
Edith Cowan University Edith Cowan University

Research Online Research Online

Theses : Honours Theses

1996

An Investigation Into an Effective Method of Automatically An Investigation Into an Effective Method of Automatically

Analysing Oracle Applications to Count Function Points Analysing Oracle Applications to Count Function Points

J. L. Wong
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses_hons

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Wong, J. L. (1996). An Investigation Into an Effective Method of Automatically Analysing Oracle
Applications to Count Function Points. https://ro.ecu.edu.au/theses_hons/708

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses_hons/708

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Online @ ECU

https://core.ac.uk/display/41536992?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses_hons
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses_hons?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F708&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F708&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses_hons/708

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose

of your own research or study.

The University does not authorize you to copy, communicate or

otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following:

 Copyright owners are entitled to take legal action against persons
who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement. Where the reproduction of such material is

done without attribution of authorship, with false attribution of

authorship or the authorship is treated in a derogatory manner,

this may be a breach of the author’s moral rights contained in Part

IX of the Copyright Act 1968 (Cth).

 Courts have the power to impose a wide range of civil and criminal

sanctions for infringement of copyright, infringement of moral

rights and other offences under the Copyright Act 1968 (Cth).

Higher penalties may apply, and higher damages may be awarded,

for offences and infringements involving the conversion of material

into digital or electronic form.

AN INVESTIGATION INTO AN EFFECTIVE METHOD OF

AUTOMATICALLY ANALYSING ORACLE APPLICATIONS TO

COUNT FUNCTION POINTS

BY

J.L.Wong

A Thesis Submitted in Partial Fulfilment of the

Requirements for the Award of

Bachelor of Science (Computer Science) Honours

at the

Faculty of Science, Technology Qnd Engineering

Edith Cowan University

Date of Submission: June 1996

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

Abstract

Function Point Analysis (FPA) is a synthetic software estimation metric used for

computing the size and complexity of applications. It was first introduced by

Allan.J.Albrecht during the mid-seventies, as a result of a lengthy research based

on applications that were developed using COBOL and PL/1 programming

languages.

The purpose of this research· is to investigate the possiPility, and the most effective

method, of automatically performing a Function Point Analysis on Oracle

applications that consist of Oracle Forms and Oracle Reports.

The research revealed a seemingly lack of other rc~carches on this topic. As FPA

was invented a few years prior to the birth of Oracle, and consequently that of

fomth-gcncration languages, it had to be tailored to suit the fourth~generation

language Oracle tools used to develop the Oracle applications. This experiment

provided a proof of concept and resulted in a software that achieved its objective

of automatically calculating Oracle applicfltions, consisting of Oracle Fonns and

Oracle Reports, in an a posteriori manner.

I certify that this thesis does not incorporate, without acknowledgment, any

material previouc.ly submitted for a degree or diploma in any institution of higher

education and that, to the best of my knowledge and belief, it does not contain any

material previously published or written by another person except when! due

reference is :nade in the tcx~

s;gnature ..

Date . . Ur.tr,/'J'J~ .\..

Acknowledgments

There are a number of people who have contributed to this research and to whom I am deeply

grateful. In particular, I thank:

Dr Ken Mullin, my supervisor, for his valuable time in providing the continual guidance,

encouragement, support, and feedback. His support has been invaluable.

Dr Thomas O'Neill, the Honours co-ordinator, for assisting with the formalities, getting the

honours research rolling, and for being efficient thus reducing any unnecessary delays.

Assoc. Prof. Robert Cross for reviewing and approving the initial thesis proposal and for

providing valuable feedback.

Oracle, the world's leading supplier of information management software, for expanding my

knowledge in an extremely dynamic field and for providing research material.

My family for bringing me thus far and teaching me the values of life.

My fiance, Ronnie, for his love, motivation, support and for the inspiration to accept

challenges.

God and the ever presence of the Holy Spirit.

And to all whom I have met along the way ...

2

In Memory of

DAD

3

Table of Contents

CtiAPTt:R 1: INTRODUCTION ... 7

Function Point Analysis .. 7

Research Objective 13

Problem Question .. 14

Ci!APTER 2: REVIEW OF niE LITERATURE .. 15

FPA and Oracle .. 20

CHAPTER 3; METHODOLOGY OF RESEARCH ... 21

CHAPTER 4: FP COUNTING IN RELATION TO ORACLE APPLICATIONS 22

Steps to manually calculate Function Points in Oracle applications 22

CHAPTER 5: FP COUNTING IN RELATION TO ORACLE APPLICATIONS

ISSUES .. 28

The Input !Inquiry distinction 28

Categorisation of LOVs .. 30

Internal Logical Files & £-eternal Interface Files 32

CHAPTER 6: ANALYSE THE STRUCTURE OF ORACLE FORMS & REPORTS 34

Forms ······················· 34

Reports -····· ······-······················"

C!IA!'TER 7: LIST & EVALUATE POSSIBLE AUTOMATIC COUNTING METHODS 37

METHOD 1: Using Designer/2000 (CASE) ... 37

AdvantaRC!s --·-- --------· -- ------ -----------------------· ------· 38

Disadvantage.\' -- ______________ .. _________________ .. 38

METHOD 2: Using SQL "'Plus 39

Advantages ...

Di.wdvantage.\' ..

.. 39

.. - -· .. 40

MH71-IOD 3: f'al'.\'lllg the text files of Oracle Forms & Oracle Reports ... 40

4

Advantages ... 41

Disadvantages ... : .. 4 I

CHOICE of Method .. 41

Determination of a Suitable Language for Parsing .. 42

CHAPTER 8: DESIGN AN AUTOMATIC COUNTING METHOD

ISSUES WITH IMPLEMENTATION ... ~ .. 43

Software Requirement.. 43

Large Fife Size .. 44

Truncation of Generated Document ... 45

CHArTER 9: DESIGN AN AUTOMATIC COUNTING METHOD

- THE COMPLEXITY DETERMINATION PROCESS FOR ORACLE APPLICATIONS 46

External Inputs (EI) .. 46

External Outputs (EO) .. 47

External inquiry (EQ) 48

Internal Logical Files (ILF) .. 48

External Interface Files (ElF) .. 49

CHAPTER 10: DESIGN AN AUTOMATIC COUNTING METHOD .. 51

-THE PARSING PROCESS ... 51

Base Tables Referenced .. 51

Base Table Columns Referenced .. 52

Non- Base Tables and Columns Referenced ... 52

Enhancements ... 55

CIIAI'TER II: THE DESIGN .. 56

niArTER 12: RESULTS & CONCLUSIONS .. 58

REFERENCES .. 60

APPENDIX A: FPA REI'ORTS GENERATED 13Y 0ESIGNEiU2000 .. 63

APPENDIX B: TilE SQL SELECT STATEMENT ... 87

5

APPENDIX C: DESIGN OF FUNCTION POINT COUNTING SOFlWARE ... 88

APPENDIX D: A SAMPLE FPA REPORT PRODUCED .. 89

APPENDIX E: SOURCE CODE FOR THE FUNCTION POINT COUNTING SOFTWARE 90

6

Chapter 1: INTRODUCTION

This paper documents the outcome of research into the use of Function Point Analysis (FPA)

to evaluate those applications that have been developed through the use of a group of tools

manufactured by Oracle Corporation. This introduction consists of the theory behind Function

Point Analysis (FPA) and its history of usage from the beginning to the present time.

Following this account, a review of the current literature relating to the theory of FPA, and its

practices, especially as related to Oracle applications is surveyed. The next section

concentrates on the preparation of an effective method to automatically analyse Oracle

applications using FPA. This will involve an analytical discussion of the possible methods for

implementing the automated analyser and the issues relating to this implementation. Finally,

the results of the implementation will be presented, and an appropriate conclusion will be

drawn from these results.

Function Poi11t A11alysis

Function Point Analysis (FPA) is a synthetic software estimation metric used for computing

the size and complexity of applications. It is a measure of the functionality of an application,

as perceived by the user. Since its birth to the IT industry, FPA has been successfully adopted

by a number of large organisations (Heemstra, 1991) who varied the metric slightly to better

suit their environment. The popularity of FPA has continued to grow steadily since the

seventies and has become the predominant estimation method used in the IT industry. There

are now many large databases of completed projects and their function point counts. (Weaver,

1989)

7

FPA was first introduced by Allan.J.Aibrecht (IBM, 1975) during the mid-seventies, as a

result of lengthy research on applications that were developed using COBOL and PUt

programming languages (Ferens, 1992). The inspiration for his research was to originate an

alternative method to the traditional Source Lines of Code (SLOC) metric which was

prevalent, but seemingly inadequate, at the time. FPA was to be used as a more substantial

metric to estimate the cost and effort required to complete an application.

Using the original FPA metric, the estimate of the cost and effort required for software

development was derived from a calculation of the number of function points associated with

the application to be sized. Jhis function point value was calculated based on two groups of

parameters that were deemed from the user's perspective to be influential on the estimate:

I. The application attributes and

2. The environmental factors

The five attributes relating to the program to be estimated, which have been identified by

Albrecht are:

• the number of external input types (EI)

• the number of external output types (FO)

• the number of external inquiry types (EQ)

• the number of internal logical files (ILF) and

• the number of external interface files (ElF).

This first equation assumes that all the attributes have an "average" rating and is computed as

follows:

BFP ~ 4EI + SEO + IOILF + 7EIF + 4EQ

8

where BFP is the "Basic Function Points", (Behrens as cited by Ferens)

To refine the estimation technique further, Albrecht proposed two areas of enhancements.

Firstly, each item belonging to an attribute is classified as having"low", "average", or "high"

complexity and then an appropriate weighting is assigned. For example, when examining the

External Input component, the level of complexity would be determined using the following

table:

DET (#columns) 1-4 5-15 16+
FTR (#tables)
0-1 Low Low Average
2 Low Average High
3+ Average High High

Table 1

Note that the Data Element Type (DET) refers to the number of attributes/columns used by the

module and the File Type Referenced (FTR) is "counted for each entity, table or file" used by

the module. (Oracle, 1995)

The table shows that an El module with five to fifteen data element types has a/ow level of

complexity if it contains zero to one file type referenced, an average level of complexity if it

contains two FTR, and high complexity if it contains more that three FTR. In relation to

Orf!cle applications, the number of FTR maps to a count of the number of relevant tables, and

the number of DETs maps to the associated table columns referenced. A detailed discussion

is provided in the next chapter.

9

Using the complexity rating, the weighting for each of these application components can be

obtained by referring to the following table (Ferens, 1992),

-Attribute Low Average High
Inputs (El) 3 4 6
Outputs (EO) 4 5 7
Data Files (ILF) 7 10 15
Interfaces (ElF) 5 7 10
Inquiries (EQ) 3 4 6

Table 2

This results in the "Unadjusted Function Points" (UFP).

Once the environmental factors are applied to the UFP, the final adjusted function points (FP)

will be obtained. The adjusted function points is obtained by summing up the ratings of the

environmental factors, totalling to fourteen different characteristics, which results in a value

known as the "total degree of influence" (TDI).

The fourteen characteristics comprising the group of environmental factors, with definitions

provided by Dreger (1989, pp.63~4), are listed as follows:

I, Data Communications- "means that data or control information used in the application is

sent or received over data communication facilities - including not only various networks,

concentrators, multiplexers,and private lines, but also the terminals locally connected. On-

line systems will always have at least some data comm•mication influence."

2. Distributeci Data/Processing - "indicates the application uses data stored, accessed, or

processed on n storage or processing system other than the one used in the main program

10

routines. Note that presence of this factor increases the data communications influence

previously defined."

3. Perfonnance Objectives - "influence system design, development, implementation, and

support when specific, user-approved demands for exceptionally high throughput or fast

response times have been made."

4. Heavily-Used Configuration -"this factor is especially important to a user already lacking

computer capacity but unable to purchase or acquire more hardware or upgraded

software."

5. Transaction Rate - "a high transaction rate can occur when the network consists of many

data entry or inquiry terminals, when each screen transmitted contains a lot of input

information, or when the frequency of screen transmission is high."

6. On-Line Data Entry- "(including control and security functions) are always more difficult

to accommodate than similar batch systems; hardware, application software, and operating

system software are all affected by the additional requirements of an on-line system."

7. End-Use Efficiency - "human-factor features .. designed to increase the level of "user

friendliness" and include such things as conventional data entry (requiring multiple

sequenced screens), help screens, "next format" fields, paging capabilities, more

descriptive documentation (including users manuals and "learner-friendly" training

materials), second-language input/output screens and messages, and additional edit, error,

and exception handling routines."

8. On-Line Update- "as are on-line inquiry and data entry more difficult than batch, so is on

line update of files and data sets more difficult because of the short turnaround time and its

widespread effects on all system design components."

11

9. Complex Processing- "refers to the situation in which an application requires substantially

greater than average difficult in input or output processing; in logic file, or numeric

manipulation~ or in exception handling routines."

10. Reusability - "refers to the situation in which some of an application's routines,

subroutines, or other procedures have been designed or written with uses in mind other

than just the program under evaluation."

11. Conversion/ Installation Ease ~ "increases the difficulty of application development but

reduces the number and severity of problems in testing and implementation."

12. Operational Ease- "is not the same as end user efficiency." The purpose of this factor is

"to provide effective but easy startup, backup, error recovery, and shutdown procedures,

and to minimize such manual activities as mounting tapes or special fonns, handling

paper, or responding to requests for information at the operator console."

13. Multiple Site Use ~"when the application has been specifically designed, developed, and

supported for installation at multiple sites, for multiple organizations, additional co~

ordination, review, and approval is required even if no site-unique code needs to be

written."

14. Facilitate Change~ "when the application has been specifically designed, developed, and

supported to facilitate change, it requires increased attention to and planning for future

maintenance and modification needs."

Based on the degree of influence that one expects from each of the characteristics, a rating of 0

(no influence) to 5 (highly influential), with an average influence rating of 3, is performed,

preferably by the system user. Dreger (1989) suggests the inclusion only of those factors that:

..
• clearly benefit the user,

12

• are specifically approved by the user, and

influence to a measurable degree the design, development, implementation, or support of an

application."

Once the ratings of the fourteen characteristics have been summed to derive the TDI, the

following equation is used to compute the adjusted function points. Note that the TDI can

alter the UFP by up to 35% in either direction.

FP = UFP • (0.65 + .01 • TDI)

Function points were derived as a means of assessing the functionality of an application.

Subsequent research (Ferens eta!, 1992; Kansala & Kitchenham, 1993) showed the measure to

correlate well with the effort required to develop the application, provided development

environment and individual skills were similar. Thus FPs are a useful measure of effort as

well as functionality.

