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Abstract 

Accompanying the ever-growing reliance on computers within contemporary 

organisations, the task of software maintenance is, increasingly, becoming a resource 

burden. The author has identified that there is a need for proven techniques to allow 

the modelling of flexible/changing user requirements, to enable systems to cope with 

requirements creep without suffering major code change and associated down-time 

from rebuilds of the database. 

This study ascertains the applicability of extension to current data modelling 

techniques that allows innate flexibility within the data model. The extension of the 

data model is analysed for potential benefits in the provision of such a 

dynamic/flexible base to realise 'maintenance friendly' systems and, in consequence, 

alleviate the cost of later, expensive maintenance. 
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Chapter 1: Introduction 

This chapter contains an introduction to the study, describing software maintenance, 

why it has become a significant focus of the software engineering discipline and, 

further, how this focus had led to an increased awareness of flexibility as an important 

design goal. The aims of the study are itemised, and the research questions are stated. 

1.1 Background to the study 

Contemporary organisations desiring to remain competitive must review the pace and 

manner in which they conduct day-to-day business. Increasingly, as Callon (1996, 

p.106) reports, they rely upon Information Technology (IT) to adapt to the rapidity of 

change at large and to maintain competitive advantage. 

Furthermore, as found by Hall & Ligezinski, (1997a, p.1), the costs underlying 

provision of IT services are now coming under renewed scrutiny. This is especially 

true where contemporary development environments are faced with the dual problems 

of increasing IT resource costs and tighter fiscal management trends. 

Maintenance of software brings an ever-increasing cost to a typical organisation's IT 

budget. Organisations are reluctant to release exact figures, but Pressman ( 1997 

p.762), cites trends that show a steady increase in such costs from thirty five percent 

of the total project budget in the 1970s to sixty percent in the 1980s. Pressman's 

observed trends are acknowledged by McCracken (cited in Pressman, 1997, p.762), 
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whose studies indicate that if the trend of increasing maintenance cost continued, as 

identified in the 1980s, then organisations may become 'maintenance bound'. 

An organisation is described as 'maintenance bound' where it is so buried in 

maintenance that there are no available resources to assign to new projects (Pressman, 

1997, p.762). The author suggests that with today's phenomenon where entire IT 

organisations consist of employees principally occupied by maintenance of existing 

software systems, McCracken's 'future' may have become the reality. 

Pressman's (1997) supposition is re-enforced by the findings of Hall and Ligezinski 

(1997a, p.2), who estimate the cost of software maintenance as being between sixty 

and seventy percent of an organisation's total software development budget. 

The cost of maintenance may be understood better through the decomposition of 

maintenance into three main categories as described by Swanson (cited in Pressman, 

1997, p.763): 

• Corrective Maintenance: the identification and correction of software errors, 

commonly known as 'bug fixing' . 

• Adaptive Maintenance: modification of existing software to conform to 

changing requirements. 

• Perfective Maintenance: adds new capabilities, modifies existing functions. 
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The survey conducted by Lientz and Swanson (1980), who sampled 487 members of 

the Data Processing Managers Association, revealed a distribution of the above 

categories, illustrated in figure 1: 

Perfective 

42% 

Corrective 

21% 

�---- ------------- --�+ 

Figure I. Distribution of Maintenance Effort (Lientz & Swanson, 1980) 

Figure 1 illustrates that the largest combined portion of maintenance effort, and thus 

spending, is a result of adaptive and perfective maintenance. Inspection suggests that 

any effort in improving the maintainability of a system should focus on the perfective 

and adaptive areas. 

Perfective 

49% 

Other 

4% Corrective 

23% 

Adaptive 

24% 

Figure 2. Distribution of Maintenance Activities (Stacey, 1995, p.l) 
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It may be seen that the trend has not altered significantly in recent times, with a study 

conducted by Stacey (1995, p. 1) showing a similar breakdown, illustrated in Figure 2, 

in the focus of maintenance activities. 

The above studies into the distribution of maintenance activities measure the relative 

effort of performing the maintenance activities and focus on the visible cost. 

However, according to Stacey (cited in O'Connor, 1999, p.6) the "hidden costs of 

maintenance can be even greater" due to: 

• Loss or postponement of development opportunities. 

• Customer dissatisfaction at not having their needs met. 

• Reduction in software quality due to maintenance introduced errors. 

By example, Woolfolk, Ligezinski and Johnson (1996, p.482) cite the case of an 

unnamed American factory where management had decided to increase the efficiency 

of the organisation by removing middle management and altering the departmental 

structure. Within six to eight weeks most of the effected personnel had adapted to the 

changes in procedures and formed new communication lines and work practices. 

However, Woolfolk et al (1996, p.483) observed that, after a year the "computer 

systems were only 90 percent complete at a cost exceeding a quarter of a million 

dollars". 
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The literature offers two significant approaches, namely, the employment of flexible 

software, and that of end user development, to combat the trend of increasing 

maintenance costs. Each of these will now be introduced. 

End user development permits end users to assume the role of developers, thereby 

taking full responsibility for the creation of their own applications (Mehandjiev & 

Bottaci, 1998, p.3). Not everyone, however, sees end user development as a panacea. 

Panko (1998, p.16) found wide criticism for it in the software community due to an 

increased likelihood of errors derived from informal methods wanting of the rigour 

known to be necessary in programming. Such rigour, however, may be achieved 

within professionally developed systems that are designed to incorporate flexibility 

during use. 

Mehandjiev and Bottaci (1996, p.432) see flexible software as helping to bridge the 

gap between developers and advanced users by allowing the latter to access features 

that control and modify the behaviour of a system. Likewise, O'Connor (1999, p.7) 

suggests that "flexible software can be seen as the middle ground between 

professional IT staff maintained systems and end user development". Through the 

use of flexible software, Mehandjiev and Bottaci foresee an advantage, over 

conventional system development methods, for organisations to adapt applications 

rapidly to changing requirements. 
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Woolfolk, Ligezinski & Johnson (1996, p.486) propose that flexible systems fall into 

one of three categories of flexibility with respect to adaptive maintenance: 

• Weak flexibility: requires modification to the underlying data structures 

(e.g. entities and/or tables). 

• Medium flexibility: requires modification to both data values and 

procedural code. 

• Strong flexibility: where data value modifications alone are required. 

The author suggests that strong flexibility, appropriate to the needs of contemporary 

organisations, may be achieved by integrating flexible principles into the underlying 

database design of an application. Such flexibility may then help to facilitate a cost 

reduction in both time and effort of eventual maintenance, especially in the activities 

of perfective and adaptive maintenance. The savings to be gained from flexible 

development might, reasonably, permit funds to be allocated towards new 

developments and decrease the risk of an organisation becoming 'maintenance 

bound'. 

1.2 Significance of the Study 

The relative cost of implementing change in a non-flexible system, illustrated in 

figure 3, is greatly increased during each phase of the software development lifecycle. 

It is, therefore, important to focus on the provision of flexibility as part of the 

requirements capture/analysis phase of a project, in order to mitigate increased 

development costs resulting from a lack of such focus. The need for such early 

provision is reinforced by Weinberg ( 1990), whose study demonstrated the inclusion 
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of maintainability as a part of requirements capture led to an increased awareness of 

maintenance issues throughout an entire project lifecycle. 

Production 

Transition 

Build 

Design 

Analysis 

5 10 15 

Figure 3. Relative Cost of Change (Oracle, 2001) 

20 

Requirements, as specified by Blum (1993a, p.43), fall into three categories as: 

• Closed: defined and stable requirements. 

• Abstract: requirements that have no 'concrete' representation, but which 

incorporate products necessary for development of the system. Primary 

examples of abstract requirements are 'security' and 'user friendliness'. 

• Open: requirements where the problem domain is flexible. A flexible 

problem domain suggests that requirements may lack definition, or change, 

either during development or post-implementation. 

It is the flexibility, or changeability, of 'open' requirements that flexible software 

techniques aim to address. However, as O'Connor (1999, p.9) notes, most 

applications are specified from requirements observed in all three, not from just one, 

of Blum's categories. 
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Many static systems, i.e. systems without in-built flexibility, are based on fixed 

requirements and use a traditional 'sign off approach to validate the satisfaction of 

requirements. Frequently, though, difficulties in specification lie in that requirements, 

true at the time of the original specification change/evolve, exhibiting the 

phenomenon known as 'requirements creep'. To formalise the remedy, Behforooz & 

Hudson (1996, p.396) state that "maintainability should be specified and software 

should provide for the highest level of flexibility and ease of maintenance", giving the 

following reasons: 

• Software maintenance is expensive. 

• The advantages of including maintenance as a design goal far outweigh the 

costs. 

• A system may spend between 65 and 80 percent of its life in maintenance. 

Others endorse the difficulty of specifying requirements fully, as Woolfolk, 

Ligezinski & Johnson (1996, p.482) observed that such specifications are "imperfect 

since a significant part of such requirements lie in the future". Poor specification, in 

response to requirements creep may, in tum, "lead to systems that are judged 

unsatisfactory or unacceptable by the client and have high maintenance costs" 

(Hofmann, Pfeifer & Vinkhuyzen, 1993, p.43). 

While studies, such as the Object Database Management Group's (ODMG) research 

into improved methods for requirements capture ("ODMG 2.0", 1998), software 

maintenance continues to be an area neglected in the systems development lifecycle. 

Such neglect is especially noticeable when maintenance phase support is compared to 
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that of other phases of the software lifecycle. As pointed out by Liu, Yang & Zedan 

(1998, p. 1) "the approaches/tools of maintenance are rather weak when contrasted to 

those of development". Liu, Yang & Zedan further suggest the underlying reason for 

the neglect is that software development is a mature process while maintenance is still 

viewed as being a difficult and expensive area. 

Acknowledging the neglect in maintenance related studies, this study aims to 

demonstrate that existing static data requirement modelling techniques may be 

adapted to facilitate a reduction in maintenance effort though the inclusion of 

underlying flexibility. Outcomes of the study offer systems analysts and 

programmers a number of potential advantages: 

• A flexible method of capturing data. 

• A need to learn few (potentially zero) new symbols and/or notations. 

• A minimisation of the effort involved in capture of flexible requirements. 

1.3 Purpose of the Study 

The previous sections indicated that there is credible support in the literature for 

flexibility as a design goal. However, as shall be shown, there is little clear statement 

in the literature on how this flexibility may be integrated into either the resultant 

application or, more importantly, the design model. The purpose of this study is to 

demonstrate how flexibility may be incorporated successfully into a 'live' system i.e. 

one that may exhibit Blum's "open" or flexible requirements. 

While flexible systems are not new, previous research (O'Connor, 1999; Layng, 

1998) has focused on the adaptation of an application around a static data model. The 
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employment of a static data model has meant that while applications may exhibit 

features of a flexible system in the user interface (the so-called 'front end'), the type 

and volume of stored information (the so-called 'back end') remains static. The 

author proposes that development with a data model that exhibits a measure of 

intrinsic back end flexibility is an appropriate alternative. 

The study focuses on the flexibility of data in the 'back end' of an application, making 

it appropriate to choose a contemporary data-oriented implementation language such 

as the Oracle 4GL. Additionally, selection of Oracle' s 4GL allows comparison with 

studies of business-rule oriented front-end flexibility in that development 

environment, such as those conducted by Hall & Ligezinski (1997a), O'Connor 

(1999) and Layng (1998). 

To summarise, the purpose of this study is to investigate the implementation of a 

dynamic system using the Oracle 4GL to provide flexibility in the 'front end' in 

conjunction with dynamic mapping to the underlying database 'back end' . 
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1.4 Research Questions 

The main question: 

"How may the challenge of dynamic/flexible user requirements be met using data 

driven techniques using a contemporary 4GL-database environment?" 

The major components of the above question are: -

a) "How may one model dynamic user requirements through an extension of current 

data modelling techniques? " 

b) "How may one implement user requirements of flexibility using data driven 

techniques in a contemporary 4GL environment? " 

1.5 Summary 

The rising cost of maintenance is an issue that has enjoyed little research effort when 

compared to other, better-established, phases of the software development lifecycle. 

While previous studies have indicated the need for corrective action, no notable 

progress has been achieved towards the realisation of improvements. This study 

demonstrates that, through an extension of existing techniques, a standard 4GL may 

be used to implement flexibility in both the 'front end' and 'back end' of an 

application. 

Chapter two provides a review of the relevant literature. The review draws upon 

previous work, in textbooks, documented research papers and articles, to provide 

guidance and justification for the study' s approach of adaptation/enhancement of 

existing modelling techniques. To further the study's implementation, existing 
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techniques that provide flexibility within an application are explored. Finally, 

documented features of the Oracle 4GL environment that facilitate system flexibility 

are identified. 

Chapter three describes the research design. The methodology undertaken to answer 

the research questions proposed in chapter one is described, together with the Oracle 

environment employed to develop the demonstration application. 

Chapter four outlines the flexible software techniques implemented using native 

Oracle features (to be introduced in chapter two), and details the usage of the 

demonstration application. 

Chapter five presents the results and findings of the demonstration application. The 

findings are discussed in relation to the initial research criteria and compared to 

previous studies that were discussed in chapter two. 

Chapter six concludes the study. A summary is given of the initial aims of the study 

and the manner in which they were addressed. Finally, the implications of the results 

and findings are discussed with respect to their benefits to current practice and to 

future research into flexible software. 

This document concludes with a glossary of terms, followed by the end text 

references for documents used to support the study, and several appendices, which are 
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used to provide clarification and amplification of significant areas of the study: 

namely, 

Appendix A consists of the data collection form used by the manual submission 

system (the system is detailed in chapter three);  

Appendix B presents the category hierarchy with the required field configurations 

(the category hierarchy is detailed in chapter three); 

Appendix C lists the database creation SQL scripts (the database is introduced in 

chapter three and detailed in chapter four); 

Appendix D illustrates the PUSQL code used in the Update Layout procedure (the 

Update Layout procedure is detailed in chapter four); 

Appendix E consists of screen captures of the demonstration application's static 

data entry screens (the static data entry screens are covered in chapter 

four); and 

Appendix F demonstrates reports generated by the application using the full sample 

data provided). 
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Chapter 2 :  Review of the Literature 

2.1 General Literature 

Early attempts at flexible systems, such as that proposed by Parnas (1979, p.128) 

involved designs based on components. Parnas (1979, p.128) suggested a 

methodology wherein a project commenced with the identification of minimal 

subsets, each of which might perform a useful service, and then progressed with the 

addition of minimal increments to the system. Parnas' chosen components conformed 

to the following general rules: 

• Each component should perform a single function. 

• A component should not be reliant on the format and output of data from 

another component. 

• Components should not assume that any functionality exists already in the 

system. 

The component-based methodology, such as proposed by Parnas, was gradually 

replaced in the late 1980s by an object-oriented (0-0) approach to systems 

development. 

Booch (1994, p.37) suggests that flexibility may be achieved through the use of the 0-

0 approach to define a system as a collection of objects rather than components. In 

the 0-0 approach a measure of -flexibility is achieved through the use of the native 

object features such as inheritance, abstraction and polymorphism. These 0-0 

features allow a programmer to import previously created classes from standard 
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libraries, and extend/adapt or overload elements of them without requiring any 

changes to be made to the original class. In order to obtain maximum synergy 

between the features of 0-0, Booch (1994, p57) states: "modules should be cohesive 

(by grouping logically related abstractions) and loosely coupled (by minimising the 

dependencies among modules)". While the 0-0 technique does permit inclusion of 

flexibility in its design, and provides an ability to approach a system definition in 

iterative and incremental fashion, it is, arguably, not a suitable modelling environment 

for poorly defined systems that suffer major requirements creep during the 

maintenance phase. 

A fragment-based specification method is presented by Blum (1993b, p.728) to allow 

a conceptual model to be created for systems where requirements are inclined to be 

dynamic or poorly understood. Blum's (1993b, p.730) 'fragment-based' method 

stores concepts, known about the application, as fragments in a database. In Blum's 

method, specification fragments are assembled to form a definition of the software 

functions utilised in code generation for the application. However, whilst Blum 

(1993b, p.731) advocates the use of methods that allow the gathering of 'open 

requirements', he provides criticism in that "there are high risks in developing 

systems with open requirements: the resulting product may not be useful". 

Ensor and Stevenson ( 1997, p.503) propose the implementation of flexibility via user 

extensibility. User extensibility refers to systems that allow a user to modify a system 

from within the application, thereby maximising the utility of a system. Ensor and 

Stevenson ( 1997, p.504) divide their proposal into two types of flexibility: namely 
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'schema extensibility' and 'algorithmic extensibility' , in order to classify better those 

systems with 'open requirements' . To elaborate, 'schema extensibility' refers to 

situations where new attributes and/or entities are required. 'Algorithmic 

extensibility' , then, refers to the changing of the underlying business rules in order to 

supplement, update or replace the current rules. Ensor and Stevenson advise that 

where a rule is likely to change, the code used to implement the rule should be stored 

as a package in a database table, allowing for the easy manipulation of existing rules. 

The flexibility achieved through the use of these database packages may be extended 

through the storage of every atomic action (a fundamental, indivisible code element) 

as a procedure or function in the database, thereby maximising the amount of code 

reuse and, in-tum, decreasing maintenance costs. 

Woolfolk, Ligezinski & Johnson (1996, p.3) put forth the idea of a 'dynamic search 

condition' as a method to implement 'algorithmic extensibility'. The 'dynamic search 

condition' is used to allow the association of business rules together with data, thus 

providing both user extensibility and system flexibility. By way of mechanism, such 

association is achieved through the use of two files and a search program, where the 

first file contains the data and the second file contains the key values needed to search 

the data. The search program, illustrated in figure 4, accepts predefined arguments 

and then searches the data file according to a pattern determined by a key that is built 

from the key values in the second file. The effect of the mechanism is to allow the 

program to change the access rules to a table (notably without any modification to the 

program), effectively providing a facility for changes in business rules applied to the 

data. 
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One : One One : Many Many : Many 

' ' / ' 

E ntity 1 E ntity 1 Entity 1 

\. / / 

' ' 

Entity 2 Entity 2 Entity 2 

Figure 4. The dynamic search condition 

Mehandjiev & Bottaci (1996, p.450) observe that a purely graphical language might 

provide a level of flexibility not achievable with standard 'algorithmic extensibility' . 

Layng (1998, p.16) states: "if an application can be written in a language that is purely 

graphical rather than text based then there is a huge potential for users to modify the 

structure of the program as they wish". However, as yet no 'pure graphical' language 

of any note has been developed that may be applied to the general domain, although 

the Object Management Group, through their development of Unified Modelling 

Language (UML), is making advances in this area (Pohl, 1997, p.142). 
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In order to provide a standard for extensible systems, graphical or otherwise, Hall & 

Ligezinski (1997b, p.6) suggest four main areas to be addressed by any system before 

it may be considered flexible: 

• Access security: where each user needs to access only that functionality for 

which they have authorisation. 

• Dynamic report formulation: where reports produced by the system must 

be able to adapt to changes in the system. 

• Data entry processes: where data entry screens should not be fixed, as they 

define the way a user 'sees' and interacts with a system. 

• Business rules applying for specific conditions: where flexible application 

of business rules is allowed under certain circumstances. 

2.2 Specific Studies Similar to the Current Study 

A method proposed by Hall & Ligezinski ( 1997b, p. 7) to satisfy their four nominated 

areas of flexibility, is via the use of 'common code' tables that allow both 

specification and implementation of flexible software. They state: "When a new code 

value needs to be added, or modified, it can be accessed at runtime through database 

queries, dynamic record groups and lists of values as opposed to the usual predefined 

pop-lists". Common code tables, in which values, located on a one to one basis 

against identifiers known to the program, are read by a program at run time and, 

therefore, stored ready to be queried immediately prior to use. An example of such 

use may be to store values for display in screen menus, where the contents of the 

menus change according to context. 
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For example, a table called FRUITS might be used in a system to store the name of a 

fruit and its associated value, and this table may, in tum, be linked via a record group 

(explained in depth later) for display in a 'front end' object or selection list/menu. 

Thus if a fruit is added to the 'common code' table FRUITS the value would 

automatically be linked with its associated object, e.g. facilitating easy changes to 

menu contents by editing the FRUITS table contents. 

