
Edith Cowan University Edith Cowan University

Research Online Research Online

Theses : Honours Theses

2001

Meeting the Challenge of Dynamic User Requirements Using Meeting the Challenge of Dynamic User Requirements Using

Data-Driven Techniques on a 4GL-Database Environment Data-Driven Techniques on a 4GL-Database Environment

Christopher Bolan
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses_hons

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Bolan, C. (2001). Meeting the Challenge of Dynamic User Requirements Using Data-Driven Techniques on
a 4GL-Database Environment. https://ro.ecu.edu.au/theses_hons/847

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses_hons/847

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses_hons
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses_hons?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F847&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F847&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses_hons/847

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose

of your own research or study.

The University does not authorize you to copy, communicate or

otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following:

 Copyright owners are entitled to take legal action against persons
who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement. Where the reproduction of such material is

done without attribution of authorship, with false attribution of

authorship or the authorship is treated in a derogatory manner,

this may be a breach of the author’s moral rights contained in Part

IX of the Copyright Act 1968 (Cth).

 Courts have the power to impose a wide range of civil and criminal

sanctions for infringement of copyright, infringement of moral

rights and other offences under the Copyright Act 1968 (Cth).

Higher penalties may apply, and higher damages may be awarded,

for offences and infringements involving the conversion of material

into digital or electronic form.

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

! EDITH COWAN UNtvEAS1TY
I Uf:RARY

Meeting the Challenge of Dynamic User Requirements Using

Data - Driven Techniques on a 4GL - Database

Environment.

By

Christopher Bolan BSc (Computer Science)

A Thesis Submitted in Partial Fulfilment of the

Requirements for the A ward of

Bachelor of Science Honours (Software Engineering)

Faculty of Communications, Health and Science

Edith Cowan University

Date of submission - February 2001

Abstract

Accompanying the ever-growing reliance on computers within contemporary

organisations, the task of software maintenance is, increasingly, becoming a resource

burden. The author has identified that there is a need for proven techniques to allow

the modelling of flexible/changing user requirements, to enable systems to cope with

requirements creep without suffering major code change and associated down-time

from rebuilds of the database.

This study ascertains the applicability of extension to current data modelling

techniques that allows innate flexibility within the data model. The extension of the

data model is analysed for potential benefits in the provision of such a

dynamic/flexible base to realise 'maintenance friendly' systems and, in consequence,

alleviate the cost of later, expensive maintenance.

Declaration

I certify that this thesis does not, to the best of my knowledge and belief:

(i) incorporate without acknowledgement any material previously submitted for a

degree or diploma in any institution of higher education;

(ii) contain any material previously published or written by another person except

where due reference is made in the text; or

(iii) contain any defamatory material

Signed: ___ _

Christopher Bolan

Date: tj/3/LOC>/

ii

Acknowledgements

I would like to take this opportunity to acknowledge and thank all the people who

have helped and assisted me in this work. However there are some people to whom I

wish to express particular gratitude.

Thank you to my supervisor, Michael Collins, for all your time and effort, I couldn't

have done this without you. "Unus, sed leo!" [One, but a lion!]- Aisopos (Fabulae

194). Also, thanks must go to Celia for letting me borrow him.

Thank you to my family: to Mum, for always believing in me and giving me so much

love and support; to Dad, for all your guidance and for giving me a hunger for

knowledge, without which I could have never become who I am today; and to my

brother Michael just for being himself.

Thank you to all my friends who have been there when I needed support or to let off

steam. Especially Johanna, Jeremy, Troy, Cameron, David, Katie, Dominique,

Rachael, Sarah, Bonnie, Todd, Joanne, Nikki and Mr 'M' for letting me crash at his

pad.

Thank you to all the teachers that have inspired me through the years: especially to

Jean Hall, Penny Cookson, Julian Terry, and John Doyle.

And finally to the Authors whose books have inspired me and fuelled my imagination,

as Albert Einstein once said: "Imagination is more important than knowledge".

iii

Table of Contents

Abstract i

Declaration ii

Acknowledgements iii

Table of Contents iv

Table of Figures ... vi

Chapter 1: Introduction 1

1.1 Background to the study .. 1

1.2 Significance of the Study .. 6

1.3 Purpose of the Study 9

1.4 Research Questions 11

1.5 Summary 11

Chapter 2: Review of the Literature 14

2.1 General Literature ... 14

2.2 Specific Studies Similar to the Current Study ... 18

2.3 Other Literature of Significance to this Study .. 23

2.3.1 Normalisation ... 23

2.3.2 Entity Relationship Modelling 25

2.3.3 Native Oracle Features used to facilitate flexibility 28

2.3.3.1 %TYPE 28

2.3.3.2Setting Properties Programmatically 30

2.3.3.3Dynamic Record Groups 31

2.3.3.4List of Values 32

2.4 Summary 33

Chapter 3: Research Method 34

3 .1 The Problem 34

3.2 E-R Analysis 36

3.3 Database Design 36

3.4 Application Development 37

3.5 Oracle Environment .. 38

3.6 Summary 39

Chapter 4: The Demonstration Application 40

4.1 The Database 40

iv

4 . 1. 1 Initial Design 40

4. 1.2 Flexible Design 44

4. 1.3 Creating the database 48

4.2 The Application 48

4.2. 1 Flexible Setup 49

4.2. 1. 1 Category Maintenance 50

4.2. 1.2Subcategory Maintenance 5 1

4.2. l .3Composition Rule Maintenance 57

4.2.2 Data Entry 59

4.2.2. 1 Dynamic Data Entry 59

4.2.2.2Static Data Entry 69

4.2.3 Reporting 7 1

4.3 Summary 76

Chapter 5: Findings 77

5 . 1 Findings on Research Question, part (a) 77

5.2 Findings on Research Question, part (b) 79

Chapter 6: Conclusion 8 1

Glossary 83

Bibliography 86

Appendix A - Data Collection Form 89

Appendix B - Collection Category Setup 92

Appendix C - Database Creation Scripts 98

CEEDG13.SQL 98

CEEDG13.TAB 98

CEEDG13.IND 106

CEEDG13.CON 109

CEEDG13.SQS 114

Appendix D - Update Layout Procedure 116

Appendix E - Static Data Entry Screens 120

Personal Details 120

Change Password 120

Discipline Memberships 121

Research Memberships 121

Appendix F - Sample Reports 122

V

Table of Figures

Figure 1. Distribution of Maintenance Effort (Lientz & Swanson, 1980) ... 3
Figure 2. Distribution of Maintenance Activities (Stacey, 1995, p.1) ... 3
Figure 3. Relative Cost of Change (Oracle, 2001) ... 7
Figure 4. The dynamic search condition .. 17
Figure 5. SQL Description of Concept HR codes tables (Courtesy of Concept Systems) 19
Figure 6. ER Diagram of 'Front End' setup tables .. 21
Figure 7. Application E-R Diagram (O'Connor, 1999, p.36) .. 22
Figure 8. A sample ER diagram containing three entities: Department, Employee and Tasks 26
Figure 9. The mapping of Chen's relationships (Hall, 1998, p.24) ... 27
Figure 10. The flex database table ... 29
Figure 11. Utilising %TYPE in PUSQL ... 29
Figure 12. Calling a LOV using PUSQL .. 32
Figure 13. Initial ER-Model of system41
Figure 14. Description of the BOOK table .. .43
Figure 15. ER - model of category data ... 45
Figure 16. Storage requirements of category items .. .46
Figure 17. Dynamic ER-Model ... 47
Figure 18. System maintenance flow ... 49
Figure 19. Description of the CATEGORY table .. 50
Figure 20. Category maintenance form ... 50
Figure 21. Description of the SUB_CATEGORY table .. 52
Figure 22. Subcategory maintenance screen flow ... 52
Figure 23. Subcategory ownership form .. 53
Figure 24. Add subcategory form (format l) ... 54
Figure 25. Add subcategory form (format 2) ... 55
Figure 26. View subcategory details form (format 1) .. 56
Figure 27. View subcategory details form (format 2) .. 56
Figure 28. Composition rules maintenance form ... 57
Figure 29. Column mapping table ... 58
Figure 30. Staff return entry flow .. 60
Figure 31. Description of the STAFF _RETURN .. 60
Figure 32. Choose Collection Period form .. 61
Figure 33. Description of RETURN_ITEMS .. 62
Figure 34. View Return Items - base level form ... 63
Figure 35. Update Layout pseudo code .. : .. 64
Figure 36. Choose Category form .. 65
Figure 37. Choose Category form - Select a category ... 66
Figure 38. Choose Category Record Group ... 66
Figure 39. Choose Category form - Select a sub category ... 67
Figure 40. Choose Subcategory Record Group ... 67
Figure 41. View Return Items - possible configuration l .. 68
Figure 42. View Return Items - possible configuration 2 .. 68
Figure 43. Static data entry flow .. 70
Figure 44. SQL query used to define report structure .. 73
Figure 45. CF _DAT A pseudo code .. 74
Figure 46. Oracle Reports data model .. 75

Vl

Chapter 1: Introduction

This chapter contains an introduction to the study, describing software maintenance,

why it has become a significant focus of the software engineering discipline and,

further, how this focus had led to an increased awareness of flexibility as an important

design goal. The aims of the study are itemised, and the research questions are stated.

1.1 Background to the study

Contemporary organisations desiring to remain competitive must review the pace and

manner in which they conduct day-to-day business. Increasingly, as Callon (1996,

p.106) reports, they rely upon Information Technology (IT) to adapt to the rapidity of

change at large and to maintain competitive advantage.

Furthermore, as found by Hall & Ligezinski, (1997a, p.1), the costs underlying

provision of IT services are now coming under renewed scrutiny. This is especially

true where contemporary development environments are faced with the dual problems

of increasing IT resource costs and tighter fiscal management trends.

Maintenance of software brings an ever-increasing cost to a typical organisation's IT

budget. Organisations are reluctant to release exact figures, but Pressman (1997

p.762), cites trends that show a steady increase in such costs from thirty five percent

of the total project budget in the 1970s to sixty percent in the 1980s. Pressman's

observed trends are acknowledged by McCracken (cited in Pressman, 1997, p.762),

1

whose studies indicate that if the trend of increasing maintenance cost continued, as

identified in the 1980s, then organisations may become 'maintenance bound'.

An organisation is described as 'maintenance bound' where it is so buried in

maintenance that there are no available resources to assign to new projects (Pressman,

1997, p.762). The author suggests that with today's phenomenon where entire IT

organisations consist of employees principally occupied by maintenance of existing

software systems, McCracken's 'future' may have become the reality.

Pressman's (1997) supposition is re-enforced by the findings of Hall and Ligezinski

(1997a, p.2), who estimate the cost of software maintenance as being between sixty

and seventy percent of an organisation's total software development budget.

The cost of maintenance may be understood better through the decomposition of

maintenance into three main categories as described by Swanson (cited in Pressman,

1997, p.763):

• Corrective Maintenance: the identification and correction of software errors,

commonly known as 'bug fixing' .

• Adaptive Maintenance: modification of existing software to conform to

changing requirements.

• Perfective Maintenance: adds new capabilities, modifies existing functions.

2

The survey conducted by Lientz and Swanson (1980), who sampled 487 members of

the Data Processing Managers Association, revealed a distribution of the above

categories, illustrated in figure 1:

Perfective

42%

Corrective

21%

�---- ------------- --�+

Figure I. Distribution of Maintenance Effort (Lientz & Swanson, 1980)

Figure 1 illustrates that the largest combined portion of maintenance effort, and thus

spending, is a result of adaptive and perfective maintenance. Inspection suggests that

any effort in improving the maintainability of a system should focus on the perfective

and adaptive areas.

Perfective

49%

Other

4% Corrective

23%

Adaptive

24%

Figure 2. Distribution of Maintenance Activities (Stacey, 1995, p.l)

3

It may be seen that the trend has not altered significantly in recent times, with a study

conducted by Stacey (1995, p. 1) showing a similar breakdown, illustrated in Figure 2,

in the focus of maintenance activities.

The above studies into the distribution of maintenance activities measure the relative

effort of performing the maintenance activities and focus on the visible cost.

However, according to Stacey (cited in O'Connor, 1999, p.6) the "hidden costs of

maintenance can be even greater" due to:

• Loss or postponement of development opportunities.

• Customer dissatisfaction at not having their needs met.

• Reduction in software quality due to maintenance introduced errors.

By example, Woolfolk, Ligezinski and Johnson (1996, p.482) cite the case of an

unnamed American factory where management had decided to increase the efficiency

of the organisation by removing middle management and altering the departmental

structure. Within six to eight weeks most of the effected personnel had adapted to the

changes in procedures and formed new communication lines and work practices.

However, Woolfolk et al (1996, p.483) observed that, after a year the "computer

systems were only 90 percent complete at a cost exceeding a quarter of a million

dollars".

4

The literature offers two significant approaches, namely, the employment of flexible

software, and that of end user development, to combat the trend of increasing

maintenance costs. Each of these will now be introduced.

End user development permits end users to assume the role of developers, thereby

taking full responsibility for the creation of their own applications (Mehandjiev &

Bottaci, 1998, p.3). Not everyone, however, sees end user development as a panacea.

Panko (1998, p.16) found wide criticism for it in the software community due to an

increased likelihood of errors derived from informal methods wanting of the rigour

known to be necessary in programming. Such rigour, however, may be achieved

within professionally developed systems that are designed to incorporate flexibility

during use.

Mehandjiev and Bottaci (1996, p.432) see flexible software as helping to bridge the

gap between developers and advanced users by allowing the latter to access features

that control and modify the behaviour of a system. Likewise, O'Connor (1999, p.7)

suggests that "flexible software can be seen as the middle ground between

professional IT staff maintained systems and end user development". Through the

use of flexible software, Mehandjiev and Bottaci foresee an advantage, over

conventional system development methods, for organisations to adapt applications

rapidly to changing requirements.

5

Woolfolk, Ligezinski & Johnson (1996, p.486) propose that flexible systems fall into

one of three categories of flexibility with respect to adaptive maintenance:

• Weak flexibility: requires modification to the underlying data structures

(e.g. entities and/or tables).

• Medium flexibility: requires modification to both data values and

procedural code.

• Strong flexibility: where data value modifications alone are required.

The author suggests that strong flexibility, appropriate to the needs of contemporary

organisations, may be achieved by integrating flexible principles into the underlying

database design of an application. Such flexibility may then help to facilitate a cost

reduction in both time and effort of eventual maintenance, especially in the activities

of perfective and adaptive maintenance. The savings to be gained from flexible

development might, reasonably, permit funds to be allocated towards new

developments and decrease the risk of an organisation becoming 'maintenance

bound'.

1.2 Significance of the Study

The relative cost of implementing change in a non-flexible system, illustrated in

figure 3, is greatly increased during each phase of the software development lifecycle.

It is, therefore, important to focus on the provision of flexibility as part of the

requirements capture/analysis phase of a project, in order to mitigate increased

development costs resulting from a lack of such focus. The need for such early

provision is reinforced by Weinberg (1990), whose study demonstrated the inclusion

6

of maintainability as a part of requirements capture led to an increased awareness of

maintenance issues throughout an entire project lifecycle.

Production

Transition

Build

Design

Analysis

5 10 15

Figure 3. Relative Cost of Change (Oracle, 2001)

20

Requirements, as specified by Blum (1993a, p.43), fall into three categories as:

• Closed: defined and stable requirements.

• Abstract: requirements that have no 'concrete' representation, but which

incorporate products necessary for development of the system. Primary

examples of abstract requirements are 'security' and 'user friendliness'.

• Open: requirements where the problem domain is flexible. A flexible

problem domain suggests that requirements may lack definition, or change,

either during development or post-implementation.

It is the flexibility, or changeability, of 'open' requirements that flexible software

techniques aim to address. However, as O'Connor (1999, p.9) notes, most

applications are specified from requirements observed in all three, not from just one,

of Blum's categories.

7

Many static systems, i.e. systems without in-built flexibility, are based on fixed

requirements and use a traditional 'sign off approach to validate the satisfaction of

requirements. Frequently, though, difficulties in specification lie in that requirements,

true at the time of the original specification change/evolve, exhibiting the

phenomenon known as 'requirements creep'. To formalise the remedy, Behforooz &

Hudson (1996, p.396) state that "maintainability should be specified and software

should provide for the highest level of flexibility and ease of maintenance", giving the

following reasons:

• Software maintenance is expensive.

• The advantages of including maintenance as a design goal far outweigh the

costs.

• A system may spend between 65 and 80 percent of its life in maintenance.

Others endorse the difficulty of specifying requirements fully, as Woolfolk,

Ligezinski & Johnson (1996, p.482) observed that such specifications are "imperfect

since a significant part of such requirements lie in the future". Poor specification, in

response to requirements creep may, in tum, "lead to systems that are judged

unsatisfactory or unacceptable by the client and have high maintenance costs"

(Hofmann, Pfeifer & Vinkhuyzen, 1993, p.43).

While studies, such as the Object Database Management Group's (ODMG) research

into improved methods for requirements capture ("ODMG 2.0", 1998), software

maintenance continues to be an area neglected in the systems development lifecycle.

Such neglect is especially noticeable when maintenance phase support is compared to

8

that of other phases of the software lifecycle. As pointed out by Liu, Yang & Zedan

(1998, p. 1) "the approaches/tools of maintenance are rather weak when contrasted to

those of development". Liu, Yang & Zedan further suggest the underlying reason for

the neglect is that software development is a mature process while maintenance is still

viewed as being a difficult and expensive area.

Acknowledging the neglect in maintenance related studies, this study aims to

demonstrate that existing static data requirement modelling techniques may be

adapted to facilitate a reduction in maintenance effort though the inclusion of

underlying flexibility. Outcomes of the study offer systems analysts and

programmers a number of potential advantages:

• A flexible method of capturing data.

• A need to learn few (potentially zero) new symbols and/or notations.

• A minimisation of the effort involved in capture of flexible requirements.

1.3 Purpose of the Study

The previous sections indicated that there is credible support in the literature for

flexibility as a design goal. However, as shall be shown, there is little clear statement

in the literature on how this flexibility may be integrated into either the resultant

application or, more importantly, the design model. The purpose of this study is to

demonstrate how flexibility may be incorporated successfully into a 'live' system i.e.

one that may exhibit Blum's "open" or flexible requirements.

While flexible systems are not new, previous research (O'Connor, 1999; Layng,

1998) has focused on the adaptation of an application around a static data model. The

9

employment of a static data model has meant that while applications may exhibit

features of a flexible system in the user interface (the so-called 'front end'), the type

and volume of stored information (the so-called 'back end') remains static. The

author proposes that development with a data model that exhibits a measure of

intrinsic back end flexibility is an appropriate alternative.

The study focuses on the flexibility of data in the 'back end' of an application, making

it appropriate to choose a contemporary data-oriented implementation language such

as the Oracle 4GL. Additionally, selection of Oracle' s 4GL allows comparison with

studies of business-rule oriented front-end flexibility in that development

environment, such as those conducted by Hall & Ligezinski (1997a), O'Connor

(1999) and Layng (1998).

To summarise, the purpose of this study is to investigate the implementation of a

dynamic system using the Oracle 4GL to provide flexibility in the 'front end' in

conjunction with dynamic mapping to the underlying database 'back end' .

10

1.4 Research Questions

The main question:

"How may the challenge of dynamic/flexible user requirements be met using data

driven techniques using a contemporary 4GL-database environment?"

The major components of the above question are: -

a) "How may one model dynamic user requirements through an extension of current

data modelling techniques? "

b) "How may one implement user requirements of flexibility using data driven

techniques in a contemporary 4GL environment? "

1.5 Summary

The rising cost of maintenance is an issue that has enjoyed little research effort when

compared to other, better-established, phases of the software development lifecycle.

While previous studies have indicated the need for corrective action, no notable

progress has been achieved towards the realisation of improvements. This study

demonstrates that, through an extension of existing techniques, a standard 4GL may

be used to implement flexibility in both the 'front end' and 'back end' of an

application.

Chapter two provides a review of the relevant literature. The review draws upon

previous work, in textbooks, documented research papers and articles, to provide

guidance and justification for the study' s approach of adaptation/enhancement of

existing modelling techniques. To further the study's implementation, existing

11

i
I
:1

techniques that provide flexibility within an application are explored. Finally,

documented features of the Oracle 4GL environment that facilitate system flexibility

are identified.

Chapter three describes the research design. The methodology undertaken to answer

the research questions proposed in chapter one is described, together with the Oracle

environment employed to develop the demonstration application.

Chapter four outlines the flexible software techniques implemented using native

Oracle features (to be introduced in chapter two), and details the usage of the

demonstration application.

Chapter five presents the results and findings of the demonstration application. The

findings are discussed in relation to the initial research criteria and compared to

previous studies that were discussed in chapter two.