Research Objective

The objective of this research is to investigate how FPA can be tailored to count the number of

function points in given Oracle applications that have been developed using Oracle Forms

and/or Oracle Reports. Once the investigation has been completed, and a clear plan has been

devised, an application will be developed for the automatic calculation of function points for a

given Oracle application. The resulting application will serve as a highly useful tool for its

users. In particular, it

• Will e:iminate ''laborious hand counting of function points." (Internet: Funcnet)

13

• Will provide a consistent means of estimating the size of different Oracle applications.

(Low, !990)

• Will be independent of the technology that has been used for its development.

• Will enable lecturers to assess the effort that went into student Oracle projects.

Note that to satisfy the final point, the resulting application will be required to execute ~

function point analysis in an "a posteriori," that is, after the system development phase.

(Hignite, Johnson, Foster, 1993).

Upon completion, this will be one of the few pieces of research that focuses on the usage of

FPA to automatically count the number of function points in an Oracle application.

Problem Questio11

The research question pertaining to this project is as follows:

What is n most effective way of automatically counting the function points

in an Oracle application consisting of forms and reports?

14

Chapter 2: REVIEW OF THE LITERATURE

Prior to the invention of Function Point Analysis (FPA), the primary software estimation

metric used was the Source Lines of Code (SLOC) metric. The major drawback with this

metric is that it does not measure software productivity, which the standard economic

definition describes as, "Goods or services produced per unit of labor and expense." Relating

to this economic definition, the SLOC metric fails to measure software productivity due to the

following reasons (Jones, p.45):

1) Lines of code are neither 'goods' nor 'services'. Thus, measuring the lines of code does

not provide a good measurement of software productivity.

2) Lines of code are not the primary deliverable for customers. Customers are not

concerned with the number of lines that comprise a completed piece of software, no~ are

they interested in the programming language used for the source code. In fact, if a piece

of software could be developed in a higher-level language, thus generating less code in the

final product to provide cost reduction benefits, it would serve as a preferred option, from

the customer's point of view.

The deficiency in the SLOC metric inspired the emergence of the Function Point metric. The

function point computation is based on those components deemed as important, or of interest,

to the customers, and qualify as a quantifYing characteristic of the term 'goods' that exists in

the economic definition of productivity.

Since its emergence, a number of research projects have been conducted on FPA, focussing on

the comparison to SLOC, with favourable outcomes. As an example, research perfonned by

15

Kremer (1987), revealed that the two function point models used, ESTIMACS and an

Albrecht-deri'led model, produced estimates that were much more accurate than the two

SLOC-based models, PRICE-S and SLIM. The research was based on the comparison of the

estimated figures with the actual effort of fifteen, mostly COBOL, applications.

This observation is supported by similar research, conducted by Low & Jeffery (1990), on

COBOL and PL/1 business programs which indicated that the function point metric was a

more consistent size estimator than the SLOC metric. The function points counted correlated

with the effort. This makes FPA a good estimating tool. (Ferens, 1992)

Although many authors, such as (Yau, 1995), (Tsoi, 1995), and (Heemstra, 1991), agree that

FPA is widely used and is also a successful method (Betteridge, 1993) for softv..are estimation,

a number of significant issues and possible areas of improvement also exist and should be

addressed. These areas include:

I) The need for an easier method of defining and counting the application components. One

of the major obstacles associated with counting the number of function points within a

program is the identification and calculation of the number of inputs, outputs, data files,

inquiries, and interface files. A variation of the original Albrecht's FPA is Mark II

Function Points which was developed by Symons (Symons, 1988). It attempts to

simplify the original method of FPA by using only three of the progmm attributes, namely

the inputs, the outputs, and the entity references of each logical transaction (Betteridge,

1992). Fercns explains that the absent attributes can be neglected since the "external

interfaces and inquiries are treated as inputs or outputs, and internal files are 'replaced' by

a measure of entity types referenced by transactions."

16

2) A need to ascertain the accuracy of estimation models using function points. Rask,

Laamanen, and Lyytinen (1993, p.661) stated that "the quality of a cost estimate is a

function of how it compares with the actual result." The observation made by Ferens

(p.635) on Kremer's study involving the application of the function point models

ESTIMACS and an Albrecht-derived model on fifteen (mostly COBOL) programs

revealed that "for even the most accurate model, ESTIMACS, the estimates averaged

85% higher than actual levels of effort." However, Ferens' own study of applying three

FP models, t!te SPANS (Tecelote Software Program Acquisition Network Simulation)

model by Tecelote Research Inc., the Checkpoint model by Software Productivity

Research, and the Costar model by Softstar Systems, to estimate thirtyRsix (mostly

COBOL) business programs appeared to indicate that the "calibration of models, or

adjusting models to a particular environment, appears to be a worthwhile endeavour if

greater accuracy is sought." This is confinned by Betteridge's (1992) study which

compared the results derived from an FPA method, with the managers' estimates and the

actual expenditure. Betteridge (1992) concluded that "the results give some cause for

optimism in the use of the function point model that was used (Mark II)."

3) FPA requires an assessor, commonly the main user(s), to rate a set of 14 general system

characteristics. These characteristics, including Reusability, Facilitate Change,

Performance, arc all subjective elements. Even though these subjective elements are used

in FPA, the result given does not show the statistical confidence interval, that is the

assessor's confidence level of the general system characteristics being rated subjectively.

To overcome this inability to assess the confidence level of the estimate, Tsoi & Yau

'
(1995) introduced fuzzy logic to the FPA model, that is, a "fuzzified FPA" (FFPA).

17

The FFPA method, proposed by Tsoi eta! (1995), is based on the traditional FPA. The

contrast lies in the detennination of the Technical Complexity Factor which is derived

from an evaluation of the ratings given to the fourteen general system characteristics.

The fourteen general system characteristics are rated not only on a score of 0 (no

influence) to 5 (Highly influential), as exists in the traditional FPA, but also on the

assessor's linguistic degree of certainty rating of Almost Certain, Very Likely, Probably,

Unlikely, and Extreme Unlikely. For example, an FFPA assessor may give an estimate of

"Very Likely 3" to the Pef'jormance system characteristic and "Unlikely I" to the

Reusability system characteristic.

For each of the estimates given by an FFPA assessor, an Fuzzified score for General

System Characteristics (GSC) can be obtained by referring to the following table (Tsoi et

al, 1995).

Score 0 Score 1 Score 2 Score 3 Score 4 Score 5
Very from 0 from 0.75 from 1.75 from 2.75 from 3.75 from 4.75
Likely to 0.25 to 1.25 to 2.25 to 3.25 to 4.25 to 5
Probably from 0 from 0.5 from 1.5 from 2.5 from 3.5 from 4.5

to 0.5 to 1.5 to 2.5 to 3.5 to 4.5 to 5
Unlikely from 0.75 from 0 from 0 from 0 from 0 from 0

to 5 to 1.75; to 1.2; to 2.25; to 3.25; to 4.25;
from 1.75 from 3.75 from 3.75 from 4.75
to 5 to 5 to 5 to 5

Extreme from I from 0 from 0 from 0 from 0
Unlikely to 5 from 2; to I; to 2; to 3; to 4

to 5 from 3 from 4
to 5 to 5

Table 3 : Fuzzificd Score for GSC

The final Fuzzified FPA count will consist of a range of values, to reflect the confidence

level. The following is an example give by Tsoi et al (1995) to illustrate the calculation

performed using FFPA to derive the FP count:

18

TCF (FPA) = 0.65 + (0.01 '48) = 1.13
TCFmin(Fuzzificd FPA) = 0.65 + (0.01 * 44) = 1.09
TCFmax(Fuzzified FPA) "~ 0.65 + (0.01 • 51.5) = 1.165
Function Point Computed (FP):
FP(FPA)=21! '1.13=238.43
FPmin(FuzzifiedFPA)=211 >Jo 1.09==:230
FPmax(Fuzzified FPA) = 211 • 1.165 = 245.815

As Tsoi et al (1995) explains, "it has been expected that the FPA result falls in the range

of the FFPA result, from 230 to 245.815. There is around 8% difference ofDI (Degree of

Influence) between the two models."

Tsoi et al (1995) concludes that th~ estimates provided by this Fuzzified ver.sion ofFPA

"have been found more infonnative than the conventional FPA" and that"the range of

estimates allows the project management to conduct contingency planning more

effectively."

4) Estimation of fourth generation (4G) applications. Since FPA was invented prior to the

existence of 40 languages, there may be possible areas of improvement to accommodate

for 40 applications. An investigation carried out by Van Wonderen (1991) revealed that

"improvements are necessary, particularly for the estimation of interactive 4th-generation

language applications." This issue is particularly relevant to this research, as the

applications to be automatically function point counted are developed using Oracle Forms

and/or Oracle Reports which are considered to be 40 development tools. The issues

relating to the usage of FPA to 4GLs and Oracle applications will be covered in a later

chapter.

5) FPA is not readily adaptabh; to real-time, scientific environments. Jones (p.76), as cited

by (Alford, 1991), explains that FPA "is not widely used for real time systems, military

systems, or any other kind of software where algorithmic complexity is high and data

complexity is low." Inspired by this, Jones proposed an adaptation of function points,

known as Feature Points, to allow for the real-time environment. Feature Points uses the

19

five attributes proposed by Albrecht. The differences between the two metric concepts tie

in the different weightings assigned to the internal file attribute, and also in the new

attribute, algorithmic complexity (A), introduced in Feature Points. The new equation for

the Basic Feature Points (BFEA) is

BFEA = 4EI+ SEQ + 71LF + 7EIF + 4EQ + 3A

compared to BFP == 4EI + SEO + lOILF + 7EIF+ 4EQ (as shown previously)

Note: 7 + 3 = 10 le. Points of algorilhrnlc cornplnity weighted sarne asiLFs.

FPA and Oracle

The literature research to date has not revealed any studies on the use of FPA models on

Oracle applications. To achieve the objective of this project, it would be necessary to

investigate how the definitions of the function point parameters, and the function point

counting rules apply to Oracle applications. Once this has been established, it would be a

natural progression to automate the function point computation for Oracle applications.

20

-----~--·---·--'-------

Chapter 3: METHODOLOGY OF RESEARCH

The research into a most effective way of automatically counting the number of function

points in any given Oracle application followed this method:

1. Investigate how FP counting can be applied to Oracle applications, including whether this

has br.en achieved elsewhere.

2. Analyse the structure of Oracle forms & reports to determine how the application

components can be counted.

3. Determine the best automated method to do this counting.

4. Design an automatic method of analysing this structure to count inputs, outputs, inquiries,

data files, and interfaces.

5. Set up the development environment.

6. Develop the 5oftware.

The remainder of the thesis follows this methodology.

21

Chapter 4: FP COUNTING IN RELATION TO ORACLE APPLICATIONS

An extensive literature search, with sources ranging from libraries to the Internet World-Wide

Web, revealed a deficiency in previous researches, let alone the production of software, on the

automatic counting of function points in Oracle applications. In fact, the only enlightening

literature discovered that related to this subject was from an Oracle manual, titledQMS Project

Management. This is a Quality Management Systems manual produced for project managers

intending to develop quality systems. The manual contains a chapter on estimating projects,

which contains a section on FPA. The automatic function point counting software resulting

from this investigation was developed based mainly on the function point theory presented in

this manual. This theory closely follows the IF PUG standard.

Steps to mammlly calculate Functio11 Poi11ts ill Oracle applicatio11s.

STEP 1. Generate a full text description of the Oracle Forms or Oracle Reports application ~

the Module DocumentaOon.

FOR ORACLE FORMS APPLICATIONS:

a. Start up Oracle Fonns Designer 4.5

b. File I Open then specify the name of the application eg. emp.fmb

c. File I Administration I Form Doc

FOR ORACLE REPORTS APPLICATIONS:

a. Start up Oracle Reports Designer 4.5

b. File I Open then specify the name of the application eg. dept.rpt

c. File I Administration I Report Doc

22

The text version, eg. emp.txt & dept.txt, should now be o:.enerated. This text file is

then parsed for the application attributes (steps 2-5).

STEP 2. For each fonn or report modu~e, count the number of base tables referenced.

Oracle (1994) defines a base table as one that is "associated with a specific database

table or view." Base tables are associated with base table blocks within Oracle Fonns.

STEP 3. For each fonn or report module, count the number of base table columns referenced.

Oracle (1994) explains that the base table columns "correspond directly to columns in

the block's base table." They should correspond to a base table elected in the previous

step.

STEP 4. Count the number of accumulated non-base tables referenced in the application.

Non-base tables are commonly referenced in select statements, such as those

belonging to a record group (forms) or belonging to queries (reports). A SQL select

statement may contain references to more than one table. Caution must be exercised

in counting the number of tables referenced as, for example, select statements can be

nested within each other.

STEP 5. Count the number of accumulated non-base colur- ms referenced in the application.

This is similar to the count of the number of non-base tables referenced, as detected in

the previous step. This involves a count of the number of associated columns

referenced and can be an intricate process. Consideration must be made for such

instances as nested calls to built-in functions. For example, select

nvl(round(max(.mlary), 2), 0) from, ..

STEP 6. Determine the complexity rating for each component. (Hignite et al, 1993)

External Input: For each non-query-only form module, determine the complexity

rating by applying the number of base tables and their columns, derived in Step 2 and

Step 3, to the following table (Omcle, 1995)

23

#base table columns 1-4 S- IS 16+
#base tables
0- I Low Low Average
2 Low Average High
3+ Average High High

Table4

External Output: For each report module, determine the complexity rating by applying

the number of base tables and their columns, derived in Step J and Step 3, to the

following table (Oracle, 1995)

#base table columns 1-S 6- 19 20+
#base tables
0- I Low Low Average
2-3 Low Average High
4+ Average High High

Table 5

External Inquiry: For each query-only form module, determine the complexity rating

by applying the number of base tables and their columns, derived in Step 2 and Step 3,

to the following table (Oracle, 1995)

base table columns 1-4 S - IS 16+
base tables
0- I Low Low Average
2 Low Average High
3+ Average High High

Tublc 6

Internal Logical Files: An internal entity/table is one that is maintained by the

application through creation/deletion/update. Detennine the complexity rating by

applying the number of tables and their columns, derived in Step 4 and Step 5. to the

following table (Oracle, 1995)

columns referenced 1-19 20-50 51+
tables referenced
I Low Low Average
2-5 Low Average High
6+ Average High High

Table 7

External Interface Files: An external entity/table is one that is used by the application

through retrieval. Determine the complexity rating by applying the number of tables

and their columns, derived in Step 4 and Step 5, to the following table (Oracle, 1995)

·#columns referenced 1-19 20-50 51+
#tables referenced
I Low Low Average
2-5 Low Average High
6+ Average High High

Table 8

Step 7. Determine the total number of Unadjusted function points.