The technique has been used in many recent large systems programmed in Oracle 

Forms. One such system is the CONCEPT Human Resource Management software, 

which uses such a 'common code' table nominated, appropriately, CODES (illustrated 

in figure 5), to store codes together with their designated values and descriptions for 

the entire system. By example, the CONCEPT system exemplifies a useful extension 

of flexibility to the standard 'common code' technique through the 'kind' column in 

the CODES table. Values in the CODES tables are grouped by what 'kind' they 

belong to, and, in tum, the kind determines a link, or indirection, to a specific object 

to be accessed at runtime. Through this extension CONCEPT is able to store the 

'common codes' for the entire application in the one table. 

Name Nul l ?  Type 

KIND NOT NULL VARCHAR2 ( 1 5 )  

CODE NOT NULL VARCHAR2 ( 5 0 )  

DESCRIPTION VARCHAR2 ( 5 0 )  

LENGTH NUMBER 

Figure 5. SQL Description of Concept HR codes tables (Courtesy of Concept Systems) 

19 



O'Connor suggests an alternative use for 'common tables' to provide a high level of 

flexibility. The 'front end' tables are used to store a large portion of the setup of the 

'front end' of an application. O'Connor ( 1 999, p.36) provides an example where the 

'front end' screens of an application are stored in five tables (illustrated in figure 6) : 

• ST_FORM: Stores the names and characteristics of those forms that are 

present in the system, including such details as the width and height of the 

form that will be displayed at run-time. 

• ST_ITEM_TYPE: Stores the names of all item types that may appear on 

any given form. These include buttons, text items, Lists of Values (LOY s) 

and radio-button groupings. 

• ST_ITEM: Stores the names of all possible items that may be included on 

any form. 

• ST_FORM_ITEM: Stores the items that will appear on a particular form 

and indicates how the various different run-time properties (e.g. position, 

width, and font) will be set when that form is run. 

• ST_FORM_REF: Stores the names of items that should be displayed on a 

form based upon values stored in a different table, (e.g. where items are 

displayed on a Customer maintenance form according to a group to which 

they belong). 
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I ST_FORM S_FORM_REF 

ST_FORM_ITEM 

ST_ITEM l ST_ITEM_TYPE 

r I 

Figure 6. ER Diagram of 'Front End' setup tables 

The 'setup' tables shown in figure 6 are mapped onto the overall application database 

according to the Entity-Relationship (E-R) diagram depicted in figure 7. Each form is 

then defined by altering the defined setup values in a maintenance form, so that when 

a window is first displayed a call is made to an appropriate function to display the 

required items. O'Connor (1999, p.56) notes about his design: "the dynamic screen 

concept appeared a good idea in theory, however it does have many limitations in 

practice". The limitations mentioned in O'Connor's study stem from the increased 

overhead of querying all five setup tables (shown in figure 6) prior to loading each 

screen during the application's runtime. 
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Figure 7. Application E-R Diagram (O'Connor, 1999, p.36) 

While the above studies (O'Connor, 1999; Hall & Ligezinski, 1997b) demonstrate 

techniques utilised successfully to provide flexible systems, they do limit flexibility in 

the type of data stored. The 'common code' and 'front end' table techniques are 

limited as they achieve user extensible systems exclusively through the 

implementation of algorithmic extensibility, ignoring schema extensibility. The study 

proposes to address this limitation through a dynamic data model (explained in 

chapter four), providing a level of flexibility superior to the techniques previously 

described. 
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2.3 Other Literature of Significance to this Study 

Recall that the aim of this study is to provide a system with schema extensibility 

through an extension of existing techniques. Inevitably, such extension includes the 

rules governing normalisation, modelling of data, and specific techniques for the 

implementation of native features that promote or facilitate flexibility in environments 

such as Oracle. A modelling method that complements normalisation, and that will 

be employed in the study, is that of Entity-Relationship (E-R) modelling, where 

business rules may be applied and where the completeness of data attributes is not 

necessarily known at inception of the model. In other words, the tables we use to 

provide flexibility must be constructed according to the rules of normalisation and E­

R modelling that apply to any well-founded database. Both of these techniques will 

now be elaborated, together with other literature of significance to the study. 

2.3.1 Normalisation 

Codd (1970, p.378) formulated a mathematically based set of design principles for use 

in designing relational databases. These principles have become formalised in terms 

of progressive normalisation of data via, at least, three normal forms (known as: first, 

second, and third normal form). Other normal forms are now known to exist but will 

not be covered in this review. Normalisation is, in effect, a data drive, 'bottom-up' 

approach and its purpose is to remove what are known as the 'three side effects', 

which are, paraphrased from Beynon-Davies (1996, p.144): 

• Deletion side effect: where the deletion of a specific piece of data results 

in the loss of related information that is still valid. 

• Update side effect: where the operation of updating a single piece of data 

requires the modification of more than one database column. 
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• Insertion side effect: where data may not be entered as it is dependent on 

having at least one link to another part of the system. 

The removal of the Beynon-Davies' side effects ensures database stability following 

volatility of its contained data. 

Beynon-Davies ( 1996, p. 145) describes normalisation as consisting of four steps: 

1. Collect the data set into a list of un-normalised data. 

2. Transform the resultant list into tables in the first normal form: defined by 

Beynon-Davies (1996, p. 147) as: 

"A relation is in first normal form if and only if every non-key 

attribute is functionally dependent upon the primary key." 

3 .  Transform first normal form tables to second normal form: defined by 

Beynon-Davies ( 1996, p. 149) as: 

"A relation is in second normal form if and only if it is in first 

normal form and every non-key attribute is fully functionally 

dependent on the primary keys." 

4. Transform second normal form tables to third normal form: defined by 

Beynon-Davies ( 1996, p. 15 1) as: 

"A relation is in third normal form if and only if it is in second 

normal form and every non-key attribute is non-transitively 

dependent on the primary key." 
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Following the above steps produces a stable and efficient relational data model on 

which an application may be based with confidence. Accordingly, the practice of 

normalisation is adhered to in this study in order to yield such stability and efficiency 

of stored data in its example application. Normalisation is also used to analyse and 

incorporate data storage information into the data set to provide a schema extensible 

system. This will be explained in chapter four. 

2.3.2 Entity Relationship Model l ing 

To complement the 'bottom-up' approach to database design, i.e. normalisation, a 'top 

down' analysis, known as Entity-Relationship (E-R) modelling, is generally followed 

by current practitioners. E-R modelling is employed particularly in situations where 

an analyst may not know all needed data before modelling commences. It provides a 

rapid approach for producing a model that may subsequently be refined using 

normalisation techniques and, as Beynon - Davies, ( 1996, p.162) reports: "In practice, 

database developers normally do more data modelling than they do normalisation." 

The E-R modelling approach was devised by Chen (1976) to facilitate data modelling 

for problem areas for which a database solution is envisaged and is used frequently in 

association with the relational model. 

The first step in conducting E-R modelling is the identification of all necessary 

entities. The exact definition of what constitutes an entity varies, but Beynon - Davies 

(1996, p.162) provides the following: "An entity may be defined as a thing which the 

entire enterprise recognises as being capable of an independent existence and which 

can be uniquely identified". This definition concurs with that of Hall (1998, p.7) who 
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defines an entity as "An individual object, concept or event about which the 

organisation chooses to collect and store data". In E-R models, named rectangular 

objects depict entities, as shown in figure 8. 

/ '\ 

Department 

' / 

/\ 

Employee Tasks 

' / 

Figure 8. A sample ER diagram containing three entities: Department, Employee and Tasks. 

To model the interaction/association between entities a relationship is used, depicted 

an example of which is shown in figure 9. Three relationships are known to exist in 

Chen's model: 

• One to one relationships: where an instance of one entity has a direct 

single link to another separate entity. 

• One to many relationships: where an instance of one entity has multiple 

direct links to another separate entity. 

• Many to many relationships: where many instances of the same entity 

have links to many instances of another separate entity 
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One : One One : Many Many : Many 

I' ' ' 
Entity 1 Entity 1 Entity 1 

'- / '- '-

I' '\ I' ' I' ' 

Entity 2 Entity 2 Entity 2 

,I '-

Figure 9. The mapping of Chen's relationships (Hall, 1998, p.24) 

A completed E-R model, in conjunction with the normalised data, shows the structure 

and detail of an intended database, in which entities are implemented as tables and 

relationships achieved by linking key attributes common to related tables. 
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2.3.3 Native Oracle Features used to facil itate flexibility 

The Oracle development environment is provided for the creation of the 'front end' of 

an Oracle application. The 'front end' facilitates, for the user, an interface to the 

underlying database 'back end' . Innate in the Oracle development environment are 

many features that may be used to enhance and create flexible applications. 

O'Connor (1999, p.24) suggests that the most useful of these flexibility enhancing 

features are: 

• %TYPE 

• Setting Properties Programmatically 

• Dynamic Record Groups 

• List of Values 

Each of O'Connor's 'flexibility features' will now be elaborated in tum. 

2.3.3.1 % TYPE 

The identifier % TYPE declares a variable of: 

• a previously declared variable 

• a column in a table 

The %TYPE identifier is utilised in the variable declaration section of Oracle 

procedures, functions and packages to ensure type consistency. Consider the database 

table depicted in figure 10 and the PL/SQL procedure block illustrated in figure 11: 
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Columns 

Row_lD 

Char_Col 

Num_Col 

Date_Col 

NUMBER NOT NULL 

VARCHAR2{1 0) 

NUMBER 

DATE 

Figure 10. The flex database table 

DECLARE 
Flex_ Value Flex.Char_Col%Type 

BEGIN 

END; 

SELECT * 

INTO Flex_ Value 
FROM Flex 
WHERE Row _ID = 1; 

RETURN Flex_ Value; 

Figure 11. Utilising %TYPE in PlJSQL 

In figure 11, the variable Flex_ Value is declared from the same type as a value 

originating in the database column Char_Col in the table Flex shown in figure 10. 

The full value of using the %TYPE identifier in this manner becomes apparent when 

used in database side subprograms of procedures, packages and functions. In these 

database side subprograms, efficacy is achieved as they are automatically recompiled 

before every runtime. Such recompilation allows the %TYPE to reassign the variable 

type when required, such as following a change in the underlying type of a database 

item. Even when the %TYPE is used in client side functions, the type used by the 

application may be updated by performing a manual re-compile. 

The %TYPE feature enhances the flexibility of database procedures and functions by 

allowing them to adapt to changes in data formats. Stacey (1995, p.3) held such 

changes accountable for the greatest portion of software maintenance activities. 
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Stacey' s  opinion agrees with that of Feuerstien ( 1996, p.25) who states that the most 

common cause of application failure is "the undying belief held by programmers that 

a particular value will never change and so can be hard coded into the program." 

O'Connor ( 1999, p.27) cites a Ministry of Justice [of Western Australia] case 

management system that has implemented a change of underlying database types by 

using the %TYPE feature and subsequent recompilation to activate the changes. 

2.3.3.2 Setting Properties Programmatically 

A property is defined in Oracle (2001)  as "an attribute of an item that may altered to 

modify the setup of that item." Manipulation of these attributes is achieved via 

property functions that allow, for example, a facility for manipulation of the physical 

properties of graphical objects, where the manipulation may result in an enhancement 

to the flexibility of a system. Development environments such as Oracle 's  Developer 

provide utilities of GET and SET property functions, examples of which include: 

• SET_ITEM_PROPERTY: Modifies all instances of an item in a block 

by changing a specified item property. 

• GET_ITEM_PROPERTY: Returns property values for the specified 

item. 

• SET_ WINDOW _PROPERTY: Sets a property for the selected window. 

• GET_ WINDOW _PROPERTY: Returns the current setting for the 

selected window property for a given window. 

• SET_BLOCK_PROPERT: Sets the given block characteristic of a 

specified block. 
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• GET_BLOCK_PROPERTY: Returns information about a specified 

block. 

Through these standard SET and GET functions it is possible to manipulate the 'front 

end' of an application, thereby allowing a quasi-visual form of flexibility that 

approximates Mehandjiev & Bottaci' s ( 1996, p.450) idea of providing flexibility by 

using a graphical method. 

2.3.3.3 Dynamic Record Groups 

Record groups may be used to provide both query and data flexibility in applications. 

They form sets/lists of information that may be created and populated through the use 

of SQL queries. Typically, record groups, are used to generate small subsets of data 

for those specialised operations where no information update is occurring, e.g. when 

checking if a value exists. Hall & Ligezinski (1997b, p.7) suggest that dynamic 

record groups are best employed in conjunction with the previously described 

common code tables. 

A typical example of a record group would be a small SQL query that extracted a list 

of items, each of which has a common property, from a table e.g. a list of all the male 

employees in an organisation's  payroll system. The record group might then be used 

inside an application in preference to a non-record group situation where the same 

query would have to be run multiple times to achieve the same effect. 
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2.3.3.4 List of Values 

LOYs are a native feature of Oracle and may be used to replace the traditional static 

lists, known also as 'pop lists' or combo-boxes, found in standard application front 

ends. They are associated directly with a record group, thereby "ensuring the 

information they contain is always current" (O'Connor, 1 999, p.29). 

Additionally, unlike 'pop lists', a LOY does not require a direct link to a text item, 

thereby allowing sufficient flexibility to attach a LOY to a button or a menu item. 

While a LOY may be associated directly with a text item in its property settings, a 

function such as that depicted, in figure 12, as SHOW _LOY may be used to handle 

the activation of the LOY programmatically. The SHOW _LOY function has a return 

type of Boolean, returning TRUE where a value is selected or FALSE if the user 

cancelled the LOY. 

DECLARE 

LOY_ Used BOOLEAN; 

BEGIN 

LOY_Used := SHOW_LOY('A_LOY'); 

END; 

Figure 12. Calling a LOY using PUSQL 
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2.4 Summary 

Employing facts and documented experience, selected literature has been used to 

provide a basis for a discussion about identifiable, desirable features that may promote 

development of flexible systems. The concept of flexibility has been discussed with 

an emergent idea that to provide a strong level of flexibility a system should be 

alterable through data values that are held in tables, rather than by the use of code. In 

addition, those inherent features of the ORACLE database language that may be 

employed to promote and facilitate flexibility in a relational based system were 

reviewed. 

33 



Chapter 3: Research Method 

This chapter outlines the methodology followed by the study to provide answers to 

the research question proposed in chapter one. It also describes the guidelines for the 

development of the demonstration application that is discussed in chapter four. 

3.1 The Problem 

In order to address the research question of "How may the challenge of 

dynamic/flexible user requirements be met using data driven techniques in a 4GL­

database environment?" a demonstration application was designed and implemented 

using the Oracle 4GL environment. The resultant application implements a staff 

activity submission system and was chosen for the following reasons: 

• The 'real-life' requirement for such a system by Edith Cowan University 

(ECU); 

• The unpredictable nature and rapid changes in requirements manifested in 

the current manual system. 

The requirements of the system were gathered in a series of interviews and 

information/data analysis sessions, the results of which were entered into a CASE 

tool. A summary of the problem statement is as follows: 

On a quarterly basis, the faculty creates the staff newsletter. In order to 

collect the information for the newsletter, a form (see appendix A) is 

emailed to all staff members and, ideally, this form is then completed by 
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staff and emailed back to the newsletter editor. The editor then manually 

collates and corrects all the information in accordance with the data 

collection guidelines ( see appendix B) and uses this information to create 

the newsletter. 

The following problems were observed with the manual system: 

• Difficulty of tracking whether a staff member has/hasn't submitted a return 

in a specific quarter. 

• Manual collation of returns is very time consuming. 

• It is hard to inform staff of changes to the form. 

• Returns on the form are often in an inappropriate format. 

ECU management, following requests by users, decided to commission a computer­

based solution. The replacement system needed to address the following issues: 

• Allowing staff to enter/maintain their own returns at any time. 

• Allowing updates of categories and their associated return items. 

• Providing reports to allow easy data extraction. 

• Permitting two levels of access: i.e. standard user and administrator. 

An initial analysis, described later in this chapter, of the problem area was utilised as a 

guide for the design and construction of the demonstration application. The 
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application's development was then separated into several phases, each of which is 

introduced in this chapter and, further, discussed in depth in chapter four. 

3.2 E-R Analysis 

The first phase in the design of the demonstration application was an analysis of the 

problem domain together with the client/user-supplied data. The analysis was used to 

construct an E-R model and normalised view of the system's data. Recalling that part 

(a) of the research question was stated: "How may one model dynamic user 

requirements through an extension of contemporary data modelling techniques?", E­

R modelling was used to build a model to demonstrate such extension. 

The extension was achieved through an investigative process; wherein the system was 

modelled initially using standard modelling techniques and normalisation. The 

standard model was then analysed for weakness, and the identified weaknesses were 

addressed to facilitate the creation of a dynamic model. This process has been detailed 

further in chapter four. 

3.3 Database Design 

Upon completion of the E-R analysis the resultant model and normalised data set 

were converted, using Oracle CASE tools, into a relational database. The successful 

generation of the database creation scripts from the CASE tool (Appendix C) with the 

supplied E-R model confirmed the model's validity and provided the 'back end' of the 

demonstration application. 
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3.4 Application Development 

Development of the demonstration application commenced following the database 

design phase, in accordance with the requirements gathered therein. Oracle's 

Developer 6i tool-set was selected for development, for reasons of availability, 

maintainability and relevance to the task-in-hand, and consists of: 

• Oracle Forms Developer 6i: A graphical based development language for 

constructing user interfaces. 

• Oracle Reports Designer 6i: An SQL based reporting tool used to 

develop and publish data queries. 

• Oracle SQL Si: A structured database query language that contains 

enhancements over and above the standardised SQL. 

Furthermore, the tools, all from the same vendor, ensured maximum coordination 

between the 'front end' under development and the 'back end' developed during the 

database design phase. The application was then integrated in an incremental fashion, 

where each individual form (screen) was developed as a standalone module before 

being merged into the overall application. 

The development and implementation of the demonstration application, in 

conjunction with the flexible database design, was used to answer part (b) of the 

research question, stated previously as: "How may one implement user requirements 

of flexibility using data driven techniques in a contemporary 4GL environment?" 
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3.5 Oracle Environment 

The development and presentation of the Staff Submission System was performed on 

two network and internet enabled IBM compatible personal computers. One machine 

acted as a development machine and comprised a Pentium III processor with a clock 

frequency of 700MHz, memory capacity of 128Mb, and a hard disk drive with 10 Gb 

of storage. Microsoft Windows NT 4.0 (Service Pack 5) was chosen as the operating 

system, due to its compatibility with the Oracle software used. 

The second machine acted as a client, and was typical of that supplied to a user of the 

Staff Submission System. The client machine comprised a Pentium III processor with 

a clock frequency of 600MHz, memory capacity of 64Mb, and a hard disk drive with 

8 Gb of storage. Typical, again, of a user's machine, client applications were hosted 

by the Microsoft Windows 98 operating system. 

The following products were installed on the development machine: 

• Personal Oracle Database version 8.1.6 

• Oracle Developer 6i 

• Oracle Designer 6i 

The following products were installed on the client machine: 

• Oracle 8i Client Run-time 

• Adobe Acrobat Reader 

• Internet Explorer 5.01 
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In short, the environment and development tools were chosen to reflect a standard 

industry configuration, based upon the technical advice given by several experienced 

and qualified practitioners and ECU technical support staff. 

3.6 Summary 

This chapter has introduced the problem statement that the sample application 

addressed, outlined the development phases of the study, and related them to the 

respective component of the research question that they were employed to address. 

The environment used to implement the study was introduced and discussed. Chapter 

four elaborates on the phases introduced in this chapter (principally, those of analysis, 

design, and development) and details the demonstration application. 
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Chapter 4: The Demonstration Application 

This chapter details the development of the demonstration application, nominated the 

Staff Submission System. The system was developed in accordance with the research 

method outlined in chapter three, incorporating, where appropriate, the techniques and 

features reviewed in chapter two. 

4.1 The Database 

The sample application's implementation commenced with database construction. In 

accordance with contemporary design techniques, an incremental process was 

followed, wherein individual database tables and constraints were modelled and 

reviewed, in both an initial and flexible design, before being integrated into the 

database. This allowed for progressive testing and validation of the design 

whereupon the creation scripts were generated using the CASE tool previously 

outlined in chapter three. The manner in which the model and resultant database were 

constructed will now be elaborated. 

