, would also be 

regarded unfavourably by the Spectrum Management Agency, as it may interfere with 

safety regulations. When designing systems, a balance must be resolved, to ensure the 

best system is designed with all aspects considered. The number of crossings are shown 

below in Figure 7 .1 to 7.4, with information from Tables 6.1 to 6.10 from section 6.3. 
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-Table6.10 

-24 -21 18 -15 -12 -9 -6 -3 0 3 6 

Threshold (dB) 

Number of crossings of Table 6.9 and Table 6.10 for the different 

threshold levels 

7.3 Graphical Representation of the Level Crossing 
Rates 

The graphical representation of the LCR for each of the fading envelopes are displayed 

in Figures 7.5 to 7.8. On viewing these figures we can conclude that the LCR have 

exactly the same shapes as the number of crossings as presented in Figures 7.1 to 7.4. 

This should be of no surprise, as the LCR is the total number of crossings for each level 

divided by the total measurement period. Therefore, they show the same shapes as their 

counterparts, the number of crossings, displayed in Figures 7.1 to 7.4. The LCR are 

presented pictorial as they show an easier picture or an overall picture of the crossings 

per second for a specific threshold of a fading envelope. The discussion of the LCR has 

been conducted in section 6.3, for each fading envelope. 

On viewing Figures 7.4 to 7.8, we can see that the O dB threshold possess the most 

crossings per second for the measurement period of 20 seconds. As mentioned in 

section 7.2, this is expected as the fades or enhancements occur above or below the 
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mean value. Thus for fades to occur and enhancement to happen they, must swing 

above of below the mean value, and thus we have more crossings per second for this 

threshold. 
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different threshold levels 

109 

1 

11111 



, 

2.5 ,, 
C 
0 
~ 2 
U) 

U) 

~ 1.5 
'iii e 
~ 
a: 
0 
.J 0.5 

Chapter 7 Significance of Results 

-+-Table 6.7 

-Table6.8 

0 --=-=:::tt:::==ll::::!...----.-----.----,----~....-=::~ 
-27 -24 -21 -18 -15 -12 -9 -6 -3 0 3 6 9 

Threshold (dB) 
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7.4 Mean Statistical Parameters for Combined Fading 
Envelopes 

This section deals with the mean of the total number of crossings of each threshold for 

the ten fading envelopes. This mean values for the number of crossings of each level is 

presented in Table 7 .1 and is represented graphically by Figure 7. 9. On inspecting Table 

7.1 or Figure 7.9, we can clearly see that for the ten measurements which were 

conducted at the stated antenna positions, an average of about 48 crossings occurred at 

the O dB level. This is expected as mentioned above in section 7 .2, the fades and 

enhancements swing above or below the mean value, thus the O dB level has the greatest 

number of crossings. 

We can also see, that on average there were 28 crossings and 26 crossings at the -3 dB 

and 3 dB thresholds respectively for the combined fading envelopes This thus, implies 

that while motion was being created in the channel, we were not affecting many 

important propagation paths by our motion around the antennas, as we were only 

moving in one half of the laboratory, basically around the antennas. 

Table 7.1 Mean number of crossings for each threshold for the combined 

fading envelopes 

6 3.20 

3 26.4 

0 48.4 

-3 28.3 

-6 14.1 

-9 7.9 

-12 4.5 

-15 2.1 

-18 1.2 

-21 1 

-24 0.7 

-27 0.3 
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Mean number of crossings at each threshold of the combined fading 

envelopes 

Medium or deeper fades occurred less frequently, as can be seen from Table 7.1 or 

Figure 7.9. This can also be expected, as deeper fades can occur when we block 

important propagation paths within the channel by our bodies in the way, it can also be 

caused by our bodies absorbing some the waves, edge scattering the waves off our 

heads, shoulder, fingers, elbows, watches and also reflections of objects and walls. As 

mentioned deep fades are unwanted in any system, but they are not preventable but they 

can be reduced through special techniques. 

Table 7.1 and Figure 7.9, show the mean number of crossings of our ten measurements. 

If new measurements were conducted at the same antenna positions, they would 

represent different number of crossings, LCR and ADF for each level, as fading is a 

phenomenon which is very hard to predict. But, with motion introduced in a controlled 

fashion, under the same environmental conditions as our measurements were conducted, 

these new measurements would closely relate to our conducted measurements within the 

laboratory, in a typical cluttered office space. 
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In designing wireless systems, engineers must conduct these kinds of measurements to 

see how a newly introduced system will react under fading conditions. The ultimate test 

would be, if a wireless system could withstand severe fading conditions. In designing 

new systems, measurements must be conducted for that particular environment to ensure 

that the environment ( office building, factories, supermarkets etc.) can function 

efficiently under fading conditions. There are many considerations which come into 

context when designing wireless systems, eliminating or reducing fading is one 

important factor which must be considered, as a system which is susceptible to deep 

fades is not a very efficient system. 

