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ABSTRACT 

 

This thesis models the dependence risk profile, investment risk and portfolio allocation 

features of seven 20-stock portfolios from the mining, energy, retail and manufacturing 

sectors of the Australian market in the context of the 2008-2009 global financial crisis 

(2008-2009 GFC) and pre-GFC, GFC, post-GFC and full sample period scenarios 

revolving around it. The mining and energy portfolios are the base of the study, while 

the retail and manufacturing are considered for benchmarking purposes. Pair vine 

copula models including canonical vines (c-vines), drawable vines (d-vines) and regular 

vines (r-vines) are fitted for the analysis of the portfolios’ multivariate dependence and 

their underlying sectors’ dependence risk dynamics. Besides, linear and nonlinear 

optimization methods threaded with the variance, mean absolute deviation (MAD), 

minimizing regret (Minimax), conditional Value-at-Risk (CVaR) and conditional 

Drawdown-at-Risk (CDaR) risk measures are implemented to examine the portfolios’ 

investment risk and optimal portfolio allocation features.   

The vine copula modelling of dependence aims at examining the dependence risk 

profile of the portfolios in specific market conditions; studying the changes of the 

portfolios’ dependence structure between pairs of period scenarios; and recognizing the 

vine copula models that best account for the portfolios’ multivariate dependence. The 

multiple risk measure-based portfolio optimization seeks to identify the least and most 

investment risky portfolios, single out the portfolio that offers the best risk-return trade-

off and recognize the stocks in the portfolios that are good candidates for investment. 

This thesis’ main contributions stem from the “copula counting technique” and “average 

model convergence” perspectives proposed to handle, analyse and interpret the 

portfolios’ dependence structure and portfolio allocation features. The copula counting 

technique aside from simplifying the analysis and interpretation of the assets’ 

dependence structure, it enables an in-depth and comprehensive analysis of their 

underlying dependence risk dynamics in specific market conditions. The average model 

convergence addresses the optimal stock selection and investment confidence problems 

underlying any type of portfolio optimization, and faced by investors when having to 

select stocks from a wide array of optimal investment scenarios, in a more objective 

manner, through model convergence and model consensus. Both, the copula counting 

technique and average model convergence are new concepts that introduce new theory 
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to the pair vine copula and multiple risk measure-based portfolio optimization 

literatures. 

The research findings stemming from the vine copula modelling of dependence indicate 

that the each of the portfolios modelled has dependence risk features consistent with 

specific market conditions. Out of the seven portfolios modelled the gold mining and 

retail benchmark portfolios are found to have the lowest dependence risk in times of 

financial turbulence. The iron ore-nickel mining and oil-gas energy portfolios have the 

highest dependence risk in similar market conditions. Out of the energy portfolios the 

coal-uranium is significantly less dependence risky, relative to the oil-gas. Out of the 

mining portfolios the iron ore-nickel is the most dependence risky, while the gold 

portfolio has the lowest dependence risk. The retail benchmark portfolio is significantly 

less dependence risky than the manufacturing benchmark portfolio in both, tranquil 

periods and non-tranquil periods. In terms of investment risk, the oil-gas energy 

portfolio is the most risky. 

The “copula counting technique” is acknowledged for simplifying the analysis and 

interpretation of the portfolios’ dependence structure and their sectors’ dependence risk 

dynamics. The average model convergence provides an alternative avenue to identify 

stocks with large weight allocations and high return relative to risk. The research 

findings and empirical results are interesting in terms of theory and practical financial 

applications. Portfolio managers, risk managers, hedging practitioners, financial market 

analysts, systemic risk and capital requirement agents, who follow the trends of the 

Australian mining, energy, retail and manufacturing sectors, may find the obtained 

results useful to design investment risk and dependence risk-adjusted optimization 

algorithms, risk management frameworks and dynamic hedging strategies that best 

account for the downside risk the mining and energy sectors face during crisis periods. 
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CHAPTER 1  

 

INTRODUCTION 

 

This chapter consists of seven sections: introduction and background, significance of 

the study, purpose, research questions, assumptions, definition of terms and thesis 

outline. 

 

The introduction and background section positions the research in the landscape of the 

mining, energy, retail and manufacturing sectors and in the context of the 2008-2009 

global financial crisis. The size of the sectors modelled and their significance to the 

Australia economy is acknowledged. The problem of accurately estimating the 

multivariate dependence of financial variables is stated and the modelling limitations of 

alternative measures for dependence and correlation estimation are pointed out. The 

emergence of new techniques for dependence estimation and portfolio optimization is 

pointed out and the relevance of the multiple risk measure-based portfolio optimization 

approach is recognized. Reasons for selecting the 2008-2009 GFC as the context to 

implement the modelling framework are given, along with motivations for the selection 

of the mining, energy, retail and manufacturing stock portfolios. The contributions of 

the research conducted are also stated in this section. The significance of the study 

discusses the usefulness of the research undertaken, while the purpose and research 

questions sections outline the research objectives and research questions. The 

assumptions section states the assumptions upon which the research and modelling 

framework implemented rest. Some key concepts and ideas are explained in the 

definition of terms section.  
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1.1 Introduction and background 

 

The Australian economy has grown along with the expansion of the mining and energy 

sectors, and in relation to the economic linkages these sectors have with the retail and 

manufacturing sectors (Bishop et al., 2013; KPMG Economics Group, 2013; McKay et 

al., 2000; Ahammad & Clements, 1999). As of December 2012 the percentages of 

mining (coal and uranium are included in this category) and energy (e.g. oil, gas and 

renewables) stocks listed and trading on the Australian Securities Exchange were 

approximately 39 and 9 respectively, an indication of the size of the resources sector 

and their relationship of dependence with the economy (Arreola & Powell, 2013). 

In the last two decades Australia saw a sharp increase in the mining of precious and 

non-precious metals such as gold, iron ore and nickel stemming from the Asian 

emerging economies’ increasing demand of those commodities (Bishop et al., 2013; 

Bingham & Perkins, 2012; Connolly & Orsmond, 2011; Gardner-Bond et al., 2008). 

Along with this trend of increasing demand, portfolio investors have more frequently 

been considering positions in the mining and energy sectors to diversify their holdings 

(Jennings, 2012). In 2011, gold, iron ore and nickel production placed Australia as the 

third, first and fourth largest exporter worldwide, respectively (Bingham & Perkins, 

2012; Gardner-Bond et al., 2008). By 2014 energy production in Australia had placed 

the country as the ninth largest producer worldwide, with coal, uranium and natural gas 

accounting for 60, 20 and 13 per cent of the energy mix (BREE, 2014; DI et al., 2014).
1
 

The retail and manufacturing sectors are important sectors of the Australian economy, 

not only because they account for 12 percent of total GDP but also because the retail 

sector appears to be on the rise, while the manufacturing sector has been in a declining 

trend and exhibits an increasing risk (Department of Industry, 2014; Kryger, 2014; 

Australian Bureau of Statistics, 2015). The retail sector’s good performance is most 

likely due to the economic linkages it has with the Australian resources sector, 

manufacturing sector and other sectors of the economy (ARA, 2014; Savills Research, 

2014; Delloite, 2013; KordaMentha, 2013; CT, 2012; Green & Roos, 2012; NAB, 2012; 

Mehmedovic et al., 2011; DIISR, 2010).
 

The levels of demand, spending and 

                                                           
1
 The acronyms BREE, DI, GA, ARA, CT, NAB and DIISR used in the present chapter stand for Bureau of 

Resources and Energy Economics, Department of Industry, Geoscience Australia, Australian Retailers 

Association, Commonwealth Treasury, National Australian Bank and Department of Innovation, 

Industry, Science and Research. 
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investment in the retail sector appear to be correlated with the performance of the 

Australian resources sector (KPMG Economics Group, 2103).  

In this context of dependence relationships and economic linkages between the 

Australian resources sector and Australian economy and between the Australian 

resources sector and Australian retail and manufacturing sectors, the accurate estimation 

of dependence between financial variables and their optimization is a non-trivial task 

that requires the use of sophisticated techniques for dependence estimation and portfolio 

optimization. The most promising modelling techniques to address these issues have 

emerged in the form of pair vine copulas and risk measures threaded with linear and 

nonlinear optimization methods (see e.g. Arreola & Powell, 2013; Ghalanos, 2013; 

Czado et al., 2012; Czado, 2010; Dissmann, 2010; Aas et al., 2009; Heinen 

&Valdesogo, 2009; Bedford & Cooke, 2001,2002; Cooke, 1997; Joe, 1997). In tune 

with that wave of financial and statistical modelling this thesis implements, in the 

context of the 2008-2009 GFC and pre-GFC, GFC, post-GFC and full sample period 

scenarios, pair regular vines (r-vines), pair canonical vines (c-vines) and pair drawable 

vines (d-vines), and linear and nonlinear optimization methods with respect to the 

variance, mean absolute deviation (MAD), minimizing regret (Minimax), conditional 

Value-at-Risk (CVaR) and conditional Drawdown-at-Risk risk measures to examine the 

dependence risk profile, investment risk and portfolio allocation features of seven 20-

asset portfolios from the gold, iron ore, nickel, coal, uranium, oil, gas, retail and 

manufacturing sectors of the Australian stock market. 

The specific objectives of the vine copula modelling of dependence undertaken are to 

identify the dependence risk profile of the portfolios in specific market conditions, 

examine the changes of the portfolios’ dependence structure between pairs of period 

scenarios and recognize the vine copula models that best account for the portfolios’ 

multivariate dependence. The study looks at the assets’ dependence risk in times of 

financial turbulence characterized by low confidence in the financial stock markets, and 

in tranquil periods where the financial stock markets behave smoothly. The portfolios’ 

dependence structure changes are interpreted according to standard economic theory 

and the price behaviour of the assets’ underlying commodities across period scenarios. 

The multiple risk measure based portfolio optimization seeks to identify the least 

investment risky and most investment risky portfolios, single out the portfolio with the 

best risk-return trade-off and recognize the stocks that are good candidates for 

investment. 
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Figure 1-1: Thesis’ modelling framework. This figure depicts the models fitted, the data sets 

modelled and the period scenarios under which the modelling framework is implemented. The 

pair vine copula models fitted examine the multivariate interaction and dependence risk 

dynamics of the assets, while the fit of the linear and nonlinear optimization methods and risk 

measures looks at the characteristics of the minimum risk optimal portfolios. The modelling 

framework is implemented under four period scenarios: pre-GFC, GFC, post-GFC and full 

sample.  

The motivation for the selection of the pair vine copula models to account for the 

multivariate dependence is that they are adequate to thoroughly examine the portfolios’ 

dependence risk dynamics in specific market conditions. Besides, the vine copula 

models overcome the restrictive and deterministic features of alternative measures of 

dependence and correlation such as the elliptical and Archimedean bivariate copulas 
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and the Pearson, Spearman and Kendall tau (Brechmann & Czado, 2013). The portfolio 

optimization methods and risk measures considered are suitable because they set the 

ground to search for the stocks in which most of the optimization methods and risk 

measures assign weights which do not largely deviate from a mean of weights (i.e. the 

search for average model convergence). Besides, they provide a wide array of optimal 

investment scenarios that could cater for the investors’ risk and return preferences and 

enable a risk comparison of the portfolios (Arreola & Powell, 2013; Eling & Tibiletti, 

2010; Krokhmal et al., 2002; Cheng & Wolverton, 2001; Stone, 1973). 

The motivations for the selection of the gold, iron ore-nickel, mix-metals, coal-uranium, 

oil-gas, retail and manufacturing portfolios are their differences in terms of structure, 

volatility, uses and their importance in asset investment. The retail and manufacturing 

benchmark portfolios are included in the mix of portfolios because of the economic 

linkages they have with the mining and energy sectors (KPMG Economics Group, 

2103; McKay et al., 2000; Ahammad & Clements, 1999). The 2008-2009 GFC event 

and period scenarios revolving around it provide the market conditions to compare the 

volatility changes and their effect on the portfolios’ dependence risk across period 

scenarios. Besides, the assets’ price behaviour can more easily be understood when the 

stock markets in financial turbulence and in tranquil periods are contrasted. 

This thesis fills a gap in the literature of multivariate dependence modelling with pair 

vine copulas and in the literature of multiple risk measure-based portfolio optimization 

by introducing a “copula counting technique” and an “average model convergence” 

perspectives. The copula counting technique is a simple procedure for the analysis and 

interpretation of the portfolios’ multivariate interaction. The technique could be seen as 

an extension of unsystematic earlier attempts to dissect, organize and interpret the 

dependence structure of financial variables (see Allen et al., 2013; Dissmann et al., 

2013; Czado et al., 2012; Heinen & Valdesogo, 2009). The average model convergence 

is a simple approach to handle and address in a more effective and objective manner the 

estimated multiple optimal weight allocations, the optimal stock selection and 

investment confidence problems underlying any type of portfolio optimization and 

faced by investors when having to select stocks from a wide array of investment 

scenarios.  
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1.2 Significance of the study 

 

 

This thesis’ research is significant because of the following reasons: 

1) It provides a comprehensive analysis and in-depth information about the 

dependence structure and dependence risk dynamics of the portfolios modelled and 

their underlying sectors. The adequate use of this information may lead portfolio 

investors to reduce losses and maintain gains during crisis periods and when the 

financial stock markets behave smoothly (CME Group, 2011; Singh & Vyas, 2011; 

Heywood et al., 2003). Portfolio managers and financial market analysts, who 

follow the trends and performance of the Australian mining and energy sectors may 

also benefit from the obtained assets’ dependence risk information by developing 

dependence risk and investment risk-adjusted portfolio management algorithms and 

investment strategies (Al Janabi, 2013). The results could also appeal to 

government agents whose responsibility is the stability of the macro economy. 

 
2) It proposes a simple “copula counting technique” that simplifies the analysis and 

interpretation of the assets’ dependence structure and dependence risk dynamics. 

The systematic aspect of the technique enables the non-specialized audience to 

easily access the information contained in the assets’ dependence structure matrix. 

 

3) It proposes a simple “average model convergence” perspective to address the 

optimal stock selection and investment confidence problems in a more objective 

manner through model convergence and model consensus thus, enabling the 

identification of the stocks in the portfolios that could be good candidates for 

investment. 
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1.3 Purpose 
 
 
 
 
 

The purpose of the research conducted is to broaden the understanding on dependence 

risk in the Australian mining and energy stock portfolios modelled and their underlying 

sectors. It is also of interest to identify, through the use of the copula counting technique 

proposed, the specific market conditions under which one sector stock portfolio is 

riskier than others. In doing so, new insights and useful information are provided that 

could be used to develop dependence risk and investment risk-adjusted strategies for 

investment, rebalancing and hedging that more adequately account for downside risk. 

The portfolio optimization component of this thesis aims at examining the investment 

risk and resource allocation features of the asset portfolios. Another objective of the 

research conducted is to make the investors’ stock selection process simpler and less 

uncertain by employing model convergence and model consensus. 

 

1.4 Research questions 

 

1. Are there mining portfolios with higher dependence risk than others?  

 

2. Are there energy portfolios with higher dependence risk than others? 

 

3.  Are there mining portfolios with higher dependence risk than energy portfolios?  

 

4. Are there mining and energy portfolios with higher dependence risk than retail and 

manufacturing benchmark portfolios?  

 

5. Are the portfolios’ dependence structure changes between period scenarios 

statistically significant? 

 

6. Is there a pair vine copula model that best captures the multivariate dependence 

structure of the portfolios? 

 

7. Is there a portfolio of stocks that offers the best risk-return trade-off? 

 

8. Is the average model convergence of the stocks’ optimal weights statistically 

significant? 
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The first research question seeks to identify the dependence risk differences between the 

mining portfolios: gold, iron ore-nickel and mix-metals. The second research question 

aims at identifying the dependence risk differences between the energy portfolios: coal-

uranium and oil-gas. The third research question intends to compare the dependence 

risk differences between the mining and energy portfolios. The fourth research question 

examines the dependence risk differences between the mining and energy portfolios and 

the retail and manufacturing benchmark portfolios. The fifth research question wonders 

if the portfolios’ dependence structure changes between pairs of period scenarios are 

statistically significant. The sixth research question recognizes the importance of 

identifying the pair vine copula models that best account for the multivariate 

dependence structure of the portfolios. The seventh research question targets the 

identification of the portfolio with the best risk-return trade-off. The last research 

question examines if the difference between the average of the optimal weights and 

each of the optimal weights is statistically significant.  

 

1.5 Assumptions 

 

 
1. The stock return series employed for the vine copula modelling of dependence risk 

and portfolio optimization reflect all the effects exerted by the price drivers of the 

mining, energy, retail and manufacturing stocks (Clarke et al., 2001; Jordan, 1983). 

 
2. The mining, energy, retail and manufacturing stock portfolios are representatives of 

the underlying sectors.  

 

3. Portfolio investors care about the skewed and leptokurtic features of their portfolio 

investments.  

 

4. No short selling is considered in the optimization of the portfolios. 

 
 

The first assumption acknowledges that the price and return series used to implement 

the modelling framework proposed reflect the idiosyncratic (i.e. company related) and 

systematic (i.e. market related) effects of the stock market. The validity of the statistical 

analysis rests on this assumption and implies that the stock price and return series 

cannot capture the effects from all existing price drivers. The second assumption is a 
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necessary condition for the drawing of generalizations about the dependence risk profile 

and investment risk features of the portfolios. This assumption recognizes the difficulty 

to model at once all the existing stocks trading in the ASX. The third assumption, along 

with Xiong and Idzorek (2011), Patton (2004) and Chunhachinda et al. (1997) 

acknowledges the importance of considering the skewness and kurtosis of the return 

distribution when optimizing stock portfolios.  The fourth assumption discards the 

selling of some stocks in the portfolios and the reinvestment of the proceeds in other 

stocks. The discarding of short selling in the optimization implies that negative weights 

are not allowed. 

 

1.6 Definition of terms 

 

 
Correlation:  

 

There is three commonly used traditional measures of correlation: the Pearson, the 

Spearman and the Kendall tau. Despite their differences they all share the same 

restrictive and deterministic features for dependence estimation. Specifically, they are 

designed to be fitted in a standardized manner to diverse pairs of variables’ joint 

distributions (Brechmann & Schepsmeier, 2013). The Pearson correlation measure is 

parametric, implying that it is built under the assumption of normality in the 

observations. The Spearman and the Kendall tau are non-parametric measures thus; do 

no impose any distributional constraint on the observations (Tsay, 2005; Chen & 

Popovich, 2002).    

 

 

Cumulative distribution function:  

 

A cumulative distribution function is defined as the probability that a random variable 𝑋 

takes a value which is less than or equal to 𝑥 or,  𝐹 (𝑥) = 𝑃 (𝑋 ≤ 𝑥). The behaviour of 

the random variable is determined by the probability distribution function employed in 
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the modelling (Tsay, 2005). In this thesis, the cumulative distribution is represented by 

the stocks’ return distribution.  

 

Marginal distribution:  

 

Let the random variables 𝑋  and 𝑌  have a joint probability distribution  𝑝 (𝑥, 𝑦). The 

distribution of 𝑋 , or alternatively the distribution of 𝑌 , is viewed as the marginal 

distribution if either of them is treated separately. For instance, a data sample is 

considered to have a marginal distribution if it has been drawn from a larger data 

sample characterized by a certain probability distribution (Kijima, 2002). Although, the 

marginal distribution of the subsample is related to the distribution of the original data 

sample, it is treated as if it has its own identity. In this thesis each stock from each of the 

portfolios modelled represents a marginal distribution.  

 

 

Normal distribution: 

 

It is a probability distribution function with most of the observations located around the 

mean. The standard normal distribution function has a zero mean and a variance equal 

to 1. The standard normal distribution’s variance keeps most of the observations around 

the mean and discourages extreme fluctuations. A random variable 𝑋  is standard 

normally distributed if it satisfies: 

 

𝑓(𝑥) =
𝑒

−
(𝑥−𝜇)2

2𝜎2

√2𝜋𝜎
                                                      (1.1) 

where 𝜇 and 𝜎2  are the mean and variance parameters (Kijima, 2002). The standard 

normal distribution is also known as the Gaussian distribution and equation (1.1) 

represents the standard normal density function, which enables to observe the bell shape 

distribution of a random variable that satisfies the mean and variance normal conditions. 
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Kendall tau:  

 

The Kendall tau correlation measure is non-parametric and as such does not impose any 

constraint on the distribution of the observations. The Kendall tau equation of the 

variables X and Y is: 

 

                          𝜌𝜏(𝑋, 𝑌) = 4 ∫ ∫ 𝐶(𝑢, 𝑣)𝑑𝐶(𝑢, 𝑣) − 1
1

0

1

0
                                           (1.2) 

 

where 𝜌𝜏  represents the Kendall tau measure, 𝐶(𝑢, 𝑣)  is the copula of the joint 

distribution and, 𝑑 is the differential applied to 𝐶(𝑢, 𝑣).  

 

Skewness: 

 

It is the third central moment of a random variable and can be interpreted as “the 

propensity to generate negative returns with greater probability than suggested by a 

symmetric distribution” (Albuquerque, 2012). In this thesis the negative skewness is of 

concern because its effects are reflected in the left tail of the return distribution, the 

domain of the loss function (Kim et al., 2014; Prakash et al., 2003; Barone-Adesi, 1985; 

Kane, 1982; Chunhachinda et al., 1997; Lai, 1991). 

 

𝑆 = √𝑛
∑ (𝑥𝑖 − 𝜇𝑥)3        𝑁

𝑖=1

(∑ (𝑥𝑖 − 𝜇𝑥)2𝑁
𝑖=1 )

3
2⁄
 

 

Kurtosis:  

 

The kurtosis is the fourth central moment of a random variable and accounts for the 

observations falling in the tails of the distribution. This statistical and distributional 

characteristic is of interest in this thesis because the stocks’ asymmetric and symmetric 

dependence takes place in the tails of the variables’ distribution (Tsay, 2005). An 

equation of the kurtosis is:  
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                                    𝐾(𝑥) = 𝑛 
∑ (𝑥𝑖−𝜇𝑥)4        𝑁

𝑖=1

(∑ (𝑥𝑖−𝜇𝑥)2𝑁
𝑖=1 )2                                         (1.3) 

Asymmetric dependence: 

 

The concept of asymmetric dependence refers to the greater correlation stock return 

series tend to have in the tails (Hatherley, 2009; Tsafack, 2009; Alcock & Hatherley, 

2008). In a macroeconomic setting, financial stock markets have been observed to 

display greater correlation in the negative tail when the financial stock markets lack 

confidence (Aloui et al., 2011; Patton, 2004; Ang & Chen, 2002; Erb et al., 1994).  

 

The theorem of Sklar: 

 

The theorem of Sklar (1959) shows that the multivariate distribution of a data set can be 

decomposed into copulas and marginal distributions. The theorem plays an important 

role in the statistical framework upon which the pair vine copula models are built 

(Brechmann & Schepsmeier, 2013). Analytically, let the random variables 𝑋1, … , 𝑋𝑛 

have a continuous distribution function 𝐹1, … , 𝐹𝑛  and corresponding joint distribution 

function 𝐹(𝑥1, … , 𝑥𝑛). It follows that a copula C exists such that, 

                                            𝐹(𝑥1, … , 𝑥𝑛) = C(𝐹1(𝑥1), … 𝐹𝑛(𝑥𝑛))                               (1.4) 

 

for all  𝒙 = (𝑥1, … , 𝑥𝑛)′ ∈  ℝ𝑛. Applying a probability integral transform on Equation 

(1.4) yields: 

 

                                               𝐹(𝐹1
−1(𝑥1), … , 𝐹𝑛

−1(𝑥𝑛)) = C(𝑢1 , … , 𝑢𝑛)                             (1.5) 

where 𝐹1
−1(𝑥1) is the inverse distribution function (Kurowicka & Joe, 2011).  
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Copula counting technique: 

 

The copula counting technique is proposed in this thesis to dissect, organize, analyse 

and interpret the dependence structure of the portfolios modelled. It enables an in-depth 

and comprehensive analysis of the assets’ symmetric and asymmetric dependence risk 

features in specific market conditions. The technique consists of five stages: counting, 

recording, classification, grouping and aggregate dependence reading. 

 

Dependence risk: 

 

The concept of dependence risk refers to the risk stemming from the specific type of 

dependence relationship two variables have during times of financial turbulence and 

when the financial stock markets behave smoothly. The interaction between two 

variables during times of financial turbulence tends to be more uncertain and less 

predictable because of the liquidity shrinkage in the financial system. As a consequence, 

the dependence risk two variables have in the negative tail is higher in those market 

conditions. Campbell et al. (2002) find that stock securities tend to correlate more 

strongly when the financial stock markets are unstable. The dependence risk two stock 

return series have in the centre of the joint distribution is featured by mild swings in the 

return distribution. The dependence risk two stock return series have in the tails is 

characterized by large swings in the return distribution. The dependence risk of two 

variables could be linear, nonlinear, symmetric and asymmetric. It should also be noted 

that a relationship exists between dependence risk and the tail dependence coefficient, 

with changes in the tail dependence coefficient determining the characteristics of the 

dependence risk. The relationship between the tail dependence coefficient and 

dependence risk is reflected as stronger or weaker correlation caused by large positive 

or negative return variations. 
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Dependence concentration: 

Is based on and presupposes the aggregation of bivariate copulas selected by the vine 

copulas to model and estimate the dependence structure of the portfolios. It refers to the 

location in the joint distributions where pairs of variables experience higher correlation 

activity, as indicated by the specific type of bivariate copulas aggregated. 

 

Average model convergence: 

 

The average model convergence is proposed to handle the multiple optimal weight 

allocations, resulting from the fit of the various portfolio optimization model 

specifications, and address the optimal stock selection and investment confidence 

problems underlying any type of portfolio optimization. The approach identifies as good 

candidates for investment the stocks to which most of the optimization methods and risk 

measures assign weights that do not largely deviate from a mean of the optimal weights.  

 

1.7 Thesis outline 

 

This chapter positions the research conducted in this thesis in the context of the 

Australian mining, energy, retail and manufacturing sectors. Motivations for the 

selection of the data sets and modelling framework implemented are given and this 

thesis’ contributions and their significance are stated. Chapter 2 reviews the relevant 

literature in the fields of bivariate copulas, pair vine copulas and multiple risk measure-

based portfolio optimization. The pair vine copula, portfolio optimization and 

hypothesis testing methodologies are explained in Chapter 3. Chapter 4 lays the 

mathematics and statistics of the pair vine copula and portfolio optimization model 

specifications considered. In Chapter 5 the copula counting technique is applied to 

examine the dependence structure of the mining portfolios. In Chapter 6 the copula 

counting technique is implemented to examine the dependence structure of the energy 

portfolios. In Chapter 7 the copula counting technique is employed to understand the 

dependence structure of the retail and manufacturing benchmark portfolios. In Chapter 8 

linear and nonlinear optimization methods with respect to five risk measures are fitted 
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to estimate the minimum risk optimal portfolios, identify the stocks that could be good 

candidates for investment and establish a risk comparison between portfolios. Chapter 9 

deals with the testing of hypothesis and Chapter 10 discusses the main research findings, 

topics for further research and conclusions. 

 

1.8 Summary 

 

This chapter introduced the research conducted in this thesis and positioned it in the 

context of the mining, energy, retail and manufacturing sectors, and the 2008-2009 

global financial crisis. The modelling framework implemented was explained and 

motivations for the selection of the data sets were given. The objectives and purpose of 

the research conducted were stated and its contributions and significance were pointed 

out. This thesis’ modelling framework was indicated to consist of pair vine copulas, risk 

measures and optimization methods. The main contributions of the research are 

indicated to stem from the use of the copula counting technique and average model 

convergence perspectives. The research undertaken was recognized to be significant to 

portfolio managers, portfolio risk managers, investors and government agents whose 

responsibility is the stability of the macro economy.   
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CHAPTER 2 

REVIEW OF THE LITERATURE 

 

This chapter consists of four sections: graphical models, bivariate copula models, pair 

vine copula models, and risk measures and portfolio optimization models. The literature 

is surveyed chronologically, with the most recent literature discussed last. 

 

The graphical models section highlights some of the key ideas and concepts underlying 

the path of coefficients method of Wright (1934) and their connection to the pair vine 

copula models fitted in this thesis. Two central concepts in this section are flexibility 

and branching sequential ordering. The bivariate copula models section looks at studies 

dealing with the modelling of dependence of financial variables using bivariate copulas. 

The central role of the bivariate copulas for the development of the pair vine copulas is 

recognized and the comparative advantage of the bivariate copulas relative to the 

traditional measures of correlation is acknowledged. The pair vine copula models 

section concentrates on the literature dealing with pair vine copula developments and 

applications. Studies comparing the fit of the r-vines, c-vines and d-vines are also 

reviewed. Key concepts in this section are pair copula constructions, multivariate 

density decomposition and inference of pair vine copula structures. The gap filled in the 

literature of dependence modelling with pair vine copulas is discussed in this section 

too. The risk measures and portfolio optimization models sections review the portfolio 

optimization literature dealing with applications of the variance, conditional Value-at-

Risk (CVaR), conditional Drawdown-at-Risk (CDaR), minimizing regret (Minimax) and 

mean absolute deviation (MAD) risk measures. The gap filled by the average model 

convergence in the literature of multiple risk measure-based portfolio optimization is 

also indicated in this section. 
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2.1 Graphical models 

 

Graphical models such as pair vine copulas are considered in this thesis because of their 

suitability to visualise and represent a problem in a simple, flexible and dissectible 

manner (Lauritzen, 1996). Graphical structures, in addition to that, appear to be 

naturally adequate to represent the interaction variables through nodes-vertices and 

edges thus, facilitating the estimation of dependence and the inference of causality (Guo 

et al., 2010). 

The use of graphical models to account for the interaction between variables goes back 

to Wright’s (1934) work where graphical path analysis, by means of the path of 

coefficients method, is pursued to link parent-child heritable relationship of species. The 

path of coefficients method is acknowledged for its flexibility to associate within a 

system the correlation coefficients. This flexibility aspect of Wright’s path of 

coefficients method appeals to the pair vine copula modelling of dependence because 

the main strength of the pair vine copula models stems from their flexibility 

(Brechmann & Schepsmeier, 2013).
 2

 Both modelling frameworks however differ in 

their ability to account for nonlinearities in the joint distributions. The pair vine copulas 

are specifically designed to capture the nonlinear relationship between variables 

(Heinen & Valdesogo, 2009).   

Another point of connection between Wright’s path of coefficients method and the pair 

vine copula models relates to the branching sequential ordering of the variables. Both 

modelling techniques branch the variables to facilitate the estimation of dependence 

(see Czado et al., 2012; Dissmann, 2010). The path of coefficients method, in addition 

to that, estimates the correlation between two variables according to the shape of their 

joint distribution and the specific type of relationship each of the variable has with other 

variables within the system. This model feature of conditioning the correlation estimates 

on the type of relationship each of the variables has with other variables resembles the 

pair vine copula estimation of dependence. Specifically, conditional densities are used 

to account for the conditional dependencies (Brechmann & Schepsmeier, 2013; Czado, 

2010).  

                                                           
2
 There is a tightly interwoven relationship between flexibility and structure in the graphical vine copula 

models. It is in fact the combination of flexibility and structure what leads to greater accuracy in the 

modelling. 
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Blalock (1971), Neopolitan (1990) and Cox and Wermuth (1996) have also developed 

and applied graph theory to model the dependence relationship between variables. The 

latter, in the context of large systems, uses graphs to represent the dependence and 

independence of variables. Neopolitan (1990) implements Bayesian networks involving 

paths, cycles, cliques, triangulation and belief networks to account for the relationships 

between variables. Blalock (1971) models the causality of variables using graphical 

structures. 

 

2.2 Bivariate copula models 

 

The copula approach in the form of bivariate copulas has been proposed for overcoming 

the limitations of alternative measures of correlation such as the Pearson, Spearman and 

Kendall tau. The elliptical and Archimedean bivariate copulas are known for providing 

good estimates of the underlying interaction of financial variables and for being the 

building blocks of the pair vine copula models (Brechmann & Czado, 2013; Low et al., 

2013).  

The first study to implement a copula-like modelling approach without employing the 

term “copula” is said to be Hull and White (1998). Their study maps the distribution of 

twelve currency exchange rates taking into account the changes in the market’s factors 

driving the currency co-movements. The market factor’s co-movements are estimated 

using suitable joint probability distribution functions. Hull and White’s freedom to 

select adequate joint probability distribution functions in the modelling of dependence is 

a feature found in the pair vine copula modelling of dependence. Specifically, joint 

probability distribution functions such as bivariate copulas can be manually selected to 

build a vine structure that represents a statistical model (see Brechmann & Schepsmeier, 

2013; Dissmann, 2010). Hull and White’s approach to dependence estimation, just as 

any type of bivariate copula modelling, lacks the flexibility to accurately model high 

dimensional multivariate dependence structures. The bivariate copulas however, relative 

to the joint probability distribution functions employed by Hull and White, have the 

comparative advantage of splitting the joint distributions into copulas and marginals, 

while preserving the marginals’ original distribution (Patton, 2012a). 
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Embrechts et al. (1999) are acknowledged in the literature of bivariate copulas for being 

the first to associate the concept of “copula” with measures of dependence in finance. 

Their study compares the fit and performance of the Student-t bivariate copula with the 

fit of the Pearson correlation measure. As expected, they found the Pearson correlation 

estimates to represent poorly the interaction between variables. The Student-t copula, on 

the other hand, better captures the distribution in the tails, while providing more 

information about the interaction between variables. Embrechts et al.’s research has in 

common with this thesis’ research the recognition of the bivariate copulas as more 

accurate and adequate than the traditional measures of correlation (Brechmann et al., 

2014; Brechmann & Czado, 2013).  

Li (2000) employs bivariate copulas to model the correlation structure of credit risk 

portfolios. The study equates the survival times of credit risks (a credit risk is a fund 

borrowing company) with the marginals and uses the marginals to build correlation 

structures. The bivariate copulas are also employed to measure the credit risks’ default 

correlation. Li’s modelling framework has in common with the pair vine copula models 

the notion and use of correlation structures. The correlation structure concept alludes to 

the concept of dependence structure that is central in the pair vine copula literature.  

One topic often appearing in early applications of bivariate copulas to model the 

interaction between financial variables is about the comparison of the Gaussian 

bivariate copula with the Student-t bivariate copula (e.g. Tong et al., 2013; Berg & Aas, 

2009; Fischer et al., 2009; Junker & May, 2005; Malevergne & Sornetten, 2003; 

Embrechts et al., 1999). Despite its limitations, the Gaussian copula became a dominant 

model for dependence estimation due to its simplicity of application and tractability. 

The emergence of the Student-t copula and its symmetric dependence modelling of the 

tails led to the comparison of both copulas in terms of fit and performance (see e.g. 

Arreola et al., 2013; Malevergne & Sornetten, 2003).  

Malevergne and Sornetten (2003) is one of those studies comparing the Gaussian and 

Student-t bivariate copulas in the context of a financial crisis event. They do so by 

modelling the interaction between exchange rates from six countries, six metals traded 

on the London Metal Exchange, and 22 large cap stocks from the New York Stock 

Exchange. They find the Gaussian copula to produce good estimates for normally 

distributed data sets in non-crisis periods, while the Student-t copula adequately 

captures the distribution in the tails for non-crisis periods. A point of connection 

between Malevergne and Sornetten’s (2003) research and this thesis’ research lies in the 
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use of financial period scenarios as the context to implement their modelling 

framework. Both studies specifically, appear to understand the importance of 

considering financial crisis events to better understand the dependence risk behaviour of 

financial variables in stress-testing and tranquil time periods. 

Junker and May (2005) establish a comparison between bivariate copulas by fitting 

them to a stock portfolio consisting of six assets from the German and USA markets. 

Their modelling framework considers the transformed Frank copula, Gaussian, Student-

t, and a Clayton copula based on a linear convex combination. They model the 

marginals by employing the Pareto distribution that is often used in Extreme Value 

Theory to account for the leptokurtic features in the tails of the marginals (Këllezi & 

Gilli, 2000). Their findings indicate that the transformed Frank copula produces the best 

results. The combination of the Frank copula with the Pareto distribution captures the 

dependence in the tails best. Junker and May’s research and this thesis’ research share 

the concern about accounting for the asymmetric dependence in the tails during crisis 

periods.  

An important topic in the literature of bivariate copula modelling is that of contagion 

across financial stock markets (e.g. Barunik & Vacha, 2013; Ozkan & Unsal, 2012; 

Kazi et al., 2011; Kenourgios et al., 2010; Markwat et al., 2009a; Chiang et al., 2007; 

Bae et al., 2003). Contagion refers to the transmission of economic conditions from one 

financial stock market to another (Corsetti et al., 2001). The subject of contagion has 

gained increasing attention since the 2008-2009 GFC took place and due to the 

expanding global economy (Poirson & Schmittmann, 2013). 

Two pieces of research that have examined the contagion phenomenon across 

international stock markets are Chen and Poon (2007) and Rodriguez (2007). The 

former fits time-varying Student-t bivariate copulas and a dummy Student-t copula to 

examine the contagion effects between 28 of the largest capitalized financial stock 

markets (including Argentina, Chile, The Philippines and Russia) in the context of the 

Asian crisis of 1997. They find the European countries to have the strongest contagion 

effects. Their research connects to this thesis’ research in the consideration of a 

financial crisis event as the context to implement their modelling framework. 

Rodriguez’s (2007) piece of research, relative to that by Chen and Poon (2007), models 

two financial crisis events: the Asian crisis of 1997 and the Mexican crisis of 1994.  
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Rodriguez’s (2007) approach to dependence modelling is based on “switching copula” 

versions of the Frank, Gumbel, Clayton and the Student-t with time-varying parameters.  

These copulas are indicated to capture adequately the symmetric and asymmetric 

dependence, and the increases and decreases of tail dependence. Rodriguez models the 

marginal distributions by fitting a SWARCH method that lets the variance of the 

variables to shift occasionally according to a Markov process. His findings indicate the 

presence of increased tail and asymmetric dependence in the Asian countries during the 

crisis period. The pair Mexico-Brazil displays symmetric dependence, while the pairs 

Thailand-Indonesia and Thailand-Korea display greater dependence in the centre of the 

joint distribution during tranquil periods. Rodriguez’s research and this thesis’ research 

have in common the consideration of crisis events as the context to implement their 

modelling framework. His modelling approach has the comparative advantage of using 

copulas with time varying parameters (Ausin & Lopes, 2010).  

In the bivariate copula literature, applications assuming the parameters of the bivariate 

copulas to remain constant over time are seen as less complicated in terms of 

implementation, and less sophisticated in terms of the accuracy they provide; relative to 

letting the bivariate copula parameters change in time (Hautsch et al., 2013; Markwat et 

al., 2009b). Tong et al. (2013) and Wen et al. (2012) along with Chen and Poon (2007) 

and Rodriguez (2007) relax that assumption by letting the parameters of the bivariate 

copulas change over time thus, obtaining more accurate estimates of the multivariate 

dependence from energy markets.  

Tong et al. (2013) model the positive and negative asymmetric tail dependence between 

crude oil and refined petroleum markets by fitting thirteen different copulas with time 

varying parameters. Among the copulas they consider are the Gaussian, Student-t, 

Clayton, Gumbel, Symmetrized Joe-Clayton, mixed Clayton, mixed Gumbel, 

asymmetric logistic model and mixed asymmetric logistic model. The mixed 

asymmetric logistic copula is identified to best fit the data sets, while the crude oil and 

refined petroleum markets are found to move in similar directions. Wen et al. (2012) 

specifically examine the interaction between the WTI (West Texas Intermediate), 

S&P500 and the Shanghai and Shenzhen composite indices.
3
 Their results indicate the 

presence of tail and symmetric dependence between the energy, US and Chinese indices 

                                                           
3 WTI is used for the modelling of energy market most likely because it is used in the Chicago Mercantile 

Exchange as the commodity that underlies oil futures contracts and as such it is often employed as a 

benchmark in the modelling of global energy markets (Vassiliou, 2009).  

http://en.wikipedia.org/wiki/Futures_contract
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during the crisis period. The contagion effects between the WTI and Chinese indices are 

acknowledged to be weaker as compared to those between the WTI and S&P500. Their 

research connects to this thesis’ research in the modelling of dependence in energy 

markets and the consideration of a financial crisis event. Unlike their research this 

thesis’ research does not use copulas with time varying parameters because the copula 

models used suffice to account for the dependence concentrated at various locations of 

the joint distributions. 

Patton (2012a, 2012b) discusses model selection, parameter estimation through 

maximum likelihood, model fit, and parametric and semi-parametric inference methods 

for model estimation. Aloui et al. (2013) estimate the conditional dependence between 

the Brent Crude Oil and the Central and Eastern European economies. 

 

2.3 Pair vine copula models 

 

In the literature of pair vine copulas Joe (1997) is seen as the starter of a series of 

developments. He discusses multivariate copula constructions for the design of various 

types of dependence structures and introduces maximum likelihood methods for the 

estimation of bivariate copula parameters. His research is of specific relevance to this 

thesis’ research in that it lays some of the theoretical and statistical ground on which 

some of the modelling implemented in this thesis is based. Bedford and Cooke (2002, 

2001) develop an equation for the construction and inference of multivariate pair 

copulas. Cooke (1997) employs flexible graphical vine trees or “trees of dependent 

random variables” to organize joint probability distributions of multiple characteristics. 

Berg and Aas (2009) focus on the comparison of pair vine copula constructions with 

nested Archimedean constructions. In their modelling of a precipitation data set and a 

financial data set consisting of the British Petroleum, Exxon Mobile, Deutsche Telekom 

and France Telecom stocks they find the pair vine copula constructions to be more 

flexible than the Archimedean constructions. They find the fitted Student-t pair vine 

copula construction to best fit the financial data set, while the Gumbel pair vine copula 

construction bests accounts for the dependence of the precipitation data set. 

Bedford and Cooke (2002, 2001), Joe (1997) and Cooke (1997) had laid the necessary 

framework for the separation and inference of pair r-vine copula structures. However, 
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no analytical models had been proposed to decompose and infer c-vine and d-vine 

copula structures. Aas et al. (2009) address this issue in the literature by proposing two 

analytical models for the decomposition of multivariate densities and the inference of c-

vine and d-vine structures. Their inference and application of a Student-t pair d-vine 

copula to a portfolio of four financial stock return series indicates that the Student-t pair 

d-vine copula adequately captures the dependence of the assets and provides good 

estimates. The models proposed by Aas et al. (2009) have become a central theme in the 

relevant literature and are used in this thesis to estimate and examine the dependence 

structure and dependence risk dynamics of the portfolios under consideration. 

There are three aspects differentiating studies implementing the Student-t copula in its 

bivariate and pair vine copula forms: 1) the data sets modelled, 2) the Student-t copula 

model variations, and 3) the copulas against which the Student-t copula is compared 

with (e.g. Berg & Aas, 2009; Fischer et al., 2009). In this context, Fischer et al. (2009) 

compare the Student-t pair vine copula with the Gaussian, Gumbel and Clayton pair 

vine copulas. They test the dependence modelling performance of the copulas by fitting 

them to a portfolio consisting of the German HVB, BMW, Allianz and Munich Re 

stocks. They find the Student-t pair vine copula to outperform alternative vine copula 

models. Their research connects to this thesis’ research in the concern about identifying 

the vine copula model that best fits the assets’ multivariate dependence structure (see 

also Aas, 2011; Schirmacher & Schirmacher, 2008). A possible limitation of their 

modelling framework lies in the use of homogeneous pair vine copulas, relative to using 

mixed pair vine copulas. The homogeneous pair vine copulas assume that most of the 

assets’ dependence is concentrated in a certain area of the joint distribution (e.g. centre, 

negative tail, positive tail), and that the assets’ dependence is either symmetric or 

asymmetric. This assumption may however be inadequate since the dependence 

variables have tends to be scattered in the centre and tails, in general. Aware of that 

limitation this thesis opts to fit mixed pair vine copulas. This specific type of copulas 

employ a wide array of bivariate copulas as the building blocks to capture the 

dependence scattered at various locations of the joint distributions. The homogenous 

pair vine copulas by contrast only use one type of bivariate copula as the building 

blocks of the vine structure to model the dependence scattered across all areas of the 

joint distributions.  

Two statistical features found in multivariate distributions posing the greatest challenge 

to the pair vine copula modelling of dependence are the skewness and asymmetric 
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dependence (Patton, 2004). Skewness refers to the “propensity stocks have to generate 

negative or positive returns with greater probability than suggested by a symmetric 

distribution” (Albuquerque, 2012). The asymmetric dependence refers to the greater 

correlation negative returns tend to have in the negative tail during crisis periods 

(Ammann & Süss, 2009; Okimoto, 2008; Hatherley & Alcock, 2007; Patton, 2006). 

Chesters (2010), Jansen and Nahuis (2003) and David (1997) have identified stock 

markets to have greater dependence during crisis periods.   

Chollete et al. (2009) target the modelling of skewness and asymmetric dependence of 

an index portfolio consisting of the G5 countries, Mexico, Brazil, Chile and Argentina. 

They employ a mixed c-vine copula with regime switching features and a Skewed-t 

GARCH model to account for the distribution in the marginals. They find the Skewed-t 

GARCH model adequate to capture the dependence, while the fitted mixed c-vine 

copula provides a good estimate of the assets’ asymmetric dependence. Their research 

and this thesis’ research have the common feature of modelling the assets’ skewness 

and asymmetric dependence. 

Heinen and Valdesogo’s (2009) piece of research has become in the literature of pair 

vine copulas a benchmark because of its clarity and contributions. Their study is 

significant in that it explains the relationship between the bivariate copula parameters 

and the Kendall tau’s correlation coefficients (see also Czado, 2010). This relationship 

enables one to set a bridge between the pair vine copulas’ dependence structure estimate 

and the standard variance-covariance estimate. They also propose a dynamic Canonical 

Vine Autoregressive Model that accounts for the time varying volatilities, asymmetric 

dependence, heteroscedasticity, leverage, skewness and kurtosis. A point of connection 

between their research and this thesis’ research lies in the recognition of the mixed pair 

vine copulas as more accurate for dependence modelling, relative to the homogeneous 

pair vine copulas. Both pieces of research, in addition to that, target the modelling of 

skewness and asymmetric dependence in the marginal and joint distributions. 

The graphical aspect of the pair vine copulas while offering advantages in terms of 

flexibility, poses the challenge of finding the optimal graphical vine structure to be 

fitted and of accurately estimating the bivariate copula parameters (Brechmann & 

Schepsmeier, 2013). The standard method for model selection and bivariate copula 

parameter estimation is based on methods of maximum likelihood. Alternative models 

for model selection and bivariate copula parameter estimation have emerged from the 

field of Bayesian inference (see e.g. Smith & Vahey, 2013; Min & Czado, 2010). On 
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this line of research Min and Czado (2010) combine Bayesian inference with portfolio 

optimization to examine the dependence structure and resource allocation features of an 

index portfolio consisting of the Norwegian BRIX bond, TOTX stock, MSCI world 

stock and the SSBWG hedged bond indices. They estimate the optimal vine structure, 

bivariate copula parameters and confidence intervals of the bivariate copula parameters. 

Their findings indicate that the Bayesian approach provides better estimates than 

alternative methods. In addition to that, conditional independence is identified to exist 

between the Norwegian bond index and the MSCI world stock index, conditional on the 

Norwegian stock index. Hofmann and Czado (2010) and Smith et al. (2010) have 

combined Bayesian inference with pair vine copulas to improve the model selection and 

bivariate copula parameter estimation. The latter models the dependence features of 

longitudinal data and employs the dependence structure estimates to forecast intraday 

electricity. This thesis opts not to use the Bayesian approach to model selection and 

bivariate copula parameter estimation because the focus of attention of the dependence 

modelling conducted is the dissection, analysis and interpretation of the estimated 

dependence matrix. Besides, the modelling framework implemented suffices to obtain a 

good grasp of the asset portfolios’ dependence structure.  

Czado (2010) contributes to the literature of pair vine copulas by indicating a general 

criterion that can be used to identify the suitability of a particular vine copula model to a 

data set. The c-vines, for instance, are indicated to be suitable for the modelling of data 

sets where among the variables involved there is one that exerts exceptional influence 

over the rest through high correlation values. The d-vines appear to better suit data sets 

where a group of variables is the most influential. She also discusses the relationship 

between partial, conditional and unconditional correlations within a Gaussian setting.
 4

  

Two main modelling trends that have emerged in the literature of pair vine copula 

modelling are the one focusing on the estimation of the dependence structure (e.g. 

Hobaek & Segers, 2012; Nikoloulopoulos et al., 2012; Panagiotelis et al., 2012; Chen & 

Poon, 2007; Rodriguez, 2007; Junker & May, 2005) and the one using the pair vine 

copula estimates of dependence to conduct portfolio optimization (e.g. Arreola & 

Powell, 2013; Brechmann & Czado, 2013; Low et al., 2013). In this context, Mendes et 

al. (2010) fit pair vine copulas to measure the strength of association between indices, 

treasury bonds and 100 of the largest capitalized companies from Brazil. They feed the 

resulting dependence structure estimate into a portfolio optimization method to find the 

                                                           
4
 See also Baba and Sibuya (2005) for a detailed analysis of these correlations’ relationship. 
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optimal resource allocation. The combined modelling approach consisting of pair vine 

copulas and portfolio optimization is indicated to produce improved portfolio allocation 

estimates. Their research and this thesis’ research differ in the type of model used to 

account for the skewness in the marginal distributions. The GARCH skewed Student-t 

model specification considered by them, as compared to the ARMA (1,1)-GARCH (1,1) 

with Student-t innovations implemented in this thesis, more suitably accounts for the 

skewness and asymmetric dependence in the tails. The reason for this is that the 

Student-t distribution accounts for the distribution in the tails symmetrically. 

In the literature of pair vine copulas the number of studies dealing with the application 

of the r-vines is small relative to the number of applications fitting the c-vines and d-

vines. As a result, the modelling properties of the r-vine models under varied conditions 

continue to be a subject of research. Dissmann (2010) has explored the r-vine copula 

models by fitting them to a portfolio of equities, fixed income securities and commodity 

indices. He finds these models to be more flexible than the c-vines and d-vines. The 

greater flexibility of the r-vines is indicated to stem from their specific shape, which 

reduces the number of bivariate copula parameter estimates. The r-vine copula 

algorithm fitted by Dissmann (2010) is distinctive in its sequential selection and 

estimation of the optimal vine structure and bivariate copulas. 

Czado et al. (2012) also fit an algorithm that sequentially selects and estimates the c-

vine structure and bivariate copulas. Their algorithm also organizes the variables in the 

data set according the criterion indicated in Czado (2010), while selecting the bivariate 

copulas in the vine tree from a catalogue of around 40 elliptical, Archimedean and 

rotated copulas. The variables’ arrangement in the data set is indicated to influence the 

pair vine copula estimates (Brechmann & Schepsmeier, 2013; Dissmann et al., 2013; 

Czado et al., 2012). The mixed pair c-vine copula they fit to a portfolio of currency 

exchange rates from the US market is found to produce good estimates of dependence. 

This thesis’ research connects to their research in the use of the sequential algorithm 

they propose to estimate the dependence structure of the portfolios under consideration. 

Assuming the conditional distributions to be constant in a pair vine copula structure is a 

simplification that has advantages and disadvantages (Fan, 2010). Under this 

simplification, the selection of the optimal vine structure and estimation of the 

conditional distribution copula parameters become simpler. Letting the parameters of 

the bivariate copulas change over time implies that the parameters of the bivariate 

copulas from a certain tree are influenced by the bivariate copula parameters from 
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previous trees and so on. As a result, the potential for error in the estimation process is 

higher when the parameters are allowed to change. Holding the parameters of the 

conditional distributions constant over time would reduce the estimation error but also 

poses the challenge of identifying the correct distribution function under which the vine 

copula model specification is valid. A wrong specification would lead to inaccurate 

estimates of dependence. 

Stöber et al. (2012) tackle the problem of identifying appropriate distribution functions 

while keeping the conditional distributions constant. They find that any Archimedean 

copula based on the gamma Laplace transform can be simplified. In the elliptical space 

only the multivariate Gaussian and Student-t allow for the simplification. The 

simplification of pair copula constructions is indicated to be noticeably restrictive and 

adaptations of the pair vine copula specifications are suggested to improve the 

modelling of dependence. Their research is important to the pair vine copula literature 

because it identifies an inherent limitation and strength of the pair vine copula approach. 

Specifically, the use of conditional distributions and conditional densities for the 

estimation of interaction between variables while being an essential component of the 

pair vine copula algorithm, it remains as a big estimation challenge in high dimensions. 

The problem lies in the number of parameters to be estimated which tends to grow 

exponentially as the number of variables in the modelling increases (Brechmann & 

Schepsmeier, 2013).  

An interesting pair vine copula application that combines the holding of some 

conditional distribution functions constant (see Stöber et al., 2012) with the letting of 

other bivariate copula parameters change over time (see Chen & Poon, 2007; 

Rodriguez, 2007) has been conducted by Almeida et al. (2012). They fit a model 

specification that combines a mixed pair d-vine copula and a stochastic autoregressive 

copula method to account for the changes in the dependence structure of 29 constituents 

from the German Dax 30. They find the pair d-vine copula and stochastic autoregressive 

copula models fitted to adequately capture the leptokurtic features in the tails of the 

assets’ joint distributions.  

Nikoloulopoulos et al. (2012) compare in the context of the 2008-2009 GFC the 

homogeneous Student-t c-vine and Student-t d-vine copulas with the c-vine and d-vine 

copulas consisting of the BB1, BB4 and BB7 rotated bivariate copulas as the building 

blocks (Nikoloulopoulos et al., 2012; Rodriguez, 2007; Malevergne & Sornetten, 
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2003).
5

 Their asymmetric dependence modelling of the assets’ joint distribution 

indicates that the vine copulas consisting of BBs rotated bivariate copulas provide the 

best fit to the data sets and outperform the homogeneous Student-t c-vine and Student-t 

d-vine copulas. Their research connects to this thesis’ research in the use of the same 

financial crisis event as the setting to implement the modelling framework. Both studies 

also target the modelling of skewness and asymmetric dependence in the marginals and 

joint distributions; and understand that the mixed pair vine copulas are more accurate 

than the homogeneous. Their study, in addition to that, only considers a pre-crisis 

(2003-2006) and crisis (2007-2009) periods. This thesis instead considers a pre-GFC, 

GFC and post-GFC crisis period scenarios. 

Underlying the pair vine copula models’ flexibility is the optimal use of parametric 

distribution functions to account for the marginal distributions. The parametric 

distributions by providing a measurement of the observation’s distribution determine 

the shape of the entire vine structure (Sarcia et al., 2008). If one considers that most of 

the existing parametric distributions are designed to model continuous data, as 

compared to discrete data, and that the number of existing parametric distribution 

functions for the modelling of discrete data (e.g. he Binomial, Probit, Hyper geometric, 

Multinomial, Negative binomial and Poisson) is rather small, it is natural to wonder 

about the performance of the pair vine copulas when fitted to discrete data sets. 

Panagiotelis et al. (2012) explores this issue by fitting a mixed pair d-vine copula to 

model the dependence of discrete microstructure and medical statistics data sets. They 

fit the probit, order probit, Poisson and generalized Poisson distribution functions to 

capture the distribution in the marginals. Their findings show that the mixed pair d-vine 

copula produces good results. They also recommend the use of sparsity search methods 

to improve the model selection and bivariate copula parameter estimation. 

Two features distinguishing several pair vine copula applications are the type of 

parametric distribution functions employed to account for the distribution in the 

marginals and the specific type of bivariate copulas employed to capture the dependence 

in the joint distributions (e.g. Almeida et al., 2012; Brechmann & Czado, 2012; 

Panagiotelis et al., 2012; Chen & Poon, 2007; Rodriguez, 2007). An alternative to using 

parametric distribution functions and parametric copulas is to employ empirical 

distribution functions and empirical copulas. These specific types of distribution 

                                                           
5
 The BB1, BB4 and BB7 copulas are also known as the Clayton-Gumbel, Clayton-Galambos and Joe-

Clayton copulas. Each of them can be rotated by 90, 180 and 270 degrees. 

http://stattrek.com/Lesson2/Binomial.aspx
http://stattrek.com/Lesson2/Hypergeometric.aspx
http://stattrek.com/Lesson2/Multinomial.aspx
http://stattrek.com/online-calculator/negative-binomial.aspx
http://stattrek.com/Lesson2/Poisson.aspx
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functions and copulas have in theory the comparative advantage of not restricting the 

original distribution of the variables and as such could provide better estimates of the 

multivariate dependence (see Sarcia et al., 2008). In this direction, Hobaek and Segers 

(2012) compare a parametric pair vine copula approach with an empirical pair vine 

copula approach. They assume that the empirical distribution functions better capture 

the distribution in the marginals. The parametric distributions are seen as difficult to be 

specified correctly (Smith & Vahey, 2013; Patton, 2012b). Their results indicate that the 

empirical pair vine copula performs better than the parametric pair vine copula. This 

thesis’ research unlike theirs only considers parametric distribution functions and 

parametric bivariate copulas because they have been found to adequately capture 

symmetries and asymmetries of dependence between pairs of variables (see e.g. Arreola 

et al., 2013; Brechmann & Czado, 2012; Berg & Aas, 2009; Fischer et al., 2009; Heinen 

& Valdesogo, 2009; Chen & Poon, 2007; Rodriguez, 2007; Junker & May, 2005; 

Malevergne & Sornetten, 2003). 

Brechmann and Czado (2012) develop and fit a copula autoregressive model to account 

for the asymmetric dependence, negative skewness and nonlinearities in data sets of 

macroeconomic indicators (e.g. inflation and interest rates), electricity load demands 

and bonds. The copula autoregressive model fitted along with the skew-normal and 

skew-t distributions identifies nonlinear and asymmetric dependence in the data sets. 

The pair d-vine copula model employed by them most frequently selects the Student-t 

and Frank bivariate copulas. 

The study by Low et al. (2013) is relevant in the literature because it identifies the 

optimal vine copula model with respect to the size of the portfolio. They fit a bivariate 

Clayton copula and a Clayton canonical vine copula. Their results indicate that the 

Clayton canonical vine model better accounts for the asymmetries in the joint 

distributions and negative skewness in the marginals. The Clayton canonical vine model 

considered also provides the best fit to portfolios consisting of at least 10 assets. Their 

research links to this thesis’ research in the concern about modelling the negative 

skewness and asymmetric dependence. A possible limitation of the Clayton pair vine 

copula they implement is that it is of homogenous type and as such assumes that most 

of the dependence in the joint distributions is located towards the negative tail. This 

assumption may be inadequate since the dependence of multivariate distributions tends 

to be scattered across the centre, negative and positive tails. One way to address the 

limitation of the homogeneous Clayton pair vine copula they implement is to add other 
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bivariate copulas such as the Gumbel, Frank, Student-t, Joe and Joe-Frank to the vine 

structure. By doing so, the dependence scattered at various locations of the joint 

distribution is accounted for.  

Heinen and Valdesogo (2009) had developed a c-vine autoregressive model to estimate 

the dependence between stocks, stocks and the sector, and the sectors and the market. 

Brechmann and Czado (2013) with more or less similar objectives develop a Regular 

Vine Market Sector model to measure and understand the dependence structure of a 

data set consisting of the Euro Stoxx 50, five national indices and 46 stocks. The r-vine 

copula model they fit is indicated to adequately capture the asymmetries of dependence 

between the stocks and the sectors and between the sectors and the market. Their study 

has in common with this thesis’ research the use of r-vines to model the assets’ 

dependence. This thesis’ research unlike theirs does not estimate the interaction between 

financial variables using index data. Instead, it uses stock return series to infer the 

portfolios’ dependence risk profile. A distinctive feature of this thesis’ research, relative 

to their research, lies in the identification of market conditions under which one sector 

stock portfolio is more dependence risky than others. 

The consideration of a financial crisis event and period scenarios revolving around it is 

one of the attractive features of the modelling conducted in this thesis. In this context 

Allen et al. (2013) and Arreola and Powell (2013) have modelled the dependence risk 

dynamics of financial variables in the context of the 2008-2009 global financial crisis. 

Allen et al. (2013) fit r-vines to measure and understand the co-dependence of stocks in 

a portfolio from the Dow Jones Index. They find the r-vine model to most frequently 

select the Student-t copula to capture the dependence from the joint distributions. One 

difference between Allen et al.’s (2013) research and this thesis’s research lies in the 

latter implementing a copula counting technique to dissect, organize and interpret the 

dependence structure of financial variables. Arreola and Powell (2013) examine the 

dependence structure of 20-stock mining and energy portfolios from the Australian 

market and use the resulting dependence estimates to conduct portfolio optimization 

with respect to multiple risk measures. This thesis’ research differs from theirs in the 

type of vine copula models employed to account for the dependence of financial 

variables. Specifically, while their modelling framework considers a homogeneous 

Gaussian pair c-vine copula, this thesis fits mixed pair c-vine, mixed pair d-vine and 

mixed pair r-vine copulas (Czado et al., 2012). 
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Arreola et al. (2013) estimate the dependence and CVaR portfolio optimization of a 20-

stock mix-metals leptokurtic mining portfolio from the Australian market. Their 

application aims at capturing the co-dependence of the assets and improving the 

portfolio optimization by feeding the resulting pair vine copulas’ estimate of 

dependence into a non-convex differential evolution optimization method for risk 

controlled CVaR optimization (see Ardia et al., 2011a, 2011b). They employ a Gaussian 

pair c-vine copula, Student-t bivariate copula, graphical lasso and adaptive graphical 

lasso to estimate the interaction between variables (see Arreola & Powell, 2013; Fan et 

al., 2009). They find a specific variation of the Student-t copula to produce the best 

optimization results.  

Brechmann et al. (2013) implement pair vine copulas and stress testing models to 

examine the dependence and contagion effects of 20 insurers and 18 banks. Their 

analysis of dependence is based on the modelling of spreads from credit default swaps, 

due to the link the credit default swaps’ spreads have with systemic risk. They argue 

that if a systemic event occurs (e.g. a financial crisis) in the market the default 

expectations of banks and insurers increases, which in turn increases the default 

probabilities of the banks and insurers and the spreads of the credit default swaps. They 

find the interaction between banks and insurers to be non-elliptical and asymmetric.  

Smith and Vahey (2013) combine pair vine copulas with Bayesian inference. As 

compared to Min and Czado (2010); Hofmann and Czado (2010) and Smith et al. 

