
Edith Cowan University Edith Cowan University

Research Online Research Online

Theses : Honours Theses

2000

MapCAST : Real-Time Collaboration With Concept Maps MapCAST : Real-Time Collaboration With Concept Maps

Brett Greay
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses_hons

 Part of the Instructional Media Design Commons, and the Software Engineering Commons

Recommended Citation Recommended Citation
Greay, B. (2000). MapCAST : Real-Time Collaboration With Concept Maps. https://ro.ecu.edu.au/
theses_hons/844

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses_hons/844

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses_hons
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses_hons?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F844&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/795?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F844&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F844&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses_hons/844
https://ro.ecu.edu.au/theses_hons/844

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose

of your own research or study.

The University does not authorize you to copy, communicate or

otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following:

 Copyright owners are entitled to take legal action against persons
who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement. Where the reproduction of such material is

done without attribution of authorship, with false attribution of

authorship or the authorship is treated in a derogatory manner,

this may be a breach of the author’s moral rights contained in Part

IX of the Copyright Act 1968 (Cth).

 Courts have the power to impose a wide range of civil and criminal

sanctions for infringement of copyright, infringement of moral

rights and other offences under the Copyright Act 1968 (Cth).

Higher penalties may apply, and higher damages may be awarded,

for offences and infringements involving the conversion of material

into digital or electronic form.

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

mapCAST : Real-Time Collaboration with Concept Maps.

Brett Greay

Bachelor of Arts (Interactive Multimedia), Honours

Faculty of Science Technology and Engineering

School of Communications and Multimedia

Edith Cowan University

January 2000

2

Abstract

This thesis describes the development of the application mapCAST, a computer-based concept
mapping tool that allows synchronous collaboration via TCP/IP networks, such as the Internet. The
useability and feasibility of mapCAST as a computer-based tool was examined and analysed in a real
world situation. Results indicate that mapCAST is successful as a collaborative tool in a situations
involving knowledge organisation, but lacks certain functionality that many Macintosh users are
accustomed to.

Keywords: concept maps, collaboration, Internet

3

Declaration

I certify that this thesis does not, to the best of my knowledge and belief:
• incorporate without acknowledgment any material previously submitted for a degree or diploma

in any institution of higher education;
• contain any material previously published or written by another person except where due

reference is made in the text; or
• contain any defamatory material.

Signed __ ______ _
--cr---�reay, January 2000

4

Acknowledgments

I would like to thank my supervisor, Dr Ron Oliver, for offering helpful suggestions while this thesis
was being developed, and for purchasing the books and software, without which mapCAST would
have not being developed.
Thanks also to Dr Arshad Omari, for answering my technical questions, offering suggestions and
solving my math problems. Never underestimate the power of a high school geometry book.

I must also thank Joe Luca for the loan of his PowerBook G3 during network testing.

Finally, I must acknowledge the REALbasic NUG (Network User Group) mailing list for answering all
technical questions, and being a general knowledge pool for everything related to REALbasic. Mailing
list details are available from the REALbasic web page, http://www.realsoftware.com.

5

Table of Contents

1.0 Introduction ... 8

Research Aims ... 8

What Was Achieved ... 8

1.1 Concept Mapping .. 9

Concept Mapping Theory ... 9

Existing Concept Mapping Applications .. 11

Summary ... 16

2.0 Designing mapCAST .. 18

Major Interface Elements .. 18

Mapping Elements ... 20

Preference Elements ... 23

Network Related Elements ... 24

3.0 Development Cycle .. 26

Pre-Development ... 26

Mapping Module ... 27

Network Module .. 30

Testing .. 35

Problems ... 36

4.0 Testing Methodology ... 38

Original Scope ... 38

Revised Scope .. 38

Purpose ... 38

4.1 Useability Criteria .. 39

Interface Design ... 39

Functionality .. 39

Useability .. 40

4.2 Evaluation Process ... 41

Situation ... 41

Tools Used .. 42

Procedure .. 43

5.0 Results .. 44

Content Results ... 44

Technical Results ... 46

5.1 Analysis ... 49

Influences and Limitations .. 50

6.0 Conclusions ... 52

Future Applications .. 53

References .. 54

6

Appendices ... 56

Appendix A: Definition of Terms ... 56

Appendix B: List of Figures ... 58

Appendix C: Evaluation Form ... 59

Appendix D: mapCAST protocol .. 61

7

1.0 Introduction

The exponential growth of the Internet has allowed new ways of communicating and
collaborating in many areas of society. In particular, educational domains, especially
those involving distance education, have benefited from the different ways in which
material; instruction, collaboration and feedback can now be delivered.
With new and existing Internet technologies facilitating new interactions and flexible
delivery, real-time collaboration with tools such as computer-based concept maps
can now be realised. Concept maps, whether electronic or the traditional 'pen and
paper' type, are visual expressions of one's knowledge. Concepts, or 'ideas', are
connected via relationships to form propositions on the subject matter. The
advantages of electronic concept maps can now be applied in different domains, such
as open learning.

mapCAST, a real-time collaborative concept mapping program, was developed to
facilitate this realisation as an appropriate concept-mapping tool, and to allow the
advantages of electronic concept mapping to be investigated.

Research Aims

The purpose of this study was to develop a functional piece of software, mapCAST,
and to evaluate it as a collaborative tool. This study arose from opportunities
afforded by new and existing technologies to explore network-able, collaborative
concept mapping tools.

Concept maps, and the learning and organisational advantageous they posses, are not
a new idea, nor is using them in collaborative situations. This research was done to
realise the potential advantages that these two ideas can produce, and to explore the
functional requirements needed, through the development of an easy to use network
application for the MacOS. At this stage, a Windows version is not planned.

What was Achieved

The major achievement was developing mapCAST to the stage where it became a
functional Macintosh application, suitable for collaborative concept mapping. Its
success as a functional computer-based tool was determined by testing it in a real
world situation.

8

1.1 Concept Mapping

A review of concept mapping can be divided into two distinct categories. The first
describes concept-mapping theory; followed by a description of some of the existing
computer-based concept map tools and efforts to promote collaboration.

Concept Mapping Theory

Concept maps can be described as a visual expression of one's knowledge, or as
Kremer and Gaines define, "an intuitive visual knowledge representation technique"
(1996, p. 1). The art of concept mapping "is a technique for externalising concepts
and propositions" (Novak & Gowin, 1984, p. 17). Figure 1 shows an example of a
concept map. Maps consist of nodes, the concepts, and are linked by lines, the
relationships, to form propositions and a semantic network. The visual construction
of concept maps can also imply relationships through directional arrows or distance
between concepts (Novak & Gowin, 1984, p. 35).

��

rf 1 ��:�t-__..,
�ve � r, v:iaJ.,.}

/\II.lit

/

Figure 1: A concept map on surfing, using pen and paper

"Learning how to Learn" (1984) is perhaps the seminal text in concept mapping
theory in education. It's authors, Novak and Gowin, are considered prominent
developers of concept maps, relating them to Ausubelian educational theory. This
theory is based on the premise that educating people is influenced by their existing

9

cognitive structure, or what they already know. Novak and Gowin state that concept
map tools can ascertain this as they have "been developed specially to tap into a
learners cognitive structure and to externalise what the learner already knows"
(Novak & Gowin, 1984, p. 40).

Novak and Gowin clarify what a concept map is and what it represents to the creator.
They explain that concept maps are "powerful tools for observing the nuances of
meaning a student holds for the concepts embedded in his or her map" (p. 35) and
that "concept mapping may be a creative activity", when done in groups it can serve
as a useful social function that leads to discussion (p. 17 - 20).

At the time of publication of "Learning how to Learn", the personal computer
industry was at its infancy and it is therefore safe to assume that electronic concept
mapping programs did not exist. Novak and Gowin justify revisions of maps as an
important task, telling educators students must revise and redraw. This is one of the
many advantages of a program like mapCAST, or any other electronic concept map
program; a mundane task for today's application, but one certainly worth doing.
Novak and Gowin:

Concept maps need to be redrawn. The first concept map a person makes is almost certain to

have flaws ... We find that a second map usually shows key relationships more explicitly ... A

secondary important reason for redrawing maps is to clean them up - to make them neater,

corred spelling errors, and reduce clutter or crowding ... [which increases] the meaningfulness

of the composition (1984, pp.35-36).

It is this ability of (relatively) easy revision that makes computer-based concept
mapping less frustrating; "the electronic medium is flexible and forgiving"
(Anderson-Inman & Horney, 1997, p. 1).

The advantages of concept mapping have been discussed in research literature from
the late seventies, through to current studies. Novak and Gowin (1984) and students
understanding of learning materials, as well as tools for evaluation; Anderson-Inman
and Horney (1997) using maps for brainstorming and synthesising information as
pre-writing strategies; Kremer and Gaines (1996), Gaines and Shaw (1995) and the
University of Calgary's Knowledge Science Institute with their research into concept
maps as hypermedia components and collaborative interfaces; Ferry, Hedberg and
Harper (1997) with teachers organizing curriculum; Kennedy and McN aught (1997)
and their use of concept maps for the design of multimedia learning tools.

10

Existing Concept Mapping Applications

Many computer-based concept mapping programs and languages exist. Each has
unique feature sets and different process models for developing concept maps with a
computer. The following reviews these features, and identifies common and desirable
characteristics amongst them that a computer-based concept-mapping tool should
employ to ensure success.

