Metadata, citation and similar papers at core.ac.uk

Provided by Research Online @ ECU

Edith Cowan University
Research Online

Theses : Honours Theses

1996

An Investigation Into an Effective Method of Automatically
Analysing Oracle Applications to Count Function Points

J. L. Wong
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses_hons

b Part of the Software Engineering Commons

Recommended Citation
Wong, J. L. (1996). An Investigation Into an Effective Method of Automatically Analysing Oracle
Applications to Count Function Points. https://ro.ecu.edu.au/theses_hons/708

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses_hons/708

https://core.ac.uk/display/41536992?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses_hons
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses_hons?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F708&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F708&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses_hons/708

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose
of your own research or study.

The University does not authorize you to copy, communicate or
otherwise make available electronically to any other person any
copyright material contained on this site.

You are reminded of the following:

e Copyright owners are entitled to take legal action against persons
who infringe their copyright.

e A reproduction of material that is protected by copyright may be a
copyright infringement. Where the reproduction of such material is
done without attribution of authorship, with false attribution of
authorship or the authorship is treated in a derogatory manner,
this may be a breach of the author’s moral rights contained in Part
IX of the Copyright Act 1968 (Cth).

e Courts have the power to impose a wide range of civil and criminal
sanctions for infringement of copyright, infringement of moral
rights and other offences under the Copyright Act 1968 (Cth).
Higher penalties may apply, and higher damages may be awarded,
for offences and infringements involving the conversion of material
into digital or electronic form.

AN INVESTIGATION INTO AN EFFECTIVE METHOD OF
AUTOMATICALLY ANALYSING ORACLE APELICATIONS TO

COUNT FUNCTION POINTS

BY

J.L.Wong

A Thesis Submitted in Partial Fulfilment of the

Requirements for the Award of
Bachelor of Science (Computer Science) Honours
at the
Faculty of Science, Technology and Engineering

Edith Cowan University

Date of Submission: June 1996

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

Abstract

Function Point Analysis (FPA) is a synthetic software estimation metric used for
computing the size and complexity of applications. It was first introduced by
Allan.} Albrecht during (he mid-seventies, as a result of a lengthy research based
on applications that were developed using COBOL and PL/1 programming
languages.

The purpose of this research-is to investigate the possibility, and the most effective
method, of automatically performing a Function Point Analysis on Oracle
applications that consist of Oracle Forms and Oracle Reports.

The research revealed a seemingly lack of other researches on this topic. As FPA
was invented a few ycars prior wo the birth of Orucle, and consequently that of
fourth-generation languages, it had to be tailored to suit the fourth-generation
language Oracle tools used to develop the Oracle applications. This experiment
provided a proof of concept and resulted in a software that achieved its objective
of automatically calculating Oracle applications, consisting of Oracle Forms and

Qracle Reports, in an a posteriori manner.

1 certify that this thesis does not incorporate, without acknowledgment, any
material previously submitted for a degree or diploma in any institution of higher
education and that, to the best of my knowledge and belief, it does not contain any
material previously published or written by another person except where due

reference is made in the text.

Signature...
ignature v o

Date\&nbﬁcﬂ’

Acknowledgments

There are a number of people who have contributed to this research and to whom I am deeply

grateful. In particular, I thank:

Dr Ken Mullin, my supervisor, for his valuable time in providing the continual guidance,

encouragement, support, and feedback. His support ltas been invaluable,

Dr Thomas O’Neill, the Honours co-ordinator, for assisting with the formalities, getting the

honours research rolling, and for being efficient thus reducing any unnecessary delays.

Assoc. Prof. Robert Cross for reviewing and approving the initial thesis proposal and for

providing valuable feedback.

Oracle, the world’s leading supplier of information management software, for expanding my

knowledge in an extremely dynamic field and for providing research material.
My family for bringing me thus far and tcaching me the values of life.

My fiance, Ronnie, for his love, motivation, support and for the inspiration to accept

challenges.
God and the ever presence of the Holy Spirit.

And to all whom [have met along the way...

In Memory of

DAD

Table of Contents

CHAPTER | INTRODUCTION. ..o ccinaiiinincsissnsssens .7
FHRCHOR POINE ARGIYSIS........ctivtiiiiiet et ittas st ettt tst e e b s ast st e e besssstan b st anranpebtatatases 7
ReSearrcht QBJECHive.........cciiiicniece sttt bbbt pas st e b b e e b e bebs et s rpsbenbesbs ettt i3
Problem QUESHON...........ccov ittt iris st v st e sast b aa e e v e e e sk sare e s e snta s bnasanaren 4

CHAPTER 2: REVIEW OF THE LITERATURE.........covunrrvvrrrnrmsniesseannens w15
FPA QRA QFACIC........coc ottt sttt e s s bt eb Sh e s st 20

CHAPTER 3;: METHODOLOGY OF RESEARCH ...t sssssssissssnnns 21

CHAPTER 4: FP COUNTING IN RELATION TO ORACLE APPLICATIONS ...ciecrnrviirinsrerneenee 22
Steps to manually calculate Functive Points in Oracle applications.........ovevencnnines i, 22

CHAPTER 5: FP COUNTING IN RELATION TO ORACLE APPLICATIONS
The Inprt / IRGUINY diSHNCHOM oottt ees e s s e 28
Categoris@lion OF LOVS........covoiiitineni s st iiniessa e s e s rasssa a4t srme gt g nmes s pensasbnsion 30
Internal Logical Files & External IHErface Filascoiiiicsiiiniiciensessseesmsssresees 32

CHAPTER 6: ANALYSE THE STRUCTURE OF ORACLE FORMS & REPORTScceevcieinn 34
FEOFIS .o b e e b e et 34
REDOFIS. ..ot ccetiticrer ettt e st bt st ras e e s i e o s R st b oo sttt ar s e e s 35

Cuarter 7: LIST & EVALUATE POSSIBLE AUTOMATIC COUNTING METHODS 37
METHOD 1: Using Designer/2000 (CASE] ..ot s stssneesn i srss st srness e s sesasns 37
ABVARIGOS et e e e b s s e s s et sr S bes s m b roese sea s e et g sbeseocnee 38
Disadvantages et eeaebeeeseeeerEriEeseesseieeEnatiransante e e e LS AL e Y e e tanpetbe R AEe TR ae e ep Rt eate e e nbeesnebesrsan s 38
METHOD 2: Using SOL*PINS ottt s s sb st e e sb s s 39
ABVEIGZES oottt b e hes e bbb e e am bt bt dea st s 39
DUSAAVAIGEES (oo oottt e s ettt e e £ e e easr TR b b aean 40
METHOD 3: Parsing the text files of Oracle Forms & Oracle Reports,.......coeoeiincccncpennnan. 40

AGVARIAGES oottt s s e e s m s e e A s s e e e e s
Drsadvantages
CHOICE af Method........covoiiniiniiininann i
Determination of a Suitable Language for Parsing...........ccccovverreermriserecsrnen:

CHAPTER 8: DESIGN AN AUTOMATIC COUNTING METHOD '

- ISSUES WITH IMPLEMENTATIONoccovnrnrecrenrirenes
Software Reqmremen!
LAPGE FHE SiZC..vurivvivariosssseres i sssssssssssssss s sssssssss s st s asssss s eaas s bbb b ebes st et 00
Truncation of Generated Document..........c.occvennin, 4L LYY e e daaen s e

CHAPTER 9: DESIGN AN AUTOMATIC COUNTING METHOD .

- THE COMPLEXITY DETERMINATION PROCESS FOR ORACLE APPLICATIONS
External Inputs (E!}
External Qutpts (EQ).......ooueveriecicensirrenssossagsessstsssesessss
External Inguiry (EQ)
Internal Logical Files (ILF)
EXternal IEIFICE Fies (EIF) ..covvvvarnreiesies oot sars et essssissessstsasesssssssans s ossssssastasssomssssssssasasssss

CHAPTER lb: DESIGN AN AUTOMATIC COUNTING METHOD...........cieiis

= THE PARSING PROCESS wccccovcrrurcrsssmmmanssesmmrssssess s sessmmssessosssssessssesssessessacsessmsmionssoressssees
Base Tables RefEronced... ... o e e sassass sassansssns e retes
Base Table Calumns Refereuced
Non- Base Tables and Columns Referenced............cciiiccn s e
ERRGRHCOIMIEIIS. ..o ivvrveseee it sasini et bbb bbb baa bbb SRS SRR sb e st s

CHAPTER 11: THE DESIGN ...ociciinisiininiis

CHAPTER 12; RESULTS & CONCLUSIONS ... rerecessearsencneesosesbse s e sesesbeestat st smeraes

REFERENCES.......coiecismirensressnssisonsns

APPENDIX A: FPA REMORTS GENERATED BY DESIGNER/2000 ...vviriviiniiinnariinivinn

APPENDIX B: THE SQL SELECT STATEMENT .oovvii sttt it st snssnssinsis s s resess

41

v 41

veessenes 41

w42

w43

43

e 44

45

46

46

e 47

48

48

49

worens 31

51

51

32

32

35

veees 36

.58

v 60

werirnes 83

.87

APPENDIX C: DESIGN OF FUNCTION POINT COUNTING SOFTWARE....ovsvnsrerrmrarararens SUTSTURTOUORIG . .

APPENDIX D: A SAMPLE FPA REPORT PRODUCED........cccevviririirns . 89

APPENDIX E: SOURCE CODE FOR THE FUNCTION POINT COUNTING SOFTWARE. .cccivvrinrasracsensasnmmsesses .90

Chapter 1: INTRODUCTION

This paper documents the outcome of research into the use of Functidn Point Analysis (FPA})
to evaluate those applications that have been developed through the use of a group of tools
manufactured by Oracle Corporation. This introduction consists of the theory behind Function
Point Analysis (FPA) and its history of usage from the beginning to the present time.
Following this account, a review of the current literature relating to the theory of FPA, and its
practices, especially as related to Oracle applications is surveyed. The next section
concentrates on the preparation of an effective method to automatically analyse Cracle
applications using FPA. This will involve an analytical discussion of the possible methods for
implementing the automated analyser and the issues relating to this implementation.. Finally,
the results of the implementation will be presented, and an appropriate conclusion will be

drawn from these results,

Function Point Analysis

Function Point Analysis (FPA) is a synthetic software estimation metric used for computing
the size and complexity of applications. It is a measure of the functionality of an application,
as perceived by the user. Since its birth to the IT indusiry, FPA has been successfully adopted
by a number of large organisations (Heemstra, 1991) who varied the metric slightly to better
suit their environment. The popularity of FPA has continued to grow steadily since the
seventies and has become the predominant estimation method used in the 1T industry. There

‘are now many large databases of completed projects and their function point counts. (Weaver,

1989)

FPA was first introduced by Allan.J.Albrecht {IBM, 1975) during the mid-seventies, as a
result of lengthy research on applications that were developed using COBOL and PL/1
programming languages (Ferens, 1992). The inspiration for his research was to originate an
alternative method to the traditional Source Lines of Code (SLOC) metric which was
prevalent, but seemingly inadequate, at the time. FPA was to be used as a more substantial

metric to estimate the cost and effort required to complete an application.

Using the original FPA metric, the estimate of the cost and effort required for software
development was derive& from a calculation of the number of furnction points associated with
the application to be sized. This function point value was calculated based on two groups of
parameters that were deemed from the user’s perspective to be influential on the estimate:

1. The application attributes and

2. The environmental factors

The five attributes relating to the program to be estimated, which have been identified by
Albrecht are:

¢ the number of external input types (El)

o the number of external output types (FO)

o the number of external inquiry types (EQ)

» the number of internal logical files (ILF) and

s the number of external interface files (EIF) .

This first equation assumes that all the attributes have an“average” rating and is computed as
follows:

BFP =4EI + 5EC + 10ILF + 7EIF + 4EQ

where BFP is the “Basic Function Points”, {Behrens as cited by Ferens)

“To refine the estimation technique further, Albrecht proposed two areas of enhancements.
Firstly, each item belonging to an attribute is classified as having“low”, “average”, or “high”
complexity and then an appropriate weighting is assigned. For example, when examining the

External Input component, the level of complexity would be determined using the following

table:
DET (# columns) i-4 5-15 16+
FTR (# tables)
0-1 Low Low Averape
2 Low Average High
3+ Average High High
Table 1

Note that the Data Element Type (DET) refers to the number of attributes/columns used by the
hlodule and the File Type Referenced (FTR) is “counted for each entity, table or file” used by

the module. (Oracle, 1995)

The table shows that an EI module with five to fifteen data element types has a/ow level of
complexity if it contains zero to one file type referenced, an average level of complexity if it
contains two FTR, and Aigh complexity if it contains more that three FTR. In relation to
Oracle applications, the number of FTR maps to a count of the number of relevant tables, and
the number of DETs maps to the associated table columns referenced. A detailed discussion

is provided in the next chapter.

