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ABSTRACT 

This thesis discusses the findings of the final year project involving the VHDL (V= Very 

High Speed Integrated Circuit, Hardware Description Language) design and simulation 

of an EZT (Embedded Zero Tree) codec. 

The basis of image compression and the various image compression techniques that are 

available today have been explored. This provided a clear understanding of image 

compression as a whole. An in depth understanding of wavelet transform theory was 

vital to the understanding of the edge that this transform provides over other transforms 

for image compression. Both the mathematics of it and how it is implemented using sets 

of high pass and low pass filters have been studied and presented. 

At the heart of the EZT codec is the E'ZW (Embedded Zerotree Wavelet) algorithm, as 

this is the algorithm that has been implemented in the codec. This required a thorough 

study and understanding of the algorithm and the various terms used in it. 

A generic single processor codec capable of handling any size of zerotree coefficients of 

images was designed. Once the coding and decoding strategy of this single processor 

had been figured out, it was easily extended to a codec with three parallel processors. 

This parallel architecture uses the same coding and decoding methods as in the single 

processor except that each processor in the parallel processing now handles only a third 

of the coefficients, thus promising a much speedier codec as compared to the first one. 

Both designs were then translated into VHDL behavioral level codes. The codes were 

then simulated and the results were verified. 

Once the simulations were completed the next aim for the project, namely synthesizing 

the design, was embarked upon. Of the two logical parts of the encoder, only the 

significance map generator has been synthesized. 

Karma Wangdi Thesis on Final Year Engineering Project, 1999. 
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INTRODUCTION 

Digital images play a crucial role of disseminating rich information in today's Information 

Age. Of the various types of data transferred over our networks, notably the Internet, 

image comprises the bulk of the traffic. Current estimates indicate that image data 

transfer take up over 90% of the volume on the Internet. 

As ubiquitous and as informative as they aie, digital images are also the most data 

intensive, requiring huge storage space and longer transmission and access time. 

In order to utilize these digital images there are clearly needs for effective image 

compression techniques to reduce the number of bits required to represent them. A 

wide range of compression techniques has been developed over the years, and novel 

approaches continue to emerge. 

The use of wavelet transform in image compression has captured the imagination and 

the talent of researchers all over the world in recent times. This wavelet image 

compression technique promises performance improvements over all the compression 

methods currently available. So promising is this technique of image compression that 

wavelet image coders are among the leading coders submitted for consideration in the 

upcoming JPEG200 standard, which will replace the current JPEG standard for image 

compression. 

The most revolutionary thing about wavelet transform is that when applied to a digital 

image it executes a multiresolution analysis on the image. In other words, wavelet 

transform essentially processes the image in much the same manner as the human 

visual system. 

The E7JN (embedded zerotree wavelet) algorithm is one image compression algorithm 

based on this new technique. It is claimed to be a remarkably effective image 

compression algorithm. This algorithm has the property that bits in a bitstream are 

generated in the order of importance, yielding a fully embedded code. This property 

then allows the encoder to terminate the encoding at any point, thereby allowing a bit 

rate or a distortion rate to be mel! exactly. Also given a bitstream the decoder can 

Karma Wangdi Thesis on Final Year Engineering Project, 1999. 
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terminate decoding at any point and still produce the same image that would have been 

encoded at the bit rate corresponding to the truncated bit stream. 

From Ez.N algorithm two codec (encoder and decoder) architectures have evolved in 

this project. The single processor architecture is the main architecture in the sense that 

the other is just a slight adaptation of the single processor to take advantage of the 

inherent parallelism present in the zerotree data structure. 

The VHDL codes for the designs have been written at a behavioral level. Simulation and 

synthesis tools used were from Synopsys Inc. 

Karma Wangdi Thesis on Final Y~J.r Engineering Project, 1999. 
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PROJECT DEFINITION 

Aim 

The main aim of the project was to design, simulate and if possible, synthesize, an EZT 

codec implamenting the EZW algorithm. The objectives that this main aim of the project 

translated to were: 

• An understanding of image compression in general and that of wavelet image 

compression in particular. 

• A study of wavelet transform and how it relates to image compression. 

o A thorough understanding of the EZW algorithm and the various terms used in it. 

o A good mastery of the VHDL language 

• Design and simulation of a codec using VHDL behavioral level code. 

o Synthesis of the codec. 

Scope 

The project has both a research component and a VLSI implementation component in 

the form of VHDL implementation. 

• The first task was to understand image compression as a whole and the various 

features of images that have been exploited to achieve image compression. Models 

of image compression were e-lsa studied. 

o A good grasp of wavelet transform theory was paramount in understanding the EZW 

algorithm, which is at the heart of the project. How this transform relates to image 

compression was then Investigated. 

Karma Wangdi Thesis on Final Y car Engineering Project, 1999. 
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• Of outmost importance was the thorough understanding of the EZW algorithm itself. 

IEEE transactions were a major source. Consultation with a PhD student working on 

a similar but advanced topic proved very helpful and productive. 

• Since the codec was to be implemented in VHDL, a good knowledge of the language 

was crucial as well. It was learnt in tandem with the reading of back ground 

materials. 

• VHDL tools used for simulation and synthesis were from Synapsys Inc. PeakVHDL 

was also used as an alternative simulation tool in the course of the project. 

Karma Wangdi Thesis on Final Year Engineering Project, 1999. 
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1. INTRODUCTION TO IMAGE COMPRESSION 

1.1 Introduction 

In many different fields, dig,tized images are replacing conventional analog images as 

photographs or x-rays. The volume of data required to describe such images greatly 

slow transmission and makes storage prohibitively costly. Image compression is the 

general term that addresses the problem of reducing the amount of data required to 

represent a digital image. The following paragraphs present some principles and 

techniques of image compression that are currently being used. 

1.2 Basis of Image Compression 

Image compression is based on two features of data; namely data redundancy and data 

irrelevancv. Hence the great variety of compression algorithms mainly differ in their 

approaches to extracting and exploiting these two features of data redundancy and 

irrelevancy. (Topiwala, 1998) 

1.2.1 Data Redundar.cy 

The term data compression refers to the process of reducing the amount of data 

required to represent a given quantity of information. Various amounts of data may be 

used to represent the same amount of information. When there are more data than 

actually required to represent a given information the data is said to contain data 

redundancy. 

Data redundancy is a central issue in digital image compression. Three basic data 

redundancies can be identified and exploited in digital image compression. They are: 

• Coding redundancy 

• lnterpixel redundancy and 

• Psychovisual redundancy 

1.2.1.a. Coding Redundancy 

Karma Wangdi Thesis on Final Year Engineering Project, 1999. 
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In general, coding redundancy is present when the codes assigned to a set of events 

have not been selected to take full advantage of probabilities of the events. It is almost 

always present when an image's gray levels are represented with straight or natural 

binary code. In this, the underlying basis for coding redundancy is that images are 

typically composed of objects that have a regular and somewhat predictable morphology 

and reflectance, and are generally sampled so that the objects being depicted are much 

larger than the picture elements. The natural consequence is that, in most images, 

certain gray levels are more probable than others. If a natural binary coding of gray 

levels is used, the same number of bits are assigned to both the most and the least 

probable valuEs, thus resulting in coding redundancy. (Gonzalez and Woods, 1993). 

1.2.1.b lnterpixel Redundancy 

lnterpixel redundancy is directly related the interpixel correlations that exit within an 

image. Because the value of any given pixel can be reasonably predicted from the 

values of the its neighbor's, the information carried by the individual pixels is relatively 

small. In other words much of the visual contribution of a single pixel to an image is 

redundant. A variety of names, including spatial redundancy, geometric redundancy and 

interframe redundancy, have been coined to refer to these interpixel dependencies. The 

term lnterpixel redundancy encompasses them all. (Gonzalez and Woods, 1993). 

Inter~ 1xel redundancies are removed by using suitable transforms. 

1.2.1.c Psychovisual Redundancy 

Psychovisual redundancy is the result of the nature of the human eye. The eye does not 

respond with equal sensitivity to all visual information. Certain information simply h~s 

less relative importance than other information in normal visual processing. This 

information is said to be psychovisually redundant. It can be eliminated without 

significantly impairing the quality of image perception. (Gonzalez and Woods, 1993). 

Karma Wangdi Thesis on Final Year Engineering Project, 1999. 
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1.2.2 Data Irrelevancy 

An important example of data irrelevancy occurs in the visualization of gray scale 

images of high dynamic range, e.g., 12 bits or more. It is an experimental fact that for 

monochrome images, 6 to 8 bits of dynamic rang~ is the limit of human visual sensitivity; 

any extra bits do not add perceptual value and can be eliminated. (Topiwala, 1998). 

Domain of Efficient 
Coding 

JrrclevDncy 

Flgu re I .I The op era1ional sp Dee of compression algorithm design 

1.3 Image Compression Models 

/(J.)') 

- Source I-- Channel B- Channel 
encoder encoder decoder 

Encoder 

Figure 1.2 A general image compression system model 
Adopted from Gonzaltl and Woods (1993) 

f. Source t-+- j'(l,J) 
decoder 

Decoder 

As figure 1.2 shows, an image compression system consists of r,•Jo distinct structural 

blocks: an encoder and a decoder. An Input image ~x,y) is fed into the encoder which 

Karma Wangdi Thesis on Final Year Engineering Project, 1999. 
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creates a set of symbols from the input data. After transmission over the channel, the 

encoded representation is fed to the decoder, where a reconstructed output image f(x,y) 

is generated. In general f(x,y) may or may not be an exact replica of ~x.y). If it is, the 

system is error free or information preserving; if not some level of distortion is present in 

the reconstructed image. 

Both the encoder and the decoder shown in figure 1.2 consist of two relatively 

independent functions or subblocks. The encoder is made up of a source encoder which 

removes input redundancies, and a channel encoder which increases the noise 

immunity of the source encoder's output. As would be expected, the decoder includes a 

channel decoder followed by a source decoder. If the channel between the encoder and 

the decoder is noise free (not prone to error), the channel encoder and decoder are 

omitted, and the general encoder and decoder become the source encoder and 

decoder, respectively. 

1.3.1 The Source Encoder and Decoder 

The source encoder is responsible for reducing or eliminating any coding, interpixel, or 

pyschovisual redundancies in the input image. The specific application and associated 

[(X.)' ) ~ Mapper ... , Qumtizcr aol 
Sylihll J .. cncrdcr Chilllcl 

Soo lt:c mcOOer 

lo) 

~ Syrrb.:ll I .. I Inverse I .. r < x.y J Chmel nnppcr derolcr 

San~c lb;rdcr ., 
Figure 13 (a) &J.Jn:c mccdcr !I'd {b l Soon:edcoodcrrmlcl 
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fidelity reqt..:irements dictate the best encoding approach to use in any given situation. 

Normally, the approach can be modeled by a series of three independent operations. 

Figure 1.3(a) shows how each operation is designed to reduce one of the three 

redundancies mentioned in section 1.2. Figure 1.3(b) depicts the corresponding source 

decoder. 

In the first stage of the source encoding, process the mapper transforms the input data 

into a (usually nonvisual) format designed to reduce interpixel redundancies in the input 

image. This operation is generally reversible and may or may not reduce directly the 

amount of data required to represent the image. Run length coding which will be 

explained in a later section is an example of a mapping that directly results in data 

compression in this initial stage of the overall source encoding process. The 

representation of an image by a set of transform coefficients is an example of the 

opposite case. Here the major mapper transforms the image into an array of 

coefficients, making its interpixel redundancies more accessible for compression in later 

stages of the encoding process. 

The second stage, or quantizer block in figure 1.2(a), reduces the accuracy of the 

mapper's output in accordance with some pre-established fidelity criteria. This stage 

reduces the pyschovisual redundancies of the input image. This operation is 

irreversible. Thus it must be omitted when error-free compression is desired. This block 

is what distinguishes between a lossy and a lossless compression. In the third and the 

final stage of the source encoding process, the symbol coder creates a fixed or variable 

length code to represent the quantizer output and maps the output in accordance with 

the code. The term symbol coder distinguishes this operation from the overall source 

encoding process. In most cases, a variable length code is used to represent the 

mapped and quantized data set. It assigns the shortest code words to the most 

frequently occurring output values and thus reduces coding redundancy. This operation 

Is reversible. Upon completion of the symbol-coding step, the input image has been 

processed to remove each of the three redundancies. 

Figure 1.3 shows the source encoding process as three successive operations, but all 

three operations are not necessarily included in every compression system. For 

Karma Wangdi Thesis on Final Y car Engineering Project, \999. 
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example the quantizer must be omitted when error-free compression is desired. In 

addition, some compression techniques normally are modeled by merging blocks that 

are physically separate in Figure 1.2(a). For instance, in predictive compression 

systems, a topic discussed in a later section, the mapper and the quantizer are often 

represented by a single block that simultaneously perlorms both operations. 

1.4 Types of Image Compression Techniques 

Lou less 
Predictive • • • 

coding 

Bit Pl~ne 
Encoding 

lm~~c Compression 
Techniques 

figure 1.4 Image Compression technniques 

Wavelet 
Coding 

OCT 
Coding 

Vector 
Quanti~ntion ••• 

There are many different approaches to image compression, but they can all be 

categorized into tw _ fundamental groups: lossy compression techniques and lossless 

compression techniques. 

In lossless compression (also known as bit-preserving or reversible compression}, the 

reconstructed image after compression is numerically identical to the original image on a 

pixel-by-pixel basis. Since no ioformatioo is compromised only a modest amount of 

compression is achieved. In other words the compression ratio (CR} is small. The 

compression ratio is defined as: 

CR = No of bits for original image I No of bits for compressed image 

Karma Wangdi Thesis on Final Year Engineering Project, 1999. 
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In lossy compression (also known as irreversible compression), the reconstructed 

image contains degradations relative to the original. As a resu:t much higher 

compression can be achieved as compared to the lossless compression. The 

compression ratio is high. 

Origin;!! Image data 

Decomposition OR Transformation 

Lossy Lossless 

Quantization 

Symbol Encoding 

Compressed Image 

Figure 1.5 A general compression framework 

Image r.ompression techniques can also be divided into transform and non transform 

coding. In transform compression the image data are transformed into transform 

coefficients by applying some transform functions, such as DCT (discrete cosine 

transform and we.velet transform, and the resulting coefficients are encoded. In non

transform compression no such transformation is applied. Wavelet coding and JPEG are 

examples of transform coding while PCM and DPCM are examples of non-transform 

compression techniques. 

Figure 1 .5 shows a general compression framework. It includes three components: 

image decomposition or transformation, quantization, and symbol generation. As we 

can see from the figure, the primary difference between lossy and lossless schemes is 

the inclusion of the quantization stage in the lossy compression technique, while it is 

absent in the lossless scheme. 
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1.4.1 Lossless Compression Techniques 

In this section we look at two main lossless compression techniques. They are Bit Plane 

Encoding and Lossless Predictive Coding. 

1.4.1.a Bit Plane Encoding 

Bit plane encoding is a tossless and a non~ transform compression technique. Consider 

an N x N Image in which a pixel value is represented by k bits. By selecting a single bit 

from the same position in the binary representation of each pixel, anN x N binary image 

called a bit plane can be formed. For example we can select the most significant bit of 

each pixel value to generate an N x N binary image representing the most significant bit 

Image whose pixel 
values are each k 

bits wide 

• 

k-1 bit plane k-2 bit plane 
I bit plane 

Figure 1.6 An image whose pixel values are k bits wide decomposed into k bit planes 

k-1 bit plane contains the most significant bits form all the pixel values in order 
similarly k-'2 contains the next most significant bits from all the pixel values in order 
and so on. 

plane. Repeating this process for the other bit positions, the original image can be 

decomposed into a set of k, N x N bit planes (numbered 0 for the least significant bit 

(LSB) plane through k·1 for the most significant (MSB) plane. Each bit plane is then 

encoded efficiently using a lossless binary compression technique like Run Length 

Encoding and Arithmetic Encoding. 
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1.4.1.b Lossless Predictive Coding 

For typical images, the values of adjacent pixels are highly correlated; that is, a great 

deal at information about a pixel value can be obtained by inspecting its neighbouring 

pixels. This property 1S exploited in predictive coding techniques where an attempt is 

made to predict the value of a given pixel based on the values of the surrounding pixels. 

The new information of a pixel is defined as the difference between the actual and the 

predicted value of the pixel. 

lnpul 
Image 

_, 

CompreHcd 
Image 

j, 

Predictor 
Neares! 
Integer 

Symbol '• 
Decoder 

H -

r. 

,,, 

~ .. • 

(b) 

'· Symbol 
Encoder 

t. 

Predictor 

Compreued 
Image 

Decompressed 
Image 

Figure 1.7 A lou less predictive coding model: (a) encoder: (b) decoder. 
Adopud from Gonz~/~z and Woods, /993 

Figure 1.7 shows the basic components of a lossless predictive coding system. The 

system consists of an encoder and a decoder, each containing an identical predictor. As 

each successive pixel of the input Image, denoted f,. "' introduced to the encoder, the 

predictor generates the anticipated value of that pixel based on some number of inputs. 

The output of the predictor is then rounded to the nearest integer, denoted f',. and used 

to form the prediction error 

Sn=fn-t'n 

which is coded using a variable length code. The decoder reconstructs e, from the 

received variable length code words and periorms the Inverse operation. 

fn =en+t'n 
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1.4.2 Lossy Compression Techniques 

There are a lot of lossy compression techniques available and as a result it isn't feasible 

to cover all of them. We will instead look at some of the most prominent ones in this 

section. 

1.4.2.a Discrete Cosine Transform Coding 

Discrete Cosine Transform (OCT) is a popular transform image compression technique. 

The JPEG image format uses OCT method. (Topiwala, 1998) In OCT the image is 

divided into blocks or rectangular arrays of pixels. Most existing systems use blocks of 

regular size, such as 8 x 8 or 16 x 16 pixels. Larger block sizes lead to more efficient 

coding, but require more computational power. 

Figure 1.8 8 x 8 DCT basis Functions 
Adopted from Rabbani and lotJes (1991) 

The OCT is applied to each block that converts a block of pixels into a block of OCT 

coefficients of the same dimensions. These coefficients represent the spatial frequency 

components that make up an appropriate basis function. The basis function for 8 x 8 

OCT are shown in figure 1.8. The top left function is the basis function of the 'de' 

coefficient and represents zero spatial frequency. Along the top row the basis functions 
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have increasing horizontal spatial frequency content. Down the left column, the 

functions have increasing vertical spatial frequency content, and along the diagonal the 

functions have combination of vertical and horizontal spatial frequencies. 

The resulting coefficients are then quantized using uniform quantization step sizes. The 

quantized OCT coefficients are then scanned in a specific diagonal order, starting from 

the "de" or 0-frequency component, then run-length coded, and finally entropy coded 

according to either Huffman or arithmetic coding. (Topiwala, 1998) 

1.4.2.b Vector Quantization 

In vector quantization (VQ) method, the original image is first decomposed into n

dimensional image vectors. The vectors can be generated in a number of different 

ways. For example, an n = I x m block of pixel values can be ordered to form an n

dimensional vector. 

(a) Transmitter 

Channel 
k Table x·, 

Look-up 

Code book 
X'~o I= 1, ... , N, 

(b) Receiver 

Figure 1.9 Vector Quantization block diagram 
Adopud from Rabbali and Jorm (/991) 

Each image vector, X, is then compared with a collection of representative templates or 

codevectors X', taken from a previously generated code book. The code vectors are also 

of dimension n. The best match codevector is chosen using a minimum distortion rule. 
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After a minimum distortion codevector has been selected, its index k is transmitted. At 

the receiver this index is used as an entry to a duplicate codebook to reproduce the 

original codevector 

1.4.2.c Wavelet Coding 

Wavelet coding is one of the most recent techniques of image compression that has 

been developed. This technique uses the wavelet transform to remove the spatial 

correlation that exists in images. The wavelet transform coefficients that are obtained 

contain the information in a compact smaller number of coefficients. These coefficients 

are then quantized and then efficiently coded using suitable coding algorithms. 

Image coding using using wavelet transform exhibits several desirable qualities. Since 

the wavelt transform executes a multiresolution analysis on the image, it essentially 

processes the image in much the same way as the human visual system does. The 

importance of the resulting transform coefficients to the reconstructed image is then 

easily evaluated for coding purpose. The wavelet transform enjoys a considerable 

amount of design freedom in the choice of the basis wavelet. By proper choice of the 

analyzing wavelet, the wavelet transform can be tailored to a specific style of 

implementation. 

Since this project work focus on the E'ZYN algorithm of wavelet coding, wavelet coding 

method is very well explained in the chapters ahead. 

1.4.2.d lossy Plus lossless Residual Coding 

Another way of image compression is to mix both the lossy and the lossless techniques. 

One such techique is the Lossy Plus Lossless Residual coding. Lossy Plus Lossless 

Residual coding is used in application where it suffices to send a lossy version of the 

image first and then the \ossless version afterwards as needed. One such application 

might exist in the medical field, where two physicians are discussing a possible patient 

referral from remote locations. One of the physicians may wish to transmit a digital 

radiograph over the phone line, and in the interest of a short transmission time, a lossy 
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(but high quality) version of the iage is sent. If the referral is accepted, the remaining 

difference (residual) image required to perfectly reconstruct the original image could be 

sent. 

In general a lossy plus a lossless residual encoding scheme consists of the following 

steps: 

• Generate a low bit rate image through the use of an efficient lossy scheme. 

• Form a residual by computing the difference between the lossy reconstruction and 

the original image. 

