
Edith Cowan University Edith Cowan University

Research Online Research Online

Theses : Honours Theses

1999

Embed[d]ed Zerotree Codec Embed[d]ed Zerotree Codec

Karma Wangdi
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses_hons

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Wangdi, K. (1999). Embed[d]ed Zerotree Codec. https://ro.ecu.edu.au/theses_hons/827

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses_hons/827

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses_hons
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses_hons?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F827&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F827&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses_hons/827

 Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose

of your own research or study.

The University does not authorize you to copy, communicate or

otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following:

 Copyright owners are entitled to take legal action against persons

who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement.

 A court may impose penalties and award damages in relation to

offences and infringements relating to copyright material. Higher

penalties may apply, and higher damages may be awarded, for

offences and infringements involving the conversion of material

into digital or electronic form.

Edith Cowan University

I.ihmry/Archivcs

I certify that this thesis does not incorporate without acknowledgment any material
previously submitted for a degree or diploma in any institution of higher education
and that to the best of my knowledge and belief does not contain any material
previously published or written by another person except where due reference has
been made in the text.

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

Embeded Zerotree Codec

A Thesis Submitted in Partial Fulfilment of the Requirements for the Award of

Bachelor ofEngineering (Electronic Systems) with First Class Honours

Karma Wangdi

Faculty of Communications, Heath and Science

Edith Cowan University

Western Australia

Date of submission: 9 November 1999

Embeded Zerotree Codec 0

TABLE OF CONTENTS

ACKNOWLEDGEMENT .. 4

ABSTRACT ... 5

INTRODUCTION ... 6

PROJECT DEFINITION ... 8

AIM .. 8

SCOPE .. 8

1. INTRODUCTION TO IMAGE COMPRESSION .. 10

1.1 INTRODUCTION .. 10
1.2 BASIS OF IMAGE COMPRESSION ... 10

1.2.1 Data Redundancy .. 10
1.2.1.a. Coding Redundancy ... 10
1.2.1.b Interpixel Redundancy ... 11
1.2.1.c Psychovisual Redundancy .. 11

1.2.2 Data Irrelevancy ... 12
1.3 IMAGE COMPRESSION MODELS .. 12

1.3.1 The Source Encoder and Decoder .. 13

1.4 TYPES OF IMAGE COMPRESSION TECHNIQUES ... 15
1.4.1 Lossless Compression Techniques .. 17

1.4.1.a Bit Plane Encoding ... 17
1.4.1.b Lossless Predictive Coding .. 18

1.4.2 Lossy Compression Techniques .. 19

1.4.2.a Discrete Cosine Transform Coding .. 19
1.4.2.b Vector Quantization ... 20
1.4.2.c Wavelet Coding .. 21
1.4.2.d Lossy Plus Lossless Residual Coding .. 21

2. WAVELET TRANSFORM AND IMAGE COMPRESSION .. 23

2.1 INTRODUCTION .. 23

2. 2 MATHEMATIC AL REPRESENTATION OF WAVELETS .. 23

2.3 CONTINUOUS WAVELET TRANSFORM .. 25
2.3.1 Resolution from Continuous Wavelet Transform .. 27

2.4 DISCRETE WAVELET TRANSFORM ... 28
2.4.1 Resolution from Discrete Wavelet Transform ... 29

2.5 WAVELET TRANSFORM AND DIGITAL IMAGE COMPRESSION ... 30
2.5.1 Data Compression ... 30
2.5.2 Better Frequency Resolution ... 31
2.5.3 Noise Immunity .. 32

3. THE EZW ALGORITHM .. 33

3.1 INTRODUCTION .. 33

3.2 FEATURES OF THE EMBEDDED CODER ... 33

3.3 2 - D DISCRETE WAVELET TRANSFORM OF IMAGE .. 34
3 .4 THE ZEROTREE DAT A STRUCTURE .. 35

3.5 THE NUMBER OF ZEROTREES ... 36

3.6 THE SIGNIFICANCE MAP .. 38

3.7 SCANNING OF COEFFICIENTS ... 38
3.8 ENCODING A WAVELETCOEFFICIENT .. 38
3.9 SUCCESSIVE APPROXIMATION QUANTIZATION .. 40
3.10 EXPERIMENTAL RESULTS OBTAINED BY SHAPIR0 ... 41

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Embeded Zerotree Codec 1

4. ENCODER AND DECODER DESIGN ... 43

4.1 INTRODUCTION .. 43

A. ENCODER DESIGN .. 43

4.2 Single Processor Architecture ... 43
4.2.1 Mapping Coefficients to Memory Bank ... 44
4.2.2 Fields of a Memory Element .. 45
4.2.3 Pointers ... 46

4.3 Choice of Thresholds ... 46
4.4 Encoding the Coefficients ... 46

4.4.1 Significance Map Generation ... 47
4.4.2 Assignment of Codes .. 51
4.4.3 Successive Approximation Quantization .. 54
4.4.4 Updating the DSig, ZTF, Encoded and Coeff fields ... 59
4.4.5 Summary ... 59

B. DECODER DESIGN .. 61

4.5 Introduction ... 61
4.6 Assumption on Codes .. 61
4. 7 Architecture ... 61

4.8 Decoding Process ... 63
4.8.1 Preparation .. 63
4.8.2 Checking the ZTF and Decoded Fields ... 64
4.8.3 Deciphering the Code and Reconstructing the Coefficients .. 65
4.8.4 Updating the Decoded, ZTF, Coeff and Sign Fields ... 69

C. PARALLEL PROCESSOR ARCHITECTURE ... 70

4.9 Introduction. .. 70
4.10 Observation of Inherent Parallelism ... 70
4.11 Architecture ... 71

5. SIMULATION AND SYNTHESIS ... 75

A. SIMULATION .. 75

5.1 Introduction. .. 75

5.2 Test Data ... 75

5.3 Simulation Result for Single Processor Codec .. 77

5.3.1 Encoder Simulation .. 77
5.3.2 Decoder Simulation .. 78

5.4 Simulation Result for Parallel Processor Codec ... 79
B. SYNTHESIS ······················· ····· ····· ······· ····· .. 81

5.5 Introduction ... 81
5.6 Issues Encountered in Behavioral Synthesis ... 81

5. 7 Synthesizing the Significance Map Generator .. 82
5.7.1 The Synthesis Process ... 82
5.7.2 Synthesized Significance Map Generator Schematics 83

6. CONCLUSION ... 85

6.1 PROJECT ACHIEVEMENTS AND CONTRIBUTION .. 85

6.2 COMMENTS AND RECOMMENDATIONS FOR FUTURE RESEARCH .. 86

APPENDIX .. 88

BIBLIOGRAPHY ... 127

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Embeded Zerotree Codec 2

FIGURES AND TABLES

List of Figures

Fig No Figure Name Page
. No

1.1 The Operational space of Compression Alaorithm Design 13

1.2 A General lmaae Compression System Model 13

1.3 Source Encoder and Source Decoder Model 14
1.4 Image Compression Techniques 16
1.5 A General Compression Framework 17
1.6 An image whose pixel values are k bits wide decomposed into k-bit 18

planes
1.7 A Lossless Predictive Godina Model 19

1.8 8 x 8 DCT Basis Function 20

1.9 Vector Quantization Block Diagram 21

2.1 Wavelet Transform as passing a signal through sets of High pass 27

and Low pass filters
2.2 Time and Frequency Resolution from Continuous Wavelet Transform 28

2.3 Discrete Wavelet Transform 30

2.4 Time-Freauency Resolution from Discrete Wavelet Transform 31

2.5 Data Reduction in DWT 32

2.6 The Original (noisy) and transformed sine curves 33

2.7 The Reconstructed low noise signal 33

3.0 A Generic Transform Coder 35

3.1 A one-scale 2-D Wavelet Decomposition of an Image 35

3.2 A three-scale 2-D Wavelet Decomposition of an Image 35

3.3 Parent-Child relationship of a three scale 2-D wavelet coefficients 37

3.4 A three-scale decomposition of 8x8 wavelet coefficients 38

3.5 A 2 scale decomposition to an 8x8 wavelet coefficients 38

3.6 A tree structure of wavelet coefficients 38

3.7 Scanning order of the Subbands for Encodina a Sianificance Map 39
3.8. Flow Chart for Encoding a Coefficient of the Significance Mao 40

4.1 The Encoder 44

4.2 One to one maooina of the coefficients in a tree to a memory bank 45
4.3 The Memory bank with the four Fields 46
4.4 Encoding Coefficients of memory bank for threshold T 48

4.5 Significance Map Generation of the memory bank; showing direction 48

of processing
4.5.1 Fow chart to determine the DSig field of a parent coefficient 51
4.6 Assianment of codes; showing direction of processing 52
4.7 Coefficients and their reconstructed values form knowing the 56

threshold
4.8 The two dimesional array for storing information on the coefficients 56
4.9 The two dimensional array with information for the first significant 57

coefficient
4.10 The two dimensional array with information for the first three 58

significant codes

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Embeded Zerotree Codec 3

4.11 The out put code array after three significant code codign from the 59
Example

4.12 Array for record fields used for decoding 63
4.13 Diagrammatic Representation of the Decoder 63

4.13.1 Flow Chart for checking the the Decoded and ZTF fields before 65
reading the code from the code container

4.13.2 Flow chart for deciphering the code and reconstructing the 66
coefficients

4.14 The three main branches of a tree 71
4.15 Maooino of the coefficients of three branches into 3 memory banks 72
4.16 The three encoders and the DSig Processor 74
4.17 Sinole processor codec 75

4.18 The Parallel Architecture codec 75
5.1 Shapiro's data for the single processor codec 77
5.2 I level schematic of significance map generator 84

5.3 II level schemaatic of significance map generaator 84

5.4 Gate level schematic of the whole sionifcance map oenerator 85
5.5 Magnified part of the sianificance map aenerator 85

List of Tables

Table Table Page
No no
3.1 Symbols and their meaninos for codino a wavelet coefficient 40
5.1 Reconstructed coefficients from first 21 codes 79
5.2 Reconstructed coefficients from first 44 codes 79
5.3 Reconstructed coefficients from first 100 codes 79
5.4 Reconstructed coefficients from first 230 codes 79
5.5 Perfect reconstruction from all codes 80
5.6 Input and output results fromone parrallel architecture encoder and 81

decoder

Karma W angdi Thesis on Final Year Engineering Project, 1999.

-=Em~bc=dc=d=~=='o=tr=cc~C=o=d=cc~--4

ACKNOWLEDGEMENT

Project Supervisor:

Project Examiners:

Dr.Ganesh Kothapalli

Professor A.Bouzerdoum

Dr. Ganesh Kothapalli

I would like to express my sincere gratitude to my supervisor, Dr. Ganesh Kothapalli for

his continued advice and guidance throughout the course of this project. He spent a

considerable amount of time out of his busy schedule to ensure the success of my

project. I would also like to lhank Dr.Stefan Lachowicz who supervised me during the

firsl half of my project. He provided me with abundant amount of literature relaled to the

project and also provided helpful guidance.

I am also very thankful to Mr. Kenneth Ang and Geoffrey Alagoda, Ph.D. students in the

engineering department at Edith Cowan University. Kenneth not only provided me with

valuable consultation on the EZ)N algorithm, he also lent me a lot of recent books on the

topic and gave advice on how to improve my thesis. Geoff also provided me with very

useful consultation.

My thanks are also due to Mr. Richard Geissler, at the University of Ulm, Germany, who

kindly and promptly clarified the many doubts I had onVHDL.

Lastly, I would like to thank my family and friends who have inspired me and given me

unfaltering support throughout my education career.

Karma Wangdi

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Embcdcd Zcrotrcc Codcc 5

ABSTRACT

This thesis discusses the findings of the final year project involving the VHDL (V= Very

High Speed Integrated Circuit, Hardware Description Language) design and simulation

of an EZT (Embedded Zero Tree) codec.

The basis of image compression and the various image compression techniques that are

available today have been explored. This provided a clear understanding of image

compression as a whole. An in depth understanding of wavelet transform theory was

vital to the understanding of the edge that this transform provides over other transforms

for image compression. Both the mathematics of it and how it is implemented using sets

of high pass and low pass filters have been studied and presented.

At the heart of the EZT codec is the E'ZW (Embedded Zerotree Wavelet) algorithm, as

this is the algorithm that has been implemented in the codec. This required a thorough

study and understanding of the algorithm and the various terms used in it.

A generic single processor codec capable of handling any size of zerotree coefficients of

images was designed. Once the coding and decoding strategy of this single processor

had been figured out, it was easily extended to a codec with three parallel processors.

This parallel architecture uses the same coding and decoding methods as in the single

processor except that each processor in the parallel processing now handles only a third

of the coefficients, thus promising a much speedier codec as compared to the first one.

Both designs were then translated into VHDL behavioral level codes. The codes were

then simulated and the results were verified.

Once the simulations were completed the next aim for the project, namely synthesizing

the design, was embarked upon. Of the two logical parts of the encoder, only the

significance map generator has been synthesized.

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Embeded Zerotrcc Codcc 6

INTRODUCTION

Digital images play a crucial role of disseminating rich information in today's Information

Age. Of the various types of data transferred over our networks, notably the Internet,

image comprises the bulk of the traffic. Current estimates indicate that image data

transfer take up over 90% of the volume on the Internet.

As ubiquitous and as informative as they aie, digital images are also the most data

intensive, requiring huge storage space and longer transmission and access time.

In order to utilize these digital images there are clearly needs for effective image

compression techniques to reduce the number of bits required to represent them. A

wide range of compression techniques has been developed over the years, and novel

approaches continue to emerge.

The use of wavelet transform in image compression has captured the imagination and

the talent of researchers all over the world in recent times. This wavelet image

compression technique promises performance improvements over all the compression

methods currently available. So promising is this technique of image compression that

wavelet image coders are among the leading coders submitted for consideration in the

upcoming JPEG200 standard, which will replace the current JPEG standard for image

compression.

The most revolutionary thing about wavelet transform is that when applied to a digital

image it executes a multiresolution analysis on the image. In other words, wavelet

transform essentially processes the image in much the same manner as the human

visual system.

The E7JN (embedded zerotree wavelet) algorithm is one image compression algorithm

based on this new technique. It is claimed to be a remarkably effective image

compression algorithm. This algorithm has the property that bits in a bitstream are

generated in the order of importance, yielding a fully embedded code. This property

then allows the encoder to terminate the encoding at any point, thereby allowing a bit

rate or a distortion rate to be mel! exactly. Also given a bitstream the decoder can

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Embcdcd Zcrotrcc Codcc 7

terminate decoding at any point and still produce the same image that would have been

encoded at the bit rate corresponding to the truncated bit stream.

From Ez.N algorithm two codec (encoder and decoder) architectures have evolved in

this project. The single processor architecture is the main architecture in the sense that

the other is just a slight adaptation of the single processor to take advantage of the

inherent parallelism present in the zerotree data structure.

The VHDL codes for the designs have been written at a behavioral level. Simulation and

synthesis tools used were from Synopsys Inc.

Karma Wangdi Thesis on Final Y~J.r Engineering Project, 1999.

Emhcdcd Zcrotrcc Codcc 8

PROJECT DEFINITION

Aim

The main aim of the project was to design, simulate and if possible, synthesize, an EZT

codec implamenting the EZW algorithm. The objectives that this main aim of the project

translated to were:

• An understanding of image compression in general and that of wavelet image

compression in particular.

• A study of wavelet transform and how it relates to image compression.

o A thorough understanding of the EZW algorithm and the various terms used in it.

o A good mastery of the VHDL language

• Design and simulation of a codec using VHDL behavioral level code.

o Synthesis of the codec.

Scope

The project has both a research component and a VLSI implementation component in

the form of VHDL implementation.

• The first task was to understand image compression as a whole and the various

features of images that have been exploited to achieve image compression. Models

of image compression were e-lsa studied.

o A good grasp of wavelet transform theory was paramount in understanding the EZW

algorithm, which is at the heart of the project. How this transform relates to image

compression was then Investigated.

Karma Wangdi Thesis on Final Y car Engineering Project, 1999.

Embcdcd Zcrotrcc Codcc 9

• Of outmost importance was the thorough understanding of the EZW algorithm itself.

IEEE transactions were a major source. Consultation with a PhD student working on

a similar but advanced topic proved very helpful and productive.

• Since the codec was to be implemented in VHDL, a good knowledge of the language

was crucial as well. It was learnt in tandem with the reading of back ground

materials.

• VHDL tools used for simulation and synthesis were from Synapsys Inc. PeakVHDL

was also used as an alternative simulation tool in the course of the project.

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Embcdcd Zero tree Codec I 0

1. INTRODUCTION TO IMAGE COMPRESSION

1.1 Introduction

In many different fields, dig,tized images are replacing conventional analog images as

photographs or x-rays. The volume of data required to describe such images greatly

slow transmission and makes storage prohibitively costly. Image compression is the

general term that addresses the problem of reducing the amount of data required to

represent a digital image. The following paragraphs present some principles and

techniques of image compression that are currently being used.

1.2 Basis of Image Compression

Image compression is based on two features of data; namely data redundancy and data

irrelevancv. Hence the great variety of compression algorithms mainly differ in their

approaches to extracting and exploiting these two features of data redundancy and

irrelevancy. (Topiwala, 1998)

1.2.1 Data Redundar.cy

The term data compression refers to the process of reducing the amount of data

required to represent a given quantity of information. Various amounts of data may be

used to represent the same amount of information. When there are more data than

actually required to represent a given information the data is said to contain data

redundancy.

Data redundancy is a central issue in digital image compression. Three basic data

redundancies can be identified and exploited in digital image compression. They are:

• Coding redundancy

• lnterpixel redundancy and

• Psychovisual redundancy

1.2.1.a. Coding Redundancy

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Emheded Zcrotrec Codcc II

In general, coding redundancy is present when the codes assigned to a set of events

have not been selected to take full advantage of probabilities of the events. It is almost

always present when an image's gray levels are represented with straight or natural

binary code. In this, the underlying basis for coding redundancy is that images are

typically composed of objects that have a regular and somewhat predictable morphology

and reflectance, and are generally sampled so that the objects being depicted are much

larger than the picture elements. The natural consequence is that, in most images,

certain gray levels are more probable than others. If a natural binary coding of gray

levels is used, the same number of bits are assigned to both the most and the least

probable valuEs, thus resulting in coding redundancy. (Gonzalez and Woods, 1993).

1.2.1.b lnterpixel Redundancy

lnterpixel redundancy is directly related the interpixel correlations that exit within an

image. Because the value of any given pixel can be reasonably predicted from the

values of the its neighbor's, the information carried by the individual pixels is relatively

small. In other words much of the visual contribution of a single pixel to an image is

redundant. A variety of names, including spatial redundancy, geometric redundancy and

interframe redundancy, have been coined to refer to these interpixel dependencies. The

term lnterpixel redundancy encompasses them all. (Gonzalez and Woods, 1993).

Inter~ 1xel redundancies are removed by using suitable transforms.

1.2.1.c Psychovisual Redundancy

Psychovisual redundancy is the result of the nature of the human eye. The eye does not

respond with equal sensitivity to all visual information. Certain information simply h~s

less relative importance than other information in normal visual processing. This

information is said to be psychovisually redundant. It can be eliminated without

significantly impairing the quality of image perception. (Gonzalez and Woods, 1993).

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

rlmhc-~..kd Zcror.rcc Cudcc 12

1.2.2 Data Irrelevancy

An important example of data irrelevancy occurs in the visualization of gray scale

images of high dynamic range, e.g., 12 bits or more. It is an experimental fact that for

monochrome images, 6 to 8 bits of dynamic rang~ is the limit of human visual sensitivity;

any extra bits do not add perceptual value and can be eliminated. (Topiwala, 1998).

Domain of Efficient
Coding

JrrclevDncy

Flgu re I .I The op era1ional sp Dee of compression algorithm design

1.3 Image Compression Models

/(J.)')

- Source I-- Channel B- Channel
encoder encoder decoder

Encoder

Figure 1.2 A general image compression system model
Adopted from Gonzaltl and Woods (1993)

f. Source t-+- j'(l,J)
decoder

Decoder

As figure 1.2 shows, an image compression system consists of r,•Jo distinct structural

blocks: an encoder and a decoder. An Input image ~x,y) is fed into the encoder which

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

EmhcJcd Zcrotrcc Cod.:~;

creates a set of symbols from the input data. After transmission over the channel, the

encoded representation is fed to the decoder, where a reconstructed output image f(x,y)

is generated. In general f(x,y) may or may not be an exact replica of ~x.y). If it is, the

system is error free or information preserving; if not some level of distortion is present in

the reconstructed image.

Both the encoder and the decoder shown in figure 1.2 consist of two relatively

independent functions or subblocks. The encoder is made up of a source encoder which

removes input redundancies, and a channel encoder which increases the noise

immunity of the source encoder's output. As would be expected, the decoder includes a

channel decoder followed by a source decoder. If the channel between the encoder and

the decoder is noise free (not prone to error), the channel encoder and decoder are

omitted, and the general encoder and decoder become the source encoder and

decoder, respectively.

1.3.1 The Source Encoder and Decoder

The source encoder is responsible for reducing or eliminating any coding, interpixel, or

pyschovisual redundancies in the input image. The specific application and associated

[(X.)') ~ Mapper ... , Qumtizcr aol
Sylihll J .. cncrdcr Chilllcl

Soo lt:c mcOOer

lo)

~ Syrrb.:ll I .. I Inverse I .. r < x.y J Chmel nnppcr derolcr

San~c lb;rdcr .,
Figure 13 (a) &J.Jn:c mccdcr !I'd {b l Soon:edcoodcrrmlcl

Kanna Wangdi Thesis on Final Year Engineering Project, 1999.

EmbcdcU Zcrntrcc Cudcc 14

fidelity reqt..:irements dictate the best encoding approach to use in any given situation.

Normally, the approach can be modeled by a series of three independent operations.

Figure 1.3(a) shows how each operation is designed to reduce one of the three

redundancies mentioned in section 1.2. Figure 1.3(b) depicts the corresponding source

decoder.

In the first stage of the source encoding, process the mapper transforms the input data

into a (usually nonvisual) format designed to reduce interpixel redundancies in the input

image. This operation is generally reversible and may or may not reduce directly the

amount of data required to represent the image. Run length coding which will be

explained in a later section is an example of a mapping that directly results in data

compression in this initial stage of the overall source encoding process. The

representation of an image by a set of transform coefficients is an example of the

opposite case. Here the major mapper transforms the image into an array of

coefficients, making its interpixel redundancies more accessible for compression in later

stages of the encoding process.

The second stage, or quantizer block in figure 1.2(a), reduces the accuracy of the

mapper's output in accordance with some pre-established fidelity criteria. This stage

reduces the pyschovisual redundancies of the input image. This operation is

irreversible. Thus it must be omitted when error-free compression is desired. This block

is what distinguishes between a lossy and a lossless compression. In the third and the

final stage of the source encoding process, the symbol coder creates a fixed or variable

length code to represent the quantizer output and maps the output in accordance with

the code. The term symbol coder distinguishes this operation from the overall source

encoding process. In most cases, a variable length code is used to represent the

mapped and quantized data set. It assigns the shortest code words to the most

frequently occurring output values and thus reduces coding redundancy. This operation

Is reversible. Upon completion of the symbol-coding step, the input image has been

processed to remove each of the three redundancies.

Figure 1.3 shows the source encoding process as three successive operations, but all

three operations are not necessarily included in every compression system. For

Karma Wangdi Thesis on Final Y car Engineering Project, \999.

EmhcJcd Zcrotrcc Cotlcc 15

example the quantizer must be omitted when error-free compression is desired. In

addition, some compression techniques normally are modeled by merging blocks that

are physically separate in Figure 1.2(a). For instance, in predictive compression

systems, a topic discussed in a later section, the mapper and the quantizer are often

represented by a single block that simultaneously perlorms both operations.

1.4 Types of Image Compression Techniques

Lou less
Predictive • • •

coding

Bit Pl~ne
Encoding

lm~~c Compression
Techniques

figure 1.4 Image Compression technniques

Wavelet
Coding

OCT
Coding

Vector
Quanti~ntion •••

There are many different approaches to image compression, but they can all be

categorized into tw _ fundamental groups: lossy compression techniques and lossless

compression techniques.

In lossless compression (also known as bit-preserving or reversible compression}, the

reconstructed image after compression is numerically identical to the original image on a

pixel-by-pixel basis. Since no ioformatioo is compromised only a modest amount of

compression is achieved. In other words the compression ratio (CR} is small. The

compression ratio is defined as:

CR = No of bits for original image I No of bits for compressed image

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

"" ;.."<-;

Emhedcd Zcrotrcc CoJcc 16

In lossy compression (also known as irreversible compression), the reconstructed

image contains degradations relative to the original. As a resu:t much higher

compression can be achieved as compared to the lossless compression. The

compression ratio is high.