Using the complexity rating, the weighting for each of these application components can be

obtained by referring to the following table (Ferens, 1992),

Attribute Low Average High

Inputs (EI) 3 4 6

Qutputs (EQ) 4 5 7

Data Files (1LF) 7 10 15

Interfaces (EIF) 5 7 10

Inquiries (EQ) 3 4 6
Tahle 2

This results in the “Unadjusted Functicn Points” (UFP).

Once the environmental factors are applied to the UFP, the final adjusted function points (FP)

will be obtained. The adjusted function points is obtained by summing up the ratings of the

environmental factors, totalling to fourteen different characteristics, which results in a value

known as the “total degree of influence” (TDI),

The fourteen characteristics comprising the group of environmental factors, with definitions

prov_ided by Dreger (1989, pp.63-4), are listed as follows:

I. Data Communications - “means that data or control information used in the application is

sent or received over data communication facilities - including not only various networks,

concentrators, multiplexers,and private lines, but also the terminals locally connected. On-

line systems will always have at least some data communication influence.”

2. Distributea Data/Processing - “indicates the application uses data stored, accessed, or

processed on a storage or processing system other than the one used in the main program

10

routines. Note that presence of this factor increases the data communications influence
previously defined.”
Performance Objectives - “influence system design, development, implementation, and
support when specific, user-approved demands for exceptionally high .throughput or fast
response times have been made.”
Heavily-Used Configuration - “this factor is especially important to a user already lacking
computer cépacity but uynable to purchase or acquire more hardware or upgraded
software,” |
Transaction Rate - “a high transaction rate can occur when the network consists of 'many
data entry or inquiry terminals, when each screen transmitted contains a lot of input
infofmation, or when the frequency of screen transmission is high.”
On-Line Data Entry - “(including control and security functions) are always more difficult
to accommodate than similar batch systems; hardware, application software, and operating
system software are all affected by the additional requirements of an on-line system.”
End-Use Efficiency - “human-factor features..designed to increase the level of “user-
friendliness” and include such things as conventional data entry (requiring multiple
sequenced screens), help screens, “next format” fields, paging capabilities, more
descriptive documentation (including users manuals and “learner-friendly” training
materials), second-language input/output screens and messages, and additional edit, error,
and exception handling routines.”
On-Line Update - “as are on-line inquiry and data entry more difficult than batch, so is on-
line update of files and data sets more difficult because of the short turnaround time and its

widespread effects on all system design components,”

1l

10.

11.

12,

13,

14,

Complex Processing - “refers to the situation in which an application requires substantially
greater than average difficult in input or output processing; in logic file, or numeric
manipulation; or in exception handling routines.”

Reusability - “refers to the sitvation in which some of an application’s routines,
subroutines, or other procedures have been designed or written with vses in mind other
than just the program under evaluation.”

Conversion/ Installation Ease - “increases the difficulty of application development but
reduces the number and severity of problems in testing and implementation.”

Operational Ease -.“is not the same as end user efficiency.” The purpose of this factor is
“to provide eff‘ective but easy startup, backup, error recovery, and shutdown procedures,
and to minimize such manual activities as mounting tapes or special forms, handling
paper, or responding to requesis for information at the operator console.”

Multiple Site Use - “when the application has been specifically designed, developed, and
supported for installation at multiple sites, for multiple organizations, additional co-
ordinz;tion, review, and approval is required even if no site-unique code needs to be
written.”

Facilitate Change - “when the application has been specifically designed, developed, and
supported to facilifate change, it requires increased attention to and planning for future

maintcnance and modification needs.”

Based on the degree of influence that one expects from each of the characteristics, a rating of 0

(no influence) to 5 (highly influential), with an average influence rating of 3, is performed,

preferably by the system user. Dreger (1989) suggests the inclusion only of those factors that:

(13

clearly benefit the user,

12

s are specificaily approved by the user, and
influence to a measurable degree the design, development, implementation, or support of an

application,”

Once the ratings of the fourteen characteristics have been summed to derive the TDI, the
following equation is used to compute the adjusted function points. Note that the TDI can

alter the UFP by up to 35% in either direction,
FP=UFP * (0.65 + .01 * TDI)

Function points were derived as a means of assessing the functionality of an application.
Subsequent research (Ferens et al, 1992; Kansala & Kitchenham, 1993) showed the measure to
correlate well with the effort required to develop the application, provided development
environment and individual skills were similar, Thus FPs are a useful measure of effort as

well as functionality.

Research Objective

The objective of this research is to investigate how FPA can be tailored to count the number of
function points in given Oracle applications that have been developed using Oracle Forms
“andf'or Oracle Reports. Once the investigation has been completed, and a clear plan has been
dev;ised, an application will be developed for the automatic calculation of function pdints fora
given Oracle application. The resulting application will serve as a highly useful tool for its
.users. In particular, it |

o - Will eliminate “laborious hand counting of function points.” (Internet: Funcnet)

s Will provide a consistent means of estimating the size of different Oracle applications.
(Low, 1990)
» Wil be independent of the technology that has been used fof its development.

e Wil enable lecturers to assess the effort that went into student Oracle projects,

Note that to sa'tisfy the final point, the resuiting application will be required to execute a
function point analysis in an “a posteriori,” that is, after the system development phase.

(Hignite, Johnson, Foster, 1993).

Upon completion, this will be one of the few pieces of research that focuses on the usage of

FPA to automatically count the number of function points in an Oracle application.

Problem Question

The research question pertaining to this project is as follows:

What is a wost effective way of automatically cnuﬂting the function points

in an Oracle application eonsisting of forms and reports?

Chapter 2: REVIEW OF THE LITERATURE

Prior to the invention of Function Point Analysis (FPA), the primary software estimation

metric used was the Source Lines of Code (SLOC) metric. The major drawback with this

metric is that it does not measure software produotivify, which the standard economic
definition describes as, “Goods or services produced per unit of labor and expense.” Relating
to this economic definition, the SLOC metric fails to measure software productivity due to the

following reasons (Jones, p.45):

1} Lines of code are neither ‘goods’ nor “services’. Thus, measuring the lines of code does
not provide a good measurement of software productivity.

2) Lines of code are not the primary deliverable for customers, Customers are not
concerned with the number of lines that comprise a compieted piece of software, nor are
they interested in the programming language used for the source code. In fact, if a piece
.of software could be developed in a higher-level language, thus generating less code in the
final product to provide cost reduction benefits, it would serve as a preferréd option, from

the customer’s point of view.

The deficiency in the SLOC metric inspired the emergence of the Function Point metric. The
function point computation is based on those components deemed as important, or of interest,
to the customers, and qualify as a quantifying characteristic of the term. “goods’ that exists in

the economic definition of productivity.

Since its emergence, a number of research projects have been conducted on FPA, focussing on

the comparison to SLOC, with favourable outcomes. As an example, research performed by

Kremer {1987), revealed that the two function point models used, ESTIMACS and an
Altrecht-derived model, produced estimates that were much more accurate than the two
SLOC-based models, PRICE-S and SLIM. The research was based on the comparison of the

estimated figures with the actual effort of fifteen, mostly COBOL, applications.

This observation is supperted by similar research, conducted by Low & Jeffery (1990), on
COBOL and PL/1 business programs which indicated that the function point metric was a
more consistent size estimator than the SLOC metric. The function points counted correlated

with the effort. This makes FPA a good estimating tool. (Ferens, 1992)

Although many authors, such as (Yau, 1995) , (Tsoi, 1995), and (Heemstra, 1991), agree that
FPA is widely used and is also a successful method (Betteridge, 1993) for software estimation,
a number of significant issues and possibie areas of improvement also exist and should be
addressed. These areas include:

1) The need for an easier method of defining and counting the application components, One
of the major obstacles associated with counting the number of function points within a
program is the identification and calculation of the number of inputs, outputs, data files,

- inquiries, and interface files. A variation of the original Albrecht’s FPA is Mark 17
Function Points which was deveioped by Symons (Symons, 1988). It attempts to
simplify the original method of FPA by using only three of the program attributes, namely
the inputs, the outputs, and the entity references of each logical transaction (Betteridge,
1992). Ferens explains that the absent attributes can be neglected since the “external
interfaces and inquiries are treated as inputs or outputs, and internal files are ‘replaced’ by

a measure of entity types referenced by transactions.”

2) A need to ascertain the accuracy of estimation models using function points. Rask,

3)

Laamanen, and Lyytinen (1993, p.661) stated that “the quality of a cost estimate is a
function of how it compares with the actual result.” The observation made by Ferens
(p.635) on Kremer's study involving the application of the function point models
ESTIMACS and an Albrecht-derived model on fifteen {mostly COBOL) programs
revealed that “for even the most accurate model, ESTIMACS, the estimates averaged
85% higher than actual levels of effort.” However, Ferens® own study of applying three
FP models, the SPANS (Tecelote Software Program Acquisition Network Simulation)
model by Tecelote Research Inc., the Checkpoint model by Software Productivity
Research, and the Costar model by Softstar Systems, to estimate thirty-six (mostly
COBOL) business programs appeared to indicate that the “calibration of models, or
adjusting models to a particular environment, appears to be a worthwhile endeavour if
greater accuracy is sought,” This is confirmed by Betteridge’s (1992) study which
compared the results derived from an FPA method, with the managers’ estimates and the
actual expenditure. Betteridge (1992) concluded that “the results give some cause for
optimism in the use of the function point model that was used (Mark IT).”

FPA requires an assessor, commonly the main user(s), to rate a set of 14 general system
characteristics. These characteristics, including Reusability, Facilitate Change,
Performance, are all subjective elements. Even though these subjective elements are used
in FPA, the result given does not show the siatistical confidence interval, that is the
assessor’s confidence level of the general system characteristics being rated .subjectively.
To overcome this inability to assess the confidence level of the estimate, Tsoi & Yau

(1995) introduced fuzzy logic to the FPA model, that is, a “fuzzified FPA™ (FFI;A).

The FFPA method, proposed by Tsoi et al (1995), is based on the traditional FPA. The
contrast lies in the determination of the Technical Complexity Factor which is derived
from an evaluation of the ratings given to the fourteen genefal systemn characteristics.

The fourteen general system characteristics are rated not only on a score of 0 (no
influence) to 5 (Highly influential), as exists in the traditional FPA, but also on the
assessor’s linguistic degree of certainty rating of Aimost Certain, Very Likely, Probably,
Unlikely, and Extreme Unlikely. For example, an FFPA assessor may give an estimate of
“Very Likely 37 to the Performance system characteristic and “Unlikely 17 to the
Reusability system characteristic.

For each of the estimates given by an FFPA assessor, an Fuzzified score for General

System Characteristics (GSC) can be obtained by referring to the following table (Tsoi et

al, 1995).
Scorel Score 1 Score 2 Score 3 Score 4 Score 5
Very from 0 from 0.75 | from 1.75 | from 2.75 | from 3.73 | from 4.75
Likely to 0.25 to 1.25 to0 2.25 t0 3.25 to 4.25 to 5
Probably | from 0 from0.5 |from1.5 |from25 |from3.5 |[from4.5
to 0.5 to 1.5 t0 2.5 to 3.5 to 4.5 to5
Uniikely | from 0.75 | from 0 from 0 from 0 from 0 from 0
to 5 to 1.75; to 1.2; 102.25; t0 3.25; to 4.25;
from 1.75 | from 3.75 | from 3.75 | from 4.75
to 5 to 3 105 to5
Extreme | from | from 0 from 0 from 0 from 0
Unlikely [to 5 from 2; to 1; to 2; to 3; to 4
10§ from 3 from 4
to 5 to 5

Table 3 : Fuzzified Score for GSC

The final Fuzzified FPA count will consist of a range of values, to reflect the confidence

level. The following is an example give by Tsoi et al (1995) to illustrate the calculation

performed using FFPA to derive the FP count: =

18

_4)

5)

TCF (FPA) = 0.65+(0.01 *48)=1.13

TCFmintFuzzified FPA) = 0.65 + (0.01 * 44) = 1.09

TCF pax(Fuzzified FPA) == (.65 + (0.01 * 51,5) = 1.165

Function Point Computed (FP):

FP (FPA)=211*1.13 =238.43

FPin(Fuzzified FPA) =211 * 1.09 = 230

FPmax(Fuzzified FPA) =211 * 1.165 =245 815
As Tsoi et al (1995) explains, “it has been expected that the FPA result falls in the range
of the FFPA result, from 230 to 245.815. There is around 8% difference of DI (Degree of
Influence) between the two models.”
Tsoi et al (1995) concludes that the estimates provided by this Fuzzified version of FPA
“have been found more informative than the conventional FPA” and that “the range of
estimates allows the project management to conduct contingency planning more
effectively.”
Estimation of fourth generation (4G) applications. Since FPA was invented prior to the
existence of 4G languages, there may be possible areas of improvement to accommodate

for 4G applications. An investigation carried out by Van Wonderen (1991) revealed that

“improvements are necessary, particularly for the estimation of interactive 4th-generation

.language applications.,” This issue is particularly relevant to this research, as the

applications to be automatically function point counted are developed using Oracle Forms
and/or Oracle Reports which are considered to be 4G development tools. The issues
relating to the usage of FPA to 4GLs and Oracle applications will be cﬁvered in a later
chapter,

FPA is not readily adaptable to real-time, scientific environmenfs. Jon.es (p.76), as cited
By (Alford, 1991), expiains that FPA *is not widely used for real time systems, military

systems, or any other kind of software where algorithmic complexity is high and data

| complexity is low.” Inspired by this, Jones proposed an adaptation of fanction points,

known as Feature Points, to allow for the real-time environment, Feature Points uses the

I9

five attributes proposed by Albrecht. The differences between the two metric concepts lie
in the different weightings assigned to the internal file attribute, and also in the new
| attribute, algorithmic complexity (A), introduced in Feature Points. The new equation for
the Basic Feature Points (BFEA) is
BFEA =4EI+5EOQ + 7ILF + 7EIF +4EQ + 3A

compared to BFP =4EI+S5EQ + 10ILF + 7EIF+ 4EQ (as shown previously)

Note: 7+ 3 =10 fe.Points of algorithmic complexity weighted same as 1LFs.

