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ABSTRACT 

Seagrass communities are of high ecological and economic significance. 

They provide a nursery area for commercial and recreational juvenile fish 

and crustacea. Seagrasses also play an important role in influencing the 

structure and function of many estuarine and nearshore marine 

environments. Unfortunately, the decline of seagrasses, as a result of 

human impact, has increased in recent years. This decline has become a 

major problem throughout the world. 

Current methods used to restore degraded seagrass beds are limited, the 

most promising being transplanting material from healthy donor beds. This 

approach is expensive because it is labor intensive and damages the 

donor bed. Consequently, large scale transplanting programmes are not 

considered to be feasible. 

An alternative to using donor material may be found in the propagation of 

seagrasses. This has been attempted through the production of seedlings 

in tissue culture. Tissue culture has shown to be successful in the rapid 

cloning of terrestrial plants and may be applied to develop a protocol which 

can be u!ilised to restore seagrass meadows. 

Five clones of Ha/ophila ova/is Hook F., (initiated from seed) and one clone 

of Ruppia megacarpa Mason (inniated from rhizome) were obtained from 

stocks at Ednh Cowan Universny, School of Natunal Sciences. Posidonia 
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coriacea Cambridge and Kuo was initiated in tissue culture during th's 

study. These trials were undertaken in order to develop suitable tissue 

culture methods to be applied to the propagation of seagrasses for future 

revegetation programs. 

The addition of sucrose to the medium resulted in increased growth and 

chlorophyll content of H. ova/is. There was no difference between the 

concentrations applied (30mM, 60mM and 120mM) with regard to growth, 

but between clones there were observed differences in the chlorophyll 

content. A comparison of one, two, four and eight week periods between 

subculture on basal medium showed no effect on the growth of H. ova/is, 

though after twa weeks, cultures appeared healthier. 

Cultures of H. ova/is grown in buffered (10mM MES) medium showed an 

increase in growth and chlorophyll content between initial pH 6 and 8 

compared to those grown on unbuffered medium. These results suggest 

that medium buffering is important for tissue culture of seagrasses. When 

cytokinins (S~M concentration) were added to the medium, there was no 

effect on growth or chlorophyll content for three H. ova/is clones or one R. 

megacarpa clone. 

Seeds with the pericarp intact were more successful in initiating P. 

coriacea in tissue culture than those with rhizomes and those w~hout the 

pericarp. These have continued to grow over seven months, but have not 

produced rhizome extension as in H. ova/is or R. megacarpa. 



These studies have shown that the requirements for tissue culture of 

seagrasses may be substantially different from that of terrestrial plants, 

and have produced a good base line of information for the propagation of 

seagrasses in tissue culture. 
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CHAPTER 1. INTRODUCTION 

Seagrasses are aquatic, monocotyledonous angiosperms, that grow in 

saline water. According to Cronquist (1961) there are four recognised 

families of seagrasses: Hydrocharitaceae. Posidoniaceae, 

Cymodoceaceae and Zosteraceae. These contain 12 genera and 

approximately 58 species (Kuo & McComb, 1989). Recognised genera 

and their families include: Enhalus, Thalassia, Halophila 

(Hydrocharitaceae), Posidonia (Posidoniaceae), Syringodium, Halodule, 

Cymodocea, Amphibo/is and Tha/assodendron (Cymodoceaceae), Zostera 

and Heterozostera (Zosteraceae) (King, Adam & Kuo, 1990). Fossil 

records date back to the Cretaceous (-100 million years ago) and indicate 

that seagrasses are the only known present day group of higher plants to 

have returned to a completely submerged marine existence (Larlmm & den 

Hartog, 1989). 

Arber (1920, cited by King eta/. 1990) listed four special traits required by 

aquatic angiosperms in order for them to be considered seagrasses. 

These are: a tolerance of saline environments, a capacity to grow whilst 

fully submerged, the ability to anchor against wave action and tidal 

currents, and the capacity for hydrophilous pollination. 

Other groups that are not conventionally considered to be seagrasses, but 

are sometimes included, are species of the genera Ruppia and Lepi/aena 

(King el a/., 1990). These groups are often found in estuaries, and coastal 



and inland saline lagoons. Certain species of Ruppia and Lepilaena have --
been found to tolerate a wide range of salinnies, some up to ten times that 

ol seawater (King et al., 1990). 

Seagrasses are found associated with all continents except Antarctica. 

Seven of the 12 genera are considered tropical. while the remaining five 

are confined to temperate waters (Kuo & McComb, 1989). Though the 

boundaries are not clearly defined, typically they inhabit shallow coastal 

waters ana estuaries. Here they are found to grow in large numbers to 

form what is often referred to as sea grass "beds". "meadows" or 

"communnies". These tenms are not necessarily restricted to an area 

comprised of a single species and may contain a mixture of species (Kuo & 

McComb, 1989). 

The greatest seagrass diversity is found around the coastline of Australia, 

with particularly high species diversity occurring in Western Australia 

(Larkum & den Hartog, 1989). The coastline of Western Australia has a 

wide range of environments, extending 12,500 km from the tropical waters 

of the Timor Sea to the temperate waters of the Southern Ocean. 

Approximately 20,000 km2 of Western Australia's coastline is covered by 

seagrasses, hence they make up a major component of the nearshore 

environment (Kirkman & Walker, 1989). 

The high diversity of seagrass genera (1 0) and species (25) along this 

coastline is unparalleled elsewhere in the wortd (Kirkman & Walker, 1989). 
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In terms of coverage, species of the genera Posidonia are very important 

along the coastline of Western Australia. Their colonisation and growth in 

cleared areas is extremely slow, taking between 60-100 years to cover 

cleared substratum (Kirkman & Kuo, 1990). This may be attributed to the 

fact that species of this genus regrow from seedlings only. There is no 

evidence of any Australian species of Posidonia colonising naturally 

through asexual reproduction (Kirkman & Kuo, 1990). 

Despite advances in the study of seagrass biology over the past twenty 

years, the ecological significance of seagrasses is only just being realised, 

and is therefore believed to be underestimated. Seagrasses provide a 

nursery area for commercial and recreational juvenile fish and crustacea 

(Kirkman, 1989; Lenanton, 1982), and are therefore of high ecological and 

economic significance. 

Seagrass decline has been recorded in many areas. The major cause has 

been attributed to development associated with high human populations, 

industrial effluent discharge, and the resultant pollution of the inshore 

marine environment (Carruthers and Walker, 1997). Detrimental changes 

associated with the subsequent loss of seagrasses may be irreversible, 

hence there is demand from governments and environmental managers to 

prevent continuing destruction. In addition, there is considerable need to 

develop improved protocols for restoring seagrass beds (Kirkman, 1989). 
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1.1 The Significance of Seagrasses 

There is increasing evidence worldwide to show that seagrasses play a 

primary function in ecosystem structure of inshore marine environments 

and estuaries. In many parts of the world it has been shown that seagrass 

beds are a refuge for assemblages of organisms not present in 

unvegetated sediment. This has lead to the realisation that seagrasses 

play an important role in influencing many structural and functional aspects 

of estuarine, coastal and inshore marine environments (Kuo & McComb, 

1989). 

Most of the productivity of seagrasses is directly transferred to detrital food 

chains (Walker 1989; Poiner, Walker & Coles 1989), and the total primary 

productivity of seagrass meadows is greatly enhanced by providing a 

substrate for other photosynthetic organisms (Orth & Van Montfrans, 

1984). Seagrasses produce a large quantity of leaf matter at extremely 

high rates, which in tum directly supplies the detrital food chain. The 

epiphytes and bacteria on living seagrass leaves, together with the detritus 

associated with microbes produced from shed leaves, provides a 

continuous source of food for detritivores (Cambridge, 1979). 

Carruthers and Walker (1997) liken seagrass meadows to terrestrial crop 

plants, in that the seagrass canopy is a functional unit that impacts greatly 

in modifying the surrounding environment. Cambridge (1979) compares 

dense stands of seagrass meadows to a 'pump and filter system', as they 
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greatly influence current flow, in tum slowing the rate of water flow over the 

substrate. The reduced velocity of water within the system allows 

sediment to be trapped, and existing sediments to be confined, thereby 

stabilising the environment (Walker, 1989). The trapping of sediment within 

a seagrass bed facilitates the efficient re-shifting of minerals, enabling a 

highly productive system to operate in what would otherwise be regarded 

as low nutrient waters (Walker, Sim & Pennifold, 1994). 

The efficiency with which seagrasses are able to resorb nutrients, such as 

nitrogen and phosphorous, has been suggested to be an important 

mechanism to reduce the plants' dependence on external nutrient input in 

environments that are nutrient poor (Stapel & Hemminga, 1997). The 

nutrients taken up by seagrasses enable the release (via their roots and 

leaves) of metabolites such as oxygen and complex organic compounds 

(Cambridge, 1979). 

One of the effects seagrasses have on the surrounding environment is to 

reduce the turbidity of an area. Studies performed in tropical Queensland 

found that areas of low turbidity carried a greater abundance and 

distribution of juvenile fish (Biaber & Blaber, 1980),. Hence, the inshore 

marine environment has been found to provide an alternative nursery area 

for fish species commonly found in estuaries. 