• Encode the residual using an appropriate lossless technique. 
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2. WAVELET TRANSFORM AND IMAGE COMPRESSION 

2.1 Introduction 

Wavelet transforms, as an alternative to the Fourier and related transforms, for 

application to practical engineering problems have been the focus of intensive research 

in recent years. The concept of Wavelet itself was introduced quite recently in 1984 by 

Goupillaud, Grossman and Morlet as a new mathematical tool for multiresolution 

decomposition of continuous~time signals. This mathematical tool for multiresolution 

analysis of signals has been investigated and applied in various fields including 

geophyiscs, image analysis for the purpose of segmentation, pattern recognition and 

coding. The incentive for this is its ability to provide a multireso\ution or multisca\e 

analysis of signals with flexible space-frequency localization. 

In the field of image compression wavelets have captured the imagination and talents of 

researchers all over the world. A number of researches that wavelet transform holds 

considerable promise in image compression. The most revolutionary thing about 

wavelet transform is that since it executes a multiresolution analysis on the image, it 

essentially processes the image in much the same manner as the human visual system. 

(Coffey and Etter, 1995). 

2.2 Mathematical Representation of Wavelets 

Wavelets are functions generated from one single function, the mother wavelet 'I' by 

dilation and translation. Grossman and Morlet (Grossman and Morlet, 1984) introduced 

this function 'I' which dilated by a scaling factor a and translated by b enables the 

analysis, processing, and synthesis of a signal. 

0·1) 

It is assumed that x is a one dimensional variable. The mother wavelet 'I' must satisfy 

the following admissibility condition. 
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Jj'l'(mt 
lm! 

dOJ<oo (t-2) 

where 'I' denotes the Fourier transform of IJI· Moreover if IJI has sufficient decay, then 

(1-2) is equivalent to 

·-I yt(x)dx=O (1-3) --
which means that the wavelet 1J1 exhibits at least a few oscillations, and that there is a 

large choice of functions for IJI. 

The basic idea of the wavelet transform is to represent an arbitrary function f as a 

superposition of wavelets. This function f can then be decomposed at different scale or 

resolution le·· -'· One way to achieve such a decomposition involves writing f as an 

integral of lJia.b over a and b using appropriate weighting coefficients. In practice, 

however, it is preferable to express f as a discrete sum rather than as an integral. The 

coefficients a and b are discmtized such that: 

a = a8' and b = nb0a8' with {m,n )e Z2 and a0 > I, b0 > 0 fixed. 

The wavelet is then defined as follows: 

(1-4) 

,· 
and the wavelet decomposition of I becomes 

fa :I;c.,,(f) 'I'm,• (t-5) 

·~ 
For large positive values of m (a>1), the ljlfunction is highly dilated and large values for 

the translation step bare well adapted to this dilation. This corresponds to low frequency 

or narrow band-wavelets. For large values of m (a <1 ), the 1Jf function is highly 

concentrated and the translation step b takes small values. These functions correspond 

to high frequency or wide band wavelets. 
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Y. Meyer showed that there are 'I' functions for a'= 2 and b0 = 1, such that the functions 

'l'm.olx) make up an orthonormal basis belonging to L'(R), where 

(1-6) 

(Z is the set of all integers and R is the set of all real numbers and N is the set of all 

Natural numbers) 

The wavelet coefficients Cm,, (I) are determined using 1he following relation: 

c.,,(!)= (f, 'I'm,,)= J f(x) 'I' m,,(x)dx (1-7) 

The oldest known basis of this type was constructed by Haar. In this case, the function 

'lf{x) is equal to 1 over the inteJVal [0,1/2], -1 over [1/2, 1] and 0 elsewhere. Different 

bases corresponding to more regular wavelets were later constructed by Stromberg, 

Meyer, Lemarie, Battle, and Daubechies. 

The existence of orthonormal wavelet bases is conditioned by the following regularity 

property: l'l'(w)l must decrease more rapidly than C(1 + lwl)""'·'for w-> ~and lore> 0 

;where C is a constant. 

Wavelets which exhibit this regularity property necessarily verify: 

(1-8) 

This equation determines the number of vanishing moments of 'I' and thus enables 

evaluation of the oscillations of the wavelet 'I' 

2.3 Continuous Wavelet Transform 

To perform wavelet transform on a time-domain signal, the signal is passed through 

various high-pass and low-pass filters, which filter out either high frequency or low 

frequency portions of the signals. Figure 2.1 shows how a wavelet transform is 

performed on a signal x(t) which has a maximum frequency of B Hz. 
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This is how it works: Suppose we have a signal that has frequencies up to 1000Hz. In 

the first stage the signal is spilt into two parts by passing the signal through a high-pass 

and a low-pass filter. Which result in two different versions of the same signal; portion of 

signal corresponding to 0-500Hz (low-pass portion) and 500-fOOOHz(high-pass portion). 

Then we take either portion or both and pass them through another set of high and low 

pass filters. This operation is ci:.>lled decomposition. 

Assuming that we took the low pass output from the first filtering and pertormed the 

second decomposition, we have three sets of data now, each corresponding to the same 

signal frequencies 0-250 Hz, 250-SOOHz and 500-1000Hz. If we take the low pass 

portion and pass it through low and high pass filters, we now have four sets of signals 

corresponding to 0-125Hz, 125-250Hz, 250-500Hz and 500-1000Hz. 

HP LP 
Levell 

Bll<=f<=D O<.:j<=B/2 

liP LP 

Levell 

B/4 <= [<= B/2 

liP LP 

Level 3 

I;/8 <= {<= B/4 0<=/<=B/8 

Figure 2.1 Wavelet traodarm a5 passing a signal through sets of high pus(HP} and low pass(LP) filters 
D Hz is the muimum signal content of an analog signal X(l) 

In this way we continue to decompose a signal until we have decomposed the signal into 

a certain predefined level. At the end we have a bunch of signals, which actually 

represent the same original signal, but all corresponding to different frequency bands. If 

the resulting signal ;s plotted on a 3-D graph, we will have time in one axis, frequency in 

the other and amplitude in the third. This will show us which frequencies exist at which 

time. In other words the resulting signal can be resolved both in time as well as in 

frequency. 
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However there is a principle known as the uncertainty principle which states that " we 

cannot exactly know what frequency exists at what time instance, but we can only know 

what frequency bands exist at what time intervals". This is analogous to the uncertainty 

principle in quantum Physics ascribed to Heisenberg that states " the momentum and 

the position of an olectron can not be determined simultaneously''. This is a problem of 

resolution, and it is the main reason why researchers have switched from STFT (short 

time Fourier transform) to WT (wavelet tarnsform). STFT ak'o resolves a signal in both 

frequency and time, but it gives a fixed resolution at all times whereas WT gives variable 

resolution. 

2.3.1 Resolu11on from Con11nuous Wavelet Transform 

Higher frequencies are better resolved in time, and lower frequencies are better resolved 

in frequency. This means that a certain high frequency component can be located better 

In time (with less relative error) than a low frequency component. On the contrary, a low 

frequency component can be located better in frequency compared to high frequency 

component. 

The grid in the figure 2.2 is interpreted as follows: The top row shows that higher 