The complexity ratings derived from the above steps are then converted into function

points by applying the ratings to this table. (IFPUG, 1990)

25

Low Average High
External Input (EI) 3 4 6
External Output (EO) 4 5 7
External Inquiry (EQ) 3 4 6
Internal Logical File (ILF) 7 10 15
External Interface Files (ElF) 5 7 10

Table 9

Step 8. Calculate the Total Degree of Influence (TDI).

The TDI calculation is based on the summation of the fourteen general system

characteristics, commonly elected by the system users. A rating (Oracle, 1995) of

0 Not present

Incidental influence

2 Moderate influence

3 Average influence

4 Significant influence

5 Strong influence throughout

is applied to each of the fourteen characteristics. The fourteen characteristics that

relate to the general functionality of the application is as follows:

I. Data Communications

2. Distributed Data/Processing

3. Perfonnance Objectives

4. Heavily-Used Configuration

5. Transaction Rate

6. On-Line Data Entry

7. End-Usc Efficiency

8. On-Line Update

26

9. Complex Processing

I 0. Reusability

11. Conversion/ Installation Ease

12. Operational Ease

13. Multiple Site Use

14. Facilitate Change

Step 9. Calculate the Technical Complexity Factor (TCF).

Use the following formula (Hignite et al, 1993) to compute the TCF:

TCF = (TDI x 0.01) + 0.65

Step I 0. Calculate the Total Function Points (TFP).

Finally, the total FP count can be derived by applying the following fonnula (Hignite

et al):

TFP = TCF x Unadjusted function points

Once a method of manually counting the number of function points for any forms/reports

based OracJ.~ application was identified, the next challenge was to automate this process. An

evaluation of these methods are discussed in the next section.

27

Chapter 5: FP COUNTING IN RELATION TO ORACLE APPLICATIONS

-ISSUES

Since FPA was invented prior to the existence of 4G languages, there are a number of issues

relating to the use of FPA to estimate Oracle applications that have been developed using

Oracle Forms and/or Oracle Reports which are considered to be 40 development tools. These

include

• The distinction between an input screen and an inquiry screen

• Categorisation of the List of Values (LOY) feature

• The detennination oflntemal Logical Files and External Interface Files.

The Input I I11quiry distinction

The IFPUG definition, as provided by Oracle (1995), states that an external input is one that

"processes data or control information which enters the application's external boundary."

When applied to 4GL applications, specifically to those developed using Oracle Forms, an

external input could be referred to a screen developed using Oracle Forms, since a screen

allows the input of data. One of the advantages of using Oracle Forms to develop screens for

user inputs is that, by default, the data inquiry facilities arc also provided by the input screen.

This is where the complication of applying FPA to Oracle applications arise. How does one

distinguish between an external input and &n external inquiry in Oracle applications?

While FPA draws a distinction between external inputs and external inquiries, this is not

necessary for Oracle Forms applications since both the input and inquiry features are typically

28

included in the same screen. To cater for these differences when using FPA to estimate Oracle

applications, one can categorise an input/query screen as either:

& an external input only

• an external inquiry only or

• both an external input and an exlernal inquiry

The preferred option to be used is entirely based on the individual estimator's preferences.

The automatic calculation of function points in Oracle applications prototype software

developed in conjunction with this documentation defines an input/query screen as an external

input only. The explanation for this follows.

Although a screen developed using Oracle Forms allows both input and inquiry features by

default, these features can also be toggled to be enabled or disabled. Thus, a screen can be

either:

• an input only screen

• an inquiry only screen

• an input/inquiry screen or

• a non-input/non-inquiry screen.

To distinguish between an external input and an external inquiry, an Oracle Forms screen is

only deemed to be an external inquiry if it is a query-only form. Based on this logical

definition, the ~hove selection of screens is categorised as follows:

29

Screen Type Classification
Input only screen External input
Inquiry only screen External inquiry
Input I inquiry screen External input
Non-input I non-inquiry screen neither.

Table 10

When parsing the Oracle Fonns text file, the automatic parser should search for the

Insert Allowed
Query Allowed

True/False
True/False

properties listed under the block(s) associated with the input/inquiry screen to determine the

input/inquiry status. This will allow the classification of the screen as an .external input or an

external inquiry.

Categorisation ofLOV.'i

A screen developed using Oracle Forms may contain one or more instances of a List of Values

(LOV) to facilitate the ease of input. These are commonly kriown as "look-up tables." A

LOV may be based on a record group which may query one or more database tables. An

example of the use of an LOV is the entry of a postcode value belonging to an address section

of a personal details screen. Rather than relying on the user to remember the postcode values

for all suburbs, the postcode field may be implemented to use a LOY which queries the

postcode dat"basc table to return a list of all of the suburbs and their associated postcodes.

Once a suburb and its associated postcode is selected, the postcode field will be populated with

the selected value.

30

If a LOV is based on a record group that queries one or more database tables, it should be

classified as an external inquiry. This is a sensible assumption as a user is likely to perceive

this LOVas a query.

When parsing the Module Documentation of the Oracle Fonns/R~ports, the automatic parser

should search for the LOV property to ensure that an LOV is attached to a text item. This

property would have a value of <null> if an LOY was not attached to it. An example

illustrating an item with the postcode_lov attached is:

LOY postcode_lov

Once it has been established that an LOV is attached to a text item, the next step would be to

ensure that the LOV attached is based on a record group. To do this, the parser should search

for the

LOV Type
Record Group

Record Group
Postcode _query

properties, under the LOV section. Once this has been established, the parser can search for

the Record Group Query property under the record group section to obtain the query statement

used for this record group. For example,

Record groups
Name

Record Group Query

Postcode _query

select distinct code, suburb from postcodes

31

These steps will allow the estimator to determine whether an LOV is based on a query of one

or more database tables and if so, the database tables and columns that are used. This

infonnation will allow the estimator to deterlhine the complexity rating for the external

inquiry.

Internal Logical Files & Externalllllerjace Files

Oracle (1995) describes an internal logical file as an "entity which is maintained by the

application, in other words: the CRUD matrix contains at least one C, U, or D for this entity",

and an external interface file is defined as "an external entity .. with an R in the CRUD

matrix." The CRUD matrix refers to the Create, Retrieve, Update, and Delete functionality.

Based on these definitions, it may be worthwhile to note that the internal logical files (ILF)

and the external interface files (ElF) are applied to the entire application. Therefore, the

complexity rating should be applied to the accumulation of these entities for the entire

application rather than for each separate module.

The automatic calculation of function points in Oracle applications prototype software

developed in conjunction with this documentation defines the base tables as external entities.

A base table is typically associated with a block within a screen.

As for the internal entities, the software parses the application text file for keywords: create,

update, and delete to determine the existence of internal entities. The existence of such

entities are rare in typical Oracle ap·,?lications.

32

The accumulated count of internal and external entities are used to determine the complexity

ratings for the ILF and the ElF.

In conclusion, it is important to note that although the customisations made by an estimator for

the application of FPA to a 4GL application, such as Oracle, is crucial, it may not be as

significant as the cons,stent usage of the same method for all of the applications to be

estimated.

33

Chapter 6: ANALYSE THE STRUCTURE OF ORACLE FORMS &

REPORTS

An Oracle application typically consists of a number of input screens, to allow user interaction

with the data within database tables, and the facility to generate reports through the retrieval of

data from the database tables. For example, an order entry system application may consist of

order input/inquiry screens and order reporting facilities. Each of the components of an Oracle

application are discussed i~ detail to provide a general overview of the concepts behind fonm-,

tables and reports.

Forms

An inputlinquiry screen within an Oracle application is typically designed rJsing the Oracle

Forms Designer development tool. When using Oracle Forms Designer to Cfeate an input

screen, an inquiry facility is provided "free" to the same screen without additional effort

required to update the form design.

A form is a logical collection of blocks, items, triggers and procedures. A block is a logical

collection of fields in a form. It may correspond to, at the most, one table. A database table

on which a block is based upon is known as a base table. Those items that are based upon

these base tables are known as a base table items.

An item field is an area that is capable of accepting and displaying data. To facilitate the entry

of data, an item field can appear in one of a number of different fonns, including Jist items,

34

radio buttons, checkboxes, text items that allow data inputs, and display items that do not

allow data inputs. The data displayed can correspond to a column in a database table.

A List of Values (LOV) is another way of assisting users to enter data in an item field. An

LOV is a look-up table that consists of a query to a database table. An LOV may be

associated with a text item. An example of the use of an LOV is for entering the customer

code within an Invoice screen. Instead of relying on the user to memorise the customer codes

for all existing customers, an input/inquiry screen may attach an LOV to the customer code

item. This LOV may be based on a query that retrieves the customer codes and names for

every customer in the database table.

Triggers and procedures within forms contain programming logic that may include rear!Jwrite

to database tables. The logic within these components can be written in PLISQL. (Oracle,

1986)

Reports

Oracle Reports Designer is typically used for the reporting components of Oracle applications.

To specify the data definitions within Oracle Reports Designer, a data model is created. A

data model consists of the following data definition objects: queries, groups, columns,

parameters and links.

Report queries consists of SQL SELECT statements written to fetch data from database

table(s). An analysis of the report queries will reveal the tables and columns that have been

referenced by a report. Once a query has been specified, groups and columns will be created

35

to reflect the query. Groups contain columns and are used primarily to create breaks in a

report.

Links are used to specify parent-child relationships between one SELECT statement and one

or more other SELECT statements.

Parameters are variables to which a user can assign values at runtime. The two types of report

parameters are system parameters and user-defined parameters. It is the user-defined

parameters that are relevant to the counting of function points since they may contain SQL

SELECT statements to fetch data from database tables. (Oracle, 1988)

36

Chapter 7: LIST & EVALUATE POSSIBLE AUTOMATIC COUNTING

METHODS

There is more than one way of implementing the automatic counting of the number of function

points within an Oracle application. This section will highlight three of the more likely

methods of achieving this and will provide a logical evaluation of these methods. These

methods are:

• Using Designer/2000 (Oracle's CASE tool)

• Using SQL *Plus

" Parsing the Module Documentation.

METHOD 1: Using Designer/2000 (CASE)

Designer/2000, the most recent version of the Oracle CASE software, is capable of generating

a number of reports, based on the parameters given. A group of these reports are based on

Function Point Analyses. A sample of the printouts of these FPA reports is provided in

Appendix A, and they are listed as follows:

Mkl FPA Analysis Level - CDFPAIA

Mkl FPA Design Level - CDFPAID

FPA Analysis Level (DFDs & Event Models) - CDFPAA2

FPA Mkll (Design I) - CDFPADI

FPA Mkll (Design2) - CDFPAD2

Area Metric -CD METRIC

37

Advantages

These reports provide a detailed analysis of the application system requested by the user, for

the purpose of function point analysis. The technique of counting the number of function

points is controlled by Designer/2000 and is stored internally. This automatic computation of

function points saves the user time which would have been expended on grasping the

workings of Function Point Analysis and also on manually counting the function points for

each individual module to be estimated. Since the same method is automatically applied by

Designer/2000 to compute the number of function points in any given Oracle module, the

results obtained are expected to be consistent.

Disadvantages

h appears that to take advantage of this utility, the Oracle application to be analysed must be

designed and generated by Designer/2000, and stored in the database. This may pose an

unnecessary obstacle if the applications were developed as a direct usage of Developer/2000,

or more specifically, Oracle Forms Designer and Oracle Reports Designer. In this case,

however, the Reverse Engineering utility provided by Designer/2000 may serve as a viable

option.

The Reverse Engineering utility auempt.<J to capture the data/functional design of an Oracle

application in the CASE tool. w;,en reverse engineering a forms module using Module Data

Diagrammer, the blocks within the forms are translated to entities, the items to attributes, e.nd

the relationships (defined through the presence of the foreign key constraints) are translated to

the relationships between entities. This process will result in a data diagram displaying the

entities, their attributes, and the relationships between entities. In addition to this, the

38

properties of each of the elements within this data diagram provide further information that are

relevant to the element highlighted. For example, the properties of an attribute contain

information including whether it is updateable, and whether it is queryable. The data diagram

produced will assist in function point counting.

The main obstacle with the use of Designer/2000 to generate FPA reports is the requirement of

the Designer/2000 software, which in turn, demands an increase in thL hardware requirements.

It cannot be done easily, or definitively.

Conclusion: viable but difficult.

METHOD 2: Using SQL *Plus

Prior to the development of an Oracle application, the usual practice asserts the creation and

population of tables in the data't•ase first. This is normally achieved through the execution of a

Data Definition Language SQL script. By parsing this SQL script, or querying the database

after the creation of the tables, one would be able to retrieve such infonnation as the number

of tables and columns that exist in the database. For example, the script

select table_namc from uscr_tables;

would list all of the tables that exist in this database.

Advantages

This appears to be a simple method of collecting information, such as a count of the number of

tables and columns, to assist the performance of a FPA. The simplicity is partly due to the

39

ease of data collection using SQL, and also partly ·rlue to the sole requirement of the standard

SQL*Plus product which is a common product for Oracle developers.

Disadvantages

However, upon further examination, one should be convinced that this method provides

insufficient data.

Firstly, the mere creation or existence of a table in the database does not guarantee its usage by

the application to be function point analysed. A table in the database may not be referenced by

the application to be analysed at all. There appears to be a lack of an easy solution to

differentiating between those tables that are, and those that are not, relevant to the function

point analysis of an application.

Furthennore, one .;annat distinguish whether a table in the database that is referenced by an

application is :eferenced as a base table for a block or referenced by a radio group in a select

statement.

Conclusion: not viable.

METHOD 3: Parsi11g lite textjile.'i of Oracle Form.<t & Oracle Reports

The conversion of an Oracle Forms or Oracle Reports binary file to its text equivalent, Module

Documentation, is a simple process thet can be achieved by following the instructions

provided in the first step of the previous chapter.

40

Advalllages

The Module Documentation (MD) covers detailed information regarding the forms/reports

module. Relating to FPA, the MD incorporates all of the necessary information to perform a

function point calculation. This information includes the base tables and their columns that are

referenced by the module, trigger texts., and SQL code for record groups and for other

components. By parsing this text file, a function point count can be achieved automatically.

Disadvantages

The issues relating to the method are:

• Software requirement

• Large text file size

• Truncation of the MD

A detailed discussion is provided in a later chapter.

Conclusion: Viable and do-able.

CHOICE of Met/roll

It appears that the third method, parsing of the Modular Documentation, is the most suitable

method to use for automatically computing the number of function points in Oracle

applications.

41

Determination tJf a Suitable Language for Parsing

An optimal parser for these Oracle-generated text files should be able to deliver the following

characteristics:

• Backtracking: The parser should be able to scan in both directions, that is, forwards and

backwards. An ex2inple of the use of backtracking is to get the name of a base table

column. To do this, the parser must firstly search for an item with the "base table item"

property set to true. Once this is found, the parser will be required to reverse its direction

to resolve the name of the item by searching for the "name" property.