Origin;!! Image data

Decomposition OR Transformation

Lossy Lossless

Quantization

Symbol Encoding

Compressed Image

Figure 1.5 A general compression framework

Image r.ompression techniques can also be divided into transform and non transform

coding. In transform compression the image data are transformed into transform

coefficients by applying some transform functions, such as DCT (discrete cosine

transform and we.velet transform, and the resulting coefficients are encoded. In non

transform compression no such transformation is applied. Wavelet coding and JPEG are

examples of transform coding while PCM and DPCM are examples of non-transform

compression techniques.

Figure 1 .5 shows a general compression framework. It includes three components:

image decomposition or transformation, quantization, and symbol generation. As we

can see from the figure, the primary difference between lossy and lossless schemes is

the inclusion of the quantization stage in the lossy compression technique, while it is

absent in the lossless scheme.

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

I

Embcdcd Zcrotrcc Codcc 17

1.4.1 Lossless Compression Techniques

In this section we look at two main lossless compression techniques. They are Bit Plane

Encoding and Lossless Predictive Coding.

1.4.1.a Bit Plane Encoding

Bit plane encoding is a tossless and a non~ transform compression technique. Consider

an N x N Image in which a pixel value is represented by k bits. By selecting a single bit

from the same position in the binary representation of each pixel, anN x N binary image

called a bit plane can be formed. For example we can select the most significant bit of

each pixel value to generate an N x N binary image representing the most significant bit

Image whose pixel
values are each k

bits wide

•

k-1 bit plane k-2 bit plane
I bit plane

Figure 1.6 An image whose pixel values are k bits wide decomposed into k bit planes

k-1 bit plane contains the most significant bits form all the pixel values in order
similarly k-'2 contains the next most significant bits from all the pixel values in order
and so on.

plane. Repeating this process for the other bit positions, the original image can be

decomposed into a set of k, N x N bit planes (numbered 0 for the least significant bit

(LSB) plane through k·1 for the most significant (MSB) plane. Each bit plane is then

encoded efficiently using a lossless binary compression technique like Run Length

Encoding and Arithmetic Encoding.

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

I

Emhl!dcd Zcrotrcc Codcc 18

1.4.1.b Lossless Predictive Coding

For typical images, the values of adjacent pixels are highly correlated; that is, a great

deal at information about a pixel value can be obtained by inspecting its neighbouring

pixels. This property 1S exploited in predictive coding techniques where an attempt is

made to predict the value of a given pixel based on the values of the surrounding pixels.

The new information of a pixel is defined as the difference between the actual and the

predicted value of the pixel.

lnpul
Image

_,

CompreHcd
Image

j,

Predictor
Neares!
Integer

Symbol '•
Decoder

H -

r.

,,,

~ .. •

(b)

'· Symbol
Encoder

t.

Predictor

Compreued
Image

Decompressed
Image

Figure 1.7 A lou less predictive coding model: (a) encoder: (b) decoder.
Adopud from Gonz~/~z and Woods, /993

Figure 1.7 shows the basic components of a lossless predictive coding system. The

system consists of an encoder and a decoder, each containing an identical predictor. As

each successive pixel of the input Image, denoted f,. "' introduced to the encoder, the

predictor generates the anticipated value of that pixel based on some number of inputs.

The output of the predictor is then rounded to the nearest integer, denoted f',. and used

to form the prediction error

Sn=fn-t'n

which is coded using a variable length code. The decoder reconstructs e, from the

received variable length code words and periorms the Inverse operation.

fn =en+t'n

Karma Wangdi Thesis on Final Year Engineering Projt:ct, 1999.

•

EmbcdcJ Zcrotn:c Codcc 19

1.4.2 Lossy Compression Techniques

There are a lot of lossy compression techniques available and as a result it isn't feasible

to cover all of them. We will instead look at some of the most prominent ones in this

section.

1.4.2.a Discrete Cosine Transform Coding

Discrete Cosine Transform (OCT) is a popular transform image compression technique.

The JPEG image format uses OCT method. (Topiwala, 1998) In OCT the image is

divided into blocks or rectangular arrays of pixels. Most existing systems use blocks of

regular size, such as 8 x 8 or 16 x 16 pixels. Larger block sizes lead to more efficient

coding, but require more computational power.

Figure 1.8 8 x 8 DCT basis Functions
Adopted from Rabbani and lotJes (1991)

The OCT is applied to each block that converts a block of pixels into a block of OCT

coefficients of the same dimensions. These coefficients represent the spatial frequency

components that make up an appropriate basis function. The basis function for 8 x 8

OCT are shown in figure 1.8. The top left function is the basis function of the 'de'

coefficient and represents zero spatial frequency. Along the top row the basis functions

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Emhcdcd Zcrotrcc Codcc 20

have increasing horizontal spatial frequency content. Down the left column, the

functions have increasing vertical spatial frequency content, and along the diagonal the

functions have combination of vertical and horizontal spatial frequencies.

The resulting coefficients are then quantized using uniform quantization step sizes. The

quantized OCT coefficients are then scanned in a specific diagonal order, starting from

the "de" or 0-frequency component, then run-length coded, and finally entropy coded

according to either Huffman or arithmetic coding. (Topiwala, 1998)

1.4.2.b Vector Quantization

In vector quantization (VQ) method, the original image is first decomposed into n

dimensional image vectors. The vectors can be generated in a number of different

ways. For example, an n = I x m block of pixel values can be ordered to form an n

dimensional vector.

(a) Transmitter

Channel
k Table x·,

Look-up

Code book
X'~o I= 1, ... , N,

(b) Receiver

Figure 1.9 Vector Quantization block diagram
Adopud from Rabbali and Jorm (/991)

Each image vector, X, is then compared with a collection of representative templates or

codevectors X', taken from a previously generated code book. The code vectors are also

of dimension n. The best match codevector is chosen using a minimum distortion rule.

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

I

Emhcdcd Zcrolrcc Codcc 21

After a minimum distortion codevector has been selected, its index k is transmitted. At

the receiver this index is used as an entry to a duplicate codebook to reproduce the

original codevector

1.4.2.c Wavelet Coding

Wavelet coding is one of the most recent techniques of image compression that has

been developed. This technique uses the wavelet transform to remove the spatial

correlation that exists in images. The wavelet transform coefficients that are obtained

contain the information in a compact smaller number of coefficients. These coefficients

are then quantized and then efficiently coded using suitable coding algorithms.

Image coding using using wavelet transform exhibits several desirable qualities. Since

the wavelt transform executes a multiresolution analysis on the image, it essentially

processes the image in much the same way as the human visual system does. The

importance of the resulting transform coefficients to the reconstructed image is then

easily evaluated for coding purpose. The wavelet transform enjoys a considerable

amount of design freedom in the choice of the basis wavelet. By proper choice of the

analyzing wavelet, the wavelet transform can be tailored to a specific style of

implementation.

Since this project work focus on the E'ZYN algorithm of wavelet coding, wavelet coding

method is very well explained in the chapters ahead.

1.4.2.d lossy Plus lossless Residual Coding

Another way of image compression is to mix both the lossy and the lossless techniques.

One such techique is the Lossy Plus Lossless Residual coding. Lossy Plus Lossless

Residual coding is used in application where it suffices to send a lossy version of the

image first and then the \ossless version afterwards as needed. One such application

might exist in the medical field, where two physicians are discussing a possible patient

referral from remote locations. One of the physicians may wish to transmit a digital

radiograph over the phone line, and in the interest of a short transmission time, a lossy

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Emb1~dcd Zcrotrcc Codcc 22

(but high quality) version of the iage is sent. If the referral is accepted, the remaining

difference (residual) image required to perfectly reconstruct the original image could be

sent.

In general a lossy plus a lossless residual encoding scheme consists of the following

steps:

• Generate a low bit rate image through the use of an efficient lossy scheme.

• Form a residual by computing the difference between the lossy reconstruction and

the original image.

• Encode the residual using an appropriate lossless technique.

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Emb'-•dcd ZA.•t\)tn:t.: Codcc 23

2. WAVELET TRANSFORM AND IMAGE COMPRESSION

2.1 Introduction

Wavelet transforms, as an alternative to the Fourier and related transforms, for

application to practical engineering problems have been the focus of intensive research

in recent years. The concept of Wavelet itself was introduced quite recently in 1984 by

Goupillaud, Grossman and Morlet as a new mathematical tool for multiresolution

decomposition of continuous~time signals. This mathematical tool for multiresolution

analysis of signals has been investigated and applied in various fields including

geophyiscs, image analysis for the purpose of segmentation, pattern recognition and

coding. The incentive for this is its ability to provide a multireso\ution or multisca\e

analysis of signals with flexible space-frequency localization.

In the field of image compression wavelets have captured the imagination and talents of

researchers all over the world. A number of researches that wavelet transform holds

considerable promise in image compression. The most revolutionary thing about

wavelet transform is that since it executes a multiresolution analysis on the image, it

essentially processes the image in much the same manner as the human visual system.

(Coffey and Etter, 1995).

2.2 Mathematical Representation of Wavelets

Wavelets are functions generated from one single function, the mother wavelet 'I' by

dilation and translation. Grossman and Morlet (Grossman and Morlet, 1984) introduced

this function 'I' which dilated by a scaling factor a and translated by b enables the

analysis, processing, and synthesis of a signal.

0·1)

It is assumed that x is a one dimensional variable. The mother wavelet 'I' must satisfy

the following admissibility condition.

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

-

Eml:tcdcd Zcrotrcc Codcc 24

Jj'l'(mt
lm!

dOJ<oo (t-2)

where 'I' denotes the Fourier transform of IJI· Moreover if IJI has sufficient decay, then

(1-2) is equivalent to

·-I yt(x)dx=O (1-3) --
which means that the wavelet 1J1 exhibits at least a few oscillations, and that there is a

large choice of functions for IJI.

The basic idea of the wavelet transform is to represent an arbitrary function f as a

superposition of wavelets. This function f can then be decomposed at different scale or

resolution le·· -'· One way to achieve such a decomposition involves writing f as an

integral of lJia.b over a and b using appropriate weighting coefficients. In practice,

however, it is preferable to express f as a discrete sum rather than as an integral. The

coefficients a and b are discmtized such that:

a = a8' and b = nb0a8' with {m,n)e Z2 and a0 > I, b0 > 0 fixed.

The wavelet is then defined as follows:

(1-4)

,·
and the wavelet decomposition of I becomes

fa :I;c.,,(f) 'I'm,• (t-5)

·~
For large positive values of m (a>1), the ljlfunction is highly dilated and large values for

the translation step bare well adapted to this dilation. This corresponds to low frequency

or narrow band-wavelets. For large values of m (a <1), the 1Jf function is highly

concentrated and the translation step b takes small values. These functions correspond

to high frequency or wide band wavelets.

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Embcdcd Zcrolrcc Codcc 25

Y. Meyer showed that there are 'I' functions for a'= 2 and b0 = 1, such that the functions

'l'm.olx) make up an orthonormal basis belonging to L'(R), where

(1-6)

(Z is the set of all integers and R is the set of all real numbers and N is the set of all

Natural numbers)

The wavelet coefficients Cm,, (I) are determined using 1he following relation:

c.,,(!)= (f, 'I'm,,)= J f(x) 'I' m,,(x)dx (1-7)

The oldest known basis of this type was constructed by Haar. In this case, the function

'lf{x) is equal to 1 over the inteJVal [0,1/2], -1 over [1/2, 1] and 0 elsewhere. Different

bases corresponding to more regular wavelets were later constructed by Stromberg,

Meyer, Lemarie, Battle, and Daubechies.

The existence of orthonormal wavelet bases is conditioned by the following regularity

property: l'l'(w)l must decrease more rapidly than C(1 + lwl)""'·'for w-> ~and lore> 0

;where C is a constant.

Wavelets which exhibit this regularity property necessarily verify:

(1-8)

This equation determines the number of vanishing moments of 'I' and thus enables

evaluation of the oscillations of the wavelet 'I'

2.3 Continuous Wavelet Transform

To perform wavelet transform on a time-domain signal, the signal is passed through

various high-pass and low-pass filters, which filter out either high frequency or low

frequency portions of the signals. Figure 2.1 shows how a wavelet transform is

performed on a signal x(t) which has a maximum frequency of B Hz.

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

,

Emhcdcd Zcrutrcc Cmlcc 26

This is how it works: Suppose we have a signal that has frequencies up to 1000Hz. In

the first stage the signal is spilt into two parts by passing the signal through a high-pass

and a low-pass filter. Which result in two different versions of the same signal; portion of

signal corresponding to 0-500Hz (low-pass portion) and 500-fOOOHz(high-pass portion).

Then we take either portion or both and pass them through another set of high and low

pass filters. This operation is ci:.>lled decomposition.

Assuming that we took the low pass output from the first filtering and pertormed the

second decomposition, we have three sets of data now, each corresponding to the same

signal frequencies 0-250 Hz, 250-SOOHz and 500-1000Hz. If we take the low pass

portion and pass it through low and high pass filters, we now have four sets of signals

corresponding to 0-125Hz, 125-250Hz, 250-500Hz and 500-1000Hz.

HP LP
Levell

Bll<=f<=D O<.:j<=B/2

liP LP

Levell

B/4 <= [<= B/2

liP LP

Level 3

I;/8 <= {<= B/4 0<=/<=B/8

Figure 2.1 Wavelet traodarm a5 passing a signal through sets of high pus(HP} and low pass(LP) filters
D Hz is the muimum signal content of an analog signal X(l)

In this way we continue to decompose a signal until we have decomposed the signal into

a certain predefined level. At the end we have a bunch of signals, which actually

represent the same original signal, but all corresponding to different frequency bands. If

the resulting signal ;s plotted on a 3-D graph, we will have time in one axis, frequency in

the other and amplitude in the third. This will show us which frequencies exist at which

time. In other words the resulting signal can be resolved both in time as well as in

frequency.

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

I

Emhcdcd Zcrotrcc Codcc 27

However there is a principle known as the uncertainty principle which states that " we

cannot exactly know what frequency exists at what time instance, but we can only know

what frequency bands exist at what time intervals". This is analogous to the uncertainty

principle in quantum Physics ascribed to Heisenberg that states " the momentum and

the position of an olectron can not be determined simultaneously''. This is a problem of

resolution, and it is the main reason why researchers have switched from STFT (short

time Fourier transform) to WT (wavelet tarnsform). STFT ak'o resolves a signal in both

frequency and time, but it gives a fixed resolution at all times whereas WT gives variable

resolution.

2.3.1 Resolu11on from Con11nuous Wavelet Transform

Higher frequencies are better resolved in time, and lower frequencies are better resolved

in frequency. This means that a certain high frequency component can be located better

In time (with less relative error) than a low frequency component. On the contrary, a low

frequency component can be located better in frequency compared to high frequency

component.

The grid in the figure 2.2 is interpreted as follows: The top row shows that higher