Studies in the south of Western Australia by Lenanton (1982) found that 16 

commercially and recreationally important fish species, normally found in 
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estuarine environments, utilised the inshore marine environment as an 

alternative nursery area. Rather than reduced turbidity, in this instance " 

was likely to be the amphipod food source provided by densely packed 

leaves from "drift" seagrass, which accounted for the high abundance of 

juvenile fish fauna. "Drift" seagrass is a term used for detached clumps of 

seagrass leaves which can be found lying in depressions of nearshore 

marine habitats (Lenanton, 1982). 

The enhancement of feeding sources is also supported by studies done in 

Western Australia. Posidonia beds in Cockbum Sound support a diverse 

array of both epiphytic algae and invertebrates. Eleven fish species have 

been found to confine their feeding to the seagrass bladoe, or to organisms 

found in seagrass beds (Scott, Dybdahl & Wood, 1986). Posidonia beds 

act as a substrate for amphipods, which are considered to be a major food 

source for juvenile fish. Many species of fish and shell-fish lay their eggs 

within seagrasses, and may also complete some or all of their stages of 

growth to maturity within the confines of seagrass beds (Thorhaug, 1986). 

The distribution of juvenile fish may therefore be attributed to the reduction 

of turbidity of an area and the supply of food and shelter as a direct result 

of seagrasses. 

Seagrasses also act as a direct food source for large herbivores. This 

includes the endangered dugong and green turtle, which are largely 

confined to tropical Australian waters, together with some fish and 
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crustacea (Klump, Howard & Pollard 1989; Lanyon, Limpus & Marsh 

1989). 

1.2 Decline of Seagrasses 

Seagrass beds may undergo changes that lead to their decline as a result 

of either natural occurrences or human-related activities. Some natural 

disturbances may include storms, salinity changes (as a result of droughts 

or floods), erosion and disturbance from burrowing animals (Thorhaug, 

1986). However, the loss of seagrass species as a result of human-activity 

is becoming far more frequent than that caused by natural perturbations. 

In most cases, the initial factor responsible for the decline interacts with 

other independent or secondary factors which may also play a role in a 

large reduction of seagrass species (Cambridge & McComb, 1984). For 

example, the initial factor may be heavy pollution or high nutrient influx, 

which may increase the susceptibility of the seagrass to secondary 

deleterious factors such as over-grazing. 

Increased epiphyte loads have also contributed to seagrass decline in 

areas found to be highly eutrophic as a result of effluent discharge. The 

shading of seagrass leaves by epiphytes under such conditions can reduce 

photosynthesis by as much as 80%. Hence, productivity is sufficiently 

reduced to explain the level of the decline observed (Silberstein, Chitlings 

& McComb 1986; Masini, Cary, Simpson & McComb 1990; Hillman, 

Lukatelich, Bastyan & McComb 1991 ). Gordon, Chase, Grey and Simpson 
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(1994) found that not only did the attenuation of light reduce leaf and shoot 

densities, primary productivity and leaf production per shoot of Posidonia 

sinuosa, but that even after light intensity had returned to normal, the 

meadow had suffered irreparable damage. 

Underground biomass (roots and rhizomes) differs between seagrass 

species (West & Larkum, 1983). In Port Adelaide, South Australia, losses 

of Amphibo/is beds were primarily attributed to effluent flow, and 

subsequently to the small amount of underground biomass found in 

species of this genus (West & Larkum, 1983). Posidonia has a greater 

underground biomass than that of Amphibolis spp., enabling Posidonia to 

exhibit greater resistance to environmental disturbances than Amphibolis. 

Their greater underground biomass allows species of Posidonia to store 

products in the rhizome which can supply more energy for respiration 

(Carruthers & Walker, 1997). The amount of underground biomass is 

believed to be important in determining whether or not a species of 

seagrass will survive small perturbations in environmental conditions 

(Carruthers & Walker 1997; Walker eta/. 1994). 

Disturbance can also lead to increased grazing pressure. Disturbed 

meadows of Tha/assia in the United States and Zostera in the West Indies 

have been subjected to heavy grazing by sea urchins (Orth & Van 

Montfrans, 1984). Polluted areas of Posidonia meadows in Cockburn 

Sound in south-western Australia and areas which have been disturbed in 
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Botany Bay, New South Wales, were also found to be more susC<.tptible to 

overgrazing by sea urchins, leading to permanent losses of seagrass 

(Shepherd, McComb, Bulthuis, Neverauskas, Steffensen & West, 1989). 

The common element identified in all observed instances of over-grazing of 

Posidonia by sea urchins was the initial patchiness of the meadow. Dense, 

healthy meadows did not have outbreaks of overgrazing (Cambridge, 

Chiffings, Brittan, Moore & McComb, 1986). As a direct result of 

fragmentation, over-grazing has been found to greatly retard resorption in 

seagrass leaves, due to the premature loss of leaves and leaf fragments 

(Stapel & Hemminga, 1997). 

Although there appears to be no single factor responsible for the loss of 

seagrasses, it is clear that human impact has resulted in the initial decline 

of seagrass meadows, which then allows other factors to disturb the 

system. More than a decade ago, it was estimated that the meadow area 

in Cockburn Sound had been reduced from 4 200 to 900 ha since the 

onset of industrial development in 1955 (Cambridge & McComb, 1984). 

Although these figures may not be entirely accurate due to the extensive 

period over which they were taken, and the lack of accurate measuring 

apparatus available in 1955, they still provide a good indication of the 

impact industrial development has had in this area. 

In Princess Royal and Oyster Harbours, near Albany, Western Australia, 

similar problems to that experienced in Cockburn Sound have been 
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observed. The increasing amount of industrial effluent discharged into the 

waters has included wastewater and effluent contaminated with n~rogen, 

phosphorous and associated compounds, hydrocarbons, and a range of 

phenolics (Gordon eta/. 1994; Cambridge & McComb 1984). 

Studies relating to seagrass ecosystems are still at an early stage. 

However, it has been reported that the loss of seagrass has had significant 

implications for the coastal and inshore environment. These include a fall 

in leaf detritus production accompanied by alterations in food chains, a loss 

of structural diversity which is replaced by bare sand, and allerations in the 

principal primary producers (from benthic to planktonic). Fish faunas 

exclusive to seagrass meadows have been found to change with the onset 

of seagrass degradation, and it is predicted that as a result of alterations to 

sediment structure, beach morphology will shift. This can lead to the onset 

of erosion of dune systems (Cambridge & McComb, 1984). 

In order to preserve the seagrass resources whioh remain, it is important 

that more information is gathered on seagrass biology and ecology. 

Research should be directed at a greater understanding of the ecological 

processes involved in seagrass ecosystems, so that appropriate 

management strategies can be implemented. Such studies are essential 

in implementiag the development of a successful restoration protocol. 
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1.3 Seagrass Restoration 

Natural extension of most seagrass meadows occurs at very slow rates. 

The successful establishment of seagrass seedlings through sexual 

reproduction is, in most cases, extremely low (McConchie & Knox, 1989). 

Therefore, asexual reproduction through seagrass rhizome extension is 

very important for some species. This not only prevents the erosion of 

beaches by stabilising sediment, but also extends meadow boundaries. 

However, asexual reproduction is a slow mechanism of meadow extension. 

This form of extension has been witnessed in stands of Posidonia, 

Amphibo/is. Zostera and the tropical species Enha/us acoroides. But this 

appears to be very slow, and it has been estimated to have taken decades, 

or longer for the beds to develop (Kuo & McComb 1989; Kirkman 1989). 

Seagrasses have a slow rate of natural recovery. Zostera marina, once 

found along the east coast of the United States and the west coast of 

Europe, did not recover for many decades following a wasting disease in 

the 1930's. In South Australia, an area mined for Posidonia fibre in 1917 is 

still visibly identified by the lack of re·growth. Tracks made during World 

War II in Botany Bay, New South Wales, over Posidonia australis beds 

could still be seen nearly five decades later (Shepherd eta/., 1989). 

The primary method of restoring damaged or lost beds has typically been 

transplanting. This is thought to shorten the colonising period of a site by 

up to ten times (Clarke & Kirkman 1989; Kirkman 1989). However, 
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success depends on many factors which include growth rate, planting 

configuration and the species to be restored. 

The restoration of degraded seagrass meadows is also a costly process. 

In discussing the cost involved with seagrass transplants in the Un~ed 

States, Fonseca, Kenworthy and Thayer (1987, cited by Kirkman 1989) 

claimed it would cost approximately US$25 000 to plant an acre of 

seedlings and other planting units. However, this figure was reached on 

the basis that machinery was not available to plant the units, and that they 

would have to be planted manually. Information with regard to optimising 

the efficacy of restoration is scarce. Factors to be considered include the 

optimum number of planting units, the distance between planting units, the 

material used to secure the units to the substrate, and the costs involved in 

obtaining the transplant material. 