Chapter six concludes the study. A summary is given of the initial aims of the study

and the manner in which they were addressed. Finally, the implications of the results

and findings are discussed with respect to their benefits to current practice and to

future research into flexible software.

This document concludes with a glossary of terms, followed by the end text

references for documents used to support the study, and several appendices, which are

12

used to provide clarification and amplification of significant areas of the study:

namely,

Appendix A consists of the data collection form used by the manual submission

system (the system is detailed in chapter three);

Appendix B presents the category hierarchy with the required field configurations

(the category hierarchy is detailed in chapter three);

Appendix C lists the database creation SQL scripts (the database is introduced in

chapter three and detailed in chapter four);

Appendix D illustrates the PUSQL code used in the Update Layout procedure (the

Update Layout procedure is detailed in chapter four);

Appendix E consists of screen captures of the demonstration application's static

data entry screens (the static data entry screens are covered in chapter

four); and

Appendix F demonstrates reports generated by the application using the full sample

data provided).

13

Chapter 2 : Review of the Literature

2.1 General Literature

Early attempts at flexible systems, such as that proposed by Parnas (1979, p.128)

involved designs based on components. Parnas (1979, p.128) suggested a

methodology wherein a project commenced with the identification of minimal

subsets, each of which might perform a useful service, and then progressed with the

addition of minimal increments to the system. Parnas' chosen components conformed

to the following general rules:

• Each component should perform a single function.

• A component should not be reliant on the format and output of data from

another component.

• Components should not assume that any functionality exists already in the

system.

The component-based methodology, such as proposed by Parnas, was gradually

replaced in the late 1980s by an object-oriented (0-0) approach to systems

development.

Booch (1994, p.37) suggests that flexibility may be achieved through the use of the 0-

0 approach to define a system as a collection of objects rather than components. In

the 0-0 approach a measure of -flexibility is achieved through the use of the native

object features such as inheritance, abstraction and polymorphism. These 0-0

features allow a programmer to import previously created classes from standard

14

libraries, and extend/adapt or overload elements of them without requiring any

changes to be made to the original class. In order to obtain maximum synergy

between the features of 0-0, Booch (1994, p57) states: "modules should be cohesive

(by grouping logically related abstractions) and loosely coupled (by minimising the

dependencies among modules)". While the 0-0 technique does permit inclusion of

flexibility in its design, and provides an ability to approach a system definition in

iterative and incremental fashion, it is, arguably, not a suitable modelling environment

for poorly defined systems that suffer major requirements creep during the

maintenance phase.

A fragment-based specification method is presented by Blum (1993b, p.728) to allow

a conceptual model to be created for systems where requirements are inclined to be

dynamic or poorly understood. Blum's (1993b, p.730) 'fragment-based' method

stores concepts, known about the application, as fragments in a database. In Blum's

method, specification fragments are assembled to form a definition of the software

functions utilised in code generation for the application. However, whilst Blum

(1993b, p.731) advocates the use of methods that allow the gathering of 'open

requirements', he provides criticism in that "there are high risks in developing

systems with open requirements: the resulting product may not be useful".

Ensor and Stevenson (1997, p.503) propose the implementation of flexibility via user

extensibility. User extensibility refers to systems that allow a user to modify a system

from within the application, thereby maximising the utility of a system. Ensor and

Stevenson (1997, p.504) divide their proposal into two types of flexibility: namely

15

'schema extensibility' and 'algorithmic extensibility' , in order to classify better those

systems with 'open requirements' . To elaborate, 'schema extensibility' refers to

situations where new attributes and/or entities are required. 'Algorithmic

extensibility' , then, refers to the changing of the underlying business rules in order to

supplement, update or replace the current rules. Ensor and Stevenson advise that

where a rule is likely to change, the code used to implement the rule should be stored

as a package in a database table, allowing for the easy manipulation of existing rules.

The flexibility achieved through the use of these database packages may be extended

through the storage of every atomic action (a fundamental, indivisible code element)

as a procedure or function in the database, thereby maximising the amount of code

reuse and, in-tum, decreasing maintenance costs.

Woolfolk, Ligezinski & Johnson (1996, p.3) put forth the idea of a 'dynamic search

condition' as a method to implement 'algorithmic extensibility'. The 'dynamic search

condition' is used to allow the association of business rules together with data, thus

providing both user extensibility and system flexibility. By way of mechanism, such

association is achieved through the use of two files and a search program, where the

first file contains the data and the second file contains the key values needed to search

the data. The search program, illustrated in figure 4, accepts predefined arguments

and then searches the data file according to a pattern determined by a key that is built

from the key values in the second file. The effect of the mechanism is to allow the

program to change the access rules to a table (notably without any modification to the

program), effectively providing a facility for changes in business rules applied to the

data.

16

One : One One : Many Many : Many

' ' / '

E ntity 1 E ntity 1 Entity 1

\. / /

' '

Entity 2 Entity 2 Entity 2

Figure 4. The dynamic search condition

Mehandjiev & Bottaci (1996, p.450) observe that a purely graphical language might

provide a level of flexibility not achievable with standard 'algorithmic extensibility' .

Layng (1998, p.16) states: "if an application can be written in a language that is purely

graphical rather than text based then there is a huge potential for users to modify the

structure of the program as they wish". However, as yet no 'pure graphical' language

of any note has been developed that may be applied to the general domain, although

the Object Management Group, through their development of Unified Modelling

Language (UML), is making advances in this area (Pohl, 1997, p.142).

17

In order to provide a standard for extensible systems, graphical or otherwise, Hall &

Ligezinski (1997b, p.6) suggest four main areas to be addressed by any system before

it may be considered flexible:

• Access security: where each user needs to access only that functionality for

which they have authorisation.

• Dynamic report formulation: where reports produced by the system must

be able to adapt to changes in the system.

• Data entry processes: where data entry screens should not be fixed, as they

define the way a user 'sees' and interacts with a system.

• Business rules applying for specific conditions: where flexible application

of business rules is allowed under certain circumstances.

2.2 Specific Studies Similar to the Current Study

A method proposed by Hall & Ligezinski (1997b, p. 7) to satisfy their four nominated

areas of flexibility, is via the use of 'common code' tables that allow both

specification and implementation of flexible software. They state: "When a new code

value needs to be added, or modified, it can be accessed at runtime through database

queries, dynamic record groups and lists of values as opposed to the usual predefined

pop-lists". Common code tables, in which values, located on a one to one basis

against identifiers known to the program, are read by a program at run time and,

therefore, stored ready to be queried immediately prior to use. An example of such

use may be to store values for display in screen menus, where the contents of the

menus change according to context.

18

For example, a table called FRUITS might be used in a system to store the name of a

fruit and its associated value, and this table may, in tum, be linked via a record group

(explained in depth later) for display in a 'front end' object or selection list/menu.

Thus if a fruit is added to the 'common code' table FRUITS the value would

automatically be linked with its associated object, e.g. facilitating easy changes to

menu contents by editing the FRUITS table contents.

The technique has been used in many recent large systems programmed in Oracle

Forms. One such system is the CONCEPT Human Resource Management software,

which uses such a 'common code' table nominated, appropriately, CODES (illustrated

in figure 5), to store codes together with their designated values and descriptions for

the entire system. By example, the CONCEPT system exemplifies a useful extension

of flexibility to the standard 'common code' technique through the 'kind' column in

the CODES table. Values in the CODES tables are grouped by what 'kind' they

belong to, and, in tum, the kind determines a link, or indirection, to a specific object

to be accessed at runtime. Through this extension CONCEPT is able to store the

'common codes' for the entire application in the one table.

Name Nul l ? Type

KIND NOT NULL VARCHAR2 (1 5)

CODE NOT NULL VARCHAR2 (5 0)

DESCRIPTION VARCHAR2 (5 0)

LENGTH NUMBER

Figure 5. SQL Description of Concept HR codes tables (Courtesy of Concept Systems)

19

O'Connor suggests an alternative use for 'common tables' to provide a high level of

flexibility. The 'front end' tables are used to store a large portion of the setup of the

'front end' of an application. O'Connor (1 999, p.36) provides an example where the

'front end' screens of an application are stored in five tables (illustrated in figure 6) :

• ST_FORM: Stores the names and characteristics of those forms that are

present in the system, including such details as the width and height of the

form that will be displayed at run-time.

• ST_ITEM_TYPE: Stores the names of all item types that may appear on

any given form. These include buttons, text items, Lists of Values (LOY s)

and radio-button groupings.

• ST_ITEM: Stores the names of all possible items that may be included on

any form.

• ST_FORM_ITEM: Stores the items that will appear on a particular form

and indicates how the various different run-time properties (e.g. position,

width, and font) will be set when that form is run.

• ST_FORM_REF: Stores the names of items that should be displayed on a

form based upon values stored in a different table, (e.g. where items are

displayed on a Customer maintenance form according to a group to which

they belong).

20

I ST_FORM S_FORM_REF

ST_FORM_ITEM

ST_ITEM l ST_ITEM_TYPE

r I

Figure 6. ER Diagram of 'Front End' setup tables

The 'setup' tables shown in figure 6 are mapped onto the overall application database

according to the Entity-Relationship (E-R) diagram depicted in figure 7. Each form is

then defined by altering the defined setup values in a maintenance form, so that when

a window is first displayed a call is made to an appropriate function to display the

required items. O'Connor (1999, p.56) notes about his design: "the dynamic screen

concept appeared a good idea in theory, however it does have many limitations in

practice". The limitations mentioned in O'Connor's study stem from the increased

overhead of querying all five setup tables (shown in figure 6) prior to loading each

screen during the application's runtime.

21

Customer

Order

Line

Product

i1r • . ,£f�,::.ri
Prec"'1�..,.

Figure 7. Application E-R Diagram (O'Connor, 1999, p.36)

While the above studies (O'Connor, 1999; Hall & Ligezinski, 1997b) demonstrate

techniques utilised successfully to provide flexible systems, they do limit flexibility in

the type of data stored. The 'common code' and 'front end' table techniques are

limited as they achieve user extensible systems exclusively through the

implementation of algorithmic extensibility, ignoring schema extensibility. The study

proposes to address this limitation through a dynamic data model (explained in

chapter four), providing a level of flexibility superior to the techniques previously

described.

22

2.3 Other Literature of Significance to this Study

Recall that the aim of this study is to provide a system with schema extensibility

through an extension of existing techniques. Inevitably, such extension includes the

rules governing normalisation, modelling of data, and specific techniques for the

implementation of native features that promote or facilitate flexibility in environments

such as Oracle. A modelling method that complements normalisation, and that will

be employed in the study, is that of Entity-Relationship (E-R) modelling, where

business rules may be applied and where the completeness of data attributes is not

necessarily known at inception of the model. In other words, the tables we use to

provide flexibility must be constructed according to the rules of normalisation and E­

R modelling that apply to any well-founded database. Both of these techniques will

now be elaborated, together with other literature of significance to the study.

2.3.1 Normalisation

Codd (1970, p.378) formulated a mathematically based set of design principles for use

in designing relational databases. These principles have become formalised in terms

of progressive normalisation of data via, at least, three normal forms (known as: first,

second, and third normal form). Other normal forms are now known to exist but will

not be covered in this review. Normalisation is, in effect, a data drive, 'bottom-up'

approach and its purpose is to remove what are known as the 'three side effects',

which are, paraphrased from Beynon-Davies (1996, p.144):

• Deletion side effect: where the deletion of a specific piece of data results

in the loss of related information that is still valid.

• Update side effect: where the operation of updating a single piece of data

requires the modification of more than one database column.

23

• Insertion side effect: where data may not be entered as it is dependent on

having at least one link to another part of the system.

The removal of the Beynon-Davies' side effects ensures database stability following

volatility of its contained data.

Beynon-Davies (1996, p. 145) describes normalisation as consisting of four steps:

1. Collect the data set into a list of un-normalised data.

2. Transform the resultant list into tables in the first normal form: defined by

Beynon-Davies (1996, p. 147) as:

"A relation is in first normal form if and only if every non-key

attribute is functionally dependent upon the primary key."

3 . Transform first normal form tables to second normal form: defined by

Beynon-Davies (1996, p. 149) as:

"A relation is in second normal form if and only if it is in first

normal form and every non-key attribute is fully functionally

dependent on the primary keys."

4. Transform second normal form tables to third normal form: defined by

Beynon-Davies (1996, p. 15 1) as:

"A relation is in third normal form if and only if it is in second

normal form and every non-key attribute is non-transitively

dependent on the primary key."

24

Following the above steps produces a stable and efficient relational data model on

which an application may be based with confidence. Accordingly, the practice of

normalisation is adhered to in this study in order to yield such stability and efficiency

of stored data in its example application. Normalisation is also used to analyse and

incorporate data storage information into the data set to provide a schema extensible

system. This will be explained in chapter four.

2.3.2 Entity Relationship Model l ing

To complement the 'bottom-up' approach to database design, i.e. normalisation, a 'top

down' analysis, known as Entity-Relationship (E-R) modelling, is generally followed

by current practitioners. E-R modelling is employed particularly in situations where

an analyst may not know all needed data before modelling commences. It provides a

rapid approach for producing a model that may subsequently be refined using

normalisation techniques and, as Beynon - Davies, (1996, p.162) reports: "In practice,

database developers normally do more data modelling than they do normalisation."

The E-R modelling approach was devised by Chen (1976) to facilitate data modelling

for problem areas for which a database solution is envisaged and is used frequently in

association with the relational model.

The first step in conducting E-R modelling is the identification of all necessary

entities. The exact definition of what constitutes an entity varies, but Beynon - Davies

(1996, p.162) provides the following: "An entity may be defined as a thing which the

entire enterprise recognises as being capable of an independent existence and which

can be uniquely identified". This definition concurs with that of Hall (1998, p.7) who

25

defines an entity as "An individual object, concept or event about which the

organisation chooses to collect and store data". In E-R models, named rectangular

objects depict entities, as shown in figure 8.

/ '\

Department

' /

/\

Employee Tasks

' /

Figure 8. A sample ER diagram containing three entities: Department, Employee and Tasks.

To model the interaction/association between entities a relationship is used, depicted

an example of which is shown in figure 9. Three relationships are known to exist in

Chen's model:

• One to one relationships: where an instance of one entity has a direct

single link to another separate entity.

• One to many relationships: where an instance of one entity has multiple

direct links to another separate entity.

• Many to many relationships: where many instances of the same entity

have links to many instances of another separate entity

26

t
\

' •

One : One One : Many Many : Many

I' ' '
Entity 1 Entity 1 Entity 1

'- / '- '-

I' '\ I' ' I' '

Entity 2 Entity 2 Entity 2

,I '-

Figure 9. The mapping of Chen's relationships (Hall, 1998, p.24)

A completed E-R model, in conjunction with the normalised data, shows the structure

and detail of an intended database, in which entities are implemented as tables and

relationships achieved by linking key attributes common to related tables.

27

2.3.3 Native Oracle Features used to facil itate flexibility

The Oracle development environment is provided for the creation of the 'front end' of

an Oracle application. The 'front end' facilitates, for the user, an interface to the

underlying database 'back end' . Innate in the Oracle development environment are

many features that may be used to enhance and create flexible applications.

O'Connor (1999, p.24) suggests that the most useful of these flexibility enhancing

features are:

• %TYPE

• Setting Properties Programmatically

• Dynamic Record Groups

• List of Values

Each of O'Connor's 'flexibility features' will now be elaborated in tum.

2.3.3.1 % TYPE

The identifier % TYPE declares a variable of:

• a previously declared variable

• a column in a table

The %TYPE identifier is utilised in the variable declaration section of Oracle

procedures, functions and packages to ensure type consistency. Consider the database

table depicted in figure 10 and the PL/SQL procedure block illustrated in figure 11:

28

Columns

Row_lD

Char_Col

Num_Col

Date_Col

NUMBER NOT NULL

VARCHAR2{1 0)

NUMBER

DATE

Figure 10. The flex database table

DECLARE
Flex_ Value Flex.Char_Col%Type

BEGIN

END;

SELECT *

INTO Flex_ Value
FROM Flex
WHERE Row _ID = 1;

RETURN Flex_ Value;

Figure 11. Utilising %TYPE in PlJSQL

In figure 11, the variable Flex_ Value is declared from the same type as a value

originating in the database column Char_Col in the table Flex shown in figure 10.

The full value of using the %TYPE identifier in this manner becomes apparent when

used in database side subprograms of procedures, packages and functions. In these

database side subprograms, efficacy is achieved as they are automatically recompiled

before every runtime. Such recompilation allows the %TYPE to reassign the variable

type when required, such as following a change in the underlying type of a database

item. Even when the %TYPE is used in client side functions, the type used by the

application may be updated by performing a manual re-compile.

The %TYPE feature enhances the flexibility of database procedures and functions by

allowing them to adapt to changes in data formats. Stacey (1995, p.3) held such

changes accountable for the greatest portion of software maintenance activities.

29

Stacey' s opinion agrees with that of Feuerstien (1996, p.25) who states that the most

common cause of application failure is "the undying belief held by programmers that

a particular value will never change and so can be hard coded into the program."

O'Connor (1999, p.27) cites a Ministry of Justice [of Western Australia] case

management system that has implemented a change of underlying database types by

using the %TYPE feature and subsequent recompilation to activate the changes.

2.3.3.2 Setting Properties Programmatically

A property is defined in Oracle (2001) as "an attribute of an item that may altered to

modify the setup of that item." Manipulation of these attributes is achieved via

property functions that allow, for example, a facility for manipulation of the physical

properties of graphical objects, where the manipulation may result in an enhancement

to the flexibility of a system. Development environments such as Oracle 's Developer

provide utilities of GET and SET property functions, examples of which include:

• SET_ITEM_PROPERTY: Modifies all instances of an item in a block

by changing a specified item property.

• GET_ITEM_PROPERTY: Returns property values for the specified

item.

• SET_ WINDOW _PROPERTY: Sets a property for the selected window.

• GET_ WINDOW _PROPERTY: Returns the current setting for the

selected window property for a given window.

• SET_BLOCK_PROPERT: Sets the given block characteristic of a

specified block.

30

• GET_BLOCK_PROPERTY: Returns information about a specified

block.

Through these standard SET and GET functions it is possible to manipulate the 'front

end' of an application, thereby allowing a quasi-visual form of flexibility that

approximates Mehandjiev & Bottaci' s (1996, p.450) idea of providing flexibility by

using a graphical method.

2.3.3.3 Dynamic Record Groups

Record groups may be used to provide both query and data flexibility in applications.

They form sets/lists of information that may be created and populated through the use

of SQL queries. Typically, record groups, are used to generate small subsets of data

for those specialised operations where no information update is occurring, e.g. when

checking if a value exists. Hall & Ligezinski (1997b, p.7) suggest that dynamic

record groups are best employed in conjunction with the previously described

common code tables.

A typical example of a record group would be a small SQL query that extracted a list

of items, each of which has a common property, from a table e.g. a list of all the male

employees in an organisation's payroll system. The record group might then be used

inside an application in preference to a non-record group situation where the same

query would have to be run multiple times to achieve the same effect.

31

2.3.3.4 List of Values

LOYs are a native feature of Oracle and may be used to replace the traditional static

lists, known also as 'pop lists' or combo-boxes, found in standard application front

ends. They are associated directly with a record group, thereby "ensuring the

information they contain is always current" (O'Connor, 1 999, p.29).

Additionally, unlike 'pop lists', a LOY does not require a direct link to a text item,

thereby allowing sufficient flexibility to attach a LOY to a button or a menu item.

While a LOY may be associated directly with a text item in its property settings, a

function such as that depicted, in figure 12, as SHOW _LOY may be used to handle

the activation of the LOY programmatically. The SHOW _LOY function has a return

type of Boolean, returning TRUE where a value is selected or FALSE if the user

cancelled the LOY.

DECLARE

LOY_ Used BOOLEAN;

BEGIN

LOY_Used := SHOW_LOY('A_LOY');

END;

Figure 12. Calling a LOY using PUSQL

32

2.4 Summary

Employing facts and documented experience, selected literature has been used to

provide a basis for a discussion about identifiable, desirable features that may promote

development of flexible systems. The concept of flexibility has been discussed with

an emergent idea that to provide a strong level of flexibility a system should be

alterable through data values that are held in tables, rather than by the use of code. In

addition, those inherent features of the ORACLE database language that may be

employed to promote and facilitate flexibility in a relational based system were

reviewed.

33

Chapter 3: Research Method

This chapter outlines the methodology followed by the study to provide answers to

the research question proposed in chapter one. It also describes the guidelines for the

development of the demonstration application that is discussed in chapter four.