frequency

~~~~~**~~~·~-~~****~~····~~-~-·~---~····~~~ 

·11'·~·~~·····~·· • • • • • • • 
• • 

time 

Figure 2.2. Time and frequency resolution from Continuous Wavelet Transform 

Adapted from Rolti Polikar, Wavelet tutorial, 1994 

frequencies we have more samples corresponding to smaller intervals of time. In other 

words, higher frequencies can be resolved better in time. The bottom rows correspond 

to low frequencies, and there is less number of points to characterize the signal. 

Therefore low frequencies are not well resolved in time. 

Karma Wangdi Thesis on Final Y car Engineering Project, 1999. 



Emhcdct.l Zcrotrcc Codcc 2R 

2.4 Discrete Wavelet Transform 

The Discrete Wavelet Transform (DWT) is the analog of the continuous wavelet 

transform (CWT) presented in the previous section, in the discrete time domain. A time

scale (scale and frequency have inverse relationship) representation of a digital signal is 

obtained using digital filtering techniques. As in the continuous time the digital signal is 

passed through a series of low and high pass filters. 

The procedure starts with passing the signal (sequence, since discrete) through a half 

band digital low pass filter with impulse response h[n] and a half band digital high pass 

filter with impulse response g\n]. Filtering a signal is a mathematical operation of 

convolution of the signal with the impulse response of the filter. The convolution in 

discrete time is defined as follows. 

00 

x[n]•h[n] = ~x[k]·h[n -k] 

The pair of high pass and low pass filters are not independent but are related by 

g[L -I · n] = (-!)" · h[n] 

A half band low pass filter removes all frequencies that are above half of the highest 

frequency in the signal, while the high pass filter removes all the frequency components 

that are below half of the highest frequency in the signal. The resultant sequence is 

passed through another set of high and low pass filters and the process continues until a 

certain desired level of decomposition is done. The algorithm is shown in figure 2.3. 

As an example, suppose that J<[n] has 512 sample points,spannlng a frequency of zero 

to p radians. At the first decomposition level, the sequence is passed through high pass 

and low pass filters, followed by subsampling by 2. The high pass filter has 256 points, 

but it only spans the frequency range p/2 to p radians. These 256 samples constitute 

the first level of DWT coefficients. The output of the low pass filter has 256 points, and it 

spans the frequency band from 0 to p/2 radians. This sequence is then passed through 

similar low pass and high pass filters for further decomposition. The output of the 

second low pass filter followed by subsampling has 128 samples spanning a frequency 

band of o to p/4 radians, and the output of the second high pass filter followed by 

Karma Wangdi Thesis on Final Y car Engineering Project, 1999. 

• 



Embcdcd Zcrotrcc Codcc 29 

subsampling has 128 samples spanning a frequency band p/4 lo p/2. The second high 

pass filter samples constitute the secvnd level of DWT coefficients. This signal has half 

the time resolution, but twice the frequency resolution of the first level signal. In other 

words, time resolution has decreased by a factor of 4, and frequency resolution has 

increased by a factor of 4 compared to the original signal. The low pass filter output is 

XI"] f=O-p 

Levell 
DWT CocUkicnt• ,......._..., 

f= p/2- p f=O-p/2 

Level l 
DWT Cn<lfflcicnu 

Level 2 
DWT Coefficient~ 

f = p/8 - p/4 

Level I 
DWT CucHiclclll• 

f = 0 - p/4 

f = 0 - p/8 

Figure 2.3 Discrete Wavelet transform of Xlnl 
g[n) •> ll!gh pnss filLer 
11(•1] •> Low rn"" filter 

II dopt~rl fmm R ohi I' r>likn r, ""'"' ~lrr /JIIn rial, I 994 

then filtered once again for further decomposition. This process continues until two 

sample is left. For this specific example there would be 9 levels of decomposition, each 

having half the number of samples of the previous level. The DWT of the original signal 

is then obtained by concatenating all coefficients starting from the last level of 

decomposition (remaining one sample, in this case). The DWT will then have the same 

number of coeffidents as the original signal. 

2.4.1 Resolution from Discrete Wavelet Transform 

In the discrete time cese, the time resolution of the signal works the same as in the 

continuous time case, but with one exception. The frequency information has different 

Karma Wangdi Thesis on Final Year Engineering Project, 1999. 

I 



Embcdcr.l Zcrolrcc Codcc 30 

resolutions at every stage too. Lower frequencies are better resolved in frequency, 

whereas higher frequencies are not. Figure 2.4 shows the time - frequency resolution 

offered by discrete time wavelet transform. 

Looking at figure 2.4 it is noticed how the spacing between subsequent frequency 

components increase as frequency increases. (Robi Polikar, 1994) 

••••• 0 ••••••••••••••••• 0 ••••••••••••••••••••••••••••••• 

• • 

• • 

• 

figu~2.4 ltrre- Frequency r~sclution fromDi•crete titre Wavelet Tmn,furm 

2.5 Wavelet Transform and Digital Image Compression 

Wavelet transform has opened up a whole new prospect for efficient image compression 

and wavelet transform technique of image compression has gained a lot of popularity in 

the last couple of years. Following are some of the most important reasons. 

2.5.1 Data Compression 

When a DWT is pertormed on a signal, frequencies that are most prominent in the 

original signal appear as high amplitudes in that region of the DWT signal that includes 

those particular frequencies. The frequency bands that are not very prominent in the 

original signal have very low amplitudes and that part of the DWT signal can be 

discarded without any major loss of information, thus allowing data reduction. In other 

words, wavelet transform concentrates the original signal values into a relatively small 

number of large magnitude coefficients.(Relue, 1994) Figure 2.5 illustrates the data 

reduction obtained. 

In practice all but a few percent of the wavelet coefficients can be set to zero. 

(Relue, 1994). Selection of the coefficients can be done in two ways: 

Karma Wangdi Thesis on Final Year Engineering Project, 1999. 

I 



Embcdcd Zcrotrcc Codcc 31 

o An arbitrary threshold can be established as the cutoff point 

o The coefficients can be ranked to allow selecting of an arbitrary percentage of the 

highest values for retention. 

Typically, 5 percent of the values are retained, but good results can be obtained with 

smaller percentages. In image compression it is important to note that the zeroed 

coefficients cannot be thrown away. The position of the zeroed coefficients must still be 

known for reconstruction. (Relue, 1994) 

Once the data have been compressed by the removal of low value coefficients, more 

compression can be obtained by quantizing the non-zero wavelet coefficients. 

0 " 100 150 
:a) Normalit.,d ,;..,., 

~~.~ T~:: :::•:::·•::·:::·::• :·::::·: r·:.::···:· 
-1 , ................... , ................................... , ... 

' ' ' 
0 100 150 '" ' 0 

(b) DWT Coefficients 

Figure 2.5 Data Reduction In DWT 

(a) signal 
(b) DWT Codficlents 

2.5.2 Better Frequency Resolution 

The bulk of the information in images is found in lower frequency bands. We have 

already seen in figure2.4 that discrete wavelet transform provides better frequency 

resolution at lower frequency. This means that we can have better resolution of our 

images using wavelet transform 

Karma Wangdi Thesis on Final Year Engineering Project, 1999. 



Embcdcd Zcrotrcc Codcc 32 

2.5.3 Noise Immunity 

The compression process using wavelet transform has an interesting side effect. Since 

most of the noise in an image has low energy value, it will be suppressed when 

reconstructing the compressed data. Figure 2.6 shows a sine wave with 50 percent 

noise added, and the reconstructed since wave from 3 percent of the original data using 

Daubechies 2~0 transform. The original since wave is very easy to distinguish in the 

reconstruction. (Savla, 1998) 

'}~~~------~~-~-~~~~~~ F- ........ _, ----.. 
-2(\ • ~ 

(;o) 

'" 
Figure 2.6 The Original (Nni•Yl ano.l Transformed Sine Curve 

(o) Original(noi•yl 
(b) Transfnrmcd 

Adllpr~dfrom Savlr~, /99/i 

Figure 2. 7 The Reconstructed low-noise signal 
Adopted from Savla, 1998 

The reconstruction of low noise signal is generally very good. Simple waveforms such 

as a since wave can be done with 3 percent of the data as Illustrated in Figure 2.7 

Karma Wangdi Thesis on Final Year Engineering Project, 1999. 

Ill 



Embcdcd Zcrotrcc Code.: 33 

3. THE EZW ALGORITHM 

3.1 Introduction 

In the last chapter we studied the wavelet transform and how it is pertormed in both 

continuous and discrete time domains. We then observed the results of wavelet 

transform on signals and particularly related the results to image coding. And we found 

that wavelet transform holds considerable promise for image compression. 

In this chapter we present the EZ'N (Embedded Zerotree Wavelet) algorithm, which is an 

image compression algorithm formulated by J.M.Shapiro. 

The EZ'N algorithm has the property that the bit streams are generated in the order of 

importance and all information is contained within the code thereby yielding a fully 

embedded code. Using this algorithm the encoder can terminate the encoding at any 

point thereby allowing the target rate or target distortion metric to be met. Also, given a 

bit stream the decoder can cease decoding at any point in the bit stream and still 

produce exactly the same image that would have been encoded at the bit rate 

corresponding to the truncated bit stream. (Shapiro, 1993) 

3.2 Features of the Embedded Coder 

The EZ'N algorithm contains the following features: 

• A discrete wavelet transform which provides a compact multiresolution 

representation of the image 

• Zerotree coding which provides a compact multiresolution representation of 

significance maps, which are binary maps indicating the position of the significant 

coefficients. Zerotrees allow the successful prediction of significant coefficients 

across scales to be efficiently represented as part of exponentially growing trees. 

Karma Wangdi Thesis on Final Year Engineering Project, 1999. 



EmbcJcJ Zcrotrcc Cudcc 34 

• Successive approxirr.ation which provides a compact multiresolution representation 

of the significant coefficients and facilitates the embedding algorithm 

• A prioritization protocol whereby the ordering of importance is determined, in order, 

by precision, magnitude, scale, and spatial location of the wavelet coefficients. 

Larger coefficients are deemed more important than smaller coefficients regardless 

of their scale. 

• Adaptive multilevel arithmetic coding which provides a fast and efficient method for 

entropy coding of symbols, and requires no training or prestored tables. 

• The algorithm runs se.quentially and stops whenever a bit rate is met. 

Figure 3.0 shows a generic transform coder. 

Tr~ntinmalion 
Transform 

Quulizarion 
Symbol 

Comprcniun 
lm1gc 
Sampler Pr .. umably Codficicnn 

'" 
Strum E!lici'"r Bit Smam 

lonlm information 
Lo.,lcu 

Rcprcrcntation 
Dccorrclaros !011 IHCUil nfSymbol 

Samples here Srrum 

Figure 3.0 A generic transform Coder 

3.3 2 • 0 Discrete Wavelet Transform of Image 

Before the algorithm can be employed, the image is 2-u discrete wavelet transformed 

and wavelet coefficients for the image are obtained. It is these wavelet coefficients that 

are encoded using the algorithm. 

u., "" "~ 
U.l UL1 "'• 1!1!, 

"'' 
Ul, 1111, 

1--

'"· 
uu, 

"'• 
IU\ 

fiJurc J,l A one. acale 1·0 w•vcler de<ompotirkr~ of an I rna!•• 

Karma Wangdi Thesis on Final Year Engineering Project, IY99. 

I 



Eml:!cd~d Zcrotr~e Code~; 35 

Figure 3.1 shows the result of first stage of wavelet transform of an image. Because we 

are dealing with digital image compression here, whenever we say wavelet transform, it 

should be understood as the discrete .. ,avelet transform. 

As explained in the previous chapter, the four subbands in figure 3.1 arise from the 

separable application of vertical and horizontal filters. The subbands LH,, HL1 and HH1 

represent the finest scale wavelet coefficients. To obtain the next coarse scale of 

wavelet coefficients, the subband LLt is further decomposed. To obtain the third scale 

level of wavelet coefficients, as shown in figure 3.2 the subband LL2 is further 

decomposed. As could be obvious, in the figure, the first letter of the L and H 

combination refers to the horizontal filter outcome and the second letter refers to the 

vertical filter outcome. The subscript indicates the number of scales. For example HL2 

indicates that it is the outcome of the high pass horizontal filter and the low pass vertical 

filter of scale 2. 

Since we know that -n S m s n for discrete signals, in figure 3.1 the low frequencies 

represent a bandwidth approximately corresponding to 0 ,; lru I s rr/2 while the high 

frequencies correspond to rrl2 ,; lru I s n. With each level of decomposition these 

bandwidths get halved from the previous ones. 

3.4 The Zerotree Data Structure 

The wavelet coefficients in one subband have a parent child relationship with the 

wavelet coefficients in other subbands when significance with regard to particular 

threshold value is concerned. This gives rise to a new data structure called the zerotree 

which improves the coding of the wavelet coefficients. A wavelet coefficient xis said to 

be insignificant with respect to a threshold T if lxl < T. The zerotree is based on the 

hypothesis that if a wavelet coefficient at a coarse level is insignificant with respect to a 

given threshold T, then all wavelet coefficients of the same orientation in the same 

spatial location at finer scales are likely to be insignificant with respect to T. This 

hypothesis is found to be often true. {Shapiro, 1993). Figure 3.3 shows the parent child 

relationship of the coefficients in the subbands. 

Karma Wangdi Thesis on Final Year Engineering Project, 1999. 



Embcdcd Zcrotrcc Codcc 36 

The coefficient at the coarse scale is called the parent, and all coefficients corresponding 

to the same spatial location at the next finer scale of similar orientation are called 

children. For a given parent the set of all coefficients at alf finer scales of similar 

orientation corresponding to the same location are called descendents. Similarly for a 

given child, the set of all coefficients at all coarser scales of similar orientation 

corresponding to the same location are called ancestors. With the exception of the 

lowest frequency subband, all parents have four children. For the lowest frequency 

HL, 

LH, ""• 

Figure 3.3 Parenl-~ hlld relalionsh ip of 3 three scale 2-D wavelet Coefficients 
AJopltJ fmm Shapiro,/993 

subband, the parent-child relationship is defined such that each parent node has three 

children. 

In Figure 3.3 the arrow points from the subband of the parents to the subbands of the 

children. LL, the lowest frequency subband is at the top left. Also shown are the 

children and the descendents of HH3. 

3.5 The Number of Zerotrees 

Depending on the number of scales of decomposition that is pertormed we get different 

number of zerotrees of the wavelet coefficients. lf there is only one coefficient remaining 

in the LL, for an n-scale decomposition then we get one tree. Otherwise we get multiple 

trees. This is important to understand because in some cases we don't need to 

decompose so that there is just one coefficient left in the lowest frequency band LL,. As 

a rule of thumb, for image size like 512 x 512, only five or six scales of decomposition 

Karma Wangdi Thesis on Final Year Engineering Project, 1999. 



Embcded Zcrotrcc Codcc 

• • • • • • • • 
• • • • 

• • • • 
• • • • • • • • 
• • • • • • • • 
• • • • • • • • 
• • • • • • • • 

• • • • • • • • 
• • • . • • • • 

Fl~u"' 3,4 A 3·•••1.: doc"""'"~"'" <>f on ~ " ~ "~><i:! C<>cfTid;:nto 
Cunol<t ufjuu """ Ut<"' LL , hO< ju<~ ""' «><ff.:ion! 
+t~:p""'cnt• a "'"''""' <•><ffdon< 

37 

F•1ur< ).5 A l·"o~d«rnnpu""' of on I x! ~n<kl<~>df~~on 
Cou"h ••I f,>ol I!«! u LL: <O•OIOIOI foUl 'odf~I<OU 

Ea<h of th< f•UI ~tlfmnt •ymhol1 "P""'" • dolfcr"t "" 

are performed. If we decompose the above 512 x 512 to five scales, we end up with 

eight coefficients in the LL5 subband, and so we have eight trees. Intact the number of 

trees is equal to the number of coefficients in the lowest frequency subband (LL,). In 

Figure 3.4 shows an 8 x 8 wavelet coefficients from three-scale decomposition so that 

there is only one tree, and Figure 3.5 shows the same 8 x 8 wavelet coefficients but from 

Main Parent 

Figure 3.6 A tree structure of wavelet coefficients 
A 3 scale decomposition of wavelt trasform on an 8 x 8 image 

Note how the first main parent has just three children white the rest have four children 
each. Ofcourse the leaves don't have any children. 

only two-scale decomposition and thus resulting in four trees. The members/coefficients 

of each different tree are differentiated by representing them by •, +,',and-. Figure 3.6 

shows one tree structure in a tree-like representation. 

Karma Wangdi Thesis on Final Year Engineering Project, 1999. 

• 



EmhcdcJ Zcrotrcc CoJcc 3H 

3.6 The Significance Map 

The significance map contains the significance information of coefficients in a tree. It 

contains information whether a coefficient's descendents are significant or not and 

whether its ancestors are significant or not. This significance information or significance 

map is very useful when encoding a coefficient code as zerotree root or an isolated zero. 

The idea will become clear when we discuss section 3.8 

3.7 Scanning of Coefficients 

To process the coefficients, the scanning of coefficients is performed in such a way that 

no child node is scanned before its parent. For an n-scale transform, the scan begins at 

the lowest frequency subband, denoted as LL,, and scans subbands HL,, LHo. and HH"' 

at which point it moves on to the scale n-1, and so on. The scanning pattern for 3-scale 

wavelet transform coefficients is shown in Figure 3.6. We note that each coefficient 

within a given subband is scanned before any coefficient in the next subband. 

-:Ll 
,, 

"'' LHf ""' ... "'' 
Llh (__ ""' 

'"' / 
V,,, 

Figure 3.7 Scanning order of the subband! for ~ncoding a 5ignificDnce map 

3.8 Encoding a Wavelet Coefficient 

Given a threshold level T we now discuss how a coefficient is encoded. A coefficient 

can be any one of the following four; 

• A positive significant 

• A negative significant 

• A Zerotree root, and 

Karma Wangdi Thesis on Final Year Engineering Project, 1999. 



Emhcdcd Zcrotrcc Codt.'l.: 39 

• An Isolated zero 

A coefficient xis significant with respect to a threshold value T if I x I ~ T. A significant 

coefficient is positive significant if it is positive and negative significant if it is negative. 

A coefficient x is a zerotree roo! if itself and all its descendents are insignificant with 

respect to a threshold T. 

A coefficient x is an isolated zero if it is itself insignificant but at least one of its 

descendents is significant. 

Accordingly four different symbols, one for each of the four kinds of coefficients that can 

be encountered can be assigned. Four such symbols can be as shown in Table 3.1 

Svmbol MeanlnQ 

POS Positive 

NEG Negative 
" . 

ZTR Zerotree Root 

IZ Isolated Zero 

Table 3.1 Symbols and their meanings for coding a wavelet coefficient 

'') Wh•l•isn io ~ 
{·) 

lopu\Codf~~n! 

j 

h Codf~~nl 
s;,,;fiml1 

""' <otlolni 
P~ud h• 

Zmlnolnl! 

VES P•"~""""' 

Code Nc1o1i"le Code l~o~lcd Zero 
S1mbol Sym~ol 

""'"'''""' ~"u"''"' 

FiJurc l.l Flow Chlfl for co~o~i•l 1 coclfio: iool of \he li,•ifia~ce m1p 

Karma Wangdi 

m 

Pt(~i:lobly !ui,nifbM 
~oo"l Code 

Code Zcrolrcc Roo I 
Sym~ol 

Thesis on Final Y car Engineering Project, 1999. 

Ill 



Embcdcd Zcrotrcc Cmlcc 40 

In this project these symbols and their meanings are used. The flow chart for encoding 

a coefficient is shown in Figure 3.8 

3.9 Successive Approximation Quantization 

To pertorm the embedded coding, successive-approximation quantization (SAO) is 

applied. The SAO sequentially applies a sequence of thresholds T0 to T,.1 to determine 

the significance, where the thresholds are chosen so that T, ~ T,.,/2. The initial threshold 

is chosen such thatT0 >I X11/2 where X1is the maximum of all the transform coefficients. 

During the encoding and decoding, two separate lists of wavelet coefficients are 

maintained. These lists are called the dominant list and the subordinate list. At any 

point in the process, the dominant list contains the coordinates of the coefficients that 

have not yet been found significant in the same relative order as the initial scan. The 

scan is such that the subbands are ordered, and within each subband, the set of 

coefficients is ordered. Thus using the ordering of the subbands as shown in figure 3.6, 

all coefficients in a given subband appear on the initial dominant list prior to coefficients 

in the next subband. The subordinate list contains the magnitudes of those coefficients 

that have been found to be significant. For each threshold the list is scanned once. 

During the dominant pass, scanning the coefficients with coordinates on the dominant 

list, i.e. scanning the coefficients that have not been found significant, are compared to 

the threshold T, to determine their significance, and sign if they are found to be 

significant. The significance map is zerotree coded as described in section 3.8. Each 

time a coefficient is encoded as significant, (positive or negative significant), its 

magnitude is appended to the subordinate list. Then the coefficient in the wavelet 

transform array is set to zero, so that the significant coefficient does not prevent the 

occurrence of a zerotree on future dominant passes at smaller thresholds. 

After a dominant pass a subordinate pass is pertormed. During this subordinate pass 

the subordinate list is scanned and the specifications of the magnitudes available to the 

decoder are refined to an additional bit of precision. Specifically, during a subordinate 

pass the width of the width of the quantizer step size, which defines the uncertainty 

Interval of the true magnitude of the coefficient, is halved. For each magnitude on the 

Karma Wangdi Thesis on Final Y car Engineering Project, 1999. 

I 



Emhcdcd Zcrotrcc Codcc 41 

subordinate list, this refinement can be encoded using a binary bit " symbol to indicate 

that the true value falls in the upper half of the old uncertainty level. We should note that 

prior to this refinement, the width of the uncertainty level is exactly equal to the current 

threshold. After the completion of the subordinate pass the magnitudes of the 

subordinate lists are sorted in decreasing magnitude, to the extent that the decoder has 

the information to pertorm the same sort. 

The process continues to alternate between the dominant and the subordinate passes 

where the threshold is halved before each dominant pass. In principle one could divide 

by any factor other than 2. The factor of 2 is chosen because it has nice interpretations 

in terms of bit plane encoding and numerical precision in a familiar base 2, and good 

coding results were obtained. (Shapiro, 1 993) 

In the decoding operation, each decoded symbol, both during the dominant and the 

subordinate passes, refines and reduces the width of the uncertainty level in which the 

true value of the coefficient may occur. The center of the uncertainty interval is used as 

the reconstruction value. 

The encoding stops when some target stopping condition is met, such as when a bit 

budget is exhausted. The encoding can cease at any time and the resulting bit stream 

contains all lower rate encodings. Further more decoding cans top at any point. 

However terminating the decoding of an embedded bit stream at a specific point in the 

bit stream produces the same image that would have resulted had that point been the 

encoding target rate. This ability to cease encoding and decoding anywhere is 

extremely useful in systems that are either rate~constrained or distortion~constrained. 

3.10 Experimental Results Obtained by Shapiro 

• The compression pertormance of this algorithm was found to be competitive with 

virtually all known techniques. 

• The precise rate control that is achieved with this algorithm is a distinct advantage. 

Karma Wangdi Thesis on Final Year Engineering Project, 1999. 



Etnbcdcd Zcrotrcc Codcc 42 

• The pertormance of the EZW coder was compared to widely available version of 

JPEG. JPEG does not allow the user to select a bit rate but instead allow the user to 

choose a "quality factor" 

• A "Barbara" black and white picture was first encoded using a file size of 12,866 

bytes. The PSNR (peak signal to noise ratio) in this case was found to be 26.99 dB. 

To the same "Barbara" picture EZW algorithm was applied with the same target file 

as above of exactly 12,866 bytes. The resulting PSNR was 29.39 dB, which is 

significantly higher than for the JPEG. The EZW encoder was then applied to the 

same picture using the target PSNR of 26.99 dB. The resulting file size was 8820 

bytes. 

• When encoding or decoding is terminated during the middle of a pass, there are no 

artifacts produced that would indicate where the termination occurred. 

• A "Lena" image was coded at high compression ratio of 512:1. The image quality 

was poor but still recognizable. This is not the case with conventional block coding 

schemes, where at such a high compression ratio, there would not be enough bits to 

even encode the DC coefficients of each block. (Shapiro, 1993) 

Karma Wangdi Thesis on Pinal Year Engineering Project, 1999. 

I 



Emhcdcd Zcrotrcc Codcc 43 

4. ENCODER AND DECODER DESIGN 

4.1 Introduction 

This chapter is divided into three parts. In Part A, the design of a single processor 

encoder is presented. Part B deals with the design of single processor decoder. In part 

C the design of codec using three parallel processors to process a zerotree of wavelet 

coefficients is presented using the principles of the single processor codec design. 

The design of the codec described in this chapter is very generic and can be used to 

encode and decode any size zerotree of wavelet coefficients. In keeping with the 

specification of the project, the coefficient values are assumed to be between -128 and 

+ 127, which is for an 8 bit implementation. However the ideas can be applied for higher 

value coefficients. 

A. Encoder Design 

4.2 Single Processor Architecture 

Here we look at the architecture of the single processor encoder. The encoder that uses 

three parallel processors is explained afterwards. This is helpful because it becomes 

... ru.TF. ' .,.,,, 

•• ... 
•• 

.......... 1 

··:1111 •• . ' 
Ar~ .. -~ ....... , 

FIJm ~.1 Th• E•oo~<r 

Karma Wangdi 

..... 

,,i==:j 
.. ,t::::=:J 

Thesis on Final Year Engineering Project, 1999. 

I 



Emhcdcd Zcrolrcc C(){lcc 44 

fairly easy to grasp the idea once we have discussed the single processor encoder. 

Figure 4.1 shows a generic encoder 

4.2.1 Mapping Coefficients to Memory Bank 

Let the tree size be m. For an n x n image that has been wavelet transformed to a single 

coefficient for the lowest frequency subband, m = rf. If the image has been wavelet 

" 

... 

.. , .. , .. , 
Pmnl roouor 

Flsure ~.2 One to one mapplnr ollhe coefficicntaln atnc to a memory bank 

transformed so that there are k coefficients in the lowest frequency subband then the 

number of trees is k and so each tree size m = rflk. 

Karma Wangdi Thesis on Final Y car Engineering Projccl, 1999. 

II 



Embcdcd Zcrotrcc Codcc 45 

As figure 4.2 shows these m coefficients are then mapped into a memory bank, from 0 to 

m -t. The main parent goes to the index 0 memory element followed by its three 

children which are in turn followed by their children and so on. The coefficient number in 

the tree and the indices of the memory bank has one to one correspondence. For 

example the coefficient number 0 goes into the memory element whose index is 0, 

coefficient 1 goes into the memory element 1 and so on. The ordering of the 

coefficients is dictated by the scanning order that was shown in figure 3.3 in chapter 3. 

0 Coefl Encoded zrF DSig 

Coefl Encoded ZTF DSig 

Coe!: Encoded ZTF DSig 

m·l Coefl Encoded ZTF OS!g 

Figure 4.3 1 he memory bank with !he four fields 

4.2.2 Fields of a Memory Element 

Each element of the memory bank is not just a single field containing the 

coefficient alone, but a record of four fields. The fields are Coeff, DSig, ZTF, and 

Encoded. The memory bank actually looks as shown in figure 4.3. The fields 

facilitate the encoding process by containing important information with regard to 

the coefficient. The functions and meanings of these fields are as follows: 

• The Coeff field where the coefficient is actually stored. 

• The DSig field is used to store information to indicate if any of the descendents of the 

coefficient is significant with respect to a given threshold. A binary '1' is to indicate 

'yes' and the '0' is for 'no'. 

Karma Wangdi Thesis on Final Year Engineering Project, 1999. 



Embcdcd Zcrotrcc Codcc 46 

• The ZTF field is used to store the binary information to indicate if ancestor or parent 

of the coefficient has been found to be a zerotree root. In other words it is used to 

indicate if the coefficient is an element of a zerotree. Here too '1' is to indicate that 

the coefficient is an element of the zerotree while a '0' indicates that it is not. 

• The Encoded field is also used to store binary information to indicate if the coefficient 

has already been encoded. A '1' is meant to indicate yes and a '0' for no' 

4.2.3 Pointers 

As shown in figure 4.1 we use two pointers called the parent pointer and the child 

pointer. As the names indicate, the parent pointer is used to point to the parent 

coefficient while the child pointer is used to point to the child coefficient. 

4.3 Choice of Thresholds 

The specification for the encoder is for an 8·bit implementation. As such the coefficients 

can vary from -128 to 127. So the absolute value of the coefficients vary from 0 to 128. 

Instead of choosing the first threshold T; ~ IX11/2 where IX11 is the maximum of all 

coefficients, we choose 64 as the first threshold as it is half of the maximum possible 

threshr,!J. The other thresholds then become 32, 16, 8, 4, 2 and 1. This choice of 

thresholds leads to a very simple and effective way of encoding the coefficients, as we 

will see later. It is especially useful when performing successive approximation. 

Subsequently we start encoding using the first threshold, 64. Then encode the 

whole trae against 32 then for 16 and so on until we have finished coding against 

threshold value 1. 

4.4 E01coding the Coefficients 

The encoding of the coefficients against any threshold (T) is achieved by three 

operations. These three operations are: 

• Significance Map Generation 

Karma Wangdi Thesis on Final Year Engineering Project, 1999. 



Embcdcd Zcrotrcc Codcc 47 

• Assignment of Codes, and 

• Successive Approximation 

Figure 4.4 shows these three steps, for encoding for a threshold. As it is obvious 

significance map generation is the first one performed. After it has been completed, the 

two remaining steps, assignment of codes and successive approximation quantization 

iterate to encode all the coefficients for the given threhold. 

T Momury h•nk 

Succoui•·• 
Appro1imoilo>n 
QuontinlionJ 

lnf!llmatinn bit• 

Figure 4.4 Encnding cuo!f.:icnl! !lf memnry hank fm rhmhold T 

4.4.1 Significance Map Generation 

0 "' 

•·l 

••• Ill![ 

Memoryb&nk 

Figun 4.S Slgnlfictnce m1p IUmtlon of the memoryboni. 
Showlns direction of proceuinJ 

Karma Wangdi Thesis on Final Year Engineering Project, 1999. 

I 



Embcdcd Zcrotrcc Codce 4H 

Significance map generation is the first thing that we do in encoding the coefficients. By 

performing this process we collect information about the significance of the descendents 

of each coefficient. This information is used when codes are assigned to the 

coefficients. 

We start from the bottom of the memory bank and move our way up as shown in figure 

4.5. The child pointer is made to point to the last coefficient (m - 1 )lh coefficient, that is, 

the child pointer contains the value m-1. The parent pointer is made to point to the last 

parent, which is the parent of the coefficient that the child pointer is pointing at. The last 

parent is the last coefficient of the first one-fourth of all the coefficients in the tree. 

Therefore 

i = (m/4) -1 = index of the last parent. 

With the parent pointer pointing at the last parent in the tree and the child pointer 

pointing at its last of the four children we do the following: 

The absolute value of the coefficient pointed to the child pointer is compared to the 

threshold. If ICoeffl 2: T, i.e. significant then a '1' is written in the DSig field of the parent 

coefficient. Since the descendent significance for that parent coefficient is determined 

there is no need to check for the significance of other three children. So we move to the 

next parent by decrementing the parent pointer by one. 

Fori in 0 to 3\oop 
If abs Menbnk(child + i).Cneff ;::T then 

Mcmbnk(parcnt).DSig := '\'; 
Eycsno:= '\'; 
Exit; 

End If; 
End loop; 
If EYcsNo = '0' then 

Membnk(parcni).DSig := '0'; 
end If; 
puent :=parent· I; 
child :=child • 4; 

.. Membnk is memory bank 
.. child is child pointer to the last child 
.. was the loop exited or not 
.. parent is pointer 

The child pointer is decremented by 4 to point to the last child of the new parent. We are 

assuming that we are dealing with parent coefficients that have only one level of 

descendents, i.e. they only have children. This means that the children themselves do 

nol: have children In their turn or they are the leaves of the tree. For parent coefficients 

with only one level of children 

DSigPmnt = Significance(chid\1 OR child2 OR child3 OR child4) 

Karma Wangdi Thesis on Final Y cnr Engineering Project, 1999. 



Emhcdcd Zcrotrcl.! Cndcc 49 

In this case a possible pseudo-code would look like: 

If the child coefficient is found to be insignificant, the significance of the next child and 

the other children is checked until we find a significant child. When all the four children 

are checked and if all of them are found to be insignificant, a '0' is written in the DSig 

field of the parent coefficient. This is repeated for all the parents that have only one level 

of descendents. 

When we reach higher level of parents, that is coefficients that haVe more than one level 

of descendents, their DSig field is determined by the significance of both levels of 

descendents. In other words, the DSig of the parent is determined by the DSig fields 

and as well as the significance of all its four children. As a result we need to check both 

the DSig fields and the children coefficients. 

If we find either DSig field containing '1' or the coefficient to be significant for any 

one of its four children a '1' is written in the DSig field of the parent coefficient. We then 

proceed to determine the descendent significance of the next parent by decrementing 

the parent pointer by 1 and the child pointer by 4. 

If DSig field of all the four children contain a '0' and if all the children are 

insignificant (the absolute values of all the children are less than the threshold n. then a 

'0' is written in the DSig field of the parent coefficient and we proceed to determine the 

DSig field for the next parent. For parent coefficients with more than one level of children 

DSigp 11enr = DSig(childl OR chidl2 OR child3 OR child4) 
OR Significance(chidll OR child2 OR child3 OR child4) 

In this way we continue to determine the DSig of the coefficients till we determine the 

DSig of the main parent. We must remember that the main parent has only three 

children, so the child pointer must be decremented by 3 when we move to the main 

ForiinOro)hop 
If (lbl Membni(chrld t i).Coeff <:TOR Memb~k(cbild+i).DSig a 'I') !hen -· Membnk Is memory b•nk 

tMmbnk(porenll.DSi! :a '1'; --child is child poinlerlo the lul child 
Eyuno:m '1'; -- Wlllhe hop e~iled or nor 
bil; 

End If; 
l!nd hop: 
I( EYe1No • 'Q' then 

Memb~k(porent).DSiJ := '0'; 
edlf; 

putnl := parenl · 1: 
cb!ld :-child · ~; 

Karma Wangdi Thesis on Final Year Engineering Project, 1999. 



Emhcdcd Zcrotrcc Codcc 

parent, instead of decrementing by 4 as was the case with other parents. 

The pseudo-code we could do something like this: 

50 

We realize that there is a need for us to differentiate between the leaves and the higher 

level coefficients. To this effect the DSig fields of all the coefficients are initialized to 'u' 

(unknown) prior to significance map generation. So before we check th•J significance of 

the child we check if the DSig field of the child contains a 'u'. If it does, then it is a leaf 

coefficient. The DSig fields of parents get written with '0' or '1' before they are pointed to 

by the child pointer. So if the DSig of child coefficient does not contain a 'u' then it is not 

a leaf. 

At this point the memory bank contains enough information so that we can start 

assigning codes to the coefficients. 

The Flow chart for determining the DSig field of a parent coefficient is shown in Figure 

4.5.1. 

~hild 

r -l!!"-<( Is Child no 
a leaf? 

•r~o Tlo 01< DSIJII!II of 
!hporn<. 

I!I!!O~! I!U rornt'r DliJ 

"" 

"rile 'O' r.~ne DSIJ r~r.r 
of rhe ~'""'· 

"'''""'"' '"' '"'"~'" DSI l~ld 

~~~ ne~l 
child

Fl1ur~~ .5,1 flow chart to d~tcrmlnc rh~ DSig field of a p~rcnl cocfrlclcnt

(1lgnificance map a~nmtion)

Karma Wangdi Thesis on Final Y car Engineering Project, 1999.