Rautama and Tarhio (1998) discuss "alternate ways to deliver concept maps" (p. 273)
on the Internet via a web browser. They outline a proposed extension to HTML
(HyperText Markup Language) named CMML or Concept Mapping Markup
Language (p. 274). They suggest that CMML could be assimilated into future
specifications of the HTML language to facilitate the sharing of concept maps
without extra plug-ins or programs. CMML would be interpreted and rendered by
the web browser, and being a markup language, could be authored as a text based
language by anyone who understood the syntax (akin to HTML). Although not
entirely interactive, it is certainly an astute suggestion to propose a defining standard
for online concept maps that could easily be integrated into such a popular
application as a web browser. It is this popularity of the 'network' that Rautama and
Tarhio (1998) wish to take advantage of to share concept maps:

Traditionally, it has been difficult to share concept maps with people in distant

locations ... Computers and networks provide us with new methods for

collaboration . . . Computer supported concept mapping makes the editing process of a map

more flexible than the old pen and paper method. (p. 273)

Sung, Chen, Lin & Chang (1998), concur that electronic concept mapping is
advantageous over traditional methods, and based on this, discuss a computer based
concept mapping learning system that was developed. They outline four
disadvantages of conventional methods (p. 692-693):
1. Communication such as feedback and interactions between learners and

instructors is inconvenient. Teachers cannot observe the construction process of
the student and provide suitable feedback.

2. Construction of concept maps, especially those involving many propositions, can
be difficult for students, especially novices.

3. 'Paper and pencil' concept maps are difficult to revise. Students can spend a
majority of their time making the map clear and legible, neglecting the "learning
characteristics [embedded] in the construction of [the] concept map." (Sung,
Chen, Lin & Chang, 1998, p.692).

4. 'Paper and pencil' methods are not efficient for evaluation.

11

Twidale, Rodden and Sommerville (1994) offer some advantages of computer based
concept maps, in their discussion of their program Designers Notepad:
• As a structure builds up, the maps can be arranged, clarifying the emerging

structure.
• Alternative structures can be experimented with quickly and easily.
• Colour and shape may be used as for pen and paper, but can subsequently easily

be changed (p. 109).

Twidale, Rodden and Sommerville in their discussion of Designers Notepad, outline
research that is closer to mapCAST's intentions, namely collaboration, than similar
texts. Again although real-time collaboration between users does not exist, the
application running under a UNIX based system is quite advanced and evidently (as
the paper suggests) easy to use. It implements such features as the ability to attach
notes to each node, with an option to export all notes, and the ability to have sub
designs, ie a node that links to another embedded concept map.

Designers' Notepad was "initially developed to support software design . . . due to
features of the early stages of the software design process that are similar to the
learning activities undertaken in many domains. These features include
brainstorming, planning, organising, the refinement of ideas and the consideration
and selection between alternative options." (1994, p. 107). As such, Twidale, Rodden
and Sommerville explain that the interface of Designers Notepad is an iterative
process, constantly revised to allow the program to be used effectively:

A key difference between the DNP [Designers Notepad] and other design tools (and indeed

other concept mapping tools) is that most other systems have an implicit process model

embedded in them ... the process model may not only vary between users but an individual

user may use different models and variations depending on the problem faced. In cases where

there is a mismatch of models, the tool will not be effective, it will feel awkward to use and is

likely to be abandoned in favour of traditionat more flexible methods. (p. 111)

This embedded implicit process model is exceedingly apparent in SemNet (1993),
another computer based concept-mapping tool. The user is forced into a set process
of creation-naming-relating-organising via dialog boxes that severely limits the quick
creation of concepts as they come to hand, ultimately limiting the intended
advantages of electronic maps (see figure 2). Fisher (as quoted in Twidale, Rodden
and Sommerville, 1994, p. 110), one of the many designers of SemNet states of her
own program that " . . . assigning names to relations, as one is prompted to do in
SemNet, is not a 'natural, cognitive act' -that is, not a natural part of spontaneous
thought processes".

12

Concept Name

jsurnn� Text

Picture

Concept Hes No Synonyms

New Synonym (•) 11 Delete Synonym I I O'ellte
New I

I Next Synonym

D Open To This Concept

Rel11tlon
Is r.;i

'-----�---'i.:!J
Related Concept

j1re11t

D Confirm New Concepts
lit Absorb Dupllcate New Instances

(I

Figure 2: Creating a proposition in SemNet

C.ncel I)
OIC •

• a-eate New 1
(I C.ncel I)

I OIC I

As such, flexibility of the interface for Designers Notepad was a key issue for Twidale,
Rodden and Sommerville, designing it so no specific model was adhered to for
creation and revision of the map:

The aim was to enable the user to focus quickly on the domain issues, to be able to quickly

enter many ideas as these occur and not to have to be concerned initially with the form or

type that the idea should have. This can only occur is she trusts that it will be easy to edit

structures with any refinements that occur to her later. (1994, p.108).

Sung, Chen, Lin and Chang (1998), Reader and Hammond (1994), and Twidale,
Rodden and Sommerville (1994) all agree that computer based concept maps offer
the advantage of relatively easy revision, suggesting that the tools available for
revision must be available and intuitive to the user. Revision leads to (better)
organisation. Organisation leads to structure. Structure leads to clarification and a
greater understanding of the material to be learnt.

Although SemNet does have particular characteristics that some users may find
limiting or frustrating, it has an excellent feature that "provides a continuously
updated quantitative analysis of the knowledge structure being created."(SemNet,
1993). This quantitative data includes, show all concepts alphabetically, by creation
order, by number of instances (relationships}, and many more.

13

Reader & Hammond {1994) have also implemented an electronic concept map used
as a learning tool. Using a custom concept-mapping application developed in
HyperCard, Reader & Hammond examined the effectiveness of concept maps in
learning information from a Hypertext system. Their results suggest that the actual
process of creating a concept map based on recently learnt material from a Hypertext
system helps retain knowledge better than ordinary note taking:

Advocates of concept mapping argue that by encouraging learners to represent their

knowledge using a node-link formalism, learners are forced into activities that aid the

organisation and integration and integration of knowledge, and that the map itself can serve

to communicate the learner's knowledge more effectively than text. (p. 99).

The actual HyperCard program is rather rudimentary (Reader & Hammond, 1994, p.
101), but includes the ability to attach notes to each node, aiding the learning
process.

Perhaps the most popular computer based concept-mapping program is Inspiration
{1998), available for the Windows and Macintosh platforms (see figure 3).
Inspiration, currently at version 5, is quite advanced yet relatively easy to use. Its
popularity comes from many of its more notable, user-friendly features which
include:
• RapidFire™ - when people experience "bouts of creativity" (Twidale, Rodden

and Sommerville, 1994, p. 11 O), RapidFire™ allows the entry of many ideas
quickly, without leaving the keyboard. Ideas are separated by the return key, and
Inspiration automatically creates the graphically nodes.

• Child Windows - like Designers Notepad (Twidale, Rodden and Sommerville,
1994), Inspirations has the ability to create concept maps inside concept maps,
that is, a child concept map attached to a parent node in the main concept map.

• Notes - again, like Designers Notepad, the ability to attach notes to nodes exists.
• Arrange - Inspiration allows the concept map to be arranged to improve

readability. Arranging can include, tree or cluster layouts.
• Node Design - nodes can take on numerous graphical forms, dictated by colour,

font, shape, size, picture and symbols.
• Outline - an excellent feature analogous to the propositions put forth by

Rautama and Tarhio (1998). A concept map can be viewed as a text based
outline, allowing the creation and revision of concepts and their relations. One
click on the diagram button, and the text is converted to the familiar graphical
form.

14

C ooeu1c

� T •

ODO

CDOCJ

0©

ooo
i?O
ii I
II II

��

ilAl
!OJ�

D UltlUedl

CiJ ti o � +!• � � 0 .it j . •
Out&. R,1picFirt 5\tmbol link Cn41tt Crut, Po:rttion Arr�

;!l17777Tlm ,77?77Tm7,,7'717T1"7r?77m,,,,,,- ,,,,,,- , -- , ·�777 ,,,,�r;,-:r,Fr n,T7� ,-,,, -,,,,u,y,;u,

1¢ � \ 0 0 D O I!I • 'J• a

-t- l

�
�

Figure 3: Inspiration too/bar and document window

The Knowledge Science Institute (KSI) at the University of Calgary (Alberta, Canada)

have published several papers discussing collaboration with electronic concept maps,

the web and hypermedia. Kremer and Gaines (1996) (also comparable to Rautama

and Tarhio, 1998), discuss ways to embed concept maps into HTML documents

using a program called Smart Ideas. "Smart Ideas allows one to draw concept maps

using an editor, but every node and link drawn in the map is also represented in an

underlying hyperspace which is potentially shared with other users and other concept

maps." (p. 2). The paper suggests that Kremer had Smart Ideas networked to allow

groups of students on different workstations to collaborate in real-time on the same

"concept map workspace" (p. 2), as is the intention of mapCAST. Unfortunately, I

could not find a downloadable copy of Smart Ideas, as this seems to be the only

existing software congruent to mapCAST.

Smart Ideas also comes in a plug-in flavour, which was developed to run in Netscape

Navigator on the Windows 95 operating system only. Kremer and Gaines (1996, p. 4)

explain that the plug-in would allow the viewing, rearranging and navigating of

Smart Idea concept map documents, giving the user the opportunity to click on

concepts and navigate through the Smart Ideas hypermedia database; a URL or

another Smart Ideas document.

It is interesting to quote Kremer and Gaines (1996), in their discussion of future

work as they (unknowingly) describe mapCAST:

15

It will provide access to all the mapping functions, as well as providing quick access

to common network functions, such as controlling the map. Toolbars are extremely

common in applications nowadays, as they provide quick access through visual

recognition (usually icons) to program functions without traversing through a

hierarchical menu. The toolbar will also implement 'tooltips', which are a visual aid

explaining what the tool is, followed by the keyboard shortcut to the tool (in

brackets). The 'tooltips' usually show up when the mouse has lay to rest over a tool

icon for a period of three seconds.

Move Inspect

Add Node Delete Node

Add Relationship Delete Relationship

Connect Control Connection

Figure 4: The Too/bar, showing a too/tip for the inspect tool

The concept map window is the area where the user will create and manipulate map

documents. This window has no extra functionality, and only one concept map can

be open at a time. Document objects (nodes and relationships) can be moved with

the arrow keys and deleted with the delete key.