• Data Structure: One of the more significant data structures that the parser should possess

is the array structure. The parser should be able to keep track of the accumulated number

of base tables and base table columns detected for each and every fonn and report text file

parsed, and also keep track of the complexity ratings lOr each of the fonn/report module.

Reporting facility: At the end of the parsing phase, the parser should be able to produce a

report that presents the results in a clear, logical, and presentable form to the analyst.

• Availability: Ideally, the parser end-product should be an automatic estimator that is

easily attainable by analysts. An Oracle analyst should be able to access the automatic

estimator and execute the parser straight away, reducing the unnecessary wasted time on

installations, compatibility checks and other pre-installation procedures.

For this research, Microsoft Word Basic has been chosen as the prototype language to

implement the parser for the automatic calculation of function points in Oracle applications.

The main objective of the prototype is to provide a "proof of concept" for the ideas presented

in this document. The use of Microsoft Word Basic achieves this and also meets the above

requirements for an effective parser for this research.

42

CHAPTER 8: DESIGN AN AUTOMATIC COUNTING METHOD

• ISSUES WITH IMPLEMENTATION

By using the third method discussed in the previous section, the automatic function point

counting software could be implemented successfully. However, there are a number of issues

that should be considered. A comprehensive discussion of these issues is given in this section.

Software Requirement

A basic requirement of the implementation of the method under discussion is the following

software: Oracle Forms Designer, Oracle Reports Designer, and Microsoft Word. The first

two application tools are required for the automatic generation of the module text documents,

and Microsoft Word is required to view the generated text documents, to parse the text files,

and to generate a report of the results of the automatic function point analysis.

These three pieces software arc all within reasonable expectations. If an application has been

developed using the Oracle Forms Designer and Oracle Reports Designer development tools

then these tools may still be available at the time of function point analysis. As for Microsoft

Word, this software was dclihcrately chosen to perform the analysis work, due to its popularity

with personal computer users.

43

Large File Size

An important consideration when generating a text document of a binary Oracle Forms or

Reports file is that the generated document can be relatively large. For example, generating a

simple binary forms file of size 32KBytes can result in a text document often times its original

size, in this case 231 KBytes, which equates to approximately 78pages when viewed using

Microsoft Word size 10 font.

The automatic function point computation software developed appears to parse the large text

files within a reasonable amount of time. For example, on a 486DX2-66MHz laptop with

eight megabytes of RAM, a very large forms text file opened in Micr>Jsoil ·word size 10 font,

spanning 263 pages, consisting of 14 425 lines and 43,213 word<;, was parsed by the software

in approximately two-and-a-halF minutes.

Since an Oracle application will consist oF many Fonn and report modules to be parsed

separately, the total time taken to automatically count the number of Function points may

become quite significant. This potential problem was conceived at the design phase of the

software development and a method was incorpomted into the software in an attempt to

alleviate this symptom. The sortwarc prompts the user for the names of all oF the application

module text files, stores these file names in an array, and then parses all oF the modules

together. This way, the user is not required to be present to continually feed the next module

into the parser.

The large text files resulting from the document generation facility in Oracle Designer appears

to be unavoidable. Consequently, the time taken to parse these text files will inevitably be

44

lengthened. To alleviate this problem, one can only alleviate the symptoms. By incorporating

the method mentioned, the time requirement on the user's behalf is reduced.

Truncation of Generated Document

Another disadvantage to be highlighted is the occasional truncation of those lines of code,

mainly those within trigger texts, within a module that exceed their limitation. This may result

when using the document generation facility provided by Oracle Forms Designer and Oracle

Reports Designer.

One way of avoiding the truncation of trigger texts would be to generate a jmt extension of the

text file instead of generating a .txt extension. This facility is also provided in the

development tools, however, this format of the text file does not include the other infonnation,

such as that relating to base tables, which is required to perform a function point count.

The prototype function point counting software is developed based on the assumption that the

occurrence of the rightMtruncation of lines, for any given Oracle application, will not be

frequent enough to produce a significant variation to the final function point count achieved.

45

Chapter 9: DESIGN AN AUTOMATIC COUNTING METHOD

• THE COMPLEXITY DETERMINATION PROCESS FOR ORACLE

APPLICATIONS

The derivation of the Unadjusted Function Point count depends on the complexity rating of the

five components: External Interface File, Internal Logical File, External Input, External

Output, External Inquiry. A discussion of the accommodation of the IFPUG definitions and

method for an Oracle application is provided in this section. ll1is is to assist the

implementation of the automatic counting software for Oracle applications.

External Inputs (EI)

The IFPUG definition of an External Input is defined as one that "processes data or control

information which enters the application's external boundary." When tailored to Oracle

applications, an El becomes "a .. module of which the CRUD (Create, Retrieve, Update,

Delete) usage contains a C, U, D." (Oracle, 1995) An obvious example of an El is an Oracle

Form module that is not query-only.

The IFPUG complexity rating of an EJ is dependent on the number of File Types Referenced

(FTR) and the number of Data Element Types (DET).

An IFPUG version of a FTR is "counted for each Internal Logical File maintained or

referenced and each External Interface file referenced during the processing of the External

Input." This can be tailored to Oracle applications to be defined as one that"is counted for

46

each .. table .. used by the .. module." and the DET is the number of associated attributes.

(Oracle, 1995).

#base table columns 1-4 5 - IS 16+
#base tables
0- I Low Low Average
2 Low Average High
3+ Average High High

Tablcll

External Outputs (EO)

The JFPUG definition of an External Output is defined as one that "processes data or control

information that exits the application's external boundary." When tailored to Oracle

applications, an EO becomes "a .. module of which the CRUD (Create, Retrieve, Update,

Delete) usage contains only R's." (Oracle, 1995) An obvious example of an EO is an Oracle

Report,

The complexity rating of an EO is dependent on the number of File Type Referenced (FTR)

and the number of Data Element Types (DET), both of which are explained in the External

Inputs section.

base table columns 1-S 6- 19 20+
base tables
0- I Low Low Average
2 ~3 Low Average High
4+ Average High High

Table 12

47

External Inquiry (EQ)

Oracle (1995) defines an External Inquiry as one that "requires input parameters, usually a

unique identifier, and produces output with a fixed volume, usually with a fixed volume,

usually one record." Following the concept presented by Oracle (1995), the implementation of

the automatic function point counting software classifies queryMonly forms as external

inquiries, instead of external outputs, since it "is usually not explicitly specified by the user."

The complexity rating of an EQ is dependent on the number of File Type Referenced (FTR)

and the number of Data Element Types (DET), both of which are explained in the External

Inputs section.

base table columns 1-4 5 - 15 16+
base tables
0 - I Low Low Average
2 Low Average High
3+ Average High High

Table 13

Internal Logical Files (ILF)

A formal definition of the Internal Logical Files, provided by Engineering Information, Inc

(1996), is "a user identifiable group of logically related data or control information maintained

within the boundary of the application being counted." In addition to this definition, the

counting rules in relation to ILF arc also provided. These rules specify that the following rules

"must apply for the group of data/control information to be counted as an ILF:

It is a logical, or user identifiable, group of data that fulfils specific user requirements.

It is maintained within the application boundary.

It is modified. or maintained, through an elemental)' process of the application.

48

It has not been counted as an ElF for this application." (Engineering Infonnation, 1996)

When related to an Oracle applications, an internal entity, or table, is one that"is maintained

by the application, in other words: the CRUD matrix contains at least one C, U or D for this

entity (or table)."

The complexity rating of an ILF is dependent on the number of Record Types (RET) and the

number of Data Element Types (DET). Oracle (1995) explains that "an entity or a table can

have only one record definition: RET= I" and that the "DET is the number of attributes."

#columns referenced 1-19 20-50 51+
#tables referenced
I Low Low Average
2-5 Low Average High
6+ Average High High

Table 14

External Interface Files (ElF)

A formal definition of the External Interface Files, provided by Engineering Information, Inc

(1996), is "a user identifiable group of logically related data or control information referenced

by the application being counted, but maintained within the boundary of another application."

In addition to this definition, the counting rules in relation to ElF are also provided. These

rules specify that the following rules "must apply for the group of data/control information to

be counted as an ElF:

It is a logical, or u:;cr identifiable, group of data that fulfils specific user requirements.

It is referenced by, and external to, the application being counted.

49

It is not maintained by the application being counted." (Engineering Information, 1996)

When related to an Oracle applications, an external entity, or table, is one that only appears

with a Retrieved in the CRUD matrix.

The complexity rating of an ElF is dependent on the number of Record Types (RET) and the

number of Data Element Types (DET), both of which are explained in the Internal Logical

File section.

#columns referenced 1-19 20-50 51+
#tables referenced
I Low Low Average
2-5 Low Average High
6+ Average High High

Table 15

50

Chapter 10: DESIGN AN AUTOMATIC COUNTING METHOD

• THE PARSING PROCESS

The principal component of the implementation of the automatic function point counting

software is the parsing of the module text files. The module text files are parsed to collect

such information as the number of base tables referenced, the number of base table columns

referenced, the number on non-base tables referenced and the number of non-base table

columns referenced which are required to determine the complexity rating for the components

stated in the previous section, and consequently, obtain the Unadjusted Function Point count.

Base Tables Referenced

When parsing a module text file to search for the base tables referenced, the automatic

function point counting software searches for the keywords Base Table. Once these two

words are found, the parser examines the subsequent word to check whether it is a base table

name. If it is, the name is stored, otherwise, the parser ignores the subsequent word and

continues its search. An example or a base table appears as follows:

Base Table EMPLOYMENTS

The following two lines, however, would be ignored by the parser:

Base Table

Base Table Item

<Null>

False

51

Base Table Columns Referenced

When parsing a module text file to search for the base table columns referenced, the automatic

function point counting software searches for the keywords Base Table Item True. Once

these keywords have been found, the parser reverses its search direction to seek the name of

the base table column. An example of a base table item appearing in the module text file is:

Name
Class
Item Type
Canvas
Displayed
X Position
Y Position

Navigable
Next Navigation Item
Previous Navigation Item
Base T:~ble Item
Primary Key
Insert Allowed
Query A I lowed
Query Length
Case Insensitive Query

CEASE DATE
<Null>
Text Item
CG$PAGE_l
True
84
22

True
<Null>
<Null>
True
False
False
False
12
False

No11- Base Tables ami Columm.· Refereuced

The non - base tables and columns referenced can appear in triggers, record groups, report

queries, and many other tables. The automatic function point counting software searches for

those tables and columns that appear in create, select, update, and delete statements. Of these

statements, the select statement seems to be the most common. For this reason, a detailed

discussion of the parsing of the select statement is accommodated here.

The SQL Language Quick Reference (1992) defines a select statement as one that "queries one

or more tables or views. (The select statement) returns rows and columns of data. (These/eel

52

statement) may be used as statement or as a subquery in another statement." The syntax for

the select statement is provided in the Appendix.

One of the more significant challenges of the select statement is the flexibility provided by the

SQL language. There are many variations to a select statement. The parsing of a select

statement includes considerations such as nested select statements, those statements with

references to functions consisting of a variable number of parameters, the possible spreading

of the statement over an unpredictable number of lines, and the combination of any or all of

these.

For a nested select statement, consider the following example:

SELECT roster_ dec _hrs _ fn
INTO temp_ number
FROM rosters a
WHERE a.id_ number= :control.person _id_number
AND a.pers_pos_no = :control.pers _pos_no
AND a.rec status != 'x'
AND a.commence _date= (SELECT max(commence_ date)

FROM rosters
WHERE a.id_numbcr = :control.person_id_numbcr
AI~D a.pers_pos_no"" :control.pers_pos_no
AND a.rec_status != 'x'
AND nvl(a.deletc_flag, 'n') != 'y');

The parser scans such nested statements separately to determine the table and column names.

In this example, the parser identifies ro.\·ters as the only table referenced, and

roster_dec_hrs_ji1, t:ommence_date as the columns referenced.

The above example also illustrates references to functions. Function references can also be

nested, and may contain any number of parameters. Consider the following:

SELECT substr(ltrim(rtrim(nvl(region_inst, main_inst))), I, 6) FROM institutions;

53

This seemingly simple statement contains references to the functions:

substr
/trim
rtrim
nvl

consisting of tltree parameters,
consisting of one parameters,
consisting of one parameters,
consisting of 011e parameters.

With such statements, the automatic function point counting parser examines the open- and

close- brackets to distinguish the columns referenced from the functions. In this example, the

parser correctly identifies region_i11sl, wain_inst as the columns referenced and institutions as

the table referenced.

To illustrate the spreading of a select statement over a variable number of lines, consider the

simple SQL statement:

SELECT id __ number, name, age FROM employments;

TI1is same stak111~nt can also be legally coded in the following fonnat:

I) SELECT id_number, name, age
FROM employments;

2) SELECT
id_number,
name,
age FROM employments;

3) SELECT
id number

name
age FROM employments;

The above illustrates only a sample of a seemingly infinite number of variations to the same

statement! All of these statements arc identified by the parser as consisting of the table

employments, and the columns id_numher, name, age.

54

Enltanceme11ts

To extend the automatic function point counting prototype to a more comprehensive software,

possible enhancements may be incorporated. These areas include reducing the parsing time

and fine-tuning the parser.

The parsing time may be improved by upgrading the hardware or improving the parsing

method. The current parser scans the Module Documentation more than once to count the

number of base tables & columns, and non-base tables & columns. The parsing time may be

reduced by limiting the parser to scan the Module Documentation once only.

This automatic Oracle applications estimator prototype can be fine-tuned since it provides a

list of the names of the tables, their associated columns, the base tables and their associated

columns. The names of the objects that have been detected by the software can be compared

with the object names manually detected to detennine and tune the accuracy of the parser. For

example, occasionally, the software may display an object name that is, in fact, not an object,

but a reserved word. This can be turned so that the reserved word will be ignored.

55

Chapter 11: THE DESIGN

Data Flow Modelling is used as part of the design of the automatic calculation of function

points in Oracle applications software. As stated by Oracle (1992b), upon which this model is

based, the objective of this data flow model is "to ensure that functions are supplied with the

necessary data in order to provide the information intended and also to identify the sources of

the requisite data and the destinations for the information produced.

CONTEXT DIAGRAM

ANALYST ' Oracle npplicatio:;:":.--,--------..

"-./
'--------'"'- 0

FPA report f------l--------1
" Provide automatic calculation

of function points in Omcle
\..applications.

56

SYSTEM
USER

FI'A report

Automatically calculate the number of function
points in Oracle applications.

Omclc applica~

system
chamctcristic
rating

/I

Determine the complexity of
the application modules.