(2010) who apply non-homogeneous or mixed pair vine copulas, they fit a combined 

modelling approach consisting of a homogeneous Gaussian pair vine copula and 

Bayesian inference. In order to improve the estimation of dependence they employ 

empirical distribution functions to account for tail asymmetric dependence in GDP 

growth, inflation, unemployment rate and short-term interest rate data sets (see Smith & 

Vahey, 2013; Patton, 2012b; Sarcia et al., 2008). Their justification for the use of 

empirical distribution functions, as compared to parametric distribution functions, is 

that the former are more accurate and easier to be specified correctly. Their motivation 

for the use of a homogeneous Gaussian pair vine copula in the modelling of dependence 

is that it provides greater parsimony in the model selection and bivariate copula 

parameter estimation. The Bayesian component of their modelling framework enables 

them to improve the vine copula structure selection and bivariate copula parameter 

estimation (Min & Czado, 2010).  
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In numerous pair vine copula applications, a trend can be observed to fit non-rotated 

standard elliptical and Archimedean bivariate copulas due to their easiness of 

implementation and their adequacy to capture symmetric and asymmetric dependence 

(e.g. Arreola & Powell, 2013; Aas et al., 2009; Berg & Aas, 2009; Fischer et al., 2009). 

Some data sets however, may have complex patterns of dependence and the dependence 

concentrated in areas of the joint distribution where the standard bivariate copulas have 

no domain. In cases like this, the 90, 180 and 270 degrees rotated versions of the 

elliptical and Archimedean bivariate copulas are more adequate.  

Smith (2013) employs rotated Archimedean bivariate copulas as the building blocks of 

a mixed pair d-vine copula to account for nonlinear cross-sectional and serial 

dependence of daily maxima in electricity demand. He specifically models electricity 

spot price data sets from the Australian National Electricity Market. He fits Bayesian 

model average and block functionals to improve the sparsity of selected models and 

bivariate copula parameter estimation. He finds the modelling framework implemented 

to adequately account for cross-sectional and asymmetric dependence located towards 

the end of the tails.  

Brechmann et al. (2014) fit pair vine copula models to estimate the dependence 

structure of operational losses and total risk capital. They source the data modelled from 

the Italian Database of Operational Losses that spans from January 2003 to June 2011. 

Their results indicate that the pair vine copula estimates of total capital requirements are 

significantly lower than those produced by benchmark models, an indication that the 

benchmark models tend to overestimate. 

 

2.4 A gap in the literature of pair vine copulas 

 

There are three main outputs resulting from the fit of the pair vine copulas to a data set: 

the Kendall tau matrix, where the correlation of the variables is displayed; the 

dependence structure matrix, where the vine models’ bivariate copula selection is 

shown; and the bivariate copula parameter matrix (Brechmann & Schepsmeier, 2013). 

Although the Kendall tau matrix helps understand the correlation between variables, it 

does not inform about the location and density of the dependence concentrated in the 

pair of stocks’ joint distributions. In addition to that, it does not provide information 
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about changes in the dependence structure between pairs of period scenarios. The gap 

this thesis fills in the literature of dependence modelling with pair vine copulas refers to 

the analysis, processing and interpretation of the portfolios’ dependence structure matrix. 

Specifically, a “copula counting technique” is proposed that enables an in-depth and 

comprehensive analysis of the portfolios’ dependence structure. The technique consists 

of five stages: counting, recording, classification, grouping and aggregate dependence 

reading. 
6
  

In the pair vine copula literature there have been some studies (e.g. Allen et al., 2013; 

Czado et al., 2012; Dissmann et al., 2013; Heinen & Valdesogo, 2009) that most likely 

unknowingly and unintendedly have in a way engaged in one or two of the stages of the 

copula counting technique.
7
 Allen et al. (2013) for instance, indicate that the Student-t 

bivariate copula is the model most frequently selected by the r-vine model they fit. 

However, they do not count the vine models’ frequency of bivariate copula selection 

contained in the dependence structure matrix. As a consequence, their study does not 

thoroughly examine the information contained in the dependence structure matrix.  

Czado et al. (2012) do identify by name the bivariate copulas most frequently selected 

by the implemented pair vine copulas. However, they also do not count the frequency of 

bivariate copula selection. In Dissmann et al. (2013) the vine models’ frequency of 

bivariate copula selection is counted and recorded, however it is not classified and 

grouped. The absence of grouping the bivariate copulas in their dependence modelling 

approach does not allow for generalizations and a comprehensive interpretation of the 

assets’ dependence risk. The study by Heinen and Valdesogo (2009) does count, record 

and classify the bivariate copulas contained in the dependence structure matrix, however, 

it does not group them and is unable to draw generalizations about the assets’ co-

movements and dependence risk profile. The copula counting technique by taking into 

account all five stages provides an in-depth analysis of dependence risk. 

 

 

 

 

                                                           
6
 In Chapter 5 a detailed explanation of the “copula counting technique” is given. 

7
 What those studies lack is systematization in their processing and interpretation of the dependence 

structure matrix. 
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2.5 Risk measures and portfolio optimization models 

 

This thesis fits the variance, MAD, Minimax, CVaR and CDaR risk measures to model 

the portfolio allocation features of mining, energy, retail and manufacturing portfolios. 

Research into the field of portfolio optimization has attracted significant attention from 

both academics and finance practitioners (e.g. Yin & Zhou, 2004; Zhou & Yin, 2003; 

Alexander & Baptista, 2002; Li et al., 2002; Steinbach, 2001; Yoshimoto, 1996; Kroll et 

al., 1984) since the seminal mean-variance quadratic optimization method of Markowitz 

(1952). He and Litterman (1999), Bevan and Winkelmann (1998) and Samuelson 

(1970) are among those highlighting its importance. Samuelson (1970) while criticizing 

the portfolio optimization approach, points out its usefulness in situations involving low 

risk. The mean-variance quadratic method is considered in this thesis’ research because 

it is of nonlinear type and can be compared with alternative linear optimization methods. 

In the context of energy markets, Chang et al. (2011) measure the correlation between 

Brent Crude Oil, Western Texas Intermediate and Futures securities by applying the 

constant conditional correlation, VARMA-GARCH, dynamic conditional correlation 

and BEKK models. Aside from modelling the volatility of the energy and non-energy 

assets they conduct portfolio optimization by feeding the resulting variance estimates 

into a portfolio optimization algorithm (see also Arreola & Powell, 2013; Brechmann & 

Czado, 2013; Low et al., 2013). Their results indicate a preference to investing in 

Futures securities. Their research and this thesis’ research have in common the 

modelling of energy markets and the optimization of portfolios.  

De Oliveira et al. (2011) fit a CVaR model to optimize a mix of energy market contracts 

from Brazil. Bhattacharya and Kojima (2012) optimize a portfolio of renewable energy 

from Japan. They find the need to increase the use of renewable energy sources in 

Japan. Delarue et al. (2011) implement a mean-variance quadratic method to optimize a 

portfolio mix of electricity generation. As compared to those studies, the portfolio 

optimization modelling framework implemented in this thesis is more complete because 

it employs multiple risk measures for portfolio optimization. 

Konno and Yamazaki (1991) introduced the MAD risk measure as a simple, fast and 

non-computationally expensive approach to solving large-scale optimization problems. 

Their risk measure weights the observations deviating from the mean according to a 

linear function and does not require the estimation of a covariance matrix. The key 
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feature of their risk measure lies in its ability to solve nonlinear optimization problems 

by treating them as linear optimization problems. This linearization enables the solving 

of large-scale problems (Konno & Shirakawa, 1994). A possible weakness of the MAD 

risk measure lies in its discarding of a covariance estimate (Simaan, 1997). The 

motivation for considering the MAD risk measure is that it is threaded with a linear 

optimization method and can be compared with alternative nonlinear optimization 

methods.  

The Minimax risk measure was proposed by Young (1998) as a conservative approach 

to optimize portfolios. The risk measure seeks to minimize the risk of loss even in 

exchange of a zero portfolio return. It is considered in the modelling framework of this 

thesis because it can be compared with other risk measures such as the CDaR, which 

tends to be less conservative. Rockafellar and Uryasev (2000) introduced the CVaR risk 

measure as a means to overcome the limitations of the VaR measure. The CVaR is 

incorporated in the modelling framework of this thesis because it has become an 

important measure of downside risk in the relevant literature. Chekhlov et al. (2003) 

introduced the CDaR as an alternative to the CVaR. The CDaR has in common with the 

CVaR the modelling of observations falling below a threshold value. The CDaR is 

particularly interested in the drawdowns of return distribution (Krokhmal et al., 2002).  

One topic of interest in the literature of portfolio optimization has to do with the 

identification of the best risk measure to be used for the optimization of portfolios. In 

this regard Krokhmal et al. (2002) fit the CVaR, CDaR, MAD, and MaxLoss risk 

measures to optimize portfolios of stocks. They find the CVaR to perform best for the 

“real” out-of-sample analysis, while the CDaR does best for “mixed” out of sample 

analysis. Despite the good performance of the CVaR and CDaR in their study, neither of 

them is proclaimed as the optimal risk measure to be used for the optimization of 

portfolios. Instead each of the risk measures fitted is indicated to allocate the resources 

in its own risk space. Stone (1973) addresses the same problem by fitting the probability 

of an outcome worse than some disaster level, variance, semi-variance and MAD risk 

measures. His findings indicate the importance of considering the amount to be invested, 

the significance investors place on small and large deviations and the expected return of 

the investment when selecting an appropriate risk measure. Cheng and Wolverton 

(2001) also deal with that problem by fitting downside risk measures and risk measures 

from modern portfolio theory (e.g. variance, semi-variance) to a four dimensional 
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financial data set. Their findings indicate that some investors prefer some risk measures 

to others, while the risk measures produce results in their own risk space. 

The above-mentioned studies appear to suggest that the selection of risk measure is 

ultimately dependent on the investors’ preferences. Hence, in the relevant literature no 

satisfactory solution appears to be given to the problem of identifying the optimal risk 

measure to be used for the optimization of portfolios. 

 

2.6 A gap in the literature of risk measures and portfolio optimization. 

 

The research conducted in this thesis recognizes the difficulty former research in the 

field of multiple risk measure-based portfolio optimization has had to identify the best 

risk measure to be used for the optimization of portfolios. In order to address this issue 

this thesis looks at the underlying problem. First of all, this thesis understands that 

underlying any type of portfolio optimization approach, including that which seeks to 

identify the optimal risk measure to be used for the optimization of portfolios, is a 

problem of investment confidence, faced by investors when having to select stocks from 

a wide array of optimal investment scenarios. Secondly, since the investors’ gains and 

losses are dependent on the optimal portfolio choice, it suffices to identify a non-

subjective way to recognize the stocks that could be good candidates for investment to 

mitigate the investment confidence and optimal stock selection problems. By doing so, 

investors instead of selecting stocks according to a particular risk measure and specific 

risk and return preferences; they base their optimal stock selection on model 

convergence and model consensus, on the optimal weights. The focus is therefore 

shifted from trying to identify the optimal risk measure to be used for the optimization 

of portfolios to identifying the optimal stocks to invest in according to the average 

model convergence. This thesis, in this context, attempts to fill a gap in the literature of 

multiple risk measure-based portfolio optimization by introducing a simple “average 

model convergence” perspective that addresses the optimal stock selection and 

investment confidence problems in a more objective manner. The average model 

convergence identifies the stocks to which most of the portfolio optimization model 

specifications assign weights that do not largely deviate from the mean of the optimal 

weights.  
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2.7 Summary 

 

This chapter discussed the most relevant literature in the fields of graphical models, 

bivariate copulas, pair vine copulas, portfolio optimization and risk measures. The 

literature review on graphical models revealed the importance of flexibility in modelling 

correlation structures. The bivariate copula literature review highlighted the flexibility 

aspect of the bivariate copulas and indicated the restrictive and deterministic features of 

traditional measures of correlation. The pair vine copula literature review acknowledged 

the worthiness of the pair vine copulas in multivariate dependence modelling. The pair 

vine copulas were indicated to overcome the restrictive and deterministic features of 

both, bivariate copulas and traditional measures of correlation. The most common types 

of pair vine copula models fitted in the literature are the mixed pair vine copulas, as 

compared to the homogeneous pair vine copulas. A simple copula counting technique 

was proposed to fill a gap in the literature of dependence modelling with pair vine 

copulas. The portfolio optimization literature review discussed studies using risk 

measures in portfolio optimization. A simple average model convergence perspective 

was proposed to fill a gap in the multiple risk measure-based portfolio optimization. 
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CHAPTER 3 

 
       METHODOLOGY 

 

This chapter consists of three sections: introduction, model application methodology 

and hypotheses testing methodology. 

 

The introduction section discusses the modelling framework implemented in this thesis 

and the data sets modelled. The model application methodology section explains how 

the pair vine copula and portfolio optimization modelling is conducted. The hypotheses 

testing methodology section states the hypotheses and briefly indicates how each of 

them is tested. 

 

3.1 Introduction 

 

The copula models for dependence estimation fitted in this thesis are the pair regular 

vines (r-vines), pair canonical vines (c-vines) and pair drawable vines (d-vines). The 

portfolio optimization model specifications fitted consist of linear and nonlinear 

optimization methods threaded with the variance, mean absolute deviation (MAD), 

minimizing regret (Minimax), conditional Value-at-Risk (CVaR) and conditional 

Drawdown-at-Risk (CDaR) risk measures. Seven 20-stock portfolios from the gold, iron 

ore, nickel, coal, uranium, oil, gas, retail and manufacturing sectors of the Australian 

market are modelled in the context of the 2008-2009 GFC and the full sample (Jan 7, 

2005 -July 2, 2012), pre-GFC (Jan 7, 2005 - July 6, 2007), GFC (July 9, 2007 - Dec 31, 

2009) and post-GFC (Jan 1, 2010 - July 2, 2012) period scenarios revolving around the 

financial crisis event. The full sample period accounts for 7.5 years and each of the sub 

periods accounts for 2.5 years. In selecting the size of these period scenarios we follow 

Baur (2012), The Bank for International Settlements (2009) and the Federal Reserve 

Bank of St. Louis (2009) who also use similar time periods in their analysis. 
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Only 20 stocks are included in each portfolio because of the high computational 

demands when fitting the pair vine copula models (see Brechmann & Schepsmeier, 

2013; Haff, 2013; Brechmann et al., 2012). Besides, the number of stocks available in 

the mining and energy sectors satisfying the 7.5 years trading period is not large 

enough. As a consequence, some of the portfolios consist of stocks from two sectors 

(e.g. coal-uranium, oil-gas, iron ore-nickel). The oil and gas stocks are modelled 

together because several of the companies selected work with both, oil and gas. They 

are selected for the analysis because their representation in the Australian energy market 

is increasing continuously.  

The coal and uranium stocks are group together because the coal and uranium 

commodities are used as energy sources for electricity generation thus, could share 

some price behaviour similarities in times of financial turbulence and when the financial 

stock markets behave smoothly. The coal and uranium stocks are also selected for the 

analysis because their representation in the energy sector of the Australian energy 

market is increasing. The gold, iron ore-nickel and mix-metals leptokurtic portfolios are 

classified as mining portfolios. Only gold stocks are included in the gold mining 

portfolio because the number of stocks available that satisfy the trading period sought is 

large enough and because gold tends to behave in peculiar ways during crisis periods 

(Andrew, 2012; Bingham, 2012). Thus, its price and dependence risk behaviour can be 

studied and analysed in those market conditions.  

The iron ore and nickel stocks are grouped together because both are non-precious 

metals and could be used for more or less similar purposes. Stocks from the iron ore 

sector have been considered in the analysis of dependence and portfolio optimization 

because iron ore production has a special place in the mining sector of the Australian 

economy because of the scale of the iron ore business exports. The mix-metals 

leptokurtic mining portfolio is included in the mix of portfolios because it is of interest 

to understand the characteristics of a non-homogeneous multivariate dependence 

structure. By non-homogeneous it is meant that the stocks in the portfolio belong to 

various sections of the Australian resources sector. This portfolio, in addition to that, 

has been drawn out of 801 mining stocks listed and trading on the ASX by the end of 

2012.  

The stocks have been selected according to their kurtosis. Those with the largest 

kurtosis are included in the portfolio. The stocks’ kurtosis is in the range (29.60, 1074). 

Some of the stocks from the mix-metals leptokurtic mining portfolio are also found in 
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the mining and energy portfolios. All the stocks in the mining and energy portfolios 

have been selected at random. 

The retail and manufacturing benchmark portfolios are considered in this thesis because 

their underlying market sectors figure highly in the Australian economy, each 

contributing roughly 5% and 6.5% of total GDP. Besides, the manufacturing sector has 

been in a declining trend and exhibiting decreasing risk, while the retail sector has been 

expanding. The manufacturing sector specifically employed around 20 percent of the 

Australian workforce before the 2008-2009 GFC, which dropped to 8 percent in 2014. 

On the other hand, the retail sector has experienced a slow but steady increase in recent 

years, contributing with AD 23.88 billion to the Australian economy in 2013 

(Department of Industry, 2014; Kryger, 2014; Australian Bureau of Statistics, 2015). In 

addition to that, the retail and manufacturing benchmark portfolios’ underlying sectors 

have economic linkages with the mining and energy sectors (Savills Research, 2014; 

Delloite, 2013; Mehmedovic et al., 2011) and could be used for benchmarking 

purposes. All the stocks in the retail and manufacturing portfolios have been selected at 

random.  

A variety of portfolios are considered because of their differences in terms of structure, 

volatility, uses, and their importance in asset investment.  For example, the retail stocks 

along with the gold stocks, which tend to be defensive in times of financial turbulence, 

could be used to hedge investment positions in the iron ore and nickel sectors, which 

have shown to be more volatile. Also, the portfolios could be used to diversify an 

investment position in traditional equity sectors such as the financial sector. The 

frequency of the stock return series is “daily” so that a sufficiently large number of 

observations are taken into account and the volatility changes across period scenarios 

are accounted. The data sets have been downloaded from DataStream International. 
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Table 3-1: Gold and iron ore-nickel portfolios’ stocks’ names and codes 

Gold stocks’  

codes 

Gold stocks’ 

 names 

Iron ore-nickel 

 stocks’ codes 

Iron ore-nickel 

 stocks’ names 

C1:D10: SBMX ST Barbara C1:D12: BHPX BHP Billiton 
C2:D9:  NWRX Northwest Resources C2:D19: GBGX Gindalbie Metals 
C3:D5:  NSTX Northern Star C3:D14: MCRX Mincor Resources 
C4:D12: SHKX Stone Resources of Australia C4:D8:  WSAX Western Areas 
C5:D8:  DEGX Degrey Mining C5:D6:  AGOX Atlas Iron 
C6:D13: RSGX Resolute Mining C6:D11: FMSX Flinders Mines 
C7:D4:  AXMX Apex Minerals C7:D20: GRRX Grange Resources 
C8:D16: ORNX Orion Gold C8:D7:  ARHX Australasian Resources 
C9:D11: RCFX Redcliffe Resources C9:D5:  ARI Arrium 
C10:D6: EXMX Excalibur Mining C10:D2: FCNX Falcon Minerals 
C11:D1: TAMX Tanami Gold C11:D13:POSX Poseidon Nickel 
C12:D14:GLNX Gleneagle Gold C12:D9: HRRX Heron Resources 
C13:D3: MOYX Millenium Minerals C13:D1: MGXX Mount Gibson Iron 
C14:D20:EVNX Evolution Mining C14:D15:ADYX Admiralty Resources 
C15:D7: AUZX Australian Mines C15:D4: FMGX Fortescue Metals 
C16:D2: HEGX Hill End Gold C16:D17:ILUX Iluka Resources 
C17:D15:KMCX Kalgoorlie Mining C17:D3: IGOX Independence group 
C18:D18:IRCX Intermin Resources C18:D16:SHDX Sherwin Iron 
C19:D19:HAOX Haoma Mining C19:D10:MLMX Metallica Minerals 
C20:D17:CTOX Citigold C20:D18:MOLX Moly Mines 

        Notes: This table displays the names and ASX codes of the gold, iron ore and nickel stocks modelled. The letters C and D with 

their corresponding numbers refer to the type of pair vine copula model (e.g., c-vine or d-vine) and the location of the stock 
return series columns in the data set. The column order of the stock return series for the c-vine modelling follows the criterion 

suggested by Czado et al. (2012) and Czado (2010). 

 

Table 3-1 displays the gold and iron ore-nickel mining portfolios’ stocks’ names and 

codes. Based on the c-vine column order of the data sets ST. BARBARA (SBMX) and BHP 

BILLITON (BHPX) occupy the first columns in the gold and iron ore-nickel mining 

portfolios, respectively. SBMX started as an oil endeavour in 1969 and then refocused its 

operations on gold in the 2000s. BHPX calls itself the world leading diversified 

resources company and it is among the world’s largest producers of iron ore. Based on 

the d-vine column order of the data set TANAMI GOLD (TAMX) and MOUNT GIBSON 

IRON (MGXX) occupy the first columns in the gold and iron ore-nickel mining 

portfolios. TAMX is engaged in gold mining operations and mineral exploration.  

The c-vine column order of the coal-uranium data set indicates that PALADIN ENERGY 

(PDNX) is the rootstock of the entire vine structure. In the oil-gas energy portfolio the c-

vine selects WOODSIDE PETROLEUM (WPLX) as the rootstock.  
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Table 3-2: Coal-uranium and oil-gas energy portfolios’ stocks’ names and codes 

Coal-uranium 

stocks’ codes 

Coal-uranium  

stocks’ names 

Oil-gas  

stocks’ codes 

Oil-gas stocks’ 

names 

PDNX Paladin Energy WPLX Woodside 
CBQX Coal Bank AWEX Awe 
CLAX Celsius Coal BPTX Beach Energy 
LRRX Leopard Resources MOGX Moby oil-gas 
AQAX Aquila Resources NWEX Norwest 
SMMX Summit Resources STOX Santos 
GLLX Galilee Energy STXX Strike 
CPLX Coalspurn ACN Acer 
RESX Resource Generation LNGX Liquified Ng 
CNXX Carbon Energy CTXX Caltex 
BWDX Blackwood ORGX Origin 
UEQX Uranium Equities CUEX Cue Energy 
AGSX Alliance Resources BASX Bass St. oil 
EMAX Energy Resources of Australia ROCX Roc oil 
FYIX Fyi Resources MELX Metgasco 
BLZX Blaze International TPTX Tangiers 
NSLX Nsl Consolidated DLSX Drill Search 
AQCX Aupacific Coal APAX Apa 
BKYX Berkeley Resources SYSX Syngas 
WALX Wavenet International COEX Cooper 

               Notes: This table displays the names and ASX codes of the stocks in the coal-uranium and oil-gas energy 

portfolios.  

 

Table 3-3: Retail and manufacturing benchmark portfolios’ stocks’ names and codes 

Retail 

stocks’ codes 

Retail  

stocks’ names 

Manufacturing 

stocks’ codes 

Manufacturing  

stocks’ names 

CCLX Coca-cola SFCX Schaffer Corp. 
HILX Hills Hld BLDX Boral 
GWAX Gwa Grp. BKWX Brickworks 
MTUX M2 Telecom CSRX Csr 
MTSX Metcash JHXX James Hardie 
WOWX Woolworths OLHX Oilfield Hld. 
ARPX Arb CKLX Colorpak 
CCVX Cash Conv. ANNX Ansell 
DJSX David Jones SDIX Sdi 
DLCX Delecta SOMX Somnomed 
HVNX Harvey Norman UCMX USCOM 
JBHX Jb Hi-Fi FWDX Fleetwood 
RCG Rcg FANX Fantastic Hld. 
SFHX Specialty Fashion KRSX Kresta Hld. 
SULX Super retail ASBX Austal 
WESX Wesfarmers MHIX Merchant House 
FANX Fantastic Hld. CSLX Csl 
GZLX Gazal IDTX Idt Australia 
FLTX Flight Centre CDAX Codan 
JETX Jetset Travel LGDX Legend 

      Notes: This table displays the names and ASX codes of the stocks in the retail and manufacturing benchmark 

portfolios.  

 

 

 

 

 

http://product.datastream.com/Navigator/search.aspx?dsid=XECU901&useroption=162077092166082172&host=Advance&selectDatatypes=true&multiSelect=true&q=RCG&prev=99_JB+HI-FI&s=D&prev_csrc=0&rq=cGFnZT0xJnE9SkIlMjBISS1GSSZzPUQ1%7CcGFnZT0xJnE9SEFSVkVZJTIwJTIwTk9STUFOJnM9RA2%7CcGFnZT0xJnE9REVMRUNUQSZzPUQ1%7CcGFnZT0xJnE9REFWSUQlMjBKT05FUyZzPUQ1%7CcGFnZT0xJnE9Q0FTSCUyMENPTlZFUlRFUlMmcz1E0%7CcGFnZT0xJnE9Q0FTSCZzPUQ1%7CcGFnZT0xJnE9QVJCJnM9RA2%7CcGFnZT0xJnE9V09PTFdPUlRIUyZzPUQ1%7C
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Table 3-4: Mix-metals mining portfolio’s stocks’ name and codes 

Mix-metals leptokurtic 

stocks’ codes 

Mix-metals leptokurtic 

 stocks’ names 

RIOX  Rio Tinto 
BCDX BCD Resources 
CAZX Cazaly Resources 
CDUX Cudeco 
FMSX Flinders Mines 
FNTX Frontier Resources 
GLNX Gleneagle Gold 
KMCX Kalgoorlie Mining 
MAHX McMahon Holdings 
NAVX Navigator Resources 
PNAX Panaust 
PHRX Phillips River 
PDZX Prairie Downs 

RMSX Ramelius Resources 

SARX Saracen Mineral 
SIRX Sirius Resources 
AYNX Alcyone Resources 
UMLX Unity Mining 
BWDX Blackwood 
WECX White Energy 

Notes: This table displays the names and ASX codes of the stocks in the mix-metals 

leptokurtic portfolio. 
 

 

In the mi-metals leptokurtic portfolio RIO TINTO (RIOX) is selected as the rootstock by 

the c-vine. RIOX is an international mining and energy company working in the 

extraction, processing and sale of aluminium, copper, iron ore, diamonds, coal, uranium, 

gold, borax, titanium dioxide and salt. 

 

3.2 Pair vine copula methodology 

 

 

The fitting of pair vine copulas begins by inspecting and cleaning the data sets. The first 

stage of the estimation procedure deals with the transformation of the price series to 

logarithmic return series. Next, the logarithmic returns are filtered to avoid convergence 

problems in the estimation process. Once the logarithmic returns have been filtered, 

their residuals and standardized residuals are estimated, and a probability integral 

transform is fitted to the standardize residuals to estimate the “copula data”. 

The distribution in the centre and tails of the marginal distributions is captured through 

the fit of an ARMA (1, 1)-GARCH- (1, 1) with student-t innovations to the copula data. The 

R package “vines” is used to estimate the order of the variables in the data set prior to 
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the fit of the vine copula models (Fernandez & Ortiz, 2012). Once the variables have 

been ordered in the data set, the optimal vine structure, optimal bivariate copulas and 

optimal bivariate copula parameters are estimated (Brechmann & Schepsmeier, 2013).
 8

 

Next, the dependence structure matrix resulting from the fit of the pair vine copulas to 

the data sets is dissected, organized and interpreted using the “copula counting 

technique”. Finally, the counting, recording, classification, grouping and aggregate 

dependence reading stages of the technique are implemented. A detailed explanation of 

the technique is given in Chapter 5.  

 

3.3 Portfolio optimization methodology 

 

The portfolio optimization methodology as compared to the pair vine copula 

methodology is simpler. The R routine only requires logarithmic returns of the price 

series to be run. Once the logarithmic returns have been estimated, the constraints in the 

optimization problem are set, the minimum risk optimal weights are estimated for a 

constant level of return, and the efficient frontiers of the optimal portfolios are plotted.
9
 

Next, the resulting optimal weight allocations are processed and handled using the 

average model convergence and the stocks to which most of the optimization methods 

and risk measures assign weights, which do not largely deviate from a mean of the 

optimal weights, are identified as good candidates for investment.  

 

3.4 Hypotheses testing methodology 

There are a total of eight hypotheses tested. Each of them corresponds to one of the 

research questions stated in Chapter 1. The hypotheses are stated in the alternative 

format. 

 
Ha 1:  There are mining portfolios with higher dependence risk than others. 

                                                           
8 The R packages used to fit the pair vine copulas are “vines”, “CDVine” and “VineCopula”. 
9
 The R package used to estimate the minimum risk optimal portfolios with respect to the variance, 

minimax, MAD, VaR and CDaR risk measures is “parma”. 
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Applying a two-sample two-tailed t-test for the difference of means between two 

mining portfolios’ dependence concentrations tests the alternative hypothesis 1. The 

objective is to find out if the difference between two portfolios’ dependence 

concentrations is statistically significant at the 95% confidence level. The selection of 

this confidence level assures with 95% probability that the difference between the 

means of the dependence concentrations is either significant or not significant. 

Ha 2:  There are energy portfolios with higher dependence risk than others 

Applying the procedure used for the testing of the alternative hypothesis 1 test this 

alternative hypothesis. 

 

Ha 3: There are mining portfolios with higher dependence risk than energy portfolios 

Applying the procedure used for the testing of the alternative hypotheses 1 and 2 tests 

this alternative hypothesis. 

 

Ha 4: There are mining and energy portfolios with higher dependence risk than retail 

and manufacturing benchmark portfolios. 

Applying the procedure used for the testing of the alternative hypotheses 1, 2 and 3 tests 

this alternative hypothesis. 

Ha  5: The portfolios’ dependence structure changes between period scenarios are 

statistically significant. 

 

The alternative hypothesis 5 can also be tested using a two-sample two-tailed t-test. The 

size differences of the dependence concentration between pairs of period scenarios are 

tested. 

 

Ha 6: There is a pair vine copula model that best captures the multivariate dependence 

structure of the portfolios. 

Applying the ECP and ECP2 goodness-of-fit tests, which are based on the empirical 

copula process, tests the alternative hypothesis 6. These goodness-of-fit tests use the 

Cramer-von Mises (CvM) and Kolmogorov-Smirnov (KS) test statistics to check for the 

fit of the vine copula models to the multivariate dependence of the stocks. The 
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goodness-of-fit tests are applied to the fit of the c-vine, d-vine and r-vine to the data sets 

(see Schepsmeier, 2013; Genest et al., 2009; Panchenko, 2005).  

Ha 7: There is a portfolio of stocks that offers the best risk-return trade-off 

Applying the non-parametric Spearman rank correlation and Kruskal-Wallis tests tests 

the alternative hypothesis 7. The Spearman rank correlation is fitted to account for the 

strength of correlation between pairs of portfolios’ risk rankings, while the Kruskal-

Wallis test is fitted to account for the strength of association of the entire group of 

portfolios’ risk rankings. The tests are applied on the rankings of the portfolios’ risk so 

that the direction of the rankings’ co-movement is determined.  

Ha  8: The average model convergence of the stocks’ optimal weights is statistically 

significant. 

 

Applying a one-sample two-tailed t-test for the difference between the average of the 

optimal weights and each of the optimal weights tests the alternative hypothesis 8.  

 

 

 

3.5 Summary 

 

 
This chapter discussed the methodology of model implementation. The pair vine copula, 

portfolio optimization and hypothesis testing methodologies were explained. The pair 

vine copula methodology was indicated to be the most complex since it required the 

transformation of the stock price series into the copula data; the ordering of the 

variables in the data set according to a certain criterion, and the processing of the 

dependence structure matrix using the copula counting technique. The portfolio 

optimization methodology was recognized to be simpler since it did not require the 

implementation of a probability integral transform to the data. The use of logarithmic 

returns and the implementation of the average model convergence on the resulting 

optimal weights were indicated to suffice. 
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CHAPTER 4 

 
       MODEL EXPLANATION 

 

This chapter consists of two sections: dependence estimation and portfolio optimization. 

 

The dependence estimation section explains the pair vine copula models fitted to 

estimate the dependence structure of the mining, energy and benchmark portfolios. The 

models’ capabilities, structure and comparative advantages, relative to the bivariate 

copulas, are stated. The central role played by the bivariate copulas in the vine copula 

modelling of dependence risk is indicated. The flexibility feature of the pair vine 

copulas is highlighted and the central role of the theorem of Sklar (1959) for the 

development of the pair vine copulas is acknowledged. The portfolio optimization 

section explains the risk measures and the linear and nonlinear portfolio optimization 

methods considered. 

 

4.1 Pair vine copulas 

 

Copulas have been proven to be successful statistical tools for the flexible modelling of 

cross-sectional dependence structures of random variables (Brechmann & Czado, 2013; 

Low et al., 2013; Smith et al., 2010). The bivariate copulas are designed to split the 

marginal distribution from the joint dependence while maintaining the original 

distribution of the marginals (Patton, 2012b). In the bivariate copula literature a well 

established set of copula families exists that includes the elliptical (e.g. Gaussian and 

Student-t) and Archimedean (e.g. Gumbel, Frank and Clayton). Both sets of copulas 

have extensively been used in financial modelling due to their ability to capture 

symmetric and asymmetric dependence risk features from joint distributions (Louie, 

2014; Hua & Joe, 2011; Joe et al., 2010; Fischer et al., 2009; Li & Peng, 2009; Aas, 

2004; Frahm et al., 2003). 
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The elliptical bivariate copulas are often used in financial modelling because of their 

simplicity of implementation and interpretation and their somewhat adequate modelling 

of dependence in the tails (Fischer et al., 2009; Li & Peng, 2009; Frahm et al., 2003). 

Despite their well-accepted properties, the elliptical bivariate copulas are built to 

symmetrically account for the dependence in the joint distributions. As a consequence, 

they are unable to account for the asymmetric dependence and skewness in the joint and 

marginal distributions (Frahm et al., 2003). Although the Archimedean bivariate 

copulas can capture distributional features that the elliptical copulas cannot (Louie, 

2014; Junker et al., 2006; Murray-Smith, 2002), they lack the necessary flexibility to 

model multivariate distributions in high dimensions (Brechmann & Schepsmeier, 2013). 

The pair vine copulas, as compared to the bivariate copulas, overcome the restrictive 

and deterministic features of the elliptical and Archimedean bivariate copulas 

(Brechmann & Schepsmeier, 2013; Daeyoung et al., 2013; Chollete et al., 2009). 

The pair vine copulas’ use of the bivariate copulas as the building blocks makes the 

bivariate copulas essential to the pair vine copulas’ modelling of dependence risk. The 

Gaussian and the Frank bivariate copulas are used by the pair vine copulas to capture 

greater dependence in the centre of the joint distributions (Trivedi & Zimmer, 2007). 

Out of these two copulas, the Frank is more suitable to capture nonlinearities of 

dependence in the centre (McCarthy & Orlov, 2013; Junker et al., 2006). The Student-t 

copula is used by the pair vine copulas to symmetrically capture the tail dependence in 

the pair of variables’ joint distribution (Arreola et al., 2013; Tong et al., 2013; Berg & 

Aas, 2009; Fischer et al., 2009; Junker & May, 2005; Malevergne & Sornetten, 2003; 

Embrechts et al., 1999). This copula, in addition to that, has been found to provide good 

estimates of dependence between financial variables (Smith et al., 2010). The Clayton 

and Gumbel copulas are used by the pair vine copulas to account for the asymmetric 

dependence in the negative and positive tails, respectively. 

Pair vine copulas are graphical tree models that make possible the design of high 

dimensional multivariate distributions. Their flexibility, which is built in the theory of 

graphs, enables a localized modelling of stylized facts such as kurtosis, negative 

skewness and symmetric and asymmetric dependence through the use of bivariate 

copulas as the building blocks (Brechmann & Schepsmeier, 2013; Czado et al., 2012; 

Czado, 2010). The theorem of Sklar (1959) laid the statistical framework on which the 

bivariate copula and pair vine copula developments are built on (Brechmann & 

Schepsmeier, 2013; Aas et al., 2009). Bedford and Cooke (2002, 2001) are among the 
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first to employ graphical r-vine models to organize, specify and fit multivariate 

statistical models to data sets of diverse and complex distributional features. 

 

 
 

 

 

 

 

  

 

 

  

 

 

 

 

 

 

 

 
 

Figure 4-1: Modelling features and limitations of alternative measures of correlation. The 

Pearson correlation measure assumes variables relate linearly and is built to perform best under 

the assumption of normality (Heinen & Valdesogo, 2009). The Spearman and Kendall tau are 

non-parametric measures of correlation that do not constrain the distribution of the marginals to 

conform to a particular parametric distribution. The Spearman correlation measure assumes 

variables relate according to an increasing and decreasing monotonic function (Croux & Dehon, 

2010; Danacica & Babucea, 2007; Chen & Popovich, 2002). 
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Figure 4-2: The bivariate copula and pair vine copula sets. The bivariate copulas fall into two main categories:  

elliptical and Archimedean. Among the elliptical copulas are the Gaussian and Student-t. Among the 

Archimedean copulas are the Frank, Clayton and Gumbel. The bivariate copulas’ strength stems from their 

ability to model the symmetries and asymmetries of dependence from the joint distributions. Their major 

limitation stems from their inability to adequately model multivariate distributions in high dimensions due to 

their standardized application to joint distributions that differ in characteristics (Brechmann & Schepsmeier, 

2013; Czado et al., 2012; Czado, 2010). The set of the pair vine copulas includes the regular, canonical and 

drawable, with the canonical and drawable being special cases of the regular. The main strength of the pair 

vine copulas lies in their flexible modelling of dependence (Brechmann & Schepsmeier, 2013; Czado et al., 

2012; Czado, 2010). 
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The pair vine copulas’ fit entails the identification of an adequate vine tree structure; the 

selection of the optimal bivariate copulas in the vine and the estimation of the bivariate 

copula parameters. The accuracy of the pair vine copula modelling is consequently 

dependent on the optimality of those three components (Alcock et al., 2013; Brechmann 

& Schepsmeier, 2013; Daeyoung et al., 2013).
 

DEFINITION 1: 

A vine 𝑉 is a graphical structure of 𝑛 elements so that in 𝑉 = (𝑇1, … , 𝑇𝑛−1) every tree 𝑇𝑖 

is connected with nodes 𝑁𝑖 = 𝐸𝑖−1 and edge set 𝐸𝑖, implying that the edges of  𝑇𝑖 are the 

nodes of tree 𝑇𝑖+1 (Kurowicka & Cooke, 2006).  

Since 𝑉 is a nested set of trees with 𝑛 variables such that the edges of the tree 𝑗 are the 

nodes of the tree 𝑗 + 1, the constraint set of an edge is located on the first tree of a vine 

and consists of the nodes linked by an edge. However, if two edges are joined by an 

edge on the following tree, the conditioning set is represented by the intersection of the 

constraint sets. Given the constraint sets and conditioning set, the latter becomes the 

union of the former without the intersection, so that they represent the symmetric 

difference of the constraint sets. When the bivariate copulas are added to a vine 

structure, the conditioned and conditioning sets are replaced by the conditioned and 

conditioning variables (Kurowicka & Cooke, 2006). 

 

 

 

                                                                              𝑐1,2 

                                                                                         𝑐1,3 

                                              𝑐2,3|1    

 

 

 
 

Figure 4-3: Simplified 3-dimensional pair c-vine copula. 10  Each square in the figure 

represents a node. The lines connecting the squares are the edges, which represent the 

dependence between the nodes. The 𝒄𝒊,𝒋  parameter represents the bivariate copulas and 

conditional bivariate copulas, used to measure the dependence between the edges. 

 

                                                           
10

  Figure 4-3 is an adaptation of that found in Kurowicka and Joe (2011). 
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2 
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The connection between the theorem of Sklar (1959) and the pair vine copula models is 

as follows:  

Let 𝒙 = (𝑥1, … , 𝑥𝑛)  for 𝑖 = 1, … , 𝑛 be a sequence of random variables with continuous 

distribution and inverse distribution functions 𝐹1(𝑥1), … , 𝐹𝑛(𝑥𝑛) and 

  𝐹1
−1(𝑥1), … , 𝐹𝑛

−1(𝑥𝑛) , respectively. Let also their probability density functions be 

 𝑓1(𝑥1), … , 𝑓𝑛(𝑥𝑛) and 𝑓1
−1(𝑥1), … , 𝑓𝑛

−1(𝑥𝑛). It follows then that their joint distribution 

and joint density functions are 𝐹(𝒙) =  𝐹(𝑥1, … , 𝑥𝑛) and 𝑓(𝒙) = 𝑓(𝑥1, … , 𝑥𝑛). If the 

properties of a probability integral transform are considered, a random variable 𝑈𝑖 ≡

𝐹𝑖(𝑋𝑖)  is understood as being uniformly distributed on [0, 1] and with reverse 

expression  𝑋𝑖 = 𝐹1
−1(𝑈𝑖) , for  𝑖 = 1, … 𝑛 . If this relationship is applied to a joint 

distribution the following expression is obtained: 

 

𝑃(𝑋1 ≤ 𝐹1
−1(𝑢1), … , 𝑋𝑛 ≤ 𝐹𝑛

−1(𝑢𝑛)) = P( 𝑈1 ≤ 𝐹1(𝑥1), … , 𝑈𝑛 ≤ 𝐹𝑛(𝑥𝑛)  ) 

                                                                       ≡ C(𝑥1, … , 𝑥𝑛 )                                      (4.1) 

 

If the property of inverse distributions 𝐹𝑖 (𝐹𝑖
−1(𝑋𝑖)) ≥ 𝑋𝑖 is employed on Equation (4.1) 

it follows that,     

 

𝑃(𝑋1 ≤ 𝑥1, … , 𝑋𝑛 ≤ 𝑥𝑛) = P( 𝐹1(𝑋1) ≤ 𝐹1(𝑥1), … , 𝐹𝑛(𝑋𝑛) ≤ 𝐹𝑛(𝑥𝑛))    

                                                    = C(𝐹1(𝑥1), … , 𝐹𝑛(𝑥𝑛))                                     (4.2) 

 

Applying the theorem of Sklar (1959) on Equation (4.2) shows that the following 

equality holds:  

  

𝐹(𝒙) = 𝐹(𝑥1, … , 𝑥𝑛) = C(𝐹1(𝑥1), … , 𝐹𝑛(𝑥𝑛))                                            (4.3) 

 

The parameter C in Equations (4.1), (4.2) and (4.3) represents the copula of the joint 

distribution function for n-dimensions. Its values range in the set [0,1]𝑛, implying that 

the margins  𝐹1, … , 𝐹𝑛 are uniformly distributed. Now, by differentiation on Equation 

(4.3) it is obtained:  
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 𝑓(𝑥1, … , 𝑥𝑛) =
𝜕𝑛 C(𝐹1(𝑥1),…𝐹𝑛(𝑥𝑛))

𝜕𝐹1(𝑥1),…𝜕𝐹𝑛(𝑥𝑛)
 ×  

𝜕𝐹1(𝑥1)

𝜕𝑥1
×

𝜕𝐹2(𝑥2)

𝜕𝑥2
×, … ,×

𝜕𝐹𝑛(𝑥𝑛)

𝜕𝑥𝑛
 

                        = 𝑐1…𝑛(𝐹1(𝑥1), … , 𝐹𝑛(𝑥𝑛)) ∏ 𝑓𝑖(𝑥𝑖)
𝑛
𝑖=1                                            (4.4) 

Equation (4.4) represents the decomposition of a density function into marginals and 

joint densities. Also since the joint densities can be modelled using bivariate copulas, it 

contains the necessary components to construct a statistical vine copula model. This 

transition from compact densities to decomposed densities is due to the theorem of 

Sklar (1959).  

 

4.1.1 Regular vines 

 

The set of the r-vines is large and includes the c-vines and d-vines as subsets and special 

cases. The r-vines, relative to the c-vine and d-vines, are indicated to be more flexible 

for the modelling of high dimensional dependence structures (Dissmann, 2010). An r-

vine on 𝑛 variables is one in which two edges in tree 𝑗 are joined by an edge in tree 

𝑗 + 1, only if these edges share a common node.
 
The proximity condition governs the 

structural conditioning and linking of the regular vine structures. The following 

definition states this relationship (Kurowicka & Cooke, 2006). 

DEFINITION 2:   

Ꮴ is an r-vine on 𝑛 elements the Definition 1 and the following proximity condition 

hold: for 𝑖 = 2, … , 𝑛 − 1, let the set {𝑎, 𝑏} 𝜖 𝐸𝑖, then #𝑎∆𝑏 = 2, where ∆ denotes the 

symmetric difference or union without the intersection. This means that, if 𝑎 and 𝑏 are 

nodes of 𝑇𝑖  and are connected by an edge, then exactly one 𝑎𝑖  equals one 𝑏𝑖 , for 

𝑎 = {𝑎1, 𝑎2} and b= {𝑏1, 𝑏2} (Kurowicka & Cooke, 2006). 

Definition 2 implies that one edge from two linked nodes in the tree 𝑇𝑖 must share a 

common node in previous tree 𝑇𝑖−1 so that the decomposition of a multivariate density 

follows the sequential selection and estimation of the vine tree, copulas and their 

parameters.  
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                                         1, 2                                   2, 3                              3, 4 

                                                                                                                                               𝑇1 

                                                                                                           3, 5 

 

 

                                                          1, 3|2                                      2, 4|3 

                                                                                                                                               𝑇2 

                                                                                      2, 5|3 

 

 

                                                      1, 4|2, 3                                    4, 5|2, 3 

                                                                                                                                               𝑇3 

 
                                                                   1, 5|2, 3, 4 

                                                                                                                                   𝑇4 
                                                 

Figure 4-4: An r-vine on 5 variables.11 The connecting lines represent the edges or, the dependencies and 

conditional dependencies between variables. The numbers on the connecting lines represent the bivariate 

copulas and conditional copulas, which are used to measure the strength of dependence. The circles of the first 

tree are the marginal distributions. In the second and third trees are the copulas and conditional copulas. 

Since the number of existing regular vine structures is large and diverse no exact 

analytical expression has been proposed in the literature of pair vine copulas to 

decompose and infer regular vine structures. Kurowicka and Cooke (2006) proposed an 

equation to approximate regular vine structures: 

Let ℕ = {𝑁1, … , 𝑁𝑛−1}  and Ԑ= {𝐸1, … , 𝐸𝑛−1}  be the set of nodes and set of edges 

corresponding to an r-vine structure. Next, let 𝑗(𝑒) and 𝑘(𝑒) be the conditioned nodes 

and 𝐷(𝑒) the conditioning set. It follows that every edge 𝑒 = 𝑗(𝑒), 𝑘(𝑒)| 𝐷(𝑒) is an 

element of Ԑ conditioned by 𝐷(𝑒) and can be modelled by a conditional bivariate copula 

density of the form  𝑐𝑒 = 𝑐𝑗(𝑒),𝑘(𝑒)| 𝐷(𝑒) . Now let 𝑿 = (𝑋1, … , 𝑋𝑛)  be a vector of 

variables so that if 𝑿 is conditioned by 𝐷(𝑒)  it becomes 𝑿𝐷(𝑒). Putting all parameters 

together yields the following expression:  

 
𝑓(𝑥1, … , 𝑥𝑛) =

[∏ 𝑓𝑘(𝑥𝑘)𝑛
𝑘=1 ] × [∏ ∏ 𝑐𝑗(𝑒),𝑘(𝑒)|𝐷(𝑒) 𝑒∈𝐸𝑖

𝑛−1
𝑖=1 (F(𝑥𝑗(𝑒)|𝑥𝐷(𝑒)), F(𝑥𝑘(𝑒)|𝑥𝐷(𝑒)))]         (4.5) 

 

                                                           
11

 Figure 4-4 is an adaptation of that found in Czado et al. (2013).  
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The model represented by Equation (4.5) is uniquely determined, implying that each 

inferred r-vine structure is unique (Kurowicka & Cooke, 2006). The uniqueness of 

determination of each r-vine tree structure makes the task of selecting the optimal r-vine 

tree more complicated since it requires the storage of the optimal bivariate copulas in 

the search process.  

 

                                 5, 2                      2, 1                       7, 1 

                                                                                                                                              𝑇1 

                                                           6, 2                          3, 1                              4, 3                                                                     

 

 

                                             5, 1|2                     3, 2|1                  4,1|3 

                                                                                                                                               𝑇2 

                                                       6,1|2       7,2|1                                                                                

                                                                                            

 

 
Figure 4-5: First two trees of an r-vine on 7 variables.12 The connecting lines represent the edges or, the 

dependencies and conditional dependencies between variables. The numbers in the connecting lines represent 

the bivariate copulas and conditional copulas used to measure the strength of dependence between the nodes of 

the r-vine structure. The circles of the first tree represent the marginal distributions of the vine. In the second 

tree are located the copulas and conditional copulas. 

 

 

 

 
 

Figure 4-6: Diagonal matrix of an r-vine on 7 variables. This figure contains the components of the seven-

variable r-vine displayed in Figure 4-5. The diagonal elements of the matrix 𝑴 represent the original nodes-

variables in the first tree of the r-vine. An edge in the first tree of the vine is formed by a diagonal component 

and a component from the base row (i.e. first row from the bottom up). The conditional edges (i.e. the 

                                                           
12

 Figure 4-5 is an adaptation of that found in Brechmann et al. (2012).   
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dependence between two nodes, given the dependence relationship each of the nodes has with another node 

from previous trees) start to appear from the second vine tree onwards. A conditional edge on the second vine 

tree consists of one component from the diagonal, one component from the second row (from the bottom up), 

and a component from the base row (this is the conditioning component of the conditional edge), and so on. 

4.1.2 Canonical vines 

 

 
Canonical vines have a star like tree structure and for every tree 𝑇𝑖, 𝑖 ∈ {1, … , 𝑛 − 1} a 

root node is selected. The criterion for the selection of a root node in a c-vine tree 

structure requires from the root node to have the strongest correlation with the rest of 

the nodes in the tree.  The c-vines are indicated to best fit data sets that have a dominant 

variable (Czado et al., 2013).  

 

DEFINITION 3:  

An r-vine is called a canonical vine if Definitions 1 and 2 hold, and each tree 𝑇𝑖 has a 

unique node of degree 𝑛 − 𝑖. The node with maximal degree in tree 𝑇1 is identified as 

the root node of the entire vine tree structure. Aas et al. (2009) proposed the following 

model for the separation of multivariate densities and the inference of pair c-vine copula 

structures: 

 

𝑓(𝒙) = ∏ 𝑓𝑘(𝑥𝑘)𝑛
𝑘=1   

∙ ∏ ∏ 𝑐𝑖,𝑖+𝑗|1:(𝑖−1) 
𝑛−𝑖
𝑗=1

𝑛−1
𝑖=1 (F(𝑥𝑖|𝑥1, … 𝑥𝑖−1), F(𝑥𝑖+𝑗|𝑥1, … , 𝑥𝑖−1)|𝜽𝑖,𝑖+𝑗| 1:(𝑖−1)) (4.6) 

 

In Equation (4.6) the index 𝑖 identifies the trees and index 𝑗 runs over the edges in each 

tree. An example of a 4-dimensional c-vine density decomposition and its 

corresponding graph is: 

 

f(x1, x2, x3, x4) = c1,2(F1(x1), F2(x2)) ∙ c1,3(F1(x1), F3(x3)) ∙ c1,4(F1(x1), F4(x4)) 

                              ∙ c2,3|1 (F2|1(x2|x1), F3|1(x3|x1)) ∙ c2,4|1 (F2|1(x2|x1), F4|1(x4|x1)) 

                          ∙  c3,4|1,2 (F3|1,2(x3|x1, x2), F4|1,2(x4|x1, x2))   

                          ∙ f1(𝑥1) ∙ f2(x2) ∙ f3(x3) ∙ f4(x4)                                                        (4.7)   
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          𝑇1                                                                                         𝑇2 
 

 

                                                                                                                                        

                                                                                                                                           𝑇3 
 
                                                                                                          3, 4|1, 2  
Figure 4-7: 4-dimensional c-vine structure with 3 trees and 6 edges.13 The connecting lines represent the edges 

or the dependencies and conditional dependencies between variables. The numbers on the connecting lines 

represent the bivariate copulas and conditional copulas used to measure the strength of dependence between 

nodes. The circles of the first tree represent the marginal distributions. In the second and third trees are the 

copulas and conditional copulas. 

 

In Equation (4.7) the unconditional copulas c1,2, c1,3 and c1,4 of the first tree 𝑇1  (see 

Figure 4-7) model the edges 1, 2, 1, 3 and 1, 4. The conditional copulas c2,3|1, c2,4|1 and 

c3,4|1,2 from the 𝑇2 model the conditional edges 2, 3|1 and 2, 4|1. The marginal densities 

of the nodes in tree 𝑇1 are represented by the functions f1,f2 f3 and f4. The first node of 

the tree 𝑇1 represents the root node of the entire vine structure.  

 

4.1.3 Drawable vines 

 

Drawable vines are represented through line trees and every node of any tree 𝑇𝑖 cannot 

be linked to more than two edges. In the d-vine tree structures the first tree of the vine 

plays a central role in the definition of subsequent trees. Hence, the most influential 

variables, in terms of correlation, are found in the first tree. The d-vines are indicated to 

best fit the data sets where instead of a single variable being the dominant, a group of 

                                                           
13

 Figures 4-7 and 4-8 are an adaptation of those found in Min and Czado (2010).  
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variables exerts the most influence over the rest through large correlation values 

(Czado, 2010; Min & Czado, 2010). 

 

 DEFINITION 4:  

A regular vine is called a drawable vine if each of its nodes in 𝑇𝑖 has a degree of at most 

2.  

Aas et al. (2009) proposed the following model for the separation of multivariate 

densities and the inference of pair d-vine copulas:  

 

𝑓(𝒙) = ∏ 𝑓𝑘(𝑥𝑘)𝑛
𝑘=1   

∙ ∏ ∏ 𝑐𝑗,𝑗+𝑖|(𝑗+1):(𝑗+𝑖−1) 
𝑛−𝑖
𝑗=1

𝑛−1
𝑖=1 (F(𝑥𝑗|𝑥𝑗+1, … 𝑥𝑗+𝑖−1), F(𝑥𝑗+𝑖|𝑥𝑗+1, … , 𝑥𝑗+𝑖−1)|𝜽𝑗,𝑗+𝑖| (𝑗+1):(𝑗+𝑖−1))   (4.8) 

 

In Equation (4.8) the index 𝑖 identifies the trees and index 𝑗 runs over the edges in each 

tree. An example of a 5-dimensional d-vine density decomposition and its 

corresponding graph is: 

 
f(x1, x2, x3, x4, x5) = c1,2(F1(x1), F2(x2)) ∙ c2,3(F2(x2), F3(x3)) ∙ c3,4(F3(x3), F4(x4)) 

                                ∙ c4,5(F4(x4), F5(x5)) ∙ c1,3|2 (F1|2(x1|x2), F3|2(x3|x2)) 

                                ∙ c2,4|3 (F2|3(x2|x3), F4|3(x4|x3)) ∙ c3,5|4 (F3|4(x3|x4), F5|4(x5|x4)) 

                                ∙ c2,4|3 (F2|3(x2|x3), F4|3(x4|x3)) ∙ c3,5|4 (F3|4(x3|x4), F5|4(x5|x4)) 

                                ∙ c1,4|2,3 (F1|2,3(x1|x2, x3), F4|2,3(x4|x1, x2)) 

                                                   ∙  c2,5|3,4 (F2|3,4(x2|x3, x4), F5|3,4(x5|x3, x4)) 

                                                   ∙ c1,5|2,3,4 (F1|2,3,4(x1|x2, x3, x4), F5|2,3,4(x5|x2, x3, x4)) 

                                    ∙ f1(𝑥1) ∙ f2(x2) ∙ f3(x3) ∙ f4(x4) ∙ f5(x5)                                    (4.9) 

In Equation (4.9) the unconditional copulas c1,2, c2,3 and c3,4 and c4,5 from the first d-

vine tree 𝑇1  (see Figure 4-8 below) model the edges 1,2; 2,3; 3,4 and 4,5. The 

conditional copulas  c1,3|2 , c2,4|3  and c3,5|4  from the second d-vine tree 𝑇2  model the 

conditional edges 1, 3|2; 2, 4|3 and 3, 5|4, and so on with the rest of the trees. Some 

equivalent expressions of the conditional factors from Equations (4.7) and (4.9) are: 
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        𝑓2|1(𝑥2|𝑥1) =
𝑓12(𝑥1,𝑥2)

𝑓1(𝑥1) 
= 𝑐1,2(F1(x1), F2(x2)) ∙ 𝑓2(𝑥2)                                  (4.10) 

 𝑓3|1,2(𝑥3|𝑥1,𝑥2) =
𝑓1,3|2(𝑥1,𝑥3|𝑥2)

𝑓1|2(𝑥1|𝑥2)
= 𝑐1,3|2(F1|2(x1|x2), F3|2(x3|x2)) ∙ 𝑓3|2(𝑥3|𝑥2) 

                                                   = 𝑐1,3|2(F1|2(x1|x2), F3|2(x3|x2))     

                                                        ∙ 𝑐2,3(F1(x1), F2(x2)) ∙ 𝑓3(𝑥3)                          (4.11) 

 

T1 

                                          1,2                          2,3                          3,4                          4 ,5 

                                                                                                                                                            T2 

 

                                                             1,3|2                        2,4|3                        3,5|4 

 

T3 

                                                                             1,4|2,3                    2,5|3,4  

T4 

 

                                                                                  1,5|234 

Figure 4-8: 5-dimensional d-vine structure with 4 trees and 10 edges. 14 The connecting lines represent the 

edges or the dependencies and conditional dependencies between variables. The numbers on the connecting 

lines represent the bivariate copulas and conditional copulas used to measure the strength of dependence 

between nodes. The circles of the first tree represent the nodes of the vine or marginal distributions. In the 

second and third trees are the copulas and conditional copulas. 

 
 
The left hand side of Equation (4.10) represents the density function of 𝑥2 conditional 

on the values of 𝑥1. It is equal to the ratio between the bivariate density function of 𝑥1 

and 𝑥2 and the marginal density function of 𝑥1. By the theorem of Sklar (1959) the right 

hand side of the same equation is expressed as the product of the bivariate copula 

density of x1  and x2  and the marginal density of x2 . The left hand side of Equation 

(4.11) is the density function of 𝑥3 conditional on the values of 𝑥1 and 𝑥2. It is equal to 

the ratio between the conditional bivariate density function of 𝑥1  and 𝑥3  given the 

values of 𝑥2 and the conditional density of 𝑥1 given the values of 𝑥2. The right hand 

side of Equation (4.11) is expressed as the product of the conditional bivariate copula 

density 𝑐1,3|2, the bivariate copula density 𝑐2,3, and the marginal density 𝑓3(𝑥3).    

                                                           
14

 Figures 4-7 and 4-8 are an adaptation of those in Min and Czado (2010).  

5 2 3 4 
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4.2 Risk measures and optimization models 

 

The optimization methods and risk measures discussed in this chapter are fitted to 

estimate the minimum risk optimal portfolios. The risk measures considered are the 

variance, MAD, Minimax, CVaR and CDaR. Each of them has interesting theoretical 

properties that enable the optimization of portfolios from a specific angle (see e.g. Gao 

et al., 2014; Arreola & Powell, 2013; Chang et al., 2009). Thus, a comparison can be 

established between them in terms of resource allocation and investment risk.  

 
4.2.1 The variance  

 

The variance risk measure threaded with the nonlinear mean-variance quadratic (QP) 

portfolio optimization problem (4.12)-(4.15) assumes the return distribution to be 

normal. Investors’ preferences are represented by a quadratic utility function (Brooks & 

Kat, 2002; Pratt, 1964). The convexity and symmetry of the quadratic utility function 

causes the observations deviating from the mean to be penalized with an escalating rate 

(Ghalanos, 2013; Markowitz, 1959,1952). The nonlinear portfolio optimization problem 

to be solved is: 

 

                                𝑚𝑖𝑛        
𝑤

1

𝑛
∑ (∑ 𝑤𝑗(𝑟𝑖,𝑗 − 𝜇𝑗)𝑚

𝑗=1 )
2𝑛

𝑖=1                                            (4.12) 

                                  

Subject to: 

                                                        ∑ 𝑤𝑗

𝑚

j=1
𝜇𝑗 =  μP ;                                          (4.13) 

                                                           ∑ 𝑤𝑗 = 1𝑚
 j=1                                                     (4.14) 

                                              𝑤𝑗 ≥ 0, for  𝑗 = 1, … , 𝑚                                 (4.15) 
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Equations (4.13), (4.14) and (4.15) appear in all subsequent portfolio optimization 

model specifications. They represent respectively the portfolio’s target return, the 

constraint on the sum of the optimal weights to be equal to 1, and the constraint on each 

of the optimal weights to be positive semi definite (at least zero). This implies that no 

short selling is considered in the optimization of the portfolios. The parameter 𝜇𝑗 

represents the average of the returns or expected return value, while 𝑟𝑖,𝑗 represents the 

return of the security 𝑖 at time 𝑗. 

 

4.2.2 The mean absolute deviation 

 

The MAD risk measure was introduced by Konno and Yamazaki (1991) as a simpler 

and none computationally expensive measure. The risk measure solves nonlinear 

optimization problems in their linearized form thus; simplifying the solution of large-

scale optimization problems. Under this risk measure deviations from the mean are 

weighted according to a linear function, while a covariance estimate is not required 

(Konno & Shirakawa, 1994). Since the risk measure does not penalize leptokurtic 

observations as heavily as the variance does, it may be seen as more robust. The linear 

portfolio optimization problem to be solved is:  

 

                                                        min𝑤,𝑑
1

𝑛
∑ 𝑑𝑖

𝑛
𝑖=1                                               (4.16) 

Subject to: 

                                     ∑ (𝑟𝑖,𝑗 − 𝜇𝑗)𝑤𝑗 ≤ 𝑦𝑖 ,     ∀𝑖∈ {1, … , 𝑛}𝑚
𝑗=1                             (4.17) 

                                      ∑ 𝑤𝑗

𝑚

j=1
𝜇𝑗 =  μP  ;                                                             (4.18) 

                                        ∑ 𝑤𝑗 = 1𝑚
j=1                                                                          (4.19) 

∑ (𝑟𝑖,𝑗 − 𝜇𝑗)𝑤𝑗 ≥ −𝑦𝑖,   ∀𝑖∈ {1, … , 𝑛}𝑚
𝑗=1                             (4.20) 

                                      𝑤𝑗 ≥ 0,      ∀𝑗∈ {1, … , 𝑚}                                                    (4.21) 

 

where the parameter 𝑑𝑖  accounts for absolute deviations from the forecast mean. 