frequency 

~~~~~**~~~·~-~~****~~····~~-~-·~---~····~~~ 

·11'·~·~~·····~·· • • • • • • • 
• • 

time 

Figure 2.2. Time and frequency resolution from Continuous Wavelet Transform 

Adapted from Rolti Polikar, Wavelet tutorial, 1994 

frequencies we have more samples corresponding to smaller intervals of time. In other 

words, higher frequencies can be resolved better in time. The bottom rows correspond 

to low frequencies, and there is less number of points to characterize the signal. 

Therefore low frequencies are not well resolved in time. 
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2.4 Discrete Wavelet Transform 

The Discrete Wavelet Transform (DWT) is the analog of the continuous wavelet 

transform (CWT) presented in the previous section, in the discrete time domain. A time

scale (scale and frequency have inverse relationship) representation of a digital signal is 

obtained using digital filtering techniques. As in the continuous time the digital signal is 

passed through a series of low and high pass filters. 

The procedure starts with passing the signal (sequence, since discrete) through a half 

band digital low pass filter with impulse response h[n] and a half band digital high pass 

filter with impulse response g\n]. Filtering a signal is a mathematical operation of 

convolution of the signal with the impulse response of the filter. The convolution in 

discrete time is defined as follows. 

00 

x[n]•h[n] = ~x[k]·h[n -k] 

The pair of high pass and low pass filters are not independent but are related by 

g[L -I · n] = (-!)" · h[n] 

A half band low pass filter removes all frequencies that are above half of the highest 

frequency in the signal, while the high pass filter removes all the frequency components 

that are below half of the highest frequency in the signal. The resultant sequence is 

passed through another set of high and low pass filters and the process continues until a 

certain desired level of decomposition is done. The algorithm is shown in figure 2.3. 

As an example, suppose that J<[n] has 512 sample points,spannlng a frequency of zero 

to p radians. At the first decomposition level, the sequence is passed through high pass 

and low pass filters, followed by subsampling by 2. The high pass filter has 256 points, 

but it only spans the frequency range p/2 to p radians. These 256 samples constitute 

the first level of DWT coefficients. The output of the low pass filter has 256 points, and it 

spans the frequency band from 0 to p/2 radians. This sequence is then passed through 

similar low pass and high pass filters for further decomposition. The output of the 

second low pass filter followed by subsampling has 128 samples spanning a frequency 

band of o to p/4 radians, and the output of the second high pass filter followed by 
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subsampling has 128 samples spanning a frequency band p/4 lo p/2. The second high 

pass filter samples constitute the secvnd level of DWT coefficients. This signal has half 

the time resolution, but twice the frequency resolution of the first level signal. In other 

words, time resolution has decreased by a factor of 4, and frequency resolution has 

increased by a factor of 4 compared to the original signal. The low pass filter output is 

XI"] f=O-p 

Levell 
DWT CocUkicnt• ,......._..., 

f= p/2- p f=O-p/2 

Level l 
DWT Cn<lfflcicnu 

Level 2 
DWT Coefficient~ 

f = p/8 - p/4 

Level I 
DWT CucHiclclll• 

f = 0 - p/4 

f = 0 - p/8 

Figure 2.3 Discrete Wavelet transform of Xlnl 
g[n) •> ll!gh pnss filLer 
11(•1] •> Low rn"" filter 

II dopt~rl fmm R ohi I' r>likn r, ""'"' ~lrr /JIIn rial, I 994 

then filtered once again for further decomposition. This process continues until two 

sample is left. For this specific example there would be 9 levels of decomposition, each 

having half the number of samples of the previous level. The DWT of the original signal 

is then obtained by concatenating all coefficients starting from the last level of 

decomposition (remaining one sample, in this case). The DWT will then have the same 

number of coeffidents as the original signal. 

2.4.1 Resolution from Discrete Wavelet Transform 

In the discrete time cese, the time resolution of the signal works the same as in the 

continuous time case, but with one exception. The frequency information has different 
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resolutions at every stage too. Lower frequencies are better resolved in frequency, 

whereas higher frequencies are not. Figure 2.4 shows the time - frequency resolution 

offered by discrete time wavelet transform. 

Looking at figure 2.4 it is noticed how the spacing between subsequent frequency 

components increase as frequency increases. (Robi Polikar, 1994) 

••••• 0 ••••••••••••••••• 0 ••••••••••••••••••••••••••••••• 

• • 

• • 

• 

figu~2.4 ltrre- Frequency r~sclution fromDi•crete titre Wavelet Tmn,furm 

2.5 Wavelet Transform and Digital Image Compression 

Wavelet transform has opened up a whole new prospect for efficient image compression 

and wavelet transform technique of image compression has gained a lot of popularity in 

the last couple of years. Following are some of the most important reasons. 

2.5.1 Data Compression 

When a DWT is pertormed on a signal, frequencies that are most prominent in the 

original signal appear as high amplitudes in that region of the DWT signal that includes 

those particular frequencies. The frequency bands that are not very prominent in the 

original signal have very low amplitudes and that part of the DWT signal can be 

discarded without any major loss of information, thus allowing data reduction. In other 

words, wavelet transform concentrates the original signal values into a relatively small 

number of large magnitude coefficients.(Relue, 1994) Figure 2.5 illustrates the data 

reduction obtained. 

In practice all but a few percent of the wavelet coefficients can be set to zero. 

(Relue, 1994). Selection of the coefficients can be done in two ways: 
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o An arbitrary threshold can be established as the cutoff point 

o The coefficients can be ranked to allow selecting of an arbitrary percentage of the 

highest values for retention. 

Typically, 5 percent of the values are retained, but good results can be obtained with 

smaller percentages. In image compression it is important to note that the zeroed 

coefficients cannot be thrown away. The position of the zeroed coefficients must still be 

known for reconstruction. (Relue, 1994) 

Once the data have been compressed by the removal of low value coefficients, more 

compression can be obtained by quantizing the non-zero wavelet coefficients. 

0 " 100 150 
:a) Normalit.,d ,;..,., 

~~.~ T~:: :::•:::·•::·:::·::• :·::::·: r·:.::···:· 
-1 , ................... , ................................... , ... 

' ' ' 
0 100 150 '" ' 0 

(b) DWT Coefficients 

Figure 2.5 Data Reduction In DWT 

(a) signal 
(b) DWT Codficlents 

2.5.2 Better Frequency Resolution 

The bulk of the information in images is found in lower frequency bands. We have 

already seen in figure2.4 that discrete wavelet transform provides better frequency 

resolution at lower frequency. This means that we can have better resolution of our 

images using wavelet transform 
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2.5.3 Noise Immunity 

The compression process using wavelet transform has an interesting side effect. Since 

most of the noise in an image has low energy value, it will be suppressed when 

reconstructing the compressed data. Figure 2.6 shows a sine wave with 50 percent 

noise added, and the reconstructed since wave from 3 percent of the original data using 

Daubechies 2~0 transform. The original since wave is very easy to distinguish in the 

reconstruction. (Savla, 1998) 

'}~~~------~~-~-~~~~~~ F- ........ _, ----.. 
-2(\ • ~ 

(;o) 

'" 
Figure 2.6 The Original (Nni•Yl ano.l Transformed Sine Curve 

(o) Original(noi•yl 
(b) Transfnrmcd 

Adllpr~dfrom Savlr~, /99/i 

Figure 2. 7 The Reconstructed low-noise signal 
Adopted from Savla, 1998 

The reconstruction of low noise signal is generally very good. Simple waveforms such 

as a since wave can be done with 3 percent of the data as Illustrated in Figure 2.7 
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3. THE EZW ALGORITHM 

3.1 Introduction 

In the last chapter we studied the wavelet transform and how it is pertormed in both 

continuous and discrete time domains. We then observed the results of wavelet 

transform on signals and particularly related the results to image coding. And we found 

that wavelet transform holds considerable promise for image compression. 

In this chapter we present the EZ'N (Embedded Zerotree Wavelet) algorithm, which is an 

image compression algorithm formulated by J.M.Shapiro. 

The EZ'N algorithm has the property that the bit streams are generated in the order of 

importance and all information is contained within the code thereby yielding a fully 

embedded code. Using this algorithm the encoder can terminate the encoding at any 

point thereby allowing the target rate or target distortion metric to be met. Also, given a 

bit stream the decoder can cease decoding at any point in the bit stream and still 

produce exactly the same image that would have been encoded at the bit rate 

corresponding to the truncated bit stream. (Shapiro, 1993) 

3.2 Features of the Embedded Coder 

The EZ'N algorithm contains the following features: 

• A discrete wavelet transform which provides a compact multiresolution 

representation of the image 

• Zerotree coding which provides a compact multiresolution representation of 

significance maps, which are binary maps indicating the position of the significant 

coefficients. Zerotrees allow the successful prediction of significant coefficients 

across scales to be efficiently represented as part of exponentially growing trees. 
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• Successive approxirr.ation which provides a compact multiresolution representation 

of the significant coefficients and facilitates the embedding algorithm 

• A prioritization protocol whereby the ordering of importance is determined, in order, 

by precision, magnitude, scale, and spatial location of the wavelet coefficients. 

Larger coefficients are deemed more important than smaller coefficients regardless 

of their scale. 

• Adaptive multilevel arithmetic coding which provides a fast and efficient method for 

entropy coding of symbols, and requires no training or prestored tables. 

• The algorithm runs se.quentially and stops whenever a bit rate is met. 

Figure 3.0 shows a generic transform coder. 

Tr~ntinmalion 
Transform 
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'" 
Strum E!lici'"r Bit Smam 
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Dccorrclaros !011 IHCUil nfSymbol 

Samples here Srrum 

Figure 3.0 A generic transform Coder 

3.3 2 • 0 Discrete Wavelet Transform of Image 

Before the algorithm can be employed, the image is 2-u discrete wavelet transformed 

and wavelet coefficients for the image are obtained. It is these wavelet coefficients that 

are encoded using the algorithm. 
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Figure 3.1 shows the result of first stage of wavelet transform of an image. Because we 

are dealing with digital image compression here, whenever we say wavelet transform, it 

should be understood as the discrete .. ,avelet transform. 

As explained in the previous chapter, the four subbands in figure 3.1 arise from the 

separable application of vertical and horizontal filters. The subbands LH,, HL1 and HH1 

represent the finest scale wavelet coefficients. To obtain the next coarse scale of 

wavelet coefficients, the subband LLt is further decomposed. To obtain the third scale 

level of wavelet coefficients, as shown in figure 3.2 the subband LL2 is further 

decomposed. As could be obvious, in the figure, the first letter of the L and H 

combination refers to the horizontal filter outcome and the second letter refers to the 

vertical filter outcome. The subscript indicates the number of scales. For example HL2 

indicates that it is the outcome of the high pass horizontal filter and the low pass vertical 

filter of scale 2. 

Since we know that -n S m s n for discrete signals, in figure 3.1 the low frequencies 

represent a bandwidth approximately corresponding to 0 ,; lru I s rr/2 while the high 

frequencies correspond to rrl2 ,; lru I s n. With each level of decomposition these 

bandwidths get halved from the previous ones. 

3.4 The Zerotree Data Structure 

The wavelet coefficients in one subband have a parent child relationship with the 

wavelet coefficients in other subbands when significance with regard to particular 

threshold value is concerned. This gives rise to a new data structure called the zerotree 

which improves the coding of the wavelet coefficients. A wavelet coefficient xis said to 

be insignificant with respect to a threshold T if lxl < T. The zerotree is based on the 

hypothesis that if a wavelet coefficient at a coarse level is insignificant with respect to a 

given threshold T, then all wavelet coefficients of the same orientation in the same 

spatial location at finer scales are likely to be insignificant with respect to T. This 

hypothesis is found to be often true. {Shapiro, 1993). Figure 3.3 shows the parent child 

relationship of the coefficients in the subbands. 
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The coefficient at the coarse scale is called the parent, and all coefficients corresponding 

to the same spatial location at the next finer scale of similar orientation are called 

children. For a given parent the set of all coefficients at alf finer scales of similar 

orientation corresponding to the same location are called descendents. Similarly for a 

given child, the set of all coefficients at all coarser scales of similar orientation 

corresponding to the same location are called ancestors. With the exception of the 

lowest frequency subband, all parents have four children. For the lowest frequency 

HL, 

LH, ""• 

Figure 3.3 Parenl-~ hlld relalionsh ip of 3 three scale 2-D wavelet Coefficients 
AJopltJ fmm Shapiro,/993 

subband, the parent-child relationship is defined such that each parent node has three 

children. 

In Figure 3.3 the arrow points from the subband of the parents to the subbands of the 

children. LL, the lowest frequency subband is at the top left. Also shown are the 

children and the descendents of HH3. 

3.5 The Number of Zerotrees 

Depending on the number of scales of decomposition that is pertormed we get different 

number of zerotrees of the wavelet coefficients. lf there is only one coefficient remaining 

in the LL, for an n-scale decomposition then we get one tree. Otherwise we get multiple 

trees. This is important to understand because in some cases we don't need to 

decompose so that there is just one coefficient left in the lowest frequency band LL,. As 

a rule of thumb, for image size like 512 x 512, only five or six scales of decomposition 
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are performed. If we decompose the above 512 x 512 to five scales, we end up with 

eight coefficients in the LL5 subband, and so we have eight trees. Intact the number of 

trees is equal to the number of coefficients in the lowest frequency subband (LL,). In 

Figure 3.4 shows an 8 x 8 wavelet coefficients from three-scale decomposition so that 

there is only one tree, and Figure 3.5 shows the same 8 x 8 wavelet coefficients but from 

Main Parent 

Figure 3.6 A tree structure of wavelet coefficients 
A 3 scale decomposition of wavelt trasform on an 8 x 8 image 

Note how the first main parent has just three children white the rest have four children 
each. Ofcourse the leaves don't have any children. 

only two-scale decomposition and thus resulting in four trees. The members/coefficients 

of each different tree are differentiated by representing them by •, +,',and-. Figure 3.6 

shows one tree structure in a tree-like representation. 
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3.6 The Significance Map 

The significance map contains the significance information of coefficients in a tree. It 

contains information whether a coefficient's descendents are significant or not and 

whether its ancestors are significant or not. This significance information or significance 

map is very useful when encoding a coefficient code as zerotree root or an isolated zero. 

The idea will become clear when we discuss section 3.8 

3.7 Scanning of Coefficients 

To process the coefficients, the scanning of coefficients is performed in such a way that 

no child node is scanned before its parent. For an n-scale transform, the scan begins at 

the lowest frequency subband, denoted as LL,, and scans subbands HL,, LHo. and HH"' 

at which point it moves on to the scale n-1, and so on. The scanning pattern for 3-scale 

wavelet transform coefficients is shown in Figure 3.6. We note that each coefficient 

within a given subband is scanned before any coefficient in the next subband. 

-:Ll 
,, 

"'' LHf ""' ... "'' 
Llh (__ ""' 

'"' / 
V,,, 

Figure 3.7 Scanning order of the subband! for ~ncoding a 5ignificDnce map 

3.8 Encoding a Wavelet Coefficient 

Given a threshold level T we now discuss how a coefficient is encoded. A coefficient 

can be any one of the following four; 

• A positive significant 

• A negative significant 

• A Zerotree root, and 
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• An Isolated zero 

A coefficient xis significant with respect to a threshold value T if I x I ~ T. A significant 

coefficient is positive significant if it is positive and negative significant if it is negative. 

A coefficient x is a zerotree roo! if itself and all its descendents are insignificant with 

respect to a threshold T. 

A coefficient x is an isolated zero if it is itself insignificant but at least one of its 

descendents is significant. 

Accordingly four different symbols, one for each of the four kinds of coefficients that can 

be encountered can be assigned. Four such symbols can be as shown in Table 3.1 

Svmbol MeanlnQ 

POS Positive 

NEG Negative 
" . 

ZTR Zerotree Root 

IZ Isolated Zero 

Table 3.1 Symbols and their meanings for coding a wavelet coefficient 
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In this project these symbols and their meanings are used. The flow chart for encoding 

a coefficient is shown in Figure 3.8 

3.9 Successive Approximation Quantization 

To pertorm the embedded coding, successive-approximation quantization (SAO) is 

applied. The SAO sequentially applies a sequence of thresholds T0 to T,.1 to determine 

the significance, where the thresholds are chosen so that T, ~ T,.,/2. The initial threshold 

is chosen such thatT0 >I X11/2 where X1is the maximum of all the transform coefficients. 

During the encoding and decoding, two separate lists of wavelet coefficients are 

maintained. These lists are called the dominant list and the subordinate list. At any 

point in the process, the dominant list contains the coordinates of the coefficients that 

have not yet been found significant in the same relative order as the initial scan. The 

scan is such that the subbands are ordered, and within each subband, the set of 

coefficients is ordered. Thus using the ordering of the subbands as shown in figure 3.6, 

all coefficients in a given subband appear on the initial dominant list prior to coefficients 

in the next subband. The subordinate list contains the magnitudes of those coefficients 

that have been found to be significant. For each threshold the list is scanned once. 

During the dominant pass, scanning the coefficients with coordinates on the dominant 

list, i.e. scanning the coefficients that have not been found significant, are compared to 

the threshold T, to determine their significance, and sign if they are found to be 

significant. The significance map is zerotree coded as described in section 3.8. Each 

time a coefficient is encoded as significant, (positive or negative significant), its 

magnitude is appended to the subordinate list. Then the coefficient in the wavelet 

transform array is set to zero, so that the significant coefficient does not prevent the 

occurrence of a zerotree on future dominant passes at smaller thresholds. 

After a dominant pass a subordinate pass is pertormed. During this subordinate pass 

the subordinate list is scanned and the specifications of the magnitudes available to the 

decoder are refined to an additional bit of precision. Specifically, during a subordinate 

pass the width of the width of the quantizer step size, which defines the uncertainty 

Interval of the true magnitude of the coefficient, is halved. For each magnitude on the 
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subordinate list, this refinement can be encoded using a binary bit " symbol to indicate 

that the true value falls in the upper half of the old uncertainty level. We should note that 

prior to this refinement, the width of the uncertainty level is exactly equal to the current 

threshold. After the completion of the subordinate pass the magnitudes of the 

subordinate lists are sorted in decreasing magnitude, to the extent that the decoder has 

the information to pertorm the same sort. 

The process continues to alternate between the dominant and the subordinate passes 

where the threshold is halved before each dominant pass. In principle one could divide 

by any factor other than 2. The factor of 2 is chosen because it has nice interpretations 

in terms of bit plane encoding and numerical precision in a familiar base 2, and good 

coding results were obtained. (Shapiro, 1 993) 

In the decoding operation, each decoded symbol, both during the dominant and the 

subordinate passes, refines and reduces the width of the uncertainty level in which the 

true value of the coefficient may occur. The center of the uncertainty interval is used as 

the reconstruction value. 

The encoding stops when some target stopping condition is met, such as when a bit 

budget is exhausted. The encoding can cease at any time and the resulting bit stream 

contains all lower rate encodings. Further more decoding cans top at any point. 

However terminating the decoding of an embedded bit stream at a specific point in the 

bit stream produces the same image that would have resulted had that point been the 

encoding target rate. This ability to cease encoding and decoding anywhere is 

extremely useful in systems that are either rate~constrained or distortion~constrained. 

3.10 Experimental Results Obtained by Shapiro 

• The compression pertormance of this algorithm was found to be competitive with 

virtually all known techniques. 

• The precise rate control that is achieved with this algorithm is a distinct advantage. 
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• The pertormance of the EZW coder was compared to widely available version of 

JPEG. JPEG does not allow the user to select a bit rate but instead allow the user to 

choose a "quality factor" 

• A "Barbara" black and white picture was first encoded using a file size of 12,866 

bytes. The PSNR (peak signal to noise ratio) in this case was found to be 26.99 dB. 

To the same "Barbara" picture EZW algorithm was applied with the same target file 

as above of exactly 12,866 bytes. The resulting PSNR was 29.39 dB, which is 

significantly higher than for the JPEG. The EZW encoder was then applied to the 

same picture using the target PSNR of 26.99 dB. The resulting file size was 8820 