Mean values for the LCR of the combined fading envelopes are presented in Tables 7.2 

and shown graphically in Figure 7.10. As it is apparent form Table 7.2 and Figure 7.10, 

the highest LCR once again happens at the O dB threshold and gradually decreases on 

either side of the mean value. The mean number of crossings, Figure 7. 9, and the mean 

LCR, Figure 7.10, closely resemble each other. This is expected as mentioned in 

section 7 .3. The mean LCR of all the ten fading envelopes represent statistically valid 

values for the measurement period of 20 seconds. The mean of the ADF is not 

presented, as the duration of fades are already averages for a particular threshold of each 

individual fading envelope. For inspection of the ADF we must look up the values for 

each fading envelope from Tables 6.1 to 6.10. 
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Mean level crossing rates for each threshold for the combined fading 

envelopes 

6 0.1671 

3 1.1067 

0 2.3292 

-3 1.3540 

-6 0.6807 

-9 0.3220 

-12 0.2168 

-15 0.1007 

-18 0.0576 

-21 0.0481 

-24 0.0336 

-27 0.0144 

0 ._ ..... ~t=::*===t:~~ ......... --,----,--,--~-.--...,....:~ 
-30 -27 -24 -21 -18 -15 -12 -9 -6 -3 0 3 6 9 

Threshold (dB) 

Figure 7.10 Mean level crossing rates at each threshold of the combined fading 

envelopes 
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7 .5 Discussion of Fading and Bit Error Rates 

Section 7 .2, briefly mentioned the extent of typical worst case receive levels of around -

88 dBm and the relatively small fade margin which is needed before a wireless system 

enters the noise region and causes irreducible BER due to multipath fading in a 

temporally varying environment. The example of the mobile phone was mentioned as a 

typical system which can be affected by severe fading conditions. 

As mentioned in section 7.2, if the typical worst case receive level of -88 dBm, was set 

to our threshold of O dB for our fading envelopes, we would only have 7 or 8 dB of fade 

margin to play with before a system starts to enter the noise region and produce errors. 

The level of -95 dBm is the typical front end receiver noise level. As our measurements 

utilised a simplistic quarter wave monopole antenna, we needed to operate our system 

with worst case receive levels of around -65 dBm, to provide an adequate SIN ratio 

under fading conditions as shown from the measurement analysis. This was proved by 

our calibration curve, Figure 5.6 of section 5.5, as we can see from Figure 5.6, the 

system is affected by the noise region around the -90 dBm level. Therefore wireless 

systems which are operating at typical worst case receive levels of -88 dBm must be 

able to counter medium to deep fades effectively or else any information which is being 

sent over the propagation channel will not be recognisable at the receive terminal. 

One important conclusion which can be drawn from Figures 7 .1 to 7 .10, is that for our 

measurement environment, if wireless system are to be designed, and they are operating 

at receive levels of -65 dBm, the worst case receive level before the system will start 

running errors is typically around -88 dBm, therefore, we want to make certain that the 

deep fades don't go below this typical value of -88 dBm, because the system will then 

be degraded by these deep fades and will cause a significant BER probability to occur. 

Basically, we can keep in mind that, the deeper the fade the greater the probability of 

error occurring in a wireless system. 

For example, lets take the highest ADF at a particular level, say -12 dB level, of the 

fading envelopes, from Tables 6.1 to 6.10 and compare this value with the BER 

performance. The highest value at the -12 dB threshold is represented in Table 6.8 (see 
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section 6.3) as 0.4068 seconds for the 9 crossings at this level. This implies that while 

the fade condition is occurring, for that fade duration , the SIN ratio is being degraded 

by -12 dB or more, and thus the BER is also increasing. The BER is directly 

proportional to the SIN ratio degradation in a wireless channel affected by medium to 

deep fades. 

Now, if we were sending a modulated signal across the channel, which is being affected 

by multipath fading through temporal movement of people, this received signal in 

relation to ADF will cause a large number of error bursts for the system. For example, 

if we used the same value for the -12 dB level for the ADF of 0.4068 seconds at that 

antenna position, and modulate a signal using BPSK at 4 million symbols per second, 

we can count the number of symbols which would be affected by these fades. This 

calculation is shown below, 

Number of Symbols degraded = symbol rate x ADF of that threshold 

For our example, it follows that the symbols degraded per second is, 

Number of Symbols degraded = ( 4 x 106
) x 0.4068 

= 1.63 x 106 symbols 

This shows, that the -12 dB fade causes 1.63 million bits to be affected by this fade 