Module Complexity '\r--T __ _
Dl COMPLEXITY RA TIN OS

r~ ___ 2 __ c_ ____________ '_,~Com~pllo~,;-,y--L---,""'c-----------

Calculate the unadjusted
function point count (UFP).

3

Rate the system chamctcristics
for the application.

4

Calculate the function point
count (FP).

I
I'P count

!
5

Gcncm\c function point
analysis report

\

57

Complexities

ur:r value

02 UFPSTORE

UFPcount

~ Degree oftnflucncc

"' 03 DEGREE OF INFLUENCE

/
Total Degree of Influence

/

Chapter 12: RESULTS & CONCLUSIONS

The investigation part of this research has revealed very little previous work on the application

of Function Point Analysis to Oracle applications. The most useful literature on this topic

appears to be the QMS Project Management manual from Oracle Corporation. To date, no

literature appears to be available on the automatic calculation of function points in Oracle

applications.

This investigation also revealed that automatic function point analysis can be performed in a

number of ways. Upon evaluation, it was concluded that the parsing of the module text

documents generated by Oracle Developer/2000 would be the most suitable for an a posteriori

evaluation of Oracle applications.

Software was developed that incorporated a number of the features discussed, to enable it to

perfonn a comprehensive analysis, and automatic count of the number of function points for

any Oracle ap(!lication developed using Oracle Forms Designer, and Oracle Reports Designer.

The successful implementation of this software appears to be the first of its kind. For this

reason, it represents a worthwhile proof of concept for automatically counting function points

for Oracle applications.

The automatic function point counting software produces a detailed report on the results of the

automatic function point analysis at the end of its execution. This report presents the results in

a very Jogicul manner, following the format presented by Hignite et a\ (1993), to show the

58

calculations leading to the derivation of the final function point count. Since the report is

produced as a Microsoft Word document, it can be easily printed at the user's discretion.

A complex form with 5 base tables, 55 base table columns and referencing 16 other non~base

tables and 20 non-base table columns was parsed in approximately five minutes. Its Module

Documentation, with a size of761 KBytes, spanned 14 425 lines over 263 pages.

The overall success rate of the automatic estimator reveals a proof of concept that provides the

grounds for the possible launch of further researches in this area. This research and the

development of the associated software is a worthwhile source of the proof of the concept. It

is the first version produced, and for this reason, several possible areas of improvements may

be incorporated in future researches to enhance the software,

Oracle is the second largest software company world-wide and there are many Oracle

applications and Oracle users in the IT industry. For this reason, it is expected that the

automatic function point counting of Oracle applications software should be beneficial m

many project estimation exercises,

59

REFERENCES

1. Alford, Mark. (1991). !!f;: What the heck's a function point?

http:/lwww.qucis.queensu.ca/Software-Engineering/archivelfuncpoints.

2. Behrens, Charles A. (1993). Measuring lhc Productivity of Computer Systems

Development Activities With Function Points. IEEE Transactions on Software

Engineering. Vol: SE-9 No: 6 p. 648-652.

3. Betteridge, R (1992). Successful experience of using function points to estimate project

costs early in the life-cycle. Information and Software Technology. Vol:34 Iss: 10 p.655-8.

UK.

4. Dreger, J. (1989). Function Point Analysis. New Jersey: Prentice Hall.

5. Ferens, D; Gurner, R. (1992). An evaluation of three function point models for estimation

of software effort. Proceedings oft he IEEE 1992 National Aerospace and Electronics

Conjerence, NAECON 1992. Vol:2 p.635-42. USA: IEEE.

6. Heemstra, F.J; Kusters, R.J. { 1991). Function point analysis: evaluation of a software cost

estimation model. European Journal of Information Sy.~tems. Vol: I Iss: 4 p.229~37. UK.

7. Hignite M, Johnson R, Foster K. { 1993). The usc of function point analysis to assess end

user computing systems. Journal of Computer Information Systems. Vol:33 pp:46~50.

8. IBM Corporation { 1975). DP Services Size and Complexity Factor Estimator, DP Services

Technical Council

9. IFPUG (1990). International Function Point User's Group Counting Practices Manual,

Release 3.0. !FPUG. Westerville, Ohio.

10. Information Engineering, Inc. (1996). About Function Point Analysis.

http/hv\J'lv.hanJ1ister.conJ!ifpuglltoJJJe!docs/abfpa.html

60

11. Internet: Funcnet. http://www.spr.com/library/funcnet.html

12. Jones, C. (1991). Applied Software Measurement. New York: McGraw Hill.

13. Kansala, K; Kitchenham, B. (1993).1nter~item correlations among function points.

Proceedings First Illlemational Software Metrics Symposium .. pp. 11-14. USA.

14. Kremer, Chris F. (1987). An empirical validation of software cost estimation models.

Communications of the ACM Vol:30 No:5 pp:416-429.

15. Low, G.C; Jeffery, D.R. (1990). Function points in the estimation and evaluation of the

software process. IEEE Transactions on Software Engineering. Vol: I 6 Iss: I p.64-71. USA

16. Oracle (1986). SQL *Forms Designer's Reference 3.0 Oracle Corporation

17. Oracle (1988). Building Reports with Oracle Reports 2.0 Oracle Corporation

18. Oracle (1992). SQL Language Quick Reference Oracle Corporation

19. Oracle (1992b). Oracle Education Services Course Notes: Analysis Techniques Oracle

Corporation

20. Oracle (1994). Oracle Forms 4.5 Developer's Guide Oracle Corporation

21. Oracle (1995). QMS Project Management Oracle Corporation

22. Rask R., Laamanen P., and Lyytinen K. (1993). Simulation and comparison of Albrecht's

function point and DeMarco's function bang metric in a CASE environment. IEEE

Transactions on software engineering. Vol: 19 lss:7 pp:661-71.

23. Symons, Charles R. (1988). Function Point Analysis: Difficulties and improvements. IEEE

Transactions on Software Engineering. Vol: 14 No: I pp.2-ll.

24. Tsoi, R; Yau,C. (1995). Assessing the fuzziness of general system characteristics in

estimating software size. Proceedings of the 1994 Second Australian and New Zealand

Conference on Intelligent Information Systems. p.J89~93. New York: IEEE.

25. van Wonderen, J, (1991). Another look at function point analysis. Injormatie. Vol:34 Iss:6

p.334-43. Netherlands.

61

26. Weaver, K.R. (1989). Function points- a productivity measure benefits APL. APL

Quote Quad. Vol: 19 Iss: 4 p. 377-80. USA.

27. Yau, C; GaoL. (1995). Comparing the top-down and bottom-up approaches of function

analysis: a case study. Software Quality Journal. Vo1:4 lss:3 P.175-87. UK

62

Appendix A: FPA reports generated by Designer/2000

The FPA reports can be obtained from Designer/2000 by following these simple steps:

1. Run the Designer/2000 product:

2. Within RON, select from the menu:

Repository Object Navigator (RON).

Tools I Repository Reports (RR)

3. Within RR, expand in the object navigator: Reports I Function Point Analysis

A copy of each of the following FPA reports are included in this section.

Mkl FPA Analysis Level - CDFPAIA

FPA Analysis Level (DFDs & Event Models) - CDFPAA2

FPA Mkll (Design!) - CDFPADI

FPA Mkll (Design2) - CDFPAD2

Area Metric - CDMETRIC

A printout sample copy of the Mkl FPA Design Level report has been intentionally excluded as

its layout is an exact replica of the Mkl FPA Analysis Level layout.

63

Designer/2000

Report FPA (IFPUG) - Analysis Level

Filename

Run by OWNERl

Report Date 16-MAY-96 03:06pm

Total Pages 6

Parameter Values

Application System : TEST
Application Version : ~
Function Label : TEST
Help Inquirj.es : 1

16-MAY-96 FPA (IFPUG) - Analysis Level

For Application System
version

:TEST

'1
:TEST Starting at Function

maintain a person and their jobs

unadjusted Function Point Count

·---·

Type
Description

... ' ····-·-

ILF Internal Logical Files
---···--

No. of Entities created,
updated or deleted by one

EIF External Interface Files

No. of Entities read but
not created, updated or

EI External Inputs

No. of Entity create .•
Update and Delete Usages

EO External Outputs

No. of Entity Read Usages
by a Leaf Function where
there is no Create!, Update
or Delete usage of any

I

·--·--······-~·-··· ----· ···-······--··

Functional Complexity

Low Average

1 * 7 " 7 0 * 10 "

With < 51 With > 50

1 * 5 " 5 0 * 7

With < 51 With > 50

3 * 3 " 9 0 * 4

With < 15 With > l4

0 * 4 " 0 0 * 5

With < 20 With > 19

nesigner/2000 Report cdfpala

Page 2 of 6

Total --

0 7

0 5

0 9

0 0

16-MAY-96 FPA (IFPUG) - Analysis Level Page 3 of 6

Type Functional Complexity

Description Total

Low Average

EQ External lnquiries

No. of Entity Function 2 • 3 = 6 0 • 4 = 0 6

Usages counting 1 for any
combination of Create, With ' 15 With > 14

Read, Update and Delete
involving 1 Entity and 1
Function (excluding read

No. of low complexity 1 • 3 = 3 3
External lnquiries for
Help (e.g 1 for full
screen help throughout the

I FC Function count Total unadjusted Function Points 30

Designer/2000 Report cdfpala

16-MAY-96 FPA (IFPUG) - Analysis Level Page 4 of 6

General System Characteristics

~---------

ID Characteristic Degree of Influence*

Cl Data Communications

C2 Distributed Functions

C3 Performance

Frequency No. Of Functions

0 PER 1

C4 Heavily used Configuration

CS Transaction Rate

C6 Online Data Entry

C7 End User Efficiency

ca Online Update

C9 Complex Processing

ClO Reusability

Cll Installation Ease

C12 Operational Ease

Designer/2000 Report cdfpala

16-HAY-96 FPA (IFPUG) - Analysis Level Page 5

ID Characteristic Degree of Influence*

Cl3 Multiple sites

No. of Business Units to
0

Cl4 Facilitate Change

TDI Total Degree of Influence

* Degree of Influence Values:

Not present or no influence = 0 Average influence 3

Insignificant influence = l Significant influence 4

Moderate influence 2 Strong influence, throughout= 5

Value AdjustmP.nt Factor (VAF)

Function Point Count (FP)

(TDI * 0.01) + 0.65

= FC * VAF

Dc[~igncr/2000 Report cdfpala

of 6

Designer/2000

FPA (IFPUG) - Analysis Level

End of Report

Designer/2000

Report

Filename

Run by

Report Date

Total Pages

Parameter Values

Application system
Version

MKII FPA Information

OWNER!

16-t-lAY-96

5

TEST
1

lG-MAY-96 MKII FPA Information Page 2 of 5

Based at the Analysis Level {where DFD' s and Event Models have been used)

For Application System : TEST
Version

Information Processing Logic Size

-------------- -------

Input

No, of dataflow contents on each dataflow
which exists between an P.Xternal entity and
a function included as a logical transaction
(No. of attribute types input)

Processing

No. of functions triggered by an
event of type time
(Logical transactions triggered by
reaching a specific point in time)

No. of functions where exists a
dataflow from an external entity
(Logical transactions triggered
by external)

Logical Transactions

No. of distinct entities included in
dataflows between datastores and functions
included as logical transactions
(No. of entity types referenced)

Output

No. of dataflow contents on each dataflow
which exists bet~1een a function included as
a logical trnnse1ction and an external entity
(No. of attribute types output)

Infonnat.ion Procl.!:Jr.ing Lo~Jic Size
in Unadju:.:tcd Ftlllctjon Points

0

0

0

D<;::iqncr/2000 l~eport: cd£paa2

0.

0 * 1. 66

0 * 2. 66

0

16-r-l.AY-96 MKII FPA Information

Technical Complexity Characteristics

1. Data Communications

2. Distributed Functions

3. Performance

Frequency No. Of Functions

4. Heavily Used Configuration

5. Transaction Rate

6. Online Data Entry

7. End User Efficiency

a. online Update

9. ,:'·'~J?lex Processing

10. Re1..1.<l:...:'•. ty

11. Installation Ease

12. Operational Ease

13. Multiple Sites
(No. Of Business Units to Functions included
as Logical Transaction Usages)

14. Facilitate Change

15. Interface Requirement Of Other Applications
{Number of Functions included as Logical
Transactions which are Master Functions in
other Applications)

16. Security, Privacy, Audit

17. user Training Needs

18. Third Party Use

De~li<Jner/7.000 Report cdfpaa2

Page 3 of 5

0

0

16-MAY-96 MKII FPA Information

19. Documentation

20. Site Specific

Total Degree of Influence

Technical Complexity Adjustment
(0.65 + c *Total Degree of Influence
where C may take value of 0.005)

Size of System in MKII Function Points

Page <1 ofS

{Information Processing Logic Size * Technical Complexity Adjustment)

111-~n igner I 2 ooo Report cdfpaa2

Designer/2000

MKII FPA Information

End of Report

Designer/2000

Report

Filename

Run by

Report Date

Total Pages

Parameter Values

Application System
Version
Include Shared Modules
Module Type
Language

MKII FPA - Design Level 1

OWNER!

