
Edith Cowan University Edith Cowan University

Research Online Research Online

Theses : Honours Theses

1998

An Experimental Study Into the Effect of Varying the Join An Experimental Study Into the Effect of Varying the Join

Selectivity Factor on the Performance of Join Methods in Selectivity Factor on the Performance of Join Methods in

Relational Databases Relational Databases

Ada Mallet
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses_hons

 Part of the Databases and Information Systems Commons

Recommended Citation Recommended Citation
Mallet, A. (1998). An Experimental Study Into the Effect of Varying the Join Selectivity Factor on the
Performance of Join Methods in Relational Databases. https://ro.ecu.edu.au/theses_hons/784

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses_hons/784

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses_hons
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses_hons?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F784&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F784&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses_hons/784

 Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose

of your own research or study.

The University does not authorize you to copy, communicate or

otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following:

 Copyright owners are entitled to take legal action against persons

who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement.

 A court may impose penalties and award damages in relation to

offences and infringements relating to copyright material. Higher

penalties may apply, and higher damages may be awarded, for

offences and infringements involving the conversion of material

into digital or electronic form.

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

An Experimental Study into the Effect of

Varying the Join Selectivity Factor on the

Performance of Join Methods in

Relational Databases

by

Ada Mallet

A Thesis Submitted in Partial Fulfillment of the
Requirements for the A ward of

Bachelor of Science Honours (Computer Science)

Faculty of Science, Technology and Engineering
Edith Cowan University

Date of Submission: 12 February 1998

ABSTRACT

Relational database systems use join queries to retrieve data from two relations.

Several join methods can be used to execute these queries. This study investigated

the effect of varying join selectivity factors on the performance of the join methods.

Experiments using the ORACLE environment were set up to measure the

performance of three join methods: nested loop join, sort merge join and hash join.

The performance was measured in terms of total elapsed time, CPU time and the

number of l/0 reads. The study found that the hash join performs better than the

nested loop and the sort merge under all varying conditions. The nested loop

competes with the hash join at low join selectivity factor. The results also showed

that the sort merge join method performs better than the nested loop when a

predicate is applied to the inner table.

DECLARATION

I certify that this thesis does not, to the best of my knowledge and belief:

a) incorporate without acknowledgement any material previously submitted for a
degree or diploma in any institution of higher education;

b) contain any material previously published or written by another person except
where due reference is made in the text; or

c) contain any defamatory material

Signature
Date

ii

ACKNOWLEDGEMENTS

I wish to thank my supervisor, Jean Hall, who devoted hours of her time rigorously

checking the work. Jean is friendly and easy to work with. Her deep interests in

that area of study have been a great encouragement.

I also wish to thank Ms Penny Cookson of SAGE Professional Services for the

helpful Oracle database performance tips. Special thanks to Steve Schupp of

Winthrop Tecbaology for his assistance in the UNIX language. I also wish to thank

the Orac1e International Support Analysts for providing solutions to the software

problems encountered in that study.

I extend my gratitude to my dear husband, Desire, who provided a shelter of love,

friendship and encouragement throughout my studies. Desire has been a great

support through his presence while I worked till late at night.

iii

TABLE OF CONTENTS

ABSTRACT ... 1

DECLARATION .. 11

ACKNOWLEDGEMENTS .. 111

LIST OF FIGURES ... vii

LIST OF TABLES .. viii

DEFINITION OF TERMS .. 1

CHAPTER ONE: INTRODUCTION .. 3

The Background to the Study ... 3

The Relational Model .. 3
Query Optimisation ... 4
Access Path ... 5
Join Method .. 8
Join Query Processing ... 9

The Significance of the Study ... 10

The Purpose of the Study .. 10

Research Questions .. 12

Main Question ... 12
Sub Question I .. 12
Sub Question2 .. 13

CHAPTER TWO: LITERATURE REVIEW ... 15

Query Optimisation .. 15

Query Optimiser- Cost-based vis Rule-based .. 16

Join Operator ... 17

Join Methods .. 19

Nested Loop ... 19
Sort Merge .. 21
Hash Join .. 24

Selectivity Factor ... 26

Literature on Previous Findings .. 27

Summary .. 28

CHAPTER THREE: METHOD .. 29

Experimental Environment .. 29

Database Setting ... 30
Tables and Colunms Settings ... 30

;v

Procedure ... 31

Initialisation of Variables .. 31
Database Creation ... 32
Optimiser hints .. 32
Selectivity Factor .. 33

Experiments ... 34

Set up of Experiment! ... 35
Set up of Experiment 2 ... 35
Set Up of Experiment 3 .. 36
Data Conversion to SPSS Data File ... 36
Pilot Study ... 37
Main Study .. 38

Data Analysis ... 39

Hypotheses .. 40

Limitations ... 44

Summary ... 47

CHAPTER FOUR: RESULTS .. 48

Hypothesis I -Nested Loop v/s Sort Merge at low join selectivily for 1-to-1048

Hypothesis 2 -Hash Join v/s Sort Merge at low join selectivity for 1-to-1 0 49

Hypothesis 3 - Nested Loop v/s Sort Merge at high join selectivity for 1-to-10 51

Hypothesis 4- Hash Join v/s Sort Merge at high join selectivity for 1-to-10 52

Hypothesis 5- Nested Loop v/s Sort Merge at low join selectivity for 1-1 54

Hypothesis 6- At high join selectivity, 1-to-1 v/s 1-to-10 for Nested Loop 55

Hypothesis 7- At low join selectivity, SM with predicate v/s SM no predicate 57

Hypothesis 8- At high join selectivity, SM with predicate v/s SM no predicate 59

CHAPTER FIVE: DISCUSSION .. GZ

Initial Observations .. 62

Detailed Observations .. 64

Predicate vis No Predicate on the Inner Table ... 68

Critique .. 68

Summary ... 71

CHAPTER SIX: CONCLUSION .. 77

Findings ... 78

Database Tuning .. 79

v

Recommendations .. 80

Potential Future Research ... 81

APPENDIX A -Initialisation Files and Set Up ... 82

Database Initialisation File ... 82

Creation ofTablespaces ... 84

APPENDIX B -Program Coding .. 86

Creation of Packages, Procedures and Functions .. 86

Package Random ... 86
Package Array ... 87
Package ReadFile ... 90
Package Sequence ... 93
Package Table_Sizing. .. , 93
Procedure Get_Amount ... 97
Procedure Set_Quote ... 98

Creation of Tables .. 98

Customers Table .. 98
Quotes Table ... /02
Quote Table ... 1/0

APPENDIX C- Query Statements ... 112

Experiment 1 ~ One~to-many relationship ... 112

Nested Loop Join ... 112
Sort Merge Join ... 114
Hash Join .. 116

Experiment 2 ~ One~to-one relationship ... 119

Nested Loop Join ... 119
Sort Merge Join ... 121
Hash Join .. 123

Experiment 3- Predicate on Inner Table .. 126

Nested Loop Join ... 126
Sort Merge Join ... 128
Hash Join .. 130

APPENDIX D -Unix Scripts .. 133

APPENDIX E- Trace Files Generated For Each Run 134

APPENDIX F- Example of Random Numbers Generated 138

APPENDIX G- Example of Generated Trace Files ... 140

APPENDIX H- Performance Data Collected .. 149

REFERENCES ... 155

vi

LIST OF FIGURES
Figure 1: Index:ed Scan .. 6

Figure 2: Sequential Scan .. 7

Figure 3: Hash Scan .. 8

Figure 4: Attributes and tuples as expressed in relational algellra .. 17

Figure 5: Resulting relation from applying a theta join toR and S , 19

Figure 6: Normal Merging .. 23

Figure 7: Delayed Merging .. 24

Figure 8: Entity~ Relation Diagram showing the relation between the tables in the experiments. 34

Figure 9: An Oracle Instance ... 44

Figure I 0: Minitab output showing the test for Hypothesis I using the Mann~ Whitney test 49

Figure II; Minitab output showing the test for Hypothesis 2 using the Mann~ Whitney test 50

Figure 12: Minitab output showing the test for Hypothesis 3 using the Mann-Whitney test 52

Figure 13: Mini tab output showing the test for Hypothesis 4 using the Mann~ Whitney test 53

Figure 14: Mini tab output showing the lest for Hypothesis 5 using the Mann~ Whitney test 55

Figure 15: Minitab output showing the test for Hypothesis 6 using the Mann-Whitney test 56

Figure 16: Minitab output showing the test for Hypothesis 7 using the Mann-Whitney test 58

Figure 17: Mini tab output showing the test for Hypothesis 8 using the Mann~ Whitney test 60

Figure 18: Reads for Indexed access .. 65

Figure 19: Effect of Join Selectivity on Response Time for a l~to-10 relationship 72

Figure 20: Effect of Join Selectivity on Response lime for a I-to~! relationship 72

Figure 21: Effect of Join Selectivity on CPU Time for a 1-to-10 relationship 73

Figure 22: Effect of Join Selectivity on CPU Time for a l~to~l relationship 73

Figure 23: Effect of Join Selectivity on 110 Reads for a l~to-10 relationship 74

Figure 24: Effect of Join Selectivity on 1/0 reads for a 1-to-1 relationship 74

Figure 25: Effect of applying a predicate on inner table for the Nested Loop join method for a I~
to-! 0 relationship ... 75

Figure 26: Effect of applying a predicate on inner table for the Sort Merge join method for a 1-
to-10 relationship ... 75

Figure 27: Effect of applying a predicate on inner table for the Hash Join method fora l~to~IO
relationship ... 76

vii

LIST OF TABLES

Table I: Different tenns used to define a table .. 2

Table 2: Terms usrd in the relational model .. 4

Table 3: Access paths used by different join methods .. 8

Table 4: Table and Column Settings .. 31

Table 5: Classification of response time .. 39

Table 6: Response times for the nested loop and sort merge at low join selectivity factor for a
one-to-many relationship .. 48

Table 7: Response times for the sort merge and hash at low join selectivity factor for a one-to-
many relationship .. 50

Table 8: Response times for the sort merge and nested loop at high join selectivity for a one-to-
many relationship .. 51

Table 9: Response times for the hash join and sort merge at high join selectivity for a one-to-
many relationship .. 53

Table 10: Response times for the nested loop and sort merge allow join selectivity for a one-to-
one relationship ... 54

Table 11: Response times for the nested loop and sort merge at high join selectivity for a one-to-
one relationship ... 56

Table 12: Response times for the sort merge at low join selectivity for a one-to-many
relationship with and without a predicate applied to the inner table 58

Table 13: Response times for the sort merge at high join selectivity for a one-to-many
relationship with and without a predicate applied to the inner table 60

Table 14: Response Time v/s Join Selectivity Factor for a one-to-many relationship 149

Table 15: CPU Time v/s Join Selectivity Factor for a <me-to-many relationship 149

Table 16: Number of UO reads v/s Join Selectivity Factor for a one-to-many relationship 150

Table 17: Response Time v/s Join Selectivity Factor for a one-to-one relationship 150

Table 18: CPU Time v/s Join Selectivity Factor for a one-to-one relationship 151

Table 1':1: Number ofl/0 reads v/s Join Selectivity Factor for a one-to-one relationship 151

Table 20: Response Time v/s Outer Selectivity Factor for a one-to-many relationship with a
predicate on inner table ... 152

Table 21: CPU Time v/s Outer Selectivity Factor for a one-to-many relationship with a predicate
on inner table .. 152

Table 22: Number of I/0 reads v/s Outer Selectivity Factor for a one-to-many relationship with a
predicate on inner table ... 153

Table 23: Response Time v/s Outer Selectivity Factor for a one-to-many relationship with no
predicate on inner table ... 153

Table 24: CPU Time v/s Outer Selectivity Factor for a one-to-many relationship with no
predicate on inner table ... 154

Table 25: Number of 110 reads v/s Outer Selectivity Factor for a one-to-many relationship with
no predicate on inner table .. 154

viii

DEFINITION OF TERMS

I. Block

2. Cartesian product

3. Degree of
Relationship

4. Join selectivity factor

4.1 Low join selectivity
Factor

4.2 High join selectivity
Factor

5. Predicate

6. Relation

6.1 Small relation

Unit of transfer between the secondary and primary
memory.

Consider two relations R and S each with n and m
number of tuples respectively. The cartesian product
of these two relations will concatenate each tuple

producing a resulting relation with (n * m) tuples.

A degree of relationship of 'n' implies that a
tuple from one relation relates to a minimum of zero
and a maximum of 'n' tuples from the other relation
at any point in time.

The ratio of the number of tuples participating in the
join to the total number of tuples present in the
Cartesian product of the relations (Mishra & Eich,
1992). For example, consider the join of two
relations consisting of l 00 and 1000 tuples
respectively. Assuming that 100 tuples satisfy
condition 'x'. A cartesian product of these two
relations will consist of 100,000 tuples. If the join
condition 'x' is applied to the cartesian product, then
oniy 100 tuples will be returned. Hence, the join
selectivity fac: -is 100 I 100000.

Number of tuples participating in the join is less
than 10% of the maximum number of tuples
that could participate in the join.

Number of tuples participating in the join is greater
than 60% of the maximum number of tuples that
could participate in the join.

A relational operation that applies a condition so
that only tuples satisfying this condition are
returned. A predicate is used in the WHERE clause
of a SQL statement.

The relational model treats a set as a relation. The
relation is a logical view of the data. It is a set
consisting of a number of tuples.

Size of relation is less than 400Kb.

6.2 Large relation

6.3 Inner relation

6.4 Outer relation

6.5 Result Relation

7. Table

7 .I Attribute

7.2 Column

7.3 Row

8 Tuple

Size of relation is greater than 400Kb.

The inner relation refers to the larger relation in the
join relationship.

Outer relation refers to the smaller relation in the
join relationship.

The join operation is used to combine related
tuples from two relations into single tuples that are
stored in the result relation.

The relational database system models the relational
set as a table. The table is also referred as the
relation. A table is a group of related data and is
made up of rows and columns.

Smallest unit of data in the relational model.

The column contains a particular field value.

The row is a unique entry in a table. A row consists
of all the data that identifies an entry in a table.

The collection of values that compose one row of a
relation.

Table 1: Different terms used to define a table

Table Employee

Employee no Name
I James
2 Phil
3 Mirella
4 Mat

Colum~ Surname

Surname
Dark
Collins
Paul
John

-Row defining
employee 11'

Attribute value

2

Chapter one: Introduction

The Background to the Study

The Relational Model

In 1970, E. F. Codd, a researcher at IBM, published a seminal paper on the

relational data model (Codd, 1970). The model described in this paper was based

on mathematical set theory and it offered an enormous advancement over

previous database models. The relational model differed from other database

models because the logical view of data was completely independent from the

physical view. This independence meant that programs manipulating data were

not affected by changes to the internal data representations, such as changes to file

organisation or access paths. In traditional systems, the program is dependent on

the data files as the description of the data and the way to access the data is built

in the application system (Me Fadden & Hoffer, 1991).

Data in the relational model are organised as units of data storage known as

relations or tables. A relation consists of a collection of similar pieces of

information (Bennett, Ferris & Joannidis, 1991). It is a set consisting of a number

of tuples (also known as records or rows). A tuple comprises of a number of

attributes and the values of these attributes are based on a domain. The attribute is

the smallest unit of data in the relational model. For example, consider a relation

named Employee. This relation consists of the attributes such as employee

number, name, surname and salary. The tuple refers to the collection of data that

defines an employee.

3

Table 2: Terms used in the relational model

...,..---Relation Name
E I mploy<le
Employee Name Surname Salary
Number
10002541 Desire Michel 42000

10005457 Mirella Paul 85000

10224530 Phil Collins 100000

Dept

20

10

30

1-------
Attribute
Value

Tuple

The relational model provides mathematical operations and constraints that can be

applied to tables in databases. Codd (cited in Topor, n.d.) proposed two languages

to access data from the relational database system: the relational calculus and the

relational algebra. However, these languages did not provide facilities for

database definition or database update. In the late 1970's, Structured Query

Language (SQL) was developed to add some necessities lacking in the previous

languages. SQL provided facilities for querying the database as well as facilities

for defining the database, manipulating and controlling the data in a relational

database (Date, 1989).

Query Optimisation

The great power and capability of the relational model have enabled the

emergence of commercial Relational DataBase Management Systems (RDBMS)

such as Oracle, Ingres, Sybase and DB2. A RDBMS is a controlled collection of

programs based on a single relational data model allowing authorised access to

data queries, additions, deletions and modifications in a reliable, efficient and

flexible way (Topor, n.d.). Relational applications may contain large volumes of

4

data, and the retrieval of data needs to be efficient especially for on-line

transaction processing.

According to Date (1986, p. 67), the performance of a transaction is determined

by the number of 1/0 (Input/Output) operations and the amount of CPU (Central

Processing Unit) processing. During execution of a query statement such as a

SQL statement, the query optimiser will select the strategy with the least

processing cost from the many execution strategies. The optimal strategy is

usually determined by calculating the cost of different available strategies in

terms of some combination of processing load and disk VO accesses. The

selection of the most efficient strategy to access the data and answer the query is

known as 'query optimisation' (Bennett eta!., 1991).

Access Path

The JOIN operator is used to retrieve data when at least two relations are involved

in a quuy statement. It "permits two relations with at least one comparable

attribute to be combined into one" (Jarke, Koch & Schimdt, 1985, p. II). For

example, a join between the relations 'Department' and 'Employee' is possible

using the join attributes 'dept no' present in both relations.

The JOIN operator is a costly operator because of the many alternative strategies

that must be analysed during join query processing. The optimal execution strategy

is dependent on factors such as the order of the operations defined on the relations

as well as the access path used. The access path refers to the "data structures and

5

the algorithms that are used to access the data" (Meechan, 1988, p. 4). There are

three main types of access path used in relational systems: indexed, sequential,

hashed access paths.

Indexed Scan

The indexed scan uses a B-tree structure to read the values of the indexes. The

node of the tree represents the pages of the index. Each leaf page consists of an

index key value and the physical address of the row in the table where that value

for that key is stored. A search through the tree always starts at the root and

descends through the leaves until the required value is found. If the value is not

found in a terminal r..ode, then that value does not exist in the tree. Figure 1 is a

schematic representation of how an indexed scan works.

B-Tree

Table

Figure 1: Indexed Scan

6

Sequential Scan

A sequential scan reads one row of a table at a time until the required value is

found or the end of the table is reached.

Page
table

Figure 2: Sequential Scan

Hash Scan

A hash scan provides direct access to the data block containing the record by

applying a hash function or transformation operation to the record key value and

the number of primary pages (Gardarin & Valduriez, 1989). A set number of pages

(called the primary pages) and overflow pages are defmed for the hash structure. A

hash function is used to compute the physical address for the primary page on

which the row in the table should be stored. During a hash scan, the same

algorithm that was used to store the row in the table is used to get the physical

address of the primary page. This page is searched for the row with the matching

hash key. If the row is not found, then the overflow page or pages associated with

that primary page are examined. The figure below illustrates the workings of the

hash scan.

7

Hash Function

Primary Page 1 2 I;~;~ 4 5 6 7 8 9 10

Reference Table

" Overflow Page 1 2 3 !'~~ 5 6 8 9 10

Reference Table

Figure 3: Hash Scan

Join Method
Data are retrieved from two or more relations using a join method. There are three

main join methods: nested loop, sort merge and hash join. The nested loop join

performs an indexed scan on one of the relations, usually the larger relation. The

sort merge join method sorts both relations and then merges the two relations

using the matching tuples as the selection criteria to produce the resulting relation.

The hash join applies a hash function to the key columns of one relation and store

these hash values in the hash table. The record key value of the other relation is

then hashed using the same hash function and a hashed scan is then performed on

the hash table. The table below summarises the type of access path used by each

join method.

Table 3: Access paths used by different join methods

Join Method Nested Loop Sort Merge Hash Join

Access Path Index Scan Sequential Scan Hash Scan

8

Each join method performs differently depending on factors such as the size of the

relations, the number of rows retrieved from the relations and the degree of

relationship (a degree of relationship 10 implies that a tuple in one relation relates

to a maximum of 10 tuples from the other relation). The choice of the optimum

join method for a particular set of conditions can significantly reduce the join query

processing time.

Join Query Processing

The following example illustrates the importance of query optimisation:

Consider the case where a customer can have many orders and an order is for one

customer. Assuming that there are 100 customers and 1000 orders.

Customer(cust id, cust_name)

Order(order no, order_desc, cust_id)

Consider the execution of the following query where there are 20 tuples with a

customer id of > 1000:

SELECT cus.cust_id, ord.order_desc
FROM Customer cus, Order ord
WHERE cus.cust_id = ord.cust_id
AND cus.cust_id > 1000

There are two ways to process this query:

1. The two relations are joined first over 'cust_id' and a resulting relation of (100

* 1 ,000) tuples created. The selection is then done against the resulting

relation. In this case, I 00,000 comparisons are required.

2. The join condition is applied to the customer table. In this case, 20 tuples with

'cust_id' > 1000 are returned as a temporary relation. The join over 'cust_id' is

9

then performed between the temporary relation and the order relation.

Therefore (20 * 10,000) or 20,000 comparisons are required.

The second alternative is the preferred strategy providing a quicker way to

process the query.

TJ.. Significance of the Study

The projected increase in database applications and the volume of transactions to

be processed (Database Market, 1997) have accentuated the need to consider

performance issues carefully. The recent introduction of the hash join method in

commercial database systems such as Oracle has also triggered the need to

investigate the performance of the hash join compared to the two common join

methods: nested loop and sort merge.

This research has provided relevant information concerning the performance of

the join methods under varying join selectivity factors (Refer Definition of Terms

- 4) and for different degrees of relationship (Refer Definition of Terms- 3). This

study also considered the behaviour of the join methods when a predicate is

applied to the inner table.

The Purpose of the Study

This study considered the effect of the join selectivity factor on the performance

of the join methods in relational database systems when the number of rows

satisfying a join condition varies. A set of experiments was designed to capture

the time taken for a query using different join methods to retrieve data. The study

also examined the sensitivity of the elapsed time, CPU time and logical 110 reads

10

when the number of tuples being retrieved from the outer relation varied (See

Definition of Terms - 6.4). The sensitivity of the elapsed time to the join

selectivity factor when the degree of the relationship varies was also examined.

II

Research Questions

Main Question
There are several factors that impact on the performance of the join methods. This

study examines the effect of the join selectivity factor on the performance of the

nested loop, sort merge and hash join methods when the degree of relationship

varies and a predicate is applied to the inner table.

How do the nested loop, sort merge and hash join perform when the join

selectivity factor varies under certain conditions?

Sub Question 1
What is the effect of the join selectivity factor on the performance of the nested

loop, sort merge and hash join methods for a one-to-one and a one-to-many

relationship?

Hypotheses

Note: The response time is the total time taken by a query statement to retrieve

data from the database.

H1 For a one-to-many relationship with a low join selectivity factor, the

nested loop has a faster response time than the sort merge join method.

H2 For a one-to-many relationship with a low join selectivity factor, the hash

join has a faster response time than the sort merge join method.

H3 For a one-to-many relationship with a high join selectivity factor, the sort

merge has a faster response time than the nested loop join method.

H4 For a one-to-many relationship with a high join selectivity factor, the hash

join has a faster response time than the sort merge join method.

12

H
5

For a one-to-one relationship with a low join selectivity factor, the nested

loop has a faster response time than the sort merge join method.

H
6

At high join selectivity factor, the nested loop join method has a faster

response time for a one-to-one relationship than for a one-to-many

relationship.

Sub Question 2
What is the effect of applying a predicate to the inner relation on the performance

of the join methods when the number of tuples selected from the outer relation

varies?

Note: The inner relation refers to the larger relation in the join relationship and

the outer relation refers to the smaller relation. A predicate is basically an

operation (e.g., equality operator) that can be applied to attributes in a relation so

that the tuples being retrieved from the relation are selective.