3.1 The Problem

In order to address the research question of "How may the challenge of

dynamic/flexible user requirements be met using data driven techniques in a 4GL­

database environment?" a demonstration application was designed and implemented

using the Oracle 4GL environment. The resultant application implements a staff

activity submission system and was chosen for the following reasons:

• The 'real-life' requirement for such a system by Edith Cowan University

(ECU);

• The unpredictable nature and rapid changes in requirements manifested in

the current manual system.

The requirements of the system were gathered in a series of interviews and

information/data analysis sessions, the results of which were entered into a CASE

tool. A summary of the problem statement is as follows:

On a quarterly basis, the faculty creates the staff newsletter. In order to

collect the information for the newsletter, a form (see appendix A) is

emailed to all staff members and, ideally, this form is then completed by

34

staff and emailed back to the newsletter editor. The editor then manually

collates and corrects all the information in accordance with the data

collection guidelines (see appendix B) and uses this information to create

the newsletter.

The following problems were observed with the manual system:

• Difficulty of tracking whether a staff member has/hasn't submitted a return

in a specific quarter.

• Manual collation of returns is very time consuming.

• It is hard to inform staff of changes to the form.

• Returns on the form are often in an inappropriate format.

ECU management, following requests by users, decided to commission a computer­

based solution. The replacement system needed to address the following issues:

• Allowing staff to enter/maintain their own returns at any time.

• Allowing updates of categories and their associated return items.

• Providing reports to allow easy data extraction.

• Permitting two levels of access: i.e. standard user and administrator.

An initial analysis, described later in this chapter, of the problem area was utilised as a

guide for the design and construction of the demonstration application. The

35

application's development was then separated into several phases, each of which is

introduced in this chapter and, further, discussed in depth in chapter four.

3.2 E-R Analysis

The first phase in the design of the demonstration application was an analysis of the

problem domain together with the client/user-supplied data. The analysis was used to

construct an E-R model and normalised view of the system's data. Recalling that part

(a) of the research question was stated: "How may one model dynamic user

requirements through an extension of contemporary data modelling techniques?", E­

R modelling was used to build a model to demonstrate such extension.

The extension was achieved through an investigative process; wherein the system was

modelled initially using standard modelling techniques and normalisation. The

standard model was then analysed for weakness, and the identified weaknesses were

addressed to facilitate the creation of a dynamic model. This process has been detailed

further in chapter four.

3.3 Database Design

Upon completion of the E-R analysis the resultant model and normalised data set

were converted, using Oracle CASE tools, into a relational database. The successful

generation of the database creation scripts from the CASE tool (Appendix C) with the

supplied E-R model confirmed the model's validity and provided the 'back end' of the

demonstration application.

36

3.4 Application Development

Development of the demonstration application commenced following the database

design phase, in accordance with the requirements gathered therein. Oracle's

Developer 6i tool-set was selected for development, for reasons of availability,

maintainability and relevance to the task-in-hand, and consists of:

• Oracle Forms Developer 6i: A graphical based development language for

constructing user interfaces.

• Oracle Reports Designer 6i: An SQL based reporting tool used to

develop and publish data queries.

• Oracle SQL Si: A structured database query language that contains

enhancements over and above the standardised SQL.

Furthermore, the tools, all from the same vendor, ensured maximum coordination

between the 'front end' under development and the 'back end' developed during the

database design phase. The application was then integrated in an incremental fashion,

where each individual form (screen) was developed as a standalone module before

being merged into the overall application.

The development and implementation of the demonstration application, in

conjunction with the flexible database design, was used to answer part (b) of the

research question, stated previously as: "How may one implement user requirements

of flexibility using data driven techniques in a contemporary 4GL environment?"

37

i
1.

3.5 Oracle Environment

The development and presentation of the Staff Submission System was performed on

two network and internet enabled IBM compatible personal computers. One machine

acted as a development machine and comprised a Pentium III processor with a clock

frequency of 700MHz, memory capacity of 128Mb, and a hard disk drive with 10 Gb

of storage. Microsoft Windows NT 4.0 (Service Pack 5) was chosen as the operating

system, due to its compatibility with the Oracle software used.

The second machine acted as a client, and was typical of that supplied to a user of the

Staff Submission System. The client machine comprised a Pentium III processor with

a clock frequency of 600MHz, memory capacity of 64Mb, and a hard disk drive with

8 Gb of storage. Typical, again, of a user's machine, client applications were hosted

by the Microsoft Windows 98 operating system.

The following products were installed on the development machine:

• Personal Oracle Database version 8.1.6

• Oracle Developer 6i

• Oracle Designer 6i

The following products were installed on the client machine:

• Oracle 8i Client Run-time

• Adobe Acrobat Reader

• Internet Explorer 5.01

38

l;i·

I . . I

In short, the environment and development tools were chosen to reflect a standard

industry configuration, based upon the technical advice given by several experienced

and qualified practitioners and ECU technical support staff.

3.6 Summary

This chapter has introduced the problem statement that the sample application

addressed, outlined the development phases of the study, and related them to the

respective component of the research question that they were employed to address.

The environment used to implement the study was introduced and discussed. Chapter

four elaborates on the phases introduced in this chapter (principally, those of analysis,

design, and development) and details the demonstration application.

39

,,
l
I
.I

Chapter 4: The Demonstration Application

This chapter details the development of the demonstration application, nominated the

Staff Submission System. The system was developed in accordance with the research

method outlined in chapter three, incorporating, where appropriate, the techniques and

features reviewed in chapter two.

4.1 The Database

The sample application's implementation commenced with database construction. In

accordance with contemporary design techniques, an incremental process was

followed, wherein individual database tables and constraints were modelled and

reviewed, in both an initial and flexible design, before being integrated into the

database. This allowed for progressive testing and validation of the design

whereupon the creation scripts were generated using the CASE tool previously

outlined in chapter three. The manner in which the model and resultant database were

constructed will now be elaborated.

4.1.1 Initial Design

In order to prevent any neglect/loss of data requirements during the database design,

the system was first subjected to straightforward E-R modelling to produce an initial

standard model, depicted in figure 13, without consideration of any flexible

requirements of the system. This was undertaken in order to identify, subsequently,

any possible weaknesses exhibited by the standard model of the system, and to

provide a base for development of the flexible model.

40

· ·· 1

:'>-t--·�-- - - -�

Figure 1 3 . Initial ER,Mndd of system

4 1

l
I

---,�.

l
·--f.<

search ·
mbershi�j

Research
Group

Colfect!on
Period

Upon examination, two problems were identified as being inherent in the standard

model illustrated in figure 13: namely,

• a lack of categorisation; and

• an inefficiency of storage of optional data.

Both of these problems are now explained, in tum.

The importance of the categorisation of elements, listed in appendix B, is ignored by

the standard model, which relies upon category elements being 'hard coded' into the

menu screens of the application. The menu screens would be required to store the

correct category information in order to store data in all six of the item tables (i.e.

Article, Award, Event, Appointment, Book, and Grant) illustrated in figure 13. The

storage via such screens mandates the use of a single field in each item table to store

data for the category of which the item is a member. It may be seen that the structure

for such hard-coding of the category hierarchy is rigid and, further, that such rigidity

may lead, eventually, to increased maintenance costs in the event of revision of the

category hierarchy becoming necessary.

A second deficiency of the standard model, illustrated in figure 13, lies in the amount

of overhead for optional data to be stored by all six of the item tables. For example,

the 'Book' table described in figure 14 contains four columns that are not needed in

every situation, but that would appear on related data entry screens.

42

1, '

,I
, ,I

Name Nul l ? Type

RETURN_NO NOT NULL NUMBER

CATEGORY NOT NULL VARCHAR2 (1 5 0)

AUTHOR NOT NULL VARCHAR2 (1 0 0)

DATE NOT NULL DATE

BOOK_TITLE NOT NULL VARCHAR2 (1 5 0)

CHAPTER_TITLE VARCHAR2 (1 5 0)

PAGES VARCHAR2 (2 0)

PUBLI SHER VARCHAR2 (1 5 0)

VENUE VARCHAR2 (1 5 0)

Figure 14. Description of the BOOK table

Both of the identified problems suggest that the standard model exhibits extreme

limitations in its ability to allow for 'schema extensibility' (discussed in chapter two).

By example, should the user wish to enter a new type of item, (e.g. videos) into the

category hierarchy to allow a new type of input data, the application would require the

following maintenance tasks:

• The addition of a new table to store the data, i.e. a new entity added to

figure 13, linked to the 'Return' table.

• The creation of, at least, one new screen to allow data entry into the new

table.

• The alteration of hard coded category settings to accommodate the new

item type and its associated screen(s).

43

The nature of the maintenance tasks implies that the standard E-R model' s limitations

would have a noticeable cost associated with modifications to those hard-coded

features required in response to requirement changes.

4.1.2 Flexible Design

To overcome the limitations of the initial, non-flexible, data model the problem area

was reviewed in order to effect a reduction of possible future maintenance costs. The

increased maintenance imposed by the standard model' s six separate item tables

(illustrated in figure 13) was mitigated by the introduction of a single table structure.

The single table is capable of storing all of the category hierarchy information that

would, in the non-flexible, standard application, be hard coded.

When modelling the category hierarchy the following points were considered:

• Categories may contain one or more subcategories.

• Subcategories consist of one or more data items, e.g. a subcategory storing

book details may consist of the following data items: author names,

publisher details, date published, and book title.

• A data item may exist in more than one subcategory e.g. one or more

subcategories may include 'name' as a valid field.

44

[Catego:J

rcorri�:5.-ition - •,
' , . Rule l - - --- -

�-- -
_ _

....

--
--EJ

Figure 15. ER - mmld of rntcgo,y <fala

The resultant data model, illustrated in figure 15 , permits storage of all the

information contained within the category collection list described in appendix B. In

addition the 'Composition Rule' entity permits storage of dynamic mapping data

allowing application fields to be remapped automatically at runtime.

However, before this dynamic mapping might be added to the 'Composition Rule'

entity, a dynamic storage entity was required to provide a suitable data storage area

onto which to map the application fields. In order to achieve an optimal fonn for the

dynamic entity, the storage requirements of each return item in appendix B were

mapped onto the table shown in Figure 16.

45

Cat Sub Cat Sub Sub Varchar2 Number Memo Date

Cat

�-

1 2 0 1 0

2 3 1 1 0

3 4 0 1 0

2 1 4 1 1 0

2 1 4 0 0 1

2 5 0 0 1

3 5 0 0 1

4 5 0 0 1

5 5 0 0 1

6 5 0 0 1

7 4 0 0 1

8 3 0 0 1

9 3 0 0 1

1 0 3 0 0 1

1 1 4 0 0 0

3 3 0 1 0

4 1 0 i 0

5 3 0 1 0

3 1 3 0 1 1
· -

3 0 0 1

3 0 1 0

4 2 0 1 0

5 4 0 1 0

4 1 3 0 1 0

2 4 0 1 0

3 2 0 1 0

4 2 0 1 0

5 2 0 1 0

Max 5 1 1 1

Figun: 16 . Storage n:quircmcnts or category ilems

46

The tahlc depic.:tcd in figure 1 6 ind ic.:ates that a dynamic.: ent i ty , nomi natcd · Rctu rn

Item' , t h at contains i:o lumns uf l1 vc (har;u.:ter, one memo, one date and one number

type may bi.: used to store any category i ti:m. To th i s enJ , and to a l I ow for future

grO\vth , a dynamic cnL i ty configured wi th s ix charac ters, one memu, two da te and ti,�·o

number columns was implemented . The dynamic ent i ty provided the required bridge

bct\vecn the data model in figure 1 3 and the category defin i t ion data mode l in figure

1 5 . The resu ltant , complete, model is i l lustrutcd in Figure 1 7 .

E

Discipline
Memborshlp

For

Havo

Olsclpllno ·1
Area

l"lavo

Bolong To

Havo

For

Consi�t ol

Belong To i

Have

Belong To

For

Bolon9 To

1 Belong To
i
I Lead

Rosearch
Momoorsh!p

For

Havo

L ·{' _A_e:_earch .'
. Lead [l� , • - . Group . J

Havo
Co lie-cl Ion

Po;ic,d

Figun: 1 7. Dynamic ER-Modd

47

The bridge works by defining the configuration of the 'Return Item' entity (in figure

17), for each combination of the category hierarchy. The configurations are stored in

the composition rules entity and accessed via application scripts whenever data is

required to be stored/retrieved from the dynamic entity. Thus each category

combination may have its own unique way of viewing the data stored in the dynamic

entity of 'Return Item' .

4.1.3 Creating the database

The resultant system model was entered into the Oracle CASE repository using the E­

R modelling tool. The CASE tool was then used to produce the database creation

scripts listed in appendix C, whereupon these were run on the database to form the

'back end' of the flexible application.

4.2 The Application

The flexible application, consisting of a graphically based 'front end' , was constructed

to sit atop the 'back end' database. To facilitate the flexibility, the sample application

development was split into three logical areas:

1. The first area was concerned with the setup and maintenance of the flexible

area of the application i.e. that of the category tables illustrated in figure 15.

2. The second area contained those standard functions of the system that utilise

the setup data from the category tables illustrated in figure 15, to present

flexible data entry screens.

3. The third area of the application focussed upon retrievability of the data

entered into the flexible system.

Each of the above development areas will now be elaborated.

48

4.2.1 Flexible Setup

The nature of the flow and connectivity of the system's forms, or screens, is derived

from the category setup data. Accordingly, a form flow diagram was constructed,

illustrated in figure 18. Each 'box' shown in figure 18 translates directly to one or

more functions/forms in the final application.

Category

�, •

Subcategory

I

ir

Prompts � Composition Rules View Setup � ...

Figure 18. System maintenance flow

In order to maintain system integrity, this flow forces the application's users to adhere

to both the logical and the physical relationship existent between the category

maintenance tables (those illustrated in figure 15). The flow also ensures that the

transition of the application forms/screens gives the user an implicit, even intuitive,

understanding of the relationship between the setup information and how it is

controlled by the system. In order to demonstrate this understanding each of the

functions/forms illustrated in figure 18 will be explored in detail.

49

4.2.1 .1 Category Maintenance

The user, through the category maintenance form, illustrated in figure 20, carries out

category maintenance. The form provides a graphical interface between the user and

the category database table they are altering, described in figure 19.

Name Null ? Type

CAT_NO NOT NULL NUMBER

CAT_NAME NOT NULL VARCHAR2 (5 0)

CAT_DESCRIPTION LONG

CAT_DATE_CREATED NOT NULL DATE

CAT_DATE_REMOVED DATE

Figure 19. Description of the CATEGORY table

Figure 20. Category maintenance form

50

Each category maintenance function is associated with one of the five buttons on the

form, shown in figure 20. When a button is selected, one of the following operations

is activated:

• Previous: To navigate to the preceding category information, and where

no preceding category exists then this button appears disabled.

• Back: To close the category maintenance form, and return to the main

menu.

• Next: To Navigate to the succeeding category information; and where no

succeeding category exists then this button becomes disabled.

• Remove: To set the removal date to today's date, having the effect of

removing this category from the category hierarchy. Furthermore, this

button will raise an error message if the currently selected category

contains any open subcategories.

• Drill Down: To open the subcategory maintenance form described in the

next section.

These operations permit the user to maintain the data stored in the category table with

minimal effort.

4.2.1.2 Subcategory Maintenance

In similar style to the category maintenance functions, subcategory maintenance

functions focus on the maintenance of a specific table, in this case the subcategory

table, nominated SUB_CATEGORY, described in figure 21 . However, there is an

extra level of complexity involved in the maintenance of a subcategory due to its

5 1

breakdown in to further subca tegories (in c ffcc.:t, sub suhcategories J . Three forms,

i l lus trntcd in rigu1 ·es 23 to 26, ,vcn: developed to adi i cvc ,-,uh-c, tlcgory maintcnancc,

the !low and h ierarchy of which is depic ted in l'igure 22 .

CAT_NO

SUB_CAT_NO

SUB SUB _CAT_NO

SUB_CAT_NAME

SUB CAT _DESCRI PTION

SC_DATE_CREATED

SC DATE _REMOVED

Nu l l ?

NOT t !ULL

NOT NULL

NOT NULL

NOT NULL

NOT NULL

Figun: 2 l . Description of !hi: SUB_C,\TEGOR. Y 1:1hk

Subcategory
ownership I

1� - 1 - · · ···

�l

Typ,�

NUMBER

l lUMBER

NUMBER

VARCHAP2 1 5 0)

LONG

DATE

Dl1.TE

Add
Subcategory

I "ub�;;gor; L Detai l s

Figure 22. Subc:uegory maintenance screen flow

The entry point of the subcategory maintenance flow is via a 'Subcategory

Ownership' form. illustrated in figure 23 . This form, which is cal led from the

previously discussed 'dri l l down' button on the category maintenance form (figure

20) , displays a list of the subcategories relating to the category selected in the cal l ing

52

form. The form's purpose is to allow the user to see an overview of the category­

subcategory hierarchy.

Figure 23. Subcategory ownership form

The purpose of each of the four buttons on the 'Subcategory ownership' form, figure

23, is as follows:

• Add Sub Category: To Open the 'Add Subcategory' form (figure 24) for

the input of a new subcategory.

• Add Sub Sub Category: To open the 'Add Subcategory' (figure 25)

form for the input of a new sub subcategory.

• View Details: To open the 'View Subcategory Details' (figure 26) form

and display the details for the selected subcategory.

53

--

• Back: To close the 'Subcategory ownership' form, and return to the

category maintenance form.

Providing addition of subcategories, a variant of the 'Add Subcategory' form is called

according to whether the 'Add subcategory' button or the 'Add sub sub category'

button is pressed on the 'Subcategory ownership' form (figure 23). The two variants

are shown in figures 24, for editing Subcategories, and figure 25, which has an

additional field necessary for adding Sub Sub Categories.

Figure 24. Add subcategory fonn (format I)

54

--

Figure 25. Add subcategory form (format 2)

In order to edit either sub or sub-sub categories, thus completing the flow depicted in

figure 22, an appropriate variant of the 'View subcategory details' form is provided.

These are illustrated in figure 26 and 27. The buttons at base of these forms provide

the following functionality:

• Remove: Sets the 'date removed' field to today's date, which has the effect

of removing the subcategory from active use.

• View Rules: Calls the 'composition rules' form, which, in tum displays the

setup rules of the current subcategory.

• Back: Closes the current form and returns control to the previously

mentioned 'Subcategory ownership' form.

55

Figure 26. View subcategory details form (format 1)

Figure 27. View subcategory details form (format 2)

56

4.2.1.3 Composition Rule Maintenance

Composition rule maintenance activities represent the final stage in the category

maintenance flow (figure 18). They provide a means by which the user may control

dynamic properties of the system and are facilitated by using the composition rules

maintenance form illustrated in figure 28.

Figure 28. Composition rules maintenance form

Recall the discussion in section 4. 1.2, wherein a bridge was created to facilitate the

mapping of configuration rules that determine how the dynamic table, 'Return Items',

will be accessed. The rules are setup/maintained via the 'Composition rules

maintenance' form (figure 28). In addition, the form is used for configuring the on­

screen layout of the main data entry screen, which will be discussed in the next

section.

57

The columns in the composition rules maintenance form each control an individual

link of the dynamic mapping process via the following functionality:

• Prompt: The label used to describe the data stored in its associated column

e.g. a prompt value of 'Name' would result in a field called Name being

displayed on the dynamic data entry screen and in the flexible reports.

• Column: The number of the database column to be mapped to, in

accordance with the column-mapping table illustrated in figure 29.

Column No Database Field Type

1 VCHAR_ONE VARCHAR2

2 VCHAR_TWO VARCHAR2

3 VCHAR_THREE VARCHAR2

4 VCHAR_FOUR VARCHAR2

5 VCHAR_FIVE VARCHAR2

6 VCHAR_SIX VARCHAR2

7 NUM_SEVEN NUMBER

8 NUM_EIGHT NUMBER

9 TEXT_NINE LONG

10 DATE_TEN DATE

11 DATE_ELEVEN DATE

Figure 29. Column mappmg table

• Type: This field is automatically updated, based upon the database column

number in the previous field, as shown in figure 29.

• Sequence: This field determines the order in which the defined fields will be

displayed in both dynamic screens and reports. Alteration of this value

facilitates immediate change of all related screen layouts.

58

j

Thus, through the 'Composition rules maintenance' form the user may define the

rules governing access to the dynamic table, 'Return Item' and, further, how an

individual display item will be seen by other users of the system during data entry.

4.2.2 Data Entry

Recall, as discussed in section 4.2, the second phase in the development of the

application is concerned with data entry. The data entry functions of the Staff

Submission System are separated into two further sections:

1. Those functions relating to the dynamic features of the database; and

2. Those functions relating to the static features of the database.

Each of the above data entry areas will now be elaborated.