16-MAY-96

6

TEST
1
True

' '

16-MAY-96 MKII FPA - Design Level 1

Based at the Design Level

For Application system : TEST
Version ' 1

Information Processing Logic Size

Module Type SCREEN Language : Oracle Forms

INPUT - Numl)er of attribute types input

No. of select column usages
No. of select detailed column usages
No. of Input parameters
No. of modified pac1meters
No. of other parameters

PROCESS IN

No. of Modules
No. of tables/Views - No. of entity types referenced
No. of look-up links between table usages
No. of base links between table usages

OUTPUT - Number of attribute types output

No. of column usages in create/update/nullify
No. of detailed column usages in create/update/nullify
No. of output paramete~-s
No. of modified parameters
No. of other parameters

D•:•:-;igner/2000 Roport cdfpadl, J is

48
45
0
0

= 0

4

= G
0

= G

;a
08
0

0

0

Page 2 of 6

%TOTAL 66.67

16-HAY-96 MKII FPA - Design Level 1

Information Processing Logic Size

Module Type PACKAGE Language : PL/SQL

INPUT - NuniDer of attribute types input

No. of select column usages
No. of select detailed column usages
No. of Input parameters
No. of modified parameters
No. of other parameters

PROCESS IN

No. of Modules
No. of tables/Views - No. of entity types referenced
No. of look-up links between table usages
No. of base links between table usages

OUTPUT - Number of attribute types output

No. of column usages in create/update/nullify
No. of detailed column usages in create/update/nullify
No. of output parameters
No. of modified parameters
No. of other parameters

nenigner/2000 Report cdfpadl. lis

0

0

0
~ 0

0

1
~ 0

0

0

0

0
~ 0
~ 0
~

0

Page 3 of 6

%TOTAL 16.67

Information Processing Logic Size

Module Type PROCEDURE Language : PL/SQL

INPUT - Number of attribute types input

No. of select colunm usages
No. of select detailed column usages
NO. of Input parameters
No. of modified parameters
No. of other parameters

PROCESS IN

No. of Modules
NO. of tables/Views - No. of entity types referenced
No. of look-up links between table usages
No. of base links between table usages

OUTPUT - Number of attribute types output

No. of colunm usages in create/update/nullify
No. of detailed column usages in create/update/nullify
No. of output purameters
No. of modified parameters
No. of other parameters

D•.esigtH~l·/~000 Report cdtpadl. lis

"
"

"

"
"
"

0

n
0
0

0

1
0
0
0

0
0
0

0

0

'i UL tl

%TOTAL 16.67

16-MAY-96 MKII FPA - Design Level 1

TOTAL INPUTS

sum of select column usages

Sum of select detailed column usages
Sum of input parameters

sum of modified parameter
Sum of other parameters

TOTAL PROCESSING

Sum of modules
Sum of tables/view
sum of look_up links between table usages
Sum of base links between table usages

TOTAL OUTPUTS

Sum of colurrm usages in create/update/null
Sum of detailed colunm usages in create/update/nullify
Sum of output parameters
Sum of modified parameter
Sum of other parameters

!)(•~:ign•.::>r/~~000 Heport cdfpadl.lis

" 48

" 45

" 0

"
0
0

" 6

"
"
"

"

6

0
6

48
48
0
0
0

Page 5 of 6

Designer/2000

MKII FPA - Design Level 1

Designer/2000

Report

Filename

Run by

Report Date

Total Pages

Parameter Values

Application System
version
Include Shared Modules
Module Type

MKII FPA - Design Level 2

OWNERl

16-MAY-96

4

TEST
1
True

16-MAY-96 MKII FPA - Design Level 2

Module Type

Technical complexity Characteristics

1. Data Comn1unicat.ions

2. Distributed Functions
No. of nodes (Total in application system)
No. of node to module usages
Distinct No. of databases to table/view usages.

Module Type Distinct No. of databases

No. of snapshots (Total in application system

3. Performance

4. Heavily used configuration

5. Transaction Rate

6. Online Data Entry

7. End user Efficiency

B. Online Update

9. Complex Processing

TOTAL
%TOTAL

10. Reusability

Module Complexity

EA"SY AVERAGE DIFF"ICULT

Page

0
0

0

OTHER

No of modules owned by this Application system/version

which are shared with others 0

No of Business unit to module usagen

Dc.signc·c I 2 000 ~' , 'ot·t : cdfpad2

----..:..---· __ ..;. __ . __

2 of 4

16-MAY-96 MI<II FPA - Design Level 2

11. Installation Ease

12. Operational Ease

13. Multiple Sites

No of access group to module usages

14. Facilitate Change

15. Interface Requirement of other applications

Page

0
0

No of modules own~d by other application system/versions
which are shared with this one "' 0

16. Security, privacy and audit

17. user training needs
Average No. of help text lines across tables

which have help text
{Total in application system)

Average no of lines of help text across
all the tables that could have help text
{Total in application system)

18. Third Party Use

19. Documentation

20. Site Specific

Designer/2000 Report :cdfpad2

0.00

3 of 4

Designer/2000

MKII FPA - Design Level 2

End of Report

Designer/2000

Report Application System Metrics

Filename

Run by OWNERl

Report Date 16-MAY-96 03:28pm

Total Pages 3

Parameter Values

Application System
Version
Shared?

TEST
1

False

lG-HAY-96 Application System Metrics

1 . Area Metric Based on Entity Model

N= (A*E) + (R*A) + (R*E)

Nhere A=NO- of Attributes,

E=NO. of Entities,

R=NO. of Relationships

2. Area Metric Based on Schema Design

D== (T*C) + (T*F) + (F*C

t1here 'l'==No. of Tables,
C=No. of Colunms which are not Foreign Keys,
F==No. of Foreign Keys

3. Area Metric Based on Comparison of Entity Model
and Schema Design

M=D/N

Dcsigner/2000 Report cdmetric

Page 2 c.f 3

"" 20

"" 458

"" 22.9

Designer/2000

Application System Metrics

End of Report

Appendix B : The SOL SELECT statement

Oracle (1992) states the syntax of the SQL select statement as follows:

H-SfLECT E3All se~ect_list FROM table_ list -.-------~-••
·· l WHERE condition j

OJSmCT

,_L,------------------~~IL_ __ .
1-.----------~ CON1'i£(T B\' condition

L ST/.RT I.'ITH condition J ,.,
L GROUP EY -•- e~.pr ~~-------,J

I · H.I.\'!~G condition I
•·-r----------C--.-----------· L U~iON --,- SELECT co-:-• .,..and _j

~ U~lON ~ll ~
1- Jt\TERSECT -l
L Mlh'US __j

. __ !.~-----------------~rL----

selcct_lirt :: •

Appendix C: Design of Function Point Counting Software

A layout of the General flow of the function point counting software is illustrated in the

following diagram.

1.0 Analyse another module?

OK

2.0 Module Type:
* Query-only Form
>I< Not Query-only Form
* Report

OK

3.0 Analyse anoth~?-r module?

OK

7.0 System Characteristics
TP~ill of fourteen.

!
8.0 Generate Report

88

CANCEL

CANCEL

!6.0 Close text file

ALL TEXT FILES
PARSED.

Appendix D: A sample FPA report produced

FUNCTION POINT CALCULATION REPORT

TOTAL UNADJUSTED FUNCTION POINT CALCULATION

COMPONENT LOW AVERAGE
El External Input 1 X 3 = 3 Ox4 = 0
EO External Output Ox4 = 0 Ox 5 = o
EQ External Inquiry Ox 3 = 0 Ox4 = 0
ILF Internal Logical File Ox7 = 0 0 X 10 = 0
ElF External Interface File 0 X 5= Q Ox7 = 0

TECHNICAL COMPLEXITY CALCULATION

GENERAL SYSTEMS Dl GENERAL
CHARACTERISTIC
On-line update
Complex Processing
Reusability
Installation ease
Operational ease
Multiple sites
Facilitate change

SYSTEMS Dl
CHARACTERISTIC
Data communication~ 3
Distributed Processing 1
Performance 4
Heavily used configuration 2
Transaction rates 4
Or~-Line data ent'Y 3
End-User efficiency 5

1
5
0
2
0
4
2

Total Degree of lnnuence (TDI) 36
Technical Complexity Factor (TCF)

HIGH
Ox 6= 0
Ox 7 = 0
1 X 6 = 6
0 X 15 = 0
1 X10= 10

Total
Unadjusted FP

= (TDI' .01) + 0.65 1.01

Total Function Points = TCF • TUFP
= 1.01"19
= 19.19

•••• A LIST OF POSSIBLE BASE TABLES ••••
employments
COUNT= 1

•••• A LIST OF POSSIBLE TABLES ••••
pay_offers
COUNT= 1

•••· A LIST OF POSSIBLE BASE TABLE COLUMNS*'"*
commence_date
COUNT= 1

''''A LIST OF POSSIBLE COLUMNS ••••
pay_offer_desc
COUNT= 1

89

TOTAL
3
0
6
0
10

19

APPENDIX E: Source Code for the Function Point Counting Software

The following is a listing of the macro code that has been created to perform the automatic

function point computation. It is based on the model illustrated in Appendix B.

Dim Shared ModType$(50)
Dim Shared ModName$(50)
Dim Shared ModCtr
Dim Sharct! /\nalysc
Dim Shared NumT
Dim Shared NumCol
Dim Shared Num!T
Dim Shared Num!Col
Dim Shared NumB

'eg. Reports,Fonns (Q-on!y, not Q-only) R,QO,NQO
'name of the module text file
'the number of module text files to be parsed

'number of external tables referenced by application.
'number of ext tab! e columns referenced by application.
'number of ir;tcrnal tables referenced by application.
'number of internal table columns re!Crcnccd by application.
'number of base tables.

Dim Shared NumBCol 'number of base table columns refCrenced.
Dim Shared E0(3)'cxtcrnal output counter for Low, A v, IIi complexities
Dim Shared El(.l)'extcrnal input counter for Low, Av, Hi complexities
Dint Shared EQ(3)'cxternal inquiry counter for Low, A v, Hi complexities
Dim Shared 1LF(3)'intemal logical counter for Low, A v, Hi complexities
Dim Shared EIF(3)'external interface file counter for Low, Av, Hi complexities
'System characteristic variables.
Dim Shared scDC
Dim Shared scDP
Dim Shared scP
Dim Shared scHUC
Dim Shared scTR
Dim Shared scODE
Dim Shared scEE
Dim Shared scOU
Dim Shared scCP
Dim Shared scR
Dim Shared sclE
Dim Shared scOE
Dim Shared scMS
Dim Shared scFC

••

Sub MAIN
'In itialisations.

ModCtr ·· 0
Analyse o• 1
NumT=~O

NumCol ~- 0

MAIN

'Ntm1bcr of mod11!es to be analysed.

For lndcxCount ~ 1 To 3

90

EO(IndexCount)"' 0
El(lndexCount) == 0
EQ(IndexCount) = 0
ILF(IndcxCount) = 0
Eir(lndexCount) = 0

Next lndcxCount

CtnsAnalysePrompt
ParseTcxtFiles
ILFComplexity
EIFComplexity
lfModCtr >I Then

'Analyse another module?
'Parse each module text file.
'Detenninc complexity for ILF.
'Detennine complexity for ElF.

GetSysCharsDlg 'System characteristic ratings.
FileOpen "C:\TEMP\REPORT.DOC"

End If
GcneratcReport

End Sub
'Generate a report on the FP A.

,,
CtnsAnalysePrompt

'**********'***
Sub CtnsAnalyscPrompt

While Analyse= I
AnalyseModuleDlg

Wend
End Sub

·························~··· ,,
ParseTextFiles

•••
Sub ParseTextFiles

For Counter= 1 To (ModCtr- 1)
NumB =0
NumBCol = 0
ParseThisFilc(ModName$(Counter))
DetennineComplexity(ModType$(Counter))

Next Counter
End Sub'OpenModNmncs

••• ,,
E1FComplexity

•••
Sub EIFComplcxity

Select Case NumT
Case 0
Case I

Select Case NumCol
Case 0
Case 1 To 50

EIF(1)=EIF(I)+ 1
Case Else

EIF(2) ~ EIF(2) + I
End Select

Casc2To5
Select Case NumCol

91

'External Output= LO

'External Output= A V

--------------------- ----·~r~~~-·----------------

Case 0
Case 1 To 19

ElF(I)~ ElF(I)+ I
Case 20 To 50

EIF(2) ~ EIF(2) + I
Case Else

End Select
Case Else

EIF(3) ~ EIF(3) + I

Select Case NumCol
Case 0
Case I To 19

EIF(2) ~ EIF(2) + I
Case Else

'External Output = LO

'External Output = A V

'External Output = HI

'External Output= A V

EIF(3) ~ EIF(3) + I 'External Output= HI
End Select

End Select
End Sub'EIFComplexity

.. ILFComplexity
'**'*******
Sub ILFComplexity

Select Case NumiT
CaseO
Case I

Select Case NumlCol
Case 0
Case I To 50

ILF(I)= ILF(I)+ I
Case Else

ILF(2) ~ ILF(2) + I
End Select

Case2To5
Select Case Num!Col

Case 0
Case I To 19

ILF(I)=ILF(I)+I
Case 20 To 50

ILF(2) = ILF(2) +I
Case Else

ILF(3) = ILF(3) + I
End Select

Case Else

End Select
End Sub'ILFComplcxity

Select Case Num!Col
Case 0
Case 1 To 19

ILF(2) = ILF(2) + I
Case Else

ILF(3) = ILF(3) +I
End Select

92

'External Output= LO

'External Output= A V

'External Output= LO

'External Output= AV

'External Output= HI

'External Output = A V

'External Output= HI

--~----------····-···---~----------~-----------

,,
TotalUFP

Function Tota!UFP
Tota!UFP"' Tota!EI + TotalEO + TotaiEQ + TotaiiLF + TotaiEIF

End Function'Tota!UFP

••• ,,
Tota!EI

•••
Function TotaiEI

TotalEI ~ (EI(I) ' 3) + (EI(2) ' 4) + (EI(3) ' 6)
End Function'TotalEI

••• ,,
TotaiEO

•••
Function TotalED

TotaiEO ~(EO (I)' 4) + (E0(2)' 5) + (E0(3)' 7)
End Function'TotalEO

••• ,,
TotalEQ

•••
Function TotriEQ

TotaiEQ ~ (EQ(J)' 3) + (EQ(2)' 4) + (EQ(3) '6)
End Function'TotalEQ

········~·· ,,
TotalEIF

•••
Function TotalEIF

Tota]EIF"' (ElF(\)* 5) + {EIF(2) * 7) + (EIF(3) * 10)
End Function'TotalEQ

'******' ·~···•********* ,,
TotaliLF

•••
Function TotaliLF

TotaliLF = (ILF{l) * 7) + {ILF(2) * 10) + (ILF(3) * 15)
Er1d Function'TotaiiLF

••• ,,
TDI

'**
Fu; .clion TDI
'Calcutcs the total degree ofintluencc by summing each of the sysiem chamcteristics.