H7 The sort merge join method with low selectivity of the outer relation gives

a faster response time when a predicate is applied to the inner relation than

when no predicate is applied.

H8 The sort merge join method with high selectivity of the outer relation gives

a faster response time when a predicate is applied to the inner relation than

when no predicate is applied

Assumptions:

The study is based on the following assumptions:

• A small relation is assumed to be a table that fits into the buffer cache and

13

therefore can be read in one physical read.

• A large relation is assumed to be larger than the buffer cache.

• An index is defined on the join column of the inner (large) relation.

14

Chapter Two: Literature Review

Query Optimisation
Join query processing has been studied from several different points of view:

(Jarke, M. & Koch,)., 1984, Kimet a!. 1985, Yu, P. & Cornell, W., !991, Harris,

E. 1995)

a) query optimisation

b) optimising 110 and buffer space

c) hardware support such as a join processor

d) parallel processing

e) physical database design

Join query optimisation in relational database systems attempts to find the optimal

execution strategy for a join query. Query processing has two main phases:

compilation and execution. Compilation consists of operations such as parsing the

statement, checking its syntax and mapping the logical-level names to physical-

level address. Execution consists of tasks such as retrieval and manipulation of

data. The operations involved in execution are choosing an access strategy,

checking access to data and generating machine code.

When a query is executed, there are many possible execution strategies that can be

considered. The cost of each execution strategy is calculated and the strategy with

the least cost is chosen (Li, Kitigawa & Ohbo, 1994). The cost is the sum of the

costs of processing each individual operator and is measured in terms of CPU time

and/or I/0 time. During query optimisation, factors such as the ordering of

database operations, the access paths and the algorithm used to perform database

15

operations are considered (Kuznetsov, 1989).

Query Optimiser- Cost-based v/s Rule-based

Early query optirnisers developed for the System R Database Management System

(DBMS) used a simple cost function to estimate the best execution strategy based

on CPU operation and number of I/0 accesses.

Cost Function= Time to perform CPU operation x Number of CPU operations
+

Time to perform I/0 operation x Number of I/0 operations.
(Meechan, 1988)

The strategy resulting in the least value of the cost function was selected as the

best execution strategy. Today's DBMS systems make use of the rule-based or

cost-based optimiser. The rule-based optimiser bases the execution plan on some

pre-defmed rules. These rule3 allow the optimiser to determine whether to perform

an indexed scan or a full table scan. The cost-based optimiser chooses the optimal

execution plan based on flexible rather than on rigid rules. It considers database

variables such as the relation size, the selectivity of the index, the amount of

clustering of data to fmd the best execution path. The rule-based optimiser is

sensitive to the order in which the tables are specified in a query. It does not

consider the statistical distribution of data in the tables being accessed and

therefore performs poorly with complex queries involving many tables (Roti,

1996). The query optimiser needs to have access to the relevant statistics about the

tables and the join condition to determine the right join method. The ratio of the

number of tuples to be retrieved from a relation to the total number of tuples that

exists in that relation, that is the selectivity factor is an important factor that is

considered by both types of optimisers for selection of the optimum execution

t6

strategy.

Join Operator
The join operator is provided by the relational algebra as defined by Codd (1970).

It is used to combine data from two relations. A more precise definition is given by

Stanczyk (1991), who defines the join as the combination "of tuples from two

operand relations that are related via a common attribute(s)". When more than two

relations are involved, the join is said to be a multiway join. A multiway join

processes the join as a series of joins between two relations.

Relational algebra is useful to define new relations as it offers a wide range of

operations. In the relational algebra, the expression R(Al,A2, ... , An) denotes a

relation named R with attributes AI, A2, ... ,An. The attribute value is based on a

domain. The domain defmes the set of possible values that an attribute can contain

(Atzeni & De Antonellis, 1993). The relation maps to a table in the database. The

rows of the table correspond to the tuples <a1,k. a2,k, ••• ,an,k> in the relation.

Relation R

A, A";J. Attribute Names

al,l /an?' Attribute Values

.....

IC"'·' ~ Tuple

Fignre 4: Attributes and tuples as expressed in relational algebra.

17

The relational algebra contains operations such as union, difference, product

(Cartesian operation), theta-selection, projection, intersection, division and join.

The join operation is an essential operation of the relational algebra. The most

common join between two relations is the natural join. The natural join is

implemented using the Cartesian product. For example, when a relation R with n

tuples is joined to another relation S with m tuples, a result relation with (n x m)

tuples is built. The theta join is a natural join that allows for operators to be

defined on the relations (Pascal, 1993). lfthe equality operator is applied between

two attributes, then the join can be further defined as the equality join.

The theta join of two relations RandS is written as:

R !><] rl•l e •(b) S

where r(a) 0 s(b) defines the join condition between two relations RandS.

The figure below shows the result of joining the relations R and S with the

following join condition:

R !><] r(level) > s(levcl) S

Relation R RelationS
Employee EmpName Level Level Description
No
10000201 Mirella Paul 5 2 Clerical
10000245 Phil Collins 3 3 Valuation
10002441 Desire Lyn 4 4 Marketine
10000287 Anu Hall 2 5 Management

18

Employee EmpName Level Level Dept Name
No
10000201 Mirella Paul 5 2 Clerical
10000201 Mirella Paul 5 3 Valuation
10000201 Mirella Paul 5 4 Marketing
10000245 Phil Collins 3 2 Clerical
10002441 Desire Lyn 4 2 Clerical
10002441 Desire Lyn 4 3 Valuation

Figure 5: Res•dting relation from applying a theta join toR and S

The join operator is the most important and expensive operation in relational

database systems (Harris, 1995). This view is also shared by Li, Kitawaga and

Ohbo (1994) who state that the join operator is "indispensable in processing many

ad-hoc queries" (p. 648). The join operator needs to perform efficiently as it is

used extensively in relational query processing (Mishra & Eich, 1992). The join

operator is also the most difficult to process and optimise because of the number of

possible factors affecting this operator (Bennett et al., 1991). The number of

tables to be joined, the access paths and the join method used are some of the

."actors that need to be considered in join-type query optimis<ttion (Bennett et al.,

1991). Indeed, the choice of the right join method can offer a significant reduction

in the cost of the query (Cheng eta!., 1991).

Join Methods

The join method determines the way that the individual joins are processed when a

query is optimised. The three types of join method considered in this study were:

the nested loop, sort merge and hash join.

Nested Loop

The nested loop join is the simplest join method. h exploits the use of an index in

19

the inner relation (i.e., the larger relation). Each tuple of the outer relation, that is,

the smaller relation, is read and compared with all tuples in the inner relation that

satisfy the join condition to produce a result relation. The algorithm is as follows:

While there are unread tuples in the outer relation
read tuples from the outer relation into buffer B1

seek to the beginning.ofthe inner relation
while there are unread tuples in the inner relation

read tuples from the inner relation into buffer B2
inner loop
for each tuple r1 in B1

for each tuple r2 in B2
if r1 and r2 satisfY the join condition

place the resulting tuple in buffer BR
if the buffer BR is full, write it to the result relation.

(Harris, 1995, p. 25)

In order to increase its performance, the nested loop join is usually implemented as

a block read for the outer relation instead of a tuple read. This implementation

helps to minimise the number of physical IJO accesses. The nested loop join takes

advantage of the indexed inner relation. Blasgen and Eswaran (cited in Harris,

1995, p. 25) have implemented a nested loop algorithm that holds as many records

as possible from the outer relation in main memory. 'Rocking' was introduced to

improve the efficiency of the nested loop (Kim, 1980). Rocking refers to when the

inner relation is read from top to bottom for an outer relation and from bottom to

top for the next outer relation. This technique reduces the number of physical I/0

accesses on the inner relation since the blocks that have been read from the inner

relation are still in memory when the next pass through the outer relation occurs.

The cost of the nested loop is O(n x m) time where n and m are the number of

tuples in each relation for a simple implementation of the nested loop.

20

Sort Merge

The sort merge join makes use of sequential access. It works in two phases: a

sorting phase and a merging phase. Both relations are sorted first in order of the

join attributes, then the relations are scanned and finally tuples with matching join

attributes are merged. The algorithm below applies for equijoin.

Sort Phase

Sort tuples in relation Ron join attribute r(a)
Sort tuples in relation S on join attribute s(b)

Merge Phase
Read first tuple from relation R
Read first tuple from relation S
For each record of relation R do

{While s(b)< r(a) then
read next record of relation S
Ifr(a) = s(b) then

join rands
place record in resulting relation Q }

(Mishra & Eich, 1992, p. 73)

The performance of this join method is sensitive to whether the join column

contains unique values or not. Non-uniqueness means that several passes through

the inner relation are needed and consequently additional input output accesses are

required (Yu & Cornell, 1991, p. 624).

Consider the case where relation R contains two tuples rl and r2 with a join

attribute value 'x' and similarly, relationS contains three tuples sl, s2 and s3 with

the same join attribute value 'x'. Using the above algorithm, tuple rl is ftrst read

and tuples s 1, s2 and s3 are then read from the inner relation. When tuple r2 is

read, then the tuple foUowing s3 will be read. In this case, the resulting relation will

21

not include the join of tuple r2 with sl, s2 and s3 (Mishra & Eich, 1992).

The above algorithm can be modified so as to record the position where the read to

the inner loop started. Non unique join attribute values can then be accommodated

in the join algorithm. When a duplicate value is found, backtracking to the

recorded position occurs. If the buffer size is small and the soned data does not fit

in the buffer size, then more 1/0 is required as data will be fetched from disk to

memory frequently.

In the late 1970's, investigation by Blasgen and Eswaran (cited in Graefe et al.,

1994), concluded that the sort merge join was the most efficient join when large

tables were involved. They noted that the time required to perform a sort merge

was mainly dependent on the sorting time rather than the merging time. Mishra &

Eich (1992) also confrrmed that the sorting time determined the overall execution

time. Therefore, if the relations are already sorted, the time to process a sort merge

join can be minimised. The complexity of this method is based on the sort time and

is given a'i O(n Jog n) time for each relation where n is the number of tuples in the

relation.

The performance of the sort merge join is dependent on the number of passes

required during the merge phase. "Each additional pass means reading in and

writing out the relation one more time" (Yu & Cornell, 1991, 624).

The sort merge sorts both relations on the join attribute and then merges the results

22

using the matching tuples as the selection criteria. Reducing the number of passes

required to merge the pages can increase the performance of this join method. The

number of passes depends on the •number of way merge' (number of pages that

can be merged in a pass) provided by the sort merge algorithm. An 8-way sort

merge algorithm with 16 pages to be merged will be merged in 3 passes: one pass

to merge the first eight pages, another pass to merge the next eight pages and a

final pass to merge the two eight pages. Alternatively, if the sort merge uses a 16-

way merge, then the number of passes can be reduced to a single pass.

3"' pass

8 pages merged

2nd pass

8 pages merged 16 pages merged

Figure 6: Nonnal Merging

23

8 pages merged

16 pages merged

Figure 7: Delayed Merging

Similarly, the number of passes can be optimised by delaying the merge until all the

pages are read (Graefe et al. 1994). For example, if a delayed merge was

considered for sixteen input pages and using an 8-way merge algorithm, then only

two passes would be required: one pass to merge the first eight pages, and the next

pass to merge the output with the remaining eight pages (See Figure 6 and Figure

7).

Hash Join

The simple hash join works in two phases. During the first phase, tuples from one

relation (the smaller relation) are read and a hashing function is applied to the join

attributes to form a hash key. The hashing function considers the page location and

the join attribute(s) to form the hash key. This key can then provide direct access

24

to the required page. A hash table containing these hash keys is kept in main

memory. In the second phase, tuples from the other relation are .. hashed on the join

attribute and the hash table is probed for matches" (Graefe et a!., 1994, p. 935).

When a match is found, tuples from the two relations are concatenated and added

to the resulting relation (Yu & Cornell, 1991). A simple algorithm is as follows:

For each tuple in relationS do
{hash on join attributes s(b)
place hash value in hash table}

For each tuple in relation R do
{hash on join attributes r(a)
if r hashes to a nonempty bucket of hash table for S then

{if r matches any s in bucket
join rands
place in resulting relation Q} }

(Mishra & Eich, 1992)

The complexity of this method is found to be O(n+m) time where n and m are the

number of tuples in each relation. The performance of this method is also

dependent on the hashing function used. Other authors describe several flavours of

the hash join, for example, GRACE hash join (Harris, 1995) and hybrid hash join

(Cheng et al, 1991). The hybrid hash join makes use of an index to read the values.

Each of these methods was implemented with the aim of improving the

performance of the hash join. The GRACE hash join method takes O(n+m)/k time

where k is the number of partitions in memory and (2 x k) processors are used

(Kitsuregawa, cited in Mishra and Eich, 1992). If the hash table fits in main

memory, then the hash join can compete with the sort merge and the nested loop

(Aronoff, Loney & Sonawalla., 1997; Gaede & Gunther, 1994; Graefe eta!., 1994;

25

Harris, 1995).

The hash join can have the advantage over the nested loop: a "single scan of the

input relations is required if one of the two relations can be completely contained in

memory" (Harris, 1995, p. 28). A hashing function is applied to the join attributes

of each tuple of the outer relation. The hash key formed is placed in a hash table or

'bucket'. For each tuple of the inner relation, the join attribute value is hashed

using the same hashing function. If the values hash to a bucket that contains values,

that is, a non-empty bucket, then the tuples satisfy the join condition.

Selectivity Factor
The selectivity factor refers to the ratio of the number of tuples retrieved from a

relation to the total number of tuples in that relation. Similarly, the join selectivity

factor refers to the proportion of tuples retrieved from the Cartesian product of

two relations that satisfy the join condition (Gardarin & V alduriez, 1988). The

query optimiser uses the selectivity factor to estimate the size of a query and

consequently plan the execution of the query effectively (Lipton, Naughton &

Schneider, 1990). Research is continuing on efficiently estimating a query size.

Both parametric and non-parametric methods have been proposed (Lipton &

Naughton, 1990). A high selectivity factor requires a large number of tuples to be

compared and hence produces a large result relation. The large amount of space

required by the result relation implies that a high number of blocks are needed.

Consequently, a high number of UO accesses is expected.

26

Literature on Previous Findings

In an attempt to derive heuristic rules for query optimisation, Meechan (1988)

investigated the effect of the join selectivity factor and the buffer availability on the

response time and CPU time for Nested Loop and Sort Merge joins. He conducted

the experiments using R* (an extension of System R DBMS) and suggested that

further investigation using other system configurations was necessary. He

concluded that the nested loop was more efficient than sort merge at low join

selectivity factor.

Some authors have alternate views. Mishra & Eich (1992) considered the nested-

loop to be the most inefficient join method at low join selectivity factor. They also

noted that the performance of hash join decreases as the selectivity factor

increases. These conflicting views suggest that the performance of join methods at

low join selectivity factor need to be further investigated.

Researchers at the Database Technology Institute at IBM compared the

performance of hybrid join, nested loop join and the sort merge join in a DB2

environment by varying the selectivity of outer table (Cheng et al., 1991). They

concluded that "merge join is most often the best when qualifying rows of inner

and outer table are large and the join predicate does not offer much ftltering"

(Cheng et al., 1991, p. 171).

The current research aimed to investigate how the join methods perform at varying

join selectivity factor. The performance of the join methods using a different

27

relational environment (Oracle database system) than the experiments described

above (system R aod DB2) was considered.

Summary
The join operation is a very important and expensive operation. The join method

is influenced by a number of variables such as the selectivity, the size of the tables,

the clustering of data in the table and the distribution of data in the table (Pascal,

1993). Maoy authors have indicated that the join selectivity factor is a key

component in join-query optimisation. Reports in the literature investigating join

methods have focused on the sort merge and the nested loop join methods. Hash

joins were seldom considered in previous studies as large main memories were

required for optimal performance. There is disagreement over which join method

is the best at low join selectivity.

28

Chapter Three: Method
This chapter describes the model that was used to carry out the current

experiments, data collection procedure and analysis. Throughout this chapter the

term table and relation are used interchangeably.

Experiments conducted by Lu and Carey (1985) considered how distributed join

algorithms performed in a local network. The effects of varying relation sizes,

join selectivities and join column value distributions on the performance of eight

different distributed join algorithms were investigated. Furthermore, the

methodologies used by the researchers at the Database Technology Institute

(1992) were noted. The following issues were noted:

• The relation sizes used in the experiments were 1000 tuples and 10,000 tuples.

• Enforcement of random values in join columns. This is necessary to ensure a

fair comparison of the join methods. Sort merge join algorithm perfonns an

internal sort and therefore the sort processing time is less for unsorted join

columns than sorted join columns.

The current experiments were designed in light of the above considerations.

Experimental Environment
The experimental environment consisted of a workstation running Personal Oracle

(version 7.3.2.2.1) for Windows NT 4.0 with a single 486 processor, 32MB RAM

and 1GB hard disk space. The environment was used to compare the performance

of the three common join methods: nested loop, sort merge and hash join, under

varying selectivities. The following timings were recorded when a join query

29

statement was executed for varying selectivities using different join methods:

• total elapsed time (response time)

• time spent in memory (CPU time)

• number of disk accesses

Database Setting

A limited buffer size was necessary to ensure that the large relation could not be

contained in the buffer cache. The database buffer was limited to 200 blocks

where each block occupied 2 KB. The hash join algorithm performs well if both

relations can fit in memory. In order to ensure an unbiased treatment of the join

methods, the size of the buffer cache was limited so as to ensure that the large

relation could not fit in the buffer cache. The number of blocks to be transferred

in one physical read was limited to 16 blocks or 32 KB of data. If more blocks

were to be fetched from disk to memory in one physical read, then less 110 would

have been required.

Tables and Columns Settings

A join always involves two relations and the experiments considered the join

between a small and a large relation. The small relation (or the outer relation) was

defined as occupying less than 32 KB and the larger reh..jon (or the inner

relation) as occupying more than 32Kb. The experiments consisted of a small

relation of 1000 tuples requiring a storage space of 30Kb. The large relation

consisted of 10,000 tuples and occupied 500Kb. Both tables consisted of four

columns.

30

Table 4: Table and Column Settings

Table Column Data Tvne Kev Domain Snecial values
Outer Column! Number (5) Primary key l- !000 Unique

random values
Column2 Char llOl
Column3 chair1m
Column4 Number (4) 6001 -7000 Unique

random values

Inner Column! Number 16\ Primarv Kev !000- 1!000 Uniaue values
Column2 Char (36\-
Column3 Number 17\ 1-50000
Column4 Number 15\ Foreign Kev I- !000 Random values

The table above shows the values contained in the columns. An index was defined

on the column4 on the inner table as the nested loop join performs an index scan

on the inner relation.

Procedure

Initialisation of Variables

In order to obtain performance timings, several variables were initialised both at

the database level and session level. The database initialisation file (Appendix A)

was modified so that statistics were collected when a query statement was run.

This was achieved by adding the following lines to the database initialisation file.

• TIMED_STATISTICS set to TRUE to enable collection of timed statistics

such as CPU and elapsed time.

• USER_DUMP _DEST specifies the directory name on the file system where

the trace fLies are generated. This was set to c:\amallet\trace.

Tracing was switched on for the session so as to obtain the access path and the join

31

method used by the query statement as well as other infonnation such as the

number of rows retrieved from the database.

• ALTER SESSION SET SQL_TRACE =TRUE;

• ALTER SESSION SET SQL_TRACE =FALSE:

Database Creation
The tables were created and populated using SQL statements (Appendix B). The

creation of unique random values for the join attribute was achieved through the

use of a program written by Windy Weaver & Mike Raulin (1994). This program

generates unique random numbers for a given range and outputs the random

numbers to a text f11e (Refer Appendix G). Unix commands were executed to

convert the text file to a format that could be read by the PUSQL procedure

(Refer Appendix D). After formatting, each line contained a single number instead

of a string of numbers. The Oracle built-in package 'UTL_FILE' was used to read

data from this file.

Optimiser hints

Three different experiments were set up to test the hypotheses. Each experiment

will be described in the following section.

In order to force the optimiser to use a particular join method, hints were specified

in the join query statement. In the Oracle environment, hints are specified after the

SELECf statement. For example, the query below forces the optimiser to use a

sort merge join method.

32

SELECT/*+ USE_MERGE(QUO, CUS) */
cus.name, quo.quote_no

FROM quote quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND cus. postcode < 6101;

Selectivity Factor

The join selectivity factor is computed as follows:

Consider a join between a small and large relation.

The small relation consists of 100 tuples.

The large relation consists of 1000 tuples.

The result relation consists of 10 tuples.

The join selectivity factor is:

10/(100*1000) = 0.0001.

The selectivity of a table was calculated as follows:

The number of tuples in outer table is 100.

The number of tuples to be retrieved from database is 10.

The selectivity of outer table is 10/100 or 0.1.

The selectivity factor was varied by changing the condition value defined against

the attribute. For example, consider the following query:

SELECT cus.cust_id, quo.quote_no
from quotes quo, customers cus
WHERE cus.cust_id = quo.quo_id
AND cus.postcode > n;

The value of 'n' was changed to vary the number of rows retrieved from the

database.

33

Experiments
Three experiments were conducted to consider the perfonnance of three different

join methods under varying conditions:

1. Varying the join selectivity factor for a l-to-10 relationship.

2. Varying the join selectivity factor for 1-to-1 relationship.

3. Applying a mter condition to the inner table for changing selectivity of the

outer table on a one-to-many relationship.

Each experiment was run fifteen times for each join method. Each join method

considered twelve different selectivities each requiring a unique query statement.

The order of the run of the join methods was varied to ensure consistency. Before

each run of the join method, the database was shutdown and restarted to ensure

that the database buffer cache was cleared and that a join method did not use data

present in the cache from the previous run.

The same outer table was used for these experiments. The outer table, in this case,

the CUSTOMERS table contained 1000 rows and the inner table, the QUOTES

table contained 10,000 rows.

I CUSTOMERS I 1 QUOTES I
Experiments 1 & 3

l CUSTOMERS I I QUOTE I Experiment 2

Figure 8: Entity-Relation Di·:~;gram showing the relation between the tables in
the experiments

34

Set up of Experiment 1

The two relations were joined by a one-to-many relationship. Each tuple in the

outer relation was related to ten tuples in the inner relation. The large (inner)

relation was populated by adding a thousand tuples at a time until ten thousand

tuples were added. The process of adding a thousand tuples at a time ensured that

the foreign key value consisted of random values ranging from 1 to 1000. The

random program generator program was run ten times to generate ten files

consisting of unique random values ranging from 1 to 1000. This process was

repeated ten times and a tuple from the outer table was always related to I 0 tuples

from the inner table.

The following query statement was executed:

General query statement Actual query statement
SELECT TAB l.C2, T AB2.Cl SELECT cus.name, quo.quote_no
FROM TAB!, TAB2 FROM quotes quo, customers cus
WHERE TABl.Cl =TAB2.C4 WHERE cus.cust_id = quo.cust_id
ANDTABI.C4<n; AND cus.postcode < 6101;

Set up of Experiment 2

The join between the two relations in this experiment was a one-to-one

relationship. A join attribute value from the outer relation could thus only exist

once in the inner relation. The large (inner) relation was populated from the large

relation used in experiment 1 with a null value set for the foreign key value (also

the join attribute value). A thousand tuples were then selected at random from the

large relation and their foreign key values were updated with a unique random

value ranging from 1-1000. This process ensured that only 1000 tuples contained

35

a join attribute value and that these values were from the domain defined for the

primary column of the inner relation.

The same query statement as in experiment I was executed:

General query statement Actual query statement
SELECT TAB l.C2, TAB2.C I SELECT cus.name, quo.quote_no
FROM TAB I, TAB2 FROM quoti!S quo, customers cus
WHERE TABI.CI ~ TAB2.C4 WHERE cus.cust_id; quo.cust_id
AND TABI.C4 < n; AND cus.postcode < 6101;

Set Up of Experiment 3

The inner relation was populated in such a way that half of the values contained in

column3 had a value of 50000. The other half contained unique random numbers

ranging from 1 to I 0000. A filter condition was applied to the inner table so that

for 50% of the tuples satisfied the condition when the outer table selectivity varied.