4.2.2.1 Dynamic Data Entry

The functions controlling dynamic data entry relate to the process by which a staff

member (user) creates and edits return items. As with the category maintenance

process (discussed in the previous section), development of the staff return entry

process was initiated by creation of the form flow diagram illustrated in figure 30.

59

--

Choose Col lection
Period

,,

Add Item � ... Return Remove Item �

Figure 30. Staff return entry flow

Figure 30 models the logical flow for the entry/maintenance of return items,

beginning with selection of a collection period deriving from the need (detailed in the

problem statement stated in chapter three), for staff to submit a return every quarter.

Selection of a collection period was facilitated in the data model by the definition and

storage of the quarterly return dates inside the table nominated 'Collection Period'

(figure 1 7). A link is provided between a staff member and a collection period, in the

'Staff Return' table described in figure 31, allowing the system to log the date of

submission and the collection period of a return item.

Name Nul l ? Type

STAFF_NO NOT NULL VARCHAR2 (8)

COLLECT_NO NOT NULL NUMBER

RETURN_DATE NOT NULL DATE

Figure 31. Description of the STAFF _RETURN

60

With this functionality in mind, the 'Choose Collection Period' form, illustrated in

figure 32, was developed, wherein a user may choose between viewing a previously

submitted return and the submission of a new return

Figure 32. Choose Collection Period form

The functionality of each of the buttons on the 'Choose Collection Period' form,

figure 32, is as follows:

• Back to Main Menu: To close the 'Choose Collection Period' form, and

return to the main menu.

• New Return: To open a LOV containing a list of all collection periods

that a staff member hasn't submitted a return for, and, in consequence, to

add the selected period to the 'Choose Collection Period' form data.

61

• View Return: To open an existing return related to the adjacent

collection period in the 'View Return Items' form described below.

Following development of the 'Choose Collection Period' form, it became necessary

to create a method of viewing submitted return items. Functionality for this was

provided by a 'view return items' form, which facilitated the addition/maintenance of

return items. Recall that the rules defining access to the 'Return Items' table are

defined by the configuration rules maintained by the composition rule maintenance

functions (discussed in Section 4.2.1.3). The 'View Return Items' form provided a

focus for the translation the configuration rules into an aesthetically functional format.

Name Nul l ? Type

STAFF_NO NOT NULL VARCHAR2 (8)

COLLECT_NO NOT NULL NUMBER

CAT_NO NOT NULL NUMBER

SUB_CAT_NO NOT NULL NUMBER

SUB_SUB_CAT_NO NOT NULL NUMBER

LINE_NO NOT NULL NUMBER

DISPLAY_ IN_REPORTS VARCHAR2 (1)

VCHAR_ONE VARCHAR2 (2 4 0)

VCHAR_TWO VARCHAR2 (2 4 0)

VCHAR_THREE VARCHAR2 (2 4 0)

VCHAR_FOUR VARCHAR2 (2 4 0)

VCHAR_FIVE VARCHAR2 (2 4 0)

VCHAR_SIX VARCHAR2 (2 4 0)

NUM_SEVEN NUMBER

NUM_EIGHT NUMBER

TEXT_NINE LONG

DATE_TEN DATE

DATE_ELEVEN DATE

Figure 33. Description of RETURN_ITEMS

62

Figure 34. View Return Items - base level form

The placement of all columns of the 'Return Item' table, illustrated in figure 34, onto

the 'View Return Items' form enabled the form to be altered physically at runtime

through the use of 'GET' and 'SET' property functions. Recall that the general

applicability of these functions was reviewed in section 2.3.3.2, whilst their

applicability specific to this component of the study will now be elaborated.

The 'GET' and 'SET' property functions were utilised in a procedure named 'update

layout', presented in pseudo code in figure 35 and listed in appendix D. The 'update

layout' procedure uses the category details of the current item to access the user­

defined rules stored in the 'Composition Rules' table, described in section 4.2.1.3.

The configuration rules are used to restrict the fields that may be displayed, to

establish the labels next to each of those fields, and to determine the order in which

the fields appear.

63

BEGIN

GET CURRENT CATEGORY VALUES

IF USER I S ADMINISTRATOR

SHOW DISPLAY_IN_REPORTS FIELD

ELSE

HIDE DISPLAY_IN_REPORTS FIELD

END IF

FOR EACH COLUMN IN THE RETURN_ITEMS TABLE

SET ITEM_NAME TO CURRENT ITEM

CHECK COMPOSITION_RULE DATA ON ITEM

IF COLUMN IS NOT NEEDED

HIDE THE ITEM

ELSE

SHOW THE ITEM

DISPLAY RELATED ITEM PROMPT

POSITION ITEM ON SCREEN

END IF

END LOOP

END

Figure 35. Update Layout pseudo code

As the format of the display may have changed since its last invocation, selection of

any of the 'Next', 'Previous', 'Add', and 'Delete' buttons triggers the procedure

'update layout' following standard Oracle navigation features, so that the contents of

the 'View Return Items' screen are consistent with the form's underlying

configuration data. In addition, selection of the 'Add' button will invoke a 'Choose

Category' form, depicted in figure 36, to allow a user to select a return type from a list

of categories, sub categories and if necessary, sub sub categories.

64

The 'Choose Category' form, illustrated in figure 36, consists of three text boxes and

their associated selection buttons. Each selection button is related through its internal

properties to a LOY that enables the display a list of available categories, sub

categories or sub sub categories. The list displayed is determined by the point of

entry within the hierarchy implied in the data model shown in figure 15 , i.e. the LOY

showing sub categories is limited based on the previously selected category value

demonstrated in figures 37 and 39.

Figure 36. Choose Category form

Each of the LOYs are based upon dynamic record groups that are re-queried each

time the LOY is called, ensuring the list provided is always up to date as discussed in

section 2.3.3 .3 . The queries behind the category and subcategory record groups are

illustrated in figures 38 and 40. Figures 38 and 40 are positioned adjacent to their

respective LOYs in figures 37 and 39.

65

--

Figure 37. Choose Category form - Select a category

SELECT ALL CATEGORY . CAT_NO , CATEGORY . CAT_NAME

FROM CATEGORY

WHERE ((CATEGORY . CAT_DATE_REMOVED IS NULL)

OR CATEGORY . CAT_DATE_REMOVED <= SYSDATE

Figure 38. Choose Category Record Group

66

Figure 39. Choose Category form - Select a sub category

SELECT ALL SUB_CATEGORIES . SUB_CAT_NO ,

SUB_CATEGORIES . SUB_CAT_NAME

FROM SUB_CATEGORIES

WHERE SUB CATEGORIES . CAT_NO = : CHOOSE_ITEM_TYPE . CAT_NO

AND SUB_CATEGORIES . SUB_SUB_CAT_NO = 0

AND ((SUB_CATEGORIES . SC_DATE_REMOVED IS NULL) OR

(SUB_CATEGORIES . SC_DATE_REMOVED >= SYSDATE))

AND (SUB_CATEGORIES . SC_DATE_CREATED < = (SYSDATE)

Figure 40. Choose Subcategory Record Group

After a valid category/sub category combination has been selected on the 'Choose

Category' form the 'Accept' button may be pressed, whereupon the selected category

values are passed to the 'View Return Items' form in readiness to display the new data

item. In addition, the 'View Return Items' form calls the 'update layout' procedure

(whose pseudo-code is outlined in figure 35), thereby reconfiguring its layout to the

format dictated by the data contained in the 'Composition Rules' table.

67

By example, two sample displays of dynamically configured 'View Return Items'

forms are illustrated in figures 41 and 42. It is important to acknowledge that the

setup of these two forms is entirely dependent upon the configuration rules entered via

forms within the category maintenance flow (figure 18).

Figure 41. View Return Items - possible configuration I

Figure 42. View Return Items - possible configuration 2

68

The flow between the 'Choose Collection Period', 'View Return Items', and 'Choose

Category' flexible data entry form enables the user to view or alter any type of item

previously defined in the category maintenance screens. Notably, these flexible data

entry forms interface with the system's static data entry forms seamlessly, hiding their

underlying complexity from users of the system. The static data entry forms are

outlined in the following section.

4.2.2.2 Static Data Entry

The remaining data entry forms are focused on the static part of the database

illustrated in figure 1 7. The flow of static forms is shown in figure 43. The forms

have no flexible content; accessing directly the current values of underlying database

fields associated with displayed fields and, further, were developed with standard

Oracle features. In short, they do not contribute to the enhancements demonstrated in

the study. Accordingly, for the purpose of clarity only, they will be outlined briefly

below.

69

Personal Detai ls

Main_Menu

Maintain Detai ls Menu

�r

Change Password Discipl ine
Memberships

Figure 43. Static data entry flow

11,'

Research
Memberships

The system's static data entry forms display data derived, in standard format, from

databases external the Staff Submission System, and facilitate the following

functionality, the flow of which is illustrated in figure 43:

• Personal Details: To add/alter data in the 'STAFF' table.

• Change Password: To change a user's password.

• Discipline Memberships: To add/alter the Discipline Areas of which a

user is a member.

• Research Memberships: To add/alter the Research Groups of which a

user is a member.

Examples of the appearance of each of these forms are contained within appendix E.

They were removed to an appendix, as they do not form part of the study' s focus and

to maintain brevity within the main document and, for the benefit of the reader.

70

4.2.3 Reporting

The third area of the application, identified in section 4.2, is occupied with querying

and reporting of data in the database. The reporting functions use the same

configuration rules as the 'View Return Items' form (outlined in section 4.2.2. 1),

thereby fulfilling the requirement that they: "allow easy data extraction" identified in

the statement of the problem in section 3. 1.

The reporting requirement was satisfied by provision of nine reports, each developed

to provide a wide range of data extraction options. In brief, the purpose of each of the

reports is as follows:

• Individual Return: To report a complete listing of all return items

submitted by an individual within a specific collection period.

• Period Report: To report all return items submitted within a specific

collection period.

• Specific Category: To report all return items of a specific category,

submitted within a specific collection period.

• Rules: To report the current configuration rules contained in the category

maintenance tables (figure 15).

• No Return: To report names and contact details of those staff who did

submit a return within a specific collection period.

• Discipline Membership: To report a list of staff members who belong to a

specific discipline.

71

• Research Membership: To report a list of staff members belonging to a

specific research group.

• Individual Membership: To report the disciplines and research groups to

which an individual staff member belongs.

• Staff in System: To report a list of details for staff as stored in the

database.

The flexible nature of the database necessitated the development of a SQL query akin

to the 'update layout' procedure (represented in figure 35) so that standard Oracle

Reports software might present the correct layout for each data item. The resultant

SQL query, described in figure 44, followed the indirection defined by the contents of

composition rules table, replicating the flexibility employed to configure the 'View

Return Items' form (outlined in section 4.2.2.1) . In other words, as will be shown in

following paragraphs, the same configuration rules established for flexible user

screens are employed to provide flexible system reports, thereby achieving a doubling

of the rules' efficacy.

72

SELECT

STAFF_RETURN_ITEMS . STAFF_NO ,

STAFF_RETURN_ITEMS . line_NO ,

STAFF_RETURN_ITEMS . COLLECT_NO ,

STAFF_RETURN_ITEMS . CAT_NO ,

STAFF_RETURN_ITEMS . SUB_CAT_NO ,

STAFF_RETURN_ITEMS . SUB_SUB_CAT_NO ,

COMPOSITION_RULES . SEQUENCE_NO ,

COMPOSITION_RULES . PROMPT_NO ,

COMPOSITION_RULES . COLUMN_NO ,

PROMPTS . FIELD_PROMPT

FROM

STAFF_RETURN_ITEMS ,

COMPOSITION_RULES ,

PROMPTS

WHERE COMPOSITION_RULES . CAT NO = STAFF_RETURN_ITEMS . CAT_NO

AND COMPOSITION_RULES . SUB_CAT_NO = STAFF_RETURN_ITEMS . SUB_CAT NO

AND COMPOSITION_RULES . SUB_SUB_CAT_NO = STAFF_RETURN_ITEMS . SUB_SUB_CAT NO

AND PROMPTS . PROMPT_NO = COMPOSITION_RULES . PROMPT_NO

AND STAFF_RETURN_ITEMS . CAT_NO = : P_CAT_NO

AND STAFF_RETURN_ITEMS . SUB_CAT_NO = : P_SUB_CAT NO

AND STAFF_RETURN_ITEMS . SUB_SUB_CAT_NO = : P_SUB_SUB_CAT NO

AND STAFF_RETURN_ITEMS . DISPLAY_IN_REPORTS = ' T '

ORDER BY SEQUENCE_NO

Figure 44. SQL query used to define report structure

The query listed in figure 44 returns the structure of a value in the 'Return Item' table

together with its category details, providing a level of indirection to the data that will

appear in the report. The method of indirection is via a function that reads the

structure according to the configuration rules (described in section 4. 1 .2.3) before

resolving and returning the data pointed to by the rules. This function was named

CF _DATA and, for simplicity, is presented as pseudo code in figure 45.

73

GET THE CURRENT COLUMN NUMBER

CASE COLUMN NUMBER OF :

1 TO 6 RETURN VARCHAR2

7 TO 8 RETURN NUMBER

9 RETURN LONG

1 0 TO 1 1 : RETURN DATE

END CASE

Figure 45. CF _DAT A pseudo code

The SQL query and CF _DAT A functions were then merged using the Oracle Report

product's graphical data model interface tools. The emergent model, illustrated in

figure 46, separates the query into three groups as follows (relating to the tables

shown in figure 17):

• G_STAFF _NO: Data related to the 'Staff Return' table.

• G_CAT_NO: Data related to the Category tables of 'Category' and 'Sub

Category' .

• G_FIELD_PROMPT: Data relating to the 'Prompt' and 'Return Item'

tables.

74

� + STAFF_NO
8 CF_Staff_Name
Ill+ COLLECT _NO
B CF_ Colfection_Pl!!riod

EJ + CAT_NO
D CF_ CA T._NAME
Ill + SUB CAT NO
8 CF_SUB_CA T._NAME
Ill + SU8_SU8_CAT_NO
8 CF_S/Jb_Sub_Cet_Nem�
Ill + LINE_NO

i8 FlaD_PROMPT
• CF_DA TA
EJ + SEQUENCE_NO
Ill PROMPT_NO
EJ COLUMN_NO

Figure 46. Oracle Reports data model

Notably, the mechanism described in this section uses the flexible data model to

provide reports governed by the same configuration rules used to configure

dynamically the system's user screens. To help demonstrate the flexible nature of the

reports a selection of the sample reports has been included in appendix F. They were

removed to an appendix to maintain brevity within the main document and, for the

benefit of the reader.

75

4.3 Summary

This chapter has detailed the phases introduced in chapter three, namely those of

analysis, design, and development of the sample application, and detailed and

discussed those techniques and procedures that were used to implement them.

Specifically detailed were the construction of the staff submission system in terms of

flexible 'front end' and 'back end' development to satisfy a the problem statement and

associated requirements stated in chapter three.

76

Chapter 5 : Findings

This chapter discusses the study' s findings, in relation to the research question stated

in chapter one as: "How may the challenge of dynamic/flexible user requirements be

met using data driven techniques in a 4GL-database environment? " Recalling,

further, that the main research question consists of two components, both are now

restated and each is addressed in tum.

5.1 Findings on Research Question, part (a).

"How may one model dynamic user requirements through an extension of current

data modelling techniques?"

Part (a) of the research question was responded to by developing a sample application

that investigated the viability of using an extension of existing data modelling

techniques to capture and store a problem that is dynamic in nature. The author, in

chapter two, has reviewed the exiguous literature occupied with the capture of

dynamic requirements and, further, observed that few of the techniques described

were practical enough for real application. An alternative approach of extending an

existing data modelling technique was proffered as being superior to the creation of

new modelling techniques as the tools and language facilities are already widely

available.

To address part (a), the study extended standard modelling techniques, discussed in

chapter two, defined in chapter three, and demonstrated in chapter four, for capture of

the dynamic data requirements of a replacement Staff Submission System for ECU.

77

The enhanced E-R model reflects the requirement that a systems administrator may,

post-implementation, whilst the system is live, wish to alter dynamically the category

hierarchy and configuration rules of the system.

The resultant E-R model, discussed in chapter four, was extended to incorporate extra

data thereby allowing the storage of dynamic mapping. This extension required

neither new symbols nor relationships to be added to the currently accepted E-R

modelling tool set. The extension' s success was validated by the ability of the Oracle

CASE tool to convert the dynamic E-R model into database creation scripts, as the

CASE tool strictly adheres to the standard E-R modelling precepts.

The author proposes that the successful extension of the E-R modelling technique

yields two conclusions:

1. The capture of dynamic requirements using E-R modelling has been

overlooked due to a lack of publications on the subject; and

2. Current, static E-R models may be extended through the study's

techniques to implement preventative maintenance and to provide

extensibility.

78

5.2 Findings on Research Question, part (b).

"How may one implement user requirements of flexibility using data driven

techniques in a 4GL environment?"

In response to research question, part (b), the study examined the feasibility of

implementing those dynamic requirements, captured in response to research question

part (a), in a 4GL environment. As stated in chapter three, the author chose the Oracle

4GL due to its ready availability and the use of the environment by previous studies

into those parallel areas reviewed in chapter two.

The user requirements, as stated in chapter three, necessitated that the application be

both flexible, to prove the point of the study, and functional, to demonstrate

applicability of the study to satisfy real-world problems. Thus, the development of

the application extended to demonstrate flexibility that mitigated costs of potential

maintenance of the application's data entry and reporting functions.

The study resulted in the creation of a Staff Submission System that allows an

advanced user to alter the appearance and functionality of specific areas of the

application. The flexibility was based on a database, generated from a dynamic E-R

model. Further, a 4GL Oracle forms .'front end' was designed to ensure the

application provided a pleasant and practical means to manage the flexible aspects of

the system.

79

The completed application has undergone extensive acceptance testing by the author

and the study' s clients, i.e. ECU staff, to verify system properties and, further, is

undergoing commissioning and is expected to go "live" in July 2001.

80

Chapter 6: Conclusion

To introduce this final chapter, let us first examine the motivation of this study. The

author, a programmer/analyst, is regularly contracted by organisations requiring

changes to existing software systems. The author's experiences and observations,

plus those gathered from colleagues and from the literature, suggest that much

remedial effort involved in system alterations during maintenance sterns from a lack

of foresight during initial analysis and design. In short, as implied in chapter one, this

study was motivated by a desire to reduce that effort involved in perfective and

adaptive maintenance, thereby enhancing the efficiency of programmers involved in

maintenance activities.

In chapter two, literature, concerned with existing techniques for specifying and

developing dynamic/flexible systems, was reviewed. The review concluded that

while limited research pointed out the lack of suitable techniques, it failed to present

published methods for practical solutions to the problem. Furthermore, published

research that addressed ways to minimise maintenance effort through flexibility

focussed on that of the 'business rule' or 'front end', and overlooked the fundamental

importance of data flexibility.

In order to demonstrate a possible solution to the emergent problem of designing and

developing a system with innate data flexibility, a 'real life' Staff Submission System,

required by ECU, was selected. Accordingly, the Staff Submission System was

81

developed with a focus on the reduction of eventual maintenance that may be

achieved through flexibility.

During the application's development, flexibility was built-in into all possible aspects

of the system. The resultant database incorporated dynamic mapping data that

allowed runtime mapping from those database attributes, which required flexibility, to

the user forms/reports where their requirements were not fully definable.

The successful creation and implementation in the study produces several

implications for application designers and developers:

• A potential reduction in maintenance costs.

• The retention of use of established modelling techniques to accommodate

dynamic requirements/abilities.

• The ability to develop application 'front ends' that, subsequently, may

adapt to requirements changes with neither coding changes nor substantial

recompilations and installations.

• An attendant increase in system life and flexibility.

Finally, the techniques established in this study are not limited to Oracle based

applications and may be applied to database management systems in general.

Through their use, future maintenance efforts might be mitigated to a point of major

cost reductions in software maintenance, thereby releasing funds for the development

of new or enhanced products.

82

Glossary

ECU: Edith Cowan University, 100 Joondalup Drive, Joondalup 6027, Western

Australia.

Form: A form is a collection of objects with which a user may interact in order to

view and modify database tables. Forms may consist of windows, canvases, text

items, buttons and other windows dialog mechanisms. Typically a form will contain a

number of different, but related, blocks.

LOV: A list of values (LOV) is a modal pick list and visual presentation of data

contained in a record group. From such a list, users may select a single valid value,

which is normally used to populate an item.

ODMG: "the Object Database Management Group undertakes continuing work on

standards for object database management systems (ODBMSs)"("ODMG 2.0", 1998).