- FPA and Oracle

The literature research to date has not revealed any studies on the use of FPA mpdels on
Oracle applications. To achieve the objective of this project, it would be necessary to
investigate how the definitions of the function point parameters, and the function point
counting rules apply to Oracle applications. Once this has been established, it would be a

natural progression to automate the function point computation for Oracle applications.

20

Chapter 3: METHODOLOGY OF RESEARCH

The research into a most effective way of automatically counting the number of function

points in any given Oracle application followed this method:

1.

5.

6.

Investigate how FP counting can be applied to Oracle applications, including whether this
has been achieved elsewhere.

Analyse the structure of Oracle form; & reportﬁ to determine how the application
components can be counted,

Determine the best automated method to do this counting.

Design an automatic method of analysing this structure to count inputs, outputs, inquiries,
data files, and interfaces. |

Set up the development environment.

Develop the software.

The remainder of the thesis follows this methodology.

21

Chapter 4: FP COUNTING IN RELATION TO CRACLE APPLICATIONS

An gxtensive literature search, with sources ranging from libraries to the Internet World-Wide
Web, revealed a deficiency in previous researches, let alone the production of software, on the
automatic counting of function points in Oracle applications. - In fact, the only enlightening
literature discovered that related to this subject was from an Oracle manual, titledQMS Profect
Management. This is a Quality Management Systems manual produced for project managers
intending to develop quality systems. The manual contains a chapter on estimating projects,
which contains a section on FPA. The automatic function point counting software resulting
from this investigation was developed based mainly on the function point theory presented in

this manual, This theory closely follows the IFPUG standard.

Steps to manually calculate Function Points in Oracle applications.

STEP 1. Generate a full text description of the Oracle Forms or Oracle Reports application -
the Module Documentation.

FOR ORACLE FORMS APPLICATIONS:

a, Start up Oracle Forms Designer 4.5

b. File | Open then specify the name of the application eg. emp.fmb

c. File | Administration | Form Doc

FOR ORACLE REPORTS APPLICATIONS:

a. Start up Oracle Reports Designer 4.5

b. File | Open then specify the name of the application eg. dept.rpt

¢. File | Administration | Report Doc

22

The text version, eg. entp.txt & dept.txt, should now be cenerated. This text file is
then parsed for the application attributes (steps 2-5).

STEP 2. For each form or report module, count the number of base tables referenced.

Oracle (1994) defines a base table as one that is “associated with a specific database
table or view.” Base tables are associated with base table blocks within Oracle Forms.

STEP 3. For each form or report module, count the number of base table columns referenced.
Oracle (1994) explains that the base table columns “correspond directly to columns in
the block’s base taBle.” They should correspond to a base table elected in th‘e previous
step.

STEP 4. Count the number of accumulated non-base tables referenced in the application.
Non-base tables are commonly referenced in select statements, such as those
belonging to a record group (forms) or belonging to queries (reports). A SQL select
statement may contain references to more than one table. Caution must be exercised
in counting the number of tables referenced as, for example, sefect statements can be
nested within each other.

STEP.‘:S. Count the number of accumulated non-base colur ins referenced in the application.
This is similar to the count of the number of non-base tables referenced, as detected in
the previous step. This invoives a count of the number of associated columns
referenced and can be an intricate process. Consideration must be made for such
instances as nested calls to built-in functions. For example, select
nvifround(mux(salary}, 2), 0) from...

STEP 6. Determine the complexity rating for each component, (Hignite et &}l, 1993)

External Input: For each non-query-only form module, determine the complexity
rating by applying the number of base tables and their columns,_ derived in Step 2 and

Step 3, to the following table (Oracle. 1995)

23

base table columns 1-4 5-15 16+

base tables

0-1 Low Low Average

2 Low Average | High

3+ Average | tligh High
Table 4

External Qutput: For each report module, determine the complexity rating by applying

the number of base tables and their columns, derived in Step 2 and Step 3, to the

following table (Oracle, 1995)

base table columns 1-5 6-19 20+

base tables

0-1 Low Low Average

2-3 Low Average | High

4+ Average | High High
Table 5

External Inquiry: For each query-only form module, determine the complexity rating

by applying the number of base tables and their columns, derived in Step 2 and Step 3,

to the following table (Oracle, 1995)

base table columns 1-4 5-15 16+

base tables

0-1 Low Low Average

2 Low Average | High

3+ Average | High High
Table 6

24

Internal Logical Files: An internal entity/table is one that is maintained by the
application through creation/deletion/update. Determine the complexity rating by
applying the number of tables and their columns, derived in Step 4 and Step 3, to the

following table {Oracle, 1995)

columns referenced 1-19 20-50 51+

tables referenced

1 Low Low Average

2-5 Low Average | High

6+ Average | High High
Table 7

 External Interface Files: An external entity/table is one that is used by the application
through retrieval. Determine the complexity rating by applying the number of tables

and their columns, derived in Step 4 and Step 3, to the following table (Oracle, 1995)

‘# columns referenced | 1-19 20-50 51+
tables referenced
1 Low Low Average
2-5 Low Average | High
6+ Average | High High
Table 8

Step 7. Determine the total number of Unadjusted function points.
~The complexity ratings derived from the above steps are then converted into function

points by applying the ratings to this table. (IFPUG, 1990}

25

Step 8.

Low Average | High
External Input (EI) 3 4 6
Externaj OQutput (EO) 4 5 7
External Inquiry (EQ) 3 4 6
Internal Logical File (ILF) 7 10 15
External Interface Files (EIF) 5 7 10

Table 9

Calculate the Total Degree of Influence (TDI). "
The TDI calculation is based on the summation of the fourteen general system

characteristics, commonly elected by the system users, A rating (Oracle, 1995) of

0 Not present

1 Incidental influence

2 Moderate influence

3 Average influence

4 Significant influence

5 Strong influence throughout

is applied to each of the fourteen characteristics.. The fourteen characteristics that
relate to the general functionality of the application is as follows:

1. Data Communications

2. Distributed Data/Processing

3. Performance Objectives

4, Heavily-Used Configuration

5. Transaction Rate

6. On-Line Data Entry

. 7. End-Use Efficiency

- 8. On-Line Update

26

9. Complex Processing
10. Reusability
11. Conversion/ Installation Ease
12, Operational Ease
13. Multiple Site Use
14. Facilitate Change
Step 9. Calculate the Technical Complexity' Factor (TCF).
Use the following formula (Hignite et al, 1993) to comﬁute the TCF:
TCF =(TDIx0.01)+ 0.65
Step 10. Calculate the Total Function Points (TFP).
Finally, the total FP count can be derived by applying the following formula (Hignite
et al);
TFP = TCF x Unadjusted function points
Once a method of manually counting the number of function points for any forms/reports-
based Oracle application was identiﬁed, the next challenge was to automate this process. An

evaluation of these methods are discussed in the next section.

27

Chapter 5: FP COUNTING IN RELATION TO ORACLE APPLICATIONS

- ISSUES

Since FPA was invented prior to the existence of 4G languages, there argl a number of issues
relating to the use of FPA to estimate Oracle applications that have been developed using
Oracle Forms and/or Oracle Reports which are considered to be 4G development tools. These
include

¢ The distinction between an input screen and an inquiry screen

¢ Categorisation of the List of Values (LOV) feature

» The determination of Internal Logical Files and External Interface Files.

The Inpur / Inguiry distinction

The IFPUG definition, as provided by Oracle {19953), states that an external input is one that
“processes data br control information which enters the application’s extefnal boundary.”
When applied to 4GL applications, specifically to those developed using Oracle Forms, an
esternal input could be referred to a screen developed using Oracle Forms, since a screen
allows the input of data, One of the advantages of using Oracle Forms to develop screens for
user inputs is that, by default, the data inquiry facilities are also provided by the input screen.
This is where the complication of applying FPA to Oracle applications arise. How does one

distinguish between an external input and an external inquiry in Oracle applications?

While FPA draws a distinction between external inputs and external inquiries, this is not

necessary for Oracle Forms applications since both the input and inquiry features are typically

28

included in the same screen, To cater for these differences when using FPA to estimate Oracle
applications, one can categorise an input/query screen as either:

i-_ an external input only

¢ an external inquiry only or

» both an external input and an exiernal inquiry

The preferred option to be used is entirely based on the individual estimator’s preferences.
The automatic calculation of function points in Oracle applications prototype software
developed in conjunction with this documentation defines an input/query screen as an external

input only. The explanation for this follows,

Although a screen developed using QOracle Forms allows both input and inquiry features by
default, these features can also be toggled to be enabled or disabled. Thus, a screen can be
either:

s an input only screen

e an inquiry only screen

e an input/inguiry screen or

* anon-input/non-inquiry screen.
To distinguish between an external input and an external inquiry, an Oracle Forms screen is

only deemed to be an external inquiry if it is a query-only form. Based on this logical

definition, the above selection of screens is categorised as follows:

29

Screen Type Classification
Input only screen External input
Inquiry only screen External inquiry
Input / inquiry screen External input
Non-input / non-inquiry screen neither.

Table 10

When parsing the Oracle Forms text file, the automatic parser should search for the

Insert Allowed True/False

Query Allowed True/False
properties listed under the block(s) associated with the input/inquiry screen to determine the
input/inquiry status. This will allow the classification of the screen as an external input or an

external inquiry.

Categorisation of LOVs

A screen developed using Oracle Forms may contain one or more instances of a List of Values
(LOV) to facilitate the ease of input. These are commonly krown as “look-up tables.” A
LOV may be based on a record group which may query one or more database tables. An
example of the use of an LOV is the entry of a postcode value belonging to an address section
of a personal details screen. Rather than relying on the user to remember the postcode values
for all suburbs, the postcode field may be implemented to use a LOV which queries the
_postcéde daiabase table to return a list of alf of the suburbs and their associated postcodes.
Once a suburb and ils associated postcode is sélected, the postcode field will be populated with

the selected value,

30

If a LOV is based on a record group that queries one or more database tables, it should be
classified as an external inquiry. This is a sensible assumption as a user is likely to perceive

- this LOV as a query.

When parsing the Module Documentation of the Oracle Forms/Reports, the automatic parser
should search for the LOV property to ensure that an LOV is attached to a text item. This
property would have a value of <null> if an LOV was not attached to it. An example

* - illustrating an item with the postcode_lov attached is:
LOV postcode _lov

Once it has been es_tablis.hed that an LOV is attached to a text item, the next step would be to
ensure that the LOV attached is based on a record group. To do this, the parser should search

for the

LOV Type Record Group
Record Group Postcode_query

properties, under the LOV section. Once this has been established, the parser can search for
the Record Group Query property under the record group section to obtain the query statement

used for this record group. For example,

 Record groups
Name Postcode_query

Record Group Query select distinct code, suburb from postéodes

31

These steps will allow the estimator to determine whether an LOV is based on a query of one
or more database tables and if so, the database tables and columns that are used: This
information will allow the estimator to dete\r"‘ﬁline the complexity rating. for the external

inquiry.