The following query statement was considered:

General query statement Actual query statement
SELECT TAB l.C2, TAB2.C I SELECT cus.name, quo.quote_no
FROM TAB I, TAB2 FROM quotes quo, customers cus
WHERE TABI.Cl ~ TAB2.C4 WHERE cus.cust_id = quo.cust_id
AND TABI.C4 < n AND cus.postcode < 600 I
AND TAB2.C3< 50000; AND auo.amount < 1000001;

Data Conversion to SPSS Data File

For every run of the join method, a trace file was generated. The O:mcle utility

TKPROF was used to format the generated trace file (15 files per join method or

45 files per experiment) into a text file. The fonnatted r::e provided useful

infonnation such as the execution plan of the join query statement as well as

36

statistics about the CPU time, the response time and the number of data blocks

read. The execution plan provided details such as the access paths and join

methods used.

A UNIX script (detailed in Appendix D) was then run against the formatted text

files to extract the required data into a SPSS readable format. The extraction of

data worked in two phases:

I. The formatted files were scanned one at a time for the lines containing the

performance data and these lines were then written to separate text files.

2. These text files were scanned to extract selected fields (such as response time,

CPU time and number of disk reads) and these fields were then stored in separate

data files.

The data files were loaded directly into SPSS. This prevented unnecessary typing

or data entry error.

Pilot Study

The experimental and recording procedures were tested in a pilot study. The pilot

study considered the performance of the nested loop, sort merge and hash join

methods for a small and a large relation and focused on:

• eleven distinct selectivity factors

• a 1-to-1 0 relationship.

The experiment wa'i run 10 times for each type of join method.

37

Main Study
The main study measured the perfonnance of the nested loop, sort merge and hash

join methods for a small and a large relation and considered the following:

• twelve distinct selectivities for the outer table,

• twelve distinct join selectivity factors,

• a one-to-one relationship, one-to-many relationship, and

• a predicate applied to inner table for a one-to-many relationship.

Three set of experiments were run:

• Response time v/s join selectivity factor for a one-to-one relationship,

• Response time v/s join selectivity factor for a one-to-many relationship,

• Response time v/s outer table selectivity when a predicate was applied to the

inner relation for a one-to-many relationship.

The CPU time, the response time and the number of I/0 reads were measured.

However, only the response time was required to test the hypotheses. The other

data collected was used to graphically show the effect of the join method on the

selectivity factor.

38

Data Analysis
The response time was classified as low, medium and high (See Table 5).

Table 5: Classification of response time

Response Percentage of number of Join Selectivity Join Selectivity
time tuples retrieved for a join Factor for a one- Factor for a
classification condition to the total number to-one one-to-many

of tuples retrieved if all tuples relationship relationship
satisfies the condition

Low 0- 10 <=0.00001 <=0.0001

Medium 11 -59 > 0.00001 and > 0.0001 and
< 0.00006 < 0.0006

High 60- 100 >- 0.00006 >- 0.0006

The hypotheses were initially tested using a t-test. At-test is used for independent

samples of sample size less than twenty and when the data is normally distributed.

This research dealt with three independent samples each with a sample size of 15,

that is, three experiments with 15 runs each. However, the test of normality

showed that the data was not normally distributed for two cases (at low join

selectivity factor for the nested loop join for a one-to-one relationship and at high

join selectivity factor for the nested loop join for a one-to-many relationship).

Therefore, the Mann-Whitney test was used instead of the t-test. The Mann-

Whitney test is used for small sample size of less than 20 and when the data is not

normally distributed.

The first and second experiments considered two independent measures: join

method (nested loop, sort merge and hash join) and selectivity (low, medium and

high) The dependent measure was the response time and was measured in

39

seconds. The third experiment considered the effect of applying a filter condition

on the inner table when the number of rows retrieved from the outer table varied.

The independent variables were the selectivity (low, medium and high) of the outer

table and the predicate on the inner table (with, without). The dependent factor

was the response time.

Hypotheses

An alpha level of .05 was used for all statistical tests. The following hypotheses

were tested:

H1: For a one-to-many relationship with a low join selectivity factor, the nested

loop has a faster response time than the sort merge join method.

X 1 = response time for the nested loop

X2 = response time for the hash join

The data collected in experiment 2 were used to test this hypothesis. A Mann-

Whitney test was applied to the response time of the nested loop and hash join at

low join selectivity factor. If the probability value obtained from the test was less

than or equal to 0.05, then the null hypothesis was rejected.

H2: For a one-to-many relationship with a low join selectivity factor, the hash

join has a faster response time than the sort merge join method.

XI =response time for the hash join

X2 = response time for the sort merge

40

Ho: J.li=J.l,

HA:~I<;·)

The data collected in experiment 2 was used to test this hypothesis. A Mann

Whitney test was applied to the response time of the hash join and sort merge at

low join selectivity factor. If the probability value obtained from the test was less

than or equal to 0.05, then the null hypothesis was rejected.

Hr· For a one-to-many relationship with a high join selectivity factor, the sort

merge has a faster response time than the nested loop join method.

X 1 = response time for the sort merge

X2 = response time for the nested loop

Ho: J.l1=J.l2

HA: J.li<J.l,

The data collected in experiment l was used to test this hypothesis. A Mann

Whitney test was applied to the response time of the sort merge and nested loop at

low join selectivity factor. If the probability value obtained from the test was less

than or equal to 0.05, then the null hypothesis was rejected.

H
4

: For a one-to-many relationship with a high join selectivity factor, the hash

join has a faster response time than the sort merge join method.

X 1 = response time for the hash join

X2 = response time for the sort merge

Ho: J.l1=J.l2

HA: J.li<J.l,

41

The data collected in experiment l was used to test this hypothesis. A Mann

Whitney test was applied to the response time of the sort merge and nested loop at

low join selectivity factor. If the probability value obtained from the test was less

than or equal to 0.05, then the null hypothesis was rejected.

H
5

: For a one-to-one relationship with a low join selectivity factor, the nested

loop has a faster response time than the sort merge join method.

X 1 = response time for the nested loop

X2 = response time for the sort merge

Ho: ~~=~2

HA: ~~<~,

The data collected in experiment 2 was used to test this hypothesis. A Mann

Whitney test was applied to the response time of the nested loop and sort merge at

low join selectivity factor. If the probability value obtained from the test was less

than or equal to 0.05, then the null hypothesis was rejected.

H
6

: At high join selectivity factor, the nested loop join method has a faster

response time for a one-to-one relationship than for a one-to-many relationship.

X 1 = response time for the nested loop for a one-to-one relationship

X2 =response time for the nested loop for a one-to-many relationship

Ho: ~~=~2

HA: 111<~2

The data collected in experiment 2 was used to test this hypothesis. A Mann

Whitney test was applied to the response time of the nested loop at low and high

42

join selectivity factor. If the probability value obtained from the test was less than

or equal to 0.05, then the null hypothesis was rejected.

H.,: The sort merge join method with low selectivity of the outer relation gives a

Jaster response time when a predicate is applied to the inner relation than when

no predicate is applied.

X 1 = response time for the sort merge loop with a predicate on inner table at low

selectivity.

X2 = response time for the sort merge with no predicate on inner table at low

selectivity.

Ho: rt1=rt2

HA: rt,<rt,

The data collected in experiment 3 was used to test this hypothesis. A Mann

Whitney test was applied to the response time of the sort merge at low selectivity

with and without a predicate on the inner table. If the probability value obtained

from the test was less than or equal to 0.05, then the null hypothesis was rejected.

Hs: The sort merge join method with high selectivity of the outer relation gives a

faster response time when a predicate is applied to the inner relation than when

no predicate is applied.

Xl = response time for the sort merge loop with a predicate on inner table at high

selectivity.

X2 = response time for the sort merge with no predicate on inner table at high

selectivity.

43

The data collected in experiment 3 was used to test this hypothesis. A Mann-

Whitney test was applied to the response time of the sort merge at low selectivity

with and without a predicate on the inner table. If the probability value obtained

from the test was less than or equal to 0.05, then the null hypothesis was rejected.

Limitations
This research has some limitations:

• Whenever an Oracle instance is started, a number of processes are also started.

These processes conununicate with each other via the shared memory known as

the Shared Global Area (SGA). The SGA consists of the shared pool, the data

block buffer cache and the redo log buffer .

.?t~' I fo;;;;o;;;;;;;
c ::>~'"'"'"
~~olog:> ····················

< :;.
c :::>
Control
Files

Server

Client

Figure 9: An Oracle Instance

.I SYSTEM GLOBAL AREA

I los Block Cache IIRcdo Log Buffer I
I Shared Pool I

, , ,
Shadow Shadow Shadow
Process Process Process

----·----------r---------·-----·--t··--------------r-----
User User User
Process Process Process

The shared pool contains parsed SQL statements. Whenever a SQL statement is

executed, the statement is parsed and stored in the shared pool. Before a SQL

44

statement is parsed, the shared pool is first checked to see if the parsed

statement already exists .. If the parsed statement is found, then the cost of

executing that statement will be reduced. It is therefore necessary to ensure that

the shared pool is empty before each run of the experiment so that the elapsed

time better reflect the time taken to parse the statement. When the shared pool

becomes full, objects are removed from the pool on a least recently used (LRU)

basis (Urman, 1996, p. 476). Additions and deletions of objects cause the

shared pool area to become fragmented. Consequently, to prevent

fragmentation and to ensure a clean environment for every run, the shared pool

need to be refreshed. The following command was executed before each run of

the experiment:

ALTER SYSTEM FLUSH SHARED _pOOL.

• The database block (DB) buffer cache in the SGA stores copies of the database

blocks. Blocks are loaded in the DB buffer cache when a process reads data.

from the database The database buffer processes data that in a LRU fashion. To

ensure that the' buffer cache is empty for every run, the database was shutdown

and restarted after each run.

• The execution of the experiments could have been automated in such a way that

a batch job executed all the runs for the different join methods. However, since

the NT operating system provides for parallel processing and therefore allocates

processing time to each processes, the experiments would not have reflected the

relevant time. A single run of the experiment was executed at a time in order to

45

ensure an unbiased treatment of the runs.

• The sort merge method first sorts both tables on the join colunms and then

performs a merge using the join colunm. If the columns are already sorted, then

the time taken to process a join using the sort merge method will be reduced.

Consequently, to ensure an unbiased treatment of the join method, the join

column consisted of random generated values.

• It was found that the NT operating system crashed when the TKPROF utility

was run against the generated trace files. After investigation of this unexpected

behaviour, it was found that TKPROF did not support the word 'APPNAME'

found in the trace files. The problem was fixed by removing that word from the

generated trace fJ.les.

• Under Windows 95 environment, the generated trace files did not record the

CPU time. Consequently, Windows NT environment was used.

• Random values were generated in a text ftle using the random generator

program. During creation of the tables, this text file was read from a SQL

procedure using a built-in Oracle package. However, it was found that this

package could not be used under Windows NT version 4.0 but could be

successfully used under Windows NT version 3.5. Therefore, the creation of the

database was done under NT 3.5 and the database was later exported to NT

4.0.

46

• To ensure a fair treatment of the join methods, the order of the runs for the join

methods was varied.

Summary

It was found that the design of this experiment was a lengthy activity as there

were several essential conditions to be satisfied before setting up the database.

The limitations of this research also added to the complexity of the set up. The

solving of the problems encountered with the software and hardware consumed a

considerable amount of time.

47

Chapter Four: Results

Hypothesis I -Nested Loop vis Sort Merge allow join selectivity for 1-to-10

H,: For a one-to-many relationship with a low join selectivity factor, the nested

loop has a faster response time than the sort merge join method.

X 1 = response time for the nested loop

X2 = response time for the sort merge

Table 6: Response times for the nested loop and sort merge at low join
selectivity factor for a one~to~rnany relationship

Runs
I
2
3
4
5
6
7
8
9
10
11
12
13
14
15

NLLow
4.59
4.82
4.58
4.87
4.85
4.56
4.76
4.63
4.76
4.71
4.21
4.62
4.87
4.77
4.65

SMLow
6.70
6.47
6.71
6.16
6.57
7.07
7.03
6.44
6.05
7.11
7.20
7.45
6.72
7.13
7.20

NL Low- Response time of Nested Loop
at low join selectivity factor
SM Low - Response time of Sort Merge
at low join selectivity factor

Table 6 shows the data used to test the above hypothesis. The Mann-Whitney test

was applied to the data

48

Mann-Whitney Confidence Interval and Test

NL Low N = 15 Median =
SM Low N = 15 Median =
Point est~ate for ETA1-ETA2 is
95.4 Percent CI for ETA1-ETA2 is
w = 120.0

4.7100
6.7200

-2.1500
(-2.4201,-1.8500)

Test of ETAl = ETA2 VB ETA1 < ETA2 is significant at
0.0000
The test is significant at 0.0000 (adjusted for ties)

Figure 10: Minitab output showing the test for Hypothesis l using the Mann·
Whitney test

The figure above shows that, at an alpha level of 0.05, the response time of the

nested loop is significantly less than the response time of the sort merge at low join

selectivity factor for a one-to-many relationship. Since the probability value 0.0000

is less than 0.05, therefore the null hypothesis is rejected. As a result, the nested

loop performs better than the sort merge at low join selectivity factor for a one-to-

many relationship.

Hypothesis 2- Hash Join vis Sort Merge allow join selectivity for J.to-10

H2: For a one-to-many relationship with a low join selectivity factor, the hash

join has a faster response time than the sort merge join method.

X 1 = response time for the hash join

X2 = response time for the sort merge

49

Table 7: Response times for the sort merge and hash at low join selectivity
factor for a one-to-many relationship

Runs
I
2
3
4
5
6
7
8
9
10
II
12
13
14
15

SMLow
6.70
6.47
6.71
6.16
6.57
7.07
7.03
6.44
6.05
7.11
7.20
7.45
6.72
7.13
7.20

HJLow
4.96
4.98
4.74
4.78
4.71
4.73
4.91
4.84
4.87
5.00
4.88
4.97
4.94
5.13
4.75

SM Low - Response time of Sort Merge
at low join selectivity factor
HJ Low -Response time of Hash Join
at low join selectivity factor

Table 7 shows the data used to test the above hypothesis. The Mann-Whitney test

was applied to the data.

Mann-Whitney Confidence Interval and Test

HJ Low N = 15 Median =
SM Low N = 15 Median =
Point estimate for ETA1-ETA2 is
95.4 Percent CI for ETA1-ETA2 is
w = 120.0

l. 5500
6.7200

-5.2300
(-5.5599,-5.0101)

Test of ETAl = ETA2 VB ETAl < ETA2 is significant at
o.oooo
The test is significant at 0.0000 (adju~ted for ties)

Figure 11: Minitab output showing the test for Hypothesis 2 using the Mann·
Whitney test

The figure above shows that, at an alpha level of 0.05, the response time of the

hash join is significantly less than the response time of the sort merge at low join

selectivity factor for a one-to-many relationship. Since the probability value 0.0000

50

is less than 0.05, therefore the null hypothesis is rejected. As a result, the hash join

performs better than the sort merge at low join selectivity factor for a one-to-many

relationship.

Hypothesis 3- Nested Loop vis Sort Merge at high join selectivity for 1-to-10
Hr· For a one-to-many relationship with a high join selectivity factor, the sort

merge has a faster response time than the nested loop join method.

X 1 :::; response time for the sort merge

X2 = response time for the nested loop

Table 8: Response times for the sort merge and nested loop at high join
selectivity for a one-to-many relationship

Runs
I
2
3
4
5
6
7
8
9
10
11
12
13
14
15

SM High
10.52
10.64
10.74
9.26
9.29
10.03
9.79
10.34
9.91
10.47
10.12
10.79
10.49
10.21
10.53

NL High
53.07
52.85
52.58
53.12
59.37
52.66
52.22
52.79
53.54
53.63
52.77
52.60
53.52
57.59
53.54

SM High -Response time of Sort Merge
at high join selectivity factor
NL High -Response time of Nested Loop
at high join selectivity factor

Table 8shows the data used to test the above hypothesis. The Mann-Whitney test

was applied to the data.

51

Mann-Whitney Confidence Interval and Test

SM High N = 15- Median =
NL High N = 15 Median =
Point estimate for ETAl-ETA2 is
95.4 Percent CI for ETA1-ETA2 is
w = 120.0

10.340
53.070

-42.890
(-43.400,-42.429)

Test of ETAl = ETA2 vs ETA1 < ETA2 is significant at
0.0000
The test is sinnificant at 0.0000 (adjusted for ties\

Figure 12: Minitab output showing the test for Hypothesis 3 using the Mann
Whitney test

The figure above shows that, at an alpha level of 0.05, the response time of the sort

merge is significantly less than the response time of the nested loop at high join

selectivity factor for a one-to-many relationship. Since the probability value 0.0000

is less than 0.05, therefore the null hypothesis is rejected. As a result, the sort

merge performs better than the nested loop at high join selectivity factor for a one-

to-many relationship.

Hypothesis 4- Hash joi11 vis Sort Merge at highjoi11 selectivity for 1-to-10

H4: For a one-to-many relationship with a high join selectivity factor, the hash

join has a faster response time than the sort merge join method.

X l = response time for the hash join

X2 = response time for the sort merge

52

Table 9: Response times for the hash Join and sort merge at high join
selectivity for a one-to-many relationship

Runs HJHigh
I 4.96
2 4.98
3 4.74
4 4.78
5 4.71
6 4.73
7 4.91
8 4.84
9 4.87
10 5.00
11 4.88
12 4.97
l3 4.94
14 5.13
15 4.75

SM High
10.52
10.64
10.74
9.26
9.29
10.03
9.79
10.34
9.91
10.47
10.12
10.79
10.49
10.21
10.53

1

HJ High- Response time of Hash Join
at high join selectivity factor
SM High -Response time of Sort Merge
at high join selectivity factor

Table 9 shows the data used to test the above hypothesis. The Mann-Whitney test

was applied to the data.

Mann-Whitney Confidence Interval and Test

HJ High N = 15 Median =
SM High N = 15 Median =
Point estimate for ETA1-ETA2 is
95.4 Percent CI for ETA1-ETA2 is
w = 120.0

4.880
10.340
-5.460

(-5.660,-5.120)

Test of ETAl = ETA2 vs
0.0000

ETA1 < ETA2 is significant at

Figure 13: Mini tab output showing the test for Hypothesis 4 using the Mann·
Whitney test

The figure above shows that, at an alpha level of 0.05, the response time of the

hash join is significantly less than the response time of the sort merge at high join

selectivity factor for a one-to-many relationship. Since the probability value 0.0000

is less than 0.05, therefore the null hypothesis is rejected. As a result, the hash join

53

performs better than the sort merge at high join selectivity factor for a one-to-many

relationship.

Hypothesis 5 ·Nested Loop vis Sort Merge at low join selectivity for J.J

H5: For a one-to-one relationship with a low join selectivity factor, the nested

loop has a faster response time than the sort merge join method.

Xl ::::response time for the nested loop

X2 :::: response time for the sort merge

Table 10: Response times for the nested loop and sort merge at low join
selectivity for a one-to-one relationship

Runs
I
2
3
4
5
6
7
8
9
10
11
12
13
14
15

NLLow
0.92
1.02
1.05
0.81
1.01
1.01
0.83
0.96
1.01
1.03
1.05
0.93
1.04
1.06
1.04

SMLow
4.53
4.74
4.95
5.45
4.46
4.98
4.96
5.25
5.04
5.08
5.00
5.38
4.97
5.20
4.91

NL Low - Response time of Nested Loop
at low join selectivity factor
SM Low -Response time of Sort Merge
at low join selectivity factor

Table 10 shows the data used to test the above hypothesis. The Mann-Whitney test

was applied to the data.

54

Mann-Whitney Confidence Interval and Test

NL Low N = 15 Median =
SM uOW N = 15 Median =
Point estimate for ETA1-ETA2 is
95.4 Percent CI for ETA1-ETA2 is
w = 120.0

1.0100
4.6100

-3.5900
{-3.7102,-3.5401)

Test of ETAl = ETA2 VB ETA1 < ETA2 is significant at
0.0000
The test is significant at 0.0000 (adjusted for ties)

Figure 14: Minitab output showing the test for Hypothesis 5 using the Mann
Whitney test

The figure above shows that, at an alpha level of 0.05, the response time of the

nested loop join is significantly less than the response time of the sort merge at low

join selectivity factor for a one-to-one relationship. Since the probability value

0.0000 is less than 0.05, therefore the null hypothesis is rejected. As a result, the

nested loop join performs better than the sort merge at low join selectivity factor

for a one-to-one relationship.

Hypothesis 6- At high join selectivity, J.to-1 vis 1·to·10for Nested Loop

H6: At high join selectivity factor, the nested loop join method has a faster

response time for a one-to-one relationship than for a one-to-many relationship.

Xl =response time for the nested loop for a one-to-one relationship

X2 =response time for the nested loop for a one-to-many relationship.

55

Table 11: Response times for the nested loop and sort merge at high join
selectivity for a one·to·one relationship

Runs NLHigh NLHigh
(1-1) (1-10)

I 3.82 53.07
2 3.98 52.85
3 3.93 52.58
4 4.16 53.12
5 3.81 59.37
6 3.75 52.66
7 3.63 52.22
8 3.90 52.79
9 3.77 53.54
10 3.84 53.63
11 4.01 52.77
12 4.02 52.60 NL High (1-1)- Response time of Nested
13 3.95
14 4.15
15 3.87

53.52
57.59
53.54

Loop at high JSF for a one-to-one relationship
NL High (1-10)- Response time of Nested Loop
at high JSF for a one-to-many relationship

Table 11 shows the data used to test the above hypothesis. The Mann-Whitney test

was applied to the data.

Mann-Whitney Confidence Interval and Test

NL ·High N = 15 Median =
NL High N = 15 Median =
Point estimate for ETA1-ETA2 is
95.4 Percent CI for ETA1-ETA2 is
w = 120.0

3.900
53.070

-49.140
(-49.620,-48.830)

Test of ETA1 = ETA2 VS ETAl < ETA2 is significant at
o.oooo
The test is significant at 0.0000 (adjusted for ties)

Figure 15: Minitab output showing the test for Hypothesis 6 using the Mann
Whitney test

The figure above shows that, at an alpha level of 0.05, the response time of the

nested loop join for a one-to-one relationship is significantly less than the response

56

time of the nested loop for a one-to-many relationship at high join selectivity

factor. Since the probability value 0.0000 is less than 0.05, therefore the null

hypothesis is rejected. As a result, the nested loop join for a one-to-one

relationship performs better than the nested loop for a one-to-many relationship at

high join selectivity factor.

Hypothesis 7- At low join selectivity, SM with predicate vis SM no predicate

H7: The sort merge join method with low selectivity of the outer relation gives a

faster response time when a predicate is applied to the inner relation than when

no predicate is applied.

X 1 = response time for the sort merge with a predicate applied to the inner relation

X2 ;;::; response time for the sort merge with no predicate applied to the inner

relation

57

Table 12: Response times for the sort merge at low join selectivity for a one·
to-many relationship with and without a predicate applied to the inner table

Runs

I
2
3
4
5
6
7
8
9
10
11
12
13

SMLow
Pred
3.79
3.98
4.21
4.41
4.12
4.49
4.54
4.49
4.61
4.60
4.49
4.75
4.62

SMLow
No Pred
6.70
6.47
6.71
6.16
6.57
7.07
7.03
6.44
6.05
7.11
7.20
7.45
6.72

SM Low Pred- Response time of Sort Merge
at low JSF with a predicate on inner relation

14 4.70
15 4.46

7.13
7.20

SM Low No Pred- Response time of Sort Merge
at low JSF with no predicate on inner relation

Table 12 shows the data used to test the above hypothesis. The Mann-Whitney test

was applied to the data.