Object Oriented (Approach): Comprises Object Oriented Analysis, Design and

Programming, each of which, for clarity, is defined separately as follows, as taken

from Booch (1994, p.38-39):

"Object-Oriented Analysis: a method of analysis that examines requirements

from the perspective of the classes and objects found in the vocabulary of the

problem domain.

83

Object-Oriented Design: a method of design encompassing the process of

00 decomposition and a notation for depicting both logical and physical as

well as static and dynamic models of the system under design.

Object-Oriented Programming: a method of implementation in which

programs are organised as cooperative collections of objects, each of which

represents an instance of some class, and whose classes are all members of a

hierarchy of classes via inherited relationships."

PL/SQL: Procedural Language/Structured Query Language. PL/SQL is a

procedural language developed by the Oracle Corporation for use in its products. It is

functionally similar to many 3GLs and has a strong similarity to, and relationship with

the language ADA. PL/SQL is used to provide a flexible means to enhance SQL

code.

Record Groups: Structured sets of data used to facilitate interaction between the

database and an application, most commonly using LOVs. Record groups are often

perceived as virtual tables.

SQL: Structured Query Language is the standard language used in conjunction with

relational database management systems. The American National Standards Institute

(ANSI) and the International Standards Organisation (ISO) approved the standard

jointly in 1992.

84

Triggers: A trigger is a section of code that is used to extend the functionality of an

application. Each trigger contains one or more PL/SQL statements. A trigger may be

associated with an event, such as when a button is selected, whereupon the trigger

executes.

UML: "The Unified Modelling Language (UML) is a language for specifying,

visualizing, constructing, and documenting the artefacts of software systems, as well

as for business modelling and other non-software systems. The UML represents a

collection of best engineering practices that have proven successful in the modelling

of large and complex systems. The UML is the successor to the modelling languages

found in the Booch, GOSE/Jacobson, OMT and other methods. Many companies are

incorporating the UML as a standard into their development processes and products,

which cover disciplines such as business modelling, requirements management,

analysis & design, programming and testing." ("UML", 2001).

85

Bibliography

Behforooz, A. & Hudson, F, J., (1996). Software Engineering Fundamentals.
Oxford University Press: Oxford, UK.

Beynon-Davies (1996). Database Systems. Wiltshire, Great Britain: Anthony Rowe
Ltd.

Blum, B.I. (1993a). On the Engineering of Open Software Systems. International
Symposium on Engineered Software Systems. (pp. 43-57). Malvern.

Blum, B.I. (1993b). Representing Open Requirements with a Fragment-Based
Specification. IEEE Transactions on Systems. Man. and Cybernetics. 23 (3),
724-736.

Booch, G. (1994). Object-Oriented Analysis and Design with Applications.
Benjamin/Cummings Publishing: California.

Callon, J.D. (1996). Competitive advantage through Information technology.
McGraw-Hill Companies: Sydney.

Chen, P.P. (1976). The Entity-Relationship Model - Toward a Unified View of Data.
ACM Transactions on Database Systems. 1 (1), 9-36.

Codd, E.F. (1970). A Relational Model for Large Shared Data Banks.
Communications of the ACM. 13 (1), 377 - 387.

Ensor, D., & Stevenson, I. (1997). Oracle design. O'Reilly Associates: USA.

Feuerstein, S. (1996). Advanced Oracle PUSOL. O'Reilly Associates: USA.

Hall, M.J. (1998). System and Database Design: Lecture 3.

Hall, M.J. & Ligezinski.P. (1997a). Designing flexible software to accommodate
dynamic user requirements: An alternative solution to a continuing IS
problem. In Proceedings of World Conference on Systemics. Cybernetics and
Informatics ISAS '97 Vol. 1. Caracas, Venezuela.

86

Hall, M.J. & Ligezinski.P. (1997b). Developing flexible software with Oracle tools.
Proceedings of Oracle Openworld 1997 Conference - Step Into the Future
Today. Melbourne, Vic: ANZORA.

Hofmann, H.F., Pfeifer, R. & Vinkhuyzen, E. (1993). Situated Software Design.
Proceedings of the Fifth International Conference on Software Engineering
and Knowledge Engineering. San Francisco: USA.

Layng, M. (1998). Software Flexibility in a Web Environment. Honours
dissertation, Edith Cowan University, Perth, Western Australia.

Lientz, B. & Swanson E. (1980). Software Maintenance Management. Addison
Wesley

Liu, X., Yang, H. & Zedan, H. (1998). Improving Maintenance Through
Development Experiences. Unpublished paper presented at the Fifth
Workshop on Empirical Studies of Software Maintenance.

Mehandjiev, N., & Bottaci, L. (1 996). User Enhanceability for Organisational
Information Systems through Visual Programming. Advanced Information
Systems Engineering: 8th International Conference, CAiSE'96 (pp. 432-456)
Springer-Verlag, 1996.

Mehandjiev, N., & Bottaci, L. (1998). The Place of User Enhanceability in User -
Oriented Software Development. Journal of End User Computing. 1 0 (2) 4-
14.

O'Connor, S. (1999). Implementing Flexibile Software Techniques in a 4GL
Environment. Honours dissertation, Edith Cowan University, Perth, Western
Australia.

ODMG 2.0 (1998, July). OMDG 2.0: If You Want Better Answers . . . [online].
Available WWW: http://www.omdg.org [17/09/2000].

Oracle. (January 2001). Oracle Technet [online] . Available WWW:
http://technet.oracle.com [26/01/2001]

Panko, R.R., (1998). What we know about Spreadsheet errors. Journal of End User
Computing 10 (2) 1 5-21 .

87

Parnas, D.L. (1979). Designing Software for Ease of Extension and
Contraction.:. IEEE Transactions on Software Engineering. SE-5, (2) 128-137.

Pohl, I. (1997). Object-Oriented Programming using C++ (2nd Ed.).
Addison-Wesley: Sydney.

Pressman, R.S. (1997). Software Engineering a Practitioners Approach. (4th Ed.).
McGraw Hill.

Stacey, M. (1995) Distorting Design: Unevenness as a Cognitive Dimension of
Design Tools [online] Available WWW:
http://www.mk.dmu.ac. uk/-mstacey/ documents/uneven-a.htm [15/08/2000]

UML. (2001, January). UML [online]. Available WWW: http://www.omg.org/uml/
[10/02/2001]

Weinberg, J. (1990). Jerry's Site [online]. Available WWW:
http://www.geraldmweinberg.com/ [02/02/2001]

Woolfolk, W.W., Ligezinski, P. & Johnson, B. (1996). The Problem of the
Dynamic Organisations and the Static System: Principles and Techniques for
Achieving Flexibility. Proceedings of the 29th Annual Hawaii International
Conference on Systems Science (p. 482-491).

88

Appendix A - Data Collection Form used in the Manual

Submission System

DATA COLLECTION FOR THE MONTHS OF: _________ _

ENTER INFORMATION RELATING TO COLLECTION PERIOD ONLY

PLEASE DO NOT USE ABBREVIATIONS

NAME: ----------------

TEACHING AND LEARNING

e.g. innovation and flexibility, internationalisation of curriculum, links with industry
and professions, strategic partnerships and pathways, teaching grants and awards,
achievement by undergraduate students.

RESEARCH GRANTS & ACTNITIES

For research grants (please include amount granted, funding body, title of research
project, co-researcher/s, collaborating organisations), research profile, research
management, postgraduate research awards, achievements by postgraduate research
students.

PUBLICATIONS

(Please give details of refereed publications in the data collection period)

Book: Authored - research:

Book Chapter (in Al type Books):

89

Full written paper - refereed proceedings:

CONFERENCE PRESENTATIONS

Please give details of conferences attended, papers presented, significant role in the
conference or organisation of the conference (please provide title of conference, paper
presented, venue and dates).

AW ARDS/RECOGNITION

Please give details of any significant staff achievements or awards (include title of
award, awarding body and reason for award)

TV/RADIO/MEDIA PARTICIPATION

Please provide programme/article title, radio/TV station/newspaper, date, topic,
reason for interview/article.

INTERNATIONALISATION OR INTERNATIONAL ACTIVITIES

e.g. strategic partnerships, international students, international visitors (please list
name, duration and purpose of visit, activities undertaken, area of expertise, institution
and country).

COMMERCIAL ACTIVITIES

Please give details of any commercial activities.

90

SERVICES AND SUPPORT

e.g. students (access, enrolments, support), equity and EEO, staffing (staff
development, staff profile), IT, physical environment, safety.

MANAGEMENT

e.g. implementation of Strategic Plan, quality issues, general higher education issues.

STUDENT ACTIVITIES/ ACHIEVEMENTS

(for inclusion in the Faculty Student Newsletter)

OTHER SIGNIFICANT ACTIVITIES (which are not covered by other categories)

91

Appendix B - Collection Category Setup

1. Teaching and Learning

1. 1 Teaching initiatives

Name(s)

School

Description of initiative

1.2 Teaching awards and grants

Recipient(s)

Awarding Body

Title of award/grant

Description

Amount Granted

1.3 Achievements by undergraduate students

Name

School

Course

Description

Staff involved

2. Research and Creative Works

2. 1 Research Grants

Recipient(s)

Funding Body

Title of research grant

Amount granted

Collaborating organisations

2.2 Publications

Book:

Author

Date

92

Title

Publisher

Venue

Book chapter:

Author

Date

Chapter Title

Book Title

Publisher

Venue

Article in refereed journal:

Author

Date

Title of article

Title of journal

Volume

Page numbers

Article in non-refereed journal:

Author

Date

Title of article

Title of journal

Volume

Page numbers

Article in refereed conference proceedings:

Author

Date

Title of article

Title of proceedings

Volume

Page numbers

93

Article in non-refereed conference proceedings:

Author

Date

Title of article

Title of proceedings

Volume

Page numbers

Paper presented at conference:

Author

Date

Title of presentation

Conference

Venue

Research reports:

Author

Date

Title

Publisher

Audio-visual recordings:

Author

Date

Title

Publisher

CD-ROM/computer software:

Author

Date

Title

Publisher

94

Creative works:

Presenter

Name of work

Event

Venue

2.3 Postgraduate student achievements

Name of student

School

Description of achievement

Staff involved

2.4 Research strategic alliances

Institution/organisation

Description of strategic alliance

2.5 Research Awards

Recipient

Awarding body

Title of award

Description of award

3. Community and professional service

3. 1 TV/radio/media participation

Name

Programme/article title

Radio/TV station or publication

Description

Date

3.2 Appointments to Boards or External Committees

Position

Name of Board or Committee

Nominating group

Date of tenure

95

3.3 Awards/recognition - significant achievements or awards

Recipient

Achievement/award

Awarding body

Reason for the award

3.4 Service/lnitiati ves

Name

School

Description

3.5 Visitors

Name

Institution

School/Centre

Purpose

Duration

4. International and Commercial activities

4. 1 Strategic alliances/partnerships

Name

School

Institution

Description

4.2 International visitors

Name

Institution

School

Purpose of visit

Duration

4.3 International students

Name

School

96

Description

4.4 Commercial activities

Name

School

Description

5. Other significant activities

Name

School

Description

97

Appendix C - Database Creation Scripts

CEEDG1 3.SQL

- -Generated By : Chris Bolan

- - Purpose : Call s the necessary creation scripts needed to completely

create the database

SPOOL ceedgl3 . lst

@ @ ceedg13 . tab

@@ ceedg13 . ind

@@ ceedg13 . con

@@ ceedg13 . sqs

SPOOL OFF

CEEDG1 3.TAB

- -Generated By : Chris Bolan

- - Purpose : Creates the database tables

PROMPT Creating Table ' STAFF_RETURN '

CREATE TABLE STAFF_RETURN

I

(STAFF_NO VARCHAR2 (8) NOT NULL

, COLLECT_NO NUMBER NOT NULL

, RETURN_DATE DATE NOT NULL

COMMENT ON COLUMN STAFF_RETURN . STAFF_NO I S ' Staff members staff

number , unique ID , assigned by the univers i ty '

I

COMMENT ON COLUMN STAFF_RETURN . COLLECT_NO I S ' Automatically generated

index value '

I

COMMENT ON COLUMN STAFF_RETURN . RETURN_DATE I S ' Date of the return '

I

PROMPT Creating Table ' SUB_CATEGORIES '

CREATE TABLE SUB_CATEGORIES

98

I

(CAT_NO NUMBER NOT NULL

, SUB_CAT_NO NUMBER NOT NULL

, SUB_SUB_CAT_NO NUMBER DEFAULT O NOT NULL

, SUB_CAT_NAME VARCHAR2 (5 0) NOT NULL

, SUB_CAT_DESCRIPTION LONG

, NO_SUB_SUB_CATS NUMBER NOT NULL

, SC_DATE_CREATED DATE NOT NULL

, SC_DATE_REMOVED DATE

COMMENT ON COLUMN SUB_CATEGORIES . CAT_NO IS ' Auto generated index

value '

I

COMMENT ON COLUMN SUB_CATEGORIES . SUB_CAT_DESCRIPTION IS ' Description

of the sub category '

I

PROMPT Creating Table ' SCHOOLS '

CREATE TABLE SCHOOLS

I

(SCL_CODE VARCHAR2 (6) NOT NULL

, FAC_CODE VARCHAR2 (6) NOT NULL

, SCL_NAME VARCHAR2 (7 0) NOT NULL

, SCL_DESCRIPTION LONG

COMMENT ON COLUMN SCHOOLS . SCL_CODE I S ' Automatical ly generated index

value '

I

COMMENT ON COLUMN SCHOOLS . FAC_CODE I S ' Automatical ly generated index

value '

I

COMMENT ON COLUMN SCHOOLS . SCL_NAME I S ' Name of the school '

I

COMMENT ON COLUMN SCHOOLS . SCL_DESCRIPTION I S ' Description and extra

infomation about the school '

I

99

PROMPT Creating Table ' DI SCIPLINE_AREAS '

CREATE TABLE DISCIPLINE_AREAS

I

(DI S_CODE VARCHAR2 (10) NOT NULL

, DI S_NAME VARCHAR2 (5 0) NOT NULL

, DI S_DESCRIPTION LONG

COMMENT ON COLUMN DISCIPLINE_AREAS . DI S_CODE I S ' code '

I

COMMENT ON COLUMN DISCIPLINE_AREAS . DI S_NAME I S ' Name of discipl ine '

I

COMMENT ON COLUMN DISCIPLINE_AREAS . DI S_DESCRIPTION IS ' Descript ion

and extra information about discipl ine '

I

PROMPT Creating Table ' PROMPTS '

CREATE TABLE PROMPTS

I

(PROMPT_NO NUMBER NOT NULL

, FI ELD_PROMPT VARCHAR2 (5 0) NOT NULL

, PROMPT_DESCRIPTION LONG

COMMENT ON COLUMN PROMPTS . PROMPT_NO IS ' Auto generated index value '

I

COMMENT ON COLUMN PROMPTS . FIELD_PROMPT I S ' Name of the i tem (Label) '

I

COMMENT ON COLUMN PROMPTS . PROMPT_DESCRIPTION I S ' Description and

information about the item '

I

PROMPT Creating Table ' RESEARCH_MEMBERSHIPS '

CREATE TABLE RESEARCH_MEMBERSHIPS

(R_GROUP_NAME VARCHAR2 (6 0) NOT NULL

, STAFF_NO VARCHAR2 (8) NOT NULL

100

I

, RG_START_DATE DATE DEFAULT ' 0 1 -JAN- 2 0 0 0 ' NOT NULL

, RG_TERM_DATE DATE

COMMENT ON COLUMN RESEARCH_MEMBERSHIPS . R_GROUP_NAME I S ' Name of the

group '

I

COMMENT ON COLUMN RESEARCH_MEMBERSHIPS . STAFF_NO I S ' Staff members

sta f f number , unique ID , assigned by the university '

I

COMMENT ON COLUMN RESEARCH_MEMBERSHIPS . RG_START_DATE I S ' Start date

of membership '

I

COMMENT ON COLUMN RESEARCH_MEMBERSHIPS . RG_TERM_DATE I S ' Date

membership terminated '

I

PROMPT Creating Table ' COLLECTION_PERIODS '

CREATE TABLE COLLECTION_PERIODS

(COLLECT_NO NUMBER NOT NULL

, CP_START_DATE DATE NOT NULL

, CP_END_DATE DATE NOT NULL

I

COMMENT ON COLUMN COLLECTION_PERIODS . COLLECT_NO I S ' Automatical ly

generated index value '

I

COMMENT ON COLUMN COLLECTION_PERIODS . CP_START_DATE IS ' Date

collection starts '

I

COMMENT ON COLUMN COLLECTION_PERIODS . CP_END_DATE I S ' Date collection

ends '

I

PROMPT Creating Table ' FACULTIES '

CREATE TABLE FACULTIES

101

I

(FAC_CODE VARCHAR2 (6) NOT NULL

, FAC_SHORT_CODE VARCHAR2 (5) NOT NULL

, FAC_NAME VARCHAR2 (7 0) NOT NULL

, FAC_DESCRIPTION LONG

COMMENT ON COLUMN FACULTIES . FAC_CODE IS ' Automatically generated

index value '

I

COMMENT ON COLUMN FACULTIES . FAC_NAME IS ' Name of the faculty '

I

COMMENT ON COLUMN FACULTIES . FAC_DESCRIPTION IS ' Description and extra

infomation about the faculty '

I

PROMPT Creating Table ' CATEGORY '

CREATE TABLE CATEGORY

I

(CAT_NO NUMBER NOT NULL

, CAT_NAME VARCHAR2 (5 0) NOT NULL

, CAT_DESCRIPTION LONG

, CAT_DATE_CREATED DATE NOT NULL

, CAT_DATE_REMOVED DATE

COMMENT ON COLUMN CATEGORY . CAT_NO IS ' Auto generated index value '

I

COMMENT ON COLUMN CATEGORY . CAT_NAME IS ' Name of the category '

I

COMMENT ON COLUMN CATEGORY . CAT_DESCRIPTION IS ' Description of the

category '

I

PROMPT Creating Table ' STAFF_RETURN_ITEMS '

CREATE TABLE STAFF_RETURN_ITEMS

(STAFF_NO VARCHAR2 (8) NOT NULL

102

I

, COLLECT_NO NUMBER NOT NULL

, CAT_NO NUMBER NOT NULL

, SUB_CAT_NO NUMBER NOT NULL

, SUB_SUB_CAT_NO NUMBER NOT NULL

, LINE_NO NUMBER NOT NULL

, DISPLAY_IN_REPORTS VARCHAR2 (1) DEFAULT ' T ' NOT NULL

, VCHAR_ONE VARCHAR2 (24 0)

, VCHAR_TWO VARCHAR2 (2 4 0)

, VCHAR_THREE VARCHAR2 (2 4 0)

, VCHAR_FOUR VARCHAR2 (2 4 0)

, VCHAR_FIVE VARCHAR2 (2 4 0)

, VCHAR_SIX VARCHAR2 (2 4 0)

, NUM_SEVEN NUMBER

, NUM_EIGHT NUMBER

, TEXT_NINE LONG

, DATE_TEN DATE

, DATE_ELEVEN DATE

COMMENT ON COLUMN STAFF_RETURN_ITEMS . CAT_NO IS ' Auto generated index

value '

I

PROMPT Creating Table ' STAFF '

CREATE TABLE STAFF

(STAFF_NO VARCHAR2 (8) NOT NULL

, SCL_CODE VARCHAR2 (6) NOT NULL

, CMP_CODE VARCHAR2 (2) NOT NULL

, SURNAME VARCHAR2 (5 0) NOT NULL

, FIRST_NAMES VARCHAR2 (5 0) NOT NULL

, LOGIN_PIN VARCHAR2 (2 0) NOT NULL

, SECURITY_ROLE VARCHAR2 (1) NOT NULL

, DATE_OF_BIRTH DATE

, USED_NAME VARCHAR2 (5 0)

, USER_NAME VARCHAR2 (8)

, TELEPHONE_NO VARCHAR2 (12)

, OFFICE VARCHAR2 (8)

, EMAIL VARCHAR2 (4 0)

, POS_CATEGORY VARCHAR2 (1 5)

103

I

COMMENT ON COLUMN STAFF . STAFF_NO I S ' Staff members staff number ,

unique ID , assigned by the univers i ty '

I

COMMENT ON COLUMN STAFF . SCL_CODE I S ' Automatically generated index

value '

I

COMMENT ON COLUMN STAFF . SURNAME I S ' Staff members surname '

I

COMMENT ON COLUMN STAFF . FIRST_NAMES I S ' Staff members first name '

I

COMMENT ON COLUMN STAFF . USED_NAME I S ' Name staff member i s known by '

I

COMMENT ON COLUMN STAFF . TELEPHONE_NO I S ' Staff members contact

telephone number '