As the economic importance of seagrasses has not been fully realised, the 

expense involved in restoring areas which have suffered from seagrass 

loss may be a mere fraction of the ecological and economic benefits. In 

1983 in tropical Australia alone, it was estimated that the prawn fishing 

industry returned more than $A 161 million in export earnings, which 

accounted for 41% of Australia's fisheries export revenue (Poiner eta/., 

1989). Similarly, the seagrass meadows of the west coast of Australia 

which provide foraging grounds for the western rock lobster (Panulirus 

cygnus), has an annual catch of approximately $A200 million (Walker & 

McComb, 1992). If seagrass beds continue to decline, so too will the 
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nursery areas which are cri1ical to the survival of juvenile fish and 

crustacea important to the fishing industry. 

Transplanting may be successful only U the cause of the decline has been 

eliminated, and the site modified to allow successful restoration. Some 

operations have involved transplanting a species other than that which was 

originally present (Kirkman t989). However, without adequate knowledge 

of the biological, physical and che1nical characteristics of the area to be 

planted, this might lead f.o further unfavourable modffications to the 

ecosystem. 

1.4 Advances in Restoration 

The first successful seagrass transplant into the field was claimed by Kelly, 

Fuss & Hall (1971, cited Kirkman 1989). They attached short shoots of 

Thalassia testudinum that were treated with the artificial auxin naphthalene 

acetic acid (NAA) to a construction rod. Phillips (1974, cited in Kirkman 

1989) successfully transplanted Zostera marina on a large scale between 

Alaska and Puget Sound, Washington in 1974. However, since these 

initial achievements, little progress has been made with the large scale 

establishment of seagrasses (Kirkman, 1989). 

The primary planting units used in the restoration of seagrass have been 

"plugs", "sprigs", seeds, and sprouting stems. Plugs are planting units 

which consist of the rhizome, leaves and roots with sediment intact. These 
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have been regarded as the most successful of the planting un~s employed 

in restoring soagrass beds. However, they also have the greatest impact 

on the donor bed (Bird, Jowett-Sm~h & Fonseca 1994; Kirkman 1989) 

because of the large quant~ of plant material taken and the creation of 

patchy areas. Sprigs are virtually the same as a plug, but they are devoid 

of sediment. In order for the successful re-establishment of both plugs and 

sprigs, the rhizomes must contain apical meristematic tissue. This may 

involve an excessive amount of time in obtaining suitable material, and 

may also prove wasteful to the donor bed (Kirkman, 1989). Methods are 

still being developed to overcome problems associated with securing the 

planting un~s. together with the most cost effective and efficient means of 

planting. 

Currently under investigation is the development of a protocol to produce 

artfficial, plastic planting units. The use of these has been suggested to 

restore areas which may not be successful for transplanting methods 

(Kirkman, 1989). However, using a plastic substitute for seagrass is far 

from being a suitable replacement, and may be more problematic than 

beneficial. Seagrass meadows form a complex ecosystem; such artificial 

systems would be devoid of many of the biological and physical functions 

of living seagrass beds. 

Bird et at. (1994) examined whether in vffro' propagated Ruppia maritima 

would survive transfer back into the field. The first experiment compared 

1 For the pUI'fiOSCS of this review, the tenns ~in vitro" or "tissue culmn:" refer 10 the axenic growlh of scagro~.\< within closed 
o..o;eptic ve.o;sc:lo;. The tenn "culture" refcl'!l to tile non-axenic growth of scagl'llSS in aquaria. 
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two different plgnting methods. One method looked at the planting of in 

vitro propagat>d material which was attached to metal staples. The 

material was directly planted into the field at four different sites. However, 

within one month, almost all of these transplants disappeared from the four 

planting sites. This was attributed to the morphology of R. maritima, in that 

the thin rhizomes were not able to be held in place by the staples. In the 

second method, in vitro propagated material was transferred to peat pots 

and grown in a flowing seawater system for six weeks before transplanting 

into the field. After 11 months, these transplants were still growing in three 

of the four sites, with an observed 20-80% survival rate (Bird eta/., 1994). 

The second experiment showed the greatest transplant success, in which 

in vitro propagated R. maritima was directly rooted ex vitro in peat pots and 

grown in a flowing seawater system for six weeks. After 12 months, two of 

the three planted sites showed a significant percent cover: one had a cover 

of approximately 99%. The increase in shoot ~umbers and cover of R. 

maritima suggested that plants propagated in vitro could be used 

successfully for habitat restoration (Bird et a/., 1994). However, after 23 

months R. maritima showed a marked decrease in percent cover, which 

was attributed to the natural competition .of Zostera marina (Bird et a/., 

1994). 

Although there has been some success with current transplant methods, 

Fonseca, Kenworthy & Thayer (1986, cited by Kirkman 1989) believe that 

there is still a net loss of habitat involved w~h any resto12tion project. The 
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collection of any planting unit from a donor bed will inflict damage to that 

bed. The larger the quantity of planting units cleared from a donor bed, the 

harder it is for a meadow to successfully regenerate. With evidence that 

overgrazing can occur in patchy areas of a seagrass meadow, leading to 

the loss of the meadow as a whole (Cambridge et a/., 1986), removing 

donor material for rehabilitation purposes should be reviewed. An 

alternative to using plant material frorn donor beds is to use propagated 

seagrass material. For this reason, developing a reliable technique for the 

propagation of seagrass may play an important role in providing material 

for restoration projects in the future. 

1.5 Propagation of Seagrasses 

Following recommendations in the Report of the Steering Committee of the 

Seagrass Ecosystem Study held at the University of Alaska in 1973, there 

has been a reasonable amount of effort invested into the culture of 

seagrass. Most of the studies have been undertaken at the University of 

Texas, since 1973. However, a reliable protocol for the propagation of 

seagrasses is still unavailable (McMillan, 1980). 

The culturing of seagrasses commenced in a bid to develop an improved 

understanding of seagrass biology (McMillan, 1980). With the increasing 

decline of seagrasses and the realisation of their substantial contribution to 

the marine environment, the need to develop more efficient methods of 

propagation for restoration has become more immediate. 
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Most success has been found with the non-axenic cultivation of 

seagrasses in tanks. Many of the studies have involved developing 

methods suitable to maintain the various species in culture. Other studies 

include monitoring the tolerance of various plant species to fluctuations in 

temperature, salinity and light, along with photoperiodic responses 

(McMillan 1980; Meinesz, Caye, Loques & Molenaar 1991). The 

successful culture of nine of the twelve genera, including Tha/assia, 

Ha/odu/e, Ha/ophila, Posidonia, Zostera, Cymodocea, Syringodium, 

Enhalus, and Thalassodendron, has been achieved. However, most of 

these plants were not found to survive more than two years in culture, 

some dying after only several months (McMillan, 1980). 

The non-axenic germination, flowering and seed production in cultures of 

Ha/ophila engelmannii was the inspiration behind the first successful 

attempts at tissue culture of seagrass (McMillan 1987; McMillan 1988; 

Jewett-Smith & McMillan 1990). 

Tissue culture methods have been successfully developed for many 

terrestrial plants, providing a rapid alternative to more conventional means 

of propagation. However, the techniques developed for terrestrial plants 

have not been successfully applied to the tissue culture of seagrasses, 

primarily because of heavy microbial associations and the subsequent 

deleterious surface sterilization of plant and seed material, and the 

incapacity to maintain tissues in vitro for extended periods (Moffler & 

Durako, 1984). 
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There is enonnous potential offered in developing tissue culture techniques 

for the rapid production of seagrass. In addition, the ability to screen vast 

numbers of explants for genotypes able to survive in reduced light, or 

carrying improved resistance to the effects of many pollutants such as 

heavy metals and hydrocarbons may prove beneficial for the restoration of 

seagrass meadows. 

As mentioned, sterilization techniques frequently used for terrestrial plant 

material have been inadequate when applied to seagrass, due to the 

presence of high amounts of both surtace and endophytic bacteria and 

fungi. The lack of a well-developed cuticle in seagrass, together with the 

large variety of associated microorganisms, makes effective, non· 

destructive surtace sterilization a difficult task (Koch & Durako, 1991 ). 

Loques et a/. (1990) applied many disinfection techniques to various 

tissues of Posidonia oceanica, in order to initiate them into axenic culture. 

However, most explants developed heavy bacterial and fungal infection. 

The greatest success was with macromeristematic tissue. But this was 

short-lived, as the explants only survived four months. 

As with many terrestrial plants, the sterilization of seeds has been very 

useful. This has proved to be more successful than the use of plant 

segments with species of Halophila and Tha/assia (MoHler & Durako 1984; 

Bird & Jewett-Smith 1994). Tha/assia testudinum was genninated under 

axenic culture, however, the plants died prior to subculturing (Bird & 
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Jewett-Smith, 1994). Balestri, Piazza and Cinelli (1998) recently initiated 

P. oceanica in tissue culture by the surface sterilizat1on of seed but the 

cultures died after 10 months. 

The disadvantage in relying on seed alone, is that it is not always easily 

found or available. For example, P. sinuosa, a dominant species of 

seagrass found along the southern end of the south-west of Western 

Australia, seeds once a year for a couple of months, and in some years will 

not produce seed at all (Kirkman, 1989). However, once cultures are 

established there will not be a need to collect every year. 