Mann-Whitney Confidence Interval and Test

SM Low P N = 15 Median =
SM Low N N = 15 Median =
Point estimate for ETA1-ETA2 is
95.4 Percent CI for ETA1-ETA2 is
w = 120.0

4.4900
6.7200

-2.4500
(-2.6501,-2.0800)

Test of ETAl = ETA2 VB
0.0000

ETAl < ETA2 is significant at

The test is significant at 0.0000 (adjusted for ties)

Figure 16: Minitab output showing the test for Hypothesis 7 using the Mann·
Whitney test

The figure above shows that, at an alpha level of 0.05, the response time of the sort

merge with a predicate on the inner table is significantly less than the response time

of the of the sort merge with no predicate on the inner table at low join selectivity

factor. Since the probability value 0.0000 is less than 0.05, therefore the null

58

hypothesis is rejected. As a result, the sort merge with a predicate on the inner

performs better than the response time of the of the sort merge with no predicate

on the inner table at low join selectivity factor.

Hypothesis 8 • At high join selectivity, SM with predicate vis SM no predicate

Ha: The sort merge join method with high selectivity of the outer relation gives a

faster response time when a predicate is applied to the inner relation than when

no predicate is applied.

Xl :::response time for the sort merge with a predicate applied to the inner relation

X2 = response time for the sort merge with no predicate applied to the inner

relation

59

Table 13: Response times for the sort merge at high join selectivity for a one
to-many relationship with and without a predicate applied to the inner table

Runs SMHi SMHi
Pred NoPred

I 5.75 10.52
2 5.61 10.64
3 6.22 10.74
4 6.18 9.26
5 5.87 9.29
6 6.58 10.03
7 6.29 9.79
8 6.15 10.34
9 6.42 9.91
10 6.51 10.47
11 6.44 10.12
12 6.59 10.79 SM Hi Pred - Response time of Sort Merge
13 6.73 10.49 at high JSF with a predicate on inner relation
14 6.43 10.21 SM Hi No Pred · Response time of Sort Merge
15 6.31 10.53 at high JSF with no predicate on inner relation

Table 13 shows the data used to test the above hypothesis. The Mann-Whitney test

was applied to the data.

Mann-Whitney Confidence Interval and Test

SM Hi Pr N = 15 Median =
SM Hi No N = 15 Median =
Point estimate for ETA1-ETA2 is
95.4 Percent CI for ETA1-ETA2 is
w = 120.0

6.310
10.340
-4.010

(-4.270,-3.650)

Test of ETAl = ETA2 VS
0.000

ETAl < ETA2 is significRnt at

Figure 17: Minitab output showing the test for Hypothesis 8 using the Mann·
Whitney test

The figure above shows that at an alpha level of 0.05, the response time of the sort

merge with a predicate on the inner table is significantly less than the response time

60

of the of the sort merge with no predicate on the inner table at high join selectivity

factor. Since the probability value 0.0000 is less than 0.05, therefore the null

hypothesis is rejected. As a result, the sort merge with a predicate on the inner

performs better than the response time of the of the sort merge with no predicate

on the inner table at high join selectivity factor.

61

Chapter Five: Discussion
The sensitivity with respect to varying selectivity of the response time, CPU time

and number of logical reads were studied for the following join methods: nested

loop, sort merge and hash join. The effect of applying a filter condition on the inner

table on the response time was also considered.

Initial Observations
The join selectivity factor refers to the ratio of the number of tuples that satisfy a

join to the total number of tuples present in a Cartesian product of the relations. A

high selectivity factor means that a large proportion of possible tuples from the

Cartesian product satisfies the join condition. A low join selectivity factor means

that a small proportion of tuples satisfies the join condition.

Testing of hypotheses HI and H5 showed that at low join selectivity factor, the

nested loop performed better than the sort merge join method for both a one-to-

one and a one-to-many relationship. Figure 19 and Figure 20 (see page 72) show

the response time measured for the join methods for varying join selectivity factors.

It can be observed from these figures that the hash join performs better than the

sort merge and nested loop at varying join selectivity factor. The testing of

hypothesis H2 and H4 lead to the conclusion that the hash join had a better

response time than the sort merge for a one-to-many relationship.

Testing Hypotheses H3 at a high join selectivity factor, the sort merge performed

better than the nested loop for a 1-to-10 relationship. The nested loop algorithm

62

would need to read 10 tuples from the inner relation for each tuple read from the

outer relation for a 1-to-10 relationship. The sort merge would read only tuples

that it can be joined to. Mishra and Eich (1992, p. 74) noted that "a tuple from the

outer relation is not compared with those tuples in the second relation with which

it cannot possibly join" for a sort merge join. This explains why the sort merge has

a better response time than the sort merge at high join selectivity factor fm a one

to-many relationship.

It was also observed that the cost of the sort merge was not impacted by the

degree of relationship. It can be seen from Figure 25 and Figure 26 (see page 75)

that the time taken to perform a sort merge for a one-to-one relationship and a

one-to-many relationship for a small and large relation is the same. Since the size

of the small and large relations used in both relationships are the same, then the

same amount of UO and processing is required to sort and merge the relations.

Testing hypothesis H6 showed that the nested loop performed better for a one-to

one relationship than a one-to-many relationship. This is because a tuple from the

outer relation need to access only one tuple from the inner relation instead of 10

tuples.

Testing hypotheses H? and H8 showed that the sort merge performed much better

when a predicate was applied to the inner table. Since only the tuples that satisfy

the join condition are sorted and merged, if less tuples are to be sorted, hence

merged, then the elapsed time is reduced.

63

Detailed Observations
It can be noted from Figure 19 (page 72) that the nested loop shows an

approximately linear increase in elapsed time when the number of tuples retrieved

from the database increases in contrast to the sort merge and hash join method.

The linear increase in response time for varying join selectivity for the nested loop

join is expected because of the way that the algorithm is implemented (please refer

to Algorithm on page 19). For each tuple of the outer table that satisfies the join

condition, all tuples from the inner relation are read via an index. If more tuples

from the outer relation satisfy the join condition, then more tuples from the inner

relation are accessed. For example, consider the join between the two relations

used in the one-to-many experiments. In this case, each tuple from the outer table

is related to 10 tuples of the inner relation. Therefore, if x tuples satisfy the join

condition for the outer relation, then lOx tuples from the inner relation will be read.

This results in a linear increase in elapsed time.

Figure 23 and Figure 24 (page 74) show that the number of JJO accesses for the

nested loop join method increases as the join selectivity factor increases. For every

qualifying tuple of the outer relation, a search for a matching value is done though

each level of index. For every match found, an 1/0 read is required.

In the experiments using a one-to-many relationship, an index was defmed on the

join column 'cust_id' for the large relation QUOTES. This index was a non-unique

index, as there existed more than one tuple with that same 'cust_id'. Therefore,

64

the number of reads through the B-tree indexes increases for non-unique indexes.

The figure below (adapted from Aronoff et al., 1997) illustrates the workings of

the indexed access. The root node is initially read. Then the leaves are accessed. If

the value of the index matches the required value, then the QUOTES table is

subsequently read. The figure below shows that if three tuples from the inner

relation satisfy the join condition, then 8 logical reads are required.

Root node of index

Read #I Root
branch

Read #2

Read #4 Read #6 Read #8

First Second Third No Match
Match Match Match

Read #3 Read #5 Read #7

"'-.. I /
QUOTES table blocks

Figure 18: Reads for Indexed access

The experiments showed that the hash join perfonnetl well under the different

conditions (See Figure 19 and Figure 20 on page 72). 1he performance of the hash

join method depends on whether the smaller relation .;an fit into main memory.

Harris (1995) noted that the hash join algorithm only required a single scan of the

input relations if one of the two relations can be completely contained in memory.

65

An in-memory hash table of the join colunm value in the small relation is first built

and if the relation is small enough to fit in memory, then the hash join competes

well with the other join methods. The experiments considered a small relation that

can be contained in memory. Therefore a single scan on the small relation is

required.

Yu and Cornell (1991) mentioned that the CPU time for the sort merge was

dependent on the size of the larger relation whereas the CPU time for the hash join

was dependent on the size of the smaller relation. As mentioned in the literature

review, the performance of the sort merge join is dependent on the number of

passes required to merge the relations. A larger relation occupies more pages and

therefore more passes may be required.

Figure 23 and Figure 24 (see page 74) show that the hash join and the sort merge

have a similar profile with respect to varying join selectivity factor. Graefe et al.

(1994) noted that the hash join and the sort merge have some similarities in the

way that a data set is processed. Both the hat:..t join and the sort merge makes use

of an in-memory algorithm to process the data set. The sort merge performs an

internal sort of the data (implemented by the quick sort or tournament tree

algorithm) while the hash join employs a hashing technique.

In the sort-based algorithms, a large data set is divided into subsets using a

physical rule, namely, into chunks as large as memory. These chunks are later

combined using a logical step, merging. In the hash-based algorithms, the large

data set is cut into subsets using a logical rule, by hash values. The resulting

66

partitions are later combined using a physical step, simply concatenating the

subsets or result subsets. Graefe et al. (1994, p. 936)

In both join methods, the amount of memory determines the effectiveness of the

merge or the hash. An increase in memory means that larger units of I/0 can be

allocated and therefore less paging and swapping occur. However, large pages

cause internal fragmentation and therefore can impact on the processor.

The number of UO reads depends on the number of different pages accessed during

a join. Figure 23 and Figure 24 (see page 74) show the number ofUO reads for the

join methods for varying join selectivity fact~rs. It was noted that the sort merge

has the same number of UO accesses for varying join selectivity factor. This is

because the sort merge makes use of "sequential access by prefetching multiple

data pages, amortizing disk seek and latency overhead over multiple page

transfers" (Cheng et al, 1991, p. 171). On the other hand, the nested loop requires

more UO than the other join methods because there are additional I/Os caused by

the retrieval of index pages.

The linear increase in CPU time for the nested loop join method as shown in

Figure 21 (on page 73) is due to an increase in paging and swapping. Paging

occurs when data is being moved from disk to main memory and swapping occurs

when data is being moved from memory to disk so as to release memory.

Therefore, the CPU is busy moving data to and fro instead of processing requests.

The page replacement strategy used by the data block buffer cache is the Least

Recently Used (LRU) algorithm. This means that the page that has been unused for

67

the longest time is replaced (Deitel, 1990). This has particular significance for the

sort merge algorithm. The number of way merges used by the sort merge algorithm

determines the efficiency of the sort merge. If the sort algorithm provides for a 16-

way merge, then it means that 16 pages are loaded into 16 buffer frames. If more

memory is required, then the first page loaded will be removed from memory. If

the buffer size is small, there will be unnecessary page faults since the first page

loaded will be swapped out and will then need to be accessed inunediately in the

next phase (Meechan, 1988). Also more passes will be required.

Predicate v/s No Predicate on the Inner Table

It can be observed from Figure 26 (page 75) that the sort merge join benefits the

most from applying a predicate on the inner table. The result of applying a

predicate on the inner table in the third experiment reduces the number of tuples

eligible to satisfy the join condition by 50%. Because the number of tuples from the

inner relation to be processed is halved, therefore the number of pages to be sorted

and merged is also halved. Therefore, the CPU time as well as the number of 110

reads required to perform the sort merge with a predicate on the inner table is also

reduced. The nested loop join and the hash join method are not affected by a

predicate on the inner table as the same number of tu pies from the inner table are

read (See Table 20 and Table 23 in Appendix G on pages 153 and 154).

Critique

Mishra and Eich (1992) stated that the "nested-loops method is considered the

most inefficient method to use in the case of low join selectivities" (p. 101). Mishra

68

and Eich (1992) argued that the nested loop is inefficient "because most of the

comparisons do not result in a match, and the effort is wasted" (p 101).

Alternatively, it could be considered that because there is no match, then there is

no need to access the block. This would imply that the number of logical reads

required for the nested loop would be reduced and consequently the response time

would be reduced This line of thought would therefore lead to the conclusion that

the nested loop is an efficient method at low join selectivity factor.

The current research concluded that the nested loop has a faster response time than

the sort merge join for both a one-to-many and a one-to-one relationship at low

join selectivity factor (See hypotheses HI and HS on pages 48 and 54). The results

therefore contradict the view ofMishra and Eich (1992) but agrees with the results

obtained by Meechan (1988) and Cheng at al. (1991). They both concluded that

the nested loop is better than the sort merge at low level of selectivity. The sort

merge algorithm requires all tuples of the outer table to be accessed. Effort is

therefore wasted in that case, as unqualified tuples for the join would still be

accessed. The sort merge join method is, consequently, the worst join method to

be used at low join selectivity factor.

It has further been affirmed that:

The advantage that hash joins have over the nested-loops method diminishes

as the selectivity factor increases. In this case. exhaustive comparison is useful

because of the large number of tuples participating in the join. Furthennore,

the nested-loops method does not have the overhead of doing hashing (Mishra

69

and Eich, 1992, p.!01).

However, in the current experiment, hypotheses H3 and H4 led to the conclusion

that at high selectivity factor, the hash join has a faster time than the sort merge

and that the sort merge has a faster response time than the nested loop for a one

to-many relationship. Furthermore, Figure 19 and Figure 20 (see page 72) show

that the hash join performs better than the sort merge and nested loop join methods

as the join selectivity factor increases. This means that the performance of the hash

join method is better than the nested loop join method at high selectivity factor and

this again contradicts the writings of the above authors.

As the join selectivity factor increases, more tuples are qualified for the join. In the

case of the nested loop join method, for each tuple from the outer relation that

satisfies the join condition, all tuples from the inner relation are read Consequently,

as the selectivity factor increases, more tuples need to be accessed and therefore

more time is spent reading the blocks. Alternatively, the hash join method performs

in-memory processing using the hash table to probe for matches. This type of

processmg IS fast since the amount of input/output accesses is reduced

considerably.

The result of the current research confirmed the results of Cheng et al's (1991)

study and showed that the nested loop has a higher response time than the hybrid

hash join as the selectivity increases.

70

Summary

The performance of the different join methods have been compared with respect

to the total elapsed time, CPU time and number of I/0 reads required to execute

different query statements retrieving different number of tuples. The results

obtained have been discussed with regards to the way that the different join

algorithm was implemented. It has been found that the views raised by some

authors are in contradiction with the results of this experiment as far as hypothesis

H1, H3, H4, HS were concerned. The current experiment agrees with Cheng et

al' s experiments (1991) and contradicts the views shared by Mishra and Eich

(1992).

71

The figures have been placed at the end of this chapter as they are cross
referenced several times throughout this chapter.

"

Mean Response Time v/s Join Selectivity Factor

Join Selectivity Factor (JSF}

' :
' ' ' ' '

•
(x 10 -4)

Figure 19: Effect of Join Selectivity on Response Time for a 1-to-10
relationship

Mean Response Times v/s Join Selectivity Factor

6
>-,-~, ;;:,·:--/ • '"\"-- HighJS~ • :;:et·:o;.:,,,. ·. E 5

;::
• 4 -+-Nested Loop • c 0
0 • -Sort Merge "' .!l 3 • • Hash Join a: 2 c Low'JSF' · _ • -~:_;;.~· •
" 0

0 2 3 4 5 6 7 B 9 10

Join Selectivity Factor (JSF) (x 10 -s)

Figure 20: Effect of Join Selectivity on Response Time for a 1-to-1
relationship

72

0 2 ' 4 5 6 7 8 9 10

Join Selectivity Factor (JSF) (x 10 4)

Figure 21: Effect of Join Selectivity on CPU Time for a 1-to-10 relationship

Mean CPU times v/s Join Selectivity Factor

0 2 3 4 5 6 7 8 9 10

Join Selectivity Factor (JSF) (X 10 -5)

Figure 22: Effect of Join Selectivity on CPU Time for a 1-to-1 relationship

73

Mean 10 reads v/s Join Selectivity Factor

5000
4500

• 4000
"C 3500 m
~ 3000
g 2500
c 2000
m

1500 •
" 1000

500
0

0 2 3 4 5 6 7 8 9 10

Join Selectivity Factor (JSF) (x 10 -4)

Figure 23: Effect of Join Selectivity on JJO Reads for a 1-to-10 relationship

Mean 10 reads v/s Join Selectivity Factor

1200

1000
• "C
m 800 • a:
g 600

c
m 400 •
" 200

0
0 1 2 3 4 5 6 7 8 9 10

Join Selectivity Factor (JSF) (x 10"5)

Figure 24: Effect of Join Selectivity on J!O reads for a 1-to-l relationship

74

70

60

50

~ u 40
0 •
fF .!!.. 30
&! 20

Nested Loop Predicate v/s No Predicate

0 01 ~ U M M M U M U
Outer Table Selectivity

Figure 25: Effect of applying a predicate on inner table for the Nested Loop
join method for a 1-to-10 relationship.

Sort Merge Predicate v/s No Predicate

12

10
'->>

8

6 /
4

2 --o- Sort Merge Pred.

0 '
- Sort Merge No Pred.

0 ~ ~ U M M U U U U
Outer Table Selectivity

Figure 26: Effect of applying a predicate on inner table for the Sort Merge
join method for a 1-to-10 relationship.

75

6

I 5

• 4

~-0 u 3 o.•
~i!.
a: 2
c
~

"'

Hash Join Predicate v/s No Predicate

---+---Hash Join Pred.

- Hash Join No Pred.
'~~~~~~~--~~~~~~~~

0 ~1 U U M M M ~ M M
Outer Table Selectivity

Figure 27: Effect of applying a predicate on inner table for the Hash Join
method for a 1-to-10 relationship.

76

Chapter Six: Conclusion

The response time refers to the total time taken for a query statement to execute.

The time includes the time taken by the CPU to process the query as well as the

time taken by the data blocks to be retrieved from disk.

The access time on a disk consists of three parts:

• seek time - time to move the disk head to the proper cylinder

• latency time - time to wait for the data to move under the appropriate

read/write head (March & Car lis, 1985).

• data transfer time - transfer data from disk to memory

These times depend on the location of data relative to the disk head. To ensure that

the data collected is a valid representation of the time measured, the experiments

were run several times and the mean of the individual data was used.

The experiments were also restricted to a single disk. The indexes and the tables

were kept on the same disk. The use of two separate disks would have reduced the

cost of the nested loop as indexes could have been read at the same time as the

tables. The separation of disk drives allows the disk head to read the data tables

while another disk head residing on the other disk reads the indexes.

77

Findings

The findings of this study are:

• Overall, the hash join performs better than the sort merge and the nested loop

under all varying conditions. The hash join has an advantage over the sort

merge in that hashing requires only one relation to be hold in memory whereas

the sort merge requires both relations in memory. The hash join also competes

well with the nested loop join method, as a single scan of the inner relation is

required in the case of the hash join.

• The nested loop join method is UO intensive. The nested loop is efficient when

a small number of tuples participate in the join. It was found that the nested

loop competes well with the hash join at low selectivity factor. However, at

high join selectivity factor, the nested loop is the worst join method to be used.

The results obtained from the experiments carried out by DataBase Technology

Institute, IBM (1991) also showed the nested loop to be the worst join method

at high selectivity factor even when two separate disks were used for the

indexes and the tables.

• The sort merge and the hash join perform well with filtering present on the

inner table. In both the above join methods, less tuples are retrieved from the

database and consequently, less data are to be processed. The presence of a

predicate on the inner table does not affect the nested loop join method as all

the records from the inner table are read and processed (Refer algorithm on

page 19).

78

Database Tuning
The experiments for this research were run in a controlled environment. In the real

world, there are other factors that may impact on the performance of join methods.

The costs of retrieving data from server to client can be significant. For example,

the physical distance between the client and the server and the packet size play an

important role in the network cost. In order to reduce the network costs, the

nested loop join method is usually implemented as a block read instead of a tuple

read.

The database system also needs to be carefully tuned to make optimum use of

available memory and to reduce the number of disk input/output accesses (disk

1/0s). The buffer cache, which holds copies of the table blocks, the sorted data and

indexes is a critical area of memory. A small buffer cache means that data needs to

be fetched constantly from disk to buffer cache. Alternatively, increasing the buffer

cache reduces the number of disk 1/0s required as less fetches are needed.

Similarly, the number of disk 1/0s can be reduced by increasing the size of the sort

area. A small sort area may require several runs for the data to be sorted and

therefore more 110 accesses are required. The sort area parameter is especially

useful for joins involving the sort merge join method.

The number of disk 1/0s can also be reduced by spreading the disk load across

devices and controllers. For example, the use of two separate disks for storing the

tables and the indexes can reduce the time required to access a block since both

tables and indexes can be read at the same time.

79

Recommendations
In light of the above discussion on database tuning and the results of the current

experiments, the following reconunendations can be made for a join query

processing using a large and a small table:

• The hash join method should be used for most cases. This join method has a

good rating under the different conditions. The cost-based optimiser present in

Oracle database system determines the join method to be used for a join query.

However, the join method chosen by the optimiser can be changed by the use

of hints in the query statement. For example, the following query statement

uses a hash join method:

SELECT/* +USE_HASH(QUO,CUS) */
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 640 I

• The nested loop join method can be used when the number of tuples

participating in the join is less than 10% of the maximum number of tuples that

could participate in the join. The nested loop join method requires an index to

be present on the join column of the inner table. To ensure that the index of the

inner table is used instead of the index of the outer table, the query hint

'USE_INDEX (inner table, outer table)' can be defmed in the query statement.

For example,

SELECT/* +USE_INDEX(QUO,CUS) */
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 640 I

When a large number of rows is retrieved from a join relation, the nested loop

performs poorly. The sort merge or the hash join should be used instead.

80

• The sort merge join method is efficient when a fJ.lter condition is defined

against the inner table. Consequently, the number of tuples retrieved from the

inner table is reduced. For example, in the query statement below, a predicate

is defmed aginst the inner table:

SELECT/*+ USE_MERGE(QUO, CUS) */
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 6001
AND amount< 50000 -- predicate applied to inner table

The hash join also competes well with the sort merge in this case.

Potential Future Research
Commercial database vendors are now marketing object-oriented database

management systems as a solution to the requirements of modern business. This

research could be extended to consider the effect of varying selectivity on the

performance of join methods in an object-oriented database management system.

An object-oriented database system consists of a set of objects that are connected

through their attributes. The objects communicate with each other through

methods. The main difference between the object-oriented model and the entity-

relational model is that objects have methods as well as attributes.

Just remember - when you think all is thought out, the future

remains.

(Based on the original idea of Bob Goddard).

8t

APPENDIX A • Initialisation Files and Set Up

Database Initialisation File

#$Header: init.ora 1.2 94/10/18 16:12:36 gdudey Osd<desktop/netware> $
init.ora Copyr (c) 1991 Oracle

~###~-#####-/!~####~

#Example INIT.ORA file

#This file is provided by Oracle Corporation to help you customize
#your RDBMS installation for your site. Important system parameters
are discussed, and example settings given.

#Some parameter settings are generic to any size installation.
#For parameters that require different values in different size
#installations, three scenarios have been provided: SMALL, MEDIUM
#and LARGE. Any parameter that needs to be tuned according to
#installation size will have three settings, each one commented
according to installation size.

#Use the following table to approximate the SGA size needed for the
#three scenarios provided in this file:

Block
Size

-------Installation/Database Size------
SMALL MEDIUM LARGE

2K 4500K 6800K 17000K
4K 5500K 8800K 21000K

#To set up a database that multiple instances will be using, place
#all instance-specific parameters in one file, and then have all
#of these files point to a master file using the !FILE command.
#This way, when you change a public
#parameter, it will automatically change on all instances. This is
#necessary, since all instances must run with the same value for many
#parameters. For example, if you choose to use private rollback segments,
#these must be specified in different files, but since all gc_ *
parameters must be the same ou all instances, they should be in one file.