Internal Logical Files & External Interface Files

Oracle (1995) describes an internal logical file as an “entity which is maintained by the
application, in other words: the CRUD matrix contains at least one C, U, or D for this entity”,
and an external interface file is defined as “an external entity .. with an R in the CRUD
matrix.” The CRUD matrix refers to the Create, Retrieve, Update, and Delete functionality.

Based on these definitions, it may be worthwhile to note that the internal logical files (ILF})
and the external interface files (EIF) are applied to the entire application. Therefore, the
complexity .rating should be applied to the accumulation of these entities for the entire

application rather than for each separate module.

The automatic calculation of function points in Oracle applications prototype software
developed in conjunction with this documentation defines the base tables as external entities.

A base tabie is typically associated with a block within a screen.
As for the internal entities, the software parses the application text file for keywords: create,

update, and delete to determine the existence of internal entities. The existence of such

" entities are rare in typical Oracle applications.

32

The accumulated count of internal and external entities are used to determine the complexity

ratings for the ILF and the EIF.

In conclusion, it is important to note that although the customisations made by an estimator for
the application of FPA to a 4GL application, such as Oracle, is crucial, it may not be as
significant as the consistent usage of the same method for all of the applications to be

estimated.

33

Chapter 6: ANALYSE THE STRUCTURE OF ORACLE FORMS &

REPORTS

An Oracle application typically consists of a number of input screens, to allow user interaction
with the data within database tables, and the facility to generate reports through the retrieval of
data from the database tables. For example, an order entry system application mﬁy consist of
order input/inquiry screens and order reporting facilifies. Each of the components of an Oracle
application are discussed in detail to provide a general overview c;f the concepts behind forms,

tables and reports.

Forms

An input/inquiry screen within an Oracle application is typically designed using the Oracle
Forms Designer development tool. When using Oracle Forms Designer to create an input
screen, an inquiry facility is provided “free” to the same screen without additional effort

required to update the form design.

A form is a logical collection of blocks, items, triggers and procedures. A block is a logical
collection of fields in a form. It may correspond to, at the most, one table. A database table
on which a block is based upon is known as a base table. Those items that are based upon

these base tables are known as a base table items,

An item field is an area that is capable of accepting and displaying data. To facilitate the entry

of data, an item field can appear in one of a number of different forms, including list items,

34

radio buttons, checkboxes, text items that allow data inputs, and display items that do not

allow data inputs. The data displayed can correspond to a column in a database table.

A List of Values (LOV) is another way of assisting users to enter data in an item field. An
LLOV is a look-up table that consists of a query to a database table. An LOV may be
associated with a text item. An example of the use of an LOV is for entering the customer
code within an Invoice screen. Instead of relying on the user to memorise the customer codes
for all existing customers, an input/inquiry screen may attach an LOV to. the customer code
item. This LOV may be based on a query that retricves the customer codes and names for

every customer in the database table.

Triggers and procedures within forms contain programming logic that may include read/write
to database tables. The logic within these components can be written in PL/SQL. (Cracle,

1986)

Reports

Oracle Reports Designer is typically used for the reporting components of Oracle applications.
To specify the data definitions within Oracle Reports Designer, a data mode! is created. A
data model consists of the following data definition objects: queries, groups, columns,

parameters and links.
Report queries consists of SQL SELECT statements written to fetch data from database

table(s). An analysis of the report queries will reveal the tables and columns that have been

referenced by a report. Once a query has been specified, groups and columns will be created

3 :

to reflect the query. Groups contain columns and are used primarily to create breaks in a

report,

Links are used to specify parent-child relationships between one SELECT statement and one

or more other SELECT statements.

Parameters are variables to which a user can assign values at runtime. The two types of report
parameters are system parameters and user-defined parameters. It is the user-defined
parameters that are relevant to the counting of function points since they may contain SQL

SELECT statements to fetch data from database tables. (Oracle, 1988)

36

Chapter 7: LIST & EVALUATE POSSIBLE AUTOMATIC COUNTING

METHODS

There is more than one way of implementing the antomatic céunting of the number of function
points within an dracle application. This section will _highligﬁt three of the more likely
methods of achieving this and will provide a logical evaluation of these methods, These
methods are:

e Using Designer/2000 (Oracle’s CASE toot)

» Using SQL*Plus

o Parsing the Module Documentation,

METHOD 1: Using Designer/2000 (CASE)

..DesignerIZOOO, the most recent version of the Oracle CASE software, is capable of generating
a number of reports, based on the parameters given, A group of these reports are based on
Function Point Analyses. A sample of the printouts of thes.e FPA reports is provided in
Appendix A, and they are listed as follows:

MKI FPA Analysis Level - CDFPA]A

MkI FPA Design Level - CDFPAID

FPA Analysis Level (DFDs & Event Models) - CDFPAA2

FPA MkII (Designl) - CDFPADI
FPA MKII (Design2) - CDFPAD2
 Area Metric o - CDMETRIC

37

Advantages

These reports provide a detailed analysis of the application system requested by the user, for
the purpose of function point analysis, The techrique of counting the number of function
points is controlled by Designer/2000 and is stored internally. f his automatic computation of
function points saves the user time which would have been expended on grasping the
workings of Funcion Point Analysis and also on manually counting the function points for
each individual module to be estimated. Since the same method is automatically applied by
Designen’ZOQO to compute the number of function points in any gi.ven Oracle module, the

results obtained are expected to be consistent.

Disadvantages

It appears that to take advantage of this utility, the Oracle application to be analysed must be
designed and generated by Designer/2000, and stored in the database. This may pose an
unnecessary obstacle if the applications were developed as a direct usage of Developer/2000,
ﬁr more specifically, Cracle Forms Designer and Oracle Reporls Designer, In this case,
however, the Reverse Engineering utility provided by Designer/2000 may serve as a viable

option,

The Reverse Engineering utility atiempts to capture the data/functional design of an Oracle
applicafion in ti1e CASE tool. When revérse engineering a forms module using Module Data
Diagrammer, the blocks within the forms are translated to entities, the items to attributes, and
the relationships (defined through the presence of the foreign key constraints) are translated to
the relationships between entities. This process will result in a data diagram displaying the

entitics, their attributes, and the relationships between entities, In addition to this, the

38

properties of each of the elements within this data diagram provide further information that are
relevant to the element highlighted. For example, the properties of an attribute contain
information including whether it is updateable, and whether it is queryable. The data diagram

produced will assist in function point counting,

The main obstacle with the use of Designer/2000 to generate FPA reports is the requirement of
. the Designer/2000 software, which in turn, demands an increase in the hardware requirements.

It cannot be done easily, or definitively.

Conciusion: viable but difficult.

METHOD 2: Using SQL*Plus

Prior to the development of an Oracle application, the usuval practic.:.e asserts the creation and
population of tables in the datab:ase first. This is normally achieved through the execution ofa
Data Definition Language SQL script. By parsing this SQL script, or querying the database
after the creation of the tables, one would be able to retrieve such information as the number
of tables and columns that exist in the database. For example, the script

select table_name from user_tables;

would list all of the tables that exist in this database.

Advantages
This appears to be a simple method of collecting information, such as a count of the number of

tables and columns, to assist the performance of a FPA. The simplicity is partly due to the

35

ease of data collection using SQL, and also partly due to the sole requirement of the standard

SQL*Plus product which is 2 common product for Oracle developers.

Disadvantages

However, upon further examination, one should be convinced that this method provides

insufficient data.

Firstly, the mere creation or existence of a table in the database does not guarantee its usage by
the application to be function point analysed. A table in the database may not be referenced by
the application to be analysed at all. There appears to be a lack of an easy solution to
differentiating between those tables that are, and those that are not, relevant to the function

point analysis of an application.

'Furthermore, one cannot distinguish whether a table in the database that is referenced by an
application is referenced as a base table for a block or referenced by a radio group in a select

statement.

Conclusion: not viable.

METHOD 3: Parsing the text files of Oracle Forms & Orucle Reports

The conversion of an Oracle Forms or Oracie Reports binary file to its text equivalent, Mocule
Documentation, is a simple process that can be achieved by following the instructions

provided in the first step of the previous chapter.

40

Advantages

The Module Documentation (MD) covers detailed information regarding the forms/reports
module. Relating to FPA, the MD incorporates all of the necessary information to perform a |
function point éalculation. This information includes the base tables and their columns that are
referenced by the module, trigger texts, and SQL code for record groups and for other

components, By parsing this text file, a function point count can be achieved automatically.

Disadvantages

The issues relating to the method are:
e Software requirement

» Large text file size

¢ Truncation of the MD

A detailed discussion is provided in a later chapter.

Conclusion: Viable and do-able.

CHOICE of Method

It appears that the third method, parsing of the Modular Documentation, is the most suitable
method. to use for automatically computing the number of function points in Oracle

‘applications.

41

Determination of a Suitable Language for Parsing

An optimal parser for these Oracle-generated text files should be able to deliver the following

characteristics:

» Backtracking: The parser should be able to scan in both directions, that is, forwards and
backwards. An exaiitple of the use of backtracking is to get the name of a base table
column. To do this, the parser must firstly search for an item with the “base table item”
property set to true, Once this is found, the parser will be required to reverse its direction
to resolve the name of the item by s_e_grching for the “name” property,

o Data Structure: One of the more significant data structures that the parser should possess
is the array structure. The parser should be able to keep track of the accumulated number
of base tables and base table column§ detected for each and every form and report text file
parsed, and also keep track of the complexity ratings for each of the form/report module.
Reporting facility: At the end of the parsing phase, the parser should be able to produce a
report that presents the results in a clear, logical, and presentable form to the analyst.

s . Availability: Ideally, the parser end-product should be an automatic estimator that is
easily attainable by analysts. An Oracle analyst should be able to access the automatic
estimator and execute the parser straight away, reducing the unnecessary wasted time on

installations, compatibility checks and other pre-installation procedures.

For this research, Microsoft Word Basic has been chosen as the prototype language to
implement the parser for the automatic calculation of function points in Oracle applications,
The main objective of the prototype is to provide a “proof of concept™ for the ideas presented
in this document. The use of Microsoft Word Basic achieves this and also meets the above

requirements for an effective parser for this research.

42

CHAPTER 8: DESIGN AN AUTOMATIC COUNTING METHOD

- ISSUES WITH IMPLEMENTATION

By using the third method discussed in the previous section, the automatic function point
counting software could be implemented successfully. However, there are a number of issues

that should be considered. A comprehensive discussion of these issues is given in this section,

Software Requirement

A basic requirement of the implementation of the method under discussion is the following
software: Oracle Forms Designer, Oracle Reports Designer, and Microsoft Word. The first
two application tools are required for the automatic generation of the module text documents,
and Microsoft Word is required to view the generated text documents, to parse the text files,

and to generate a report of the results of the automatic function point analysis.

These three picces software are all within reasonable expectations. If an application has been
developed using the Oracle Forms Designer and Oracle Reports Designer development tools
then these tools may still be available at the time of function point analysis. As for Microsoft
Word, this software was deliberately chosen to perform the analysis work, due to its popularity

with personal computer users.

43

Large File Size

An important consideration when generating a text document of a binary Cracle Forms or
Reports file is that the gencrated document can be relatively large. For example, generating a
simple binary forms file of size 32KBytes can result in a text document of ten times its original
size, in this case 231KBytes, which equates to approximately '?8.pages when viewed using

Microsoft Word size 10 font.

The automatic function point computation software developed appears to parse the large text
files within a reasonable amount of time. For example, on a 486DX2-66MHz laptop with
eight megabytes of RAM, a very large forms text file opened in Micrusoit Word size 10 font,
spanning 263 pages, consisting of 14 425 lines and 43, 213 words, was parsed by the software

in approximately two-and-a-half minutes,

Since an Oracle application will consist of many form and report modules to be parsed
separately, the total time taken to automatically count the number of function points may
become quite significant, This potential problem was conceived at the design phase of the
software development and a method was incorporated into the software in an attempt to
alleviate this symptom. The soltware prompts the user for the names of all of the application
module text files, stores these file names in an array, and then parses all of the modules
together. This way, the user is not required to be present to continually feed the next module

into the parser,

The large text files resulting from the document generation facility in Oracle Designer appears

to be unavoidable. Consequently, the time taken to parse these text files will inevitably be

44

lengthened. To alleviate this problem, one can only alleviate the symptoms. By incorporating

the method mentioned, the time requirement on the user’s behalf is reduced.

Truncation of Generated Document

Another disadvantage to be highlighted is the occasional truncation of those lines of code,
mainly those within trigger texts, within a module that exceed their limitation. This may result
when using the document generation facility provided by Oracle Forms Designer and Oracle

Reports Designer.