Equations (4.17) and (4.20) delineate the lower and upper bounds of 𝑦𝑖, respectively.  
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4.2.3 The minimizing regret 

 

Young (1998) introduces the Minimax risk measure as a conservative approach to 

minimize the risk of portfolios. In problem (4.22)-(4.26) for instance, the constraint 

(4.23) states that the difference between the maximum loss of the portfolio 𝑀𝑝 and the 

forecast return of the portfolio is less or equal to zero. The portfolio optimization 

problem to be solved is:  

 

 

                                                         min𝑀𝑝,𝑤 𝑀𝑝                                                     (4.22) 

Subject to: 

                                               𝑀𝑝 − ∑ 𝑤𝑗𝑟𝑖𝑗 ≤ 0, ∀𝑖∈ {1, … , 𝑛}𝑚
𝑗=1                           (4.23) 

                                                        ∑ 𝑤𝑗

𝑚

j=1
𝜇𝑗 =  μP                                               (4.24) 

                                                      ∑ 𝑤𝑗 = 1𝑚
j=1                                                         (4.25) 

                                                         𝑤𝑗 ≥ 0,∀𝑗∈ {1, … , 𝑚}                                        (4.26) 

 

4.2.4 The conditional Value-at-Risk 

 

Rockafellar and Uryasev (2000) introduced the CVaR measure as a way to compensate 

for the inadequacies of the VaR measure. As compared to the VaR it does fulfill the 

subadditivity property. Also, by being a spectral risk measure it weights the average of 

the loss distribution according to a probability and is more in tune with the loss function 

of the tails’ distribution (Szego, 2002; Uryasev, 2000). The linear portfolio optimization 

problem to be solved is: 

 

                                                          min𝑤,𝑑,𝑣
1

𝑛𝑎
∑ 𝑑𝑖 + 𝑣𝑛

𝑖=1                                     (4.27) 

Subject to: 

                                                           ∑ 𝑤𝑗𝑟𝑖,𝑗 + 𝑣 ≥ −𝑑𝑖, ∀𝑖∈ {1, … , 𝑛}𝑚
𝑗=1              (4.28) 

                                                           ∑ 𝑤𝑗

𝑚

j=1
𝜇𝑗 =  μP                                            (4.29) 

                                                            ∑ 𝑤𝑗 = 1𝑚
j=1                                                     (4.30) 

                                                             𝑤𝑗 ≥ 0,∀𝑗∈ {1, … , 𝑚};                                   (4.31) 
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                                                             𝑑𝑖 ≥ 0,∀𝑗∈ {1, … , 𝑛}                                     (4.32) 

where μP  represents the target return of the portfolio, 𝑣 is the VaR at the a-coverage rate 

and 𝑑𝑖 accounts for the deviation values below the VaR.  

 

4.2.5 The conditional Drawdown-at-Risk 

 

Chekhlov et al. (2003) proposed the CDaR as an alternative to the CVaR measure. A 

common feature the CDaR and CVaR have is the modelling of observations in the 

negative tail. The CDaR is concerned with the drawdowns in the asset distribution. It 

records and averages the drawdowns ending below a threshold value (Ghalanos, 2013). 

The linear portfolio optimization problem to be solved is: 

 

                                                    min𝑤,𝑢,𝑣,𝑧 𝑣 +
1

𝑛𝑎
∑ 𝑧𝑖

𝑛
𝑖=1                                          (4.33)               

Subject to: 

 𝑧𝑖 − 𝑢𝑖 + 𝑣 ≥ 0, ∀𝑖∈ {1, … , 𝑛}                          (4.34) 

                                    ∑ 𝑤𝑗𝑟𝑖,𝑗 + 𝑢𝑖 − 𝑢𝑖−1 ≥ 0,   𝑢0 = 0, ∀𝑖∈ {1, … , 𝑛}𝑚
𝑗=1     (4.35) 

                𝑧𝑖 ≥ 0,  𝑢𝑖 ≥ 0, ∀𝑖∈ {1, … , 𝑛} 

                                                              ∑ 𝑤𝑗

𝑚

j=1
𝜇𝑗 =  μP ;                                       (4.36) 

                                          ∑ 𝑤𝑗 = 1𝑚
j=1 ;  𝑤𝑗 ≥ 0, ∀𝑗∈ {1, … , 𝑚}                               (4.37)  

 
 
Where the parameters 𝑧 and 𝑢 are auxiliary vectors. The parameter 𝑣 accounts for the 

CDaR at the 𝑎 quantile level. 

 

 

5. Summary 
 

 

 

This chapter explained the pair vine copula, risk measure and portfolio optimization 

models implemented in this thesis to examine the dependence risk profile and portfolio 

allocation features of the mining, energy and retail and manufacturing benchmark 



64 
 

portfolios under consideration. The pair vine copulas were acknowledged for their 

flexible modelling of dependence in high dimensions. The r-vines were recognized to be 

the largest set of vine structures, while the c-vines and d-vines were acknowledged to be 

special cases of them. The central role of the theorem of Sklar (1959) for the 

development of the pair vine copulas was indicated and the linear and nonlinear 

portfolio optimization model specifications with respect to the variance, Minimax, MAD, 

CVaR, CDaR were explained. The CVaR and CDaR were identified as threshold and 

downside risk measures, while the variance, Minimax, MAD were identified as risk 

measures from modern portfolio theory. 
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CHAPTER 5 

 

       DEPENDENCE STRUCTURE ESTIMATION: MINING 

PORTFOLIOS 

 

 This chapter consists of three sections: introduction, copula counting technique and 

dependence structure estimation 

 

The introduction section provides an overview of the gold, iron ore and nickel 

commodities that underlie the Australian mining stock portfolios modelled. The copula 

counting technique section briefly contextualizes in the relevant literature the “copula 

counting technique” proposed, states the stages of the technique and its usefulness. The 

dependence estimation section implements the copula counting technique to dissect, 

organize, analyse and interpret the mining portfolios’ dependence structure. 

 

5.1 Introduction 

 

In the last two decades Australia saw a sharp increase in the mining of precious and non-

precious metals such as gold, iron ore and nickel stemming from the Asian emerging 

economies’ increasing demand of those commodities (Bishop et al., 2013; Bingham & 

Perkins, 2012; Connolly & Orsmond, 2011; Gardner-Bond et al., 2008). In 2011 gold, 

iron ore and nickel production placed Australia as the third, first and fourth largest 

exporter worldwide, respectively (Bingham & Perkins, 2012; Gardner-Bond et al., 2008). 

During the 2008-2009 GFC gold prices, contrary to iron ore and nickel prices, rose to 

historical levels and investors saw gold as a “relatively secure defensive investment and 

storage of wealth” as the confidence in the financial stock markets eroded (BREE, 2014; 

Collins, 2013; DRET & BREE, 2013; Silvennoinen & Thorp, 2013; Bingham & Perkins, 
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2012; WGC, 2012; Connolly & Orsmond, 2011)
15

. Iron ore prices suffered a sharp 

decline (e.g., a 48% from US$138 per ton to US$71 per ton) in the period from Oct-2008 

to Dec-2009 and displayed a strong negative correlation with financial stock market 

uncertainty (Bingham & Perkins, 2012; Connolly & Osmond, 2011). Nickel prices, 

relative to iron ore prices, undergo a more severe price decline from May 2007 (e.g. at 

US$51,783 per metric ton) to the second half of 2008, when they reached their lowest 

price (e.g. US$10,000 per metric ton). Similarly to the iron-ore prices, nickel prices show 

to be negatively correlated to financial stock market uncertainty.  

This chapter’s objectives are to examine the dependence risk profile of the mining 

portfolios in specific market conditions; account for the portfolios’ dependence structure 

changes between pairs of period scenarios; and recognize the pair vine copula models that 

best capture the dependence structure of the portfolios. The copula counting technique is 

used for this purpose. 

 

5.2 The “copula counting technique” 

 

The fit of the pair vine copula models to a data set produces three outputs: the Kendall tau 

correlation matrix, representing the correlation between pairs of variables; the 

dependence structure matrix, where the vine copula models’ bivariate copula selection is 

contained; and the matrix of bivariate copula parameters (see Brechmann & Schepsmeier, 

2013). The copula counting technique focuses on the dissection, organization, analysis 

and interpretation of the dependence structure matrix. The reason for this is that the 

information about the assets’ dependence risk is contained in the dependence structure 

matrix. The copula counting technique consists of five stages: 1) counting, 2) recording, 

3) classification, 4) grouping and, 5) aggregate dependence reading. In the literature of 

pair vine copula modelling there have been studies (e.g. Allen et al., 2013; Dissmann et 

al., 2013; Czado et al., 2012; Heinen & Valdesogo, 2009) that most likely unintendedly 

have engaged in one or two of the bivariate copula counting technique’s stages. Hence, 

the technique could be seen as an extension of those earlier attempts aimed at examining 

                                                           
15

 The acronyms WGC, DRET and BREE used in this chaper stand for World Gold Council, Department of 

Resources, Energy and Tourism, and Bureau of Resources and Energy Economics. 
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the dependence structure and dependence risk profile of stock portfolios. In what follows 

each of the techniques’ stages is described in detail.  

1) Counting 

The bivariate copulas selected by the vine models and contained in the diagonal 

dependence structure matrices presented in the next section are counted to know how 

often a certain copula is selected for the estimation of the stocks interaction. Knowing the 

frequency of the selection is essential because aggregation is used to draw generalizations 

and inferences about the portfolios’ dependence risk profile. The aggregation of the 

bivariate copulas is crucial to the analysis because single bivariate copulas considered in 

isolation do not provide sufficient information about the dependence risk in high 

dimensional dependence structures.  

 

2) Recording:  

The counted bivariate copulas are organized in tables so that the patterns of dependence 

concentration are easily recognized. The recording of the frequency of bivariate copula 

selection also facilitates the identification of dependence concentration shifts across 

financial period scenarios or changes in the dependence structure across time. 
16

 

 

3) Classification: 

The bivariate copulas selected by the vine copula models are distinguished on the basis of 

the type of dependence modelling they perform. This process of differentiation needs not 

be recorded; however, it does require from the modeller to understand the dependence 

modelling properties of each bivariate copula so that they are adequately classified. The 

adequate classification of the bivariate copulas lays in turn a reliable ground to accurately 

interpret the dependence structure of financial variables and the dependence risk profile 

of stock portfolios. 

 

                                                           
16

 The term “dependence concentration” is based on and presupposes the aggregation of bivariate copulas 

selected by the vine copulas to model and estimate the dependence structure of the portfolios. It refers to 

the location in the joint distributions where pairs of variables experience higher correlation activity, as 

indicated by the specific type of bivariate copulas aggregated. 
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4) Grouping: 

The selected bivariate copulas are grouped (on the tables where they were recorded) 

according to the type of dependence modelling they perform and the location (e.g. centre, 

positive tail and negative tails) of the dependence they model. 

 

5) Aggregate dependence reading 

This stage deals with the identification of symmetric and asymmetric patterns of 

dependence and the recognition of the size and location of the dependence and its 

concentration in the joint distributions. The shifts of dependence concentration between 

pairs of period scenarios are also identified and interpreted and the vine copula models 

that best account for the dependence structure of the portfolios are acknowledged. The 

risk profile of the portfolios is explained in detail by looking at the actual behaviour of 

the underlying commodities and using standard economic theory. 

 

 

5.3 Dependence structure estimation 

 
 

This section deals with the implementation of the copula counting technique to the 

mining portfolios: gold, iron ore-nickel and mix-metals leptokurtic. The counting stage of 

the copula technique is only implemented to the full sample period scenario of each 

portfolio since the counting of the bivariate copulas for the rest of the period scenarios is 

summarized and recorded in subsequent tables as part of the recording stage of the copula 

counting technique. In addition to that, the counting, recording and classification stages 

are summarized in those tables together with the grouping stage. Only the Kendall tau 

and dependence structure matrices corresponding to one period scenario from each 

portfolio is displayed in this section. The remaining matrices have been placed in 

Appendix A. 

The bivariate copulas found in Table 5-1 belong to the Archimedean and elliptical 

families. The 90, 180 and 270 degrees rotated versions of them are also considered to 

account for distributional characteristics that the standard version of the Archimedean and 

elliptical cannot (Brechmann & Schepsmeier, 2013; Smith, 2013; Nikoloulopoulos et al., 
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2012; Chollete et al., 2009). The Gumbel, Joe and Clayton 180 copulas are designed to 

model greater concentration of asymmetric dependence at various locations of the 

positive tail. The Student-t copula models the dependence in the tails symmetrically.  All 

copulas listed in Table 5-1 are also used to model the dependence of the energy, retail and 

manufacturing portfolios in Chapters 6 and 7. Table 5-1 is omitted in those chapters to 

avoid repetition. 

Table 5-1: Set of the bivariate copula families employed by the vine copula models 

One Par Archimedean 2Par 90 Rotated 180 Rotated 270 Rotated 

Gaussian (1)                 Clayton-Gumbel(BB1) (7) Clayton                        (23) Clayton                          (13) Clayton                          (33) 

Student-t (2) Joe-Gumbel(BB6)        (8) Gumbel                        (24) Gumbel                          (14) Gumbel                          (34) 

Clayton   (3) Joe-Clayton(BB7)        (9) Joe                               (26) Joe                                  (16) Joe                                  (36) 

Gumbel   (4) Joe-Frank(BB8)          (10) Clayton-Gumbel(BB1) (7) Clayton-Gumbel (BB1) (17) Clayton-Gumbel(BB1)  (37) 

Frank      (5)  Joe-Gumbel(BB6)       (28) Joe-Gumbel(BB6)          (18) Joe-Gumbel(BB6)         (38) 

Joe          (6)  Joe-Clayton(BB7)       (29) Joe-Clayton(BB7)          (19) Joe-Clayton(BB7)          (39) 

  Joe-Frank(BB8)          (30) Joe-Frank(BB8)             (20) Joe-Frank(BB8)             (40) 

      Notes: the table lists the bivariate copulas employed by the c-vine, d-vine and r-vine copula models and their corresponding 
conventional numbers. The top row of the table classifies the bivariate copulas according to the number of parameters they 

use and their degree of rotation. Each of the bivariate copulas in the table is assigned one number to make the pair vine copula 

estimation of dependence less complex, while also simplifying the interpretation of the dependence structure. The number 1 
is used to represent the Gaussian bivariate copula, number 2 to represent the Student-t copula, and so on. These numbers 

appear in the diagonal dependence structure matrices of subsequent sections. 

 

Fitting a two-sample two-tailed t-test for the difference of means between two portfolios’ 

dependence concentrations enables one to identify the dependence risk differences 

between the mining portfolios. The two-sample two-tailed t-test fitted at the 95% 

confidence level is: 

                   𝑡 =
The difference between smaple means

Estimated standard error of difference between means
                               (5.1) 

        𝑡 =
𝑥̅1−𝑥̅2

𝑆𝑥̅1−𝑥̅2

                                                                                                     (5.2) 

where                                 𝑆𝑥̅1−𝑥̅2
=√

𝑠1
2

𝑛1
+

𝑠2
2

𝑛2
                                                                  (5.3) 

In Equation (5.3) the variables 𝑠1
2 and 𝑠2

2 represent the variances of the populations, and 

𝑛1 and 𝑛2  account for the number of observations in each population. The degrees of 

freedom are estimated as follows: 

𝑑𝑓 = (𝑛1 − 1) + (𝑛2 − 1)                                (5.4) 

The dependence concentrated at a certain location of stocks’ joint distribution is 

considered to be significantly larger or significantly smaller if the resulting t-test values 
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are larger or smaller than the critical values. If the resulting t-test values are neither larger 

nor smaller than the critical values, one portfolio’s dependence concentration is neither 

significantly larger nor significantly smaller than that of other portfolio. Also, while the 

concentration of dependence in the portfolios is measured by counting the frequency of 

bivariate copula selection, as indicated for example in Table 5-2 below, the t-statistics are 

estimated using the same frequency of bivariate copula selection at some location of the 

joint distributions between pairs of portfolios. Specifically, they are obtained using the 

difference between frequencies of a given copula selected by the vine models for 

different sector portfolios 
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5.3.1 Gold portfolio 

 

The dependence structure matrices of the gold mining portfolio displayed in Panel (a) of 

Figure 5-1 contain the information about the concentration of dependence in the centre 

and in the tails of the pairs of gold stocks. The Kendall tau matrix displayed in Panel (b), 

as a measure of correlation, represents the strength of association between pairs of stocks. 

The assets’ co-movements can more easily be interpreted using the copula counting 

technique.  

 
Panel (a) 

 

Panel (b) 

Figure 5-1: Dependence structure and Kendall tau matrices of the gold mining portfolio. Panel (a) displays the 

full sample period c-vine (on the left) and d-vine (on the right) dependence structure matrices of the portfolio. 

Panel (b) displays the c-vine Kendall tau correlation matrix of the portfolio based on the full sample period. 

Each of the diagonal matrices consists of 192 components. The numbers in the diagonal dependence structure 

matrices represent the bivariate copulas listed and numbered in Table 5-1. 
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Counting (gold portfolio):  

 
 
According to Figure 5-1 and Table 5-2 the bivariate copulas more frequently selected by 

the c-vine, d-vine and r-vine models to measure the dependence from the pairs of gold 

stocks’ joint distributions are: the Frank 54, 46 and 54 times for the c-vine, d-vine and r-

vine models, respectively; the Joe-Frank rotated 180 degrees 26, 28 and 19 times; the 

Student-t 20, 23 and 21 times; the Gaussian 17,17 and 15 times; the Gumbel 180 degrees 

rotated 16, 16 and 15 times; the Joe-Frank 15, 16 and 20 times; the Gumbel 15, 14 and 11 

times; the Clayton 6, 8 and 11 times; the Joe 180 degrees rotated 1, 8 and 8 times and; the 

Clayton 90 degrees rotated 4, 5 and 0 times. Table 5-2 summarizes the counting, 

recording, classification and grouping stages for all financial period scenarios of the gold 

mining portfolio. 

 

Recording, classification and grouping (gold portfolio): 

 

Table 5-2: C-vine, d-vine and r-vine models’ bivariate copula selection for the gold mining portfolio 

Bivariate  

Copula 
Full sample Pre-GFC GFC Post-GFC 

Vine model 
C 

vine 

D 

vine 

R 

vine 

C 

vine 

D 

vine 

R 

vine 

C 

vine 

D 

vine 

R 

vine 

C 

vine 

D 

vine 

R 

vine 

 Negative Tail  

Clayton 6 8 11 12 18 19 9 11 12 15 12 18 

Gumbel180 16 16 15 22 14 14 14 15 12 9 12 11 

Studen-t 20 23 21 14 14 17 16 19 21 19 17 19 

Joe 180 1 8 8 15 15 10 3 7 6 0 0 8 

Joe-Frank 180 26 28 19 0 0 8 8 8 11 0 0 6 

Clayton 270 0 0 0 5 8 0 0 0 0 5 7 0 

 Centre  

Frank 54 46 54 48 49 51 85 69 72 58 59 53 

Gaussian 17 17 15 27 25 22 17 21 18 30 26 28 

 Positive Tail  

Gumbel 15 14 11 13 4 10 0 0 3 9 11 9 

Clayton 180 0 0 6 11 18 14 8 6 13 10 11 9 

Clayton 90 4 5 0 4 4 0 0 0 0 7 8 0 

Studen-t 20 23 21 14 14 17 16 19 21 19 17 19 

Joe 0 0 3 0 0 3 0 0 5 0 0 6 

Joe-Frank 15 16 20 7 3 2 7 8 4 0 0 4 

          Notes: the top row of the table displays the four financial period scenarios under consideration and the type of pair vine 

copulas fitted. The first column lists the bivariate copulas most frequently selected by the vine copula models to measure 

the dependence between the pairs of stocks. Each number in the table represents the number of times a certain bivariate 
copula has been selected by a certain vine copula model. The Student-t copula has been grouped with the copulas for 

positive and negative tail dependence because it measures the dependence in both tails symmetrically. The letters C, D 

and R stand for canonical, drawable and regular. The dependence structure located in the centre, negative tail and 
positive tail of the portfolio has been dissected, organized, counted, classified and grouped. 
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Aggregate dependence reading (gold portfolio): 

In the modelling of the gold mining portfolio, the c-vine, d-vine and r-vine models select 

the Frank and Gaussian bivariate copulas the most under each of the four financial period 

scenarios to model the dependence of the gold stocks. This implies that most of the 

dependence in the gold mining portfolio is concentrated in the centre of the joint 

distributions. This information in turn indicates that the gold stocks have high 

dependence risk when the financial stock markets are stable and low dependence risk 

when they lack investors’ confidence. This specific type of dependence risk feature is 

found to be coherent with the price behaviour of gold during the 2008-2009 global 

financial crisis. Gold stocks during the GFC and part of the post-GFC period scenarios 

displayed an exceptionally strong negative correlation with financial stock market 

confidence. They reached historical levels and were perceived by investors as a 

“relatively secure defensive investment and storage of wealth” (Collins, 2013; Andrew, 

2012; Bingham, 2012). The high concentration of dependence the mining portfolio has in 

the centre also implies that its return values are liable to change more frequently when the 

stock markets are tranquil and less frequently when they are unstable. Gold stocks could 

therefore be used to hedge an investment position in other mining and energy assets that 

have high dependence risk during financial crisis periods (Baur & McDermott, 2010; 

Baur & Lucey, 2010). 

The Frank copula is observed to have its largest presence in the GFC, indicating that it is 

the most suitable copula to capture the nonlinear and linear dependence in the centre of 

the joint distribution. The Gaussian bivariate copula has its largest presence in the post-

GFC and pre-GFC period scenarios, suggesting that most of the dependence relationships 

during the GFC period are of nonlinear nature, while those during the pre-GFC and post-

GFC are mainly of linear type. In general, the level of complexity in the gold stocks’ 

interaction appears to decrease as the financial stock market confidence increases. The 

noticeable decrease of the copulas for the modelling of asymmetric dependence in the 

negative tail confirms the immunity of gold to financial crisis periods’ effects. With 

regard to model selection, the r-vine model is observed to most frequently select the 

Frank copula under most of the period scenarios considered. Consequently, the r-vine is 

discerned to be the model that best captures the multivariate dependence structure of the 

gold mining portfolio.  
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The significance testing of the gold mining portfolio’s relative comparison of dependence 

concentration displayed in Table 5-3 indicates that its overall dependence in the centre is 

at the 95% confidence level significantly larger than those of the iron ore-nickel, oil-gas 

and retail, and neither significantly larger nor significantly smaller than those of the coal-

uranium, mix-metals and manufacturing. In the negative tail it has significantly smaller 

dependence concentration than the iron ore-nickel coal-uranium, oil-gas and mix-metals 

portfolios. The gold stocks are therefore significantly less dependence risky than the iron 

ore and nickel stocks during crisis periods and, as a consequence, could be used to hedge 

and diversify an investment position with high concentration in the iron ore and nickel 

sectors. 

The asymmetric dependence concentration in the negative tail of the gold mining 

portfolio is significantly smaller than those of the iron ore-nickel, coal-uranium, oil-gas 

and mix-metals. This information is an indication of the gold stocks’ high propensity to 

yield positively skewed returns in times of financial turbulence and negatively skewed 

returns when the stock markets are tranquil.  These findings are consistent with the 

behaviour of gold prices during 2008-2009 global financial crisis, with gold price 

increases being followed by subsequent price increases. On the other hand, once gold 

prices reached their peak in the post-GFC period (e.g. around the third quarter of 2011), a 

negatively skewed behaviour is observed to dominate them (Baur & McDermott, 2010; 

Baur & Lucey, 2010). The comparison of the gold mining portfolio’s symmetric 

dependence concentration indicates that its dependence concentration is significantly 

larger than those of the iron ore-nickel, coal-uranium and mix-metals, and significantly 

smaller than those of the retail and manufacturing benchmark portfolios. Figure 5-2 

depicts the significance testing of symmetric dependence concentration. 
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Table 5-3: Significance testing of the gold mining portfolio’s relative comparison of dependence 

Significance testing of 

dependence 

Iron ore- 

nickel 

Coal-

uranium Oil-gas Mix-metals Retail Manufacturing 

 

 

Overall dependence (centre) 

 

Frank T-test  6.44 1.07 3.40 0.84 3.02 0.25 

 
Statistical significance 

 

Sig. larger Neither Sig. larger Neither Sig. larger Neither 

 

 
Overall dependence (negative tail) 

 
Clayton T-test -4.59 -4.33 -2.43 -2.18 -0.84 -1.08 

Gumbel 180 T-test -4.16 -0.11 -2.49 1.73 2.87 3.59 

Joe 180 T-test -4.26 -2.28 -0.69 -1.65 2.00 -0.60 
Joe-Frank 180 T-test -0.78 -0.93 -1.42 -2.08 1.35 1.04 

 

Statistical significance 

 

Sig. smaller Sig. smaller Sig. smaller Sig. smaller Neither Neither 

 

 

Overall dependence (positive tail) 
 

Gumbel T-test 3.55 2.15 1.20 2.39 -0.05 1.07 

Clayton 180 T-test 0.80 1.16 0.52 -0.84 -3.14 -2.36 

Joe T-test -0.81 -0.17 -4.40 -1.19 -4.85 -3.00 

Joe-Frank T-test 3.16 1.52 3.54 -1.44 1.86 1.46 
 

Statistical significance 

 

Sig. larger Neither Neither Neither Sig. smaller Sig. smaller 

 

 

Symmetric dependence (tails) 

 
Student-t T-test -0.11 5.26 1.11 6.54 -2.56 0.10 
 

Statistical significance 

 

Neither Sig. larger Neither Sig. larger Sig. smaller Neither 

 

 
Asymmetric dependence (negative tail) 

 
Clayton T-test -4.59 -4.33 -2.43 -2.18 -0.84 -1.08 

Gumbel 180 T-test -4.16 -0.11 -2.49 1.73 2.87 3.59 
 

Statistical significance 

 

Sig. smaller Sig. smaller Sig. smaller Sig. smaller Sig. larger Sig. larger 

 

 

Asymmetric dependence (positive tail) 

 

Gumbel T-test 3.55 2.15 1.20 2.39 -0.05 1.07 
Clayton 180 T-test 0.80 1.16 0.52 -0.84 -3.14 -2.36 

 

Statistical significance 
 

Sig. larger Sig. larger Neither Sig. larger Sig. smaller Sig. smaller 

Critical value= 𝑡(0.05,22)=±2.07  
Notes: The table displays the significance testing of the gold mining portfolio’s relative comparison of dependence concentration. 
The top row displays the names of the portfolios against which the gold mining portfolio is compared with. The first column from 

left to right shows the copulas to which the t-test is implemented and the statistical significance category. The rest of the columns 

display the resulting t-test values, the type of dependence being tested and its location, and the significance testing results. The 
bottom row states the critical value used to determine the existence or not existence of statistical significance. The dependence 

concentration of a portfolio could be significantly smaller or significantly larger than that of other portfolio or neither. When 4 

copulas are used to determine the statistical significance it is required that the t-values of at least 2 copulas are larger or smaller 
than the critical value. If only two copulas are used to determine statistical significance, the t-value of at least one copula is 

required to be larger or smaller than the critical value. 
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Figure 5-2: Gold mining portfolio’s symmetric dependence concentration in the tails. 

The estimate of symmetric dependence is based on an average of all four period 

scenarios. 
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5.3.2 Iron ore-nickel portfolio 

 

The diagonal matrices of the iron ore-nickel mining portfolio displayed in Panel (a) of 

Figure 5-3 differ from those of the gold mining portfolio (see Panel (a) from Figure 5-1) 

in the specific type of numbers they contain. Those from Figure 5-3 have the bivariate 

copula families 3 and 14 in more occasions. These numbers represent the Clayton and 

180 rotated Gumbel copulas that model greater concentration of dependence in the 

negative tail. In the diagonal dependence structure matrices of the iron ore mining 

portfolio the bivariate copula family number 5 appears more frequently than any other 

copula. That number represents the Frank copula, which is designed to capture greater 

concentration of dependence in the centre of the joint distributions.  

 
Panel (a) 

 
Panel (b) 

Figure 5-3: Dependence structure and Kendall tau matrices of the iron ore-nickel mining portfolio. Panel (a) 

displays the full sample period c-vine (on the left) and d-vine (on the right) dependence structure matrices of the 

portfolio. Panel (b) displays the c-vine Kendall tau correlation matrix of the portfolio based on the full sample 

period. Each diagonal matrix consists of 192 components. The numbers in the diagonal dependence structure 

matrices of Panel (a) represent the bivariate copulas listed and numbered in Table 5-1. 
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Counting (Iron ore-nickel portfolio):  

According to Figure 5-3 and Table 5-6 for the iron ore-nickel mining portfolio, the 

bivariate copulas more frequently selected by the c-vine, d-vine and r-vine models to 

measure the dependence in the joint distributions are: the Frank 22, 33 and 17 times for 

the c-vine, d-vine and r-vine models, respectively; the Joe-Frank 180 degrees rotated 32, 

34 and 31 times; the student-t  36, 35 and 31times; the Gaussian 6, 13 and 11 times; the 

Gumbel rotated 180 degrees 16, 15 and 23 times; the Clayton 18, 17 and 23 times; Joe 

180 degrees rotated 13, 12 and 9 times and; the Clayton 180 degrees rotated 0,0 and 13 

times. Table 5-4 summarizes the counting, recording, classification and grouping stages 

of the bivariate copula counting technique. 

 

Recording, classification and grouping (Iron ore-nickel portfolio): 

Table 5-4: C-vine, d-vine and r-vine models’ bivariate copula selection for the iron ore-nickel portfolio 

Bivariate  

Copula 
Full sample Pre-GFC GFC Post-GFC 

Vine model 
C 

vine 

D 

vine 

R 

vine 

C 

vine 

D 

vine 

R 

vine 

C 

vine 

D 

vine 

R 

vine 

C 

vine 

D 

vine 

R 

vine 

 Negative Tail  

Clayton 18 17 23 24 22 20 30 22 30 19 14 14 

Gumbel 180 16 15 23 23 17 20 27 28 30 22 20 14 

Studen-t 36 35 31 10 11 12 8 11 10 20 16 24 

Joe 180 13 12 9 22 22 23 13 10 14 19 9 19 

Joe-Frank 180 32 34 31 0 0 6 12 8 3 7 13 9 

Clayton 270 0 0 3 0 0 6 0 0 5 0 0 4 

 Centre  

Frank 22 33 17 32 38 37 34 36 30 37 47 37 

Gaussian 6 13 11 15 16 16 16 25 23 14 25 16 

 Positive Tail  

Gumbel 0 0 9 0 0 6 0 0 6 0 0 5 

Clayton 180 0 0 13 17 13 16 0 0 11 0 0 12 

Clayton 90 0 0 2 0 0 5 0 0 4 0 0 7 

Studen-t 36 35 31 10 11 12 8 11 10 20 16 24 

Joe 0 0 5 0 0 11 0 0 8 0 0 5 

Joe-Frank 0 0 8 0 0 0 0 0 3 0 0 2 

Notes: the top row of the table displays the four financial period scenarios under consideration and the type of pair vine 
copulas fitted. The first column lists the bivariate copulas most frequently selected by the vine copula models to measure 

the dependence between the pairs of stocks. Each number in the table represents the number of times a certain bivariate 

copula has been selected by a certain vine copula model. The Student-t copula has been grouped with the copulas for 
positive and negative tail dependence because it measures the dependence in both tails symmetrically. The letters C, D 

and R stand for canonical, drawable and regular. The dependence structure located in the centre, negative tail and positive 

tail of the portfolio has been dissected, organized, counted, classified and grouped. 
 

 

 
 

 
 

 



79 
 

Aggregate dependence reading (Iron ore-nickel portfolio): 

In the iron ore-nickel mining portfolio, the c-vine, d-vine and r-vine models also select 

the Frank copula the most under each of the four financial period scenarios considered to 

model the dependence from the joint distributions. Nevertheless, despite the Frank copula 

being the most predominant in each of the period scenarios, most of the dependence in 

the iron ore-nickel mining portfolio is located in the negative tail. This is verified by 

aggregating the Clayton, 180 Gumbel and 180 Joe copulas. The dependence 

concentration in the negative tail of the portfolio is clearly larger than that in the centre, 

implying that the portfolio has high dependence risk in non-tranquil stock market 

conditions and low dependence risk when the financial stock markets behave smoothly.  

A look into the 2008-2009 GFC shows that the price of the iron ore and nickel 

commodities did experience a severe decline during the crisis period. Iron ore prices 

specifically fell 48 per cent (from US$138 per tonne to US$71 per tonne) from Oct-2008 

to Dec-2009 (Bingham & Perkins, 2012). Nickel prices relative to iron ore prices undergo 

a more drastic decline from May 2007 (e.g. at US$51,783 per metric tonne) to the second 

half of 2008 (e.g. US$10,000 per metric ton) (Bingham, 2012). Nickel prices, moreover, 

appear to react more rapidly to changes in financial stock market confidence. For 

instance, while iron ore prices were still on the rise from the middle of 2006 to the end of 

2007, nickel prices were already in decline starting from the end of 2006 to the fourth 

quarter of 2008. A possible reason for this is that nickel prices do not seem to have the 

same strength of positive association the iron ore prices have with steel demand. Steel-

based products are perhaps more indispensable than nickel-based products during crisis 

periods (Bingham, 2012). 

The high concentration of dependence the iron ore-nickel mining portfolio has in the 

negative tail also makes its returns values liable to change less frequently in tranquil 

stock market conditions, while having a high probability of being extreme in those 

market conditions. As compared to the gold mining portfolio, the iron ore-nickel mining 

portfolio is more dependence risky in crisis periods due to the high concentration of 

dependence it has in the negative tail. The reason for this is that greater losses can be 

incurred in times of financial turbulence, relative to tranquil periods. The decrease of the 

Frank copula and the increase of the Clayton and 180 Gumbel copulas during the GFC 

period scenario represents a shift of the dependence structure from the pre-GFC to the 

GFC (refer to Table 5-4). This shift of dependence concentration indicates that the iron 
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ore and nickel stocks tend to correlate more strongly when the financial stock markets 

lack confidence, and are markedly riskier than the gold stocks in those market conditions 

(Connolly & Orsmond, 2011). 

 

Table 5-5: Significance testing of the iron ore-nickel portfolio’s relative comparison of 

dependence 

Significance testing of 

dependence 
Gold 

Coal-

uranium Oil-gas Mix-metals Retail Manufacturing 

 

 

Overall dependence (centre) 

 

Frank T-test  -6.44 -6.08 -3.68 -7.12 -5.42 -7.26 

 
Statistical significance 

 

Sig. smaller Sig. smaller Sig. smaller Sig. smaller Sig. smaller Sig. smaller 

 

 

Overall dependence (negative tail) 

 
Clayton T-test 4.59 0.66 0.88 2.05 2.57 3.48 

Gumbel 180 T-test 4.16 3.59 1.83 4.86 6.52 6.89 

Joe 180 T-test 4.26 1.59 2.71 3.19 7.74 3.28 
Joe-Frank 180 T-test 0.78 0.11 -0.39 -1.18 2.07 1.78 

 

Statistical significance 
 

Sig. larger Neither Neither Sig. larger Sig. larger Sig. larger 

 

 

Overall dependence (positive tail) 
 

Gumbel T-test -3.55 -2.19 -4.08 -1.44 -5.74 -3.63 

Clayton 180 T-test -0.80 0.32 -0.32 -1.57 -3.39 -2.74 

Joe T-test 0.81 0.63 -2.21 0.00 -2.54 -1.29 

Joe-Frank T-test -3.16 -2.37 0.57 -4.16 -3.08 -2.61 
 

Statistical significance 

 

Sig. smaller Neither Sig. smaller Neither Sig. smaller Sig. smaller 

 

 

Symmetric dependence (tails) 

 
Student-t T-test 0.11 2.39 0.64 2.50 -1.84 0.16 

 

Statistical significance 

 

Neither Sig. larger Neither Sig. larger Neither Neither 

 

 
Asymmetric dependence (negative tail) 

 
Clayton T-test 4.59 0.66 0.88 2.05 2.57 3.48 

Gumbel 180 T-test 4.16 3.59 1.83 4.86 6.52 6.89 
 

Statistical significance 

 

Sig. larger Sig. larger Neither Sig. larger Sig. larger Sig. larger 

 

 

Asymmetric dependence (positive tail) 

 

Gumbel T-test -3.55 -2.19 -4.08 -1.44 -5.74 -3.63 
Clayton 180 T-test -0.80 0.32 -0.32 -1.57 -3.39 -2.74 

 

Statistical significance 
 

Sig. smaller Sig. smaller Sig. smaller Neither Sig. smaller Sig. smaller 

Critical value= 𝑡(0.05,22)=±2.07  
Notes: The table displays the significance testing of the iron ore-nickel mining portfolio’s relative comparison of dependence 
concentration. The top row displays the names of the portfolios against which the iron ore-nickel mining portfolio is compared 

with. The first column from left to right shows the copulas to which the t-test is implemented and the statistical significance 

category. The rest of the columns display the resulting t-test values, the type of dependence being tested and its location, and the 
significance testing results. The bottom row states the critical value used to determine the existence or not existence of statistical 

significance. The dependence concentration of a portfolio could be significantly smaller or significantly larger than that of other 

portfolio or neither. When 4 copulas are used to determine the statistical significance it is required that the t-values of at least 2 
copulas are larger or smaller than the critical value. If only two copulas are used to determine statistical significance the t-value of 

at least one copula is required to be larger or smaller than the critical value. 
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Table 5-4 also indicates that from the GFC to the post-GFC period scenarios the 

dependence structure shifts from the negative tail to the centre, indicating post-GFC 

increases in financial stock market confidence, greater financial stability in the stock 

markets and a higher propensity of the iron ore and nickel stocks to yield positively 

skewed returns. The gold stocks during the post-GFC period scenario contrary to the iron 

ore and nickel stocks are characterized for having a high propensity to yield negatively 

skewed returns. Research conducted by Baur and McDermott (2010) and Baur and Lucey 

(2010) indicates that gold prices did display a negatively skewed behaviour from the 

middle of the post-GFC onwards. With respect to model selection, the c-vine is observed 

to select under each of the four financial period scenarios considered the copulas for 

negative tail dependence modelling more frequently than the r-vine and d-vine do. As a 

result, the c-vine is acknowledged for best capturing the dependence structure of the iron 

ore and nickel stocks.  

 

 

 

 

 

 

 

                                                                                                                         

 

 

 

 

 

 

Figure 5-4: Iron ore-nickel portfolio’s symmetric dependence concentration in the 

tails. The estimate of symmetric dependence is based on an average of all four period 

scenarios. 

 

 

Gold 

 

 

Coal-

uranium 

Iron ore-nickel’s 

concentration of 

symmetric 

dependence in 

the tails. 

 

 

Manufa

cturing 

 

Retail 

 

  Oil-gas 
Mix 

Metals 

 

 Sig. larger 
    Neithe 

              Sig. larger 

  Neither 

     Neither  
    Neither 



82 
 

The significance testing of the iron ore-nickel mining portfolio’s relative comparison of 

dependence concentration displayed in Table 5-5 indicates that its overall dependence 

concentration in the negative tail is at the 95% confidence level significantly larger than 

those of the gold, mix-metals, retail and manufacturing. This information confirms the 

higher dependence riskiness of the iron ore and nickel stocks relative to the gold, retail 

and manufacturing stocks in non-tranquil periods. With respect to the oil-gas energy 

portfolio, it has neither significantly larger nor significantly smaller dependence 

concentration in the negative tail. The same applies to its asymmetric dependence in the 

negative tail. However, in the centre and positive tail it has significantly smaller 

dependence concentration relative to the oil-gas energy portfolio. As a consequence, it is 

more dependence risky than the oil-gas energy portfolio. Mining portfolio investors could 

therefore use retail and manufacturing stocks to diversify an investment position heavily 

concentrated in the iron ore and nickel sectors, in tranquil stock market conditions. 

The iron ore-nickel mining portfolio’s asymmetric dependence concentration in the 

negative tail is, with exception of that of the oil-gas, significantly larger than that of any 

other portfolio. This information confirms the high propensity of the iron ore and nickel 

stocks to yield negatively skewed returns in times of financial turbulence. A look into the 

2008-2009 GFC shows that the price of the iron ore and nickel commodities did behave 

according to a negatively skewed function. In the period 2008-2009 for instance, iron ore 

prices decline 48 per cent of their value, from US$138 per tonne to US$71 per tonne 

(Bingham & Perkins, 2012). The iron ore-nickel mining portfolio’s symmetric 

dependence concentration is significantly larger than those of the mix-metals and coal-

uranium, and neither significantly larger nor significantly smaller than those of the rest of 

the portfolios. 
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5.3.3 Mix-metals leptokurtic portfolio 

 

The diagonal dependence structure matrices of the mix-metals leptokurtic mining 

portfolio displayed in Figure 5-5 differ from those of the iron ore-nickel mining portfolio 

in the number of times the copulas 5 and 3 appear. In the mix-metals leptokurtic mining 

portfolio specifically the copula number 5 appears in more occasions, indicating that 

relative to the iron ore-nickel mining portfolio is less dependence risky when the financial 

stock markets lack confidence. As compared to the gold mining portfolio, the copula 

number 5 appears in fewer occasions, indicating that is still safer to invest in the gold 

mining portfolio as opposed to the mix-metals leptokurtic mining portfolio during crisis 

periods. 

 
Panel (a) 

 
Panel (b) 

Figure 5-5: Dependence structure and Kendall tau matrices of the mix-metals leptokurtic mining portfolio. 

Panel (a) displays the full sample period c-vine (on the left) and d-vine (on the right) dependence structure 

matrices of the portfolio. Panel (b) displays the c-vine Kendall tau correlation matrix of the portfolio based on 

the full sample period. Each diagonal matrix consists of 192 components. The numbers in the diagonal 

dependence structure matrices of Panel (a) represent the bivariate copulas listed and numbered in Table 5-1. 



84 
 

Counting (mix-metals leptokurtic portfolio):  

According to Figure 5-5 and Table 5-6 for the mix-metals leptokurtic portfolio, the 

bivariate copulas more frequently selected by the c-vine, d-vine and r-vine models to 

measure the dependence in the joint distributions are: the Frank 51, 59 and 73 times for c-

vine, d-vine and r-vine models respectively; the Joe-Frank 180 degrees rotated 48, 35 and 

30 times; the Joe-Frank 33, 22 and 17 times; the Gaussian 13, 16 and 10 times; the 

Clayton 5, 15 and 13 times; the Student-t 11, 9 and 15 times; the Gumbel 180 degrees 

rotated 5, 11 and 7 times; the Clayton 180 degrees rotated 7,7 and 9 times each; the Joe 

180 degrees rotated 7, 5 and 2 times and; the Gumbel 3, 4 and 6 times. Table 5-6 

summarizes the counting, recording, classification and grouping stages of the bivariate 

copula counting technique.  

 

Recording, classification and grouping (mix-metals leptokurtic portfolio): 

 

Table 5-6: C-vine, d-vine and r-vine models’ bivariate copula selection for the mix-metals leptokurtic portfolio 

Bivariate  

Copula 
Full sample Pre-GFC GFC Post-GFC 

Vine model 
C 

vine 

D 

vine 

R 

vine 

C 

vine 

D 

vine 

R 

vine 

C 

vine 

D 

vine 

R 

vine 

C 

vine 

D 

vine 

R 

vine 

 Negative Tail  

Clayton 5 15 13 24 18 19 13 17 13 19 19 26 

Gumbel 180 5 11 7 8 15 8 20 18 18 7 12 5 

Studen-t 11 9 15 6 11 11 14 13 15 11 8 11 

Joe 180 7 5 2 12 11 12 12 10 15 14 7 9 

Joe-Frank 180 48 35 30 8 13 9 15 9 10 17 16 14 

Clayton 270 0 0 2 0 0 6 6 5 10 8 6 14 

 Centre  

Frank 51 59 73 67 49 68 54 58 51 64 66 61 

Gaussian 13 16 10 20 20 19 15 19 21 20 19 20 

 Positive Tail  

Gumbel 3 4 6 10 8 5 0 0 7 0 0 6 

Clayton 180 7 7 9 10 14 14 10 10 5 11 13 13 

Clayton 90 0 0 3 0 0 6 5 9 4 0 0 7 

Studen-t 11 9 15 6 11 11 14 13 15 11 8 11 

Joe 0 0 3 4 6 3 0 0 2 5 3 3 

Joe-Frank 33 22 17 6 7 5 12 8 13 5 6 4 

Notes: the top row of the table displays the four financial period scenarios under consideration and the type of pair vine 

copulas fitted. The first column lists the bivariate copulas most frequently selected by the vine copula models to measure 

the dependence between the pairs of stocks. Each number in the table represents the number of times a certain bivariate 
copula has been selected by a certain vine copula model. The Student-t copula has been grouped with the copulas for 

positive and negative tail dependence because it measures the dependence in both tails symmetrically. The letters C, D and 

R stand for canonical, drawable and regular. The dependence structure located in the centre, negative tail and positive tail 
of the portfolio has been dissected, organized, counted, classified and grouped. 
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Aggregate dependence reading (mix-metals leptokurtic portfolio): 

In the mix-metals leptokurtic mining portfolio, the c-vine, d-vine and r-vine models also 

select the Frank copula the most under each of the four financial period scenarios 

considered to capture the dependence from the pair of stocks’ joint distributions. As a 

result, most of the dependence in the portfolio is concentrated in the centre. This implies 

that the stocks in the mix-metals leptokurtic mining portfolio have high dependence risk 

in tranquil stock market conditions and low dependence risk in non-tranquil stock market 

conditions. Another implication stemming from the large concentration of dependence 

the mix-metals leptokurtic mining portfolio has in the centre is that its return values are 

liable to change more frequently in times of financial turbulence and have a low 

probability of being extreme in those market conditions. Given the above-mentioned 

dependence risk profile of the mix-metals leptokurtic mining portfolio, some of its stocks 

could be used to hedge, diversify and minimize the risk of an investment position in the 

iron ore and nickel sectors during crisis periods. As compared to the gold mining 

portfolio, the mix-metals leptokurtic mining portfolio is less preferable in terms of 

dependence risk during crisis periods. 

The mix-metals leptokurtic mining portfolio’s dependence structure located in the centre 

and positive tail of the joint distributions changes significantly in size from the pre-GFC 

to the GFC period scenarios. Specifically, the number of copulas for the modelling of 

asymmetric dependence in the negative tail increases significantly, indicating that the 

dependence during the GFC period is of asymmetric type. It follows that stocks with 

higher concentration of dependence in the negative tail tend to correlate more strongly 

during the GFC period scenario. The c-vine copula model, relative to the r-vine and d-

vine, is observed to select the Frank copula more frequently under each of the four 

financial period scenarios considered. As a consequence, the c-vine is the model that best 

captures the multivariate dependence structure of the mix-metals leptokurtic mining 

portfolio. 

The significance testing of the mix-metals leptokurtic mining portfolio’s relative 

comparison of dependence concentration displayed in Table 5-7 indicates that its overall 

dependence concentration in the centre is at the 95% confidence level significantly larger 

than those of the iron ore-nickel, oil-gas and retail. In the negative tail it has it 

significantly smaller than that of the iron ore-nickel, and significantly larger than those of 

the gold mining and retail benchmark portfolios. The portfolios’ asymmetric dependence 
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in the negative tail is significantly larger than those of the gold mining and retail 

benchmark portfolios. 

 

Table 5-7: Significance testing of the mix-metals portfolio’s relative comparison of dependence 

Significance testing of 

dependence 
Gold 

Iron ore-

nickel 
Coal-

uranium Oil-gas Retail Manufacturing 

 

 

Overall dependence (centre) 

 

Frank T-test  -0.84 7.12 0.35 3.23 2.84 -0.69 

 

Statistical significance 
 

Neither Sig. larger Neither Sig. larger Sig. larger Neither 

 

 

Overall dependence (negative tail) 

 
Clayton T-test 2.18 -2.05 -1.57 -1.48 0.44 1.18 

Gumbel 180 T-test -1.73 -4.86 -1.62 -3.52 0.00 0.79 

Joe 180 T-test 1.65 -3.19 -1.07 0.50 5.27 0.79 
Joe-Frank 180 T-test 2.08 1.18 1.61 1.02 3.18 3.30 

 

Statistical significance 
 

Sig. larger Sig. smaller Neither Neither Sig. larger Neither 

 

 

Overall dependence (positive tail) 

 

Gumbel T-test -2.39 1.44 -0.55 -2.15 -3.81 -1.96 

Clayton 180 T-test 0.84 1.57 1.98 1.37 -3.12 -2.21 
Joe T-test 1.19 0.00 0.86 -3.34 -3.82 -1.91 

Joe-Frank T-test 1.44 4.16 2.85 4.45 3.17 2.82 
 

Statistical significance 

 

Neither Neither Neither Sig. smaller Sig. smaller Neither 

 

 
Symmetric dependence (tails) 

 
Student-t T-test -6.54 -2.50 -0.06 -3.63 -4.83 -4.29 

 
Statistical significance 

 

Sig. smaller Sig. smaller Neither Sig. smaller Sig. smaller Sig. smaller 

 

 
Asymmetric dependence (negative tail) 

 
Clayton T-test 2.18 -2.05 -1.57 -1.48 0.44 1.18 

Gumbel 180 T-test -1.73 -4.86 -1.62 -3.52 0.00 0.79 

 
Statistical significance 

 

Sig. larger Sig. smaller Neither Sig. smaller Sig. larger Neither  

 
 

Asymmetric dependence (positive tail) 

 

Gumbel T-test -2.39 1.44 -0.55 -2.15 -3.81 -1.96 
Clayton 180 T-test 0.84 1.57 1.98 1.37 -3.12 -2.21 

 

Statistical significance 
 

Sig. smaller Neither Neither Sig. smaller Sig. smaller Sig. smaller 

Critical value= 𝑡(0.05,22)=±2.07  
Notes: The table displays the significance testing of the mix-metals leptokurtic mining portfolio’s relative comparison of 

dependence concentration. The top row displays the names of the portfolios against which the mix-metals leptokurtic mining  
portfolio is compared with. The first column from left to right shows the copulas to which the t-test is implemented and the 

statistical significance category. The rest of the columns display the resulting t-test values, the type of dependence being tested 

and its location, and the significance testing results. The bottom row shows the critical value used to determine the existence or 
not existence of statistical significance. The dependence concentration of a portfolio could be significantly smaller or significantly 

larger than that of other portfolio or neither. When 4 copulas are used to determine the statistical significance it is required that the 

t-values of at least 2 copulas are larger or smaller than the critical value. If only two copulas are used to determine statistical 
significance, the t-value of at least one copula is required to be larger or smaller than the critical value. 
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Figure 5-6: Mix-metals leptokurtic mining portfolio’s symmetric dependence 

concentration in the tails. The estimate of symmetric dependence is based on an 

average of all four period scenarios. 
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5.4 Discussion of results 

The identification of the gold mining portfolio as having low dependence risk in times of 

financial turbulence is consistent with the results from previous studies looking at the 

price behaviour of gold in those market conditions. For instance, Morales and Andreosso-

O’Callaghan (2011) acknowledge gold markets for not being affected by crisis periods; 

Dee et al. (2013) point out the low risk aspect of gold in the long run when investing in 

stocks; Baur and Lucey (2010) recognize the short-period safe haven features of gold in 

extreme market conditions; Courdert and Raymond (2010) in their modelling of stocks 

from the US and the G7 also acknowledge the safe heaven characteristics of gold during 

bear markets; and Faff and Chan (1998) identify a relationship between the performance 

of Australian gold stocks and gold prices. 

The suitability of the r-vines to best account for the multivariate dependence structure of 

the gold stocks could imply, along with Dissmann (2010) and Dissmann et al. (2013), 

that their multivariate dependence is more complex relative to the dependence structure 

of the iron ore-nickel and mix-metals leptokurtic mining portfolios. It could also mean 

that the gold mining portfolio does not have a stock that has high correlation values with 

the rest of the stocks in the portfolio. The higher dependence risk the mix-metals 

leptokurtic mining portfolio has during crisis periods relative to the gold mining 

portfolio is most likely due to the wide variety of stocks it consists of. Specifically, 

some of its stocks belong to the iron ore and nickel sectors, identified in this chapter as 

significantly more dependence risky than the gold stocks. With respect to the adequacy 

of the c-vines to best account for the multivariate dependence structure of the iron ore-

nickel and mix-metals leptokurtic mining portfolios, the presence of a stock in each of 

the portfolios heavily influencing the interaction between stocks appears to be the 

reason why. In this respect, while the c-vine identifies BHP BILLITON (BHPX) as the 

rootstock of the iron ore-nickel mining portfolio, RIO TINTO (RIOX) is recognized as the 

rootstock in the mix-metals leptokurtic mining portfolio. Other studies where the c-

vines have been found to adequately model the multivariate interaction of financial 

assets are Czado et al. (2012), Chollete et al. (2009) and Heinen and Valdesogo (2009).  

The modelling of gold stocks conducted in this chapter, relative to modelling of gold 

stocks undertaken by Baur and Lucey (2010), Dee et al. (2013), Courdert and Raymond 

(2010) and Morales and Andreosso-O’Callaghan (2011) has the distinctive feature of 
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identifying the stocks’ symmetric and asymmetric dependence risk characteristics in 

specific market conditions, as well as their negatively and positively skewed price and 

return behaviour n both, tranquil and non-tranquil periods. The dependence risk analysis 

of the iron ore and nickel stocks undertaken in this chapter could be the first that 

thoroughly examines the stock portfolio’s underlying sector’s dependence risk behaviour 

in stressed and non-stressed stock market conditions, within an Australian macro 

economic context. This chapter’s modelling of dependence, as compared to the 

dependence risk modelling of Low et al. (2013), Allen et al. (2013), Arreola and Powell 

(2013) and Brechmann et al. (2014) has the comparative advantage of scrutinizing the 

dependence concentration at various locations in the joint distribution. The difference lies 

in this thesis’ use of the copula counting technique to interpret the portfolios’ dependence 

structure and dependence risk profile.  

 

5.5 Summary 

 

This chapter implemented c-vines, d-vines and r-vines to estimate the dependence 

structure of the gold, iron ore-nickel and mix-metals leptokurtic mining portfolios. The 

implementation of the copula counting technique indicated that the gold mining portfolio 

has most of the dependence concentrated in the centre of the joint distributions, due to the 

predominance of the Frank copula across period scenarios. This information was 

interpreted as the gold stocks having low dependence risk in times of financial turbulence 

and high dependence risk in non-crisis periods. The dependence risk dynamics of gold 

stocks were confirmed by the price behaviour of gold during the 2008-2009 global 

financial crisis. The mix-metals portfolio was also found to have most of the dependence 

concentrated in the centre of the joint distributions, making it less dependence risky than 

the iron ore-nickel during crisis periods and more dependence risky than the gold mining 

portfolio in similar market conditions. 

The iron ore-nickel mining portfolio, despite the large presence of the Frank copula in 

each of the four financial period scenarios considered, was found to have most of the 

dependence concentrated in the negative tail. This dependence risk feature makes it high 

dependence risky during crisis periods and low dependence risky in tranquil stock market 

conditions. A look into the 2008-2009 GFC confirmed the dependence risk dynamics of 
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the mix-metals leptokurtic portfolio. The significance testing of the portfolios’ relative 

comparison of dependence concentration indicated that the gold mining portfolio is 

significantly less dependence risky than the iron ore-nickel and mix-metals in times of 

financial turbulence characterized by low confidence in the financial stock markets. In 

similar market conditions the iron ore-nickel mining portfolio is found to be significantly 

more dependence risky than the gold and mix-metals mining portfolios. The r-vine was 

found to best account for the multivariate dependence and dependence risk dynamics of 

the gold mining portfolio, while the c-vine was identified to best capture the dependence 

structure of the iron ore-nickel and mix-metals leptokurtic mining portfolios. 
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CHAPTER 6 

 

DEPENDENCE STRUCTURE ESTIMATION: ENERGY 

PORTFOLIOS 

 
 

This chapter consists of two sections: introduction and dependence structure estimation 

 

The introduction section provides an overview of the coal, uranium, oil and gas 

commodities that underlie the Australian energy stock portfolios modelled. The 

dependence estimation section deals with the dissection, analysis and interpretation of the 

energy portfolios’ dependence structure and dependence risk profile, using the copula 

counting technique explained in Chapter 5. 

 

6.1 Introduction 

 

According to the Department of Industry, Geoscience Australia and The Buerau of 

Resources and Energy Economics in 2014 Australia was the ninth largest producer of 

energy worldwide, accounting for 2.4 per cent of the world’s energy. In the period 2011-

2012 it exported roughly 80 per cent of the energy it produced, with coal, uranium and 

gas accounting for 60, 20 and 13 per cent of the local energy production, respectively. 

Besides, roughly 64 and 20 per cent of the electricity produced within the country 

stemmed from the burning of coal and gas, respectively. Around the same time period, 

Australia occupied the third place in uranium production worldwide, contributing with 11 

per cent of total global production (BREE, 2014).
17

  

This chapter’s objectives are to examine the dependence risk profile of the energy 

portfolios in specific market conditions; account for the portfolios’ dependence structure 

changes between pairs of period scenarios; and recognize the pair vine copula models that 

                                                           
17

 The acronyms BREE, DI and DRET used in the present chapter stand for Bureau of Resources and 

Energy Economics, Department of Industry, and Department of Resources, Energy and Tourism. 
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best capture the multivariate dependence structure and dependence risk dynamics of the 

portfolios. The copula counting technique is used for this purpose. 

 

6.2 Dependence structure estimation 

6.2.1 Coal-uranium portfolio 

 

The dependence structure matrices of the coal-uranium energy portfolio displayed in 

Panel (a) of Figure 6-1 differ from those of the iron ore-nickel mining portfolio in the 

number of times the copula number 5 appears. The Frank copula specifically is more 

predominant in the dependence structure matrices of the coal-uranium energy portfolio, 

relative to the mix-metals and gold mining portfolios. 

 
Panel (a) 

 
Panel (b) 

Figure 6-1: Dependence structure and Kendall tau matrices of the coal-uranium energy portfolio. Panel (a) 

displays the full sample period c-vine (on the left) and d-vine (on the right) dependence structure matrices of the 

portfolio. Panel (b) shows the c-vine Kendall tau correlation matrix of the portfolio. All matrices consist of 192 

components. The numbers in the diagonal dependence structure matrices of Panel (a) represent the bivariate 

copulas listed and numbered in Table 5-1. 
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Counting (coal-uranium portfolio):  

According to the diagonal matrices displayed in Panel (a) of Figure 6-1 and in Table 6-1 

the bivariate copulas more frequently selected by the c-vine, d-vine and r-vine models 

under the full sample period scenario to measure the dependence between the coal and 

uranium stocks are: the Frank 65, 51 and 53 times for the c-vine, d-vine and r-vine 

models, respectively; the Joe-Frank 180 degrees rotated 20, 26 and 33 times; the student-t 

7, 14 and 18 times; the Gaussian 19, 22 and 20 times; the Gumbel rotated 180 degrees 16, 

14 and 17 times; the Clayton 22, 19 and 14 times; Joe 180 degrees rotated 3, 8 and 8 

times and; the Clayton 180 degrees rotated 0,0 and 5 times. Table 6-1 summarizes the 

counting, recording, classification and grouping stages of the copula counting technique. 

 

 

Recording, classification and grouping (coal-uranium portfolio): 

 

Table 6-1: C-vine, d-vine and r-vine models’ bivariate copula selection for the coal-uranium portfolio 

Bivariate 

Copula 
Full sample Pre-GFC GFC Post-GFC 

Vine model 
C 

vine 

D 

vine 

R 

vine 

C 

vine 

D 

vine 

R 

vine 

C 

vine 

D 

vine 

R 

vine 

C 

vine 

D 

vine 

R 

vine 

 Negative Tail  

Clayton 22 19 14 15 18 18 16 22 30 23 23 18 

Gumbel 180 16 14 17 14 15 12 12 13 27 9 10 13 

Studen-t 7 14 18 13 10 11 12 17 10 4 11 9 

Joe 180 3 8 8 26 15 16 4 13 14 12 8 15 

Joe-Frank 180 20 26 8 8 5 16 8 8 14 11 11 15 

 Centre  

Frank 65 51 53 50 48 58 59 51 30 55 61 64 

Gaussian 19 22 20 29 28 14 32 26 23 27 25 17 

 Positive Tail  

Gumbel 5 4 3 3 3 2 11 2 6 6 4 8 

Clayton 180 0 0 5 11 21 16 0 0 11 0 0 7 

Clayton 90 6 2 0 3 11 11 6 6 4 10 4 3 

Studen-t 7 14 18 13 10 11 12 17 10 4 11 9 

Joe 0 0 1 0 0 4 0 0 8 0 0 6 

Joe-Frank 6 8 12 0 0 3 5 6 3 0 0 5 

      Notes: the top row of the table displays the four financial period scenarios under consideration and the type of pair vine 

copulas fitted. The first column lists the bivariate copulas most frequently selected by the vine copula models to measure 

the dependence between the pairs of stocks. Each number in the table represents the number of times a certain bivariate 
copula has been selected by a certain vine copula model. The Student-t copula has been grouped with the copulas for 

positive and negative tail dependence because it measures the dependence in both tails symmetrically. The letters C, D 

and R stand for canonical, drawable and regular. The dependence structure located in the centre, negative tail and 
positive tail of the portfolio has been dissected, organized, counted, classified and grouped. 
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Aggregate dependence reading (coal-uranium portfolio): 

The pair vine copula modelling of dependence of the coal-uranium energy portfolio 

indicates that the Frank copula is the most frequently selected under each of the four 

financial period scenarios considered, indicating that most of the dependence in the 

portfolio is concentrated in the centre of the joint distributions (refer to Table 6-1). This 

implies that coal and uranium stocks have high dependence risk in non-crisis periods and 

low dependence risk in times of financial turbulence. A look into the 2008-2009 GFC 

indicates that coal prices did not suffer the severe decline oil, iron ore and nickel prices 

did. Coal prices overall remain robust during the crisis period (BREE, 2014; DRET & 

BREE, 2013; Bingham & Perkins, 2012). One explanation for this is that the demand for 

electricity tends to remain more or less constant even when the financial stock markets 

lack confidence. Besides, coal in Australia is still a major energy source for electricity 

generation. 

Uranium prices also enjoyed a relative stability during the 2008-2009 GFC most likely 

because some of its price drivers are not directly linked to the traditional macroeconomic 

fundamentals. Some drivers of uranium prices are global concerns about greenhouse gas 

emissions and clean energy; price increases in fossil fuel, and nuclear power plant events 

such as the Fukushima and Chernobyl. Uranium prices, in addition to that, appear to be 

strongly correlated with electricity demand and the levels of nuclear power plant 

operation (DI et al., 2014). Another important implication from the high concentration of 

dependence the coal-uranium energy portfolio has in the centre is that its return values 

are liable to change more frequently in tranquil stock market conditions and have a low 

probability of being extreme in those market conditions. Energy investors could therefore 

benefit from the relative safeness of coal, gas and uranium stocks in times of financial 

turbulence by using them to diversify and hedge an investment position with high 

concentration in the oil, iron ore and nickel sectors.  

A noticeable shift of dependence concentration in the coal-uranium energy portfolio takes 

place from the positive tail in the pre-GFC to the centre and negative tail in the GFC. 

This information reflects the high volatility of the financial stock markets during the most 

critical period and the low probability of coal and uranium stocks to realize positive 

returns in those market conditions. Table 6-1 also indicates that the largest concentration 

of asymmetric dependence in the negative tail of the coal-uranium energy portfolio 
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occurs during the GFC, reflecting the propensity of the coal and uranium stocks to yield 

negatively skewed returns in non-tranquil stock market conditions.  