The menu bar (figure 5) is designed to be familiar to any level of Macintosh user,

with common commands grouped under each menu heading. These commands are

consistent with the Macintosh Human Interface Guidelines:

• Short description of application and author under the APPLE menu.

• File, printer and application-wide commands under the FILE menu.

• Copy, paste, undo and preferences under the EDIT menu.

• List of windows that can be hidden under the WINDOW menu.

• At this stage, mapCAST does not implement help.

Edit Window Help Window Help
81N

Open_ 810 Cut
Close w

Copy

Save p t

veA 0 a r

Connect 81K Preferences IIE

Page Setup_ 081P

Print.

Quit 81Q

Figure 5: (left to right) the File menu, the Edit menu and the Window menu

19

Mapping Elements

To create a new map, the user selects File> New from the menu bar, which displays

the New Map dialog (figure 6).

Nl!w concept J\Aap

.!) J\Aap Name:

junfflled

i' Size & Olientetlon:

�9:5.S X 841.9 (pok,t,)_21 X 29.7 (cm)

I Cancel IUij

Figure 6: New Map dialog

Here the user can enter a title for the map, select the dimensions from a pull-down

list of common paper sizes, and select the orientation. Although this version of

mapCAST will not support scrolling of the window, the canvas created is the size that

the user selects, and any attempt to re-size the window past the selected dimensions

will result in the window snapping back to its largest size. After selecting the 'OK'

button, a new map window is presented.

The user can create and manipulate concepts and relationships using the tools and

clicking / dragging on the map window. The map window will also support

contextual menus, a context-sensitive menu interface that was introduced in MacOS

8 and accessed by pressing the control key, followed by a mouse button press (in

applications that support it).

U'ldo
Inspect
VlsltlA
Delete

··- "hip'--------,

U'ldo
Arrow@) Stert
Arrow@End
Arrow@) Both
no errows
Inspect
Delete

U'ldo
Delete All
Delete All lleletlonshlps

Figure 7: (left to right) Contextual menus for nodes, relationships, and on nothing

Figure 7 shows all three possible contextual menus and the functionality they will

provide. This functionality is usually quick access to a common task such as the undo

menu item. Contextual menus will be implemented to allow easy and intuitive map

construction and revision as per the design brief.

20

To change a node or relationships appearance, the user 'inspects' the object with the

Inspector tool, which shows the Inspector window (figure 8).

Lolool

I
main Idea

C.loor

Dflll .Text

Figure 8: Inspedor window showing the Appearance tab

The Inspector is a context sensitive, modal window, adjusting to each node or

relationship. Replacing many menu items to change an object, such as used in other

concept mapping applications, the Inspector was designed to provide a singular

window where a user can easily change all of an objects properties via categories

implemented as tabs.

.. tH

c.J Notes ere attached to the nodelreletlonshl p end cen
provide eddltonel I nformetion for the concept. Press the
export now button to save the note, as a text file. The
formet of this text file cen be set In the preferences.

I export I
I Cancel I !I Save I

apperence

URL

Example: httpH..,......-acam.ecu.edu.eu

http:// '--------------'
clld: here to visit the ucl

D This optional url ..,111 be attached to the node/
relationship. The url could link to• html - or picture
on the Internet. You must have a ..-eb brovser and en
internet connection for this 'WOrk.

Figure 9: Inspedor window with notes tab (left), and URL tab showing

The Appearance tab allows the user to change the label, font colour, fill colour, and if

a relationship, the arrow mode. The Notes tab (figure 9) allows the user to add notes

to the object. This feature could serve many purposes, but it's intention is to be used

for further describing the concept, and making the concept more meaningful not

only to the user when revising, but other collaborators who encounter it for the first

time. These notes can be exported to a text file by pressing the 'export' button. The

URL tab (figure 9) allows the attachment of a URL to the object. Again, this feature

makes the construction and revision process more intuitive and meaningful, by

21

providing the option of a internet URL link that could relate or further explain the

concept or relationship.

If either notes or a URL are attached to a concept, mapCAST indicates this to the

user by providing a visual cue in the form of icons in the top right corner; a page icon

for notes, and the ampersand symbol for a URL (figure 10).

main

idea

Figure 10: A node indicating attached notes and URL

During a collaborative session, users that do not have control cannot alter the map

but may wish to inspect the concepts and relationships to examine their respective

notes or URL. The Passive Inspector (figure 11) was designed to facilitate this, giving

an overview of the objects label, its URL with an option to visit the hyperlink, and its

notes with the opportunity to export them.

Passive Inspector

Lo NI: Edith C....en University

UAL: .ICY edU IU

.. tn: Edith eo ... ,n University ls loceted In Perth, � W9$tern Austral le.

Note: To chlnoo these details you must hive control of the
mep (press the 'Control Connection' button on the toolber)

ij Cose I

Figure 11: Passive Inspector window

To take control of the map, the user presses the 'Control Connection' button on the

toolbar, which brings up a window showing network-related functions (figure 12).

To control the map, the user presses the 'control' button. To disconnect from the

host, or to stop hosting, the user presses the 'disconnect' button.

22

control map

disconnect

Al lo'vls you to control and

alter the map.

Disconnect from the host
OR stop hosting.

Figure 12: 'Control Connection' button window, accessible from Toolbar

Preference Elements

To increase overall accessibility, the preferences window will allow the user to

customise mapCAST, especially that related to the network ability of the application.

Each preference item has a short description.

t, INotlty:

.,.t .. _, L..1 b_
rott ______ __,

Tho neme lhol I• ,tiwn In tho Net,tatu, "''ndo'w

lcoo: �

Tho plclure lhol I• ,tiwn next lo your NickNeme

I Cancel I n Save I

· Notvert o,uou:

Pert: l.__2000 ___ __,
The port number used to connect or host on

@Son,or ""-
An optional me,aaoe shcrwn to n8'w' connections

!
Hello, and ,,,.,come lo mepe.,11

§
The number of si multeneous connection, el I wed

I cancel I n Save H

Figure 13: Preferences window with General tab (left) and Network tab showing

The General tab (figure 13) allows the setting of the users identity and icon. This

information shows up in the users list in the NetStatus window, when connected.

The Network tab (figure 13) allows the setting of the port used when in client or host

mode. It allows an optional message to be shown when new users connect, and allows

the user to set the amount of simultaneous connections when in host mode.

23

<f� Ploy SHoa for:

lii!Cootrollor Cu-

Click the check boxes to here ,ounds

I Cancel I ij Save I

Preferences

/Genmi\�/souncis\/ottier\
l) Ex,ort llotoo o,u ... :

FIio Ty,o: I Microsoft Word 95/98

Exported no tes will beseved ln this filetype

I Cancel I [I

Figure 14: Preferences window with Sounds tab (left) and Other tab showing

--

;I

Save �

The Sounds tab (figure 14) allows the user to hear audible cues when certain events

occur while connected. These events include a user logging in, a user logging out,

controller change, a map change and new message arrival. The Other tab (figure 14)

allows the user to select the type of file saved when notes are exported via the

Inspector window. The pull-down menu contains three popular application types to

export to, including SimpleText, BBEdit, and Microsoft Word.

Network Related Elements

The design brief outlines a real-time messaging system and the ability to show the

network status at any given time. The NetStatus window will facilitate this. When

connected, the NetStatus window (figure 15) is designed to provide the user with

visual feedback on the current network status of the application and the map.

a

Stotn:
��-----�� Connected to hos t•

I
' �':�1wer �

1.1.1.l

r1-coo-tn:

�------�� 193:sthen 1 minute

I>-

l!!I a llotstota

Stain:
�------� Connected to host• brett 1.1.1.1

CeaNCt_. UNra:

ron oliver
TI-CHoectn:

�------� O mlnutea

v-

brett this Is gree t I

Figure 15: The NetStatus window (left), and the window expanded

l!!I

This concentration of all network related information in one window will simplify

the task for the user to get network status and execute network functions such as

instant messaging. The NetStatus window will provide:

• A user list displaying whom is currently collaborating on the map.

24

• A messaging system, allowing messages to be sent and received.

• A timer, showing the time connected to the network.

• The IP address of the host if in client mode, or if in host mode, the port on which

the server is using for incoming connections.

To start hosting a map, the user must have a map open. If no map is open, the user is

informed (figure 16). All errors and messages will be displayed to the user using the

same dialog arrangement consisting of an icon, main message, explanation text, and

an OK button. Again, this design conforms to the Macintosh User Interface

Guidelines

No mop open.

A mop must be open before you cen start hostl 119. Craete •
ne'w' map, or open an existino map, then try 1991n.

ij OK I

Figure 16: 'No map open' dialog

If a map is currently opened, the Connect window is shown (figure 17).

__ -eonnect

� IPMllr-: 1.1.1.1
Hostl 119 e map all others to connect to you and
colleborate on• concept mop. People ... 1shl119 to
connect must kno'w' your IP addr8".

� l�•nto_r_lP_ ... __ �

To Join a map and start col leborati AQ, enter the IP
addr,.. of the host and pr,.. the Join button. The
map ... 111 be do'wnloadecl to your computer.

Cancel

Figure 17: Connect window

From here, the user can start the hosting session by pressing the 'Host' button.

The IP address field is populated with the computers network address. Clients

wishing to connect to this host must enter this address into their 'Join' text-box and

press the 'Join' button.

25

3.0 Development Cycle

The development cycle of mapCAST occurred in three major stages:

• The mapping module, where the code is created to draw, revise, store, and

retrieve concept maps. The interface was also designed and the mapping tools

were developed.

• The communication module, where the code is created to join and host a

concept map, as well as form and send, receive and parse, all network data.

• Testing, which was an iterative process, occurring throughout the development

cycle.