The first report of successful in vitro culture of a seagrass was for Ruppia 

maritima, in which a large amount of rhizomal division was generated 

(Koch & Durako, 1991 ). The report examined the effects of various plant 

growth regulators; five cytokinins and one auxin. Root suppression was 

observed in the media containing auxin, and the various cytokinins were 

observed to stimulate a three to four-fold increase in the growth of 

rhizomes and shoots. 2-iso-pentyladenine was the only cytokinin found to 

stimulate dose-dependent growth and development. Koch and Durako 

(1991) attributed this to the fact that this compound is found to occur 

naturally in ocean sediment. 

Bird, Brown, Henderson, O'Hara and Robbie, (1996) claimed to have 

developed a routine culture medium adequate to support the axenic growth 

of R. maritima clones for six years. They have contrasted tissue culture 
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media containing inorganic carbon (as bicarbonate), organic carbon (as 

sucrose), and cytokinin addition to carbon-based media. In a sucrose­

based medium, R. maritima showed a growth response to 6[y,y­

dimethylallylamino]-purine (2iP) twice that of the growth response to the 

cytokinin 6-benzylaminopurine (BAP). This response was not linearly 

dose-dependent. Instead, once a concentration of 14.8J!M 2iP was 

applied, growth did not improve. Growth in the bicarbonate-based medium 

with 2iP was less than that in the sucrose-based medium (Bird et a/., 

1996). 

1.6 Experimental Aims 

Following on from the work of Bird eta/. (1996), this project aimed to: 

detenmine the optimum culture medium for the maintenance and growth of 

H. ova/is and R. megacarpa, provide a sterilization protocol for the 

establishment of P. coriacea in tissue culture and compare the culture 

requirements of seagrasses with those for terrestrial plants. These species 

will be used in this project as they are local to Western Australia. 

Data gathered with respect to optimum growth of H. ova/is, and R. 

megacarpa in tissue culture and sterilization of P. coriacea would provide 

useful information to develop a reliable protocol for the propagation of 

seagrasses. 

seagrasses. 

This would have implications for the restoration of 
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The project examined, under in vitro conditions, the growth responses of H. 

ova/is, to a range of sucrose concentrations, pH levels, pH levels buffered 

with 2-(N-morpholino)ethanesulfonic acid (MES}, and length of time 

between subculture. H. ova/is and R. megacarpa were also exposad to 

several cytokinins including 6-furfurylamino-purine (kinetin}, 6-

benzylaminopurine (BAP), 6[y,y-dimethylallylamino]-purine (2iP}, and 6-(4-

hydroxy-3-methyl-but-2-enyl-amino)-purine (zeatin). 

Sterilization procedures for initiation of Posidonia coriacea in tissue culture 

was also examined. Three treatments were applied to sterilize rhizome 

tissue but only one sterilizing treatment was applied to the fruits, with and 

without the pericarp present. 
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CHAPTER 2. MATERIALS AND METHODS 

2.1 Plant Material 

Shoots including rhizomal material of Posidonia coriacea were collected at 

a depth of 1Om using Sell Contained Underwater Breathing Apparatus 

(SCUBA) off the coast of Fremantle, Western Australia on the 251
" 

September 1997. Shoots bearing fruits of P. coriacea were collected in 

November 1997 using SCUBA, from the shoreline at Cockburn Sound, 

Western Australia. P. coriacea shoots with fruits attached were 

transported back to the laboratory in seawater. 

The rhizome material and fruits of P. coriacea were washed under running 

tap water and then stored in aerated beakers of artificial seawater for no 

more than 24 hours after collection prior to sterilizing. 

Five clones of Ha/ophila ova/is (initiated from seed) and one clone of 

Ruppia megacarpa (initiated from rhizome) were obtained from stocks that 

had been established one year previously by the School of Natural 

Sciences, Edith Cowan University. Material of H. ova/is was used in all 

experiments except for those pertaining to sterilization. R. megacatpa 

responses to cytokinin were examined. 
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2.2 Sterile Technique 

Tissue culture involves growing plants in a sterile environment and under a 

defined set of conditions. Any materials involved with handling, growing 

and storing cultured plant tissues must be sterilized first. Any materials 

used with the plants or media containers (eg. media, media containers, 

instruments, plastic cutting plates, ethanol, artificial seawater), were 

sterilized in an autoclave at 121 oc for 20 minutes. 

Plant material was aseptically handled in a laminar flow cabinet which had 

been exposed to ultra-violet radiation for 15 minutes prior to use, and then 

wiped with 70% ethanol. Instruments (eg. forceps and blades) were 

routinely re-sterilised during culturing with a Bacticinerator sterilising unit 

(Sigma-Aldrich, Castle Hill NSW). 

2.3 Culture Maintenance 

Cultures were grown in 250mL screw top polycarbonate containers 

containing 30 mL of liquid medium. All material was subcultured onto 

basal medium (described in Table 2.1) every two weeks, except where 

mentioned for cultures in experiment. Cultures were maintained at 25°C ± 

4°C in a photoperiod 16h light/Sh dark. Light was provided by cool white 

fluorescent tubes. 
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2.4 Culture Media 

2.4.1 Stock Solutions 

Stock solutions of the plant growth substances kinetin, 2iP, BAP and zeatin 

were used in media preparation. These were prepared by dissolving 

powdered cytokinins (Sigma-Aldrich, Castle Hill NSW) in analytical grade 

1M NaOH, and made up to the required volume with milli Q water (ion· 

exchange filtered to 15 mQ electrical resistance). Solutions were stored in 

the dark at 4°C. 

2.4.2 Media Composition 

Culture media were prepared using half strength Murashige and Skoog 

(M&S) Basal Medium (Sigma Aldrich, Castle Hill NSW; Product number 

M5519), containing macro· and micronutrients and vitamins as detailed in 

Table 2.2. Artificial sea salts (Sigma Aldrich, Castle Hill NSW; Product 

number S9883) as detailed in Table 2.3, cytokinins (Sigma Aldrich, Castle 

Hill NSW) and sucrose (CSR Ltd, North Sydney, NSW) were also added. 

2.4.3 Media Components and Preparation 

Analytical grade reagents and milli Q water were used in media 

preparation. All glassware and culture vessels were washed in Pyroneg 
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detergent and rinsed twice in tap water, then in de-ionised water twice, 

before being oven dried at sooc. 

Media contents (eg. sucrose, M&S, artificial sea salts) were weighed then 

dissolved in milli Q water. Stock solutions of cytokinins were added to a 

solution which was made up to the final volume, and pH adjusted to 8.0 

with 1M and 0.1 M KOH. Media was dispensed into culture containers, 

then autoclaved. Media were stored in the dark at 4°C until used. 
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TABLE, 2.1: The contents of the basal medium used for H. ova/is, R. 

megacatpa, and P. coriacea. 

Component 

Murashige and Skoog (1962) 

Sucrose 

Sea Salts 

Kinetin 

26 

Concentration 

(mg.L· ) 

2 215 

20000 

20000 

(11M) 

5.0 



TABLE 2.2: Compos~ion of Murashige and Skoog (1962) (Sigma Aldrich; 

Product number M5519). 

Macronutrients: 

NH•N03 

KN03 

CaCI2.2H20 

MgS04.7H20 

KH2PO• 

Component 

EDT A-Iron (Ill) Sodium Salt.H20 

Micronutrients: 

H3B03 

MgS0•.4H20 

ZnS0•.7H20 

Kl 

Na.Mo0•.2H20 

cuso •. 5H•O 

CoCI2.6H•O 

Vtlamins: 

Nicotinic Acid (free acid) 

Thiamine HCI 

Pyridoxine HCI 

Glycine (lree base) 

27 

Concentration 

(mg.L'1) 

1 650.0 

1 900.0 

440.0 

370.0 

170.0 

36.7 

6.2 

22.3 

8.6 

0.830 

0.250 

0.0250 

0.0250 

0.50 

0.10 

0.50 

2.0 



TABLE 2.3: Composition of Sea Salts (Sigma Aldrich; Product number 

S9883). 

Chloride 

Sodium 

Sullate 

Magnesium 

Calcium 

Potassium 

Bicarbonate 

Borate 

Strontium 

Phosphate 

Solids Total 

Water 

TOTAL 

Component 

28 

Concentration 

(% of total weight) 

46.943 

26.047 

6.44 

3.16 

0.996 

0.927 

0.362 

0.072 

O.Q16 

84.963 

14.987 

99.95 



2.5 Assessment and Analysis 

2.5.1 Assessment of Growth 

At the start of each experiment, each explant had a known number of 

nodes. The relative amount of plant growth was determined by counting 

the number of new nodes at the end of experiment. 