TDI ,_, scDC + scOU + scDP + scCP + scP + scR + scHUC + sc!E + scTR + scOE + scODE +
scMS + scEE + scFC
End Function'TDI

,,
TCF

'***~********~-~~·~··~··························~··················
Function TCF
Total Compkxity Factor

93

TCF"" (TDI • 0.01) + 0.65
End Function'Total!LF

" GetSysCharsDlg
•••
Sub GetSysCharsDlg

Dim D!Scale$(5)
D!Scale$(I) "" "Not present"
DIScale$(2)""' "Incidental Influence"
D!Scale$(3)"' "Moderate Influence"
D!Scale$(4)"" "Average Influence"
D!Scale$(5)"' "Sign'1ficant Influence"
Dim Dig As User Dialog
Begin Dialog UserDialog 768,314, "System Characteristics"

DropListBox 24, 37,329, 76, D!Scale$(), .DataCommList
DropListBox 24, 70, 329, 76, DIScale$(), .DistributedList
DropListBox 24, 103,329,76, DIScalc$(), .PerforrnanccList
DropListBox 24, 136, 329, 76, DIScalc$(), .1-leavyList
DropListBox 24, 161), 329, 76, D!Sca1e$(), .TransactionList
DropListE3ox 24, 202, 329, 76, DIScalc$(), .Entry List
DropListBox 24, 235, 329, 76, D1Scalc$(), .EOicieneyList

DropListBox 426, 37,329, 76, D!Sca!e$(), .UpdatcList
DropListBox 426, 70, 329, 76, D!Scale$(), .ComplexList
DropListE3ox 426, 103. 329, 76, D!Scale$(), .ReuseList
DropListE3ox 426, 136,329,76, DIScale$(), .lnstallList
DropListBox 426, 169, 329, 76. D!ScaleS(), .EaseList
DropListBox 426,202, 329,76, DISca!e$(), .MultipleList
DropListBox 426, 235. 329, 76, D!Sca!c$(), .ChangeList

OKButton 297, 277, 88, 21
CancelButton 415, 277, 88, 2 I
Text 24, 24, 164, 13. "Data Communications", .Text!
Text 24, 57, 212, I 3, "Distributed Data Processing", .Text2
Text 24, 90, 96, 13, "Performance", .Text 14
Text 24, 123,207, 13, "Heavily Used Configuration", .Text3
i"ext24, 156, 132, 13, "Transaction Rate", .Text4
"fext24, 189, 145, 13, "On-Line Datu Entry", .Text5
Text 24, 222, 151, 13, "End User Efficiency", .Text6
Text 416, 24, 120, !3. "On-Line Update", .Text7
Text 426, 57, \52, !3, "Complex Processing", .TextS
Text426, lJ(), 84, 13, '·Reus<1bility", .Text9
Text426, !23, 127, I3, "Installation Ease", .TextiO
Text 41fj, 156, 13 I, !3, "Operational Ease", .Text I I
Text426, IS9, 103, IJ, "Multiple Sites", .Text12
Text 426,222. !33, IJ, "f<:::1litate Change", .Text13

End Dialog

If Dialog(dlg) Then
scDC ~ d1g.Dai<!Comml.isl
scDP ~0 dlg.DistributcdList
scP = dlg.Perf'orm;mccList
sd!UC -.. d!g.JleavyList

94

End if
End Sub

scTR "" dlg.TransactionList
scODE = d\g.EntryList
scEE =dig. Efficiency List
scOU = dlg.UpdateList
scCP = dlg.ComplexList
scR = dlg.RcuseList
sciE =dig. Instal\ List
scOE = dlg.EascList
scMS = dlg.MultipleList
scFC = dlg.CimngeList

'*** * *"' "' **. **. *** ** "'** ** **** ** *"'* * ••• ,,
GenerateReport

'*******"'***********************************"'****"'*"'*********"'***"'*
Sub GenerateReport
'Generates a report on the results of the function point
'analysis process, based on the parsing of the individual
'files.

Close #I
Open "C:\TEMP\AAA.TXT" For Output As #2
Print #2, "FPA REPORT"+ Str$(Counter) + Chr$(13) + Chr$(13) + Chr$(13)
GenerateTUFP
Gene1·ateSysChars
Clean Report
Close #2

End Sub'GenerateReport

'*******"'•*************"'"'*"'********"'*****************•************* ,,
GenerateTUFP

'***"'******
Sub GenerateTUFP

Bold
Insert "FUNCTION POINT CALCULATION REPORT"+ Chr$(13) + Chr$(13) + Chr$(13) +

Chr$(13) +"TOTAL Ui-.JADJUSTED FUNCTION POINT CALCULATION"+ Chr$(13) + Chr$(13)
TablclnscrtTablc .Convc1tFrom = "", .NumColumns = "6", .NumRows = "7", .lnttia\Co\Width

= "2.7 em", .Fom1at = "0", .Apply= "167"
TableColumnWidth .RulcrStylc =-o "I", .Co!unmWidth = "1.44 em"

NcxtCell

;/ ,['

Bold
Insert "COMPONENT"
TableColumnWidth .RulcrStylc ="I", .Column Width"" "4.25 em"
NcxtCel\
Bold
Insert "LOW"
NcxtCc!l
Bold
Insert "AVERAGE"
NcxLCcll
Bold
Insert "HIGII"
NcxtCcll
Bold
RightPara

95

Insert "TOTAL"
NextCell
Insert "EI"
NextCell
Insert "External Input"
NextCell
Insert Str$(EI(l)) + "x 3 =" + Str$(EI(l) * 3)
NextCell
Insert Str$(EI{2)) + "x 4 = "+ Str$(E1(2) * 4)
NextCell
Insert Str$(El{3)) + "x 6 =" + Str$(EI(3)" 6)
NextCell
Insert Str$(Tota!EI)
RightPara
NextCell
Insert "EO"
NextCell
Insert "External Output"
NextCell
Insert Str$(EO(!)) +" x 4 =" + Str$(EO{!)" 4)
NextCell
Insert Str${E0(2)) + "x 5 = "+ Str$(E0(2) * 5)
NextCell
Insert Str$(E0(3)) +" x 7 = "+ Str$(E0(3) * 7)
NextCell
Insert Str$(Tota1EO)
RightPara
NextCell
Insert "EQ"
NcxtCell
Insert "External Inquiry"
NcxtCell
Insert Str$(EQ(l)) +" x 3 =" + Str$(EQ(l) * 3)
NextCell
Insert Str$(EQ{2)) + "x 4 =" + Str$(EQ(2) * 4)

NextCell
Insert Str$(EQ(3)) + "x 6 = "+ Str$(EQ(3) * 6)
NextCell
Insert Str$(TotalEQ)
RightPara
NextCell
Insert "ILF"
NextCell
Insert "Internal Logical File"
NextCcll
Insert Str$(1LF{1)) +" x 7 = "+ Str$(ILF(l) * 7)
NcxtCell
lnsen Str$(1LF(2)) +" x 10 = "+ Str$(1LF(2) • 10)
NcxtCcll
Insert Str$(1LF(J)) + "x 15"" "+ Str$(JLF(3) * 15)
NcxtCc!!
Insert Str$(T';talli.F)
RightPnr<>.
NcxtCc.tl
Insert "ElF"

96

NextCell
Insert "External Interface File''
NextCell
Insert Srr$(EIF(l)) +" x 5 ~" + Srr$(EIF(l)' 5)
NextCell
Insert Srr$(EIF(2)) +" x 7 ~ "+ Str$(EIF(2)' 7)
NextCell
Insert Str$(EIF(3)) +" x 10 =" + Str$(EIF(3) * 10)
NextCell
Insert Str$(TotalEIF)
RightPara
NextCell
NextCcll
NcxtCell
NextCe!l
NextCell
Bold
Insert "Total Unadjusted FP"
NextCell
Bold
lnsertPara
Insert Str$(Tota1UFP)
RightPara
LineDown I

End Sub'GcncrateTUFP

•• GenerateSysChars
'***************************'**************************************
Sub GeneratcSysChars

Insert Chr$(I 3) + Chr$(13) + Chr$(13)
Bold
Insert "TECHNICAL COMPLEXITY CALCULATION"+ Cht$(13) + Chr$(13)
TablelnsertTable .ConvertFrom = "", .NumColumns = ''4", .NumRows "10",

.lnitia!Co!Width ="Auto", .Forn1al = "0'', .Apply=" 167"
Bold
Insert "GENERAL SYSTEMS CI-IARACTERISTIC"
NextCell
Bold
Right Para
Insert "DI"
TableColumnWidth .RulerSty[e = "1 ",.Column Width= "1.2 em"
NextCell
Bold
Insert "GENERAL SYSTEMS CHARACTERISTIC"
NextCell
Bold
RightPara
Insert "DI"
TablcColumnWidth .RulerStylc ="I", .Column Width= "1.2 em"
NcxtCcll
Insert "Data communications"
NcxtCe!!
RightPara
Insert Str$(scDC)

97

NextCell
Insert "On· Line update"
NextCell
Right Para
Insert Str$(scOU)
NextCell
Insert "Distributed Processing"
NextCell
RightPara
Insert Str$(scDP)
NextCell
Insert "Complex Processing"
NextCell
RightPara
Insert Str$(scCP)
NextCetl
Insert "Pcrfonnance"
NextCell
RightPara
Insert Str$(scP)
NextCel\
Insert "Reusability"
NextCell
RightPara
Insert Str$(scR)
NcxtCcll
Insen "Heavily used configuration"
NextCell
RightPara
Insert Str$(scHUC)
NextCell
Insert "Installation ease"
NextCell
RightPara
Insert Str$(sclE)
NextCell
Insert ''Transaction rates"
NextCe\l
RightParu
Insert Str${scTR)
NextCell
Insert "Operational ease"
NextCcll
RightPara
Insert Str$(scOE)
NextCc!l
Insert "On-Line data entry"
NcxtCell
Right Para
lnse11 Str$(scODE)
NcxtCcli
Insert "Multiple sites"
NcxtCcli
RightPara
Insert StrS(scMS)

98

NextCell
Insert "End-User efliciency"
NextCI:ll
RightPara
Insert Str$(scEE)
NextCe\1
Insert "Facilit<ltc change"
NextCc\1
RightPara
Insert Str$(scFC}
NextCell
NextCell
NextCell
Insert Chr$(13)
Bold
Insert "Total Degree of influence (TDI)"
NextCcll
Bold
RightPara
lnsertPara
Insert Str$(TDI)
LineDown I
CharLcfi 1
Bold
Insert "Technical Complexity Factor (TCF)"
lnsertPara
Insert"= (TDI * .0 l) + 0.65"
NextCell
RightPara
InsertPara
Bold
Insert Str$(TCF)
LineDown I
Insert Chr$(13) + Chr$(13)
Bold
Insert "Total Function Points"+ Chr$(9) + "= TCF * TUFP" + Chr$(13)
Insert Chr$(9) + Chr$(9) + Chr$(9) + "= '' + Str$(TCF) + "*" + Str$(TotalUFP) + Chr$(13)
Insert Chr$(9) + Chr$(9) + Chr$(9) + "=" + Str$(TCF * TotaiUFP) + Chr$(13) + Chr$(13) +

Chc$(I J)
End Sub'GcncratcSysChars

" ClcanRcport
'*******************~**

Sub Clean Report
EditSclcctAII
Font "Aria!"
FontSize 8
Line Down

End Sub

'*"'"' * "'* •• ~ ** **- ~ * * ***** **** * * * * * ********* ** * ** ********* * *** ••••••• ,,
Ana!yscModuleDlg

Sub AnalyscModuleDlg

99

End Sub

"

Begin Dialog UserDialog 355, 85, "Function Point AnalYsis"
Text 24, 8, 300, 15, "Analyse another (or the first) module for", .Analysclt
Text 23, 26, 125, 13, "this application?", .Text!
OKButton 82, 53, 88,21
CancclButton 184,53, 88,21

End Dialog

Dim dig As UserDialog
ModCtr = ModCtr + I
Button= Dialog(dig) 'display the dialog
If Button=~ I Then 'ok button

SelectModTypeDlg
ElselfButton = 0 Then'cancel button

Analyse= 0
End If

SelectModTypeDlg
'**
Sub SelectModTypeDlg
'Prompt for the module type.

Begin Dialog User Dialog 400, 118, "Function Point Analysis"
OKButton 99, 89, 88,21
CancelButton 215,89, 88,21
GroupBox 18, 7, 369,77, "Select the File Module Type"
OptionGroup .ModType
Option Button 48, 23,250, 16, "Oracle Fonns: &Query-only"
Option Button 48, 41,250, 16, "Oracle Forms: &Not query-only"
Option Button 48, 59,250, 16, "Oracle &Reports"

End Dialog
Dim dlg As UserDialog
If Dialog(dig) Then

Select Crtse dlg.ModType
Case 0

Case 1

Case 2

ModType${ModCtr) = "QO"
GetFileName
AnalyseModulcDlg

ModType${ModCtr) = "NQO"
GctFileName
AnalyseModuleDlg

ModType${ModCtr) = "R"
GetFilcName
AnalyseModuleDlg

Case Else

End Select
Else 'Cancel button

Msg,Box "Not a list style"

ModC!r"' ModCtr- 1
End If

End Sub 'SelectModTypcDlg

100

" GetFileName

Sub GetFilcName
'Fills an array with the names of all tiles in the current directory. 'The instructions first count the files to
detem1inc the size of the 'array. Then they define the array, fill it
'with the filenames, and sort the clements. The array is then presented
'in a user-defined dialog box.

tempS = Files$("*.*")
Counter=- I
While temp$<> ""

Counter= Counter+ I
temp$= Files$(}

Wend
IfCountcr>-1 Then

Else

Dim list$(Counter)
list$(0) = Files$("*.*")
Fori= 1 To Counter

list$(i) =Files$()
Ncxti
SortArray list${)

MsgBox "No files in current directory."
End If

F i leN arne Dlg(List$())
End Sub

'**
•• FileNamcDlg(FileList$())
'***~··~·······

Sub FileNameDlg(Fi!eList$())
On Error Resume Next
Begin Dialog UscrDialog 440, 160, "Function Point Analysis"

Text 29, 8, 261, 13, "Select the text file to be analysed:"
Combo Box 29, 25, 380, 84, FileList$(), .FileList
OKButton 134, 123,88,21
Cance1But:on 248, 123, 88, 21

End Dialog
Dim dig As UserDialog
If Dialog(dig) Then

Else

End if
End Sub

ModName$(ModCtr) "'dlg.FileList

ModCtr = ModCtr ~ 1

···~··························~~·~································· ,,
ParseThisFilc(ThisFile$)

····~··~·····················*·····································
Sub ParscThisFilc(ThisFi!c$)
If Filcs${ThisFilc$) ... ~.""Then

FilcOpcn ThisFile$
Searc.hTheTablcs
FilcC!osc(2)

Else

101

End If
End Sub

••

MsgBox "File " + ThisFile$ + " not found."

SearchTheTables
•••
Sub SearchTheTab\es
'DETERMINE THE NUMBER OF POSSIBLE BASE TABLES.

Open "C:\TEMP\REPORT.DOC" For Output As #I
Print #I,"**** A LIST OF POSSIBLE BASE TABLES****"
Searchlt("B'', "Table", 1, "base tables")
Close #I

'DETERMINE THE NUMBER OF POSSIBLE TABLES REFERENCED.
Open "C:\TEMP\REPORT.DOC" For Append As #1
Print #I,"**"'* A LIST OF POSSIBLE TABLES****"
Searchlt("T", "From", 0, "tables referenced")
Close Ill

'DETERMINE THE NUMBER OF BASE TABLE COLUMNS.
Open "C:\TEMP\REPORT.DOC" For Append As# I
Print #I,"**** A LIST OF POSSIBLE BASE TABLE COLUMNS****"
Searchlt("BCOL", "Base Table Item True", 0, "base table columns")
Close Ill

'DETERMINE THE NUMBER OF COLUMNS REFERENCED.