Pre-Development

Before development commenced, a suitable development environment had to be

found. This period coincided with the release of version 7 ofMacromedia Director.

Director looked promising as I have an extensive background in using Director, and

the release of version 7 brought new functionality, including the Director multi-user

server. Unfortunately, feasibility tests proved programming this type of application in

Director to be difficult, if not impossible.

REALbasic was the alternative. REALbasic is a MacOS application for designing and

programming applications, with an emphasis on visual 'drag-and-drop' GUI

(Graphical User Interface) elements. "REALbasic's programming language is an

object-oriented version of the BASIC programming language .. .It was originally

designed to be used for teaching programming" ("REALbasic", 1999).

REALbasic was eventually chosen for several reasons, which the REALbasic manual

("REALbasic", 1999) outlines as some of its key features:

• Includes an object-oriented implementation of the BASIC language with

automatic garbage collection. Garbage collection is a programming term

describing the 'cleaning up' of objects in memory once they are no longer used or

referenced. Garbage collection is performed to save memory space.

Programming manual garbage collection into an application is generally

considered a laborious task. Java is another programming language where

garbage collection is performed automatically at runtime.

• Has high level support for GUI elements, such as windows and buttons

• Development is native on the PowerPC; meaning that REALbasic was written to

take advantage of the Power PC processor speed and does not include legacy code

written to support 68k processors. A 68k version is available.

26

• Ability to build stand-alone applications for either 68k, PowerPC or both

(known as a Fat application) and Windows 95/98/NT.

• Is multi-threading, meaning that the application can be written to perform

several tasks at once. An example of this is the ability to copy files in MacOS 8

(one thread) and empty the trash (another thread) simultaneously.

Despite being relatively new, REALbasic has an established developer base. This is

evident through numerous web pages dedicated to developing applications in

REALbasic, most notably the REALbasic developer ring

(http://www.webring.org/cgi-bin/webring?ring=xbasic;list), and the Hotline site,

cafe.realbasic.com. These resources contain reusable classes and code that can be

incorporated into existing and developing applications.

Mapping Module

The initial coding of mapCAST centred on the need to nodes (or concepts) and

relationships, followed by how to store the map both internally, and externally as a

file.

Development began with a basic interface, which consisted of a toolbar with tools,

and a map window, followed by experiments with adding, deleting, and

manipulation of objects in the map window. The map window contains a REALbasic

control called a Canvas. A Canvas is a rectangle area that allows the display of images,

has methods that allow drawing down to pixel level, and receives all mouse events.

The basic design behind the mapCAST mapping module revolves around this

Canvas, and several other classes (some programming knowledge may be needed to

understand the following). The super-class is called genericDragObject, and contains

all the code needed to draw objects (such as nodes and relationships) on the Canvas.

Two sub-classes also exist, node and relationship, whose super (or parent) is the

genericDragObject class. The area where all the map data is stored is an array, which is

of type genericDragObject.

When a user adds a node, for example, by pressing the mouse on the Canvas while

the 'add node' tool is selected, the following occurs:

• The Canvas receives the mouseDown event, at an X and Y location. The X, and Y

location (see figure 18) is a graphics coordinate system based on pixel's;

• The mouseDown event passes the X and Y location onto a local method called

AddNode;

27

• AddNode appends a new node object to the map window's genericDragObject

array. The node object has many properties such as label, colour, width and

height. Upon instantiation, the new node object requires the X and Y location

(which the AddNode method provides), so it knows where to draw itself;

• Once the new node object has been appended to the genericDragObject array, the

canvas has to refresh itself so it shows the new node on screen. This is simply a

matter of looping through the array and telling each genericDragObject (whether

a node or relationship) to draw itself on the Canvas.

(9, 7
)

Figure 18: The window X, Y coordinate system

The node identifies itself as a node by is kind property. Based on this property, the

genericDragObject will draw either a rectangle (for a node), or a line with arrows (for

a relationship). At this stage, the genericDragObject class only contains code to draw

rectangular nodes. Theoretically, given the X and Y coordinates, and the width and

height properties of a node, the code could be modified to draw any number of

shapes (including polygons). The difficult part is to program the geometry required

to draw these objects, and to get these objects to report where they are relative to the

mouse. As an example, figure 19 shows how a relationship reports to the user that it

was selected.

28

D--------------�------------t y
)

I '
I ' d I '

I ',

,' ,,c
I ',

To calculate the distance from the mouse click (x, y)
to the relationship line (distance d):

',,,,,.
D

d=c* (sin(acos((b2 +c2)-{a2 +(2 *b * c)))))

Figure 19: Geometry required to calculate object locations based on mouse click coordinates

To reiterate, the genericDragObject array contains information (proprieties) from

objects that describe where they are, what they are, and what they look like. Based on

this, the canvas can loop through the array, extract these properties, and draw the

objects on screen for the user to see.

The next step was developing a method for saving this genericDragObject data

externally as a file on disk.

my concept map

%NewObjDef%
1, 1,35, 13,60,50,0x0x0, 160x200x255, 1,
%0bjStringDef%main idea%ObjStrin9Def%this is
the main idea, from here you can expand on the
idea%0bjStringDef%
%NewObjDef%
1,2, 197,200,60,50,0xOxO, 160x200x255, 1,
%0bjStringDef%untitled2%0bjStringDef%%0bjStri
ngDef%
%NewObjDef%

2,3,4,T, 1,2, 127x0x0, 127x114x0,
%ObjStringDef%untitled%ObjStrin9Def%%ObjStrin
0Def%

Figure 20: Map file showing how data is stored on disk

When a user saves the file to disk, mapCAST goes through the genericDragObject

array, extracting all the objects properties. With this data, it creates a string and

writes it all to a text file (figure 20). The text file is delimited by special tokens. When

mapCAST reads in the text file, the objects and their associated property values are

delineated by the tokens.

29

Once the internal and external structure of map objects was designed, the interface

was finished to provide visual tools for the user to interact with the tools written in

code to create and manipulate the concept map. Being conscious of the networking

side of mapCAST, the network interface was also built simultaneously.

Network Module

The application mapCAST is a stand-alone application with the ability to have

several people collaborate on the same concept map in which each participant can be

in different geological locations. A network (including the Internet) is used as a

backbone to facilitate the transfer of information about the concept map, its current

state and the people collaborating.

Typically, an application that involves the transmission of data over a network is

achieved via a classic client/server set-up (figure 21). In this model, a client

application connects to a server - an application dedicated to nothing more than

hosting all clients that connect to it - using an agreed protocol to redirect and provide

information such as HTML or email. Although a server can, through extensions,

interface with other sources such as a database, it usually provides no other

functionality.

Figure 21: Typical client/server setup

Collaboration of a concept map via several mapCAST clients does not involve a

dedicated server as such. Instead, a client can host a map, allowing others to connect,

eliminating the need for a dedicated server. That is to say, the mapCAST application

can function in both a client and server capacity.

30

The networking side of mapCAST was both easy and hard to program. Easy, because

the data to send was mainly small string chunks describing a change in the map. It

was also hard because mapCAST can act as both a client and a server, so many of the

methods in code must accommodate the application in either mode.

To demonstrate the complexity of this, one must understand the notion of'control'

in mapCAST. Only one person, or collaborator, can make changes to the map at one

time. This person is known as the Controller. The Controller can change add, delete,

move concepts and change concept/relationship information. All other collaborators

can only watch their maps be updated, and request control if they wish to change the

map.

To code this type of set-up, the following must be done. For example, if a map

change occurs ...

• ... and I am a client and in control, I must update my map, then send the map

change data to the server.

• ... and I am a client but not in control, then I will receive the map change data. I

must parse this data, and change my map accordingly.

• ... and I am a server and in control, then I must update my map, then send the

map change data to all connected clients.

• ... and I am a server but not in control, then I will receive the map change data. I

must send this data to all connected clients, except the client who sent it, then

parse the data and change my map accordingly.

These scenarios are demonstrated in figure 22. dient A, is in control and makes a

node movement, updating its map first then sending the data to the server, Host B.

Host B, who is the server and hosting the map received the information and sends it

to all connected clients (except the sender, Client A), then updates its own map. The

other clients (Clients C and D), receive and parse the data, then update their maps.

31

Client A
(controlling)

I Host B I Client C I

�---'9

Client D

Figure 22: Data Flow in mapCAST

In server (host) mode, mapCAST initially contains an empty array of client sockets

bound to a single port. When the user starts to host a map, a new socket is appended

to the array. This new socket proceeds to listen on the specified port for a new client

connection. When the socket receives a new connection, it again appends a new

socket to the array to listen for the next client connection (see figure 23).

Incoming / Outgoing Data

Port 2000

t t

r------- -------------- -------------

I

I

I

I

I

I

I

I

I

I

Client
Socket 1

Client
Socket 2

Client
Socket 3
(listening)

Client Socket Array

Figure 23: mapCAST server client socket structure

In client mode, a socket is created and attempts to connect to the server entered by

the user, on the specified port. The default port for mapCAST is 2000.

To enable mapCAST to function as a network-able application, a custom protocol

had to be developed. This protocol (see appendix D) allows the mapCAST

32

application to communicate with other mapCAST applications across a TCP/IP

network {like the Internet), and allow the exchange of concept map data. The

protocol is extremely lightweight, sending minimal amounts of data. This reduces the

possible network overhead that can occur when sending large amounts of data, the

outcome of which is the slow updating of each connected clients map as they wait for

the modified map data. With the exception of initially sending the whole map to new

clients, data sent and received is under 500 bytes.

The protocol is based on headers. Each message sent to and from mapCAST contains

a header. A header is a unit of information that precedes the data sent, so an

application knows what the data is, and what to do with it. Many protocols are based

on headers. The Simple Mail Transfer Protocol (SMTP) uses a combination of letters

and numbers for headers to describe the data. For example, when a SMTP client

connects to a SMTP server to send email, the following occurs:

• Client connects to server

• The server replies with a 2 2 o command;

• The client sends the EHLO command, proceeded by its IP address;

• The server replies with a series of 2 so commands;

• The client sends the RSET command;

• The server replies with a 250 command;

• The client sends the MAIL FROM: command, proceeded by its email address;

• The server replies with a 2 so command;

• And so on (Neuberg, 1999, p.579).