    Table 6-2: Significance testing of the coal-uranium energy portfolio’s relative comparison of dependence 

Significance testing of 

dependence 
Gold 

Iron ore-

nickel Oil-gas Mix-metals Retail Manufacturing 

 

 

Overall dependence (centre) 

 

Frank T-test  -1.07 6.08 2.60 -0.35 2.10 -0.95 

 
Statistical significance 

 

Neither Sig. larger Sig. larger Neither Sig. larger Neither 

 

 

Overall dependence (negative tail) 

 
Clayton T-test 4.33 -0.66 0.21 1.57 2.12 3.10 

Gumbel 180 T-test 0.11 -3.59 -2.02 1.62 2.29 2.99 

Joe 180 T-test 2.28 -1.59 1.23 1.07 4.56 1.55 
Joe-Frank 180 T-test 0.93 -0.11 -0.72 -1.61 3.74 2.78 

 

Statistical significance 
 

Sig. larger Neither Neither Neither Sig. larger Sig. larger 

 

 

Overall dependence (positive tail) 
 

Gumbel T-test -2.15 2.19 -1.88 0.55 -3.88 -1.65 

Clayton 180 T-test -1.16 -0.32 -0.66 -1.98 -3.76 -3.15 

Joe T-test 0.17 -0.63 -3.66 -0.86 -4.06 -2.46 

Joe-Frank T-test -1.52 2.37 3.06 -2.85 0.29 -0.12 
 

Statistical significance 

 

Neither Sig. larger Neither Neither Sig. smaller Sig. smaller 

 

 

Symmetric dependence (tails) 

 
Student-t T-test -5.26 -2.39 -3.17 0.06 -4.66 -3.82 

 
Statistical significance 

 

Sig. smaller Sig. smaller Sig. smaller Neither Sig. smaller Sig. smaller 

 

 
Asymmetric dependence (negative tail) 

 
Clayton T-test 4.33 -0.66 0.21 1.57 2.12 3.10 

Gumbel 180 T-test 0.11 -3.59 -2.02 1.62 2.29 2.99 
 

Statistical significance 

 

Sig. larger Sig. smaller Neither Neither Sig. larger Sig. larger 

 
 

Asymmetric dependence (positive tail) 

 

Gumbel T-test -2.15 2.19 -1.88 0.55 -3.88 -1.65 
Clayton 180 T-test -1.16 -0.32 -0.66 -1.98 -3.76 -3.15 

 

Statistical significance 
 

Sig. smaller Sig. larger Neither Neither Sig. smaller Sig. smaller 

Critical value= 𝑡(0.05,22)=±2.07  
Notes: The table displays the significance testing of the coal-uranium energy portfolio’s relative comparison of dependence 
concentration. The top row displays the names of the portfolios against which the coal-uranium energy portfolio is compared with. 

The first column from left to right shows the copulas to which the t-test is implemented and the statistical significance category. 

The rest of the columns display the resulting t-test values, the type of dependence being tested and its location, and the 
significance testing results. The bottom row states the critical value used to determine the existence or not existence of statistical 

significance. The dependence concentration of a portfolio could be significantly smaller or significantly larger than that of other 

portfolio or neither. When 4 copulas are used to determine the statistical significance it is required that the t-values of at least 2 
copulas are larger or smaller than the critical value. If only two copulas are used to determine statistical significance, the t-value 

of at least one copula is required to be larger or smaller than the critical value. 
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Since the c-vine copula model relative to the r-vine and d-vine selects the Frank copula 

more frequently under each of the four period scenarios, it is acknowledged for better 

capturing the multivariate dependence structure of the coal-uranium energy portfolio.  

The significance testing of the coal-uranium energy portfolio’s relative comparison of 

dependence concentration displayed in Table 6-2 indicates that its overall dependence 

concentration in the centre is at the 95% confidence level significantly larger than those 

of the iron ore-nickel, oil-gas and retail portfolios. This implies that the coal and uranium 

stocks are less dependence risky than the oil, iron ore and nickel stocks in times of 

financial turbulence. The portfolios’ asymmetric dependence concentration in the positive 

tail is significantly smaller than those of the gold, iron ore-nickel, retail and 

manufacturing and significantly larger than those of the gold, retail and manufacturing, in 

the negative tail. This information indicates that the coal and uranium stocks relative to 

the retail and manufacturing benchamark are less propense to yield positively skewed 

returns in tranquil stock market conditions. The portfolio’s symmetric dependence 

concentration in the tails is at the 95% confidence level significantly smaller than those of 

the gold, iron ore-nickel, oil-gas, retail and manufacturing.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6-2: Coal-uranium portfolio’s symmetric dependence concentration 

in the tails. The estimate of symmetric dependence is based on an average 

of all four period scenarios. 
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6.2.2 Oil-gas portfolio 

 

The diagonal dependence structure matrices of the oil-gas energy portfolio displayed in 

Figure 6-3 differ from those of the coal-uranium energy portfolio in the number of times 

the copulas 3 and 14 appear. The oil-gas energy portfolio due to the large concentration 

of dependence it has in the negative tail requires the use of the Clayton and 180 degrees 

rotated Gumbel copulas more often. This feature is also found in the dependence 

structure matrices of the iron ore-nickel mining portfolio, while it is absent in the 

dependence structure matrices of the gold, coal-uranium and mix-metals leptokurtic 

portfolios. 

 
Panel (a) 

 

Panel (b) 

Figure 6-3: Dependence structure and Kendall tau matrices of the oil-gas energy portfolio. Panel (a) displays the 

GFC c-vine (on the left) and d-vine (on the right) dependence structure matrices of the portfolio. Panel (b) shows 

the d-vine Kendall tau correlation matrix of the portfolio. All matrices consist of 192 components. The numbers 

in the diagonal dependence structure matrices of Panel (a) represent the bivariate copulas listed and numbered 

in Table 5-1. 
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Counting (oil-gas portfolio):  

According to Panel (a) from Figure 6-3 and Table 6-3 the bivariate copulas more 

frequently selected under the full sample period by the c-vine, d-vine and r-vine models 

to measure the dependence of the oil and gas stocks are: the Frank 47, 41 and 46 times for 

the c-vine, d-vine and r-vine models, respectively; the Joe-Frank 180 degrees rotated 26, 

30 and 22 times; the student-t 23, 20 and 22 times; the Gaussian 17, 19 and 16 times; the 

Gumbel rotated 180 degrees 22, 23 and 23 times; the Clayton 16, 18 and 23 times; Joe 

180 degrees rotated 0, 0 and 2 times and; the Clayton 180 degrees rotated 8, 7 and 10 

times. Table 6-3 summarizes the counting, recording, classification and grouping stages 

of the bivariate copula counting technique. 

 

Recording, classification and grouping (oil-gas portfolio): 

 
 

Table 6-3: C-vine, d-vine and r-vine models’ bivariate copula selection for the oil-gas portfolio 

Bivariate 

Copula 
Full sample Pre-GFC GFC Post-GFC 

Vine model 
C 

vine 

D 

vine 

R 

vine 

C 

vine 

D 

vine 

R 

vine 

C 

vine 

D 

vine 

R 

vine 

C 

vine 

D 

vine 

R 

vine 

 Negative Tail  

Clayton 16 18 23 21 25 24 18 15 16 14 21 23 

Gumbel 180 22 23 23 17 14 12 17 16 23 11 18 18 

Studen-t 23 20 22 20 14 17 9 10 11 18 18 18 

Joe 180 0 0 2 15 17 17 0 0 10 16 9 16 

Joe-Frank 180 26 30 22 4 8 6 18 12 10 13 13 12 

 Centre  

Frank 47 41 46 40 35 30 54 55 51 54 48 37 

Gaussian 17 19 16 21 19 25 28 29 25 21 16 20 

 Positive Tail  

Gumbel 9 7 8 8 8 7 3 5 6 6 4 6 

Clayton 180 8 7 10 14 11 13 0 0 14 0 0 15 

Clayton 90 3 8 4 6 9 10 5 6 5 3 6 4 

Studen-t 23 20 22 20 14 17 9 10 11 18 18 18 

Joe 2 6 3 6 9 7 5 5 4 3 7 4 

Joe-Frank 0 0 3 0 0 1 0 0 3 0 0 1 

       Notes: the top row of the table displays the four financial period scenarios under consideration and the type of pair vine 

copulas fitted. The first column lists the bivariate copulas most frequently selected by the vine copula models to measure 
the dependence between the pairs of stocks. Each number in the table represents the number of times a certain bivariate 

copula has been selected by a certain vine copula model. The Student-t copula has been grouped with the copulas for 

positive and negative tail dependence because it measures the dependence in both tails symmetrically. The letters C, D 
and R stand for canonical, drawable and regular. The dependence structure located in the centre, negative tail and 

positive tail of the portfolio has been dissected, organized, counted, classified and grouped. 
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Aggregate dependence reading (oil-gas portfolio): 

 

In the oil-gas energy portfolio, despite the large presence of the Franck copula most of 

the dependence between the stocks in the portfolio is concentrated in the negative tail. 

This concentration of dependence in the negative tail is however not noticeably larger 

than that in the centre. The oil-gas energy portfolio, consequently, has a high dependence 

risky in non-tranquil stock market conditions relative to tranquil periods. A look into the 

2008-2009 GFC shows that oil prices did fall sharply during the crisis period, so much so 

that by the end of 2008 they have reached levels seen in the 2000’s (DI et al., 2014).
 

Other factors known to adversely impact oil prices in the short run are the cyclical and 

seasonal demand for oil, supply disruptions triggered by political instability in oil 

producing countries, monopoly power, currency exchange rate changes and oil stock 

market speculation. In the long run, the marginal cost of oil production tends to have the 

greatest impact. Gas prices during the crisis period did not decline as much as the oil 

prices did. One reason for this is that the demand for electricity tends to remain more or 

less constant even during crisis periods, due to gas still being used in Australia as a 

source for electricity generation (DI et al., 2014). 

Other implications from the high concentration of dependence the oil-gas energy 

portfolio has in the negative tail is that its oil stocks’returns are liable to change less 

frequently in times of financial turbulence and have a high probability of being extreme 

in those market conditions. The inverse applies to gas stocks, which have most of the 

dependence concentrated in the centre of the joint distributions. Energy investors could 

therefore be better off by avoiding oil stock investments during crisis periods 

characterized by low confidence in the financial stock markets and instead investing in 

gas stocks in those market conditions. With respect to model selection, since the c-vine 

model relative to the r-vine and d-vine most frequently selects copulas for the modelling 

of negative tail dependence under each of the four financial period scenarios considered, 

the c-vine is discerned to best capture the multivariate interaction and dependence 

structure of the oil-gas energy portfolio. 

Unlike in the pre-GFC and post-GFC period scenarios, the c-vine, d-vine and r-vine 

copula models in the GFC select the Student-t copula in fewer occasions, an indication 

that most of the stocks’ dependence relationships in the tails are of asymmetric and 

nonlinear type. This information implies that the oil stocks tend to correlate more 

strongly in stock market conditions with low investors’ confidence and have a high 

propensity to yield negatively skewed returns in those market conditions. In the pre-GFC 
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period scenario the oil-gas energy portfolio has most of the dependence concentrated 

towards the end of the positive tail, indicating that the oil stocks tend to generate 

positively skewed returns in market conditions similar to those found in the pre-GFC 

period scenario. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-4: Oil-gas energy portfolio’s symmetric dependence concentration 

in the tails. The estimate of symmetric dependence is based on an average 

of all four period scenarios. 

 

 

The significance testing of the oil-gas energy portfolio’s relative comparison of 

dependence concentration displayed in Table 6-4 indicates that its overall dependence in 

the negative tail is at the 95% confidence level significantly larger than those of the gold, 

retail and manufacturing and neither significantly larger or smaller than that of the iron 

ore-nickel mining portfolio. In the centre and positive tail however it has significantly 

larger concentration of dependence than the iron ore-nickel, making it less dependence 

risky than the iron ore-nickel mining portfolio. This information indicates that the oil 

stocks are significantly more dependence risky than the gold, retail and manufacturing 

when the financial stock markets lack investors’ confidence.  
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           Table 6-4: Significance testing of the oil-gas energy portfolio’s relative comparison of dependence 

Significance testing of 

dependence 
Gold 

Iron ore-

nickel 
Coal-

uranium Mix-metals Retail Manufacturing 

 

 

Overall dependence (centre) 

 

Frank T-test  -3.40 3.68 -2.60 -3.23 -0.98 -3.67 

 
Statistical significance 

 

Sig. smaller Sig. larger Sig. smaller Sig. smaller Neither Sig. smaller 

 

 

Overall dependence (negative tail) 

 
Clayton T-test 4.45 -0.88 -0.21 1.48 2.06 3.12 

Gumbel 180 T-test 2.49 -1.83 2.02 3.52 5.17 5.62 

Joe 180 T-test 0.67 -2.61 -1.19 -0.48 2.09 0.15 
Joe-Frank 180 T-test 1.42 0.39 0.72 -1.02 3.79 3.09 

 

Statistical significance 
 

Sig. larger Neither Neither Neither Sig. larger Sig. larger 

 

 

Overall dependence (positive tail) 
 

Gumbel T-test -1.20 4.08 1.88 2.15 -2.58 -0.09 

Clayton 180 T-test -0.52 0.32 0.66 -1.37 -3.81 -2.73 

Joe T-test 4.40 2.21 3.66 3.34 -0.52 1.32 

Joe-Frank T-test -3.54 -0.57 -3.06 -4.45 -4.93 -3.40 
 

Statistical significance 

 

Neither Sig. larger Neither Sig. larger Sig. smaller Sig. smaller 

 

 

Symmetric dependence (tails) 

 
Student-t T-test -1.11 -0.64 3.17 3.63 -2.94 -0.78 

 

Statistical significance 

 

Neither Neither Sig. larger Sig. larger Sig. smaller Neither 

 

 
Asymmetric dependence (negative tail) 

 
Clayton T-test 4.45 -0.88 -0.21 1.48 2.06 3.12 

Gumbel 180 T-test 2.49 -1.83 2.02 3.52 5.17 5.62 
 

Statistical significance 

 

Sig. larger Neither Neither Sig. larger Sig. larger Sig. larger 

 

 

Asymmetric dependence (positive tail) 

 

Gumbel T-test -1.20 4.08 1.88 2.15 -2.58 -0.09 
Clayton 180 T-test -0.52 0.32 0.66 -1.37 -3.81 -2.73 

 

Statistical significance 
 

Neither Sig. larger Neither Sig. larger Sig. smaller Sig. smaller 

Critical value= 𝑡(0.05,22)=±2.07  
Notes: The table displays the significance testing of the oil-gas energy portfolio’s relative comparison of dependence 
concentration. The top row displays the names of the portfolios against which the oil-gas energy portfolio is compared with. The 

first column from left to the right shows the copulas to which the t-test is implemented and the statistical significance category. 

The rest of the columns display the resulting t-test values, the type of dependence being tested and its location and the significance 
testing results. The bottom row states the critical value used to determine the existence or not existence of statistical significance. 

The dependence concentration of a portfolio could be significantly smaller or significantly larger than that of other portfolio or 

neither. When 4 copulas are used to determine the statistical significance it is required that the t-values of at least 2 copulas are 
larger or smaller than the critical value. If only two copulas are used to determine statistical significance, the t-value of at least one 

copula is required to be larger or smaller than the critical value. 

 

The portfolio’s asymmetric dependence concentration in the negative tail is significantly 

larger than those of the gold, mix-metals, retail and manufacturing, confirming the higher 

dependence riskiness of the oil stocks when the financial stock market are unstable. The 
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oil-gas energy portfolio’s symmetric dependence concentration in the tails as indicated by 

Figure 6-4 is significantly smaller than those of the coal-uranium and retail, and 

significantly larger than that of the mix-metals. 

 

6.3 Discussion of results 

 

The identification of the coal-uranium energy portfolio as having low dependence risk 

in times of financial turbulence alludes to the relative stability the coal and uranium 

commodities displayed during the 2008-2009 global financial crisis. The Bureau of 

Resources and Energy Economics (2014), The Department of Resources, Energy and 

Tourism (2013) and Bingham and Perkins (2012) have, among many others, pointed out 

the relative mild price fluctuations of those commodities during the period. The 

predominance of the Frank copula in the dependence structure matrices of the coal-

uranium energy portfolio is a feature shared with the gold and mix-metals portfolios. As 

compared to those portfolios, the coal-uranium energy portfolio was found to be 

significantly more dependence risky than the gold and significantly different from the 

mix-metals leptokurtic in terms of dependence risk. The recognition of the c-vine as the 

model that best accounts for the multivariate dependence structure of the coal-uranium 

energy portfolio suggests that one stock in the portfolio exerts significant influence over 

the rest through large correlation values. This stock appears to be PALADIN ENERGY 

(PDNX), which is selected by the c-vine as the rootstock of the portfolio.  

The identification of the oil-gas energy portfolio as having high dependence risk in 

market conditions characterized by low confidence in the financial stock markets is in 

line with the literature modelling oil markets. The Department of Industry, Geoscience 

Australia and the Bureau of Resources and Energy Economics (2014) have documented 

the high risk and negatively skewed price behaviour of oil during the 2008-2009 global 

financial crisis. Du et al. (2012) identify volatility increases in a stock portfolio as a 

result of increases in oil prices; Killian and Park (2009) estimate that around 22 per cent 

of the long run fluctuation in the US stock market is due to the supply and demand 

shocks experienced by the crude oil prices; Park and Ratti (2008) recognize the 

statistical significance of impact oil prices have on real stock returns from the US and 
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13 European countries; and Basher and Sadorsky (2006) acknowledge the presence of 

oil price risk in stock markets from emerging economies. 

The predominance of the Clayton and 180 Gumbel copulas in the dependence structure 

of the oil-gas energy portfolio is a feature shared with the iron ore-nickel mining 

portfolio. The iron ore-nickel mining portfolio is however more dependence risky due to 

the demand and supply dynamics of the iron ore and nickel commodities which tend to 

be more heavily skewed towards the negative tail. The identification of the c-vine as the 

model that best accounts for the multivariate dependence structure of the oil and gas 

stocks is also an indication that a stock in the portfolio has strong correlation values 

with the rest. This stock is WOODSIDE (WPLX), recognized by the c-vine as the rootstock 

of the portfolio. Czado et al. (2012), Chollete et al. (2009) and Heinen and Valdesogo 

(2009) have noted the suitability of the c-vines to adequately capture the multivariate 

dependence of financial assets. 

This chapter’s research, as compared to the dependence risk modelling of Brechmann 

and Schepsmeier (2013), Min and Czado (2010), Czado et al. (2012) and Brechmann 

and Czado (2012), has comparative advantages. Firstly, it provides a detailed and 

comprehensive account of the assets’ dependence risk features in specific market 

conditions. Secondly, it proposes a systematic approach, in the form of the copula 

counting technique, to examine the assets’ dependence concentration and dependence at 

various locations of the joint distributions. In addition to that, this chapter’s analysis of 

dependence risk appears to be the first to model the risk of oil stocks from the 

Australian market using pair vine copulas and the copula counting technique. 

 

6.4 Summary 

 

This chapter implemented the copula counting technique to dissect, analyse and interpret 

the dependence structure of the energy portfolios. The coal-uranium energy portfolio was 

found to have most of the dependence concentrated in the centre of the pairs of stocks’ 

joint distributions, as indicated by the predominance of the Frank copula in each of the 

four period scenarios. As a result, the coal-uranium energy portfolio was acknowledged 

to have high dependence risk in tranquil stock market conditions and low dependence risk 

in times of financial turbulence. These findings were confirmed by actual price behaviour 

of the coal and uranium commodities during the 2008-2009 global financial crisis. Out of 
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the three vine copula models fitted to the energy portfolio the c-vine was acknowledged 

to best account for the multivariate dependence structure of the coal-uranium energy 

portfolio.  

The oil-gas energy portfolio, contrary to the coal-uranium portfolio, was found to have 

most of the dependence concentrated in the negative tail. As a result the portfolio has 

high dependence risk in stock market conditions characterized by low investors’ 

confidence and low dependence risk in stock market conditions with restored confidence. 

These findings were also confirmed by actual price behaviour of the oil during the 2008-

2009 global financial crisis. The c-vine was identified to best capture the multivariate 

dependence structure of the oil-gas energy portfolio. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 



105 
 

CHAPTER 7 

 
DEPENDENCE STRUCTURE ESTIMATION: RETAIL AND 

MANUFACTURING PORTFOLIOS 

  

 This chapter consists of two sections:  introduction and dependence estimation  

 

The introduction section provides an overview of the Australian retail and manufacturing 

sectors underlying the retail and manufacturing stock benchmark portfolios modelled. 

The dependence estimation section dissects, analyses and interprets the dependence 

structure of the retail and manufacturing benchmark portfolios using the copula counting 

technique explained in Chapter 5. 

 

7.1 Introduction 

 

The retail and manufacturing sectors are two important sectors of the Australian economy 

because they together account for about 12 per cent of total GDP. Besides, the 

manufacturing sector has been in a declining trend and exhibiting decreasing risk, while 

the retail sector has been expanding. The manufacturing sector specifically employed 

around 20 percent of the Australian workforce before the 2008-2009 GFC, which 

dropped to 8 percent in 2014. On the other hand, the retail sector has experienced a slow 

but steady increase in recent years, contributing about AD 23.88 billion to the Australian 

economy in 2013 (Department of Industry, 2014; Kryger, 2014; Australian Bureau of 

Statistics, 2015). Both sectors, in addition to that, can be easily identified for having a 

strong relationship of dependence and economic linkages with the Australian resources 

sector: the mining and energy sectors. The performance of the Australian resources sector 

could therefore in this sense be thought as directly impacting the levels of demand, 

spending and investment within the retail and manufacturing sectors. Evidence of this 

relationship of dependence and multiplier effects the manufacturing sector has with the 

Australian resources sector is that the mining sector in 2011 supplied 20 per cent of the 

raw material used by the manufacturing sector, while the mining sector demanded 5 per 
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cent of the goods produced by the manufacturing sector (ARA, 2014; Savills Research, 

2014; Delloite, 2013; Mehmedovic et al., 2011).
18

 The Australian manufacturing sector is 

the second largest exporter of goods, next to the mining sector.  

Although one of the primary performance drivers of the retail sector is the Australian 

resources sector, all other sectors of the economy also impact its performance through 

spill over effects. Other performance drivers of the manufacturing and retail sectors are 

the financial stock market confidence, business cycles, interest rate fluctuations, 

exchange rate changes and currency fluctuations, advances in manufacturing technology, 

the increasing world of the web and communications and the expansion of the digital 

economy (ARA, 2014; Savills Research, 2014; Delloite, 2013; Mehmedovic et al., 2011). 

This chapter’s objectives are to examine the dependence risk profile of the retail and 

manufacturing benchmark portfolios in specific market conditions; account for the 

portfolios’ dependence structure changes between pairs of period scenarios; and 

recognize the pair vine copula models that best capture the multivariate dependence of 

the portfolios. The copula counting technique is used for this purpose. 

 

7.2 Dependence structure estimation 

7.2.1 Retail portfolio 

The diagonal dependence structure matrices of the retail benchmark portfolio displayed in 

Panel (a) of Figure 7-1 share the common feature with those of the gold, coal-uranium 

and mix-metals of having a large presence of the Frank copula (i.e. copula number 5). 

This copula is designed to capture greater concentration of dependence in the centre of 

the joint distributions. On the other hand, they have a reduced presence of the copulas for 

negative tail dependence modelling.  

 

 

                                                           
18

 The acronyms ARA, AGPC, PC, NAB, DIISR, CT  and DI used in the present chapter stand for stands for 

The Australian Retailers Association, Australian Government Productivity Commission, Productivity 

Commission, National Australian Bank, Department of Industry, Innovation, Sceince and Research, 

Commonwealth Treasury and Department of Industry.  
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Panel (a) 

 

Panel (b) 

Figure 7-1: Dependence structure and Kendall tau matrices of the retail benchmark portfolio. Panel (a) displays 

the full sample period r-vine (on the left) and c-vine (on the right) dependence structure matrices of the portfolio. 

Panel (b) displays the full sample period r-vine Kendall tau correlation matrix of the portfolio. All matrices 

consist of 192 components. The numbers in the diagonal dependence structure matrices of Panel (a) represent 

the bivariate copulas listed and numbered in Table 5-1. 

 

Counting (retail portfolio):  

According to Figure 7-1 and Table 7-1 the bivariate copulas more frequently selected by 

the c-vine, d-vine and r-vine models under the full sample period scenario to measure the 

dependence from pairs of retail stocks’ joint distributions are: the Frank 38, 44 and 51 

times for c-vine, d-vine and r-vine models respectively; the Joe-Frank 180 degrees rotated 
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9, 6 and 8 times; the Joe-Frank 7, 5 and 3 times; the Gaussian 18, 16 and 18 times; the 

Clayton 11, 9 and 7 times; the Student-t 45, 43 and 41 times; the Gumbel 180 degrees 

rotated 14, 13 and 12 times; the Clayton 180 degrees rotated 18, 15 and 16 times each; 

the Joe 180 degrees rotated 5, 3 and 3 times and; the Gumbel 10, 7 and 8 times. Table 7-1 

summarizes the counting, recording, classification and grouping stages of the bivariate 

copula counting technique. 

Recording, classification and grouping (retail portfolio): 

 

Table 7-1: C-vine, d-vine and r-vine models’ bivariate copula selection for the retail portfolio 

Bivariate  

Copula 
Full sample Pre-GFC GFC Post-GFC 

Vine model 
C 

vine 

D 

vine 

R 

vine 

C 

vine 

D 

vine 

R 

vine 

C 

vine 

D 

vine 

R 

vine 

C 

vine 

D 

vine 

R 

vine 

 Negative Tail  

Clayton 11 9 7 18 17 18 25 21 20 13 15 16 

Gumbel 180 14 13 12 12 8 9 13 10 10 13 11 9 

Studen-t 45 43 41 17 15 16 23 25 31 20 19 21 

Joe 180 5 3 3 2 3 5 3 4 6 4 3 5 

Joe-Frank 180 9 6 7 9 7 10 4 3 4 4 2 3 

 Centre  

Frank 38 44 51 52 53 58 46 44 49 47 43 45 

Gaussian 18 16 18 28 24 22 21 19 21 31 27 25 

 Positive Tail  

Gumbel 10 7 8 5 7 10 9 7 6 10 9 12 

Clayton 180 18 15 16 9 7 10 15 13 15 20 19 21 

Clayton 90 4 5 6 10 8 10 7 5 3 7 5 4 

Studen-t 45 43 41 17 14 16 23 25 31 20 19 21 

Joe 4 3 4 7 5 2 5 6 8 7 6 9 

Joe-Frank 7 5 3 6 5 4 4 3 1 2 1 3 

Notes: the top row of the table displays the four financial period scenarios under consideration and the type of pair vine 

copulas fitted. The first column lists the bivariate copulas most frequently selected by the vine copula models to measure 

the dependence between the pairs of stocks. Each number in the table represents the number of times a certain bivariate 
copula has been selected by a certain vine copula model. The Student-t copula has been grouped with the copulas for 

positive and negative tail dependence because it measures the dependence in both tails symmetrically. The letters C, D 

and R stand for canonical, drawable and regular. The dependence structure located in the centre, negative tail and 
positive tail of the portfolio has been dissected, organized, counted, classified and grouped. 

 

Aggregate dependence reading (retail portfolio): 

According to Table 7-1 in the retail benchmark portfolio, the c-vine, d-vine and r-vine 

models select the Frank copula the most under each of the four period scenarios 

considered, indicating that most of the dependence in the portfolio is concentrated in the 

centre of the joint distributions. This information implies that the retail stocks have high 

dependence risk in non-crisis periods and low dependence risk when the financial stock 

markets lack confidence. The high concentration of dependence located in the centre of 
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the portfolio’s joint distribution also implies that its returns are liable to change more 

frequently in tranquil stock market conditions and have a low probability of being 

extreme in similar market conditions. 

A look into the 2008-2009 GFC shows that stock investments in the Australian retail 

sector were exposed to lower risk as compared to investments in the United States retail 

sector (AGPC, 2011). A plausible explanation for this is that the Australian economy has 

a strong resource-based economy and the Australian retail sector has important economic 

linkages with the performance of the Australian resources sector. The retail sector, 

moreover, went through moderate economic shocks during the financial crisis mainly 

because the Australian resources sector overall manoeuvre the financial crisis’ effects 

fairly well. Evidence of this is that the gold mining sector had its best historical 

performance during the crisis period period (Connolly & Orsmond, 2011).
 
 

The most significant shift of dependence concentration in the retail benchmark portfolio 

occurred from the pre-GFC to the GFC period scenarios. Specifically, the portfolio’s 

dependence structure, as indicated by the decrease of the Frank, Joe-Frank and the 180 

Joe-Frank copulas, and the increase of the Clayton and 180 Gumbel copulas (the latter 

two copulas are designed to capture asymmetric dependence in the negative tail), moves 

from the centre of the portfolio’s joint distribution towards the end of the tails. This 

dependence structure shift between pairs of period scenarios reflects the highly volatile 

market conditions during the GFC period scenario and the propensity of some retail 

stocks to yield negatively skewed returns in those market conditions. The second largest 

concentration of dependence in the retail benchmark portfolio is located in the negative 

tail. 

In the post-GFC period scenario, the copulas for the modelling of positive tail 

dependence have their largest presence, suggesting a recovery of the financial stock 

markets; an increased probability for the retail stocks to realize positive returns; and the 

propensity of the retail stocks to yield positively skewed returns in those market 

conditions. The shift of dependence concentration from the GFC to the post-GFC 

suggests that the Australian retail sector had a relatively slow recovery during the post-

crisis period. This assertion is consistent with alternative research indicating that the retail 

sector began to recover as the confidence in the financial stock markets increased; as the 

price of the mining and energy commodities recovered; and as the Australian dollar 

depreciated (AGPC, 2011; PC, 2011). With respect to model selection, the r-vine relative 

to the c-vine and d-vine is observed to select the Frank copula more frequently under 
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each of the four financial period scenarios considered. Thus, the r-vine is discerned to be 

the model that best accounts for the multivariate dependence structure of the retail 

benchmark portfolio. 

The significance testing of the retail benchmark portfolio’s relative comparison of 

dependence concentration displayed in Table 7-2 indicates that its overall dependence 

concentration in the centre is at the 95% confidence level significantly smaller than those 

of the gold, coal-uranium, mix-metals and manufacturing, and significantly larger than 

that of the iron ore-nickel mining portfolio. This information implies that the returns of 

the retail benchmark portfolio are liable to change less frequently than those of the gold, 

coal-uranium, mix-metals and manufacturing when the confidence in the financial stock 

markets is low and have a high probability of being extreme in those market conditions 

The retail benchmark portfolio’s asymmetric dependence in the positive tail is, with the 

exception of that of the manufacturing, significantly larger than those of most portfolios 

at the 95% confidence level. In the negative tail it has significantly smaller dependence 

concentration than the mining and energy portfolios. The symmetric dependence 

concentration in the tails of the retail benchmark portfolio is, with exception of that of the 

iron ore-nickel, significantly larger than those of most portfolios. The relative comparison 

of the retail and manufacturing benchmark portfolios indicates that the former is less 

dependence risky than the latter during crisis periods. This information appears to be 

consistent with the performance of the retail and manufacturing sectors during the 2008-

2009 global financial crisis. A possible explanation is that a large percentage of the 

money in circulation during the crisis period was spent and invested for the acquisition of 

basic household and livelihood goods instead of durables that require larger investment 

and capital.  

 

 

 

 

 

 



111 
 

        Table 7-2: Significance testing of the retail benchmark portfolio’s relative comparison of dependence 

Significance testing of 

dependence 
Gold 

Iron ore-

nickel 
Coal-

uranium Oil-gas Mix-metals Manufacturing 

 

 
Overall dependence (centre) 

 

Frank T-test  -3.02 5.42 -2.10 0.98 -2.84 -3.34 

 
Statistical significance 

 

Sig. smaller Sig. larger Sig. smaller Neither Sig. smaller Sig. smaller 

 

 
Overall dependence (negative tail) 

 
Clayton T-test 1.77 -2.57 -2.12 -2.06 -0.44 0.75 

Gumbel 180 T-test -2.87 -6.52 -2.29 -5.17 0.00 1.38 
Joe 180 T-test -2.00 -7.74 -4.56 -2.20 -5.27 -2.46 

Joe-Frank 180 T-test -1.35 -2.07 -3.74 -3.79 -3.69 -0.35 

 
Statistical significance 

 

Neither Sig. smaller Sig. smaller Sig. smaller Sig. smaller Neither 

 
 

Overall dependence (positive tail) 

 

Gumbel T-test 0.05 5.74 3.88 2.58 3.81 1.95 

Clayton 180 T-test 3.14 3.39 3.76 3.43 3.12 1.35 

Joe T-test 4.85 2.54 4.06 0.52 3.82 1.81 
Joe-Frank T-test -1.86 3.08 -0.29 4.02 -3.17 -0.45 

 

Statistical significance 
 

Sig. larger Sig. larger Sig. larger Sig. larger Sig. larger Neither 

 

 

Symmetric dependence (tails) 

 
Student-t T-test 2.56 1.84 4.66 2.94 4.83 2.44 

 

Statistical significance 

 

Sig. larger Neither Sig. larger Sig. larger Sig. larger Sig. larger 

 

 

Asymmetric dependence (negative tail) 

 
Clayton T-test 1.77 -2.57 -2.12 -2.06 -0.44 0.75 
Gumbel 180 T-test -2.87 -6.52 -2.29 -5.17 0.00 1.38 

 

Statistical significance 
 

Sig. smaller Sig. smaller Sig. smaller Sig. smaller Neither Neither 

 

 

Asymmetric dependence (positive tail) 

 

Gumbel T-test 0.05 5.74 3.88 2.58 3.81 1.95 

Clayton 180 T-test 3.14 3.39 3.76 3.43 3.12 1.35 

 
Statistical significance 

 

Sig. larger Sig. larger Sig. larger Sig. larger Sig. larger Neither 

Critical value= 𝑡(0.05,22)=±2.07  
Notes: The table displays the significance testing of the retail benchmark portfolio’s relative comparison of dependence 

concentration. The top row displays the names of the portfolios against which the retail benchmark portfolio is compared with. 

The first column from left to right shows the copulas to which the t-test is implemented and the statistical significance category. 
The rest of the columns display the resulting t-test values, the type of dependence being tested and its location and, the 

significance testing results. The bottom row states the critical value used to determine the existence or not existence of statistical 

significance. The dependence concentration of a portfolio could be significantly smaller or significantly larger than that of other 
portfolio or neither. When 4 copulas are used to determine the statistical significance it is required that the t-values of at least 2 

copulas are larger or smaller than the critical value. If only two copulas are used to determine statistical significance, the t-value 

of at least one copula is required to be larger or smaller than the critical value. 

 

 



112 
 

7.2.2 Manufacturing portfolio 

 

The diagonal dependence structure matrices of the manufacturing benchmark portfolio 

displayed in Panel (a) of Figure 7-2 differ from those of the retail benchmark portfolio in 

the reduced presence of the Frank copula (i.e. copula number 5). As compared to the 

dependence structure matrices of the iron ore-nickel mining and oil-gas energy portfolios, 

those of the manufacturing benchmark portfolio have a significantly larger number of 

copulas for the modelling of dependence in the centre of the joint distributions.  

 
Panel (a) 

 
Panel (b) 

Figure 7-2: Dependence structure and Kendall tau matrices of the manufacturing benchmark portfolio. Panel 

(a) displays the full sample period r-vine (on the left) and c-vine (on the right) dependence structure matrices of 

the portfolio. Panel (b) displays the full sample period r-vine Kendall tau correlation matrix of the portfolio. All 

matrices consist of 192 components. The numbers in the diagonal dependence structure matrices of Panel (a) 

represent the bivariate copulas listed and numbered in Table 5-1. 



113 
 

Counting (manufacturing portfolio):  

According to Figure 7-2 and Table 7-3 the copulas most frequently selected by the c-vine, 

d-vine and r-vine models, under the full sample period scenario, to account for the 

dependence in the pairs of manufacturing stocks’ joint distributions are: the Frank 56, 68 

and 60 times for c-vine, d-vine and r-vine models respectively; the Joe-Frank 180 degrees 

rotated 8, 9 and 12 times; the Joe-Frank 8, 12 and 7 times; the Gaussian 30, 15 and 23 

times; the Clayton 11, 9 and 12 times; the Student-t 17, 24 and 21 times; the Gumbel 180 

degrees rotated 8, 8 and 7 times; the Clayton 180 degrees rotated 13, 9 and 14 times each; 

the Joe 180 degrees rotated 2, 1 and 2 times and; the Gumbel 8,6 and 6 times. Table 7-3 

summarizes the recording, classification and grouping stages of the bivariate copula 

counting technique for the manufacturing bencportfolio. 

Recording, classification and grouping (manufacturing portfolio): 

Table 7-3: C-vine, d-vine and r-vine models’ bivariate copula selection for the manufacturing portfolio 

Bivariate 

Copula 
Full sample Pre-GFC GFC Post-GFC 

Vine model 
C 

vine 

D 

vine 

R 

vine 

C 

vine 

D 

vine 

R 

vine 

C 

vine 

D 

vine 

R 

vine 

C 

vine 

D 

vine 

R 

vine 

 Negative Tail  

Clayton 11 9 12 24 15 14 20 14 14 10 19 11 

Gumbel 180 8 8 7 11 15 8 8 13 5 12 12 11 

Studen-t 17 24 21 18 23 28 11 15 12 13 17 19 

Joe 180 2 1 21 15 11 14 5 7 9 3 3 6 

Joe-Frank 180 8 9 12 2 0 4 4 4 5 5 20 2 

 Centre  

Frank 56 68 60 45 42 48 65 64 69 61 51 57 

Gaussian 30 15 23 22 24 23 25 23 21 25 26 32 

 Positive Tail  

Gumbel 8 6 6 5 5 3 9 11 10 8 5 2 

Clayton 180 13 9 14 13 14 10 10 10 11 14 17 19 

Clayton 90 2 6 7 4 12 11 0 8 3 7 4 5 

Studen-t 17 24 21 18 23 28 11 15 12 13 17 19 

Joe 1 3 1 7 3 3 7 3 3 7 5 5 

Joe-Frank 8 12 7 4 1 3 1 2 7 1 2 2 

       Notes: the top row of the table displays the four financial period scenarios under consideration and the type of pair vine 

copulas fitted. The first column lists the bivariate copulas most frequently selected by the vine copula models to measure 

the dependence between the pairs of stocks. Each number in the table represents the number of times a certain bivariate 
copula has been selected by a certain vine copula model. The Student-t copula has been grouped with the copulas for 

positive and negative tail dependence because it measures the dependence in both tails symmetrically. The letters C, D 

and R stand for canonical, drawable and regular. The dependence structure located in the centre, negative tail and 
positive tail of the portfolio has been dissected, organized, counted, classified and grouped. 
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Aggregate dependence reading (manufacturing portfolio): 

 

In the manufacturing benchmark portfolio most of the dependence is also concentrated in 

the centre of the pairs of stocks’ joint distributions, as indicated by the predominance of 

the Frank copula in each of the four period scenarios considered. However, despite the 

manufacturing and retail benchmark portfolios having most of the dependence 

concentrated in the centre of the joint distributions, the manufacturing benchmark 

portfolio has it significantly smaller. This makes the manufacturing benchmark portfolio 

more dependence risky than the retail in times of financial turbulence. Another 

implication stemming from the high concentration of dependence the manufacturing 

benchmark portfolio has in the centre is that its returns are liable to change less frequently 

than those of the retail in tranquil stock market conditions and have a high probability of 

being extreme in non-tranquil periods.  

A look into the Australian economy indicates that the higher riskiness of the 

manufacturing benchmark portfolio stems from the specific type of interdependence and 

multiplier effects it has with the Australian resources sector (ARA, 2014; Savills 

Research, 2014; Delloite, 2013; Mehmedovic et al., 2011), an important driver of the 

Australian economy. Specifically, the spill over effects the resources sector has on the 

Australian manufacturing sector differ from those spill over effects the Australian 

resources sector has on the retail sector. The spills over effects on the manufacturing 

sector are more volatile and deal with higher levels of uncertainty and risk aversion on 

behalf of investors. A possible explanation for this is that spending and investment in the 

manufacturing sector tends to require more capital.  

The predominance of the Frank copula in the GFC period scenario suggests that most of 

the dependence relationships in that period are of nonlinear type. Besides, the returns of 

the manufacturing benchmark portfolio appear to be driven by complex relationships of 

dependence in the centre. The reduced presence of the Frank and increased presence of 

the Gaussian during the post-GFC suggests that the dependence relationships of the 

manufacturing stocks in that period are more of linear type. It also reflects the reduced 

volatility in the financial stock markets during the post-crisis period and a less chaotic 

world of dependence relationships. 

Unlike in the retail benchmark portfolio, the Student-t copula in the manufacturing 

benchmark portfolio has its smallest presence in the GFC and its largest in the pre-GFC, 

indicating that most of the dependence during the GFC period scenario is of nonlinear 
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and asymmetric type. This in turn, supports the idea about the manufacturing stocks being 

riskier than the retail stocks, and their propensity to yield negatively skewed returns when 

the financial stock markets lack the investors’ confidence.  

From the GFC to the post-GFC period scenarios the dependence structure is observed to 

change slightly, with minor increases in the number of stocks displaying positive tail 

dependence. This information suggests that the Australian manufacturing sector lagged 

behind the effects of the 2008-2009 GFC until the end of 2012. The recovery rate of the 

retail sector during the 2008-2009 GFC was observed to be higher than that of the 

manufacturing sector. Research conducted by the Australian Department of Innovation, 

Industry, Science and Research indicates that the manufacturing sector indeed recover at 

a slower pace during the post-crisis period (see also KordaMentha, 2013; CT, 2012; 

Green & Roos, 2012; NAB, 2012; DIISR, 2010).
 
With respect to model selection, the d-

vine copula model is observed to most frequently select the Frank copula under each of 

the four period scenarios considered. The d-vine is consequently the best model to 

account for the multivariate dependence structure of the manufacturing benchmark 

portfolio.  

The significance testing of the manufacturing benchmark portfolio’s relative comparison 

of dependence concentration displayed in Table 7-4 indicates that its overall dependence 

concentration in the centre is at the 95% confidence level significantly larger than those 

of the iron ore-nickel and oil-gas, and significantly smaller than that of the retail. This 

information confirms the lower dependence riskiness of the manufacturing stocks relative 

to the iron ore, nickel and oil stocks during crisis periods. It also confirms the higher 

dependence riskiness of the manufacturing stocks relative to the retail stocks in similar 

market conditions. The asymmetric dependence in the negative tail of the manufacturing 

stocks is significantly smaller than those of the iron ore, nickel, coal, uranium, oil, gas 

and mix-metals stocks. The portfolio’s symmetric dependence concentration in the tails is 

significantly larger than those of the coal-uranium and mix-metals, and significantly 

smaller than that of the retail benchmark portfolio. 

 

 

 



116 
 

Table 7-4: Significance testing of the manufacturing benchmark portfolio’s relative comparison 

of dependence 

Significance testing of 

dependence 
Gold 

Iron ore-

nickel 
Coal-

uranium Oil-gas Mix-metals Retail 

 

 

Overall dependence (centre) 

 

Frank T-test  -0.24 7.26 0.95 3.67 0.69 3.34 

 
Statistical significance 

 

Neither Sig. larger Neither Sig. larger Neither Sig. smaller 

 

 

Overall dependence (negative tail) 

 
Clayton T-test 1.08 -3.48 -3.10 -3.12 -1.18 -0.75 

Gumbel 180 T-test -3.59 -6.89 -2.99 -5.62 -0.79 -1.38 

Joe 180 T-test 0.60 -3.28 -1.55 -0.15 -0.79 2.46 
Joe-Frank 180 T-test -1.04 -1.78 -2.78 -3.09 -3.30 0.35 

 

Statistical significance 
 

Neither Sig. smaller Sig. smaller Sig. smaller Neither Neither 

 

 

Overall dependence (positive tail) 
 

Gumbel T-test -1.07 3.63 1.65 0.09 1.96 -1.95 

Clayton 180 T-test 2.36 2.74 3.15 2.73 2.21 -1.35 

Joe T-test 3.00 1.29 2.46 -1.32 1.91 -1.81 

Joe-Frank T-test -1.46 2.61 0.12 3.40 -2.82 0.45 
 

Statistical significance 

 

Sig. larger Sig. larger Sig. larger Sig. larger Neither Neither 

 

 

Symmetric dependence (tails) 

 
Student-t T-test -0.10 -0.16 3.82 0.78 4.29 -2.44 

 

Statistical significance 

 

Neither Neither Sig. larger Neither Sig. larger Sig. smaller 

 

 
Asymmetric dependence (negative tail) 

 
Clayton T-test 1.08 -3.48 -3.10 -3.12 -1.18 -0.75 

Gumbel 180 T-test -3.59 -6.89 -2.99 -5.62 -0.79 -1.38 
 

Statistical significance 

 

Sig. smaller Sig. smaller Sig. smaller Sig. smaller Neither Neither 

 

 

Asymmetric dependence (positive tail) 

 

Gumbel T-test -1.07 3.63 1.65 0.09 1.96 -1.95 
Clayton 180 T-test 2.36 2.74 3.15 2.73 2.21 -1.35 

 

Statistical significance 
 

Sig. larger Sig. larger Sig. larger Sig. larger Sig. larger Neither 

Critical value= 𝑡(0.05,22)=±2.07  
Notes: The table displays the significance testing of the manufacturing benchmark portfolio’s relative comparison of dependence 
concentration. The top row displays the names of the portfolios against which the manufacturing benchmark portfolio is compared 

with. The first column from left to right shows the copulas to which the t-test is implemented and the statistical significance 

category. The rest of the columns display the resulting t-test values, the type of dependence being tested and its location, and the 
significance testing results. The bottom row states the critical value used to determine the existence or not existence of statistical 

significance. The dependence concentration of a portfolio could be significantly smaller or significantly larger than that of other 

portfolio or neither. When 4 copulas are used to determine the statistical significance it is required that the t-values of at least 2 
copulas are larger or smaller than the critical value. If only two copulas are used to determine statistical significance, the t-value 

of at least one copula is required to be larger or smaller than the critical value. 
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7.3 Discussion of results 

The identification of the retail benchmark portfolio as being less dependence risky than 

the manufacturing in times of financial turbulence and in tranquil periods has to do with 

the specific type of economic linkages and relationship of dependence each of the stock 

portfolios’ underlying sectors has with the Australian resources sector: the mining and 

energy sectors. In this regard, The Australian Retailers Association (2014), Savills 

Research (2014), Delloite (2013) and Mehmedovic et al. (2011) have identified a 

relationship of dependence between the Australian benchmark manufacturing sector and 

the resources sector. The predominance of the Frank copula in the dependence structure 

matrices of the retail and manufacturing benchmark portfolios is a feature shared with the 

gold, coal-uranium and mix-metals. The large presence of the Frank copula in the 

portfolios’ dependence structure matrices indicates that the portfolios have low 

dependence risk in market conditions characterized by low confidence in the financial 

stock markets. This specific type of dependence concentration also indicates that the 

Frank copula is the most suitable model to account for the linear and nonlinear 

dependence relationships in the centre. 

The recognition of the r-vine copula model as the most suitable to account for the 

multivariate dependence structure of the retail benchmark portfolio could, along with 

Dissmann (2010) and Dissmann et al. (2013), indicate that the retail benchmark 

portfolio’s dependence structure is more complex than that of the manufacturing thus, 

requiring a vine copula model with greater flexibility. The vine copula modelling of 

dependence undertaken in this chapter, relative to the dependence risk modelling 

conducted by Fischer et al. (2009), Berg and Aas (2009), Aas et al. (2009), Chollete et al. 

(2009) and Heinen and Valdesogo (2009), has the comparative advantage of using a five-

stage copula counting technique to dissect, organize, analyse and interpret the 

dependence structure of the assets modelled. As a result, a more comprehensive analysis 

of dependence risk is conducted. This chapter’s modelling of the Australian retail and 

manufacturing sectors may also be the first that thoroughly examines their dependence 

risk dynamics using pair vine copulas.  
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7.4 Summary 

 

This chapter implemented the copula counting technique to dissect, analyse and interpret 

the dependence structure and dependence risk dynamics of the retail and manufacturing 

benchmark portfolios. The retail benchmark portfolio was found to have most of the 

dependence concentrated in the centre of the joint distributions, an indication that the 

retail stocks have low dependence risk in non-tranquil stock market conditions and high 

dependence risk when the financial stock markets behave smoothly. These findings were 

confirmed by the actual performance of the retail sector during the 2008-2009 global 

financial crisis. 

The manufacturing sector while having most of the dependence concentrated in the centre 

of the joint distributions, was acknowledged to have significantly smaller concentration 

of dependence in the centre, relative to the retail benchmark portfolio. As a result, the 

manufacturing benchmark portfolio is identified, at the 95% confidence level, to be 

significantly more dependence risky than the retail when the stock markets are unstable 

and when they are stable. The specific type of relationship and economic linkages the 

Australian resources sector has with the retail sector were identified to be important 

determinants of the retail sector’s outperformance over the manufacturing sector. 
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CHAPTER 8 

 
       PORTFOLIO OPTIMIZATION  

 

This chapter consists of three sections: introduction, average model convergence, and 

portfolio optimization  

 

The introduction section states the motivation for the selection of multiple risk measures 

threaded with linear and nonlinear optimization methods to estimate the minimum risk 

optimal portfolios. The average model convergence section explains the average model 

convergence perspective proposed in this thesis to identify the stocks that could be good 

candidates for investment and to address the investment confidence problem underlying 

any type of portfolio optimization. The portfolio optimization section handles the 

estimated multiple risk measure-based optimal portfolios’ weight allocations using the 

average model convergence perspective. The portfolios are compared in terms of their 

riskiness, with the most investment risky and least investment risky portfolios being 

identified.  

 

8.1 Introduction 

 

The multiple risk measure-based portfolio optimization conducted in this chapter 

minimizes the risk of the portfolios subject to a constant target return across portfolios. 

Some of the risk measures employed penalize the return distribution taking as a reference 

point a threshold value. These risk measures are known as downside risk measures and 

are characterized for being asymmetric in their dealing with the left tail or loss function 

of the return distribution (Morton et al., 2006; Chekhlov et al., 2003; Krokhmal et al., 

2002; Rockafellar & Uryasev, 2000; Grootveld & Hallerbach, 1999; Nawrocki, 1999; 

Young, 1998; Konno & Shirakawa, 1994; Sortino & Price, 1994; Konno & Yamazaki, 

1991). The risk measures identified as risk measures from modern portfolio theory scale 

the observations deviating from the measure of central tendency according to convex and 

linear functions (Ghalanos, 2013; Markowitz, 1959, 1952). Multiple risk measures and 
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optimization methods are chosen for the optimization of the mining, energy, retail and 

manufacturing portfolios because they provide a wide array of investment scenarios that 

may cater for the investor’s risk and return preferences, while setting the ground for the 

use of the “average model convergence” perspective. 

This chapter’s objectives are to identify the stocks that could be good candidates for 

investment, the least and most investment risky portfolios and the portfolio that offers the 

best risk-return trade-off.  

 

8.2 The “average model convergence” 

 

The average model convergence perspective proposed in this thesis is a simple approach 

to handling the multiple optimal weight allocations resulting from the fit of various 

optimization methods and risk measures in the form of portfolio optimization model 

specifications. The average model convergence represents a shift of perspective in the 

sense that it switches the focus of attention from the search of the best optimization 

method and risk measure to be used for the optimization of portfolios to the search for the 

stocks in which most of the model specifications’ optimal weight allocations converge, 

on average. Model convergence and model consensus in the optimal weights is sought.  

The proposed approach by shifting the focus of attention it attempts to address in a more 

objective manner the optimal stock selection and investment confidence problems 

underlying any type of portfolio optimization and faced by investors when having to 

select stocks from a wide array of optimal investment scenarios. The multiple risk 

measure-based portfolio optimization that does not consider the average model 

convergence tends to adopt a subjective solution to the optimal stock selection and 

investment confidence problems.  

In identifying the stocks that are good candidates for investment, the average of the 

stocks’ optimal weights resulting from the fit of the various model specifications is 

compared with each of the optimal weights. Thus, the stocks whose optimal weights do 

not largely deviate from the average of the optimal weights satisfy the average model 

convergence and are discerned as good candidates for investment. In Chapter 9 the 

average model convergence on the selected stocks is tested for statistical significance at 
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the 95 and 99 per cent confidence levels. Also, it will be noticed that several of the stocks 

selected by the average model convergence have the investment features of being 

allocated large weights by most of the portfolio optimization model specifications and of 

having a high return relative to risk.  

 

8.3 Portfolio optimization  

 

The five risk measures fitted to the mining, energy, retail and manufacturing data sets to 

estimate the minimum risk optimal portfolios are the variance, MAD, Minimax, CVaR 

and CDaR. With the exception of the variance risk measure, which is threaded with a 

nonlinear quadratic optimization method, all others are threaded with linear model 

specifications. The CVaR risk measure uses probabilities to model the negative tail of the 

return distribution and forecast the portfolio’s tail loss. Thus, it provides a probabilistic 

approximation of the loss that will exceed the VaR, with the VaR being used as the 

portfolio’s threshold risk value in the negative tail (Krokhal et al., 2003). The estimation 

of the CVaR considers a 1-day time horizon and a 95% confidence level. The CVaR 

estimate indicates that with 95% probability the portfolio’s loss will not exceed the 1-day 

VaR. 

In the optimization of the portfolios with respect to the CDaR, the drawdowns of the 

historical return distribution are model to forecast the portfolio’s loss. A portfolio’s 

drawdown on a sample path is understood as the “the drop of the portfolio’s value 

relative to the maximal value attained in the previous path’s returns” (Krokhmal et al., 

2003). The time horizon and confidence level used in the portfolio optimization with 

respect to the CDaR is similar to that used in the optimization with respect to the CVaR. 

The CDaR estimate indicates that with 95% probability the portfolio’s drop in value will 

not exceed a certain percentage. The Minimax risk measure is mainly concerned with 

wealth preservation even if the return of the portfolio is zero (Ortobelli et al., 2005). This 

specific type of portfolio optimization is indicated to adjust quickly to structural shocks 

(Schaarschmidt & Schanbacher, 2012). The risk of the portfolio under the Minimax risk 

measure is interpreted in percentage values, just as the risk of the portfolios resulting 

from the fit of the variance and MAD. While the optimization with respect to the MAD 
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penalizes the absolute deviations from the mean, the variance penalizes the deviation 

from the mean without considering their absolute value (Konno et al., 1993). 

Each of the portfolios considered is optimized using the logarithmic return series 

corresponding to the pre-GFC, GFC, post-GFC and full sample period scenarios. In this 

chapter only the minimum risk optimal portfolios based on the full sample period are 

stated, analysed and discussed. The portfolio optimization results based on the 

logarithmic return series corresponding to the pre-GFC, GFC, post-GFC have been 

placed in Appendix D. Those results are not discussed because the analysis conducted in 

this chapter suffices to show how to use the average model convergence to optimally 

select stocks. The target return for the optimization of the portfolios is 4.2%. This specific 

target return value is reasonable relative to the 3.7% average annual return offered by 

cash deposits in Australia (Russell Investments & ASX, 2014). It should be noticed that 

the minimum risk portfolio optimization proposed is time invariant and the resulting 

weights are, as a consequence, determined by the historical distribution of the stock 

returns. 

 

8.3.1 Mining portfolios 

 

The application of the average model convergence to the gold mining portfolio’s optimal 

weight allocations displayed in Table 8-1 indicates that most of the optimization methods 

and risk measures converge on average in the ST. BARBARA (SBMX) stock, when the 

portfolio optimization with respect to the CDaR is ignored. If the model specifications 

with respect to the CDaR and Minimax are discarded, the remaining models’ optimal 

weights converge on average in NORTHWEST RESOURCES (NWRX) and RESOLUTE MINING 

(RSGS). This type of model convergence could be discerned by gold portfolio investors as 

model consensus and be used to select those stocks as good candidates for investment. In 

addition to that, the average model convergence is able to identify two gold stocks that 

have two of the best mean returns relative to risk in the portfolio. ST. BARBARA (SBMX) 

has in fact the best risk-return trade-off in the entire portfolio and is allocated large 

weights by most of the portfolio optimization model specifications. 
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      Table 8-1: Optimal weights of the gold mining portfolio  

Codes Portfolio optimization Weights’ average Stocks’ descriptive statistics 

Gold 

codes 

CVaR 

(LP) 

CDaR 

(LP) 

Mini

max 

(LP) 

MAD 

(LP) 

Var 

(QP) 
MW 

MW 

ex. 

CDaR 

MW 

ex.  

Minima

x 

& 

CDaR 

𝛍 𝛔𝟐 K SK 

SBMX 30.01 44.28 24.25 24.93 29.23 30.54 27.11 28.06 0.07 0.18 4.56 -0.05 
NWRX 3.53 0 0 4.18 4.53 2.45 3.06 4.08 -0.02 0.44 26.64 -1.10 
NSTX 19.62 6.39 31.72 23.75 19.95 20.29 23.76 21.11 0.11 0.37 10.66 0.16 
SHKX 0 0 0 0 0 0.00 0.00 0.00 -0.17 0.30 4.29 0.47 
DEGX 0 0 0 0 0 0.00 0.00 0.00 -0.18 0.32 11.40 1.08 
RSGX 13.54 0 0 14.15 13.28 8.19 10.24 13.66 0.01 0.15 5.75 -0.23 
AXMX 0 0 0 0 0 0.00 0.00 0.00 -0.22 0.44 16.79 -0.15 
ORNX 0 0 0 0 0 0.00 0.00 0.00 -0.16 0.36 6.61 -0.03 
RCFX 0 0 0 0 0 0.00 0.00 0.00 -0.14 0.61 5.67 0.65 
EXMX 0 0 0 0 0 0.00 0.00 0.00 -0.17 1.78 13.85 0.02 
TAMX 0 0 0 1 0 0.20 0.25 0.33 -0.05 0.26 17.94 0.85 
GLNX 0 0 0 0 0 0.00 0.00 0.00 -0.41 1.14 563.41 -17.93 
MOYX 0 0 0 0 0 0.00 0.00 0.00 -0.15 0.45 22.31 0.11 
EVNX 6.91 14.28 0 4.21 5.98 6.28 4.28 5.70 0.00 0.32 10.79 0.74 
AUZX 0 0 0 0 0 0.00 0.00 0.00 -0.14 2.15 16.55 -0.00 
HEGX 0 0 0 0 0 0.00 0.00 0.00 -0.09 0.29 3.09 0.45 
KMCX 0 0 0 0 0 0.00 0.00 0.00 -0.21 0.53 45.01 -2.27 
IRCX 13.66 35.05 0 13.9 15.63 15.65 10.80 14.40 0.01 0.28 10.24 0.70 
HAOX 6.97 0 0 5.24 3.59 3.16 3.95 5.27 -0.02 0.67 18.06 1.85 
CTOX 5.77 0 44.03 8.66 7.8 13.25 16.57 7.41 -0.02 0.19 27.91 2.05 

P-Ret 0.042 0.042 0.042 0.042 0.042 NA NA NA NA NA NA NA 

P-Risk 5.55 103.02 15.63 1.80 0.062 NA NA NA NA NA NA NA 
Notes: This table reports the minimum risk optimal weights of the gold sector portfolio in percentage. The abbreviations 
LP, QP, MW and Var stand for linear programing, mean-variance quadratic programming, mean of weights and variance. 

The names and codes of the stocks are provided in Table 3-1. The R-ret and P-Risk are the portfolio’s return and risk, 

respectively. MW ex. CDaR and MW ex. Minimax & CDaR refer to the mean of weights excluding the CDaR and, the 

Minimax and CDaR measures, respectively. The μ, σ2, K and SK stand for mean, variance, kurtosis and skewness. 

Although the descriptive statistics could be used to identify the stocks that could be good 

candidates for investment, their identification by means of the average model 

convergence provides investment confidence that is based on model convergence and 

model consensus. The most extreme weight allocations are produced by the model 

specifications with respect to the CDaR and Minimax. This weight allocation pattern is 

encountered in each of the portfolios considered.  Also, notice that most likely the reason 

why several stocks are allocated zero weights is because the risk measures and 

optimization models identify those stocks as high risk. 

Out of the gold stocks with the largest kurtosis CITIGOLD (CTOX) offers the best risk-

return trade-off since it has a small negative mean return, a relatively small variance and 

a large positive skewness.
 
Out of the gold stocks with the largest skewness CITIGOLD 

(CTOX) has the less adverse mean return relative to risk. The gold stocks’ descriptive 

statistics also indicate that ST. BARBARA (SBMX), NORTHERN STAR (NSTX), RESOLUTE 

MINING (RSGS) and INTERMIN RESOURCES (IRCX) have the largest mean return relative to 

risk. Despite INTERMIN RESOURCES (IRCX) and NORTHERN STAR (NSTX) having two of 
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the best risk-return trade-offs in the portfolio, the average model convergence does not 

identify them as good candidates for investment. The risk comparison of the portfolio 

with the rest of the portfolios indicates that it is more investment risky than the iron ore-

nickel, coal-uranium, mix-metals, retail and manufacturing and less investment risky than 

the oil. 

Table 8-2: Optimal weights of the iron ore-nickel mining portfolio  

Codes Portfolio optimization Weights’ average Stocks’ descriptive statistics 

Ore-

nickel 

codes 

CVaR 

(LP) 

CDaR 

(LP) 

Mini

max 

(LP) 

MAD 

(LP) 

Var 

(QP) 
MW 

MW 

ex. 

CDaR 

MW 

ex.  