2.5.2 Chlorophyll Determination 

The total chlorophyll was determined by measuring the amount of 

chlorophyll a and b for each replicate using the non-maceration method of 

Moran and Porath (1980). This involved measuring the fresh weight of 

explants that includes nodes and leaves for each replicate, and then 

leaving these in SmL of N,N-dimethyl formanide (DMF) overnight. The 

absorbance of the extract was then read in a spectrophotometer at 

wavelengths of 647 and 664 nm. Micrograms of chlorophyll per gram of 

fresh weight were calculated by using the fresh weight and chlorophyll 

values as per the following calculation formulae: 

Chlorophyll a (~g/ml) = (ABSe" x 12.64) - (ABS647 x 2.99) 

Chlorophyll b (~g/ml) = (ABS547 x 23.26) - (ABS664 x 5.6) 

TOTAL CHLOROPHYLL= (ABS"' x 7.04) + (ABS647 x 20.27) 
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2.5.3 Determining Axenicity 

The cultures were visuaily screened for apparent bacterial and fungal 

contaminants. If there were any signs of cloudiness, discolouration, fungal 

spores or bacterial colonies, the cultures were autoclaved. The cultures 

which were not observed to be contaminated were assumed to be 

operationally axenic. 

2.5.4 Statistical Analysis 

Statistical analysis was performed using SPSS for Windows Version 7.0. 

All data were tested tor normality, and where necessary, transfonmed using 

natural logarithms. Analysis of variance (ANOVA) was used to test the 

validity of replication within data sets. Two-way ANOVA was performed 

where experiments of two factors were tested, and where significant 

(P$0.05), a one-way ANOVA was used to test for significant differences 

between treatments; Schelfe's post hoc analysis was perfonmed when 

significant differences were found using one-way ANOVA. The x' test was 

applied to experiments relating to sterilization of P. coriacea material. 
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CHAPTER 3. HALOPHILA OVAL/5 AND RUPPIA MEGACARPA 

3.1 INTRODUCTION 

In vitro culture of terrestrial plants has been successfully applied to 

propagation, the investigation of plant biology, and plant-microorganism 

associations. However, little work has been done with aquatic, marine 

plants. 

Since the environmental conditions for marine plants are very different to 

those of terrestrial plants, factors established for the in vitro culture of 

terrestrial plants need re-examination for application to aquatic marine 

plants such as seagrasses. Hence, it was important to detenmine some 

basic conditions necessary to establish media and a protocol for the growth 

of H. ova/is and R. megacarpa. 

Bird et a/. (1996) found in vitro growth of R. maritima in a 29.21 mM 

sucrose-based medium with 2iP was three times greater to that in a 

bicarbonate-based medium with 2iP. However, as various levels of 

sucrose were not examined experimentally, the large increase in growth 

may have been attributed to any number of medium contents. 

Loques, Caye and Meinesz (1990) found the greatest chlorophyll level and 

survival time of P. oceanica macromeristems in medium containing a 

sucrose concentration of 263 mM, however the cultures were short-lived, 
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dying after 4 months. The sucrose concentration, although high, was 

thought to play both a nutritive and osmotic role. However, the 

concentration of sucrose used for successful R. maritima cultures has been 

as low as 29.21 mM (Bird eta/. 1994; Bird eta/. 1996). The level of 

sucrose applied to P. oceanica may have been too high, resulting in the 

cultures going into osmotic shock. 

The effects of pH on photosynthesis for three seagrass species was 

examined in the field and under non-axenic conditions in the laboratory 

(lnvers, Romero & Perez, 1997). The pH range of 8 to 8.8 was examined 

for Posidonia oceanica and Cymodocea nodosa and the range of 8 to 9 

was examined for Zostera noltii. Photosynthetic rates were greatest for 

Posidonia oceanica and Cymodocea nodosa at pH 8.2 and changed to 25-

80% at pH 8.8. Zostera no/tii was less sensitive to pH and maintained high 

photosynthetic rates up to pH 8.8 (lnvers et a/., 1997). The preferred pH 

values under laboratory conditions were similar to those found in the field. 

In vitro cultures of Thalassia testudinum were successfully establishment 

and maintained on medium at pH 8 (Moffler & Durako, 1984) whereas H. 

engelmami was found to grow best at medium pH 5 (Bird & Jewett-Smith, 

1994). R. maritima were maintained in vitro at pH 5.6 (Koch & Durako, 

1991), however more recent studies found pH of 7 and 7.5 to be adequate 

(Bird et a/. 1994; Bird et a/. 1996). It must be noted that the complex 

environmental conditions and medium, made it difficult to detenmine 
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whether it was the level of pH affecting growth, or the contents of the 

medium. 

One of the factors which is important, but is absent from published data, is 

the frequency of subculture. This would play a significant role in the vigour 

of cultures as components of the medium (eg. carbohydrate source, 

nutrients, vitamins etc.) would support the plant for a limited amount of 

time. Likewise, a build-up of toxins in the medium released by the plant 

would eventually kill the plant. 

Plant growth regulators, in particular cytokinins, have shown a marked 

effect on growth rates of seagrasses in vitro, however, the type of cytokinin 

appears to be species specific. R. maritima has observed the greatest 

amount of growth on 2iP, whereas H. engelmannii showed the best growth 

response to BAP (Bird eta/. 1996). Tha greatest longevity of P. oceanica 

macromeristem cultures were observed on medium with ratios of the auxin, 

indole-3-acetic acid, and the cytokinin, kinetin of 0.2:2 mg L"1 and 5.0:5.0 

mg L"1 (Loques eta/. 1990). 

The current experiments examined growth responses of H. ova/is to a 

range of sucrose concentrations, length of subculture period, pH and plant 

growth regulators. 
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3.2 MATERIALS AND METHODS 

3.2.1 Experiment 1. The effect of sucrose concentration on H. ova/is 

growth. 

The effect of different concentrations of sucrose on the mean number of 

new nodes produced and chlorophyll content of H. ova/is was investigated. 

The basal medium (Chapter 2.) was supplied with different amounts of 

sucrose OmM, 30mM, 60mM and 120mM. Three clones were used: 3, 6 

and 12. Each treatment contained ten replicates, distributed into five 

culture vessels. Each explant had two nodes with two leaves per node. 

Shoots were grown for a period of 14 days, then subcultured into fresh 

experimental media. At the end of 28 days the number of nodes was 

measured (Chapter 2). 

3.2.2 Experiment 2 and 3. The effect of medium pH on H. ova/is 

growth. 

The effect of pH and the buffer 2-(N-morpholino)ethanesulfonic acid (MES) 

on the growth of H. ova/is was investigated. Initially, the basal medium 

(Chapter 2.) was adjusted using 1M and 0.1M KOH or 1M and 0.1M HCI to 

pH 5, 6, 7, and 8 prior to autoclaving; these media were not buffered. 

Subsequently, these same media were used, but buffered with 10 mM 
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MES. An additional medium at pH 8 and unbuffered was also included. 

The pH was measured after autoclaving and at the end of the experiment. 

In the unbuffered media three clones were used (2, 9, and 12) and in the 

experiment using buffered media, two clones were used (3 and 12). Each 

treatment contained six replicates, distributed into three culture vessels. 

Each explant had two nodes with two leaves per node. 

In the unbuffered experiment, shoots were grown for a period of 14 days, 

then subcultured into fresh experimental media for another 14 days. The 

shoots in the buffered media remained in the experimental media for 21 

days. At the end of both experiments, the mean number of new nodes and 

chlorophyll content was determined. 

3.2.3 Experiment 4. The effect of subculture length on the growth of 

H. ova/is 

The effect of subculture length on mean number of new nodes of H. ova/is 

was investigated. Four periods of time b~•ween subculture on basal 

medium (Chapter 2) were tested. The treatments were one, two. four and 

eight week intervals between subcutture. Treatment one (1 week) was 

subcultured every week for four weeks and treatment two (2 weeks) was 

subcultured every two weeks for four weeks. Treatments three (4 weeks) 

and four (8 weeks) remained in the initial media until the end of the 

experiment. Two clones wero used (6 and 12) and the experimental 
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material contained six replicates, distributed into three culture vessels, 

each with two explants bearing two nodes, but not leaves. 

The final data recorded included the number of new nodes. It was not 

possible to measure chlorophyll because of a shortage of plant material. 

3.2.4 Experiment 5 and 6. The effect of cytokinins on the growth of H. 

ova/is and R. megacarpa 

The effect of cytokinins on the growth was investigated for H. ova/is and R. 

megacarpa. The basal medium (Chapter 2.) was supplied with 5 pM of 

different cytokinin: no cytokinin (control), kinetin, 2iP, BAP or zeatin. 

Initially, two clones of H. ova/is were used (3 and 12) and in the follow up 

experiment two clones of H. ova/is were used (6 and 12) as well as one 

clone of R. megacarpa. Each treatment contained six replicates, 

distributed into three culture vessels. In the first experiment, each explant 

had two nodes without leaves. In the second experiment each explant of 

H. ova/is had two nodes with two leaves per node, whereas each explant of 

R. megacarpa had six nodes with leaves. 

In the initial experiment, shoots were grown for a period of 14 days, then 

subcultured into fresh experimental media for another 14 days. The shoots 

in the second experiment were not subcultured and were scored after 14 

days. At the end of both experiments, the mean number of new nodes and 

chlorophyll content was detenmined. 
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3.3 RESULTS 

3.3.1 Experiment 1. The effect of sucrose concentration on H. ovatis 

growth. 