4.1.1 Initial Design 

In order to prevent any neglect/loss of data requirements during the database design, 

the system was first subjected to straightforward E-R modelling to produce an initial 

standard model, depicted in figure 13, without consideration of any flexible 

requirements of the system. This was undertaken in order to identify, subsequently, 

any possible weaknesses exhibited by the standard model of the system, and to 

provide a base for development of the flexible model. 
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Upon examination, two problems were identified as being inherent in the standard 

model illustrated in figure 13: namely, 

• a lack of categorisation; and 

• an inefficiency of storage of optional data. 

Both of these problems are now explained, in tum. 

The importance of the categorisation of elements, listed in appendix B, is ignored by 

the standard model, which relies upon category elements being 'hard coded' into the 

menu screens of the application. The menu screens would be required to store the 

correct category information in order to store data in all six of the item tables (i.e. 

Article, Award, Event, Appointment, Book, and Grant) illustrated in figure 13. The 

storage via such screens mandates the use of a single field in each item table to store 

data for the category of which the item is a member. It may be seen that the structure 

for such hard-coding of the category hierarchy is rigid and, further, that such rigidity 

may lead, eventually, to increased maintenance costs in the event of revision of the 

category hierarchy becoming necessary. 

A second deficiency of the standard model, illustrated in figure 13, lies in the amount 

of overhead for optional data to be stored by all six of the item tables. For example, 

the 'Book' table described in figure 14 contains four columns that are not needed in 

every situation, but that would appear on related data entry screens. 
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Name Nul l ?  Type 

RETURN_NO NOT NULL NUMBER 

CATEGORY NOT NULL VARCHAR2 ( 1 5 0 )  

AUTHOR NOT NULL VARCHAR2 ( 1 0 0 )  

DATE NOT NULL DATE 

BOOK_TITLE NOT NULL VARCHAR2 ( 1 5 0 )  

CHAPTER_TITLE VARCHAR2 ( 1 5 0 )  

PAGES VARCHAR2 ( 2 0 )  

PUBLI SHER VARCHAR2 ( 1 5 0 )  

VENUE VARCHAR2 ( 1 5 0 )  

Figure 14. Description of the BOOK table 

Both of the identified problems suggest that the standard model exhibits extreme 

limitations in its ability to allow for 'schema extensibility' (discussed in chapter two). 

By example, should the user wish to enter a new type of item, (e.g. videos) into the 

category hierarchy to allow a new type of input data, the application would require the 

following maintenance tasks: 

• The addition of a new table to store the data, i.e. a new entity added to 

figure 13, linked to the 'Return' table. 

• The creation of, at least, one new screen to allow data entry into the new 

table. 

• The alteration of hard coded category settings to accommodate the new 

item type and its associated screen(s). 
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The nature of the maintenance tasks implies that the standard E-R model' s  limitations 

would have a noticeable cost associated with modifications to those hard-coded 

features required in response to requirement changes. 

4.1.2 Flexible Design 

To overcome the limitations of the initial, non-flexible, data model the problem area 

was reviewed in order to effect a reduction of possible future maintenance costs. The 

increased maintenance imposed by the standard model' s  six separate item tables 

(illustrated in figure 13) was mitigated by the introduction of a single table structure. 

The single table is capable of storing all of the category hierarchy information that 

would, in the non-flexible, standard application, be hard coded. 

When modelling the category hierarchy the following points were considered: 

• Categories may contain one or more subcategories.  

• Subcategories consist of one or more data items, e.g. a subcategory storing 

book details may consist of the following data items: author names, 

publisher details, date published, and book title. 

• A data item may exist in more than one subcategory e.g. one or more 

subcategories may include 'name' as a valid field. 
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The resultant data model, illustrated in figure 15 ,  permits storage of all the 

information contained within the category collection list described in appendix B. In 

addition the 'Composition Rule' entity permits storage of dynamic mapping data 

allowing application fields to be remapped automatically at runtime. 

However, before this dynamic mapping might be added to the 'Composition Rule' 

entity, a dynamic storage entity was required to provide a suitable data storage area 

onto which to map the application fields. In order to achieve an optimal fonn for the 

dynamic entity, the storage requirements of each return item in appendix B were 

mapped onto the table shown in Figure 16. 
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Cat Sub Cat Sub Sub Varchar2 Number Memo Date 

Cat 

�-

1 2 0 1 0 

2 3 1 1 0 

3 4 0 1 0 

2 1 4 1 1 0 

2 1 4 0 0 1 

2 5 0 0 1 

3 5 0 0 1 

4 5 0 0 1 

5 5 0 0 1 

6 5 0 0 1 

7 4 0 0 1 

8 3 0 0 1 

9 3 0 0 1 

1 0  3 0 0 1 

1 1  4 0 0 0 

3 3 0 1 0 

4 1 0 i 0 

5 3 0 1 0 

3 1 3 0 1 1 
· -

3 0 0 1 

3 0 1 0 

4 2 0 1 0 

5 4 0 1 0 

4 1 3 0 1 0 

2 4 0 1 0 

3 2 0 1 0 

4 2 0 1 0 

5 2 0 1 0 

Max 5 1 1 1 

Figun: 16 .  Storage n:quircmcnts or category ilems 
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The tahlc depic.:tcd in figure 1 6  ind ic.:ates that a dynamic.: ent i ty ,  nomi natcd · Rctu rn 

Item' , t h at contains i:o lumns uf l1 vc (har;u.:ter, one memo, one date and one number 

type may bi.: used to store any category i ti:m. To th i s  enJ , and to a l I ow for future 

grO\vth ,  a dynamic cnL i ty configured wi th s ix charac ters, one memu, two da te and ti,�·o 

number columns was implemented . The dynamic ent i ty provided the required  bridge 

bct\vecn the data model in figure 1 3  and the category defin i t ion data mode l in figure 

1 5 .  The resu ltant ,  complete, model is i l lustrutcd in Figure 1 7 . 
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The bridge works by defining the configuration of the 'Return Item' entity (in figure 

17), for each combination of the category hierarchy. The configurations are stored in 

the composition rules entity and accessed via application scripts whenever data is 

required to be stored/retrieved from the dynamic entity. Thus each category 

combination may have its own unique way of viewing the data stored in the dynamic 

entity of 'Return Item' . 

4.1.3 Creating the database 

The resultant system model was entered into the Oracle CASE repository using the E­

R modelling tool. The CASE tool was then used to produce the database creation 

scripts listed in appendix C, whereupon these were run on the database to form the 

'back end' of the flexible application. 

4.2 The Application 

The flexible application, consisting of a graphically based 'front end' ,  was constructed 

to sit atop the 'back end' database. To facilitate the flexibility, the sample application 

development was split into three logical areas: 

1. The first area was concerned with the setup and maintenance of the flexible 

area of the application i.e. that of the category tables illustrated in figure 15. 

2. The second area contained those standard functions of the system that utilise 

the setup data from the category tables illustrated in figure 15, to present 

flexible data entry screens. 

3. The third area of the application focussed upon retrievability of the data 

entered into the flexible system. 

Each of the above development areas will now be elaborated. 
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4.2.1 Flexible Setup 

The nature of the flow and connectivity of the system's forms, or screens, is derived 

from the category setup data. Accordingly, a form flow diagram was constructed, 

illustrated in figure 18. Each 'box' shown in figure 18 translates directly to one or 

more functions/forms in the final application. 

Category 

�, • 

Subcategory 

I 

ir 

Prompts � Composition Rules .... View Setup � ... 

Figure 18. System maintenance flow 

In order to maintain system integrity, this flow forces the application's users to adhere 

to both the logical and the physical relationship existent between the category 

maintenance tables (those illustrated in figure 15). The flow also ensures that the 

transition of the application forms/screens gives the user an implicit, even intuitive, 

understanding of the relationship between the setup information and how it is 

controlled by the system. In order to demonstrate this understanding each of the 

functions/forms illustrated in figure 18 will be explored in detail. 
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4.2.1 .1 Category Maintenance 

The user, through the category maintenance form, illustrated in figure 20, carries out 

category maintenance. The form provides a graphical interface between the user and 

the category database table they are altering, described in figure 19. 

Name Null ?  Type 

CAT_NO NOT NULL NUMBER 

CAT_NAME NOT NULL VARCHAR2 ( 5 0 )  

CAT_DESCRIPTION LONG 

CAT_DATE_CREATED NOT NULL DATE 

CAT_DATE_REMOVED DATE 

Figure 19. Description of the CATEGORY table 

Figure 20. Category maintenance form 
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Each category maintenance function is associated with one of the five buttons on the 

form, shown in figure 20. When a button is selected, one of the following operations 

is activated: 

• Previous: To navigate to the preceding category information, and where 

no preceding category exists then this button appears disabled. 

• Back: To close the category maintenance form, and return to the main 

menu. 

• Next: To Navigate to the succeeding category information; and where no 

succeeding category exists then this button becomes disabled. 

• Remove: To set the removal date to today's date, having the effect of 

removing this category from the category hierarchy. Furthermore, this 

button will raise an error message if the currently selected category 

contains any open subcategories. 

• Drill Down: To open the subcategory maintenance form described in the 

next section. 

These operations permit the user to maintain the data stored in the category table with 

minimal effort. 

4.2.1.2 Subcategory Maintenance 

In similar style to the category maintenance functions, subcategory maintenance 

functions focus on the maintenance of a specific table, in this case the subcategory 

table, nominated SUB_CATEGORY, described in figure 21 .  However, there is an 

extra level of complexity involved in the maintenance of a subcategory due to its 
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breakdown in to further subca tegories ( in  c ffcc.:t,  sub suhcategories J .  Three  forms,  

i l lus trntcd in rigu1 ·es 23 to 26, ,vcn: developed to adi i cvc ,-,uh-c, tlcgory maintcnancc, 

the !low and h ierarchy of which is depic ted in l'igure 22 . 

CAT_NO 

SUB_CAT_NO 

SUB SUB _CAT_NO 

SUB_CAT_NAME 

SUB CAT _DESCRI PTION 

SC_DATE_CREATED 

SC DATE _REMOVED 

Nu l l ?  

NOT t !ULL 

NOT NULL 

NOT NULL 

NOT NULL 

NOT NULL 

Figun: 2 l . Description of !hi: SUB_C,\TEGOR. Y 1:1hk 
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Figure 22. Subc:uegory maintenance screen flow 

The entry point of the subcategory maintenance flow is via a 'Subcategory 

Ownership' form. illustrated in figure 23 .  This form, which is cal led from the 

previously discussed 'dri l l  down' button on the category maintenance form (figure 

20) , displays a list of the subcategories relating to the category selected in the cal l ing 
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form. The form's purpose is to allow the user to see an overview of the category­

subcategory hierarchy. 

Figure 23. Subcategory ownership form 

The purpose of each of the four buttons on the 'Subcategory ownership' form, figure 

23, is as follows: 

• Add Sub Category: To Open the 'Add Subcategory' form (figure 24) for 

the input of a new subcategory. 

• Add Sub Sub Category: To open the 'Add Subcategory' (figure 25) 

form for the input of a new sub subcategory. 

• View Details: To open the 'View Subcategory Details' (figure 26) form 

and display the details for the selected subcategory. 
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• Back: To close the 'Subcategory ownership' form, and return to the 

category maintenance form. 

Providing addition of subcategories, a variant of the 'Add Subcategory' form is called 

according to whether the 'Add subcategory' button or the 'Add sub sub category' 

button is pressed on the 'Subcategory ownership' form (figure 23). The two variants 

are shown in figures 24, for editing Subcategories, and figure 25, which has an 

additional field necessary for adding Sub Sub Categories. 

Figure 24. Add subcategory fonn (format I) 
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Figure 25. Add subcategory form (format 2) 

In order to edit either sub or sub-sub categories, thus completing the flow depicted in 

figure 22, an appropriate variant of the 'View subcategory details' form is provided. 

These are illustrated in figure 26 and 27. The buttons at base of these forms provide 

the following functionality: 

• Remove: Sets the 'date removed' field to today's date, which has the effect 

of removing the subcategory from active use. 

• View Rules: Calls the 'composition rules' form, which, in tum displays the 

setup rules of the current subcategory. 

• Back: Closes the current form and returns control to the previously 

mentioned 'Subcategory ownership' form. 
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Figure 26. View subcategory details form (format 1) 

Figure 27. View subcategory details form (format 2) 
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4.2.1.3 Composition Rule Maintenance 

Composition rule maintenance activities represent the final stage in the category 

maintenance flow (figure 18). They provide a means by which the user may control 

dynamic properties of the system and are facilitated by using the composition rules 

maintenance form illustrated in figure 28. 

Figure 28. Composition rules maintenance form 

Recall the discussion in section 4. 1.2, wherein a bridge was created to facilitate the 

mapping of configuration rules that determine how the dynamic table, 'Return Items', 

will be accessed. The rules are setup/maintained via the 'Composition rules 

maintenance' form (figure 28). In addition, the form is used for configuring the on­

screen layout of the main data entry screen, which will be discussed in the next 

section. 
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The columns in the composition rules maintenance form each control an individual 

link of the dynamic mapping process via the following functionality: 

• Prompt: The label used to describe the data stored in its associated column 

e.g. a prompt value of 'Name' would result in a field called Name being 

displayed on the dynamic data entry screen and in the flexible reports. 

• Column: The number of the database column to be mapped to, in 

accordance with the column-mapping table illustrated in figure 29. 

Column No Database Field Type 

1 VCHAR_ONE VARCHAR2 

2 VCHAR_TWO VARCHAR2 

3 VCHAR_THREE VARCHAR2 

4 VCHAR_FOUR VARCHAR2 

5 VCHAR_FIVE VARCHAR2 

6 VCHAR_SIX VARCHAR2 

7 NUM_SEVEN NUMBER 

8 NUM_EIGHT NUMBER 

9 TEXT_NINE LONG 

10  DATE_TEN DATE 

11 DATE_ELEVEN DATE 

Figure 29. Column mappmg table 

• Type: This field is automatically updated, based upon the database column 

number in the previous field, as shown in figure 29. 

• Sequence: This field determines the order in which the defined fields will be 

displayed in both dynamic screens and reports. Alteration of this value 

facilitates immediate change of all related screen layouts. 
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Thus, through the 'Composition rules maintenance' form the user may define the 

rules governing access to the dynamic table, 'Return Item' and, further, how an 

individual display item will be seen by other users of the system during data entry. 

4.2.2 Data Entry 

Recall, as discussed in section 4.2, the second phase in the development of the 

application is concerned with data entry. The data entry functions of the Staff 

Submission System are separated into two further sections: 

1. Those functions relating to the dynamic features of the database; and 

2. Those functions relating to the static features of the database. 

Each of the above data entry areas will now be elaborated. 

4.2.2.1 Dynamic Data Entry 

The functions controlling dynamic data entry relate to the process by which a staff 

member (user) creates and edits return items. As with the category maintenance 

process (discussed in the previous section), development of the staff return entry 

process was initiated by creation of the form flow diagram illustrated in figure 30. 
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Choose Col lection 
Period 

,, 

Add Item � ... Return .... ... Remove Item ..... .... � .... 

Figure 30. Staff return entry flow 

Figure 30 models the logical flow for the entry/maintenance of return items, 

beginning with selection of a collection period deriving from the need ( detailed in the 

problem statement stated in chapter three), for staff to submit a return every quarter. 

Selection of a collection period was facilitated in the data model by the definition and 

storage of the quarterly return dates inside the table nominated 'Collection Period' 

(figure 1 7). A link is provided between a staff member and a collection period, in the 

'Staff Return' table described in figure 31, allowing the system to log the date of 

submission and the collection period of a return item. 

Name Nul l ?  Type 

STAFF_NO NOT NULL VARCHAR2 ( 8 )  

COLLECT_NO NOT NULL NUMBER 

RETURN_DATE NOT NULL DATE 

Figure 31. Description of the STAFF _RETURN 
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With this functionality in mind, the 'Choose Collection Period' form, illustrated in 

figure 32, was developed, wherein a user may choose between viewing a previously 

submitted return and the submission of a new return 

Figure 32. Choose Collection Period form 

The functionality of each of the buttons on the 'Choose Collection Period' form, 

figure 32, is as follows: 

• Back to Main Menu: To close the 'Choose Collection Period' form, and 

return to the main menu. 

• New Return: To open a LOV containing a list of all collection periods 

that a staff member hasn't submitted a return for, and, in consequence, to 

add the selected period to the 'Choose Collection Period' form data. 
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• View Return: To open an existing return related to the adjacent 

collection period in the 'View Return Items' form described below. 

Following development of the 'Choose Collection Period' form, it became necessary 

to create a method of viewing submitted return items. Functionality for this was 

provided by a 'view return items' form, which facilitated the addition/maintenance of 

return items. Recall that the rules defining access to the 'Return Items' table are 

defined by the configuration rules maintained by the composition rule maintenance 

functions (discussed in Section 4.2.1.3). The 'View Return Items' form provided a 

focus for the translation the configuration rules into an aesthetically functional format. 

Name Nul l ?  Type 

STAFF_NO NOT NULL VARCHAR2 ( 8 )  

COLLECT_NO NOT NULL NUMBER 

CAT_NO NOT NULL NUMBER 

SUB_CAT_NO NOT NULL NUMBER 

SUB_SUB_CAT_NO NOT NULL NUMBER 

LINE_NO NOT NULL NUMBER 

DISPLAY_ IN_REPORTS VARCHAR2 ( 1 )  

VCHAR_ONE VARCHAR2 ( 2 4 0 ) 

VCHAR_TWO VARCHAR2 ( 2 4 0 ) 

VCHAR_THREE VARCHAR2 ( 2 4 0 ) 

VCHAR_FOUR VARCHAR2 ( 2 4 0 ) 

VCHAR_FIVE VARCHAR2 ( 2 4 0 ) 

VCHAR_SIX VARCHAR2 ( 2 4 0 ) 

NUM_SEVEN NUMBER 

NUM_EIGHT NUMBER 

TEXT_NINE LONG 

DATE_TEN DATE 

DATE_ELEVEN DATE 

Figure 33. Description of RETURN_ITEMS 

62 



Figure 34. View Return Items - base level form 

The placement of all columns of the 'Return Item' table, illustrated in figure 34, onto 

the 'View Return Items' form enabled the form to be altered physically at runtime 

through the use of 'GET' and 'SET' property functions. Recall that the general 

applicability of these functions was reviewed in section 2.3.3.2, whilst their 

applicability specific to this component of the study will now be elaborated. 

The 'GET' and 'SET' property functions were utilised in a procedure named 'update 

layout', presented in pseudo code in figure 35 and listed in appendix D. The 'update 

layout' procedure uses the category details of the current item to access the user­

defined rules stored in the 'Composition Rules' table, described in section 4.2.1.3. 

The configuration rules are used to restrict the fields that may be displayed, to 

establish the labels next to each of those fields, and to determine the order in which 

the fields appear. 
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BEGIN 

GET CURRENT CATEGORY VALUES 

IF  USER I S  ADMINISTRATOR 

SHOW DISPLAY_IN_REPORTS FIELD 

ELSE 

HIDE DISPLAY_IN_REPORTS FIELD 

END IF  

FOR EACH COLUMN IN THE RETURN_ITEMS TABLE 

SET ITEM_NAME TO CURRENT ITEM 

CHECK COMPOSITION_RULE DATA ON ITEM 

IF COLUMN IS NOT NEEDED 

HIDE THE ITEM 

ELSE 

SHOW THE ITEM 

DISPLAY RELATED ITEM PROMPT 

POSITION ITEM ON SCREEN 

END IF 

END LOOP 

END 

Figure 35. Update Layout pseudo code 

As the format of the display may have changed since its last invocation, selection of 

any of the 'Next', 'Previous', 'Add', and 'Delete' buttons triggers the procedure 

'update layout' following standard Oracle navigation features, so that the contents of 

the 'View Return Items' screen are consistent with the form's underlying 

configuration data. In addition, selection of the 'Add' button will invoke a 'Choose 

Category' form, depicted in figure 36, to allow a user to select a return type from a list 

of categories, sub categories and if necessary, sub sub categories. 
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The 'Choose Category' form, illustrated in figure 36, consists of three text boxes and 

their associated selection buttons. Each selection button is related through its internal 

properties to a LOY that enables the display a list of available categories, sub 

categories or sub sub categories. The list displayed is determined by the point of 

entry within the hierarchy implied in the data model shown in figure 15 ,  i.e. the LOY 

showing sub categories is limited based on the previously selected category value 

demonstrated in figures 37 and 39. 