bytes. 

• When encoding or decoding is terminated during the middle of a pass, there are no 

artifacts produced that would indicate where the termination occurred. 

• A "Lena" image was coded at high compression ratio of 512:1. The image quality 

was poor but still recognizable. This is not the case with conventional block coding 

schemes, where at such a high compression ratio, there would not be enough bits to 

even encode the DC coefficients of each block. (Shapiro, 1993) 
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4. ENCODER AND DECODER DESIGN 

4.1 Introduction 

This chapter is divided into three parts. In Part A, the design of a single processor 

encoder is presented. Part B deals with the design of single processor decoder. In part 

C the design of codec using three parallel processors to process a zerotree of wavelet 

coefficients is presented using the principles of the single processor codec design. 

The design of the codec described in this chapter is very generic and can be used to 

encode and decode any size zerotree of wavelet coefficients. In keeping with the 

specification of the project, the coefficient values are assumed to be between -128 and 

+ 127, which is for an 8 bit implementation. However the ideas can be applied for higher 

value coefficients. 

A. Encoder Design 

4.2 Single Processor Architecture 

Here we look at the architecture of the single processor encoder. The encoder that uses 

three parallel processors is explained afterwards. This is helpful because it becomes 
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fairly easy to grasp the idea once we have discussed the single processor encoder. 

Figure 4.1 shows a generic encoder 

4.2.1 Mapping Coefficients to Memory Bank 

Let the tree size be m. For an n x n image that has been wavelet transformed to a single 

coefficient for the lowest frequency subband, m = rf. If the image has been wavelet 

" 

... 

.. , .. , .. , 
Pmnl roouor 

Flsure ~.2 One to one mapplnr ollhe coefficicntaln atnc to a memory bank 

transformed so that there are k coefficients in the lowest frequency subband then the 

number of trees is k and so each tree size m = rflk. 
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As figure 4.2 shows these m coefficients are then mapped into a memory bank, from 0 to 

m -t. The main parent goes to the index 0 memory element followed by its three 

children which are in turn followed by their children and so on. The coefficient number in 

the tree and the indices of the memory bank has one to one correspondence. For 

example the coefficient number 0 goes into the memory element whose index is 0, 

coefficient 1 goes into the memory element 1 and so on. The ordering of the 

coefficients is dictated by the scanning order that was shown in figure 3.3 in chapter 3. 

0 Coefl Encoded zrF DSig 

Coefl Encoded ZTF DSig 

Coe!: Encoded ZTF DSig 

m·l Coefl Encoded ZTF OS!g 

Figure 4.3 1 he memory bank with !he four fields 

4.2.2 Fields of a Memory Element 

Each element of the memory bank is not just a single field containing the 

coefficient alone, but a record of four fields. The fields are Coeff, DSig, ZTF, and 

Encoded. The memory bank actually looks as shown in figure 4.3. The fields 

facilitate the encoding process by containing important information with regard to 

the coefficient. The functions and meanings of these fields are as follows: 

• The Coeff field where the coefficient is actually stored. 

• The DSig field is used to store information to indicate if any of the descendents of the 

coefficient is significant with respect to a given threshold. A binary '1' is to indicate 

'yes' and the '0' is for 'no'. 

Karma Wangdi Thesis on Final Year Engineering Project, 1999. 



Embcdcd Zcrotrcc Codcc 46 

• The ZTF field is used to store the binary information to indicate if ancestor or parent 

of the coefficient has been found to be a zerotree root. In other words it is used to 

indicate if the coefficient is an element of a zerotree. Here too '1' is to indicate that 

the coefficient is an element of the zerotree while a '0' indicates that it is not. 

• The Encoded field is also used to store binary information to indicate if the coefficient 

has already been encoded. A '1' is meant to indicate yes and a '0' for no' 

4.2.3 Pointers 

As shown in figure 4.1 we use two pointers called the parent pointer and the child 

pointer. As the names indicate, the parent pointer is used to point to the parent 

coefficient while the child pointer is used to point to the child coefficient. 

4.3 Choice of Thresholds 

The specification for the encoder is for an 8·bit implementation. As such the coefficients 

can vary from -128 to 127. So the absolute value of the coefficients vary from 0 to 128. 

Instead of choosing the first threshold T; ~ IX11/2 where IX11 is the maximum of all 

coefficients, we choose 64 as the first threshold as it is half of the maximum possible 

threshr,!J. The other thresholds then become 32, 16, 8, 4, 2 and 1. This choice of 

thresholds leads to a very simple and effective way of encoding the coefficients, as we 

will see later. It is especially useful when performing successive approximation. 

Subsequently we start encoding using the first threshold, 64. Then encode the 

whole trae against 32 then for 16 and so on until we have finished coding against 

threshold value 1. 

4.4 E01coding the Coefficients 

The encoding of the coefficients against any threshold (T) is achieved by three 

operations. These three operations are: 

• Significance Map Generation 
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• Assignment of Codes, and 

• Successive Approximation 

Figure 4.4 shows these three steps, for encoding for a threshold. As it is obvious 

significance map generation is the first one performed. After it has been completed, the 

two remaining steps, assignment of codes and successive approximation quantization 

iterate to encode all the coefficients for the given threhold. 

T Momury h•nk 

Succoui•·• 
Appro1imoilo>n 
QuontinlionJ 

lnf!llmatinn bit• 

Figure 4.4 Encnding cuo!f.:icnl! !lf memnry hank fm rhmhold T 

4.4.1 Significance Map Generation 

0 "' 

•·l 

••• Ill![ 

Memoryb&nk 

Figun 4.S Slgnlfictnce m1p IUmtlon of the memoryboni. 
Showlns direction of proceuinJ 
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Significance map generation is the first thing that we do in encoding the coefficients. By 

performing this process we collect information about the significance of the descendents 

of each coefficient. This information is used when codes are assigned to the 

coefficients. 

We start from the bottom of the memory bank and move our way up as shown in figure 

4.5. The child pointer is made to point to the last coefficient (m - 1 )lh coefficient, that is, 

the child pointer contains the value m-1. The parent pointer is made to point to the last 

parent, which is the parent of the coefficient that the child pointer is pointing at. The last 

parent is the last coefficient of the first one-fourth of all the coefficients in the tree. 

Therefore 

i = (m/4) -1 = index of the last parent. 

With the parent pointer pointing at the last parent in the tree and the child pointer 

pointing at its last of the four children we do the following: 

The absolute value of the coefficient pointed to the child pointer is compared to the 

threshold. If ICoeffl 2: T, i.e. significant then a '1' is written in the DSig field of the parent 

coefficient. Since the descendent significance for that parent coefficient is determined 

there is no need to check for the significance of other three children. So we move to the 

next parent by decrementing the parent pointer by one. 

Fori in 0 to 3\oop 
If abs Menbnk(child + i).Cneff ;::T then 

Mcmbnk(parcnt).DSig := '\'; 
Eycsno:= '\'; 
Exit; 

End If; 
End loop; 
If EYcsNo = '0' then 

Membnk(parcni).DSig := '0'; 
end If; 
puent :=parent· I; 
child :=child • 4; 

.. Membnk is memory bank 
.. child is child pointer to the last child 
.. was the loop exited or not 
.. parent is pointer 

The child pointer is decremented by 4 to point to the last child of the new parent. We are 

assuming that we are dealing with parent coefficients that have only one level of 

descendents, i.e. they only have children. This means that the children themselves do 

nol: have children In their turn or they are the leaves of the tree. For parent coefficients 

with only one level of children 

DSigPmnt = Significance(chid\1 OR child2 OR child3 OR child4) 
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In this case a possible pseudo-code would look like: 

If the child coefficient is found to be insignificant, the significance of the next child and 

the other children is checked until we find a significant child. When all the four children 

are checked and if all of them are found to be insignificant, a '0' is written in the DSig 

field of the parent coefficient. This is repeated for all the parents that have only one level 

of descendents. 

When we reach higher level of parents, that is coefficients that haVe more than one level 

of descendents, their DSig field is determined by the significance of both levels of 

descendents. In other words, the DSig of the parent is determined by the DSig fields 

and as well as the significance of all its four children. As a result we need to check both 

the DSig fields and the children coefficients. 

If we find either DSig field containing '1' or the coefficient to be significant for any 

one of its four children a '1' is written in the DSig field of the parent coefficient. We then 

proceed to determine the descendent significance of the next parent by decrementing 

the parent pointer by 1 and the child pointer by 4. 

If DSig field of all the four children contain a '0' and if all the children are 

insignificant (the absolute values of all the children are less than the threshold n. then a 

'0' is written in the DSig field of the parent coefficient and we proceed to determine the 

DSig field for the next parent. For parent coefficients with more than one level of children 

DSigp 11enr = DSig(childl OR chidl2 OR child3 OR child4) 
OR Significance(chidll OR child2 OR child3 OR child4) 

In this way we continue to determine the DSig of the coefficients till we determine the 

DSig of the main parent. We must remember that the main parent has only three 

children, so the child pointer must be decremented by 3 when we move to the main 

ForiinOro)hop 
If (lbl Membni(chrld t i).Coeff <:TOR Memb~k(cbild+i).DSig a 'I') !hen -· Membnk Is memory b•nk 

tMmbnk(porenll.DSi! :a '1'; --child is child poinlerlo the lul child 
Eyuno:m '1'; -- Wlllhe hop e~iled or nor 
bil; 

End If; 
l!nd hop: 
I( EYe1No • 'Q' then 

Memb~k(porent).DSiJ := '0'; 
edlf; 

putnl := parenl · 1: 
cb!ld :-child · ~; 
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parent, instead of decrementing by 4 as was the case with other parents. 

The pseudo-code we could do something like this: 

50 

We realize that there is a need for us to differentiate between the leaves and the higher 

level coefficients. To this effect the DSig fields of all the coefficients are initialized to 'u' 

(unknown) prior to significance map generation. So before we check th•J significance of 

the child we check if the DSig field of the child contains a 'u'. If it does, then it is a leaf 

coefficient. The DSig fields of parents get written with '0' or '1' before they are pointed to 

by the child pointer. So if the DSig of child coefficient does not contain a 'u' then it is not 

a leaf. 

At this point the memory bank contains enough information so that we can start 

assigning codes to the coefficients. 

The Flow chart for determining the DSig field of a parent coefficient is shown in Figure 

4.5.1. 
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4.4.2 Assignment of Codes 

Once the signilicance map generation is completed lor a given threshold the memory 

bank contains all the information required for the assignment of codes to begin for that 

threshold. 

'"" 

.. , .. , 
"" 

Mo01oty Oon< 

F'l'" H AttiJomcntofCo~tl 
SOo~I•J dut<llon of PIO«UIOJ 

As discussed in chapter 4 four different codes are assigned. Once again, they are: 

• ZTR, for zerotree root 

• POS, for positive signilicant 

• NEG, for negative significant, and 

• JZ, for isolated zero 

To assign the codes we start from the main parent and move downwards as figure 4.6 

shows. Here too we use our child pointer and the parent pointer. While the parent 

pointer points to the parent, the child pointer points to the first child of the four children 

(three in case of the main parent) 

We use an array to store the cades for the coefficients and information about the 

approximate values In case of significant codes. This is the array that will contain the 

embedded codes for the coefficients of the memory bank at the end of the encoding 

process. In other words this is the array that will contain the result of the encoding. 
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The coefficient that is pointed to by the parent pointer is the one that is assigned code to. 

To code a coefficient its absolute value is compared to the threshold. 

If the coefficient is significant, it sign is determined by comparing it with zero. If it 

found to be positive, a POS is stored in the output array and the array index is 

incremented by one. If it is found to be negative significant, a NEG code is stored in the 

output array and the array index is incremented by one. Whenever a POS or a NEG is 

coded, a '1' is written in the Encoded field of the coefficient, to indicate the coefficient 

has been coded as significant so that future coding of this coefficient does not take 

place. A pseudo~code for coding significant code is: 

(when significant) 

If parcnt.coerr < 0 then --parent is the clement pointed to by the parent pointer 
CodeRA(n) :=NEG; -- CodeRA is the array to where we store the codes 

Else 
CodeRA(n) := POS: 

End If: 
n := n+l; 
parent.Encoded := '! ': 
--perform successive approx 
parent.coeff := 0; 

The assignment of a significant code is followed by successive approximation, which is 

discussed in the next section. After successive approximation is completed the 

coefficient is replaced by a zero. We then move to assign code for the next coefficient 

by incrementing the parent pointer by 1 and incrementing the child pointer by 4 (3 when 

the parent being incremented is the main parent). 

If the coefficient is found to be insignificant for the threshold at hand we proceed to 

find out if it is a zerotree root or (ZTR) or an isolated zero (IZ). This is the time when our 

significance map proves useful. At this point go back to the significance map and check 

the DSig field of the parent coefficient. Any of the three conditions would be satisfied. 

a. If the DSig field contains a '1' it means that at least one of its descendents is 

significant, so it is an isolated zero. Subsequently an isolated zero code (IZ) is 

stored in the output array and the array is incremented by one. We then proceed to 

determine the code for the next coefficient by incrementing the parent pointer by 

one and the child pointer by 4 (3 when the parent being incremented to is the first 

parent). 
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b. If DSig field contains a ~a· instead of a '1', it means that none of its descendents is 

significant. So the coefficient is a zerotree root (ZTR). Therefore a ZTR code is 

sterad in the output array and the array is incremented by one. A ~1' is then written 

in the ZTF fields of all the four/three children of the parent coefficient. 

ZTFchild = ZTFparent 

In this way the ZTF information gets passed onto from parents to their children 

which in turn gets passed to children of the children until it reaches the leaves. This 

information is used to make sure that we do not code the descendents of ZTR as 

they are all insignificant and need not be coded. 

c. If the DSig field contains a ~u• then it is a leaf. A leaf insignificant is also coded as a 

ZTR. When decoding we can easily distinguish a leaf coefficient from other 

coefficients. 

A pseudo-code for encoding an insignificant coefficient is: 

(when insignificant) 

If parent.DSig ='I' then ··parent is the element pointed to by the parent pointer 
CodeRA(n) := IZ; ··CodeR A is the array to where we store the codes 

Elslfparent.DSig = '0' then 
CodeRA(n) := ZTR: 
Children.ZTF :='I'; ··for ullthe children 

Else ·· parent.DSig = 'u' 
CodeRA(n) := ZTR: 

End If; 
n := n+ I: 
parent:= parent+ I; 
child:= child+ 4; 

There are two things we need check before we begin to assign code to a coefficient. 

The first one is that we should not code a coefficient that has already been coded as 

significant. The Encoded field is used for this purpose. As we saw above, a 't' is written 

in the Encoded field of the coefficient that has been coded as significant. Once written 

this information is preserved for the rest of the encoding process. So before going on to 

detennine the code for a coefficient its encoded field is checked. Only if a '0' is found in 
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this field we proceed with the next step of assigning code to the coefficient. Otherwise 

we go to determine the code for the next coefficient 

The second thing is to check the ZTF field. If a 't' is found in the ZTF field of the 

coefficient then it is a descendent of a ZTA, so it need not be coded. Only if a '0' is 

found in the ZTF field of the coefficient do we proceed with determining the code for the 

coefficient at hand. 

So we don't code a coefficient if either of the ZTF and Encoded fields contains a '1'. 

If the main parent is found to be a zerotree root then all other coefficients are 

insignificant for the threshold at hand and there is no need to code any further for that 

threshold. We then proceed to encode for the next lower threshold. 

In this manner we assign codes to coefficients in the memory bank for a given threshold. 

The flow chart for assigning a to a coefficient is shown in figure 3.8 in the last chapter. 

4.4.3 Successive Approximation Quantization 

Successive approximation quantization is the process by which information on the 

values of the coefficients is embedded with the codes instead of passing the whole 

coefficient itself. When we have finished discussing this topic we can appreciate how 

the precision of the coefficient values are improved with each threshold level codes. If 

the decoder is provided with all the codes then it can reconstruct the exact coefficient 

values. Otherwise it will only be able to reconstruct an approximate value of the 

coefficient depending on the number of the codes it receives. Let's see how this 

happens. 

Given the size of the tree it is possible to tell against which threshold a code has been 

coded. That is given a code, say POS, we can tell whether it has been positive 

significant against 64 or 32 or 16 or other threshold values. This information is implicitly 

contained in the encoded codes. 
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Coefficient reconstructed value from Knowledge orThrashold 

128 >= lCoeflicientl >- 64 • 96 

63 >- lCoefticientl >= 32 • 46 

31 >= !Coefficientl >- 16 • 24 
15 >-ICoefficienll>- 6 • 12 

7 >= ICoeUicientl >= 4 • 6 
3 >= ICoelficientl >= 2 • 3 

!Coefficientl = 1 • 1 

Coefficient= 0 I 0 

Figure 4.7 Coefficients and their reconstructed values from knowing the thresholds 

With the thresholds we use, 64, 32, 16, 8, 4, 2, and 1, and using the centre of the 

uncertainty interval as the reconstruction value the coefficients can be reconstructed as 

shown in figure 4.7 

In order to be able to reconstruct the exact original coefficients from the codes the 

knowledge of threshold itself isn't enough. So we need to send additional information on 

the coefficient value with the codes. This is what successive approximation quantization 

exactly does. 

Whenever a POS or NEG is coded during the assignment of codes we subtract the 

threshold value from the absolute value of the coefficient. We then store the value of the 

remainder in the two dimensional array and send the information on this remainder to 

Bits and the values they indicate 

2 4 8 16 32 64 
0 I ' 3 ' 5 6 

0 

1 

• 
• 
• 

m·2 
m·l 

Figure 4.8 The two dimensional array for storing information ont lhe coeH!cienl values 
7 bits for each cocfficient 

-values 
-bit no 
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the decoder. Since the maximum absolute value of a coefficient can be 128 and since 

the max threshold is 64 we can have a maximum remainder of 64 (128-64). As a result 

we use 7 bits for each coefficient. So the two dimensional array becomes m-1 x 7 of bits 

as shown in figure 4.8. In figure 4.8 the codes are numbered and these codes are the 

significant codes (POS or NEG) number. The numbering is such that code number 0 is 

the first significant code encoded, code 1 the second one and so on. 

Further explanation can be more effectively achieved by taking an example. 

Let us say ihat we started our encoding with threshold 64 and got a POS as ihe first 

significant code. Let us further assume that this coefficient has a value of 120. As soon 

as we code this POS we build the additional information. The remainder is (120-64 = 

56). This 56 can be broken down into (56 = 32 + 16 + 8). Because it is the first 

significant code we store this information in the first row of the 2 dimensional array. We 

write a '0' in the bit places corresponding to 64, 4, 2 and 1 and write a '1' in the bit places 

corresponding to values 32, 16 and 8. After this the two dimensional array looks like 

shown in figure 4.9. 

Bits and the values they indicate 

2 4 8 16 32 

• ' ' ' ' ' • ••• ••• ••• .,. ., . .,. 
' 

• . 
• 

.. , ,_, 

Fl1ure 4.9 Th• lwo dimuoillulm&y wlih loformul~n lor lho /iulllg•if!<nl ~odo 

64 -values 
-bit no • 

• •• 

Since our threshold is 64 and a remainder of 64 is possible we store the bit information 

contained in the bit place corresponding 64 right after the code in the output code array. 

Here right after we store POS, '0' is stored in the output array. 

Let us assume that our next significant code is a NEG and assume that the coefficient is 

- 85. Obviously this is also against threshold 64. So the remainder of the coefficient for 

which we need to provide additional information is (85 -64 = 21 ). 21 can be written as 
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(16 + 4 + 1). Since this is the second significant code we store the information in the 

seven bit positions of the second row in the two dimensional array. A '1' is written in the 

bit positions corresponding to the values 16, 4 and 1 and a '0' is written in other bit 

positions. Similarly right after the code NEG, we store a '0', for 64, in the output code 

array since the threshold is still 64 and a remainder of 64 is possible. 

Now let us say that our third significant code is a POS and the coefficient is value is 47. 

Obviously the threshold is 32, since it is less than 64 and greater than or equal to 32. 

The remainder is (47-32 = t5). 15 can be written as (8 + 4 + 2 + 1 ). Like before we 

store this information in the third row of the 2 dimensional array, storing '1' in the bit 

positions corresponding to 8, 4, 2, and 1 and '0' in bit position corresponding to 16. 

Since the threshold here is 32 when we subtract 32 from lcoefficientl the maximum 

remainder that we will gat is 31. This is because when encoding has been finished for 

threshold 64, the maximum absolute value of the unencoded coefficients will be 63. 