#INSTRUCTIONS: Edit this file and the other !NIT files it calls for
#your site, either by using the values provided here or by providing
#your own. Then place an !FILE= line into each instance-specific
#!NIT file that points at this file.
################################# /111#/III/IH/111 /lt/1/ill/ /!!/#################

82

db_name ==oracle
db_files = 20
control_files = (C:\ORANT\DATABASE\ctllorcl.ora,
C:IORANT\DAT ABASE\ctl2orcl.ora)

compatible= 7.3.0.0.0

db_file_multiblock_read_count = 16 #INITIAL
db_file_multiblock_read_count = 8 #SMALL

#MEDIUM
#LARGE

db_file_multiblock_read_count = 16
db_file_multiblock_read_count == 32

db_block_buffers = 200
db_block_buffers = 200
db_block_buffers = 550
db_block_buffers = 3200

shared_pool_size = 6500000
shared_pool_size = 3500000
shared_pool_size = 6000000
shared_pool_size = 9000000

log_checkpoint_interval = 10000

processes = 50
processes = 50
processes = 100
processes = 200

dml_locks = 100
dml_Iocks = 100
dml_locks = 200
dml_locks = 500

log_buffer = 8192
log_buffer = 8192
log_buffer = 32768
log_buffer = 163840

#INITIAL
#SMALL
#MEDIUM
#LARGE

#INITIAL

#INITIAL

#SMALL
#MEDIUM
#LARGE

#SMALL
#MEDIUM
#LARGE

#INITIAL
#SMALL
#MEDIUM
#LARGE

#INITIAL
#SMALL
#MEDIUM
#LARGE

sequence_cache_entries = lO #INITIAL
sequence_cache_entries = lO
sequence_cache_entries == 30
sequence_cache_entries = 100

sequence_cache_hash_buckets = 10 #INITIAL
sequence_cache_hash_buckets = 10
sequence_cache_hash_buckets = 23

#SMALL
#MEDIUM
#LARGE

#SMALL
#MEDIUM

83

sequence_cache_hash_buckets = 89 #LARGE

audit_trail =true #if you want auditing
timed_statistics = true # if you want timed statistics
max_dump_file_size = 10240 #limit trace file size to 5 Meg each

log_archive_start =true #if you want automatic archiving

define directories to store trace and alert files
background_dump_dest=%RDBMS73%\trace
user_dump_dest=c:IAMALLET\trace
db_block_size = 2048
hash_multiblock_io_count= 16
optimizer_mode;:::;RULE
UTL_FILE_DIR=c:IAMALLET\script
snapshot_refresh_processes = 1

remote_login_passwordfile ;:::; shared

text_ enable= true

Creation ofTablespaces

CREATE TABLESPACE SMALL_ TABLES
DATAFILE 'C:IORANTIDBS\SMALL_TABLES.DBF'
SIZE 20M
I
CREATE T ABLESPACE LARGE_ TABLES
DATAFILE 'C:IORANTIDBSILARGE_T ABLES.DBF'
SIZE 20M
I
CREATE TABLESPACE USER_INDEXES
DATAFILE 'C:IORANTIDBSIUSER_INDEXES.DBF'
SIZE 20M
I
CREATE TABLESPACE TEMP
DATAFILE 'C:IORANTIDBSITEMP.DBF'
SIZE !OM
I
ALTER USER ada

IDENTIFIED BY ada
DEFAULT TABLESPACE large_tables
TEMPORARY TABLESPACE temp
QUOTA UNLIMITED ON temp
QUOTA UNLIMITED ON small_tables
QUOTA UNLIMITED ON large_tables

84

QUOTA UNLIMITED ON user_indexes

85

APPENDIX B - Program Coding

Creation of Packages, Procedures and Functions

Package Random
CREATE OR REPLACE PACKAGE Random AS
I* Random number generator. Uses the same algorithm as the

rand() function in C. */

-- Used to change the seed. From a given seed, the same
-- sequence of random numbers will be generated.

PROCEDURE ChangeSeed(p_NewSeed IN NUMBER);

-- Return a random integer between l and 32767.
FUNCTION Rand RETURN NUMBER;
-- PRAGMA RESTRICT_REFERENCES(Rand, WNDS, WNPS);

--Same as Rand, but with a procedural interface.
PROCEDURE GetRand(p_RandomNumber OUT NUMBER);

--Returns a random integer between I and p_MaxVal.
FUNCTION RandMax(p_MaxVal IN NUMBER) RETURN NUMBER;
-- PRAGMA RESTRICT_REFERENCES(RandMax, WNDS);

-- Same as RandMax, but with a procedural interface.
PROCEDURE GetRandMax(p_RandomNumber OUT NUMBER,

p_MaxVal IN NUMBER);
END Random;
I

create or replace package body Random IS

I* Used for calculating the next number.*/
v_Multiplier CONSTANT NUMBER:= 22695477;
v_increment CONSTANT NUMBER:= I;

I* Seed used to generate random sequence. */
v_Seed number:= I;
v_Count number:= 0;

PROCEDURE ChangeSeed(p_NewSeed IN NUMBER) IS
BEGIN

v_Seed := p_NewSeed;
END ChangeSeed;

FUNCTION Rand RETURN NUMBER IS

86

BEGIN
v_Seed := MOD(v_Multiplier * v_Seed + v_Increment, (2 ** 32));
RETURN BITAND(v_Seed/(2 ** 16), 32767);

END Rand;

PROCEDURE GetRand(p_RandomNumber OUT NUMBER) IS
BEGIN

--Simply call Rand and return the value.
p_RandomNumber :=Rand;

END GetRand;

FUNCTION RandMax(p_MaxVal IN NUMBER) RETURN NUMBER IS
BEGIN

RETURN MOD(Rand, p_MaxVal) + I;
END RandMax;

PROCEDURE GetRandMax(p_RandomNumber OUT NUMBER,
p_MaxVal IN NUMBER) IS

BEGIN
-- Simply call RandMax and return the value
p_RandomNumber := RandMax(p_MaxVal);

END GetRandMax;

BEGIN
I* Package initialization. Initialize the seed to the current

time in seconds. */
v_count := v_count + 1;
IF mod(v_count, 6) = 0 THEN

ChangeSeed(TO_NUMBER(TO_CHAR(SYSDATE,'SSSSS'))*147);
ELSIF mod(v_count, 6) = 3 THEN

ChangeSeed(TO_NUMBER(TO_CHAR(SYSDATE,'SSSSS'))*587);
ELSE

ChangeSeed(TO_NUMBER(TO_CHAR(SYSDATE,'SSSSS')));
END IF;

END Random;
I

Package Array
REM
REM PACKAGE
REM array

PROMPT
PROMPT Creating Package Specification array
CREATE OR REPLACE PACKAGE array IS
--***
--Author :- Ada Mallet

87

-- Date Created :- 517/9°

--**********************************
--This package contains functions and procedures to initialise, add,
-- update and delete records from a PL/SQL table (OR array).
-- The package is a!so used to generate a table with unique number
--that does not follow a sequential order. An array AI is first initialised with
-- unique sequential number. Every time a random number is
-- generated, it is placed in another array A2 and that number is
-- removed from A I. If a generated number already
-- exists in A2, then a number form AI is picked. This process ensures
-- a unique number in array A2.

PROCEDURE add_row(p_row IN NUMBER);
FUNCTION get_last_row RETURN NUMBER;
FUNCTION get_row(p_index IN BINARY_INTEGER) RETURN NU!>.ffiER;
PROCEDURE set_row(p_ value IN NUMBER);
PROCEDURE clear_rows:
FUNCTION retrieve_row(p_index IN BINARY_INTEGER)

RETURN NUMBER;
PROCEDURE populate_array

(p_max_array IK:'EGER);

PRAGMA RESTRICT_REFERENCES(get_row, WNDS, WNPS, RNDS);

END array;
I

REM
PROMPT
PROMPT Creating Package Body array
CREATE OR REPLACE PACKAGE BODY array IS

TYPE row_array_type IS TABLE OF NUMBER(6) INDEX BY
BINARY JNTEGER;
TYPE row_array_typel IS TABLE OF NUMBER(6) INDEX BY
BINARY_INTEGER;
vrow _array ROW _ARRAY _TYPE
vrow_arrayl ROW _ARRA Y_TYPEl;
vrow_index BINARY_INTEGER DEFAULT 0;
vrow_indexl BINARY_INTEGER DEFAULT 0;

PROCEDURE add_row(p_row IN NUMBER)
IS

-- This procedure adds details of a
-- row to an array and assigns the record
-- a unique number in the array

BEGIN
vrow _index := vrow _index + 1;

88

vrow_array(vrow_index) := p_row;
END add_row;

PROCEDURE set_row(p_value IN NUMBER)
IS

-- This procedure assigns a number to the next
-- row in the array.

BEGIN
vrow _index 1 := vrow _index 1 + 1;
vrow_arrayl(vrow_indexl) := p_value;

END set_row;

FUNCTION get_last_row RETURN NUMBER
IS

--This procedure returns the value that is stored
-- in the last row of the array.

v_return NUMBER(6);
v_index BINARY_INTEGER;

BEGIN
v_index := vrow_array.LAST;
v_return := vrow_array(v_index);
vrow _array.DELETE(v _index);
RETURN(v_return);

END get_last_row;

FUNCTION get_row(p_index IN BINARY _INTEGER) RETURN NUMBER
IS

--This procedure retrieves the value of a
-- particular row in the array.
v_return NUMBER(6);

BEGIN
v_retum := vrow_arrayl(p_index);

RETURN(v_return);
END get_row;

PROCEDURE clear_rows
IS

-- This procedure clears all rows
-- currently in the two arrays

BEGIN
WHILE vrow _index > 0 LOOP

vrow_array(vrow_index) :=NULL;
vrow _index := vrow _index - 1;

END LOOP;

WHILE vrow_indexl > 0 LOOP

89

vrow_arrayl(vrow_indexl) :=NULL;
vrow _index 1 := vrowindex 1 - I;

END LOOP;

vrow _array.DELETE;
vrow _array !.DELETE;

END clear_rows;

FUNCTION retrieve_row(p_index IN BINARY_INTEGER)
RETURN NUMBER

IS
-- This procedure retrieves details of a
-- particular row from an array and deletes
-- the row from the array.
v _number NUMBER(6);

BEGIN
IF vrow_array.EXISTS(p_index) TIIEN

v_number := vrow_array(p_index);
vrow_array.DELETE(p_index);

RETURN (v_number);
ELSE

RETURN(O);
END IF;

END retrieve_row;

PROCEDURE populate_array
(p_max_array INTEGER) AS

-- This procedure populates the first array with a unique
--sequential number.

v_numberBINARY_INTEGER := 1;
BEGIN

array .clear_rows;
LOOP

array.add_row(v_number);
v_number := v_number + 1;
EXIT WHEN v_number > p_max_array;

END LOOP;
END populate_array;

END array;
I

Package ReadFile

REM
REM PACKAGE

90

REM readfile

PROMPT
PROMPT Creating Package Specification readfile

CREATE OR REPLACE PACKAGE readfile IS
·-***
-- Author :- Ada Mallet
--Date Created :- 21/10/97

--***
-- This package is used read a file and store the values in an array.

TYPE array_type IS TABLE OF VARCHAR2(!00) INDEX BY
BINARY _INTEGER;

array _out ARRAY _TYPE;
v_index INTEGER;

PROCEDURE file_to_array (loc_in IN V ARCHAR2, file_in IN V ARCHAR2);
FUNCTION get_row(p_index IN INTEGER) RETURN NUMBER;

PRAGMA RESTRICT_REFERENCES(get_row, WNDS, RNDS);

END readfile;
I

REM
PROMPT
PROMPT Creating Package Body readfile
CREATE OR REPLACE PACKAGE BODY readfi!e IS

PROCEDURE c!ear_array
IS

--This procedure clears all records
-- currently in the array

BEGIN
WHILE v _index > 0 LOOP

array_out(v_index) :=NULL;
v _index :;; v _index - 1;

END LOOP;

END clear_array;

PROCEDURE get_nextline
(file_in IN UTL_FILE.FILE_TYPE,
line_out OUT V ARCHAR2,
eof_out OUT BOOLEAN)

91

IS
-- This procedure gets the next line from
-- the file to be read

BEGIN
UTL_FILE.GET_LINE (file_in, line_out);
eof_out :=FALSE;

EXCEPTION
WHEN NO_DATA_FOUND
THEN

END;

line_out :=NULL;
eof_out :=TRUE;

PROCEDURE file_to_array
(loc_in IN V ARCHAR2, file_in IN V ARCHAR2)

IS
I* Open file and get handle right in declaration */
names_file UTL_FILE.FILE_TYPE;

I* counter used to create the Nth name. */
line_ counter INTEGER := 1;

end_of_file BOOLEAN:= FALSE;
BEGIN

clear_array;
names_file := UTL_FILE.FOPEN (loc_in, file_in, 'R');
WHILE NOT end_of_file
LOOP

v_index := line_counter;
get_nextline (names_file, array_out(line_counter), end_of_file);
line_counter := line_counter + 1;

END LOOP;
UTL_FILE.FCLOSE (names_file);

END;

FUNCTION get_row(p_index IN INTEGER) RETURN NUMBER
IS

-- This procedure retrieves details of a
-- row from an array and then removes the
-- record from the array
v_retum VARCHAR2(100);

BEGIN
v_retum := array_out(p_index);

RETURN(TO_NUMBER(v_return));
END get_row;

END readfile;

92

I

Package Sequence

CREATE OR REPLACE PACKAGE sequence IS
PROCEDURE get_next_sequence(p_random IN INTEGER);

END sequence;
I

CREATE OR REPLACE PACKAGE BODY sequence IS
PROCEDURE get_next_sequence (p_random IN INTEGER)
IS

-- This procedure populates the array with
-- unique random values. If a generated random
-- number already exists in the array, then a number
-- from another array is used.

v _random NUMBER; /* store random number *I
v_return NUMBER; /*store the first row of array *I
v_count INTEGER:= 0; I* counter*/
v_number NUMBER; /*store number retrieved from array*/
v_max_random INTEGER:= p_random +I;

BEGIN
LOOP

v_count := v_count + 1;
v_random := random.RandMax(p_random);
v_number := array.retrieve_row(v_random);
BEGIN

IF v _number <> 0 THEN
array.set_row(v_number);

ELSE
v_return := array.get_last_row;
array .set_row(v _return);

END IF;
EXCEPTION WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE('no more data to be read');
END;

EXIT WHEN v_count = p_random;
END LOOP;

END get_next_sequence;

END sequence;
I

Package Table_Sizing

Amount of Space occupied by tables

93

CREATE OR REPLACE PACKAGE TABLE_SIZING AS
-- FUNCTION Get_block_Size RETURN NUMBER;

PROCEDURE table_size (tablename_in IN V ARCHAR2,
tablesize_out IN OUT NUMBER);

END T ABLE_SIZING;
I
CREATE OR REPLACE PACKAGE BODY TABLE_SIZING AS

Block_size NUMBER;
Block_Header_PartA NUMBER;
Block_Header_PartB NUMBER;

I* FUNCTION Get_block_Size RETURN NUMBER
IS

db_blocksize NUMBER;
BEGIN

BEGIN
select value

into db_blocksize
from v$parameter

where name= 'db_block_size';
exception
when others then

db_blocksize := 2048;
END;
RETURN (db_blocksize);

END Get_Block_Size; *I

FUNCTION TOT AL_BLOCK_HEADER_SIZE(INITTRANS_IN IN
NUMBER DEFAULT I)

RETURN NUMBER
IS
Fixed_Header CONSTANT NUMBER := 57;
Table_Directory CONSTANT NUMBER := 4;

BEGIN
-- Block header, part A= fixed header+ variable transaction header
Block_Header_PartA := Fixed_Header + (23 * INITTRANS_IN);

--Block header, part B =table directory+ row directory
Block_Header]artB := Table_Directory; -- + (2 * Rows_ln_Block_IN);
RETURN (Block_Header_PartA + Block_Header]artB);

END Total_Block_Header_Size;

FUNCTION Space_Per_Block(Header_Size_In IN NUMBER,
PctFree_In IN NUMBER)

RETURN NUMBER
IS

94

return_ value NUMBER;
BEGIN

return_ value := (block_size - Header_Size_In) -
((block_size- Block_Header_rartA) * (

PctFree_In/100));
RETURN (return_ value);

END Space_rer_Block;

FUNCTION avg_column_size(table_name_in in V ARCHAR2,
column_name_in in V ARCHAR2)

RETURN NUMBER
IS

avg_col_size NUMBER;
cursor_handle INTEGER;
execute_feedback INTEGER;

BEGIN
cursor_handle := DBMS_SQL.OPEN_CURSOR;
DBMS_SQL.PARSE(cursor_handle,

'SELECT A VG(NVL(VSIZE('IIcolumn_name_inii'),O)) ' II
'FROM ' II table_name_in, 2);

DBMS_SQL.DEFINE_COLUMN(cursor_handle, I, avg_col_size);
execute_feedback := DBMS_SQL.EXECUTE_AND_FETCH

(cursor_handle,true);
DBMS_SQL.COLUMN_ VALUE(cursor_handle, I, avg_col_size);
DBMS_SQL.CLOSE_CURSOR(cursor_handle);
avg_col_size := NVL(avg_col_size, 0);
RETURN (avg_col_size);

END Avg_Column_Size;

FUNCTION Calculate_Combined_Data_Space(tablename_in IN V ARCHAR2
)

RETURN NUMBER
IS
Data Usage NUMBER := 0;

BEGIN
for column_rec in (select table_name, column_name

from user_tab_columns
where table_name = tablename_in)

loop
DataUsage := DataUsage + Avg_Column_size(tablename_in,

column_rec.column_name);
end loop;
RETURN (DataUsage);

END Calculate_Combined_Data_Space;

FUNCTION Totai_Average_Row_Size(table_name_in IN VARCHAR2,
Step3_Combined_Dataspace IN NU~ffiER)

RETURN NUMBER IS

95

Row Header CONSTANT NUMBER :~ 3;
F _plus_v NUMBER;
nRetum_ Value NUMBER;

BEGIN
SELECT SUM(DECODE(GREATEST(DATA_LENGTH,250),250,1,3))
INTO F _PLUS_ V
FROM USER_T AB_COLUMNS

WHERE TABLE_NAME ~ table_name_in;
nReturn_ Value:= Row Header+ F _Plus_ V + Step3_Combined_Dataspace;
--The absolute minimum rowsize of a non-clustered row is 9 bytes.
RETURl'l (GREATEST(nReturn_ Value, 9));

END Total_A verage_Row _Size;

FUNCTION get_num_rows(tablename_in in varchar2) RETURN NUMBER
IS

results number;
cursor_handle integer;
execute_feedback integer;

BEGIN
cursor_handle :~ DBMS_SQL.OPEN_CURSOR;
DBMS_SQL.PARSE(cursor_handle,

'SELECT COUNT(*) ' II
'FROM ' II tablename_in, 2);

DBMS_SQL.DEFINE_COLUMN(cursor_handle, I, results);
execute_feedback :~ DBMS_SQL.EXECUTE_AND_FETCH(cursor_handie,

true);
DBMS __ SQL.COLUMN_ VALUE(cursor_handle, I, results);
RETURN (results);

END get_num_rows;

PROCEDURE Table_Size(tablename_in IN V ARCHAR2,
tablesize_out IN OUT NUMBER) is

db_IniTrans NUMBER;
db_pctFree NUMBER;
Header_size NUMBER;
Available_Data_Space NUMBER;
Combined_Data_Space NUMBER;
Avg_Row_Size NUMBER;
Rows_Per_Block NUMBER;
Number_Of_Rows NUMBER;
DEFAULT_INITIAL_EXTENT CONSTANT NUMBER:~ 10240;

BEGIN
select ini_trans, pct_Free

into db_IniTrans,
db_pctFree

from User_ Tables
where table_name = tablename_in;

-- step 1: Calculate the total block header size (excludes row
-- directory - 2 *R)
Header_size := Total_Block_Header_Size(db_IniTrans);
Available_Data_Space := Space_Per_Block(Header_ Size, db_PctFree);
Combined_Data_Space := Calculate_Combined_Data_Space(tablename_in);
Avg_Row_Size := Total_Average_Row_Size(tablename_in,

Combined_Data_Space);

-- R (avg. #of rows/block) = available space I average row size;
Rows_Per_Block := TRUNC(Available_Data_Space I (2 + Avg_Row_Size)

);
Number_Of_Rows := Get_Num_rows(tablename_in);

tablesize_out := (ceil(Number_Of_Rows I Rows_Per_Block) * block_size);
END Table_Size;

BEGIN
-- Package Initialization
block_size := 2048;

END T ABLE_SIZING;
I

-- get the size of tables CUSTOMERS, QUOTES, QUOTE
DECLARE

v _int INTEGER;
BEGIN

table_sizing.table_size('CUSTOMERS', v _int);
DBMS_OUTPUT.PUT_LINE('the size of customers is 'llv_int);
table_sizing.table_size('QUOTES', v _int);
DBMS_OUTPUT.PUT_LINE('the size of quotes is 'llv_int);
table_sizing.table_size('QUOTE', v _int);
DBMS_OUTPUT.PUT_LINE('the size of quote is 'llv_int);

END;

Procedure Get_Amount

CREATE OR REPLACE FUNCTION get_amount
(p_amount NUMBER, p_seq INTEGER)
RETURN NUMBER

AS
-- This function is used to update the
-- amount value with a unique value that
-- does not follow a sequential order.
-- Amount value of $50000 are not
-- considered.