Minima

x 

& CDaR 

𝛍 𝛔𝟐 K SK 

BHPX 46.72 53.15 39.52 39.38 39.62 43.68 41.31 41.91 0.04 0.05 4.10 -0.23 
GBGX 0.00 0.00 0.00 2.27 0.62 0.58 0.72 0.96 0.09 0.20 5.25 0.32 
MCRX 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 3.91 0.43 
WSAX 1.70 0.00 0.00 5.50 2.74 1.99 2.49 3.31 0.05 0.10 4.62 0.08 
AGOX 1.83 0.00 4.19 2.10 4.04 2.43 3.04 2.66 0.11 0.21 6.70 0.64 
FMSX 1.48 0.86 0.00 3.15 2.21 1.54 1.71 2.28 0.08 0.64 283.20 10.78 
GRRX 0.00 0.00 0.00 1.62 2.20 0.76 0.96 1.27 -0.01 0.20 10.65 0.39 
ARHX 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.13 0.33 8.81 1.01 
ARI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.05 0.08 6.26 -0.18 
FCNX 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.18 0.37 12.14 0.72 
POSX 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.05 0.38 22.34 1.94 
HRRX 0.63 0.00 0.00 4.12 2.59 1.47 1.84 2.45 -0.03 0.22 13.26 1.37 
MGXX 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.16 6.59 0.12 
ADYX 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.11 0.42 13.36 1.46 
FMGX 6.81 4.32 0.55 5.35 5.41 4.49 4.53 5.86 0.15 0.19 10.82 0.44 
ILUX 27.35 41.66 46.59 22.64 27.38 33.12 30.99 25.79 0.04 0.07 3.30 0.10 
IGOX 1.44 0.00 9.14 5.88 3.84 4.06 5.08 3.72 0.06 0.12 3.31 0.22 
SHDX 3.32 0.00 0.00 2.70 2.46 1.70 2.12 2.83 -0.05 0.29 10.49 0.50 
MLMX 8.71 0.00 0.00 5.27 6.87 4.17 5.21 6.95 0.02 0.22 2.91 0.36 
MOLX 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.12 0.29 5.61 0.67 

P-Ret 0.042 0.042 0.042 0.042 0.042 NA NA NA NA NA NA NA 

P-Risk 4.39 40.91 7.94 1.35 0.035 NA NA NA NA NA NA NA 
Notes: This table reports the minimum risk optimal weights of the iron ore-nickel sector portfolio in percentage. The 
abbreviations LP, QP, MW and Var stand for linear programing, mean-variance quadratic programming, mean of 

weights and variance. The names and codes of the stocks are provided in Table 3-1. The R-ret and P-Risk are the 

portfolio’s return and risk, respectively. MW ex. CDaR and MW ex. Minimax & CDaR refer to the mean of weights 

excluding the CDaR and, the Minimax and CDaR measures, respectively. The μ, σ2, K and SK stand for mean, variance, 

kurtosis and skewness. 

The optimal weight allocations of the iron ore-nickel mining portfolio displayed in Table 

8-2 indicate that most of the optimization methods and risk measures converge on 

average in the BHP BILLITON (BHPX), when the optimal weight allocations with respect to 

the CDaR and CVaR are ignored. This stock, in addition to that, is allocated large weights 

by most of the portfolio optimization model specifications and, according to the stocks’ 

descriptive statistics, it has the largest return relative to risk in the entire portfolio. The 

stock is thus a good candidate for investment not only because of the large weights it is 

allocated and the large positive return it has relative to risk but primarily because it is 

backed or supported by model convergence or model consensus. Notice also that there 

are cases where most of the portfolio optimization model specifications allocate zero 
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weights to stocks with high return. As compared to other stocks with high return and low 

cvariance that are allocated large weights, those stocks while having a high return also 

have a large variance. Consequently, this is the reason why they are allocated a zero 

weight, and occurs in other portfolios too. 

Out of the iron ore and nickel stocks with the largest kurtosis and skewness FLINDERS 

MINES (FMSX) offers the best risk-return trade-off. BHP BILLITON (BHPX), ILUKA 

RESOURCES (ILUX) and FORTESCUE METALS (FMGX) offer the highest return relative to 

risk. Out of these stocks only BHP BILLITON (BHPX) is backed by the average model 

convergence. The risk comparison of the portfolio with the rest of the portfolios indicates 

that it is less dependence risky than the gold, mix-metals coal-uranium and oil-gas and 

more risky than the retail and manufacturing benchmark portfolios. 

  Table 8-3: Optimal weights of the mix-metals leptokurtic portfolio  

Codes Portfolio optimization Weights’ average Stocks’ descriptive statistics 

Mix-

metals  

codes 

CVaR 

(LP) 

CDaR 

(LP) 

Mini

max 

(LP) 

MAD 

(LP) 

Var 

(QP) 
MW 

MW 

ex. 

CDaR 

MW 

ex.  

Minima

x 

& 

CDaR 

𝛍 𝛔𝟐 K SK 

RIOX 31.22 0.00 25.39 33.03 32.88 24.50 30.63 32.38 0.03 0.07 33.29 -2.25 
BCDX 0.18 0.00 0.00 0.00 0 0.04 0.05 0.06 -0.21 0.31 85.38 -3.95 
CAZX 2.22 0.03 0.00 1.01 1.6 0.97 1.21 1.61 -0.01 0.47 48.68 -2.00 
CDUX 7.97 34.73 0.00 7.36 8.32 11.68 5.91 7.88 0.09 0.32 35.59 -0.34 
FMSX 3.38 12.14 0.00 4.00 4.03 4.71 2.85 3.80 0.08 0.64 283.20 10.78 
FNTX 0.16 0.00 0.00 0.69 1.27 0.42 0.53 0.71 -0.04 0.68 49.29 2.91 
GLNX 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 -0.41 1.14 563.41 -17.94 
KMCX 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 -0.21 0.53 45.01 -2.27 
MAHX 6.17 0.00 18.85 11.22 13.67 9.98 12.48 10.35 0.01 0.13 29.61 -2.04 
NAVX 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 -0.13 0.38 14.66 -0.66 
PNAX 1.53 0.00 0.00 3.54 4.49 1.91 2.39 3.19 0.07 0.21 33.56 1.86 
PHRX 2.03 0.00 5.92 0.08 0.06 1.62 2.02 0.72 -0.12 0.78 304.36 -0.24 
PDZX 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 -0.23 1.11 868.23 -24.02 
RMSX 16.10 26.64 7.71 8.82 10.86 14.03 10.87 11.93 0.07 0.25 68.89 3.86 
SARX 17.67 0.00 38.10 17.67 13.18 17.32 21.66 16.17 0.10 0.26 142.80 6.49 
SIRX 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 -0.42 1.80 1074.1 -28.03 
AYNX 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 -0.21 0.65 888.76 -24.45 
UMLX 0.00 12.36 4.03 0.00 0 3.28 1.01 0.00 -0.10 0.20 85.65 -3.42 
BWDX 8.06 0.00 0.00 8.53 5.07 4.33 5.42 7.22 -0.05 0.32 480.33 13.98 
WECX 3.31 14.09 0.00 4.05 4.55 5.20 2.98 3.97 -0.03 0.24 150.40 -6.72 

P-Ret 0.042 0.042 0.042 0.042 0.042 NA NA NA NA NA NA NA 

P-Risk 4.77 88.52 10.83 1.44 0.043 NA NA NA NA NA NA NA 
Notes: This table reports the minimum risk optimal weights of the mix-metals leptokurtic sector portfolio in percentage. 

The abbreviations LP, QP, MW and Var stand for linear programing, mean-variance quadratic programming, mean of 

weights and variance. The names and codes of the stocks are provided in Table 3-4. The R-ret and P-Risk are the 

portfolio’s return and risk, respectively. MW ex. CDaR and MW ex. Minimax & CDaR refer to the mean of weights 

excluding the CDaR and, the Minimax and CDaR measures, respectively. The μ, σ2, K and SK stand for mean, variance, 
kurtosis and skewness. 
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The optimal weight allocations of the mix-metals leptokurtic portfolio displayed in Table 

8-3 indicate that the portfolio optimization model specifications converge on average in 

RIO TIONTO (RIOX) and CUDECO (CUX), when the model specifications with respect to the 

CDaR and Minimax are ignored. This stock, just as ST. BARBARA (SBMX) from the gold 

mining portfolio and BHP BILLITON (BHPX) from the iron ore-nickel mining portfolio, is 

allocated large weights by most of the model specifications and has the best risk-return 

trade-off in the entire portfolio. Hence, the good investment characteristics of the stock, 

as indicated by its large mean return relative to risk and the large weights it is allocated, 

are further supported by the model convergence.  

The descriptive statistics of the stocks in the mix-metals portfolio indicate that out of the 

stocks with largest kurtosis and skewness FLINDERS MINES (FMSX) offers the best risk-

return trade-off. In terms of mean return and variance, RIO TIONTO (RIXO), SARACEN 

MINERALS (SARX) and PANAUST (PNAX) offer the best risk-return trade-off. Out of these 

stocks only RIO TIONTO (RIXO) is backed by the average model convergence. The risk 

comparison of the portfolio with the rest of the portfolios indicates that it is less 

investment risky than the gold and oil-gas and more risky than the iron ore-nickel, coal-

uranium, retail and manufacturing. 

 

8.3.2 Energy portfolios 

 

The optimal weight allocations of the coal-uranium energy portfolio displayed in Table 8-

4 indicate that most of the portfolio optimization model specifications converge on 

average in COAL BANK (CBQX), AQUILA RESOURCES (AQAX) and COALSPURN (CPLX), if 

the portfolio optimizations with respect to the CDaR and Minimax are ignored. While 

COAL BANK (CBQX) has a negative return, AQUILA RESOURCES (AQAX) and COALSPURN 

(CPLX) have two of the best risk-return trade-offs in the portfolio and are allocated 

relatively large weights. Out of the coal and uranium stocks with the largest kurtosis 

BLACKWOOD (BWDX) has the largest positive skewness and the least adverse risk-return 

trade-off.  

The stocks with the largest return relative to risk in the portfolio are PALADIN ENERGY 

(PDNX), AQUILA RESOURCES (AQAX), SUMMIT RESOURCES (SMMX), COALSPURN (CPLX), 

ALLIANCE RESOURCES (AGSX) and BERKELEY RESOURCES (BKYX). Out of these stocks, 
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only AQUILA RESOURCES (AQAX) and COALSPURN (CPLX) are backed by the average 

model convergence. AQUILA RESOURCES (AQAX), in addition to that, has the largest 

return relative to risk in the entire portfolio. The risk comparison of the coal-uranium 

energy portfolio indicates that it is less investment risky than the mix-metals and gold, 

and more investment risky than the iron ore-nickel mining portfolio. 

Table 8-4: Optimal weights of the coal-uranium energy portfolio  

Codes Portfolio optimization Weights’ average Stocks’ descriptive statistics 

Coal-

uraniu

m 

Codes  

 

CVaR 

(LP) 

CDaR 

(LP) 

Mini

max 

(LP) 

MAD 

(LP) 

Var 

(QP) 
MW 

MW 

ex. 

CDaR 

MW 

ex.  

Minima

x 

& 

CDaR 

𝛍 𝛔𝟐 K SK 

PDNX 0.00  0.00  0.00  2.17  0.00  0.43  0.54  0.72  0.05 0.17 3.65 -0.02 
CBQX 3.97  4.36  1.47  3.70  4.16  3.53  3.33  3.94  -0.03 0.46 13.79 0.15 
CLAX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  -0.31 1.48 1558.4 -37.34 
LRRX 0.00  0.00  0.00  0.10  0.00  0.02  0.03  0.03  -0.21 1.09 9.84 0.26 
AQAX 17.45  0.00  1.41  17.63  16.70  10.64  13.30  17.26  0.10 0.15 7.06 0.59 
SMMX 26.06  59.72  32.32  17.31  19.94  31.07  23.91  21.10  0.11 0.17 4.82 0.43 
GLLX 3.57  14.26  0.00  3.34  4.40  5.11  2.83  3.77  -0.08 0.34 8.34 0.50 
CPLX 12.60  2.40  19.41  12.26  13.58  12.05  14.46  12.81  0.13 0.25 13.43 0.02 
RESX 0.00  13.14  0.00  0.08  0.00  2.64  0.02  0.03  -0.12 0.57 377.64 -12.75 
CNXX 0.84  6.13  0.00  3.50  2.59  2.61  1.73  2.31  0.01 0.36 6.62 0.37 
BWDX 11.49  0.00  0.00  14.86  7.99  6.87  8.59  11.45  -0.05 0.32 480.33 13.98 
UEQX 0.00  0.00  0.00  0.35  0.40  0.15  0.19  0.25  -0.08 0.33 2.86 0.18 
AGSX 1.88  0.00  0.00  4.90  3.84  2.12  2.66  3.54  0.09 0.32 10.80 1.25 
EMAX 5.92  0.00  0.00  5.65  8.36  3.99  4.98  6.64  -0.05 0.11 5.23 -0.45 
FYIX 4.56  0.00  6.83  1.02  2.17  2.92  3.65  2.58  -0.23 0.39 17.55 0.26 
BLZX 0.00  0.00  0.65  0.30  0.69  0.33  0.41  0.33  -0.22 1.08 16.50 0.05 
NSLX 0.00  0.00  0.00  0.60  0.25  0.17  0.21  0.28  -0.17 0.73 57.46 -3.08 
AQCX 0.62  0.00  8.48  0.89  0.81  2.16  2.70  0.77  -0.08 0.69 9.75 0.18 
BKYX 5.51  0.00  14.62  6.88  8.04  7.01  8.76  6.81  0.07 0.29 10.77 -0.17 
WALX 5.51  0.00  14.80  4.47  6.08  7.72  7.72  5.35  -0.04 0.41 28.08 1.04 

P-Ret 0.042 0.042 0.042 0.042 0.042 NA NA NA NA NA NA NA 

P-Risk 4.81 83.68 9.21 1.44 0.042 NA NA NA NA NA NA NA 
Notes: This table reports the minimum risk optimal weights of the coal-uranium sector portfolio in percentage. The 

abbreviations LP, QP, MW and Var stand for linear programing, mean-variance quadratic programming, mean of 
weights and variance. The names and codes of the stocks are provided in Table 3-2. The R-ret and P-Risk are the 

portfolio’s return and risk, respectively. MW ex. CDaR and MW ex. Minimax & CDaR refer to the mean of weights 

excluding the CDaR and, the Minimax and CDaR measures, respectively. The μ, σ2, K and SK stand for mean, variance, 
kurtosis and skewness. 

The minimum risk optimal weight allocations of the oil-gas energy portfolio displayed in 

Table 8-5 indicate that most of the optimization methods and risk measures converge on 

average in BEACH ENERGY (BPTX). This stock, in addition to that, is allocated extremely 

large weights by each of the model specifications and has one of the best risk-return 

trade-offs in the portfolio. This stock could therefore be seen as a good candidate for 

investment because of the large weights it is allocated, the large mean return relative to 

risk it offers and the backing it receives from the model convergence and model 

consensus. Also, with the exception of the model specifications with respect to the MAD 

and variance risk measures, the remaining models assign weights to ORIGIN ENERGY 
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(ORGX) that do not vary much from each other. This stock also has a relatively high 

return relative to risk. 

The oil-gas stocks’ descriptive statistics indicate that out of the oil and gas stocks with the 

largest kurtosis only ORIGIN ENERGY (ORGX) and COOPER (COEX) have a positive mean 

return. Out of the stocks with the largest skewness ORIGIN (ORGX) has the best risk-return 

trade-off. In terms of mean and variance, WOODSIDE (WPLX), ORIGIN (ORGX), APA 

(APAX), BEACH ENERGY (BPTX), SANTOS (STOX) and CALTEX (CTXX) have the best risk-

return trade-offs in the portfolio. The average model convergence only supports the 

selection of two of these stocks. The risk comparison of the portfolio with the rest of the 

portfolios indicates that it is more risky than any other portfolio.  

 

Table 8-5: Optimal weights of the oil-gas energy portfolio 

Codes Portfolio optimization Weights’ average Stocks’ descriptive statistics 

Oil-gas 

Codes  

 

CVaR 

(LP) 

CDaR 

(LP) 

Mini

max 

(LP) 

MAD 

(LP) 

Var 

(QP) 
MW 

MW 

ex. 

CDaR 

MW 

ex.  

Minima

x 

& 

CDaR 

𝛍 𝛔𝟐 K SK 

WPLX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.02 0.04 3.73 -0.11 

AWEX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  -0.01 0.07 2.40 -0.21 

BPTX 94.94  95.13  95.13  93.87  93.87  94.59  94.45  94.23  0.04 0.09 2.35 0.07 

MOGX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  -0.11 0.58 109.85 2.31 

NWEX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  -0.04 0.40 19.03 1.41 

STOX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.02 0.05 4.14 -0.20 

STXX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.01 0.20 3.79 0.55 

ACN 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  -0.08 0.34 145.90 6.48 

LNGX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  -0.01 0.22 2.83 0.47 

CTXX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.01 0.06 1.83 -0.18 

ORGX 4.29  4.87  4.87  0.00  0.00  2.81  2.29  1.43  0.03 0.03 36.52 2.24 

CUEX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  -0.03 0.14 3.74 0.37 

BASX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  -0.16 0.37 29.47 -1.70 

ROCX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  -0.08 0.12 9.70 -0.52 

MELX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 0.22 8.23 1.16 

TPTX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.02 0.51 20.88 -0.86 

DLSX 0.77  0.00  0.00  0.00  0.00  0.15  0.19  0.26  0.03 0.24 9.63 -0.11 

APAX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.02 0.04 6.42 0.05 

SYSX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  -0.19 0.57 23.41 0.96 

COEX 0.00  0.00  0.00  6.13  6.13  2.45  3.07  4.09  0.03 0.12 21.40 0.98 

P-Ret 0.042 0.042 0.042 0.042 0.042 NA NA NA NA NA NA NA 

P-Risk 6.16 88.00 15.69 2.04 0.078 NA NA NA NA NA NA NA 
Notes: This table reports the minimum risk optimal weights of the oil-gas sector portfolio in percentage. The 

abbreviations LP, QP, MW and Var stand for linear programing, mean-variance quadratic programming, mean of 

weights and variance. The names and codes of the stocks are provided in Table 3-2. The R-ret and P-Risk are the 

portfolio’s return and risk, respectively. MW ex. CDaR and MW ex. Minimax & CDaR refer to the mean of weights 

excluding the CDaR and, the Minimax and CDaR measures, respectively. The μ, σ2, K and SK stand for mean, variance, 
kurtosis and skewness. 
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8.3.3 Retail and manufacturing portfolios 

 

The multiple optimal weight allocations of the retail benchmark portfolio displayed in 

Table 8-6 indicate that most of the portfolio optimization model specifications converge 

on average in M2 TELECOM (MTUX), WOOLWORTHS (WOWX) and ARB (ARPX), when the 

optimizations with respect to the CDaR and Minimax are ignored. All three stocks have 

some of the best risk-return trade-offs in the entire portfolio and have been allocated large 

weights. The stocks are therefore desirable for investment not only because of their large 

return relative to risk and the large weights they have been allocated, but also because 

they are backed by the average model convergence. 

Table 8-6: Optimal weights of the retail benchmark portfolio  

Codes Portfolio optimization Weights’ average Stocks’ descriptive statistics 

Retail  

Codes 

 

CVaR 

(LP) 

CDaR 

(LP) 

Mini

max 

(LP) 

MAD 

(LP) 

Var 

(QP) 
MW 

MW 

ex. 

CDaR 

MW 

ex.  

Minima

x 

& 

CDaR 

𝛍 𝛔𝟐 K SK 

CCLX 16.83  15.02  30.47  12.78  13.95  17.81  18.51  14.52  0.03  0.03  5.15  -0.17  
HILX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  -0.07  0.06  6.78  0.14  
GWAX 0.00  0.00  1.97  0.00  0.00  0.39  0.49  0.00  -0.02  0.05  2.77  0.14  
MTUX 12.82  22.62  14.13  11.08  11.34  14.40  12.34  11.75  0.12  0.10  4.69  0.50  
MTSX 10.10  33.90  1.77  7.71  7.55  12.21  6.78  8.45  0.01  0.02  4.38  -0.14  
WOWX 29.52  28.46  1.84  27.45  25.60  22.57  21.10  27.52  0.03  0.02  5.57  -0.33  
ARPX 19.57  0.00  31.72  22.11  22.90  19.26  24.08  21.53  0.05  0.03  5.47  0.10  
CCVX 3.51  0.00  0.00  5.21  4.29  2.60  3.25  4.34  0.04  0.10  5.38  -0.21  
DJSX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.05  6.22  -0.26  
DLCX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  -0.07  0.60  9.17  0.33  
HVNX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  -0.02  0.05  4.05  0.16  
JBHX 0.00  0.00  0.00  2.54  2.93  1.09  1.37  1.82  0.04  0.06  4.72  -0.11  
RCG 1.85  0.00  0.00  0.28  0.44  0.51  0.64  0.86  0.00  0.21  8.64  0.20  
SFHX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  -0.04  0.10  5.17  0.48  
SULX 5.38  0.00  10.78  8.75  8.56  6.69  8.37  7.56  0.05  0.06  6.68  -0.25  
WESX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  -0.01  0.03  8.31  -0.39  
FANX 0.00  0.00  0.00  0.20  0.00  0.04  0.05  0.07  -0.03  0.06  9.59  -0.44  
GZLX 0.41  0.00  7.32  1.71  2.42  2.37  2.97  1.51  -0.03  0.05  17.29  -0.80  
FLTX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.07  9.55  0.07  
JETX 0.00  0.00  0.00  0.16  0.00  0.03  0.04  0.05  -0.02  0.10  5.78  0.12  

P-Ret 0.042 0.042 0.042 0.042 0.042 NA NA NA NA NA NA NA 

P-Risk 2.09 25.94 3.65 0.669 0.008 NA NA NA NA NA NA NA 
Notes: This table reports the minimum risk optimal weights of the retail sector portfolio in percentage. The abbreviations 

LP, QP, MW and Var stand for linear programing, mean-variance quadratic programming, mean of weights and variance. 

The names and codes of the stocks are provided in Table 3-3. The R-ret and P-Risk are the portfolio’s return and risk, 
respectively. MW ex. CDaR and MW ex. Minimax & CDaR refer to the mean of weights excluding the CDaR and, the 

Minimax and CDaR measures, respectively. The μ, σ2, K and SK stand for mean, variance, kurtosis and skewness. 

 

According to the stocks’ descriptive statistics, out of the retail stocks with the largest 

kurtosis FLIGHT CENTER (FLTX) has the best risk-return trade-off. Out of the retail stocks 

with the largest skewness M2 TELECOM (MTUX) and WOOLWORTHS (WOWX) offer the 

http://product.datastream.com/Navigator/search.aspx?dsid=XECU901&useroption=162077092166082172&host=Advance&selectDatatypes=true&multiSelect=true&q=RCG&prev=99_JB+HI-FI&s=D&prev_csrc=0&rq=cGFnZT0xJnE9SkIlMjBISS1GSSZzPUQ1%7CcGFnZT0xJnE9SEFSVkVZJTIwJTIwTk9STUFOJnM9RA2%7CcGFnZT0xJnE9REVMRUNUQSZzPUQ1%7CcGFnZT0xJnE9REFWSUQlMjBKT05FUyZzPUQ1%7CcGFnZT0xJnE9Q0FTSCUyMENPTlZFUlRFUlMmcz1E0%7CcGFnZT0xJnE9Q0FTSCZzPUQ1%7CcGFnZT0xJnE9QVJCJnM9RA2%7CcGFnZT0xJnE9V09PTFdPUlRIUyZzPUQ1%7C
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best risk-return trade-off. In terms of mean and variance, COCA-COLA (CCLX), M2 

TELECOM (MTUX), WOOLWORTHS (WOWX) and ARB (ARPX) offer the best risk-return 

trade-off. The average model convergence supports the selection of most of these stocks. 

The risk comparison of the portfolio with the rest of the portfolios indicates that it is less 

risky than any other portfolio. 

The multiple optimal weight allocations of the manufacturing benchmark portfolio 

displayed in Table 8-7 indicate that most of the portfolio optimization model 

specifications converge on average in CSL (CSLX), BRICKWORKS (BKWX) and ANSELL 

(ANNX), when the model specifications with respect to the CDaR and Minimax are 

ignored. These stocks’ descriptive statistics indicate that CSL (CSLX) and ANSELL (ANNX) 

have two of the largest mean returns relative to risk in the portfolio and are allocated 

large weights by most of the optimization methods and risk measures. These two 

investment features together with the average model convergence make those stocks to be 

good candidates for investment. 

Table 8-7: Optimal weights of the manufacturing benchmark portfolio 

Codes Portfolio optimization Weights’ average Stocks’ descriptive statistics 

Manufa

cturing 

codes 

 

CVaR 

(LP) 

CDaR 

(LP) 

Mini

max 

(LP) 

MAD 

(LP) 

Var 

(QP) 
MW 

MW 

ex. 

CDaR 

MW 

ex.  

Minima

x 

& 

CDaR 

𝛍 𝛔𝟐 K SK 

SFCX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  -0.06 0.04 16.39 -1.38 
BLDX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  -0.04 0.05 3.78 -0.14 
BKWX 13.03  7.33  5.33  12.10  10.18  9.59  10.16  11.77  -0.01 0.03 7.57 0.26 
CSRX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  -0.07 0.05 7.69 -0.68 
JHXX 0.00  8.47  0.00  0.00  0.00  1.69  0.00  0.00  0.01 0.06 4.83 0.42 
OLHX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  -0.13 0.15 23.73 -1.04 
CKLX 0.00  0.76  0.00  1.38  1.57  0.74  0.74  0.98  -0.01 0.06 5.08 0.10 
ANNX 17.32  13.03  35.14  15.81  18.35  19.93  21.66  17.16  0.02 0.03 2.50 0.33 
SDIX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  -0.13 0.17 12.64 0.45 
SOMX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  -0.08 0.37 10.52 0.18 
UCMX 0.00  2.79  0.00  0.00  0.00  0.56  0.00  0.00  -0.17 0.25 17.43 -0.60 
FWDX 13.79  0.00  10.24  9.55  12.22  9.16  11.45  11.85  0.02 0.04 6.85 0.04 
FANX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  -0.03 0.06 9.59 -0.44 
KRSX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  -0.08 0.15 11.24 -0.43 
ASBX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  -0.01 0.06 8.43 0.46 
MHIX 0.66  0.00  0.00  3.78  2.27  1.34  1.68  2.24  0.00 0.13 23.90 -0.03 
CSLX 54.70  65.88  49.29  56.52  54.82  56.24  53.83  55.35  0.07 0.03 2.73 0.04 
IDTX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  -0.12 0.10 11.57 -0.13 
CDAX 0.50  0.00  0.00  0.87  0.58  0.39  0.49  0.65  -0.01 0.08 11.39 0.69 
LGDX 0.00  1.75  0.00  0.00  0.00  0.35  0.00  0.00  -0.03 0.18 90.45 -4.44 

P-Ret 0.042 0.042 0.042 0.042 0.042 NA NA NA NA NA NA NA 

P-Risk 2.72 24.49 5.14 0.901 0.015 NA NA NA NA NA NA NA 
Notes: This table reports the minimum risk optimal weights of the manufacturing sector portfolio in percentage. The 

abbreviations LP, QP, MW and Var stand for linear programing, mean-variance quadratic programming, mean of 

weights and variance. The names and codes of the stocks are provided in Table 3-3. The R-ret and P-Risk are the 
portfolio’s return and risk, respectively. MW ex. CDaR and MW ex. Minimax & CDaR refer to the mean of weights 

excluding the CDaR and, the Minimax and CDaR measures, respectively. The μ, σ2, K and SK stand for mean, variance, 
kurtosis and skewness.  
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Out of the stocks with the largest kurtosis MERCHANT HOUSE (MHIX) offers the best risk-

return trade-off. Out of the stocks with the largest skewness CODAN (CDAX) has the least 

adverse risk-return trade-off. In terms of mean and variance, CSL (CSLX), FLEETWOOD 

(FWDX), ANSELL (ANNX) and JAMES HARDIE (JHXX) have the best risk-return trade-offs 

in the portfolio. The average model convergence only supports the selection of two of 

these stocks. The risk comparison of the manufacturing benchmark portfolio with the rest 

of the portfolios indicates that it is more risky than the retail and less risky than any other 

portfolio. 

According to Figure 8-1, where the full sample period efficient frontiers with respect to 

the CVaR are depicted, the efficient frontier of the oil-gas energy portfolio moves 

towards the right at a higher risk-return ratio. Hence, under this particular risk measure 

the oil-gas portfolio is the most risky. The efficient frontiers of the portfolios for each of 

the four period scenarios and risk measures considered have been placed in Appendix C. 

Gold Iron ore-nickel Coal-uranium Oil-gas Mix-metals Retail Manufacturing 

 

Figure 8-1: Full sample period efficient frontiers of the portfolios under the CVaR measure. From left 

to right the efficient frontiers of the gold, iron ore-nickel, coal-uranium, oil-gas, mix-metals, retail 

and manufacturing portfolios are displayed. 

 

The portfolios’ risk analysis for each of the four risk measures and period scenarios 

considered displayed in Table 8-8 indicates that under the full sample period the oil-gas 

energy portfolio is the most risky, followed by the gold mining portfolio. By contrast, the 

retail benchmark portfolio is the least risky, followed by the manufacturing benchmark 

portfolio. Under the pre-GFC and GFC period scenarios the gold mining portfolio is the 

most risky, while the retail remains as the least risky. In the post-GFC period scenario the 

coal-uranium energy portfolio is the most risky, while the retail remains as the least risky. 

Considering that the full sample period accounts for the dependence structure and 

volatility changes between period scenarios and that the number of observations in the 

full sample period is the largest, a higher weight is given to the measure of the portfolios’ 

risk under this period. Thus, overall the oil-gas energy portfolio is the most risky. Since 
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each of the portfolios has been optimized using the same target return, and the least risky 

portfolio is the retail, this portfolio offers the best risk-return trade-off. 

An analysis of the changes in the risk of the portfolios between pairs of period scenarios 

indicates that the portfolios’ risk for each of the risk measures considered is lower during 

the pre-GFC; an indication that the 2008-2009 GFC had not yet unfolded. On the contrary, 

during the GFC period scenarios the portfolios display the highest risk exposure, 

reflecting the exceptionally high volatility in the stock markets. In the post-GFC the 

portfolios display lower risk relative to the GFC. The portfolio’s risk that fluctuates the 

most between period scenarios is the one estimated according to the CDaR. The largest 

CDaR values appear in the GFC and full sample period scenarios. The portfolio’s risk 

that fluctuates the least is the one estimated according to the MAD risk measure. 

Table 8-8: Four-period scenario portfolios’ risk comparison for all risk measures 

Portfolios Gold Iron ore-nickel Coal-uranium Oil-gas Mix-metals Retail Manufacturing 

 

Target portfolio return =0.042 

 

Pre-GFC   

  

CVaR 3.181 2.971 3.059 2.128 2.318 1.309 1.429 

CDaR 19.839 15.674 17.108 8.287 15.983 7.089 10.776 

MinMax 4.256 5.147 4.028 2.615 2.771 1.659 1.821 

MAD 1.117 0.965 0.994 0.731 0.782 0.448 0.519 

Var 0.023 0.014 0.018 0.009 0.011 0.004 0.005 

 

GFC  
  

CVaR 5.962 5.428 5.751 3.556 5.864 2.58 4.675 

CDaR 116.086 39.559 55.146 26.033 93.664 26.864 23.576 

MinMax 11.71 10.387 8.561 6.997 12.762 3.537 7.427 

MAD 1.969 1.756 1.698 1.182 1.829 0.879 1.38 

Var 0.080 0.063 0.057 0.029 0.072 0.014 0.045 

 

Post-GFC 

 

CVaR 4.12 4.003 4.172 2.656 3.914 1.561 1.992 

CDaR 20.167 31.116 38.512 10.704 24.233 8.178 9.323 

MinMax 5.983 5.898 8.305 4.166 6.441 2.344 3.028 

 MAD 1.41 1.32 1.303 0.889 1.261 0.518 0.68 

Var 0.037 0.031 0.049 0.014 0.04 0.005 0.009 

 

Full sample period  

 

CVaR 5.55 4.39 4.81 6.16 4.77 2.09 2.72 

CDaR 103.02 40.91 83.68 88.00 88.52 25.94 24.49 

MinMax 15.63 7.94 9.21 15.69 10.83 3.65 5.14 

MAD 1.80 1.35 1.44 2.04 1.44 0.669 0.901 

Var 0.062 0.035 0.042 0.078 0.043 0.008 0.015 
Notes: This table displays the risk of the portfolios resulting from the fit of the various optimization methods and risk measures. 

The risk of the portfolios is estimated for each of the four financial period scenarios considered. The first column from left to right 
defines the risk of the portfolios for each of the risk measures considered. The target portfolio return used on each of the portfolio 

optimization model specifications to estimate the risk of the portfolios is 4.2%. The same target portfolio return is used for the 

estimation of the portfolio’s risk under the pre-GFC, GFC, post-GFC and full sample period scenarios. 
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A summary of the results indicates that the most risky portfolio is the oil-gas energy 

portfolio, while the least risky is the retail. The retail benchmark portfolio offers the best 

risk-return trade-off because it has the lowest risk subject to a constant target return 

across portfolios. These findings are in its majority consistent with the results from 

Chapters 5, 6 and 7, where the oil-gas energy portfolio is identified to be the second most 

risky during crisis periods, while the retail is the second least dependence risky in similar 

market conditions, and the least dependence risky in tranquil stock market conditions. In 

general, the average model convergence is observed to select stocks that are allocated 

large weights and have a high return relative to risk. The approach proposed appears to 

address in a more objective manner the optimal stock selection and investment 

confidence problems. 

 

8.4 Discussion of results 

 

The identification of the oil-gas energy portfolio as the most investment risky is to a large 

extent consistent with the results from Chapters 5 and 6, where the oil-gas is recognized 

to be the second most dependence risky. This finding is also in line with the literature 

examining the risk of oil stock assets. Faff and Brailsford (1999), for instance, find oil 

prices to exert some influence on the Australian stock markets. Du et al. (2012), Killian 

and Park (2009), Park and Ratti (2008) and Basher and Sadorsky (2006) also identify the 

risk in oil markets in various contexts and conditions. The identification of the retail 

portfolio as the least risky and, consequently, as the one offering the best risk-return 

trade-off is in congruence with the results from Chapter 7, where the retail benchmark 

portfolio outstands as the second least dependence risky during crisis periods and the 

least dependence risky in tranquil periods.  

Relative to the studies of the retail and manufacturing sectors conducted by ARA (2014), 

Savills Research, (2014), Delloite (2013), KordaMentha (2013), CT (2012), Green and 

Roos (2012), NAB (2012), Connolly and Orsmond (2011), AGPC (2011), PC (2011), 

Mehmedovic et al. (2011) and DIISR (2010), this chapter’s research examines thoroughly 

and comprehensively the dependence risk of the asset’s modelled in specific market 

conditions. The comparison of the retail and manufacturing benchmark portfolios with 

the mining and energy portfolios shows that the benchmark portfolios are overall less 

dependence risky and less investment risky. The specific economic linkages each of the 
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sectors has with the Australian resources sector and the diversity of commodity assets 

driving the performance of the Australian resources sector are identified to be the main 

reason for their dependence risk differences. 

The suitableness of the average model convergence perspective to identify stocks with 

high return relative to risk and with large weight allocations suggests that the approach 

proposed is practical, easy to implement and useful. The model convergence and model 

consensus used to address the optimal stock selection and investment confidence 

problems appears to be a distinctive feature in the multiple risk measure-based portfolio 

optimization literature. It is however puzzling that the average model convergence does 

not identify INTERMIN RESOURCES (IRCX) and NORTHERN STAR (NSTX) in the gold 

mining portfolio, SARACEN MINERALS (SARX) and PANAUST (PNAX) in the iron ore-nickel 

mining portfolio, PALADIN ENERGY (PDNX), SUMMIT RESOURCES (SMMX), ALLIANCE 

RESOURCES (AGSX) and BERKELEY RESOURCES (BKYX) in the coal-uranium energy 

portfolio, WOODSIDE (WPLX), APA (APAX), SANTOS (STOX) and CALTEX (CTXX) in the 

oil-gas energy portfolio, COCA-COLA (CCLX) in the retail benchmark portfolio and JAMES 

HARDIE (JHXX) in the manufacturing benchmark portfolio as good candidates for 

investment despite having some of largest returns relative to risk. 

The multiple risk measure-based portfolio optimization conducted in this chapter relative 

to single risk measure optimization by Markowitz (1952), Zhou (2004), Zhou and Yin 

(2003), Alexander and Baptista (2002), Li et al. (2002), Steinbach (2001), Yoshimoto 

(1996), Kroll et al. (1984), He and Litterman (1999), Bevan and Winkelmann (1998), 

Samuelson (1970), Chang et al. (2011) and De Oliveira et al. (2011) is in the least more 

informative. Those studies lack the multi-angle portfolio optimization perspective that 

could cater for the specific risk and return preferences of investors. Relative to the 

multiple risk measure-based portfolio optimization by Krokhmal et al. (2002), Stone 

(1973) and Cheng and Wolverton (2001), the implemented portfolio optimization 

framework addresses more effectively and objectively the optimal stock selection and 

investment confidence problems. 
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8.5 Summary 

 

This chapter fitted linear and nonlinear model specifications with respect to the variance, 

MAD, CVaR, Minimax and CDaR risk measures to estimate the minimum risk optimal 

mining, energy, retail and manufacturing portfolios. The average model convergence 

perspective proposed in this thesis for the optimal stock selection was implemented. In 

the gold mining portfolio the average model convergence selected ST. BARBARA (SBMX), 

NORTHWEST RESOURCES (NWRX) and RESOLUTE MINING (RSGS) as good candidates for 

investment. In the iron ore-nickel mining portfolio, despite the descriptive statistics 

indicating that ILUKA RESOURCES (ILUX) and FORTESCUE METALS (FMGX) have two of 

the largest returns relative to risk, the average model convergence only identified BHP 

BILLITON (BHPX) as good candidate for investment.  

In the mix-metals portfolio RIO TIONTO (RIOX) and CUDECO (CUX) drew the attention of 

the average model convergence. In the coal-uranium energy portfolio, COAL BANK 

(CBQX), AQUILA RESOURCES (AQAX) and COALSPURN (CPLX) were identified as good 

investment choices. In the oil-gas energy portfolio BEACH ENERGY (BPTX) and ORIGIN 

ENERGY (ORGX) were spotlighted by the average model convergence as good investment 

choices. In the retail benchmark portfolio M2 TELECOM (MTUX), WOOLWORTHS (WOWX) 

and ARB (ARPX) caught the attention of the proposed approach to selecting stocks. In the 

manufacturing portfolio, CSL (CSLX), BRICKWORKS (BKWX) and ANSELL (ANNX) were 

selected by the average model convergence as good candidates for investment. 

It is noticed that most of the stocks selected by the average model convergence have 

some of the highest mean returns relative to risk and are allocated large weights by most 

of the portfolio optimization model specifications. Those stocks, in addition to that, were 

backed by the average model convergence and model consensus. It was also noticed that 

some stocks despite having a high return relative to risk were not selected by the average 

model convergence as good candidates for investment. The oil-gas energy portfolio was 

identified as the most risky, while the retail benchmark portfolio was the least risky. The 

retail benchmark portfolio offered the best risk-return trade-off. 
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CHAPTER 9 

 
       HYPOTHESIS TESTING 

 

This chapter consists of two sections: pair vine copula hypothesis testing and portfolio 

optimization hypothesis testing. 

 

The pair vine copula hypothesis testing section deals with the testing of the hypotheses 

that arise from the fit of the pair vine copulas to the portfolios’ data sets. The portfolios’ 

dependence risk differences at various locations of their joint distributions are tested. The 

portfolio optimization hypothesis testing section deals with the testing of the hypothesis 

stemming from the fit of the various optimization methods and risk measures to the 

portfolios modelled. The statistical significance of the average model convergence on the 

stocks is tested and the stock portfolio with the best risk-return trade-off is identified. 

 

9.1  Pair vine copulas hypothesis testing 

 

The number of alternative hypotheses tested in this chapter is eight. Each of these 

alternative hypotheses has been stated in Chapter 3. The number of alternative hypotheses 

tested with respect to the fit of the pair vine copula models is six. Those hypotheses 

compare the portfolios’ dependence risk and the portfolios’ dependence structure changes 

between pairs of period scenarios. The objective is to test for the statistical significance of 

the portfolios’ dependence risk differences and dependence structure changes. The 

portfolios’ dependence risk differences are identified to stem from their dependence 

structure differences which in turn are determined by the dependence concentration 

differences at various locations in the pairs of stocks joint distributions.  

The alternative hypotheses 1 to 4 are tested at the 95% confidence level using a two-

sample two-tailed t-test for the difference of means between dependence concentrations. 

The concentration of dependence in the centre and in the tails of the pairs of stocks’ joint 

distributions is tested. The selection of the 95% confidence level assures with 95% 
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probability that the difference between the means of the dependence concentrations is 

either significant or not significant. Each of the two samples used for the testing of the 

alternative hypotheses 1 to 4 consists of 12 observations, corresponding to 3 vine copula 

models and 4 period scenarios. The degrees of freedom for 12 observations are 22. The 

difference between two portfolios’ dependence concentration is acknowledged to be 

statistically significant if the resulting t-test value is larger or smaller than the critical 

value.  

The testing of the alternative hypothesis 5 follows the same procedure as in the testing of 

the alternative hypotheses 1 to 4. The only differences lie in the number of observations 

used in each of the samples and the number of period scenarios used for the testing. The 

alternative hypothesis 6 is tested using goodness-fit-tests. The pair vine copula models 

that best fit the multivariate dependence structure of the portfolios are sought. Estimating 

the rankings of the optimal weights and applying non-parametric tests to measure the 

strength of association between the portfolios’ risk rankings test the alternative 

hypothesis 7. Employing a one-sample two-tailed t-test for the difference between the 

average of the optimal weights and each of the optimal weights tests the alternative 

hypothesis 8. 

As to the alternative hypotheses 1 to 5, when testing for the dependence risk differences 

in the centre of two portfolios’ joint distributions the two-tailed t-test is fitted to the vine 

models’ frequency of selection of the Frank copula. The reason for this is that this copula 

is designed to capture greater concentration of dependence in the centre of the joint 

distributions. When testing for dependence risk differences in the negative tail the t-test is 

fitted to the vine models’ frequency of selection of the Clayton and 180 degrees rotated 

Gumbel, Joe and Joe-Frank copulas. These copulas are designed to best capture the 

dependence scattered at various locations in the negative tail of the joint distributions. 

When testing for dependence risk differences in the positive tail the t-test is fitted to the 

vine models’ frequency of selection of the Gumbel, Joe, Joe-Frank and 180 degrees 

rotated Clayton copulas. These copulas are suitable to capture the dependence 

concentrated in the positive tail.  

When testing for asymmetric dependence risk differences in the negative and positive 

tails the t-test is fitted to the vine models’ frequency of selection of the Clayton, 180 

degrees rotated Gumbel, and the Gumbel and180 degrees rotated Clayton, respectively. 

These copulas are designed to better account for the dependence concentrated in the 

negative and positive tails. The testing of the portfolios’ symmetric dependence risk 
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differences uses the vine models’ frequency of selection of the Student-t copula. The 

Student-t copula accounts for the dependence in the tails symmetrically.  

This chapter’s objective is to verify and validate the statistical significance of the findings 

from Chapters 5, 6, 7 and 8. 

 

9.1.1 Hypothesis 1 

 

Ha 1: There are mining portfolios with higher dependence risk than others. 

Since the dependence risk of the portfolios is determined by the specific characteristics of 

their dependence concentration in the joint distributions, implementing a two-sample 

two-tailed t-test for the difference of means between two portfolios’ dependence 

concentration tests the alternative hypothesis 1. The significance testing of the mining 

portfolios displayed in Table 9-1 indicates that the gold mining portfolio’s dependence 

concentration in the centre is at the 95% confidence level significantly larger than that of 

the iron ore-nickel mining portfolio. In the negative tail however, the iron ore-nickel has 

it significantly larger than the gold mining portfolio. This information confirms the 

results from Chapter 5 where the iron ore-nickel mining portfolio is identified to be more 

dependence risky than the gold in times of financial turbulence characterized by low 

confidence in the financial stock markets. The gold mining portfolio is observed to be 

less dependence risky in similar market conditions. 

The significance testing of dependence concentration of the iron ore-nickel mining 

portfolio relative to the mix-metals indicates that the iron ore-nickel has significantly 

larger concentration of dependence in the negative tail, implying that it is significantly 

more dependence risky than the mix-metals in non-tranquil stock market conditions. In 

the centre however, the mix-metals has significantly larger concentration of dependence 

than the iron ore-nickel, making it more dependence risky during crisis periods. The 

significance testing between the iron ore-nickel and mix-metals mining portfolios also 

confirms the results from Chapter 5. The significance testing of the mix-metals 

leptokurtic portfolio relative to the gold shows that the mix-metals has significantly larger 

concentration of dependence in the negative tail, making it less dependence risky than the 

gold mining portfolio in non-tranquil periods. This information also confirms the results 
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from Chapter 5. The statistically significant dependence risk differences between the 

mining portfolios lead to the acceptance of the alternative hypothesis 1. 

Table 9-1: Significance testing of dependence concentration for the mining portfolios  

Significance 

 testing of dependence 

Gold relative 

to the iron ore-nickel 

Iron ore-nickel relative 

to the mix-metals 

Mix-metals relative 

to the gold 

 
Overall dependence (negative tail) 

 

Clayton T-test -4.59 2.05 2.18 
Gumbel 180 T-test -4.16 4.86 -1.73 
Joe 180T-test -4.26 3.19 1.65 

Joe-Frank 180 T-test -0.78 -1.18 2.08 

Statistical significance Sig. smaller Sig. larger 

 

Sig. larger 

 

 
Overall dependence (centre) 

 

Frank T-test 6.44 -7.12 -0.84 

Statistical significance Sig. larger Sig. smaller 

 

Neither 

 

 
Overall dependence (positive tail) 

 

Gumbel T-test 3.55 -1.44 -2.39 
Clayton 180 T-test 0.80 -1.57 0.84 

Joe T-test -0.81 0.00 1.19 

Joe-Frank T-test 3.16 -4.16 1.44 

Statistical significance Sig. larger Neither 

 

Neither 

 

 
Asymmetric dependence (positive tail) 

 

Gumbel T-test 3.55 -1.44 -2.39 
Clayton 180 T-test 0.80 -1.57 0.84 

Statistical significance Sig. larger Neither 

 

Sig. smaller 
 

 

Asymmetric dependence (negative tail) 
 

Clayton T-test -4.59 2.05 2.18 

Gumbel 180 T-test -4.16 4.86 -1.73 

Statistical significance Sig. smaller Sig. larger 
 

Sig. larger 

 

 
Symmetric dependence (tails) 

 

Student-t  T-test -0.11 2.50 -6.54 

Statistical significance Neither Sig. larger 
 

Sig. smaller 

 

Critical value 𝑡(0.05,22)=±2.074 

Notes: On the top row are displayed the names of the portfolios being compared in terms of dependence 

concentration and dependence risk. On the first column from left to right are displayed the copulas to which the 

t-test is fitted, and the statistical significance category. The second and third columns from left to right display 
the resulting t-test values, the statistical significance, the type of dependence and its location. The bottom row 

displays the critical value used to determine the existence or non-existence of statistical significance. The 

dependence concentration of a portfolio could be significantly smaller or significantly larger than that of other 
portfolio, or neither. When 4 copulas are used to determine the statistical significance it is required that the t-

values of at least 2 copulas are larger or smaller than the critical value. If only two copulas are used to determine 

the statistical significance it is required that the t-value of at least one copula is larger or smaller than the critical 
value. 
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9.1.2 Hypothesis 2 

 

Ha 2: There are energy portfolios with higher dependence risk than others 

 

The energy portfolios’ significance testing of dependence concentration displayed in 

Table 9-2 indicates that the coal-uranium energy portfolio, relative to the oil-gas, has at 

the 95% confidence level significantly larger concentration of dependence in the centre. 

This makes the coal-uranium energy portfolio more dependence risky than the oil-gas 

when the financial stock markets are tranquil. The oil-gas energy portfolio, on the other 

hand, has neither significantly larger nor significantly smaller dependence concentration 

in the negative tail, relative to the coal-uranium energy portfolio. This information 

confirms the results from Chapter 6 regarding the dependence risk differences between 

the energy portfolios. The statistically significant dependence risk differences between 

the energy portfolios lead to the acceptance of the alternative hypothesis 2. 
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Table 9-2: Significance testing of dependence concentration for the energy portfolios  

Significance  

testing of dependence 

Coal-uranium relative 

to the oil-gas 

Oil-gas relative 

to the coal-uranium 

 
Overall dependence (negative tail) 

 

Clayton T-test 0.21 -0.21 

Gumbel 180 T-test -2.02 2.02 
Joe 180T-test 1.23 -1.19 

Joe-Frank 180 T-test -0.72 0.72 

Statistical significance Neither 
 

Neither 

 

 
Overall dependence (centre) 

 

Frank T-test 2.60 -2.60 

Statistical significance Sig. larger 

 

Sig. smaller 

 

 
Overall dependence (positive tail) 

 

Gumbel T-test -1.88 1.88 
Clayton 180 T-test -0.66 0.66 

Joe T-test -3.66 3.66 

Joe-Frank T-test 3.06 -3.06 

Statistical significance Neither 

 

Neither 

 

 
Asymmetric dependence (positive tail) 

 

Gumbel T-test -1.88 1.88 
Clayton 180 T-test -0.66 0.66 

Statistical significance Neither 

 

Neither 
 

 

Asymmetric dependence (negative tail) 

 

Clayton T-test 0.21 -0.21 

Gumbel 180 T-test -2.02 2.02 

Statistical significance Neither Neither 

 
Symmetric dependence (tails) 

 

Student-t  T-test -3.17 3.17 

Statistical significance Sig. smaller 

 

Sig. larger 

 

Critical value 𝑡(0.05,22)=±2.074 

Notes: On the top row are displayed the names of the portfolios being compared in terms of dependence 

concentration and dependence risk. On the first column from left to right are displayed the copulas to which the 
t-test is fitted, and the statistical significance category. The second and third columns from the left to right 

display the resulting t-test values, the statistical significance, the type of dependence and its location. The 

bottom row displays the critical value used to determine the existence or non-existence of statistical significance. 
The dependence concentration of a portfolio could be significantly smaller or significantly larger than that of 

other portfolio, or neither. When 4 copulas are used to determine the statistical significance it is required that the 

t-values of at least 2 copulas are larger or smaller than the critical value. If only two copulas are used to 
determine the statistical significance it is required that the t-value of at least one copula is larger or smaller than 

the critical value. 
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9.1.3 Hypothesis 3 

 

Ha3: There are mining portfolios with higher dependence risk than energy portfolios 

The significance testing of dependence concentration of the mining and energy portfolios 

displayed in Table 9-3 indicates that in the negative tail the iron ore-nickel mining 

portfolio has at the 95% confidence level neither significantly larger nor significantly 

smaller concentration of dependence than the coal-uranium energy portfolio. However, 

its asymmetric dependence concentration is significantly larger than that of the coal-

uranium in the negative tail; indicating that the iron ore and nickel stocks tend to yield 

negatively skewed returns in stock market conditions characterized by low confidence in 

the financial stock markets. The significance testing of the iron ore-nickel mining 

portfolio relative to the oil-gas energy portfolio shows that its dependence concentration 

in the negative tail is neither significantly larger nor significantly smaller than that of the 

oil-gas energy portfolio. Its asymmetric dependence in the negative tail is also neither 

significantly larger nor significantly smaller. It however has in the centre and positive tail 

significantly smaller concentration of dependence than the oil-gas energy portfolio. As a 

consequence, the iron ore-nickel mining portfolio is more dependence risky than the oil-

gas during crisis periods. The significance testing of the mix-metals relative to the oil-gas 

indicates that the latter has higher dependence risk than the mix-metals when the financial 

stock markets are unstable. The statistically significant dependence risk differences 

between the mining and energy portfolios lead to the acceptance of the alternative 

hypothesis 3. 
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       Table 9-3: Significance testing of dependence concentration for the mining and energy portfolios 

Significance  

testing of dependence 

Iron ore-nickel 

relative 

to the coal-uranium 

Iron ore-nickel relative  

to the oil-gas  

Mix-metals relative  

to the oil-gas 

 
Overall dependence (negative tail) 

 

Clayton T-test 0.66 0.88 -1.48 
Gumbel 180 T-test 3.59 1.83 -3.52 
Joe 180T-test 1.59 2.71 0.48 

Joe-Frank 180 T-test 0.11 -0.39 1.02 

Statistical significance Neither Neither 

 

Neither 

 

 

Overall dependence (centre) 

 

Frank T-test -6.08 -3.68 3.23 

Statistical significance Sig. smaller Sig. smaller 

 

Sig. larger 

 

 

Overall dependence (positive tail) 

 

Gumbel T-test -2.19 -4.08 -2.15 
Clayton 180 T-test 0.32 -0.32 1.37 

Joe T-test 0.63 -2.21 -3.34 

Joe-Frank T-test -2.37 0.57 4.45 

Statistical significance Sig. smaller Sig. smaller 

 

Sig. smaller 

 

 

Asymmetric dependence (positive tail) 

 

Gumbel T-test -2.19 -4.08 -2.15 
Clayton 180 T-test 0.32 -0.32 1.37 

Statistical significance Sig. smaller Sig. smaller 
 

Sig. smaller 

 

 

Asymmetric dependence (negative tail) 
 

Clayton T-test 0.66 0.88 -1.48 

Gumbel 180 T-test 3.59 1.83 -3.52 

Statistical significance Sig. larger Neither 

 

Sig. smaller 

 

 
Symmetric dependence (tails) 

 

Student-t  T-test 2.39 0.64 -3.63 

Statistical significance Sig. larger Neither 

 

Sig. smaller 

 

Critical value 𝑡(0.05,22)=±2.074 

                     Notes: On the top row are displayed the names of the portfolios being compared in terms of dependence 

concentration and dependence risk. On the first column from left to right are displayed the copulas to which the 

t-test is fitted, and the statistical significance category. The second and third columns from the left to right 
display the resulting t-test values, the statistical significance, the type of dependence and its location. The 

bottom row displays the critical value used to determine the existence or non-existence of statistical significance. 

The dependence concentration of a portfolio could be significantly smaller or significantly larger than that of 
other portfolio, or neither. When 4 copulas are used to determine the statistical significance it is required that the 

t-values of at least 2 copulas are larger or smaller than the critical value. If only two copulas are used to 

determine the statistical significance it is required that the t-value of at least one copula is larger or smaller than 
the critical value. 
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9.1.4 Hypothesis 4 

 

Ha4: There are mining and energy portfolios with higher dependence risk than retail and 

manufacturing benchmark portfolios. 

 

The significance testing of dependence concentration of the mining and energy portfolios 

and the retail and manufacturing benchmark portfolios displayed in Table 9-4 indicates 

that the iron ore-nickel mining portfolio relative to the retail and manufacturing 

benchmark portfolios has at the 95% confidence level significantly larger concentration 

of dependence in the negative tail. As a result, the iron ore-nickel mining portfolio has 

higher dependence risk than the retail and manufacturing benchmark portfolios in times 

of financial turbulence. The significance testing of the oil-gas energy portfolio relative to 

the retail and manufacturing benchmark portfolios shows that the oil-gas energy portfolio 

has significantly larger concentration of dependence in the negative tail, an indication of 

higher dependence risk in the gold mining portfolio, relative to the retail and 

manufacturing benchmark portfolios during non-tranquil periods. The statistically 

significant dependence risk differences between the mining and energy portfolios and the 

retail and manufacturing benchmark portfolios lead to the acceptance of the alternative 

hypothesis 4. 
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Table 9-4: Significance testing of dependence concentration for the mining and energy portfolios and the 

retail and manufacturing benchmark portfolios  

Significance  

testing of dependence 

Iron ore-nickel relative 

to the retail 

Iron ore-nickel relative 

to the manufacturing 

Oil-gas relative 

to the retail 

Oil-gas relative to  

manufacturing 

 
Overall dependence (negative tail) 

 

Clayton T-test 2.57 3.48 2.06 3.12 
Gumbel 180 T-test 6.52 6.89 5.17 5.62 

Joe 180T-test 7.74 3.28 2.20 0.15 

Joe-Frank 180 T-test 2.07 1.78 3.79 3.09 

Statistical significance Sig. larger Sig. larger Sig. larger 

 

Sig. larger 

 

 

Overall dependence (centre) 

 

Frank T-test -5.42 -7.26 -0.98 -3.67 

Statistical significance Sig. smaller Sig. smaller Neither 

 

Sig. smaller 

 

 

Overall dependence (positive tail) 

 

Gumbel T-test -5.74 3.63 -2.58 -0.09 
Clayton 180 T-test -3.39 2.74 -3.43 -2.73 

Joe T-test -2.54 1.29 -0.52 1.32 

Joe-Frank T-test  2.07 2.61 3.79 -3.40 

Statistical significance Sig. smaller Sig. larger Sig. smaller 

 

Sig. smaller 

 

 

Asymmetric dependence (positive tail) 

 

Gumbel T-test -5.74 3.63 -2.58 -0.09 
Clayton 180 T-test -3.39 2.74 -3.43 -2.73 

Statistical significance Sig. smaller Sig. larger Sig. smaller 
 

Neither 

 

 

Asymmetric dependence (negative tail) 

 

Clayton T-test 2.57 -3.48 2.06 3.12 

Gumbel 180 T-test 6.52 -6.89 5.17 5.62 

Statistical significance Sig. larger Sig. smaller Sig. larger 

 

Sig. larger 

 

 
Symmetric dependence (tails) 

 

Student-t  T-test -1.84 -0.16 -2.94  -0.78 

Statistical significance Neither Neither Sig. smaller 

 

Neither 

 

Critical value 𝑡(0.05,22)=±2.074 

Notes: On the top row are displayed the names of the portfolios being compared in terms of dependence concentration and 

dependence risk. On the first column from left to right are displayed the copulas to which the t-test is fitted, and the statistical 

significance category. The second and third columns from the left to right display the resulting t-test values, the statistical 
significance, the type of dependence and its location. The bottom row displays the critical value used to determine the existence, 

or non-existence of statistical significance. The dependence concentration of a portfolio could be significantly smaller or 

significantly larger than that of other portfolio or neither. When 4 copulas are used to determine the statistical significance it is 

required that the t-values of at least 2 copulas are larger or smaller than the critical value. If only two copulas are used to 

determine the statistical significance it is required that the t-value of at least one copula is larger or smaller than the critical value. 
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9.1.5 Hypothesis 5 

 

Ha5: The portfolios’ dependence structure changes between period scenarios are 

statistically significant 

 

Applying a two-sample two-tailed t-test for the difference of means between two 

portfolios dependence concentration tests the alternative hypothesis 5. The number of 

observations used for the testing of this hypothesis is 3. Each observation corresponds to 

one of the vine copula models fitted to the data sets. It should be noticed that using 3 

observations to fit the t-test could be considered to be a limitation of the analysis since it 

could lead to questions regarding the reliability of the results. The degrees of freedom 

used are 4 and the confidence level on the t-test is 95%. A dependence structure change is 

acknowledged to be statistically significant if the resulting t-test value is larger or smaller 

than the critical value, and not statistically significant otherwise. If more than two copulas 

are used to account for the dependence concentration at a specific location of the pairs of 

stocks’ joint distributions, the t-test values of at least two copulas are required to be larger 

or smaller than the critical value to determine the existence of statistical significance. The 

statistical significance of the dependence structure changes is tested in the pre-GFC-GFC, 

GFC-post-GFC, and pre-GFC-post-GFC pairs of period scenarios. 
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Table 9-5: Gold portfolio’s significant testing of dependence structure changes 

Significance testing of 

dependence structure changes 

Pre-GFC to 
GFC 

Pre-GFC to  post-GFC GFC to Post-GFC 

 
Overall dependence structure changes (negative tail) 

 

Clayton T-test 2.94 0.59 -2.73 

Gumbel 180 T-test 1.31 2.62 2.95 

Joe 180T-test 4.77 4.15 1.12 

Joe-Frank 180 T-test -2.72 0.24 3.83 

Statistical  

Significance 
Significant Not significant 

 

Significant 

 

 
Overall dependence structure changes (centre) 

 

Frank T-test -6.38 -4.37 4.36 

Statistical  

Significance Significant Significant 

 

Significant 

 

 

Overall dependence structure changes (positive tail) 
 

Gumbel T-test 3.46 -0.30 -8.83 

Clayton 180 T-test 2.25 2.52 -0.57 

Joe T-test -0.42 -0.55 -0.16 

Joe-Frank T-test -1.47 1.46 3.02 

Statistical  

Significance 
Not significant Not significant  

 

Not significant 

  

 

Asymmetric dependence structure changes (positive tail) 

 
Gumbel T-test  3.46 -0.30  -8.83 

Clayton 180T-test  2.25 2.52  -0.57 

Statistical  

Significance 
Not significant  Not significant 

 

Not significant   

 

 

Asymmetric dependence structure changes (negative tail) 
 

Clayton T-test  2.94 0.59 -2.73 

Gumbel 180T-test 1.31 2.62 2.95 

Statistical  

Significance 
Not significant  Not significant 

 

Not significant  

  

 

Symmetric dependence structure changes (tails) 
 

Student-t T-test -1.09 -1.45 0.13 

Statistical  

Significance 
Not significant Not significant 

 

Not significant 

 

Critical value=𝑡(0.05,4)= ±2.776 
Notes: The top row states the pairs of period scenarios in which the dependence structure changes are tested. The 

first column from the left to the right shows the bivariate copulas used to identify the location of the dependence 

and its concentration. The overall, symmetric and asymmetric dependence in the centre and in the tails is tested. 
The row in the bottom displays the critical value. When 4 copulas are used to determine the statistical significance 

it is required that the t-values of at least 2 copulas are larger or smaller than the critical value. If only two copulas 

are used to determine the statistical significance it is required that the t-value of at least one copula is larger or 
smaller than the critical value. 

 

The significance testing of the gold mining portfolio’s dependence structure changes 

displayed in Table 9-5 indicates that in the centre its dependence structure changes 

significantly from the pre-GFC to the GFC, from the GFC to the post-GFC and from the 
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pre-GFC to the post-GFC. In the negative tail its dependence structure changes 

significantly from the pre-GFC to the GFC and from the pre-GFC to the post-GFC. 

 

Table 9-6: Iron ore-nickel portfolio’s significant testing of dependence structure changes 

Significance testing of 

dependence structure changes 

Pre-GFC to 
GFC 

Pre-GFC to  post-GFC GFC to Post-GFC 

 

Overall dependence structure changes (negative tail) 
 

Clayton T-test -2.25 3.83 4.54 

Gumbel 180 T-test -5.00 0.55 4.49 

Joe 180T-test 9.82 2.44 -1.15 

Joe-Frank 180 T-test -2.11 -3.52 -0.78 

Statistical  

Significance 
Not significant  Not significant  

 

Significant 

 

 

Overall dependence structure changes (centre) 
 

Frank T-test 1.12 -1.50 -2.27 

Statistical  

Significance Not significant Not significant 

 

Not significant 

 

 

Overall dependence structure changes (positive tail) 
 

Gumbel T-test 0.00 0.16 0.16 

Clayton 180 T-test 3.62 3.26 -0.08 

Joe T-test 0.27 0.61 0.39 

Joe-Frank T-test -1.22 -1.22 0.34 

Statistical  

Significance 
Not significant  Not significant 

 

Not significant  

 

 
Asymmetric dependence structure changes (positive tail) 

 
Gumbel T-test  0.00 0.16 0.16 

Clayton 180T-test  3.62 3.26 -0.08  

Statistical  

Significance 
 Significant Significant 

 

Not significant 

 

 
Asymmetric dependence structure changes (negative tail) 

 

Clayton T-test  -2.25 3.83 4.54 

Gumbel 180T-test -5.00 0.55 4.49 

Statistical  

Significance 
Significant Significant 

 

Significant 

 

 

Symmetric dependence structure changes (tails) 

 
Student-t T-test 1.55 -4.63 -5.12 

Statistical  

Significance 
Not significant Significant 

 

Significant 

 

Critical value=𝑡(0.05,4)= ±2.776 
Notes: The top row states the pairs of period scenarios in which the dependence structure changes are tested. The 
first column from left to the right shows the bivariate copulas used to identify the location of the dependence and 

its concentration. The overall, symmetric and asymmetric dependence in the centre and in the tails is tested. The 

row in the bottom displays the critical value. When 4 copulas are used to determine the statistical significance it is 
required that the t-values of at least 2 copulas are larger or smaller than the critical value. If only two copulas are 

used to determine the statistical significance it is required that the t-value of at least one copula is larger or smaller 
than the critical value. 