Otherwise it will have been significant against threshold 64 and coded as significant 

earlier. So we do not need to write anything in the bit positions corresponding to 64 and 

32 in the 2 dimensional array. 

" ~ 

E 
" z 
• ~ 
0 
u 

0 

1 

' 

. 
• 
• 

m·1 

0 

·o· 
'1' 

'1' 

Bits and the values they indicate 

2 4 8 
1 ' 3 .,. '0' '1' 

'0' '1' '0' 

'1' '1' '1' 

16 )2 

' 5 
'1' '1' 

'1' ·o· 
'0' 

64 --1·alues 
-bit no • .,. .,. 

Figure 4.10 The two dimcntlon•larny wllh informalinn fo1thc fillliJnifl~anl codo 

For threshold less than 64 the maximum lcoefficientl is 2T - 1; T being the threshold. 

The maximum remainder is (2T -1) - T = T -1. So we do not have bit information 

corresponding to values >= T. Hence we do not need to write anything in those bit 

positions of the 2 dimensional array. Also we do not need to provide information on the 

approximate values In these bit positions. Figure 4.10 shows our 2 dimensional array 

after successive approximation qunatization of this third significant has been completed. 
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There is an additional thing that we do when we code the first significant for lower 

thresholds than 64. Right after the code is stored in the output code array the bit 

information in the two dimensional array corresponding to the current threshold value for 

all the significant codes encoded for higher threshold values are stored in the output 

code array. In our example when we store the third code (POS for 47) it is the first 

significant code for 32. So after storing the code we look at the bit positions 

corresponding to the value 32 in the 2 dimensional array for already coded coefficients 

for 64 (row 0 and 1 ). Referring to our two dimensional array in figure 4.8 we find a '1' for 

row 0 and '0' for row 1. So we store these bit information in the output code array right 

after the POS code is stored. For the other codes, for the same threshold 32 we only 

need to store the code and do not need to send any information on the coefficient 

values. However we still have to fill the two dimensional array for the code with the 

additional information for the coefficient value to be sent when lower level thresholds are 

encoded. 

At this point, the output code array according to our example would look like the one 

shown in figure 4.11 

To generalize, whenever we code the first significant for a threshold (less than 64) we 

send the bit information on that threshold for all the codes that have been coded 

significant against higher thresholds. That is, when we code for the first significant for 

threshold 16 we store the code in the output array and then store all the bits 
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corresponding to value 16 in the 2 dimensional array for all the significant codes that 

have been coded for 64 and 32. Similarly when we code the first significant for threshold 

8, we store the code and then store all the bit information corresponding to value 8 in the 

2 dimensional array for all previously coded significant codes for 16, 32 and 64. 

Similarly we code for the rest of the thresholds. 

We observe that with each lower level of threshold more precision information is added 

as we code for each lower level threshold. Finally when we have coded for the last 

threshold 1, the output array has enough information so that the decoder can be able to 

reconstruct the original coefficient. 

At this point the encoding is completed. 

4.4.4 Updating the DSig, ZTF, Encoded and Coeff fields 

The DSig fields are initialized to 'u' before significance map generation starts. That is it 

is initialized to 'u' at the start of coding for every threshold. 

The ZTF fields are also initiaized to '0' at the beginning of coding for every threshold. 

The Encoded field is initialized only once, at the beginning of the encoding process, to 

'0'. Once set it remains set for the remainder of the encoding process. 

The Coeff field is set to 0 once the coefficient has been coded as significant. This 

prevents the significant coefficient from preventing the occurrence of zerotree roots. 

4.4.5 Summary 

Encoding is achieved through three operations: significance map generation, 

assignment of codes and successive approximation. 

Karma Wangdi Thesis on Final Year Engineering Project, 1999. 



EmhcdcU Zcrotrcc Cmlcc 

Starting with threshold 64 we first generate the significance map. Then we assign codes 

and perform successive approximations as required for each coefficient and repeat code 

generation and successive approximation till we have coded for the last coefficient in the 

memory bank. Encoding is completed for threshold 64. 

We then code for the next lower threshold (here 32) by repeating the above process, 

then for 16, then for 8, then 4, then 2, and finally with 1. 

This way when the last threshold has been coded for, ihe encoding is complete. We get 

in our output array the codes and the information on the coefficient values as the result 

of encoding. 
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B. Decoder Design 

4.5 Introduction 

At the end of the decoding we will obtain the same numbe1· of coefficients that has 

originally been encoded, and in the same order as we found them before encoding in 

part A. 

4.6 Assumption on Codes 

We assume that the codes to be decoded are stored in an array, like the result of the 

encoding described in part A. In practical application the codes can be reaching the 

decoder one after another in real time, with the most significant codes (those coded for 

higher thresholds) first followed by the less significant ones. To repeat what have been 

already said in chapter 3, codes that are coded for higher threshold values are 

considered more significant than those coded for lesser threshold values. With our array 

assumption, the most significant codes are stored in the beginning followed by less 

significant ones. For the purpose of explanation we call this array the code array. 

4.7 Architecture 

In the decoder too we use a record of four fields to store vital information. The fields are 

Coeff field, ZTF field, Decoded field and the Sign field. The Coeff field is used to store 

the decoded ceofficient while the other three are used to store information about the 

coefficient to facilitate the decoding process. Since the size of the tree was m, we use an 

array of size m (from 0 to m-1) of the four-field record. The array of record is shown in 

figure 4. 12. 

The four fields and their meanings are: 

• Coeff: The Coeff field is used to store the decoded coefficient 

• ZTF: The ZTF field is used to store binary information to indicate whether a zerotree 

root has already been found. A 'I' in the field is to indicate that the coefficient is an 
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element of a zerotree. That is, an ancestor of it has been found to be a zerotree 

root. A '0' indicates otherwise. 

• Decoded: The Decoded field is used to store binary information to indicate whether 

or not the coefficient has been decoded already. A '1' means 'yes' while a '0' means 

'no' 

• Sign: The Sign field is used to store the sign of the coefficient. '1' indicates that the 

sign is negative while '0' indicates that it is negative. 

Record Fid.h 

An~y indicn too II m Oocodod "" 0 
I 

' 3 

' 

. . . 

m· I 

Fi8ure 4.12 A nay or re~ord fields, used for decoding 

As in the encoder, here too we make use of two pointers: a parent pointer and a child 

pointer. We also use an array to store the indices of the coefficients that have already 

c ........ . 

•• 

'""''"''" 

"'"" 
Figure 4. Ll: Diagramml\ic representation of the decode! 
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been decoded. A counter is also used to store the number of codes that have been 

decoded. A diagrammatic representation of the decoder as a whole is shown in 

figure4.13. 

4.8 Decoding Process 

The decoding is dictated by the encoding. As such it is a matter of how elegantly the 

reverse of encodign can be performed. The following paragraphs shows how we 

achieve this. 

4.8.1 Preparation 

At the beginning of the decoding process all the four fields of the record array are 

initialized. The Coeff field is given a value 0 and the ZTF, Decoded and Sign fields are 

all set to '0'. 

Since the record array is to contain the coefficients in the exact order as they were 

before encoding, the same parent-child relationship holds between indices of the array in 

which the decoded coefficients will be stored. That is, in the record array, the Coeff field 

of index 0 will contain the main parent, Coeff field of indices 1 ,2, and 3 will contain the 

three children of the main parent, and Coeff field of indices 4, 5, 6 and 7 will contain the 

four children of coefficient in index 1, and so on. 

The parent pointer is made to point to the main parent and the child pointer is made to 

point to the first child of the main parent. 

Parent Pointer =0; 

Child Pointer= 1; 

The decoding is done for the coefficient pointed to by the parent pointer. We start from 

the main parent and move downward through to the bottom of the record array. First we 

decode for the highest threshold, 64, then for 32, then for 18 and so on. For each 

threshold the following steps are involved 
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4.8.2 Checking the ZTF and Decoded Fields 

Before we read the code from the code array to decode, we check the Decoded and the 

ZTF fields of the parent (index pointed to by the parent pointer) of the record array which 

will contain the decoded coefficients. The flow chart for pertorming this check is shown 

in figrure 4.13.1 

If the Decoded field contains '1' it means that the coefficient has already been 

decoded for. So we move to the next parent by incrementing tho parent pointer by one 

and the child pointer by four (three if the current parent is the main parent). If the 

Decoded field contains a '0' instead then we check for the ZTF field 

'" 

Point to the idel which will 
contain the decoded 

coefficient 

"" 

L...--------1 Increment the 
indu 

Figure 4.13.1 

Dedper the code 

Flo we hart for C~eding the D ccoded and ZTF field! be fore 
rnding the code form the (Ode conniner 

If the ZTF field contains a '1', it means that it is an element of a zerotree root found 

earlier, so we do not have to decode for this coefficient as there is no code for this 

coefficient for the current threshold. The zerotree found ahead message is then passed 

onto Its children by writing '1' in the ZTF field of all its children. We then move to the 

next coefficient by incrementing the parent pointer by one and the child pointer by four 

(three if the current parent Is the main parent). The checking operation could translate 

into the a possible pseudo-code: 
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If parent.Decoded = 'I' then 
parent pointer := parent pointer + I; 
child pointer:= child pointer+ 4 (or 3); 

Else 
If parent.ZIF = 'I' then 

Else 

For i in O to 3 (or 2) loop 
child(i).ZTF := '1 '; -- the child pointer gives the index of the first child 

End Loop; -- child(O) is the first child child(i) is the second child and so on 
parent pointer := parent pointer + 1; 
child pointer := child pointer+ 4 (or 3); 

-- Read the code ... 

End If; 
End If; 
-- repeat the process 

4.8.3 Deciphering the Code and Reconstructing the Coefficients 

65 

If both the Decoded field and the ZTF field are found to contain 'O' then the code that is 

about to be read from the code array is for the coefficient pointed to by the parent 

pointer. So the code is read from the code array and decoded. 

The flow chart for decipdhering a code and reconstructing the coefficients is shown in 

figure 4.13.2 

Get the Code 

Coefficin1•T 

lndLllepre,11101 

ilform11io1 foretell of 

11re1dydecoded,oefficieo11 

Figu,e4.l 3.2 Flow cbaJI for Decipbe ring a code and Reconstrucltag the coefficients 
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The code can be any of the four different codes: NEG, POS, IZ and ZTR. We process 

each of them as follows: 

a. If the code is a ZTR there are three cases that can arise. 

If the parent pointer is pointing to the main parent, the rest of the coefficients are 

insignificant against the current threshold. There are no codes for them in the code 

array for the current threshold. So we move to decode for the next threshold level. 

And start again from the main parent by setting the child pointer and the parent 

pointer are set as 

parent pointer:= 0; 

child pointer:= '1 '; 

and start the process all over again, but for a the next level of threshold value. 

Actually the parent and child pointers are unchanged. For example if threshold that 

we found the main parent as the ZTR was 64, the next threshold is 32. 

If the parent pointer neither points to the main parent or to a leaf coefficient, then the 

ZTF fields of its four children are set to '1 ', and we move to decode for the next 

coefficient by incrementing the parent pointer by 1 and the child pointer by four. 

An equivalent pseudo-code code would be: 

(When code is ZTR) 

If parent= main parent then 
--change to the nnt threshold 
--read the next code 

e!slf parent/: leaf then 
for iin 0 to 3loop 

child(i).ZTF := '!'; 
end loop; 
child pointer:=< child pointer+ 4; 
parent pointer:= parent pointer+ I; 

else ··leaf coefficient 
parent pointer:= parent poin!cr +I; 

end if; 

•• decode for llie nc~l coefficient 

If the parent pointer points to the leaf coefficients we do not need to do anything. 

We increment the parent pointer by 1 and go to decode for the next coefficient. 

Note that we do not increment the child pointer because the coefficient pointed to by 

the parent pointer does not have any child as it is a leaf coefficient itself. 
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b. If the code is an isolated zero (IZ) the coefficient is insignificant, so we move to 

decode for the next coefficient by incrementing the parent pointer by 1 and the child 

pointer by 4 (or 3 if the current parent is the main parent). 

c. If the code is a POS, the coefficient is significant with respect to the current 

threshold. This means that the absolute value of the coefficient had been greater 

than or equal to the current threhold. So we add the threshold value to the value 

contained in the Coeff field (Coeff := Threshold). We then set the Decoded field to 

'1' to indicate that the coefficient has been decoded. Another thing that we do here 

is to store the array index of this decoded coefficient in the index array that is 

indicated in figure 4.13. 

To repeat, the index array is used to store the array indices of the decoded 

coefficients. The indices are stored in order, first the index of the coefficient that 

was decoded first, then that of the second, then that of the third and so on. The 

contents of this index array serve as pointers to the coefficients when we decode for 

lower thresholds to construct more precise coefficients that are decoded for higher 

thresholds. Since we have initialized the sign fields to '0' which indicates a positive 

coefficient we do not need to set the sign field. 

If the current threshold is 64 then the next code in the code array is the precision 

information for decoded coefficient. It is read, and if a '1' is found a precision of 64 

(Coeff:= Geoff + 64) is added to the coefficient, and no precision is added if a '0' is 

found. 

If the threshold is lower than 64 (i.e. 32, 16, 8, 4,2 and 1 ), and if the coefficient 

decoded is the first for the threshold, then the codes in the code array after the 

currently decoded POS are not codes but information on the precision of the 

coefficients that have been decoded before. There are as many bits following the 

currently decoded code as the number of already decoded coefficients. The 

number of decoded coefficients is contained in the counter. The first bit information 

is for the first decoded coefficient, the second bit information for the second 

decoded coefficient and the third bit for the third decoded coefficient and so on. A 

'1' means that the corresponding coefficient has an additional precision value of T 
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(current threshold) so T is added to it. A 'O' means that the corresponding 

coefficient does not have additional T precision, so we do not add T to it. The 

information for the number of bit information to be read is given by the counter, while 

the pointers to the decoded coefficients are given by the index array. 

An equivalent pseudo-code for this would be: 

( When POS) 

parent.Coeff := T; -- T is the threshold 
If T = 64 then 

Read the next code (bit information) from the code array 
If bit info read = 'I' then 

parent.Coeff := parent.Coeff + 64; 
Else 

Null; 

Elslf Coefficient decoded= the first for the threshold then 
add precision (by T) to the other already decoded coefficients 

Else 
Null; 

End If; 

parent pointer := parent pointer + I; 
child pointer := child pointer+ 4; (if parent is not a leaf) 

d. If the code is a NEG, it is also a significant coefficient so we do exactly the same 

things that we do when the code is POS, except for the sign field. A '1' is stored in 

the Sign field to indicate that the sign is negative. 

In this way we first decode for T = 64 then for T = 32, then 16, then 8 and so on until we 

have decoded for 1. Note how precision is added with the decoding for each lower 

threshold. When we have finished for threshold = 1 we will have got exactly the same 

coefficients (in the Coeff field of the record array) and in the same order as they were 

before they were encoded. 

In above we have not discussed the issue of bit truncation. If the bitstream is truncated 

we need to add additional precision value to all the decoded coefficients. How much to 

be added depends on where the truncation occurs. 

For example, if the current threshold is 32 and the last code obtained is a POS and this 

POS is not the first significant coefficient for the current threshold (32), It may or may not 

have an additional (64-32) = 32. So the uncertainty of 16 is added to it. So it is 

reconstructed to 48 (32 + 16). All the previously encoded coefficients are also given an 

additional value of 16. 
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If this POS is the first significant for the current threshold it is itself given an additional 

value of 16 (center of uncertainty). For those decoded before it, the uncertainty is the 

center of 64 and 128, so 32 is the center of uncertainty. As such all those coefficients 

are added by 32. 

To generalize when truncation occurs, the centre of uncertainty is added to the already 

decoded coefficients. 

This completes the decoding. 

4.8.4 Updating the Decoded, ZTF, Coeff and Sign Fields 

The Decoded lield is initialized to '0' only once in the whole decoding process. That is 

done at the start of the decoding. Once set it remains set throughout the process. 

The ZTF field is set to '0' at the start of every new threshold value. This is because a 

ZTF set to '1' is relevant only for the threshold that it was set. 

The Sign field is set to '0' in the beginning to indicate positive. It is set to '1' when a 

negative coefficient is decoded, and it remains set throughout. 

The Coeff field is set to 0 at the start. As the decoding happens it gets filled in with the 

real coefficients. 
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C. Parallel Processor Architecture 

4.9 Introduction 

This architecture is not a completely different architecture to what we have 

discussed above. In fact it is only a slight adaptation of the single processor 

architecture, trying to make use of the advantage of inherent parallelism present 

in the zerotree of wavelet coefficients. A faster codec is thus envisaged from 

using this architecture. Bae and Prasana also propose this architecture. 

4.10 Observation of Inherent Parallelism 

If we look at the parent·child dependencies of the subbands in a zerotree we 

realize that there are three main branches, with the main ancestor common to all 

three of them. They are shown in figure 4.14 as branch_A, branch_B and 

branch_C. These three branches are each independent of the other, while the 

way in which coefficients within one branch relate among themselves is the same 

as the way in which the coefficients in another branch relate among themselves. 

This then points to us that if we have three separate but same processors we can 

process the entire tree using three such processors in parallel, each processor 

handling a main branch. This translates to a processor having to handle only 

one third of the coefficients it would have had to handle otherwise, thus 

promising a speedier codec. We can make use of this inherent parallelism in the 

design of the codec. 

bran<h_A 

Figure 4.1 ~ Tho 1h1co main hn"h'' of altce 

Karma Wangdi Thesis on Final Year Engineering Project, 1999. 



Embcded Zerotrec Cmlcc 71 

4.11 Architecture 

The coefficients in each of the three branches are mapped into three memory banks as 

shown in the figure 4.15. The first coefficient of a branch is mapped into the element 0 

of the memory bank, the 2nd coefficient is mapped into element 1, the 3rd into element 2 

of the memory bank, and so on until the last coefficient is mapped into the last element 

of the memory bank. The main parent is mapped as the first coefficient in each of the 

three memory banks. So the first coefficient is the same for all the three memory banks. 

r\ 

~ ~ 
, , , 

' ' ' 

' ' ' 

.., ,_, .. , 

.. , ,_, .. , 

Each memory bank contains one third of the total number of coefficients in the tree. 

Having mapped the coefficients into the three memory banks each of the memory banks 

is encoded and decoded as exactly same as that for single processor encoder and 

decoder in part A and B above. And each of them can be processed in parallel by three 

identical processors. 
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Since the encoding and decoding strategies used are the same as in the single 

processor architecture they will not be discussed here again as it would just be 

unnecessary repetition. Instead the difference will be pointed out. 

There is one important difference to note here. This happens in the encoder. When we 

have finished generating the significance map for a given threshold. The DSig value of 

the main ancestor (the first coefficient) as determined in a memory bank is not its true 

value. Being the main ancestor of all the three memory banks in three separate 

encoders, its descendent significance can be determined only after having information of 

its descendents in all the three memory banks. However the DSig field of the main 

ancestor in a memory bank contains all the information required from that memory bank, 

to determine the exact descendent significance of the main ancestor. If we can get 

together the DSig information for the main parent (first coefficient) from each of the 

memory banks then we will be able to determine the true DSig value of the main parent. 

T: ::e •~Pl'"'~~'~ing can not proceed until the true DSig value is determined and passed to the 

three pr ..... ~essors. 

This is what we do. We have two other processes working on the other two memory 

banks in parallel. The content of the DSig field of the main ancestor in each memory 

bank is sent !o a different processor (we call it DSig process here) to determine the 

exact descendent significance of the main ancestor. The actual descendent significance 