One way of avoiding the truncation of trigger texts would be to generate a finf extension of the
text file instead of generating a .&x¢ extension. This facility is also provided in the
development tools, however, this format of the text file does not include the other information,
such as that relating to base tables, which is required to perform a function point count.

The prot'otype function point counting software is developed based on the assumption that the
occurrence of the right-truncation of lines, for any given Oracle application, will not be

frequent enough to produce a significant variation to the final function point count achieved,

45

Chapter 9: DESIGN AN AUTOMATIC COUNTING RMETHOD

- THE COMPLEXITY DETERMINATION PROCESS FOR ORACLE

APPLICATIONS

The derivation of the Unadjusted Function Point count depends on the complexity rating of the
five components: External Interface File, Internal Logical File, External Input, External
Qutput, External Inquiry. A discussion of the accommodation of the IFPUG definitions and
method for an Oracle application is provided in this section. This is to assist the

implementation of the automatic counting software for Oracle applications.

External Inputs (EI}

The IFPUG definition of an.- External Input is defined as one that “processes data or control
information which enters the application’s external boundary.” When tailored to Oracle
applications, an El becomes “a .. module of which the CRUD (Create, Retrieve, Update,
Delete) usage contains a C, U, D.” {Oracle, 1995} An obvious example of an EI is an Oracle

Form module that is not query-only.

The IFPUG complexity rating of an EI is dependent on the number of File Types Referenced

(FTR) and the number of Data Element Types (DET).
An IFPUG version of a FTR is “counted for each Internal Logical File maintained or

referenced and each External Interface file referenced during the processing of the External

Input.”” This can be tailored to Oracle applications to be defined as one that “is counted for

46

each ..table ..used by the .. module,” and the DET is the number of associated attributes.

(Oracle, 1995).

base table columns 1-4 5-15 16+
base tables
0-1 Low Low Average
2 Low Average | High
3+ Average | High High
Table 11
External Quipuis (EO)

The IFPUG definition of an External Qutput is defined as one that “processes data or control
information that exits the application’s external boundary.” When tailored to Oracle
applications, an EQ becomes “a .. module of which the CRUD (Create, Retrieve, Update,
Delete) usage contains only R’s.” (Oracle, 1995) An obvious example of an EO is an Oracle

Report.

The complexity rating of an EO is dependent on the number of File Type Referenced (FTR)

and the number of Data Element Types (DET), both of which are explained in the External

Inputs section.

basc table columns 1-5 6-19 20+

base tables

0-1 Low Low Average
2-3 Low Average) High
4+ Average | High High

Table 12

47

External Inquiry (EQ)

Oracle (1995) defines an External Inquiry as one that “requires input parameters, usually a
unique identifier, and produces output with a fixed volume, usnally with a fixed volume,
usually one record.” Following the concept presented by Oracle (1995}, the implementation of
the automatic function point counting software classifies query-only forms as external
inquiries, instead of external outputs, sincc it “is usvally not explicitly specified by the user.”

The complexity rating of an EQ is dependent on the number of File Type Referenced (FTR)
and the number of Data Element Types (DET), both of which are explained in the External

Inputs section,

base table columns 1-4 5-15 16+

base tables

0-1 Low Low Average

2 Low Average | High

3+ Average | High High
Table 13

Internai Logical Files (ILF)

A formal definition of the Internal Logical Files, provided by Engineering Information, Inc
{1996), is *“a user identifiable group of logically related data or control information maintained
within the boundary of the application being counted.” In addition to this definition, the
counting rules in relation 1o ILF arc also provided. These rules specify that the following rules
“must apply for the group of data/control information to be counted as an ILF:

It is a logical, or user identifiable, group of dala that fulfils specific user requirements.

It is maintained within the application boundary.

It is modificd. or maintained, through an elementary process of the application.

48

It has not been counted as an EIF for this application,” (Engineering Information, 1996)

When related to an Oracle applications, an internal entity, or table, is one that“is maintained
by the application, in other words: the CRUD matrix contains at least one C, U or D for this

entity (or table).”

The complexity rating of an ILF is dependent on the number of Record Types (RET) and the
number of Data Element Types (DET). Oracle {1995) explains that “an entity or a table can

have only one record definition: RET=1" and that the “DET is the number of attributes.”

columns referenced 1-19 20-50 51+

tables referenced

] Low Low Average
2-5 Low Average | High

6+ Average | High High

Table 14

External Interface Files (EIF}

A formal definition of the External Interface Files, provided by Engineering Information, Inc
{1996), is “a user identifiable group of logically related data or control information referenced
by the application being counted, but maintained within the boundary of another application,”
In addition to this definition, the counting reles in relation to EIF are also provided. These
rules specify that the following rules “must apply for the group of data/control information to
be counted as an EIF:

I1 is a logical, or user identifiable, group of data that fulfils specific user requirements,

it is referenced by, and external to, the application being counted.

49

It is not maintained by the application being counted.” (Engineering Information, 1996)
When related to an Oracle applications, an external entity, or table, is one that only appears

with a Retrieved in the CRUD matrix.

The complexity rating of an EIF is dependent on the number of Record Types (RET) and the
number of Data Element Types (DET), both of which are explained in the Internal Logical

File section,

columns referenced 1-19 20-50 51+

tables referenced

1 Low Low Average

2.5 Low Average | High

6+ Average | Higl High
Table 15

50

Chapter 10: DESIGN AN AUTOMATIC COUNTING METHOD

- THE PARSING PROCESS

The principal component of the implementation of the automatic function point counting
software is the parsing of the module text files. The module text files are parsed to collect
such information as the number of base tables referenced, the number of base table columns
referenced, the number on non-base tables referenced and the number of non-base table
columns referenced which are required to determine the complexity rating for the components

stated in the previous section, and consequently, obtain the Unadjusted Function Point count.

Base Tables Referenced

When parsing a module text file to search for the base tables referenced, the automatic
function point counting software searches for the keywords Base Table. Once these two
words are found, the parser examines the subsequent word to check whether it is a base table
name. If it is, the name is stored, otherwise, the parser ignores the subsequent word and
continues its search. An example ol a base tablc appears as follows:

Base Table EMPLOYMENTS

The following two lines, however, would be ignored by the parser:

Base Table <Null>

Base Table Item False

51

Base Table Coltunns Referenced

When parsing a module text file to search for the base table columns referenced, the automatic
function point counting software searches for the keywords Base Table ltem True. Once
these keywords have been found, the parser reverses its search direction to seek the name of

the base table column. An example of a base table item appearing in the module text file is:

Name CEASE_DATE
Class <Null>

{tem Type Text ltem
Canvas CGSPAGE 1
Displayed True

X Position 84

Y Position 22
Navigable True

Next Navigation ltem <Null>
Previous Navigation ltem <Null>

Base Table Item True
Primary Key False

Insert Allowed False

Query Allowed Faise

Query Length 12

Case Insensitive Query False

Non- Base Tables and Columns Referenced

The non - base tables and columns referenced can appear in triggers, record groups, report
queries, and many other tables. The automatic function point counting software searches for
those tables and columns that appear in create, select, update, and delete statements. Of these
statements, the select statement seems to be the most commeon. For this reason, a detailed

discussion of the parsing of the select statement is accommodated here.

The SQL Language Quick Reference (1992) defines a select statement as one that “queries one

or more tables or views. (The select statement) returns rows and columns of data. (Theselect

52

statement) may be used as statement or as a subquery in another statement.” The syntax for

the select statement is provided in the Appendix,

One of the more significant challenges of the select statement is the flexibility provided by the
SQL language. There are many variations to a select statement. The parsing of a select
statement includes considerations such as nested select statements, those statements with
references to functions consisting of a variable number of parameters, the possible spreading
of the statement over an unpredictable number of lines, and the combination of any or all of

these,

For a nested select statement, consider the following example:

SELECT roster_dec _hrs_fn

INTO temp_number

FROM rosters a

WHERE a.id_number = :control.person_id_number

AND a.pers_pos_no = :control.pers_pos_no

AND acrec_status !="X'

AND a.commence_date = (SELECT max(commence_date)
FROM rosters
WHERE a.id_number = :control.person_id_number
AND apers_pos_no = :control.pers_pos_no
AND a.rec_status !="x'
AND nvl(adelete_flag, 'n') 1="y");

The parser scans such nested statements separately to determine the table and column names.
In this example, the parser ideatifies rosters as the only table referenced, and

roster_dec_hrs_fin, commence_date as the columns referenced.
The above example also illustrates references to functions. Function references can also be

nested, and may contain any number of parameters. Consider the following:

SELECT substr(Ytrim(rtrim(nvi(region_inst, main_inst))), 1, 6) FROM institutions;

53

This seemingly simple statement contains references to the functions:
substr consisting of tiree parameters,
ltrim consisting of one parameters,

ririm consisting of one parameters,
nvl consisting of one parameters,

With such statements, the automatic function point counting parser examines the open- and
close- brackets to distinguish the columns referenced from the functions. In this example, the

parser correctly identifies region_inst, main_inst as the columns referenced and institutions as

the table referenced.

To illustrate the spreading of a select statement over a variable number of lines, consider the
simple SQL statement;

SELECT id_number, name, age FROM employments;

This same stateurcnt can also be legally coded in the following format:

1) SELECT id_number, name, age
FROM employments;

2) SELECT
id_number,
name,
age FROM employments;

3) SELECT
id_number
, name
age FROM employments;
The above illustrates only a sample of a seemingly infinite number of variations to the same

statement! All of these statements are identified by the parser as consisting of the table

employnients, and the columns id_pumber, name, age.

54

Enhancements

To extend the automatic function point counting prototype to a more comprehensive software,

possible enhancements may be incorporated. These areas include reducing the parsing time

and fine-tuning the parser.

The parsing time may be improved by upgrading the hardware or improving the parsing
method. The current parser scans the Module Documentation more than once to count the
number of base tables & columns, and non-base tables & columns. The parsing time may be

reduced by limiting the parser to scan the Module Documentation once only.

This automatic Oracle applications estimator prototype can be fine-tuned since it provides a
list of the names of the tables, their associated columns, the base tables and their associated
columns. The names of the objects that have been detected by the software can be compared
with the object names manually detected to determine and tune the accuracy of the parser. For
éxample, occasionally, the software may display an object name that is, in fact, not an object,

but a reserved word. This can be turned so that the reserved word will be ignored.

55

Chapter 11: THE DESIGN

Data Flow Modelling is used as part of the design of the automatic calculation of function
points in Oracle applications software. As stated by Oracle (1992b), upon which this model is
based, the objective of this data flow model is “to ensure that functions are supplied with the
necessary data in order to provide the information intended and also to identify the sources of

the requisite data and the destinations for the information produced.

CONTEXT DIAGRAM \
\
ANALYST \(sraclc application I.
> N
LN 0

EPA report

Provide automatic calculation
- of function points in Oracle
applications.

36

"'—'—-—_

points in Oracle applications.

Automatically calculate the number of function

s

N

ANALYST | Orecleapplication | the application modules.

1

SYSTEM

USER

FP'A report

N

Determine the complexity of

)

|/

Calculate the unadjusted
function point count (UFP),

)

Module Complexity

N

/

D1

COMPLEXITY RATINGS

Total Complexity

/

UFP value

/

characteristic for the application.
rating

system Rate the system characteristics

)

Calculate the funciion point
count {I'P).

I count

|

n

A N

Gencerate function point
analysis report.

-

N

Degree of Influence

&

.

Complexities
D2 |UFP STORE
UFP count
D3 |DEGREE OF INFLUENCE

‘otat Degree of [nfluence

s

s

57

Chapter 12: RESULTS & CONCLUSIONS

The investigation part of this research has revealed very little previous work on the application
of Function Point Amnalysis to Oracle applications. The most usefut literature on this topic
appears to be the QMS Project Management manual from Oracle Corporation. To date, no
literature appears to be available on the automatic calculation of function points in Oracie

applications.

This investigation also revealed that automatic function point analysis can be performed in a
number of ways. Upon evaluation, it was concluded that the parsing of the module text
documents generated by Oracle Developer/2000 would be the most suitable for an a posteriori

evaluation of Oracle applications.

Software was developed that incorporated a number of the features discussed, to enable it to
perform a comprehensive analysis, and automatic count of the number of function points for
any Oracle apglication developed using Oracle Forms Designer, and Oracle Reports Designer.

The successful implementation of this software appears to be the first of its kind. For this
reasot, it represents a worthwhile proof of concept for automatically counting function points

for Oracle applications.
The automatic function point counting software produces a detailed report on the results of the

automatic function point analysis at the end of its exccution. This report presents the results in

a very logical manner, following the format presented by Hignite et al (1993), to show the

58

calculations leading to the derivation of the final function point count. Since the report is
produced as a Microsoft Word document, it can be easily printed at the user’s discretion.