This communication between the client and server is an alternating dialogue, and

very similar to the protocol that mapCAST employs, in that the client issues a

command and the server responds with a reply. The major difference is that the

mapCAST protocol uses all numeric headers.

The syntax for the mapCAST protocol is as follows:

where:

Header I I datal I data2 I data3 ... I I I

I I = ASCII Character 12 - Header/data delimiter

ASCII Character 14 - Internal data delimiter

33

...

I I I ASCII Character 11 - End of data

An example, the structure of a client sending its login data:

000 11 Nickname I iconID I I I

The following outlines the sequence of communication between a mapCAST

application in client mode connecting to a mapCAST application hosting a map:

• Client connects to server (the host map);

• Server checks allowed connections. If the server is full, it sends the o o o

command, and closes the socket. Otherwise it allows the connection, and opens a

new socket for the next connection;

• If the client does not receive the o o o command from the server, it sends its login

data via the 000 command, proceed by its nickname, and icon number;

000 I I brett I 5 I I I

• Server receives login data, and asks the client if its ready to receive the map by

sending the 2 o o command proceeded by the length of the map in bytes;

200 11 16557s 111

• Client receives the 'ready for map' command, and if all is ok, returns 'ready to

receive' by sending the 2 o o command;

200 11 111

• Server receives the go-ahead to send the map, and does so by returning the 2 o 1

command, proceeded by the map title, followed by the map data (a string);

201 I I untitled map I <map data> I I I

• Client receives the map data, and returns the 2 o 1 command indicating that the

map was received ok.

201 11 111

34

• The server receives the ok, and sends a series of commands. If enabled, the server

message (o o 1, proceeded by message);

001 11 Welcome to my Server! I I I

• It then sends the connected user list (002, proceeded by nickname, followed by

icon number, and followed by a unique user ID assigned by the server);

002 I I Ron Oliver

002 11 Arshad Omari

002 I I Brett Greay

I s

I 4

I 4

1 11 I

2 111

3 111

• Finally it tells new client that it does not have control of the map (2 o 2,

proceeded by 'false').

202 11 F 111

Once a client has connected to a server, the majority of data sent and received is that

describing changes to the concept map. For example, the sequence of events when a

user in control moves a concept node:

• User moves node;

• mapCAST will update its own map first;

• mapCAST checks ifit is connected, and ifit has control;

• If it has, it passes the moved node as a parameter to a local method;

• As each node (and indeed all objects) has a unique ID, this local method extracts

the ID, and its new location defined by an X and Y coordinate relative to the

concept map window;

• With this extracted information, the method forms the command string to send

as defined by the mapCAST protocol. In this case, the 2 so command:

250 I I objectID I newX I newY I I I

• The method then checks if it is a client or host mode. If it is a client it sends the

command to the host. If is a host, it loops through the array of client sockets and

sends the command to each.

Testing

Testing was an iterative process throughout development, coinciding with every

compiled alpha version, which usually occurred fortnightly. Because of time

35

concerns, all testing was done by myself. This made it easier to debug and fix

anomalies, as there was no time overhead waiting for beta testers to report bugs. This

situation is not entirely desirable, as many minor bugs were discovered during the

examination of mapCAST. The purpose of this in-house testing was to discover bugs

in the map and network components and to make sure all tools and functions were

executing correctly before placing the software in the hands of the evaluators.

Testing the map component was a relatively easy process. The most difficult part to

test was the networking side of mapCAST. As there was no immediate access to a hub

(or several computers to plug into it), a virtual network was created by connecting

the primary development machine, a Power Macintosh 9600, to a PowerBook G3

laptop, via their ethemet cards, using a 'crossed' ethemet cable. By assigning each

computer their own unique IP address, they will happily communicate.

When a new alpha compile needed testing, the newly compiled application was

copied to the laptop via AppleTalk, opened, and a hosting session with a new blank

map was started. The application on the development computer was then opened,

upon which a connection to the host application on the laptop was established.

Performing network related activities, such as joining a host and modifying a map,

OTSession Watcher was used to examine the data that mapCAST was sending and

receiving, both as a client and server. OTSessionWatcher is an extremely helpful

piece of software when debugging network applications. Created by Stairways

Software (http://www.stairways.com), it displays the data transmitted through Open

Transport TCP streams, and allows examination of the data and size of packets both

sent and received.

Problems

It should be noted that mapCAST was compiled using a beta version ofREALbasic

(version 2. 1 al 7). It was necessary to use this pre-release version because of the extra

functionality provided than the last official release (which is 2.02). This, of course,

had a negative impact on the development cycle, as with any use of beta software.

Sometimes, it is particularly hard to distinguish whether an error or crash was

because of my programming or bugs in REALbasic.

A socket bug (which is well documented in the REALbasic Developers mailing list, as

are pleas for its correction) was introduced in the early beta versions of version 2.1.

This is a particularly annoying bug as it only exists in the IDE (Integrated

Development Environment), but compiled applications seem to work. Sockets

require OpenTransport, which is the MacOS' networking software. OpenTransport

36

reports errors to any socket that implements it. The socket bug made OpenTransport

report error code '100', meaning "OpenTransport not installed', when in fact it was.

This only happened while mapCAST was running in the IDE and the work around

was to re-compile the application each time ANY change was made to the network

module of mapCAST.

Once mapCAST was nearing completion, NilObjectException errors began to appear

in my compiled application. Put simply, a NilObjectException occurs when an

attempt is made to access an object (in this case a graphics object), that does not

exist. If not handled correctly, a NilObjectException, or any exception for that matter,

will quit your application or worse case crash the system. The reason for this error

was because of a gross underestimation for the overall memory requirements of

mapCAST:

• mapCAST creates and manipulates 16bit graphic objects that require more than

the 'usual' amount of memory.

• mapCAST can be a client, or server. The mapCAST application in server mode

requires more memory because it accepts and redirects network traffic for all

connected clients and itself.

The original requirements for mapCAST was a minimum of 2040k of memory, with

a preferred allocation of 5000k (5MB). This was too low, and NilObjectException's

occurred because the application did not have enough memory to create the graphics

object used to draw the concept map. Presently, mapCAST runs comfortably with a

minimum of 6500k of memory, and a preferred allocation of 12500k (12.5MB).

Late in the development cycle, 'REALbasic, the Definitive Guide' by Matt Neuberg,

was released. This book received rave reviews on the developers mailing list, some

referring to it as 'the bible'. Because REALbasic is a relatively new programming

environment, this is the only book available (besides the REALbasic user guides), that

describes how to program in REALbasic, with all its good and bad facets.

Unfortunately, this book was only available in early November. It quickly became a

valuable resource. So valuable in fact, that a majority of the mapCAST code was re

written using new techniques and knowledge gained from the book. In retrospect this

was good because mapCAST became much leaner and optimised. By the same token,

it was also bad simply because it occurred so late in the development cycle, adding

one to two weeks to the overall development time.

37

4.0 Testing Methodology

Original Scope

The original scope detailed a course of analysis that would gather data from two

distinct groups, each group appropriate for the data gathered. For technical data, or

useability, a small, local multimedia company called iHealth was to be used. For

content data, or functionality, staff from the School of Communications and

Multimedia at Edith Cowan University was planned. Both groups would be set a task

appropriate to their group type, upon which observation would occur, concluding

with an interview to discuss mapCAST success as a collaborative tool.

As the end of the year grew closer, it became increasing apparent that a reduction in

scope due to time restraints would be necessary. These restraints arose from the fact

that mapCAST was not a stage where it was developed and stable enough to put into

a testing situation. This is elaborated more in the Design Brief (section 2).

Revised Scope

The final developmental stage of mapCAST (alpha 9) represented a program where

every feature worked, and few bugs were present that would hamper normal

operation (although many minor bugs would become apparent in testing - see

Results, section 4).

This stage coincided with a contractual stage in the company iHealth, which

presented itself as a perfect situation to test mapCAST as a collaborative tool. Whilst

development of mapCAST concluded, iHealth had begun work on a recently

acquired contract. As I was involved in the process of designing the overall product

to be developed and what was required, I forwarded the suggestion to use mapCAST

as a tool to aid this initial conceptual process. This real world-task replaced the

original two-group approach, and provided both technical and content data.

Purpose

The purpose of testing was not to discover bugs, but rather to evaluate mapCAST as a

collaborative computer based tool by examining the useability criteria which

embodies three major elements; interface design, functionality and useability.

38

4.1 Useability Criteria

The criteria for investigating the useability of mapCAST as a functional computer

based tool can be described in three areas:

1. Interface Design

2. Functionality

3. Useability

Interface Design

Interface design governs the way the user interacts with the application, and the

associated comfort of use. Testing the success of the interface design involved the

following elements:

• Intuitive Icons - are the icons intuitive in their design, and easily recognisable in

the function they served?

• Network Management Tools - is connecting to the Internet to join or host a

map, controlling, and disconnecting, a simple task?

• Collaborative Status and Feedback - does the interface provide acceptable levels

of audible and visual feedback, as to the current status of the map and those

collaborating?

• Communication Controls - is it easy to send a message?

• Menu Design - are the menus intuitively designed and adhered to the Macintosh

Human Interface Guideline?

• Toolbar Palette Design - is the Tools palette intuitively designed, allowing access

to the most used and critical functions of the program?

• NetStatus Palette Design - is the NetStatus palette intuitively designed, allowing

easy communication?

• Inspector Palette Design - is the Inspector intuitively designed allowing easy

revision of nodes and relationships?