Growth and chlorophyll levels were both significantly affected by the four 

treatments of sucrose (OmM, 30mM, 60mM and 120mM). There was no 

difference in the responses of the different clones with regard to 

multiplication, with the mean number of new nodes ranging from 5.7 to 7.7 

when sucrose was included in the medium. For all three clones, a greater 

amount of growth (P=O.OOO) was obtained when sucrose was included in 

the medium but sucrose concentration did not affect the growth (Fig. 3.1. 

Scheffe's test). 

A significant difference for mean chlorophyll content was observed 

between clones (P=O.OOO) and treatments (P=O.OOO). For clone 12 all 

treatments containing sucrose had the same level of chlorophyll and only 

the medium minus sucrose had a significant reduction in chlorophyll (Fig. 

3.2C Scheffe's test). Clone 6 had significantly higher chlorophyll at 60mM 

sucrose (Fig. 3.28 Scheffe's test). However, clone 3 experienced the 

greatest mean chlorophyll content at 30mM sucrose (Fig. 3.2A Scheffe's 

test). 
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Figure 3.1. Mean number of new nodes for H. ova/is produced for A) clone 

3, B) clone 6 and C) clone 12, grown in sucrose concentrations of OmM, 

30mM, 60mM or 120mM for 28 days. Vertical bars represent standard 

errors of the mean, different lower case letters indicate differences 

between means using Scheffe test (P<O.OS). 
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OmM, 30mM, 60mM or 120mM for 28 days. Vertical bars represent 

standard errors of the mean, different lower case letters indicate 

differences between means using Scheffe test (P<0.05). 
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3.3.2 Experiment 2. The effect of medium pH on H. ova/is growth. 

The growth of H. ova/is was not significantly affected by the four pH 

treatments (5. 6, 7 and 8) (P=0.056). There was no significant difference 

between clones (0.299) for the mean number of new nodes (Fig. 3.3). 

No significant difference was observed between clones (P=O. I 15) or 

between treatments (P=0.082) for chlorophyll content. However, both 

clone 2 and 9 showed the highest values in chlorophyll content above pH 7 

(Fig. 3.4A and 8), but for clone 12 (Fig. 3.4C), the highest value was 

observed above pH 6. There was very little difference in the initial medium 

pH after autoclaving. However, at completion of the experiment, the 

medium pH in all treatments fell to as low as 4 (Table 3.1.). 
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2, B) clone 9 and C) clone 12, grown lor 28 days in unbuffered medium at 

pH 5, 6, 7, and 8. Vertical bars represent standard errors of the mean. 

41 



100....--------=------, 

I 80 
A) 

T 
60 

40 1 1 

E 
20 

o+----r---.----r---,----1 "' -~ 
4 5 6 

~ 100~-----------------------------, 
~ B) 

9 7 8 

.!2' 
"' 3 
c: 

I 
~ 
c. 
e 

80 

60 

40 

20 

T 

.L 

~ 04-----,-----,------r-----r-----1 
<.> 
c: 4 5 6 7 8 9 
m 100,------------------------------. 
::;: C) 

80 

60 

40 

20 

o+--~----~--~----T---~ 
4 5 6 7 8 9 

ln~ial pH 

Figure 3.4. Mean chlorophyll content (ug/g fresh weight) of H. ova/is for A) 

clone 2, B) clone 9 and C) clone 12, grown for 28 days in unbuffered 

medium at pH 5, 6, 7, and 8. Vertical bars represent standard errors of the 

mean. 

42 



Table 3.1: Unbuffered pH before and after autoclaving, and mean pH 

recorded at the end of the experiment. 

pH pH pH 

(before (after autoclaving) (after experiment) 

autoclaving) 

5 5.5 3.9±0.04 

6 6.4 3.9 ± 0.12 

7 7.1 4.2 ±0.39 

8 7.4 4.0±0.t5 
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3.3.3 Experiment 3. The effect of buffered medium pH on H. ova/is 

growth. 

Two way analysis of variance indicated that there was a significant 

difference due to treatments (P:O.OOt ), but no significant difference 

between clones (P=0.992) for mean number of new nodes. Clone 3 was 

the only clone for which an effect of treatment was significant (P=0.003), 

with the pH 7 buffered treatment producing more new nodes than the pH 5 

buffered and the pH 8 unbuffered (Fig. 3.5A Scheffe's test). For both 

clones the highest multiplication values were obtained on buffered media 

from pH 6 to 8 (Fig. 3.5A, B). 

Mean chlorophyll content was significantly different between clones 

(P=0.021) and treatments (P=O.OOO). Clone 3 showed a significant 

difference between treatments (P=O.OOO), with the highest chlorophyll 

content contained on media buffered at pH 6, 7 or 8, compared to buffered 

pH 5 and unbuffered pH 8 (Fig. 3.6A Scheffe's test), however, no 

significant difference was observed for clone 12 (Fig. 3.68; P=0.207). 

There was little difference in the initial pH after autoclaving. However, at 

the completion of the experiment, the medium pH was more stable 

between buffered treatments pH 6 to 8, than in buffered pH 5 and 

unbuffered pH 8 (Table 3.2.) 
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Table 3.2: Medium pH before and after autoclaving, and mean pH 

recorded at the end of the experiment when buffered (10mM MES). (') 

represents unbuffered treatment. 

pH pH pH 

(before (after autoclaving) (after expenment) 

autoclaving) 

5 5.2 3.8±0.08 

6 6.0 5.4±0.17 

7 6.8 6.1 ±0.06 

8 7.1 6.1 ±0.04 

8' 7.5* 5.5'±0.26 
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3.3.4 Experiment 4. The effect of the length of time between 

subculture on the growth of H. ova/is 

The length of subculture showed no significant difference between 

treatments (P;Q.274) or between clones (P;0.808) for mean number of 

new nodes. With regard to multiplication (Fig. 3.7), one way analysis of 

variance indicated a significant difference for clone 6 (P;0.043), however, 

Scheffe's test found no difference between treatments. 
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Figure 3.7. Mean number of new nodes of H. ova/is produced for A) clone 

6 and B) clone 12, subcultured at one, two, four and eight weeks 

respectively. Vertical bars represent standard errors of the mean. 
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3.3.5 Experiment 5. The effect of cytokinins on the growth of H. 

ova/is 

There was no significant difference (P:0.177) between the five cytokinin 

treatments (OI!M. and 51!M kinetin, 2iP, BAP or zeatin). However, a 

significant difference was observed between clones 3 and 12 (P=0.001) 

with regard to multiplication, with clones 3 and 6 producing approximately 6 

new nodes per explant, and clone 12 producing only 2 new nodes per 

explant (Fig. 3.8). 

There were no significant differences observed for mean chlorophyll 

content between clones (P=0.1 01) or between treatments (P=0.231) (Fig. 

3.9.). 

3.3.6 Experiment 6. The effect of cytokinins on the growth of H. 

ova/is and R. megacarpa 

There was no significant difference between clones 6 and 12 (P=0.494) or 

between the five cytokinin treatments (OI!M, 5 11M kinetin, 2iP, BAP and 

zeatin) (P=0.720) for the mean number of new nodes produced for H. 

ova/is (Fig. 3.1 OA and B). Similarly, for R. megacarpa there was no 

difference between treatments (P=0.178) for the mean number of new 

nodes (Fig 3.1 OC). 
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A significant difference for mean chlorophyll content was observed 

between clones (P=0.013) but not between treatments (P=0.278) for H. 

ova/is (Fig. 3.11 A and B). R. megacarpa was not observed to show a 

significant difference (P=0.088) for mean chlorophyll content within 

treatments (Fig. 3.11C). 
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Figure 3.8. Mean number of new nodes of H. ova/is produced for A) clone 

3, B) clone 6 and C) clone 12, grown in no cytokinin (control) and SuM 

kinetin, 2iP, BAP or zeatin for 28 days. Vertical bars represent standard 

errors of the mean. 
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Figure 3.9. Mean chlorophyll conlent (ug/g fresh weight) of H. ova/is 

produced for A) clone 3, B) clone 6 and C) clone 12, grown no cytokinin 

(control) and 5uM kinetin, 2iP, BAP or zeatin for 28 days. Vertical bars 

represent standard errors of the mean. 
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clone 12 and of C) R. megacarpa grown in no cytokinin (control) and SuM 

kinetin, 2iP, BAP or zeatin for 14 days. Vertical bars represent standard 

errors of the mean. 
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Figure 3.11. Mean chlorophyll content (ug/g fresh weight) of H. ova/is for 

A) clone 6, B) clone 12 and of C) R. megacatpa grown in no cytokinin 

(control) and SuM kinetin, 2iP, BAP or zeatin for 14 days. Vertical bars 

represent standard errors of the mean. 
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3.4 DISCUSSION 

3.4.1 Sucrose 

Increased growth was shown to be dependent on the addition of sucrose to 

the medium, however, there was little or no difference in growth responses 

to different concentrations of sucrose. Once the sucrose concentration 

doubled from 60mM to 120mM, growth decreased in clones 3 and 6, but 

increased in clone 12. This would suggest that a concentration around 60 

mM sucrose is optimal for growth. Bird eta/. (1996) found that the growth 

of R. maritima was high in medium with 2iP addition at a sucrose 

concentration of 29.21 mM. However, this may have been attributed to 

other contents of the medium, and may also have been a response specific 

to R. maritima. 