A complex form with 5 base tables, 55 base table columns and referencing 16 other non-base
tables and 20 non-base table columns was parsed in approximately five minutes. Its Module

Documentation, with a size of 761KBytes, spanned 14 425 lines over 263 pages.

The overall success rate of the automatic estimator reveais a proof of concept that provides the
grounds for the possible launch of further researches in this area. This research and the
development of the associated software is a worthwhile source of the proof of the concept. It
is the first version produced, and for this reason, several possible areas of improvements may

be incorporated in future researches to enhance the software,

Oracle is the second largest software company world-wide and there are many Oracle
applications and Oracle users in the IT industry. For this reason, it is expected that.the
automatic function point counting of Oracle applications software should be beneficial in

many project estimation exercises,

59

REFERENCES

Alford, Mark. (1991). Eri: What the heck’s a function point?

http://www.qucis.queensu.ca/Software-Engineering/archive/funcpoints.

Behrens, Charles A. (1993). Measuring the Productivity of Computer Systems

Development Activities With Function Points. IEEE Transactions on Software

Engineering. Vol: SE-9 No: 6 p. 648-652.

Betteridge, R (1992). Successful experience of using function points to estimate project

costs early in the life-cycle. Information and Software Technology. Vol:34 Iss:1(p.655-8.

UK.

Dreger, J. (1989). Function Point Analysis. New Jersey : Prentice Hall.

Ferens, D; Gurner, R. (1992). An evaluation of three function point models for estimation

of software effort. Proceedings of the IEEE 1992 National Aerospace and Electronics

Conjerence, NAECON 1992, Vol:2 p.635-42. USA: IEEE.

Heemstra, F.J; Kusters, R.J. (1991). Function point analysis: evaluation of a software cost

estimation model. Ewropean Journal of Information Systems. Vol: i Iss: 4 p.229-37, UK.

Hignite M, Johnson R, Foster K. (1993). The use of function point analysis to assess end

nser computing systems. Journal of Computer Information Systems. Vol:33 pp:46-50.

IBM Corporation (1975). DP Services Size and Complexily Factor Estimator, DP Services

Technical Council

IFPUG (1990). International Function Point User’s Group Counting Practices Manual,

Release 3.0. JFPUG. Westerville, Ohio,

. Information Engineering, Inc. (1996). About Function Point Analysis.

htp/rwww. bannister.con/ifpus/homeldocs/abipa html

60

11.

12.

13.

14,

15.

16.

17.

18.

19.

20.

21.

22,

23,

24,

25,

Internet: Funcnet. http://www.spr.com/library/funcnet.html

Jones, C. {1991). Applied Software Measurement. New York: McGraw Hill.

Kansala, K; Kitchenham, B. (1993). Inter-item correlations among function points.

Proceedings First International Software Meirics Symposium.. pp. 11-14, USA.

Kremer, Chris F. (1987). An empirical validation of software cost estimation models.

Communications of the ACM. Vol:30 No:5 pp:416-429.

Low, G.C; Jeffery, D.R. (1990). Function points in the estimation and evaluation of the

software process. IEEE Transactions on Software Engineering. Vol:16 Iss:1 p.64-71. USA

Oracle (1986). SQL*Forms Designer’s Reference 3.0 Oracle Corporation

Oracle (1988). Building Reports with Oracle Reports 2.0 Oracle Corporation

Oracle (1992). SQL Lanpuage Quick Reference Oracle Corporation

Oracle (1992b). Oracle Education Services Course Notes: Analysis Techniques Oracle

Corporation

Oracle (1994). Oracle Forms 4.5 Developer’s Guide Oracle Corporation

Oracle (1995). QMS Project Management Oracle Corporation

Rask R., Laamanen P., and Lyytinen K. (1993). Simulation and comparison of Albrecht’s

function point and DeMarco’s function bang metric in a CASE environment. /EEE

Transactions on sofiware engineering. Vol:19 Iss:7 pp:661-71.

Symons, Charles R. (1988). Function Point Analysis: Difficullies and improvements. J/EEE

Transactions on Software Engincering. Vol:14 No:1 pp.2-11.

Tsoi, R; Yau,C. (1995). Assessing the fuzziness of general system characteristics in

estimating software size. Proceedings of the 1994 Second Australian and New Zealand

Cenference on Intelligent Information Systems. p.189-93. New York: IEEE.

van Wonderen, I, (1991). Another look at function point analysis. Informatie. Vol:34 Iss:6

p.334-43. Netherlands.

61

26. Weaver, K.R. (1989). Function points - a productivity measure benefits APL. APL

Quote Quad. Vol: 19 Iss: 4 p.377-80. USA,

27, Yau, C; Gan L. (1995). Comparing the top-down and bottom-up approaches of function

analysis: a case study. Software Quality Journal. Vol:4 Iss:3 P.175-87. UK

62

Appendix A: FPA reports generated by Designer/2000

The FPA reports can be obtained from Designer/2000 by following these simple steps:
1. Run the Designer/2000 product: Repository Object Navigator (RON).
2. Within RON, select from the menu: Tools | Repository Reports (RR)

3. Within RR, expand in the object navigator: Reports | Function Point Analysis

A copy of each of the following FPA reports are included in this section.
MkI FPA Analysis Level - CDFPA1A

FPA Analysis Level (DFDs & Event Models) - CDFPAA2

FPA MKII (Design!) - CDFPADI
FPA MKII (Design2) - CDFPAD2
Area Metric - CDMETRIC

A printout sample copy of the MkJ FPA Design Level report has been intentionally excluded as

its layout is an exact replica of the Mk! FPA Analysis Level layout.

63

Designer/2000

Report : FPA (IFPUG)
Filename
Run by OWNERL

- Analysis Level

Report Date 16-MAY-96 03:06pm

Total Pages : 6

Parameter Values

Application System
Application Version
Function Label
Help Inguiries

TEST

: 1
: TEST

1

16-MAY- 96 FPA (IFPUG) - Analysis Level Page 2 of 6
For Application System : TEST
Version 11
starting at Function : TEST
maintain a perscn and their jobs
Unadjusted Function Point Count
r_ Functional Complexity
Type __ Total
Description Low Average
ILF | Internal Logical Files
1* 7 = 0* 10 = 0 7
Nao. of Entities created,
updated or deleted by cne With < S1 With > 50
EIF | External Interface Files
* § = -
No. of Entities read but t ° 7 0 5
not created, updated or . ,
With < 51 With > 50
EI External Inputs
No. of Entity Create, I o 4 0 I
Update and Delete Usages
With < 18§ With » 14
EO External Qutputs
Wo., of Entity Read Usages
by a Leaf Function where 0% 4 = o 5 0 0
there is no Create, Update
or Delete usage of any With < 20 With > 19

Designer/2000 Report

cdfpala

[

16-MAY-96 FPA (IFPUG) - Analysis Level Page 3 of 6
Type Functiopal Complexity
Description Teotal
Low Average
EQ External Inquiries
No. of Entity Function 2% 3 = 6 0 * 3= 0 6
Usages counting 1 for any
combination of Create, With < 15 With > 14
Read, Update and Delete
involving 1 Entity and 1
Function (excluding read
No. of low complexity 1 * 3 = 3 3
External Inguiries for
Help (e.g 1 for full
screen help throughout the
FC Function Count Total Unadjusted Function Points 30

Designer/2000 Report

cdfpala

16-MAY-96 FPA (IFPUG) - Analysis Level Page 4

General System Characteristics

of 6

1D ! Characteristic Degree of Influence*

Cl| bata Communications

C2; Distributed Functions

C3 | Performance
Freguency No. Of Functions
Ir;ER 1

C4 | Heavily Used Configuration

C5 | Transaction Rate

Ce| Online Data Entry

C7| End User Efficiency

€8 Online Update

€9 | Complex Processing

€10 | Reusability

Cll1} Installation Ease

Cl2 | Operaticnal Ease

Designer /2000 Report : cdfpala

of &

16 -MAY- 96 FPA (IFPUG) - Analysis Level Page 5
ID | Characteristic Degree of Influence*
€13 | Multiple Sites

Cl4

No. of Business Units to

Facilitate Change

TDI

Total Degree of Influence

* Degree of Influence Values:

- Not present or no influence = @
- Insignificant influence = 1
- Moderate influence = 2

Value Adjustment Factor (VAF)

Function Point Count (FP)

1]

FC * VAF

Designer/2000 Report

(TDI * 0.01) + 0.65

Average influence =
Significant influence =

Strong influence, throughout =

cdfpala

Designer/2000
FPA (IFPUG) - Analysis Level

End of Report

Designer /2000

Report MKII FPA Information
Filename
Run by OWNER1
Report Date l6-MAY - 96
Total Pages 5
Parameter Values
Application System TEST
Version 1

16-MAY-96 MKII ¥pA Information Page 2 of5

Based abt the Analysis Level {where DFD's and Event Models havé'been used}
For Application System : TEST

Version 21

Information Processing Logic Size

Input

No. of dataflow contents on each dataflow
which exists between an external entity and
a function inecluded as a logical transaction

{No. of attribute types input) o *

Processing

No. of functions triggered by an

event of type time

{Logical transactions triggered by

reaching a specific point in time) ¢

Nc. of functions where exists a

dataflow from an external entity

(Logical transactions triggered

by external)]

Logical Transactions 0

No. of distinct entities included in

dataflows between datastores and functions

included as logical transactions

(No. of entity types referenced) 0 * 1.66

Cutput

No. of dataflow contents on each dataflow

which exists between a function included as

a logical transaction and an external entity

(Mo. of attribute tywves output) 0 * 2,686

Information Processing Logic Size
in Unadjusited Function Polints 0

Dernlegner/2000 Report : cdfpaa?

16-MMAY-96 MKIT FPA Information

Technical Complexity Characteristics

1. Data Communications
2. Distributed Functions

3. Performance

Frequency No. Of Functions

4. Heavily Used Configuration

‘Pfransaction Rate

wn

6. Online Data Entry
7. End User Efficiency
f. Online Update
9. Jimplex Processing
10. Reuditr .oy
11. Installation Ease
12. Operational Ease
13. Multiple Sites
{No. Of Business Units to Functions included
as Logical Transaction Usages)
14. Facilitate Change
15. Interface Requirement Of Other Applications
{Number of Functions included as Logical
Transactions which are Master Functions in
other Applications)
16. Security, Privacy, hudit

17. User Training Needs

18. Third Party Use

Pesigner/2000 Report : cdfpaa2

Page 3

of5s

16-~-MAY-96 MKII FPA Information Page ¢ ofs5

19. Documentation

20. Site Specific

Total Degree of Influence
Technical Complexity Adjustment

{0.65 + € * Total Degree of Influence
where C may take value of 0.005)

Size of System in MKII Function Points
{Informatien Processing Logic Size * Technical Complexity Adjustment)

bagigner/2000 Report : cdfpaa?