Emhcdcd Zcrotrcc Codcc 51

4.4.2 Assignment of Codes

Once the signilicance map generation is completed lor a given threshold the memory

bank contains all the information required for the assignment of codes to begin for that

threshold.

'""

.. , .. ,
""

Mo01oty Oon<

F'l'" H AttiJomcntofCo~tl
SOo~I•J dut<llon of PIO«UIOJ

As discussed in chapter 4 four different codes are assigned. Once again, they are:

• ZTR, for zerotree root

• POS, for positive signilicant

• NEG, for negative significant, and

• JZ, for isolated zero

To assign the codes we start from the main parent and move downwards as figure 4.6

shows. Here too we use our child pointer and the parent pointer. While the parent

pointer points to the parent, the child pointer points to the first child of the four children

(three in case of the main parent)

We use an array to store the cades for the coefficients and information about the

approximate values In case of significant codes. This is the array that will contain the

embedded codes for the coefficients of the memory bank at the end of the encoding

process. In other words this is the array that will contain the result of the encoding.

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Embcdcd Zcmtrcc Codcc 52

The coefficient that is pointed to by the parent pointer is the one that is assigned code to.

To code a coefficient its absolute value is compared to the threshold.

If the coefficient is significant, it sign is determined by comparing it with zero. If it

found to be positive, a POS is stored in the output array and the array index is

incremented by one. If it is found to be negative significant, a NEG code is stored in the

output array and the array index is incremented by one. Whenever a POS or a NEG is

coded, a '1' is written in the Encoded field of the coefficient, to indicate the coefficient

has been coded as significant so that future coding of this coefficient does not take

place. A pseudo~code for coding significant code is:

(when significant)

If parcnt.coerr < 0 then --parent is the clement pointed to by the parent pointer
CodeRA(n) :=NEG; -- CodeRA is the array to where we store the codes

Else
CodeRA(n) := POS:

End If:
n := n+l;
parent.Encoded := '! ':
--perform successive approx
parent.coeff := 0;

The assignment of a significant code is followed by successive approximation, which is

discussed in the next section. After successive approximation is completed the

coefficient is replaced by a zero. We then move to assign code for the next coefficient

by incrementing the parent pointer by 1 and incrementing the child pointer by 4 (3 when

the parent being incremented is the main parent).

If the coefficient is found to be insignificant for the threshold at hand we proceed to

find out if it is a zerotree root or (ZTR) or an isolated zero (IZ). This is the time when our

significance map proves useful. At this point go back to the significance map and check

the DSig field of the parent coefficient. Any of the three conditions would be satisfied.

a. If the DSig field contains a '1' it means that at least one of its descendents is

significant, so it is an isolated zero. Subsequently an isolated zero code (IZ) is

stored in the output array and the array is incremented by one. We then proceed to

determine the code for the next coefficient by incrementing the parent pointer by

one and the child pointer by 4 (3 when the parent being incremented to is the first

parent).

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Emh!!dcd Zcrotrcc Codcc 53

b. If DSig field contains a ~a· instead of a '1', it means that none of its descendents is

significant. So the coefficient is a zerotree root (ZTR). Therefore a ZTR code is

sterad in the output array and the array is incremented by one. A ~1' is then written

in the ZTF fields of all the four/three children of the parent coefficient.

ZTFchild = ZTFparent

In this way the ZTF information gets passed onto from parents to their children

which in turn gets passed to children of the children until it reaches the leaves. This

information is used to make sure that we do not code the descendents of ZTR as

they are all insignificant and need not be coded.

c. If the DSig field contains a ~u• then it is a leaf. A leaf insignificant is also coded as a

ZTR. When decoding we can easily distinguish a leaf coefficient from other

coefficients.

A pseudo-code for encoding an insignificant coefficient is:

(when insignificant)

If parent.DSig ='I' then ··parent is the element pointed to by the parent pointer
CodeRA(n) := IZ; ··CodeR A is the array to where we store the codes

Elslfparent.DSig = '0' then
CodeRA(n) := ZTR:
Children.ZTF :='I'; ··for ullthe children

Else ·· parent.DSig = 'u'
CodeRA(n) := ZTR:

End If;
n := n+ I:
parent:= parent+ I;
child:= child+ 4;

There are two things we need check before we begin to assign code to a coefficient.

The first one is that we should not code a coefficient that has already been coded as

significant. The Encoded field is used for this purpose. As we saw above, a 't' is written

in the Encoded field of the coefficient that has been coded as significant. Once written

this information is preserved for the rest of the encoding process. So before going on to

detennine the code for a coefficient its encoded field is checked. Only if a '0' is found in

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

l:mbcJcJ 7.crulrcc Codcc 54

this field we proceed with the next step of assigning code to the coefficient. Otherwise

we go to determine the code for the next coefficient

The second thing is to check the ZTF field. If a 't' is found in the ZTF field of the

coefficient then it is a descendent of a ZTA, so it need not be coded. Only if a '0' is

found in the ZTF field of the coefficient do we proceed with determining the code for the

coefficient at hand.

So we don't code a coefficient if either of the ZTF and Encoded fields contains a '1'.

If the main parent is found to be a zerotree root then all other coefficients are

insignificant for the threshold at hand and there is no need to code any further for that

threshold. We then proceed to encode for the next lower threshold.

In this manner we assign codes to coefficients in the memory bank for a given threshold.

The flow chart for assigning a to a coefficient is shown in figure 3.8 in the last chapter.

4.4.3 Successive Approximation Quantization

Successive approximation quantization is the process by which information on the

values of the coefficients is embedded with the codes instead of passing the whole

coefficient itself. When we have finished discussing this topic we can appreciate how

the precision of the coefficient values are improved with each threshold level codes. If

the decoder is provided with all the codes then it can reconstruct the exact coefficient

values. Otherwise it will only be able to reconstruct an approximate value of the

coefficient depending on the number of the codes it receives. Let's see how this

happens.

Given the size of the tree it is possible to tell against which threshold a code has been

coded. That is given a code, say POS, we can tell whether it has been positive

significant against 64 or 32 or 16 or other threshold values. This information is implicitly

contained in the encoded codes.

Karma Wangdi Thesis on Final Year Engineering Project, \999.

Emb~d~d Z~rolr~c Codcc ss

Coefficient reconstructed value from Knowledge orThrashold

128 >= lCoeflicientl >- 64 • 96

63 >- lCoefticientl >= 32 • 46

31 >= !Coefficientl >- 16 • 24
15 >-ICoefficienll>- 6 • 12

7 >= ICoeUicientl >= 4 • 6
3 >= ICoelficientl >= 2 • 3

!Coefficientl = 1 • 1

Coefficient= 0 I 0

Figure 4.7 Coefficients and their reconstructed values from knowing the thresholds

With the thresholds we use, 64, 32, 16, 8, 4, 2, and 1, and using the centre of the

uncertainty interval as the reconstruction value the coefficients can be reconstructed as

shown in figure 4.7

In order to be able to reconstruct the exact original coefficients from the codes the

knowledge of threshold itself isn't enough. So we need to send additional information on

the coefficient value with the codes. This is what successive approximation quantization

exactly does.

Whenever a POS or NEG is coded during the assignment of codes we subtract the

threshold value from the absolute value of the coefficient. We then store the value of the

remainder in the two dimensional array and send the information on this remainder to

Bits and the values they indicate

2 4 8 16 32 64
0 I ' 3 ' 5 6

0

1

•
•
•

m·2
m·l

Figure 4.8 The two dimensional array for storing information ont lhe coeH!cienl values
7 bits for each cocfficient

-values
-bit no

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Embcdcd Zcrotrcc Cudcc .16

the decoder. Since the maximum absolute value of a coefficient can be 128 and since

the max threshold is 64 we can have a maximum remainder of 64 (128-64). As a result

we use 7 bits for each coefficient. So the two dimensional array becomes m-1 x 7 of bits

as shown in figure 4.8. In figure 4.8 the codes are numbered and these codes are the

significant codes (POS or NEG) number. The numbering is such that code number 0 is

the first significant code encoded, code 1 the second one and so on.

Further explanation can be more effectively achieved by taking an example.

Let us say ihat we started our encoding with threshold 64 and got a POS as ihe first

significant code. Let us further assume that this coefficient has a value of 120. As soon

as we code this POS we build the additional information. The remainder is (120-64 =

56). This 56 can be broken down into (56 = 32 + 16 + 8). Because it is the first

significant code we store this information in the first row of the 2 dimensional array. We

write a '0' in the bit places corresponding to 64, 4, 2 and 1 and write a '1' in the bit places

corresponding to values 32, 16 and 8. After this the two dimensional array looks like

shown in figure 4.9.

Bits and the values they indicate

2 4 8 16 32

• ' ' ' ' ' • ••• ••• ••• .,. ., . .,.
'

• .
•

.. , ,_,

Fl1ure 4.9 Th• lwo dimuoillulm&y wlih loformul~n lor lho /iulllg•if!<nl ~odo

64 -values
-bit no •

• ••

Since our threshold is 64 and a remainder of 64 is possible we store the bit information

contained in the bit place corresponding 64 right after the code in the output code array.

Here right after we store POS, '0' is stored in the output array.

Let us assume that our next significant code is a NEG and assume that the coefficient is

- 85. Obviously this is also against threshold 64. So the remainder of the coefficient for

which we need to provide additional information is (85 -64 = 21). 21 can be written as

Karma Wangdi Thesis on Finn! Y car Engineering Project, 1999.

I

Embcdcd Zcrotrcc Codcc 57

(16 + 4 + 1). Since this is the second significant code we store the information in the

seven bit positions of the second row in the two dimensional array. A '1' is written in the

bit positions corresponding to the values 16, 4 and 1 and a '0' is written in other bit

positions. Similarly right after the code NEG, we store a '0', for 64, in the output code

array since the threshold is still 64 and a remainder of 64 is possible.

Now let us say that our third significant code is a POS and the coefficient is value is 47.

Obviously the threshold is 32, since it is less than 64 and greater than or equal to 32.

The remainder is (47-32 = t5). 15 can be written as (8 + 4 + 2 + 1). Like before we

store this information in the third row of the 2 dimensional array, storing '1' in the bit

positions corresponding to 8, 4, 2, and 1 and '0' in bit position corresponding to 16.

Since the threshold here is 32 when we subtract 32 from lcoefficientl the maximum

remainder that we will gat is 31. This is because when encoding has been finished for

threshold 64, the maximum absolute value of the unencoded coefficients will be 63.

Otherwise it will have been significant against threshold 64 and coded as significant

earlier. So we do not need to write anything in the bit positions corresponding to 64 and

32 in the 2 dimensional array.

" ~

E
" z
• ~
0
u

0

1

'

.
•
•

m·1

0

·o·
'1'

'1'

Bits and the values they indicate

2 4 8
1 ' 3 .,. '0' '1'

'0' '1' '0'

'1' '1' '1'

16)2

' 5
'1' '1'

'1' ·o·
'0'

64 --1·alues
-bit no • .,. .,.

Figure 4.10 The two dimcntlon•larny wllh informalinn fo1thc fillliJnifl~anl codo

For threshold less than 64 the maximum lcoefficientl is 2T - 1; T being the threshold.

The maximum remainder is (2T -1) - T = T -1. So we do not have bit information

corresponding to values >= T. Hence we do not need to write anything in those bit

positions of the 2 dimensional array. Also we do not need to provide information on the

approximate values In these bit positions. Figure 4.10 shows our 2 dimensional array

after successive approximation qunatization of this third significant has been completed.

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

I

Emh~dcd Zcn)trcc CmJcc SH

There is an additional thing that we do when we code the first significant for lower

thresholds than 64. Right after the code is stored in the output code array the bit

information in the two dimensional array corresponding to the current threshold value for

all the significant codes encoded for higher threshold values are stored in the output

code array. In our example when we store the third code (POS for 47) it is the first

significant code for 32. So after storing the code we look at the bit positions

corresponding to the value 32 in the 2 dimensional array for already coded coefficients

for 64 (row 0 and 1). Referring to our two dimensional array in figure 4.8 we find a '1' for

row 0 and '0' for row 1. So we store these bit information in the output code array right

after the POS code is stored. For the other codes, for the same threshold 32 we only

need to store the code and do not need to send any information on the coefficient

values. However we still have to fill the two dimensional array for the code with the

additional information for the coefficient value to be sent when lower level thresholds are

encoded.

At this point, the output code array according to our example would look like the one

shown in figure 4.11

To generalize, whenever we code the first significant for a threshold (less than 64) we

send the bit information on that threshold for all the codes that have been coded

significant against higher thresholds. That is, when we code for the first significant for

threshold 16 we store the code in the output array and then store all the bits

"''",.d. ""'

'
'
' ro .. ~i<ll"o

.. nu·,

8-- ' '"'~'u""' I
0 od<IT•III

' . . .
r,,.~i<IZ"o
,.nrh

[Ej-' • '"""'''"~···I <odHTo"l

. . .
fo11~kiZ"o
,.dlfR"o

'"' '"'d'~'''~"' I
1 r~,.,.,l. r "4< If •lll

'~"
..

IJIIfi<UI <od< • - l:t'''"ll. I !l""'"'d
~·~'"'

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Emhcdcd Zcrotrcc Code~: 59

corresponding to value 16 in the 2 dimensional array for all the significant codes that

have been coded for 64 and 32. Similarly when we code the first significant for threshold

8, we store the code and then store all the bit information corresponding to value 8 in the

2 dimensional array for all previously coded significant codes for 16, 32 and 64.

Similarly we code for the rest of the thresholds.

We observe that with each lower level of threshold more precision information is added

as we code for each lower level threshold. Finally when we have coded for the last

threshold 1, the output array has enough information so that the decoder can be able to

reconstruct the original coefficient.

At this point the encoding is completed.

4.4.4 Updating the DSig, ZTF, Encoded and Coeff fields

The DSig fields are initialized to 'u' before significance map generation starts. That is it

is initialized to 'u' at the start of coding for every threshold.

The ZTF fields are also initiaized to '0' at the beginning of coding for every threshold.

The Encoded field is initialized only once, at the beginning of the encoding process, to

'0'. Once set it remains set for the remainder of the encoding process.

The Coeff field is set to 0 once the coefficient has been coded as significant. This

prevents the significant coefficient from preventing the occurrence of zerotree roots.

4.4.5 Summary

Encoding is achieved through three operations: significance map generation,

assignment of codes and successive approximation.

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

EmhcdcU Zcrotrcc Cmlcc

Starting with threshold 64 we first generate the significance map. Then we assign codes

and perform successive approximations as required for each coefficient and repeat code

generation and successive approximation till we have coded for the last coefficient in the

memory bank. Encoding is completed for threshold 64.

We then code for the next lower threshold (here 32) by repeating the above process,

then for 16, then for 8, then 4, then 2, and finally with 1.

This way when the last threshold has been coded for, ihe encoding is complete. We get

in our output array the codes and the information on the coefficient values as the result

of encoding.

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Ill

·------------------~-~

Emh~·tlct.l 7.crotrcc CoJc~; 61

B. Decoder Design

4.5 Introduction

At the end of the decoding we will obtain the same numbe1· of coefficients that has

originally been encoded, and in the same order as we found them before encoding in

part A.

4.6 Assumption on Codes

We assume that the codes to be decoded are stored in an array, like the result of the

encoding described in part A. In practical application the codes can be reaching the

decoder one after another in real time, with the most significant codes (those coded for

higher thresholds) first followed by the less significant ones. To repeat what have been

already said in chapter 3, codes that are coded for higher threshold values are

considered more significant than those coded for lesser threshold values. With our array

assumption, the most significant codes are stored in the beginning followed by less

significant ones. For the purpose of explanation we call this array the code array.

4.7 Architecture

In the decoder too we use a record of four fields to store vital information. The fields are

Coeff field, ZTF field, Decoded field and the Sign field. The Coeff field is used to store

the decoded ceofficient while the other three are used to store information about the

coefficient to facilitate the decoding process. Since the size of the tree was m, we use an

array of size m (from 0 to m-1) of the four-field record. The array of record is shown in

figure 4. 12.

The four fields and their meanings are:

• Coeff: The Coeff field is used to store the decoded coefficient

• ZTF: The ZTF field is used to store binary information to indicate whether a zerotree

root has already been found. A 'I' in the field is to indicate that the coefficient is an

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

>&NEL>®W "'"'" --·

Embcdcd Zewtrcc Code~: 62

element of a zerotree. That is, an ancestor of it has been found to be a zerotree

root. A '0' indicates otherwise.

• Decoded: The Decoded field is used to store binary information to indicate whether

or not the coefficient has been decoded already. A '1' means 'yes' while a '0' means

'no'

• Sign: The Sign field is used to store the sign of the coefficient. '1' indicates that the

sign is negative while '0' indicates that it is negative.

Record Fid.h

An~y indicn too II m Oocodod "" 0
I

' 3

'

. . .

m· I

Fi8ure 4.12 A nay or re~ord fields, used for decoding

As in the encoder, here too we make use of two pointers: a parent pointer and a child

pointer. We also use an array to store the indices of the coefficients that have already

c

••

'""''"''"

"'""
Figure 4. Ll: Diagramml\ic representation of the decode!

Karma Wangdi Thesis on Final Y car Engineering Project, 1999.

I

Embcdcd Zcmlrcc Code~: 63

been decoded. A counter is also used to store the number of codes that have been

decoded. A diagrammatic representation of the decoder as a whole is shown in

figure4.13.

4.8 Decoding Process

The decoding is dictated by the encoding. As such it is a matter of how elegantly the

reverse of encodign can be performed. The following paragraphs shows how we

achieve this.

4.8.1 Preparation

At the beginning of the decoding process all the four fields of the record array are

initialized. The Coeff field is given a value 0 and the ZTF, Decoded and Sign fields are

all set to '0'.

Since the record array is to contain the coefficients in the exact order as they were

before encoding, the same parent-child relationship holds between indices of the array in

which the decoded coefficients will be stored. That is, in the record array, the Coeff field

of index 0 will contain the main parent, Coeff field of indices 1 ,2, and 3 will contain the

three children of the main parent, and Coeff field of indices 4, 5, 6 and 7 will contain the

four children of coefficient in index 1, and so on.

The parent pointer is made to point to the main parent and the child pointer is made to

point to the first child of the main parent.

Parent Pointer =0;

Child Pointer= 1;

The decoding is done for the coefficient pointed to by the parent pointer. We start from

the main parent and move downward through to the bottom of the record array. First we

decode for the highest threshold, 64, then for 32, then for 18 and so on. For each

threshold the following steps are involved

Karma Wangdi Thesis on Final Year Engineering Project, t 999.

,

Emt1cUcd Zcrotrcc Cmlcc

4.8.2 Checking the ZTF and Decoded Fields

Before we read the code from the code array to decode, we check the Decoded and the

ZTF fields of the parent (index pointed to by the parent pointer) of the record array which

will contain the decoded coefficients. The flow chart for pertorming this check is shown

in figrure 4.13.1

If the Decoded field contains '1' it means that the coefficient has already been

decoded for. So we move to the next parent by incrementing tho parent pointer by one

and the child pointer by four (three if the current parent is the main parent). If the

Decoded field contains a '0' instead then we check for the ZTF field

'"

Point to the idel which will
contain the decoded

coefficient

""

L...--------1 Increment the
indu

Figure 4.13.1

Dedper the code

Flo we hart for C~eding the D ccoded and ZTF field! be fore
rnding the code form the (Ode conniner

If the ZTF field contains a '1', it means that it is an element of a zerotree root found

earlier, so we do not have to decode for this coefficient as there is no code for this

coefficient for the current threshold. The zerotree found ahead message is then passed

onto Its children by writing '1' in the ZTF field of all its children. We then move to the

next coefficient by incrementing the parent pointer by one and the child pointer by four

(three if the current parent Is the main parent). The checking operation could translate

into the a possible pseudo-code:

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

I

Embeded Zerotree Codec

If parent.Decoded = 'I' then
parent pointer := parent pointer + I;
child pointer:= child pointer+ 4 (or 3);

Else
If parent.ZIF = 'I' then

Else

For i in O to 3 (or 2) loop
child(i).ZTF := '1 '; -- the child pointer gives the index of the first child

End Loop; -- child(O) is the first child child(i) is the second child and so on
parent pointer := parent pointer + 1;
child pointer := child pointer+ 4 (or 3);

-- Read the code ...

End If;
End If;
-- repeat the process

4.8.3 Deciphering the Code and Reconstructing the Coefficients

65

If both the Decoded field and the ZTF field are found to contain 'O' then the code that is

about to be read from the code array is for the coefficient pointed to by the parent

pointer. So the code is read from the code array and decoded.

The flow chart for decipdhering a code and reconstructing the coefficients is shown in

figure 4.13.2

Get the Code

Coefficin1•T

lndLllepre,11101

ilform11io1 foretell of

11re1dydecoded,oefficieo11

Figu,e4.l 3.2 Flow cbaJI for Decipbe ring a code and Reconstrucltag the coefficients

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

The code can be any of the four different codes: NEG, POS, IZ and ZTR. We process

each of them as follows:

a. If the code is a ZTR there are three cases that can arise.

If the parent pointer is pointing to the main parent, the rest of the coefficients are

insignificant against the current threshold. There are no codes for them in the code

array for the current threshold. So we move to decode for the next threshold level.

And start again from the main parent by setting the child pointer and the parent

pointer are set as

parent pointer:= 0;

child pointer:= '1 ';

and start the process all over again, but for a the next level of threshold value.

Actually the parent and child pointers are unchanged. For example if threshold that

we found the main parent as the ZTR was 64, the next threshold is 32.

If the parent pointer neither points to the main parent or to a leaf coefficient, then the

ZTF fields of its four children are set to '1 ', and we move to decode for the next

coefficient by incrementing the parent pointer by 1 and the child pointer by four.

An equivalent pseudo-code code would be:

(When code is ZTR)

If parent= main parent then
--change to the nnt threshold
--read the next code

e!slf parent/: leaf then
for iin 0 to 3loop

child(i).ZTF := '!';
end loop;
child pointer:=< child pointer+ 4;
parent pointer:= parent pointer+ I;

else ··leaf coefficient
parent pointer:= parent poin!cr +I;

end if;

•• decode for llie nc~l coefficient

If the parent pointer points to the leaf coefficients we do not need to do anything.

We increment the parent pointer by 1 and go to decode for the next coefficient.

Note that we do not increment the child pointer because the coefficient pointed to by

the parent pointer does not have any child as it is a leaf coefficient itself.

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

I

Embedcd Zcrotrec Cudcc 67

b. If the code is an isolated zero (IZ) the coefficient is insignificant, so we move to

decode for the next coefficient by incrementing the parent pointer by 1 and the child

pointer by 4 (or 3 if the current parent is the main parent).

c. If the code is a POS, the coefficient is significant with respect to the current

threshold. This means that the absolute value of the coefficient had been greater

than or equal to the current threhold. So we add the threshold value to the value

contained in the Coeff field (Coeff := Threshold). We then set the Decoded field to

'1' to indicate that the coefficient has been decoded. Another thing that we do here

is to store the array index of this decoded coefficient in the index array that is

indicated in figure 4.13.

To repeat, the index array is used to store the array indices of the decoded

coefficients. The indices are stored in order, first the index of the coefficient that

was decoded first, then that of the second, then that of the third and so on. The

contents of this index array serve as pointers to the coefficients when we decode for

lower thresholds to construct more precise coefficients that are decoded for higher

thresholds. Since we have initialized the sign fields to '0' which indicates a positive

coefficient we do not need to set the sign field.

If the current threshold is 64 then the next code in the code array is the precision

information for decoded coefficient. It is read, and if a '1' is found a precision of 64

(Coeff:= Geoff + 64) is added to the coefficient, and no precision is added if a '0' is

found.

If the threshold is lower than 64 (i.e. 32, 16, 8, 4,2 and 1), and if the coefficient

decoded is the first for the threshold, then the codes in the code array after the

currently decoded POS are not codes but information on the precision of the

coefficients that have been decoded before. There are as many bits following the

currently decoded code as the number of already decoded coefficients. The

number of decoded coefficients is contained in the counter. The first bit information

is for the first decoded coefficient, the second bit information for the second

decoded coefficient and the third bit for the third decoded coefficient and so on. A

'1' means that the corresponding coefficient has an additional precision value of T

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Embeded Zerotree Codec 68

(current threshold) so T is added to it. A 'O' means that the corresponding

coefficient does not have additional T precision, so we do not add T to it. The

information for the number of bit information to be read is given by the counter, while

the pointers to the decoded coefficients are given by the index array.