Figure 36. Choose Category form 

Each of the LOYs are based upon dynamic record groups that are re-queried each 

time the LOY is called, ensuring the list provided is always up to date as discussed in 

section 2.3.3 .3 .  The queries behind the category and subcategory record groups are 

illustrated in figures 38 and 40. Figures 38 and 40 are positioned adjacent to their 

respective LOYs in figures 37 and 39. 
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Figure 37. Choose Category form - Select a category 

SELECT ALL CATEGORY . CAT_NO , CATEGORY . CAT_NAME 

FROM CATEGORY 

WHERE ( ( CATEGORY . CAT_DATE_REMOVED IS  NULL ) 

OR CATEGORY . CAT_DATE_REMOVED <= SYSDATE 

Figure 38. Choose Category Record Group 
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Figure 39. Choose Category form - Select a sub category 

SELECT ALL SUB_CATEGORIES . SUB_CAT_NO , 

SUB_CATEGORIES . SUB_CAT_NAME 

FROM SUB_CATEGORIES 

WHERE SUB CATEGORIES . CAT_NO = : CHOOSE_ITEM_TYPE . CAT_NO 

AND SUB_CATEGORIES . SUB_SUB_CAT_NO = 0 

AND ( ( SUB_CATEGORIES . SC_DATE_REMOVED IS  NULL ) OR 

( SUB_CATEGORIES . SC_DATE_REMOVED >= SYSDATE ) )  

AND ( SUB_CATEGORIES . SC_DATE_CREATED < =  ( SYSDATE ) 

Figure 40. Choose Subcategory Record Group 

After a valid category/sub category combination has been selected on the 'Choose 

Category' form the 'Accept' button may be pressed, whereupon the selected category 

values are passed to the 'View Return Items' form in readiness to display the new data 

item. In addition, the 'View Return Items' form calls the 'update layout' procedure 

(whose pseudo-code is outlined in figure 35), thereby reconfiguring its layout to the 

format dictated by the data contained in the 'Composition Rules' table. 
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By example, two sample displays of dynamically configured 'View Return Items' 

forms are illustrated in figures 41  and 42. It is important to acknowledge that the 

setup of these two forms is entirely dependent upon the configuration rules entered via 

forms within the category maintenance flow (figure 18). 

Figure 41. View Return Items - possible configuration I 

Figure 42. View Return Items - possible configuration 2 
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The flow between the 'Choose Collection Period', 'View Return Items', and 'Choose 

Category' flexible data entry form enables the user to view or alter any type of item 

previously defined in the category maintenance screens. Notably, these flexible data 

entry forms interface with the system's static data entry forms seamlessly, hiding their 

underlying complexity from users of the system. The static data entry forms are 

outlined in the following section. 

4.2.2.2 Static Data Entry 

The remaining data entry forms are focused on the static part of the database 

illustrated in figure 1 7. The flow of static forms is shown in figure 43. The forms 

have no flexible content; accessing directly the current values of underlying database 

fields associated with displayed fields and, further, were developed with standard 

Oracle features. In short, they do not contribute to the enhancements demonstrated in 

the study. Accordingly, for the purpose of clarity only, they will be outlined briefly 

below. 
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11,' 

Research 
Memberships 

The system's static data entry forms display data derived, in standard format, from 

databases external the Staff Submission System, and facilitate the following 

functionality, the flow of which is illustrated in figure 43: 

• Personal Details: To add/alter data in the 'STAFF' table. 

• Change Password: To change a user's password. 

• Discipline Memberships: To add/alter the Discipline Areas of which a 

user is a member. 

• Research Memberships: To add/alter the Research Groups of which a 

user is a member. 

Examples of the appearance of each of these forms are contained within appendix E. 

They were removed to an appendix, as they do not form part of the study' s focus and 

to maintain brevity within the main document and, for the benefit of the reader. 
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4.2.3 Reporting 

The third area of the application, identified in section 4.2, is occupied with querying 

and reporting of data in the database. The reporting functions use the same 

configuration rules as the 'View Return Items' form (outlined in section 4.2.2. 1), 

thereby fulfilling the requirement that they: "allow easy data extraction" identified in 

the statement of the problem in section 3. 1. 

The reporting requirement was satisfied by provision of nine reports, each developed 

to provide a wide range of data extraction options. In brief, the purpose of each of the 

reports is as follows: 

• Individual Return: To report a complete listing of all return items 

submitted by an individual within a specific collection period. 

• Period Report: To report all return items submitted within a specific 

collection period. 

• Specific Category: To report all return items of a specific category, 

submitted within a specific collection period. 

• Rules: To report the current configuration rules contained in the category 

maintenance tables (figure 15). 

• No Return: To report names and contact details of those staff who did 

submit a return within a specific collection period. 

• Discipline Membership: To report a list of staff members who belong to a 

specific discipline. 
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• Research Membership: To report a list of staff members belonging to a 

specific research group. 

• Individual Membership: To report the disciplines and research groups to 

which an individual staff member belongs. 

• Staff in System: To report a list of details for staff as stored in the 

database. 

The flexible nature of the database necessitated the development of a SQL query akin 

to the 'update layout' procedure (represented in figure 35) so that standard Oracle 

Reports software might present the correct layout for each data item. The resultant 

SQL query, described in figure 44, followed the indirection defined by the contents of 

composition rules table, replicating the flexibility employed to configure the 'View 

Return Items' form (outlined in section 4.2.2.1) .  In other words, as will be shown in 

following paragraphs, the same configuration rules established for flexible user 

screens are employed to provide flexible system reports, thereby achieving a doubling 

of the rules' efficacy. 
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SELECT 

STAFF_RETURN_ITEMS . STAFF_NO , 

STAFF_RETURN_ITEMS . line_NO , 

STAFF_RETURN_ITEMS . COLLECT_NO , 

STAFF_RETURN_ITEMS . CAT_NO , 

STAFF_RETURN_ITEMS . SUB_CAT_NO , 

STAFF_RETURN_ITEMS . SUB_SUB_CAT_NO , 

COMPOSITION_RULES . SEQUENCE_NO , 

COMPOSITION_RULES . PROMPT_NO , 

COMPOSITION_RULES . COLUMN_NO , 

PROMPTS . FIELD_PROMPT 

FROM 

STAFF_RETURN_ITEMS , 

COMPOSITION_RULES , 

PROMPTS 

WHERE COMPOSITION_RULES . CAT NO = STAFF_RETURN_ITEMS . CAT_NO 

AND COMPOSITION_RULES . SUB_CAT_NO = STAFF_RETURN_ITEMS . SUB_CAT NO 

AND COMPOSITION_RULES . SUB_SUB_CAT_NO = STAFF_RETURN_ITEMS . SUB_SUB_CAT NO 

AND PROMPTS . PROMPT_NO = COMPOSITION_RULES . PROMPT_NO 

AND STAFF_RETURN_ITEMS . CAT_NO = : P_CAT_NO 

AND STAFF_RETURN_ITEMS . SUB_CAT_NO = : P_SUB_CAT NO 

AND STAFF_RETURN_ITEMS . SUB_SUB_CAT_NO = : P_SUB_SUB_CAT NO 

AND STAFF_RETURN_ITEMS . DISPLAY_IN_REPORTS = ' T '  

ORDER BY SEQUENCE_NO 

Figure 44. SQL query used to define report structure 

The query listed in figure 44 returns the structure of a value in the 'Return Item' table 

together with its category details, providing a level of indirection to the data that will 

appear in the report. The method of indirection is via a function that reads the 

structure according to the configuration rules ( described in section 4. 1 .2.3) before 

resolving and returning the data pointed to by the rules. This function was named 

CF _DATA and, for simplicity, is presented as pseudo code in figure 45. 
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GET THE CURRENT COLUMN NUMBER 

CASE COLUMN NUMBER OF : 

1 TO 6 RETURN VARCHAR2 

7 TO 8 RETURN NUMBER 

9 RETURN LONG 

1 0  TO 1 1 : RETURN DATE 

END CASE 

Figure 45. CF _DAT A pseudo code 

The SQL query and CF _DAT A functions were then merged using the Oracle Report 

product's graphical data model interface tools. The emergent model, illustrated in 

figure 46, separates the query into three groups as follows (relating to the tables 

shown in figure 17): 

• G_STAFF _NO: Data related to the 'Staff Return' table. 

• G_CAT_NO: Data related to the Category tables of 'Category' and 'Sub 

Category' . 

• G_FIELD_PROMPT: Data relating to the 'Prompt' and 'Return Item' 

tables. 
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� +  STAFF_NO 
8 CF_Staff_Name 
Ill+ COLLECT _NO 
B CF_ Colfection_Pl!!riod 

EJ +  CAT_NO 
D CF_ CA T._NAME 
Ill +  SUB CAT NO 
8 CF_SUB_CA T._NAME 
Ill +  SU8_SU8_CAT_NO 
8 CF_S/Jb_Sub_Cet_Nem� 
Ill +  LINE_NO 

i8 FlaD_PROMPT 
• CF_DA TA 
EJ + SEQUENCE_NO 
Ill PROMPT_NO 
EJ COLUMN_NO 

Figure 46. Oracle Reports data model 

Notably, the mechanism described in this section uses the flexible data model to 

provide reports governed by the same configuration rules used to configure 

dynamically the system's user screens. To help demonstrate the flexible nature of the 

reports a selection of the sample reports has been included in appendix F. They were 

removed to an appendix to maintain brevity within the main document and, for the 

benefit of the reader. 
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4.3 Summary 

This chapter has detailed the phases introduced in chapter three, namely those of 

analysis, design, and development of the sample application, and detailed and 

discussed those techniques and procedures that were used to implement them. 

Specifically detailed were the construction of the staff submission system in terms of 

flexible 'front end' and 'back end' development to satisfy a the problem statement and 

associated requirements stated in chapter three. 
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Chapter 5 :  Findings 

This chapter discusses the study' s findings, in relation to the research question stated 

in chapter one as: "How may the challenge of dynamic/flexible user requirements be 

met using data driven techniques in a 4GL-database environment? " Recalling, 

further, that the main research question consists of two components, both are now 

restated and each is addressed in tum. 

5.1 Findings on Research Question, part (a). 

"How may one model dynamic user requirements through an extension of current 

data modelling techniques?" 

Part (a) of the research question was responded to by developing a sample application 

that investigated the viability of using an extension of existing data modelling 

techniques to capture and store a problem that is dynamic in nature. The author, in 

chapter two, has reviewed the exiguous literature occupied with the capture of 

dynamic requirements and, further, observed that few of the techniques described 

were practical enough for real application. An alternative approach of extending an 

existing data modelling technique was proffered as being superior to the creation of 

new modelling techniques as the tools and language facilities are already widely 

available. 

To address part (a), the study extended standard modelling techniques, discussed in 

chapter two, defined in chapter three, and demonstrated in chapter four, for capture of 

the dynamic data requirements of a replacement Staff Submission System for ECU. 
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The enhanced E-R model reflects the requirement that a systems administrator may, 

post-implementation, whilst the system is live, wish to alter dynamically the category 

hierarchy and configuration rules of the system. 

The resultant E-R model, discussed in chapter four, was extended to incorporate extra 

data thereby allowing the storage of dynamic mapping. This extension required 

neither new symbols nor relationships to be added to the currently accepted E-R 

modelling tool set. The extension' s success was validated by the ability of the Oracle 

CASE tool to convert the dynamic E-R model into database creation scripts, as the 

CASE tool strictly adheres to the standard E-R modelling precepts. 

The author proposes that the successful extension of the E-R modelling technique 

yields two conclusions: 

1. The capture of dynamic requirements using E-R modelling has been 

overlooked due to a lack of publications on the subject; and 

2. Current, static E-R models may be extended through the study's 

techniques to implement preventative maintenance and to provide 

extensibility. 
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5.2 Findings on Research Question, part (b). 

"How may one implement user requirements of flexibility using data driven 

techniques in a 4GL environment?" 

In response to research question, part (b ), the study examined the feasibility of 

implementing those dynamic requirements, captured in response to research question 

part (a), in a 4GL environment. As stated in chapter three, the author chose the Oracle 

4GL due to its ready availability and the use of the environment by previous studies 

into those parallel areas reviewed in chapter two. 

The user requirements, as stated in chapter three, necessitated that the application be 

both flexible, to prove the point of the study, and functional, to demonstrate 

applicability of the study to satisfy real-world problems. Thus, the development of 

the application extended to demonstrate flexibility that mitigated costs of potential 

maintenance of the application's data entry and reporting functions. 

The study resulted in the creation of a Staff Submission System that allows an 

advanced user to alter the appearance and functionality of specific areas of the 

application. The flexibility was based on a database, generated from a dynamic E-R 

model. Further, a 4GL Oracle forms .'front end' was designed to ensure the 

application provided a pleasant and practical means to manage the flexible aspects of 

the system. 
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The completed application has undergone extensive acceptance testing by the author 

and the study' s clients, i.e. ECU staff, to verify system properties and, further, is 

undergoing commissioning and is expected to go "live" in July 2001. 
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Chapter 6: Conclusion 

To introduce this final chapter, let us first examine the motivation of this study. The 

author, a programmer/analyst, is regularly contracted by organisations requiring 

changes to existing software systems. The author's experiences and observations, 

plus those gathered from colleagues and from the literature, suggest that much 

remedial effort involved in system alterations during maintenance sterns from a lack 

of foresight during initial analysis and design. In short, as implied in chapter one, this 

study was motivated by a desire to reduce that effort involved in perfective and 

adaptive maintenance, thereby enhancing the efficiency of programmers involved in 

maintenance activities. 

In chapter two, literature, concerned with existing techniques for specifying and 

developing dynamic/flexible systems, was reviewed. The review concluded that 

while limited research pointed out the lack of suitable techniques, it failed to present 

published methods for practical solutions to the problem. Furthermore, published 

research that addressed ways to minimise maintenance effort through flexibility 

focussed on that of the 'business rule' or 'front end', and overlooked the fundamental 

importance of data flexibility. 

In order to demonstrate a possible solution to the emergent problem of designing and 

developing a system with innate data flexibility, a 'real life' Staff Submission System, 

required by ECU, was selected. Accordingly, the Staff Submission System was 
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developed with a focus on the reduction of eventual maintenance that may be 

achieved through flexibility. 

During the application's development, flexibility was built-in into all possible aspects 

of the system. The resultant database incorporated dynamic mapping data that 

allowed runtime mapping from those database attributes, which required flexibility, to 

the user forms/reports where their requirements were not fully definable. 

The successful creation and implementation in the study produces several 

implications for application designers and developers: 

• A potential reduction in maintenance costs. 

• The retention of use of established modelling techniques to accommodate 

dynamic requirements/abilities. 

• The ability to develop application 'front ends' that, subsequently, may 

adapt to requirements changes with neither coding changes nor substantial 

recompilations and installations. 

• An attendant increase in system life and flexibility. 

Finally, the techniques established in this study are not limited to Oracle based 

applications and may be applied to database management systems in general. 

Through their use, future maintenance efforts might be mitigated to a point of major 

cost reductions in software maintenance, thereby releasing funds for the development 

of new or enhanced products. 
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Glossary 

ECU: Edith Cowan University, 100 Joondalup Drive, Joondalup 6027, Western 

Australia. 

Form: A form is a collection of objects with which a user may interact in order to 

view and modify database tables. Forms may consist of windows, canvases, text 

items, buttons and other windows dialog mechanisms. Typically a form will contain a 

number of different, but related, blocks. 

LOV: A list of values (LOV) is a modal pick list and visual presentation of data 

contained in a record group. From such a list, users may select a single valid value, 

which is normally used to populate an item. 

ODMG: "the Object Database Management Group undertakes continuing work on 

standards for object database management systems (ODBMSs)"("ODMG 2.0", 1998). 

Object Oriented (Approach): Comprises Object Oriented Analysis, Design and 

Programming, each of which, for clarity, is defined separately as follows, as taken 

from Booch (1994, p.38-39): 

"Object-Oriented Analysis: a method of analysis that examines requirements 

from the perspective of the classes and objects found in the vocabulary of the 

problem domain. 
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Object-Oriented Design: a method of design encompassing the process of 

00 decomposition and a notation for depicting both logical and physical as 

well as static and dynamic models of the system under design. 

Object-Oriented Programming: a method of implementation in which 

programs are organised as cooperative collections of objects, each of which 

represents an instance of some class, and whose classes are all members of a 

hierarchy of classes via inherited relationships." 

PL/SQL: Procedural Language/Structured Query Language. PL/SQL is a 

procedural language developed by the Oracle Corporation for use in its products. It is 

functionally similar to many 3GLs and has a strong similarity to, and relationship with 

the language ADA. PL/SQL is used to provide a flexible means to enhance SQL 

code. 

Record Groups: Structured sets of data used to facilitate interaction between the 

database and an application, most commonly using LOVs. Record groups are often 

perceived as virtual tables. 

SQL: Structured Query Language is the standard language used in conjunction with 

relational database management systems. The American National Standards Institute 

(ANSI) and the International Standards Organisation (ISO) approved the standard 

jointly in 1992. 
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Triggers: A trigger is a section of code that is used to extend the functionality of an 

application. Each trigger contains one or more PL/SQL statements. A trigger may be 

associated with an event, such as when a button is selected, whereupon the trigger 

executes. 

UML: "The Unified Modelling Language (UML) is a language for specifying, 

visualizing, constructing, and documenting the artefacts of software systems, as well 

as for business modelling and other non-software systems. The UML represents a 

collection of best engineering practices that have proven successful in the modelling 

of large and complex systems. The UML is the successor to the modelling languages 

found in the Booch, GOSE/Jacobson, OMT and other methods. Many companies are 

incorporating the UML as a standard into their development processes and products, 

which cover disciplines such as business modelling, requirements management, 

analysis & design, programming and testing." ("UML", 2001). 
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Appendix A - Data Collection Form used in the Manual 

Submission System 

DATA COLLECTION FOR THE MONTHS OF: _________ _ 

ENTER INFORMATION RELATING TO COLLECTION PERIOD ONLY 

PLEASE DO NOT USE ABBREVIATIONS 

NAME: ----------------

TEACHING AND LEARNING 

e.g. innovation and flexibility, internationalisation of curriculum, links with industry 
and professions, strategic partnerships and pathways, teaching grants and awards, 
achievement by undergraduate students. 

RESEARCH GRANTS & ACTNITIES 

For research grants (please include amount granted, funding body, title of research 
project, co-researcher/s, collaborating organisations), research profile, research 
management, postgraduate research awards, achievements by postgraduate research 
students. 

PUBLICATIONS 

(Please give details of refereed publications in the data collection period) 

Book: Authored - research: 

Book Chapter (in Al type Books): 
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Full written paper - refereed proceedings: 

CONFERENCE PRESENTATIONS 

Please give details of conferences attended, papers presented, significant role in the 
conference or organisation of the conference (please provide title of conference, paper 
presented, venue and dates). 

AW ARDS/RECOGNITION 

Please give details of any significant staff achievements or awards (include title of 
award, awarding body and reason for award) 

TV/RADIO/MEDIA PARTICIPATION 

Please provide programme/article title, radio/TV station/newspaper, date, topic, 
reason for interview/article. 

INTERNATIONALISATION OR INTERNATIONAL ACTIVITIES 

e.g. strategic partnerships, international students, international visitors (please list 
name, duration and purpose of visit, activities undertaken, area of expertise, institution 
and country). 

COMMERCIAL ACTIVITIES 

Please give details of any commercial activities. 
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SERVICES AND SUPPORT 

e.g. students (access, enrolments, support), equity and EEO, staffing (staff 
development, staff profile), IT, physical environment, safety. 

MANAGEMENT 

e.g. implementation of Strategic Plan, quality issues, general higher education issues. 