 

The significance testing of the iron ore-nickel mining portfolio’s dependence structure 

changes displayed in Table 9-6 indicates that in the negative tail the dependence structure 
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changes are significant from the GFC to the post-GFC. Its asymmetric dependence 

structure at the same location also changes significantly from the pre-GFC to the GFC, 

from the pre-GFC to the post-GFC and from the GFC to the post-GFC. The portfolio’s 

symmetric dependence structure in the positive tail changes significantly from the pre-

GFC to the post-GFC and from the GFC to the post-GFC. 

Table 9-7: Coal-uranium portfolio’s significant testing of dependence structure changes 

Significance testing of 

dependence structure changes 

Pre-GFC to 
GFC 

Pre-GFC to  post-GFC GFC to Post-GFC 

 

Overall dependence structure changes (negative tail) 
 

Clayton T-test -1.66 -2.73 0.37 

Gumbel 180 T-test -0.91 2.46 1.64 

Joe 180T-test 2.24 2.21 -0.43 

Joe-Frank 180 T-test -0.11 -0.92 -1.19 

Statistical  

Significance 
Not significant  Not significant  

 

Not significant  

 

 

Overall dependence structure changes (centre) 
 

Frank T-test 0.71 -2.42 -1.81 

Statistical  

Significance Not significant Not significant 

 

Not significant 

 

 

Overall dependence structure changes (positive tail) 
 

Gumbel T-test -1.71 -3.40 -1.43 

Clayton 180 T-test 3.24 4.51 0.38 

Joe T-test -0.55 -0.34 0.24 

Joe-Frank T-test -3.37 -0.42 1.95 

Statistical  

Significance 
Not significant  Not significant 

 

Not significant  

 

 

Asymmetric dependence structure changes (positive tail) 

 
Gumbel T-test  -1.71 -3.40 -1.43 

Clayton 180T-test  3.24 4.51 0.38 

Statistical  

Significance 
 Significant  Significant 

 

Not significant 

 

 

Asymmetric dependence structure changes (negative tail) 
 

Clayton T-test  -1.66 -2.73 0.37 

Gumbel 180T-test -0.91 2.46 1.64 

Statistical  

Significance 
Not significant Not significant 

 

Not significant 

 

 

Symmetric dependence structure changes (tails) 

 
Student-t T-test -0.90 1.81 2.08 

Statistical  

Significance 
Not significant Significant 

 

Significant 

 

Critical value=𝑡(0.05,4)= ±2.776 
Notes: The top row states the pairs of period scenarios in which the dependence structure changes are tested. The 

first column from left to the right shows the bivariate copulas used to identify the location of the dependence and 
its concentration. The overall, symmetric and asymmetric dependence in the centre and in the tails is tested. The 

row in the bottom displays the critical value. When 4 copulas are used to determine the statistical significance it is 

required that the t-values of at least 2 copulas are larger or smaller than the critical value. If only two copulas are 
used to determine the statistical significance it is required that the t-value of at least one copula is larger or smaller 

than the critical value. 

The significance testing of the coal-uranium energy portfolio’s dependence structure 

changes displayed in Table 9-7 indicates that its asymmetric dependence concentration 
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changes significantly from the pre-GFC to the GFC and from the pre-GFC to the post-

GFC. Its symmetric dependence concentration also changes significantly from the pre-

GFC to the post-GFC and from the GFC to the post-GFC. 

Table 9-8:  Oil-gas energy portfolio’s significant testing of dependence structure changes 

Significance testing of 

dependence structure changes 

Pre-GFC to 
GFC 

Pre-GFC to  post-GFC GFC to Post-GFC 

 

Overall dependence structure changes (negative tail) 
 

Clayton T-test 5.75 1.64 -1.28 

Gumbel 180 T-test -2.02 -0.59 1.15 

Joe 180T-test 4.68 1.35 -3.11 

Joe-Frank 180 T-test -3.37 -6.79 0.34 

Statistical  

Significance 
      Significant  Not significant  

 

Not significant  

 

 
Overall dependence structure changes (centre) 

 

Frank T-test -7.18 -2.41 1.67 

Statistical  

Significance       Significant  Not significant  

 

Not significant  

 

 
Overall dependence structure changes (positive tail) 

 

Gumbel T-test 3.90 3.83 -0.74 

Clayton 180 T-test 2.06 1.85 -0.06 

Joe T-test 3.46 2.19 0.00 

Joe-Frank T-test -0.77 0.00 0.77 

Statistical  

Significance 
      Significant  Not significant  

 

Not significant  

 

 

Asymmetric dependence structure changes (positive tail) 

 
Gumbel T-test  3.90 3.83 -0.74 

Clayton 180T-test  2.06 1.85 -0.06 

Statistical  

Significance 
Not significant Not significant 

 

Not significant 

 

 

Asymmetric dependence structure changes (negative tail) 
 

Clayton T-test  5.75 1.64 -1.28 

Gumbel 180T-test -2.02 -0.59 1.15 

Statistical  

Significance 
Significant Not significant 

 

Not significant 

 

 
Symmetric dependence structure changes (tails) 

 
Student-t T-test 4.70 -0.71 -16.97 

Statistical  

Significance 

 

Significant 

 

Not significant 

 

Significant 

 

Critical value=𝑡(0.05,4)= ±2.776 
Notes: The top row states the pairs of period scenarios in which the dependence structure changes are tested. The 

first column from left to the right shows the bivariate copulas used to identify the location of the dependence and 
its concentration. The overall, symmetric and asymmetric dependence in the centre and in the tails is tested. The 

row in the bottom displays the critical value. When 4 copulas are used to determine the statistical significance it is 

required that the t-values of at least 2 copulas are larger or smaller than the critical value. If only two copulas are 
used to determine the statistical significance it is required that the t-value of at least one copula is larger or smaller 

than the critical value. 

The significance testing of the oil-gas energy portfolio’s dependence structure changes 

displayed in Table 9-8 indicates that in the centre and in the tails its dependence structure 

changes significantly from the pre-GFC to the GFC. Its symmetric dependence structure 
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changes significantly from the pre-GFC to the post-GFC and from the GFC to the post-

GFC. 

Table 9-9:  Mix-metals portfolio’s significant testing of dependence structure changes 
 

Significance testing of 

dependence structure changes 

Pre-GFC to 
GFC 

Pre-GFC to  post-GFC GFC to Post-GFC 

 

Overall dependence structure changes (negative tail) 
 

Clayton T-test 3.22 -0.41 -3.19 

Gumbel 180 T-test -4.21 0.91 5.98 

Joe 180T-test -0.55 0.97 1.13 

Joe-Frank 180 T-test -0.68 -3.93 -2.58 

Statistical  

Significance 
Not significant Not significant 

 

Not significant 

 

 
Overall dependence structure changes (centre) 

 

Frank T-test 1.32 -0.45 -4.58 

Statistical  

Significance Not significant Not significant 

 

 Significant 

 

 
Overall dependence structure changes (positive tail) 

 

Gumbel T-test 2.38 2.81  0.13 

Clayton 180 T-test 1.67 0.27 -1.65 

Joe T-test 4.06 0.74 -3.90 

Joe-Frank T-test -3.75 1.50 4.50 

Statistical  

Significance 
      Significant  Not significant  

 

Not significant  

 

 

Asymmetric dependence structure changes (positive tail) 

 
Gumbel T-test  2.38 2.81  0.13 

Clayton 180T-test  1.67 0.27 -1.65 

Statistical  

Significance 
Not significant  Significant 

 

Not significant 

 

 

Asymmetric dependence structure changes (negative tail) 
 

Clayton T-test  3.22 -0.41 -3.19 

Gumbel 180T-test -4.21 0.91 5.98 

Statistical  

Significance 
Significant Not significant 

 

Significant 

 

 
Symmetric dependence structure changes (tails) 

 
Student-t T-test -3.24 -0.42 4.24 

Statistical  

Significance 
Significant Not significant 

 

Significant 

 

Critical value=𝑡(0.05,4)= ±2.776 
Notes: The top row states the pairs of period scenarios in which the dependence structure changes are tested. The 

first column from left to right shows the bivariate copulas used to identify the location of the dependence and its 

concentration. The overall, symmetric and asymmetric dependence in the centre and in the tails is tested. The row 
in the bottom displays the critical value. When 4 copulas are used to determine the statistical significance it is 

required that the t-values of at least 2 copulas are larger or smaller than the critical value. If only two copulas are 

used to determine the statistical significance it is required that the t-value of at least one copula is larger or smaller 

than the critical value. 
 

 

The significance testing of the mix-metals portfolio’s dependence structure changes 

displayed in Table 9-9 indicates that in the centre its dependence structure changes 

significantly from the GFC to the post-GFC. Its symmetric dependence structure in the 



152 
 

tails changes significantly from the pre-GFC to the GFC and from the GFC to the 

post-GFC.  

Table 9-10:  Retail portfolio’s significant testing of dependence structure changes 

Significance testing of 

dependence structure changes 

Pre-GFC to 
GFC 

Pre-GFC to  post-GFC GFC to Post-GFC 

 
Overall dependence structure changes (negative tail) 

 

Clayton T-test -3.39 3.90 5.09 

Gumbel 180 T-test -1.04 -0.98 0.00 

Joe 180T-test -0.98 -0.77 0.39 

Joe-Frank 180 T-test 6.50 6.58 1.22 

Statistical  

Significance 
Not significant Significant 

 

Not significant 

 

 

Overall dependence structure changes (centre) 
 

Frank T-test 4.16 5.23 0.88 

Statistical  

Significance Significant Significant 

 

Not significant 

 

 

Overall dependence structure changes (positive tail) 
 

Gumbel T-test 0.00 1.93 1.04 

Clayton 180 T-test -6.28 -13.17 -7.87 

Joe T-test -1.20 -1.92 -0.98 

Joe-Frank T-test 2.71 4.50 0.77 

Statistical  

Significance 
Not significant Not significant 

 

Not significant 

 

 
Asymmetric dependence structure changes (positive tail) 

 
Gumbel T-test  0.00 1.93 1.04 

Clayton 180T-test  -6.28 -13.17 -7.87 

Statistical  

Significance 
Not significant Not significant 

 

Not significant 

 

 

Asymmetric dependence structure changes (negative tail) 
 

Clayton T-test  -3.39 3.90 5.09 

Gumbel 180T-test -1.04 -0.98 0.00 

Statistical  

Significance 
Not significant Not significant 

 

Not significant 

 

 

Symmetric dependence structure changes (tails) 
 

Student-t T-test -5.12 -6.00 3.14 

Statistical  

Significance 
Significant Significant 

 

Significant 

 

Critical value=𝑡(0.05,4)= ±2.776 
Notes: The top row states the pairs of period scenarios in which the dependence structure changes are tested. The 
first column from the left to the right shows the bivariate copulas used to identify the location of the dependence 

and its concentration. The overall, symmetric and asymmetric dependence in the centre and in the tails is tested. 

The row in the bottom displays the critical value. When 4 copulas are used to determine the statistical significance 
it is required that the t-values of at least 2 copulas are larger or smaller than the critical value. If only two copulas 

are used to determine the statistical significance it is required that the t-value of at least one copula is larger or 

smaller than the critical value. 

 

The significance testing of the retail benchmark portfolio’s dependence structure 

changes displayed in Table 9-10 indicates that in the centre its dependence structure 

changes significantly from the pre-GFC to the GFC and from the pre-GFC to the post-

GFC. Its dependence structure in the negative tail changes significantly from the pre-
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GFC to the post-GFC. The significance testing of the manufacturing benchmark 

portfolio’s dependence structure changes displayed in Table 9-11 indicates that in the 

centre its dependence structure changes significantly from the pre-GFC to the GFC, 

from the GFC to the post-GFC and from the pre-GFC to the post-GFC. The portfolios’ 

asymmetric dependence concentration also changes significantly from the pre-GFC to 

the GFC, from the pre-GFC to the post-GFC and from the GFC to the post-GFC.  

 

Table 9-11:  Manufacturing benchmark portfolio’s significant testing of dependence structure changes 

Significance testing of 

dependence structure changes 

Pre-GFC to 
GFC 

Pre-GFC to  post-GFC GFC to Post-GFC 

 

Overall dependence structure changes (negative tail) 
 

Clayton T-test 9.41 12.15 8.07 

Gumbel 180 T-test 6.37 2.81 3.70 

Joe 180T-test 4.65 7.31 2.41 

Joe-Frank 180 T-test -2.38 -1.51 -1.02 

Statistical  

Significance 
Significant Significant 

 

Significant 

 

 
Overall dependence structure changes (centre) 

 

Frank T-test -11.14 -4.10 3.61 

Statistical  

Significance Significant Significant 

 

Significant 

 

 
Overall dependence structure changes (positive tail) 

 

Gumbel T-test -7.87 -0.44 3.35 

Clayton 180 T-test 1.96 -2.81  -5.20 

Joe T-test 0.00 -1.10 -1.10 

Joe-Frank T-test -0.40 5.63 1.08 

Statistical  

Significance 
Not significant Not significant 

 

Not significant 

 

 

Asymmetric dependence structure changes (positive tail) 

 
Gumbel T-test  -7.87 -0.44 3.35 

Clayton 180T-test  1.96 -2.81 -5.20 

Statistical  

Significance 
 Significant Not significant 

 

Significant 

 

 

Asymmetric dependence structure changes (negative tail) 
 

Clayton T-test  9.41 12.15 8.07 

Gumbel 180T-test 6.37 2.81  3.70 

Statistical  

Significance 
 Significant Significant 

 

Significant 

 

 
Symmetric dependence structure changes (tails) 

 
Student-t T-test 4.05 2.41 -2.10 

Statistical  

Significance 
Significant Not significant 

 

Not significant 

 

Critical value=𝑡(0.05,4)= ±2.776 
Notes: The top row states the pairs of period scenarios in which the dependence structure changes are tested. The 

first column from the left to the right shows the bivariate copulas used to identify the location of the dependence 
and its concentration. The overall, symmetric and asymmetric dependence in the centre and in the tails is tested. 

The row in the bottom displays the critical value. When 4 copulas are used to determine the statistical significance 

it is required that the t-values of at least 2 copulas are larger or smaller than the critical value. If only two copulas 
are used to determine the statistical significance it is required that the t-value of at least one copula is larger or 

smaller than the critical value. 
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The statistically significant dependence structure changes identified to take place in 

most of the portfolios between periods scenarios lead to the acceptance of the 

alternative hypothesis 5. 

 

9.1.6 Hypothesis 6 

Ha 6: There is a pair vine copula model that best captures the multivariate dependence 

structure of the portfolios 

Applying the ECP and ECP2 goodness-of-fit tests, which are based on the empirical 

copula processes, tests the alternative hypothesis 6. The tests are used to identify the pair 

vine copula model that best fits the multivariate dependence structure of the portfolios. 

The tests are non-parametric and are based on the Cramer-von Mises (CvM) and 

Kolmogorov-Smirnov (KS) test statistics, which use a 95% confidence level. Relative to 

the Akaike and Bayesian Information Criteria they are more reliable sources of 

information regarding the goodness-of-fit of the pair vine copula models fitted 

(Schepsmeier, 2013; Genest et al., 2009; Panchenko, 2005). 

The ECP and ECP2 are implemented on the c-vine, d-vine and r-vine copula modelling 

of the portfolios’ data sets under the pre-GFC, GFC, post-GFC and full sample period 

scenarios. The identification of the vine copula model that most adequately fits the 

multivariate dependence structure of the portfolios is based on the p-values resulting from 

the goodness-of-fit testing. The smaller the p-values are, the larger the distance between 

the fitted parametric vine copula model and the empirical distribution of the multivariate 

dependence, and vice versa. When evaluating the goodness-of-fit testing results across 

period scenarios, a higher weight is given to the p-values resulting from the full sample 

period goodness-of fit-testing because that period accounts for the volatility and 

dependence structure changes across the three sub periods under consideration. 

According to Table 9-12, where the goodness of fit testing for the c-vine, d-vine and r-

vine modelling of the gold, iron ore-nickel and coal-uranium portfolios under the four 

period scenarios is displayed, the r-vine, relative to the c-vine and d-vine, is the model 

that best accounts for the multivariate dependence structure of the gold mining portfolio. 

The p-values for the fit of the r-vine are specifically larger than those for the c-vine under 
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the pre-GFC, GFC and full sample periods. The p-values for the fit of the r-vine are also 

larger than those resulting from the goodness-of-fit testing for the d-vine modelling under 

most of the period scenarios.  

 

Table 9-12:  Goodness-of-fit testing for the gold, iron ore-nickel and coal-uranium energy portfolios 

Portfolio Gold Iron ore-nickel Coal-uranium 

Vine 

copula 
C-vine D-vine R-vine C-vine D-vine R-vine C-vine D-vine R-vine 

 

Full sample period 
 

ECP(CvM) 
ts=0.016 

p=0.44 

ts=0.003 

p =0.975 

ts=0.004 

p=0.98 

ts=0.023 

p=0.71 

ts=0.039 

p=0.70 

ts=0.02 

p=0.51 

ts=0.062 

p=0.29 

ts=0.008 

p =0.205 

ts=0.005 

p=0.81 

ECP2(CvM) 
ts=0.000 

p=1.00 

ts=0.000 

p=1.00 

ts=0.000 

p=1.00 

ts=0.000 

p=1.00 

ts=0.000 

p=1.00 

ts=0.000 

p=1.00 

ts=0.000 

p=1.00 

ts=0.000 

p=1.00 

ts=0.000 

p=1.00 

ECP(CvM) 
ts=1.825 

p=0.23 

ts=0.952 

p=0.425 

ts=1.339 

p=0.04 

ts=2.028 

p=0.73 

ts=3.018 

p=0.04 

ts=2.072 

p=0.64 

ts=2.617 

p=0.37 

ts=0.849 

p=0.555 

ts=1.337 

p=0.03 

ECP2(CvM) 
ts=0.022 

p=1.00 

ts=0.022 

p=1.00 

ts=0.022 

p=1.00 

ts=0.055  

p=1.00 

ts=0.066 

p=1.00 

ts=0.047 

p=1.00 

ts=0.022 

p=1.00 

ts=0.022 

p=1.00 

ts=0.022 

p=1.00 

 

Pre-GFC 
 

ECP(CvM) 
ts=0.003 

p=1.00 

ts=0.003 

p =1.00 

ts=0.003 

p=1.00 

ts=0.008 

p=0.96 

ts=0.008 

p=0.98 

ts=0.009 

p=0.95 

ts=0.001 

p=1.00 

ts=0.001 

p=1.00 

ts=0.001 

p=1.00 

ECP2(CvM) 
ts=0.001 

p=1.00 

ts=0.001 

p=1.00 

ts=0.001 

p=1.00 

ts=0.001 

p=1.00 

ts=0.001 

p=1.00 

ts=0.001 

p=1.00 

ts=0.001 

p=1.00 

ts=0.001 

p=1.00 

ts=0.001 

p=1.00 

ECP(CvM) 
ts=0.607 

p=0.28 

ts=0.849 

p=0.27 

ts=0.824 

p=0.34 

ts=0.438 

p=0.53 

ts=0.354 

p=0.78 

ts=0.336 

p=0.80 

ts=0.195 

p=0.99 

ts=0.144 

p=1.00 

ts=0.195 

p=0.98 

ECP2(CvM) 
ts=0.039 

p=1.00 

ts=0.039 

p=1.00 

ts=0.039 

p=1.00 

ts=0.039 

p=1.00 

ts=0.079 

p=1.00 

ts=0.078 

p=1.00 

ts=0.039 

p=1.00 

ts=0.039 

p=1.00 

ts=0.039 

p=1.00 

 

GFC 
 

ECP(CvM) 
ts=0.012 

p=0.77 

ts=0.004 

p=1.00 

ts=0.003 

p=1.00 

ts=0.015 

p=0.88 

ts=0.016 

p=0.96 

ts=0.018 

p=0.78 

ts=0.009 

p=0.995 

ts=0.008 

p=0.99 

ts=0.011 

p=0.97 

ECP2(CvM) 
ts=0.001 

p=1.00 

ts=0.001 

p=1.00 

ts=0.001 

p=1.00 

ts=0.001 

p=1.00 

ts=0.001 

p=1.00 

ts=0.001 

p=1.00 

ts=0.001 

p=1.00 

ts=0.001 

p=1.00 

ts=0.001 

p=1.00 

ECP(CvM) 
ts=1.010 

p=0.395 

ts=0.770 

p=0.22 

ts=0.367 

p=0.78 

ts=1.308 

p=0.575 

ts=1.580 

p=0.2 

ts=1.553 

p=0.32 

ts=1.815 

p=0.065 

ts=1.231 

p=0.35 

ts=0.950 

p=0.79 

ECP2(CvM) 
ts=0.077 

p=1.00 

ts=0.039 

p=1.00 

ts=0.076 

p=1.00 

ts=0.062 

p=1.00 

ts=0.039 

p=1.00 

ts=0.039 

p=1.00 

ts=0.039 

p=1.00 

ts=0.078 

p=1.00 

ts=0.039 

p=1.00 

 

Post-GFC 
 

ECP(CvM) ts=0.002 

p=1.00 

ts=0.001 

p=1.00 

ts=0.002 

p=1.00 

ts=0.013 

p=0.945 

ts=0.013 

p=0.97 

ts=0.010 

p=1.00 

ts=0.002 

p=1.00 

ts=0.003 

p=1.00 

ts=0.002 

p=1.00 

ECP2(CvM) ts=0.001 

p=1.00 

ts=0.001 

p=1.00 

ts=0.001 

p=1.00 

ts=0.001 

p=1.00 

ts=0.001 

p=1.00 

ts=0.001 

p=1.00 

ts=0.001 

p=1.00 

ts=0.001 

p=1.00 

ts=0.001 

p=1.00 

ECP(CvM) ts=0.431 

p=0.055 

ts=0.131 

p=1.00 

ts=0.304 

p=0.43 

ts=1.053 

p=0.425 

ts=0.983 

p=0.29 

ts=0.849 

p=0.62 

ts=0.200 

p=0.965 

ts=0.404 

p=1.00 

ts=0.287 

p=0.53 

ECP2(CvM) ts=0.039 

p=1.00 

ts=0.039 

p=1.00 

ts=0.039 

p=1.00 

ts=0.039 

p=1.00 

ts=0.078 

p=1.00 

ts=0.039 

p=1.00 

ts=0.039 

p=1.00 

ts=0.039 

p=1.00 

ts=0.039 

p=1.00 

Notes: The first column from left to righ displays the ECP and ECP2 goodness-of-fit tests and the underlying CvM and KS 

test statistics employed by the goodness of fit tests. ECP and ECP2 stand for empirical copula process number 1 and 
empirical copula process number 2. The abbreviations ts and p stand for test statistic and p-value. CvM and KS stand for 

Cramer-von Mises and Kolmogorov-Smirnov tests. The fit of the c-vine, d-vine and r-vine pair vine copulas for the full 

sample period, pre-GFC, GFC and post-GFC are tested. 

The goodness-of-fit testing of the iron ore-nickel mining portfolio indicates that the c-

vine is the model that best captures its multivariate dependence structure. Specifically, 

despite the r-vine best fitting its multivariate dependence structure in the pre-GFC and 

post-GFC, the c-vine does it better in the GFC and full sample period scenarios. In 

addition to that, the p-values resulting from the goodness-of-fit testing for the d-vine 

modelling under most of the period scenarios are smaller than those for the fit of the c-
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vine. In the coal-uranium energy portfolio, the c-vine, relative to the r-vine and d-vine, 

also provides the best fit under most of the period scenarios. 

The goodness of fit testing for the c-vine, d-vine and r-vine modelling of the oil-gas, mix-

metals and retail portfolios under the four period scenarios displayed in Table 9-13 

indicates that the c-vine model, relative to the r-vine and d-vine, best accounts for the 

multivariate dependence structure of the coal-uranium energy portfolio. The p-values for 

the fit of the c-vine under the pre-GFC, GFC and post-GFC are larger than those for the 

fit of the r-vine. Besides, the p-values for the fit of the d-vine are also smaller than those 

for the fit of the c-vine in most period scenarios.  

Table 9-13:  Goodness-of-fit testing for the oil-gas, mix-metals and retail benchmark portfolios 

Portfolio Oil-gas Mix-metals leptokurtic Retail 

Vine 

copula 
C-vine D-vine R-vine C-vine D-vine R-vine C-vine D-vine R-vine 

 

Full sample 
 

ECP(CvM) 
ts=0.012 

p=0.80 

ts=0.012 

p=0.725 

ts=0.016 

p=0.53 

ts=0.024 

p =0.85 

ts=0.004 

p=0.925 

ts=0.011 

p=0.555 

ts=0.011 

p =0.65 

ts=0.0093 

p =0.87 

ts=0.00 

p=0.96 

ECP2(CvM) 
ts=0.012 

p=0.80 

ts=0.000 

p=1.00 

ts=0.000 

p=1.00 

ts=0.000 

p =1.00 

ts=0.000 

p =1.00 

ts=0.000 

p=1.00 

ts=0.000 

p=1.00 

ts=0.000 

p =1.00 

ts=0.000 

p=1.00 

ECP(CvM) 
ts=1.566 

p=0.65 

ts=2.890 

p=0.12 

ts=2.758 

p=0.30 

ts=1.701 

p=0.615 

ts=0.944 

p =0.26 

ts=1.789 

p=0.045 

ts=1.200 

p=0.505 

ts=1.597 

p =0.14 

ts=1.275 

p=0.61 

ECP2(CvM) 
ts=0.044 

p=1.00 

ts=0.022 

p=1.00 

ts=0.022 

p=1.00 

ts=0.022 

p=1.00 

ts=0.022 

p =1.00 

ts=0.022 

p =1.00 

ts=0.022 

p=1.00 

ts=0.045 

p =1.00 

ts=0.022 

p=1.00 

 

Pre-GFC 
 

ECP(CvM) 
ts=0.002 

p=1.00 

ts=0.002 

p=1.00 

ts=0.003 

p=1.00 

ts=0.004 

p=1.00 

ts=0.002 

p =1.00 

ts=0.006 

p=0.93 

ts=0.001 

p=1.00 

ts=0.001 

p =1.00 

ts=0.001 

p=1.00 

ECP2(CvM) 
ts=0.001 

p=1.00 

ts=0.001 

p=1.00 

ts=0.001 

p=1.00 

ts=0.001 

p=1.00 

ts=0.001 

p =1.00 

ts=0.001 

p=1.00 

ts=0.001 

p=1.00 

ts=0.001 

p =1.00 

ts=0.001 

p=1.00 

ECP(CvM) 
ts=0.274 

p=0.81 

ts=0.233 

p=0.75 

ts=0.274 

p=0.74 

ts=0.644 

p=0.155 

ts=0.444 

p =0.43 

ts=0.444 

p=0.575 

ts=0.391 

p=0.24 

ts=0.290 

p =0.12 

ts=0.315 

p=0.24 

ECP2(CvM) 
ts=0.039 

p=1.00 

ts=0.078 

p=1.00 

ts=0.039 

p=1.00 

ts=0.039 

p=1.00 

ts=0.039 

p =1.00 

ts=0.039 

p=1.00 

ts=0.039 

p=1.00 

ts=0.039 

p =1.00 

ts=0.039 

p=1.00 

 

GFC 
 

ECP(CvM) 
ts=0.013 

p=0.915 

ts=0.016 

p=0.935 

ts=0.012 

p=0.93 

ts=0.004 

p=1.00 

ts=0.004 

p =1.00 

ts=0.004 

p=1.00 

ts=0.007 

p=1.00 

ts=0.004 

p =1.00 

ts=0.004 

p=1.00 

ECP2(CvM) 
ts=0.001 

 p=1.00 

ts=0.001 

p=1.00 

ts=0.001 

p=1.00 

ts=0.001 

p=1.00 

ts=0.001 

p =1.00 

ts=0.001 

p =1.00 

ts=0.001 

p=1.00 

ts=0.001 

p =1.00 

ts=0.001 

p=1.00 

ECP(CvM) 
ts=1.218 

p=0.195 

ts=2.079 

p=0.15 

ts=1.520 

p=0.015 

ts=0.578 

p=0.38 

ts=0.680 

p=0.175 

ts=0.883 

p=0.50 

ts=0.754 

p=0.53 

ts=0.435 

p =0.66 

ts=0.550 

p=0.40 

ECP2(CvM) 
ts=0.039 

p=1.00 

ts=0.039 

p=1.00 

ts=0.039 

p=1.00 

ts=0.039 

p =1.00 

ts=0.039 

p =1.00 

ts=0.039 

p =1.00 

ts=0.039 

p=1.00 

ts=0.039 

p =1.00 

ts=0.039 

p=1.00 

 
Post-GFC 

 

ECP(CvM) 
ts=0.016 

p=0.815 

ts=0.010 

p=0.97 

ts=0.012 

p=0.945 

ts=0.002 

p=1.00 

ts=0.003 

p =1.00 

ts=0.003 

p=1.00 

ts=0.003 

p=1.00 

ts=0.004 

p =1.00 

ts=0.005 

p=1.00 

ECP2(CvM) 
ts=0.001 

p=1.00 

ts=0.001 

p=1.00 

ts=0.001 

p=1.00 

ts=0.001 

p=1.00 

ts=0.001 

p =1.00 

ts=0.001 

p=1.00 

ts=0.001 

p=1.00 

ts=0.001 

p =1.00 

ts=0.001 

p=1.00 

ECP(CvM) 
ts=1.078 

p =0.555 

ts=0.681 

p=0.37 

ts=1.001 

p=0.435 

ts=0.332 

p=0.69 

ts=0.394 

p=0.445 

ts=0.613 

p=0.125 

ts=0.394 

p=0.305 

ts=0.397 

p =0.57 

ts=0.468 

p=0.245 

ECP2(CvM) 
ts=0.039 

p=1.00 

ts=0.039 

p=1.00 

ts=0.039 

p=1.00 

ts=0.039 

p =1.00 

ts=0.039 

p =1.00 

ts=0.039 

p =1.00 

ts=0.039 

p=1.00 

ts=0.039 

p =1.00 

ts=0.039 

p=1.00 

Notes: The first column from left to righ displays the ECP and ECP2 goodness-of-fit tests and the underlying CvM and KS 
test statistics employed by the goodness of fit tests. ECP and ECP2 stand for empirical copula process number 1 and 

empirical copula process number 2. The abbreviations ts and p stand for test statistic and p-value. CvM and KS stand for 

Cramer-von Mises and Kolmogorov-Smirnov tests. The fit of the c-vine, d-vine and r-vine pair vine copulas for the full 
sample period, pre-GFC, GFC and post-GFC are tested. 
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In the mix-metals portfolio the c-vine also captures best its multivariate dependence 

structure in most of the period scenarios. For instance, the p-values for the fit of the c-

vine under the pre-GFC, post-GFC and full sample period scenarios are larger than those 

from the goodness of fit testing for the r-vine. Besides, the p-values for the fit of the d-

vine are not larger than those for the fit of the c-vine under most period scenarios. In the 

retail benchmark portfolio the r-vine most adequately accounts for its multivariate 

dependence structure. Specifically, the p-values for the fit of the r-vine under the full 

sample and pre-GFC periods are larger than those for the fit of the c-vine, while the p-

values for the fit of the d-vine are smaller than those for the fit of the r-vine. 

                        Table 9-14:  Goodness-of-fit testing for the manufacturing benchmark portfolio                    

Portfolio Manufacturing 

Vine copula C-vine D-vine R-vine 
 

Full sample 
 

ECP(CvM) ts=0.023 

p=0.19 

ts=0.0033 

p =0.98 

ts=0.021 

p=0.67 

ECP2(CvM) ts=0.000 

p=1.00 

ts=0.000 

p =1.00 

ts=0.000 

p=1.00 

ECP(CvM) ts=1.498 

p=0.38 

ts=1.089 

p =0.21 

ts=2.293 

p=0.15 

ECP2(CvM) ts=0.022 

p=1.00 

ts=0.022 

p =1.00 

ts=0.022 

p=1.00 

 

Pre-GFC 
 

ECP(CvM) ts=0.001 

p=1.00 

ts=0.001 

p =1.00 

ts=0.001 

p=1.00 

ECP2(CvM) ts=0.001 

p=1.00 

ts=0.001 

p =1.00 

ts=0.001 

p=1.00 

ECP(CvM) ts=0.117 

p=1.00 

ts=0.117 

p =1.00 

ts=0.117 

p=1.00 

ECP2(CvM) ts=0.039 

p=1.00 

ts=0.039 

p =1.00 

ts=0.039 

p=1.00 

 

GFC 
 

ECP(CvM) ts=0.004 

p=1.00 

ts=0.001  

p =1.00 

ts=0.005 

p=1.00 

ECP2(CvM) ts=0.001 

p=1.00 

ts=0.001 

p =1.00 

ts=0.001 

p=1.00 

ECP(CvM) ts=0.902 

p=0.07 

ts=0.195 

p =0.99 

ts=0.851 

p=0.07 

ECP2(CvM) ts=0.902 

p=0.07 

ts=0.039 

p =1.00 

ts=0.039 

p=1.00 

                                        

                                  Post-GFC 
 

ECP(CvM) ts=0.001 

p=1.00 

ts=0.002 

p =1.00 

ts=0.001 

p=1.00 

ECP2(CvM) ts=0.001 

p=1.00 

ts=0.001 

p =1.00 

ts=0.001 

p=1.00 

ECP(CvM) ts=0.117 

p=1.00 

ts=0.470 

p =0.21 

ts=0.139 

p=1.00 

ECP2(CvM) ts=0.039 

p=1.00 

ts=0.039 

p =1.00 

ts=0.039 

p=1.00 

Notes: The first column from left to righ displays the ECP and ECP2 goodness-of-fit tests and the 

underlying CvM and KS test statistics employed by the goodness of fit tests. ECP and ECP2 stand 

for empirical copula process number 1 and empirical copula process number 2. The abbreviations 
ts and p stand for test statistic and p-value. CvM and KS stand for Cramer-von Mises and 

Kolmogorov-Smirnov tests. The fit of the c-vine, d-vine and r-vine pair vine copulas for the full 

sample period, pre-GFC, GFC and post-GFC are tested.  
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As indicated by the p-values displayed in Table 9-14, the d-vine is the model that best 

accounts for the multivariate dependence structure of the manufacturing benchmark 

portfolio. Although the p-values for the fit of the r-vine are larger than those for the fit of 

the c-vine, the p-values for the fit of the d-vine are larger than those for the fit of the r-

vine in most period scenarios.  

The summary of the results displayed in Table 9-15 indicates that the c-vine model is 

adequate to best account for the multivariate dependence structure of the iron ore-nickel, 

coal-uranium, oil-gas and mix-metals leptokurtic portfolios. The r-vine most closely 

approximates the interaction between the gold and retail stocks, while the d-vine better 

captures the co-movements of the manufacturing stocks. These findings are in line with 

the dependence structure modelling results from Chapters 5, 6 and 7. The identification of 

specific vine copula models as best accounting for the multivariate dependence structure 

of the portfolios leads to the acceptance of the alternative hypothesis 6. 

 

Table 9-15: Goodness-of-fit testing summary  

Portfolios R-vine C-Vine D-Vine 

Gold ✓ ✗ ✗ 

Iron Ore-Nickel ✗  ✓ ✗ 

Coal-Uranium ✗ ✓ ✗ 

Oil-Gas ✗ ✓ ✗ 

Mix-metals ✗ ✓ ✗ 

Retail ✓ ✗ ✗ 

Manufacturing ✗ ✗ ✓ 

Notes: This table displays a summary of the goodness-of-fit testing for the r-vine, 

c-vine and d-vine modelling of dependence of the gold, iron ore-nickel, mix-
metals leptokurtic, coal-uranium, oil-gas, retail and manufacturing portfolios. 
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9.2 Portfolio optimization hypothesis testing 

 

9.2.1 Hypothesis 7 

 

Ha: There is a portfolio of stocks that offers the best risk-return trade-off 

 

The testing of the alternative hypotheses 7 requires two steps. First, the analysis of the 

portfolios’ risk rankings displayed in Table 9-17 so that the least risky portfolio is 

identified. Next, by testing the statistical significance of the strength of association 

between the risk measures and portfolios’ risk rankings identifying the least risky 

portfolio, it is possible to test the alternative hypothesis 7 indirectly or implicitly. That is, 

if each of the risk measures converges on a certain portfolio as the least risky, it sufficies 

to show that their co-movements are in the same direction and that this co-movements are 

statistically significant. For this purpose the non-parametric Spearman rank correlation 

and Kruskal-Wallis tests are fitted. The Spearman rank correlation test is used to measure 

the strength of association between pairs of portfolios’ risk rankings, and to know if their 

association is statistical significant. The Kruskal-Wallis test is used to measure the 

significance of the strength of association of the entire group of portfolios’ risk rankings. 

The confidence level specified in the tests is 95%. Also, since all portfolios have been 

optimized using the same target return, the portfolio with the lowest risk offers the best 

risk-return trade-off.  

Table 9-16 displays the risk of the portfolios for each of the five risk measures and period 

scenarios considered. The portfolios’ rankings and significance testing results displayed 

in Table 9-17 indicate that all the risk measures identify the retail benchmark portfolio as 

the least risky. In addition to that, the strength of association between the risk measures 

and portfolios’ risk rankings that identify the retail benchmark portfolio as the least risky 

is close to 1, positively correlated and statistically significant. The Kruskal-Wallis results 

show that the strength of association of the entire group of portfolios’ risk rankings is 

statistically significant. As a result, the retail benchmark portfolio is indeed the least risky 

and since each of the portfolios under consideration has been optimized using the same 

target portfolio return, the retail benchmark portfolio offers the best risk return trade-off. 

These findings lead to the acceptance of the alternative hypothesis 7. 
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Table 9-16: Portfolios’ risk for the full sample, pre-GFC, GFC and post-GFC 

Portfolios’ Risk CVaR CDaR Minimax MAD Var 

 

Full Sample Period 

 

Gold 5.55 103.02 15.63 1.8 0.062 

Iron ore-nickel 4.39 40.91 7.94 1.35 0.035 

Coal-uranium 4.81 83.68 9.21 1.44 0.042 

Oil-gas 6.16 88 15.69 2.04 0.078 

Mix-metals 4.77 88.52 10.83 1.44 0.043 

Retail 2.09 25.94 3.65 0.669 0.008 

Manufacturing 2.72 24.49 5.14 0.901 0.015 

 

Pre-GFC 

 

Gold 3.181 19.839 4.256 1.117 0.023 

Iron ore-nickel 2.971 15.674 5.147 0.965 0.014 

Coal-uranium 3.059 17.108 4.028 0.994 0.018 

Oil-gas 2.128 8.287 2.615 0.731 0.009 

Mix-metals 2.318 15.983 2.771 0.782 0.011 

Retail 1.309 7.089 1.659 0.448 0.004 

Manufacturing 1.429 10.776 1.821 0.519 0.005 

 

GFC 

 

Gold 5.962 116.09  11.71  1.969 0.08 

Iron ore-nickel 5.428 39.56  10.39  1.756 0.063 

Coal-uranium 5.751 55.15  8.56  1.698 0.057 

Oil-gas 3.556 26.03  7.00  1.182 0.029 

Mix-metals 5.864 93.66  12.76  1.829 0.072 

Retail 2.58 26.86  3.54  0.879 0.014 

Manufacturing 4.675 23.58  7.43  1.38 0.045 

 

Post-GFC 

 

Gold 4.12 20.167 5.983 1.41 0.037 

Iron ore-nickel 4.003 31.116 5.898 1.32 0.031 

Coal-uranium 4.172 38.512 8.305 1.303 0.049 

Oil-gas 2.656 10.704 4.166 0.889 0.014 

Mix-metals 3.914 24.233 6.441 1.261 0.04 

Retail 1.561 8.178 2.344 0.518 0.005 

Manufacturing 1.992 9.323 3.028 0.68 0.009 

                    Notes: The table displays the risk of the portfolios for each of the risk measures and period scenarios 

considered.  
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Table 9-17: Full sample period portfolios’ risk rankings 

Portfolios’ risk 

 Rankings 
 CVaR CDaR Minimax MAD  Var 

 

Portfolios’ risk rankings (full sample period) 

 

Gold 2 1 2 2 2 

Iron ore-nickel 5 5 5 5 5 

Coal-uranium 3 4 4 3.5 4 

Oil-gas 1 3 1 1 1 

Mix-metals 4 2 3 3.5 3 

Retail 7 6 7 7 7 

Manufacturing 6 7 6 6 6 

CVaR-CDaR 

𝜌=0.785 

pvalue = 0.036** 

CVaR-Minimax 

𝜌 =0.964 

pvalue = 0.00*** 

CVaR-MAD 

𝜌=0.991 

pvalue=0.00*** 

CVaR-Var 

𝜌=0.964 

pvalue= 0.00*** 

CDaR-Minimax 

𝜌 =0.857 

pvalue = 0.013** 

CDaR- Var 

𝜌=0.857 

pvalue =0.013** 

CDaR-MAD 

𝜌=0.828 

pvalue =0.021** 

Minimax-MAD 

𝜌=0.991 

pvalue=0.00*** 

Minimax-Var 

𝜌=1.00 

pvalue =0.00*** 

MAD-Var 

𝜌=0.991 

pvalue =0.00*** 

Kruskal-Wallis Test: Chi-squared = 0.000, df = 4, p-value = 1 

 

Portfolios’ risk rankings (Pre-GFC) 

 

Gold 1 1 2 1 1 

Iron ore-nickel 3 4 1 3 3 

Coal-uranium 2 2 3 2 2 

Oil-gas 5 6 5 5 5 

Mix-metals 4 3 4 4 4 

Retail 7 7 7 7 7 

Manufacturing 6 5 6 6 6 

CVaR-CDaR 

𝜌 =0.928 

pvalue = 0.00*** 

CVaR-Minimax 

𝜌 =0.892 

pvalue = 0.00*** 

CVaR-MAD 

𝜌 =1.00 

pvalue =0.00*** 

CVaR-Var 

𝜌 =1.00  

pvalue = 0.00*** 

CDaR-Minimax 

𝜌 =0.75  

pvalue = 0.052 

CDaR-MAD 

𝜌 =0.92 

pvalue = 0.00*** 

CDaR-Var 

𝜌=0.928 

pvalue = 0.00*** 

Minimax-MAD 

𝜌=0.892 

pvalue=0.00*** 

Minimax-Var 

𝜌=0.892 

pvalue = 0.00*** 

MAD-Var 

𝜌=1.00  

pvalue = 0.00***  

Kruskal-Wallis Test: Chi-squared = 0, p-value = 1 

 

Portfolios’ risk rankings (GFC) 

 

Gold 1 1 2 1 1 

Iron ore-nickel 4 4 3 3 3 

Coal-uranium 3 3 4 4 4 

Oil-gas 6 6 6 6 6 

Mix-metals 2 2 1 2 2 

Retail 7 5 7 7 7 

Manufacturing 5 7 5 5 5 

CVaR- CDaR 

𝜌 =0.857 

pvalue = 0.013** 

CVaR-Minimax 

𝜌 = 0.928 

pvalue = 0.00*** 

CVaR-MAD 

𝜌 = 0.964 

pvalue=0.00*** 

CVaR- Var 

𝜌 = 0.964 

pvalue = 0.00*** 

CDaR- Minimax 

𝜌 = 0.785 

pvalue = 0.036** 

CDaR- MAD 

𝜌 = 0.821 

pvalue = 0.023** 

CDaR- Var 

𝜌 = 0.821 

pvalue = 0.023** 

Minimax- MAD 

𝜌 = 0.964 

pvalue=0.00*** 

Minimax- Var 

𝜌 = 0.964 

pvalue = 0.00*** 

MAD- Var 

𝜌 = 1.00 

p-value =0.00*** 

Kruskal-Wallis Test: Chi-squared = 0, p-value = 1 

 

Portfolios’ risk rankings (Post-GFC) 

 

Gold 2 4 3 1 3 

Iron ore-nickel 3 2 4 2 4 

Coal-uranium 1 1 1 3 1 

Oil-gas 5 5 5 5 5 

Mix-metals 4 3 2 4 2 

Retail 7 7 7 7 7 

Manufacturing 6 6 6 6 6 

CVaR- CDaR 

𝜌 = 0.892 

pvalue = 0.00*** 

CVaR- Minimax 

𝜌 = 0.892 

pvalue = 0.00*** 

CVaR-MAD 

𝜌 = 0.892 

pvalue=0.00*** 

CVaR- Var 

𝜌 = 0.892 

pvalue = 0.00*** 

CDaR- Minimax 

𝜌 = 0.892 

pvalue =0.00*** 

CDaR- MAD 

𝜌 = 0.75 

pvalue = 0.052 

CDaR- Var 

𝜌 = 0.892 

pvalue = .006*** 

Minimax- MAD 

𝜌 = 0.714 

pvalue = 0.07 

Minimax- Var 

𝜌 = 1.00 

pvalue = 0.00*** 

MAD- Var 

𝜌 = 0.714 

pvalue = 0.07 

Kruskal-Wallis Test: Chi-squared = 0, pvalue = 1 

Notes: This table displays the rankings of the portfolios’ risk estimates. The portfolios’ risk 

estimates are displayed in Table 9-16. The results from the fit of the nonparametric Spearman rank 

correlation and Kruskal-Wallis tests are also displayed. The parameter 𝜌 represents the strength of 
association between the rankings of the portfolios’ risk estimates. Each column of rankings has a 

mean value of 4. The ** correspond to p-values < .05 and *** for p-values < .01. The pairs of risk 

measures CVaR-CDaR, CVaR-Minimax, CVaR-MAD and the remaining ones represent the pairs 
of portfolios’ risk rankings. 
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9.2.2 Hypothesis 8 

 

Ha : The average model convergence of the stocks’ optimal weights is statistically 

significant. 

 

 

Applying a one-sample two-tailed t-test for the difference between each of the optimal 

weights and the average of the optimal weights tests the alternative hypothesis 8. The 

average model convergence of the stocks’ optimal weights is determined to be 

statistically significant if the difference between the average of the optimal weights and 

each of the optimal weights is not statistically significant. If the resulting t-test value is 

neither larger nor smaller than the critical value, the distance between two values is 

determined not to be statistically significant. The one-sample two-tailed t-test test 

employed is: 

 

𝑡 =
𝑥̅−∆
𝑠

√𝑛⁄
                                                   (9.1) 

 

The parameter 𝑥̅ represents the sample mean or the mean of the optimal weights. The 

parameter ∆ accounts for each of the optimal weights, while 𝑠 represents the standard 

deviation of the sample of optimal weights. The parameter 𝑛 stands for the size of the 

data sample. The degrees of freedom are estimated as follows: 

 

 𝑑𝑓 = (𝑛1 − 1)                                                            (9.2) 

The degrees of freedom and critical values across portfolios vary since the number of 

observations or optimal weights vary when fitting the t-test. The reason for this is that in 

some portfolios the weight allocations stemming from some of the fitted risk measures 

are ignored when searching for the average model convergence. Table 9-18 displays the 

degrees of freedom and critical values corresponding to 3, 4 and 5 observations. 
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Table 9-18: Degrees of freedom and critical values of observations 

Number of observations Degrees of freedom Confidence level Critical value 

3 Observations 2 95% ±4.30 

4 Observations 3 95% ±3.18 

5 Observations 4 95% ±2.77 

3 Observations 2 99% ±9.92 

4 Observations 3 99% ±5.84 

5 Observations 4 99% ±4.60 

       Notes: The table displays the degrees of freedom, confidence levels and critical values corresponding to 3, 4 

and 5 observations. The parameters are considered for the fitting of the one sample two-tailed t-test. 

 

According to Chapter 8 in the gold mining portfolio the optimal weights converge on 

average in ST. BARBARA (SBMX), if the model specification with respect to the CDaR is 

ignored. They also converge on average in NORTHWEST RESOURCES (NWRX) and 

RESOLUTE MINING (RSGS), if the model specifications with respect to the CDaR and 

Minimax are discarded. In the iron ore-nickel mining portfolio the optimal weights 

converge in BHP BILLITON (BHPX), if the model specifications with respect to the CDaR 

and CVaR are ignored. In the coal-uranium energy portfolio they converge in COAL BANK 

(CBQX), AQUILA RESOURCES (AQAX) and COALSPURN (CPLX), when the model 

specifications with respect to the CDaR and Minimax are ignored.  

In the oil-gas energy portfolio the optimal weights converge on average in BEACH 

ENERGY (BPTX), and in ORIGIN ENERGY (ORGX) when the model specifications with 

respect to the MAD and variance risk are discarded. In the mix-metals portfolio they 

converge in RIO TIONTO (RIOX) and CUDECO (CUX), when the model specifications with 

respect to the CDaR and Minimax are ignored. In the retail benchmark portfolio they 

converge on average in the M2 TELECOM (MTUX), WOOLWORTHS (WOWX) and ARB 

(ARPX) stocks when the model specifications with respect to the CDaR and Minimax are 

ignored. In the manufacturing benchmark portfolio they converge in CSL (CSLX), 

BRICKWORKS (BKWX) and ANSELL (ANNX) if the model specifications with respect to the 

CDaR and Minimax are ignored.  

 

Table 9-19 displays the results of the significant testing on the stocks selected by the 

average model convergence. It is observed that none of the resulting t-test values is larger 

or smaller than the critical values displayed in Table 9-18. As a result, the difference 

between the average of the optimal weights and each of the optimal weights is not 

statistically significant at the 95% and 99% confidence levels. This in turn implies that 
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the average model convergence of the stocks’ optimal weights is a statistically significant. 

This information leads to the acceptance of the alternative hypothesis 8. 

 

Table 9-19: Significance t-testing of the portfolios’ optimal weights 

Stocks/ 

Risk 

Measures 

CVaR 

 

CDaR 

 

Minimax 

 

MAD 

 
Var MW 

MW 

ex. 

CDaR 

MW 

ex.  

CDaR & 

Minimax 

MW 

ex.  

CVaR 

& 

CDaR 

MW 

ex.  

MAD & 

Variance 

 
Gold portfolio 

 

SBMX 
30.01 

t=-1.98 

44.28 

Discarded 

24.25 

t=1.95 

24.93 

t=1.48 

29.23 

t=-1.45 

30.54 

 

27.11 

 

28.06 

 

26.14 

 

32.85 

 

NWRX 
3.53 

t=1.88 

0 

Discarded 

0 

Discarded 

4.18 

t=-0.34 

4.53 

t=-1.54 

2.45 

 

3.06 

 

4.08 

 

2.90 

 

1.18 

 

RSGX 
13.54 

t=0.45 

0 

Discarded 

0 

Discarded 

14.15 

t=-1.91 

13.28 

t=1.46 

8.19 

 

10.24 

 

13.66 

 

9.14 

 

4.51 

 

 

Iron ore-nickel portfolio 
 

BHPX 
46.72 

Discarded 

53.15 

Discarded 

39.52 

t=-0.19 

39.38 

t=1.82 

39.62 

t=-1.63 

43.68 

 

41.31 

 

41.91 

 

39.51 4.46 

 

Coal-uranium portfolio 
 

CBQX 
3.97 

t=-0.20 

4.36 

Discarded 

1.47 

Discarded 

3.70 

t=1.82 

4.16 

t=-1.62 

3.53 

 

3.33 

 

3.94 

 

3.11 

 

3.27 

 

AQAX 
17.45 

t=-0.67 

0.00 

Discarded 

1.41 

Discarded 

17.63 

t=-1.30 

16.70 

t=1.97 

10.64 

 

13.30 

 

17.26 

 

11.91 

 

6.29 

 

CPLX 
12.60 

t=0.54 

2.40 

Discarded 

19.41 

Discarded 

12.26 

t=1.40 

13.58 

t=-1.94 

12.05 

 

14.46 

 

12.81 

 

15.08 

 

11.47 

 

 

Oil-gas portfolio 
 

BPTX 
94.94 

t=-1.19 

95.13 

t=-1.84 

95.13 

t=-1.84 

93.87 

t=2.43 

93.87 

t=2.43 

94.59 

 

94.45 

 

94.23 

 

94.29 95.07 

ORGX 
4.29 

t=2.00 

4.87 

t=-1.00 

4.87 

t=-1.00 

0.00 

Discarded 

0.00 

Discarded 

2.81 

 

2.29 

 

1.43 

 

1.623 4.677 

 

Mix-metals portfolio 
 

RIOX 
31.22 

t=1.99 

0.00 

Discarded 

25.39 

Discarded 

33.03 

t=-1.13 

32.88 

t=-0.87 

24.50 

 

30.63 

 

32.38 

 

30.43 

 

18.87 

 

CDUX 
7.97 

t=-0.31 

34.73 

Discarded 

0.00 

Discarded 

7.36 

t=1.87 

8.32 

t=-1.56 

11.68 

 

5.91 

 

7.88 

 

5.23 

 

14.23 

 

 

Retail portfolio 
 

MTUX 
12.82 

t=-1.98 

22.62 

Discarded 

14.13 

Discarded 

11.08 

t=1.23 

11.34 

t=0.75 

14.40 

 

12.34 

 

11.75 

 

12.18 

 

16.52 

 

WOWX 
29.52 

t=-1.76 

28.46 

Discarded 

1.84 

Discarded 

27.45 

t=0.06 

25.60 

t=1.70 

22.57 

 

21.10 

 

27.52 

 

18.30 

 

19.94 

 

ARPX 
19.57 

t=1.95 

0.00 

Discarded 

31.72 

Discarded 

22.11 

t=-0.58 

22.90 

t=-1.37 

19.26 

 

24.08 

 

21.53 

 

25.58 

 

17.10 

 

 
Manufacturing portfolio 

 

CSLX 
54.70 

t=1.10 

65.88 

Discarded 

49.29 

Discarded 

56.52 

t=-2.00 

54.82 

t=0.90 

56.24 

 

53.83 

 

55.35 

 

53.54 

 

56.62 

 

BKWX 
13.03 

t=-1.50 

7.33 

Discarded 

5.33 

Discarded 

12.10 

t=-0.39 

10.18 

t=1.89 

9.59 

 

10.16 

 

11.77 

 

9.20 

 

8.56 

 

ANNX 
17.32 

t=-0.22 

13.03 

Discarded 

35.14 

Discarded 

15.81 

t=1.83 

18.35 

t=-1.61 

19.93 

 

21.66 

 

17.16 

 

23.10 

 

21.83 

 

Notes: This table displays the stocks from the mining, energy, retail and manufacturing portfolios in which the 

optimal weights from the various portfolio optimization model specifications converge on average. The 

abbreviations MW, MW ex. CDaR and MW ex. Minimax and CDaR stand for mean of the optimal weights, mean of 
the optimal weights excluding the weights from the optimization with respect to the CDaR measure, and so on with 

the rest. The letter t represents the t-test value resulting from the fit of the one-sample two-tailed t-test. The average 

values in bold are used to test for the statistical significance. 
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Table 9-20: Hypothesis testing results 

Alternative 

Hypotheses 
Hypothesis Statement Acceptance/Rejection 

Ha 1: 

 
There are mining portfolios with higher dependence risk than 

others. 
 

 
Accepted 

Ha 2: 

 
There are energy portfolios with higher dependence risk than 

others 

 

Accepted 

Ha 3: 

 

There are mining portfolios with higher dependence risk than 

energy portfolios 

 

Accepted 

Ha 4: 

 
There are mining and energy portfolios with higher dependence 

risk than retail and manufacturing benchmark portfolios. 
 

Accepted 

Ha5: 

 

The portfolios’ dependence structure changes between period 

scenarios are statistically significant 

 

Accepted 

Ha 6: 

 
There is a pair vine copula model that best captures the 

multivariate dependence structure of the portfolios 
 

Accepted 

Ha 7: 

 
There is a portfolio of stocks that offers the best risk-return 

trade-off 
 

Accepted 

Ha 8: 

 
The average model convergence of the stocks’ optimal weights is 

statistically significant. 
 

Accepted 

Notes: This table shows the alternative hypotheses tested and their acceptance. The number of hypotheses 

tested is eight. Six of them stem from the pair vine copula modelling of dependence, while the remaining 

two are based on the portfolio optimization component of this thesis. 

 

A summary of the hypothesis testing indicates that each of the alternative hypotheses 

formulated is accepted. The alternative hypotheses 1 to 4 are accepted because 

dependence risk differences are found to exist between the mining portfolios, energy 

portfolios, mining and the energy portfolios, and between the mining and energy 

portfolios and the retail and manufacturing benchmark portfolios. The alternative 

hypothesis 5 is accepted because statistically significant dependence structure changes 

are observed to take place between pairs of period scenarios. The alternative hypothesis 6 

is accepted because specific vine copula models are identified to best suit the multivariate 

dependence structure of each of the portfolios. The alternative hypothesis 7 is accepted 

because one portfolio is identified to have the lowest risk and offer the best risk-return 

trade-off.  Finding the distance between the average of the optimal weights and each of 
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the optimal weights not to be statistically significant leads to the acceptance of the 

alternative hypothesis 8. 

 

 

9.3 Discussion of results 

 

 

The acceptance of the alternative hypotheses 1 to 4 is not surprising since in Chapters 5, 6 

and 7, through the use of the counting stage of the copula counting technique, it was 

noticed that the portfolios’ dependence concentrations differ in size and structure. The 

acceptance of the alternative hypothesis 6 is an important result because in Chapters 5, 6 

and 7 the identification of specific vine copula models, through the use of the counting 

stage of the copula counting technique, to best account for the multivariate dependence 

structure of the portfolios may have not sufficed to show that those models were indeed 

the most suitable. The acceptance of the alternative hypothesis 6 helped verify and 

validate the fit of the vine copulas in Chapters 5, 6 and 7. The acceptance of the 

alternative hypothesis 7 supports the results from Chapters 7 and 8, where the retail 

benchmark portfolio is recognized to be the second least dependence risky and the least 

investment risky, respectively. The acceptance of the alternative hypothesis 8 contributes 

to verify that the distance between the average of the optimal weights and each of the 

optimal weights, assign on the stocks identified as good candidate for investment, is not 

statistically significant.  

 

 

9.3 Summary 

 

This chapter tested the alternative hypotheses corresponding to the research questions 

posed in Chapter 1. The testing of the alternative hypotheses 1 to 5 was conducted by 

fitting a two-sample two-tailed t-test for the difference of means between two portfolios’ 

dependence concentrations at various locations of the joint distributions. The alternative 

hypotheses 1 to 4 were accepted because statistically significant dependence risk 

differences were found between the mining portfolios, energy portfolios, mining and 

energy portfolios, and between mining and energy and retail and manufacturing 

benchmark portfolios. Some portfolios were found to have higher dependence risk than 
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others in specific market conditions. The alternative hypothesis 5 was accepted because 

statistically significant dependence structure changes were observed to take place 

between pairs of period scenarios. The alternative hypothesis 6 was accepted because 

specific vine copula models were identified to best fit the multivariate dependence 

structure of the portfolios. The alternative hypothesis 7 was accepted because one 

portfolio was recognized to have the lowest investment risk and offer the best risk-return 

trade-off. The  

statistical significance of the average model convergence led to the acceptance of the 

alternative hypothesis 8. 

 

The c-vine copula model was identified to best account for the multivariate dependence 

structure of the iron ore-nickel, coal-uranium, oil-gas and mix-metals portfolios. The r-

vine copula model was acknowledged for best capturing the multivariate dependence of 

the gold mining and retail benchmark portfolios. The d-vine copula model, on the other 

hand, best fits the dependence structure of the manufacturing benchmark portfolio. Each 

of the alternative hypotheses formulated was accepted. 
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CHAPTER 10 

 
       CONCLUDING REMARKS 

 

This chapter consists of three sections: results-discussion and contributions, limitations, 

and suggestions for further research. 

 

The results-discussion and contributions section briefly states and discusses this thesis’ 

contributions and main results. The limitations section states and discusses the main 

limitations of the study. The suggestion for further research section proposes some topics 

that could be worth exploring in subsequent studies and applications.  

 

10.1 Results-discussion and contributions 

 

This thesis implements pair vine copula models including c-vines, d-vines and r-vines, 

along with linear and nonlinear optimization methods with respect to the variance, MAD, 

Minimax, CVaR and CDaR risk measures, to thoroughly and comprehensively examine 

the dependence risk, investment risk and portfolio allocation features of seven 20-asset 

portfolios from the mining, energy, retail and manufacturing sectors of the Australian 

stock market in the context of the 2008-2009 GFC and pre-GFC, GFC, post-GFC and full 

sample period scenarios. In Chapters 5, 6 and 7 the analysis of the portfolios’ dependence 

risk is based on the analysis of the dependence concentration in the centre and tails of the 

joint distributions. The analysis of the portfolios’ investment risk and portfolio allocation 

features conducted in Chapter 8 stems from the examination of the portfolios’ overall risk, 

optimal weights and model convergence in some stocks. 

This thesis contributes to the literature on pair vine copula modelling of dependence and 

multiple risk measure-based portfolio optimization by introducing a “copula counting 

technique” and “average model convergence” perspectives. The copula counting 

technique has enabled an in-depth and comprehensive analysis of the portfolios’ 

dependence structure and dependence risk characteristics in specific market conditions. 

The copula counting technique aside from being an alternative avenue for the 
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interpretation of multivariate dependence structures, it introduces new concepts and 

theory to the pair vine copula literature. Overall it has made possible a broader 

understanding of the portfolios’ underlying sectors’ dependence risk dynamics. The 

average model convergence has offered an alternative way to address the optimal stock 

selection and investment confidence problems underlying any type of portfolio 

optimization and faced by investors when having to select stocks from a wide array of 

optimal investment scenarios. The approach represents a shift of perspective in the 

multiple risk measured-based portfolio optimization literature in the sense that it 

identifies stocks that could be good candidates for investment, through model 

convergence and model consensus.  