An equivalent pseudo-code for this would be:

(When POS)

parent.Coeff := T; -- T is the threshold
If T = 64 then

Read the next code (bit information) from the code array
If bit info read = 'I' then

parent.Coeff := parent.Coeff + 64;
Else

Null;

Elslf Coefficient decoded= the first for the threshold then
add precision (by T) to the other already decoded coefficients

Else
Null;

End If;

parent pointer := parent pointer + I;
child pointer := child pointer+ 4; (if parent is not a leaf)

d. If the code is a NEG, it is also a significant coefficient so we do exactly the same

things that we do when the code is POS, except for the sign field. A '1' is stored in

the Sign field to indicate that the sign is negative.

In this way we first decode for T = 64 then for T = 32, then 16, then 8 and so on until we

have decoded for 1. Note how precision is added with the decoding for each lower

threshold. When we have finished for threshold = 1 we will have got exactly the same

coefficients (in the Coeff field of the record array) and in the same order as they were

before they were encoded.

In above we have not discussed the issue of bit truncation. If the bitstream is truncated

we need to add additional precision value to all the decoded coefficients. How much to

be added depends on where the truncation occurs.

For example, if the current threshold is 32 and the last code obtained is a POS and this

POS is not the first significant coefficient for the current threshold (32), It may or may not

have an additional (64-32) = 32. So the uncertainty of 16 is added to it. So it is

reconstructed to 48 (32 + 16). All the previously encoded coefficients are also given an

additional value of 16.

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

l

Embcdcd Zcrolrcc Codcc

If this POS is the first significant for the current threshold it is itself given an additional

value of 16 (center of uncertainty). For those decoded before it, the uncertainty is the

center of 64 and 128, so 32 is the center of uncertainty. As such all those coefficients

are added by 32.

To generalize when truncation occurs, the centre of uncertainty is added to the already

decoded coefficients.

This completes the decoding.

4.8.4 Updating the Decoded, ZTF, Coeff and Sign Fields

The Decoded lield is initialized to '0' only once in the whole decoding process. That is

done at the start of the decoding. Once set it remains set throughout the process.

The ZTF field is set to '0' at the start of every new threshold value. This is because a

ZTF set to '1' is relevant only for the threshold that it was set.

The Sign field is set to '0' in the beginning to indicate positive. It is set to '1' when a

negative coefficient is decoded, and it remains set throughout.

The Coeff field is set to 0 at the start. As the decoding happens it gets filled in with the

real coefficients.

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Embcdcd Zcrotrcc Codcc 70

C. Parallel Processor Architecture

4.9 Introduction

This architecture is not a completely different architecture to what we have

discussed above. In fact it is only a slight adaptation of the single processor

architecture, trying to make use of the advantage of inherent parallelism present

in the zerotree of wavelet coefficients. A faster codec is thus envisaged from

using this architecture. Bae and Prasana also propose this architecture.

4.10 Observation of Inherent Parallelism

If we look at the parent·child dependencies of the subbands in a zerotree we

realize that there are three main branches, with the main ancestor common to all

three of them. They are shown in figure 4.14 as branch_A, branch_B and

branch_C. These three branches are each independent of the other, while the

way in which coefficients within one branch relate among themselves is the same

as the way in which the coefficients in another branch relate among themselves.

This then points to us that if we have three separate but same processors we can

process the entire tree using three such processors in parallel, each processor

handling a main branch. This translates to a processor having to handle only

one third of the coefficients it would have had to handle otherwise, thus

promising a speedier codec. We can make use of this inherent parallelism in the

design of the codec.

bran<h_A

Figure 4.1 ~ Tho 1h1co main hn"h'' of altce

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Embcded Zerotrec Cmlcc 71

4.11 Architecture

The coefficients in each of the three branches are mapped into three memory banks as

shown in the figure 4.15. The first coefficient of a branch is mapped into the element 0

of the memory bank, the 2nd coefficient is mapped into element 1, the 3rd into element 2

of the memory bank, and so on until the last coefficient is mapped into the last element

of the memory bank. The main parent is mapped as the first coefficient in each of the

three memory banks. So the first coefficient is the same for all the three memory banks.

r\

~ ~
, , ,

' ' '

' ' '

.., ,_, .. ,

.. , ,_, .. ,

Each memory bank contains one third of the total number of coefficients in the tree.

Having mapped the coefficients into the three memory banks each of the memory banks

is encoded and decoded as exactly same as that for single processor encoder and

decoder in part A and B above. And each of them can be processed in parallel by three

identical processors.

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Emhcdcd Zcrotrcc Codcc 72

Since the encoding and decoding strategies used are the same as in the single

processor architecture they will not be discussed here again as it would just be

unnecessary repetition. Instead the difference will be pointed out.

There is one important difference to note here. This happens in the encoder. When we

have finished generating the significance map for a given threshold. The DSig value of

the main ancestor (the first coefficient) as determined in a memory bank is not its true

value. Being the main ancestor of all the three memory banks in three separate

encoders, its descendent significance can be determined only after having information of

its descendents in all the three memory banks. However the DSig field of the main

ancestor in a memory bank contains all the information required from that memory bank,

to determine the exact descendent significance of the main ancestor. If we can get

together the DSig information for the main parent (first coefficient) from each of the

memory banks then we will be able to determine the true DSig value of the main parent.

T: ::e •~Pl'"'~~'~ing can not proceed until the true DSig value is determined and passed to the

three pr ~essors.

This is what we do. We have two other processes working on the other two memory

banks in parallel. The content of the DSig field of the main ancestor in each memory

bank is sent !o a different processor (we call it DSig process here) to determine the

exact descendent significance of the main ancestor. The actual descendent significance

of the main ancestor is '0' only if all the DSig value from all the three encoder is '0'. If

either one of them is a '1' then the DSig of the main ancestor is a '1 '. In the processor

where this actual DSig of the main ancestor is determined, the three DSig field values

from three parallel encoders are ORed.

True DSigmtin pmn1 = DSigmain pmnt (A) OR DSigmain pmnl(B) 0 R DSigm1 in pmnt(C)

The result is the true descendent significance of the main ancestor for the particular

threshold. This information is passed back to the three parallel encoders/processors.

Once the true DSig value of the main parent is received, the next stage of assigning

codes can begin. After sending the OSig value of the main parent as determined from

the coefficients in a given memory bank to the DSig process, the processing is halted till

it gets the true DSig value of the of the main parent from the DSig process. The data

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Embcdcd Zcrutrcc Codcc 7J

transmission employs a simple handshaking mechanism. Figure 4.16 shows how these

four processors relate.

llSig_A

DSig
Processor

DSig_B

Encoder_D Encoder.C

Figure ~.l6 :The throe encadm 3nd rho DSig processor

DSig_ll, DSi~.D and DSig_C are DS1g of tfle main ancestor from lhe lhree encodm
A_DS ig tactual desc onden I s ig nific ance) of the m "" anc.,tor dmrm ined b)' I he DS ig
processor, Enco~cr./1. 'incoder_B ond Encoder_C arc rhe lhrcc proccuan wotking

'" P"'tld

Besides this difference the encoding and decoding using the three parallel processors is

the same as was described in the case of the single processor architecture. The

obvious difference here is that instead of having to process (encode or decode) the

whole tree the processors here process only a third of the coefficients. And owing to the

nature of the EZW algorithm this parallel processing should give a very fast codec. At

least three times as fast as the first one.

Another difference is that the first coefficient in each memory bank has just one child

coefficient.

Decoding is exactly thEJ same as the single processor except for the main parent having

only one child in each memory bank. There is no communication needed between the

decoders.

Karma Wangdi Thesis on Finul Year Engineering Project, 1999.

Emhcdcd 7.xrotrcc Codcc 74

To conclude this chapter diagrammatic representation of the single processor

architecture and the parallel processor codec are presented.

Figure 4.17 Single proces;or co dec

ENCODER

Coerricienls

Codos

Encoder
A

Figure 4.18 :The Pmllcl mh~ecwre co dec

Kanna Wangdi

cod~s Decoder
_A

Codfiden11

Coefficienl•

Thesis on Final Y car Engineering Project, 1999.

EmhcdcJ Zcrotrcc Codcc 75

5. SIMULATION AND SYNTHESIS

A. Simulation

5.1 Introduction

The VHDL coding was done at the behavioral level and the programs were simulated.

Both the single processor codec and the codec with three parallel processors were

simulated and results were verified.

With the parallel processor codec, the coefficients were input into the encoder and the

resulting codes were fed into the corresponding decoder. It was checked if it gave the

same coefficients as those input into the encoder.

With the single processor codec extensive tests were performed. It was not only

checked to see if the decoder reconstructed the same coefficients in the same order as

that was input into the encoder, it was also checked to see how it produced more and

more precise coefficients when the first number of codes given were increased.

All the tests were checked against those computed by hand, and it was found that the

codec of both architectures, parallel processor and single processor, were working

correctly as expected.

5.2 Test Data

The test data used was a standard data obtained from Shapiro's original paper for 8 x 8

coefficient. So the design was checked for 8 x 8 coefficients. There was another

reason why this data set was chosen.

In keeping with the specification of the project, to assume static input data, data as

contained in a memory bank in the required order, the interface was not designed as it

would have hugely side tracked the project work. As a result inputs were written into the

array elements by hand in the program. What this translated to was an enormous

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Emhcdcd Zcrotrcc Cmlcc 76

*'
.. "' ' " " '
" ... ' ' • ·• '

" " " ., " " " "
" " ' ·ll

' ·• ' • .. ·• . Jl • • ·• ' '
' • ·• " ' • ' '

" " " " " •
" '

' ' 0 .. ' ' ·• 0 ' "
' ·• • ·• ' • ' • ' ' " ' • 0 ' .. • " '

" ' ·•
·• ·•

0 " " 0 " '
' ., " ·• " ·• ' "
' ., " ' " ' '
' " " ·• " ' '
' " " ' " • ·•
' " " ., " '
' " " ' " ' • '
' ., " ' " ' ' " " ' " ' IOrp-. I j1" h'l LO< J.r<<>«ll"' """

A<m!d<d ~Old<<. ' " " ' " '
" ·• " ·• " 0

" ' " ' " ' A:l"f""""'A
P . lor 1'"""' P
c :I 'I''"""' c

" ' " ' " '
" ... " 0 " '
" ... " ' " 0

" ' " " " '
" ' " ·• " '
" " " ' " '
" ' " ' " '
" ' " ·• " '
"

., " '
" ' " "

Fi!Or<l.l

number of inputs to be written by hand within the code. Just for an 8 x 8 coefficients the

number of codes obtained was about 300, which is almost 5 times the number of

coefficients. All these 300 codes had to be input by hand inside the code to check for

the decoder. If a 64 x 64 coefficients were tested, assuming a linear relationship

between the number of coefficients (in reality the number of codes obtained would be

more than that obtained from this assumption), there would be 4096 inputs for the

encoder and 20,480 codes to be input into the decoder, all by hand. These numbers are

truly prohibitively large. Even for a 16 x 16 coefficients, the codes would number more

than 1300. As a result tests were performed using the 8 x 8 coefficients data.

But we should remember that the codec designed was a generic one. So the

argument is if it works for an 8 x 8 coefficients it should also work for any image

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Embcdct.l Zcrotrcc Codcc 77

size. In tact had there been sufficient time to do the interface design this claim

would have been proved indeed.

The standard test data is shown below.

5.3 Simulation Result for Single Processor Codec

The results presented below were all checked against hand worked results, and it was

found both results tallied as desired.

5.3.1 Encoder Simulation

Input= from figure 5.1, Out put code= Table 5.0

ZTR ZTR POS ZTR POS ZTR NO NEG YES NO
POS ZTR ZTR ZTR ZTA ZTR NO POS NO NO
NEG ZTR POS ZTR POS ZTR YES POS YES YES

IZ ZTR ZTR ZTR POS POS YES POS NO YES
ZTR ZTR ZTR ZTR POS ZTR YES POS NO NO
POS ZTR NEG ZTR ZTR POS NO ZTR NO YES
ZTR ZTR ZTR ZTR POS ZTR YES Zl R YES YES
ZTR ZTR ZTR ZTR NEG ZTR YES NEG NO NO
ZTR ZTR ZTR ZTR POS ZTR NO POS YES YES
ZTR ZTR ZTR ZTR ZTR POS YES POS YES YES

IZ ZTR ZTR NEG ZTR EG YES NEG YES NO
ZTR ZTR ZTR YES ZTR POS NO POS YES NO
ZTR ZTR ZTR NO ZTR PCS YES NEG YES YES
ZTR POS ZTR NO NEG YES NO NEG NO YES
ZTR YES POS YES ZTR YES NO POS YES NO
ZTR NO ZTR YES ZTR NO NO ZTR NO NO
ZTR NO ZTR YES ZTR YES YES POS YES NO
ZTR YES ZTR NO ZTR YES NO ZTR YES YES
POS YES POS YES ZTR YES NO POS NO YES
ZTR NO ZTR YES ZTR YES YES POS YES YES
ZTR POS ZTR YES ZTR YES NO NEG YES POS
NEG POS ZTR YES ?OS NO YES YES NO ZTR

YES NEG ZTR NO PO S YES NO NO NO NEG
NO POS ZTR YES NEG YES YES YES YES ZTR

YES POS ZTR YES POS NO YES YES NO ZTR

NO NEG ZTR NO POS NO NO YES NO
POS ZTR ZTR NO POS YES NO YES NO
POS ZTR POS NO POS NO POS NO NO
ZTR NEG ZTR POS ZTR NO POS NO NO
ZTR NEG ZTR IZ ZTR NO ZTR YES NO

K"''l'abWao(!(}i R I f d' I . 1 Thesis on FinaJ Year Engineering Project, 1999. a 1IC):lf csu 1 rom en co mg stngc processor aracnttccfurcJ

I

I
Embcdcd Zcrotrcc Codcc 7R

5.3.2 Decoder Simulation

'"''" ""''""''""'"' '"''''' 1!.:< "'"'""'"' ~· OCOMHIJCIO ~ .. ocon•hut.te<l
t".>.·llk"'''"' ,-,, . .,,,., .. ,, dCoe!lc10f1to GooiiOIOf1\0

" " " " 0 ~ " 0

' .;n " " ' ·~ " 0

' -:4 " " ' ·~ " 0

' " " " ' 00 " 0

' " " " • " " " ' " " " ' " '" 0

' " -"' " • 0 '' 0

' " " " ' 0 " 0

' " " " " 0 " 0

• " " " ' 0 " 0

"' " " " '" 0 " 0

" " " " " 0 .. 0

" " " " " 0 " 0 ,,
" " " " 0 '" 0

" " " " " 0 " 0

" " " " " 0 " 0

" "
,,,

" " 0 " 0

" " " " " 0 ~ 0

'" " " " '" 0 " 0

" "
,.

" " 0 " 0

" " " " ~ 0 " 0

" " " " " 0 ~ 0 ..
"

,,
" ~ 0 " 0 ,_,

" " " " 0 ~ 0

" " " " " 0 " 0

" " " " " 0 '" 0

'" "
,,,

" " 0 " 0

" " "' " " 0 w 0

" "
,,,

" " 0 " 0 ,. 0 " 0 ~ 0 "' 0
)<\ " " " ~ 0 " 0

" " " 0
)l " " 0

T~hl~ 5.1 Reconmu~wd from first 21 codes Tablr S.l Rcconmu~trd from fult44 codes

' "''""'" ' ' """ruo\ ' 001..:1o

·~· "''""'' dCoolfociorlo Cootr.:lorlo dCoolfoclerlo C.O.tfocl«to
0 • n " • m n ' ' ~ " • ' ~ " ' ' .,. • 0 ' "' • • ' '" • • ' " • • • • " " • .. " " .. • 0 ' " • ' • .. " 0 • " " ' ' 0 ' " .. ' " " " 0

" " " ' " .. " • ' " " ' " " " ·• " " " • " 0 " ., " ' " 0 " • " ' " ·• " 0

" ' " ... " 0

" ... " ' " " " 0

" ' • ' '" • " 0

" ' .. ' " .. • 0

" " • ' '" • " 0

'" ' "
., .. • .. 0

'" ' 0 " " ... "
,

" ... " ' " 0 " 0

" ' " • " 0 " 0

" ' " ' • " 0

" ' • ' " • " 0

" ' " ' • 0 • • " ., • 0 • , • • • ' • ' 0 • 0

" 0 '" ' '" 0 " 0 • ' " ' " .. 0 • " • ·• • 0 • • • ' 00 ' " • " ' • • •
Td>leD R~>onmuo!ed I rom lir1l I 00 ~ "~" T•hlo 5.4 RWI"IIU<'IOd from foJII 2)0 <'Officicn!l

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Emhcdcd Zcrotrcc Cotlcc 7~

Table 5.1 shows the result of reconstruction of coefficients when the decoder is given

the first 21 codes. Table 5,2 shows the result of reconstruction when the decoder is

given the first 44 codes. Tables 5.3 and 5.4 are results more codes being given. The

results show how the precision of the reconstructed coefficients improve as more and

more codes are given. This mimics the bit truncation that would happen tor rate

constrained codec and how the codec would still be able to reconstruct approximate

coefficients. Finally in table 5.5 we see perfect reconstruction as all ~he codes are given.

5.4 Simulation Result for Parallel Processor Codec

Similarly, as in the single processor codec tests were performed for the parallel procesor

codec. The test was performed to see if the encoder and decoder encoded and

decoded properly for the entire coefficients and entire codes provided. The result was

found to agree with the one computed by hand. Rate constraint was not checked as

each processor performs exactly the same as that of the single processor above. In

other words each processor here is a smaller , ~rsion of the above single processor

codec.

Only the result for one subband has been shown here, in table 5.6. A hypothetical set of

coefficients was chosen. However the results were checked against those worked out

manually· they were the same. When the codes were input to the decoder (parallel) it •
coefficients. Thus proving that it works correctly.

• ~'""'"
..
~ r

• H " ' " " 0

' " " • • .. " " ; .. " ' • .. " ' ' . " " ' • " " • • .. " ' .. • " ' .. •
" • " • .. " .. • " •
" • .. •
" ' .. • ' " • .. ~

" • " ' " ... " ' " ' " 0

" • ;; • .. ' " •
" ; " •
" ' " 0

" • .. '
" ' " ' " ' .. •
" • " •
" • " •
" ' " •

T•~lo !J P"fw R""""'"'loon from •lllhe cod01

Karma Wangdi Thesis on Final Y car Engineering Project, 1999.

•

Emhcdcd Zcrotrcc Codcc

NE<i NO YES YES

ZTR YES YES YES

IZ YES YES YES

ZTR POS NO YES

IZ NEG NO YES

ZTR ZTR NO NO

ZTR ZTR NEG NO

ZTA POS ZTR YES

POS ZTR ZTR YES

NO ZTR ZTA NO

ZTA ZTA ZTA NO

ZTA ZTA ZTR YES

NEG ZTR ZTR NO

YES ZTR ZTA NO

NO ZTA POS YES

ZTR ZTA POS ZTA

ZTR POS NEG ZTR

ZTR NEG POS NEG

ZTR NO POS POS

POS YES POS POS

,,,
(b)

Table 5.6 Input and Output simulation results from one parallel architecture
encoder and decoder (for 8 X8)

(a) input for encoder and output from decoder
(b) input for decoder and output from encoder

HO

NO

NO

YES

NEG

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

I

Emhcdcd Zcrotrcc Codcc HI

B. Synthesis

5.5 Introduction

A lot of time and effort was put in to synthesize the behavioral design of the codec.

However only a few logical blocks could be synthesized and those will be presented

here.

The main problem was that even if the behavioral code is in a "synthesizable" construct

the Synopsys synthesis tool fails to synthesize for some reason. For instance several

times it took so long (once even more than 3 days) to read the file and at the end it either

gave a "not enough memory space" or just crashed the machine. An attempt was then

made to synthesize the encoder not as one whole program block but in two logical parts.

When this was pertormed the first block worked and was synthesized. The second block

still gave the same problem.

There were a few but important behavioral synthesis issues encountered which required

the original code for the encoder to be converted into a "synthesizable" construct.

Those issues and the changes made in the program deserve mention here.

5.6 Issues Encountered in Behavioral Synthesis

• Asynchronous design is difficult to synthesize. In other words the synthesis requires

a clock in the design for the synthesis to work properly. A global clock to

synchronize the encoder parts was introduced.

• Multi-dimensional arrays are not accepted for synthesis. So the original array of

record used in the encoder design had to be replaced by single arrays and the

associated source codes had to be changed accordingly.

• While-loops were also found to be unacceptable for synthesis. They were replaced

by for-loops, with definite number of loops. If-then-Exit statements were used within

the for-loops to evaluate the previous while loop conditions.

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Embcdcd Zcrotrcc Codcc H2

• The wait statement as such is not accepted for synthesis. It is accepted only as

clock edge waits. (wait until clock' event and r" ck ='1 ')

5.7 Synthesizing the Significance Map Generator

Figure 4.4 has been presented again to indicate which component the Significance map

generator is in the encoding process.

5.7.1 The Synthesis Process

• Synopsys synthesis tool is invoked by using the command

DESIGN_ANAL YZER at the unix prompt.

• The .vhd file and all the packages used are then read using the file-read command

from the menu

• The gate level schematic can be viewed changing the level up-down from the menu.

• Report on various aspects of the synthesized designed can also be generated using

the generate-report command.

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

~ -. ,-.. _,- __ "~ "-- c•;,S\Jo:• -- ~%_-;-,- f ,-,- ", -• -__ ,,

Embcdcd Zcrotrce Codcc

5.7.2 Synthesized Significance Map Generator Schematics.

Figure 5.2 I level schcmaatic of Signi!icance map generator

.!.':;. \(i_,

81
'~.J1,j'il!~~1i:j_~r;, _

''--

Designs \lieu

Re<5d lholllelkwangdi/EZlJ/EZlJl/51gH~pGen.db

Figure 5.3 II level Schcmaatic of Significance map generator

- __ , .. -.-

£.dlt ~leu f'lttrt!!_utes fulalHsis Ioois

Jl.l .
!!EJ

.Q);

.IJ

.ill
~111.:'

0

~ _\)

Current

,,

StotkpGcn

. -loft Dutt.on: S::~lect fllddle Dutt~n:. Add/llodl-f-:u Select

--_,

u-

S!;Jmbol Vtcw

Right Dutton: 11cnu

H3

Jielp

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Embeded Zcrotrcc Codec X4

Figure 5.4 Gate Level Schcmaatic of the whole Significance map generator

C~rent Dos!Sn: S!gHapGen Scher:J~tlc 1/iew

Left Buttcn; Select Hiddle Button: Add/Hodif!l Select Riehl Button: Menu

Figure 5.5

~- __ :>·':"'::_~- -·- ~~1-

Magnified part of the significance map generator

!&I '
.QI
'Jl!lj

.I1
I

.ill I
J/J

,_,
~- ...

I
,,

ji

.j:

,,_
• •

! I
• ;:

ij
:;

D.rNmt Design! SlgHepGcn

i ,,
I

T
I''·

: ::-·
: '"' :· ~~ '

I
.,:

' I

I I
<

I

'
l I 'II <

!!
1

11
ti

. :!j
I r :r n
I !:_ .•II

ii- !~,:! -::: :i II! : ~ i I i ' ': ~ I •,,1 ,. I
i•' I•' '

' "
... , ··r.

li' I I!
li'
jii
1n 'I I I

··-~-

l!l~t-)utt._oni Seleot ·- Hh;ldlo Irutton: 1\ddiHodlf!J·Soleet
;,-~ • ._:.-" 'P "" •-

Karma Wangdi

I 1.: ..

RLuhl.Dut~o:mt tienu.

Thesis on Final Year Engineering Project, 1999.

Embcdcd Zcrotrcc Codcc H5

6. CONCLUSION

To repeat here, the main aim of the project was to design, simulate and if possible,

synthesize, an EZT codec implementing the EZ!N algorithm. The objectives that this

main aim of the project translated to were:

• Understanding of image compression in general and that of wavelet image

compression in particular.

• Study of wavelet transform and how it relates to image compression.

• A thorough understanding of the EZ'N algorithm and the various terms used in it.

• A good mastery of the VHDL language

• Design and simulation of a codec using VHDL behavioral level code.

• Synthesis of the codec.

6.1 Project Achievements and Contribution

The original contributions of this project are as follows.

• The most important contribution by this project has been the design of the codec

itself. In the codec design, original strategies have been devised to generate the

significance map, assign codes and perform successive approximation quantization,

the three main steps in the EZ!N algorithm. The method used to decode the codes

has also been an original contribution.

• The E"ZYN algorithm as such from Shapiro's paper deals at an advanced level

understanding of image coding and wavelet transform. Consultation with people on

authority on the topic in the engineering department at ECU, a simpler and concise

algorithm has been presented.

• Another important contribution by this project has been the presentation of a clear

and concise explanation on this rather mathematically rigorous topic of wavelet

transform. The mathematics of it was first presented, and this was followed by

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Embcdcd Zcrotrcc Codcc H6

discussion on how this transform is practically performed using sets of high pass and

low pass filters, both in continuous time and in the discrete domains. The merits of

wavelet transforms were then discussed in relation to image compression.