I

COMMENT ON COLUMN STAFF . OFFICE I S ' Staff members office number '

I

COMMENT ON COLUMN STAFF . EMAIL I S ' Staf f members email address '

I

PROMPT Creating Table ' COMPOSITION_RULES '

CREATE TABLE COMPOSITION_RULES

I

(CAT_NO NUMBER NOT NULL

, SUB_CAT_NO NUMBER NOT NULL

, SUB_SUB_CAT_NO NUMBER NOT NULL

, COLUMN_NO NUMBER NOT NULL

, PROMPT_NO NUMBER NOT NULL

, DATA_TYPE VARCHAR2 (1 0) NOT NULL

, SEQUENCE_NO NUMBER (2) NOT NULL

104

COMMENT ON COLUMN COMPOSITION_RULES . CAT_NO IS ' Auto generated index

value '

I

COMMENT ON COLUMN COMPOSITION_RULES . COLUMN_NO IS ' Number of the

column the i tem i s to be stored in '

I

COMMENT ON COLUMN COMPOSITION_RULES . PROMPT_NO IS ' Auto generated

index value '

I

PROMPT Creating Table ' RESEARCH_GROUPS '

CREATE TABLE RESEARCH_GROUPS

(R_GROUP_NAME VARCHAR2 (6 0) NOT NULL

, GRP_LEADER_NO VARCHAR2 (8)

, GRP_ADDRESS VARCHAR2 (5 0)

, GRP_INFO LONG

I

COMMENT ON COLUMN RESEARCH_GROUPS . R_GROUP_NAME IS ' Name of the group '

I

COMMENT ON COLUMN RESEARCH_GROUPS . GRP_LEADER_NO IS ' Staff members

staff number , unique ID , ass igned by the university '

I

COMMENT ON COLUMN RESEARCH_GROUPS . GRP_ADDRESS IS ' Ma i ling address of

the group '

I

COMMENT ON COLUMN RESEARCH_GROUPS . GRP_INFO IS ' Information about the

group '

I

PROMPT Creating Table ' DISCIPLINE_MEMBERSHIPS '

CREATE TABLE DISCIPLINE_MEMBERSHIPS

(STAFF_NO VARCHAR2 (8) NOT NULL

, DIS_CODE VARCHAR2 (1 0) NOT NULL

105

I

COMMENT ON COLUMN DISCIPLINE_MEMBERSHIPS . STAFF_NO IS ' Staff members

staff number , unique ID, ass igned by the university '

I

COMMENT ON COLUMN DISCIPLINE_MEMBERSHIPS . DIS_CODE IS ' code '

I

PROMPT Creating Table ' CAMPUS '

CREATE TABLE CAMPUS

I

(CMP_CODE VARCHAR2 (2) NOT NULL

, CMP_NAME VARCHAR2 (10 0) NOT NULL

, CMP_ADDRESS VARCHAR2 (10 0)

, CMP_COUNTRY VARCHAR2 (10 0)

PROMPT Creating Table ' BLANK_COMMIT '

CREATE TABLE BLANK_COMMIT

(BC_DUMMY VARCHAR2 (1))

I

CEEDG1 3.IND

- -Generated By : Chris Bolan

- - Purpose : Creates indexes on table columns to fac i l itate faster

searching

PROMPT Creating Index ' RET_STF_FK_I '

CREATE INDEX RET_STF_FK_I ON STAFF_RETURN

(STAFF_NO)

I

PROMPT Creating Index ' RET_COL_PRD_FK_I '

CREATE INDEX RET_COL_PRD_FK_I ON STAFF_RETURN

(COLLECT_NO)

I

PROMPT Creating Index ' SUB_CAT_CAT_FK_I '

CREATE INDEX SUB_CAT_CAT_FK_I ON SUB_CATEGORIES

(CAT_NO)

106

I

PROMPT Creating Index ' SCH_FAC_FK_I '

CREATE INDEX SCH_FAC_FK_I ON SCHOOLS

(FAC_CODE)

I

PROMPT Creating Index ' RSH_MBRSHP_STF_FK_I '

CREATE INDEX RSH_MBRSHP_STF_FK_I ON RESEARCH_MEMBERSHIPS

(STAFF_NO)

I

PROMPT Creating Index ' RSH_MBRSHP_RSH_GRP_FK_I '

CREATE INDEX RSH_MBRSHP_RSH_GRP_FK_I ON RESEARCH_MEMBERSHIPS

(R_GROUP_NAME)

I

PROMPT Creating Index ' RET_ITM_RET_FK_I '

CREATE INDEX RET_ITM_RET_FK_I ON STAFF_RETURN_ITEMS

(STAFF_NO

, COLLECT_NO)

I

PROMPT Creating Index ' RTN_ITM_SUB_CAT_FK_I '

CREATE INDEX RTN_ITM_SUB_CAT_FK_I ON STAFF_RETURN_ITEMS

(CAT_NO

, SUB_CAT_NO

, SUB_SUB_CAT_NO)

I

PROMPT Creating Index ' STF_SCH_FK_I '

CREATE INDEX STF_SCH_FK_I ON STAFF

(SCL_CODE)

I

PROMPT Creating Index ' STF_CMP_FK_I '

CREATE INDEX STF_CMP_FK_I ON STAFF

(CMP_CODE)

I

107

PROMPT Creating Index ' COM_RUL_COL_NO '

CREATE UNIQUE INDEX COM_RUL_COL_NO ON COMPOSITION_RULES

(CAT_NO

, SUB_CAT_NO

, SUB_SUB_CAT_NO

, COLUMN_NO)

I

PROMPT Creating Index ' COM_RUL_SUB_CAT_FK_I '

CREATE INDEX COM_RUL_SUB_CAT_FK_I ON COMPOSITION_RULES

(CAT_NO

, SUB_CAT_NO

, SUB_SUB_CAT_NO)

I

PROMPT Creating Index ' COM_RUL_DAT_ITM_FK_I '

CREATE INDEX COM_RUL_DAT_ITM_FK_I ON COMPOSITION_RULES

(PROMPT_NO)

I

PROMPT Creating Index ' COM_RUL_SEQ_NO '

CREATE UNIQUE INDEX COM_RUL_SEQ_NO ON COMPOSITION_RULES

(CAT_NO

, SUB_CAT_NO

, SUB_SUB_CAT_NO

, SEQUENCE_NO)

I

PROMPT Creating Index ' RSH_GRP_STF_FK_I '

CREATE INDEX RSH_GRP_STF_FK_I ON RESEARCH_GROUPS

(GRP_LEADER_NO)

I

PROMPT Creating Index ' DISCP_MBR_STF_FK_I '

CREATE INDEX DISCP_MBR_STF_FK_I ON DISCIPLINE_MEMBERSHIPS

(STAFF_NO)

I

PROMPT Creating Index ' DISCP_MBR_DISP_AREA_FK_I '

CREATE INDEX DISCP_MBR_DISP_AREA_FK_I ON DISC IPLINE_MEMBERSHIPS

108

(DIS_CODE)

I

CEEDG1 3.CON

- -Generated By : Chris Bolan

- -Purpose : Enforces inter-table constraints and keys

PROMPT Creating Primary Key on ' STAFF_RETURN '

ALTER TABLE STAFF_RETURN

I

ADD CONSTRAINT RET_PK PRIMARY KEY

(STAFF_NO

, COLLECT_NO)

PROMPT Creating Primary Key on ' SUB_CATEGORIES '

ALTER TABLE SUB_CATEGORIES

I

ADD CONSTRAINT SUB_CAT_PK PRIMARY KEY

(CAT_NO

, SUB_CAT_NO

, SUB_SUB_CAT_NO)

PROMPT Creating Primary Key on ' SCHOOLS '

ALTER TABLE SCHOOLS

I

ADD CONSTRAINT SCH_PK PRIMARY KEY

(SCL_CODE)

PROMPT Creating Primary Key on ' DI SCIPLINE_AREAS '

ALTER TABLE DISCIPLINE_AREAS

I

ADD CONSTRAINT DISP_AREA_PK PRIMARY KEY

(DI S_CODE)

PROMPT Creating Primary Key on ' PROMPTS '

ALTER TABLE PROMPTS

I

ADD CONSTRAINT DAT_ITM_PK PRIMARY KEY

(PROMPT_NO)

109

PROMPT Creating Primary Key on ' RESEARCH_MEMBERSHIPS '

ALTER TABLE RESEARCH_MEMBERSHIPS

I

ADD CONSTRAINT RSH_MBRSHP_PK PRIMARY KEY

(STAFF_NO

, R_GROUP_NAME

, RG_START_DATE)

PROMPT Creating Primary Key on ' COLLECTION_PERIODS '

ALTER TABLE COLLECTION_PERIODS

I

ADD CONSTRAINT COL_PRD_PK PRIMARY KEY

(COLLECT_NO)

PROMPT Creating Primary Key on ' FACULTIES '

ALTER TABLE FACULTIES

I

ADD CONSTRAINT FAC_PK PRIMARY KEY

(FAC_CODE)

PROMPT Creating Primary Key on ' CATEGORY '

ALTER TABLE CATEGORY

I

ADD CONSTRAINT CAT_PK PRIMARY KEY

(CAT_NO)

PROMPT Creating Primary Key on ' STAFF_RETURN_ITEMS '

ALTER TABLE STAFF_RETURN_ITEMS

I

ADD CONSTRAINT RTN_ITM_PK PRIMARY KEY

(STAFF_NO

, COLLECT_NO

, CAT_NO

, SUB_CAT_NO

, SUB_SUB_CAT_NO

, LINE_NO)

PROMPT Creating Primary Key on ' STAFF '

ALTER TABLE STAFF

ADD CONSTRAINT STF_PK PRIMARY KEY

110

(STAFF_NO)

I

PROMPT Creating Primary Key on ' COMPOSITION_RULES '

ALTER TABLE COMPOSITION_RULES

I

ADD CONSTRAINT COM_RUL_PK PRIMARY KEY

(CAT_NO

, SUB_CAT_NO

, SUB_SUB_CAT_NO

, COLUMN_NO)

PROMPT Creating Primary Key on ' RESEARCH_GROUPS '

ALTER TABLE RESEARCH_GROUPS

I

ADD CONSTRAINT RSH_GRP_PK PRIMARY KEY

(R_GROUP_NAME)

PROMPT Creating Primary Key on ' DI SCIPLINE_MEMBERSHIPS '

ALTER TABLE DISCIPLINE_MEMBERSHIPS

I

ADD CONSTRAINT DISCP_MBR_PK PRIMARY KEY

(STAFF_NO

, DIS_CODE)

PROMPT Creating Primary Key on ' CAMPUS '

ALTER TABLE CAMPUS

I

ADD CONSTRAINT CMP_PK PRIMARY KEY

(CMP_CODE)

PROMPT Creating Check Constraints on ' SCHOOLS '

ALTER TABLE SCHOOLS

ADD CONSTRAINT SCHOOLS_CK CHECK ((SCL_CODE= UPPER (SCL_CODE)))

I

PROMPT Creating Check Constraints on ' FACULTIES '

ALTER TABLE FACULTIES

ADD CONSTRAINT FACULTIES_CK CHECK ((FAC_CODE = UPPER (FAC_CODE)))

I

111

PROMPT Creating Check Constraints on ' STAFF '

ALTER TABLE STAFF

ADD CONSTRAINT STAFF_SURNAME_UPPER CHECK (SURNAME

I

UPPER (SURNAME))

PROMPT Creating Check Constraints on ' COMPOSITION_RULES '

ALTER TABLE COMPOSITION_RULES

ADD CONSTRAINT AVCON_3 42 1_COLUM_O O O CHECK (COLUMN_NO BETWEEN 1 AND

1 1)

ADD CONSTRAINT AVCON_3 42 1_DATA�O O O CHECK (DATA_TYPE IN (' MEMO ' ,

' NUMBER ' , ' VARCHAR2 ' , ' DATE '))

ADD CONSTRAINT AVCON_3 42 l_SEQUE_O O O CHECK (SEQUENCE_NO BETWEEN 1 AND

1 1)

I

PROMPT Creating Check Constraints on ' CAMPUS '

ALTER TABLE CAMPUS

ADD CONSTRAINT CAMPUS_CK CHECK ((CMP_CODE

I

UPPER (CMP_CODE)))

PROMPT Creating Foreign Keys on ' STAFF_RETURN '

ALTER TABLE STAFF_RETURN ADD CONSTRAINT

RET_STF_FK FOREIGN KEY

I

(STAFF_NO) REFERENCES STAFF

(STAFF_NO) ADD CONSTRAINT

RET COL PRD_FK FOREIGN KEY

(COLLECT_NO) REFERENCES COLLECTION_PERIODS

(COLLECT_NO)

PROMPT Creating Foreign Keys on ' SUB_CATEGORIES '

ALTER TABLE SUB_CATEGORIES ADD CONSTRAINT

CAT_SUBCAT_FK FOREIGN KEY

(CAT_NO) REFERENCES CATEGORY

(CAT_NO)

I

PROMPT Creating Foreign Keys on ' SCHOOLS '

ALTER TABLE SCHOOLS ADD CONSTRAINT

SCH_FAC_FK FOREIGN KEY

112

I

(FAC_CODE) REFERENCES FACULTIES

(FAC_CODE)

PROMPT Creat ing Foreign Keys on ' RESEARCH_MEMBERSHIPS '

ALTER TABLE RESEARCH_MEMBERSHIPS ADD CONSTRAINT

RSH_MBRSHP_STF_FK FOREIGN KEY

I

(STAFF_NO) REFERENCES STAFF

(STAFF_NO) ADD CONSTRAINT

RSH_MBRSHP_GRP_FK FOREIGN KEY

(R_GROUP_NAME) REFERENCES RESEARCH_GROUPS

(R_GROUP_NAME)

PROMPT Creat ing Foreign Keys on ' STAFF_RETURN_ITEMS '

ALTER TABLE STAFF_RETURN_ITEMS ADD CONSTRAINT

I

RTI SUB_CAT_FK FOREIGN KEY

(SUB_SUB_CAT_NO

, CAT_NO

, SUB_CAT_NO) REFERENCES SUB_CATEGORIES

(SUB_SUB_CAT_NO

, CAT_NO

, SUB_CAT_NO) ADD CONSTRAINT

RTN_ITM_RET_FK FOREIGN KEY

(STAFF_NO

, COLLECT_NO) REFERENCES STAFF_RETURN

(STAFF_NO

, COLLECT_NO)

PROMPT Creating Foreign Keys on ' STAFF '

ALTER TABLE STAFF ADD CONSTRAINT

STF_SCH_FK FOREIGN KEY

I

(SCL_CODE) REFERENCES SCHOOLS

(SCL_CODE) ADD CONSTRAINT

STF_CMP_FK FOREIGN KEY

(CMP_CODE) REFERENCES CAMPUS

(CMP_CODE)

113

PROMPT Creating Foreign Keys on ' COMPOSITION_RULES '

ALTER TABLE COMPOSITION_RULES ADD CONSTRAINT

I

CAT_COM_RUL_FK FOREIGN KEY

(SUB_CAT_NO

, SUB_SUB_CAT_NO

, CAT_NO) REFERENCES SUB_CATEGORIES

(SUB_CAT_NO

, SUB_SUB_CAT_NO

, CAT_NO) ADD CONSTRAINT

COM_RUL_PRMPT_FK FOREIGN KEY

(PROMPT_NO) REFERENCES PROMPTS

(PROMPT_NO)

PROMPT Creating Foreign Keys on ' RESEARCH_GROUPS '

ALTER TABLE RESEARCH_GROUPS ADD CONSTRAINT

RSH_GRP_LDR_FK FOREIGN KEY

(GRP_LEADER_NO) REFERENCES STAFF

(STAFF_NO)

I

PROMPT Creating Foreign Keys on ' DISCIPLINE_MEMBERSHIPS '

ALTER TABLE DISCI PLINE_MEMBERSHIPS ADD CONSTRAINT

DISCP_MBR_STF_FK FOREIGN KEY

(STAFF_NO) REFERENCES STAFF

(STAFF_NO) ADD CONSTRAINT

DISCP_AREA_MBR_FK FOREIGN KEY

(DIS_CODE) REFERENCES DISCIPLINE_AREAS

(DIS_CODE)

I

CEEDG13.SQS

- -Generated By : Chris Bolan

- - Purpose : Defines sequences

PROMPT Creating Sequence ' PROMPT_SEQ '

CREATE SEQUENCE PROMPT_SEQ

NOMAXVALUE

NOMINVALUE

NOCYCLE

114

' • '
I

NOCACHE

I

PROMPT Creating Sequence ' LINE_SEQ '

CREATE SEQUENCE LINE_SEQ

NOMAXVALUE

NOMINVALUE

NOCYCLE

NOCACHE

I

PROMPT Creating Sequence ' COLLECT_SEQ '

CREATE SEQUENCE COLLECT_SEQ

NOMAXVALUE

NOMINVALUE

NOCYCLE

NOCACHE

I

115

Appendix D - Update Layout Procedure

PROCEDURE Update_Layout IS

Item_Id Item; --Stores Item ID Numbers

Item_Counter Number; --Loop counter 1 . . 1 1

Column_Present Number; --Stores column number of a column to be shown

Category Number; --Stores current category #

Sub_Category Number; --Stores current sub category #

Sub_Sub_Category Number; --Stores current sub sub category #

Item_Prompt_No Number; --Stores the Prompt_No to locate correct text_prompt

Position_No Number; --Stores the sequence number of a field

Seq_Locator Number; --Stores the sequence number of the text field

End_ Or_Null Number; --Stores the number of items in a return

item_name Varchar2(12); --Stores the item name of a field

New_Prompt_Text Varchar2(50); --Stores the Data_Item Text prompt for a field

Staff_Member Varchar2(8); -- The current staff member

BEGIN

--Stores current value of Cat values. These might need to be inputs

Category := Name_lN('Staff_Return_Items.Cat_No');

Sub_Category := Name_lN('Staff_Return_Items.Sub_Cat_No');

Sub_Sub_Category := Name_lN('Staff_Return_Items.Sub_Sub_Cat_No');

End_Or_NULL := O;

IF :Global.Access_Level = 'A' OR :Global.Access_Level = 'D' THEN

Staff_Member := :Global.Shadow_lD;

ELSE

Staff_Member := :Global.Login_lD;

END IF;

--Allows Display in report field to be used by advanced users

Item_id := Find_Item('Staff_Return_Items.Display_In_Reports'); --Find the unique item id

IF :GLOBAL.Access_Level = 'A' OR :GLOBAL.Access_Level = 'A' THEN

Set_Item_Property(item_id,Visible,PROPERTY_TRUE);

Set_Item_Property(item_id,Enabled,PROPERTY_TRUE);

Set_Item_Property(item_id, Update_Allowed,PROPER TY_ TRUE);

Set_Item_Property(item_id,Required,PROPERTY_FALSE);

Set_Item_Property(item_id,Queryable,PROPERTY_TRUE);

1 16

ELSE

Set_ltem_Property(item_id,Visible,PROPERTY _FALSE);

END IF;

--Checks to See if a Text field is included and marks is position

BEGIN

SELECT Sequence_No

INTO Seq_Locator

FROM Composition_Rules C

WHERE C.Cat_No = Category

AND C.Sub_Cat_No = Sub_Category

AND C.Sub_Sub_Cat_No = Sub_Sub_Category

AND C.Column_No = 9;

EXCEPTION

WHEN NO_DATA_FOUND THEN --No Text Field

Seq_Locator := O;

END;

FOR item_counter IN 1 .. 1 1 --For Each Column

LOOP

--Assigns which item will be tested in this iteration

IF Item_Counter = 1 THEN

item_name := 'VCHAR_ONE';

ELSIF Item_Counter = 2 THEN

item_name := 'VCHAR_TWO';

ELSIF ltem_Counter = 3 THEN

item_name := 'VCHAR_THREE';

ELSIF ltem_Counter = 4 THEN

item_name := 'VCHAR_FOUR';

ELSIF ltem_Counter = 5 THEN

item_name := 'VCHAR_FIVE';

ELS IF Item_ Counter = 6 THEN

item_name := 'VCHAR_SIX';

ELSIF ltem_Counter = 7 THEN

item_name := 'NUM_SEVEN';

ELSIF Item_Counter = 8 THEN

item_name := 'NUM_EIGHT';

ELSIF Item_Counter = 9 THEN

item_name := 'TEXT_NINE';

ELS IF Item_ Counter = 1 0 THEN

117

item_name := 'DATE_TEN';

ELSIF Item_Counter = 1 1 THEN

item_name := 'DATE_ELEVEN';

END IF;

--See if the column is needed (0 = No)

BEGIN

SELECT Column_No, Prompt_No, Sequence_No

INTO Column_Present, ltem_Prompt_No, Position_No

FROM Composition_Rules C

WHERE C.Cat_No = Category

AND C.Sub_Cat_No = Sub_Category

AND C.Sub_Sub_Cat_No = Sub_Sub_Category

AND C.Column_No = Item_Counter;

EXCEPTION

END;

WHEN NO_DATA_FOUND THEN --Column isn't needed

Column_Present := O;

ltem_Prompt_No := O;

Position_No := O;

Item_id := Find_Item('Staff_Retum_Items.'llitem_name); --Find the unique item id

IF Column_Present = 0 THEN --Column isn't needed and is made invisible

Set_Item_Property(item_id, Visible,PROPERTY _FALSE);

ELSE --Column needs to be shown

Set_Item_Property(item_id, Visible,PROPERTY _TRUE);

Set_Item_Property(item_id,Enabled,PROPERTY _TRUE);

Set_Item_Property(item_id, Update_Allowed,PROPERTY _TRUE);

Set_Item_Property(item_id,Required,PROPERTY _FALSE);

Set_Item_Property(item_id,Queryable,PROPERTY _TRUE);

End_Or_NULL := End_Or_NULL + 1 ;

--Changes the prompt

SELECT Field_Prompt

INTO New_Prompt_Text

FROM PROMPTS

WHERE Prompt_NO = Item_Prompt_N o;

118

Set_ltem_Property(i tem_id,Prompt_ Text,New _Prompt_ Text);

--Arranges Fields in correct order

IF Seq_Locator = 0 THEN --No text field

Set_Item_Property(item_id,Position, 140,(140 + ((Position_No - 1) * 14)));

ELSIF Position_No <= Seq_Locator THEN --Text field but field occurs before it

Set_Item_Property(item_id,Position, 140,(140 + ((Position_No - 1) * 14)));

ELSE --Field occurs after text field

Set_Item_Property(item_id,Position, 140,(140 + ((Position_No - 1) * 14) + 42));

END IF;

END IF; --End of Column checking IF

END LOOP; --End of Item_counter Loop

IF ((End_Or_NULL = 0) AND (:GLOBAL.Force_Choice = 'TRUE')

AND (:Global.Reject_Force = 'FALSE')) THEN

Launch_ Choose_Screen;

:GLOBAL.Force_Choice := 'FALSE';

END IF;

END; --End of Trigger

1 19

Appendix E - Static Data Entry Screens

Personal Details

Change Password

120

Discipline Memberships

Research Memberships

12 1

Appendix F - Sample Reports

This appendix contains reports generated by the sample application, in a pdf (Adobe

Acrobat) format. Each report is preceded by a title page, describing its use.