duration. This does not mean that 1.63 million bits are in error, but rather 1.63 million 

bits can be affected by this fade. This directly leads to the degradation of the SIN ratio 

for this ADF and consequently affecting the BER. Therefore in the 20 second 

measurement period, the BER will be constantly changing depending on the fades 

depths of the fading envelope. For the -3 dB or 3 dB levels there will be less probability 

of a bit error being produced per bit and for say -15 dB level, there would be a greater 

probability of an error occurring per bit and for the -27 dB level there would be a large 

probability of errors occurring per bit for a fading envelope. 
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This clearly shows that modulated information is affected tremendously by medium to 

deep fades. At different time periods within the measurement time, the SIN ratio of the 

system will also be continuously changing depending on the how deep a signal fades to. 

If the typical worst case receive level of -88 dBm is used, fades of 7 dB to 8 dB below 

the mean value will result in a BER probability that would produce thousands of errors 

in a system and information sent across the channel will be deeply affected by these 

fades. Fades at the -27 dB level, would be producing continuos errors and the system 

will be severely affected by these deep fades. 

As mentioned earlier, one way to increase the typical worst case receive level is to 

increase the transmit power at the transmit terminal and thus give the system a greater 

fade margin before entering the noise region, which is around -95 dBm. Unfortunately, 

by increasing the transmit power the receive terminal will also have to operate at a 

higher power level, and this directly affects any equipment running in the wireless 

system or network as they require greater amounts of power to operate at a higher 

receive level. If, we are using a laptop computer in the WLAN, this would mean that 

the laptop will be utilising more of its battery power and thus shortening its life and this 

will thus, lead to quicker recharge periods. This is not very favourable, in the context of 

power usage, as we don't want to keep recharging the battery every 1 to 2 hours. This 

would also disrupt any work being conducted at a terminal, as we would have more 

computer crashes due to more errors being introduced into the system by these medium 

to deep fade conditions. 

Designing wireless systems is a complicated process, there are many conditions or 

aspects which must be considered before introducing the most efficient system for a 

particular environment, whereby users will benefit from the efficiency of the system to 

work effectively. Multipath fading in systems, especially medium to deep fades must be 

reduced to ensure that less errors are introduced into the system at any given time and 

thus improve the efficiency of the system. 
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CONCLUSION 

The main objectives of this report have been accomplished without to many problems. 

The strategy which was followed to accomplish this report proved to be very effective. 

The literature search was conducted prior to any measurements being conducted. The 

literature research revealed that although there has been numerous research and work 

being conducted on wireless communication channels for various frequency ranges, 

there has not been any published research or findings which deal with the ISM band of 

2.4 to 2.5 GHz for wireless systems. Therefore, the results and statistical analysis 

conducted in this project report can be used to design wireless indoor radio 

communication systems. 

The theory presented in sections 3 and 4 was a direct result of this literature search. 

Although, the theory presented in this report may seem trivial at times, but it is the 

building block of the entire report as it provides the reader with an insight into the 

characteristics of wave propagation and the phenomenon of multipath fading. This is 

very important in the context of this report, as a good understanding of the nature of 

fading in the wireless channel needs to be grasped before any further involvement is 

proceeded. 

Once, a good understanding of fading is grasped, the further involvement into this 

project can be appreciated. Section 5, presented the main core of the system 

measurements. Important, consideration have been put forward in this section. The 

main thrust, being the measurement equipment used, the measurement environment 

where the recordings were conducted and the measurement system used to collect the 

results. This is basically, the heart of the project, whereby the measurements were 

conducted in a typical cluttered environment with controlled motion introduced for the 

entire measurement period. This measurement environment makes this report feasible, 

as it represents a cluttered laboratory with motion being introduced for the 20 second 

measurement period. If, wireless systems are to be designed and commissioned, they 

would be working is a similar environment with motion always present within the 

channel. 
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Section 6 presented the findings of the measurements conducted. The results and their 

statistical analysis can be considered when wireless systems for the similar frequency 

band need to be designed. The results provided important information regarding the 

envelope fades at the different antenna locations within the laboratory. With the 

multipath nature of fading and the introduction of motion within the channel, the direct 

consequences of this motion can be viewed on the fading envelopes. The envelopes 

provide vital information, such as the depth of a fade, is it a shallow, medium or deep 

fade. Other information can also be deduced from the envelopes, we can see ~t what 

times there was rapid motion, constant motion or relatively slow and constant motion. 

These envelopes provided, the systems engineer with vital clues as to how a newly 

designed and commissioned system will work with typical motion within the 

propagation channel in progress. 