A wide variety of portfolios is considered because of their differences in terms of 

structure, volatility, uses, and their importance in asset investment.  For example, the 

retail stocks along with the gold stocks, which tend to be defensive in times of financial 

turbulence, could be used to hedge investment positions in the iron ore and nickel sectors, 

which have shown to be more volatile. Also, the portfolios could be used to diversify an 

investment position in traditional equity sectors such as the financial sector. Oil and gas 

stocks have been selected for the analysis because their representation in the Australian 

energy market is increasing continuously. The same is true for the coal and uranium 

stocks, which may share some similarities arising from their common use for electricity 

generation. Stocks from the iron ore sector are considered in the analysis of dependence 

and portfolio optimization because iron ore production has a special place in the mining 

sector of the Australian economy due to the large scale of the iron ore business exports. A 

mix-metals leptokurtic mining portfolio is included in the mix of portfolios because it is 

of interest to understand the characteristics of a non-homogeneous multivariate 

dependence structure. 

The empirical results stemming from the fit of the pair vine copulas and the use of the 

copula counting technique indicated that the c-vines are overall the most suitable models 

to account for the multivariate dependence structure of the mining and energy portfolios. 

Also, while the iron ore-nickel mining and oil-gas energy portfolios are identified to be 

the most dependence risky, the gold and retail are overall the least dependence risky. The 

suitability of the c-vines to best account for the multivariate dependence structure of the 

mining and energy portfolios appears to be influenced by the presence of a rootstock in 

each of the portfolios having high correlation values with the rest of the stocks in the 

portfolios. In the iron ore-nickel mining portfolio the c-vine identifies BHP BILLITON 
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(BHPX) as the rootstock. RIO TINTO (RIOX) is identified in the mix-metals, PALADIN 

ENERGY (PDNX) in the coal-uranium, and WOODSIDE (WPLX) in the oil-gas energy 

portfolio. The empirical results stemming from the fit of the multiple risk measure-based 

portfolio optimization model specifications indicates that the portfolio with the lowest 

investment risk is the retail thus, offering the best risk-return trade-off out of the seven 

portfolios considered. The most dependence risky portfolios are the iron ore-nickel 

mining and oil-gas energy portfolios. The most investment risky portfolio is the oil-gas 

energy portfolio. Out the mining portfolios the gold portfolio is the least dependence 

risky. Out of the energy portfolios, the coal-uranium portfolio is less dependence risky 

than the oil-gas. 

The pair vine copula modelling of dependence undertaken in the Chapters 5, 6 and 7 

indicates that each of the portfolios modelled has dependence risk features consistent 

with specific market conditions. Out of the mining portfolios the gold and mix-metals 

have low dependence risk in times of financial turbulence. The iron ore-nickel mining 

portfolio has the highest dependence risk in similar market conditions, as indicated by the 

large concentration of dependence it has in the negative tail. Stocks from the gold and 

mix-metals could consequently be used to hedge an investment position with high 

concentration in the iron ore and nickel sectors.  

With respect to the energy portfolios, the coal-uranium is identified to have low 

dependence risk in times of financial turbulence, while the oil-gas has high dependence 

risk in similar market conditions. Coal and uranium stocks could therefore be used to 

reduce the risk of an investment position in the oil sector. Although both benchmark 

portfolios have low dependence risk in market conditions characterized by low 

confidence in the financial stock markets, the retail is significantly less dependence risky 

than the manufacturing benchmark portfolio. Investments in the retail sector are therefore 

preferred to investments in the manufacturing sector during crisis and non-crisis periods. 

The identification of the gold mining portfolio as low dependence risky in times of 

financial turbulence is in congruence with the literature’s research findings (see e.g. Baur 

& Lucey, 2010; Dee et al., 2013; Courdert & Raymond, 2010; Morales & Andreosso-

O’Callaghan, 2011; Faff & Chan, 1998). As compared to those studies which model the 

risk characteristics of gold, this thesis modelling of gold markets is more complete 

because it identifies the symmetric and asymmetric dependence risk characteristics of the 

assets in specific market conditions. Besides, it examines their negatively and positively 

skewed price and return behaviour in different market conditions.  
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The mix-metals portfolio’s high dependence risk relative to the gold stems from the wide 

variety of stocks it consists of. Specifically, some of its stocks belong to the iron ore and 

nickel sectors, identified to be significantly more dependence risky than the gold sector. 

Bingham and Perkins (2012) have pointed out the high-risk features of the iron ore and 

nickel sector in market conditions characterized by low confidence in the financial stock 

markets. The low dependence risk identified in the coal-uranium energy portfolio in 

similar market conditions is found to stem from the relative stability the coal and uranium 

commodities displayed during the 2008-2009 global financial crisis. The Bureau of 

Resources and Energy Economics (2014), The Department of Resources Energy and 

Tourism (2013) and Bingham and Perkins (2012) have pointed out the price and implied 

risk behavior of the coal and uranium sectors during the crisis period. 

The oil-gas energy portfolio’s high dependence risk in non-tranquil stock market 

conditions is in line with the literature modelling the risk in oil markets (e.g. Du et al., 

2012; Killian & Park, 2009; Park & Ratti, 2008; Basher & Sadorsky, 2006). This thesis 

modelling of energy stock markets relative to the modelling of energy markets 

undertaken by Tong et al. (2013), Wen et al. (2012) and Chang et al. (2011) has the 

comparative advantage of scrutinizing the assets’ dependence scattered at various 

locations in the joint distributions. Those studies by not considering a systematic 

approach, such as the copula counting technique, in their analysis of dependence are 

unable to thoroughly and comprehensively examine the multivariate dependence risk 

dynamics of the energy assets modelled. In fact, this thesis’ modelling of the Australian 

energy stock markets appears to be the first to use pair vine copulas to model their 

dependence risk behavior. 

The identification of the retail benchmark portfolio as less dependence risky than the 

manufacturing benchmark portfolio in tranquil periods and non-tranquil periods has to do 

with the specific type of economic linkages and relationship of dependence each of the 

portfolios’ underlying sectors has with the Australian resources sector (i.e. mining and 

energy sectors), as pointed out by The Australian Retailers Association (2014), Savills 

Research (2014), Delloite (2013) and Mehmedovic et al. (2011). This thesis’ research and 

examination of the Australia retail and manufacturing sectors, relative to the research 

conducted by The Australian Retailers Association (2014), Savills Research, (2014), 

Delloite (2013), KordaMentha (2013), Commonwealth Treasury (2012), Green and Roos 

(2012), The National Australian Bank (2012), The Productivity Commission (2011) and 

Mehmedovic et al. (2011), is more complete because aside from looking at the sectors’ 
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performance and price behaviour in varied market conditions, it examines thoroughly 

their dependence risk in specific market conditions. The research findings resulting from 

the fit of the pair vine copulas are validated by comparing them with the actual price 

behaviour of the stock portfolios‘ underlying sectors. 

The multiple risk measure-based portfolio optimization implemented in Chapter 8 shows 

that the retail benchmark portfolio has the lowest investment risk, while the oil-gas is the 

most investment risky. Out of the two energy portfolios modelled the oil-gas is more 

investment risky. Out of the benchmark portfolios the retail is less investment risky. Out 

of the seven portfolios modelled the retail offers the best risk-return trade-off. In the gold 

mining portfolio the average model convergence proposed in this thesis identifies ST. 

BARBARA (SBMX), NORTHWEST RESOURCES (NWRX) and RESOLUTE MINING (RSGS) as 

good candidates for investment; BHP BILLITON (BHPX) is the best choice in the iron ore-

nickel mining portfolio; RIO TIONTO (RIOX) and CUDECO (CUX) in the mix-metals; 

AQUILA RESOURCES (AQAX) and COAL SPURN (CPLX) in the coal-uranium; BEACH 

ENERGY (BPTX) and ORIGIN ENERGY (ORGX) in the oil-gas; M2 TELECOM (MTUX), 

WOOLWORTHS (WOWX) and ARB (ARPX) in the retail; and CSL (CSLX), BRICKWORKS 

(BKWX) and ANSELL (ANNX) in the manufacturing benchmark portfolio. Each of the 

stocks selected by the average model convergence have the distinctive features of having 

a high return relative to risk and of having being allocated large weights by most of the 

portfolio optimization model specifications. It is also noticed that several stocks with high 

return relative to risk are not allocated large weights and are not spotted by the average 

model convergence as good candidates for investment. 

The identification of the oil-gas energy portfolio as the most investment risky is to a large 

extent consistent with the results from Chapters 5 and 6, where the oil-gas energy 

portfolio is recognized to be the second most dependence risky, next to the iron ore-

nickel mining portfolio. This high-risk feature of the oil gas sector is in line with the 

literature (e.g. Faff & Brailsford, 1999; Basher & Sadorsky, 2006; Killian & Park, 2009; 

Park & Ratti, 2008; Du et al., 2012). The identification of the retail benchmark portfolio 

as the least investment risky and as the one offering the best risk-return trade-off is also 

in congruence with the results from Chapter 7, where the retail benchmark portfolio is 

identified to be the second least dependence risky in crisis and non-crisis periods. The 

ability of the average model convergence approach to identify stocks with high return 

relative to risk and with large weight allocations suggests that the approach is useful and 
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worth considering for the optimization of portfolios with respect to multiple risk 

measures.  

The multiple risk measure-based portfolio optimization implemented in this thesis, 

relative to the single risk measure portfolio optimization by Chang et al. (2011) and De 

Oliveira et al. (2011), Zhou (2004), Zhou and Yin (2003), Alexander and Baptista (2002), 

Li et al. (2002), Steinbach (2001), Yoshimoto (1996), He and Litterman (1999), Bevan 

and Winkelmann (1998), Kroll et al. (1984), Samuelson (1970) and Markowitz (1952) is 

in the least more informative. Those studies, specifically, lack the multi-angle portfolio 

optimization perspective that could cater for the investors’ diverse specific risk and return 

preferences. Relative to the multiple risk measure-based portfolio optimization 

undertaken by Krokhmal et al. (2002), Cheng and Wolverton (2001) and Stone (1973), 

this thesis’ modelling of the portfolios’ investment risk addresses more effectively and 

objectively the optimal stock selection and investment confidence problems underlying 

any type of portfolio optimization and faced by investors when having to select stocks 

form a wide array of optimal investment scenarios. 

The fitted pair vine copula models, along with the use of the copula counting technique, 

show to be worthy of consideration for the modelling of stock portfolios’ dependence 

risk. The implemented multiple risk measure-based portfolio optimization model 

specifications, along with the average model convergence perspective, prove to be an 

attractive alternative way to address the optimal stock selection and investment 

confidence problems. 

The hypothesis testing conducted in Chapter 9 shows that each of the alternative 

hypotheses formulated is accepted. The identification of statistically significant 

dependence risk differences between portfolios, and of statistically significant 

dependence structure changes between pairs of period scenarios led to the acceptance of 

the alternative hypotheses 1 to 5. The presence of statistically significant dependence 

structure changes between pairs of period scenarios is discerned to reflect the levels of 

confidence and volatility changes in the financial stock markets across period scenarios. 

The statistical significance of the strength of association and same-direction co-

movements of the portfolios’ risk rankings and risk measures, that identify the retail 

benchmark portfolio as the least risky, led to the acceptance of the alternative hypothesis 

6. The identification of specific vine copula models to best fit the multivariate 

dependence of the portfolios led to the acceptance of the alternative hypothesis 7. The 

alternative hypothesis 8 is accepted because the difference between the average of the 
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optimal weights and each of the optimal weights is found not to be statistically significant. 

The research findings from Chapters 5, 6, 7 and 8 are recognized to be in line with the 

hypothesis testing results from Chapter 9.  

The acceptance of the alternative hypotheses 1 to 4 is found to be coherent with the 

analysis conducted in Chapters 5, 6 and 7, where through the use of the counting stage of 

the copula counting technique, the size of the portfolios’ dependence concentration is 

noticed to be different in terms of size and structure. The acceptance of the alternative 

hypothesis 6 is an important result because the identification of specific vine copula 

models as best fitting the multivariate dependence structure of the portfolios in Chapters 

5, 6 and 7 may have put into question the reliability of the copula counting technique for 

the identification of the most suitable vine copula models. The acceptance of the 

alternative hypothesis 7 supports the findings from Chapters 7 and 8 where the retail 

benchmark portfolio is identified to be the least investment risky and the second least 

dependence risky. The acceptance of the alternative hypothesis 8 verifies that the 

convergence of the optimal weight allocations in some stocks is statistically significant. 

Portfolio managers, risk managers, hedging practitioners, financial market analysts, 

systemic risk and capital requirement agents, who follow the trends of the Australian 

mining, energy, retail and manufacturing sectors, may find the obtained empirical results 

useful to design investment risk and dependence risk-adjusted optimization algorithms, 

risk management frameworks and dynamic hedging strategies. For those end users, it is 

of interest to know what the inherent dependence risk characteristics of those sectors are 

like. The same is true for risk managers in performing stress-testing and robustness 

checks, which are particularly important in times of financial turbulence where extreme 

downside risk events tend to occur (Al Janabi, 2013). 

 

10.2 Limitations  

 

A possible limitation of this thesis’ research lies in the size of the data samples used. 

Although the employed 7.5 years price series’ length is long enough to account for the 

volatility and dependence structure changes across period scenarios, a larger number of 

stocks in each of the portfolios under consideration could have provided additional value 

to the portfolio optimization and dependence risk modelling. In spite of the number of 
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stocks in each portfolio being 20, it was possible to draw generalizations and insights 

about the dependence risk profile and portfolio allocation features of the stock portfolios 

and their underlying sectors.  

Another limitation of the modelling framework implemented in this thesis stems from the 

nature of the copula counting technique proposed to dissect, organize, analyse and 

interpret the asset portfolios’ multivariate dependence structure. Specifically, the 

technique while enabling a comprehensive analysis of the portfolios dependence risk 

dynamics in specific market conditions, it does not provide an exact estimate of 

dependence risk in the negative tail. This limitation is in turn conditioned by the 

analytical design of each bivariate copula employed in the statistical vine copula 

structures or models. That is, although each of the bivariate copulas employed best 

captures the dependence from a certain location of the joint distribution, they 

simultaneously, and to a lesser degree, capture the dependence scattered in all locations 

of the joint distributions. An exact estimate of the dependence concentrated in the 

negative tail could lead to more accurate estimates of downside risk. 

Another limitation arises from the specific type of market conditions under which the 

portfolios’ dependence risk is modelled: crisis periods and non-crisis periods. While in 

theory it may be simple to define and conceive those notions, in practice it is difficult to 

distinguish between crisis and non-crisis periods, times of financial turbulence and 

tranquil periods, market conditions characterized by low confidence in the financial stock 

markets and market conditions with restored stock market confidence, tranquil stock 

market conditions and non-tranquil stock market conditions. One more limitation stems 

from the difficulty to compare each of the portfolio’s optimal weight allocations across 

different risk measures. That is, since each of the risk measures produces an estimate of 

risk in its own space it becomes troublesome to grasp an overall risk estimate when 

comparing them. In spite of this difficulty it is possible to identify the least risk and most 

risky portfolios by comparing them on the same risk measure. 

  

10.3 Suggestions for further research 

 

One line of research within the pair vine copula field worth exploring relates to the 

development of criteria to fit regular vines. There are no clear criteria about the types of 
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data sets suitable to be modelled by r-vines (i.e. the set of vines that excludes the c-vines 

and d-vines). There are, however, more or less clear criteria about the suitability of the c-

vines and d-vines to model data sets of specific characteristics (see Czado, 2010). More 

applications of pair vine copulas to model the mining, energy, retail and manufacturing 

markets could lead to results that could impact policy and decision making related to 

investment in the mining and energy sectors modelled. Applications of pair vine copulas 

to model credit risk, market risk, liquidity risk, investment risk and dependence risk in the 

financial sector could provide insights that could impact policy concerned with financial 

and macro economic stability. The fields of behavioral finance and high frequency 

modelling could also benefit from the implementation of pair vine copulas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



177 
 

BIBLIOGRAPHY 

 
Aas, K. (2011). Pair-copula constructions: even more flexible than copulas, 1-39. 

 

Aas, K. (2004). Modelling the dependence structure of financial assets: a survey of four 

copulas. Norwegian Computing Centre, 1-21. 

 

Aas, K., Czado, C., Frigessi, A., & Bakken, H. (2009). Pair-copula constructions of 

multiple dependence. Insurance: Mathematics & Economics Journal, 44(2), 182–

198. 

Ahammad, H., & Clements, K. W. (1999). What does minerals growth mean to Western 

Australia? Resources Policy, 25(1), 1-14. 

 

Albuquerque, R. (2012). Skewness in stock returns: reconciling the evidence on firm 

versus aggregate returns. Review of Financial Studies, 25(5), 1630-1673. 

 

Alcock, J., & Hatherley, A. (2008). The price of asymmetric dependence. In 21st 

Australasian Finance & Banking Conference, 1-46. 

 

Alcock, J., Brailsford, T., Faff, R., & Rand-Kwong, Y.L. (2013). Canonical vine copulas 

in the context of modern portfolio management: are they worth it? Journal of 

Banking & Finance, 37(8), 3085-3089. 

Allen, D.E., Ashraf, M.A., McAleer, M., Powell, R.J., & Singh, A.K. (2013). Financial 

dependence analysis: applications of vine copulae. Statistica Neerlandica, 67(4), 

403-435. 

Alexander, G. J., & Baptista, A. M. (2002). Economic implications of using a mean-VaR 

model for portfolio selection: a comparison with mean-variance analysis. Journal of 

Economic Dynamics & Control, 26(7), 1159-1193. 

Al Janabi, M. A. (2013). Tactical risk analysis in emerging markets in the wake of the 

credit crunch and ensuing sub-prime financial crisis. Emerging Markets & the 

Global Economy: A Handbook, 413. 

Almeida, C., Czado, C., & Manner, H. (2012). Modelling high dimensional time-varying 

dependence using d-vine SCAR models. arXiv preprint arXiv:1202.2008, 1-29. 

Aloui, R., Hammoudeh, S., & Nguyen, D.K. (2013). A time-varying copula approach to 

oil and stock market dependence: the case of transition economies. Energy 

Economics, 39, 208–221. 

Ammann, M., & Süss, S. (2009). Asymmetric dependence patterns in financial time 

series. The European Journal of Finance, 15(7-8), 703-719. 

Ang, A., & Chen, J. (2002). Asymmetric correlations of equity portfolios. Journal of 

Financial Economics, 63(3), 443-494. 



178 
 

Andrew, J.A. (2012). Australia’s trade performance 1990-91 to 2010-11. Department of 

Foreign Affairs and Trade: Economic Advocacy & Analysis Branch, 1-9. 

Ardia, D., Boudt, K., Carl, P., Mullen, K., & Peterson, B. (2011a). Differential evolution 

with DEoptim: an application to non-convex portfolio optimization. The R Journal, 

3 (1), 27-34. 

Ardia, D., Mullen, K., Ulrich, J., & Peterson, B. (2011b). DEoptim: an R package for 

global optimization by differential evolution. Journal of Statistical Software, 40(6), 

1-26 

Arreola, J., & Powell, R. (2013). Optimal risk minimization of Australian energy and 

mining portfolios of stocks under multiple risk measures. Proceedings of the 20th 

International Congress on Modelling & Simulation, Adelaide, Australia, 1-7. 

Arreola, J., Allen, D., & Powell, R. (2013). Dependence estimation and controlled CVaR 

portfolio optimization of a highly kurtotic Australian mining sample of stocks. 

Proceedings of the 20th International Congress on Modelling and Simulation, 

Adelaide, Australia, 1-7. 

Ausin, M. C., & Lopes, H.F. (2010). Time-varying joint distribution through copulas. 

Computational Statistics & Data Analysis, 54(11), 2383-2399. 

Australian Government Productivity Commission (2011). Economic structure and 

performance of the Australian retail industry. Porductivity Commision Draft Report, 

Canberra, 1-14. 

Australian Retailers Association (2014). Financial system inquiry. Melbourne, August,1-

10. 

Australian Bureau of Statistics (2015). Retail trade, Australia. Canberra, January. 

Baba, K., & Sibuya, M. (2005) Equivalence of partial and conditional correlation 

coefficients. Journal of Japanese Statistical Society, 35(1), 1–19. 

Bae, K.H., Karolyi, G.A., & Stulz, R.M. (2003). A new approach to measuring financial 

contagion. Review of Financial Studies, 16(3), 717-763. 

Bank for International Settlements (2009). The international financial crisis: timeline, 

impact and policy responses in Asia and the Pacific. BIS papers, 52, 21-82. 

Barone-Adesi, G. (1985). Arbitrage equilibrium with skewed asset returns. Journal of 

Financial & Quantitative Analysis, 20(03), 299-313. 

Barunik, J., & Vacha, L. (2013). Contagion among central and eastern European stock 

markets during the financial crisis. arXiv preprint arXiv:1309.0491, 1-17. 

Basher, S.A., & Sadorsky, P. (2006). Oil price risk and emerging stock markets. Global 

Finance Journal, 17 (2), 224-251. 



179 
 

Baur, D.G. (2012). Financial contagion and the real economy. Journal of Banking and 

Finance, 36 (10), 2680-2692. 

Baur, D.G., & McDermott, T.K. (2009). Is gold a safe haven? International evidence. 

Journal of Banking & Finance, 34(8), 1886-1898. 

Baur, D. G., & Lucey, B. M. (2010). Is gold a hedge or a safe haven? An analysis of 

stocks, bonds and gold. Financial Review, 45(2), 217-229. 

Bedford, T., & Cooke, R.M. (2001). Probability density decomposition for conditionally 

dependent random variables modelled by vines. Annals of Mathematics & Artificial 

Intelligence, 32 (1-4), 245–268. 

Bedford, T., & Cook, R. M. (2002). Vines: a new graphical model for dependent random 

variables. Annals of Statistics, 30, 1031–1068. 

Berg, D., & Aas, K. (2009). Models for construction of higher-dimensional dependence: 

a comparison study. European Journal of Finance, 15, 639–659. 

Bevan, A., & Winkelmann, K. (1998). Using the Black-Litterman global asset allocation  

model: three years of practical experience. Fixed Income Research, 1-19. 

Bhattacharya, A., & Kojima, S. (2012). Power sector investment risk and renewable 

energy: a Japanese case study using portfolio risk optimization method. Energy 

Policy, 40, 69-80. 

Bingham, F. (2012). Australia’s resources exports 2001 to 2011. Department of Foreign 

Affairs and Trade: Economic Advocacy & Analysis Branch, 1-4. 

Bingham, F., & Perkins, B. (2012). Australia’s coal and iron ore exports 2001 to 2011. 

Department of Foreign Affairs and Trade: Economic Advocacy & Analysis Branch, 

1-8. 

Bishop, J., Kent, C., Plumb, M., & Rayner, V. (2013). The resources boom and the 

Australian economy: a sectoral analysis. RBA Bulletin, 39-50. 

Blalock, H.M. (Ed.). (1985). Causal models in the social sciences. Transaction Publishers. 

Brechmann, E.C., & Schepsmeier, U. (2013). Modelling dependence with c and d vine 

copulas: The R-package C-D vine. Journal of Statistical Software, 52 (3), 1-26. 

Brechmann, E.C., Czado, C., & Aas, K. (2012). Truncated regular vines in high 

dimensions with applications to financial data. Canadian Journal of Statistics, 40 

(1), 68–85. 

Brechmann, E.C., & Czado, C. (2012). COPAR- multivariate time series modelling 

using the copula autoregressive model. arXiv:1203.3328, 1-32. 

Brechmann, E.C., & Czado, C. (2013). Risk management with high-dimensional vine 

copulas: an analysis of the Euro Stoxx 50. Statistics & Risk Modelling, 30(4), 307-

342. 

Brechmann, E.C., Hendrich, K., & Czado, C. (2013). Conditional copula simulation for 

systemic risk stress testing. Insurance: Mathematics & Economics, 53, 722-732. 



180 
 

Brechmann, E.C., Czado, C., & Paterlini, S. (2014). Flexible dependence modelling of 

operational risk losses and its impact on total capital requirements. Journal of 

Banking & Finance, 40, 271-285. 

Brooks, C., & Kat, H. (2002). The statistical properties of hedge fund index returns and 

their implications for investors. Journal of Alternative Investments, 5(2), 26-44. 

Bureau of Resources and Energy Economics (2014). Australian energy update. Canberra, 

July, 1-24. 

Campbell, R., Koedijk, K., & Kofman, P. (2002). Increased correlation in bear markets. 

Financial Analysts Journal, 58 (1), 87-94. 

Chang, C.L., McAleer, M., & Tansuchat, R. (2011). Crude oil hedging strategies using 

dynamic multivariate GARCH. Energy Economics, 33(5), 912-923. 

Chang, T. J., Yang, S. C., & Chang, K. J. (2009). Portfolio optimization problems in 

different risk measures using genetic algorithm. Expert Systems with Applications, 

36(7), 10529-10537. 

Chen, S., & Poon, S. (2007). Modelling international stock market contagion using 

copula and risk appetite. Capital Markets: Asset Pricing & Valuation eJournal, 1-

48. 

Chen, P. Y., & Popovich, P. M. (2002). Correlation: parametric and nonparametric 

measures (No. 137-139). Sage. 

Cheng, P., & Wolverton, M.L. (2001). MPT and the downside risk framework: a 

comment on two recent studies. Journal of Real Estate Portfolio Management, 7(2), 

125-131. 

Chekhlov, A., Uryasev, S., & Zabarankin, M. (2003). Portfolio optimization with 

drawdown constraints, asset and liability management tools. Risk Books, London. 

Chesters, J. (2010). The global financial crisis in Australia. Proceedings of the 

Conference: Social Causes, Private Lives. Australian Sociological Association. The 

University of Queensland, Australia. 

Chiang, T. C., Jeon, B. N., & Li, H. (2007). Dynamic correlation analysis of financial 

contagion: evidence from Asian markets. Journal of International Money & 

Finance, 26(7), 1206-1228. 

Chollete, L., Heinen, A., & Valdesogo, A. (2009). Modelling international financial 

returns with a multivariate regime switching copulas. Journal of Financial 

Econometrics, 7, 437-480. 

Chunhachinda, P., Dandapani, K., Hamid, S., & Prakash, A. J. (1997). Portfolio selection 

and skewness: evidence from international stock markets. Journal of Banking & 

Finance, 21(2), 143-167. 

Clarke, J., Jandik, T., & Mandelker, G. (2001). The efficient markets hypothesis. Expert 

Financial Planning: Advice from Industry Leaders, 126-141. 

CME Group (2011). Risk management for equity asset managers. Chicago, 1-20. 



181 
 

Collins, T. (2013). Australia’s gold industry: trade, production and outlook. Department 

of Foreign Affairs and Trade: Economic Advocacy & Analysis Branch, 1-5. 

Commonwealth Treasury (2012). The Australian dollar and the manufacturing sector. 

Canberra, November, 1-23. 

Connolly, E., & Orsmond, D. (2011). The mining industry: from bust to boom. Economic 

Analysis Department, Reserve Bank of Australia, 1-59. 

Cooke, R.M. (1997). Markov and entropy properties of tree- and vine-dependent 

variables. Proceedings of the ASA Section on Bayesian Statistical Science, 1-10. 

Coudert, V., & Raymond, H. (2011). Gold and financial assets: are there any safe havens 

in bear markets. Economics Bulletin, 31 (2), 1613-1622. 

Corsetti, G., Pericoli, M., & Sbracia, M. (2001). Correlation analysis of financial 

contagion: what one should know before running a test. Yale Economic Growth 

Centre Discussion Paper, (822). 

Cox, D.R., & Wermuth, N. (1996). Multivariate dependencies. London. Chapman & Hall. 

Croux, C., & Dehon, C. (2010). Influence functions of the Spearman and Kendall 

correlation measures. Statistical Methods & Applications, 19(4), 497-515. 

Czado, C. (2010). Pair-copula constructions of multivariate copulas. In Copula theory 

and its applications. Springer Berlin Heidelberg, 93-109. 

Czado, C., Schepsmeier, U., & Min, A. (2012). Maximum likelihood estimation of mixed 

c-vines with application to exchange rates. Statistical Modelling, 12 (3), 229–255. 

Czado, C., Brechmann, C., & Gruber, L. (2013). Selection of vine copulas. In Copulae in 

mathematical & quantitative finance by Jaworski, P., Durante, F., & Härdle, W.K. 

Springer, 1-20. 

Daeyoung, K., Jong-Min, K., Shu-Min, L., & Yoon-Sung, J. (2013). Mixture of d-vine 

copulas for modelling dependence. Computational Statistics & Data Analysis, 64, 

1-19. 

Danacica, D. E., & Babucea, A. G. (2007). Methodological aspects in using Pearson 

coefficient in analysing social & economical phenomena. European Research 

Studies Journal, 10(3-4), 89-98. 

David, A. (1997). Fluctuating confidence in stock markets: implications for returns and 

volatility. Journal of Financial & Quantitative Analysis, 32(04), 427-462. 

Delarue, E., De-Jonghe, C., Belmans, R., & D'haeseleer, W. (2011). Applying portfolio 

theory to the electricity sector: energy versus power. Energy Economics, 33(1), 12-

23. 

Dee, J., Li, L., & Zheng, Z. (2013). Is gold a hedge or safe haven? Evidence from 

inflation and stock market. International Journal of Development and 

Sustainability, 2 (1), 12-27. 



182 
 

Delloite, L.L.P. (2013). Global powers of retailing: retail and beyond. New York, January, 

1-44. 

De Oliveira, F.A., De Paiva, A.P., Lima, J.W.M., Balestrassi, P.P., & Mendes, R.R.A. 

(2011). Portfolio optimization using mixture design of experiments: scheduling 

trades within electricity markets. Energy Economics, 33(1), 24-32. 

Department of Industry (2014). Australian Industry Report. Canberra, 1-220 

Department of Innovation, Industry, Science and Research (2010). Manufacturing sector: 

overview of structural change- industry brief 2008-2009. Canberra, July, 1-80. 

Department of Industry, Geoscience Australia and Bureau of Resources and Energy 

Economics (2014). Australian energy resource assessment. Canberra, August, 1-

364. 

Department of Resources, Energy and Tourism and Bureau of Resources and Energy 

Economics (2013). Energy in Australia. Canberra, May, 1-140. 

Dissmann, J., Brechmann, E.C., Czado, C., & Kurowicka, D. (2013). Selecting and 

estimating regular vine copulae and application to financial returns. Computational 

Statistics & Data Analysis, 59, 52-69. 

Dissmann, J.F. (2010). Statistical inference for regular vines and application. Diploma 

Thesis, Technische Universitat Munchen. 

Du, K., Platen, E., & Rendek, R. (2012). Modelling of oil prices (No. 321). 

Eling, M., & Tibiletti, L. (2010). Internal vs. external risk measures: how capital 

requirements differ in practice. Operations Research Letters, 38(5), 482-488. 

Embrechts, P., McNeil, A., & Straumann, D. (1999). Correlation: pitfalls and alternatives. 

Risk, 12(5), 69-71. 

Erb, C., Harvey, C., & Viskanta, T. (1994). Forecasting international equity correlations. 

Financial Analysts Journal, 50 (6), 32–45. 

Faff, R., & Chan, H. (1998). A multifactor model of gold industry stock returns: evidence 

from the Australian equity market. Applied Financial Economics, 8 (1), 21-28. 

Faff, R., W., & Brailsford, T.J. (1999). Oil price risk and the Australian stock market. 

Journal of Energy Finance and Development, 4 (1), 69-87 

Fan, Y. (2010). Copulas in econometrics. Encyclopedia of Quantitative Finance. 

Fan, J., Feng, Y., & Wu Y. (2009). Network exploration via the adaptive lasso and scad 

penalties. The Annals of Applied Statistics, 3(2), 521-541. 

Federal Reserve Bank of St. Louis (2009). The Financial Crisis: A Timeline of Events 

and Policy Actions. http://timeline.stlouisfed.org. 

Fernandez, Y.G., & Ortiz, M.R.S. (2012). Multivariate dependence modelling with vines: 

R package ‘vines’, 1-20. 



183 
 

Fischer, M., Kock, C., Schluter, S., & Weigert, F. (2009). An empirical analysis of 

multivariate copula models. Quantitative Finance, 9(7), 839–854. 

Frahm, G., Junker, M., & Szimayer, A. (2003). Elliptical copulas: applicability and 

limitations. Statistics & Probability Letters, 63(3), 275-286. 

Gao, J., Xiong, Y., & Duan, L. (2014). Dynamic mean-risk portfolio selection with 

multiple risk measures in continuous-time, 1-36. 

Gardner-Bond, S., Spring, S., Wilkes, G., Williams, R., & Slack, W. (2008). Iron Ore 

sector review: leveraging exposure to iron ore through Australian pure plays. Ocean 

Equities, 1-38. 

Genest, C., Remillard, B., & Beaudoin, D. (2009). Goodness-of-fit tests for copulas: a 

review and a power study. Insurance: Mathematics & Economics, 44(2), 199-213.  

Ghalanos, A. (2013). Portfolio optimization in parma (Version 1.5-0), 1-23 

Green, R. and Roos, G. (2012). Australia’s Manufacturing Future. April, Sydney, 1-111. 

Grootveld, H., & Hallerbach, W. (1999). Variance vs downside risk: is there really that 

much difference? European Journal of Operational Research, 114(2), 304-319. 

Guo, J., Levina, E., Michailidis, G., & Zhu, J. (2011). Joint estimation of multiple 

graphical models. Biometrika, 98 (1), 1-15. 

Haff, I.H. (2013). Parameter estimation for pair-copula constructions. Bernoulli, 19(2), 

462-491. 

Hatherley, A. (2009). Asymmetric dependence structures. PhD Thesis. The University of 

Queensland. 

Hatherley, A., & Alcock, J. (2007). Portfolio construction incorporating asymmetric 

dependence structures: a user's guide. Accounting & Finance, 47(3), 447-472. 

Hautsch, N., Okhrin, O., & Ristig, A. (2013). Modelling time-varying dependencies 

between positive-valued high-frequency time series. In Copulae in Mathematical 

and Quantitative Finance. Springer Berlin Heidelberg, 115-127 

Heinen, A., & Valdesogo, A. (2009). Asymmetric CAPM dependence for large 

dimensions: the canonical vine autoregressive model. CORE, 1-40. 

He, G., & Litterman, R. (1999). The intuition behind the Black-Litterman model 

portfolios. Goldman Sachs Investment Management Series, 1-27. 

Heywood, G.C., Marsland, J.R., & Morrison, G.M. (2003). Practical risk management for 

equity portfolio managers. British Actuarial Journal, 9 (05), 1061-1123. 

Hobaek Haff, I., & Segers, J. (2012). Nonparametric estimation of pair-copula 

constructions with the empirical pair-copula.  arXiv:1201.5133, 1-23. 



184 
 

Hofmann, M., & Czado, C. (2010). Assessing the VaR of a portfolio using d-vine copula 

based multivariate GARCH models. Submitted for publication, 1-36. 

Hua, L., & Joe, H. (2011). Tail order and intermediate tail dependence of multivariate 

copulas. Journal of Multivariate Analysis, 102 (10), 1454-1471. 

Hull, J., & White, A. (1998). Value at risk when daily changes in market variables are not 

normally distributed. The Journal of Derivatives, 5 (3), 9–19. 

Jansen, W. J., & Nahuis, N.J. (2003). The stock market and consumer confidence: 

European evidence. Economics Letters, 79(1), 89-98. 

Jennings, W.W. (2012). Energy stocks as a separate portfolio allocation. The Journal of 

Wealth Management, 14(4), 70-86.  

Joe, H. (1997). Multivariate models and dependence concepts. Chapman & Hall, London. 

Joe, H., Li, H., & Nikoloulopoulos, A. K. (2010). Tail dependence functions and vine 

copulas. Journal of Multivariate Analysis, 101(1), 252-270. 

Jordan, J.S. (1983). On the efficient markets hypothesis. Econometrica: Journal of the 

Econometric Society, 1325-1343. 

Junker, M., & May, A. (2005). Measurement of aggregate risk with copulas. The 

Econometrics Journal, 8, 428–454. 

Junker M., Szimayer, A., & Wagner, N. (2006) Nonlinear term structure dependence: 

copula functions, empirics, and risk implications. Journal of Banking & Finance, 

30(4), 1171-1199. 

Kane, A. (1982). Skewness preference and portfolio choice. Journal of Financial & 

Quantitative Analysis, 17(01), 15-25. 

Kazi, I. A., Guesmi, K., & Kaabia, O. (2011). Contagion effect of financial crisis on 

OECD stock markets. Economics, 1-20. 

Këllezi, E., & Gilli, M. (2000). Extreme value theory for tail-related risk measures. 

FAME. 

Kenourgios, D., Samitas, A., & Paltalidis, N. (2010). Financial crises and stock market 

contagion in a multivariate time-varying asymmetric framework. Journal of 

International Financial Markets Institutions & Money, 21(1), 92-106. 

Kijima, M. (2002). Stochastic processes with application to finance. Chapman & Hall. 

Killian, L., & Park, C. (2009). The impact of oil price shocks on the US stock market. 

International Economic Review, 50 (4), 1267-1287. 

Kim, W.C., Fabozzi, F.J., Cheridito, P., & Fox, C. (2014). Controlling portfolio skewness 

and kurtosis without directly optimizing third and fourth moments. Economics 

Letters, 122(2), 154-158. 



185 
 

Konno, H., & Yamazaki, H. (1991). Mean-absolute deviation portfolio optimization 

model and its applications to Tokyo stock market. Management Science, 37(5), 

519-531. 

Konno, H., Shirakawa, H., & Yamazaki, H. (1993). A mean-absolute deviation-skewness 

portfolio optimization models.  Annals of Operations Research, 45(1), 205-220. 

Konno, H., & Shirakawa, H. (1994). Equilibrium relation in the capital market: a mean-

absolute deviation case. Financial Engineering & the Japanese Market, 1(1), 21-

35. 

KordaMentha (2013). Australian manufacturing: redefining manufacturing. Sydney, 

August, 1-39. 

KPMG Economics Group (2103). Economic reach of the Western Australian resources 

sector, Perth, June, 1-47. 

Krokhmal, P., Uryasev, S., & Zrazhevsky, G. (2002). Risk management for hedge fund 

portfolios: a comparative analysis of linear portfolio rebalancing strategies. Journal 

of Alternative Investments, 5 (1), 10–29. 

Krokhmal, P., Uryasev, S., & Zrazhevsky, G. (2003). Numerical comparison of CVaR 

and CDaR approaches: application to hedge funds. The Stochastic Programming 

Approach to Asset-Liability and Wealth Management. AIMR/Blackwell. 

Kroll, Y., Levy, H., & Markowitz, H. M. (1984). Mean‐variance versus direct utility 

maximization. The Journal of Finance, 39(1), 47-61. 

Kryger, A. (2014). Performance of the manufacturing industry: a quick guide. Parliament 

of Australia: Department of Parliamentary Services, Canberra, November, 1-5. 

Kurowicka, D., & Cooke, R. M. (2006). Uncertainty analysis with high dimensional 

dependence modelling. John Wiley & Sons. 

Kurowicka, D., & Joe, H. (2011). Dependence modelling: vine copula handbook. World 

Scientific. 

Lai, T.Y. (1991). Portfolio selection with skewness: a multiple-objective approach. 

Review of Quantitative Finance & Accounting, 1(3), 293-305. 

Lauritzen, S.L. (1996). Graphical models. Oxford University Press. 

Li, D. (2000). On default correlation: a copula approach. Journal of Fixed Income, 9(4), 

43–54. 

Li, X., Zhou, X.Y., & Lim, A. E. (2002). Dynamic mean-variance portfolio selection with 

no-shorting constraints. SIAM Journal on Control & Optimization, 40(5), 1540-

1555. 



186 
 

Li, D., & Peng, L. (2009). Goodness-of-fit test for tail copulas modelled by elliptical 

copulas. Statistics & Probability Letters, 79(8), 1097-1104. 

Louie, H. (2014). Evaluation of bivariate Archimedean and elliptical copulas to model 

wind power dependency structures. Wind Energy, 17(2), 225-240. 

Low, R.K.Y., Alcock, J., Faff, R., & Brailsford, T. (2013). Canonical vine copulas in the 

context of modern portfolio management: are they worth it? Journal of Banking & 

Finance, 37(8), 3085-3099. 

Malevergne, Y., & Sornette, D. (2003). Testing the Gaussian copula hypothesis for 

financial assets dependence. Quantitative Finance, 3(4), 231–250. 

Markowitz, H. M. (1952). Portfolio selection. Journal of Finance, 7, 77–91. 

Markowitz, H.M. (1959). Portfolio selection: efficient diversification of investments. Yale 

University Press. 

Markwat, T., Kole, E., & Van Dijk, D. (2009a). Contagion as a domino effect in global 

stock markets. Journal of Banking & Finance, 33(11), 1996-2012. 

Markwat, T. D., Kole, E., & Van Dijk, D. J. (2009b). Time variation in asset return 

dependence: strength or structure? In 22nd Australasian Finance & Banking 

Conference,1-54. 

McCarthy, J., & Orlov, A.G. (2013). Copula-based extreme market co-movements in the 

EU. International Atlantic Economic Society, 1-23. 

McKay, B., Lambert, I., & Miyazaki, S. (2000). The Australian mining industry: from 

settlement to 2000. Australian Mining Industry, 8410. 

Mendes, B., Semeraro, M., & Leal, R. (2010). Pair-copulas modelling in finance. 

Financial Markets & Portfolio Management, 24(2), 193–213. 

Mehmedovic, S. Pallant J., & Pacini E. (2011). Australian retail snapshot. The Australia 

Centre for Retail Studies, 1-8. 

Min, A., & Czado, C. (2010). Bayesian inference for multivariate copulas using pair-

copula constructions. Journal of Financial Econometrics, 8 (4), 511-546. 

Morales, L., & Andreosso-O’Callaghan, B. (2011). Comparative analysis on the effects 

of the Asian and global financial crises on precious metal markets. Research in 

International Business and Finance, 25 (2), 203-227 

Morton, D.P., Popova, E., & Popova, I. (2006). Efficient fund of hedge funds 

construction under downside risk measures. Journal of Banking & Finance, 30(2), 

503-518. 

Murray-Smith, D. (2002). Modelling sample selection using Archimedean copulas. 

Econometrics Journal, 6(1), 99-123. 

National Australia Bank (2012). Sector insights: manufacturing. Canberra, October, 1-26. 



187 
 

Nawrocki, D.N. (1999). A brief history of downside risk measures. The Journal of 

Investing, 8(3), 9-25. 

Neapolitan, R. (2012). Probabilistic reasoning in expert systems: theory and algorithms, 

CreateSpace Independent Publishing Platform. 

Nikoloulopoulos, A.K., Joe, H., & Li, H. (2012). Vine copulas with asymmetric tail 

dependence and applications to financial return data. Computational Statistics & 

Data Analysis, 56(11), 3659-3673. 

Okimoto, T. (2008). New evidence of asymmetric dependence structures in international 

equity markets. Journal of Financial & Quantitative Analysis, 43(03), 787-815. 

Ortobelli, S., Rachev, S.T., Stoyanov, S., Fabozzi, F.J., & Biglova, A. (2005). The proper 

use of risk measures in portfolio theory. International Journal of Theoretical & 

Applied Finance, 8(08), 1107-1133. 

Ozkan, M. F. G., & Unsal, D. F. (2012). Global financial crisis, financial contagion, and 

emerging markets. International Monetary Fund, 1-58. 

Panagiotelis, A., Czado, C., & Joe, H. (2012). Pair copula constructions for multivariate 

discrete data.  Journal of the American Statistical Assocciation, 107 (499), 1063-

1072. 

 

Panchenko, V. (2005). Goodness-of-fit testing for vine copulas. Physica A: Statistical 

Mechanics & Its Applications, 355(1), 176-182. 

Park, J., & Ratti, R.A. (2008). Oil price shocks and stock markets in the US and 13 

European countries. Energy Economcis, 30 (5), 2587-2608. 

Patton, A.J. (2004). On the out-of-sample importance of skewness and asymmetric 

dependence for asset allocation. Journal of Financial Econometrics, 2(1), 130–168. 

Patton, A. J. (2006). Modelling asymmetric exchange rate dependence. International 

Economic Review, 47(2), 527-556 

Patton, A.J. (2012a). Copula methods for forecasting multivariate time series. Handbook 

of Economic Forecasting, 2, 1-77. 

Patton, A.J. (2012b). A review of copula models for economic time series. Journal of 

Multivariate Analysis, 110, 4-18. 

Poirson, H., & Schmittmann, J. (2013). Risk exposures and financial spill overs in 

tranquil and crisis times: bank-level evidence. International Monetary Fund, 1-46. 

Prakash, A.J., Chang, C.H., & Pactwa, T.E. (2003). Selecting a portfolio with skewness: 

recent evidence from US, European, and Latin American equity markets. Journal of 

Banking & Finance, 27(7), 1375-1390. 

Pratt, J. (1964). Risk aversion in the small and in the large. Econometrica: Journal of the 

Econometric Society, 32, 122-136. 

Productivity Commission (2011). The structure and performance of the Australian retail 

industry. Canberra, November, 56 (4), 1-563. 



188 
 

Rockafellar, R.T., & Uryasev, S. (2000). Optimization of conditional Value-at-Risk. 

Journal of Risk, 2, 21-42. 

Rodriguez, J. (2007). Measuring financial contagion: a copula approach. Journal of 

Empirical Finance, 41(3), 401–423. 

Russell Investments & ASX (2014). 2014 Long term investment report: taking a long-

term view of the historical investment landscape.  Sydney, June, 1-16. 

Samuelson, P.A. (1970). The fundamental approximation theorem of portfolio analysis in 

terms of means, variances and higher moments. Review of Economic Studies, 37(4), 

537-542. 

Sarcia, S.A., Basili, V.R.,  & Cantone, G. (2008). An approach to improving parametric 

estimation models in the case of violation of assumptions based upon risk analysis. 

Technical Report, 1-49 

Savills Research (2014). Insight Australian retail market. Perth, Febreuary,1-24.  

Schaarschmidt, S., & Schanbacher, P. (2014). Minimax: portfolio choice based on 

pessimistic decision making. International Journal of Economics & Finance, 6(8), 

1-18. 

Schirmacher, D., & Schirmacher, E. (2008). Multivariate dependence modelling using 

pair-copulas. Technical report, 1-52. 

Schepsmeier, U., (2013). A goodness-of-fit test for regular vine copula models. 

Http://arXiv preprint arXiv:.org/abs/1306.0818.  

Simaan, Y. (1997). Estimation risk in portfolio selection: the mean variance model versus 

the mean absolute deviation model. Management Science, 43(10), 1437-1446. 

Singh, M., & Vyas, R.K. (2011). The impact of portfolio risk on performance of 

scheduled commercial banks in India. The IUP Journal of Bank Management, 

10(3), 34-48. 

Silvennoinen, A., & Thorp, S. (2013). Financialization, crisis and commodity correlation 

dynamics. Journal of International Financial Markets, Institutions & Money, 24, 

42-65. 

Sklar, A. (1959). Functions de repartition and dimensions et leurs marges. Universite de 

Paris 8, 229–231. 

Smith, M., Min, A., Czado, C., & Almeida, C. (2010). Modelling longitudinal data using 

a pair-copula decomposition of serial dependence. Journal of the American 

Statistical Association, 105 (492), 1467–1479. 

Smith, M.S. (2013). Bayesian approaches to copula modelling. arXiv:1112.4204 , 1-33. 

Smith, M., & Vahey, S. (2013). Asymmetric density forecasting of U.S. macroeconomic 

variables using a Gaussian copula model of cross-sectional and serial dependence. 

Journal of Business & Economic Statistics, 1-44. 



189 
 

Smith, M. (2013). Copula modelling of dependence in multivariate time series. 

Melbourne Business School, 1-46. 

Sortino, F.A., & Price, L.N. (1994). Performance measurement in a downside risk 

framework. The Journal of Investing, 3(3), 59-64. 

Steinbach, M.C. (2001). Markowitz revisited: mean-variance models in financial 

portfolio analysis. SIAM review, 43(1), 31-85. 

Stöber, J., Joe, H., & Czado, C. (2012). Simplified pair copula constructions—limits and 

extensions.  Journal of Multivariate Analysis, 119, 101-118. 

Stone, B. (1973) A general class of three-parameter risk measures. The Journal of 

Finance, 28 (3), 675-685. 

Szego, G. (2002). Measures of risk. Journal of Banking & Finance, 26(7), 1253-1272. 

Tong, B., Wu, C., & Zhou, C. (2013). Modelling the co-movements between crude oil 

and refined petroleum markets. Energy Economics, 40, 882–897. 

Trivedi, P.K., & Zimmer, D.M. (2007). Copula modelling: an introduction for 

practitioners. Now Publishers Inc. 

Tsay, R.S. (2005). Analysis of financial time series. John Wiley & Sons, 2
nd

 ed. 

Tsafack, G. (2009). Asymmetric dependence implications for extreme risk management. 

Journal of Derivatives, 17(1), 1-7. 

Uryasev, S. (2000). Conditional value-at-risk: optimization algorithms and applications. 

In Computational Intelligence for Financial Engineering, 2000. Proceedings of the 

IEEE/IAFE/INFORMS 2000 Conference, 49-57. 

Vassiliou, M. (2009). Historical dictionary of the petroleum industry. Lanham, MD: 

Scarecrow Press. 

Wen, X., Wei, Y., & Huang, D. (2012). Measuring contagion between energy markets 

and stock markets during financial crisis: a copula approach. Energy Economics, 

34(5), 1435–1446. 

World Gold Council (2012). Gold as a strategic asset for UK investors: portfolio risk 

management and capital preservation, 1-36. 

Wright, S. (1934). The method of path coefficients. Annals of Mathematical Statistics, 

5(3), 161–215. 

Xiong, J., & Idzorek, T. (2011). The impact of skewness and fat tails on the asset 

allocation decision. Financial Analyst Journal, 67, 23-25. 

Yin, G., & Zhou, X.Y. (2004). Markowitz's mean-variance portfolio selection with 

regime switching: from discrete-time models to their continuous-time limits. SIAM 

Journal on Control and Optimization, 49(3), 349-360. 

http://www.sciencedirect.com/science/journal/01409883
http://en.wikipedia.org/wiki/Marius_Vassiliou
http://www.sciencedirect.com/science/journal/01409883


190 
 

Yoshimoto, A. (1996). The mean-variance approach to portfolio optimization subject to 

transaction costs. Journal of the Operations Research Society of Japan, 39(1), 99-

117. 

Young, M.R. (1998). A minimax portfolio selection rule with linear programming 

solution. Management Science, 44(5), 673-683. 

Zhou, X.Y., & Yin, G. (2003). Markowitz's mean-variance portfolio selection with 

regime switching: a continuous-time model. SIAM Journal on Control and 

Optimization, 42(4), 1466-1482. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



191 
 

APPENDIX A:  Dependence structure diagonal matrices 

 

 

 

  
Panel (a) 

   
Panel (b) 

   
Panel (c) 

Figure A1: Panels (a), (b) and (c) display the pre-GFC, GFC and post-GFC c-vine (on the left) and d-

vine (on the right) dependence structure matrices of the gold portfolio, respectively.  
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Panel (a) 

 
Panel (b) 

 
Panel (c) 

Figure A2: Panel (a) displays the full sample period (on the left) and pre-GFC (on the right) r-vine 

dependence structure matrices of the gold portfolio. Panel (b) displays the GFC and post-GFC r-vine 

dependence structure matrices of the gold portfolio. Panel (c) displays the order of the gold stock 

return series according to the r-vine tree structure.  
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Panel (a) 

 
Panel (b) 

 
(c) 

Figure A3: Panels (a), (b) and (c) display the pre-GFC, GFC and post-GFC c-vine (on the left) and d-

vine (on the right) dependence structure matrices of the iron ore-nickel mining portfolio, respectively. 
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Panel (a) 

 
Panel (b) 

 
Panel (c) 

Figure A4: Panels (a), (b) and (c) display the pre-GFC, GFC and post-GFC c-vine (on the left) and d-

vine (on the right) dependence structure matrices of the coal-uranium energy portfolio, respectively. 
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Panel (a) 

  
Panel (b) 

  
Panel (c) 

Figure A5: Panel (a) displays the full sample period c-vine (on the left) and d-vine (on the right) 

dependence structure matrices of the oil-gas energy portfolio, respectively. Panel (b) displays the d-

vine Kendall tau correlation matrix of the same portfolio and sample period. 
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Panel (a) 

 
Panel (b) 

   
Panel (c) 

Figure A6: Panels (a), (b) and (c) display the pre-GFC, GFC and post-GFC c-vine (on the left) and d-

vine (on the right) dependence structure matrices of the mix-metals leptokurtic portfolio, respectively. 
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Panel (a) 

 

Panel (b) 

 

Panel (c) 

Figure A7: Panels (a) and (b) display the r-vine dependence structure matrices of the iron ore-nickel 

mining portfolio for each of the four period scenarios. Panel (c) displays the r-vine Kendall tau 

correlation matrix corresponding to the full sample period scenario. 
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Panel (b) 

 

Panel (c) 

Figure A8: Panels (a) and (b) display the r-vine dependence structure matrices of the coal-uranium 

energy portfolio for each of the four period scenarios. Panel (c) displays the full sample period 

scenario r-vine Kendall tau correlation matrix of the same portfolio.  
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Panel (a) 

 

Panel (b) 

 

Panel (c) 

Figure A9: Panels (a) and (b) display the r-vine dependence structure matrices of the oil-gas energy 

portfolio for each of the four period scenarios. Panel (c) displays the full sample period scenario r-

vine Kendall tau correlation matrix of the same portfolio. 
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Panel (a) 

 

Panel (b) 

 

Panel (c) 

Figure A10: Panels (a) and (b) display the r-vine dependence structure matrices of the leptokurtic 

portfolio for each of the four period scenarios. Panel (c) displays the full sample period scenario r-

vine Kendall tau correlation matrix of the leptokurtic portfolio. 
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Panel (a) 

 

Panel (b) 

 

Panel (c) 

Figure A11: Panels (a) and (b) display the d-vine dependence structure matrices of the 

manufacturing benchmark portfolio for each of the four financial period scenarios. Panel (c) displays 

the full period scenario d-vine Kendall tau correlation matrix of the manufacturing benchmark 

portfolio. 
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Panel (a) 

 

Panel (b) 

 

Panel (c) 

Figure A12: Panels (a) and (b) display the c-vine dependence structure matrices of the 

manufacturing benchmark portfolio for each of the four financial period scenarios. Panel (c) displays 

the Kendall tau correlation matrix of the same portfolio corresponding to the full sample period 

scenario.  
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Panel (a) 

 

Panel (b) 

 

Panel (c) 

Figure A13: Panels (a) and (b) display the c-vine dependence structure matrices of the 

manufacturing portfolio for each of the four financial period scenarios. Panel (c) displays the full 

sample period scenario c-vine Kendall tau correlation matrix of the same portfolio. 
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Panel (a) 

 
Pane (b) 

Figure A14: Panel (a) and (b) display respectively the full sample period c-vine (on the left) and d-

vine (on the right) dependence structure matrices of the iron ore-nickel mining portfolio. Panel (b) 

displays the c-vine Kendall tau correlation matrix of the same portfolio. 
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Panel (a) 

 
Panel (b) 

Figure A15: Panel (a) displays the full sample period c-vine (on the left) and d-vine (on the right) 

dependence structure matrices of the coal-uranium energy portfolio. Panel (b) displays the c-vine 

Kendall tau correlation matrix of the same portfolio. 

 

 

 

 

 



206 
 

 

 
Panel (a) 

 
Panel (b) 

Figure A16: Panel (a) displays the GFC period scenario c-vine (on the left) and d-vine (on the right) 

dependence structure matrices of the oil-gas energy portfolio. Panel (b) displays the Kendall tau 

correlation matrix of the same portfolio.  
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Panel (a) 

 
Panel (b) 

Figure A17: Panel (a) and (b) display the full sample period c-vine (on the left) and d-vine (on the 

right) dependence structure matrices of the mix-metals leptokurtic portfolio, respectively. Panel (b) 

displays the c-vine Kendall tau correlation matrix of the same portfolio.    
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Panel (a) 

 

Panel (b) 

Figure A18: Panel (a) displays the full sample period r-vine (on the left) and c-vine (on the right) 

dependence structure matrices of the retail benchmark portfolio. Panel (b) displays the Kendall tau 

correlation matrix of the same portfolio. 
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Panel (a) 

 
Panel (b) 

Figure A19: Panel (a) displays the full sample period r-vine (on the left) and c-vine (on the right) 

dependence structure matrices of the retail benchmark portfolio. Panel (b) displays the Kendall tau 

correlation matrix of the same portfolio. 
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Panel (a) 

 
Panel (b) 

Figure A20: Panel (a) displays the entire series c-vine (on the left) and d-vine (on the right) 

dependence structure matrix of the mix-metals leptokurtic portfolio. Panel (b) displays the c-vine 

estimated Kendall tau correlation matrix of the same portfolio.  
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Panel (a) 

 
Panel (b) 

   
Panel (c) 

Figure A21: Panels (a), (b) and (c) display the pre-GFC, GFC and post-GFC c-vine (on the left) and 

d-vine (on the right) dependence structure matrices of the mix-metals leptokurtic portfolio, 

respectively. 
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Panel (a) 

 
Panel (b) 

Figure A22: Panel (a) and (b) display the entire series c-vine (on the left) and d-vine (on the right) 

dependence structure matrices of the mix-metals leptokurtic portfolio, respectively. Panel (b) 

displays the c-vine Kendall tau correlation matrix.   
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Panel (a) 

 
Panel (b) 

Figure A23: Panel (a) displays the full sample period r-vine (on the left) and c-vine (on the right) 

dependence structure matrices of the retail benchmark portfolio. Panel (b) displays the full sample 

period r-vine Kendall tau correlation matrix.  
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APPENDIX B: Plots of the fitted vine copula models 

 

 

  

Figure B1: The first tree of the c-vine (on the left) and d-vine (on the right) copula models fitted 

to the gold portfolio based on the full sample period. The letters in between the rootstock and 

the rest of the stocks from the c-vine refer to the bivariate copulas used to model the dependence. 

The numbers in between the names of the stocks from the d-vine are the Kendall tau correlation 

values. 

 
Figure B2: The first tree of the c-vine (on the left) and d-vine (on the right) copula models fitted to 

the iron ore-nickel mining portfolio based on the full sample period. The letters in between the 

rootstock and the rest of the stocks from the c-vine refer to the bivariate copulas used to model the 

dependence. The numbers in between the names of the stocks from the d-vine are the Kendall tau 

correlation values. 

 

Figure B3: The first tree of the c-vine (on the left) and d-vine (on the right) copula models fitted 

to the coal-uranium energy portfolio based on the full sample period. The letters in between the 

rootstock and the rest of the stocks from the c-vine refer to the bivariate copulas used to model 

the dependence. The numbers in between the names of the stocks from the d-vine are the 

Kendall tau correlation values.  
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Figure B4: The first tree of the c-vine (on the left) and d-vine (on the right) copula models fitted 

to the oil-gas energy portfolio based on the full sample period. The letters in between the 

rootstock and the rest of the stocks from the c-vine refer to the bivariate copulas used to model 

the dependence. The numbers in between the names of the stocks from the d-vine are the 

Kendall tau correlation values. 

 
Figure B5: On the left, the first tree of a c-vine application to the mix-metals leptokurtic portfolio 

using the full sample period scenario. On the right, the first tree of a d-vine applied to the same data 

and period scenario.  

 

 
Figure B6: On the left, the first tree of an r-vine application to the gold portfolio under the full 

sample period. On the right, the first tree of an r-vine application to the gold portfolio under the pre-

GFC sample period. 
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Figure B7: On the left, the first tree of a d-vine fitted to the gold portfolio under the post-GFC 

sample period. On the right, the first tree of an r-vine fitted to the gold portfolio under the post-GFC 

period scenario. 
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APPENDIX C: Portfolios’ efficient frontiers 

 
Gold Iron ore-nickel Coal-uranium Oil-gas Mix-metals Retail Manufacturing 

 
 

Figure C1: This table depicts the efficient frontiers of the portfolios modelled under the CDaR risk 

measure and based on the full sample period.  

 

 
Gold Iron ore-nickel Coal-uranium Oil-gas Mix-metals Retail Manufacturing 

 
 

Figure C2: This table depicts the efficient frontiers of the portfolios modelled under the Minimax risk 

measure and based on the full sample period.  

 

 
Gold Iron ore-nickel Coal-uranium Oil-gas Mix-metals Retail Manufacturing 

 
 

Figure C3: This table depicts the efficient frontiers of the portfolios modelled under the MAD risk 

measure and based on the full sample period.  

 

 

Gold Iron ore-nickel Coal-uranium Oil-gas Mix-metals Retail Manufacturing 

 
 

Figure C4: This table depicts the efficient frontiers of the portfolios modelled under the Variance risk 

measure and based on the full sample period.  
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Gold Iron ore-nickel Coal-uranium Oil-gas Mix-metals Retail Manufacturing 

 

Figure C5: This table depicts the efficient frontiers of the portfolios modelled under the CVaR risk 

measure and based on the pre-GFC sample period.  

 

 
Gold Iron ore-nickel Coal-uranium Oil-gas Mix-metals Retail Manufacturing 

 

Figure C6: This table depicts the efficient frontiers of the portfolios modelled under the CDaR risk 

measure and based on the pre-GFC sample period.  

 

 
Gold Iron ore-nickel Coal-uranium Oil-gas Mix-metals Retail Manufacturing 

 

Figure C7: This table depicts the efficient frontiers of the portfolios modelled under the Minimax risk 

measure and based on the pre-GFC sample period.  

 

Gold Iron ore-nickel Coal-uranium Oil-gas Mix-metals Retail Manufacturing 

 

Figure C8: This table depicts the efficient frontiers of the portfolios modelled under the MAD risk 

measure and based on the pre-GFC sample period. 
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Gold Iron ore-nickel Coal-uranium Oil-gas Mix-metals Retail Manufacturing 

 

Figure C9: This table depicts the efficient frontiers of the portfolios modelled under the CVaR risk 

measure and based on the GFC sample period.  

 

Gold Iron ore-nickel Coal-uranium Oil-gas Mix-metals Retail Manufacturing 

 

Figure C10: This table depicts the efficient frontiers of the portfolios modelled under the CDaR risk 

measure and GFC sample period.  

 

 
Gold Iron ore-nickel Coal-uranium Oil-gas Mix-metals Retail Manufacturing 

 

Figure C11: This table depicts the efficient frontiers of the portfolios modelled under the Minimax 

risk measure and based on the GFC sample period.  
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Figure C12: This table depicts the efficient frontiers of the portfolios modelled under the MAD risk 

measure and based on the GFC sample period.  
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Gold Iron ore-nickel Coal-uranium Oil-gas Mix-metals Retail Manufacturing 

 

Figure C13: This table depicts the efficient frontiers of the portfolios modelled under the CVaR risk 

measure and based on the post-GFC sample period.  