Functionality

Functionality refers to the scope of what mapCAST is designed to do. Analysing the

functionality of mapCAST involves examining the following items:

• Creating Documents - how well does mapCAST support document creation?

• Opening and Saving Documents - how good is the ability to open and save

documents?

• Map Creation Tools - are there sufficient tools to create a concept map?

• Map Revision Tools - are there sufficient tools to edit a concept map?

39

• Network Settings and Connection Management - how well does mapCAST

implement the ability to configure the server, connect, disconnect and control a

concept map?

• Collaboration - how good is the ability and scope of collaboration?

• Communication between Clients - how good is the ability and scope of

communication tools available?

• Printing - how well is printing supported in mapCAST?

Useability

Useability refers to the adequacy of mapCAST to be used for its design purpose, in

this case, collaborative concept mapping. Analysing the useability of mapCAST

involves examining the following items:

• Speed of mapCAST - does the program function quickly enough to create

concept maps (ie. quick screen redraw)?

• Network Speed - does mapCAST implement an efficient protocol that allows

'feasible' collaboration between clients (ie not constantly waiting for map to

update)?

• Ease of Concept Mapping - does mapCAST generally allow easy creation and

editing of concept maps?

• Reliability - does the program suffer from bugs or crashes that prevent normal

use of the program?

40

4.2 Evaluation Process

Situation

There were three participants involved in the testing of mapCAST, this being

sufficient enough to test mapCAST in a network situation. The minimum

requirements to test mapCAST would involve two or more computers, and at least

one participant on each computer to collaborate on the same map.

All participants were employees of the multimedia company iHealth, and were

present in an office area housing a small LAN (Local Area Network). The LAN

currently accommodates three computers and a network printer. Two computers

connected via the LAN were used:

1. Participant one used a Power Macintosh 7600 / 225mhz (released 1997), 172 MB

RAM, with a 17 inch monitor

2. Participants two and three used a Power Macintosh 6100/66 (released 1995), 40

MB RAM, with a 14 inch monitor.

Participants one, and the group consisting of participants two and three, were not

able to visually nor verbally communicate as the two computers were in separate

rooms.

All participants had not seen or used mapCAST before, but had had experiences with

traditional 'pen and paper' concept maps, and limited usage of electronic concept

mapping software. According to participants, 'pen and paper' concept mapping was

typically used during the design phase of a project, to flesh-out the major ideas. Each

participant also had 8 or more year's experience with Macintosh computers and the

MacOS.

The task involved a project at iHealth that was in its infancy, the design stage. It

involves the development of a CD-ROM intending to teach medical student's about

haematology, the study of red blood cells. The participants, and myself, discussed and

agreed to map out the overall requirements and initial screen designs intended for

the final product. As this was not the first time the product had been discussed, all

participants had prior knowledge of the subject matter.

This situation is a real-world process, strengthening the validity of the data gathered.

Testing mapCAST in a company setting returned reliable data that determined its

success. As the company develops multimedia with new technologies, they deal with

41

ideas and concept creation usually within a group situation on a daily basis.

Therefore, they were able to accurately represent and evaluate mapCAST in both

technical and content areas.

Tools Used

Three tools and techniques were used during testing:

1. Evaluation forms.

2. Observation.

3. Discussions.

The evaluation forms (see appendix C) implement a Likert scale, used to gauge user

attitudes towards mapCAST. Evaluation methods using the Likert scale provided

summative data, where reviewers measure the concept of interest for each statement

by indicating on a scale. The Likert method was used because it provided the best and

most accommodating platform to gather data for groups of related statements about

mapCAST. Likert evaluation forms are also effective and easy to use, and provided

useable data despite the small size of the testing group.

The statements were designed to gather useability data, and were broken up into

three categories: interface design, functionality and useability (see section 3.1 for

more details). Each category contained numerous statements relating to the section

heading, where participants would record their sentiments by marking the scale,

rated 'poor', 'average', and 'excellent'. In relation to a specific statement or overall

category, a 'poor' result indicated that mapCAST did not achieve its goal, an 'average'

result indicated a satisfactory level, with needed improvement, and an 'excellent'

result indicated that mapCAST achieved its goal, and was designed or performed to

the evaluators liking. Space was also provided for participants to document any other

opinions or comments in each category.

Observations took place during the course of the testing session. Spending equal

times with participant one, and the group consisting of participants two and three,

observation was unobtrusive and transparent, as not to disturb the user. Observation

provided notes as to the user interacted with mapCAST and its user interface.

Before the commencement of testing, and at the conclusion, informal and semi

structured group discussions took place. Providing a more relaxed atmosphere in

which to gather data, these discussions provided the participants' general feeling

about mapCAST as a computer-based tool, and any other salient points. The

discussions were also an opportunity to discuss the task at hand.

42

Procedure

As with any new software, a learning curve ensures. Before testing began, the group

was exposed to the underlying concepts behind mapCAST to increase the curve

somewhat. The group was not 'walked through' each feature of the program as this

could influence and possibly undermine the study. What was briefly discussed was

the concept of how a mapCAST client can host a map, and how others can join and

collaborate.

Once discussions had concluded and the task was mutually agreed upon, each of the

participants went to their respective computers on the network and testing began. A

period of playing with the software started off the session, with users feeling out the

software and familiarising themselves with the user interface and available tools. This

lasted for around ten minutes.

Participant one then began to host a new blank map, and participants two and three

connected. Collaboration then began on the map, with control alternating between

each participant in building, organising and revising the concepts and relationships

on the agreed upon task. This alternating control was subsidised with instant

messages usually seeking comments or approval from the collaborators. All

communication between the participants during testing was through this messaging

system provided by mapCAST.

The testing session lasted for approximately forty minutes, during which each

participant contributed to the map while simultaneously completing the useability

form and documenting any comments they felt were important. Equal times were

spent at each of the two computers involved, observing and taking notes, especially

noting comments spoken by participants.

Once the map was a stage where all collaborators were satisfied, the map was saved to

a network drive, printed, and the participants regrouped for final discussions.

43

5.0 Results

The results are best separated and described under content and technical headings.

These areas were chosen to actively describe the areas of mapCAST that were being

tested. Content deals with the tools and the software's ability to function for its

purpose. Technical data refers to how well the software was programmed, ie. does it

do what its supposed to do.

Content Results

The testing session began with the participants offering their definition of a concept

map. All three participants acknowledged that they had always referred to them as

mind maps, but understood that concept maps and mind maps are essentially similar

in both design, and the advantages they each offer.

D

Figure 24: State of concept map after testing concluded

Figure 24 shows the state of the map when testing concluded. The following are

average results for each category, rated either poor, below average, average, above

average or excellent:

Interface Design

• Intuitive icons: above average.

• Network management controls: above average.

44

• Collaborative status and feedback: above average.

• Communication controls: above average.

• Menu Design: above average.

• Toolbar design: above average.

• NetStatus Design: average.

• Inspector Design: excellent.

Mean: above average.

Functionality

• Creating documents: excellent.

• Opening and saving documents: excellent.

• Map creation tools: average.

• Map revision and editing tools: average.

• Network settings and connection management: excellent.

• Collaboration: above average.

• Ease of communication between clients: above average.

• Printing: excellent.

Mean: above average.

Useability

• Speed of Program: excellent.

• Network speed: excellent.

• Ease of concept mapping: above average.

• Reliability: above average.

Mean: above average to excellent.

Comments included "[the interface] was minimalist but appealing", "tooltips and

keyboard shortcuts where a great idea", " [network management] seemed very

straight forward". Further review of the comments led to the following list of

requested changes to the current functionality and interface design:

• A revised NetStatus window. Requested changes include a messaging system

where the type-in area was much larger, and messages received were better

labelled as to who sent them (either by the use of colour or bold type). The user

list should also indicate the controller by having their name in bold type.

• Revised Inspector window, becoming a non-modal, global floating palette (much

like the toolbar) that automatically updates and allows changes whenever an

object is clicked.

• Modifiable text, including size, font and style.

• Spell checker.

45

• Alignment buttons

• The ability to select and drag more than one object at a time.

• A MacDraw like interface for manipulating objects, where objects have 'handles'

on each side and corner for resizing.

• Double clicking objects to change text.

Observation notes showed the reasons for many of these requested changes. The

participants expected 'standard' interface elements and functionality, present in

many Macintosh applications, to be in mapCAST. What can be considered standard?

A majority of applications that manipulate objects, like Adobe Illustrator, have

minimum interface functionality. These include:

• Initiating object modification by double clicking.

• Copying and pasting objects.

• Selecting multiple objects.

• Changing the layer order of objects.

Most notably, all three participants struggled with constantly changing from the

Move tool to the Inspector tool, to move and modify objects. They expected

doubling clicking the object would initiate some change in the object (like showing

the Inspector window). Similarly, observation uncovered users attempting other

'standard' functions such as copying and pasting objects, and selecting multiple

objects at one time, both of which were not present in this version of mapCAST, and

caused noticeable frustration in the participants. Contextual menus were not obvious

at first, but were used extensively once discovered. However, participants still

struggled with changing from tool to tool to perform simple tasks such as adding a

concept node, then moving it.

Another notable observation occurred when moving from the first computer to the

second computer used in the test. The group of participants two and three had

extended the map window to full screen on their computer, while participant one's

map window was much smaller, yet still showed the entire map. Confusion could

occur if one collaborator placed a node at a location that was not visible on the other

collaborators screen.

Technical Results

Technical results were obtained from all three categories, but focused mainly on the

useability results. Overall, these results were above average to excellent, indicating

that, technically, mapCAST was programmed at a level where the bugs or errors that

did occur, did not hinder the expected useability and functionality of the

46

participants. This given that it is an alpha version of the application, using a beta

version of REALbasic to compile it.

All participants reported that the application had excellent overall useability and

stability. The speed of the program was classed as excellent. Processor intensive tasks

such as screen redraw while resizing objects performed acceptably on the older

machine that was used, the Power Macintosh 6100 (which was somewhat surprising).