122

Composition Rule Report

This report details the configuration rules currently applied to the database and

forms/reports.

123

Staff Return Items Composition Rule Report

Category

Sub category

Column No Prompt

1 1

2 2

9 3

Category

Sub category

Column No Prompt

1 4

2 5

3 6

4 3

7 7

Category

Sub category

Column No Prompt

1 1

2 2

3 8

9 3

4 9

Category

Sub category

Column No Prompt

1 4

2 10

3 11

9 3

7 7

4 12

1

1

No

1

2

No

1

3

No

2

1

No

Teaching and Learning

Teaching initiatives

Field Prompt

Name (s)

School

Description

Teaching and Learning

Teaching awards and grants

Field Prompt

Recipient (s)

Awarding Body

Title of Award

Description

Amount granted

Teaching and Learning

Achievements by undergraduate

Field Prompt

Name (s)

School

Course

Description

Staff Involved

Research and Creative Works

Research Grants

Field Prompt

Recipient (s)

Funding Body

Title of Grant

Description

Amount granted

Collaborating Organisations

124

s tudents

13 / 02 / 2 0 0 1

'

Staff Return �t0ma C9:1!9ooition Rule Ro�ort

Category 2 Research and Creative Works

Sub category 3 Pos tgr adua t e s tudent achievements

Column No Prompt No Fietd Prompt

1 1 Name (s)

2 2 School

9 3 DescripLion

J 9 Staff Involved

Category

Sub category

2

4

Research and Creative Works

Research strategic al liances

Column No Prompt No F bld Prompt

1 27 Institution/Organisation

9 3 Description

Category 2 Research and Creative

Sub category 5 Research awards

Column No Prompt No Field Prompt

1 4 Rr;cipien t (s)

2 5 Awarding Body

9 3 Description

3 6 Title o f Award

Works

Category 2 Research ,rnd Creative Works

Sub category 2

Sub Sub Category 1

Column No Prompt No

1 13

10 14

2 1 5

3 16

4 17

Publications

Book

Field Prompt

Author (s)

Date

Title

Publishe1:

venue

125

13/02 /2001

Staff Return Items Composition Rule Report

Category 2

Sub category 2

Sub Sub Category 2

Column No Prompt No

1 13

10 14

2 18

3 1 5

4 1 6

5 17

Category 2

Sub category 2

Sub Sub Category 3

Column No Prompt No

1 13

1 0 4 9

2 19

3 2 0

4 2 1

5 22

Category 2

Sub category 2

Sub Sub Category 4

Column No Prompt No

1 13

1 0 1 4

2 1 9

3 2 0

4 2 1

5 22

Research and Creative Works

Publications

Book chapter

Field Prompt

Author (s)

Date

Title of chapter

Title

Publisher

Venue

Research and Creative Works

Publications

Article refereed j ournal

Field Prompt

Author (s)

Year

Title of article

Title of j ournal

Volume

Page numbers

Research and Creative Works

Publications

Article in non-refereed j ournal

Field Prompt

Author (s)

Date

Title of article

Title of j ournal

Volume

Page numbers

126

13 / 02 / 2 0 0 1

..

Staff Return Items Composition Rule Report 13 /02 / 2 0 0 1

Category 2

Sub category 2

Sub Sub Category 4

Category 2

Sub category 2

Sub Sub Category 5

Column No Prompt No

1 1 3

1 0 14

2 19

3 23

5 22

Category 2

Sub category 2

Sub Sub Category 6

Column No Prompt No

1 1 3

1 0 1 4

2 19

3 23

4 2 1

5 22

Category 2

Sub category 2

Sub Sub Category 7

Research and Creative Works

Publ ications

Article in non-refereed journal

Research and Creative Works

Publ ications

Article in refereed conference proceedings

Field Prompt

Author (s)

Date

Title of article

Title of proceedings

Page numbers

Research and Creative Works

Publications

Article in non-refereed conference proceedings

Field Prompt

Author (s)

Date

Title of article

Title of proceedings

Volume

Page numbers

Research and Creative Works

Publ ications

Paper presented at a conference

127

l

Staff Return Items Composition Rule Report

Category 2

Sub category 2

Sub Sub Category 7

Column No Prompt No

1 13

1 0 14

2 1 5

3 24

4 17

Category 2

Sub category 2

Sub Sub Category 8

Column No Prompt No

1 13

10 14

2 1 5

3 16

Category 2

Sub category 2

Sub Sub Category 9

Column No Prompt No

1 13

1 0 1 4

2 1 5

3 16

2

Research and Creative Works

Publ ications

Paper presented at a conference

Field Prompt

Author (s)

Date

Title

Conference

Venue

Research and Creative Works

Publ ications

Research reports

Field Prompt

Author (s)

Date

Title

Publisher

Research and Creative Works

Publ ications

Audio-vi sual recordings

Field Prompt

Author (s)

Date

Title

Publi sher

Research and Creative Works

128

13 / 02 / 2 0 0 1

Staff Return Items Composition Rule Report

Category 2

Sub category 2

Sub Sub Category 1 0

Research and Creative Works

Publ ications

CD-ROM/computer software

Column No Prompt No Field Prompt

1 13 Author (s)

1 0 14 Date

2 1 5 Title

3 1 6 Publ isher

Category 2 Research and Creative Works

Sub category 2

Sub Sub Category 11

Column No Prompt

1 2 5

2 1 5

3 2 6

4 17

Category

Sub category

Column No Prompt

1 2 8

2 29

3 3 0

9 3 1

1 0 1 4

Category

Sub category

No

3

1

No

3

2

Publications

Creative works

Field Prompt

Presenter (s)

Title

Event

Venue

Community and Professional service

TV/ radio/media participation

Field Prompt

Name

Programme/article title

Radio/TV Station or Publication

Topic

Date

Community and Professional service

Appointments to Boards or External Commitees

Column No Prompt No Field Prompt

129

13 / 0 2 / 2 0 0 1

Staff Return Items Composition Rule Report

Category

Sub category

Column No Prompt

1 32

2 3 3

3 34

10 3 5

Category

Sub category

Column No Prompt

1 4

2 3 6

3 5

9 37

Category

Sub category

Column No Prompt

1 1

2 2

9 3

Category

Sub category

Column No Prompt

1 28

2 3 8

3 3 9

9 40

4 41

3

2

No

3

3

No

3

4

No

3

5

No

4

Community and Professional service

Appo intments to Boards or External Commitees

Field Prompt

Position

Name of Board/Commitee

Nominating group

Date of tenure

Community and Professional

Awards / recognition

Field Prompt

Recipient (s)

Achievement/Award

Awarding Body

Reason for award

Community and Professional

Service - (several)

Field Prompt

Name (s)

School

Description

service

service

Community and Professional service

Vis itors

Field Prompt

Name

Institution

School/Centre

Purpose

Duration

130

13 / 0 2 / 2 0 0 1

l

Staff Return Items Composition Rule Report

Category

Sub category

4

1

International and Commercial activi ties

Strategic alliances/partnerships

Column No Prompt No Field Prompt

1 28 Name

2 2 School

3 27 Institution/Organisation

9 3 Description

Category

Sub category

4

2

International and Commerc ial activities

International visitors

Column No Prompt

1 28

2 3 8

3 2

8 40

4 41

Category

Sub category

Column No Prompt

1 2 8

2 2

9 3

Category

Sub category

Column No Prompt

1 2 8

2 2

9 3

Category

No

4

3

No

4

4

No

5

Field Prompt

Name

Institution

School

Purpose

Duration

International and Commercial ac tivities

International students

Field Prompt

Name

School

Description

International and Commercial activities

Commercial activities

Field Prompt

Name

School

Description

Other significant activities

131

13 / 02 / 2 0 0 1

Staff Return Items Composition Rule Report

Category

Sub category

5

1

Other s igni ficant activi ties

Other

Column No Prompt No Field Prompt

1 1 Name (s)

9 3 Description

132

13 / 0 2 / 2 0 0 1

Period Report

This report contains a list of all items submitted via the dynamic data entry screens for

a specific collection period. It is configured exclusively by the flexible SQL query

detailed in section 4.2.3.

133

Period Report for : 0 1 -0CT- 2 0 0 0 - 3 1 -DEC - 2 0 0 0

Staff No 0 0 112 1

Category

Sub Category

Name (s)

School

Description

Category

Sub Category

Name (s)

School

Description

Category

Sub Category

Sub Sub Category

Author (s)

Date

O l /OCT / 2 0 0 0 - 3 1 /DEC / 2 0 0 0

HUNT , Lynne

Teaching and Learning

Teaching init iatives

Assoc Pro fessor Lynne Hunt

School o f Nurs ing and Public Health

Written text for two web s ites :
1 . Work-based University Learning :

http : / /www . edu . edu . au/ ssa/worklinks /
2 . Race Around ECU :

http : / /www . ecu . edu . au/pa / raecu /

Teaching and Learning

Teaching initiatives

Assoc Professor Lynne Hunt

School o f Nurs ing and Public Health

Developed and presented a workshop
for ECU ' s Profess ional Development
Unit entitled : University Work­

based Learning : New Ideas and
Strategies

Research and Creative Works

Publications

Book

Dr Kaosar Afsana , PhD s tudent in the

School of Nurs ing and Publ ic Heal th

and Sabina Faiz Rashid

134

Period Report for : 0 1 -0CT-2 0 0 0 3 1 -DEC- 2 0 0 0

Staff No 0 0 112 1

Category

Sub Category

Sub Sub Category

Title

Publ isher

Venue

Category

Sub Category

Sub Sub Category

Author (s)

Year

Title of article

Title of j ournal

Volume

Page numbers

Category

Sub Category

Name

Discours ing Birthing Care :

Experiences from Bangladesh

Univers ity Pres s Ltd :

Dahaka

Research and Creative Works

Publ ications

Art icle refereed j ournal

Berne , L . A . , Patton , W . , Milton , J . ,

Wright , S . , Hunt , L . , Peppart , J .
and Dodd , J .

A qualitative assessment of

Australian parents ' perceptions of
sexuality education and
communication
Journal o f Sex Education and Therapy

Community and Profess ional service

TV/ radio/media participation

Assoc Professor Lynne Huhnt and J
Trotman

Programme / article title C laremont Cameos : Dorothy Hewitt

135

Period Report for : 0 1 -0CT- 2 0 0 0

Staf f No 0 0 1 1 2 1

Category

Sub Category

Radio / TV Station or ABC Radio
Publ ication

3 1 -DEC - 2 0 0 0

Topic Social History Unit Broadcast

Date

Category Community and Pro fess ional s ervice

Sub Category Awards / recognition

Recipient (s } Assoc Professor Lynne Hunt

Achievement /Award Sybe Jongel ing Prize for Outstanding
Dedication to Research

Awarding Body ECU Postgraduate and Honours Student
Ass ociation

Reason for award

Staf f No 0 0 2 9 8 2 0 1 /0CT / 2 0 0 0 - 3 1 / DEC / 2 0 0 0

Category

Sub Category

Name (s }

Description

BITTLES , Alan

Other s igni ficant activities

Other

Professor Alan Bittles

Public Lecture on Medical Ethics ?
So who let them clone Christopher
Skase? at the Alexander Library on

2 0 October .

136

Period Report for : 0 1 -0CT- 2 0 0 0 3 1 -DEC - 2 0 0 0

Staff No 0 0 4 2 2 9

Category

Sub Category

Recipient (s)

Funding Body

Title of Grant

Description

0 1 /0CT / 2 0 0 0 - 3 1 / DEC / 2 0 0 0

LAVERY , Paul

Research and Creative Works

Research Grants

Dr Paul Lavery and Dr C Oldham

Wenner-Gren Foundat ion

Vis iting Scient i s t Award

To support visiting scientists to

Sweden
Amount granted

Collaborating Organisations

5 5 0 0

Category

Sub Category

Recipient (s)

Funding Body

Title of Grant

Description

Research and Creative Works

Research Grants

Dr Paul Lavery

Water and Rivers Commiss ion

Assessment of the Environmental

Impacts of Algal Harvesting

Amount granted

Collaborating Organisations

2 0 0 0

Category

Sub Category

Recipient (s)

Funding Body

Title of Grant

Research and Creative Works

Research Grants

Dr Paul Lavery

DEP

Assessment o f Seagras s Health in the

1 37

Period Report for : 0 1 -0CT- 2 0 0 0 3 1 -DEC -2 0 0 0

Staff No 0 04 2 2 9

Category

Sub Category

Perth Metropolitan Waters

Description

Amount granted

Collaborating Organisat ions

1 1 0 0 0

Category

Sub Category

Recipient (s)

Funding Body

Title o f Grant

Description

Research and Creative Works

Research Grants

Dr Paul Lavery

Cockburn Cement Ltd

The Ecological s igni ficance o f

seagrass ecosystems

Amount granted

Collaborating Organisations

2 03 5

Category

Sub Category

Recipient (s }

Funding Body

Title o f Grant

Description

Research and Creative Works

Research Grants

Dr Paul Lavery

ARC Small Grant and ECU

An alternat ive method to trace

sewage pol lution in well mixed

coastal waters

138

Period Report for : 0 1 -0CT- 2 0 0 0 3 1 -DEC - 2 0 0 0

Staff No 0 04 2 2 9

Category

Sub Category

Amount granted 1 0 0 0 0

Collaborating Organisations

Category

Sub Category

Recipient (s)

Funding Body

Title o f Grant

Description

Research and Creative Works

Research Grants

Dr Paul Lavery and Dr Glenn Hyndes

ARC Small Grant

The role o f transported macrophyte

material for fish production in
unvegetated marine habitats

Amount granted

Collaborating Organisat ions

9 6 0 0

Category

Sub Category

Sub Sub Category

Author (s)

Year

Title of article

Title of j ournal

Research and Creative Works

Publ ications

Art icle refereed j ournal

Vanderkl i ft , M . A . and Lavery , P . S .

Patchiness in assemblages o f
epiphytic macroalgae on Pos idonia

coriacea at a hierarchy of spatial

scales

Marine Ecology Progres s Series

1 39

l
l

Period Report for : 0 1 -0CT- 2 0 0 0 - 3 1 -DEC - 2 0 0 0

Staff No 0 0 4 2 2 9

Category

Sub Category

Sub Sub Category

Volume

Page numbers

Category

Sub Category

Sub Sub Category

Author (s)

Year

Title of article

Title o f j ournal

Volume

Page numbers

Category

Sub Category

Sub Sub Category

Author (s)

Year

Title o f article

Title of j ournal

1 9 2

127 -1 3 5

Research and Creative Works

Publications

Article refereed j ournal

Wood , N . and Lavery , P .

Monitoring seagrass ecosystem health
- the role o f perception in defining
health and indicators
Ecosystem Health

6

1 3 4 - 1 4 8

Research and Creative Works

Publications

Article refereed j ournal

Lavery , P . and vanderkli ft , M . A .

Comparison o f spatial patterns in

seagrass epiphyte assemblages us ing

species and funct ional group-level
data
Soc . Ital . Di Biol . Mar .

140

Period Report for : 0 1 -0CT- 2 0 0 0 - 3 1 -DEC - 2 0 0 0

Staff No 0 04 2 2 9

Category

Sub Category

Sub Sub Category

Volume

Page numbers

Category

Sub Category

Sub Sub Category

Author (s)

Year

Title of article

Title of j ournal

Volume

Page numbers

Category

Sub Category

Sub Sub Category

Author (s)

Date

Title of article

Title of proceedings

7

2 5 1 - 2 5 4

Research and Creative Works

Publications

Article refereed j ournal

Vanderklift , M . A . and Lavery , P .

Small-scale spatial patterns in

epiphyte assemblages of Posidonia
coriacea and Amphibolis gri f fithi i
Soc . Ital . Di Biol . Mar .

7

2 9 4 -297

Research and Creative Works

Publications

Article in refereed conference proceedings

Dr Paul Lavery

Comparison o f spatial patterns in

seagrass epiphyte assemblages using
species and functional group data

Proceedings o f the 4 th International
Seagrass Biology Workshop

141

Period Report for : O l -OCT-2 0 0 0 3 1 -DEC- 2 0 0 0

Staff No 0 04 2 2 9

Category

Sub Category

Sub Sub Category

Page numbers

Category

Sub Category

Sub Sub Category

Author (s)

Date

Title of article

Title of proceedings

Page numbers

Category

Sub Category

Sub Sub Category

Author (s)

Date

Title of article

Title of proceedings

Page numbers

Research and Creative Works

Publications

Article in refereed conference proceedings

Dr Paul Lavery

Dif ferences in spatial patterns in
assemblages of epiphytic macroalgae

betwenb seagrass hosts
Proceedings of the 4th International

Seagrass Biology Workshop

Research and Creative Works

Publications

Article in re fereed conference proceedings

Dr Paul Lavery

Can dl5N o f di f ferent macroalgae be
used to map temporal patterns in

sewage pollution

Proceedings o f the Swedish Society
for Marine Research Biennial

Conference

142

Period Report for : 0 1 -0CT-2 0 0 0 - 3 1 -DEC-2 0 0 0

Staff No 0 04 2 2 9

Category Research and Creative Works

Sub Category

Sub Sub Category

Author (s }

Date

Title of article

Title of proceedings

Page numbers

Staff No 0 0 7 6 5 7

Category

Sub Category

Sub Sub Category

Author (s }

Date

Title of chapter

Title

Publisher

Venue

Category

Sub Category

Sub Sub Category

Publ ications

Article in refereed conference proceedings

Dr Paul Lavery

Monitoring Seagrass Ecosystem
Health . The role o f perception .
Austral ian Marine Sciences
Association (WA} Conference

0 1 / 0CT/ 2 0 0 0 - 3 1 / DEC / 2 0 0 0

BLADES , Andrew

Research and Creative Works

Publ ications

Book chapter

Blades , A . J .

The 4 Phases of Risk Realisation

in Doughty , K (Ed} Busines s
Continuity Planning : Protecting Your

Organisat ion ' s Life

Auerbach : New York

Research and Creative Works

Publications

Book chapter

143

Period Report for : 0 1 -0CT- 2 0 0 0 - 3 1 -DEC - 2 0 0 0

Staff No 0 07 657

Category

Sub Category

Sub Sub Category

Author (s)

Date

Title of chapter

Title

Publ i sher

Venue

Staff No 0 07 7 4 4

Category

Sub Category

Sub Sub Category

Author (s)

Date

Title

Conference

Venue

Category

Sub Category

Blades , A . J .