 

 
Gold Iron ore-nickel Coal-uranium Oil-gas Mix-metals Retail Manufacturing 

 

Figure C14: This table depicts the efficient frontiers of the portfolios modelled under the CDaR risk 

measure and post-GFC sample period.  

 

 
Gold Iron ore-nickel Coal-uranium Oil-gas Mix-metals Retail Manufacturing 

 

Figure C15: This table depicts the efficient frontiers of the portfolios modelled under the Minimax 

risk measure and based on the post-GFC sample period.  

 

 
Gold Iron ore-nickel Coal-uranium Oil-gas Mix-metals Retail Manufacturing 

 

Figure C16: This table depicts the efficient frontiers of the portfolios modelled under the MAD risk 

measure and based on the post-GFC sample period.  

0.04 0.05 0.06 0.07 0.08 0.09 0.10

0
.
0

0
0

0
.
0

0
1

0
.
0

0
2

0
.
0

0
3

0
.
0

0
4

0
.
0

0
5

GOLD PORTFOLIO'S EFFICIENT FRONTIER POST-GFC

Risk=CVaR

R
e

t
u

r
n

0.04 0.06 0.08 0.10 0.12

0
.
0

0
0

0
0

.
0

0
0

5
0

.
0

0
1

0
0

.
0

0
1

5

IRON ORE-NICKEL PORTFOLIO'S EFFICIENT FRONTIER POST-GFC

Risk=CVaR

R
e

t
u

r
n

0.04 0.06 0.08 0.10 0.12 0.14
0

.
0

0
0

0
0

.
0

0
1

5

COAL-URANIUM PORTFOLIO'S EFFICIENT FRONTIER POST-GFC

Risk=CVaR

R
e

t
u

r
n

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

0
.
0

0
0

0
0

.
0

0
1

5
0

.
0

0
3

0

OIL-GAS PORTFOLIO'S EFFICIENT FRONTIER POST-GFC

Risk=CVaR

R
e

t
u

r
n

0.04 0.05 0.06 0.07 0.08 0.09 0.10

0
.
0

0
0

0
0

.
0

0
1

0
0

.
0

0
2

0

MIX-METALS PORTFOLIO'S EFFICIENT FRONTIER POST-GFC

Risk=CVaR

R
e

t
u

r
n

0.02 0.04 0.06 0.08

0
.
0

0
0

0
0

.
0

0
0

6
0

.
0

0
1

2

RETAIL PORTFOLIO'S EFFICIENT FRONTIER POST-GFC

Risk=CVaR

R
e

t
u

r
n

0.02 0.03 0.04 0.05 0.06 0.07 0.08

0
e

+
0

0
4

e
-
0

4
8

e
-
0

4

MANUFACTURING PORTFOLIO'S EFFICIENT FRONTIER POST-GFC

Risk=CVaR

R
e

t
u

r
n

0.20 0.25 0.30 0.35 0.40 0.45 0.50

0
.
0

0
2

0
.
0

0
3

0
.
0

0
4

0
.
0

0
5

GOLD PORTFOLIO'S EFFICIENT FRONTIER POST-GFC

Risk=CDaR

R
e

t
u

r
n

0.35 0.40 0.45 0.50

0
.
0

0
0

8
0

.
0

0
1

2
0

.
0

0
1

6

IRON ORE-NICKEL PORTFOLIO'S EFFICIENT FRONTIER POST-GFC

Risk=CDaR

R
e

t
u

r
n

0.40 0.45 0.50 0.55 0.60 0.65

0
.
0

0
0

5
0

.
0

0
1

5

COAL-URANIUM PORTFOLIO'S EFFICIENT FRONTIER POST-GFC

Risk=CDaR

R
e

t
u

r
n

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
.
0

0
1

0
0

.
0

0
2

0
0

.
0

0
3

0

OIL-GAS PORTFOLIO'S EFFICIENT FRONTIER POST-GFC

Risk=CDaR

R
e

t
u

r
n

0.3 0.4 0.5 0.6

0
.
0

0
0

5
0

.
0

0
1

5

MIX-METALS PORTFOLIO'S EFFICIENT FRONTIER POST-GFC

Risk=CDaR

R
e

t
u

r
n

0.10 0.15 0.20 0.25 0.30 0.35

2
e

-
0

4
6

e
-
0

4
1

e
-
0

3

RETAIL PORTFOLIO'S EFFICIENT FRONTIER POST-GFC

Risk=CDaR
R

e
t
u

r
n

0.10 0.15 0.20 0.25 0.30

4
e

-
0

4
6

e
-
0

4
8

e
-
0

4
1

e
-
0

3

MANUFACTURING PORTFOLIO'S EFFICIENT FRONTIER POST-GFC

Risk=CDaR

R
e

t
u

r
n

0.05 0.10 0.15 0.20 0.25 0.30 0.35

0
.
0

0
0

0
.
0

0
1

0
.
0

0
2

0
.
0

0
3

0
.
0

0
4

0
.
0

0
5

GOLD PORTFOLIO'S EFFICIENT FRONTIER POST-GFC

Risk=MiniMax

R
e

t
u

r
n

0.06 0.08 0.10 0.12

0
.
0

0
0

0
0

.
0

0
0

5
0

.
0

0
1

0
0

.
0

0
1

5

IRON ORE-NICKEL PORTFOLIO'S EFFICIENT FRONTIER POST-GFC

Risk=MiniMax

R
e

t
u

r
n

0.08 0.10 0.12 0.14 0.16

0
.
0

0
0

0
0

.
0

0
1

0
0

.
0

0
2

0

COAL-URANIUM PORTFOLIO'S EFFICIENT FRONTIER POST-GFC

Risk=MiniMax

R
e

t
u

r
n

0.05 0.10 0.15 0.20 0.25 0.30

0
.
0

0
0

0
0

.
0

0
1

5
0

.
0

0
3

0

OIL-GAS PORTFOLIO'S EFFICIENT FRONTIER POST-GFC

Risk=MiniMax

R
e

t
u

r
n

0.06 0.08 0.10 0.12 0.14 0.16

0
.
0

0
0

0
0

.
0

0
1

0
0

.
0

0
2

0

MIX-METALS PORTFOLIO'S EFFICIENT FRONTIER POST-GFC

Risk=MiniMax

R
e

t
u

r
n

0.02 0.04 0.06 0.08 0.10

0
.
0

0
0

0
0

.
0

0
0

6
0

.
0

0
1

2

RETAIL PORTFOLIO'S EFFICIENT FRONTIER POST-GFC

Risk=MiniMax

R
e

t
u

r
n

0.05 0.10 0.15 0.20

0
e

+
0

0
4

e
-
0

4
8

e
-
0

4

MANUFACTURING PORTFOLIO'S EFFICIENT FRONTIER POST-GFC

Risk=MiniMax

R
e

t
u

r
n

0.015 0.020 0.025 0.030 0.035

0
.
0

0
0

0
.
0

0
1

0
.
0

0
2

0
.
0

0
3

0
.
0

0
4

0
.
0

0
5

GOLD PORTFOLIO'S EFFICIENT FRONTIER POST-GFC

Risk=MAD

R
e

t
u

r
n

0.012 0.014 0.016 0.018 0.020

0
.
0

0
0

0
0

.
0

0
0

5
0

.
0

0
1

0
0

.
0

0
1

5

IRON ORE-NICKEL PORTFOLIO'S EFFICIENT FRONTIER POST-GFC

Risk=MAD

R
e

t
u

r
n

0.012 0.014 0.016 0.018 0.020 0.022

0
.
0

0
0

0
0

.
0

0
1

0
0

.
0

0
2

0

COAL-URANIUM PORTFOLIO'S EFFICIENT FRONTIER POST-GFC

Risk=MAD

R
e

t
u

r
n

0.010 0.015 0.020 0.025 0.030 0.035 0.040

0
.
0

0
0

0
0

.
0

0
1

5
0

.
0

0
3

0

OIL-GAS PORTFOLIO'S EFFICIENT FRONTIER POST-GFC

Risk=MAD

R
e

t
u

r
n

0.012 0.014 0.016 0.018 0.020 0.022

0
.
0

0
0

0
0

.
0

0
1

0
0

.
0

0
2

0

MIX-METALS PORTFOLIO'S EFFICIENT FRONTIER POST-GFC

Risk=MAD

R
e

t
u

r
n

0.006 0.008 0.010 0.012 0.014

0
.
0

0
0

0
0

.
0

0
0

6
0

.
0

0
1

2

RETAIL PORTFOLIO'S EFFICIENT FRONTIER POST-GFC

Risk=MAD

R
e

t
u

r
n

0.005 0.010 0.015 0.020

0
e

+
0

0
4

e
-
0

4
8

e
-
0

4

MANUFACTURING PORTFOLIO'S EFFICIENT FRONTIER POST-GFC

Risk=MAD

R
e

t
u

r
n



221 
 

APPENDIX D: Optimal weights for the pre-GFC, GFC and post-GFC 

 

Table D1: Optimal weights of the gold portfolio (pre-GFC) 

 

Gold  

stocks 

CVaR 

(LP) 

CDaR 

(LP) 

Minimax 

(LP) 

MAD 

(LP) 

Var 

(QP) 
MW 

MW 

ex. 

CDaR 

MW 

ex.  

Minimax 

& CDaR 

SBMX 0 0.00  0 4.22 2.78 1.40  1.75  2.33  
NWRX 3.08 20.31  5.1 6.83 7.56 7.71  5.64  5.82  
NSTX 5.56 6.10  13.26 4.73 4.25 6.72  6.95  4.85  
SHKX 8.78 0.00  7.42 8.41 6.82 6.79  7.86  8.00  
DEGX 0 0.00  4.76 2.36 3.25 2.07  2.59  1.87  
RSGX 3.92 0.00  0 5.11 4.37 2.68  3.35  4.47  
AXMX 8.63 0.00  2.55 8.49 6.47 5.23  6.54  7.86  
ORNX 4.62 0.00  1.83 3.17 4.94 2.91  3.64  4.24  
RCFX 8.6 1.12  0 5.56 5.99 4.74  5.04  6.72  
EXMX 13.55 16.91  20.42 8.03 9.35 13.88  12.84  10.31  
TAMX 3.28 0.00  0 4.55 6.17 2.80  3.50  4.67  
GLNX 2.33 0.00  0 4.09 2.88 1.86  2.33  3.10  
MOYX 4.21 22.37  1.61 4.33 5.28 7.97  3.86  4.61  
EVNX 3.97 0.00  9.66 2.18 2.47 3.66  4.57  2.87  
AUZX 0 0.00  0 2.45 2.24 0.94  1.17  1.56  
HEGX 0.15 3.82  7.41 3.17 1.74 2.67  3.12  1.69  
KMCX 5.43 4.93  0 3.97 4.12 3.87  3.38  4.51  
IRCX 19.47 24.45  19.28 10.31 12.33 16.05  15.35  14.04  
HAOX 4.4 0.00  6.71 4.83 4.21 4.03  5.04  4.48  
CTOX 0.01 0.00  0 3.2 2.78 2.02  1.50  2.00  

P-Ret 0.042 0.042 0.042 0.042 0.042 NA NA NA 

P-Risk 3.181 19.839 4.256 1.117 0.023 NA NA NA 
Notes: This table reports the minimum risk optimal weights (%) of the gold sector portfolio for the pre-GFC 
period scenario. The abbreviations LP, QP, VaR and MW stand for the linear programing, the mean-variance 

quadratic programming, variance and mean of weights. The R-ret and P-Risk are the portfolio’s return and risk, 

respectively. MW ex. CDaR and MW ex. Minimax & CDaR stand for mean of weights excluding the CDaR and, 
the Minimax and CDaR measures, respectively.  

Table D2: Optimal weights of the gold portfolio (GFC) 

Gold 

 stocks 

CVaR 

(LP) 

CDaR 

(LP) 

Minimax 

(LP) 

MAD 

(LP) 

Var 

(QP) 
MW 

MW 

ex. 

CDaR 

MW 

ex.  

Minimax 

& CDaR 

SBMX 1.12 0.00  0 1.64  0.00  0.55  0.69  0.92  
NWRX 1.81 0.00  0 0.93  0.00  0.55  0.69  0.91  
NSTX 0.11 0.00  0 3.53  1.55  1.04  1.30  1.73  
SHKX 11.57 0.00  9.83 10.28  14.40  9.22  11.52  12.08  
DEGX 2.62 0.00  22.48 2.97  3.28  6.27  7.84  2.96  
RSGX 8.45 0.00  0 12.69  15.29  7.29  9.11  12.14  
AXMX 0 0.00  0 0.00  0.00  0.00  0.00  0.00  
ORNX 0 0.00  0 0.00  0.00  0.00  0.00  0.00  
RCFX 0 0.00  0 1.08  0.00  0.22  0.27  0.36  
EXMX 0 0.00  0 2.72  0.00  0.54  0.68  0.91  
TAMX 2.6 0.00  0 7.28  6.55  3.29  4.11  5.48  
GLNX 0 0.00  0 0.00  0.00  0.00  0.00  0.00  
MOYX 1.02 0.00  0 0.00  0.00  0.20  0.26  0.34  
EVNX 10.95 47.86  13.2 8.54  10.84  18.28  10.88  10.11  
AUZX 0 0.00  0 0.00  0.00  0.00  0.00  0.00  
HEGX 22.35 0.00  30.05 13.90  16.56  16.57  20.72  17.60  
KMCX 8.48 23.80  15.87 9.48  10.78  13.68  11.15  9.58  
IRCX 11.16 26.97  0 7.64  8.10  10.77  6.73  8.97  
HAOX 12.9 1.38  8.56 15.74  9.95  9.71  11.79  12.86  
CTOX 4.86 0.00  0 1.58  2.70  1.83  2.29  3.05  

P-Ret 0.042 0.042 0.042 0.042 0.042 NA NA NA 

P-Risk 5.962 116.086 11.71 1.969 0.08 NA NA NA 
Notes: This table reports the minimum risk optimal weights (%) of the gold sector portfolio for the GFC 

period scenario. The abbreviations LP, QP, VaR and MW stand for the linear programing, the mean-variance 

quadratic programming, variance and mean of weights. The R-ret and P-Risk are the portfolio’s return and 
risk, respectively. MW ex. CDaR and MW ex. Minimax & CDaR stand for mean of weights excluding the 

CDaR and, the Minimax and CDaR measures, respectively. 
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Table D3: Optimal weights of the gold mining portfolio (post-GFC) 

Gold  

stocks 

CVaR 

(LP) 

CDaR 

(LP) 

Minimax 

(LP) 

MAD 

(LP) 

Var 

(QP) 
MW 

MW 

ex. 

CDaR 

MW 

ex.  

Minimax 

& CDaR 

SBMX 8.23  12.75  24.17  0.00  4.06  9.84  9.12  4.10  
NWRX 3.70  7.57  9.67  5.95  6.81  6.74  6.53  5.49  
NSTX 16.27  15.31  16.48  17.03  15.00  16.02  16.20  16.10  
SHKX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
DEGX 6.10  0.15  0.00  4.72  4.46  3.09  3.82  5.09  
RSGX 10.62  0.00  0.00  12.94  11.32  6.98  8.72  11.63  
AXMX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
ORNX 0.00  0.00  4.02  1.07  0.00  1.02  1.27  0.36  
RCFX 0.06  0.00  0.60  0.12  0.09  0.17  0.22  0.09  
EXMX 0.00  0.02  1.48  0.64  0.15  0.46  0.57  0.26  
TAMX 7.75  13.19  11.72  10.09  7.39  10.03  9.24  8.41  
GLNX 0.30  0.00  0.00  1.24  2.68  0.84  1.06  1.41  
MOYX 1.76  9.27  0.00  3.21  3.83  3.61  2.20  2.93  
EVNX 27.60  22.90  18.03  21.36  24.60  22.90  22.90  24.52  
AUZX 1.97  0.00  1.83  1.11  1.20  1.22  1.53  1.43  
HEGX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
KMCX 3.72  0.16  0.00  0.73  0.00  0.92  1.11  1.48  
IRCX 3.75  18.69  0.00  7.36  8.95  7.75  5.02  6.69  
HAOX 8.17  0.00  8.79  2.62  1.53  4.22  5.28  4.11  
CTOX 0.00  0.00  3.19  9.81  7.92  4.18  5.23  5.91  

P-Ret 0.042 0.042 0.042 0.042 0.042 NA NA NA 

P-Risk 4.12 20.167 5.983 1.41 0.037 NA NA NA 
Notes: This table reports the minimum risk optimal weights (%) of the gold sector portfolio for the post-GFC 

period scenario. The abbreviations LP, QP, VaR and MW stand for the linear programing, the mean-variance 
quadratic programming, variance and mean of weights. The R-ret and P-Risk are the portfolio’s return and risk, 

respectively. MW ex. CDaR and MW ex. Minimax & CDaR stand for mean of weights excluding the CDaR and, 

the Minimax and CDaR measures, respectively. 

 

Table D4: Optimal weights of the iron ore-nickel mining portfolio (pre-GFC) 

Ore-nickel 

stocks 

CVaR 

(LP) 

CDaR 

(LP) 

Minimax 

(LP) 

MAD 

(LP) 

Var 

(QP) 
MW 

MW 

ex. CDaR 

MW 

ex. Minimax 

& CDaR 

BHPX 6.59  10.02  0.00  5.91  12.48  7.00  6.25  8.33  
GBGX 0.00  0.00  0.00  0.00  0.68  0.14  0.17  0.23  
MCRX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
WSAX 0.00  0.00  0.00  1.82  5.56  1.48  1.85  2.46  
AGOX 0.00  0.00  0.00  0.00  0.54  0.11  0.14  0.18  
FMSX 5.00  1.53  0.00  5.08  2.37  2.80  3.11  4.15  
GRRX 7.07  0.00  0.00  5.17  5.74  3.60  4.50  5.99  
ARHX 5.48  7.49  0.00  3.12  1.17  3.45  2.44  3.26  
ARI 25.84  16.29  42.23  17.07  29.02  26.09  28.54  23.98  
FCNX 2.81  2.72  6.40  5.49  1.26  3.74  3.99  3.19  
POSX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
HRRX 0.00  4.97  0.00  1.94  3.06  1.99  1.25  1.67  
MGXX 0.00  0.00  0.00  1.91  4.00  1.18  1.48  1.97  
ADYX 0.00  0.00  0.00  1.75  1.15  0.58  0.73  0.97  
FMGX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
ILUX 42.91  54.71  44.11  43.22  23.14  41.62  38.35  36.42  
IGOX 0.00  0.00  0.00  0.00  2.87  0.57  0.72  0.96  
SHDX 2.88  0.00  7.26  3.78  1.10  3.00  3.76  2.59  
MLMX 1.43  2.28  0.00  1.68  2.98  1.67  1.52  2.03  
MOLX 0.00  0.00  0.00  2.07  2.88  0.99  1.24  1.65  

P-Ret 0.042 0.042 0.042 0.042 0.042 NA NA NA 

P-Risk 2.971 15.674 5.147 0.965 0.014 NA NA NA 
Notes: This table reports the minimum risk optimal weights (%) of the iron ore-nickel sector portfolio for the pre-GFC 

period scenario. The abbreviations LP, QP, VaR and MW stand for the linear programing, the mean-variance quadratic 

programming, variance and mean of weights. The R-ret and P-Risk are the portfolio’s return and risk, respectively. MW ex. 
CDaR and MW ex. Minimax & CDaR stand for mean of weights excluding the CDaR and, the Minimax and CDaR 

measures, respectively. 
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Table D5: Optimal weights of the iron ore-nickel mining portfolio (GFC) 

Ore-nickel  

stocks 

CVaR 

(LP) 

CDaR 

(LP) 

Minimax 

(LP) 

MAD 

(LP) 

Var 

(QP) 
MW 

MW 

ex. CDaR 

MW 

ex. Minimax 

& CDaR 

BHPX 35.80  0.00  65.80  38.85  45.07  37.10  46.38  39.91  
GBGX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
MCRX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
WSAX 1.46  0.00  0.00  0.20  0.27  0.39  0.48  0.64  
AGOX 0.00  0.00  0.85  0.00  1.20  0.41  0.51  0.40  
FMSX 12.36  11.61  11.19  10.98  8.43  10.91  10.74  10.59  
GRRX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
ARHX 0.00  0.00  0.00  2.03  0.00  0.41  0.51  0.68  
ARI 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
FCNX 1.76  0.00  0.00  3.21  0.00  0.99  1.24  1.66  
POSX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
HRRX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
MGXX 0.00  0.00  0.00  0.00  1.34  0.27  0.34  0.45  
ADYX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
FMGX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
ILUX 28.68  45.60  19.29  19.88  19.81  26.65  21.92  22.79  
IGOX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
SHDX 18.74  42.78  2.88  23.81  23.89  22.42  17.33  22.15  
MLMX 1.19  0.00  0.00  1.04  0.00  0.45  0.56  0.74  
MOLX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

P-Ret 0.042 0.042 0.042 0.042 0.042 NA NA NA 

P-Risk 5.428 39.559 10.387 1.756 0.063 NA NA NA 
Notes: This table reports the minimum risk optimal weights (%) of the iron ore-nickel sector portfolio for the GFC period 

scenario. The abbreviations LP, QP, VaR and MW stand for the linear programing, the mean-variance quadratic 

programming, variance and mean of weights. The R-ret and P-Risk are the portfolio’s return and risk, respectively. MW 
ex. CDaR and MW ex. Minimax & CDaR stand for mean of weights excluding the CDaR and, the Minimax and CDaR 

measures, respectively. 

Table D6: Optimal weights of the iron ore-nickel mining portfolio (post-GFC) 

Ore-nickel 

 stocks 

CVaR 

(LP) 

CDaR 

(LP) 

Minimax 

(LP) 

MAD 

(LP) 

Var 

(QP) 
MW 

MW 

ex. CDaR 

MW 

ex. Minimax & 

CDaR 

BHPX 39.88  30.65  29.05  39.80  41.21  36.12  37.49  40.30  
GBGX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
MCRX 0.00  0.00  3.12  0.00  0.00  0.62  0.78  0.00  
WSAX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
AGOX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
FMSX 0.00  5.52  0.00  3.16  1.84  2.10  1.25  1.67  
GRRX 10.04  18.25  5.33  3.93  6.66  8.84  6.49  6.88  
ARHX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
ARI 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
FCNX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
POSX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
HRRX 9.75  5.59  0.00  5.13  6.68  5.43  5.39  7.19  
MGXX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
ADYX 3.26  8.86  21.41  1.30  1.98  7.36  6.99  2.18  
FMGX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
ILUX 37.07  30.06  41.09  38.33  37.62  36.83  38.53  37.67  
IGOX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
SHDX 0.00  0.00  0.00  2.14  1.10  0.65  0.81  1.08  
MLMX 0.00  1.06  0.00  6.21  2.91  2.04  2.28  3.04  
MOLX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

P-Ret 0.042 0.042 0.042 0.042 0.042 NA NA NA 

P-Risk 4.003 31.116 5.898 1.32 0.031 NA NA NA 
Notes: This table reports the minimum risk optimal weights (%) of the iron ore-nickel sector portfolio for the post-GFC 
period scenario. The abbreviations LP, QP, VaR and MW stand for the linear programing, the mean-variance quadratic 

programming, variance and mean of weights. The R-ret and P-Risk are the portfolio’s return and risk, respectively. MW ex. 

CDaR and MW ex. Minimax & CDaR stand for mean of weights excluding the CDaR and, the Minimax and CDaR measures, 
respectively. 

 

 



224 
 

Table D7: Optimal weights of the coal-uranium energy portfolio (pre-GFC) 

Coal-uranium 

Codes 

CVaR 

(LP) 

CDaR 

(LP) 

Mini 

max 

(LP) 

MAD 

(LP) 

Var 

(QP) 
MW 

MW 

ex.  

CDaR 

MW 

ex. 

 Minimax 

& CDaR 

PDNX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
CBQX 0.00  0.00  2.18  0.28  1.71  0.83  1.04  0.66  
CLAX 6.69  0.00  3.13  3.97  4.22  3.60  4.50  4.96  
LRRX 7.60  0.00  16.72  6.24  5.93  7.30  9.12  6.59  
AQAX 5.65  0.00  8.06  2.76  3.52  4.00  5.00  3.98  
SMMX 18.11  20.97  20.17  16.50  20.02  19.15  18.70  18.21  
GLLX 6.02  14.36  0.27  8.30  6.84  7.16  5.36  7.05  
CPLX 5.67  0.00  4.70  8.03  5.75  4.83  6.04  6.48  
RESX 0.80  2.94  1.48  3.36  1.10  1.94  1.69  1.75  
CNXX 3.40  4.13  7.73  3.45  2.48  4.24  4.27  3.11  
BWDX 15.69  9.81  0.00  9.88  12.57  9.59  9.54  12.71  
UEQX 0.57  0.00  0.00  2.31  1.83  0.94  1.18  1.57  
AGSX 0.00  1.25  0.00  1.61  1.56  0.88  0.79  1.06  
EMAX 7.86  5.26  0.00  9.84  11.75  6.94  7.36  9.82  
FYIX 11.04  8.44  15.05  5.16  5.42  9.02  9.17  7.21  
BLZX 3.51  0.00  0.00  4.38  4.16  2.41  3.01  4.02  
NSLX 0.99  0.00  2.74  5.92  2.16  2.36  2.95  3.02  
AQCX 1.59  14.62  3.97  1.71  1.75  4.73  2.26  1.68  
BKYX 0.00  0.00  0.00  1.68  1.19  0.57  0.72  0.96  
WALX 4.81  18.23  13.80  4.60  6.06  9.50  7.32  5.16  
P-Ret 0.042 0.042 0.042 0.042 0.042 NA NA NA 

P-Risk 3.059 17.108 4.028 0.994 0.018 NA NA NA 
Notes: This table reports the minimum risk optimal weights (%) of the coal-uranium sector portfolio for the pre-GFC 
period scenario. The abbreviations LP, QP, VaR and MW stand for the linear programing, the mean-variance quadratic 

programming, variance and mean of weights. The R-ret and P-Risk are the portfolio’s return and risk, respectively. MW ex. 

CDaR and MW ex. Minimax & CDaR stand for mean of weights excluding the CDaR and, the Minimax and CDaR 
measures, respectively. 

Table D8: Optimal weights of the coal-uranium energy portfolio (GFC) 

Coal-uranium 

Codes 

CVaR 

(LP) 

CDaR 

(LP) 

Mini 

max 

(LP) 

MAD 

(LP) 

Var 

(QP) 
MW 

MW 

ex.  

CDaR 

MW 

ex. 

 Minimax 

& CDaR 

PDNX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
CBQX 4.46  0.00  7.59  8.22  7.59  5.57  6.97  6.76  
CLAX 13.63  19.20  0.00  16.83  14.96  12.92  11.36  15.14  
LRRX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
AQAX 3.41  0.00  3.64  11.58  10.66  5.86  7.32  8.55  
SMMX 7.05  0.00  20.67  4.82  7.99  8.11  10.13  6.62  
GLLX 0.00  0.00  0.24  3.02  3.37  1.33  1.66  2.13  
CPLX 16.63  6.54  33.39  14.80  15.56  17.38  20.10  15.66  
RESX 0.53  0.00  0.00  1.79  0.34  0.53  0.67  0.89  
CNXX 12.98  23.39  0.00  7.47  7.57  10.28  7.01  9.34  
BWDX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
UEQX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
AGSX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
EMAX 26.23  48.10  7.77  19.48  21.06  24.53  18.64  22.26  
FYIX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
BLZX 3.38  2.77  0.00  1.65  1.03  1.77  1.52  2.02  
NSLX 4.42  0.00  0.00  3.36  2.19  1.99  2.49  3.32  
AQCX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
BKYX 0.00  0.00  8.85  3.30  2.54  2.94  3.67  1.95  
WALX 7.27  0.00  17.86  3.67  5.13  6.79  8.48  5.36  

P-Ret 0.042 0.042 0.042 0.042 0.042 NA NA NA 

P-Risk 5.751 55.146 8.561 1.698 0.057 NA NA NA 
Notes: This table reports the minimum risk optimal weights (%) of the coal-uranium sector portfolio for the GFC 
period scenario. The abbreviations LP, QP, VaR and MW stand for the linear programing, the mean-variance quadratic 

programming, variance and mean of weights. The R-ret and P-Risk are the portfolio’s return and risk, respectively. 

MW ex. CDaR and MW ex. Minimax & CDaR stand for mean of weights excluding the CDaR and, the Minimax and 
CDaR measures, respectively. 
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Table D9: Optimal weights of the coal-uranium energy portfolio (post-GFC) 

Coal-uranium 

Codes 

CVaR 

(LP) 

CDaR 

(LP) 

Mini 

max 

(LP) 

MAD 

(LP) 

Var 

(QP) 
MW 

MW 

ex.  

CDaR 

MW 

ex. 

 Minimax 

& CDaR 

PDNX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
CBQX 0.00  26.41  0.00  1.08  0.00  5.50  0.27  0.36  
CLAX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
LRRX 0.00  0.00  0.00  0.01  0.00  0.00  0.00  0.00  
AQAX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
SMMX 33.04  0.00  26.90  44.11  38.20  28.45  35.56  38.45  
GLLX 8.82  4.81  0.00  1.75  0.00  3.08  2.64  3.52  
CPLX 25.85  4.76  0.00  10.67  36.21  15.50  18.18  24.24  
RESX 0.03  0.00  40.13  4.21  6.01  10.08  12.60  3.42  
CNXX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
BWDX 22.36  50.16  32.98  31.05  13.51  30.01  24.98  22.31  
UEQX 0.00  0.00  0.00  0.41  0.00  0.08  0.10  0.14  
AGSX 0.00  0.00  0.00  0.57  0.00  0.11  0.14  0.19  
EMAX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
FYIX 1.71  0.00  0.00  1.25  0.00  0.59  0.74  0.99  
BLZX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
NSLX 0.00  13.85  0.00  0.30  0.00  2.83  0.08  0.10  
AQCX 4.59  0.00  0.00  0.77  2.05  1.48  1.85  2.47  
BKYX 0.00  0.00  0.00  0.81  0.00  0.16  0.20  0.27  
WALX 3.61  0.00  0.00  3.00  4.02  2.13  2.66  3.54  

P-Ret 0.042 0.042 0.042 0.042 0.042 NA NA NA 

P-Risk 4.172 38.512 8.305 1.303 0.049 NA NA NA 
Notes: This table reports the minimum risk optimal weights (%) of the coal-uranium sector portfolio for the post-GFC period 
scenario. The abbreviations LP, QP, VaR and MW stand for the linear programing, the mean-variance quadratic 

programming, variance and mean of weights. The R-ret and P-Risk are the portfolio’s return and risk, respectively. MW ex. 

CDaR and MW ex. Minimax & CDaR stand for mean of weights excluding the CDaR and, the Minimax and CDaR measures, 
respectively. 

Table D10: Optimal weights of the oil-gas energy portfolio (pre-GFC) 

Oil-gas 

Codes 

CVaR 

(LP) 

CDaR 

(LP) 

Mini 

max 

(LP) 

MAD 

(LP) 

Var 

(QP) 
MW 

MW 

ex. 

CDaR 

MW 

ex. 

Minimax 

& CDaR 

WPLX 6.21  0.00  0.00  0.06  2.65  1.78  2.23  2.97  
AWEX 1.36  0.00  2.60  0.64  1.84  1.29  1.61  1.28  
BPTX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
MOGX 3.47  0.83  6.02  2.45  2.65  3.08  3.65  2.86  
NWEX 0.00  4.16  5.12  0.77  0.80  2.17  1.67  0.52  
STOX 3.01  19.65  0.00  6.70  5.58  6.99  3.82  5.10  
STXX 0.00  0.00  0.00  2.16  2.10  0.85  1.07  1.42  
ACN 8.01  3.41  4.14  6.50  5.05  5.42  5.93  6.52  
LNGX 0.04  0.00  0.00  3.64  3.01  1.34  1.67  2.23  
CTXX 9.57  8.30  15.78  7.38  9.80  10.17  10.63  8.92  
ORGX 22.23  18.38  25.88  19.75  21.93  21.63  22.45  21.30  
CUEX 2.19  1.56  8.10  4.72  3.77  4.07  4.70  3.56  
BASX 0.49  2.83  0.00  0.83  0.97  1.02  0.57  0.76  
ROCX 3.27  0.89  0.77  0.00  2.09  1.40  1.53  1.79  
MELX 2.62  0.00  1.20  1.33  2.76  1.58  1.98  2.24  
TPTX 2.51  1.75  3.75  0.57  1.69  2.05  2.13  1.59  
DLSX 1.48  0.00  1.44  1.84  1.30  1.21  1.52  1.54  
APAX 33.55  38.23  22.04  34.02  26.92  30.95  29.13  31.50  
SYSX 0.00  0.00  0.00  1.77  1.15  0.58  0.73  0.97  
COEX 0.00  0.00  3.17  4.88  3.94  2.40  3.00  2.94  

P-Ret 0.042 0.042 0.042 0.042 0.042 NA NA NA 

P-Risk 2.128 8.287 2.615 0.731 0.009 NA NA NA 
Notes: This table reports the minimum risk optimal weights (%) of the oil-gas sector portfolio for the pre-GFC period 

scenario. The abbreviations LP, QP, VaR and MW stand for the linear programing, the mean-variance quadratic 

programming, variance and mean of weights. The R-ret and P-Risk are the portfolio’s return and risk, respectively. MW 
ex. CDaR and MW ex. Minimax & CDaR stand for mean of weights excluding the CDaR and, the Minimax and CDaR 

measures, respectively. 
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Table D11: Optimal weights of the oil-gas energy portfolio (GFC) 

Oil-gas 

Codes 

CVaR 

(LP) 

CDaR 

(LP) 

Mini 

max 

(LP) 

MAD 

(LP) 

Var 

(QP) 
MW 

MW 

ex. 

CDaR 

MW 

ex. 

Minimax 

& CDaR 

WPLX 5.78  0.00  0.00  6.33  8.16  4.05  5.07  6.76  
AWEX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
BPTX 0.00  18.03  0.00  0.00  0.00  3.61  0.00  0.00  
MOGX 2.54  0.00  9.07  1.80  1.99  3.08  3.85  2.11  
NWEX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
STOX 0.00  0.00  0.00  0.09  4.25  0.87  1.09  1.45  
STXX 0.00  0.00  0.00  3.00  2.01  1.00  1.25  1.67  
ACN 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
LNGX 0.00  0.00  0.00  0.76  0.53  0.26  0.32  0.43  
CTXX 0.03  0.40  3.99  0.00  0.00  0.88  1.01  0.01  
ORGX 58.41  64.38  68.40  58.85  50.97  60.20  59.16  56.08  
CUEX 6.18  0.00  1.90  3.54  5.68  3.46  4.33  5.13  
BASX 0.00  0.00  0.00  1.09  1.04  0.43  0.53  0.71  
ROCX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
MELX 1.05  0.00  0.00  0.00  0.00  0.21  0.26  0.35  
TPTX 3.01  0.00  0.00  2.43  0.11  1.11  1.39  1.85  
DLSX 0.00  0.00  9.20  0.00  0.00  1.84  2.30  0.00  
APAX 22.99  17.20  0.00  19.32  24.05  16.71  16.59  22.12  
SYSX 0.00  0.00  7.44  0.24  0.41  1.62  2.02  0.22  
COEX 0.01  0.00  0.00  2.55  0.79  0.67  0.84  1.12  

P-Ret 0.042 0.042 0.042 0.042 0.042 NA NA NA 

P-Risk 3.556 26.033 6.997 1.182 0.029 NA NA NA 
Notes: This table reports the minimum risk optimal weights (%) of the oil-gas sector portfolio for the GFC 
period scenario. The abbreviations LP, QP, VaR and MW stand for the linear programing, the mean-variance 

quadratic programming, variance and mean of weights. The R-ret and P-Risk are the portfolio’s return and risk, 

respectively. MW ex. CDaR and MW ex. Minimax & CDaR stand for mean of weights excluding the CDaR and, 
the Minimax and CDaR measures, respectively. 

Table D12: Optimal weights of the oil-gas energy portfolio (post-GFC)  

Oil-gas 

Codes 

CVaR 

(LP) 

CDaR 

(LP) 

Mini 

max 

(LP) 

MAD 

(LP) 

Var 

(QP) 
MW 

MW 

ex. 

CDaR 

MW 

ex. 

Minimax 

& CDaR 

WPLX 11.59  0.00  0.00  4.93  2.66  3.84  4.80  6.39  
AWEX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
BPTX 0.07  0.00  0.00  0.00  0.00  0.01  0.02  0.02  
MOGX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
NWEX 0.29  0.00  1.17  1.19  1.72  0.87  1.09  1.07  
STOX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
STXX 1.87  2.94  0.00  1.05  1.24  1.42  1.04  1.39  
ACN 2.97  0.00  0.00  2.18  2.71  1.57  1.97  2.62  
LNGX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
CTXX 10.24  0.00  41.96  3.13  8.33  12.73  15.92  7.23  
ORGX 10.96  17.53  16.35  7.87  12.42  13.03  11.90  10.42  
CUEX 0.00  0.00  0.00  0.24  0.83  0.21  0.27  0.36  
BASX 0.00  0.00  0.00  0.42  0.06  0.10  0.12  0.16  
ROCX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
MELX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
TPTX 5.63  4.90  0.48  3.90  4.62  3.91  3.66  4.72  
DLSX 0.00  0.00  0.00  1.72  0.43  0.43  0.54  0.72  
APAX 56.39  72.93  39.49  66.81  58.11  58.75  55.20  60.44  
SYSX 0.00  1.23  0.00  0.00  0.00  0.25  0.00  0.00  
COEX 0.00  0.47  0.55  6.55  6.89  2.89  3.50  4.48  

P-Ret 0.042 0.042 0.042 0.042 0.042 NA NA NA 

P-Risk 2.656 10.704 4.166 0.889 0.014 NA NA NA 
Notes: This table reports the minimum risk optimal weights (%) of the oil-gas sector portfolio for the post-GFC 

period scenario. The abbreviations LP, QP, VaR and MW stand for the linear programing, the mean-variance 

quadratic programming, variance and mean of weights. The R-ret and P-Risk are the portfolio’s return and risk, 
respectively. MW ex. CDaR and MW ex. Minimax & CDaR stand for mean of weights excluding the CDaR and, the 

Minimax and CDaR measures, respectively. 
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Table D13: Optimal weights of the mix-metals portfolio (pre-GFC) 

Mix-metals 

 Codes 

CVaR 

(LP) 

CDaR 

(LP) 

Mini 

max 

(LP) 

MAD 

(LP) 

Var 

(QP) 
MW 

MW 

ex. 

CDaR 

MW 

ex. 

Mini 

max 

& CDaR 

RIOX 22.81  49.19  17.26  20.32  25.95  27.11  21.59  23.03  
BCDX 17.87  28.62  18.35  15.67  16.07  19.32  16.99  16.54  
CAZX 0.00  1.48  0.00  1.16  0.50  0.63  0.42  0.55  
CDUX 1.54  0.29  1.90  0.19  0.01  0.79  0.91  0.58  
FMSX 2.91  0.00  4.87  0.70  1.27  1.95  2.44  1.63  
FNTX 1.79  0.00  3.22  0.52  0.85  1.28  1.60  1.05  
GLNX 0.00  0.00  0.00  2.11  1.27  0.68  0.85  1.13  
KMCX 1.06  8.94  3.64  1.30  2.47  3.48  2.12  1.61  
MAHX 14.31  5.59  10.25  14.06  15.18  11.88  13.45  14.52  
NAVX 0.89  0.00  0.00  1.74  1.76  0.88  1.10  1.46  
PNAX 0.00  0.00  3.70  3.60  3.38  2.14  2.67  2.33  
PHRX 1.45  0.00  3.55  1.78  2.77  1.91  2.39  2.00  
PDZX 0.38  1.63  0.00  0.14  0.27  0.48  0.20  0.26  
RMSX 4.16  2.75  5.45  1.09  1.45  2.98  3.04  2.23  
SARX 2.08  0.00  3.24  1.33  0.09  1.35  1.69  1.17  
SIRX 21.14  0.00  13.47  25.15  18.92  15.74  19.67  21.74  
AYNX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
UMLX 0.00  1.51  0.00  0.00  0.00  0.30  0.00  0.00  
BWDX 6.45  0.00  9.01  2.92  5.06  4.69  5.86  4.81  
WECX 1.17  0.00  2.08  6.21  2.72  2.44  3.05  3.37  

P-Ret 0.042 0.042 0.042 0.042 0.042 NA NA NA 

P-Risk 2.318 15.983 2.771 0.782 0.011 NA NA NA 
Notes: This table reports the minimum risk optimal weights (%) of the mix-metals sector portfolio for the pre-GFC 
period scenario. The abbreviations LP, QP, VaR and MW stand for the linear programing, the mean-variance quadratic 

programming, variance and mean of weights. The R-ret and P-Risk are the portfolio’s return and risk, respectively. MW 

ex. CDaR and MW ex. Minimax & CDaR stand for mean of weights excluding the CDaR and, the Minimax and CDaR 
measures, respectively. 

Table D14: Optimal weights of the mix-metals portfolio (GFC) 

Mix-metals 

 Codes 

CVaR 

(LP) 

CDaR 

(LP) 

Mini 

max 

(LP) 

MAD 

(LP) 

Var 

(QP) 
MW 

MW 

ex. 

CDaR 

MW 

ex. 

Mini 

max 

& CDaR 

RIOX 6.65  0.00  0.00  15.25  17.75  7.93  9.91  13.22  
BCDX 3.74  0.30  0.00  5.23  0.00  1.85  2.24  2.99  
CAZX 0.00  0.00  0.00  0.26  0.00  0.05  0.07  0.09  
CDUX 3.42  23.10  0.00  15.75  16.87  11.83  9.01  12.01  
FMSX 15.35  8.22  12.97  13.55  10.03  12.02  12.98  12.98  
FNTX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
GLNX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
KMCX 8.02  17.09  0.00  5.75  9.89  8.15  5.92  7.89  
MAHX 0.94  0.00  0.00  0.00  0.00  0.19  0.24  0.31  
NAVX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
PNAX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
PHRX 7.58  0.00  0.00  3.28  1.25  2.42  3.03  4.04  
PDZX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
RMSX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
SARX 19.37  0.00  61.89  10.81  14.66  21.35  26.68  14.95  
SIRX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
AYNX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
UMLX 13.81  9.18  0.00  9.57  11.44  8.80  8.71  11.61  
BWDX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
WECX 21.11  42.11  25.15  20.54  18.11  25.40  21.23  19.92  

P-Ret 0.042 0.042 0.042 0.042 0.042 NA NA NA 

P-Risk 5.864 93.664 12.762 1.829 0.072 NA NA NA 
Notes: This table reports the minimum risk optimal weights (%) of the mix-metals sector portfolio for the GFC 
period scenario. The abbreviations LP, QP, VaR and MW stand for the linear programing, the mean-variance 

quadratic programming, variance and mean of weights. The R-ret and P-Risk are the portfolio’s return and risk, 

respectively. MW ex. CDaR and MW ex. Minimax & CDaR stand for mean of weights excluding the CDaR and, the 
Minimax and CDaR measures, respectively. 
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Table D15: Optimal weights of the mix-metals portfolio (post-GFC) 

Mix-metals 

 Codes 

CVaR 

(LP) 

CDaR 

(LP) 

Mini 

max 

(LP) 

MAD 

(LP) 

Var 

(QP) 
MW 

MW 

ex. 

CDaR 

MW 

ex. 

Mini 

max 

& CDaR 

RIOX 30.14  8.36  14.58  42.45  18.28  22.76  26.36  30.29  
BCDX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
CAZX 3.11  3.79  5.84  0.00  2.60  3.07  2.89  1.90  
CDUX 5.84  7.44  10.05  1.99  0.00  5.06  4.47  2.61  
FMSX 0.00  0.00  0.00  2.01  2.73  0.95  1.19  1.58  
FNTX 4.47  0.00  0.00  3.52  10.22  3.64  4.55  6.07  
GLNX 0.00  0.00  0.00  0.91  0.00  0.18  0.23  0.30  
KMCX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
MAHX 5.52  31.55  0.00  5.32  16.64  11.81  6.87  9.16  
NAVX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
PNAX 0.00  0.49  0.00  0.00  0.00  0.10  0.00  0.00  
PHRX 0.00  0.00  0.00  0.61  0.00  0.12  0.15  0.20  
PDZX 3.34  0.00  0.00  3.05  2.88  1.85  2.32  3.09  
RMSX 14.26  0.00  10.99  5.32  11.33  8.38  10.48  10.30  
SARX 7.63  20.43  36.93  4.85  22.56  18.48  17.99  11.68  
SIRX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
AYNX 0.00  1.63  0.00  2.76  0.46  0.97  0.81  1.07  
UMLX 2.30  4.82  2.31  1.04  0.00  2.09  1.41  1.11  
BWDX 23.41  21.49  19.30  26.17  12.29  20.53  20.29  20.62  
WECX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

P-Ret 0.042 0.042 0.042 0.042 0.042 NA NA NA 

P-Risk 3.914 24.233 6.441 1.261 0.04 NA NA NA 
Notes: This table reports the minimum risk optimal weights (%) of the mix-metals sector portfolio for the post-GFC period 
scenario. The abbreviations LP, QP, VaR and MW stand for the linear programing, the mean-variance quadratic programming, 

variance and mean of weights. The R-ret and P-Risk are the portfolio’s return and risk, respectively. MW ex. CDaR and MW 

ex. Minimax & CDaR stand for mean of weights excluding the CDaR and, the Minimax and CDaR measures, respectively. 

Table D16: Optimal weights of the retail benchmark portfolio (pre-GFC) 

Retail  

Codes 

CVaR 

(LP) 

CDaR 

(LP) 

Mini 

max 

(LP) 

MAD 

(LP) 

Var 

(QP) 
MW 

MW 

ex. 

CDaR 

MW 

ex. 

Mini 

max 

& 

CDaR 

CCLX 9.62  5.29  4.15  6.68  6.39  6.43  6.71  7.56  
HILX 8.17  14.21  13.19  3.73  4.51  8.76  7.40  5.47  
GWAX 3.14  0.00  10.35  2.96  2.97  3.88  4.86  3.02  
MTUX 1.49  1.53  1.01  1.21  0.92  1.23  1.16  1.21  
MTSX 7.30  25.49  0.00  13.24  9.17  11.04  7.43  9.90  
WOWX 17.38  0.00  8.40  11.47  14.90  10.43  13.04  14.58  
ARPX 10.71  0.00  10.23  15.66  12.99  9.92  12.40  13.12  
CCVX 2.91  10.24  0.00  4.64  4.91  4.54  3.12  4.15  
DJSX 0.00  0.00  0.00  1.30  1.58  0.58  0.72  0.96  
DLCX 4.06  1.85  3.58  2.31  2.29  2.82  3.06  2.89  
HVNX 0.00  0.00  0.00  0.33  0.41  0.15  0.19  0.25  
JBHX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
RCG 3.07  1.38  3.65  1.06  0.97  2.03  2.19  1.70  
SFHX 1.00  0.00  0.00  1.09  1.91  0.80  1.00  1.33  
SULX 0.00  0.00  9.38  4.47  4.65  3.70  4.63  3.04  
WESX 16.31  29.76  20.56  11.85  13.47  18.39  15.55  13.88  
FANX 5.68  0.00  6.36  6.89  5.79  4.94  6.18  6.12  
GZLX 3.00  7.65  0.00  8.26  6.72  5.13  4.50  5.99  
FLTX 3.06  0.00  2.86  0.14  2.17  1.65  2.06  1.79  
JETX 3.10  2.60  6.27  2.70  3.28  3.59  3.84  3.03  

P-Ret 0.042 0.042 0.042 0.042 0.042 NA NA NA 

P-Risk 1.309 7.089 1.659 0.448 0.004 NA NA NA 
Notes: This table reports the minimum risk optimal weights (%) of the retail sector portfolio for the pre-GFC period 

scenario. The abbreviations LP, QP, VaR and MW stand for the linear programing, the mean-variance quadratic 
programming, variance and mean of weights. The R-ret and P-Risk are the portfolio’s return and risk, respectively. 

MW ex. CDaR and MW ex. Minimax & CDaR stand for mean of weights excluding the CDaR and, the Minimax and 

CDaR measures, respectively. 

http://product.datastream.com/Navigator/search.aspx?dsid=XECU901&useroption=162077092166082172&host=Advance&selectDatatypes=true&multiSelect=true&q=RCG&prev=99_JB+HI-FI&s=D&prev_csrc=0&rq=cGFnZT0xJnE9SkIlMjBISS1GSSZzPUQ1%7CcGFnZT0xJnE9SEFSVkVZJTIwJTIwTk9STUFOJnM9RA2%7CcGFnZT0xJnE9REVMRUNUQSZzPUQ1%7CcGFnZT0xJnE9REFWSUQlMjBKT05FUyZzPUQ1%7CcGFnZT0xJnE9Q0FTSCUyMENPTlZFUlRFUlMmcz1E0%7CcGFnZT0xJnE9Q0FTSCZzPUQ1%7CcGFnZT0xJnE9QVJCJnM9RA2%7CcGFnZT0xJnE9V09PTFdPUlRIUyZzPUQ1%7C
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Table D17: Optimal weights of the retail benchmark portfolio (GFC) 

Retail  

Codes 

CVaR 

(LP) 

CDaR 

(LP) 

Mini 

max 

(LP) 

MAD 

(LP) 

Var 

(QP) 
MW 

MW 

ex. 

CDaR 

MW 

ex. 

Mini 

max 

& CDaR 

CCLX 22.95  0.00  20.96  20.85  22.16  17.38  21.73  21.99  
HILX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
GWAX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
MTUX 18.83  20.65  17.09  12.14  12.92  16.33  15.25  14.63  
MTSX 4.30  58.28  0.00  12.07  11.26  17.18  6.91  9.21  
WOWX 7.70  0.00  0.00  1.18  0.78  1.93  2.42  3.22  
ARPX 21.51  0.00  40.53  19.50  22.13  20.73  25.92  21.05  
CCVX 1.28  0.00  0.00  2.16  1.08  0.90  1.13  1.51  
DJSX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
DLCX 0.06  0.00  0.00  0.00  0.00  0.01  0.02  0.02  
HVNX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
JBHX 3.09  0.00  0.00  8.89  9.07  4.21  5.26  7.02  
RCG 7.11  21.07  7.32  7.62  6.15  9.85  7.05  6.96  
SFHX 0.00  0.00  8.17  1.19  1.06  2.08  2.61  0.75  
SULX 0.83  0.00  2.06  4.74  3.62  2.25  2.81  3.06  
WESX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
FANX 8.57  0.00  3.86  8.94  8.42  5.96  7.45  8.64  
GZLX 3.76  0.00  0.00  0.72  1.34  1.16  1.46  1.94  
FLTX 0.00  0.00  20.96  0.00  0.00  4.19  5.24  0.00  
JETX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

P-Ret 0.042 0.042 0.042 0.042 0.042 NA NA NA 
P-Risk 2.58 26.864 3.537 0.879 0.014 NA NA NA 

Notes: This table reports the minimum risk optimal weights (%) of the retail sector portfolio for the GFC 

period scenario. The abbreviations LP, QP, VaR and MW stand for the linear programing, the mean-
variance quadratic programming, variance and mean of weights. The R-ret and P-Risk are the portfolio’s 

return and risk, respectively. MW ex. CDaR and MW ex. Minimax & CDaR stand for mean of weights 

excluding the CDaR and, the Minimax and CDaR measures, respectively. 

Table D18: Optimal weights of the retail benchmark portfolio (post-GFC) 

Retail  

Codes 

CVaR 

(LP) 

CDaR 

(LP) 

Mini 

max 

(LP) 

MAD 

(LP) 

Var 

(QP) 
MW 

MW 

ex. 

CDaR 

MW 

ex. 

Mini 

max 

& CDaR 

CCLX 33.21  30.20  33.92  19.47  20.55  27.47  26.79  24.41  
HILX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
GWAX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
MTUX 11.36  0.39  0.00  9.87  10.75  6.47  8.00  10.66  
MTSX 11.25  2.25  8.36  2.20  2.73  5.36  6.14  5.39  
WOWX 6.92  20.90  0.00  19.41  22.18  13.88  12.13  16.17  
ARPX 24.57  39.91  40.81  17.48  19.61  28.48  25.62  20.55  
CCVX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
DJSX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
DLCX 0.00  0.00  0.54  0.00  0.00  0.11  0.14  0.00  
HVNX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
JBHX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
RCG 0.00  0.00  2.58  0.00  0.00  0.52  0.65  0.00  
SFHX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
SULX 3.18  0.00  0.00  9.34  8.41  4.19  5.23  6.98  
WESX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
FANX 0.00  0.00  0.00  0.06  0.00  0.01  0.02  0.02  
GZLX 9.50  6.35  13.79  22.16  15.77  13.51  15.31  15.81  
FLTX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
JETX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

P-Ret 0.042 0.042 0.042 0.042 0.042 NA NA NA 

P-Risk 1.561 8.178 2.344 0.518 0.005 NA NA NA 
Notes: This table reports the minimum risk optimal weights (%) of the retail sector portfolio for the post-GFC period 

scenario. The abbreviations LP, QP, VaR and MW stand for the linear programing, the mean-variance quadratic 

programming, variance and mean of weights. The R-ret and P-Risk are the portfolio’s return and risk, respectively. 
MW ex. CDaR and MW ex. Minimax & CDaR stand for mean of weights excluding the CDaR and, the Minimax and 

CDaR measures, respectively. 

http://product.datastream.com/Navigator/search.aspx?dsid=XECU901&useroption=162077092166082172&host=Advance&selectDatatypes=true&multiSelect=true&q=RCG&prev=99_JB+HI-FI&s=D&prev_csrc=0&rq=cGFnZT0xJnE9SkIlMjBISS1GSSZzPUQ1%7CcGFnZT0xJnE9SEFSVkVZJTIwJTIwTk9STUFOJnM9RA2%7CcGFnZT0xJnE9REVMRUNUQSZzPUQ1%7CcGFnZT0xJnE9REFWSUQlMjBKT05FUyZzPUQ1%7CcGFnZT0xJnE9Q0FTSCUyMENPTlZFUlRFUlMmcz1E0%7CcGFnZT0xJnE9Q0FTSCZzPUQ1%7CcGFnZT0xJnE9QVJCJnM9RA2%7CcGFnZT0xJnE9V09PTFdPUlRIUyZzPUQ1%7C
http://product.datastream.com/Navigator/search.aspx?dsid=XECU901&useroption=162077092166082172&host=Advance&selectDatatypes=true&multiSelect=true&q=RCG&prev=99_JB+HI-FI&s=D&prev_csrc=0&rq=cGFnZT0xJnE9SkIlMjBISS1GSSZzPUQ1%7CcGFnZT0xJnE9SEFSVkVZJTIwJTIwTk9STUFOJnM9RA2%7CcGFnZT0xJnE9REVMRUNUQSZzPUQ1%7CcGFnZT0xJnE9REFWSUQlMjBKT05FUyZzPUQ1%7CcGFnZT0xJnE9Q0FTSCUyMENPTlZFUlRFUlMmcz1E0%7CcGFnZT0xJnE9Q0FTSCZzPUQ1%7CcGFnZT0xJnE9QVJCJnM9RA2%7CcGFnZT0xJnE9V09PTFdPUlRIUyZzPUQ1%7C
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Table D19: Optimal weights of the manufacturing benchmark portfolio (pre-GFC)  

Manufacturing  

Codes 

CVaR 

(LP) 

CDaR 

(LP) 

Mini 

max 

(LP) 

MAD 

(LP) 

Var 

(QP) 
MW 

MW 

ex. 

CDaR 

MW 

ex. 

Mini 

max 

& 

CDaR 

SFCX 2.12  0.00  0.00  2.40  2.40  1.38  1.73  2.31  
BLDX 2.76  0.00  6.76  2.06  2.98  2.91  3.64  2.60  
BKWX 17.24  0.00  18.90  19.38  17.11  14.53  18.16  17.91  
CSRX 3.54  11.28  6.42  5.10  5.59  6.39  5.16  4.74  
JHXX 8.44  3.80  4.04  4.45  4.54  5.05  5.37  5.81  
OLHX 3.86  7.47  5.11  3.12  3.79  4.67  3.97  3.59  
CKLX 2.12  11.44  0.00  2.31  3.04  3.78  1.87  2.49  
ANNX 4.68  12.53  4.23  14.21  12.39  9.61  8.88  10.43  
SDIX 0.71  0.00  0.00  0.89  0.28  0.38  0.47  0.63  
SOMX 0.00  0.00  0.00  0.54  0.19  0.15  0.18  0.24  
UCMX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
FWDX 8.15  0.00  10.50  9.71  8.78  7.43  9.29  8.88  
FANX 6.71  0.00  2.84  5.47  6.50  4.30  5.38  6.23  
KRSX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
ASBX 11.42  12.81  13.30  10.75  11.06  11.87  11.63  11.08  
MHIX 2.67  11.74  2.94  2.29  2.07  4.34  2.49  2.34  
CSLX 12.78  12.69  7.86  10.68  10.51  10.90  10.46  11.32  
IDTX 7.32  0.00  12.39  3.92  4.66  5.66  7.07  5.30  
CDAX 3.38  5.74  0.90  1.85  1.90  2.75  2.01  2.38  
LGDX 2.12  10.48  3.81  0.84  2.22  3.89  2.25  1.73  

P-Ret 0.042 0.042 0.042 0.042 0.042 NA NA NA 
P-Risk 1.429 10.776 1.821 0.519 0.005 NA NA NA 

Notes: This table reports the minimum risk optimal weights (%) of the manufacturing sector portfolio for the pre-GFC 

period scenario. The abbreviations LP, QP, VaR and MW stand for the linear programing, the mean-variance quadratic 
programming, variance and mean of weights. The R-ret and P-Risk are the portfolio’s return and risk, respectively. 

MW ex. CDaR and MW ex. Minimax & CDaR stand for mean of weights excluding the CDaR and, the Minimax and 

CDaR measures, respectively. 

  Table D20: Optimal weights of the manufacturing benchmark portfolio (GFC)  

Manufacturing  

Codes 

CVaR 

(LP) 

CDaR 

(LP) 

Mini 

max 

(LP) 

MAD 

(LP) 

Var 

(QP) 
MW 

MW 

ex. 

CDaR 

MW 

ex. 

Mini 

max 

& 

CDaR 

SFCX 0.00  0.00  0 0.00  0 0.00  0.00  0.00  
BLDX 0.00  0.00  0 0.00  0 0.00  0.00  0.00  
BKWX 0.00  0.00  0 9.14  0.29 1.89  2.36  3.14  
CSRX 0.00  0.00  0 0.00  0 0.00  0.00  0.00  
JHXX 0.00  0.00  0 0.00  0 0.00  0.00  0.00  
OLHX 0.00  0.00  0 0.00  0 0.00  0.00  0.00  
CKLX 1.76  0.00  0 4.48  0.03 1.25  1.57  2.09  
ANNX 0.00  5.69  4.05 2.16  0 2.38  1.55  0.72  
SDIX 0.00  0.00  0 0.00  0 0.00  0.00  0.00  
SOMX 18.23  11.59  31.74 6.38  16.72 16.93  18.27  13.78  
UCMX 24.01  28.08  8.96 39.06  24.64 24.95  24.17  29.24  
FWDX 0.00  0.00  0 1.27  0 0.25  0.32  0.42  
FANX 16.96  0.00  0 9.97  15.55 8.50  10.62  14.16  
KRSX 0.00  0.00  0 0.00  0 0.00  0.00  0.00  
ASBX 0.00  0.00  0 0.00  0 0.00  0.00  0.00  
MHIX 0.00  0.00  0 0.00  0 0.00  0.00  0.00  
CSLX 31.04  54.64  55.25 21.09  35.32 39.47  35.68  29.15  
IDTX 0.00  0.00  0 0.00  0 0.00  0.00  0.00  
CDAX 8.01  0.00  0 6.44  7.44 4.38  5.47  7.30  
LGDX 0.00  0.00  0 0.00  0 0.00  0.00  0.00  

P-Ret 0.042 0.042 0.042 0.042 0.042 NA NA NA 
P-Risk 4.675 23.576 7.427 1.38 0.045 NA NA NA 

Notes: This table reports the minimum risk optimal weights (%) of the manufacturing sector portfolio for the GFC 

period scenario. The abbreviations LP, QP, VaR and MW stand for the linear programing, the mean-variance 
quadratic programming, variance and mean of weights. The R-ret and P-Risk are the portfolio’s return and risk, 
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respectively. MW ex. CDaR and MW ex. Minimax & CDaR stand for mean of weights excluding the CDaR and, the 

Minimax and CDaR measures, respectively.  

Table D21: Optimal weights of the manufacturing benchmark portfolio (post-GFC)  

Manufacturing  

Codes 

CVaR 

(LP) 

CDaR 

(LP) 

Mini 

max 

(LP) 

MAD 

(LP) 

Var 

(QP) 
MW 

MW 

ex. 

CDaR 

MW 

ex. 

Mini 

max 

& 

CDaR 

SFCX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
BLDX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
BKWX 0.00  0.00  1.61  0.00  0.00  0.32  0.40  0.00  
CSRX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
JHXX 0.00  2.18  0.00  0.00  0.00  0.44  0.00  0.00  
OLHX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
CKLX 4.44  0.00  0.00  3.47  3.34  2.25  2.81  3.75  
ANNX 27.91  55.79  15.82  24.73  24.89  29.83  23.34  25.84  
SDIX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
SOMX 4.96  7.25  0.00  5.48  3.94  4.33  3.60  4.79  
UCMX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
FWDX 24.25  7.22  47.50  16.57  20.46  23.20  27.20  20.43  
FANX 0.00  0.00  4.56  0.00  0.00  0.91  1.14  0.00  
KRSX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
ASBX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
MHIX 3.48  5.33  2.27  3.67  4.50  3.85  3.48  3.88  
CSLX 21.39  0.00  17.35  24.57  24.19  17.50  21.88  23.38  
IDTX 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  
CDAX 4.01  5.51  6.08  9.70  8.71  6.80  7.13  7.47  
LGDX 9.56  16.73  4.82  11.80  9.97  10.58  9.04  10.44  

P-Ret 0.042 0.042 0.042 0.042 0.042 NA NA NA 
P-Risk 1.992 9.323 3.028 0.68 0.009 NA NA NA 

Notes: This table reports the minimum risk optimal weights (%) of the manufacturing sector portfolio for the post-GFC 
period scenario. The abbreviations LP, QP, VaR and MW stand for the linear programing, the mean-variance quadratic 

programming, variance and mean of weights. The R-ret and P-Risk are the portfolio’s return and risk, respectively. MW ex. 

CDaR and MW ex. Minimax & CDaR stand for mean of weights excluding the CDaR and, the Minimax and CDaR 
measures, respectively. 
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