STUDENT ACTIVITIES/ ACHIEVEMENTS 

(for inclusion in the Faculty Student Newsletter) 

OTHER SIGNIFICANT ACTIVITIES (which are not covered by other categories) 
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Appendix B - Collection Category Setup 

1. Teaching and Learning 

1. 1 Teaching initiatives 

Name(s) 

School 

Description of initiative 

1.2 Teaching awards and grants 

Recipient(s) 

Awarding Body 

Title of award/grant 

Description 

Amount Granted 

1.3 Achievements by undergraduate students 

Name 

School 

Course 

Description 

Staff involved 

2. Research and Creative Works 

2. 1 Research Grants 

Recipient(s) 

Funding Body 

Title of research grant 

Amount granted 

Collaborating organisations 

2.2 Publications 

Book: 

Author 

Date 
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Title 

Publisher 

Venue 

Book chapter: 

Author 

Date 

Chapter Title 

Book Title 

Publisher 

Venue 

Article in refereed journal: 

Author 

Date 

Title of article 

Title of journal 

Volume 

Page numbers 

Article in non-refereed journal: 

Author 

Date 

Title of article 

Title of journal 

Volume 

Page numbers 

Article in refereed conference proceedings: 

Author 

Date 

Title of article 

Title of proceedings 

Volume 

Page numbers 
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Article in non-refereed conference proceedings: 

Author 

Date 

Title of article 

Title of proceedings 

Volume 

Page numbers 

Paper presented at conference: 

Author 

Date 

Title of presentation 

Conference 

Venue 

Research reports: 

Author 

Date 

Title 

Publisher 

Audio-visual recordings: 

Author 

Date 

Title 

Publisher 

CD-ROM/computer software: 

Author 

Date 

Title 

Publisher 
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Creative works: 

Presenter 

Name of work 

Event 

Venue 

2.3 Postgraduate student achievements 

Name of student 

School 

Description of achievement 

Staff involved 

2.4 Research strategic alliances 

Institution/organisation 

Description of strategic alliance 

2.5 Research Awards 

Recipient 

Awarding body 

Title of award 

Description of award 

3. Community and professional service 

3. 1 TV/radio/media participation 

Name 

Programme/article title 

Radio/TV station or publication 

Description 

Date 

3.2 Appointments to Boards or External Committees 

Position 

Name of Board or Committee 

Nominating group 

Date of tenure 
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3.3 Awards/recognition - significant achievements or awards 

Recipient 

Achievement/award 

Awarding body 

Reason for the award 

3.4 Service/lnitiati ves 

Name 

School 

Description 

3.5 Visitors 

Name 

Institution 

School/Centre 

Purpose 

Duration 

4. International and Commercial activities 

4. 1 Strategic alliances/partnerships 

Name 

School 

Institution 

Description 

4.2 International visitors 

Name 

Institution 

School 

Purpose of visit 

Duration 

4.3 International students 

Name 

School 
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Description 

4.4 Commercial activities 

Name 

School 

Description 

5. Other significant activities 

Name 

School 

Description 
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Appendix C - Database Creation Scripts 

CEEDG1 3.SQL 

- -Generated By : Chris Bolan 

- - Purpose : Call s  the necessary creation scripts needed to completely 

create the database 

SPOOL ceedgl3 . lst  

@ @  ceedg13 . tab 

@@ ceedg13 . ind 

@@ ceedg13 . con 

@@ ceedg13 . sqs 

SPOOL OFF 

CEEDG1 3.TAB 

- -Generated By : Chris Bolan 

- - Purpose : Creates the database tables 

PROMPT Creating Table  ' STAFF_RETURN ' 

CREATE TABLE STAFF_RETURN 

I 

( STAFF_NO VARCHAR2 ( 8 )  NOT NULL 

, COLLECT_NO NUMBER NOT NULL 

, RETURN_DATE DATE NOT NULL 

COMMENT ON COLUMN STAFF_RETURN . STAFF_NO I S  ' Staff members staff  

number , unique ID , assigned by the univers i ty '  

I 

COMMENT ON COLUMN STAFF_RETURN . COLLECT_NO I S  ' Automatically generated 

index value ' 

I 

COMMENT ON COLUMN STAFF_RETURN . RETURN_DATE I S  ' Date of  the return ' 

I 

PROMPT Creating Table ' SUB_CATEGORIES ' 

CREATE TABLE SUB_CATEGORIES 
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I 

( CAT_NO NUMBER NOT NULL 

, SUB_CAT_NO NUMBER NOT NULL 

, SUB_SUB_CAT_NO NUMBER DEFAULT O NOT NULL 

, SUB_CAT_NAME VARCHAR2 ( 5 0 )  NOT NULL 

, SUB_CAT_DESCRIPTION LONG 

, NO_SUB_SUB_CATS NUMBER NOT NULL 

, SC_DATE_CREATED DATE NOT NULL 

, SC_DATE_REMOVED DATE 

COMMENT ON COLUMN SUB_CATEGORIES . CAT_NO IS ' Auto generated index 

value ' 

I 

COMMENT ON COLUMN SUB_CATEGORIES . SUB_CAT_DESCRIPTION IS ' Description 

of  the sub category ' 

I 

PROMPT Creating Table ' SCHOOLS ' 

CREATE TABLE SCHOOLS 

I 

( SCL_CODE VARCHAR2 ( 6 )  NOT NULL 

, FAC_CODE VARCHAR2 ( 6 )  NOT NULL 

, SCL_NAME VARCHAR2 ( 7 0 )  NOT NULL 

, SCL_DESCRIPTION LONG 

COMMENT ON COLUMN SCHOOLS . SCL_CODE I S  ' Automatical ly generated index 

value ' 

I 

COMMENT ON COLUMN SCHOOLS . FAC_CODE I S  ' Automatical ly generated index 

value ' 

I 

COMMENT ON COLUMN SCHOOLS . SCL_NAME I S  ' Name of  the school ' 

I 

COMMENT ON COLUMN SCHOOLS . SCL_DESCRIPTION I S  ' Description and extra 

infomation about the school ' 

I 
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PROMPT Creating Table ' DI SCIPLINE_AREAS ' 

CREATE TABLE DISCIPLINE_AREAS 

I 

( DI S_CODE VARCHAR2 ( 10 )  NOT NULL 

, DI S_NAME VARCHAR2 ( 5 0 )  NOT NULL 

, DI S_DESCRIPTION LONG 

COMMENT ON COLUMN DISCIPLINE_AREAS . DI S_CODE I S  ' code ' 

I 

COMMENT ON COLUMN DISCIPLINE_AREAS . DI S_NAME I S  ' Name of  discipl ine ' 

I 

COMMENT ON COLUMN DISCIPLINE_AREAS . DI S_DESCRIPTION IS ' Descript ion 

and extra information about discipl ine ' 

I 

PROMPT Creating Table ' PROMPTS ' 

CREATE TABLE PROMPTS 

I 

( PROMPT_NO NUMBER NOT NULL 

, FI ELD_PROMPT VARCHAR2 ( 5 0 )  NOT NULL 

, PROMPT_DESCRIPTION LONG 

COMMENT ON COLUMN PROMPTS . PROMPT_NO IS ' Auto generated index value ' 

I 

COMMENT ON COLUMN PROMPTS . FIELD_PROMPT I S  ' Name of  the i tem ( Label ) ' 

I 

COMMENT ON COLUMN PROMPTS . PROMPT_DESCRIPTION I S  ' Description and 

information about the item ' 

I 

PROMPT Creating Table ' RESEARCH_MEMBERSHIPS ' 

CREATE TABLE RESEARCH_MEMBERSHIPS 

( R_GROUP_NAME VARCHAR2 ( 6 0 )  NOT NULL 

, STAFF_NO VARCHAR2 ( 8 )  NOT NULL 
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I 

, RG_START_DATE DATE DEFAULT ' 0 1 -JAN- 2 0 0 0 ' NOT NULL 

, RG_TERM_DATE DATE 

COMMENT ON COLUMN RESEARCH_MEMBERSHIPS . R_GROUP_NAME I S  ' Name of  the 

group ' 

I 

COMMENT ON COLUMN RESEARCH_MEMBERSHIPS . STAFF_NO I S  ' Staff  members 

sta f f  number ,  unique ID , assigned by the university '  

I 

COMMENT ON COLUMN RESEARCH_MEMBERSHIPS . RG_START_DATE I S  ' Start date 

of membership ' 

I 

COMMENT ON COLUMN RESEARCH_MEMBERSHIPS . RG_TERM_DATE I S  ' Date 

membership terminated ' 

I 

PROMPT Creating Table ' COLLECTION_PERIODS ' 

CREATE TABLE COLLECTION_PERIODS 

( COLLECT_NO NUMBER NOT NULL 

, CP_START_DATE DATE NOT NULL 

, CP_END_DATE DATE NOT NULL 

I 

COMMENT ON COLUMN COLLECTION_PERIODS . COLLECT_NO I S  ' Automatical ly 

generated index value ' 

I 

COMMENT ON COLUMN COLLECTION_PERIODS . CP_START_DATE IS ' Date 

collection starts ' 

I 

COMMENT ON COLUMN COLLECTION_PERIODS . CP_END_DATE I S  ' Date collection 

ends ' 

I 

PROMPT Creating Table ' FACULTIES ' 

CREATE TABLE FACULTIES 
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I 

( FAC_CODE VARCHAR2 ( 6 )  NOT NULL 

, FAC_SHORT_CODE VARCHAR2 ( 5 )  NOT NULL 

, FAC_NAME VARCHAR2 ( 7 0 )  NOT NULL 

, FAC_DESCRIPTION LONG 

COMMENT ON COLUMN FACULTIES . FAC_CODE IS  ' Automatically generated 

index value ' 

I 

COMMENT ON COLUMN FACULTIES . FAC_NAME IS  ' Name of the faculty ' 

I 

COMMENT ON COLUMN FACULTIES . FAC_DESCRIPTION IS  ' Description and extra 

infomation about the faculty ' 

I 

PROMPT Creating Table ' CATEGORY ' 

CREATE TABLE CATEGORY 

I 

( CAT_NO NUMBER NOT NULL 

, CAT_NAME VARCHAR2 ( 5 0 )  NOT NULL 

, CAT_DESCRIPTION LONG 

, CAT_DATE_CREATED DATE NOT NULL 

, CAT_DATE_REMOVED DATE 

COMMENT ON COLUMN CATEGORY . CAT_NO IS  ' Auto generated index value ' 

I 

COMMENT ON COLUMN CATEGORY . CAT_NAME IS ' Name of  the category ' 

I 

COMMENT ON COLUMN CATEGORY . CAT_DESCRIPTION IS  ' Description of  the 

category ' 

I 

PROMPT Creating Table ' STAFF_RETURN_ITEMS ' 

CREATE TABLE STAFF_RETURN_ITEMS 

( STAFF_NO VARCHAR2 ( 8 )  NOT NULL 
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I 

, COLLECT_NO NUMBER NOT NULL 

, CAT_NO NUMBER NOT NULL 

, SUB_CAT_NO NUMBER NOT NULL 

, SUB_SUB_CAT_NO NUMBER NOT NULL 

, LINE_NO NUMBER NOT NULL 

, DISPLAY_IN_REPORTS VARCHAR2 ( 1 )  DEFAULT ' T '  NOT NULL 

, VCHAR_ONE VARCHAR2 ( 24 0 )  

, VCHAR_TWO VARCHAR2 ( 2 4 0 )  

, VCHAR_THREE VARCHAR2 ( 2 4 0 )  

, VCHAR_FOUR VARCHAR2 ( 2 4 0 )  

, VCHAR_FIVE VARCHAR2 ( 2 4 0 )  

, VCHAR_SIX VARCHAR2 ( 2 4 0 )  

, NUM_SEVEN NUMBER 

, NUM_EIGHT NUMBER 

, TEXT_NINE LONG 

, DATE_TEN DATE 

, DATE_ELEVEN DATE 

COMMENT ON COLUMN STAFF_RETURN_ITEMS . CAT_NO IS  ' Auto generated index 

value ' 

I 

PROMPT Creating Table ' STAFF ' 

CREATE TABLE STAFF 

( STAFF_NO VARCHAR2 ( 8 )  NOT NULL 

, SCL_CODE VARCHAR2 ( 6 )  NOT NULL 

, CMP_CODE VARCHAR2 ( 2 )  NOT NULL 

, SURNAME VARCHAR2 ( 5 0 )  NOT NULL 

, FIRST_NAMES VARCHAR2 ( 5 0 )  NOT NULL 

, LOGIN_PIN VARCHAR2 ( 2 0 )  NOT NULL 

, SECURITY_ROLE VARCHAR2 ( 1 )  NOT NULL 

, DATE_OF_BIRTH DATE 

, USED_NAME VARCHAR2 ( 5 0 )  

, USER_NAME VARCHAR2 ( 8 )  

, TELEPHONE_NO VARCHAR2 ( 12 )  

, OFFICE VARCHAR2 ( 8 )  

, EMAIL VARCHAR2 ( 4 0 )  

, POS_CATEGORY VARCHAR2 ( 1 5 )  
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I 

COMMENT ON COLUMN STAFF . STAFF_NO I S  ' Staff members staff number ,  

unique ID , assigned by the univers i ty '  

I 

COMMENT ON COLUMN STAFF . SCL_CODE I S  ' Automatically generated index 

value ' 

I 

COMMENT ON COLUMN STAFF . SURNAME I S  ' Staff  members surname ' 

I 

COMMENT ON COLUMN STAFF . FIRST_NAMES I S  ' Staff members first name ' 

I 

COMMENT ON COLUMN STAFF . USED_NAME I S  ' Name staff member i s  known by ' 

I 

COMMENT ON COLUMN STAFF . TELEPHONE_NO I S  ' Staff members contact 

telephone number '  

I 

COMMENT ON COLUMN STAFF . OFFICE I S  ' Staff members office number '  

I 

COMMENT ON COLUMN STAFF . EMAIL I S  ' Staf f  members email address '  

I 

PROMPT Creating Table ' COMPOSITION_RULES '  

CREATE TABLE COMPOSITION_RULES 

I 

( CAT_NO NUMBER NOT NULL 

, SUB_CAT_NO NUMBER NOT NULL 

, SUB_SUB_CAT_NO NUMBER NOT NULL 

, COLUMN_NO NUMBER NOT NULL 

, PROMPT_NO NUMBER NOT NULL 

, DATA_TYPE VARCHAR2 ( 1 0 )  NOT NULL 

, SEQUENCE_NO NUMBER ( 2 )  NOT NULL 
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COMMENT ON COLUMN COMPOSITION_RULES . CAT_NO IS  ' Auto generated index 

value ' 

I 

COMMENT ON COLUMN COMPOSITION_RULES . COLUMN_NO IS  ' Number of  the 

column the i tem i s  to be stored in ' 

I 

COMMENT ON COLUMN COMPOSITION_RULES . PROMPT_NO IS  ' Auto generated 

index value ' 

I 

PROMPT Creating Table ' RESEARCH_GROUPS ' 

CREATE TABLE RESEARCH_GROUPS 

( R_GROUP_NAME VARCHAR2 ( 6 0 )  NOT NULL 

, GRP_LEADER_NO VARCHAR2 ( 8 )  

, GRP_ADDRESS VARCHAR2 ( 5 0 )  

, GRP_INFO LONG 

I 

COMMENT ON COLUMN RESEARCH_GROUPS . R_GROUP_NAME IS  ' Name of  the group ' 

I 

COMMENT ON COLUMN RESEARCH_GROUPS . GRP_LEADER_NO IS  ' Staff members 

staff  number ,  unique ID ,  ass igned by the university ' 

I 

COMMENT ON COLUMN RESEARCH_GROUPS . GRP_ADDRESS IS  ' Ma i ling address of  

the group ' 

I 

COMMENT ON COLUMN RESEARCH_GROUPS . GRP_INFO IS  ' Information about the 

group ' 

I 

PROMPT Creating Table ' DISCIPLINE_MEMBERSHIPS ' 

CREATE TABLE DISCIPLINE_MEMBERSHIPS 

( STAFF_NO VARCHAR2 ( 8 )  NOT NULL 

, DIS_CODE VARCHAR2 ( 1 0 )  NOT NULL 
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I 

COMMENT ON COLUMN DISCIPLINE_MEMBERSHIPS . STAFF_NO IS ' Staff  members 

staff  number ,  unique ID, ass igned by the university ' 

I 

COMMENT ON COLUMN DISCIPLINE_MEMBERSHIPS . DIS_CODE IS ' code ' 

I 

PROMPT Creating Table ' CAMPUS ' 

CREATE TABLE CAMPUS 

I 

( CMP_CODE VARCHAR2 ( 2 )  NOT NULL 

, CMP_NAME VARCHAR2 ( 10 0 )  NOT NULL 

, CMP_ADDRESS VARCHAR2 ( 10 0 )  

, CMP_COUNTRY VARCHAR2 ( 10 0 )  

PROMPT Creating Table ' BLANK_COMMIT ' 

CREATE TABLE BLANK_COMMIT 

( BC_DUMMY VARCHAR2 ( 1 ) ) 

I 

CEEDG1 3.IND 

- -Generated By : Chris Bolan 

- - Purpose : Creates indexes on table columns to fac i l itate faster 

searching 

PROMPT Creating Index ' RET_STF_FK_I ' 

CREATE INDEX RET_STF_FK_I ON STAFF_RETURN 

( STAFF_NO ) 

I 

PROMPT Creating Index ' RET_COL_PRD_FK_I ' 

CREATE INDEX RET_COL_PRD_FK_I ON STAFF_RETURN 

( COLLECT_NO ) 

I 

PROMPT Creating Index ' SUB_CAT_CAT_FK_I ' 

CREATE INDEX SUB_CAT_CAT_FK_I ON SUB_CATEGORIES 

( CAT_NO ) 
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I 

PROMPT Creating Index ' SCH_FAC_FK_I ' 

CREATE INDEX SCH_FAC_FK_I ON SCHOOLS 

( FAC_CODE ) 

I 

PROMPT Creating Index ' RSH_MBRSHP_STF_FK_I ' 

CREATE INDEX RSH_MBRSHP_STF_FK_I ON RESEARCH_MEMBERSHIPS 

( STAFF_NO) 

I 

PROMPT Creating Index ' RSH_MBRSHP_RSH_GRP_FK_I ' 

CREATE INDEX RSH_MBRSHP_RSH_GRP_FK_I ON RESEARCH_MEMBERSHIPS 

( R_GROUP_NAME) 

I 

PROMPT Creating Index ' RET_ITM_RET_FK_I ' 

CREATE INDEX RET_ITM_RET_FK_I ON STAFF_RETURN_ITEMS 

( STAFF_NO 

, COLLECT_NO) 

I 

PROMPT Creating Index ' RTN_ITM_SUB_CAT_FK_I ' 

CREATE INDEX RTN_ITM_SUB_CAT_FK_I ON STAFF_RETURN_ITEMS 

( CAT_NO 

, SUB_CAT_NO 

, SUB_SUB_CAT_NO) 

I 

PROMPT Creating Index ' STF_SCH_FK_I ' 

CREATE INDEX STF_SCH_FK_I ON STAFF 

( SCL_CODE) 

I 

PROMPT Creating Index ' STF_CMP_FK_I ' 

CREATE INDEX STF_CMP_FK_I ON STAFF 

( CMP_CODE) 

I 
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PROMPT Creating Index ' COM_RUL_COL_NO ' 

CREATE UNIQUE INDEX COM_RUL_COL_NO ON COMPOSITION_RULES 

( CAT_NO 

, SUB_CAT_NO 

, SUB_SUB_CAT_NO 

, COLUMN_NO ) 

I 

PROMPT Creating Index ' COM_RUL_SUB_CAT_FK_I ' 

CREATE INDEX COM_RUL_SUB_CAT_FK_I ON COMPOSITION_RULES 

( CAT_NO 

, SUB_CAT_NO 

, SUB_SUB_CAT_NO ) 

I 

PROMPT Creating Index ' COM_RUL_DAT_ITM_FK_I ' 

CREATE INDEX COM_RUL_DAT_ITM_FK_I ON COMPOSITION_RULES 

( PROMPT_NO ) 

I 

PROMPT Creating Index ' COM_RUL_SEQ_NO ' 