• The design, simulation and synthesis were done using the VHDL simulation tools

and synthesis tools from Synopsys Inc. These tools were well explored. A number

of issues pertaining to behavioral synthesis as encountered have been properly

documented, together with the commands that were used to invoke the necessary

simulation and synthesis tools. Anyone new to Synopsys will find this contribution

very handy.

• The project has also made a good study of the numerous other image compression

techniques that are available today and the basis on which each of these techniques

have evolved.

6.2 Comments and Recommendations for Future Research

One of the great strengths of the codec designed is its ability to meet any bit rate or

distortion rate exactly. But then it is not enough for a codec lo just satisfy any bit rate if it

can not reproduce a good enough picture. An obvious question that comes to mind is,

how many bits can be truncated before the reconstructed image begins to show

perceptible distortion? To answer this question a series of tests could be performed on

this codec by applying suitable wavelet transform on a standard test image, obtain the

coefficients, feed the coefficients to the codec and get reconstructed value of coefficients

for different bit rates. The output from the decoder for different bit rates can then be

inverse transformed and the different reconstructed versions for different bit rates of the

same image could be compared with the original. This would give an idea of the

performance of the EZT codec, besides the numerical calculation of PSNR (peak signal

to noise ratio). A software program like Matlab would be suitable for this purpose.

Karma Wangdi Thesis on Finn! Y car Engineering Project, 1999.

Embcdcd Zcrotrcc Codcc H7

The present implementation of the codec uses static data. That is, inputs to the encoder

and the decoder are provided within the code at the beginning of processing. A suitable

interface could be added to the current design so that inputs can be obtained from an

outside source. This would take the realization of the encoder and the decoder as single

stand-alone chips one last step closer. The tests suggested above can also be

implemented very easily with this added intertace.

The synthesized codec can then be implemented using FPGA.

Even thus show of promise by the multiresolution image analysis appears to be well

matched to the low-level characteristics of human vision. As this approach is developed

further to incorporate additional aspects of human vision, such as spectral response

characteristics, masking, patlern primitives and the like, the future of image compression

looks anything but much more promising and e); ·~--~.:~.

This project has contributed successfully to this state of the art techniqu?. of wavelet

image compression, not only from a VLSI front but also from a research point of view.

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Embcdcd Zcrotrcc Codcc

Appendix

--***
SINGLE PROCESSOR ENCODER FOR SIMULATION

--***

Embedded Zerotree Wavelet Algorithm.
-- Image size of 8 X 8 wavelet coefficients
-- 8 bit implementation (coefficients range from -128 to 127)

library IEEE;
library WORK;
use WORK.TypePKGsyn.all;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_signed.all;

Entity FullEncoder is

Port(clk : in std_logic; codeA: out CodeType)

End FullEncoder;

Architecture Behavioural of FullEncoder is

Type CoeffRec is
record

ZTF:
Encoded:
Coeff:

end record;

Bit;
Bit;

CoeffType;

DSig is to indicate if the coefficient has atleast one
significant coefficient for that threshold, or whether it
is a leaf coefficient.

ZTF to indicate whether or not a zerotree has been found
earlier.

Encoded to indicate if a coefficient has been encoded for
--any prevoius threshold.
-- Coeff to contain the coefficient.

Type RAOfRec is Array (0 to lenth) of CoeffRec;

--to contain the input coefficients and information on each
-- coefficient

88

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Embcdcd ZcrotrC<.' Codcc

Type DutPutRJI. is Array (0 to 400) of CodeType;

to contain the code for the coefficients from the encoding
process

Type AllQntRA is Array (0 to 63, 0 to 6) of CodeType;

to contain the quantization values of all the significant
codes

Type FirstRA is Array (0 to 5) of Bit;

To indicate if the coefficient is the first significant
coefficient for a given threshold

begin -- start of the Architecture

ProcessTree: Process
variable T
variable Contnr
variable
variable

Parent
Child

variable OutCode
variable m

integer range 1 to 64;
: RAOfRec; threshold
: IndexType; parent pointer

IndexType; child pointer
: Out:PutR.l'\; output codes
Integer range 0 to 400;

to index the output codes
variable Approxvalue : AllQntRA;

variable SigNo : Integer range 0 to 64;
count no of significant codes encoded.

variable copy
variable First

Integer range 0 to 64;
: FirstRA;

begin -- start the process.

*** GetCoeff ***
data from Shapiro

contnr (0) . Coeff: =63 ; Contnr { 1) . Coeff: =-3 4; Contnr (2) . Coeff: =-31;
Contnr(3) .Coeff:c:23;Contnr(4) .Coeff:=49;Contnr(5) .Coeff:=10;
Contnr (6) . Coeff: =::14 ;Contnr (7) . Coeff :=-13 ,· Cantnr (8) . Coeff: =15;
Contnr (9) .Co8ff. =14; Cantnr { 10) . Caeff: =-9; Contnr { 11) .Caeff:=-7;
Contnr (12) .coeff: ::3; Cootnr (13) . Coeff: =-12; Cantor (14) . Coeff: =-14;
Contnr (15) . Coeff: = 8; Contnr (16) . Coeff: =7; Cantor (17) . Coeff: =13;
Cantor (18) . Coeff: =3; Cootnr { 19) . Caeff: =4; Cantor (2 0) . Coeff: =-12;
Cantor (21) .Caeff: =7; Cantor (22) , Coeff: =6 ;Cantor (23} . Coeff: =-1;
Cantnr (24) . Coeff: ::5; Cantor (2 5} . Coeff: =-7; Cantor (26} . Caeff: =4;
Cantor (27) . Caeff: =-2; Contnr (28) . Caeff: =3; Cantnr { 2 9) . Caeff: =9;
Cantnr (3 0) . Coeff: =3; Cantor (31) . Coeff: =2 ; Cantor (3 2) . Coeff: =-5;
Contnr (33) .Caeff: =9 ;Cantor (34) . Coeff: =3; Cantor (35) . Coeff:=O;
Contnr (36) . Coeff: =-1; Contnr { 3 7) . Caeff: =4 7; Cantor (3 8) . Coeff: =-3;
Contnr (3 9) . Caeff: =2; Cantor (40) . Coeff: ::::2; cantor (41) . Coeff: =-3 ;
Contnr { 42) . Coeff: ==5; Cantor (43) . Coeff: =11; Contnr (4 4) . Coeff: =6;
Cantor (45) . Coeff: =- 4; Contnr { 46) . Coeff: ::5; Contnr (4 7) . Coeff: =6;
Cantnr{48) .Caeff:= 4;Contnr(49) .Coeff::= 6;Contnr{50) .Coeff:= 3;
Contnr(51).Coeff:= -2;Contnr(52).Coeff:= -2;Contnr(53).Coeff:= 2;
Cantnr (54) .Coeff: =0; Cantor (55) .Coeff: =4; Contnr (56) . Caeff: oo3;
Contnr (57) . Coeff: =6; Contnr (58) . Caeff: ::0; Cantor (59) . Coeff: =3;

Karma Wangdi Thesis on Final Y car Engineering Project, 1999.

Em\x.•lkd Zcrotrcc Codcc

Contnr(60) .Coeff:=3;Contnr(61).Coeff:=6;Contnr(62) .Coeff:=-4;
Contnr(63) .coeff:= 4;

For i in 0 to lenth loop -- initialize the variables
Contnr(i) .DSig := u;
Contnr(i) .Z'rF:= '0';
Contnr(i) .Encoded := '0';

End loop;

First := "000000";
-- no first significant coefficients encoded.

SigNa := 0; no of the significants found is zero.
m := 0; -- point to the first element of the output array.

For 1 in 6 downto 0 loop -- main loop that does all the 7
--significance map generation and

of coefficients and the
-- subsequent encoding.

T
Parent
Child

:= Thresh{!);
:= 15;

:= lenth;

-- get appropraite threshold,
last parent coefficient

--last coefficient (63rd).

-- SIGNIFICANCE MAP GENERATION

While Parent >=1 loop -- do until the main parent (Oth

coefficient),
for j in 0 to 3 loop

Check the four children
for significance and exit if one of
them is found to be significant

If Contnr(~hild-j) .DSig = u then -- child is a leaf. If
abs(Contnr(Child- j) .coeff)>= T then

--significant
Contnr{Parent).DSig :::: '1';

--record descendent significant
information.

Exit;
Else

-- don't need to check other children

Contnr{Parent).DSig := '0';
End If;

Elsif Contnr(Child- j) .Dsig = '1' then
Contnr(Parent) .DSig := '1';
Exit;

Else -- Contnr(Child - j) .DSig = '0'
If abs(Contnr(Child- j) .coeff)>= T then

Contnr(Parent).DSig := '1';
Exit;

Else
Contnr(Parent) .DSig := '0';

End If;
End If;

End Loop;
Child := Child

--for one parent
4;-- for the next parent

Parent := Parent - 1;

l)()

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

f

Emhedcd Zcrotrcc Codcc

End Loop; -- all parents

--we have reached the first parent and its three children
For j in 0 to 2 Loop -- main parent has only 3 children

If Contnr(child -j) .DSig = '1' then
Contnr{Parent) .DSig := '1';
Exit;

Else
If abs(Contnr(child-j) .Coeff) >= T then

Contnr{parent).DSig := 'l';
Exit;

Else
Contnr(parent) .DSig := '0';

End If;
End If;

End Loop;

-- SIGNIFICANCE MAP GENERATION IS COMPLETED FOR ONE THRESHOLD
--ASSIGN CODES

Parent := 0;
Child := 1;

start from the main parent
child pointer point to the first child

Loop -- till all the descendents have been encoded, happens
-- when parent = 63 is over

If Contnr{parent) .ZTF = '1' then
If parent > 15 then -- leaf

Null;
Else

For i in 0 to 3 loop
Contnr{Child + i) .ZTF := '1';

pass the information that a
Zerotree root has been found
ahead to the children.

End loop;
End If;

Elsif

zeortree element
coefficient

Contnr{parent) .Encoded= '1' then --already encoded.
Null;

Else
If Abs{Contnr{parent) .Coeff)

If Contnr(parent) .Coeff <
OutCode{m) := NEG;
m:=m+1;

Else
OutCode(m) := POS;
m:=m+1;

End If;

-- not encoded
>= T then -- significant

0 then
code negative

-- code positive

-- PERFORM SUCCESSIVE APPROXIMATION QUANTIZATION FOR SIG. CODE

copy:= Abs(contnr(parent) .Coeff) -Thresh(!);
Case 1 is

When 0 => -- Threshold is 1
Null;

~I

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

EmhcdcJ 7.crotrcc Code<.: lJ2

When 6 => -- Threshold is 64
For k in 1 downto 0 loop

-- fill the approximation array
If (copy - Thresh(k)) < 0 then

ApproxValue(SigNo,k) :=NO;
Else

ApproxValue(SigNo,k) :~ YES;
copy := copy - 'l'hresh(k);

End If;
End Loop;
OutCode(m) := ApproxValue(SigNo,l);
m := m+l;

When Others => -- Other thresholds
For k in (1-1) downto 0 loop

If (copy- Thresh(k)) < 0 then
ApproxValue(SigNo,k) := NO;

Else
ApproxValue(SigNo,k) :=YES;
copy : = copy - Thresh (k);

End If;
End Loop;

End Case;

-- Add precision to the already encoded coefficients

Case 1 is
When 6 => -- threshold is 64

Null;
When Others => -- other thresholds

If First{l) = '0' then
If SigNa = 0 then

Null;
Else

for r in 0 to (SigNa) loop
OutCode(m) := ApproxValue(r,l);
m := m + 1;

End loop;
End If;
First(l) :='1';

End If;
End Case;

-- increment the significant no
SigNa := SigNa + 1;
Contnr{parent) .Coeff := 0;

--set encoded coefficient to 0 to
prevent non occurrence of ZTR

--because of it.
Contnr{parent) .Encoded := '1';

code insignificant
Else

If Contnr(parent) .DSig = '1' then
OutCode(m) := IZ; -- code isolated zero
m := m + 1;

Else
QutCode(m) := ZTR; -- code zerotree root

Karma Wangdi Thesis on Final Year Engineering Project, \999.

m :"" m + 1;
If par~nt ~ 0 then

Exit;
Else

If Contnr (parent) .DSig == '0' then
-- pass ZTF information to children
For j in 0 to 3 loop;

Contnr(child+j).ZTF :~ '1';
End Loop;

Else it is a leaf insignificant
Null;

End If;
End If;

End If;
End If;

End If;

If Parent >~ 63 then stop when all the coeffcients have
-- been encoded.

Exit;
Else

If parent = 0 then
child := child + 3;

Else
Child : ~ Child + 4;

End If;
parent := parent + 1;

End If;
End loop;

-- one threshold loop

-- 3 children for the main
parent, all other parents 4
each.

--set the significance (DSig) fields to 0, but not for the
-- leaves

For k in 0 to lenth loop
If Contnr(k) .DSig = u then

Null;
Else

Contnr(k).DSig := '0';
End If;
Contnr(k) .ZTF := '0';

End Loop;

End Loop; -- all the 7 threshods encoding loop

-- display the code

For n in 0 to m-1 loop
codeA <= outcode(n);
wait for 5 ns;

End Loop;
Wait;
End Process;
End of process EncodeTree;

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Embcdcd Zcrutrcc Codcc

End Behavioural;

-- Conifiguration

Configuration CFGFull_Coder of FullEncoder is
For

Behaviouralsyn
End For;

End CFGFull_Coder;

END

--******************~************************************

SINGLE PROCESSOR DECODER FOR SIMULATION
--***

-- Decodes the codes from the single previous encoder.
--The result will be a single tree of 64 coefficients
-- that existed before the encoding was performed

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

r

Embeded Zerotrec Codec

library IEEE;
library WORK;
use WORK.TypePKGsyn.all;
use IEEE.std_logic_l164.all;
use IEEE.std_logic_signed.all;

Entity FullDecoder is
Port(outcoeff: out CoeffType; addrs: out Integer);
End FullDecoder;

Architecture Behavioural of FullDecoder is

Type CoeffRec is
Record

Coeff :
ZTF:

CoeffType;
Bit;

Decoded: Bit;
End Record;
Coeff to contain te decoded coefficient

-- ZTF to indicate zerotree root found

Type CoeffRA is Array (0 to lenth) of CoeffRec;

Type CodeRA is Array (0 to 300) of CodeType;

Type Frstindictr is Array {0 to 5) of Bit;

Type AddrSign is
record

Addr Integer range 0 to 63;
Sign Bit;

End Record;

addr to store the index of the coefficient
sign to store the sign of the coefficient

Type RAddrSign is Array {0 to lenth) of AddrSign;
to contain the information on the decoded codes

begin

De~odeProcess: Process

variable P : Integer range 0 to 300;

variable CoeffContnr

variable CodeContnr
variable parent

variable child

variable Dcodedinfo

index the code container
CoeffRA; -- contain the coeff and
-- the associated fields

CodeRA; -- code container
Integer range 0 to lenth;

-- parent pointer
Integer range 0 to lenth;
-- child pointer
: RAddrSign,·

to contain sign and index of decoded
-- coefficients.

l)5

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Embcdcd Zcrotrce Codcc

variable SigNa : Integer range
coefficients

0 to 64;
no of significant
decoded.
variable First : Fn~t-.Indictr;

first sig for a threshold decoded

variable Exited
variable copyl

-- information
Boolean;
integer rm1ge 0

to indicute

begin
-- get

-- process starts
the codes

to 6;
threshold

96

:=

:=
:=

CodeContnr(O) ::: ZTR;CodeCon.:nr(l) := POS;CodeContnr(2)
CodeContnr(J} := IZ; CodeContnr(4} := ZTR; CodeContnr(5)
CodeContnr(6} := ZTR; CodeContnr(7} := ZTR; CodeContnr(B)
CodeContr.r(9) := ZTR; CodeContnr(lO) := IZ; CodeContnr(ll)
CodeContnr(12) := ZTR; CodeContnr(13) := ZTR; CodeCon~nr(14)

CodeContnr(15) := ZTR; CodeContnr(16) := ZTR; CodeContnY(17)
CodeContnr(18) := POS; CodeContnr(19) := ZTR; CodeContnr(20)
CodeContnr(21) :=NEG; CodeContnr(22) :=YES; CodeContnr(23} :=
CodeContnr(24) :=YES; CodeContnr(25) :=NO; CodeContnr(26) :=
CodeContnr(27) := POS; CodeContnr(28) := ZTR; CodeContnr(29) :::=
CodeContnr(30l := ZTR; CodeContnr(Jll := ZTR; CodeContnr(32} :=
CodeContnr(33) := ZTR; CodeContnr(34) := ZTR; CodeContnr(35}
CodeContnr(36) := ZTR; CodeContnr(37) := ZTR; CodeContnr(38}
CodeContnr(39) := ZTR; CodeCvntnr(40) := ZTR; CodeContnr(41)
CodeContnr{42) := ZTR; CodeContnr(43) := POS; CodeContnr(44}
CodeContnr(45) :"'NO; CodeContnr(46) :=NO; CodeContnr(47)
CodeContnr(48) :=YES; CodeContnr(49) :=NO; CodeContnr(50)
CodeContnr{51) := POS; C·JdeContnr(52) :=NEG; CodeContnr(53)
CodeContnr(54) := POS; CodeContnr(55) :=NEG; CodeContnr(56}
CodeContnr(57) := ZTR; CodeCor.tnr(58) :=NEG; CodeContnr(59)
CodeContnr(60) := POS; CodeContnr{61) := ZTR; CodeContnr(62)
CodeContnr(63) :=: ZTR; CodeContnr164) := ZTR; CodeContnr(65)
CodeContnr(66) := ZTR; CodeContnr{67) := ZTR; CodeContnr(68)
CodeContnr(69) := ZTR; CodeContnr(70) := ZTR; CodeContnr(71)
CodeContnr(72) := ZTR; CodeContnr(73) := ZTR; CodeContnr(74)
CodeContnr(75) := ZTR; CodeContnr(76) := ZTR; CodeContnr(77)
CodeContnr(78) := POS; CodeContnr(79) := ZTR; CodeContnr(80)
CodeContnr(81) := ZTR; CodeContnr(82) := ZTR; CodeContnr(8jJ
CodeContnr(84) := ZTR; CodeContnr(B5) := ZTR; CodeContnr(86)
CodeContnr(87) := POS; CodeContnr(88) :=: ZTR; CodeContnr(89)
CodeContnr(90) := ZTR; CodeContnr(91) := ZTR; CodeContnr(92)
CodeContnr(93) := ZTR; CodeContnr(94) := ZTR; CodeContnr(95)
CodeContnr(96) := ZTR; CodeContnr(97) := ZTR; CodeContnr(98)
CodeContnr(99) := ZTR; CodeContnr(lOO) :=NEG; CodeContnr(lOl)
CodeContnr(102) '= NO; CodeContnr(103) :=NO; CodeContnr(104)
CodeContnr(lOS) := YES; CodeContnr(106) :=YES; CodeCcntnr(107)
CodeContnr(108) := YES; CodeContnr(109) :=YES; CodeContnr(llO)
CodeContnr(lll) := YES; CodeContnr(112) :=NO; CodeContnr(113)
CodeContnr(114) := YES; CodeContnr(llS) :=NO; CodeContnr(116)
CodeContnr(117) := YES; CodeContnr(llB} :=NO; CodeContnr(119)
CodeContnr{120) :=NO; CodeContnr(121) :~ POS; CodeContnr(122)
CodeContnr(123) := POS; CodeContnr(124) := ZTR; CodeContnr{125)
CodeContnr(126) := POS; CodeContnr(127) := POS; CodeContnr(128)
CodeContnr(129) := POS; CodeContnr(l30) :=NEG; CodeContnr(131)

NEG;
POS;
ZTR;
ZTR;

Karma Wangdi

:= TR;
ZTR;
ZTR;

:=

ZTR;

:=
:::=

:=
:=

NO;
POS;
ZTR;

:=

ZTR;
ZTR;
ZTR;
YES;
YES;
POS;
POS;
ZTR;
NEG;
POS;
NEG;
ZTR;
ZTR;
POS;
ZTR;
ZTR;
ZTR;
ZTR;
ZTR;
ZTR;
ZTR;
ZTR;

:=

:=
:=
: ::

:=
:=

:=
:=
:c:::

:=

:=
:=

:=
:=
:::=

:=
:= YES;
:= YES;
:= NO;

:= YES;
:::: YES;
:= YES;
:=

:=
NO;
IZ;

:= POS;
:= ZTR;
:= POS;

Thesis on Final Year Engineering Project, \999.

Embeded Zcrotree Codcc 97

CodeContnr(132) ::= 'l.'rR; CodeContnr(133) .- ZTR; CodeContnr(134) := ?.TR;
CodeContnr(135) := ZTR; CodeContnr(136) :=NEG; Codecontnr(137) := ZTR;
CodeContnr(138) :"' ZTR; CodeContnr(139) .- Z'I'R; CodeContnr(140) := 7.TR;
CodeContnr(141) := ZTR; CodeContnr(142) .- ZTR; CodeContnr(143) := t.'I'P.;
CodeConlnr(144) := POS; CodeContnr(14!'i) .- POS; CodcContnr(146) := HEG;
CodeContnr(l,l7) := POS; CodcContnr(148) .- POS; CodcContnr{149) := POS;
CodeContnr{lSO) := POS; CodeContnr{151) .- ZTH; CodeContnr(l52) := Z'l'R;
CodeContnr{153) := ZTR; CodeContnr{154) .- ZTR; CudeContnr(l55) .- Z'rR;
CodeContnr(156) := POS; CodeContnr(l57) .- Z'I'R; CodeContnr(158) := POS;
CodeContnr{159) := ZTR; CodeContnr(l60) ... ZTR; CodeContnr(161) := ZTR;
CodeContnr(162} :"' POS;CodeContnr(l63) :=NEG; CodeContnr(164) .- POS;
CodeContnr(165) ::= POS; CodeContnr(166) .- YES; CodeContnr{167) := YES;
CodeContnr(168) :=NO; CodeContnr(169) .-YES; CodeContnr{170) := '!ES;
CodeContnr(171) :=YES; CodeContnr{172) .-YES; CodeContnr(173) := YES;
CodeContnr(174) :=NO; CodeContnr{175) .- YES; CodeContnr(176) := YES;
CodeContnr(177) :=NO; codeContnr(178) .-NO; CodeContnr(179) := YES;
CodeContnr(180) :=NO; CodeContnr(181) .-NO; CodeContnr(l82} := NO;
CodeContnr{183) :=NO; CodeContnr(184) .-NO; CodeContnr(185) := YES;
CodeContnr(186) :=YES; CodeContnr(187) .-YES; CodeContnr(188} := NO;
CodeContnr(189) ::=YES; CodeContnr(190) .-YES; Codecontnr(191) := NO;
CodeContnr(192) :=YES; CodeContnr(193) .-NO; CodeContnr(194) := NO;
CodeContnr(195) :=NO; CodeContnr(196) .-YES; CodeContnr(197) := NO;
CodeContnr(198) :::=NO; CodeContnr(199) .- YES; CodeContnr(200) := NO;
CodeContnr(201) :::= YES; CodeContnr(202) .- NO; CodeContnr(203} := YES;
CodeContnr(204) :=.YES; CodeContnr(205) .-NO; CodeContnr(206} := NO;
CodeContnr(207) := POS;CodeContnr(208) := POS; CodeContn~(209) :=ZTR
CodeContnr(210) :=NEG; CodeContnr(211) := POS; CodeContnr(212) := POS;
CodeContnr(213) := POS; CodeContnr(214) := POS;CodeContnr(215) := ZTR;
CodeContnr(216) := ZTR; CodeContnr(217) .-NEG; CodeContnr(218) := POS;
CodeContnr(219) := POS; CodeContnr(220) .- NEG; CodeContnr(221) := POS;
CodeContnr(222) := NEG; CodeContnr(223) .- NEG; CodeContnr(224) := POS;
CodeContnr(225) := ZTR; CodeContnr(226) .- POS; CodeContnr(227) := ZTR;
CodeContnr(228) := POS; CodeContnr(229} .- POS; CodeContnr(230) := NEG;
CodeContnr(231) :=YES; CodeContnr(232) .-NO; CodeContnr(233) := YES;
CodeContnr(234) :=YES; CodeContnr(235) .- YES; CodeContnr(236) := YES;
CodeContnr(237) :=NO; CodeContnr(238) .-NO; CodeContnr(239l := YES;
CodeContnr(240) :=YES; CodeContnr(241) :=NO; CodeContnr(242) := YES;
CodeContnr(243) :=NO; CodeContnr(244) :=NO; CodeContnr(245) := NO;
Codecontnr(246) := YES; CodeContnr(247) := NO; CodeContnr(248) := YES;
CodeContnr(249) := YES; CodeContnr(250) .- YES; CodeContnr(251) := YES;
CodeContnr(252) := YES; CodeContnr(253) .- NO; CodeContnr(254) := YES;
CodeContnr(255) :=NO; CodeContnr(256) .-YES; CodeContnr(257) := YES;
CodeContnr(258) :=NO; CodeContnr(259) .-YES; CodeContnr(260) := YES;
CodeContnr(261) :=NO; CodeContnr(262) .-NO; CodeContnr(263) := YES;
CodeContnr(264) := NO; CodeContnr(265) .- NO; CodeContnr(266) := NO;
CodeContnr(267) :=NO; CodeContnr(268) .-NO; CodeContnr(269) := NO;
CodeContnr(270) :=NO; CodeContnr(271) .-NO; CodeContnr(272) := YES;
CodeContnr(273) :::= YES; CodeContnr(274) := NO; CodeContnr(275) := YES;
CodeContnr(276) := YES; CodeContnr(277) .- NO; CodeContnr(278) := YES;
CodeContnr(279) :=YES; CodeContnr(280) :=NO; CodeContnr(281) := NO;
CodeContnr(282) :=YES; CodeContnr(283) .-YES; CodeContnr(284) := NO;
CodeContnr(285) := NO;CodeContnr(286) := NO;CodeContnr(287) := YES;
CodeContnr(288) := YES; CodeContnr(289) := YES; CodeContnr(290) := POS;
CodeContnr(291) := ZTR;CodeContnr(292) := NEG; CodeContnr(293) := ZTR;
CodeContnr(294) ::: ZTR;

-- initialize

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Embeded Zerotree Codcc

First := "000000";

For m in 0 to lenth loop
CoeffContnr(m) .Coeff ·.= 0;
CoeffContnr(m) .ZTF := '0';
CoeffContnr(m) .Decoded := '0';
If m <= 5 then

First(m) := '0';
End If;

End Loop;

exited := False;
p : = 0;

-- bit truncation
-- index the codecontr

SigNa : = 0;

For 1 in 6 down to 0 Loop -- start decoding from the main parent
parent:= 0;
child := 1· ' copy! := 1;

While parent <= lenth loop -- decoding for one threshold
If Coeffcontnr(parent).Decoded = '1' then

-- already decoded?
Null; no decoding again
Else

If Coeffcontnr(parent) .ZTF =
If parent <= 15 then

'1' then
-- element of zerotree

Else

For j in 0 to 3 loop
-- pass ZTF info. to children

Coeffcontm·(child+j) .ZTF := '1';
End Loop;

End If;

Case Codecontnr(p) IS
When S => bit truncated

Exited := True;
Exit;

When ZTR =>
If parent = 0 then

p:=p+l;
Exit;

don't need to code any more for
the current threhold

End If;

Else
If parent <= 15 then -- it is not a leaf

-- so mark its children
For k in 0 to 3 loop

CoeffContnr(child + k) .ZTF := '1';
End Loop;

End If;
P:=P+1;

-- prepare to read the next code

When POS I NEG =>
CoeffContnr(parent) .Decoded := '1';

Dcodedinfo(SigNo) .Addr := parent;

9H

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Embcdcd Zcrotrcc Codcc 99

If Codecontnr (p) "' POS then
Dcodedinfo(parent) .sign := '1';
Else
Dcodedinfo(parent) .sign := '0';
End If;

CoeffContnr(parentl .Cceff := 'rhresh(l);
P: = p + 1; -- ready to read the next code
-- add precision to the coefficients
Case l is

When 6 => threshold is 64
If CodeContnr(p) = S then

-- bit truncated
Exited::= true;

-- indicate bit truncated
Exit;

Elsif CodeContnr(p) =YES then
CoeffContnr(parent) .Coeff :=
CoeffContnr(parent) .Coeff +

Thresh(!);
-- add 64 to the coefficient
End If;
P:= P +1; -- next code ready to be read

When Others =>
If Codecontnr(p) = s then bit truncation

Exited := true;
Exit;

Elsif First(l) = '0' then
this is the first significant of
the threshold

so add precision to the previously
found coefficients .