The decreased growth for clones 3 and 6, and the increased growth 

observed for the clone 12 at the higher sucrose concentration, may have 

been associated with their differing abilities to adjust osmotically to the 

rapid increase in sucrose. There is limited published data to compare with, 

other than the examination by Loques eta/. (1990) of the effect of sucrose 

concentrations on P. oceanica macromeristem survival. That study found 

that a concentration of 263 mM was adequate to maintain cultures for up to 

4 months. However, the cultures were short-lived, which may have been 

due to the high sucrose concentration, and the subsequent high osmotic 

level of the medium. 
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The differences in chlorophyll content between treatments correlate with 

differences in growth. The variation between clones is an indication of 

their genetic differences, resulting in different physiological requirements 

for sucrose. The results signify greater health and growth of plants in 

medium with sucrose addition. 

3.4.2 Effect of pH 

The lack of effect of unbuffered pH medium on both the growth and 

chlorophyll content of H. ova/is, signifies the importance of buffer addition, 

in order to stabilise medium pH. The low level of medium pH obseoved for 

all trealments at lhe end of the experiment would have decreased the 

ability of the plant to take up nutrients and organics, thereby reducing both 

plant growth and health. This is observed in tissue culture of terrestrial 

plants, when pH drops from 5.8 to 4.5 (Williams 1990; Woodward & 

Bennett, 1996). 

The stability of medium pH was dependent on the addition of buffer. 

Although, the level of MES buffer was only adequate in maintaining a 

medium pH 6.1, it was an improvement on the unbuffered medium, where 

medium pH was approximately 4.0 after the experiment. The greatest 

multiplication for both clones (3 and 12), was found in the buffered 

treatments pH 6-8. This was most likely because of the availability of 

nutrients and organics to the plants was not retarded. 
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The difference in chlorophyll content between treatments, again, signifies 

the effect of adequately buffered pH in maintaining plant fitness. The 

greater growth experienced at pH 6 corresponds to the higher chlorophyll 

content data indicative of plant health. 

With regard to published data of in vitro seagrass culture, there is no 

reference to buffered medium pH, consequently there is nothing with which 

a comparison can be made. In the sea, pH is approximately 8 (lnvers et 

a/., 1997), however, the buffer applied in this experiment was only 

adequate in stabilising pH at approximately 6. The pH range suitable for 

buffering by MES, lies between 5.5 and 6.7. Consequently, it would have 

been useful to compare other buffers used in plant and animal cell culture, 

to include: N-[2-Hydroxyethyl]piperazine-N-3-propanesulfonic acid (EPPS) 

(7.1-8.5), N-[2-Hydroxyethyl]piperazine-N-[2-ethanesulfonic acid] (HEPES) 

(7.2-8.6) or 3-[N-tris(Hydroxymethyl)methyl-amino]-2-hydroxypropane­

sulfonic acid (TAPSO) (6.8-8.0), in order to find one which would stabilise 

medium pH 8. 

3.4.3 Subculture periods 

The growth of H. ova/is clones (6 and 12) was not affected by the time 

between subculture on basal medium (Chapter 2.). However, there was a 

visible increase in the health of plants subcultured after two weeks, in 

comparison to the other periods. This would suggest that the standard 
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culture medium was adequate to support both the growth and vigour of H. 

ova/is plants for intervals of two weeks. 

3.4.4 Cytokinins 

The addition of cytokinins to the medium had no significant affect on either 

growth or chlorophyll contenl of three H. ova/is clones and one R. 

megacarpa clone. 

These results differ from those of Koch and Durako (1991) who found that 

cytokinin additions of kinetin, BAP, 2-iso-pentyladenine and zeatin resulted 

in a three to four-fold increase in the growth of in vitro R. maritima. 

Cultures were found to respond in a dose-dependent manner to 2-iso­

pentyladenine, but in a broad dose-dependent way to the other cytokinins. 

However, these results were found to be similar to the results reported by 

Bird et at. (1996). They discovered R. maritima growing in vitro did not 

respond to the addition of BAP in a sucrose-based medium, but they did 

find that 2iP stimulated greater growth than BAP. Their experiments 

examined concentrations ranging from 0 to 25~M for BAP and 2iP, 

however only 14.8~M 2iP was found to stimulate an increase in growth of 

cultures. 
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As the experiments applied in this study only examined cytokinins at a 

concentration of S~M. this may have explained the lack of stimulation of 

growth of H. ova/is and R. megacarpa. 

In the first test, there were problems associated with removing the leaves 

of H. ova/is, which reduced the sample size. The experiment was 

repeated, in order to reduce any experimental error that might have 

occurred in the first test, this time using both H. ova/is and R. megacarpa, 

with leaves intact. 

There were differences observed in the first test between H. ova/is clones, 

that were not observed during the second test. However, as three clones 

were used in the first of the cytokinin experiments, but only two in the 

second cytokinin experiment, this may suggest reasons for the change in 

trends. The experiment using R. megacarpa, was restricted because the 

material examined was of the one clone. 

The results do not comply with those found in other studies and suggest, 

that unlike terrestrial plants, cytokinin may not have an affect on 

seagrasses. If time permitted, it would have been useful to apply different 

concentrations of cytokinins, as further examination may havs indicated an 

affect on growth. 

These results indicate that there may be substantial differences in the 

requirements of seagrasses compared to terrestrial plants. The addition of 
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sucrose to the medium, like that of terrestrial plants, increases the rate of 

growth. The pH favoured by most terrestrial plants in tissue culture is 5 to 

6. As this is lower than that for seagrasses, further investigation of buffers 

adequate to stabilise medium pH 8, is necessary. The addition of 

cytokinins also needs further examination, to determine if it was the 

concentration of cytokinins affecting growth, or whether cytokinins play a 

different role in seagrasses to those observed in terrestrial plants. 
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CHAPTER 4. POSIDONIA CORIACEA 

4.1 INTRODUCTION 

Surface sterilization procedures frequently used for terrestrial plant material 

have not been adequate for obtaining axenic seagrass material. 

Seagrasses possess an undeveloped cuticle and harbor a large diversity of 

surface endophytic bacteria and fungi. Consequently, surface sterilization 

which is non-deleterious to the plant has not been easily achieved (Koch & 

Durako, 1991 ). 

Tissue culture of the genus Posidonia has been least developed of all the 

groups examined in this work. One of the major problems has been 

achieving sterile cultures without damage to the plant. Loques eta/. (1990) 

achieved sterile macromeristems of P. oceanica, but the cultures died after 

4 months. Accordingly, a major hurdle for the in vitro culture of seagrasses 

has been the type of plant material used in sterilization. 

Success in obtaining axenic cultures of R. maritima (Koch & Durako, 

1991 ), T. testudinum (Moffler & Durako, 1984), H. engelmanii (Jewett· 

Smith & McMillan, 1990) and H. ova/is for this work, has been obtained by 

the surface sterilization of seed. 

An examination of three sterilization techniques, two of which were 

modified from published data, were applied in order to initiate P. coriacea 
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into axenic culture. The techniques were applied to rhizomal tissue, and 

the most successful of these techniques were applied to fruits with and 

without the pericarp intact. 
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4.2 MATERIALS AND METHODS 

4.2.1 Experiment 1. Sur1ace sterilization of rhizome 

Sampling and storage conditions of plant material are outlined in Chapter 

2.1. 

The rhizomes were washed and then cut into single nodes. The nodes 

were placed in clean aerated artificial sea water. Three sterilization 

treatments were followed, each with 100 replicates of one node. 

In treatment one the explants were placed in sterile milli Q water for 20 

minutes and intermittently swirled, and then placed in 2% benzalkonium 

chloride (zephiran) in 10% ethanol for 5 minutes with swirling. 

The second treatment was modified from Loques eta/., (1990) and Hudson 

(1981 ). The explants were placed in 70% ethanol for 30 seconds, and 

then in calcium hypochlorite (70g L'1) for 25 minutes with intermittent 

swirling. 

In the third treatment, the explants were placed in 70% ethanol for 30 

seconds, and then 1% sodium hypochlorite for 25 minutes and periodically 

swirled. This technique is also a modification of Loques eta/. (1990) and 

Hudson (1981). 
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The final steps for all three sterilization techniques involved rinsing the 

rhizomes three times in sterile artificial seawater, re-trimming the tissues, 

and placing the explants in basal medium (Chapter 2.) under sterile 

condilions. 'I he cultures were maintained in a growth cabinet set at 

21.5°C and monitored for contamination, survival, and growth. 

4.2.2 Experiment 2. Surface sterilization of fruit 

Fruits were collected as detailed in Chapter 2.1. Forty fruits were sterilized 

with the pericarp intact and forty fruits were sterilized without the pericarp. 

The third sterilization treatment (Chapter 4.2.1 ), was followed as it had 

previously given a higher number of uncontaminated cultures. The seeds 

were placed in basal medium (Chapter 2.) under sterile conditions and 

were stored in a growth cabinet set at 21.5°C. They were monitored for 

contamination, germination, and growth. 
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4.3 RESULTS 

4.3.1 Experiment 1. Surface sterilization of rhizome 

There was a significant difference between the three sterilization 

treatments (l ; 0.05) applied to the rhizomal tissue of P. coriacea. Of the 

300 P. coriacea rhizomes sterilized, 23 appeared sterile. The greatest 

number of sterile cultures was obtained using treatment three (12%), 

followed by one (8%) and treatment 2 (3%) detailed in Table 4.1. 