CREATE UNIQUE INDEX COM_RUL_SEQ_NO ON COMPOSITION_RULES 

( CAT_NO 

, SUB_CAT_NO 

, SUB_SUB_CAT_NO 

, SEQUENCE_NO ) 

I 

PROMPT Creating Index ' RSH_GRP_STF_FK_I ' 

CREATE INDEX RSH_GRP_STF_FK_I ON RESEARCH_GROUPS 

( GRP_LEADER_NO ) 

I 

PROMPT Creating Index ' DISCP_MBR_STF_FK_I ' 

CREATE INDEX DISCP_MBR_STF_FK_I ON DISCIPLINE_MEMBERSHIPS 

( STAFF_NO ) 

I 

PROMPT Creating Index ' DISCP_MBR_DISP_AREA_FK_I ' 

CREATE INDEX DISCP_MBR_DISP_AREA_FK_I ON DISC IPLINE_MEMBERSHIPS 
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( DIS_CODE ) 

I 

CEEDG1 3.CON 

- -Generated By : Chris  Bolan 

- -Purpose : Enforces inter-table constraints and keys 

PROMPT Creating Primary Key on ' STAFF_RETURN ' 

ALTER TABLE STAFF_RETURN 

I 

ADD CONSTRAINT RET_PK PRIMARY KEY 

( STAFF_NO 

, COLLECT_NO ) 

PROMPT Creating Primary Key on ' SUB_CATEGORIES ' 

ALTER TABLE SUB_CATEGORIES 

I 

ADD CONSTRAINT SUB_CAT_PK PRIMARY KEY 

( CAT_NO 

, SUB_CAT_NO 

, SUB_SUB_CAT_NO ) 

PROMPT Creating Primary Key on ' SCHOOLS ' 

ALTER TABLE SCHOOLS 

I 

ADD CONSTRAINT SCH_PK PRIMARY KEY 

( SCL_CODE ) 

PROMPT Creating Primary Key on ' DI SCIPLINE_AREAS ' 

ALTER TABLE DISCIPLINE_AREAS 

I 

ADD CONSTRAINT DISP_AREA_PK PRIMARY KEY 

( DI S_CODE) 

PROMPT Creating Primary Key on ' PROMPTS ' 

ALTER TABLE PROMPTS 

I 

ADD CONSTRAINT DAT_ITM_PK PRIMARY KEY 

( PROMPT_NO ) 
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PROMPT Creating Primary Key on ' RESEARCH_MEMBERSHIPS ' 

ALTER TABLE RESEARCH_MEMBERSHIPS 

I 

ADD CONSTRAINT RSH_MBRSHP_PK PRIMARY KEY 

( STAFF_NO 

, R_GROUP_NAME 

, RG_START_DATE ) 

PROMPT Creating Primary Key on ' COLLECTION_PERIODS ' 

ALTER TABLE COLLECTION_PERIODS 

I 

ADD CONSTRAINT COL_PRD_PK PRIMARY KEY 

( COLLECT_NO ) 

PROMPT Creating Primary Key on ' FACULTIES ' 

ALTER TABLE FACULTIES 

I 

ADD CONSTRAINT FAC_PK PRIMARY KEY 

( FAC_CODE ) 

PROMPT Creating Primary Key on ' CATEGORY ' 

ALTER TABLE CATEGORY 

I 

ADD CONSTRAINT CAT_PK PRIMARY KEY 

( CAT_NO ) 

PROMPT Creating Primary Key on ' STAFF_RETURN_ITEMS ' 

ALTER TABLE STAFF_RETURN_ITEMS 

I 

ADD CONSTRAINT RTN_ITM_PK PRIMARY KEY 

( STAFF_NO 

, COLLECT_NO 

, CAT_NO 

, SUB_CAT_NO 

, SUB_SUB_CAT_NO 

, LINE_NO ) 

PROMPT Creating Primary Key on ' STAFF ' 

ALTER TABLE STAFF 

ADD CONSTRAINT STF_PK PRIMARY KEY 
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( STAFF_NO ) 

I 

PROMPT Creating Primary Key on ' COMPOSITION_RULES ' 

ALTER TABLE COMPOSITION_RULES 

I 

ADD CONSTRAINT COM_RUL_PK PRIMARY KEY 

( CAT_NO 

, SUB_CAT_NO 

, SUB_SUB_CAT_NO 

, COLUMN_NO ) 

PROMPT Creating Primary Key on ' RESEARCH_GROUPS ' 

ALTER TABLE RESEARCH_GROUPS 

I 

ADD CONSTRAINT RSH_GRP_PK PRIMARY KEY 

( R_GROUP_NAME ) 

PROMPT Creating Primary Key on ' DI SCIPLINE_MEMBERSHIPS ' 

ALTER TABLE DISCIPLINE_MEMBERSHIPS 

I 

ADD CONSTRAINT DISCP_MBR_PK PRIMARY KEY 

( STAFF_NO 

, DIS_CODE ) 

PROMPT Creating Primary Key on ' CAMPUS ' 

ALTER TABLE CAMPUS 

I 

ADD CONSTRAINT CMP_PK PRIMARY KEY 

( CMP_CODE ) 

PROMPT Creating Check Constraints on ' SCHOOLS ' 

ALTER TABLE SCHOOLS 

ADD CONSTRAINT SCHOOLS_CK CHECK ( ( SCL_CODE= UPPER ( SCL_CODE ) ) )  

I 

PROMPT Creating Check Constraints on ' FACULTIES ' 

ALTER TABLE FACULTIES 

ADD CONSTRAINT FACULTIES_CK CHECK ( ( FAC_CODE = UPPER ( FAC_CODE ) ) )  

I 
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PROMPT Creating Check Constraints on ' STAFF ' 

ALTER TABLE STAFF 

ADD CONSTRAINT STAFF_SURNAME_UPPER CHECK ( SURNAME 

I 

UPPER ( SURNAME ) )  

PROMPT Creating Check Constraints on ' COMPOSITION_RULES '  

ALTER TABLE COMPOSITION_RULES 

ADD CONSTRAINT AVCON_3 42 1_COLUM_O O O  CHECK (COLUMN_NO BETWEEN 1 AND 

1 1 )  

ADD CONSTRAINT AVCON_3 42 1_DATA�O O O  CHECK ( DATA_TYPE IN ( ' MEMO ' , 

' NUMBER ' ,  ' VARCHAR2 ' ,  ' DATE ' ) )  

ADD CONSTRAINT AVCON_3 42 l_SEQUE_O O O  CHECK ( SEQUENCE_NO BETWEEN 1 AND 

1 1 )  

I 

PROMPT Creating Check Constraints on ' CAMPUS ' 

ALTER TABLE CAMPUS 

ADD CONSTRAINT CAMPUS_CK CHECK ( ( CMP_CODE 

I 

UPPER ( CMP_CODE ) ) )  

PROMPT Creating Foreign Keys on ' STAFF_RETURN ' 

ALTER TABLE STAFF_RETURN ADD CONSTRAINT 

RET_STF_FK FOREIGN KEY 

I 

( STAFF_NO ) REFERENCES STAFF 

( STAFF_NO ) ADD CONSTRAINT 

RET COL PRD_FK FOREIGN KEY 

( COLLECT_NO ) REFERENCES COLLECTION_PERIODS 

( COLLECT_NO ) 

PROMPT Creating Foreign Keys on ' SUB_CATEGORIES ' 

ALTER TABLE SUB_CATEGORIES ADD CONSTRAINT 

CAT_SUBCAT_FK FOREIGN KEY 

( CAT_NO ) REFERENCES CATEGORY 

( CAT_NO ) 

I 

PROMPT Creating Foreign Keys on ' SCHOOLS ' 

ALTER TABLE SCHOOLS ADD CONSTRAINT 

SCH_FAC_FK FOREIGN KEY 
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I 

( FAC_CODE ) REFERENCES FACULTIES 

( FAC_CODE ) 

PROMPT Creat ing Foreign Keys on ' RESEARCH_MEMBERSHIPS ' 

ALTER TABLE RESEARCH_MEMBERSHIPS ADD CONSTRAINT 

RSH_MBRSHP_STF_FK FOREIGN KEY 

I 

( STAFF_NO ) REFERENCES STAFF 

( STAFF_NO ) ADD CONSTRAINT 

RSH_MBRSHP_GRP_FK FOREIGN KEY 

( R_GROUP_NAME )  REFERENCES RESEARCH_GROUPS 

( R_GROUP_NAME ) 

PROMPT Creat ing Foreign Keys on ' STAFF_RETURN_ITEMS ' 

ALTER TABLE STAFF_RETURN_ITEMS ADD CONSTRAINT 

I 

RTI SUB_CAT_FK FOREIGN KEY 

( SUB_SUB_CAT_NO 

, CAT_NO 

, SUB_CAT_NO ) REFERENCES SUB_CATEGORIES 

( SUB_SUB_CAT_NO 

, CAT_NO 

, SUB_CAT_NO ) ADD CONSTRAINT 

RTN_ITM_RET_FK FOREIGN KEY 

( STAFF_NO 

, COLLECT_NO ) REFERENCES STAFF_RETURN 

( STAFF_NO 

, COLLECT_NO ) 

PROMPT Creating Foreign Keys on ' STAFF ' 

ALTER TABLE STAFF ADD CONSTRAINT 

STF_SCH_FK FOREIGN KEY 

I 

( SCL_CODE ) REFERENCES SCHOOLS 

( SCL_CODE ) ADD CONSTRAINT 

STF_CMP_FK FOREIGN KEY 

( CMP_CODE ) REFERENCES CAMPUS 

( CMP_CODE ) 
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PROMPT Creating Foreign Keys on ' COMPOSITION_RULES ' 

ALTER TABLE COMPOSITION_RULES ADD CONSTRAINT 

I 

CAT_COM_RUL_FK FOREIGN KEY 

( SUB_CAT_NO 

, SUB_SUB_CAT_NO 

, CAT_NO ) REFERENCES SUB_CATEGORIES 

( SUB_CAT_NO 

, SUB_SUB_CAT_NO 

, CAT_NO) ADD CONSTRAINT 

COM_RUL_PRMPT_FK FOREIGN KEY 

( PROMPT_NO ) REFERENCES PROMPTS 

( PROMPT_NO ) 

PROMPT Creating Foreign Keys on ' RESEARCH_GROUPS ' 

ALTER TABLE RESEARCH_GROUPS ADD CONSTRAINT 

RSH_GRP_LDR_FK FOREIGN KEY 

(GRP_LEADER_NO) REFERENCES STAFF 

( STAFF_NO ) 

I 

PROMPT Creating Foreign Keys on ' DISCIPLINE_MEMBERSHIPS ' 

ALTER TABLE DISCI PLINE_MEMBERSHIPS ADD CONSTRAINT 

DISCP_MBR_STF_FK FOREIGN KEY 

( STAFF_NO ) REFERENCES STAFF 

( STAFF_NO ) ADD CONSTRAINT 

DISCP_AREA_MBR_FK FOREIGN KEY 

( DIS_CODE ) REFERENCES DISCIPLINE_AREAS 

( DIS_CODE) 

I 

CEEDG13.SQS 

- -Generated By : Chris Bolan 

- - Purpose :  Defines sequences 

PROMPT Creating Sequence ' PROMPT_SEQ ' 

CREATE SEQUENCE PROMPT_SEQ 

NOMAXVALUE 

NOMINVALUE 

NOCYCLE 
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NOCACHE 

I 

PROMPT Creating Sequence ' LINE_SEQ ' 

CREATE SEQUENCE LINE_SEQ 

NOMAXVALUE 

NOMINVALUE 

NOCYCLE 

NOCACHE 

I 

PROMPT Creating Sequence ' COLLECT_SEQ ' 

CREATE SEQUENCE COLLECT_SEQ 

NOMAXVALUE 

NOMINVALUE 

NOCYCLE 

NOCACHE 

I 
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Appendix D - Update Layout Procedure 

PROCEDURE Update_Layout IS 

Item_Id Item; --Stores Item ID Numbers 

Item_Counter Number; --Loop counter 1 . . 1 1 

Column_Present Number; --Stores column number of a column to be shown 

Category Number; --Stores current category # 

Sub_Category Number; --Stores current sub category # 

Sub_Sub_Category Number; --Stores current sub sub category # 

Item_Prompt_No Number; --Stores the Prompt_No to locate correct text_prompt 

Position_No Number; --Stores the sequence number of a field 

Seq_Locator Number; --Stores the sequence number of the text field 

End_ Or_Null Number; --Stores the number of items in a return 

item_name Varchar2( 12); --Stores the item name of a field 

New_Prompt_Text Varchar2(50); --Stores the Data_Item Text prompt for a field 

Staff_Member Varchar2(8); -- The current staff member 

BEGIN 

--Stores current value of Cat values. These might need to be inputs 

Category := Name_lN('Staff_Return_Items.Cat_No'); 

Sub_Category := Name_lN('Staff_Return_Items.Sub_Cat_No'); 

Sub_Sub_Category := Name_lN('Staff_Return_Items.Sub_Sub_Cat_No'); 

End_Or_NULL := O; 

IF :Global.Access_Level = 'A' OR :Global.Access_Level = 'D' THEN 

Staff_Member := :Global.Shadow_lD; 

ELSE 

Staff_Member := :Global.Login_lD; 

END IF; 

--Allows Display in report field to be used by advanced users 

Item_id := Find_Item('Staff_Return_Items.Display_In_Reports'); --Find the unique item id 

IF :GLOBAL.Access_Level = 'A' OR :GLOBAL.Access_Level = 'A' THEN 

Set_Item_Property(item_id,Visible,PROPERTY_TRUE); 

Set_Item_Property(item_id,Enabled,PROPERTY_TRUE); 

Set_Item_Property(item_id, Update_Allowed,PROPER TY_ TRUE); 

Set_Item_Property(item_id,Required,PROPERTY_FALSE); 

Set_Item_Property(item_id,Queryable,PROPERTY_TRUE); 
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ELSE 

Set_ltem_Property(item_id,Visible,PROPERTY _FALSE); 

END IF; 

--Checks to See if a Text field is included and marks is position 

BEGIN 

SELECT Sequence_No 

INTO Seq_Locator 

FROM Composition_Rules C 

WHERE C.Cat_No = Category 

AND C.Sub_Cat_No = Sub_Category 

AND C.Sub_Sub_Cat_No = Sub_Sub_Category 

AND C.Column_No = 9; 

EXCEPTION 

WHEN NO_DATA_FOUND THEN --No Text Field 

Seq_Locator := O; 

END; 

FOR item_counter IN 1 .. 1 1  --For Each Column 

LOOP 

--Assigns which item will be tested in this iteration 

IF Item_Counter = 1 THEN 

item_name := 'VCHAR_ONE'; 

ELSIF Item_Counter = 2 THEN 

item_name := 'VCHAR_TWO'; 

ELSIF ltem_Counter = 3 THEN 

item_name := 'VCHAR_THREE'; 

ELSIF ltem_Counter = 4 THEN 

item_name := 'VCHAR_FOUR'; 

ELSIF ltem_Counter = 5 THEN 

item_name := 'VCHAR_FIVE'; 

ELS IF Item_ Counter = 6 THEN 

item_name := 'VCHAR_SIX'; 

ELSIF ltem_Counter = 7 THEN 

item_name := 'NUM_SEVEN'; 

ELSIF Item_Counter = 8 THEN 

item_name := 'NUM_EIGHT'; 

ELSIF Item_Counter = 9 THEN 

item_name := 'TEXT_NINE'; 

ELS IF Item_ Counter = 1 0  THEN 
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item_name := 'DATE_TEN'; 

ELSIF Item_Counter = 1 1  THEN 

item_name := 'DATE_ELEVEN'; 

END IF; 

--See if the column is needed (0 = No) 

BEGIN 

SELECT Column_No, Prompt_No, Sequence_No 

INTO Column_Present, ltem_Prompt_No, Position_No 

FROM Composition_Rules C 

WHERE C.Cat_No = Category 

AND C.Sub_Cat_No = Sub_Category 

AND C.Sub_Sub_Cat_No = Sub_Sub_Category 

AND C.Column_No = Item_Counter; 

EXCEPTION 

END; 

WHEN NO_DATA_FOUND THEN --Column isn't needed 

Column_Present := O; 

ltem_Prompt_No := O; 

Position_No := O; 

Item_id := Find_Item('Staff_Retum_Items.'llitem_name); --Find the unique item id 

IF Column_Present = 0 THEN --Column isn't needed and is made invisible 

Set_Item_Property(item_id, Visible,PROPERTY _FALSE); 

ELSE --Column needs to be shown 

Set_Item_Property(item_id, Visible,PROPERTY _TRUE); 

Set_Item_Property(item_id,Enabled,PROPERTY _TRUE); 

Set_Item_Property(item_id, Update_Allowed,PROPERTY _TRUE); 

Set_Item_Property(item_id,Required,PROPERTY _FALSE); 

Set_Item_Property(item_id,Queryable,PROPERTY _TRUE); 

End_Or_NULL := End_Or_NULL + 1 ;  

--Changes the prompt 

SELECT Field_Prompt 

INTO New_Prompt_Text 

FROM PROMPTS 

WHERE Prompt_NO = Item_Prompt_N o; 
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Set_ltem_Property(i tem_id,Prompt_ Text,New _Prompt_ Text); 

--Arranges Fields in correct order 

IF Seq_Locator = 0 THEN --No text field 

Set_Item_Property(item_id,Position, 140,( 140 + ((Position_No - 1 )  * 14))); 

ELSIF Position_No <= Seq_Locator THEN --Text field but field occurs before it 

Set_Item_Property(item_id,Position, 140,( 140 + ((Position_No - 1 )  * 14))); 

ELSE --Field occurs after text field 

Set_Item_Property(item_id,Position, 140,( 140 + ((Position_No - 1 )  * 14) + 42)); 

END IF; 

END IF; --End of Column checking IF 

END LOOP; --End of Item_counter Loop 

IF ((End_Or_NULL = 0) AND (:GLOBAL.Force_Choice = 'TRUE') 

AND (:Global.Reject_Force = 'FALSE')) THEN 

Launch_ Choose_Screen; 

:GLOBAL.Force_Choice := 'FALSE'; 

END IF; 

END; --End of Trigger 
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Appendix E - Static Data Entry Screens 

Personal Details 

Change Password 
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Discipline Memberships 

Research Memberships 
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Appendix F - Sample Reports 

This appendix contains reports generated by the sample application, in a pdf (Adobe 

Acrobat) format. Each report is preceded by a title page, describing its use. 
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Composition Rule Report 

This report details the configuration rules currently applied to the database and 

forms/reports. 
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Staff Return Items Composition Rule Report 

Category 

Sub category 

Column No Prompt 

1 1 

2 2 

9 3 

Category 

Sub category 

Column No Prompt 

1 4 

2 5 

3 6 

4 3 

7 7 

Category 

Sub category 

Column No Prompt 

1 1 

2 2 

3 8 

9 3 

4 9 

Category 

Sub category 

Column No Prompt 

1 4 

2 10 

3 11 

9 3 

7 7 

4 12 

1 

1 

No 

1 

2 

No 

1 

3 

No 

2 

1 

No 

Teaching and Learning 

Teaching initiatives 

Field Prompt 

Name ( s )  

School 

Description 

Teaching and Learning 

Teaching awards and grants 

Field Prompt 

Recipient ( s )  

Awarding Body 

Title of  Award 

Description 

Amount granted 

Teaching and Learning 

Achievements by undergraduate 

Field Prompt 

Name ( s )  

School 

Course 

Description 

Staff Involved 

Research and Creative Works 

Research Grants 

Field Prompt 

Recipient ( s )  

Funding Body 

Title of  Grant 

Description 

Amount granted 

Collaborating Organisations 
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' 

Staff Return �t0ma C9:1!9ooition Rule Ro�ort 

Category 2 Research and Creative Works 

Sub category 3 Pos tgr adua t e s tudent achievements 

Column No Prompt No Fietd Prompt 

1 1 Name ( s )  

2 2 School 

9 3 DescripLion 

J 9 Staff Involved 

Category 

Sub category 

2 

4 

Research and Creative Works 

Research strategic al liances 

Column No Prompt No F bld Prompt 

1 27  Institution/Organisation 

9 3 Description 

Category 2 Research and Creative 

Sub category 5 Research awards 

Column No Prompt No Field Prompt 

1 4 Rr;cipien t ( s )  