End Sub

Open "C:\TEMP\REPORT.DOC" For Append As# I
Print #1, "**** A LIST OF POSSIBLE COLUMNS****"
Searchlt(''TCOL", "Select", 0, "columns referenced")
Close #I

••• .. SkipSpacesRight
•••
Sub SkipSpacesRight

'Skip spaces & CR
While (Asc(Selcction$()) = 13 Or Asc(Se\ection$0) = 9 Or Asc(Selcction$()) = 32)

CharRight 1, 0
Wend

End Sub

••• .. SkipS paces Left
•••
Sub SkipSpacesLeft

'Skip spaces & CR
CharLeft I, 0
While (Asc(Sclcction$()) = 13 Or Asc(Selcction$()) ""'9 Or Asc(Selection$()) = 32)

ChurLcft I, 0
Wend
CharRight I, 0

End Sub

•••
•• NamcWith_Symbol$
•••

102

------·"""~~--~ ----------

Function NameWith_Symbol$
'Assumes that the word is already selected.
Temp Word$= Selection$()
CharRightl, 0
While Selection$()= "_"

Temp Word$= Temp Word$+ Selection$()
CharRight 1, 0
SelectCurWord
Temp Word$= Temp Word$+ Selection$()
CharRight I, 0

Wend
WordLeft I. I
NameWith_Symbol$ =TempWord$

End Function

'"' ADuplicate$(PossTabName$)
•••
Function ADuplicate$(PossTabNamc$)
Dim NameLength

ADup$ = "Y"
NameLength = Lcn(L Trim$(RTrim$(PossTabName$)))
Open "C:\TEMP\REPORT.DOC" For Input As #1
Input # 1, name$
If name$="" Then

ADup$ = "N"
Goto Finish

End If
While LCase$(Left$(Name$,

LCase$(L Trim$(R Trim$(PossTabN a me$)))

Finish:

lfEof{l) Then
ADup$= "N"
Goto Finish

End If
Input fl I, Name$

Wend
ADup$ = "Y"

A Duplicate$= ADup$
Close# I

End Function'ADuplicate$

NameLength))

•••
" NotDuplicate(TcmpWord$)
•••
Function NotDuplicate(TcmpWord$)

Notoup = 0
Close# I

<>

If (TempWord$ <> Chr$(32) And ADuplicate$(TempWord$) = "N") Then'not blank nor
duplicate

Open "C:\TEMP\REPORT.DOC" For Append As #I
Print Ill, LCasc$(TcmpWord$)
NotDup =I
Close #1

End lrPrint table

103

NotDuplicate = NotDup
End Function

•• lsLastCollnStatement
•••
Function IsLastCollnStatement
'Assumes that the word is highlighted.

IsLas!= 0
WordRight I, 0
SkipSpacesRight
SelectCurWord
lf(UCasc$(Sclcction$()) ="FROM" Or UCase$(Selection$()) ="INTO") Then

Is Last= I
End lfis FROM
WordLeft I, 0
SkipSpacesLeft
WordLeft I, I
lsLastCollnStatement = lsLast

End Function

•••
•• UsesFunction
•••
Function UsesFunction
'Assumes that word is highlighted

UsesFn = 0
CharRight I, 0
SkipSpaccsRight
If Selection$()="(" Then

UsesFn =I
End if
SkipSpacesLcft
WordLeft 1, I
UsesFunction = UsesFn

End Function

·············*··· .. ReferenceColumns
•••
Function ReferenceColumns
'Assumes that the word to the right of "select" is highlighted.
NotColumn$ """' "COUNT"
leave loop= 0
TempCols = 0
lflnStr(NotColumn$, UCasc$(Selection$())) <> 0 Then
'eg,. neglect: select count(*) from emp;

LcavcLoop = I
End If
While Leave loop= 0

CharRight l, 0
SkipSpacesRight
If Selection$()"""," Or Selection$()="_" Then

'cg. select id_numbcr, name from emp;
SkipSpaccsLcft

104

WordLeft I, I
Temp Word$= NameWith_Symbol$
Close #I
lfUsesFunction = I Then
'eg. select to_ date(to _char(...)) ..

Else

CharRight I, 0
SkipSpacesRight
Goto UsesF•!:..:ii!:'-!1

LeaveLoop = IsLastCollnStatement
IfNotDuplicate(TcmpWord$) = I Then

TcmpCo(s = TempCols + I
Endlf
CharRight I, G
SkipSpacesRight
WordRight I
SclectCurWord

End IrofUsesFunction
ElselfSelection$() ="."Then

'eg. select c.idnumbcr from emp e;
CharRight I, 0
WordRight I, I
Temp Word$= NameWith_Symbol$
Close #I
LeaveLoop = lsLllstCollnStatement
lfNotDunlicate(TempWord$) = I Then

TempCols = TempCols + I
End If
CharRight I, 0
SkipSpaccsRight
WordRight I
SelectCurWord

Elself Selection$()="(" Then
UsesFunction:

'cg. selcctltrim(rtrim(namc)) ffO''fl emp;
OpenBracketCounter = I
CharRight 1, 0
While Selection$()<>")"

lfSc(cction$() ="("Then
OpcnBracketCounter = OpenBracketCounter + I

Wend

End If
CharRight I, 0

EditFind .Find="{", .Direction = I, .MatchCase = 0, .Whole Word= I, .PattemMatch
= 0, .SoundsLike = 0, .Fom1at = 0, .Wrap= 0

If EditFindFound() <> 0 Then
CharRight I, 0
SkipSpaccsRight

'Ensure it is not a form field eg :id_number
lfSelcction$0 =":"Then

CharRight I, 0
End If

'Check for alias eg. cmp.id_number
WordRight I, 0
lfSe!cction$() ="."Then

105

Else

End If

CharRight I, 0
SkipSpacesRight

WordLeft 1, 0

SelectCurWord
Temp Word$= NameWith_Symbol$
Close #I
IfNotDuplicate(TempWord$) =I Then

TempCols = TempCols + I
End if

'Check if this is the last column in statement
CharRight I, 0
For CloseBracketCounter = 1 To OpenBracketCounter

EditFind .Find= ")", .Direction= 0, .MatchCase = 0, .Whole Word=
1, .PattemMatch = 0, .SoundsLike = 0, .Fonnat = 0, . Wrap= 0

"INTO") Then

Else

End If

If EditFindFound() <> 0 Thc.1
CharRight I, 0

Else
LeavcLoop = I
MsgBox "Query statement contains a syntax. error,"

End If
Next CloseBracketCounter

SkipSpacesRight
If (UCase$(Selection$()) = "F" Or UCase$(Selcction$()) ="!'')Then

SelectCurWord
If (UCasc$(Selection$()) = "FROM" Or UCasc$(Selection$()) =

LcaveLoop = I
End If
CharLeft I, 0

End Ifis FROM
WordRight I, 0
SkipSpacesRight
WordRight I, 0
SkipSpaccsRight
CharLcft 1, 0

MsgBox. "Error searching for open bracket."
LeaveLoop = I

Elself(UCase$(Selcction$()) = "F" Or UCasc$(Selection$()) ="I") Then
'Ensure that it is the word "FROM" or "INTO"
SclcctCurWord
lf(UCase$(Selcction$()) ="FROM" Or UCasc$(Selection$()) ="INTO") Then

CharLcft 2, 0
SkipSpaccsLcft
SclcctCurWord
TempWord$ ~ NameWith_Syrnbol$
Close ff I
lfNotDuplicatc(TcmpWord$) =I Then

TempCols = TcmpCols + I
End If

106

LeaveLoop = l
End If

Else
'most likely not a proper select statement.

Leaveloop :=o I
End If

Wend
ReferenceColumns = TempCols
End Function

.. DetermineComplexity(ThisModType$)
•••
Sub DetemtineComplexity(ThisModType$)
'called from Search it.
'This proc detennines the complexity rating of Low, Average, or High
'for a component.

Select Case ThisModType$

Output= LO

Output== AV

Output= LO

Output== AV

Output= HI

Output== AV

Output= HI

Case "R" 'External Outputs
Select Case NumB

Case 0 To I
Select Case NumBCo\

Case 0
Case I To 19

EO(I)~ EO(I)+ I

Case Else

End Select
Case2To3

E0(2) ~ E0(2) + I

Select Case NumBCol
Case 0
Case 1 To 5

EO(I)~ EO(!)+ I

Case6To 19
E0(2) ~ E0(2) + I

Case Else

End Select
Case Else

EO(J) o E0(3) + I

Select Case NumBCol
Case 0
Case I To 5

E0(2) -~ E0(2) + I

Case Else
E0(3) ~ E0(3) + I

End Select
End Select

Case "NQO" 'External Inputs

107

'External

'External

'External

'External

'External

'External

'External

Inquiry= LO

Inquiry= AV

Inquiry= L9

Inquiry= AV

Inquiry,., HI

Select Case NumB
CaseOTo l

Case 2

Select Case NumBCol
CascO
Case I To 15

EI(l)=EI(l)+ I 'ExtemaiOutput=LO
Case Else

EI(2) = El(2) + I 'External Output = A V
End Select

Select Case NumBCol
Case 0
Case 1 To4

El(1) = El(1) +I 'External Output= LO
Case5To 15

EI(2) = El(2) + 1 'External Output= AV
Case Else

El(3) = El(3) + I 'External Output= HI
End Select

Case Else
Select Case NumBCol

ca~eo

Case 1 To4
El(2) = El(2) + I 'External Output= AV

Case Else
EI(3) = El(3) + I 'External Output= HI

End Select
End Select

Case "QO" 'External inquiries
Select Case NumB

Case 0 To l

Case 2

Select Case NumBCol
CascO
Case I To 15

EQ(I) ~ EQ(I) +I

Case Else
EQ(2) ~ EQ(2) + I

End Select

Select Case NumBCol
CascO
Case 1 To 4

EQ(I) ~ EQ(I) +I

Case 5 To 15
EQ(2) ~ EQ(2) + I

Case Else
EQ(J) ~ EQ(J) + I

End Select
Case Else

Select Case NumBCol

108

'External

'External

'External

'External

'External

Inquiry= AV

Inquiry= HI

End Sub

End Select
Case Else

EO(I)~-2

End Select

CascO
Case1To4

EQ(2) ~ EQ(2) + I

Case Else
EQ(3) ~ EQ(3) + I

End Select

•••
•• Searchlt(ltemType$, WordToSearch$, MatchTheCase, Searchitem$)

·······································~···························
Sub Searchlt(ltemType$, WordToSearch$, MatchTheCase, Scarchltem$)

LeaveSearchloop"" 0
StoredLineNumber"'- 3
Commented Line$= "--,!*"

'External

'External

SpeciaiChar$ = Chr$(9) + Chr$(11) + Chr$(32) + Chr$(34) + Chr$(40) + Chr$(41) + Chr$(58)
+ Chr$(59) + Chr$(60) + Chr$(62) + Chr$(160)

NotTable$ ="FROM, ITEM, NULL, DUAL, THE, THIS, AND, NAME);"+ SpecialChar$
EndOfDocument
InsertChr$(13) + WordToSearch$ +" ENDOFDOCUMENTSYMBOL"
StartOIDocument
While LeaveSearchloop = 0

EditFind .Find= WordToSearch$, .Direction= 0, .MatchCase = MatchTheCase,
. Whole Word= I, .PatternMatch = 0, .Sounds Like= 0, .Fonnat =

0, .Wrap= 0
lfEditFindFound{) <> 0 Then

IfSellnfo(IO) <> StoredLineNumber Then
'ic. if there are >2 WordToSearch$ words in one line

StartOfLine
CharRight I, I

Wend

While L Trim$(Selection${)) = ""

CharRight I, I

CharRight I, 1
StoredLineNumbcr = Se\Info(IO)
lflnStr(CommentedLinc$, LTrim$(Selection$())) <> 0 Then

LineDown
Goto EndOfl.oopLabel

Else
StartOfLine
EditFind .Find = WordToScarch$, .Direction = 0,

.MatchCase = MatchThcCase, .WholeWord = \, .PattcrnMatch = 0, .SoundsLike = 0, ,Format= 0,

.Wrap= 0
End IrCommentcd Line

End lfSellnfo

CharRight I, 0
SkipSpaccsRight
SclectCurWorcl

109

If Selection$()== "ENDOFDOCUMENTSYMBOL" Then
EditReplace .Find WordToSearch$ + "

ENDOFDOCUMENTSYMBOL", .Replace '=" '"', .Direction == I, .MatchCase ""' I, .WholeWord = I,
.PattemMatch = 0, .SoundsLike == 0, .ReplaceOne, .Format= 0, .Wrap= I

Else

EditClear- 2
LeaveSearchloop = I

If Item Type$= "BCOL" Then
CharRight I

EditFind .Find= "Name ",.Direction= I, .MatchCase = l,
.Whole Word= I, .PattemMatch = 0, .SoundsLike = 0, .Format= 0, .Wrap"" 0

WordRight I, 0
Se\ectCurWord

End If

lfltemType$ = "TCOL" Then

Else

Counter= ReferenceColumns +Counter

CharRight I, 0
SkipSpacesRight

lflnStr(NotTable$, UCase$(Sclection$())) = 0 Then

Else

If Selection$() = Chr$(13) Then'Carriage return
CharRight I, 0
SelectCurWord

Endlf
Temp Word$= Selection$()
CharRight I, 0
While Selection${)="_"

Temp Word$= Temp Word$+"_"
CharRight I, 0
Se\ectCurWord
Temp Word$= Temp Word$+ Selection$()
CharRight I, 0

Wend
Close# I
lfNotDuplicate(TempWord$) = 1 Then

Counter= Counter + I
End if

CharRight I, 0
End IPNot table

End If'TCOL
End If'EndOffiocSymbol

EndOfLoopLabel:
End If'EditFindFound

If Item Type$= "BCOL" Then
Cha;Right I

EditFind .Find= WordToSearch$, .Direction == 0, .MatchCase = MatchTheCase, .WholeWord = 1,
.PattemMatch = 0 •. Sounds Like= 0, .Fommt = 0, .Wrap= 0

End If

Wend

II 0

,,

Close #I
Select Case Item Type$

Case "T" 'Tables referenced in select statements.
NumT = NumT + Counter

Case "TCOL "'Columns referenced in select statements.
NumCol = NumCol +Counter

Case "B"
NumB= NumB+ Counter

Case "BCOL"
NumBCol ""NumBCol +Counter

End Select

Open "C:\TEMP\REPORT.DOC" For Append As #I
Print #I, "COUNT= "+ Str$(Counter) + Chr$(13) + Chr$(13) + Chr$(13)
Close #I

End Sub'Searchll

Ill

- _, _ .. _;. '\ ,._,. ~"-'-~---····- .. -·-----~---~-~---- ---------------------'- - -- -·------····---=·. ow<o«G ULX>l''" ,

	An Investigation Into an Effective Method of Automatically Analysing Oracle Applications to Count Function Points
	Recommended Citation