of the main ancestor is '0' only if all the DSig value from all the three encoder is '0'. If 

either one of them is a '1' then the DSig of the main ancestor is a '1 '. In the processor 

where this actual DSig of the main ancestor is determined, the three DSig field values 

from three parallel encoders are ORed. 

True DSigmtin pmn1 = DSigmain pmnt (A) OR DSigmain pmnl(B) 0 R DSigm1 in pmnt(C) 

The result is the true descendent significance of the main ancestor for the particular 

threshold. This information is passed back to the three parallel encoders/processors. 

Once the true DSig value of the main parent is received, the next stage of assigning 

codes can begin. After sending the OSig value of the main parent as determined from 

the coefficients in a given memory bank to the DSig process, the processing is halted till 

it gets the true DSig value of the of the main parent from the DSig process. The data 
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transmission employs a simple handshaking mechanism. Figure 4.16 shows how these 

four processors relate. 

llSig_A 

DSig 
Processor 

DSig_B 

Encoder_D Encoder.C 

Figure ~.l6 :The throe encadm 3nd rho DSig processor 

DSig_ll, DSi~.D and DSig_C are DS1g of tfle main ancestor from lhe lhree encodm 
A_DS ig tactual desc onden I s ig nific ance) of the m "" anc.,tor dmrm ined b)' I he DS ig 
processor, Enco~cr./1. 'incoder_B ond Encoder_C arc rhe lhrcc proccuan wotking 

'" P"'tld 

Besides this difference the encoding and decoding using the three parallel processors is 

the same as was described in the case of the single processor architecture. The 

obvious difference here is that instead of having to process (encode or decode) the 

whole tree the processors here process only a third of the coefficients. And owing to the 

nature of the EZW algorithm this parallel processing should give a very fast codec. At 

least three times as fast as the first one. 

Another difference is that the first coefficient in each memory bank has just one child 

coefficient. 

Decoding is exactly thEJ same as the single processor except for the main parent having 

only one child in each memory bank. There is no communication needed between the 

decoders. 
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To conclude this chapter diagrammatic representation of the single processor 

architecture and the parallel processor codec are presented. 

Figure 4.17 Single proces;or co dec 

ENCODER 

Coerricienls 

Codos 

Encoder 
A 

Figure 4.18 :The Pmllcl mh~ecwre co dec 
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5. SIMULATION AND SYNTHESIS 

A. Simulation 

5.1 Introduction 

The VHDL coding was done at the behavioral level and the programs were simulated. 

Both the single processor codec and the codec with three parallel processors were 

simulated and results were verified. 

With the parallel processor codec, the coefficients were input into the encoder and the 

resulting codes were fed into the corresponding decoder. It was checked if it gave the 

same coefficients as those input into the encoder. 

With the single processor codec extensive tests were performed. It was not only 

checked to see if the decoder reconstructed the same coefficients in the same order as 

that was input into the encoder, it was also checked to see how it produced more and 

more precise coefficients when the first number of codes given were increased. 

All the tests were checked against those computed by hand, and it was found that the 

codec of both architectures, parallel processor and single processor, were working 

correctly as expected. 

5.2 Test Data 

The test data used was a standard data obtained from Shapiro's original paper for 8 x 8 

coefficient. So the design was checked for 8 x 8 coefficients. There was another 

reason why this data set was chosen. 

In keeping with the specification of the project, to assume static input data, data as 

contained in a memory bank in the required order, the interface was not designed as it 

would have hugely side tracked the project work. As a result inputs were written into the 

array elements by hand in the program. What this translated to was an enormous 
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number of inputs to be written by hand within the code. Just for an 8 x 8 coefficients the 

number of codes obtained was about 300, which is almost 5 times the number of 

coefficients. All these 300 codes had to be input by hand inside the code to check for 

the decoder. If a 64 x 64 coefficients were tested, assuming a linear relationship 

between the number of coefficients (in reality the number of codes obtained would be 

more than that obtained from this assumption), there would be 4096 inputs for the 

encoder and 20,480 codes to be input into the decoder, all by hand. These numbers are 

truly prohibitively large. Even for a 16 x 16 coefficients, the codes would number more 

than 1300. As a result tests were performed using the 8 x 8 coefficients data. 

But we should remember that the codec designed was a generic one. So the 

argument is if it works for an 8 x 8 coefficients it should also work for any image 
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size. In tact had there been sufficient time to do the interface design this claim 

would have been proved indeed. 

The standard test data is shown below. 

5.3 Simulation Result for Single Processor Codec 

The results presented below were all checked against hand worked results, and it was 

found both results tallied as desired. 

5.3.1 Encoder Simulation 

Input= from figure 5.1, Out put code= Table 5.0 

ZTR ZTR POS ZTR POS ZTR NO NEG YES NO 
POS ZTR ZTR ZTR ZTA ZTR NO POS NO NO 
NEG ZTR POS ZTR POS ZTR YES POS YES YES 

IZ ZTR ZTR ZTR POS POS YES POS NO YES 
ZTR ZTR ZTR ZTR POS ZTR YES POS NO NO 
POS ZTR NEG ZTR ZTR POS NO ZTR NO YES 
ZTR ZTR ZTR ZTR POS ZTR YES Zl R YES YES 
ZTR ZTR ZTR ZTR NEG ZTR YES NEG NO NO 
ZTR ZTR ZTR ZTR POS ZTR NO POS YES YES 
ZTR ZTR ZTR ZTR ZTR POS YES POS YES YES 

IZ ZTR ZTR NEG ZTR EG YES NEG YES NO 
ZTR ZTR ZTR YES ZTR POS NO POS YES NO 
ZTR ZTR ZTR NO ZTR PCS YES NEG YES YES 
ZTR POS ZTR NO NEG YES NO NEG NO YES 
ZTR YES POS YES ZTR YES NO POS YES NO 
ZTR NO ZTR YES ZTR NO NO ZTR NO NO 
ZTR NO ZTR YES ZTR YES YES POS YES NO 
ZTR YES ZTR NO ZTR YES NO ZTR YES YES 
POS YES POS YES ZTR YES NO POS NO YES 
ZTR NO ZTR YES ZTR YES YES POS YES YES 
ZTR POS ZTR YES ZTR YES NO NEG YES POS 
NEG POS ZTR YES ?OS NO YES YES NO ZTR 

YES NEG ZTR NO PO S YES NO NO NO NEG 
NO POS ZTR YES NEG YES YES YES YES ZTR 

YES POS ZTR YES POS NO YES YES NO ZTR 

NO NEG ZTR NO POS NO NO YES NO 
POS ZTR ZTR NO POS YES NO YES NO 
POS ZTR POS NO POS NO POS NO NO 
ZTR NEG ZTR POS ZTR NO POS NO NO 
ZTR NEG ZTR IZ ZTR NO ZTR YES NO 
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5.3.2 Decoder Simulation 
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Table 5.1 shows the result of reconstruction of coefficients when the decoder is given 

the first 21 codes. Table 5,2 shows the result of reconstruction when the decoder is 

given the first 44 codes. Tables 5.3 and 5.4 are results more codes being given. The 

results show how the precision of the reconstructed coefficients improve as more and 

more codes are given. This mimics the bit truncation that would happen tor rate 

constrained codec and how the codec would still be able to reconstruct approximate 

coefficients. Finally in table 5.5 we see perfect reconstruction as all ~he codes are given. 

5.4 Simulation Result for Parallel Processor Codec 

Similarly, as in the single processor codec tests were performed for the parallel procesor 

codec. The test was performed to see if the encoder and decoder encoded and 

decoded properly for the entire coefficients and entire codes provided. The result was 

found to agree with the one computed by hand. Rate constraint was not checked as 

each processor performs exactly the same as that of the single processor above. In 

other words each processor here is a smaller , ~rsion of the above single processor 

codec. 

Only the result for one subband has been shown here, in table 5.6. A hypothetical set of 

coefficients was chosen. However the results were checked against those worked out 

manually· they were the same. When the codes were input to the decoder (parallel) it • 
coefficients. Thus proving that it works correctly. 

• ~'""'" 
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NE<i NO YES YES 

ZTR YES YES YES 

IZ YES YES YES 

ZTR POS NO YES 

IZ NEG NO YES 

ZTR ZTR NO NO 

ZTR ZTR NEG NO 

ZTA POS ZTR YES 

POS ZTR ZTR YES 

NO ZTR ZTA NO 

ZTA ZTA ZTA NO 

ZTA ZTA ZTR YES 

NEG ZTR ZTR NO 

YES ZTR ZTA NO 

NO ZTA POS YES 

ZTR ZTA POS ZTA 

ZTR POS NEG ZTR 

ZTR NEG POS NEG 

ZTR NO POS POS 

POS YES POS POS 

,,, 
(b) 

Table 5.6 Input and Output simulation results from one parallel architecture 
encoder and decoder (for 8 X8) 

(a) input for encoder and output from decoder 
(b) input for decoder and output from encoder 

HO 

NO 

NO 

YES 

NEG 
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B. Synthesis 

5.5 Introduction 

A lot of time and effort was put in to synthesize the behavioral design of the codec. 

However only a few logical blocks could be synthesized and those will be presented 

here. 

The main problem was that even if the behavioral code is in a "synthesizable" construct 

the Synopsys synthesis tool fails to synthesize for some reason. For instance several 

times it took so long (once even more than 3 days) to read the file and at the end it either 

gave a "not enough memory space" or just crashed the machine. An attempt was then 

made to synthesize the encoder not as one whole program block but in two logical parts. 

When this was pertormed the first block worked and was synthesized. The second block 

still gave the same problem. 

There were a few but important behavioral synthesis issues encountered which required 

the original code for the encoder to be converted into a "synthesizable" construct. 

Those issues and the changes made in the program deserve mention here. 

5.6 Issues Encountered in Behavioral Synthesis 

• Asynchronous design is difficult to synthesize. In other words the synthesis requires 

a clock in the design for the synthesis to work properly. A global clock to 

synchronize the encoder parts was introduced. 

• Multi-dimensional arrays are not accepted for synthesis. So the original array of 

record used in the encoder design had to be replaced by single arrays and the 

associated source codes had to be changed accordingly. 

• While-loops were also found to be unacceptable for synthesis. They were replaced 

by for-loops, with definite number of loops. If-then-Exit statements were used within 

the for-loops to evaluate the previous while loop conditions. 
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• The wait statement as such is not accepted for synthesis. It is accepted only as 

clock edge waits. (wait until clock' event and r" ck ='1 ') 

5.7 Synthesizing the Significance Map Generator 

Figure 4.4 has been presented again to indicate which component the Significance map 

generator is in the encoding process. 

5.7.1 The Synthesis Process 

• Synopsys synthesis tool is invoked by using the command 

DESIGN_ANAL YZER at the unix prompt. 

• The .vhd file and all the packages used are then read using the file-read command 

from the menu 

• The gate level schematic can be viewed changing the level up-down from the menu. 

• Report on various aspects of the synthesized designed can also be generated using 

the generate-report command. 

Karma Wangdi Thesis on Final Year Engineering Project, 1999. 

~ -. ,-.. _,- __ "~ "-- c•;,S\Jo:• -- ~%_-;-,- f ,-,- ", -• -__ ,, 



Embcdcd Zcrotrce Codcc 

5.7.2 Synthesized Significance Map Generator Schematics. 

Figure 5.2 I level schcmaatic of Signi!icance map generator 
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Figure 5.4 Gate Level Schcmaatic of the whole Significance map generator 
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6. CONCLUSION 

To repeat here, the main aim of the project was to design, simulate and if possible, 

synthesize, an EZT codec implementing the EZ!N algorithm. The objectives that this 

main aim of the project translated to were: 

• Understanding of image compression in general and that of wavelet image 

compression in particular. 

• Study of wavelet transform and how it relates to image compression. 

• A thorough understanding of the EZ'N algorithm and the various terms used in it. 

• A good mastery of the VHDL language 

• Design and simulation of a codec using VHDL behavioral level code. 

• Synthesis of the codec. 

6.1 Project Achievements and Contribution 

The original contributions of this project are as follows. 

• The most important contribution by this project has been the design of the codec 

itself. In the codec design, original strategies have been devised to generate the 

significance map, assign codes and perform successive approximation quantization, 

the three main steps in the EZ!N algorithm. The method used to decode the codes 

has also been an original contribution. 

• The E"ZYN algorithm as such from Shapiro's paper deals at an advanced level 

understanding of image coding and wavelet transform. Consultation with people on 

authority on the topic in the engineering department at ECU, a simpler and concise 

algorithm has been presented. 

• Another important contribution by this project has been the presentation of a clear 

and concise explanation on this rather mathematically rigorous topic of wavelet 

transform. The mathematics of it was first presented, and this was followed by 
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discussion on how this transform is practically performed using sets of high pass and 

low pass filters, both in continuous time and in the discrete domains. The merits of 

wavelet transforms were then discussed in relation to image compression. 

• The design, simulation and synthesis were done using the VHDL simulation tools 

and synthesis tools from Synopsys Inc. These tools were well explored. A number 

of issues pertaining to behavioral synthesis as encountered have been properly 

documented, together with the commands that were used to invoke the necessary 

simulation and synthesis tools. Anyone new to Synopsys will find this contribution 

very handy. 

• The project has also made a good study of the numerous other image compression 

techniques that are available today and the basis on which each of these techniques 

have evolved. 

6.2 Comments and Recommendations for Future Research 

One of the great strengths of the codec designed is its ability to meet any bit rate or 

distortion rate exactly. But then it is not enough for a codec lo just satisfy any bit rate if it 

can not reproduce a good enough picture. An obvious question that comes to mind is, 

how many bits can be truncated before the reconstructed image begins to show 

perceptible distortion? To answer this question a series of tests could be performed on 

this codec by applying suitable wavelet transform on a standard test image, obtain the 

coefficients, feed the coefficients to the codec and get reconstructed value of coefficients 

for different bit rates. The output from the decoder for different bit rates can then be 

inverse transformed and the different reconstructed versions for different bit rates of the 

same image could be compared with the original. This would give an idea of the 

performance of the EZT codec, besides the numerical calculation of PSNR (peak signal 

to noise ratio). A software program like Matlab would be suitable for this purpose. 
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The present implementation of the codec uses static data. That is, inputs to the encoder 

and the decoder are provided within the code at the beginning of processing. A suitable 

interface could be added to the current design so that inputs can be obtained from an 

outside source. This would take the realization of the encoder and the decoder as single 

stand-alone chips one last step closer. The tests suggested above can also be 

implemented very easily with this added intertace. 

The synthesized codec can then be implemented using FPGA. 

Even thus show of promise by the multiresolution image analysis appears to be well 

matched to the low-level characteristics of human vision. As this approach is developed 

further to incorporate additional aspects of human vision, such as spectral response 

characteristics, masking, patlern primitives and the like, the future of image compression 

looks anything but much more promising and e); ·~--~.:~. 

This project has contributed successfully to this state of the art techniqu?. of wavelet 

image compression, not only from a VLSI front but also from a research point of view. 
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Appendix 

--************************************************************* 
SINGLE PROCESSOR ENCODER FOR SIMULATION 

--************************************************************* 

Embedded Zerotree Wavelet Algorithm. 
-- Image size of 8 X 8 wavelet coefficients 
-- 8 bit implementation (coefficients range from -128 to 127) 

library IEEE; 
library WORK; 
use WORK.TypePKGsyn.all; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_signed.all; 

Entity FullEncoder is 

Port(clk : in std_logic; codeA: out CodeType) 

End FullEncoder; 

Architecture Behavioural of FullEncoder is 

Type CoeffRec is 
record 

ZTF: 
Encoded: 
Coeff: 

end record; 

Bit; 
Bit; 

CoeffType; 

DSig is to indicate if the coefficient has atleast one 
significant coefficient for that threshold, or whether it 
is a leaf coefficient. 

ZTF to indicate whether or not a zerotree has been found 
earlier. 

Encoded to indicate if a coefficient has been encoded for 
--any prevoius threshold. 
-- Coeff to contain the coefficient. 

Type RAOfRec is Array (0 to lenth) of CoeffRec; 

--to contain the input coefficients and information on each 
-- coefficient 

88 
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Type DutPutRJI. is Array (0 to 400) of CodeType; 

to contain the code for the coefficients from the encoding 
process 

Type AllQntRA is Array (0 to 63, 0 to 6) of CodeType; 

to contain the quantization values of all the significant 
codes 

Type FirstRA is Array (0 to 5) of Bit; 

To indicate if the coefficient is the first significant 
coefficient for a given threshold 

begin -- start of the Architecture 

ProcessTree: Process 
variable T 
variable Contnr 
variable 
variable 

Parent 
Child 

variable OutCode 
variable m 

integer range 1 to 64; 
: RAOfRec; threshold 
: IndexType; parent pointer 

IndexType; child pointer 
: Out:PutR.l'\; output codes 
Integer range 0 to 400; 

to index the output codes 
variable Approxvalue : AllQntRA; 

variable SigNo : Integer range 0 to 64; 
count no of significant codes encoded. 

variable copy 
variable First 

Integer range 0 to 64; 
: FirstRA; 

begin -- start the process. 

*** GetCoeff *** 
data from Shapiro 

contnr ( 0) . Coeff: =63 ; Contnr { 1) . Coeff: =-3 4; Contnr ( 2) . Coeff: =-31; 
Contnr(3) .Coeff:c:23;Contnr(4) .Coeff:=49;Contnr(5) .Coeff:=10; 
Contnr ( 6) . Coeff: =::14 ;Contnr ( 7) . Coeff :=-13 ,· Cantnr ( 8) . Coeff: =15; 
Contnr ( 9) .Co8ff. =14; Cantnr { 10) . Caeff: =-9; Contnr { 11) .Caeff:=-7; 
Contnr ( 12) .coeff: ::3; Cootnr ( 13) . Coeff: =-12; Cantor ( 14) . Coeff: =-14; 
Contnr ( 15) . Coeff: = 8; Contnr ( 16) . Coeff: =7; Cantor ( 17) . Coeff: =13; 
Cantor ( 18) . Coeff: =3; Cootnr { 19) . Caeff: =4; Cantor ( 2 0) . Coeff: =-12; 
Cantor ( 21) .Caeff: =7; Cantor ( 22) , Coeff: =6 ;Cantor (23} . Coeff: =-1; 
Cantnr ( 24) . Coeff: ::5; Cantor ( 2 5} . Coeff: =-7; Cantor ( 26} . Caeff: =4; 
Cantor ( 27) . Caeff: =-2; Contnr ( 28) . Caeff: =3; Cantnr { 2 9) . Caeff: =9; 
Cantnr ( 3 0) . Coeff: =3; Cantor ( 31) . Coeff: =2 ; Cantor ( 3 2) . Coeff: =-5; 
Contnr (33) .Caeff: =9 ;Cantor ( 34) . Coeff: =3; Cantor (35) . Coeff:=O; 
Contnr ( 36) . Coeff: =-1; Contnr { 3 7) . Caeff: =4 7; Cantor ( 3 8) . Coeff: =-3; 
Contnr ( 3 9) . Caeff: =2; Cantor ( 40) . Coeff: ::::2; cantor ( 41) . Coeff: =-3 ; 
Contnr { 42) . Coeff: ==5; Cantor ( 43) . Coeff: =11; Contnr ( 4 4) . Coeff: =6; 
Cantor ( 45) . Coeff: =- 4; Contnr { 46) . Coeff: ::5; Contnr ( 4 7) . Coeff: =6; 
Cantnr{48) .Caeff:= 4;Contnr(49) .Coeff::= 6;Contnr{50) .Coeff:= 3; 
Contnr(51).Coeff:= -2;Contnr(52).Coeff:= -2;Contnr(53).Coeff:= 2; 
Cantnr (54) .Coeff: =0; Cantor (55) .Coeff: =4; Contnr (56) . Caeff: oo3; 
Contnr (57) . Coeff: =6; Contnr (58) . Caeff: ::0; Cantor (59) . Coeff: =3; 
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Contnr(60) .Coeff:=3;Contnr(61).Coeff:=6;Contnr(62) .Coeff:=-4; 
Contnr(63) .coeff:= 4; 

For i in 0 to lenth loop -- initialize the variables 
Contnr(i) .DSig := u; 
Contnr(i) .Z'rF:= '0'; 
Contnr(i) .Encoded := '0'; 

End loop; 

First := "000000"; 
-- no first significant coefficients encoded. 

SigNa := 0; no of the significants found is zero. 
m := 0; -- point to the first element of the output array. 

For 1 in 6 downto 0 loop -- main loop that does all the 7 
--significance map generation and 

of coefficients and the 
-- subsequent encoding. 

T 
Parent 
Child 

:= Thresh{!); 
:= 15; 

:= lenth; 

-- get appropraite threshold, 
last parent coefficient 

--last coefficient (63rd). 

-- SIGNIFICANCE MAP GENERATION 

While Parent >=1 loop -- do until the main parent (Oth 

coefficient), 
for j in 0 to 3 loop 

Check the four children 
for significance and exit if one of 
them is found to be significant 

If Contnr(~hild-j) .DSig = u then -- child is a leaf. If 
abs(Contnr(Child- j) .coeff)>= T then 

--significant 
Contnr{Parent).DSig :::: '1'; 

--record descendent significant 
information. 

Exit; 
Else 

-- don't need to check other children 

Contnr{Parent).DSig := '0'; 
End If; 

Elsif Contnr(Child- j) .Dsig = '1' then 
Contnr(Parent) .DSig := '1'; 
Exit; 

Else -- Contnr(Child - j) .DSig = '0' 
If abs(Contnr(Child- j) .coeff)>= T then 

Contnr(Parent).DSig := '1'; 
Exit; 

Else 
Contnr(Parent) .DSig := '0'; 

End If; 
End If; 

End Loop; 
Child := Child 

--for one parent 
4;-- for the next parent 

Parent := Parent - 1; 

l)() 
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End Loop; -- all parents 

--we have reached the first parent and its three children 
For j in 0 to 2 Loop -- main parent has only 3 children 

If Contnr(child -j) .DSig = '1' then 
Contnr{Parent) .DSig := '1'; 
Exit; 

Else 
If abs(Contnr(child-j) .Coeff) >= T then 

Contnr{parent).DSig := 'l'; 
Exit; 

Else 
Contnr(parent) .DSig := '0'; 

End If; 
End If; 

End Loop; 

-- SIGNIFICANCE MAP GENERATION IS COMPLETED FOR ONE THRESHOLD 
--ASSIGN CODES 

Parent := 0; 
Child := 1; 

start from the main parent 
child pointer point to the first child 

Loop -- till all the descendents have been encoded, happens 
-- when parent = 63 is over 

If Contnr{parent) .ZTF = '1' then 
If parent > 15 then -- leaf 

Null; 
Else 

For i in 0 to 3 loop 
Contnr{Child + i) .ZTF := '1'; 

pass the information that a 
Zerotree root has been found 
ahead to the children. 

End loop; 
End If; 

Elsif 

zeortree element 
coefficient 

Contnr{parent) .Encoded= '1' then --already encoded. 
Null; 

Else 
If Abs{Contnr{parent) .Coeff) 

If Contnr(parent) .Coeff < 
OutCode{m) := NEG; 
m:=m+1; 

Else 
OutCode(m) := POS; 
m:=m+1; 

End If; 

-- not encoded 
>= T then -- significant 

0 then 
code negative 

-- code positive 

-- PERFORM SUCCESSIVE APPROXIMATION QUANTIZATION FOR SIG. CODE 

copy:= Abs(contnr(parent) .Coeff) -Thresh(!); 
Case 1 is 

When 0 => -- Threshold is 1 
Null; 

~I 