2 5 Awarding Body 

9 3 Description 

3 6 Title o f  Award 

Works 

Category 2 Research ,rnd Creative Works 

Sub category 2 

Sub Sub Category 1 

Column No Prompt No 

1 13  

10  14  

2 1 5  

3 16  

4 17  

Publications 

Book 

Field Prompt 

Author ( s )  

Date 

Title 

Publishe1: 

venue 
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Staff Return Items Composition Rule Report 

Category 2 

Sub category 2 

Sub Sub Category 2 

Column No Prompt No 

1 13  

10  14 

2 18 

3 1 5  

4 1 6  

5 17 

Category 2 

Sub category 2 

Sub Sub Category 3 

Column No Prompt No 

1 13  

1 0  4 9  

2 19  

3 2 0  

4 2 1  

5 22  

Category 2 

Sub category 2 

Sub Sub Category 4 

Column No Prompt No 

1 13  

1 0  1 4  

2 1 9  

3 2 0  

4 2 1  

5 22  

Research and Creative Works 

Publications 

Book chapter 

Field Prompt 

Author ( s )  

Date 

Title of chapter 

Title 

Publisher 

Venue 

Research and Creative Works 

Publications 

Article refereed j ournal 

Field Prompt 

Author ( s )  

Year 

Title of  article 

Title of j ournal 

Volume 

Page numbers 

Research and Creative Works 

Publications 

Article in non-refereed j ournal 

Field Prompt 

Author ( s )  

Date 

Title of article 

Title of  j ournal 

Volume 

Page numbers 
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Staff Return Items Composition Rule Report 13 /02 / 2 0 0 1  

Category 2 

Sub category 2 

Sub Sub Category 4 

Category 2 

Sub category 2 

Sub Sub Category 5 

Column No Prompt No 

1 1 3  

1 0  14 

2 19  

3 23  

5 22 

Category 2 

Sub category 2 

Sub Sub Category 6 

Column No Prompt No 

1 1 3  

1 0  1 4  

2 19  

3 23  

4 2 1  

5 22 

Category 2 

Sub category 2 

Sub Sub Category 7 

Research and Creative Works 

Publ ications 

Article in non-refereed journal 

Research and Creative Works 

Publ ications 

Article in refereed conference proceedings 

Field Prompt 

Author ( s )  

Date 

Title of article 

Title of proceedings 

Page numbers 

Research and Creative Works 

Publications 

Article in non-refereed conference proceedings 

Field Prompt 

Author ( s )  

Date 

Title of article 

Title of proceedings 

Volume 

Page numbers 

Research and Creative Works 

Publ ications 

Paper presented at a conference 

127 



l 

Staff Return Items Composition Rule Report 

Category 2 

Sub category 2 

Sub Sub Category 7 

Column No Prompt No 

1 13  

1 0  14 

2 1 5  

3 24 

4 17 

Category 2 

Sub category 2 

Sub Sub Category 8 

Column No Prompt No 

1 13 

10  14  

2 1 5  

3 16  

Category 2 

Sub category 2 

Sub Sub Category 9 

Column No Prompt No 

1 13  

1 0  1 4  

2 1 5  

3 16  

2 

Research and Creative Works 

Publ ications 

Paper presented at a conference 

Field Prompt 

Author ( s )  

Date 

Title 

Conference 

Venue 

Research and Creative Works 

Publ ications 

Research reports 

Field Prompt 

Author ( s )  

Date 

Title 

Publisher 

Research and Creative Works 

Publ ications 

Audio-vi sual recordings 

Field Prompt 

Author ( s )  

Date 

Title 

Publi sher 

Research and Creative Works 

128 
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Staff Return Items Composition Rule Report 

Category 2 

Sub category 2 

Sub Sub Category 1 0  

Research and Creative Works 

Publ ications 

CD-ROM/computer software 

Column No Prompt No Field Prompt 

1 13  Author ( s )  

1 0  14 Date 

2 1 5  Title 

3 1 6  Publ isher 

Category 2 Research and Creative Works 

Sub category 2 

Sub Sub Category 11  

Column No Prompt 

1 2 5  

2 1 5  

3 2 6  

4 17 

Category 

Sub category 

Column No Prompt 

1 2 8  

2 29  

3 3 0  

9 3 1  

1 0  1 4  

Category 

Sub category 

No 

3 

1 

No 

3 

2 

Publications 

Creative works 

Field Prompt 

Presenter ( s )  

Title 

Event 

Venue 

Community and Professional service 

TV/ radio/media participation 

Field Prompt 

Name 

Programme/article title 

Radio/TV Station or Publication 

Topic 

Date 

Community and Professional service 

Appointments to Boards or External Commitees 

Column No Prompt No Field Prompt 

129 
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Staff Return Items Composition Rule Report 

Category 

Sub category 

Column No Prompt 

1 32  

2 3 3  

3 34  

10  3 5  

Category 

Sub category 

Column No Prompt 

1 4 

2 3 6  

3 5 

9 37  

Category 

Sub category 

Column No Prompt 

1 1 

2 2 

9 3 

Category 

Sub category 

Column No Prompt 

1 28  

2 3 8  

3 3 9  

9 40  

4 41  

3 

2 

No 

3 

3 

No 

3 

4 

No 

3 

5 

No 

4 

Community and Professional service 

Appo intments to Boards or External Commitees 

Field Prompt 

Position 

Name of Board/Commitee 

Nominating group 

Date of  tenure 

Community and Professional 

Awards / recognition 

Field Prompt 

Recipient ( s )  

Achievement/Award 

Awarding Body 

Reason for award 

Community and Professional 

Service - ( several ) 

Field Prompt 

Name ( s )  

School 

Description 

service 

service 

Community and Professional service 

Vis itors 

Field Prompt 

Name 

Institution 

School/Centre 

Purpose 

Duration 
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l 

Staff Return Items Composition Rule Report 

Category 

Sub category 

4 

1 

International and Commercial activi ties 

Strategic alliances/partnerships 

Column No Prompt No Field Prompt 

1 28  Name 

2 2 School 

3 27  Institution/Organisation 

9 3 Description 

Category 

Sub category 

4 

2 

International and Commerc ial activities 

International visitors 

Column No Prompt 

1 28 

2 3 8  

3 2 

8 40  

4 41  

Category 

Sub category 

Column No Prompt 

1 2 8  

2 2 

9 3 

Category 

Sub category 

Column No Prompt 

1 2 8  

2 2 

9 3 

Category 

No 

4 

3 

No 

4 

4 

No 

5 

Field Prompt 

Name 

Institution 

School 

Purpose 

Duration 

International and Commercial ac tivities 

International students 

Field Prompt 

Name 

School 

Description 

International and Commercial activities 

Commercial activities 

Field Prompt 

Name 

School 

Description 

Other significant activities 

131 
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Staff Return Items Composition Rule Report 

Category 

Sub category 

5 

1 

Other s igni ficant activi ties 

Other 

Column No Prompt No Field Prompt 

1 1 Name ( s ) 

9 3 Description 

132 
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Period Report 

This report contains a list of all items submitted via the dynamic data entry screens for 

a specific collection period. It is configured exclusively by the flexible SQL query 

detailed in section 4.2.3. 
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Period Report for : 0 1 -0CT- 2 0 0 0  - 3 1 -DEC - 2 0 0 0  

Staff No 0 0 112 1  

Category 

Sub Category 

Name ( s )  

School 

Description 

Category 

Sub Category 

Name ( s )  

School 

Description 

Category 

Sub Category 

Sub Sub Category 

Author ( s )  

Date 

O l /OCT / 2 0 0 0  - 3 1 /DEC / 2 0 0 0  

HUNT , Lynne 

Teaching and Learning 

Teaching init iatives 

Assoc Pro fessor Lynne Hunt 

School o f  Nurs ing and Public Health 

Written text for two web s ites : 
1 .  Work-based University Learning : 

http : / /www . edu . edu . au/ ssa/worklinks / 
2 .  Race Around ECU : 

http : / /www . ecu . edu . au/pa / raecu / 

Teaching and Learning 

Teaching initiatives 

Assoc Professor Lynne Hunt 

School o f  Nurs ing and Public Health 

Developed and presented a workshop 
for ECU ' s Profess ional Development 
Unit entitled :  University Work­

based Learning : New Ideas and 
Strategies 

Research and Creative Works 

Publications 

Book 

Dr Kaosar Afsana , PhD s tudent in the 

School of  Nurs ing and Publ ic Heal th 

and Sabina Faiz Rashid 
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Period Report for : 0 1 -0CT-2 0 0 0  3 1 -DEC- 2 0 0 0 

Staff  No 0 0 112 1 

Category 

Sub Category 

Sub Sub Category 

Title 

Publ isher 

Venue 

Category 

Sub Category 

Sub Sub Category 

Author ( s )  

Year 

Title of article 

Title of  j ournal 

Volume 

Page numbers 

Category 

Sub Category 

Name 

Discours ing Birthing Care : 

Experiences from Bangladesh 

Univers ity Pres s Ltd : 

Dahaka 

Research and Creative Works 

Publ ications 

Art icle refereed j ournal 

Berne , L . A . , Patton , W . , Milton , J . , 

Wright , S . , Hunt , L . , Peppart ,  J .  
and Dodd , J .  

A qualitative assessment of  

Australian parents '  perceptions of  
sexuality education and 
communication 
Journal o f  Sex Education and Therapy 

Community and Profess ional service 

TV/ radio/media participation 

Assoc Professor Lynne Huhnt and J 
Trotman 

Programme / article title  C laremont Cameos : Dorothy Hewitt 
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Period Report for : 0 1 -0CT- 2 0 0 0  

Staf f No 0 0 1 1 2 1  

Category 

Sub Category 

Radio / TV Station or ABC Radio 
Publ ication 

3 1 -DEC - 2 0 0 0 

Topic Social History Unit Broadcast 

Date 

Category Community and Pro fess ional s ervice 

Sub Category Awards / recognition 

Recipient ( s }  Assoc Professor Lynne Hunt 

Achievement /Award Sybe Jongel ing Prize  for Outstanding 
Dedication to Research 

Awarding Body ECU Postgraduate and Honours Student 
Ass ociation 

Reason for award 

Staf f No 0 0 2 9 8 2  0 1 /0CT / 2 0 0 0  - 3 1 / DEC / 2 0 0 0  

Category 

Sub Category 

Name ( s }  

Description 

BITTLES , Alan 

Other s igni ficant activities 

Other 

Professor Alan Bittles 

Public Lecture on Medical Ethics ? 
So who let them clone Christopher 
Skase? at the Alexander Library on 

2 0  October . 
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Period Report for : 0 1 -0CT- 2 0 0 0  3 1 -DEC - 2 0 0 0  

Staff No 0 0 4 2 2 9  

Category 

Sub Category 

Recipient ( s )  

Funding Body 

Title of Grant 

Description 

0 1 /0CT / 2 0 0 0  - 3 1 / DEC / 2 0 0 0  

LAVERY , Paul 

Research and Creative Works 

Research Grants 

Dr Paul Lavery and Dr C Oldham 

Wenner-Gren Foundat ion 

Vis iting Scient i s t  Award 

To support visiting scientists  to 

Sweden 
Amount granted 

Collaborating Organisations 

5 5 0 0  

Category 

Sub Category 

Recipient ( s )  

Funding Body 

Title of  Grant 

Description 

Research and Creative Works 

Research Grants 

Dr Paul Lavery 

Water and Rivers Commiss ion 

Assessment of the Environmental 

Impacts  of Algal Harvesting 

Amount granted 

Collaborating Organisations 

2 0 0 0  

Category 

Sub Category 

Recipient ( s )  

Funding Body 

Title of  Grant 

Research and Creative Works 

Research Grants 

Dr Paul Lavery 

DEP 

Assessment o f  Seagras s Health in the 

1 37 



Period Report for : 0 1 -0CT- 2 0 0 0  3 1 -DEC -2 0 0 0  

Staff No 0 04 2 2 9  

Category 

Sub Category 

Perth Metropolitan Waters 

Description 

Amount granted 

Collaborating Organisat ions 

1 1 0 0 0  

Category 

Sub Category 

Recipient ( s )  

Funding Body 

Title o f  Grant 

Description 

Research and Creative Works 

Research Grants 

Dr Paul Lavery 

Cockburn Cement Ltd 

The Ecological s igni ficance o f  

seagrass ecosystems 

Amount granted 

Collaborating Organisations 

2 03 5  

Category 

Sub Category 

Recipient ( s }  

Funding Body 

Title o f  Grant 

Description 

Research and Creative Works 

Research Grants 

Dr Paul Lavery 

ARC Small Grant and ECU 

An alternat ive method to trace 

sewage pol lution in well  mixed 

coastal waters 
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Period Report for : 0 1 -0CT- 2 0 0 0  3 1 -DEC - 2 0 0 0  

Staff  No 0 04 2 2 9  

Category 

Sub Category 

Amount granted 1 0 0 0 0  

Collaborating Organisations 

Category 

Sub Category 

Recipient ( s )  

Funding Body 

Title o f  Grant 

Description 

Research and Creative Works 

Research Grants 

Dr Paul Lavery and Dr Glenn Hyndes 

ARC Small Grant 

The role  o f  transported macrophyte 

material for fish production in 
unvegetated marine habitats 

Amount granted 

Collaborating Organisat ions 

9 6 0 0  

Category 

Sub Category 

Sub Sub Category 

Author ( s )  

Year 

Title of article 

Title of j ournal 

Research and Creative Works 

Publ ications 

Art icle refereed j ournal 

Vanderkl i ft , M . A .  and Lavery , P . S .  

Patchiness in assemblages o f  
epiphytic macroalgae on Pos idonia 

coriacea at a hierarchy of spatial 

scales 

Marine Ecology Progres s  Series 

1 39 



l 
l 

Period Report for : 0 1 -0CT- 2 0 0 0  - 3 1 -DEC - 2 0 0 0  

Staff  No 0 0 4 2 2 9  

Category 

Sub Category 

Sub Sub Category 

Volume 

Page numbers 

Category 

Sub Category 

Sub Sub Category 

Author ( s )  

Year 

Title of  article 

Title o f  j ournal 

Volume 

Page numbers 

Category 

Sub Category 

Sub Sub Category 

Author ( s )  

Year 

Title o f  article 

Title of j ournal 

1 9 2  

127 -1 3 5 

Research and Creative Works 

Publications 

Article refereed j ournal 

Wood ,  N .  and Lavery , P .  

Monitoring seagrass ecosystem health 
- the role o f  perception in defining 
health and indicators 
Ecosystem Health 

6 

1 3 4 - 1 4 8  

Research and Creative Works 

Publications 

Article refereed j ournal 

Lavery , P .  and vanderkli ft , M . A .  

Comparison o f  spatial patterns in 

seagrass epiphyte assemblages us ing 

species and funct ional group-level 
data 
Soc . Ital . Di Biol . Mar . 
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Period Report for : 0 1 -0CT- 2 0 0 0  - 3 1 -DEC - 2 0 0 0  

Staff  No 0 04 2 2 9  

Category 

Sub Category 

Sub Sub Category 

Volume 

Page numbers 

Category 

Sub Category 

Sub Sub Category 

Author ( s )  

Year 

Title of article 

Title of  j ournal 

Volume 

Page numbers 

Category 

Sub Category 

Sub Sub Category 

Author ( s )  

Date 

Title of article 

Title of proceedings 

7 

2 5 1 - 2 5 4  

Research and Creative Works 

Publications 

Article refereed j ournal 

Vanderklift , M . A .  and Lavery , P .  

Small-scale spatial patterns in 

epiphyte assemblages of Posidonia 
coriacea and Amphibolis  gri f fithi i 
Soc . Ital . Di Biol . Mar . 

7 

2 9 4 -297  

Research and Creative Works 

Publications 

Article in refereed conference proceedings 

Dr Paul Lavery 

Comparison o f  spatial patterns in 

seagrass epiphyte assemblages using 
species and functional group data 

Proceedings o f  the 4 th International 
Seagrass Biology Workshop 

141 



Period Report for : O l -OCT-2 0 0 0  3 1 -DEC- 2 0 0 0 

Staff No 0 04 2 2 9  

Category 

Sub Category 

Sub Sub Category 

Page numbers 

Category 

Sub Category 

Sub Sub Category 

Author ( s )  

Date 

Title of article 

Title of proceedings 

Page numbers 

Category 

Sub Category 

Sub Sub Category 

Author ( s )  

Date 

Title of article 

Title of proceedings 

Page numbers 

Research and Creative Works 

Publications 

Article in refereed conference proceedings 

Dr Paul Lavery 

Dif ferences in spatial patterns in 
assemblages of epiphytic macroalgae 

betwenb seagrass hosts 
Proceedings of  the 4th International 

Seagrass Biology Workshop 

Research and Creative Works 

Publications 

Article  in re fereed conference proceedings 

Dr Paul Lavery 

Can dl5N o f  di f ferent macroalgae be 
used to map temporal patterns in 

sewage pollution 

Proceedings o f  the Swedish Society 
for Marine Research Biennial 

Conference 

142 



Period Report for : 0 1 -0CT-2 0 0 0  - 3 1 -DEC-2 0 0 0  

Staff No 0 04 2 2 9  

Category Research and Creative Works 

Sub Category 

Sub Sub Category 

Author ( s }  

Date 

Title  of  article 

Title of  proceedings 

Page numbers 

Staff No 0 0 7 6 5 7  

Category 

Sub Category 

Sub Sub Category 

Author ( s }  

Date 

Title of  chapter 

Title 

Publisher 

Venue 

Category 

Sub Category 

Sub Sub Category 

Publ ications 

Article in refereed conference proceedings 

Dr Paul Lavery 

Monitoring Seagrass Ecosystem 
Health . The role o f  perception . 
Austral ian Marine Sciences 
Association (WA}  Conference 

0 1 / 0CT/ 2 0 0 0  - 3 1 / DEC / 2 0 0 0  

BLADES , Andrew 

Research and Creative Works 

Publ ications 

Book chapter 

Blades , A . J .  

The 4 Phases of  Risk Realisation 

in Doughty , K ( Ed}  Busines s 
Continuity Planning : Protecting Your 

Organisat ion ' s  Life 

Auerbach : New York 

Research and Creative Works 

Publications 

Book chapter 
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Period Report for : 0 1 -0CT- 2 0 0 0  - 3 1 -DEC - 2 0 0 0  

Staff No 0 07 657  

Category 

Sub Category 

Sub Sub Category 

Author ( s )  

Date 

Title of chapter 

Title 

Publ i sher 

Venue 

Staff No 0 07 7 4 4  

Category 

Sub Category 

Sub Sub Category 

Author ( s )  

Date 

Title 

Conference 

Venue 

Category 

Sub Category 

Blades , A . J .  

Learning from a Cri s i s  

in Doughty , K ( Ed )  Bus ines s  
Continuity Planning : Protecting 
Your Organisation ' s  Life 
Auerbach : New York 

O l / OCT / 2 0 0 0  - 3 1 / DEC / 2 0 0 0  

LESLIE , Gavin 

Research and Creative Works 

Publications 

Paper presented at a conference 

Assoc Professor Gavin Les l ie 

Ros ter Sat i s faction in the intensive 

care unit ( ICU ) - a review of  the 

introduction of  12 hour shi fts  

2 5th Austral ian and New Zealand 
Scientific Meeting on Intensive Care 

Canberra 

Research and Creative Works 

Publ ications 

144 



Period Report for : 0 1 -0CT-2 0 0 0  3 1 -DEC - 2 0 0 0  

Staff No 0 07 7 44 

Category 

Sub Category 

Sub Sub Category 

Author ( s )  

Date 

Title 

Conference 

Venue 

Category 

Sub Category 

Recipient ( s )  

Achievement/Award 

Awarding Body 

Reason for award 

Staff No 2 0 0 0 0 5  

Category 

Sub Category 

Paper presented at a conference 

Assoc Professor Gavin Les lie 

Twelve hour rostering in critical 
care - lessons from the emergency 
department and intensive care unit 

6 th Nurs ing Practice Conference : 
Nurs ing : Charting a new course 
Adelaide 

Community and Pro fessional s ervice 

Awards / recognition 

Assoc Professor Gavin Les lie 

Editor publications 

Aus tral ian College of Critical Care 

Nurses (ACCCN ) 

Respons ibilities include Austral ian 
Critical Care ( refereed j ournal ) ,  

Critical Times ( quarterly national 

newspaper ) and webs ite 

(www . ACCCN . com . au )  
O l /OCT/ 2 0 0 0  - 3 1 / DEC / 2 0 0 0  

GROOM , Philip 

Research and Creative Works 

Publications 

145 



Period Report for : 0 1 -0CT- 2 0 0 0  3 1 -DEC-2 0 0 0  

Staff  No 2 0 0 0 0 5 

Category 

Sub Category 

Sub Sub Category 

Author ( s )  

Year 

Title of  article 

Title of j ournal 

Volume 

Page numbers 

Staf f No 2 0 5 484  

Category 

Sub Category 

Recipient ( s )  

Funding Body 

Title of Grant 

Description 

Article refereed j ournal 

Groom ,  P . K . , Froend , R . H . , Mattiske , 
M .  and Koch , B . L .  