The network speed and reliability was also excellent, with one participant saying that

the network implementation in mapCAST was "flawless". A major influence on this

network speed and reliability was the fact that the test occurred on a small LAN. No

other network activity occurred during testing, hence almost instantaneous map

updates between the two computers. However, the favourable network speeds of

mapCAST are attestation to the existing TCP/IP protocol accommodating the

mapCAST protocol and its small overhead in transmitting data so well. Further

testing of the network speed of mapCAST could involve more clients connected to

the LAN, to testing it on a wider network with more network traffic, such as the

Internet (ie. different collaborators in different continents).

All participants found the general reliability of mapCAST to be above average,

representing the alpha stage of the program where full functionality is hindered by

minor flaws. The application did not crash during testing, but bugs were discovered.

According to participant comments, the bugs did not hamper the normal use of the

program, but were "minor annoyances".

The following list describes bugs, both code and cosmetic related, that were

discovered during testing:

• The delete key was not always functional when trying to delete objects.

• Undo information was not being set when performing functions from contextual

menus.*

• The message box was not that entirely user friendly as the user had to scroll down

to read each new message that arrived. *

• The NetStatus window, when closed via its close box and then reopened, did not

refresh the user list or messages. *

• The 'tooltip' for the Connect toolbar icon was displaying 'Apple - K' instead of

'Apple+ K'. *

• Toolbar and NetStatus windows would periodically disappear behind the map

window when the window was full screen. This is not a bug that was

programmed, rather a bug in the REALbasic development environment. The

toolbar and NetStatus windows are defined as 'palettes', otherwise known as

47

global floating windows. The Macintosh Human Interface Guidelines specify that

this category of window, when visible, should stay on top of all other windows.

• If the host map was blank (with no objects), mapCAST would inform connecting

clients the host map was invalid, and subsequently disconnect. *

• One participant noted unusually high memory requirements for mapCAST, and

requested these be reduced.

The asterix (*) denotes that this bug has since been fixed.

48

5.1 Analysis

The first salient point to arise from the test is that mapCAST as an application is

complete, yet as a concept-mapping tool it is somewhat immature, lacking many

'standard' features, as well as those described in the participants' requests (see

Content Results, section 4). Clearly, mapCAST needs added functionality relating to

electronic concept mapping, but in its current state, it is still a functional tool.

This functionality can be validated by examining the map after testing had concluded

(see figure 24, section 4). The map shows:

• Clearly formed structure of concepts and relationships.

• Organisation and classification of concepts by use of colour and space.

• Extensive use of notes to aid explanation of concepts.

The extensive use of notes was somewhat surprising, with participants using this

feature to further clarify concepts, or elaborate concept labels. It would be wise to

further enhance this feature in the next release of mapCAST.

It was clear during testing that the group of two felt more comfortable using

mapCAST and revising the map than the lone participant. This was evident during

observations as the group of two created and modified the majority of the map.

During testing, all participants used paper as an adjunct to mapCAST in the overall

concept-mapping process. The paper was used for writing notes and initial concept

labels and relationship design. I initially thought this indicated failure for mapCAST

as the participants obviously did not feel comfortable with just the tools available.

Discussions after testing however, exposed a common process. People, especially

groups of people, involved in the concept mapping process find it easy to create and

write initial ideas, concepts and relationships down on paper, mainly because it is

quick and instant; people know how to use pen and paper, it being almost instinctive.

Theses ideas are then transferred to an electronic concept-mapping program for

further revision and organisation (two of the main advantages of electronic

documents). Novak:

We usually work with Post-its™ of various sizes, using larger Post-its™ for the large general

concepts of the global maps and smaller Post-its™ for specific concepts the team may work

for a period of weeks, exchanging ideas on how ... the global map might be improved.

Electronic communication of maps, revised maps and suggestions can greatly facilitate this

process. (1998, p.108-109).

49

The use of paper could also indicate the participant's low level of exposure to

mapCAST. Learning a new tool while creating a concept map, are two cognitive

intensive tasks that the user must complete simultaneously. This is apparent in one

participant's comments, stating that three things had occurred during testing:

1. The learning of the application mapCAST.

2. Clarifying existing concepts and relationships.

3. Turning these propositions into map content, with the tools provided.

Between processes two and three above, all participants expressed that the notion of

controlling the map in mapCAST, the lack of'standard' features, and the

functionality model currently implemented (the process of adding a node for

example), can slow the overall process down for all collaborators. This is especially

true when using mapCAST as a learning tool or for knowledge capture. Twidale,

Rodden and Sommerville {1994, p. 111) warn that implicit process models that are

incompatible with those of the user, can make the tool feel awkward, and be replaced

with those that are more flexible, such as pen and paper.

The participants' final comments expressed that as a collaborative tool, mapCAST

seemed to be successful, and had aided in organising and clarifying the task at hand.

But they felt that all collaborators should know the subject matter, especially when

organising existing knowledge.

Influences and Limitations

As with most testing situations, certain aspects (whether direct or indirect) may have

influenced the evaluators impressions of mapCAST and subsequently influenced the

final outcomes. These aspects include:

• Fast and non-congested network- the only network traffic at the time of testing

was that generated by the two networked mapCAST clients, therefore updates

were instantaneous, and may not have been generally representative.

• Physical proximity of evaluators - although in separate rooms, all three

participants, and myself, were in the same building.

• Social relationships with evaluators - all involved in the testing know each other

on a social basis. Evaluators may have felt obliged to give positive feedback on the

software.

Limitations that limited the capacity to build mapCAST to a desired level, which may

have affected the final outcomes include:

• Time - development of any new and custom network protocol (and indeed

software) may take several years to fully mature and function correctly.

50

• REALbasic beta version - it was necessary to use a pre-release version of

REALbasic to develop mapCAST because of the extra functionality it provided.

As the version suggests, beta software contains bugs which hampered the

development cycles of mapCAST and ultimately the final product.

51

6.0 Conclusions

The purpose of his study was to develop mapCAST as a functional and network-able

concept-mapping program, and to evaluate it as a collaborative tool in a real

world/collaborative situation using existing network protocols. Clearly, the test

results, and final outcome of the map (see figure 23, section 4), indicate that

mapCAST was successful in providing a networked environment for collaborators to

create and organise a concept map in the situation presented. Of course it would take

further testing sessions to see have far the map could be constructed.

The useability and feasibility of mapCAST was analysed using a testing situation that

produced largely qualitative data gathered from a small sample pool. Outcomes from

analysis of this data strongly suggests that mapCAST needs further functionality as an

application (including 'standard' features) and further enhancement of the

collaborative components. This would ultimately make mapCAST more 'user

friendly' and more compatible with a wider range of users and their concept

mapping process models.

Before injecting mapCAST into further experimental situations, it would be desirable

to fix and enhance the application based on comments and results from this study.

This would include:

• The inclusion of more 'standard' features.

• Adding more shapes for nodes, such as ovals, triangles and diamonds.

• More control over appearance of nodes and relationships such as border and line

width, font face and font size.

• Printing of notes. At present notes attached to nodes and relationships can be

exported to Microsoft Word (for example) to be printed. However, notes are not

printed within mapCAST.

• Support for asynchronous collaboration. This can already be achieved via a

shared network drive. Furthering this, a server application could be built that

allowed the uploading of concept maps via mapCAST. The server could offer

such features as date created/modified information, author information, a

description, and the ability to store each saved state of the concept map, which

would provide a of history of the map.

• Enhanced communication. A possible inclusion would be to incorporate live,

streaming QuickTime audio as the main communication medium between

clients. How easy this would be to implement I am unsure, but certainly warrants

investigation.

52

Future Applications

The real-time collaborative concept mapping application mapCAST has proven that

Internet-based concept maps can be successful. But this is based on a situation where

three people, with prior knowledge of the subject, and two computers, used the

software for knowledge organisation. More research is needed to investigate:

• how many groups of people or individual collaborators are feasible before the

mapping process breaks down;

• which type of communication mediums enhance the collaborative process more

effectively, including text, voice or video;

• other type of mapping processes mapCAST supports, not just those involving

knowledge organisation.

Further investigation could be facilitated by increasing the amount of collaborators

on a map with more clients connected, with either a single person, or groups of

people per computer. A larger sample group would make the gathering of

quantitative data via questionnaires or alike, more feasible. I envisage a classroom

situation, where three to four groups of people (of no more than four people) are

assigned to a computer. A task could be set out for the groups to collaborate on and

complete. Such a situation would really test the ability of mapCAST as not only a

collaborative tool, but also one that potentially aids the learning process.

53

References

Anderson-Inman, L. & Homey, M. (1997). Computer-based concept mapping:

Enhancing literacy with tools for visual thinking. Journal of Adolescent & Adult

Literacy [on-line]. Available WWW:

http://proquest.umi.com/pdqweb?TS=926756757 &RQT=309&CC=2&Dtp= 1 &Did=

000000010440170&Mtd=l&Fmt=4 [accessed May 1999].

Ferry, B., Hedberg, J., & Harper, B. (1997). How do Preservice Teachers use Concept

Maps to Orsanise Their Curriculum Content Knowledse? [on-line]. Available

WWW: http://www.curtin.edu.au/conference/ascilite97 /papers/Ferry/Ferry.html

[accessed April 1999 J.

Gaines, B. R., & Shaw, M.L.G. (1995). Collaboration throush, Concept Maps [on

line]. Available FTP: ftp://ksi.cpsc.ucalgary.ca/KSI/RTF/CSCL95CM.RTF.Z [accessed

November 1999].

Gaines, B. R., & Shaw, M.L.G. (1995). Concept Maps as Hypermedia Components

[on-line]. Available FTP: ftp://ksi.cpsc.ucalgary.ca/KSI/RTF/ConceptMaps.RTF.Z

[accessed November 1999].