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When 6 => -- Threshold is 64 
For k in 1 downto 0 loop 

-- fill the approximation array 
If (copy - Thresh(k)) < 0 then 

ApproxValue(SigNo,k) :=NO; 
Else 

ApproxValue(SigNo,k) :~ YES; 
copy := copy - 'l'hresh(k); 

End If; 
End Loop; 
OutCode(m) := ApproxValue(SigNo,l); 
m := m+l; 

When Others => -- Other thresholds 
For k in (1-1) downto 0 loop 

If (copy- Thresh(k)) < 0 then 
ApproxValue(SigNo,k) := NO; 

Else 
ApproxValue(SigNo,k) :=YES; 
copy : = copy - Thresh (k); 

End If; 
End Loop; 

End Case; 

-- Add precision to the already encoded coefficients 

Case 1 is 
When 6 => -- threshold is 64 

Null; 
When Others => -- other thresholds 

If First{l) = '0' then 
If SigNa = 0 then 

Null; 
Else 

for r in 0 to (SigNa) loop 
OutCode(m) := ApproxValue(r,l); 
m := m + 1; 

End loop; 
End If; 
First(l) :='1'; 

End If; 
End Case; 

-- increment the significant no 
SigNa := SigNa + 1; 
Contnr{parent) .Coeff := 0; 

--set encoded coefficient to 0 to 
prevent non occurrence of ZTR 

--because of it. 
Contnr{parent) .Encoded := '1'; 

code insignificant 
Else 

If Contnr(parent) .DSig = '1' then 
OutCode(m) := IZ; -- code isolated zero 
m := m + 1; 

Else 
QutCode(m) := ZTR; -- code zerotree root 
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m :"" m + 1; 
If par~nt ~ 0 then 

Exit; 
Else 

If Contnr (parent) .DSig == '0' then 
-- pass ZTF information to children 
For j in 0 to 3 loop; 

Contnr(child+j).ZTF :~ '1'; 
End Loop; 

Else it is a leaf insignificant 
Null; 

End If; 
End If; 

End If; 
End If; 

End If; 

If Parent >~ 63 then stop when all the coeffcients have 
-- been encoded. 

Exit; 
Else 

If parent = 0 then 
child := child + 3; 

Else 
Child : ~ Child + 4; 

End If; 
parent := parent + 1; 

End If; 
End loop; 

-- one threshold loop 

-- 3 children for the main 
parent, all other parents 4 
each. 

--set the significance (DSig) fields to 0, but not for the 
-- leaves 

For k in 0 to lenth loop 
If Contnr(k) .DSig = u then 

Null; 
Else 

Contnr(k).DSig := '0'; 
End If; 
Contnr(k) .ZTF := '0'; 

End Loop; 

End Loop; -- all the 7 threshods encoding loop 

-- display the code 

For n in 0 to m-1 loop 
codeA <= outcode(n); 
wait for 5 ns; 

End Loop; 
Wait; 
End Process; 
End of process EncodeTree; 
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End Behavioural; 

-- Conifiguration 

Configuration CFGFull_Coder of FullEncoder is 
For 

Behaviouralsyn 
End For; 

End CFGFull_Coder; 

END 

--******************~************************************ 

SINGLE PROCESSOR DECODER FOR SIMULATION 
--******************************************************* 

-- Decodes the codes from the single previous encoder. 
--The result will be a single tree of 64 coefficients 
-- that existed before the encoding was performed 
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library IEEE; 
library WORK; 
use WORK.TypePKGsyn.all; 
use IEEE.std_logic_l164.all; 
use IEEE.std_logic_signed.all; 

Entity FullDecoder is 
Port(outcoeff: out CoeffType; addrs: out Integer); 
End FullDecoder; 

Architecture Behavioural of FullDecoder is 

Type CoeffRec is 
Record 

Coeff : 
ZTF: 

CoeffType; 
Bit; 

Decoded: Bit; 
End Record; 
Coeff to contain te decoded coefficient 

-- ZTF to indicate zerotree root found 

Type CoeffRA is Array (0 to lenth) of CoeffRec; 

Type CodeRA is Array (0 to 300) of CodeType; 

Type Frstindictr is Array {0 to 5) of Bit; 

Type AddrSign is 
record 

Addr Integer range 0 to 63; 
Sign Bit; 

End Record; 

addr to store the index of the coefficient 
sign to store the sign of the coefficient 

Type RAddrSign is Array {0 to lenth) of AddrSign; 
to contain the information on the decoded codes 

begin 

De~odeProcess: Process 

variable P : Integer range 0 to 300; 

variable CoeffContnr 

variable CodeContnr 
variable parent 

variable child 

variable Dcodedinfo 

index the code container 
CoeffRA; -- contain the coeff and 
-- the associated fields 

CodeRA; -- code container 
Integer range 0 to lenth; 

-- parent pointer 
Integer range 0 to lenth; 
-- child pointer 
: RAddrSign,· 

to contain sign and index of decoded 
-- coefficients. 

l)5 
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variable SigNa : Integer range 
coefficients 

0 to 64; 
no of significant 
decoded. 
variable First : Fn~t-.Indictr; 

first sig for a threshold decoded 

variable Exited 
variable copyl 

-- information 
Boolean; 
integer rm1ge 0 

to indicute 

begin 
-- get 

-- process starts 
the codes 

to 6; 
threshold 

96 

:= 

:= 
:= 

CodeContnr(O) ::: ZTR;CodeCon.:nr(l) := POS;CodeContnr(2) 
CodeContnr(J} := IZ; CodeContnr(4} := ZTR; CodeContnr(5) 
CodeContnr(6} := ZTR; CodeContnr(7} := ZTR; CodeContnr(B) 
CodeContr.r(9) := ZTR; CodeContnr(lO) := IZ; CodeContnr(ll) 
CodeContnr(12) := ZTR; CodeContnr(13) := ZTR; CodeCon~nr(14) 

CodeContnr(15) := ZTR; CodeContnr(16) := ZTR; CodeContnY(17) 
CodeContnr(18) := POS; CodeContnr(19) := ZTR; CodeContnr(20) 
CodeContnr(21) :=NEG; CodeContnr(22) :=YES; CodeContnr(23} := 
CodeContnr(24) :=YES; CodeContnr(25) :=NO; CodeContnr(26) := 
CodeContnr(27) := POS; CodeContnr(28) := ZTR; CodeContnr(29) :::= 
CodeContnr(30l := ZTR; CodeContnr(Jll := ZTR; CodeContnr(32} := 
CodeContnr(33) := ZTR; CodeContnr(34) := ZTR; CodeContnr(35} 
CodeContnr(36) := ZTR; CodeContnr(37) := ZTR; CodeContnr(38} 
CodeContnr(39) := ZTR; CodeCvntnr(40) := ZTR; CodeContnr(41) 
CodeContnr{42) := ZTR; CodeContnr(43) := POS; CodeContnr(44} 
CodeContnr(45) :"'NO; CodeContnr(46) :=NO; CodeContnr(47) 
CodeContnr(48) :=YES; CodeContnr(49) :=NO; CodeContnr(50) 
CodeContnr{51) := POS; C·JdeContnr(52) :=NEG; CodeContnr(53) 
CodeContnr(54) := POS; CodeContnr(55) :=NEG; CodeContnr(56} 
CodeContnr(57) := ZTR; CodeCor.tnr(58) :=NEG; CodeContnr(59) 
CodeContnr(60) := POS; CodeContnr{61) := ZTR; CodeContnr(62) 
CodeContnr(63) :=: ZTR; CodeContnr164) := ZTR; CodeContnr(65) 
CodeContnr(66) := ZTR; CodeContnr{67) := ZTR; CodeContnr(68) 
CodeContnr(69) := ZTR; CodeContnr(70) := ZTR; CodeContnr(71) 
CodeContnr(72) := ZTR; CodeContnr(73) := ZTR; CodeContnr(74) 
CodeContnr(75) := ZTR; CodeContnr(76) := ZTR; CodeContnr(77) 
CodeContnr(78) := POS; CodeContnr(79) := ZTR; CodeContnr(80) 
CodeContnr(81) := ZTR; CodeContnr(82) := ZTR; CodeContnr(8jJ 
CodeContnr(84) := ZTR; CodeContnr(B5) := ZTR; CodeContnr(86) 
CodeContnr(87) := POS; CodeContnr(88) :=: ZTR; CodeContnr(89) 
CodeContnr(90) := ZTR; CodeContnr(91) := ZTR; CodeContnr(92) 
CodeContnr(93) := ZTR; CodeContnr(94) := ZTR; CodeContnr(95) 
CodeContnr(96) := ZTR; CodeContnr(97) := ZTR; CodeContnr(98) 
CodeContnr(99) := ZTR; CodeContnr(lOO) :=NEG; CodeContnr(lOl) 
CodeContnr(102) '= NO; CodeContnr(103) :=NO; CodeContnr(104) 
CodeContnr(lOS) := YES; CodeContnr(106) :=YES; CodeCcntnr(107) 
CodeContnr(108) := YES; CodeContnr(109) :=YES; CodeContnr(llO) 
CodeContnr(lll) := YES; CodeContnr(112) :=NO; CodeContnr(113) 
CodeContnr(114) := YES; CodeContnr(llS) :=NO; CodeContnr(116) 
CodeContnr(117) := YES; CodeContnr(llB} :=NO; CodeContnr(119) 
CodeContnr{120) :=NO; CodeContnr(121) :~ POS; CodeContnr(122) 
CodeContnr(123) := POS; CodeContnr(124) := ZTR; CodeContnr{125) 
CodeContnr(126) := POS; CodeContnr(127) := POS; CodeContnr(128) 
CodeContnr(129) := POS; CodeContnr(l30) :=NEG; CodeContnr(131) 

NEG; 
POS; 
ZTR; 
ZTR; 

Karma Wangdi 

:= TR; 
ZTR; 
ZTR; 

:= 

ZTR; 

:= 
:::= 

:= 
:= 

NO; 
POS; 
ZTR; 

:= 

ZTR; 
ZTR; 
ZTR; 
YES; 
YES; 
POS; 
POS; 
ZTR; 
NEG; 
POS; 
NEG; 
ZTR; 
ZTR; 
POS; 
ZTR; 
ZTR; 
ZTR; 
ZTR; 
ZTR; 
ZTR; 
ZTR; 
ZTR; 

:= 

:= 
:= 
: :: 

:= 
:= 

:= 
:= 
:c::: 

:= 

:= 
:= 

:= 
:= 
:::= 

:= 
:= YES; 
:= YES; 
:= NO; 

:= YES; 
:::: YES; 
:= YES; 
:= 

:= 
NO; 
IZ; 

:= POS; 
:= ZTR; 
:= POS; 
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CodeContnr(132) ::= 'l.'rR; CodeContnr(133) .- ZTR; CodeContnr(134) := ?.TR; 
CodeContnr(135) := ZTR; CodeContnr(136) :=NEG; Codecontnr(137) := ZTR; 
CodeContnr(138) :"' ZTR; CodeContnr(139) .- Z'I'R; CodeContnr(140) := 7.TR; 
CodeContnr(141) := ZTR; CodeContnr(142) .- ZTR; CodeContnr(143) := t.'I'P.; 
CodeConlnr(144) := POS; CodeContnr(14!'i) .- POS; CodcContnr(146) := HEG; 
CodeContnr(l,l7) := POS; CodcContnr(148) .- POS; CodcContnr{149) := POS; 
CodeContnr{lSO) := POS; CodeContnr{151) .- ZTH; CodeContnr(l52) := Z'l'R; 
CodeContnr{153) := ZTR; CodeContnr{154) .- ZTR; CudeContnr(l55) .- Z'rR; 
CodeContnr(156) := POS; CodeContnr(l57) .- Z'I'R; CodeContnr(158) := POS; 
CodeContnr{159) := ZTR; CodeContnr(l60) ... ZTR; CodeContnr(161) := ZTR; 
CodeContnr(162} :"' POS;CodeContnr(l63) :=NEG; CodeContnr(164) .- POS; 
CodeContnr(165) ::= POS; CodeContnr(166) .- YES; CodeContnr{167) := YES; 
CodeContnr(168) :=NO; CodeContnr(169) .-YES; CodeContnr{170) := '!ES; 
CodeContnr(171) :=YES; CodeContnr{172) .-YES; CodeContnr(173) := YES; 
CodeContnr(174) :=NO; CodeContnr{175) .- YES; CodeContnr(176) := YES; 
CodeContnr(177) :=NO; codeContnr(178) .-NO; CodeContnr(179) := YES; 
CodeContnr(180) :=NO; CodeContnr(181) .-NO; CodeContnr(l82} := NO; 
CodeContnr{183) :=NO; CodeContnr(184) .-NO; CodeContnr(185) := YES; 
CodeContnr(186) :=YES; CodeContnr(187) .-YES; CodeContnr(188} := NO; 
CodeContnr(189) ::=YES; CodeContnr(190) .-YES; Codecontnr(191) := NO; 
CodeContnr(192) :=YES; CodeContnr(193) .-NO; CodeContnr(194) := NO; 
CodeContnr(195) :=NO; CodeContnr(196) .-YES; CodeContnr(197) := NO; 
CodeContnr(198) :::=NO; CodeContnr(199) .- YES; CodeContnr(200) := NO; 
CodeContnr(201) :::= YES; CodeContnr(202) .- NO; CodeContnr(203} := YES; 
CodeContnr(204) :=.YES; CodeContnr(205) .-NO; CodeContnr(206} := NO; 
CodeContnr(207) := POS;CodeContnr(208) := POS; CodeContn~(209) :=ZTR 
CodeContnr(210) :=NEG; CodeContnr(211) := POS; CodeContnr(212) := POS; 
CodeContnr(213) := POS; CodeContnr(214) := POS;CodeContnr(215) := ZTR; 
CodeContnr(216) := ZTR; CodeContnr(217) .-NEG; CodeContnr(218) := POS; 
CodeContnr(219) := POS; CodeContnr(220) .- NEG; CodeContnr(221) := POS; 
CodeContnr(222) := NEG; CodeContnr(223) .- NEG; CodeContnr(224) := POS; 
CodeContnr(225) := ZTR; CodeContnr(226) .- POS; CodeContnr(227) := ZTR; 
CodeContnr(228) := POS; CodeContnr(229} .- POS; CodeContnr(230) := NEG; 
CodeContnr(231) :=YES; CodeContnr(232) .-NO; CodeContnr(233) := YES; 
CodeContnr(234) :=YES; CodeContnr(235) .- YES; CodeContnr(236) := YES; 
CodeContnr(237) :=NO; CodeContnr(238) .-NO; CodeContnr(239l := YES; 
CodeContnr(240) :=YES; CodeContnr(241) :=NO; CodeContnr(242) := YES; 
CodeContnr(243) :=NO; CodeContnr(244) :=NO; CodeContnr(245) := NO; 
Codecontnr(246) := YES; CodeContnr(247) := NO; CodeContnr(248) := YES; 
CodeContnr(249) := YES; CodeContnr(250) .- YES; CodeContnr(251) := YES; 
CodeContnr(252) := YES; CodeContnr(253) .- NO; CodeContnr(254) := YES; 
CodeContnr(255) :=NO; CodeContnr(256) .-YES; CodeContnr(257) := YES; 
CodeContnr(258) :=NO; CodeContnr(259) .-YES; CodeContnr(260) := YES; 
CodeContnr(261) :=NO; CodeContnr(262) .-NO; CodeContnr(263) := YES; 
CodeContnr(264) := NO; CodeContnr(265) .- NO; CodeContnr(266) := NO; 
CodeContnr(267) :=NO; CodeContnr(268) .-NO; CodeContnr(269) := NO; 
CodeContnr(270) :=NO; CodeContnr(271) .-NO; CodeContnr(272) := YES; 
CodeContnr(273) :::= YES; CodeContnr(274) := NO; CodeContnr(275) := YES; 
CodeContnr(276) := YES; CodeContnr(277) .- NO; CodeContnr(278) := YES; 
CodeContnr(279) :=YES; CodeContnr(280) :=NO; CodeContnr(281) := NO; 
CodeContnr(282) :=YES; CodeContnr(283) .-YES; CodeContnr(284) := NO; 
CodeContnr(285) := NO;CodeContnr(286) := NO;CodeContnr(287) := YES; 
CodeContnr(288) := YES; CodeContnr(289) := YES; CodeContnr(290) := POS; 
CodeContnr(291) := ZTR;CodeContnr(292) := NEG; CodeContnr(293) := ZTR; 
CodeContnr(294) ::: ZTR; 

-- initialize 
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First := "000000"; 

For m in 0 to lenth loop 
CoeffContnr(m) .Coeff ·.= 0; 
CoeffContnr(m) .ZTF := '0'; 
CoeffContnr(m) .Decoded := '0'; 
If m <= 5 then 

First(m) := '0'; 
End If; 

End Loop; 

exited := False; 
p : = 0; 

-- bit truncation 
-- index the codecontr 

SigNa : = 0; 

For 1 in 6 down to 0 Loop -- start decoding from the main parent 
parent:= 0; 
child := 1· ' copy! := 1; 

While parent <= lenth loop -- decoding for one threshold 
If Coeffcontnr(parent).Decoded = '1' then 

-- already decoded? 
Null; no decoding again 
Else 

If Coeffcontnr(parent) .ZTF = 
If parent <= 15 then 

'1' then 
-- element of zerotree 

Else 

For j in 0 to 3 loop 
-- pass ZTF info. to children 

Coeffcontm·(child+j) .ZTF := '1'; 
End Loop; 

End If; 

Case Codecontnr(p) IS 
When S => bit truncated 

Exited := True; 
Exit; 

When ZTR => 
If parent = 0 then 

p:=p+l; 
Exit; 

don't need to code any more for 
the current threhold 

End If; 

Else 
If parent <= 15 then -- it is not a leaf 

-- so mark its children 
For k in 0 to 3 loop 

CoeffContnr(child + k) .ZTF := '1'; 
End Loop; 

End If; 
P:=P+1; 

-- prepare to read the next code 

When POS I NEG => 
CoeffContnr(parent) .Decoded := '1'; 

Dcodedinfo(SigNo) .Addr := parent; 

9H 
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If Codecontnr (p) "' POS then 
Dcodedinfo(parent) .sign := '1'; 
Else 
Dcodedinfo(parent) .sign := '0'; 
End If; 

CoeffContnr(parentl .Cceff := 'rhresh(l); 
P: = p + 1; -- ready to read the next code 
-- add precision to the coefficients 
Case l is 

When 6 => threshold is 64 
If CodeContnr(p) = S then 

-- bit truncated 
Exited::= true; 

-- indicate bit truncated 
Exit; 

Elsif CodeContnr(p) =YES then 
CoeffContnr(parent) .Coeff := 
CoeffContnr(parent) .Coeff + 

Thresh(!); 
-- add 64 to the coefficient 
End If; 
P:= P +1; -- next code ready to be read 

When Others => 
If Codecontnr(p) = s then bit truncation 

Exited := true; 
Exit; 

Elsif First(l) = '0' then 
this is the first significant of 
the threshold 

so add precision to the previously 
found coefficients . 

If SigNa = 0 then 
Null; 

Else 
For i in 0 to SigNa loop 

If Codecontnr(p + i) = YES then 

CoeffContnr(Dcodedinfo(i) 
.Addr) .Coeff : = 

CoeffContnr(Dcodedinfo(i) 

End If; 

.Addr),Coeff + (Thresh(!)); 
Else 

Null; 

End Loop; 
p := p + SigNo+l; 

End If; 
First{l) := '1'; 
End If; 

End Case; 
SigNa := SigNa + 1; 

When Others => 
p := P + 1; -- prepare to read the next code 

End Case; 
End If; 

End If; 
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house keeping 

If parent >= 63 then 
Exit; all have been decoded for a threshold 

Else 
If parent = 0 then 

child := child + 3; 
Else 

child := child + 4; 
End If; 
parent := parent + 1; 

End If; 
End Loop; -- single threshold 
If Exited = True then 

Exit; -- bit truncated 
Else 

For 1 in 0 to lenth loop 
Coeffcontnr(l) .ZTF := '0'; --reset the ZTF field 

End Loop; 
End If; 

End Loop; -- decoding for all thresholds 

If Exited = True then 

100 

-- add the uncertainty precision to the decoded coefficients 
If copyl/= 0 then -- threshold is not 1 

For i in 0 to SigNa loop 
(CoeffContnr(Dcodedinfo(i) .addr) ,Coeff) := 

CoeffContnr(Dcodedinfo(j) .addr) .Coeff + Thresh(copyl-1); 
end loop; 

Else 
For i in 0 to SigNa loop 

CoeffContnr(Dcodedinfo(i) .addr) .Coeff := 
CoeffContnr(Dcodedinfo(i).addr).Coeff + 1; 

end loop; 
End If; 

End If; 

-- correct the signs 

For i in 0 to lenth loop 
If Dcodedinfo(i) .Sign = '1' then 

Null; 
Else 

CoeffContnr(i) .Coeff := -{CoeffContnr(i) .Coeff); 
End If; 

End Loop; 

--display result 

For m in 0 to lenth loop 
OutCoeff <= CoeffContnr{rn) .Coeff; 

addrs <= m; 
wait for 5 ns; 

End Loop; 
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wait; 

End DecodeProcess; 

End Behavioural; 

Configuration CFGNewl of FullDecoder is 

For 
Behavioural 

End for ; 

End CFGNewl; 

END 

--***************************************************** 
ENCODER FOR SYNTHESIS 

--***************************************************** 

The code here is same as the one for synthesis. But as pointed out 
in the synthesis topic multidimensional arrays (arrays of records) 
have been converted to simple on dimensional array. Clocking is 
introduced for providing synchronization, while loops have been 
converted to for loops and wait statements as such have been emoved. 
Otherwise the logic is 
obviously the same. 
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library IEEE: 
library WORK; 
use \'JORK.TypePKGsyn.all; 
use IEEE.std_logic~l164.all; 
use IEEE.std_logic_signed.all; 

Entity FullEncoder is 
Port(clk : in Bit; codeA: out CodeType) 

End FullEncoder; 

Architecture Behaviouralsyn of FullEncoder is 

Type OutPutRA is Array (0 to 400) of CodeType; 
-- to contain the code for the coefficients from the encoding process 
Type FirstRA is Array (0 to 5) of Bit; 
Type CoeffRA is array (0 to lenth) of CoeffType; 
Type DSigRA is array (0 to lenth) of SigType; 
Type ZTFRA is array (0 to lenth) of Bit; 
Type EncodedRA is array (0 to lenth) of Bit; 
Type ApproxRA is array (0 to lenth) of CodeType; 

begin 

EncodeTree: Process --(CLK) 
variable T: integer range 1 to 64; 
variable Parent: IndexType,· 
variable Child: IndexType; 
variable OutCode : OutPutRA; 
variable m : Integer range 0 to 2048; 

variable q : Integer range 0 to 2048; 
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variable SigNa Integer range 0 to 64; -- Significant coefficient 
number. 

variable copy 
variable First 
coefficient 

Integer range 
FirstRA; 

0 to 64; 
to indicate whether 

--is the first in the level 
variable Coeff CoeffRA; 
variable ZTF : ZTFRA; 
variable Encoded : EncodedRA; 
variable DSig : DSigRA,· 
variable Zero: ApproxRA; 
variable One: ApproxRA; 
variable Two: ApproxRA; 
variable Three: ApproxRA; 
variable Four: ApproxRA; 
variable Five: ApproxRA; 
variable Six: ApproxRA,· 

begin 
wait until clk'event and elk= '1'; 

-- *** GetCoeff *** 

the significant 

Coeff(O} :=63;Coeff(1):=-34;Coeff(2) :=-31;Coeff(3) :=23_;Coef£(4) :=9; 
Coef£(5) :=10;Coeff(6) :=14;Coef£{7) :=-13;Coeff{8) :=15;Coeff{9) :=14; 
Coeff (10) :=-9;Coeff (11) :=-7 ,·Coeff (12) :=3;Coeff {13) :=-12;Coeff {14) :=-14; 
Coef£{15) :=8;Coeff(16) :=7;Coeff(17) :=13;Coeff(18) :=3;Coeff(19) :=4; 
Coef£(20) :=-12;Coeff(21) :=7;Coeff{22) :=6;Coeff(23) :=-l;Coef£{24) :=5; 
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Coeff (25) : =-7 ;Coeff (26) :,4; Coeff (27) : =-2 ;Coeff (28) : =3 ;Coeff (29) : =9; 
Coef£(30) :==3;Coeff(31) :=2;Coeff(32) :=-5;Coeff(33) :=:9;Coeff(34) :=3; 
Coeff ( 3 5) : =-0; Coeff (36) : -=-1; Coeff (37) :~17 ;Coeff (38): =--3 ;Coef( (3:1): =2; 
Coeff(<lO) :=2;Coeff(41) :=-3;Coeff(42) :-=S;Cod£{43) :=ll;Coeff(4il) :=6; 
Coef£(45) :==-4;Coeff(46) :=5;Coeff(47) :=6;Coeff{il8) :=4;Coeff(49) :=6; 
Coef£(50) :=J;Coe(£(51) :"'-2;Coeff(52) :=-2;Coeff(S3) :=2;Coeff(54) :=0; 
Coef£(55) :=4;Cocff(56) :=J;Coef£{57) :=6;Coef£{58) :=O;Coef£(59) ::::3; 
Coef£{60) :=3;Cocff(61) :=6;Coeff(62) :=-4;Coeff(63) :=4; 

For i in 0 to 63 Loop --lenth loop 
DSig(i) := u; 

ZTF(i) := '0'; 
Encoded(.,;_) :::: '0'; 

End loop; 
The DSig, ZTF and Encoded mean the same as in the simulation code 

-- except that here they are held in separate arrays. 

wait until clk'event and elk= '1'; 
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First := "000000"; 
significant 

initialize the array that indicates if the 

--coefficient found is the first in the level 
indicates the no of the significants found 
to serve as an index for the output array 

SigNa := 0; 
m := 0; 
FarlinG downto 0 loop -- main loop that does all the 7 sig map 
generation of 

T := Thresh(!); 
Parent := 15; 
Child : = lenth; 

coefficients and the subsequent encoding 
choose proper threshold 

-- GENERATE SIGNIFICANE MAP 

For parent in 15 downto 1 loop 
For j in 0 to 3 loop 

significance 

for all parents 
check four 

If DSig(child-j) = u then 
If abs(Coeff(child- j))>= 

DSig(parent) := '1'; 
Exit; 

T then 

Else 
DSig(parent) := '0'; 

End If; 
Elsif Dsig(child-j) = '1' then 

DSig(parent) := '1'; 
exit; 

Else 
If abs{(child -j))>= T then 

DSig(parent) := '1' i 
Exit; 

Else 
DSig(parent) := '0'; 

End If; 
End If; 

End Loop; --for one parent 
Child := Child - 4; 

End Loop; -- for all but one last parent 

children for 
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-- we have reached the first parent and its three children in the 
subband *** 

For j in 0 to 2 Loop -- for three children 
If DSig(child -1) = 1 1 1 then 

DSig(parent) := 1 1 1
; 

Exit; 
ElsiE abs(Coeff(child-j)) >~ T then 

DSig(parent) := 1 1 1
; 

Exit; 
Else 

DSig(parent) := '0 1
; 

End If; 
End Loop; 

-- SIGNIFICANCE MAP GENERATION FOR A THRESHOLD COMPLETED 
-- DEGIN ASSIGNING CODES 

Child := 1; 
wait until clk 1 event and elk= 1 1 1

; 

For parent in 0 to lenth Loop encode all coefficients 
If ZTF(parent) = 1 1 1 then 

If parent > 15 then 
Null,· 

Else 
For i in 0 to 3 loop 

ZTF(child +i) := '1'; 
-- pass the information that a 

found 
-- ahead to the childr 

End loop; 

Zerotree root has been 

wait until elk 1 event and elk = 1 1 1 
; 

End If; 
Elsif Encoded(parent) = '1 1 then 

if the coefficient has been coded before 
don't code it. 

Null; 
Elsif Abs(Coeff(parent))>= T then --significant 

If Coeff(parent) < 0 then 
OutCode(m) :=NEG; --code negative 
m:~m+l; 

Else 
OutCode(m) := POS; 
m:=m+l; 

End If; 

-- code positive 

-- START SUCCESSIVE APPROXIMATION QUANTIZATION 

copy := Abs(Coeff(parent)) -Thresh{!); 
Case 1 is 

When 0 => threshold is 1 
Null; 

When 6 => threshold is 64 
wait until clk 1 event and elk~ 1 1 1

; 

For k in 1 downto 0 loop 
If (copy- Thresh{k)) < 0 then --no remainder 
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Case k is 
When 0 => 

Zero(SigNo) := NO; 
When 1 => 

One(SigNo) := NO; 
When 2 => 

Two(SigNo) := NO; 
When 3 => 

Three(SigNo) :=NO; 
VJhen 4 => 

Four(SigNo) := NO; 
When 5 => 

Five(SigNo) := NO; 
When 6 => 

Six(SigNo) := NO; 
When Others => 

Null; 
End Case; 

Else 
Case k is 

When 0 => 
Zero(SigNo) := YES; 

When 1 => 
One(SigNo) := YES; 

When 2 :=:> 
Two(SigNo) := YES; 

When 3 => 
Three(SigNo) := YES; 

When 4 => 
Four(SigNo) := YES; 

When 5 => 
Five(SigNo) :=YES; 

When 6 => 
Six(SigNo) := YES; 

When Others => 
Null; 

End Case; 
copy :=copy- Thresh(k); 

End If; 
End Loop; 
OutCode(m) := Six(SigNo); 
m := m+l; 

When Others => 
For k in (1-1) downto 0 loop 

If (copy- Thresh(k)) < 0 then 
Case k is 

When 0 => 
Zero{SigNo):= NO; 

When 1 => 
One(SigNo) := NO; 

When 2 => 
Two(SigNo) := NO; 

When 3 => 
Three(SigNo) :=NO; 

When 4 => 
Four(SigNo) := NO; 

When Others => 
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Null; 
End Case; 

Else 
Case k is 

When 0 => 
Zero(SigNo) := YES; 

When 1 => 
One{SigNo) := YES; 

When 2 => 
Two{SigNo) := YES; 

When 3 => 
Three(SigNo) := YES; 

When 4 => 
Four(SigNo) := YES; 

When Others => 
Null; 

End Case; 
copy:= copy- Thresh(k); 

End If; 
End Loop,· 

End Case; 
tag the approximate values of the coefficients 

Case 1 is 
When 6 => 

Null; 
When Others => 

If First(!) = '0' then 
If SigNa = 0 then 

Null; 
Else 

wait until clk'event and 
for r in 0 to lenth loop 

If r > SigNa then 

elk= '1'; 
--(SigNa) 

Exit; 
Else 

Case 1 is 
When 0 => 

OutCode(m) 
When 1 => 

OutCode(m) 
When 2 => 

OutCode(m) 
When 3 => 

OutCode (m) 
When 4 => 

Out Code (m) 
When 5 => 

OutCode{m) 
When Others 

Null; 
End Case; 
m:=m+l; 

End If; 
End Loop; 

End If; 
First(!) :='1'; 

End If; 

:= Zero(r); 

:= One (r); 

:= Two(r); 

:= Three(r); 

:= Four (r) ,· 

:= Two (r) ; 

=> 

loop 
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End Case; 
SigNa := SigNa + 1; 
Coeff(parent) := 0; 
Encoded{parent) := '1'; 

code insignificant 
Else 

If DSig(parent) = '1' then 
OutCodG(m) := IZ; 
m:=m+l; 

Else 
OutCode(m) := ZTR; 
m:=m+l; 
If parent = 0 then 

Exit; 
Elsif DSig(parent) = '0' then 
wait until clk'event and elk= '1'; 

For j in 0 to 3 loop 
ZTF(child +j) := '1'; 

End Loop; 
wait until clk'event and elk= '1'; 
Else it is a leaf insignificant 

Null; 
End If; 

End If; 
End If; 

If parent >= 15 then 
Null; 

Elsif parent = 0 then 
child := child + 3; 

Else 
Child := Child + 4; 

End If; 