Learning from a Cri s i s

in Doughty , K (Ed) Bus ines s
Continuity Planning : Protecting
Your Organisation ' s Life
Auerbach : New York

O l / OCT / 2 0 0 0 - 3 1 / DEC / 2 0 0 0

LESLIE , Gavin

Research and Creative Works

Publications

Paper presented at a conference

Assoc Professor Gavin Les l ie

Ros ter Sat i s faction in the intensive

care unit (ICU) - a review of the

introduction of 12 hour shi fts

2 5th Austral ian and New Zealand
Scientific Meeting on Intensive Care

Canberra

Research and Creative Works

Publ ications

144

Period Report for : 0 1 -0CT-2 0 0 0 3 1 -DEC - 2 0 0 0

Staff No 0 07 7 44

Category

Sub Category

Sub Sub Category

Author (s)

Date

Title

Conference

Venue

Category

Sub Category

Recipient (s)

Achievement/Award

Awarding Body

Reason for award

Staff No 2 0 0 0 0 5

Category

Sub Category

Paper presented at a conference

Assoc Professor Gavin Les lie

Twelve hour rostering in critical
care - lessons from the emergency
department and intensive care unit

6 th Nurs ing Practice Conference :
Nurs ing : Charting a new course
Adelaide

Community and Pro fessional s ervice

Awards / recognition

Assoc Professor Gavin Les lie

Editor publications

Aus tral ian College of Critical Care

Nurses (ACCCN)

Respons ibilities include Austral ian
Critical Care (refereed j ournal) ,

Critical Times (quarterly national

newspaper) and webs ite

(www . ACCCN . com . au)
O l /OCT/ 2 0 0 0 - 3 1 / DEC / 2 0 0 0

GROOM , Philip

Research and Creative Works

Publications

145

Period Report for : 0 1 -0CT- 2 0 0 0 3 1 -DEC-2 0 0 0

Staff No 2 0 0 0 0 5

Category

Sub Category

Sub Sub Category

Author (s)

Year

Title of article

Title of j ournal

Volume

Page numbers

Staf f No 2 0 5 484

Category

Sub Category

Recipient (s)

Funding Body

Title of Grant

Description

Article refereed j ournal

Groom , P . K . , Froend , R . H . , Mattiske ,
M . and Koch , B . L .

Myrtaceous shrub spec ies respond to
long-term groundwater levels on the

Gnangara Groundwater Mound , Northern
Swan Coastal Plain

Journal of the Royal Society of
Wes tern Australia

8 3

7 5 - 8 2

O l /OCT / 2 0 0 0 - 3 1 / DEC / 2 0 0 0

BOUSSAID , Farid

Research and Creative Works

Research Grants

Dr Farid Boussaid

FCHS

Seed Grant

Toward Advanced CMOS Imaging

Technology

Amount granted

Collaborating Organisations

5 0 9 2

Category Research and Creative Works

146

Period Report for : 0 1 -0CT- 2 0 0 0 - 3 1 -DEC - 2 0 0 0

Staf f No 2 0 5484

Category

Sub Category

Sub Sub Category

Author (s)

Date

Title

Conference

Venue

Publications

Paper presented at a conference

Dr Amine Bermak , Dr Farid Bous said
and Assoc Pro fessor Sal im Bouz erdoum

A digitally programmable current
mode analog shunting inhibition
cel lular neural network
7th IEEE International Conference on
Electronics , Circuits and Systems
Kas lik , Lebanon

147

Staff Without Submissions

This report provides a listing of all staff members who have not submitted a return for

a given collection period.

148

STAFF MEMBERS WITHOUT RETURNS FOR :

O l-OCT- 2 0 0 0 - 3 1-DEC-20 0 0

Staf f No Surname First Names Telephone No Email

0 57 6 5 6 AHERN Kathy 8 6 1 1

0 0 6 3 59 ALDER Jackie 5 4 5 9

0 5 8 1 8 1 ALLISON Denise 6 1 5 6

044097 ANDERSON Karen 62 9 6

0 0 6 8 8 9 ANDREWS Julie 6 5 0 8

0 0 9 6 3 1 ANGELICHEVA Dora 5714

0 0 8 4 1 1 ARMSTRONG Colin 6 0 3 0

2 0 3 3 0 6 ARMSTRONG Helen 6 8 5 6

0 4 8 0 3 9 BAKER Eileen 5 5 3 9

0 1 6 1 0 9 BALLANTINE Kevin 6 2 1 3

0 0 9 0 12 BANASIEWICZ Nathan 6 1 1 5

04343 1 BANNISTER Mark 63 3 6

0 02 3 67 BARNES Jeff 5424

0 0 7 172 BARTON Lynn 52 89

204978 BAUMANIS Andrew 6 3 8 3

0 0 5 3 07 BELL Catherine 5482

0 0 0207 BENNETT Ian 6 3 5 0

2 0 3 024 BERMAK Amine 5877

203 5 6 3 BHATTARAI Nirj a 6 6 3 8

2 0 1 2 2 1 BIGLARI-ABHARI Morteza 5 7 8 5

0 2 1 8 4 8 BLOOM Lyn 5 8 8 3

2 0 1877 BOLAN Christopher 5 5 8 1

2 0 0 7 9 1 BORDAS Nardia 8 5 8 5

2 0 14 0 0 BOUZERDOUM Abdesselam 5 0 5 9

0 0 1 2 1 6 BOYCE Mary 6 3 2 8

0 50737 BRIGHTWELL Richard 8 5 6 4

0 2 0 8 5 3 BROCK Lorna 8 5 62

2 0 3 048 BRODALKA Joseph 63 5 3

0 4 6 6 2 3 BROGAN Mark 6 3 0 0

2 0 4 9 8 3 BURNETT Angus 5 8 6 0

0 4 0 0 4 5 BURT Lorraine 8 6 12

0 54973 BYRNE David 8 5 9 1

2 0 3 6 2 1 BYRNE Eoin 6 6 9 9

2 0 2 1 3 3 CADMAN Robert 5 8 7 6

2 04 6 4 5 CHAI Douglas 5874

0 0 3 9 5 4 CHANDLER David 5 7 1 6

03 0824 CHIRATHAMJAREE Chai 63 5 6

0 4 4 6 9 5 CHOW Shirley 8574

0 1 6 5 6 3 CLAYDEN Judy 6298

098124 COLEMAN Marion 8 5 6 6

0 0 2 12 3 COLLINS Michael 63 6 3

0 4 5 8 6 6 COLLINS Simon 63 3 5

0 1 6 6 3 5 COMBER Geof f 6 3 6 1

094094 CORNELIUS Mary 5 5 53

2 0 5 14 9 CRAMER Jennifer 8 6 2 3

0 3 6 0 8 9 CRAWFORD Anne 8024

149

STAFF MEMBERS WITHOUT RETURNS FOR :

Ol -OCT-2 0 0 0 - 3 1 -DEC - 2 0 0 0

Staff No Surname Firs t Names Telephone No Emai l

0 04 9 5 4 CRAWFORD Ian 6 3 3 4

0 5 3 807 CROSS Bob 6374

0 1 6 7 2 3 - 1 CROSS Jim 5 8 8 1

0 1672 3 -2 CROSS Jim 5881

2 0 0748 CROSTHWAITE Marilyn 5692

0 5 4 0 5 0 DANAHER Maurice 6 5 4 1

999998 DAVIS Paul

1 0 8 0 02 DEVLIN Anna 6 0 52

0 9 2 6 6 2 DHALIWAL Harbhaj an 5019

0 9 9 522 DIXON Carol 6 5 6 9

0 0 6102 DOWNES Karen 5467

0 9 0 6 67 DOWNIE Margaret 8183

0 0 5 0 3 8 DOYLE John 5 0 3 1

0 0 57 9 9 DOYLE Steve 6054

0 0 3 1 8 0 DROUET Elizabeth 5448

0 5 0 3 6 6 DRURY John 8618

0 2 6 9 13 DUFF John (Edward) 6 2 3 1

0 19 8 0 1 ELAM Anne 5 5 0 5

0 1 6 9 1 8 EMBREY Lynn 5 6 5 5

0 0 4 9 3 4 ESHRAGHIAN Kamran 5839

0 2 5 4 0 1 FRENCH Sandie 6299

092179 FREW Katherine 5 5 8 3

0 0 7 2 4 1 FROEND Ray 5 5 63

0 4 82 07 GALBRAITH Alan 8563

0 17 0 3 0 GAMBLE Ross 5 4 5 0

0 1 7 0 5 6 GARNETT Patrick 5 6 6 5

2 0 1 0 0 1 GARNETT-LAW Bryan 6 1 1 5

0 0 8 9 5 9 GIBLETT Rodney 6051

0 0 3 0 5 1 GIBSON Barry 5037

2 0 0 3 7 1 GIBSON Marlene 8192

0 0 0889 GODFREY Paul 6713

0 0 5 3 9 9 GOODE Elizabeth 6 3 5 1

0 7 6 4 8 6 GOSLING Joanne 8 5 8 1

0 0 6993 GRAY Jason 6460

044652 GRAY Lorraine 8 6 0 5

0 4 8 2 3 1 GREEN Lelia 6204

0 9 1 5 5 5 GURURAJAN Raj 6 0 17

00 3477 HABIBI Daryoush 5787

04 6113 HALL Jean 6427

2 0 0745 HANNAN Christine 8 5 6 1

0 0 2 2 0 1 HARRIS-WALKER Jody 5557

0 5 5 1 0 8 HAUCK Yvonne 8570

2 0 0720 HERLIHY Bianca 6719

0 0 6373 HERRINGTON Jan 6190

0 01 9 6 2 HINCKLEY Stephen 5710

2 0 0 7 8 5 HOGAN Vanessa

150

STAFF MEMBERS WITHOUT RETURNS FOR :

Ol-OCT-2 0 0 0 - 3 1-DEC- 2 0 0 0

Staff No Surname First Names Telephone No Email

0 0 6 3 67 HOPE Peter 5 6 5 3

0 0 0 4 2 9 HORWITZ : Pierre 5 5 5 8

2 0 4794 HYNDES Glenn 5798

022779 JACKSON Glenda 5451

0 0 7 4 5 5 JAFFAR Taib 6 3 3 0

2 0 0 1 6 8 JAMIESON Sharon 8 5 3 4

0 0 3 1 9 0 JAUNZEMS Linda 5847

0 9 0 5 44 JENNINGS Kaye 5847

2 0 52 4 5 JIVOTOVSKY Lev 5467

2 0 3 3 3 5 JOHN Maria (Li z) 5121

0 1 7 4 3 5 JOHNSON Angela 5 6 5 1

0 0 9 2 7 5 JOHNSON Julie 6 57 0

2 0 5 0 64 JOLLEY David (Wi ll iam) 6877

0 4 0 5 1 2 JONES Bronwyn 8 598

009873 JONES Sue 6 3 3 3

002 094 JOSEPHI Beate 6 69 1

0 0 3 9 0 3 KALAYDJIEVA Luba 5 4 5 6

002122 KARPATHAKIS George 6 3 2 1

027713 KINNEAR Adrianne 6499

2 04 3 7 5 KONGRAS Tiffany 6 3 5 3

0 07 0 6 6 KOTHAPALLI Ganesh 5792

2 0 0 03 4 - 1 KRISTJANSON Linda 8 617

2 0 0 0 3 4 - 2 KRISTJANSON Linda 8617

0 3 5 4 0 6 KUCZBORSKI Woj ciech 6 0 13

0 0 1 7 57 LACHOWICZ Stefan 5 5 8 0

0013 68 LAIDMAN Wi l l iam 6 5 1 4

0 0 2 0 3 4 LANCE Hugh 5 5 5 6

044724 LANGRIDGE Miriam 8 5 58

033443 LEDWITH Colleen 5884

2 0 1 0 5 5 LEE Julie 5448

074940 LEGGETT Monica 6476

0 9 9 514 LEHMANN Paul ine 8 5 8 5

2 0 2 0 1 6 LESLIE Mark 6507

017 582 LESLIE Norman 6214

0 0 6454 LI Dongguang 6 3 5 8

0 1 7 6 0 3 LINSTEN Joram 5 57 8

0 0 5 9 2 1 LOURENS Geoff 63 67

0 9 3 9 64 LOY Poh-Kin 5 8 3 1

0 0 6428 LUCA Joe 6412

0 0 4 3 6 3 LUFF Jonathon 5 5 5 7

0 0 17 5 6 LUND Mark 5 644

0 3 47 4 5 - 1 LUU Kim 6101

0 3 4 7 4 5 - 2 LUU Kim 6101

0 9 2 2 9 1 MACKIE Doreen 5 6 6 1

001854 MAJ S Paul 6277

204795 MANN Graham 6863

15 1

STAFF MEMBERS WITHOUT RETURNS FOR :

O l -OCT- 2 0 0 0 - 3 1-DEC-2 0 0 0

Staff No Surname Firs t Names Telephone No Emai l

0 7 5 4 1 6 MARRIOTT Rhonda 8 6 1 0

0 0 2 5 8 6 MATA . Gina 8 589

0 0 5 4 5 6 MAYRHOFER Debra 6014

204 522 MCCRUM Janet 8 5 8 1

0 17742 MCDOUGALL David 543 9

0 0 7 3 4 8 MCGLUE Wi l l iam (Bill) 6 2 3 0

0 0 6 0 9 5 MCKEE Alan 6 8 5 9

2 0 1 4 5 6 MCLEOD Nicol e 5 8 5 2

0 0 7 2 8 1 MCMAHON Mark 6434

057710 MCPHEE Irene 8 5 6 9

0 17849 MEREDITH Chris 5 5 6 2

2 0 12 6 4 METTAM Brad 5 5 57

0 3 64 3 3 MILLAR Clay 6 52 5

0 3 7 188 MILLAR Jim 6 547

0 0 6 1 0 4 MILLER Russe l l 6 5 5 5

0 0 1 694 MONDELLO Helen 6 4 5 5

2 04 5 9 0 MONTEROS SO Leanne 8 6 2 1

2 0 3 9 5 1 MORRIS Fiona 5 0 12

004710 MUELLER Ute 5272

0 06264 MUSSETT Janis 5 5 9 0

0 0 2 6 0 0 NEDVED Milos 5 672

0 5 03 07 NEEDHAM Alan 6 6 6 7

046228 NEWMAN Coral 5 8 8 0

044 6 3 6 NEWNHAM Helen 8 6 1 3

0 0 6 3 0 6 NG Christine 8624

073 60 5 NIKOLETTI Suzanne 8 1 82

0 0 1 6 14 NOBLE Kay 5 6 12

0 8 8241 O ' NEILL Tom 6 4 3 1

0 0 1 34 0 O ' SHAUGHNESSY Michael 6212

2 0 07 9 0 O ' SHEA Mairead 5189

2 0 3 047 OLAKA Francis 5782

0 3 7 2 3 3 OLIVER Ron 6372

0 0 3 3 4 0 OMARI Arshad 6 4 5 9

0 5 34 0 1 PAM Maxwel l 6 2 1 8

0 03 4 9 4 PATAK Annette 6 6 5 8

0 0 5 8 1 5 PATAK Paul 6647

0 0 6 3 5 5 PEARSON Deborah 6 2 1 4

0 0 1902 PEDLER Pender 5 0 82

2 0 5014 PERKINS Timothy 5459

040740 PERRY Shirley 8437

0 5 0 5 8 5 PHILLIPS Megan 8584

014091 PHILLIPS Vincent 6 6 5 0

0 0 1 9 53 PIKE Graham 5 6 2 5

0 2 2 6 3 0 PLATEL Karl 6 2 17

0 0 9 0 02 POLAND John 6 0 1 6

0 8 8 807 POULLAY Sam 8 6 2 0

152

STAFF MEMBERS WITHOUT RETURNS FOR :

O l -OCT- 2 0 0 0 - 3 1-DEC-2 0 0 0

Staff No Surname First Names Telephone No Emai l

2 0 0 9 2 5 POWER Marion 5 5 07

2 0 1 8 5 3 PUMPHREY Melissa

0 9 4 9 1 6 PURCELL Magdalen 5514
0 3 7 9 62 QUIN Robyn 6 2 2 1
0 2 1 4 2 6 QUINN Del i a 6 3 4 5
0 9 6 3 3 0 RAPSEY John 6 5 1 8
0 0 7 1 6 6 RECHER Harry 5 7 5 8
0 0 3 9 8 5 REDMOND Janice 5 6 5 5
0 0 2 1 0 1 RING Geoffrey 6 3 6 9

0 0 9 3 4 7 - 1 RING Jan 6 3 62

0 0 9 3 47 2 RING Jan 6 3 62
0 0 8 5 7 5 RIVETT Donelle 5 4 7 6
0 9 5 1 6 9 ROBBINS Graeme 6 872

044 7 1 6 ROBERTS David 8 60 9
0 6 8 6 3 8 ROBERTS Peter 5 4 5 5
044927 ROCHE Valerie 5 0 2 5
0 9 8 044 RODGER Martin 8 5 54
0 2 9 2 7 6 ROSE Elizabeth 6 8 0 3
0 0 3429 RUMMEY Jackie 6 3 2 5
0 5 5 6 8 5 RYDER David 5452
0 0 6 9 4 5 SACCO Paul 5 642
10473 1 SADIQUE Deborah 6684
0 0 14 3 4 SALMON Al ison 5 4 6 6
0 5 0 7 1 1 SELLAPPAH Su 8578
0 8 5 9 8 1 SERRELL Maxine 8573
0 0 9 0 1 0 SHANLEY Eamon 8 6 3 1
2 0 2 0 3 2 SHI Bei l in 5443
0 18 6 2 2 SHOESMITH Brian 6219
0 0 2 2 1 6 SINCLAIR Kelvin 6 542

0 0 0 64 5 SKINNER Chris 5453
0 0 7 1 3 5 SMITH Barbara 8 5 3 3

0 1 8 6 5 7 SMITH C l ifton

0 0 54 1 1 SMITH Ingrid 5221

0 0 5 4 6 6 SMITH Kei th 6 5 1 6

0 0 7 3 4 7 SMITH Kevin 5 8 4 6

0 2 3 4 4 8 SNADER Sharron 6 2 2 0
0 5 07 4 5 SPICKETT Evadne 6347

0 8 7 9 6 0 STEVENSON Anne 8 5 9 3

0 5 42 3 6 STEWART Angus 5697

0 0 3 4 8 5 SWAN Geoff 642 5

2 04224 TAN Dennis 6 6 8 0

0 0 2 9 6 2 - 1 TERRY Jul ian 5 7 3 4

0 0 2 9 62 - 2 TERRY Jul i an 5734

0 0 2 8 0 7 THOMSON Nei l 5 0 5 3

0 07 0 9 4 TONKIN Colleen 8597
2 0 5 1 5 5 TUBBS Mileva 5848

153

Staff No

201263

009161

0 0 2 0 1 5

0 0 9 1 0 0

2 0 02 7 2 - 1

2 0 0272-2

0 02488

002496

0 0 0 1 7 1

0 03 7 0 8

042294

2 04 6 3 6

2 0 5 1 6 0

0 0 2 1 2 9

0 5 0 5 3 4

999997

2 0 0 8 67

Surname

TURNER

VAN ETTEN

WAGNER

WANG

WARNOCK

WARNOCK

WATSON

WHITE

WILSON

WOOD

WOODROFF

WORSLEY

YANG

YEO

YIP

YU

ZHAO

STAFF MEMBERS WITHOUT RETURNS FOR :

01-0CT- 2 0 0 0 - 3 1-DEC-2 0 0 0

First Names Telephone No Email

Eric 5477

Eddie 5 5 6 6

Gul ten 6072

Wei 5714

Kathryn 8 5 9 5

Kathryn 8 5 9 5

Anthony 647 0

Douglas 5 5 64

Vicky 6 3 0 1

Dennis 6107

Susan 8583

Penelope 5716

Danian

Malcolm 6577

Vincent 8576

Zhi Huan 5 0 3 4

Xiaoli 5782

-- -
Total : 247

154

Staff Membership Report

This report details the discipline areas and research groups to which an individual

staff member belongs.

155

Staff No 001340

Discipl ine Areas :

Film and Video

Media Studies

Research Groups :

Group Name

Staff Membership Report

Surname O ' SHAUGHNESSY

First Names Michael

BIOMEDICAL AND SPORTS SCIENCE

156

Start Date Term Date

07 -NOV- 00

	Meeting the Challenge of Dynamic User Requirements Using Data-Driven Techniques on a 4GL-Database Environment
	Recommended Citation

	Page 1