Designer/2000
MKII FPA Information

End of Repor:

Designer/2000

Report : MKII FPA - Design Level 1
Filename
Run by OWNERI

Report Date 16-MAY-36

Total Pages : 6

Parameter Values

Application System *+ TEST
Version .1
Include Shared Mcdules : True

Module Type
Language

o

16-MAY-96 MKII FPA - Design Level 1

Based at the Design Level

For Application System : TEST
Version vl

Information Processing Logic Size

Module Type SCREEN Language : Oracle Forms

INPUT - Number of attribute types input

No. of select column usages

No. of select detailed column usages
No. of Input parameters

No. of modified parameters

No. of other parameters

PROCESSIN

No. of Modules

No. of tables/Views - HNo. of entity types referenced
No. of lock-up links between table usages

No. of base links between table usages

OUTPUT -~ Number of attribute types output

No. of column usages in create/update/nullify

No. of detailed column usages in create/update/nullify
No. of output parameters

No. of modified parameters

No. of cther parameters

Designer/2000 Report : cdfpadl.lis

1]

1

Page 2of &

18
45

$TOTAL 66.67

o2 T e T i T

a8
68

16 -MAY-96 MKII FPA - Design Level 1 Page 30f 6

Information Processing Logic Size

Module Type PACKAGE Language : PL/SQL

INPUT - Number of attribute types input

No. of select column usages = 0
No, of select detailed column usages = 0

No. of Input parameters = 0

No. of modified parameters = 0

No. of other parameters = 0

PROCESSIN

No. of Modules = 1 ¥TOTAL 16.67
No. of tables/Views - No. of entity types referenced = 0

No. of look-up links between table usages = 0

No. of base links between table usages = 0

QUTPUT - Number of attribute types output

No. of ceclumn usages in create/update/nullify = 0

No. of detailed column usages in create/update/nullify = g

No. of output parameters = g

No. of modified parameters = q

No. of other parameters = 4

Resigner/2000 Report : cdfpadil.lis

T —— T A Wt N B Y e Al Nt W R il

Information Processing Logic Size

Module

Type PROCEDURE Language : PL/SQL

INPUT - Number of attribute types input

No. of
No. of
No. of
No. of
No. of

select column usages

select detailed column usages
Input parameters

modified parameters

other parameters

DPROCESSIN

No. of Modules

No. of tables/Views - No. of entity types referenced
No. of lock-up links between table usages

No. of

OUTPUT
No. of
No. of
No. of
No. of
No. of

base links between table usages

- Number of attribute types output

column usages in create/update/nullify

detailed column usages in create/update/nullify
output parameters

modified parameters

other parameters

Degsigner/2000 Report : cdfpadl.lis

I

H

o Ca a0

(===l

o o o oo

i B

STOTAL 16.67

16-MAY-36

TOTAL INPUTS

Sum

Sum

Sum

Sum
Sum

of select coclumn usages
of select detailed column usages
of input parameters

of medified parameter
of cother parameters

TOTAL PROCESSING

Sum

Sum
Sum

Sum

of modules
of tables/view

of lock_up links between table usages

of base links between table usages

TOTAIL, OUTPUTS

Sum
Sum
Sum
Sum
Sum

of column usages in create/update/null

of detailed cclumn usages in create/update/nullify

of ocutput parameters
of modified parameter
of other parameters

Denignar/2000 Report

cdfpadi.lis

MKITI FPA - Design Level 1

it

I

Page 5 of

48
45

oo oy

48
48

Designer /2000

MKII FPA - Design Level 1

Designer/2000

Report : MKII FPA - Design Level 2
Filename
Run by OWNER1

Report Date 16-MAY-96

Total Pages : 4

—
Parameter Values
Applicatien System : TEST
Versicn o1
Include Shared Modules : True

Mocdule Type

16-MAY-96 MKII FPA - Design Level 2 Page

Module Type

Technical Complexity Charactexristics

1. Data Communications

2. Distributed Functions
No. of nodes (Tetal in application system) = 0
No. of node to module usages = v}
pistinct No. of databases to table/view usages.

Module Type Distinct No. of databhases

No. of snapshots (Total in application system = 0
3. Performance
4. Heavily used configuration
5. Transaction Rate
6. Online Data Entry
7. End User Efficiency
8. Online Update
9. Complex Processing
Module Complexity
EASY " AVERAGE _—_DIFFICULT OTHER

TOTAL
$TOTAL

10. Reusability
No of modules owned by this Application system/version

which are shared with cthers = 0

No of Business unit to module usages

Dasignex /2000 fe,0rt :cdfpad2

2 of

16-MAY-96 MKII FPA -~ Design Level 2 Page 3 of 4

11. Installation Ease
12. Operational Ease
13. Multiple Sites
No of access group to module usages = 0
1l4. Facilitate Change
15. Interface Requirement of other applications
No of modules owned by other application system/versions
which are shared with this one = 1}
16. Security, privacy and audit
17. User training needs
Average No. of help text lines across tables
which have help text =
{Total in application system)
Average no of lines of help text across
all the tables that could have help text = 0.00
{Total in application system)
18. Third Party Use

19. Documentation

20. Site Specific

Designer/2000 Report :cdfpad?2

Designex/2000
MKII FPA - Design Level 2

End of Report

Degigner/2000

Report :
Filename :
Run by :
Repoxrt Date

Tobal Pages ;

Application System Metrics

OWNER1

16-MAY-96 03 :28pm

Parameter Values

mpplication System
Version '
Shared?

: TEST

False

1.

e

3.

16-MAY-96

Application System Metrics

Area Metric Based on Entity Model

N= {A*E} + {R*A} + (R*E)

Where A=No. of Attributes,
E=No. of Entities,

R=No. of Relationships

Area Metric Based on Schema Desigh

D={T*C) + (T*F) + (F*C

Where 7=No. of Tables,
C=No. of Columns which are not Foreign Keys,

F=No. of Foreign Keys

Area Metric Based on Comparison of Entity Model

and Schema Design

M=D/N

" Designer/2000 Report : cdmetric

= 458

Page 2

ot 3

Designer/2000
Application System Metrics

End of Report

Appendix B : The SQL SELECT statement

Oracle (1992) states the syntax of the SQL select statement as follows:

#r—SELECT —————~ select_list FROM table_list - >
AL armeeg = 7 t WHERE condition-l
DISTINCT 4

- l .
T — COKKE(T BY condition —
L. START WITH condition

— GROUP EY —Ceapr‘

UNION
UNION RLL —

|~ 1xTERsECT —]

I— HEYIKG condition —]

[]
. SELECT commend —J

- MIKus
F]
—t >
ORDER Y — expr —
L position - L__ £SC
L DESC
FOR UPDRTE 1 T
. L OF update tist — L NORATT 1 - .
select_list ::=
(33 - o
I—l table o]
L schema, —] t view
snapshot

expr
L calias —’

Appendix C: Design of Function Point Counting Software

A layout of the General flow of the function point counting software is illustrated in the

following diagram.

1.0 Analyse another module?

X lOK

2.0 Module Type:

* Query-only Form CANCEL
* Not Query-only Form

* Report

| ox

C EL
3.0 Analyse another module? | CANCEL |

OK v

4.0 Open text file

1

5.0 Parse text file —]

l

6.0 Close text file

ALL TEXT FILES
PARSED.

7.0 System Charactleristics
T_r\;al of fourteen.

!

8.0 Generate Report

Appendix D: A sample FPA report produced

FUNCTION POINT CALCULATION REPORT

TOTAL UNADJUSTED FUNCTION POINT CALCULATION

COMPONENT LOW AVERAGE
El External Input 1x3=3 0xd4= 0
EQ External Output Ox4=0 Oxb=0
EQ External Inguiry 0x3=0 Ox4=0¢
ILF Internal Logical File Qx7=0 Dx10=4Q
EIF External Interface File 0x5= 0 0x7=0

TECHNICAL COMPLEXITY CALCULATION

GENERAL SYSTEMS DI GEMNERAL SYSTEMS
CHARACTERISTIC CHARACTERISTIC
Data communications 3 On-Line update
Distributed Processing 1 Complex Processing
Perfarmance 4 Reusahility
Heavily used configuration 2 Installation ease
Transaction rates 4 Operational ease
On-Line data entry 3 Multiple sites
End-User efficiency 5 Facilitate change
Total Degree of Influence (TOI)
Technical Complexity Factor {TCF)
= (TDI* .01} + 0.65
Total Functfon Points =TCF “ TUFP
= 1.01"19
= 19.18

*** A LIST OF FOSSIBLE BASE TABLES ***
employments
COUNT= 1

*+** A LIST OF POSSIBLE TABLES ****
pay_offers
COUNT = 1

A LIST OF POSSIBLE BASE TABLE COLUMNS **=*
commenca_date
COUNT = 1

“* A LIST OF POSSIBLE COLUMNS
pay_offer_dasc
COUNT= 1

89

HIGH
Ox6=10
O0x7=10
1x6=6
0x15= 0
1x10= 10
Total
Unadjusted FP

Dl

1

&

4]

2

4]

4

2

36

1.01

TOTAL
3

o

6

a

10

19

APPENDIX E: Source Code for the Function Point Counting Software

The following is a listing of the macro code that has been created to perform the automatic

function point computation. 1t is based on the model illustrated in Appendix B.

Dim Shared ModType$(50) ‘eg. Reports,Forms {Q-onty, not Q-only) R,QO,NQO

Dim Shared ModName$(30) 'name of the module text file

Dim Shared ModCtr 'the number of module text files to be parsed

Dim Shared Analyse

Dim Shared NumT ‘number of external tables refercnced by application.

Dim Shared NumCol "'numbrer of ext table columns referenced by application,
Dim Shared Numl[T number of irternal tables referenced by application.

Dim Shared NumICol ‘number of internal table columns referenced by application.
Dim Shared NumB ‘number of base tables.

Dim Shared NumBCol 'number of base table columns referenced.

Dim Shared EO(3)'external output counter for Low, Av, Hi complexities
Dim Shared El(3Yexternal input counter for Low, Av, Fli complexities
Dim Shared EQ(3Yexternal inquiry counter for Low, Av, Hi complexities
Dim Shared 1LF(3Yinternal logical counter for Low, Av, Hi complexities
Dim Shared EIF(3Yex(ernal interface file counter for Low, Av, Hi complexitics
'System characteristic variables,

Dim Shared scDC

Dim Shared scDP

Dim Shared scP

Bim Shared sclHUC

Dim Shared sc TR

Dim Sharcd scODE

Dim Shared scEE

Dim Shared scOU

Dim Shared scCP

Dim Shared scR

Dimi Shared sclE

Dim Shared scOE

Dim Shared scMS

Dim Shared scFC

Uk ok A kot ok stk R R R aokok o koK ok ok Rk Kok ok s ko e o ko ok ok ek

T MAIN
Tk RO RO A KR R o ok R Ak ok ok ok o ok R O ek oK R o O sk R kRN R
Sub MAIN
Initialisations.
ModCtr - ¢ ‘Number of moidiies to be analysed,
Analyse = 1
NumT =0

NumCol = 0
For IndexCount = 1710 3

90

EO(IndexCount) = 0

El{lndexCount} =0

EQ(IndexCount} =0

ILF(IndexCountj =0

ElIF(IndexCount} =10
Next IndexCount

CtnsAnalysePrompt 'Analyse another module?
ParseTextFiles ‘Parse each module text file.
ILFComplexity 'Determine complexity for ILF.
EIFComplexity 'Determine complexity for EIF.

If ModCrr > 1 Then
GetSysCharsDlg 'System characteristic ratings.
FileOpen "CATEMPREPORT.DOC"
End 1f
GenerateReport '‘Generate a report on the FPA,
End Sub

Tk kR ok ok ko Rk kR R MRk kR Rk ko kR ko kR kR ko x

e CtnsAnalysePrompt
T ok o e e o ok e o o o A o o ok e 3 3 oK oK e e o ok e o o ok e ol ok ok ok ol ol ok ol sk ol e o ok i o o ol e ol ol ke e e ke ol o ok ok o ok ol ok
Sub CtnsAnalysePrompt
While Analyse =1
AnalyseModuleDlg
Wend
End Sub

oo o o ok o ol o e e ol ok e e o o e o kg ok e ik ok ok o K ko o ok o ok ok ok o ko ok ek ok R

s ParseTextFiles
TRk ke ke ko ko Rk ke Rk ke ke ko ke ke ok ko ke kR Rk R u

Sub ParseTextFiles
For Counter = 1 To (ModCtr - 1)
NumB =0
NumBCol =0
ParseThisFile(ModName${Counter))
DetermineComplexity(Mod Type$(Counter))
Next Counter
End Sub'OpenModNames

Vol e ol R o ol o gk ol o o okl ok o ok o o ol ol ke e ol kil e ok e ol e e e o ol ok ok o ol ok e e ok ok o

¥ ElFComplexity
TRk kR ko kodek ook ok ok sk ok ok kR sk k sk ki ks e skokokok ek ke ok kR R kok ok kk k%
Sub EIFComplexity
Select Case NumT
Case 0
Case |
Select Case NumCol
Case (
Case 1 To 50
EIF(1) = CIF(]) + 1 ‘External Qutput = LO
Case Else
EIF(2) = EIF(2) + 1 ‘External Qutput = AV

End Select
Case 2 To 5
Select Case NumCol

91

Case 0

'External Qutput = LO
‘External Qutput = AV

‘External Output = HI

‘External Qutput = AV

‘External Output = HI

‘External Quiput = LO

‘External Qutput = AV

‘External Output = LO
‘External Output = AV

'External Output = Hi

‘External Output = AV

'Externat Qutput = H}

Case 1 To 19
EIF(1)=EIF(1)} +1
Case 20 To 50
EIF(2)=EIF(2) + 1
Case Else
EIF(3}=EIF(3) +1
End Select
Case Else
Select Case NumCol
Case 0
Case t To 19
EIF(2) = EIF(2) + 1
Case Else
EIF(3) =EIF(3) + !
End Select
End Select
End Sub’E{FComplexity
o e o e ol o o M o o o e e o o i ok o ok e o i ok o e e o ke o ol o o ok e ook o e o o ol ok e o ok ol i ok ok e e ok ol i ok
T ILFComplexity
tkkkkokkr Rk kb kR kck Rk ko kR kR ko kR R kR ko Ak e ok ok ok ok
Sub ILFComplexity
Select Case NumlIT
Case 0
Case |
Select Case NumICol
Case 0
Case | To 50
ILF(1) = ILF(1} + |
Case Else
ILF(2) = ILF(2) + 1
End Select
Case2To 5
Select Case NumlICol
Case 0
Case 1 To 19
ILF(1) = ILF(1} + |
Casc 20 To 50
ILF(2)=ILF2) + 1
Casc Else
ILF(3) = ILF(3) + |
End Select
Case Else
Select Case NumlICo}
Case 0
Case 1 To 19
ILF(2) = ILF(2) +
Case Else
[LF(3)=ILF(3)+1
End Sclect
End Select