End Loop; 

one threshold loop 
set the significance (DSig)found earlier threshold to 0 

For k in 0 tv lenth loop 
If DSig(k) = u then 

Null; 
Else 

DSig(k) := '0'; 
End If; 
ZTF(k) := '0'; 

End Loop; 
End Loop; -- all the 7 arranging and encoding loop 
wait until clk'event and elk= '1'; 

-- display the code 
For n in 0 to 65 loop --(rn-1) 

CodeA <= OutCode(n); 
End Loop; 
wait until clk'event and elk= '1'; 

End Process; 
-- end of EncodeTree process 
End Behaviouralsyn; 
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-- CONFIGURATION 

Configuration CFGFull_Coder of FullEncoder is 
For 

Behaviour<:~lsyn 

End For; 
End CFGFull_Coder; 

END 

IOK 

--************************************~******************************** 

3 PARALLEL PROCESSOR ENCODER 
--********************************************************************* 

The same strategy of significance map generation, code assignment 
and successive approximation quantization is used. There are three 
fundamental differences from the single processor encoder. 
The first parent in each of the three processors has only one child 
And to determine the descendent significance of the first parent 
information is required from the other two processors. And each 
processor proceses only a third of the coefficients, i.e. one 
processor encodes one subband of the three Processor for subband A's 
code is shown in full. Since the other two 
are the same we show only how the three relate to the fourth 
Processor and donot repeat the code for the other two processors in 
the interest of space. They are just the repetition of the first one 
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The same types and variable used earlier in the single processor are 
used here as well. For the three processors the variables and 
signals are appended with A, B, C so as to differentiate their use 
in three processors 

library IEEE; 
library WORK; 
use WORK.TypePKG.all; 
Use IEEE.std_logic_.ll64.all; 
use IEEE.std_logic_signed.all; 

Embedded Zerotree \IJavelet Algorithm. 
Image 8 by 8 
8 bit implementation 

Entity FullEncoder is 
Port{codeA, codeB, codeC 

End FullEncoder; 
out CodeType) 

Architecture Behavioural! of FullEncoder is 

Type CoeffRec is 
record 
DSig: SigType; 
-- '1' for yes, '0' for no and 'u' 

for no children (leaves) 
ZTF: Bit; 
Encoded: Bit; 
Coeff: CoeffType; 

End Record; 

-- variables have the same meaning as before in the single processor 
case 

DSig is to indicate if the descendents have been found to be 
significant 
-- ZTF for zerotree root found ahead or at the present level 

Encoded to indicate if it has been encoded for any prevoius 
threshold 
-- Coeff to contain the actual caE.•ff.icient 

Type RAOfRec is Array (0 to lenth) of CoeffRec; 

to contain the input coefficients and information on each 
coefficient 
Type OutPutRA is Array (0 to 150) of CodeType; 
-- to contain the code for the coefficients from the encoding process 

Type AllQntRA is Array (0 to 21, 0 to 6) of CodeType; 
-- to contain the quantization values of all the codes 
Type FirstRA is Array (0 to 5) of Bit; 

Signal A, B, C : Bit; 
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Signal Acode, Bcode, Ccode: Code'rype; 

signal l>lainParent: Coef(Type; 

signal ASig, BSig, CSig: Bit; 

signal AYes, BYes, CYes: Bit; 

signal DoneA, DeneB, Donee ' Bit; 

signal FromA, fromB, fromC: Bit; 

signal ADone, BOone, COone 

signal TCopy: Integer range 

begin 

ControlProcesses: Process 
begin 

' Bit; 

1 to 64; 

control the start of the thres processes 
A <= '1'; 
B <= '1'; 
c <= '1'; 
Wait Until Ayes= '1' and Byes= '1' and Cyes = '1'; 
A<= '0'; 
B <= I 0'; 
c <= '0'; 

End Process; 

Subband_A: Process -- to process subband A 

variable T: integer range 1 to 64; 

variable Contnr: RAOfRec; 

variable Parent: IndexType; 

variable Child: IndexType; 

variable OutCode : OutPutRA; 

variable m : Integer range 0 to 150; 
variable ApproxValue : AllQntRA; 

I I 0 

variable SigNo Integer range 0 to 21; Significant coefficient 
number. 
variable copy : Integer range 0 to 128; 
variable First : FirstRA; 

to indicate whether the significant coefficient is the 
-- first in the level 

begin 
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-- process subband_A 

-- Initialization 
For i in 0 to lenth loop 

Contnr(i) .DSig := u; 
COntnr{i) .ZTF:= '0'; 
Contnr(i) .Encoded := '0'; 

End loop; 

Ill 

First := "000000"; initialize the array that indicates if the 
significant coefficient found is the first in the level 
Contnr(O) .Coeff:-= -BJ;Contnr(l) .Coeff:= -3l;Contnr(2) .Coeff:o:= 15; 
Contnr(J).Coeff:= 14;Contnr(4) .Coeff:= -9;Contnr(5).Coeff:= -7; 
Contnr(6) .Coeff::= -5; Contnr(7) .Coeff:= 9;Contnr(8) .Coeff:= 
3;Contnr(9) .Coeff:= O;Contnr(lO) .Coeff:= -l;Contnr(ll) .Coeff:= 
47;Contnr{12) .Coeff:= -3; Contnr(13) .Coeff:= 2;Contnr{14) .Coeff:= 
2;Contnr{15) .Coeff:= -3; Contnr(l6) .Coeff:= 5;Contnr(17) .Coeff:= 
ll;Contnr(l8) .Coeff:= 6; Contnr(l9) .Coeff:= -4;Contnr(20) .Coeff:= 
5;Contnr(21) .Coeff:= 6; 

Inputs/Coefficients ready 
m : = 0; -- to serve as an index for the output array 
SigNa := 0; -- indicates the no of the significants found 

For 1 in 6 downto 0 loop -- main loop that does all the encoding 
T := Thresh(l); 
Parent:= 5; 
Child : = lenth; 

-- GENERATE SIGNFICANCE MAP 

While Parent >= 1 loop 
for j in 1 to 4 loop 

If Contnr(Child - j+ 1) .DSig = u then 
If abs(Contnr(Child- j + l).coeff)>= T then 

Contnr(Parent) .DSig := '1'; 
Exit; 

Else 
Contnr{Parent) .DSig := '0'; 

End If; 
Elsif Contnr(Child- j + 1) .Dsig = '1' then 

Contnr(Parent) .DSig .- '1'; 
exit; 

Else-- Contnr(Child- j + l).DSig = '0' 
If abs (Contnr (Child - j + 1) .coeff) >= T then 

Contnr(Parent) .DSig := '1'; 
Exit; 

Else 
Contnr(Par.ent) .DSig := '0'; 
End If; 

End If; 

End Loop; 
Child := Child - 4; 
Parent := Parent - 1; 

End Loop; 
-- we have reached the first parent and its only child in the subband 
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If Contnr(l) .DSig = '1' then 
Contnr(O) .Dsig :~ '1'; 

Else 
If abs(Contnr(l) .Coeff) >= T then 

Contnr(O) .DSig := '1'; 
Else 

Contnr(O) .DSig := '0'; 
End If; 

End If; 

-- SIGNIFICANCE MAP GENERATION COMPLETED 
-- ASSIGN CODES 

-- send zeroth (0) coefficient and the significantce of its first 
descendents 
-- to another process to 

-- code the main parent 

If Contnr(O) .Encoded= '0' then 
-- do the folowing only if the main parent hadn't been encoded 

MainParent <= Contnr(O) .Coeff; 
If Contnr(O) .DSig = '1' then 

ASig <= '1'; --main parent from processor A has 
-- descendent significant 

Else 
ASig <= '0': --main parent does not have any significant 

descendent in subband A 
End If; 
TCopy <= T; 
FromA <= '1'; -- subband A has reached to process the main 

-- parent 
Wait until ADone = '1'; 
FromA <= '0'; 
outcode(m) := ACode; 
m:=m+1; 
Case Acode is 

When POS I NEG => 
-- start quantization for main parent 
copy := Abs(contnr(O) .Coeff) - Thresh(l); 

For k in (1-1) downto 0 loop 
If (copy- Thresh(k)) < 0 then 

ApproxValue(SigNo,k) :=NO; 
Else 

ApproxValue(SigNo,k) :=YES; 
copy:= copy- Thresh(k); 

End If; 
End Loop; 

-- tag the approximate values of the coefficients 
Case 1 is 

Karma Wangdi 

When 6 => 
--OutCode(m) := ApproxValue(SigNo,l); 
--m : = m + 1; 
Null; 

When Others => 
If First(l) = '0' then 

for r in 0 to (SigNa-l) loop 
OutCode(m) := ApproxValue(r,l); 

Thesis on Final Y car Engineering Project, 1999. 

I 



Emhcd~:d Zcrotrcc Codcc 

m:=m·tl; 
End loop; 
First(ll :=:'1'; 

End If; 
End Case; 
-- increment the no of significants found 
If SigNa < 21 then 

SigNa := SigNa+ 1; 
End If; 
Contnr{O) .Encoded:= '1'; 
Contnr(O) .Coeff .- 0; 

When ZTR => 
Contnr(O) .ZTF := '1'; 

When Others => 
Null; 

End Case; 
End If; 
-- encode the rest 
If Contnr(O) .ZTF = '1' then 

Null; 
Else -- only if the main parent is not a zerotree root 

If Contnr(l) .Encoded = '1' then 
Null; 

Else 
If Abs(Contnr(l) .coeff)>= T then 

If Contnr(l) .Coeff < 0 then 
OutCode(m) := NEG; 

Else 
OutCode(m) := POS; 

End If; 
m:=m+l; 

copy:= Abs(contnr(l) .Coeff) -Thresh(!); 
For k in (1-1) downto 0 loop prepare the table of 

-- coefficients 
If copy - Thresh(k) < 0 then 

ApproxValue(SigNo,k) := NO; 
Else 

ApproxValue(SigNo,k) := YES; 
copy:= copy- Thresh(k); 

End If; 
End Loop; 
-- tag the approximate values of the coefficients 
Case 1 is 

When 6 => 
OutCode(m) := ApproxValue(SigNo,l); 
m := m + 1; 

When Others => 
If First(l) = '0' then 

for r in 0 to (SigNa-l) loop 
OutCode(m) := ApproxValue(r,l); 
m := m + 1; 

End loop; 
First(l) :='1'; 

End If; 
End Case; 

Ill 
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If SigNa < 21 then 
SigNo :~ SigNa + 1; 

End If; 

Contnr(1) .Coeff := 0; 
Contnr ( 1 l . Encoded : = ' 1' ; 

Else 
If Contnr(1).DSig = '1' then 

OutCode(m) := IZ; 
m:~m+1; 

Elsif Contnrtl) .DSig = '0' then 
OutCode(m) := ZTR; 
Contnr(1).ZTF := 'l'; 
m := m + 1; 

Else 
Null; 

End If; 
End If; 

End If; 
start coding the other descendents from 2 and all 

If Contnr(1) .ZTF = '1' then 
Null; 

Else 
parent := 1; 
child := 2; 
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Loop --till all the descendents have been encoded, happens 
when 

parent = 5 is o·.rer 
If Contnr(Parent).t;'!'P = '1' then 

For i in 1 to 4 loop 
Contnr(Child + i -1).ZTF := '1'; --pass the 

information that a Zerotree 
-- root has been found ahead to 
-- the children 

End loop; 
Else 

For i in 1 to 4 loop 
If Contnr(Child + i -l).Encoded = '1' ther. 

-- if the coefficient has been coded before don't 
-- code it 
Null; 

Else 
If Abs(Contnr(Child + i- 1).Coeff) >= T then 

If Contnr (Child + i - 1) . Coeff < 0 then 
OutCode (m) : = NEG; 

Else 
OutCode {m) : = POS; 

End If; 
m:=m+1; 

start quantization 
copy := Abs(contnr{Child + i - 1) .Coeff) - Thresh(l); 
Case 1 is 
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When 0 => 
Null; 

When Others "> 
For k in (l-1) downto 0 loop 

If (copy - Thresh(k)) < 0 then 
Approxvalue (SigNa, k) : = NO; 

Else 
ApproxValue (SigNa, k) : = YES; 
copy . - copy - Thresh ( k); 

End If; 
End Loop; 

End Case; 
-- tag the approximate values of the coefficients 
Case 1 is 

When 6 => 
OutCode(ml := ApproxValue(SigNo,l); 
m:=m+l; 

When Others => 
If First(!) = '0' then 

for r in 0 to (SigNa-l) loop 
OutCode (m) := 

ApproxValue(r,l); 
m:=m+l; 

End loop; 
First(!) :='1'; 

End If; 
End Case; 
If SigNa < 21 then 

SigNa :=SigNa+ 1; 
End If; 
Contnr(Child + i - 1) .Coeff := 0; 
Contnr (Child + i - 1) .Encoded : = '1' ; 

Else 
If Contnr(Child + i- 1) .DSig = '1' then 

OutCode (m) : = IZ,· 
m:=m+l; 

Elsif Contnr{Child + i - 1) .DSig = '0' then 
Outcode(m) := ZTR; 
Contnr(Child + i- l).ZTF := '1'; 
m:=m+l; 

Else -- if it is a leaf coefficient 
OutCode{m):= ZTR; 
m:=m+l; 

End If; 
End If; 

End If; 
End Loop; 

End If; 
If Parent >= 5 then 

Exit; 
Else 

Child := Child + 4; 
Parent := Parent + 1; 

End If; 
End loop; 

End If; 
End If; 
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-- reset the fields 
For k in 1 to (lenth + 1) loop 

If Contnr(k-1) ,DSig = u then 
null; 

Else 
Contnr(k-1) .DSig := '0'; 

End If; 
Contnr(k-1) .ZTF := '0'; 

End Loop; 

End Loop; -- aL1 the 7 arranging and encoding loop 

display the code 

For n in 0 to m-1 loop 
CodeA <= OutCode(n); 
wait for 5 ns; 

End Loop; 
Ayes<= '1'; 
wait until A= '1'; 

End Process; -- end of process Subband~ 

Subband_B: Process 
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------------------------------·----------------------------------------
SAME AS PROCESSOR FOR SUBBAND_A, INPUTS ARE FROM SUBBAND_B 

--GENERATES FIGNIFICANCE MAP, SENDS THE MAIN PARENT'S DESCENDENDT 
-- INFORMATION TO A FOURTH PROCESSOR AND ENCODES AS DONE IN SUBBAND_A 

Subband_C: Process 

SAME AS PROCESSOR FOR SUBBAND_A AND B, BUT INPUTS FROM SUBBAND_C 
--GENERATES FIGNIFICANCE MAP, SENDS THE MAIN PARENT'S DESCENDENDT 
-- INFORMATION TO A FOURTH PROCESSOR AND ENCODES AS DONE IN SUBBAND_A 

-- PROCESS THAT DETERMINES THE DESCENDENT SIGNIFICANCE OF THE MAIN 
-- PARENT AND SENDS THE INFORMATION TO THE INDIVIDUAL PROCESSORS 
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DetNain: Process 

variable Thold : Integer range 1 to 64; 
variable CopyCoeff: CoeffType; 

begin 

Wait Until FromA = '1' and FromE = '1' and Frome = '1'; 
get information from all the 

ADone <= '0'; 
BOone <= '0' ; 
COone <= '0' ; 

three processes of the th~ ~ subbands 

--- keep the processors waiting 

CopyCoeff := MainParent; 
If Abs(CopyCoeff) >~ Thold then 

If CopyCoeff < 0 then 
ACode <= NEG; 
BCode <= NEG; 
CCode <= NEG; 

Else 
ACode <= POS; 
BCode <= POS; 
CCode <= POS; 

End IF; 

Else 
If ASig = '1' or 

ACode <= 
BCode <= 
CCode <= 

Else 
ACode <= 
FICode <= 
CCode <= 

End If; 
End If; 

ADone <= '1' ; 
BOone <= '1' ; 
COone <= '1' ; 

End Process; 
End Behaviourall; 

IZ; 
IZ; 
IZ; 

ZTR; 
ZTR; 
ZTR; 

BSig = '1' or CSig = '1' then 

Configuration CFGFull_Coder of FullEncoder is 

For 
Behaviourall 

End For; 
End CFGFull_Coder; 

END 
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--**************************************************** *************** 
PARALLEL ARCHITECTURE DECODER 

*********************************************************************** ... 

The three parallel decoders are exactly the same. So, only one is 
shown. As explained in chapter 4 this decoder is a smaller version 
of the single processor decoder, though it does not necessarily be. 
It is atleast as implemented in this project. The only main 
difference is that the first parent has only one child here, whereas 
in the single processor codec we had three children. Rest, is the 
same. The variable names used here are same as those used in the 
other decoder. Hence only modest explanations are provided her~ as 
they are just the repetition of what we have been explained 

Karma Wangdi Thesis on Final Year Engineering Project, 1999. 

I 



Emhcclcd Zcrutrcc Codcc 

·-- thoroughly before 

library IEEE; 
library WORK; 
use i'lORK.TypePKG.all; 
use IEEE.std_logic_l164.all; 
use IEEE.std_logic_signed.all; 

Entity FullDecoder is 

Port(codeout: out CodeType) 
End FullDecoder; 

Architecture Behavioural of FullDecoder is 

Type CoeffRec is 
Record 

Coeff : CoeffType; 
ZTF : Bit; 
Decoded : Bit; 

End Record; 

Type CoeffRA is Array (0 to lenth) of CoeffRec; 
Type CodeRA is Array (0 to 264) of CodeType; 
Type Frstlndictr is Array (0 to 5) of Bit; 
Type AddrSign is 

record 
Addr 
Sign 

End Record; 

Integer range 0 to 21; 
Bit; 
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Type RAddrSign is Array ( 0 to lenth) of AddrSign; 
information on the decoded codes 

-- to contain the 

begin 

DecodeProcess: Process 

variable p ' Integer range 0 to 264; 
variable CoeffContnr ' CoeffRA; 
variable CodeContnr ' CodeRA; 
variable parent Integer range 0 to 6; 
variable child Integer range 0 to lenth; 
variable Dcodedinfo 
variable SigNa 
variable First 

begin 

CodeContrr(O) :=NEG; 
CodeContnr(3) :=ZTR; 
CodeContnr(6) :=ZTR; 

' RAddrSign; 
Integer range 0 to 22; 

' Frstindictr; 

CodeContnr(l) :=ZTR; 
CodeContnr(4) :=IZ; 

CodeContnr(7) := ZTR; 

--significant number 

CodeContnr{2) := 
CodeContnr(S) := 

CodeContnr(S) := 

IZ; 
ZTR; 
POS; 
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CodeContnr(9) :=NO; CodeContnr(lO) := ZTR; CodeContnr(ll) := 
CodeContnr(12) ::=NEG; CodeContnr(13) := YES; CodeContnr(14) 
CodeContnr(lS) :::: ZTR; CodeContnr(16) := Z'l'R; Codecontnr(l'J) := 

:= 
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ZTR; 
NO; 

ZTR; 
CodeContnr(lB) := Z'l'R; CodeContnr(19} := POS; CodeContnr(20) := NO; 
CodeContnr(21) := YES;CodeContnr(22) .- YES;CodeContnr(23) := 

CodeContnr ( 24) : = NEG; CodeContnr (25) . - ZTR; CodeContnr ( 26) : = 
CodeContnr(27) := POS;Codccontnr(28) := Z'l'R;CodeContnr(29) := 
CodeContnr(JO) := ZTR;CodeContnr(31) .- Z'l'R;CodeContnr(32) := 

CodeContnr(33) :-= ZTR;CodeContnr{34) := Z'l'R;CodeContnr(35) := 
CodeContnr(36) := POS;CodeContnr{37) := NEG;CodeContnr(38) := 
CodeContnr(39) := YES;CodeContnr(40) .- YES;CodeContnr(41) := 
CodeContnr(42) := YES;CodeContnr{43) := NO; CodeContnr (44) := 
CodeContnr(45) := NO;CodeContnr{46} :=NEG; CodeContnr(47) := 
CodeContnr(48) := ZTR;CodeContnr(49) := ZTR;CodeContnr(SO) := 
CodeContnr(Sl) := ZTR;Codecontnr(52) := ZTR;CodeContnr(53) := 
CodeContnr(54) := POS;CodeContnr(55) := POS;CodeContnr(56) := 
CodeContnr(57) := POS;CodeContnr(58) := POS;CodeContnr(59) := 
CodeContnr(60) := YES;CodeContnr(61) := YES;CodeContnr(62) := 
CodeContnr(63) := YES;CodeContnr(64) := YES;CodeContnr(65) := 
CodeContnr(66) := NO;CodeContnr(67) := YES;CodeContnr(68) := 
Codecontnr(69) := NO;CodeContnr(70) :=NO; CodeContnr(71) := 
CodeContnr(72) := NO;CodeContnr(73) :=NO; CodeContnr(74) := 
CodeContnr(75) := ZTR;CodeContnr(76) := ZTR;CodeContnr(77) := 
CodeContnr(78) := POS;CodeContnr(79) := POS;CodeContnr(BO) := 
CodeContnr(81) := ZTR;CodeContnr(82) := NEG;CodeContnr(83) := 

CodeContnr(84) := YES;CodeContnr(BS) := YES;CodeContnr(86) := 
CodeContnr(87) := NO;CodeContnr(88) := YES; CodeContnr(89) := 
CodeContnr(90) := YES;CodeContnr(91) := YES;CodeContnr(92) := 

CodeContnr(93) := YES;CodeContnr(94) :=NO; CodeContnr(95) := 
CodeContnr(96) := YES;CodeContnr(97) := NO;CodeContnr(98) := 
CodeContnr(99) := YES;CodeContnr(lOO) := NO;CodeContnr(lOl) 
CodeContnr(102) := YES;CodeContnr(103) := NEG; CodeContnr(104) := 

-- initialize 

For m in 0 to lenth loop 
CoeffContnr(m) .Coeff := O; 
CoeffContnr(m).ZTF := '0'; 
CoeffContnr{m) .Decoded := '0'; 
If m <= 5 then 

First(m) := '0'; 
End If; 

End Loop; 

P := O; index the codecontr 
SigNa := 0; 
For 1 in 6 downto 0 Loop 

parent:= 0; 
child := 0; 

For j in 0 to lenth loop -- for one threshold 
If Coeffcontnr(j).Decoded = '1' then 

null; 

Else 
If Coeffcontnr(j) .ZTF = '1' then 

POS; 
ZTR; 
ZTR; 
ZTR; 
ZTR; 

NO; 
YES; 

NO; 
ZTR; 
ZTR; 
ZTR; 
NEG; 
POS; 
YES; 

NO; 
YES; 
YES; 
YES; 
NEG; 
NEG; 
YES; 
YES; 
YES; 
YES; 

NO; 
YES; 

:= NO; 
NEG; 
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null; 

Else 

Case Codecontnr(p) IS 
When ZTR => 

If ( (j = 0) OR (j = 1)) then 

parent:= 0; 

child := 0; 

p:=p+l; 

Exit; 
Else 

If ((parent/= 0) AND (parent<= 5)) then 
-- it is not a leaf 
-- so mark its children 

For k in 0 to 3 loop 
CoeffContnr(child + k) .ZTF := '1'; 

End Loop; 
End If; 

End If; 
When POS I NEG => 

CoeffContnr(j) .Decoded:= '1'; 
SigNa := SigNa + 1; 

Dcodedinfo(SigNo-1) .Addr := j; 
If Codecontnr(p) = POS then 

Dcodedinfo(j) .sign := '1'; 
Else 

Dcodedinfo(j} .sign := '0'; 
End If; 
CoeffContnr{j) .Coeff := (Thresh(!)); 
If 1 <= 5 then 

If First(!) = '0' then 
-- this is the first significant in the level 

so add precision to the previously found 
coefficients 

For i in 1 to SigNa-l loop 
If Codecontnr(p + i) = YES then 

addrs <= Dcodedinfo(i-1) .addr; 
wait for 5 ns; 

addrs <= 22; 
wait for 5 ns; 

CoeffContnr(Dcodedinfo(i-l).Addr) .Coeff := 
CoeffContnr{Dcodedinfo(i-1) .Addr).Coeff + 

(Thresh(!)); 
Else 

Null; 
End Loop; 
First(l) := '1'; 
p := p + SigNa -1; 

End If; 
End If; 

When Others => 

End If; 
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Null; 
End case; 
p:=P+l; 

End If; 
End If; 

house keeping 
If j >= 21 then 

Exit; 

Else 

If j >= 1 then 

prepare to read the next code 

If parent = 0 then 
Parent := 2; 
child := 6; 

Else 
Case parent IS 

Nhen 6 => 
Null; 

When 5 => 
Parent := parent + 1; 

When Others => 
Parent := parent + 1; 
child := child+ 4; 

End Case; 
End If; 

End If; 
End If; 

End Loop; 
For 1 in 0 to lenth loop 

coeffcontnr(l) .ZTF := '0'; 
End Loop; 

End Loop; 

-- correct the signs 

For i in 0 to lenth loop 
If Dcodedinfo(i) .Sign = '1' then 

Null; 
Else 

CoeffContnr(i) .Coeff :=- (CoeffContnr(i) .Coeff); 
End If; 

End Loop; 

--display result 

For m in 0 to lenth loop 

OutCoef£ <= CoeffContnr(m) .Coeff; 
wait for 5 ns; 

End Loop; 

Wait; 
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End Process; 

End Behavioural; 

Configuration CFGNewl of FullDecoder is 

for Behavioural 
End for ; 

End CFGNewl; 
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----------------------------------------------------------------------
END 

--********************************************************************* 
-- Significance Map Generator: Code that has been Successfully 
-- Synthesized 
--********************************************************************* 

This the one logical portion of the encoder that has been 
synthesized. Significance Generation code has appeared before. Of 
noteworthy is the replacement of records by arrays, introduction of 
clocking, use of only for loops, and no wait statement as such being 
used. It is only used with rising edge of a clock. Otherwise, here 
too the codes are similar to those found earlier 

library IEEE; 
library WORK; 
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use toJORK. 'l'ypePKGsyn. all; 
use IEEE.std~logic_1164.all; 
use IEEE.std_logic_signed.all; 

Embedded Zerotree Wavelet Algorithm. 
Image 8 by 8 
8 bit implementation 

Entity SigMapGen is 
Port(clk : in Bit; codeA: out CodeType) 

End SigMapGen; 

Architecture Behave of SigMapGen is 

Type OutPutRA is Array (0 to 200) of CodeType; 
-- to contain the code for the coefficients from the encoding process 

Type FirstRA is Array (0 to 5) of Bit; 
Type CoeffRA is array (0 to lenth) of CoeffType; 
Type DSigRA is array (0 to lenth) of .SigType; 
Type ZTFRA is array (0 to lenth) of Bit; 
Type EncodedRA is array (0 to lenth) of Bit; 
Type ApproxRA is array (0 to lenth) of CodeType; 

begin 

Arrange: Process --(CLK) 
variable T: integer range 1 to 64; 

variable Parent: IndexType; 

variable Child: IndexType; 

variable OutCode : OutPutRA; 

variable m : Integer range 0 to 2048; 
variable q : Integer range 0 to 2048; 
variable SigNa : Integer range 0 to 64; 
-- Significant coefficient number, 
variable copy : Integer range 0 to 64; 
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variable First FirstRA; to indicate whether the significant 
coefficient is the first in the level 
variable Coeff : CoeffRA; 
variable ZTF : ZTFRA; 
variable Encoded : EncodedRA; 
variable DSig : DSigRA; 
variable Zero: ApproxRA; 
variable One: ApproxRA; 
variable Two: ApproxRA; 
variable Three: ApproxRA; 
variable Four: ApproxRA; 
variable Five: ApproxRA; 
variable Six: ApproxRA; 
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begin 

wait until clk'event and elk= '1'; 

-- *** GetCoeff here *** 
For i in 0 to 63 Loop --lenth loop 

DSig(i) := u; 
ZTF(i):= '0'; 
Encoded(i) := '0'; 

End loop; 
wait until clk'event and elk= '1'; 
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First : = "000000"; initialize the array that indicates if the 
significant -- coefficient found is the first in the level 

SigNa := 0; -- indicates the no of the significants found 
m : = 0; -- to serve as an index for the output array 
Parent : = 15; 
Child : = lenth; 

For parent in 15 downto 1 loop 
for j .i.n 0 to 3 loop 

If DSig{child-j) = u then 
If abs(Coeff(child- j))>= T then 

DSig{parent) := '1'; 
Exit; 

Else 
DSig(parent) := •o•; 

End If; 
Elsif Dsig(child-j) = '1' then 

DSig (parent) : = '1'; 
e:dt; 

Else 
If abs((child -j))>= T then 

DSig(parent) := •1'; 
Exit; 

Else 
DSig(parent) := '0'; 

End If; 
End If; 

End Loop; --for one parent 
Child : = Child - 4; 

End Loop; -- all parents 

-- we have reached the first parent and its three children in the 
subband 

For j in 0 to 2 Loop 
If DSig(child -1) = '1' then 
DSig(parent) := '1'; 
Exit; 

Elsif abs(Coeff(child-j)l >= T then 
DSig(parent) := '1'; 
Exit; 

Else 
DSig(parent) := '0'; 

End If; 
End Loop; 

End Process; 
End Behave; 
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Configuration CFG_Arranger of SigMapGen is 
For 

Behave 
End For; 

End CFG_Arranger; 

END 
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