BEGIN
IF p_amount <> 50000 THEN

RETURN(array.get_row(p_seq));

97

ELSE
RETURN p_amount;

END IF;
END get_amount;
I

Procedure Set_Quote

CREATE OR REPLACE PROCEDURE set_quote
AS

-- This procedure is used to update the
--join attribute value (customer id) with a
-- random value. A quote number is chosen
-- at random and its customer value is then
-- updated with a random value ranging
-- from 1 to 1000.

v_count INTEGER(S) := 0;
BEGIN

array. populate _array(1 0000);
sequence. get _next_seq uence(1 0000);
readfile.file_to_array('d:\script', 'ranq5.lis');
LOOP

v_count := v_count+ 1;
IF v_count > 1001 THEN

EXIT;
ELSE

UPDATE QUOTE
SET cust_id = readfile.get_row(v_count)
WHERE quote_no = arny.get_row(v _count)+ 1000;

END IF;
EXIT WHEN v_count > 1001;

END LOOP;
COMMIT;

END setquote;
I

Creation of Tables

Customers Table
-- Author : Ada Mallet
-- Date : 2510811997
--Purpose: Create customer tables

**
*

98

DROP TABLE customers CASCADE CONSTRAINTS;
DROP TABLE customers_small CASCADE CONSTRAINTS;
DROP TABLE customers_ temp CASCADE CONSTRAINTS;
DROP SEQUENCE customer_seq;
DROP SEQUENCE postcode_seq;
DROP SEQUENCE customersm_seq;

-- create the customer table and the intermediate tables
-- in the small tablespace and the indexes in the index
-- tablespace

**
**
CREATE TABLE customers

(cust_id NUMBER(5) CONSTRAINT cust_pk PRIMARY KEY,
name V ARCHAR2(10) NOT NULL,
state V ARCHAR2(3) NOT NULL,
postcode NUMBER(4) NOT NULL)
TABLESPACE SMALL_ TABLES
ENABLE PRIMARY KEY USING INDEX TABLESPACE USER_INDEXES;

CREATE TABLE customers_small
(cust_id NUMBER(5) CONSTRAINT custsm_pk PRIMARY KEY,
name VARCHAR2(10) NOT !'lULL,
state V ARCHAR2(3) NOT NULL,
postcode NUMBER(4) NOT NULL)
TABLESPACE SMALL_ TABLES
ENABLE PRIMARY KEY USING INDEX TABLESPACE USER_INDEXES;

CREATE TABLE customers_temp
(cust_id NUMBER(5) CONSTRAINT custtp_pk PRIMARY KEY,
name VARCHAR2(10) NOT NULL,
state V ARCHAR2(3) NOT NULL,
postcode NUMBER(4) NOT NULL)
TABLESPACE SMALL_ TABLES
ENABLE PRIMARY KEY USING INDEX TABLES PACE USER_INDEXES;

-- populate tables

~*

**
-- populate tables with 12 rows
INSERT INTO customers_small VALUES
(l,'ECU','WA', 6050);
INSERT INTO customers_small VALUES

99

(2,'Ada Mal1et','NSW', 6004);
INSERT INTO customers_small VALUES
(3,'Sage Com','W A', 6025);
INSERT INTO customers_small VALUES
(4,'Edgar Mic','WA', 6005);
INSERT INTO customers_small VALUES
(5,'Australian','VIC',5006) ;
INSERT INTO customers_small VALUES
(6,'Conservati','NSW',2003);
INSERT INTO customers_small VALUES
(7 ,'Peter' ,'NSW' ,2003);
INSERT INTO customers_small VALUES
(8,'Mark Ric','NSW',2003);
INSERT INTO customers_small VALUES
(9,'Newface','WA',6639);
INSERT INTO customers_smal1 VALUES
(IO,'Business','NSW',2056);
INSERT INTO customers_small VALUES
(11 ,'Peterson' ,'VIC', 1887);
INSERT INTO customers_smal1 VALUES
(12 'Oracle' 'W A' 1025)· ' ' ' '

-- use the sequencing to generate unique number
-- for customer id
CREATE SEQUENCE customer_seq START WITH 13;

-- populate table with 24 rows
INSERT INTO customers_small

SELECT customer_seq.nextval,
name, state, postcode

FROM customers_small;

COMMIT;

-- populate table with 48 rows
INSERT INTO customers_small

SELECT customer_seq.nextval,
name, state, postcode

FROM customers_ small;

COMMIT;

-- populate table with 96 rows
INSERT INTO customers_small

SELECT customer_seq.nextval,
name, state, postcode

FROM customers_small;

100

COMMIT;

-- add 4 more rows
INSERT INTO customers_small VALUES
(97,'Jean Hall','WA',6050);
INSERT INTO customers_ small VALUES
(98,'Pierre Ric','WA',6141);
INSERT INTO customers_small VALUES
(99,'Sylvie Van', 'VIC', 1224);
INSERT INTO customers __ small VALUES
(IOO,'A Appadu','NSW',5141);

COMMIT;

-- generate random numbers in an array
EXEC readfile.file_to_array('d:\script', 'randl.lis');

CREATE SEQUENCE customersm_seq START WITH I;

--populate intermediate table with 100 rows
INSERT INTO customers_temp

SELECT readfile.get_row(customersm_seq.nextval),
name, state, postcode

FROM customers_small;

COMMIT;

-- populate intermediate table with 200 rows
INSERT INTO customers_ temp

SELECT readfile.get_row(customersm_seq.nextval),
name, state, postcode

FROM customers_temp;

COMMIT;

-- populate intermediate table with 400 rows
INSERT INTO customers_temp

SELECT readfile.get_row(customersm_seq.nextval),
name, state, postcode

FROM customers_temp;

COMMIT;

-- populate intennediate table with 500 rows
INSERT INTO customers_ temp

SELECT readfile.get_row(customersm_seq.nextval),
name, state, postcode

FROM customers_small;

101

COMMIT;

--populate intermediate table with 1000 rows
INSERT INTO customers_temp

SELECT readfile.get_row(customersm_seq.nextval),
name, state, postcode

FROM customers_temp;

COMMIT;

-- Creating customer table with random number for post code

--EXEC array.populate_array(IOOO);

EXEC readfile.file_to_array('d:\script', 'rand2.1is');

--EXEC sequence.get_next_sequence(1000);
CREATE SEQUENCE postcode_seq START WITH I;
INSERT INTO customers

SELECT cust_id,name, state,
readfile.get_row(postcode_seq.nextval) + 6000

FROM custorners_temp;
COMMIT;

DROP TABLE customers_ temp CASCADE CONSTRAINTS;
DROP TABLE customers_small CASCADE CONSTRAINTS;
DROP SEQUENCE customer_seq;
DROP SEQUENCE postcode_seq;
DROP SEQUENCE customersm_seq;

Quotes Table

REM create tables and data
REM create the table for quotes

REM drop tables
REM
**
*
DROP SEQUENCE customer_seq;
DROP SEQUENCE arnount_seq;
DROP SEQUENCE quotelg_seq;
DROP SEQUENCE quotesm_seq;
DROP TABLE quotes CASCADE CONSTRAINTS;
DROP TABLE quotes_temp CASCADE CONSTRAINTS;

102

DROP TABLE quotes_small CASCADE CONSTRAINTS;
DROP TABLE quotes_large CASCADE CONSTRAINTS;
DROP INDEX quote_ix;

REM create tables
REM
**
**

CREATE TABLE quotes_small (
quote_no NUMBER(6) CONSTRAINT quotesm_pk primary key,
description V ARCHAR2(35),
amount NUMBER(?),
cust_id NUMBER(5) NOT NULL CONSTRAINT custsm_fk

REFERENCES customers(cust_id))
TABLESPACE LARGE_ TABLES
ENABLE PRIMARY KEY USING INDEX TABLESPACE USER_INDEXES;

CREATE TABLE quotes(
quote_no NUMBER(6) CONSTRAINT quote_pk PRIMARY KEY,
description V ARCHAR2(35) NOT NULL,
amount NUMBER(?) NOT NULL,
cust_id NUMBER(5) NOT NULL CONSTRAINT cust_fk REFERENCES

customers(cust_id))
TABLESPACE LARGE_ TABLES
ENABLE PRIMARY KEY USING INDEX TABLESPACE USER_INDEXES;

CREATE TABLE quotes_temp(
quote_no NUMBER(6) CONSTRAINT quotetm_pk PRIMARY KEY,
description V ARCHAR2(35),
amount NUMBER(?),
cust_id NUMBER(5) NOT NULL CONSTRAINT custtm_fk

REFERENCES customers(cust_id))
TABLESPACE LARGE_TABLES
ENABLE PRIMARY KEY USING INDEX TABLESPACE USER_INDEXES;

CREATE TABLE quotes_temp (
quote_no NUMBER(6) CONSTRAINT quotelg_pk PRIMARY KEY,
description V ARCHAR2(35),
amount NUMBER(?),
cust_id NUMBER(5) NOT NULL CONSTRAINT custlg_fk

REFERENCES customers(cust_id))
TABLESPACE LARGE_ TABLES
ENABLE PRIMARY KEY USING INDEX TABLESPACE USER_INDEXES;

REM populate tables
REM
**

103

**

-- Create the quotes_small table

CREATE SEQUENCE quotesm_seq START WITH I;

INSERT INTO quotes_small VALUES
(quotesm_seq.nextval,'Mowing the lawn and gardening',5000,6);
INSERT INTO quotes_small VALUES
(quotesm_seq.nextvai,'Vacuum Clean and dry four bedrooms',IOOO, 4)~
INSERT INTO quotes_small VALUES
(quotesm_seq.nextval, 'Removing roof tiles with BBB tiles',5000, 9);
INSERT INTO quutes_small VALUES
(quotesm_seq.nextval,'Adding a new 2GB hard disk',5000, 8);
INSERT INTO quotes_small VALUES
(quotesm_seq.nextval,'Replacing motherboard with Jnte!P',200,3);
INSERT INTO quotes_small VALUES
(quotesm_seq.nextval,'Evaluating the land value',600, 10);
INSERT INTO quotes_small VALUES
(quotesm_seq .nextval, 'Installing air conditioning' ,5000, 1);
INSERT INTO quotes_small VALUES
(quotesm_seq.nextval,'Quality Review and Acceptance',700,5);
INSERT INTO quotes_small VALUES
(quotesm_seq.nextval,'Servicing the car',1200,7);
INSERT INTO quotes_small VALUES
(quotesm_seq.nextval,'Repairing the door lock',5000, 2);
INSERT INTO quotes_small VALUES
(quotesm_seq.nextval,'Painting the House',900, 12);
INSERT INTO quotes_small VALUES
(quotesm_seq.nextval,'Placing tiles and painting',5000,11);

COMMIT;

CREATE SEQUENCE customer_seq START WITH 13;

INSERT INTO quotes_small
SELECT quotesm_seq.nextval,

description, amount, customer_seq.nextval
FROM quotes_small;

COMMIT;

INSERT INTO quotes_small
SELECT quotesm_seq .nextval,

description, amount,customer_seq.nextval
FROM quotes_small;

104

COMMIT;

INSERT INTO quotes_small
SELECT quotesm_seq.nextval,

description, amount, customer_seq.nextval
FROM quotes_small;

COMMIT;

INSERT INTO quotes_small VALUES
(quotesm_seq.nextval,'Cleaning the back yard',5000,customer_seq.nextval);
INSERT INTO quotes_small VALUES
(quotesm_seq.nextval, 'Painting 3 bedrooms' ,2000, custorner_seq .nextval);
INSERT INTO quotes_small VALUES
(quotesm_seq.nextval,'Placing the fence and security',5000,
customer_seq.nextval);
INSERT INTO quotes_small VALUES
(quotesm_seq.nextval,'Repairing the garage lock',3000, customer_seq.nextval);

COMMIT;

INSERT INTO quotes_temp
SELECT quote_no,

description, amount, cust_id
FROM quotes_small;

COMMIT;

INSERT INTO quotes_small
SELECT quotesm_seq.nextval,

description, amount, customer_seq.nextval
FROM quotes_small;

COMMIT;

INSERT INTO quotes_small
SELECT quotesm_seq.nextval,

description, amount, customer_seq.nextval
FROM quotes_small;

COMMIT;

INSERT INTO quotes_small
SELECT quotesm_seq.nextval,

description, amount, customer_seq.nextval
FROM quotes_small;

105

COMMIT;

INSERT INTO quotes_small
SELECT quotesm_seq.nextval,

description, amount, customer_seq.nextval
FROM quotes_temp;

COMMIT;

INSERT INTO quotes_small
SELECT quotesm_seq.nextval,

description, amount, customer_seq.nextval
FROM quotes_temp;

COMMIT;

DELTE quotes_ temp WHERE quote_no IS NOT NULL;
COMMIT;

DROP SEQUENCE quotesm_seq;
DROP SEQUENCE customer_seq;

-- Create the quotes_large table

-- generate random numbers in an array
EXEC readfile.file_to_array('d:\script', 'ranq J.lis');

CREATE SEQUENCE customer_seq START WITH with I;

-- create random value of customer id for 1000 cusstomers
INSERT INTO quotes_temp

SELECT quote_no,
description, amount,
read file. get_row(customer _seq. nextval)

FROM quotes_small;

COMMIT;

EXEC array.populate_array(IOOOO);
EXEC sequence.get_next_sequence(IOOOO);
CREATE SEQUENCE quotelg_seq START WITH I;
DROP SEQUENCE customer_seq;
CREATE SEQUENCE customer_seq START WITH I;

-- generate random numbers in an array
EXEC readfile.file_to_array('d:\script', 'ranq !.lis');

106

INSERT INTO quotes_large
SELECT array.get_row(quotelg_seq.nextval) +1000,

description, amount,
readfile. get_row(customer _seq. nextval)

FROM quotes_temp;

COMMIT;

DROP SEQUENCE customer_seq;
-- generate random numbers in an array
EXEC readfile.file_to_array('d:\script', 'ranq2.lis');
CREATE SEQUENCE customer_seq START WITH I;

-- 2000 rows created
INSERT INTO quotes_large

SELECT array.get_row(quotelg_seq.nextval) +1000,
description, amount,
readfile. get_row(customer _seq .nextval)

FROM quotes_ temp;

COMMIT;

DROP SEQUENCE customer_seq;
-- generate random numbers in an array
EXEC readfile.file_to_array('d:\script', 'ranq3.lis');
CREATE SEQUENCE customer_seq START WITH I;

-- 3000 rows created
INSERT INTO quotes_large

SELECT array.get_row(quotelg_seq.nextval) + 1000,
description, amount,
readfile. get_row(customer _seq .nextval)

FROM quotes_temp;

COMMIT;

DROP SEQUENCE customer_seq;
-- generate random numbers in an array
EXEC readfile.file_to_array('d:lscript', 'ranq4.1is');
CREATE SEQUENCE customer_seq STRAT WITH I;

-- 4000 rows created
INSERT INTO quotes_large

SELECT array.get_row(quotelg_seq.nextval) +1000,
description, amount,
readfile. get_row(customer _seq .nextval)

FROM quotes_temp;

107

COMMIT;

DROP SEQUENCE customer_seq;
-- generate random numbers in an atTay
EXEC readfiie.fiie_to_array('d:\script', 'ranq5.lis');
CREATE SEQUENCE customer_seq START WITH I;

-- 5000 rows created
INSERT INTO quotes_Iarge

SELECc, may.get_row(quoteig_seq.nextval) +1000,
descn!Jtion, amount,
read file. get_row(customer _seq .nextval)

FROM quotes_temp;

COMMIT;

DROP SEQUENCE customer_seq;
-- generate random numbers in an array
EXEC readfiie.fiie_to_array('d:\script', 'ranq6.1is');
CREATE SEQUENCE customer_seq start with I;

-- 6000 rows created
INSERT INTO quotes_Iarge

SELECT array.get_row(quoteig_seq.nextval) + 1000,
description, amount,
read file. get_row(customer_ seq .nextval)

FROM quotes_temp;

COMMIT;

DROP SEQUENCE customer_seq;
-- generate random numbers in an array
EXEC readfiie.fiie_to_array('d:\script', 'ranq7.Iis');
CREATE SEQUENCE customer_seq start with I;

-- 7000 rows created
INSERT INTO quotes_Iarge

SELECT array.get_row(quoteig_seq.nextvai) +1000,
description, amount,
readfile. get_row(customer_seq .nextval)

FROM quotes_temu;

COMMIT;

DROP SEQUENCE customer_seq;
-- generate random numbers in an array
EXEC readfile.file_to_array('d:\script', 'ranq8.Iis');

108

CREATE SEQUENCE customer_seq start with 1;

-- 8000 rows created
INSERT INTO quotes_1arge

SELECT array.get_row(GUOtelg_seq.nextva1) +1000,
description, amount,
readfile. get_row(customer _seq .nextval)

FROM quotes_temp;

COMMIT;

DROP SEQUENCE customer_seq;
-- generate random numbers in an array
EXEC readfile.file_to_array('d:lscript', 'ranq9.lis');
CREATE SEQUENCE customer_seq start with 1;

-- 9000 rows created
INSERT INTO quotes_large

SELECT array.get_row(quotelg_seq.nextval) + 1000,
description, amount,
readfi le. get_row(customer_seq. nex tval)

FROM quotes_temp;

COMMIT;

DROP SEQUENCE customer_seq;
-- generate random numbers in an array
EXEC readfile.file_to_array('d:lscript', 'ranq 10.lis');
CREATE SEQUENCE customer_seq start with I;

-- 10000 rows created
INSERT INTO quotes_large

SELECT array.get_row(quotelg_seq.nextval) +1000,
description, amount,
readfile. get_row(customer_seq .nextval)

FROM quotes_temp;

COMMIT;
-- Create the quote table with random amount number

EXEC array. populate_array(1 0000);
EXEC sequence.get_next_sequence(10000);
CREATE SEQUENCE amount_seq START WITH 1;
INSERT INTO quotes

SELECf quote_no, description,
get_amount(amount, amount_seq.nextval), cust_id

FROM quotes_large;

109

CREATE INDEX QUOTE_IX ON quotes(cust_id) TABLESPACE
USER_INDEXES;

DROP TABLE quotes_srnall CASCADE CONSTRAINTS;
DROP TABLE quotes_ temp CASCADE CONSTRAINTS;
DROP SEQUENCE custorner_seq;
DROP SEQUENCE quotelg_seq;
DROP SEQUENCE arnount_seq;

Quote Table

REM create tables and data
REM create the table for quotes

REM create tables
REM
**
**

-- Create the quote table

DROP TABLE quote CASCADE CONSTRAINTS;
DROP SEQUENCE custorner_seq;
DROP SEQUENCE quote_seq;

CREATE TABLE quote (
quote_no NUMBER(6) CONSTRAINT quotel_pk PRIMARY KEY,
description V ARCHAR2(35) NOT NULL,
amount NUMBER(?) NOT NULL,
cust_id NUMBER(5) CONSTRAINT customer_fk REFERENCES

customers(cust_id))
TABLESPACE LARGE_ TABLES
ENABLE PRIMARY KEY USING INDEX TABLESPACE USER_INDEXES;

REM populate tables
REM
**
*
CREATE SEQUENCE customer_seq START WITH I;
CREATE SEQUENCE quote_seq START WITH I;

INSERT INTO quote
SELECT quote_no, description, amount,

null
FROM quotes;

110

COMMIT;
EXEC set_quote;

CREATE INDEX QUO_IX ON quote(cust_id) TABLESPACE
USER_INDEXES;

DROP SEQUENCE customer_seq;
DROP SEQUENCE quote_seq;

Ill

APPENDIX C· Query Statements

Experiment 1 - One-to-many relationship

Nested Loop Join

ALTER SYSTEM FLUSH_SHARED_POOL;
SELECT I*+ USE_INDEX(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 6001

I
ALTER SESSION SET SQL_TRACE =TRUE;
ALTER SYSTEM FLUSH_SHARED_POOL;
SELECT I*+ USE_INDEX(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 6001

I
ALTER SYSTEM FLUSH_SHARED_POOL;
SELECT I*+ USE_INDEX(QUO, CUS) *I
cu.,_ "me, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 6051

I
ALTER SYSTEM FLUSH_SHARED_POOL;
SELECT I*+ USE_INDEX(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 6101

I
ALTER SYSTEM FLUSH_SHARED_POOL;
SELECT I*+ USE_INDEX(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 6201

I
ALTER SYSTEM FLUSH_SHARED_POOL;
SELECT I*+ USE_INDEX(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus

112

WHERE cus.cust_id = quo.cust_id
AND postcode < 630 I

I
ALTER SYSTEM FLUSH_SHARED_POOL;
SELECT I*+ USE_INDEX(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 640 I

I
ALTER SYSTEM FLUSH_SHARED_POOL;
SELECT I*+ USE_INDEX(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 650 I

I
ALTER SYSTEM FLUSH_SHARED_POOL;
SELECT I*+ USE_INDEX(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 660 I

I
ALTER SYSTEM FLUSH_SHARED_POOL;
SELECT I*+ USE_INDEX(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 670 I

I
ALTER SYSTEM FLUSH_SHARED_pOOL;
SELECT I*+ USE_INDEX(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 680 I

I
ALTER SYSTEM FLUSH_SHARED_POOL;
SELECT I*+ USE_INDEX(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 690 I

I
ALTER SYSTEM FLUSH_SHARED_POOL;
SELECT I*+ USE_INDEX(QUO, CUS) *I
cus.name, quo.quote_no

113

FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 7001

I
ALTER SESSION SET SQL_TRACE =FALSE;
QUIT

Sort Merge Join
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_MERGE(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id+O = quo.cust_id+O
AND postcode < 600 I

I
ALTER SESSION SET SQL_TRACE =TRUE;
ALTER SYSTEM FLUSH SHARED _pOOL;
SELECT I*+ USE_MERGE(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id+O = quo.cust_id+O
AND postcode < 600 I

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_MERGE(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id+O;::;; quo.cust_id+O
AND postcode < 6051

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_MERGE(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id+O = quo.cust_id+O
AND paste ode < 610 I

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_MERGE(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id+O = quo.cust_id+O
AND postcode < 6201
I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_MERGE(QUO, CUS) *I
cus.name, quo.quote_no

114

FROM quotes quo, customers cus
WHERE cus.cust_id+O = quo.cust_id+O
AND postcode < 6301

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_MERGE(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id+O::::; quo.cust_id+O
AND postcode < 640 I

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_MERGE(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id+O = quo.cust_id+O
AND postcode < 650 l

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_MERGE(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id+O::::; quo.cust_id+O
AND postcode < 660 l

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_MERGE(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id+O::::; quo.cust_id+O
AND postcode < 670 I

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_MERGE(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id+O = quo.cust_id+O
AND postcode < 680 l

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_MERGE(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id+O::::; quo.cust_id+O
AND postcode < 690 l

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_MERGE(QUO, CUS) *I

tt5

cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id+O = quo.cust_id+O
AND post code < 700 I

I
ALTER SESSION SET SQL_TRACE =FALSE;
QUIT

Hash Join
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_HASH(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 600 I

I
ALTER SESSION SET SQL_TRACE =TRUE;
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_HASH(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 600 I

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_HASH(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 6051

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_HASH(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 610 I

I
ALTER SYSTEM FLUSH SHARED]OOL;
SELECT I*+ USE_HASH(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 620 I

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_HASH(QUO, CUS) *I

116

cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 6301

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_HASH(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 6401

I
ALTER SYSTEM FLUSH SHARED _pOOL;
SELECT I*+ USE_HASH(QUO, CUS) •1
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 6501

I
ALTER SYSTEM FLUSH SHARED _pOOL;
SELECT I*+ USE_HASH(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 6601

I
ALTER SYSTEM FLUSH SHARED _pOOL;
SELECT I*+ USE_HASH(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id ~ quo.cust_id
AND postcode < 6701

I
ALTER SYSTEM FLUSH SHARED _pOOL;
SELECT I*+ USE_HASH(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 6801

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_HASH(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 6901

I
ALTER SYSTEM FLUSH SHARED_POOL;

117

SELECT/*+ USE_HASH(QUO, CUS) */
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 7001

I
ALTER SESSION SET SQL_TRACE =FALSE;
QUIT

118

Experiment 2 .. One-to-one relationship

Nested Loop Join
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_INDEX(QUO, CUS) *I
cus.name, quo.quote_no
FROM quote quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 600 I

I
ALTER SESSION SET SQL_TRACE =TRUE;
ALTER SESSION FLUSH SHARED_POOL;
SELECT I*+ USE_INDEX(QUO, CUS) *I
cus.name, quo.quote_no
FROM quote quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 600 I

I
ALTER SESSION FLUSH SHARED _POOL;
SELECT I*+ USE_INDEX(QUO, CUS) *I
cus.name, quo.quote_no
FROM quote quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 6051

I
ALTER SESSION FLUSH SHARED_POOL;
SELECT I*+ USE_INDEX(QUO, CUS) *I
cus.name, quo.quote_no
FROM quote quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 610 I

I
ALTER SESSION FLUSH SHARED_POOL;
SELECT I*+ USE_INDEX(QUO, CUS) *I
cus.name, quo.quote_no
FROM quote quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 620 I

I
ALTER SESSION FLUSH SHARED_POOL;
SELECT I*+ USE_INDEX(QUO, CUS) *I
cus.name, quo.quote_no
FROM quote quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 630 I

I
ALTER SESSION FLUSH SHARED_POOL;

119

SELECT I*+ USE_INDEX(QUO, CUS) *I
cus.name, quo.quote_no
FROM quote quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 640 I

I
ALTER SESSION FLUSH SHARED _POOL;
SELECT I*+ USE_INDEX(QUO, CUS) *I
cus.name, quo.quote_no
FROM quote quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 650 I

I
ALTER SESSION FLUSH SHARED _POOL;
SELECT I*+ USE_INDEX(QUO, CUS) *I
cus.name, quo.quote_no
FROM quote quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 660 I

I
ALTER SESSION FLUSH SHARED _POOL;
SELECT I*+ USE_INDEX(QUO, CUS) *I
cus.name, quo.quote_no
FROM quote quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 670 I

I
ALTER SESSION FLUSH SHARED _POOL;
SELECT I*+ USE_INDEX(QUO, CUS) *I
cus.name, quo.quote_no
FROM quote quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 680 I