The statistical analysis, also provides important information. It tells us, the number of 

crossings, level crossing rates (LCR) and the average duration of a fade (ADF). From 

this we can see how many times a particular fade crosses a particular level and how long 

the fade duration is for. This is important, as we want to try to eliminate medium to 

deep fades from a channel to ensure good reception of information. By viewing the 

statistical parameters of the fading envelopes for their particular antenna positions, we 

can predict for a specific location within a room or office space and with the same 

motion in progress we will receive similar fades for that location. This gives engineers 

clues on designing a system for a particular environment with the same motion present 

at different times. 

Section 7 considered the significance of the results and its relationship to bit error rates 

caused by fading. This section also graphically presented the information pertaining to 

the statistical parameters of the fading envelopes. The relationship of medium to deep 

fades can be outlined. By having deep fades within a system, the system will produce 

errors. The deep the fade the worst the SIN degradation and consequently the higher the 

probability of an error occurring within a system at a particular time. This is an aspect 

which, systems designers must try to reduce or eliminate, the medium to deep fades. 

The antenna system used in this project deliberately consisted of a simplistic design, and 

thus did allow measurements of medium to deep fades for some envelope fading 
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waveforms to occur. But, with more intelligent antenna systems, medium to deep fades 

can be either reduced or substantially eliminated. This simplistic antenna would provide 

a good system if only voice communication is required across a wireless system. But, 

with WLAN's the main transfer of information will be data and thus better, more 

sophisticated antenna systems need to be designed. 

The results and statistical analysis can also be used for simulation purposes. Whereby, 

the data presented can be used to specify the characteristics for a simulation system 

which would be operating with an intelligent antenna system. The results for this 

simulation can be compared with our experimental results to see how feasible these 

simulation results are. Would they be significantly better, moderately better or 

marginally better than our experimented results and statistical analysis. If these results 

show a mark improvement for the environment under consideration, then these 

intelligent antenna systems can be designed for use within the WLAN. This would be a 

recommendation for future research 

Other techniques which could improve BER performance with the SIN ratio degradation 

of a system being affected by medium to deep fades can be Code Division Multiple 

Access (CDMA). The uses of intelligent antenna systems working in combination with 

diversity techniques, such as space diversity, can also be used to improve the SIN ratio 

degradation which is affected by deep fading within a wireless channel. 

Finally, the measurements and their consequent statistical analysis completed within this 

project, present data that can be used as a basis for further research and design of 

efficient antenna systems. The need for an intelligent antenna system for WLAN's has 

been clearly identified as a requirement necessary to achieve acceptable BER 

performances over the indoor radio propagation channel. 
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APPENDIX 

The following glossary presents the standard terms and definitions used in chapter 1. 

These standards and terms are referenced from, IEEE (1993), "The New Institute of 

Electrical and Electronics Engineers (IEEE) Standard Dictionary of Electrical and 

Electronics Terms", Fifth Edition, IEEE Inc., New York. It is based on the IEEE 

standard 100-1992. The following terms and definitions deal with radiowave 

propagation only. The definitions and terms explained here are only very basic, for 

more definitions and terms in relation to radiowave propagation, please look up the 

IEEE standards dictionary. 

Absorption. The irreversible conversion of energy of an electromagnetic wave into 

another form of energy as a result of wave interaction with matter. 

Diffraction. The deviation of the direction of energy flow of a wave, not attributable 

to reflection and/or refraction, when it passes an obstacle, a restricted aperture, or other 

inhomogeneities in a medium. 

Electromagnetic radiation (antennas). The emission of electromagnetic energy 

from a finite region in the form of unguided waves 

Fading. The temporal variation of received signal power caused by changes in the 

transmission medium or path(s). 

Fresnel zone. In general, any surface or region bounded by adjacent Fresnel ellipses or 

ellipsoids. For instance, any plane through both antennas will intersect Fresnel ellipses 

and define Fresnel zones in that plane. 

Free space. Free of obstructions and characterised by the constitutive parameters of a 

vacuum. 

Microwaves (data transmission). 

the frequency range from 

A term used rather loosely to signify radiowaves in 

about 1000 megahertz (MHz) upwards. 
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Multipath propagation. The propagation phenomenon that results in signals 

reaching the receiving antenna by two or more paths. When two or more signals arrive 

simultaneously, the wave interference results. The received signal fades if the wave 

interference is time varying or if one of the terminals is in motion. 

Refraction. Of a travelling wave, the change in direction of propagation resulting 

from the spatial variation of refractive index of the medium 

Reflection. For two media, separated by a plane interface, that part of the incident 

wave which is returned to the first medium. The direction of propagation of the 

reflected wave is given by Snell's Law. 

Scattering. A process in which the energy of a travelling wave is dispersed in a 

direction by means other than reflection and refraction. 
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