However, there was a large degree of bacterial contamination overall. The 

cullures were discarded approximately one month after treatment as no 

signs of growth were observed, and the tissue appeared dead. 

4.3.2 Experiment 2. Surface sterilization of fruit 

A significant difference was observed between the two sterilization 

treatments (l ; 0.05) applied to P. coriacea seed. The greatest sterility 

was obtained in the first treatment, after the seed was sterilized with the 

pericarp intact (62.5%), whereas contamination was observed in all of the 

seeds sterilized without the pericarp (Table 4.2.). The contamination 

observed appeared to be bacterial. 

In the first treatment, 19 of the uncontaminated seeds germinated. To 

date, 13 have remained alive and have continued to grow leaves. They 

are subcultured on a fortnightly basis onto basal medium (Chapter 2.). The 
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other six cultures experienced a browning of the leaves and ceased 

growing. 

Of the 40 seeds from the second treatment, six germinated, however these 

became contaminated within a week of sterilization. In another trial, 275 

seeds were sterilized using the second treatment, however none 

germinated and eventually became contaminated. 

67 



Table 4.1: Mean percentage contamination (% contamination) of 

Posidonia coriacea rhizomes using three sterilization treatments of 100 

replicates each. There was a significant difference between treatments ('l 
= 0.05) one month after sterilization. 

Treatment 

1 

2 

3 

% Contamination 

92 

97 

88 
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Table 4.2: Mean percentage contamination (% contamination) of 

Posidonia coriacea seeds using two sterilization treatments of 40 replicates 

each. There was a significant difference between treatments (')(2 = 0.05) 

recorded one month after sterilization. 

Treatment 

1 

2 

% Contamination 

62.5 

100 
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4.4. DISCUSSION 

4.4.1. Surface sterilization of rhizome 

The first and third treatments were most suitable in obtaining axenic P. 

coriacea cultures using the rhizome material. However, the rhizomes were 

not successful in initiating P. coriacea in tissue culture. Unlike seed, the 

rhizome material has no protective barrier to prevent harm to the internal 

tissues. These results do not compare with Loques et a/. (1990), in which 

they initiated P. oceanica in tissue culture by the surface sterilization of 

macromeristems. However, the cultures only survived for four months. 

This may have been as a direct result of the plant material used, as the 

rhizome material may not be able to tolerate those concentrations of 

chemicals applied during the sterilization procedure. 

4.4.2. Surface sterilization of fruit 

The most suitable material in obtaining axenic cultures of P. coriacea was 

the seed. Seeds of P. coriacea are surrounded by a fleshy pericarp which 

protects the embryo from the deleterious affects associated with vigorous 

sterilization. This has also been found to be a successful mechanism of 

initiating axenic cultures of R. maritima (Koch & Durako, 1991 ), T. 

testudinum (Moffler & Durako, 1984), H. enge/manii (Jewett-Smith & 

McMillan,1990), and H. ova/isforthiswork. 
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The seed sterilized without the pericarp would have come in contact with 

bacteria and fungi, once the pericarp was removed, which may have 

survived the sterilization procedures. The seed sterilized with the pericarp 

intact had more protection against the chemicals applied in the sterilization 

process and would have also to a lesser degree been exposed to possible 

bacterial and fungal infection. 

These results indicate that there are substantial differences in the type of 

plant material used to initiate seagrasses in tissue culture. The rhizome 

material was not successful in obtaining sterile cultures of P. coriacea, nor 

was seed that was sterilized without the pericarp. However, successful 

axenic cultures were obtained by sterilizing seed with the pericarp intact. 
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CHAPTER 5. GENERAL DISCUSSION 

This work illustrates that there are both differences and similarities 

between the tissue culture requirements for the marine seagrasses, and 

those that are suitable for the tissue culture of terrestrial plants. The 

similarities can be found in the range of responses that were obseiVed 

between clones of H. ova/is, sucrose requirements and the relative ease of 

establishment from seed compared to rhizomes. Differences appear in the 

frequency of subculturing required, the effects of cytokinins on axillary bud 

stimulation and, perhaps most importantly, the need to stabilise a relatively 

high pH in the culture medium. 

Differences between clones were obtained in experiments on sucrose. 

This raises a question that may arise in the further development of a 

protocol for this group of plants; how much should the protocol be adjusted 

for individual clones? This is a major problem for the tissue culture of 

many terrestrial plants as, in many cases, considerable effort is put into 

producing elite clones. At this stage of research into seagrasses, this 

should not cause too many problems as there has not been any extensive 

development of the genetic material. In addition, it will be a major step 

forward simply to be able to reliably grow some seagrasses for whatever 

purpose they are needed. 

The sucrose concentrations required for seagrasses appear to be in line 

with what might be expected for other plants, as they are usually in the 
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range of 60-90mM. There does not appear to be any justification for the 

high levels used by Loques et a/. (1990), as they found that a 

concentration of 263mM sucrose was adequate in maintaining 

macromeristem cultures of P. oceanica. However, this may have caused 

osmotic shock, as the cultures only survived for four months. The limited 

published data makes it difficult to compare these findings. 

The variation in pH is the component of this work that appears to vary the 

greatest from that of work on other plants. The responses in unbuffered 

media is similar to that seen in other plants where there is a drop (often 

very rapid) in the pH down to the values of about pH 4. For many 

terrestrial plants in vitro, this is not important and the required responses 

can be obtained despite this drop. However, in terrestrial plants that have 

in the past been considered to be recalcitrant, this is beginning to be 

investigated as a way to overcome their recalcitrance (George, 1993; 

Woodward and Bennett, 1996). The drop that is experienced in these 

plants from an initial pH of between 5 and 6 is not nearly as great as the 

drop experienced in the tissue culture of these seagrasses which have an 

optimum pH around 8. The drop to pH 4 is likely to have substantial 

effects on the capacity of the tissues/explants to survive and grow. While, 

in many cases, this causes problems with regard to nutrient absorption this 

is not likely to be the case in liquid media, however, it is likely to be 

significant wito regard to many of the metabolic activities that are affected 

by pH. 
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Unlike terrestrial in vitro plant cultures (prefer pH 5 to 6), it appears that 

aquatic marine plants in vitro grow best at a higher pH. This is most likely 

due to the environmental conditions normally experienced in the field by 

seagrasses. As the pH of the sea is approximately 8, it would not be 

optimal for the seagrasses at a lower pH, and this would retard the 

availability of nutrients and organics to the plant. Further experiments 

could examine buffers which would be better equipped to stabilise a 

medium of pH B. 

Frequency of subculture might be expected to be from 4 to 6 weeks for 

most plants. The more frequent subculture of these seagrasses may be 

due to the rapid growth (multiplication rates of six times as high; a 

multiplication rate of three times is considered to be the minimum for 

commercial production oi other plants (Hartney & Barker, 1983). It has 

also been shown in other plants that cultures grown in liquid medium rather 

than solid medium more rapidly utilise the nutrients in the medium (George 

1993; George 1996). This may lead to faster growth but obviously leads to 

the need for more frequent subculture. 

The apparent lack of response to cytokinins in the medium was 

unexpected as these have been reported to increase growth in related 

species. This may be due to the lack of concentrations examined but 

these were similar to those that were reported before. The ranges that are 

used for tissue culture, and in particular axillary bud stimulation vary 

greatly. George (1996) illustrates that ranges used for terrestrial plants can 
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be from about 1 11M to 73 11M. Clearly, there is a requirement to further 

investigate of the use of cytokinins for seagrass multiplication. 

As found by others (Koch & Durako, 1991; Jewett-Smith & McMillan, 1990; 

Moffler & Durako, 1984), the most successful plant material to initiate 

seagrasses in tissue culture, has been found with the fruits. These results 

comply with those found in this examination. P. coriacea axenic cultures 

were achieved by the surface sterilization of seed with the pericarp intact. 

The success with this method is believed to be as a consequence of the 

pericarp protecting the internal tissues of the seed. 

This may also have to do with the juvenile plant tissue being better suited 

to overcome the stabilisation period. Most plants once initiated in culture 

pass through a period of stabilisation (George, 1993; George, 1996). This 

requires that they adapt to the environmental conditions associated with in 

vitro cullure. This phase is usually markedly reduced for explants taken 

from juvenile tissues and therefore it might be expected that growth from 

the seed of Posidonia will more rapidly obtain this stabilised state. 

5.1 Concluding Remarks 

These trials endeavoured to detenmine whether there were differences in 

the tissue culture of terrestrial plants, to that of seagrasses. They indicated 

that there is potential to develop different tissue culture practices for 

sea grasses, to those in place for terrestrial plants. In particular, the ability 
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to buffer medium pH to a higher level than that for terrestrial plants, 

appeared to be an important factor for future research. Of other relevance 

to seagrasses, was the application of cytokinins to promote growth. This 

needs to be investigated more fully. 
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