I
ALTER SESSION FLUSH SHARED _POOL;
SELECT I*+ USE_!NDEX(QUO, CUS) *I
cus.name, quo.quote_no
FROM quote quo, customers cus
WHERE cus.cust_id == quo.cust_id
AND postcode < 690 I

I
ALTER SESSION FLUSH SHARED_POOL;
SELECT I*+ USE_Il'\DEX(QUO, CUS) *I
cus.name, quo.quote_no
FROM quote quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 700 I

I

120

ALTER SESSION SET SQL_TRACE =FALSE;
QUIT

Sort Merge Join
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_MERGE(QUO, CUS) *I
cus.name, quo.quote_no
FROM quote quo, customers cus
WHERE cus.cust_id+O = quo.cust_id+O
AND postcode < 600 I

I
ALTER SESSION SET SQL_TRACE =TRUE;
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_MERGE(QUO, CUS) *I
cus.name, quo.quote_no
FROM quote quo, customers cus
WHERE cus.cust_id+O = quo.cust_id+O
AND postcode < 600 I

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_MERGE(QUO, CUS) *I
cus.name, quo.quote_no
FROM quote quo, customers cus
WHERE cus.cust_id+O = quo.t:ust_id+O
AND postcode < 6051

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_MERGE(QUO, CUS) *I
cus.name, quo.quote_no
FROM quote quo, customers cus
WHERE cus.cust_id+O ;;:; quo.cust_id+O
AND postcode < 610 I

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_MERGE(QUO, CUS) *I
cus.name, quo.quote_no
FROM quote quo, customers cus
WHERE cus.cust_id+O = quo.cust_id+O
AND postcode < 620 I

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_MERGE(QUO, CUS) *I
cus.name, quo.quote_no
FROM quote quo, customers cus
WHERE cus.cust_id+O = quo.cust_id+O
AND post code < 630 I

I

121

ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_MERGE(QUO, CUS) *I
cus.name, quo.quote_no
FROM quote quo, customers cus
WHERE cus.cust_id+O = quo.cust_id+O
AND postcode < 640 I

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_MERGE(QUO, CUS) *I
cus.name, quo.quote_no
FROM quote quo, customers cus
WHERE cus.cust_id+O = quo.cust_id+O
AND postcode < 650 I

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_MERGE(QUO, CUS) *I
cus.name, quo.quote_no
FROM quote quo, customers cus
WHERE cus.cust_id+O = quo.cust_id+O
AND postcode < 660 I

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_MERGE(QUO, CUS) *I
cus.name, quo.quote_no
FROM quote quo, customers cus
WHERE cus.cust_id+O = quo.cust_id+O
AND postcode < 670 I

I
ALTER SYSTEM FLUSH SHARED _POOL;
SELECT I*+ USE_MERGE(QUO, CUS) *I
cus.narne, quo.quote_no
FROM quote quo, customers cus
WHERE cus.cust_id+O::;; quo.cust_id+O
AND postcode < 680 I

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_MERGE(QUO, CUS) *I
cus.name, quo.quote_no
FROM quote quo, customers cus
WHERE cus.cust_id+O = quo.cust_id+O
AND postcode < 690 I

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_MERGE(QUO, CUS) *I
cus.name, quo.quote_no
FROM quote quo, customers cus
WHERE cus.cust_id+O = quo.cust_id+O
AND postcode < 700 I

122

I
ALTER SESSION SET SQL_TRACE; FALSE;
QUIT

Hash Join
ALTER SYSTEM FLUSH SHARED _pOOL;
SELECT I*+ USE_HASH(QUO, CUS) *I
cus.name, quo.quote_no
FROM quote quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND post code < 600 I

I
ALTER SESSION SET SQL_TRACE; TRUE;
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_HASH(QUO, CUS) *I
cus.name, quo.quote_no
FROM quote quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 600 I

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_HASH(QUO, CUS) *I
cus.name, quo.quote_no
FROM quote quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 6051

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_HASH(QUO, CUS) *I
cus.name, quo.quote_no
FROM quote quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 610 I

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_HASH(QUO, CUS) *I
cus.name, quo.quote_no
FROM quote quo, customers cus
WHERE cus.cust_id ; quo.cust_id
AND postcode < 620 I

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_HASH(QUO, CUS) *I
cus.name, quo.quote_no
FROM quote quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 630 I

123

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_HASH(QUO, CUS) *I
cus.narne, quo.quote_no
FROM quote quo, customers cus
WHERE cus.cust_id:::; quo.cust_id
AND postcode < 640 l

I
ALTER SYSTEM FLUSH SHARED _pOOL;
SELECT I*+ USE_HASH(QUO, CUS) *I
cus.name, quo.quote_no
FROM quote quo, customers cus
WHERE cus.cust_id :::: quo.cust_id
AND postcode < 650 l

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_HASH(QUO, CUS) *I
cus.name, quo.quote_no
FROM quote quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND paste ode < 660 l

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_HASH(QUO, CUS) *I
cus.name, quo.quote_no
FROM quote quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 670 l

I
ALTER SYSTEM FLUSH SHARED _pooL;
SELECT I*+ USE_HASH(QUO, CUS) *I
cus.name, quo.quote_no
FROM quote quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 680 l

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_HASH(QUO, CUS) *I
cus.name, quo.quote_no
FROM quote quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 690 l

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_HASH(QUO, CUS) *I
cus.name, quo.quote_no
FROM quote quo, customers cus
WHERE cus.cust_id = quo.cust_id

124

AND postcode < 7001
I
ALTER SESSION SET SQL_TRACE =FALSE;
QUIT

125

Experiment 3 - Predicate on Inner Table

Nested Loop Join
ALTER SYSTEM FLUSH SHARED_POOL;
SELECf I*+ USE_INDEX(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 600 I
AND amount < 50000 -- predicate applied to inner table

I
ALTER SESSION SET SQL_TRACE =TRUE;
ALTER SYSTEM FLUSH SHARED _POOL;
SELECT I*+ USE_INDEX(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 600 I
AND amount < 50000 --predicate applied to inner table

I
ALTER SYSTEM FLUSH SHARED _POOL;
SELECT I*+ USE_INDEX(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 6051
AND amount < 50000 -- predicate applied to inner table

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_INDEX(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 610 I
AND amount < 50000 -- predicate applied to inner table

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_INDEX(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 6201
AND amount < 50000 -- predicate aplied to inner table

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECf I*+ USE_INDEX(QUO, CUS) *I
cus.name, quo.quote_no

126

FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 630 I
AND amount < 50000 -- predicate applied to inner table

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_INDEX(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 640 I
AND amount < 50000 -- predicate applied to inner table

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_INDEX(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 650 I
AND amount< 50000 -- predicate applied to inner table

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_INDEX(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 660 I
AND amount< 50000 -- predicate applied to inner table

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_INDEX(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus,cust_id = quo,cust_id
AND postcode < 670 I
AND amount< 50000 -- predicate applied to inner table

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_INDEX(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 680 I
AND amount < 50000 -- predicate applied to inner table

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_INDEX(QUO, CUS) *I
cus.name, quo.quote_no

127

FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 6901
AND amount< 50000 --predicate applied to inner table

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_INDEX(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 7001
AND amount < 50000 -- predicate applied to inner table

I
ALTER SESSION SET SQL_TRACE; FALSE;
QUIT

Sort Merge Join

ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_MERGE(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id; quo.cust_id
AND postcode < 6001
AND amount < 50000 -- predicate applied to inner table

I
ALTER SESSION SET SQL_TRACE ; TRUE;
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_MERGE(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 6001
AND amount < 50000 -- predicate applied to inner table

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_MERGE(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 6501
AND amount< 50000 -- predicate applied to inner table

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_MERGE(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus

128

WHERE cus.cust_id = quo.cust_id
AND postcode < 6101
AND amount < 50000 -- predicate applied to inner table

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_MERGE(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 620 I
AND amount < 50000 -- predicate applied to inner table

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_MERGE(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 630 I
AND amount < 50000 -- predicate applied to inner table

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_MERGE(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 640 I
AND amount < 50000 -- predicate applied to inner table

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_MERGE(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 650 I
AND amount< 50000 -- predicate applied to inner table

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_MERGE(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 660 I
AND amount< 50000 -- predicate applied to inner table

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_MERGE(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus

129

WHERE cus.cust_id = quo.cust_id
AND postcode < 6701
AND amount < 50000 -- predicate applied to inner table

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_MERGE(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 680 I
AND amount < 50000 -- predicate applied to inner table

I
ALTER SYSTEM FLUSH SHARED _pOOL;
SELECT I*+ USE_MERGE(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 690 I
AND amount< 50000 -- predicate applied to inner table

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_MERGE(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 700 I
AND amount< 50000 -- predicate applied to inner table

I
ALTER SESSION SET SQL_TRACE =FALSE;
QUIT

Hash Join
ALTER SYSTEM FLUSH SHARED _pOOL;
SELECT I*+ USE_HASH(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 600 I
AND amount < 50000 -- predicate applied to inner table

I
ALTER SESSION SET SQL_TRACE =TRUE;
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_HASH(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id

130

AND postcode < 600 I
AND amount < 50000 -- predicate applied to inner table

I
ALTER SYSTEM FLUSH SHARED _pOOL;
SELECf I*+ USE_HASH(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 6051
AND amount < 50000 -- predicate applied to inner table

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECf I*+ USE_HASH(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 610 I
AND amount < 50000 -- predicate applied to inner table

I
ALTER SYSTEM FLUSH SHARED _pOOL;
SELECf I*+ USE_HASH(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 620 I
AND amount< 50000 -- predicate applied to inner table

I
ALTER SYSTEM FLUSH SHARED _pOOL;
SELECT I*+ USE_HASH(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 630 I
AND amount < 50000 -- predicate applied to inner table

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECf I*+ USE_HASH(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 640 I
AND amount < 50000 -- predicate applied to inner table

I
ALTER SYSTEM FLUSH SHARED _POOL;
SELECf I*+ USE_HASH(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id

131

AND postcode < 6501
AND amount < 50000 -- predicate applied to inner table

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_HASH(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 6601
AND amount< 50000 --predicate applied to inner table

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_HASH(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id;;:; quo.cust_id
AND postcode < 6701
AND amount < 50000 -- predicate applied to inner table

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_HASH(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id = quo.cust_id
AND postcode < 6801
AND amount < 50000 --predicate applied to inner table

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_HASH(QUO, CUS) *I
cus.narne, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id;;:; quo.cust_id
AND postcode < 6901
AND amount < 50000 -- predicate applied to inner table

I
ALTER SYSTEM FLUSH SHARED_POOL;
SELECT I*+ USE_HASH(QUO, CUS) *I
cus.name, quo.quote_no
FROM quotes quo, customers cus
WHERE cus.cust_id :;:; quo.cust_id
AND postcode < 7001
AND amount< 50000 -- predic~'.e applied to inner table

I
ALTER SESSION SET SQL __ TRACE =FALSE;
QUIT

132

APPENDIX D -Unix Scripts

To extract the performance data from the text files

for file in 'Is *.lis'"
do
ex $file « EOF
g/*+/.,.13w! >> $file.out
EOF
done
for file in 'Is *.out'
do
grep -E 'total' $file I $file.dat
done

To extract the required fields from the text files

for file in 'Is *.new'
do

awk '{print $3"\t"$4"\t"$6)'$file> $file.dat
done

To display each random data on a single line.

for file in "Is *.lis"
do

awk '{print $1 "\n"$2"\n"$3"\n"$4"\n"$5"\n"$6"\n"$7"\n"$8"\n"$9"\n"$10 } '
$file > $file.dat
done

133

APPENDIX E - Trace Files Generated For Each Rnn

Outer Selectivity for a one to many relationship

Runs Scripts Generated Trace files
I outsmain l.sql ORAOOI32.trc

outsmain3sql ORA00063.trc
outsmain2.sql ORA00070.trc

2 outsmain2.sqJ ORAOOI30.trc
outsmain3sql ORAOOI43.trc
outsmain I ql ORA0007I.trc

3 outsmain3.sql ORA00099.trc
outsmain 1 .gj_j ORAOOI04.trc
outsmain2.sql ORA00117.trc

4 outsmain J.sql ORAOOIOI.trc
outsmain2.sql ORAOOI07.trc
outsmain3.sql ORA00093.trc

5 outsmain3._sql ORAOOI02.trc
outsrnain l.sql ORA00075.trc
outsmain2.sql ORA00079.trc

6 outsmain2.sql ORA00044.trc
outsmain3.sql ORA00042.trc
outsmain l.sql ORAOOII6.trc

7 outsmain3.sql ORA00099a.trc
outsmain2.sql ORA00042a.trc
outsmain l.sql ORA00094.trc

e outsmain l.sql ORA00072.trc .
outsmain2.sql ORAOO 10 I a.trc
outsmain3.sql ORA00072a.trc

9 outsmain2._gj_l ORAOOI02a.trc
outsmain3.sql ORAOO 134.trc
outsmain l.sql ORA00074.trc

10 outsmain3.sql ORAOOI34a.trc
outsmain l.sql ORA00097.trc
outsmain2.~gl ORA00065.trc

II outsmain l.sql ORA00065a.trc
outsmain2.sql ORA00095.trc
outsmain3.sql ORA00068.trc

12 outsmain2.sql ORAOOI03.trc
outsmain3.sql ORAOOI37.trc
outsmain l.sql ORAOOI27.trc

13 outsmain3.sql ORAOO 103a.trc
outsmain2.sql ORA00079a.trc
outsmain l.sql ORA00044a.trc

14 outsmain l._§_ql ORAOO 141.trc

t34

outsmain3.sal ORAOO 12 J.trc
outsmain2.sal ORA00117.trc

15 outsmain2.sql ORA00103b.trc
outsmain3.sql ORA0006J.trc
outsmainl.sal ORA00139.trc

16 outsmain2.sal
outsmain3.sql
outsmain l.sql

17 outsmain3.sal
outsmain2.sol
outsmain l.sol

Outer Selectivity for a one to one relationship

Runs Scripts Generated Trace files
Trial Scriot run Trace file generated
I outmain l.sol ORAOOII9.trc

outmain3.sql ORAOOI26.trc
outmain2.sql ORA00044.trc

2 outmain2.sql ORA00044a.trc
outmain3sol ORA00042.trc
outmain l.sql ORAOO 119a.trc

3 outmain3.sql ORAOOI27.trc
outmain l.sql ORAOOOSO.trc
outmain2.sql ORA00083.trc

4 outmain l.sql ORA00057.trc
outmain2.sol ORA00063.trc
outmain3.sql ORA00107.trc

5 outmain3.sql ORA00044b.trc
outmain l.sql ORAOO lOO.trc
outmain2.sql ORA00112.trc

6 outmain2.sql ORA00037.trc
outmain3.sol ORA00070.trc
out main J.sql ORA00065.trc

7 outmain3.sql ORAOOOSI.trc
outmain2.sql ORAOOOSI a.trc
outmain l.sql ORAOOI07a.trc

8 outmain !.sol ORA00089.trc
outmain2.sol ORA00042a.trc
outmair,3.sql ORA00098.trc

9 outmain2.sql ORAOO 136.trc
outmain3.sql ORAOO I OOa.trc
outmain l.sol ORA00095.trc

10 outmain3.sol ORAOO 130.trc
outmain l.sql ORAOO 138.trc

135

outmain2.sql ORA00074a.trc
II outmain !.sal ORA00129.trc

outmain2.sal ORA00081 b.trc
outmain3.sql ORA0007l.trc

12 outmain2.sql ORA00118.trc
outmain3.sal ORA00139a.trc
outmainl.sal ORA00095.trc

13 outmain3.sql ORA0006l.trc
outrnain2.sql ORA00044.trc
outmainl.sql ORA00135.trc

14 ommainl.sal ORA00074.trc
outmain3.sal ORA00128.trc
outmain2.sql ORA00093.trc

15 outmain2.sql ORA00093a.trc
outmain3.sql ORA00126a.trc
outmain l.sol ORA00126b.trc

Outer Selectivity with a filter criteria on inner table for a one to one relationship

Runs Scripts Generated Trace files
I iomainl.sql ORA00107.trc

iomain3.sal ORA00120.trc
iomain2.sal ORA00138.trc

2 iomain2.sql ORA00073.trc
iomain3sql ORA00092.trc
iomainl.sql ORA00093.trc

3 iomain3.sal ORAOO 134.trc
iomain l.sal ORA00135.trc
iomain2.sql ORA0019l.trc

4 iomainl.sql ORA00057.trc
iomain2.sql ORA00065.trc
iomain3.sql ORA00044.trc

5 iomain3.sal ORA00065a.trc
iomain l.sal ORA00065b.trc
iomain2.sql ORAOOI23.trc

6 iomain2.sql ORAOOI23a.trc
iomain3.sql ORAOO 123b.trc
iomain l.sal ORA00068.trc

7 iomain3.sal ORA00108.trc
iomain2.sql ORAOOI26.trc
iomain l.sql ORAOOII2.trc

8 iomainl.sql ORA00044.trc
iomain2.sal ORA00099.trc
iomain3.sal ORA00099a.trc

9 iomain2.sql ORA00097.trc

136

iomain3.sql ORAOOIOS.trc
iomain I. sal ORAOOI05a.trc

10 iomain3.sal ORAOOI16.trc
iomainl.sql ORA00136.trc
iomain2.sql ORAOOI09.trc

II iomainl.sql ORAOOI21.trc
iomain2.sal ORA00123c.trr
iomain3.sql ORAOOI24.trc

12 iomain2.sql ORAOOIIS.trc
iomain3.sql ORA00037.trc
iomainl.sal ORA00074.trc

13 iomain3.sal ORA00118.trc
iomain2.sal ORA00075.trc
iomain l.sql ORAOOI02.trc

14 iomain l.sql ORA00057a.trc
iomain3.sql ORA00057b.trc
iomain2.sal ORA00142.trc

15 iomain2.sql ORA00066.trc
iomain3.sql ORA00095.trc
iomain l.sql ORA00064.trc

137

APPENDIX F • Example of Random Numbers Generated

437 920 173 750 615 665 651 178 465 937
560 893 753 384 165 848 184 985 88 943
987 258 824 556 302 804 392 706 573 544
815 415 202 549 455 318 157 483 420 591
366 957 50!) 662 980 332 448 393 889 825
452 628 135 811 206 229 13 852 918 191
973 763 48 279 776 710 794 297 418 215
481 65 690 512 400 540 526 693 837 786
479 514 170 671 941 867 494 484 908 196
934 922 522 511 704 27 630 622 703 130

8 802 910 878 147 99 111 718 692 854
679 712 809 193 334 360 249 642 212 818
843 19 616 672 542 234 336 320 493 849
329 473 548 259 168 245 243 51 640 79
305 793 251 319 1 339 674 226 971 461
274 678 435 291 304 958 871 948 407 300
381 261 492 180 698 697 132 353 221 519
122 219 709 68 688 216 430 744 545 959
991 716 993 463 •• 850 447 944 829 223
247 546 561 81 602 311 92 269 52 324
110 475 869 439 733 816 21 458 758 530
949 445 218 839 42 550 947 317 658 543
284 262 90 62 553 862 751 112 433 240
571 232 707 741 266 735 755 739 174 557
891 142 539 834 619 390 536 199 929 177
676 350 624 799 56 365 136 436 645 55
401 953 689 123 532 945 903 790 647 113
996 442 6 395 609 406 107 3 936 740
725 761 382 667 727 150 158 371 423 34
649 820 708 795 868 1000 928 562 472 28
833 842 144 576 568 372 77 71.3 675 351
108 327 778 140 827 506 995 246 308 487
724 161 770 238 54 260 896 779 978 880
845 555 194 330 263 789 272 528 524 438
290 231 333 156 306 326 129 587 358 569
289 559 620 691 629 417 200 925 986 357
518 15 976 164 187 626 819 419 97 627
148 551 956 499 227 368 298 69 659 286
248 128 BOO 863 984 784 517 632 912 421
743 598 171 935 12 408 766 316 175 235
321 759 835 117 664 66 873 2 503 17
823 764 625 646 385 138 950 961 362 343
926 478 116 287 345 411 211 474 355 599
652 477 409 338 14 558 467 975 653 89
432 593 197 807 963 280 547 654 895 38
723 225 43 900 554 185 124 41 10 281
951 198 373 812 145 114 870 310 397 288
422 656 374 47 581 938 217 872 612 998
490 205 782 195 67 575 749 22 500 282
921 470 36 501 388 370 611 201 121 151
513 169 377 592 347 537 762 414 924 754
855 314 660 965 404 344 830 413 886 434

64 380 682 349 650 363 661 746 45 981
244 39 877 901 95 771 154 914 781 100

74 883 386 141 582 93 50 915 102 496
527 9 340 443 44 955 267 309 983 960

76 186 271 98 605 777 655 49 459 997
798 722 222 813 239 572 700 803 881 464
814 897 586 378 ••• 337 57 20 952 416
120 552 538 ••• 864 694 757 182 346 252
495 352 87 535 402 643 356 931 756 529
637 633 773 853 394 990 482 861 797 988
257 277 695 398 497 489 403 315 515 657

138

972 75 410 361 105 601 131 32 531 256
737 ., 720 325 866 613 686 383 60 607
565 982 264 181 153 930 322 69G 831 801
946 699 734 254 70 292 451 648 594 295
450 905 882 590 146 717 994 507 578 917
772 902 638 860 574 913 954 24 702 521
765 29 250 933 125 454 127 203 748 115
241 242 715 687 729 510 683 7 71 964
516 35 840 58 666 162 207 859 364 969
480 424 471 204 631 143 155 230 5 16
909 209 331 342 808 884 26 680 608 806

25 525 468 59 328 101 275 149 874 970
577 564 856 23 851 714 190 94 134 192
846 446 942 736 412 563 104 265 sse 167
875 774 788 728 670 236 30 906 296 747
644 787 584 887 273 431 462 31 176 635
780 821 600 979 968 228 596 405 857 923
533 444 103 817 323 237 792 810 SOB 214
641 614 210 429 389 731 376 916 449 992
769 721 188 588 911 eo 270 966 589 106
255 617 606 285 579 83 604 805 927 4

96 sao 486 126 719 585 847 166 159 293
623 567 276 399 932 892 359 904 224 ••• 534 428 301 387 940 760 109 ass 610 268
520 967 894 335 348 822 502 726 768 832
440 457 876 785 711 838 118 46 509 426
701 133 618 907 732 639 313 299 745 307
453 391 738 791 668 583 396 730 72 595
541 962 742 63 354 685 974 213 603 40
783 491 705 523 498 989 681 82 767 233
369 826 312 796 375 341 634 752 469 152
673 18 61 160 977 139 504 253 208 879
621 86 379 441 78 636 841 119 844 939

91 899 684 73 137 303 11 163 183 220
294 456 466 427 172 663 33 278 425 865

85 775 485 836 919 189 566 476 367 37
999 179 828 597 283 677 570 890 460 669

139

APPENDIX G- Example of Generated Trace Files

TKPROP; Releaae 7.3.2.2.0 - Production on Wed oct 29 21;30114 1997

Copyright {c) Oracle Corporation 1979, 1994. All righta reaarved.