Myrtaceous shrub spec ies respond to 
long-term groundwater levels on the 

Gnangara Groundwater Mound , Northern 
Swan Coastal Plain 

Journal of the Royal Society of  
Wes tern Australia 

8 3  

7 5 - 8 2  

O l /OCT / 2 0 0 0  - 3 1 / DEC / 2 0 0 0  

BOUSSAID ,  Farid 

Research and Creative Works 

Research Grants 

Dr Farid Boussaid 

FCHS 

Seed Grant 

Toward Advanced CMOS Imaging 

Technology 

Amount granted 

Collaborating Organisations 

5 0 9 2  

Category Research and Creative Works 

146 



Period Report for : 0 1 -0CT- 2 0 0 0  - 3 1 -DEC - 2 0 0 0  

Staf f  No 2 0 5484  

Category 

Sub Category 

Sub Sub Category 

Author ( s )  

Date 

Title 

Conference 

Venue 

Publications 

Paper presented at a conference 

Dr Amine Bermak , Dr Farid Bous said 
and Assoc Pro fessor Sal im Bouz erdoum 

A digitally programmable current 
mode analog shunting inhibition 
cel lular neural network 
7th IEEE International Conference on 
Electronics , Circuits and Systems 
Kas lik ,  Lebanon 

147 



Staff Without Submissions 

This report provides a listing of all staff members who have not submitted a return for 

a given collection period. 
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STAFF MEMBERS WITHOUT RETURNS FOR : 

O l-OCT- 2 0 0 0  - 3 1-DEC-20 0 0  

Staf f No Surname First Names Telephone No Email 

0 57 6 5 6  AHERN Kathy 8 6 1 1  

0 0 6 3 59 ALDER Jackie 5 4 5 9  

0 5 8 1 8 1  ALLISON Denise 6 1 5 6  

044097  ANDERSON Karen 62 9 6  

0 0 6 8 8 9  ANDREWS Julie  6 5 0 8  

0 0 9 6 3 1  ANGELICHEVA Dora 5714  

0 0 8 4 1 1  ARMSTRONG Colin 6 0 3 0  

2 0 3 3 0 6  ARMSTRONG Helen 6 8 5 6  

0 4 8 0 3 9  BAKER Eileen 5 5 3 9 

0 1 6 1 0 9  BALLANTINE Kevin 6 2 1 3  

0 0 9 0 12 BANASIEWICZ Nathan 6 1 1 5  

04343 1 BANNISTER Mark 63 3 6  

0 02 3 67 BARNES Jeff 5424 

0 0 7 172  BARTON Lynn 52 89  

204978  BAUMANIS Andrew 6 3 8 3  

0 0 5 3 07 BELL Catherine 5482  

0 0 0207  BENNETT Ian 6 3 5 0  

2 0 3 024  BERMAK Amine 5877 

203 5 6 3  BHATTARAI Nirj a 6 6 3 8  

2 0 1 2 2 1  BIGLARI-ABHARI Morteza 5 7 8 5  

0 2 1 8 4 8  BLOOM Lyn 5 8 8 3  

2 0 1877 BOLAN Christopher 5 5 8 1  

2 0 0 7 9 1  BORDAS Nardia 8 5 8 5  

2 0 14 0 0  BOUZERDOUM Abdesselam 5 0 5 9  

0 0 1 2 1 6  BOYCE Mary 6 3 2 8  

0 50737  BRIGHTWELL Richard 8 5 6 4  

0 2 0 8 5 3  BROCK Lorna 8 5 62 

2 0 3 048  BRODALKA Joseph 63 5 3  

0 4 6 6 2 3  BROGAN Mark 6 3 0 0  

2 0 4 9 8 3  BURNETT Angus 5 8 6 0  

0 4 0 0 4 5  BURT Lorraine 8 6 12 

0 54973  BYRNE David 8 5 9 1  

2 0 3 6 2 1  BYRNE Eoin 6 6 9 9  

2 0 2 1 3 3  CADMAN Robert 5 8 7 6  

2 04 6 4 5  CHAI Douglas 5874  

0 0 3 9 5 4  CHANDLER David 5 7 1 6  

03 0824  CHIRATHAMJAREE Chai 63 5 6  

0 4 4 6 9 5  CHOW Shirley 8574  

0 1 6 5 6 3  CLAYDEN Judy 6298  

098124  COLEMAN Marion 8 5 6 6  

0 0 2 12 3  COLLINS Michael 63 6 3  

0 4 5 8 6 6  COLLINS Simon 63 3 5  

0 1 6 6 3 5  COMBER Geof f  6 3 6 1  

094094  CORNELIUS Mary 5 5 53 

2 0 5 14 9  CRAMER Jennifer 8 6 2 3  

0 3 6 0 8 9  CRAWFORD Anne 8024  
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STAFF MEMBERS WITHOUT RETURNS FOR : 

Ol -OCT-2 0 0 0  - 3 1 -DEC - 2 0 0 0  

Staff  No Surname Firs t  Names Telephone No Emai l  

0 04 9 5 4  CRAWFORD Ian 6 3 3 4  

0 5 3 807  CROSS Bob 6374  

0 1 6 7 2 3 - 1  CROSS Jim 5 8 8 1  

0 1672 3 -2 CROSS Jim 5881  

2 0 0748  CROSTHWAITE Marilyn 5692  

0 5 4 0 5 0  DANAHER Maurice 6 5 4 1  

999998  DAVIS Paul 

1 0 8 0 02 DEVLIN Anna 6 0 52 

0 9 2 6 6 2  DHALIWAL Harbhaj an 5019  

0 9 9 522  DIXON Carol 6 5 6 9  

0 0 6102  DOWNES Karen 5467  

0 9 0 6 67 DOWNIE Margaret 8183  

0 0 5 0 3 8  DOYLE John 5 0 3 1  

0 0 57 9 9  DOYLE Steve 6054  

0 0 3 1 8 0  DROUET Elizabeth 5448  

0 5 0 3 6 6  DRURY John 8618  

0 2 6 9 13 DUFF John ( Edward) 6 2 3 1  

0 19 8 0 1  ELAM Anne 5 5 0 5  

0 1 6 9 1 8  EMBREY Lynn 5 6 5 5  

0 0 4 9 3 4  ESHRAGHIAN Kamran 5839  

0 2 5 4 0 1  FRENCH Sandie 6299  

092179  FREW Katherine 5 5 8 3  

0 0 7 2 4 1  FROEND Ray 5 5 63 

0 4 82 07 GALBRAITH Alan 8563  

0 17 0 3 0  GAMBLE Ross 5 4 5 0  

0 1 7 0 5 6  GARNETT Patrick 5 6 6 5  

2 0 1 0 0 1  GARNETT-LAW Bryan 6 1 1 5  

0 0 8 9 5 9  GIBLETT Rodney 6051  

0 0 3 0 5 1  GIBSON Barry 5037  

2 0 0 3 7 1  GIBSON Marlene 8192 

0 0 0889  GODFREY Paul 6713  

0 0 5 3 9 9  GOODE Elizabeth 6 3 5 1  

0 7 6 4 8 6  GOSLING Joanne 8 5 8 1  

0 0 6993  GRAY Jason 6460  

044652  GRAY Lorraine 8 6 0 5  

0 4 8 2 3 1  GREEN Lelia 6204  

0 9 1 5 5 5  GURURAJAN Raj 6 0 17 

00 3477  HABIBI Daryoush 5787 

04 6113  HALL Jean 6427 

2 0 0745  HANNAN Christine 8 5 6 1  

0 0 2 2 0 1  HARRIS-WALKER Jody 5557  

0 5 5 1 0 8  HAUCK Yvonne 8570  

2 0 0720  HERLIHY Bianca 6719  

0 0 6373  HERRINGTON Jan 6190  

0 01 9 6 2  HINCKLEY Stephen 5710  

2 0 0 7 8 5  HOGAN Vanessa 
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STAFF MEMBERS WITHOUT RETURNS FOR : 

Ol-OCT-2 0 0 0  - 3 1-DEC- 2 0 0 0  

Staff No Surname First Names Telephone No Email  

0 0 6 3 67 HOPE Peter 5 6 5 3  

0 0 0 4 2 9  HORWITZ : Pierre 5 5 5 8  

2 0 4794 HYNDES Glenn 5798 

022779  JACKSON Glenda 5451  

0 0 7 4 5 5  JAFFAR Taib 6 3 3 0  

2 0 0 1 6 8  JAMIESON Sharon 8 5 3 4 

0 0 3 1 9 0  JAUNZEMS Linda 5847 

0 9 0 5 44 JENNINGS Kaye 5847 

2 0 52 4 5  JIVOTOVSKY Lev 5467 

2 0 3 3 3 5  JOHN Maria ( Li z )  5121  

0 1 7 4 3 5  JOHNSON Angela 5 6 5 1  

0 0 9 2 7 5  JOHNSON Julie 6 57 0  

2 0 5 0 64 JOLLEY David (Wi ll iam) 6877  

0 4 0 5 1 2  JONES Bronwyn 8 598  

009873  JONES Sue 6 3 3 3  

002 094  JOSEPHI Beate 6 69 1  

0 0 3 9 0 3  KALAYDJIEVA Luba 5 4 5 6  

002122  KARPATHAKIS George 6 3 2 1  

027713  KINNEAR Adrianne 6499  

2 04 3 7 5  KONGRAS Tiffany 6 3 5 3  

0 07 0 6 6  KOTHAPALLI Ganesh 5792 

2 0 0 03 4 - 1  KRISTJANSON Linda 8 617 

2 0 0 0 3 4 - 2  KRISTJANSON Linda 8617  

0 3 5 4 0 6  KUCZBORSKI Woj ciech 6 0 13 

0 0 1 7 57 LACHOWICZ Stefan 5 5 8 0  

0013  68  LAIDMAN Wi l l iam 6 5 1 4  

0 0 2 0 3 4  LANCE Hugh 5 5 5 6  

044724  LANGRIDGE Miriam 8 5 58  

033443  LEDWITH Colleen 5884  

2 0 1 0 5 5  LEE Julie 5448 

074940  LEGGETT Monica 6476  

0 9 9 514  LEHMANN Paul ine 8 5 8 5  

2 0 2 0 1 6  LESLIE Mark 6507  

017 582  LESLIE Norman 6214  

0 0 6454  LI  Dongguang 6 3 5 8  

0 1 7 6 0 3  LINSTEN Joram 5 57 8  

0 0 5 9 2 1  LOURENS Geoff  63 67 

0 9 3 9 64 LOY Poh-Kin 5 8 3 1  

0 0 6428  LUCA Joe 6412  

0 0 4 3 6 3  LUFF Jonathon 5 5 5 7  

0 0 17 5 6  LUND Mark 5 644 

0 3 47 4 5 - 1  LUU Kim 6101  

0 3 4 7 4 5 - 2  LUU Kim 6101  

0 9 2 2 9 1  MACKIE Doreen 5 6 6 1  

001854  MAJ S Paul 6277  

204795  MANN Graham 6863  
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STAFF MEMBERS WITHOUT RETURNS FOR : 

O l -OCT- 2 0 0 0  - 3 1-DEC-2 0 0 0  

Staff No Surname Firs t Names Telephone No Emai l 

0 7 5 4 1 6  MARRIOTT Rhonda 8 6 1 0  

0 0 2 5 8 6  MATA . Gina 8 589  

0 0 5 4 5 6  MAYRHOFER Debra 6014  

204 522 MCCRUM Janet 8 5 8 1  

0 17742 MCDOUGALL David 543 9 

0 0 7 3 4 8  MCGLUE Wi l l iam (Bill ) 6 2 3 0  

0 0 6 0 9 5  MCKEE Alan 6 8 5 9  

2 0 1 4 5 6  MCLEOD Nicol e  5 8 5 2  

0 0 7 2 8 1  MCMAHON Mark 6434  

057710  MCPHEE Irene 8 5 6 9  

0 17849  MEREDITH Chris 5 5 6 2  

2 0 12 6 4  METTAM Brad 5 5 57 

0 3 64 3 3  MILLAR Clay 6 52 5  

0 3 7 188  MILLAR Jim 6 547 

0 0 6 1 0 4  MILLER Russe l l  6 5 5 5  

0 0 1 694 MONDELLO Helen 6 4 5 5  

2 04 5 9 0  MONTEROS SO Leanne 8 6 2 1  

2 0 3 9 5 1  MORRIS Fiona 5 0 12 

004710  MUELLER Ute 5272  

0 06264  MUSSETT Janis 5 5 9 0  

0 0 2 6 0 0  NEDVED Milos 5 672  

0 5 03 07 NEEDHAM Alan 6 6 6 7  

046228  NEWMAN Coral 5 8 8 0  

044 6 3 6  NEWNHAM Helen 8 6 1 3  

0 0 6 3 0 6  NG Christine 8624  

073 60 5  NIKOLETTI Suzanne 8 1 82 

0 0 1 6 14 NOBLE Kay 5 6 12 

0 8 8241  O ' NEILL Tom 6 4 3 1  

0 0 1 34 0  O ' SHAUGHNESSY Michael 6212  

2 0 07 9 0  O ' SHEA Mairead 5189  

2 0 3 047 OLAKA Francis 5782 

0 3 7 2 3 3 OLIVER Ron 6372  

0 0 3 3 4 0  OMARI Arshad 6 4 5 9  

0 5 34 0 1  PAM Maxwel l  6 2 1 8  

0 03 4 9 4  PATAK Annette 6 6 5 8  

0 0 5 8 1 5  PATAK Paul 6647  

0 0 6 3 5 5  PEARSON Deborah 6 2 1 4  

0 0 1902  PEDLER Pender 5 0 82 

2 0 5014  PERKINS Timothy 5459  

040740  PERRY Shirley 8437  

0 5 0 5 8 5  PHILLIPS Megan 8584  

014091  PHILLIPS Vincent 6 6 5 0  

0 0 1 9 53 PIKE Graham 5 6 2 5  

0 2 2 6 3 0  PLATEL Karl 6 2 17 

0 0 9 0 02 POLAND John 6 0 1 6  

0 8 8 807  POULLAY Sam 8 6 2 0  
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STAFF MEMBERS WITHOUT RETURNS FOR : 

O l -OCT- 2 0 0 0  - 3 1-DEC-2 0 0 0  

Staff No Surname First Names Telephone No Emai l  

2 0 0 9 2 5  POWER Marion 5 5 07 

2 0 1 8 5 3  PUMPHREY Melissa 

0 9 4 9 1 6  PURCELL Magdalen 5514  
0 3 7 9 62 QUIN Robyn 6 2 2 1  
0 2 1 4 2 6  QUINN Del i a  6 3 4 5  
0 9 6 3 3 0  RAPSEY John 6 5 1 8  
0 0 7 1 6 6  RECHER Harry 5 7 5 8  
0 0 3 9 8 5  REDMOND Janice 5 6 5 5  
0 0 2 1 0 1  RING Geoffrey 6 3 6 9  

0 0 9 3 4 7 - 1  RING Jan 6 3 62 

0 0 9 3 47 2  RING Jan 6 3 62 
0 0 8 5 7 5  RIVETT Donelle  5 4 7 6  
0 9 5 1 6 9  ROBBINS Graeme 6 872  

044  7 1 6  ROBERTS David 8 60 9  
0 6 8 6 3 8  ROBERTS Peter 5 4 5 5  
044927  ROCHE Valerie 5 0 2 5  
0 9 8 044  RODGER Martin 8 5 54 
0 2 9 2 7 6  ROSE Elizabeth 6 8 0 3  
0 0 3429  RUMMEY Jackie 6 3 2 5  
0 5 5 6 8 5  RYDER David 5452  
0 0 6 9 4 5  SACCO Paul 5 642 
10473 1 SADIQUE Deborah 6684  
0 0 14 3 4  SALMON Al ison 5 4 6 6  
0 5 0 7 1 1  SELLAPPAH Su 8578  
0 8 5 9 8 1  SERRELL Maxine 8573  
0 0 9 0 1 0  SHANLEY Eamon 8 6 3 1  
2 0 2 0 3 2  SHI Bei l in 5443  
0 18 6 2 2  SHOESMITH Brian 6219  
0 0 2 2 1 6  SINCLAIR Kelvin 6 542  

0 0 0 64 5  SKINNER Chris  5453  
0 0 7 1 3 5  SMITH Barbara 8 5 3 3  

0 1 8 6 5 7  SMITH C l ifton 

0 0 54 1 1  SMITH Ingrid 5221  

0 0 5 4 6 6  SMITH Kei th 6 5 1 6  

0 0 7 3 4 7  SMITH Kevin 5 8 4 6  

0 2 3 4 4 8  SNADER Sharron 6 2 2 0  
0 5 07 4 5  SPICKETT Evadne 6347  

0 8 7 9 6 0  STEVENSON Anne 8 5 9 3  

0 5 42 3 6  STEWART Angus 5697  

0 0 3 4 8 5  SWAN Geoff 642 5 

2 04224  TAN Dennis 6 6 8 0  

0 0 2 9 6 2 - 1  TERRY Jul ian 5 7 3 4  

0 0 2 9 62 - 2  TERRY Jul i an 5734  

0 0 2 8 0 7  THOMSON Nei l  5 0 5 3  

0 07 0 9 4  TONKIN Colleen 8597  
2 0 5 1 5 5  TUBBS Mileva 5848  

153 



Staff No 

201263  

009161  

0 0 2 0 1 5  

0 0 9 1 0 0  

2 0 02 7 2 - 1  

2 0 0272-2  

0 02488  

002496  

0 0 0 1 7 1  

0 03 7 0 8  

042294  

2 04 6 3 6  

2 0 5 1 6 0  

0 0 2 1 2 9  

0 5 0 5 3 4  

999997  

2 0 0 8 67 

Surname 

TURNER 

VAN ETTEN 

WAGNER 

WANG 

WARNOCK 

WARNOCK 

WATSON 

WHITE 

WILSON 

WOOD 

WOODROFF 

WORSLEY 

YANG 

YEO 

YIP 

YU 

ZHAO 

STAFF MEMBERS WITHOUT RETURNS FOR : 

01-0CT- 2 0 0 0  - 3 1-DEC-2 0 0 0  

First Names Telephone No Email 

Eric 5477  

Eddie 5 5 6 6  

Gul ten 6072  

Wei 5714  

Kathryn 8 5 9 5  

Kathryn 8 5 9 5  

Anthony 647 0 

Douglas 5 5 64 

Vicky 6 3 0 1  

Dennis 6107  

Susan 8583  

Penelope 5716  

Danian 

Malcolm 6577  

Vincent 8576  

Zhi Huan 5 0 3 4 

Xiaoli 5782 

-- - - - - - - - - - - - - - - - - - - - -
Total : 247 
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Staff Membership Report 

This report details the discipline areas and research groups to which an individual 

staff member belongs. 
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Staff No 001340  

Discipl ine Areas : 

Film and Video 

Media Studies 

Research Groups : 

Group Name 

Staff Membership Report 

Surname O ' SHAUGHNESSY 

First Names Michael 

BIOMEDICAL AND SPORTS SCIENCE 
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Start Date Term Date 

07 -NOV- 00 
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