If SigNa = 0 then
Null;

Else
For i in 0 to SigNa loop

If Codecontnr(p + i) = YES then

CoeffContnr(Dcodedinfo(i)
.Addr) .Coeff : =

CoeffContnr(Dcodedinfo(i)

End If;

.Addr),Coeff + (Thresh(!));
Else

Null;

End Loop;
p := p + SigNo+l;

End If;
First{l) := '1';
End If;

End Case;
SigNa := SigNa + 1;

When Others =>
p := P + 1; -- prepare to read the next code

End Case;
End If;

End If;

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Embcdcd Zcrotrcc Codcc

house keeping

If parent >= 63 then
Exit; all have been decoded for a threshold

Else
If parent = 0 then

child := child + 3;
Else

child := child + 4;
End If;
parent := parent + 1;

End If;
End Loop; -- single threshold
If Exited = True then

Exit; -- bit truncated
Else

For 1 in 0 to lenth loop
Coeffcontnr(l) .ZTF := '0'; --reset the ZTF field

End Loop;
End If;

End Loop; -- decoding for all thresholds

If Exited = True then

100

-- add the uncertainty precision to the decoded coefficients
If copyl/= 0 then -- threshold is not 1

For i in 0 to SigNa loop
(CoeffContnr(Dcodedinfo(i) .addr) ,Coeff) :=

CoeffContnr(Dcodedinfo(j) .addr) .Coeff + Thresh(copyl-1);
end loop;

Else
For i in 0 to SigNa loop

CoeffContnr(Dcodedinfo(i) .addr) .Coeff :=
CoeffContnr(Dcodedinfo(i).addr).Coeff + 1;

end loop;
End If;

End If;

-- correct the signs

For i in 0 to lenth loop
If Dcodedinfo(i) .Sign = '1' then

Null;
Else

CoeffContnr(i) .Coeff := -{CoeffContnr(i) .Coeff);
End If;

End Loop;

--display result

For m in 0 to lenth loop
OutCoeff <= CoeffContnr{rn) .Coeff;

addrs <= m;
wait for 5 ns;

End Loop;

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

I

Embcdcd Zcrotrcc Codcc 101

wait;

End DecodeProcess;

End Behavioural;

Configuration CFGNewl of FullDecoder is

For
Behavioural

End for ;

End CFGNewl;

END

--***
ENCODER FOR SYNTHESIS

--***

The code here is same as the one for synthesis. But as pointed out
in the synthesis topic multidimensional arrays (arrays of records)
have been converted to simple on dimensional array. Clocking is
introduced for providing synchronization, while loops have been
converted to for loops and wait statements as such have been emoved.
Otherwise the logic is
obviously the same.

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Embcdcd Zcrotrcc Code~;

library IEEE:
library WORK;
use \'JORK.TypePKGsyn.all;
use IEEE.std_logic~l164.all;
use IEEE.std_logic_signed.all;

Entity FullEncoder is
Port(clk : in Bit; codeA: out CodeType)

End FullEncoder;

Architecture Behaviouralsyn of FullEncoder is

Type OutPutRA is Array (0 to 400) of CodeType;
-- to contain the code for the coefficients from the encoding process
Type FirstRA is Array (0 to 5) of Bit;
Type CoeffRA is array (0 to lenth) of CoeffType;
Type DSigRA is array (0 to lenth) of SigType;
Type ZTFRA is array (0 to lenth) of Bit;
Type EncodedRA is array (0 to lenth) of Bit;
Type ApproxRA is array (0 to lenth) of CodeType;

begin

EncodeTree: Process --(CLK)
variable T: integer range 1 to 64;
variable Parent: IndexType,·
variable Child: IndexType;
variable OutCode : OutPutRA;
variable m : Integer range 0 to 2048;

variable q : Integer range 0 to 2048;

102

variable SigNa Integer range 0 to 64; -- Significant coefficient
number.

variable copy
variable First
coefficient

Integer range
FirstRA;

0 to 64;
to indicate whether

--is the first in the level
variable Coeff CoeffRA;
variable ZTF : ZTFRA;
variable Encoded : EncodedRA;
variable DSig : DSigRA,·
variable Zero: ApproxRA;
variable One: ApproxRA;
variable Two: ApproxRA;
variable Three: ApproxRA;
variable Four: ApproxRA;
variable Five: ApproxRA;
variable Six: ApproxRA,·

begin
wait until clk'event and elk= '1';

-- *** GetCoeff ***

the significant

Coeff(O} :=63;Coeff(1):=-34;Coeff(2) :=-31;Coeff(3) :=23_;Coef£(4) :=9;
Coef£(5) :=10;Coeff(6) :=14;Coef£{7) :=-13;Coeff{8) :=15;Coeff{9) :=14;
Coeff (10) :=-9;Coeff (11) :=-7 ,·Coeff (12) :=3;Coeff {13) :=-12;Coeff {14) :=-14;
Coef£{15) :=8;Coeff(16) :=7;Coeff(17) :=13;Coeff(18) :=3;Coeff(19) :=4;
Coef£(20) :=-12;Coeff(21) :=7;Coeff{22) :=6;Coeff(23) :=-l;Coef£{24) :=5;

Karma Wangdi Thesis on Final Yenr Engineering Project, 1999.

I
I

Embcdcd Zcrotrcc Codcc

Coeff (25) : =-7 ;Coeff (26) :,4; Coeff (27) : =-2 ;Coeff (28) : =3 ;Coeff (29) : =9;
Coef£(30) :==3;Coeff(31) :=2;Coeff(32) :=-5;Coeff(33) :=:9;Coeff(34) :=3;
Coeff (3 5) : =-0; Coeff (36) : -=-1; Coeff (37) :~17 ;Coeff (38): =--3 ;Coef((3:1): =2;
Coeff(<lO) :=2;Coeff(41) :=-3;Coeff(42) :-=S;Cod£{43) :=ll;Coeff(4il) :=6;
Coef£(45) :==-4;Coeff(46) :=5;Coeff(47) :=6;Coeff{il8) :=4;Coeff(49) :=6;
Coef£(50) :=J;Coe(£(51) :"'-2;Coeff(52) :=-2;Coeff(S3) :=2;Coeff(54) :=0;
Coef£(55) :=4;Cocff(56) :=J;Coef£{57) :=6;Coef£{58) :=O;Coef£(59) ::::3;
Coef£{60) :=3;Cocff(61) :=6;Coeff(62) :=-4;Coeff(63) :=4;

For i in 0 to 63 Loop --lenth loop
DSig(i) := u;

ZTF(i) := '0';
Encoded(.,;_) :::: '0';

End loop;
The DSig, ZTF and Encoded mean the same as in the simulation code

-- except that here they are held in separate arrays.

wait until clk'event and elk= '1';

103

First := "000000";
significant

initialize the array that indicates if the

--coefficient found is the first in the level
indicates the no of the significants found
to serve as an index for the output array

SigNa := 0;
m := 0;
FarlinG downto 0 loop -- main loop that does all the 7 sig map
generation of

T := Thresh(!);
Parent := 15;
Child : = lenth;

coefficients and the subsequent encoding
choose proper threshold

-- GENERATE SIGNIFICANE MAP

For parent in 15 downto 1 loop
For j in 0 to 3 loop

significance

for all parents
check four

If DSig(child-j) = u then
If abs(Coeff(child- j))>=

DSig(parent) := '1';
Exit;

T then

Else
DSig(parent) := '0';

End If;
Elsif Dsig(child-j) = '1' then

DSig(parent) := '1';
exit;

Else
If abs{(child -j))>= T then

DSig(parent) := '1' i
Exit;

Else
DSig(parent) := '0';

End If;
End If;

End Loop; --for one parent
Child := Child - 4;

End Loop; -- for all but one last parent

children for

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

I

Embcdcd Zero tree Codcc I 04

-- we have reached the first parent and its three children in the
subband ***

For j in 0 to 2 Loop -- for three children
If DSig(child -1) = 1 1 1 then

DSig(parent) := 1 1 1
;

Exit;
ElsiE abs(Coeff(child-j)) >~ T then

DSig(parent) := 1 1 1
;

Exit;
Else

DSig(parent) := '0 1
;

End If;
End Loop;

-- SIGNIFICANCE MAP GENERATION FOR A THRESHOLD COMPLETED
-- DEGIN ASSIGNING CODES

Child := 1;
wait until clk 1 event and elk= 1 1 1

;

For parent in 0 to lenth Loop encode all coefficients
If ZTF(parent) = 1 1 1 then

If parent > 15 then
Null,·

Else
For i in 0 to 3 loop

ZTF(child +i) := '1';
-- pass the information that a

found
-- ahead to the childr

End loop;

Zerotree root has been

wait until elk 1 event and elk = 1 1 1
;

End If;
Elsif Encoded(parent) = '1 1 then

if the coefficient has been coded before
don't code it.

Null;
Elsif Abs(Coeff(parent))>= T then --significant

If Coeff(parent) < 0 then
OutCode(m) :=NEG; --code negative
m:~m+l;

Else
OutCode(m) := POS;
m:=m+l;

End If;

-- code positive

-- START SUCCESSIVE APPROXIMATION QUANTIZATION

copy := Abs(Coeff(parent)) -Thresh{!);
Case 1 is

When 0 => threshold is 1
Null;

When 6 => threshold is 64
wait until clk 1 event and elk~ 1 1 1

;

For k in 1 downto 0 loop
If (copy- Thresh{k)) < 0 then --no remainder

Karma Wangdi Thesis on Final Y car Engineering Project, 1999.

Embcdcd Zcrotrce Codcc

Case k is
When 0 =>

Zero(SigNo) := NO;
When 1 =>

One(SigNo) := NO;
When 2 =>

Two(SigNo) := NO;
When 3 =>

Three(SigNo) :=NO;
VJhen 4 =>

Four(SigNo) := NO;
When 5 =>

Five(SigNo) := NO;
When 6 =>

Six(SigNo) := NO;
When Others =>

Null;
End Case;

Else
Case k is

When 0 =>
Zero(SigNo) := YES;

When 1 =>
One(SigNo) := YES;

When 2 :=:>
Two(SigNo) := YES;

When 3 =>
Three(SigNo) := YES;

When 4 =>
Four(SigNo) := YES;

When 5 =>
Five(SigNo) :=YES;

When 6 =>
Six(SigNo) := YES;

When Others =>
Null;

End Case;
copy :=copy- Thresh(k);

End If;
End Loop;
OutCode(m) := Six(SigNo);
m := m+l;

When Others =>
For k in (1-1) downto 0 loop

If (copy- Thresh(k)) < 0 then
Case k is

When 0 =>
Zero{SigNo):= NO;

When 1 =>
One(SigNo) := NO;

When 2 =>
Two(SigNo) := NO;

When 3 =>
Three(SigNo) :=NO;

When 4 =>
Four(SigNo) := NO;

When Others =>

105

Karma Wangdi Thesis on Final Y car Engineering Project, !999.

I

Emhcdcd Zcrotrce Codcc \06

Karma Wangdi

Null;
End Case;

Else
Case k is

When 0 =>
Zero(SigNo) := YES;

When 1 =>
One{SigNo) := YES;

When 2 =>
Two{SigNo) := YES;

When 3 =>
Three(SigNo) := YES;

When 4 =>
Four(SigNo) := YES;

When Others =>
Null;

End Case;
copy:= copy- Thresh(k);

End If;
End Loop,·

End Case;
tag the approximate values of the coefficients

Case 1 is
When 6 =>

Null;
When Others =>

If First(!) = '0' then
If SigNa = 0 then

Null;
Else

wait until clk'event and
for r in 0 to lenth loop

If r > SigNa then

elk= '1';
--(SigNa)

Exit;
Else

Case 1 is
When 0 =>

OutCode(m)
When 1 =>

OutCode(m)
When 2 =>

OutCode(m)
When 3 =>

OutCode (m)
When 4 =>

Out Code (m)
When 5 =>

OutCode{m)
When Others

Null;
End Case;
m:=m+l;

End If;
End Loop;

End If;
First(!) :='1';

End If;

:= Zero(r);

:= One (r);

:= Two(r);

:= Three(r);

:= Four (r) ,·

:= Two (r) ;

=>

loop

Thesis on Final Y car Engineering Project, 1999.

Embcdcd Zcrotrcc CoJcc

End Case;
SigNa := SigNa + 1;
Coeff(parent) := 0;
Encoded{parent) := '1';

code insignificant
Else

If DSig(parent) = '1' then
OutCodG(m) := IZ;
m:=m+l;

Else
OutCode(m) := ZTR;
m:=m+l;
If parent = 0 then

Exit;
Elsif DSig(parent) = '0' then
wait until clk'event and elk= '1';

For j in 0 to 3 loop
ZTF(child +j) := '1';

End Loop;
wait until clk'event and elk= '1';
Else it is a leaf insignificant

Null;
End If;

End If;
End If;

If parent >= 15 then
Null;

Elsif parent = 0 then
child := child + 3;

Else
Child := Child + 4;

End If;
End Loop;

one threshold loop
set the significance (DSig)found earlier threshold to 0

For k in 0 tv lenth loop
If DSig(k) = u then

Null;
Else

DSig(k) := '0';
End If;
ZTF(k) := '0';

End Loop;
End Loop; -- all the 7 arranging and encoding loop
wait until clk'event and elk= '1';

-- display the code
For n in 0 to 65 loop --(rn-1)

CodeA <= OutCode(n);
End Loop;
wait until clk'event and elk= '1';

End Process;
-- end of EncodeTree process
End Behaviouralsyn;

107

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

I

Embcdcd Zcrotrcc Codcc

-- CONFIGURATION

Configuration CFGFull_Coder of FullEncoder is
For

Behaviour<:~lsyn

End For;
End CFGFull_Coder;

END

IOK

--************************************~********************************

3 PARALLEL PROCESSOR ENCODER
--***

The same strategy of significance map generation, code assignment
and successive approximation quantization is used. There are three
fundamental differences from the single processor encoder.
The first parent in each of the three processors has only one child
And to determine the descendent significance of the first parent
information is required from the other two processors. And each
processor proceses only a third of the coefficients, i.e. one
processor encodes one subband of the three Processor for subband A's
code is shown in full. Since the other two
are the same we show only how the three relate to the fourth
Processor and donot repeat the code for the other two processors in
the interest of space. They are just the repetition of the first one

Karma Wangdi Thesis on Final Y car Engineering Project, 1999.

I

Embcdcd Zcrotrcc Codcc 109

The same types and variable used earlier in the single processor are
used here as well. For the three processors the variables and
signals are appended with A, B, C so as to differentiate their use
in three processors

library IEEE;
library WORK;
use WORK.TypePKG.all;
Use IEEE.std_logic_.ll64.all;
use IEEE.std_logic_signed.all;

Embedded Zerotree \IJavelet Algorithm.
Image 8 by 8
8 bit implementation

Entity FullEncoder is
Port{codeA, codeB, codeC

End FullEncoder;
out CodeType)

Architecture Behavioural! of FullEncoder is

Type CoeffRec is
record
DSig: SigType;
-- '1' for yes, '0' for no and 'u'

for no children (leaves)
ZTF: Bit;
Encoded: Bit;
Coeff: CoeffType;

End Record;

-- variables have the same meaning as before in the single processor
case

DSig is to indicate if the descendents have been found to be
significant
-- ZTF for zerotree root found ahead or at the present level

Encoded to indicate if it has been encoded for any prevoius
threshold
-- Coeff to contain the actual caE.•ff.icient

Type RAOfRec is Array (0 to lenth) of CoeffRec;

to contain the input coefficients and information on each
coefficient
Type OutPutRA is Array (0 to 150) of CodeType;
-- to contain the code for the coefficients from the encoding process

Type AllQntRA is Array (0 to 21, 0 to 6) of CodeType;
-- to contain the quantization values of all the codes
Type FirstRA is Array (0 to 5) of Bit;

Signal A, B, C : Bit;

Karma Wangdi Th.csis on Pinal Year Engineering Project, 1999.

I -

Signal Acode, Bcode, Ccode: Code'rype;

signal l>lainParent: Coef(Type;

signal ASig, BSig, CSig: Bit;

signal AYes, BYes, CYes: Bit;

signal DoneA, DeneB, Donee ' Bit;

signal FromA, fromB, fromC: Bit;

signal ADone, BOone, COone

signal TCopy: Integer range

begin

ControlProcesses: Process
begin

' Bit;

1 to 64;

control the start of the thres processes
A <= '1';
B <= '1';
c <= '1';
Wait Until Ayes= '1' and Byes= '1' and Cyes = '1';
A<= '0';
B <= I 0';
c <= '0';

End Process;

Subband_A: Process -- to process subband A

variable T: integer range 1 to 64;

variable Contnr: RAOfRec;

variable Parent: IndexType;

variable Child: IndexType;

variable OutCode : OutPutRA;

variable m : Integer range 0 to 150;
variable ApproxValue : AllQntRA;

I I 0

variable SigNo Integer range 0 to 21; Significant coefficient
number.
variable copy : Integer range 0 to 128;
variable First : FirstRA;

to indicate whether the significant coefficient is the
-- first in the level

begin

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Emhcdcd Zcrotrcc Cudcc

-- process subband_A

-- Initialization
For i in 0 to lenth loop

Contnr(i) .DSig := u;
COntnr{i) .ZTF:= '0';
Contnr(i) .Encoded := '0';

End loop;

Ill

First := "000000"; initialize the array that indicates if the
significant coefficient found is the first in the level
Contnr(O) .Coeff:-= -BJ;Contnr(l) .Coeff:= -3l;Contnr(2) .Coeff:o:= 15;
Contnr(J).Coeff:= 14;Contnr(4) .Coeff:= -9;Contnr(5).Coeff:= -7;
Contnr(6) .Coeff::= -5; Contnr(7) .Coeff:= 9;Contnr(8) .Coeff:=
3;Contnr(9) .Coeff:= O;Contnr(lO) .Coeff:= -l;Contnr(ll) .Coeff:=
47;Contnr{12) .Coeff:= -3; Contnr(13) .Coeff:= 2;Contnr{14) .Coeff:=
2;Contnr{15) .Coeff:= -3; Contnr(l6) .Coeff:= 5;Contnr(17) .Coeff:=
ll;Contnr(l8) .Coeff:= 6; Contnr(l9) .Coeff:= -4;Contnr(20) .Coeff:=
5;Contnr(21) .Coeff:= 6;

Inputs/Coefficients ready
m : = 0; -- to serve as an index for the output array
SigNa := 0; -- indicates the no of the significants found

For 1 in 6 downto 0 loop -- main loop that does all the encoding
T := Thresh(l);
Parent:= 5;
Child : = lenth;

-- GENERATE SIGNFICANCE MAP

While Parent >= 1 loop
for j in 1 to 4 loop

If Contnr(Child - j+ 1) .DSig = u then
If abs(Contnr(Child- j + l).coeff)>= T then

Contnr(Parent) .DSig := '1';
Exit;

Else
Contnr{Parent) .DSig := '0';

End If;
Elsif Contnr(Child- j + 1) .Dsig = '1' then

Contnr(Parent) .DSig .- '1';
exit;

Else-- Contnr(Child- j + l).DSig = '0'
If abs (Contnr (Child - j + 1) .coeff) >= T then

Contnr(Parent) .DSig := '1';
Exit;

Else
Contnr(Par.ent) .DSig := '0';
End If;

End If;

End Loop;
Child := Child - 4;
Parent := Parent - 1;

End Loop;
-- we have reached the first parent and its only child in the subband

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Ill!

Emhcdcd Zcrolrcc Cutler.: I 12

If Contnr(l) .DSig = '1' then
Contnr(O) .Dsig :~ '1';

Else
If abs(Contnr(l) .Coeff) >= T then

Contnr(O) .DSig := '1';
Else

Contnr(O) .DSig := '0';
End If;

End If;

-- SIGNIFICANCE MAP GENERATION COMPLETED
-- ASSIGN CODES

-- send zeroth (0) coefficient and the significantce of its first
descendents
-- to another process to

-- code the main parent

If Contnr(O) .Encoded= '0' then
-- do the folowing only if the main parent hadn't been encoded

MainParent <= Contnr(O) .Coeff;
If Contnr(O) .DSig = '1' then

ASig <= '1'; --main parent from processor A has
-- descendent significant

Else
ASig <= '0': --main parent does not have any significant

descendent in subband A
End If;
TCopy <= T;
FromA <= '1'; -- subband A has reached to process the main

-- parent
Wait until ADone = '1';
FromA <= '0';
outcode(m) := ACode;
m:=m+1;
Case Acode is

When POS I NEG =>
-- start quantization for main parent
copy := Abs(contnr(O) .Coeff) - Thresh(l);

For k in (1-1) downto 0 loop
If (copy- Thresh(k)) < 0 then

ApproxValue(SigNo,k) :=NO;
Else

ApproxValue(SigNo,k) :=YES;
copy:= copy- Thresh(k);

End If;
End Loop;

-- tag the approximate values of the coefficients
Case 1 is

Karma Wangdi

When 6 =>
--OutCode(m) := ApproxValue(SigNo,l);
--m : = m + 1;
Null;

When Others =>
If First(l) = '0' then

for r in 0 to (SigNa-l) loop
OutCode(m) := ApproxValue(r,l);

Thesis on Final Y car Engineering Project, 1999.