Hibbard, J. (1997). Straight line to relevant data [on-line]. Available WWW:

http://proquest.umi.com [accessed May 1999].

Inspiration [Computer Software]. (1998). Available WWW:

http://www.inspiration.com [accessed November 1999].

Isaac, S., & Michael, W.B. (1995). Handbook in Research and Evaluation, Third

Edition. San Diego, California: Edits

Kennedy, D., & McNaught, C. (1997). Use of Concept Mapping in the Design of

Learning Tools for Interactive Multimedia. Journal oflnteractive Learning Research.

Vol. 8, No. 3/4, 389-406.

Kommers, P. (1997). Special Issue Preface, Concept Mapping. Journal oflnteractive

Learnins Research, Vol. 8, No. 3/4, 281-287.

54

Kremer, R., & Gaines, B. R. (1996). Embedded Interactive Concept Maps in Web

Documents [on-line]. Available WWW:

http://www.cpsc.ucalgary.ca/-kremer/webnet96/webnet_kremer.html [accessed

November 1998].

Neuberg, M. (1999). REALbasic: The Definitive Guide. California: O'Reilly &

Associates, Inc.

Novak, J. D. (1998). Learning. Creating and Using Knowledge: Concept Maps™ as

Facilitative Tools in Schools and Corporations. New Jersey: Lawrence Erlbaum

Associates, Inc.

Novak, J. D., & Gowin, D. B. (1984). Learning how to learn. Cambridge, New York:

Cambridge University Press.

Reader, W., & Hammond, N. (1994). Computer-Based Tools to Support Learning

from Hypertext: Concept Mapping Tools and Beyond. Computers & Education.

Volume 22. Number 1/2, 99-106.

REALbasic [Computer Software]. (1999). Available WWW:

http://www.realsoftware.com [accessed March 1999].

Rautama, E., & Tarhio, J. (1998). Sharing Concept Maps on the Web. Proceedings of

ICCE'98. Vol. 1. Global Education ON the Net, 273-280.

SemNet [Computer Software]. (1993). Available WWW: http://trumpet.sdsu.edu/

[accessed March 1999].

Sung, T.C., Chen, S.F., Lin, S.C., & Chang, K.E. (1998). Concept Mapping System

with Scaffolding Leaming. Proceedings ofICCE'98. Vol. 1. Global Education ON the

Net, 692-700.

Twidale, M.B., Rodden, T., & Sommerville, I. (1994) The Use of a Computational

Tool to Support the Refinement ofldeas. Computers & Education. Volume 22,

Number 112, 107-118.

55

Appendices

Appendix A: Definition of Terms

Beta - Describes a state of a software development cycle. A Beta release of software is

one that is not ready for release to the general public due to bugs (usually from the

inclusion of new features), and other anomalies.

GUI - An acronym for Graphical User Interface. The user interface is how a user

interacts with a program and can consist of buttons, sliders, windows, pictures,

sounds and alike.

Internet - The Internet is a global network of computers that communicate via a

standardised protocol known as TCP/IP. The Internet hosts numerous services such

as web pages and email.

IP Address - An IP, or Internet Protocol address is a 32-bit binary value that

uniquely identifies each computer on a network. An IP address consists of 4 8bit

numbers separated by periods. For example: 139.230.169.149

LAN - An acronym for Local Area Network, dedicated to sharing data among two to

several hundred computers.

MacOS - An acronym for Macintosh Operating System. An operating system

controls hardware as well as being a platform for software to execute. At time of

writing the current Mac0S version is 9.0. MacOS is the only operating system for

Apple computers, while Windows 95/98/NT is the predominant operating system for

IBM and compatibles.

Object Orientated- Object orientated technology is implemented in many

programming languages, including C++, Java and REALbasic. Object orientated

languages consist of software 'objects' that have their own state and behaviour as

defined by their variables and methods. Object orientated languages are considered

advantageous to programmers because of the ability to code in modules.

Port - Most computers have one connection to a network, in which all data is

received through for many network dependent applications such as web browsers,

telnet, and e-mail. A port is a 16-bit number ranging from Oto 65535 that maps all

56

incoming data to the right application. The 'well known ports' include 80 for HTTP

services and 21 for FTP, and are reserved for each protocol.

Protocol- a definition of a language to communicate data between objects. For

example, TCP/IP is a protocol used to communicate web pages (HTTP data) between

a server and a client.

REALbasic- A MacOS implementation of the BASIC language. BASIC is an

acronym for Beginners All-Purpose Symbolic Code - a simple but powerful object

orientated language.

Socket - A socket is one end of a two-way communication link between two

computers on a network. When a connection is established between a server and a

client, the client binds a socket to its assigned port number. This socket is then used

to communicate data for the entirety of the connection.

TCP/IP - An acronym for Transmission Control Protocol / Internet Protocol.

TCP/IP is the standard protocol for data transmission between computers on the

Internet. TCP/IP sends packets of data between computers, routing through one

node to another until the destination is reached, at the same time providing

verification that the data was sent and received correctly.

57

Appendix B: List of Figures

Figure 1: A concept map on surfing, using pen and paper ... 9
Figure 2: Creating a proposition in SemNet.. .. 13
Figure 3: Inspiration toolbar and document window ... 15
Figure 4: The Toolbar, showing a tooltip for the inspect tool ... 19
Figure 5: (left to right) the File menu, the Edit menu and the Window menu 19
Figure 6: New Map dialog ... 20
Figure 7: (left to right) Contextual menus for nodes, relationships, and on nothing 20
Figure 8: Inspector window showing the Appearance tab ... 21
Figure 9: Inspector window with notes tab (left), and URL tab showing 21
Figure 10: A node indicating attached notes and URL ... 22
Figure 11: Passive Inspector window ... 22
Figure 12: 'Control Connection' button window, accessible from Toolbar 23
Figure 13: Preferences window with General tab (left) and Network tab showing 23
Figure 14: Preferences window with Sounds tab (left) and Other tab showing 24
Figure 15: The NetStatus window (left), and the window expanded .. 24
Figure 16: 'No map open' dialog ... 25
Figure 17: Connect window .. 25
Figure 18: The window X, Y coordinate system .. 28
Figure 19: Geometry required to calculate object locations based on mouse click
coordinates .. 29
Figure 20: Map file showing how data is stored on disk .. 29
Figure 21: Typical client/server setup ... 30
Figure 22: Data Flow in mapCAST ... 32
Figure 23: mapCAST server client socket structure .. 32
Figure 24: State of concept map after testing concluded ... 44

58

Appendix C: Evaluation Form

Interface Design

intuitive icons

network management controls

collaborative status and feedback

communication controls (ie messaging)

menu design

tools palette design

netStatus palette design

inspector palette design

Functionality

creating documents

opening and saving documents

map creation tools

map revision and editing tools

network settings and connection management

collaboration

communication between clients

printing

poor average excellent

1-----1-----1-----1----+----1

1-----1-----1-----1-----1-----1

1----+----1-----1-----1-----1

1-----1-----1-----1-----1-----1

1-----1----+----1-----1-----1

1----+----1-----1-----1-----1

1-----1-----1-----1-----1-----1

1-----1----+----1-----1-----1

1----+----1-----1-----1-----1

1----+----1-----1-----1-----1

1-----1-----1-----1-----1-----1

1-----1-----1-----1-----1-----1

1-----1-----1-----1-----1-----1

1-----1-----1-----1-----1-----1

1-----1-----1-----1-----1-----1

1-----1-----1-----1-----1-----1

59

Useability

speed of program

network speed

ease of concept mapping

reliability (no bugs or crashes)

General Comments

poor average excellent

1-----1-----1-----1-----1-----1

1-----1-----1-----1-----1-----1

1-----1-----1-----1-----1-----1

1-----1-----1-----1-----1-----1

60

Appendix D: mapCAST protocol

November 1999

m a p C A S T 1.0 [TCP/IP Protocol]

This protocol is made up of headers, which define the type

of information that is sent/received.

The syntax of the headers is:

Header I I datal [I data2 [I data3] . . .] I I I

I I ASCII char(l2) - Header/info delimiter

I ASCII char(l4) - Internal info delimiter

I I I ASCII char(ll) - End of data

-- Messages sent TO the server

* Notes

These are typically from the mapCAST application

acting as a client

* Headers

000 Sending Connection Info

000 11 Nickname I iconID 111

001 Sending server chat

001 I I message I 11

200 Waiting for Map

200 11 111

201 Map was Received OK

201 11 111

61

202 Request Control Of Map

202 11 11 1

-- Messages sent FROM the server

* Notes

These are typically from the mapCAST application

acting as a host, that is, hosting a map and all

connected clients

* Headers

000 Error

000 I I errorID 1 11

errorID's

000 Too many users

005 Error sending Map Data

001 Broadcast Server Message (if enabled)

001 I I server message I I I

002 New User Connected

002 I I nickname I iconID I userID I I I

003 Sending chat from server

003 1 1 message 1 1 I

004 User Disconnected

004 I I userID I I I

62

200 Client Ready for Map?

200 I I maplength(bytes) I I I

201 Sending map data

201 11 mapname I mapdata 111

202 Send Map Controller (true(T) or false(F))

202 11 boolean 111

-- Common Messages

* Notes

Because the mapCAST application can act as a client and

as a host these messages can be sent from either.

* Headers

250 Move Object

250 I I objectID I newX I newY I I I

251 Add Node

251 11 X I Y 111

252 Add Relationship

252 I I startID I endID I I I

253 Delete Object

253 I I objectKind I objectID I I I

63

254 Delete All Objects

254 11 111

255 Delete All Relationships

255 11 111

256 Resize Object

256 I I objectID I newWidth I newHeight I I I

280 Inspect object

280 I I objectID I objectKind I ObjectData I I I

281 Inspecting (true or false)

281 I I T or F I I I

290 Undo

290 11 111

	MapCAST : Real-Time Collaboration With Concept Maps
	Recommended Citation

	Page 1