Trace filer Cl\am&llet\trace\ora0006S.trc

Sort options; default

••
count • number of ti=ea OCI procedure waa executed

opu • cpU time in SI!ICOJU!I executing

elapaad • elapsed time in aaconda executing

disk • number of physical raada of buffara from disk

query • number of buffer11 gotten for conaistent read

currant • nWIIber of buffers gotten in current Jllode {usually for update)

rows • numbor of rows processed by the fetch or executa call

••

alter session set aql_trace m true

call cou11t opu elapsed diak

------- -------- ---------- ----------
Parae 0 0.00 0.00 0

Execute 1 0.05 0.09 7

Fetch 0 0.00 o. 00 0

------- -------- ---------- ----------
total 1 0.05 0.09

Misses in library caehe during parae; 0

Misses in library caehe during executa; 1

Optimher goal: RtJLB

Parsing user id: 14 {ADA)

7

.... ry current r=•
---------- ---------- ----------

0 0 0

30 1 0

0 0 0

---------- ---------- ----------
30 1 0

••

alter ayBtl!llll fluah aharad~ool

eall cou11t opu elapsed dbk quory currant rows

-------- ---------- ---------- ---------- ---------- ----------
o.:n o.:aa 0 0 0 0

0.50 0.5::1: 0 0 0 0

140

retch 0 0.00 o.oo

total " 0.71 0.80

Hisses in library cache during parsez 1

Optimizer goalt RULE

Parsing user idt 14 {ADA)

0 0 0 0

0 0 0 0

**

select /*+ USE_MBRGE(QUO, CUS) */

eus.name, quo.quota_no

from quotes quo, custOlllara cua

where cus.cust_id+O = quo.cust_i4+0

and postcode < 6001

call count Opu elapJJed disk

------- -------- ---------- ----------
Parse 1 o. 61 o. 78 0

Execute ' 0.39 0.52 0

retch 1 3.07 4.15 "' ------- -------- ---------- ----------
total ' 4.07 5.45

Misses in library cache during parset 1

Optimizer goal: RULE

Parsing user id: 14 (ADA)

Rows Execution Plan

0 SELECT STATEMENT

MERGE JOJ:N

SORT (JOJ:N)

GOAL1 RULE

TABLE ACCESS {P'tJLL) OP' 'Qtro'l'BS'

SORT (JOJ:N)

270

0

10000

10000

0

1000 TABLE ACCESS {P'tJLL) OF 'CUSTOMERS'

quory current ,~.

---------- ---------- ----------
0 ' 0

0 1 0

"' '" 0

---------- ---------- ----------
270 250 0

••

select /*+ USB_MBRQB(QUO, CUS) */

cua.nllllle, quo.quote_no

from quotas quo, customers cus

where cus.eust_id+O • quo.eust_id+O

141

=• poatc:ode < 6101

oall c:ount opu elapse<! dbk

------- -------- ---------- ----------
Parae 1 0.40 0.46 0

keeute 2 0.50 0.55 0

Patch " 5.18 7. 79 "' ------- -------- ---------- ----------
total 70 6.09 a. 79 "'
Misses in library cache during paraaz 1

Optimizer goal: RULE

Parsing user id: 14 (ADA)

.... ,. euX"rent
·~· ---------- ---------- ----------

0 0 0

0 1 0

"0 :026 1000

---------- ---------- ----------
270 327 1000

142

TXPROF1 Release 7.3.~.~.0 -Production on Wed Oct ~9 14t50!05 1997

Copyright (c) oracle Corporation 1979, 19!4. All rights reserved.

~race filet Cl\~llet\trace\ora00094.trc

Sort option11 default

••
count • number of times CCI procedure wa1 executed

cpu • cpu time in seconds executing

elapsed • elapsed time in seconds executing

dbk number of physical reeds of buffers from disk ... ,.,. • number of buffers gotten for consistent read

current • number of buffers gotten in current mode (usually for update)

r~• • number of rows processed by the fetch or execute call

••
alter session ••• so;l_trace • true

call count cpu elapsed disk

------- -------- ---------- ----------
Parse 0 o.oo o.oo 0

Execute 1 o. 05 0.09 7

!!'etch 0 o.oo o.oo 0

------- -------- ---------- ----------
total 1 0.05 o. 09

Misses in library cache during parae1 0

Misses in library cache during execute I 1

Optimizer goal; RULB

Parsing user id: 14 (ADA)

7

... ,.,. current rows

---------- ---------- ----------
0 0 0

30 1 0

0 0 0

---------- ---------- ----------
30 1 0

••

alter system flush ahare~ool

call count cpu elapsed dbk ... ,.,. current rowa

------- -------- ---------- ---------- ---------- ---------- ----------
Parse " 0.~1 o.~e 0 0 0 0

Bxecute " 0.50 0.5~ 0 0 0 0

!!'etch 0 0.00 0.00 0 0 0 0

--- ·--- -------- ---------- ---------- ---------- ---------- ----------
total " 0.71 o.eo 0 0 0 0

143

Miaaea in lib~ary cache au~ing pa~ae: 1

OptJ.mi:lle~ goalz RtJLIII

Pa~aing u•er idz 1• (ADA)

••

llelect /*+ OSE_IRDIIIX(QUO, CUS) */

cua.n~e, quo.quote_no

f~om quote• quo, cuatome~• cua

where cus.cuat_id • quo.cuat_ia

and postcode < 6001

call count opu elapaed disk

------- -------- ---------- ----------
Pe~se 1 0.70 0.84 0

Execute 1 0.02 0.01 0

Patch 1 0.03 0.07 ' ------- -------- ---------- ----------
total 3 0.75 0.92

Mi•••• in libra~ cache during parae; 1

Optimize~ goal; RULE

Paraing user id: 14 (ADA)

Row• Execution Plan

0 SELECT STATZMIWT GOALI RULE

NESTED LOOPS

'

TABLIII ACCESS {PULL) OP 'CUSTOMERS'

TABLE ACCESS {BY ROWJ:D) 01' 'QtJO'l'BS'

query

0

0

15

15

0

1000

0

0 l:NDI!!X (RANGE SCAN) 01' 'QUO'l'E_IX' (NON-UNIQOB)

current ·-· ---------- ----------

' 0

0 0

' 0

---------- ----------
' 0

••

select /*+ USE_l:NDBX(QUO, CUS) */

cua.namo, quo.quote_no

from quotea quo, cuatomera cua

where cua.cuat_id • quo.cuat_id

and poatcoda < 6101

call count opu elapaed diek query current rowa

144

Parae 1 o.u o.n 0

Exec:rute 1 o.oo o.oo 0

!'etc:h 67 1.61 8.24 578

------- -------- ---------- ----------
total " 2.02 8.71

Hiaaea iQ library c:ac:he duriQg paree: 1

Optimizer goal: RULE

Paraing uaer id: 14 !ADA)

Rewa bec:rution Plii.D

0 SELECT STATZMEMT GOAL: RULE

1000 UE9TED LOOPS

578

1000 TABLE ACCESS (FULL) OF 'CtfS'l'OMZllS'

1000 TABLI!: ACCESS (BY ROWl:D) OF 'QUOTES'

0

0

2315

2315

1100 :INDia (RANGE SCAN) OF 'Qti'OT11_:IX' (NOH-tnnQUB}

0 0

0 0

2 1000

---------- ----------
2 1000

145

TXPROP: Rele~ae 7.3.2.2.0 - Production on !hu oct 30 10:07:56 1997

Copyri~ht (c) Or~cle Corpor~tion 1979, 1994. All ri~hta reaerved.

Trace file: c:\amallet\trace\ora00137.trc

Sort optiona: def~ult

••
count • number of times OCI procedure was executed

cpu • cpu time in second• executin~

elapsed • elapsed time in aeconda executin~

disk • number o< physical reads of buffers fr01r1 disk

queey • number o< buffers gotten for consistent read

current • number of buffers gotten in current mode (uaually for update)

r~• • number o< rowa processed by the fetch or execute ca.ll

****************'"*************************************•·························

alter session ••• sql_trace • true

c~ll count cpu elapsed diok

------- -------- ---------- ----------
Parae 0 o.oo o.oo 0

l!!xecute 1 0.07 0.10 0

Fetch 0 0.00 0.00 0

------- -------- ---------- ----------
total 1 0.07 0.10

Misses in library cache during parae: 0

Misses in library c~che during execute: 1

Optimizer goal: RULE

Parsing user id: 14 (ADA)

0

., . .,. current rows

---------- ---------- ----------
0 0 0

30 1 0

0 0 0

---------- ---------- ----------
30 1 0

**··············

alter ayattllll fluah ah~red_pool

call count cpu o~~lapsed diek QUeey current r~•

------- -------- ---------- ---------- ---------- ---------- ----------
Parae " 0.22 0.26 0 0 0 0

l"xecute " 0.35 0.39 0 0 0 0

Petch 0 0.00 0.00 0 0 0 0

------- -------- ---------- ---------- ---------- ---------- ----------
total " 0.57 0.65 0 0 0 0

146

Misaes in library cache during parse1 1

Optimizer goal: RULE

Paraing uaer id: 14 (AIIJI.)

••

salact /*+ USE_HASH(QUO, CUB) */

cua.name, quo.quota_no

from quotaa quo, cuatomara cua

where cua.cuat_id = quo.cuat_id

and poatcode < 6001

call count <pu alapaad dbk

------- -------- ---------- ----------
Parae 1 0.65 0.77 0

Executa 1 o.oo o. 00 0

Patch 1 o. 05 0.07 '
------- -------- ---------- ----------
total 3 o.1o 0.84

Kiaaaa in library cache durin~r parae; 1

Optimizer goal: ROLE

Parsing user id: 14 (11DA)

Rows Execution Plan

GOAL; ROLE

HASH JOIN 0

1000

0

'!'ABLE ACCESS (FULL) 01' 'CUS'l'OMZRS'

TABLE ACCESS (FULL) OP 'QUOTES'

'

queey curre11t rows

---------- ---------- ----------
0 ' 0

0 0 0

15 ' 0

---------- ---------- ----------
15 • 0

••

select /*+ USE~SH(QUO, CUS) */

cua.nama, quo.quota_no

from quotes quo, customers cus

where cus.cuat_id • quo.cust_id

and poatcoda < 6101

call count cpu

Para a 1 0.46

disk QUeey current rowe

0 0 0 0

147

beeu.te

retc:::h

total

1

67

"

0.01

0.94.

1.35

o.ol

1.61

2.08

Ki•••• in library c:::ac:::he durin~ parse: 1

Optimizer ~oal1 RULE

Par•in~ u•er id: 14 (ADA)

Rows Bxec:::ution Plan

0 SELBCT STATEMENT GOAL: RULE

RASH JOiN

0

270

270

2510

1000

10000

TABLE ACCESS (l!"t1LL) OP 'CUSTOMERS'

TABLE ACCESS (PULL) OF 'QUOTES'

0

336

'"

0

•

•

0

1000

1000

**

148

APPENDIX H- Performance Data Collected

Table 14: Response Time v/s Join Selectivity Factor for a one-to-many
relationship

roin Method
Join Selectivity Factor Nested Loop Sort Merge Hash Join
0 0.81 5.42
1 X 10 8.57 7.93
2 X 10"' 14.59 7.75
3x10"' 21.13 7.94
4 X 10 27.63 8.54
5 X 10. 33.56 9.04
6 X 10 40.07 9.42
7 X 10"' 46.72 9.77
8 X 10 4 54.47 10.13
9 X 10. 61.5 10.54
10x10"' 65.85 11.18

Table 15: CPU Time v/s Join Selectivity Factor for a one-to-many
relationship

Join Method
Join Selectivity Factor Nested Loop Sort Merge Hash Join
0 0.69 4.25
1 X 10. 1.98 6.07
2x10"'" 3.47 6.47
3 X 10 '4 4.91 6.81
4 X 10. 6.51 7.25
5 X 10. 7.95 7.75
6 X 10. 9.47 8.16
7x10"'" 10.82 8.66
8 X 10 '4 12.47 9.04
9 X 10 14.05 9.45
10 X 10 15.4 9.91

0.81
2.14
2.38
2.83
3.34
3.73
4.07

4.5
4.86
5.26
5.7

0.67
1.34

1.7
2.12
2.57

3
3.39
3.79
4.16
4.58
5.02

149

Table 16: Number ofl/0 reads v/s Join Selectivity Factor for a one-to-many
relationship

Join Method
Join Selectivity Factor Nested Loop Sort Merge Hash Join
0 15 270 15
1 X 10 ·• 2315 270 336
2 X 10. 4615 270 403
3 X 10 6914 270 470
4 X 10 9214 270 536
5 X 10"" 11514 270 603
6 X 10 13814 270 670
7x10 16114 270 736
8x10 18414 270 803
9 X 10 20714 270 870
10x1o·• 23014 270 936

Table 17: Response Time v/s Join Selectivity Factor for a one~to-one
relationship

Join
loin l Loop I Sort Hash Join

0.78 4.59 0.82
11 X 10 ., 1.06 4.58 1.29

2 X 10 ·O 1.37 1 ~3~x~1~o~·o,_----~-----~~~~-~~+-----~·. +-----~~
l4x1a·o "·'" 1.68
l5x 10., 2.89 4.78 1.76
I 6 X 1 0 ., 3.26 4.94 1
7 X 1 0 ·o !.91 4.95 1
I X 11 ·o l:,§g_ 4.84

1.91
lOx a·" 4.58 5.14 1.89

!50

Table 18: CPU Time v/s Join Seleclivity Factor for a one-to-one relationship

Join Method
Join Selectivity Factor Nested Loop Sort Merge Hash Join
0 0.66 3.49 0.68
1 x10'' 0.6 3.4 0.82
2 X 10 ., 0.77 3.51 0.87
3 X 10 ., 0.56 3.56 0.93
4 X 10 ., 1.26 3.61 0.97
5 X 10 ., 1.02 3.66 1.04
6 X 10 ., 1.53 3.72 1.07
7 X 10 ., 1.28 3.8 1.14
8 X 10 ., 1.87 3.86 1.17
9 X 10 ., 1.68 3.92 1.23
10x10'' 2.14 3.95 1.25

Table 19: Number of 1/0 reads v/s Join Selectivity Factor for a one·to·one
relationship

Join Method
Join Selectivity Factor Nested Loop Sort Merge Hash Join
0 15 250 15
1 X 10 ., 515 250 256
2 X 10 ., 1015 250 263
3 X 10 ., 1514 250 270
4 X 10 ., 2014 250 276
5 X 10 ., 2514 250 283
6 X 10 ., 3014 250 290
7 X 10 ., 3514 250 296
8x10'' 4014 250 303
9x10'' 4514 250 310
10x1o·' 5014 250 316

!51

Tabl• 20: Response Time v/s Outer Selectivity Factor for a one-to-many
relationship with a predicate on inner table

Join Method
Outer Selectivity Factor Nested Loop Sort Merge Hash Join
0 4.62 3.96 1.86
1 X 10. 7.35 4.87 1.78
2 X 10. 14.37 4.96 2.26
3 X 10. 20.83 5.14 2.13
4 X 10. 27.05 5.33 2.43
5 X 10. 33.25 6 2.53
6 X 10. 39.32 5.9 2.69
7 X 10. 45.24 6.2 2.91
8 X 10. 53.02 6.18 3.05
9 X 10. 60.25 6.44 3.3
1 65.69 6.63 3.47

Table 21: CPU Time v/s Outer Selectivity Factor for a one-to-many
relationship with a predicate on inner table

Join Method
Outer Selectivity Factor Nested Loop Sort Merge Hash Join
0 0.63 3.04 1.34
1 X 10. 1.73 3.74 1.25
2 X 10. 3.09 3.94 1.-<18
3 X 10. 4.41 4.21 1.68
4 X 10. 5.78 4.44 1.87
5 X 10. 6.97 4.62 2.04
6 X 10. 8.36 4.86 2.16
7 X 10. 9.59 5.08 2.41
8 X 10. 10.89 5.31 2.54
9 X 10. 12.28 5.47 2.76
1 13.63 5.72 2.93

152

Table 22: Number of 110 reads v/s Outer Selectivity Factor for a one-to
many relationship with a predicate on inner table

Join Method
Outer Selectivity Factor Nested Loop Sort Merge Hash Join
0 15 270 270
1 X 10. 2315 270 305
2 X 10. 4615 270 338
3 X 10. 6914 270 374
4 X 10. 9214 270 409
5 X 10. 11514 270 441
6 X 10. 13814 270 472
7 X 10. 16114 270 506
8 X 10. 18414 270 537
9 X 10. 20714 270 572
1 23014 270 603

Table 23: Response Time v/s Outer Selectivity Factor for a one-to-many
relationship with no predicate on inner table

Join Method
Outer Selectivity Factor Nested Loop Sort Merge Hash Join
0 0.81 5.42 0.81
1 X 10 ·l 8.57 7.93 2.14
2 X 10. 14.59 7.75 2.38
3 X 10. 21.13 7.94 2.83
4 X 10. 27.63 8.54 3.34
5 X 10. 33.56 9.04 3.73
6 X 10. 40.07 9.42 4.07
7 X 10. 46.72 9.77 4.5
8 X 10. 54.47 10.13 4.86
9 X 10. 61.5 10.54 5.26
1 65.85 11.18 5.7

153

Table 24: CPU Time v/s Outer Selectivity Factor for a one-to-many
relationship with no predicate on inner table

Join Method
Outer Selectivity Factor Nested Loop Sort Merge Hash Join
0 0.69 4.25 0.67
1 X 10. 1.98 6.07 1.34
2x 10 · 3.47 6.47 1.7
3 X 10. 4.91 6.81 2.12
4 X 10. 6.51 7.25 2.57
5 X 10. 7.95 7.75 3
6 X 10. 9.47 8.16 3.39
7 X 10. 10.82 8.66 3.79
8 X 10. 12.47 9.04 4.16
9 X 10. 14.05 9.45 4.58
1 15.4 9.91 5.02

Table 25: Number of 1/0 reads v/s Outer Selectivity Factor for a one-to·
many relationship with no predicate on inner table

Join Method
Outer Selectivity Factor Nested Loop Sort Merge Hash Join
0 15 270 15
1 X 10. 2315 270 336
2 X 10. 4615 270 403
3x 10 · 6914 270 470
4 X 10. 9214 270 536
5 X 10. 11514 270 603
6 X 10 ., 13814 270 670
7 X 10. 16114 270 736
8 X 10. 18414 270 803
9 X 10. 20714 270 870
1 23014 270 936

154

References
Aronoff, E., Loney, K., & Sonawalla, N. (1997). Advanced ORACLE tuning and

administration - Making your database perform at peak. New York:

Osborne McGraw-Hill.

Atzeni, P., & De Antonellis, V. (1993). Relational database theory. Redwood

City, CA: Benjamin!Cunnnings.

Bennett, K., Ferris, M.C., & Joannidis, Y. E. (1991). A genetic algorithm for

database query optimization. Madison, Wisconsin: University of

Wisconsin, Computer Sciences Department.

Cheng, J., Haderle, D., Hedges, R., Iyer, B. R., Messinger, T., Mohan, C., &

Wang, Y. (1991). An efficient hybrid join algorithm: A DB2 prototype,

Seventh international conference on data engineering (pp. 171-180). Los

Alamitos, USA: IBM.

Codd, E.F. (1970). A relational model for large shared data banks.

Communications of the ACM, 13 (6), 377-387.

Codd, E. F. (1990). The relational model for database management - version 2.

Reading, MA: Addison-Wesley.

Corey, M. J., Abbey, M., & Dechichio, D. J., Jr. (1995). Tuning oracle. Berkeley,

CA: Oracle Press/Osborne McGraw-Hill.

Corrigan, P., & Gurry, M. (1996). ORACLE peifonnance tuning (2nd rev ed.).

Sebastopol, CA: O'Reilly & Associates.

Database Market to top $10.1 billion (1997). [On-line]. Available:

http://techweb I. web.cerf.net/wire/news/apr/041 Odatabase.html.body

[1997, 30 April].

155

Date, C. J. (1986). Relational database - selected writings. Sydney, Australia:

Addison-Wesley.

Date, C. J. (1989). A guide to the SQL standard (2nd ed.). Reading, MA:

Addison-Wesley.

Deitel, H. M. (1990). An introduction to operating systems (2nd ed.). Reading,

MA: Addison-Wesley.

Gaede, V., & Gunther, 0. (1994). Processing joins with user-defined functions.

Berkeley: International Computer Science Institute.

Gardarin, G., & Valduriez, P. (1989). Relational databases and knowledge bases.

Sydney: Addison-Wesley.

Graefe, G. (1994). Sort-Merge-Join: An idea whose time has(h) passed?

Available: http :1/www .cse. ogi .edu!DIS C/projects/ereg/papers/ graefe-

papers.html [1997, October 17].

Graefe, G., Linville, A., & Shapiro, L. D. (1994). Sort vs. Hash revisited. IEEE

Transactions on knowledge and data engineering, 6 (6), 934-944.

Harris, E. P. (1995). Towards optimal storage design for efficient query

processing in relational database systems. Unpublished doctoral

dissertation, University of Melbourne, Victoria, Australia.

Harris, E. P., & Ramamohanarao, K. (1996). Join algorithm costs revisited. The

VLDB Journal, 5, 64-84.

Jarke, M., & Koch, J. (1984). Query optimization in database systems. Computing

Surveys, 16 (2), 111-152.

Jarke, M., Koch, J., & Schmidt, J. W. (1985). Introduction to query processing. In

W. Kim, D. S. Reiner, & D. S. Batory (Eds.), Query processing in

156

databaEe systems (pp. 3-28). Berlin, Germany: Springer-Verlag.

Kim, W. (1980). A new way to compute the product and join of relations,

Proceedings of the 1980 ACM SlGMOD International Conference on the

Management of Data (pp 179-187).

Kuznetsov, S.D. (1989). Logical query optimization in relational database

management systems. Programming and Computer Software, 15 (6), 271-

281.

Li, Y., Kitagawa, H., & Ohbo, N. (1994). Optimization of join-type queries in

nested relational databases, 7 (6), 648-659.

Lipton, R.J., & Naughton, J.F. (1990). Query SIZe estimation by adaptive

sampling. SIGMOD Record, 19 (2), 40-46.

Lipton, R.J., Naughton, J.F., & Schneider, D.A. (1990). Practical selectivity

estimation through adaptive sampling. SIGMOD Record, 19 (2), 1-11.

Lu, H., & Carey, M.J. (1985). Some experimental results on distributed join

algorithms in a local network, Proceedings of Very Large Data Base 85

(pp. 292-304). Stockholm: Very Large Data Base Endowment.

March, S., & Carlis, J. (1985). Physical database design: Techniques for

improved database performance. In W. Kim, D. S. Reiner, & D. S. Batory

(Eds.), Query processing in database systems (pp. 279-296). Berlin,

Germany: Springer-Verlag.

McFadden, F. R., & Hoffer, J. A. (1991). Database management (3rd ed.).

Redwood City, CA: Benjamin/Cummings.

Meechan, D. J. (1988). A heuristic approach to query optimization. Unpublished

masteral dissertation, University of Alberta, Alberta, Canada.

157

Mishra, P. & Eich, M. (1992). Join processing in relational databases. ACM

Computing Surveys, 24(1), 63-113.

Pascal, F. (1993). Understanding relational databases -with examples in SQL -92.

New York: John Wiley.

Piatetsky-Shapiro, G., & Connell, C. (1984). Accurate estimation of the number

of tuples satisfying a condition. SlGMOD Record, 256-216.

Roti, S. (1996). Indexing and database mechanisms [On-line]. Available:

http://www.dbmsmag.com/9605dl5.html [1997, 6 April].

Stanczyk, S. (1991). Programming in SQL. London: Pitman.

Topor, R. (n. d.). Language and Infonnation: Communicating with databases -

An inaugural lecture. (Available from School of Computing and

Information Technology, Faculty of Science and Technology, Griffith

University, Queensland 4111, Australia).

Urman, S. (1996). Oracle PUSQL programming. Berkeley, CA: Osborne

McGraw-Hill.

Weaver, W. & Raulin, M. (1994). Random Number Generator Program [on-line].

Available WWW: http://www.buffalo.edu/-raulinlrandom.html. [1997, 29

November}.

Yu, P. S., & Cornell, D. W. (1991). Optimal buffer allocation in a multi-query

environment, Proceedings 7th International Conference on data

engineering (P?· 622-629).

158

	An Experimental Study Into the Effect of Varying the Join Selectivity Factor on the Performance of Join Methods in Relational Databases
	Recommended Citation

	tmp.1444198474.pdf.9uNkq