I

Emhcd~:d Zcrotrcc Codcc

m:=m·tl;
End loop;
First(ll :=:'1';

End If;
End Case;
-- increment the no of significants found
If SigNa < 21 then

SigNa := SigNa+ 1;
End If;
Contnr{O) .Encoded:= '1';
Contnr(O) .Coeff .- 0;

When ZTR =>
Contnr(O) .ZTF := '1';

When Others =>
Null;

End Case;
End If;
-- encode the rest
If Contnr(O) .ZTF = '1' then

Null;
Else -- only if the main parent is not a zerotree root

If Contnr(l) .Encoded = '1' then
Null;

Else
If Abs(Contnr(l) .coeff)>= T then

If Contnr(l) .Coeff < 0 then
OutCode(m) := NEG;

Else
OutCode(m) := POS;

End If;
m:=m+l;

copy:= Abs(contnr(l) .Coeff) -Thresh(!);
For k in (1-1) downto 0 loop prepare the table of

-- coefficients
If copy - Thresh(k) < 0 then

ApproxValue(SigNo,k) := NO;
Else

ApproxValue(SigNo,k) := YES;
copy:= copy- Thresh(k);

End If;
End Loop;
-- tag the approximate values of the coefficients
Case 1 is

When 6 =>
OutCode(m) := ApproxValue(SigNo,l);
m := m + 1;

When Others =>
If First(l) = '0' then

for r in 0 to (SigNa-l) loop
OutCode(m) := ApproxValue(r,l);
m := m + 1;

End loop;
First(l) :='1';

End If;
End Case;

Ill

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

II

Emhcdcd Zcrotrcc Codcc

If SigNa < 21 then
SigNo :~ SigNa + 1;

End If;

Contnr(1) .Coeff := 0;
Contnr (1 l . Encoded : = ' 1' ;

Else
If Contnr(1).DSig = '1' then

OutCode(m) := IZ;
m:~m+1;

Elsif Contnrtl) .DSig = '0' then
OutCode(m) := ZTR;
Contnr(1).ZTF := 'l';
m := m + 1;

Else
Null;

End If;
End If;

End If;
start coding the other descendents from 2 and all

If Contnr(1) .ZTF = '1' then
Null;

Else
parent := 1;
child := 2;

114

Loop --till all the descendents have been encoded, happens
when

parent = 5 is o·.rer
If Contnr(Parent).t;'!'P = '1' then

For i in 1 to 4 loop
Contnr(Child + i -1).ZTF := '1'; --pass the

information that a Zerotree
-- root has been found ahead to
-- the children

End loop;
Else

For i in 1 to 4 loop
If Contnr(Child + i -l).Encoded = '1' ther.

-- if the coefficient has been coded before don't
-- code it
Null;

Else
If Abs(Contnr(Child + i- 1).Coeff) >= T then

If Contnr (Child + i - 1) . Coeff < 0 then
OutCode (m) : = NEG;

Else
OutCode {m) : = POS;

End If;
m:=m+1;

start quantization
copy := Abs(contnr{Child + i - 1) .Coeff) - Thresh(l);
Case 1 is

Karma Wangdi Thesis on Final Y car Engineering Project, 1999.

Emhcdcd Zcrotrcc Codcc

When 0 =>
Null;

When Others ">
For k in (l-1) downto 0 loop

If (copy - Thresh(k)) < 0 then
Approxvalue (SigNa, k) : = NO;

Else
ApproxValue (SigNa, k) : = YES;
copy . - copy - Thresh (k);

End If;
End Loop;

End Case;
-- tag the approximate values of the coefficients
Case 1 is

When 6 =>
OutCode(ml := ApproxValue(SigNo,l);
m:=m+l;

When Others =>
If First(!) = '0' then

for r in 0 to (SigNa-l) loop
OutCode (m) :=

ApproxValue(r,l);
m:=m+l;

End loop;
First(!) :='1';

End If;
End Case;
If SigNa < 21 then

SigNa :=SigNa+ 1;
End If;
Contnr(Child + i - 1) .Coeff := 0;
Contnr (Child + i - 1) .Encoded : = '1' ;

Else
If Contnr(Child + i- 1) .DSig = '1' then

OutCode (m) : = IZ,·
m:=m+l;

Elsif Contnr{Child + i - 1) .DSig = '0' then
Outcode(m) := ZTR;
Contnr(Child + i- l).ZTF := '1';
m:=m+l;

Else -- if it is a leaf coefficient
OutCode{m):= ZTR;
m:=m+l;

End If;
End If;

End If;
End Loop;

End If;
If Parent >= 5 then

Exit;
Else

Child := Child + 4;
Parent := Parent + 1;

End If;
End loop;

End If;
End If;

115

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

I

Emhcdcd Zcrotrcc Codcc

-- reset the fields
For k in 1 to (lenth + 1) loop

If Contnr(k-1) ,DSig = u then
null;

Else
Contnr(k-1) .DSig := '0';

End If;
Contnr(k-1) .ZTF := '0';

End Loop;

End Loop; -- aL1 the 7 arranging and encoding loop

display the code

For n in 0 to m-1 loop
CodeA <= OutCode(n);
wait for 5 ns;

End Loop;
Ayes<= '1';
wait until A= '1';

End Process; -- end of process Subband~

Subband_B: Process

116

------------------------------·--
SAME AS PROCESSOR FOR SUBBAND_A, INPUTS ARE FROM SUBBAND_B

--GENERATES FIGNIFICANCE MAP, SENDS THE MAIN PARENT'S DESCENDENDT
-- INFORMATION TO A FOURTH PROCESSOR AND ENCODES AS DONE IN SUBBAND_A

Subband_C: Process

SAME AS PROCESSOR FOR SUBBAND_A AND B, BUT INPUTS FROM SUBBAND_C
--GENERATES FIGNIFICANCE MAP, SENDS THE MAIN PARENT'S DESCENDENDT
-- INFORMATION TO A FOURTH PROCESSOR AND ENCODES AS DONE IN SUBBAND_A

-- PROCESS THAT DETERMINES THE DESCENDENT SIGNIFICANCE OF THE MAIN
-- PARENT AND SENDS THE INFORMATION TO THE INDIVIDUAL PROCESSORS

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

EmbcdcJ Zcrotrcc Codcc

DetNain: Process

variable Thold : Integer range 1 to 64;
variable CopyCoeff: CoeffType;

begin

Wait Until FromA = '1' and FromE = '1' and Frome = '1';
get information from all the

ADone <= '0';
BOone <= '0' ;
COone <= '0' ;

three processes of the th~ ~ subbands

--- keep the processors waiting

CopyCoeff := MainParent;
If Abs(CopyCoeff) >~ Thold then

If CopyCoeff < 0 then
ACode <= NEG;
BCode <= NEG;
CCode <= NEG;

Else
ACode <= POS;
BCode <= POS;
CCode <= POS;

End IF;

Else
If ASig = '1' or

ACode <=
BCode <=
CCode <=

Else
ACode <=
FICode <=
CCode <=

End If;
End If;

ADone <= '1' ;
BOone <= '1' ;
COone <= '1' ;

End Process;
End Behaviourall;

IZ;
IZ;
IZ;

ZTR;
ZTR;
ZTR;

BSig = '1' or CSig = '1' then

Configuration CFGFull_Coder of FullEncoder is

For
Behaviourall

End For;
End CFGFull_Coder;

END

117

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

I

I

Embcdcd Zcrotrcc Codcc II K

--** ***************
PARALLEL ARCHITECTURE DECODER

*** ...

The three parallel decoders are exactly the same. So, only one is
shown. As explained in chapter 4 this decoder is a smaller version
of the single processor decoder, though it does not necessarily be.
It is atleast as implemented in this project. The only main
difference is that the first parent has only one child here, whereas
in the single processor codec we had three children. Rest, is the
same. The variable names used here are same as those used in the
other decoder. Hence only modest explanations are provided her~ as
they are just the repetition of what we have been explained

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

I

Emhcclcd Zcrutrcc Codcc

·-- thoroughly before

library IEEE;
library WORK;
use i'lORK.TypePKG.all;
use IEEE.std_logic_l164.all;
use IEEE.std_logic_signed.all;

Entity FullDecoder is

Port(codeout: out CodeType)
End FullDecoder;

Architecture Behavioural of FullDecoder is

Type CoeffRec is
Record

Coeff : CoeffType;
ZTF : Bit;
Decoded : Bit;

End Record;

Type CoeffRA is Array (0 to lenth) of CoeffRec;
Type CodeRA is Array (0 to 264) of CodeType;
Type Frstlndictr is Array (0 to 5) of Bit;
Type AddrSign is

record
Addr
Sign

End Record;

Integer range 0 to 21;
Bit;

119

Type RAddrSign is Array (0 to lenth) of AddrSign;
information on the decoded codes

-- to contain the

begin

DecodeProcess: Process

variable p ' Integer range 0 to 264;
variable CoeffContnr ' CoeffRA;
variable CodeContnr ' CodeRA;
variable parent Integer range 0 to 6;
variable child Integer range 0 to lenth;
variable Dcodedinfo
variable SigNa
variable First

begin

CodeContrr(O) :=NEG;
CodeContnr(3) :=ZTR;
CodeContnr(6) :=ZTR;

' RAddrSign;
Integer range 0 to 22;

' Frstindictr;

CodeContnr(l) :=ZTR;
CodeContnr(4) :=IZ;

CodeContnr(7) := ZTR;

--significant number

CodeContnr{2) :=
CodeContnr(S) :=

CodeContnr(S) :=

IZ;
ZTR;
POS;

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

I

Emhcdcd Zcrotrcc Coder..

CodeContnr(9) :=NO; CodeContnr(lO) := ZTR; CodeContnr(ll) :=
CodeContnr(12) ::=NEG; CodeContnr(13) := YES; CodeContnr(14)
CodeContnr(lS) :::: ZTR; CodeContnr(16) := Z'l'R; Codecontnr(l'J) :=

:=

120

ZTR;
NO;

ZTR;
CodeContnr(lB) := Z'l'R; CodeContnr(19} := POS; CodeContnr(20) := NO;
CodeContnr(21) := YES;CodeContnr(22) .- YES;CodeContnr(23) :=

CodeContnr (24) : = NEG; CodeContnr (25) . - ZTR; CodeContnr (26) : =
CodeContnr(27) := POS;Codccontnr(28) := Z'l'R;CodeContnr(29) :=
CodeContnr(JO) := ZTR;CodeContnr(31) .- Z'l'R;CodeContnr(32) :=

CodeContnr(33) :-= ZTR;CodeContnr{34) := Z'l'R;CodeContnr(35) :=
CodeContnr(36) := POS;CodeContnr{37) := NEG;CodeContnr(38) :=
CodeContnr(39) := YES;CodeContnr(40) .- YES;CodeContnr(41) :=
CodeContnr(42) := YES;CodeContnr{43) := NO; CodeContnr (44) :=
CodeContnr(45) := NO;CodeContnr{46} :=NEG; CodeContnr(47) :=
CodeContnr(48) := ZTR;CodeContnr(49) := ZTR;CodeContnr(SO) :=
CodeContnr(Sl) := ZTR;Codecontnr(52) := ZTR;CodeContnr(53) :=
CodeContnr(54) := POS;CodeContnr(55) := POS;CodeContnr(56) :=
CodeContnr(57) := POS;CodeContnr(58) := POS;CodeContnr(59) :=
CodeContnr(60) := YES;CodeContnr(61) := YES;CodeContnr(62) :=
CodeContnr(63) := YES;CodeContnr(64) := YES;CodeContnr(65) :=
CodeContnr(66) := NO;CodeContnr(67) := YES;CodeContnr(68) :=
Codecontnr(69) := NO;CodeContnr(70) :=NO; CodeContnr(71) :=
CodeContnr(72) := NO;CodeContnr(73) :=NO; CodeContnr(74) :=
CodeContnr(75) := ZTR;CodeContnr(76) := ZTR;CodeContnr(77) :=
CodeContnr(78) := POS;CodeContnr(79) := POS;CodeContnr(BO) :=
CodeContnr(81) := ZTR;CodeContnr(82) := NEG;CodeContnr(83) :=

CodeContnr(84) := YES;CodeContnr(BS) := YES;CodeContnr(86) :=
CodeContnr(87) := NO;CodeContnr(88) := YES; CodeContnr(89) :=
CodeContnr(90) := YES;CodeContnr(91) := YES;CodeContnr(92) :=

CodeContnr(93) := YES;CodeContnr(94) :=NO; CodeContnr(95) :=
CodeContnr(96) := YES;CodeContnr(97) := NO;CodeContnr(98) :=
CodeContnr(99) := YES;CodeContnr(lOO) := NO;CodeContnr(lOl)
CodeContnr(102) := YES;CodeContnr(103) := NEG; CodeContnr(104) :=

-- initialize

For m in 0 to lenth loop
CoeffContnr(m) .Coeff := O;
CoeffContnr(m).ZTF := '0';
CoeffContnr{m) .Decoded := '0';
If m <= 5 then

First(m) := '0';
End If;

End Loop;

P := O; index the codecontr
SigNa := 0;
For 1 in 6 downto 0 Loop

parent:= 0;
child := 0;

For j in 0 to lenth loop -- for one threshold
If Coeffcontnr(j).Decoded = '1' then

null;

Else
If Coeffcontnr(j) .ZTF = '1' then

POS;
ZTR;
ZTR;
ZTR;
ZTR;

NO;
YES;

NO;
ZTR;
ZTR;
ZTR;
NEG;
POS;
YES;

NO;
YES;
YES;
YES;
NEG;
NEG;
YES;
YES;
YES;
YES;

NO;
YES;

:= NO;
NEG;

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

I

Embcdcd Zcrotrcc Codcc

null;

Else

Case Codecontnr(p) IS
When ZTR =>

If ((j = 0) OR (j = 1)) then

parent:= 0;

child := 0;

p:=p+l;

Exit;
Else

If ((parent/= 0) AND (parent<= 5)) then
-- it is not a leaf
-- so mark its children

For k in 0 to 3 loop
CoeffContnr(child + k) .ZTF := '1';

End Loop;
End If;

End If;
When POS I NEG =>

CoeffContnr(j) .Decoded:= '1';
SigNa := SigNa + 1;

Dcodedinfo(SigNo-1) .Addr := j;
If Codecontnr(p) = POS then

Dcodedinfo(j) .sign := '1';
Else

Dcodedinfo(j} .sign := '0';
End If;
CoeffContnr{j) .Coeff := (Thresh(!));
If 1 <= 5 then

If First(!) = '0' then
-- this is the first significant in the level

so add precision to the previously found
coefficients

For i in 1 to SigNa-l loop
If Codecontnr(p + i) = YES then

addrs <= Dcodedinfo(i-1) .addr;
wait for 5 ns;

addrs <= 22;
wait for 5 ns;

CoeffContnr(Dcodedinfo(i-l).Addr) .Coeff :=
CoeffContnr{Dcodedinfo(i-1) .Addr).Coeff +

(Thresh(!));
Else

Null;
End Loop;
First(l) := '1';
p := p + SigNa -1;

End If;
End If;

When Others =>

End If;

121

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

I

Emhcdcd Zcrotrcc Cmlcc

Null;
End case;
p:=P+l;

End If;
End If;

house keeping
If j >= 21 then

Exit;

Else

If j >= 1 then

prepare to read the next code

If parent = 0 then
Parent := 2;
child := 6;

Else
Case parent IS

Nhen 6 =>
Null;

When 5 =>
Parent := parent + 1;

When Others =>
Parent := parent + 1;
child := child+ 4;

End Case;
End If;

End If;
End If;

End Loop;
For 1 in 0 to lenth loop

coeffcontnr(l) .ZTF := '0';
End Loop;

End Loop;

-- correct the signs

For i in 0 to lenth loop
If Dcodedinfo(i) .Sign = '1' then

Null;
Else

CoeffContnr(i) .Coeff :=- (CoeffContnr(i) .Coeff);
End If;

End Loop;

--display result

For m in 0 to lenth loop

OutCoef£ <= CoeffContnr(m) .Coeff;
wait for 5 ns;

End Loop;

Wait;

122

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

I

Embcdcd Zcrotrcc Cmlcc

End Process;

End Behavioural;

Configuration CFGNewl of FullDecoder is

for Behavioural
End for ;

End CFGNewl;

123

--
END

--***
-- Significance Map Generator: Code that has been Successfully
-- Synthesized
--***

This the one logical portion of the encoder that has been
synthesized. Significance Generation code has appeared before. Of
noteworthy is the replacement of records by arrays, introduction of
clocking, use of only for loops, and no wait statement as such being
used. It is only used with rising edge of a clock. Otherwise, here
too the codes are similar to those found earlier

library IEEE;
library WORK;

Karma Wangdi Thesis on Final Ycnr Engineering Project, 1999.

Ill

Embellcd Zcmtrcc Codec

use toJORK. 'l'ypePKGsyn. all;
use IEEE.std~logic_1164.all;
use IEEE.std_logic_signed.all;

Embedded Zerotree Wavelet Algorithm.
Image 8 by 8
8 bit implementation

Entity SigMapGen is
Port(clk : in Bit; codeA: out CodeType)

End SigMapGen;

Architecture Behave of SigMapGen is

Type OutPutRA is Array (0 to 200) of CodeType;
-- to contain the code for the coefficients from the encoding process

Type FirstRA is Array (0 to 5) of Bit;
Type CoeffRA is array (0 to lenth) of CoeffType;
Type DSigRA is array (0 to lenth) of .SigType;
Type ZTFRA is array (0 to lenth) of Bit;
Type EncodedRA is array (0 to lenth) of Bit;
Type ApproxRA is array (0 to lenth) of CodeType;

begin

Arrange: Process --(CLK)
variable T: integer range 1 to 64;

variable Parent: IndexType;

variable Child: IndexType;

variable OutCode : OutPutRA;

variable m : Integer range 0 to 2048;
variable q : Integer range 0 to 2048;
variable SigNa : Integer range 0 to 64;
-- Significant coefficient number,
variable copy : Integer range 0 to 64;

124

variable First FirstRA; to indicate whether the significant
coefficient is the first in the level
variable Coeff : CoeffRA;
variable ZTF : ZTFRA;
variable Encoded : EncodedRA;
variable DSig : DSigRA;
variable Zero: ApproxRA;
variable One: ApproxRA;
variable Two: ApproxRA;
variable Three: ApproxRA;
variable Four: ApproxRA;
variable Five: ApproxRA;
variable Six: ApproxRA;

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Ill

Embcdcd Zcrotrcc Cndcc

begin

wait until clk'event and elk= '1';

-- *** GetCoeff here ***
For i in 0 to 63 Loop --lenth loop

DSig(i) := u;
ZTF(i):= '0';
Encoded(i) := '0';

End loop;
wait until clk'event and elk= '1';

125

First : = "000000"; initialize the array that indicates if the
significant -- coefficient found is the first in the level

SigNa := 0; -- indicates the no of the significants found
m : = 0; -- to serve as an index for the output array
Parent : = 15;
Child : = lenth;

For parent in 15 downto 1 loop
for j .i.n 0 to 3 loop

If DSig{child-j) = u then
If abs(Coeff(child- j))>= T then

DSig{parent) := '1';
Exit;

Else
DSig(parent) := •o•;

End If;
Elsif Dsig(child-j) = '1' then

DSig (parent) : = '1';
e:dt;

Else
If abs((child -j))>= T then

DSig(parent) := •1';
Exit;

Else
DSig(parent) := '0';

End If;
End If;

End Loop; --for one parent
Child : = Child - 4;

End Loop; -- all parents

-- we have reached the first parent and its three children in the
subband

For j in 0 to 2 Loop
If DSig(child -1) = '1' then
DSig(parent) := '1';
Exit;

Elsif abs(Coeff(child-j)l >= T then
DSig(parent) := '1';
Exit;

Else
DSig(parent) := '0';

End If;
End Loop;

End Process;
End Behave;

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

I

Emhcdcd Zcrotn~c Codcc

Configuration CFG_Arranger of SigMapGen is
For

Behave
End For;

End CFG_Arranger;

END

126

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

I

Embcdct.l Zcrotrl''! Codcc 127

Bibliography

[1] A.Ayurbuch, D.Lazar and M.israeli, "Image Compression Using Wavelet

Transform and Multiresolution Decomposition", IEEE, 1996.

[2] A. Laine (1993). Wavelet Theory and Application.

Boston: Kluwer Academic Publishers.

[3] A.M.Rassau, K.Eshragian, H.Cheung, S.W.Lachowicz, T.C.B.Yu, W.A.Crossland

and T.D.Wilkinson, "Smart Pixel Implementation of a 2-D Parallel Nucleic

Wavelet Transform for Mobile Multimedia Communications" Copy provided by

Dr.Stefan Lachowicz.

[4] A.N. Netravali & G.B. Haskell (1989). Digital Pictures; Representation and

Compression. New York: Plenum Press

[5] A. Savla (1998). Gallium Arsenide Implementation of a Triangular FIR Filter for

Discrete Wavelet Transforms. Engineering Report, Edith Cowan University

[6] A.S.Lewis and G.Knowles, "Image Compression Using the 2-D Wavelet

Transform", IEEE Transactions on Image Processing, val. 1, no 2, April, 1992.

[7] C.Chakrabarti and C.Mumford, "Efficient Realizations of Encoders and Decoders

Based on the 2-D Discrete Wavelet Transform", IEEE,1999.

[8] C.K. Chui (1992). An Introduction to Wavelets.

Boston: Academic Press Inc.

[9] D.W. Knapps (1996). Behavioral Synthesis

New Jersey: Prentice Hall PTA.

[10] E. Hernandez, G. Weiss (1996). A First Course on Wavelets.

New York: CRC Press.

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

Eml:lcJcd Zcrotrcc Codcc 12M

[11] G.Aiagoda. "An Integration of Zerotrees into the Intelligent Pixel Architecture".

Copy provided by Dr.Stefan Iachowicz.

[12] J.Bae and V.K.Prasana. "A Fast and Area-Efficient VLSI Architecture for

Embedded Image Coding". Copy provided by Dr. Stefan Iachowicz.

[13] J.C. Russ (1995). The Image Processing Handbook

Boca Raton: CRC Press

[14] J.M Shapiro, "Embedded Image Coding Using Zerotrees of Wavelet Coefficients"

IEEE Transactions on Signal Processing, vol.41, no.12, Dec 1993. Copy

provided by Dr.Stefan Lachowicz.

[15] K.C. Chang (1997). Digital Design and Modelling with VHDLand Synthesis

California: IEEE Computer Society Press.

[16] M.A.Coffey and D.M.Etter, "Image Coding with the Wavelet Transform", IEEE,

1995.

[17] M.Antonini, M.Barlaud, P.Mathieu and I.Daubechies, "Image Coding Using

Wavelet Transfonm", IEEE Transactions on Image Processing, vol.1, no.2, April,

1992.

[18] M.Barlaud(1994). Wavelets in Image Communication.

Amsterdam: ELSEVIER

[19] M.K.Mandal, S.Panchanathan and T.Aboulnasr, ''Wavelets for lmagr,

Compression" IEEE 1994.

[20] M. Prokein (1998). Tutorial: Preactical Excercises with Synopsys Tools

(SGEIVSS).

[21] M.Shahshahani, ''Wavelets and Image Compression", IEEE, 1992.

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

I

Embcdcd Zcrotrec Cudcc

[22] M.Vetterli, & J.Kovacevlc (1995). Wavelet and Subband Coding

New jersey: Prentice Hall PTA

[23] P.N. Topiwala (1998). Wavelet Image and Video Coding.

Massachusetts: Kluwer Academic Publishers

[24] R.C. Gonzalez, R.E. Woods (1993). Digital image Processing

Massachusetts: Addison-Wesley Publishing Company.

[25] R. Geissler, S. Bulach (1998). VHDL Manual. WWW Site: http://mikro.e

technik.uni-ulm.de/vhdl/anl-engl.vhd/html/vhdl-all-e.html., University of Ulm.

[26] R. Polikar (1999). WaveletTutorial.

129

WWW Site: http://www.public.iastate.edu/-rpolikar/W A VELETS/WTpart1.html.,

Iowa State University.

[27] R.Rabbani, & P.W. Jones (1991). Digital Image Compression Techniques.

Bellingham: Spie Optical Engineering Press.

[28] S.T. Solari, (1997). Digital Video & Audio Compression.

New York: McGraw Hill.

[29] V. Bhaskaran (1997). Image and Video Compression Standards: Algorithms and

Architectures. Boston: Kluwer Academic Publishers.

[30] W. Kou (1995). Digital Image Compression.

Boston: Kluwer Academic Publishers.

[31] Y. Meyer (1993). Wavelets: Algorithms and Applications.

Philadelphia: Society for Industrial and Applied Mathematics.

[32] Y.X.Zhong,''Advances in coding and Compression", IEEE Communications
magazine, vol.31, no.?, July,1993.

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

I

I

Embcdcd Zcrotrcc Codcc 130

[33] Z. Navabi (1993). VHDL: Analysis and Modelling of Digital Systems.
New York: McGraw Hill PTA.

Karma Wangdi Thesis on Final Year Engineering Project, 1999.

	Embed[d]ed Zerotree Codec
	Recommended Citation

	tmp.1444709016.pdf.E9mRE