End SulyILFComplexity

FU koo Sk S sk ok o Ok ok R kAR A Rk R R R e R B KR R R Rk R

92

" TotalUFP
U o o s R oK O i ok o o a3 ok o o K Sk b oo o o o o o o
Function TotalUFP
TotalUFP = TotalEl + TotalEQ + TotalEQ + TotalILF + TotalEIF
End Function'TotalUFP

ook e e e o 3 O o o o e o K K ol ol oo o ol ok ol e ok ke R R ko

" TotalEl
Tl e e e Ol e o e ol ol o O o o e ok e ki e e ek e kR kR e ek ko ke ko ok e
Function TotalEl

TotalEl = (EI(1) * 3) + (EI(2) * 4) + (EI(3) * 6)
End Function'TotalEl

12k v e ok ok o ok A o ok e ok ol o o ok ook ok ook o e O e e ok el e ool ook e ok e o e o e e

v TotalEQ
T o o o K K R R A o oR S o o ok Rk
Function TotalEO
TotalEQ = (EQO(1) * 4)+ (EC2}* 5) +(EC3)* 7)
End FunctionTotalEO

AR RN R ok R ek R NN kA kR Rk Rk kb ke kb kRN R Rk Rk R

e TotalEQ
Waje o o ok ok oo e ok o ok e o o ol ool o ol s o ok i o e Nk Kk ok ok e ok ol ol e ok ok ok e o ol e e s ok o sl ok o e e ek
Function TotalEQ
TotalEQ = (EQ(1} * 3) + (EQ(2) * 4) + (EQ(3) * 6)
End FunctionTotalEQ

Foheok ok ok ak ek ok e ok e sk ok o ook i ok o o o ek ok i g i K e ok ko o ok ol e o ok e ok ool ok ok e oh ke o e ol o e ok ol oK ok

e TotalEIF
i o e o o o b ok ok o ko o e ol ok e ok R ok ok ok ok R ok sk e ok o R ol ko o o ook ok koK
Function TotalEIF
TotalEIF = (EIF(1) * 5) + (EIF(2) * 1+ (EIF(3) * 10)
End Function'TotalEQ

Pk R R ok kR kR kR Rk k kR kR kR kR ke kR R Rk R Rk kR ok

* TotalfLF
Tk kchrrk ok kR hdoh kR ko kb ok ok ok kk ke Wk e ok Mk kR ok k kg
Function TotalILF

TotallLF = (ELF(1) * 7) -+ (ILF(2) * i0) + (ILF(3) * 15)
End Function'TotallLF

Foha ok o o ok ok o R ok Ak ok ok ok A o ok ok o ok ok ko oo o o R Kk R R ok ok

* ™
Ta ok ok ok deok o o ok o o ok ok ok 0o o s ok ok ook e o ke ke ok ok o ol o ol o o o o ke e o ok o o ok ol ok ol e o ko ok o ke o i ke ke
Fui.clion TDI
'Calcutes the total degree of influence by summing each of {lie sysiem characteristics,
TDI = seDC + scOU + scDP + scCP + scP + s¢cR + scHUC + sclE + s¢TR + scOE + scODE +
scMS + scEE + 5¢i'C
End FunctionTDI

P o ok e o o ko R ok ok ok ok o K TR o o s o ok ol o ook ko o ok ook R ek

"" TCF

I I I T I I s s et T T I I m
Function TCI
"Total Complexity Factor

93

TCF = (TDI * 0.01) + 0.65
End FunctionTotalILF

LR R L LI L el Y LR L s R Ly I PP T P Ty L ¥

* GetSysCharsDlg
Ve Rk e kR R ol Rk kR ke kR R Rk kb K
Sub GetSysCharsDlg

Dim DlIScale$(5)

DIScale$(1) = "Not present"

DIScale$(2) = "Incidental Influence”

DIScale$(3) = "Moderate Influence"

DIScale${4) = "Average Influence"

DIScale$(5) = "Significant influence"

Dim Dlg As UserDialog

Begin Dialog UserDialog 768, 314, "System Characteristics”
DropListBox 24, 37, 329, 76, DIScale$(), .DataCommList
Dropl.istBex 24, 70, 329, 76, DIScale$(), . DistributedList
DropListBox 24, 103, 329, 76, D1Scale$(), .Performancelist
DropListBox 24, 136, 329, 76, DiScale$(), .HeavyList
Dropl.istBox 24, 169, 329, 76, DIScale$(), . TransactionList
DropListBox 24, 202, 329, 76, DIScale$(), .EntryList
DropListBox 24, 235, 329, 76, DIScale$(), EfficiencyList

DropListBox 426, 37, 329, 76, 1)8cale$(). .UpdateList
DropListBox 426, 70, 329, 76, DiScalc$(). .ComplexList
DropListBox 426, 103, 328, 76, DIScale$(), .Reusclist
DropListBox 426, 136, 329, 76, DIScale$(), .InstallList
DropListBox 426, 169, 329, 76. DIScale$(), .FascList
DropListBox 426, 202, 329, 76, (3 Scale$(), .MultipleList
Dropl.istBox 426, 235. 329, 76, D18cale$(), .Changelist

OKButton 297, 277, 88, 21
CancelButton 415, 277, 88. 21
Text 24, 24, 164, 13, "Data Communications", .Text]
Text 24, 57, 212, 13, "Distributed Data Processing"”, . Text2
Text 24, 90, 96, 13, "Performance”, . Text 14
Text 24, 123,207, 13, "Heavily Used Configuaration”, Text3
'ext 24, 156, 132, 13, "Transaction Rate", . Textd
Text 24, 189, 145, 13, "On-Line Data Entry”, Text3
Text 24, 222,151, 13, "End User Efficiency”, Text6
Text 426, 24, 120, 13, "On-Line Update”, . Text7
Text 426, 57, 132, {3, "Complex Processing”, T'ext8
Text 426, 98, 84, 13, "Reusability”, . Tex(9
Text 426, 123, 127, 13, "Instaflation Ease", . Texti0
Text 425, 156, 131, 13, "Operational Case", . Text1]
Tex1426, 189, 103, 13, "Multiple Sites”, . Text12
Text 426,222, 133, 13, "raailitate Change”, . Text13
End Dialog

i Dialopg(dlg) Then
s¢DC = dlg. DataCommList
seDE = dig.Distributedt.ist
scP = dlg. Performancel.ist
scHUC — dlg. FeavyList

94

scTR = dlg. TransactionList
scODE = dlg.EntryList
scEE = dlg.EfficiencyList
5cOU = dlg.UpdateList
5¢CP = dlg.ComplexList
scR = dlg.ReuseList
sclE = (lg.InstallList
scOE = dlg.EaseList
scMS = dig. MultipleList
scFC = dlg.ChangelList
End If
End Sub

Tk Rk kR R R ko ok Rk ek kR kR R Rk kR kR kR ko ko k kk

¥ GenerateReport
kgeok sk ek kR ok kR akck ck kb ko ko hck xkokkkok R ok ko k kor Rk ok ke ek ok ok ok ok ok k
Sub GenerateReport
‘Generates a report on the results of the function point
‘analysis process, based on the parsing of the individual
'files.
Close #1
Open "CATEMPWWAA.TXT" For Output As #2
Print #2, "FPA REPORT" + Str$(Counter) + Chr$(13) + Chr3(13) -+ Chr${13)
Generate TUFP
GenerateSysChars
CleanReport
' Close #2
End Sub'GenerateReport

ok ok ok o she sk oo o R A M 0 o ol ko i ok e o o o o ko o i o o e R e ek o ok o Ak

e Generate TUFP
Tk sk kbR kckop ok ok ke sk ke ko ks edok Rk koo kk kb kR kb ko ko kk k ok ko
Sub GenerateTUFP

Bold

Insert "FUNCTION POINT CALCULATION REPORT" + Chr$(13) + Chr$(13) + Chr$(13) +
Chr$(13) + "TOTAL UNADJUSTED FUNCTION POINT CALCULATION" + Chr§(13) + Chr$(13)

TablelnseriTable .ConvertFrom =", NumColumns = "6", NumRows = 7", .InitialColWidth
="2.7 cm", Format = "0", Apply = "167"
TableColumnWidth .RulerStyle = "1", .ColumnWidth = "[.44 cm"

Nex(Cell

Bold

Insert "COMPONENT”

TableColumnWidth .RulerStyle =" 1°, .ColumnWidth = "4.25 cm"

NextCelt

Bold

Insert "LOW"

NexiCell

Bold

Insert "AVERAGE"

NextCell

Bold

Tnsert "HIGH"

NextCell

Bald

RightPara

95

Insert "TOTAL"

NextCell

Insert "EI"

NextCell

Insert "External Input™

NextCell

Insert SteB(EI(1)) + " x 3 ="+ StS(EI(1) * 3)
NextCell

insert Str$(EI2)) + " x 4 =" + SrH(EI2) * 4)
NextCell

Insert SrS(EI3)) + " x 6 =" + Str$(EI(3) * 6)
NextCell

Insert StrS(ToetalEl)

RightPara

MextCell

Insert "EO"

NextCell

Insert "External Output"

NextCell

Insert SUrS(EQ(D) + " x4 ="+ SrS(EO(1) * 4)
NextCell

Insert Str3(EQ2Y + "x 5="+Sr$(EQ(2) * 5)
NextCell

tnsert Sr®(EQ(3) + "x 7="+SurB(EO3) * 1)
NextCell

Insert Str$(TotalEC)

RightPara

NextCell

Insert "EQ"

NextCell

Insert "External Inquiry"

NextCell

Insert SUrS(EQ1) + " x 3 ="+ StrS(EQ(1) * 3}
NextCell

Insert SrS(EQ(2)) + "x4="+SwS(EQ(2) * 4)
NextCell

Insert Str3(EQ(3) + "x 6 =" + SuF(EQ(3) * 6)
NextCell

Insert Str&(TotalCQ)

RightPara

NextCell

Insert "ILF"

NextiCell

Insert "Internal Logical File"

NextCell

Insert StrSALF(Y) + " x 7="+StrS(ILF(1)* 7)
NextCell

Insert Str8(ILF2)Y + " x 10 ="+ Str$(ILF(2) * 10)
NextCell

Insert SIrE(ILF3)) -+ " x 15 =" + Str$(ILF(3) * 15)
NextCell

Ensert SwS(Tuall[I7}

RightPara

NextCell

[nseet "EIFT

96

NextCell
Insert "External Interface File"
NextCell
Insert STS(EIF(1) + " x5 =" + SuS(EIF(1) * 5)
NextCell
Insert SU$(EIF2)) + " x 7="+SuS(EIF(Q) * 1)
NexiCell
Insert Str¥(EIF(3)) + " x 10="+SuwH(EIF(3) * 10)
NextCell
Insert Str$(Total EIF}
RightPara
NextCell
NexiCell
NextCell
NextCell
NextCell
Bold
Insert "Total Unadjusted FP"
NextCell
Bold
InsertPara
Insert Str8(Total UFP)
RightPara
LineDown 1
End Sub'Generate TUFP

Vol e o o e ol o il o ke ok ol o ok R ol e ik o o N ol e ol e ok o o o ok ok o e

¥ GenerateSysChars
T kb ok ke s b ko ko ko ok ks ko okok e ok ek sk ke ke sk e ek koK bk ek kb ok ok
Sub GenerateSysChars

Insert Chr(13) -+ Chr$(13) + Chr${13)

Bold

Insert "TECHNICAL COMPLEXITY CALCULATION" + Chr§(t3) + Chr$(13)

TablelnsertTable .ConvertFrom = ", NumColumns = "4", NumRows = "{0",
JnitialColWidth = "Auto", .Format = "0", .Apply ="167"

Bold

Insert "GENERAL SYSTEMS CHARACTERISTIC"

NextCell

Bold

RightPara

Insert "DI"

TableColumnWidth .RulerStyle = "1", .ColumnWidth = "1.2 ecm"

NextCell

Bold

Insert "GENERAL SYSTEMS CHARACTERISTIC"

NextCell

Baold

RightPara

Insert "DI"

TableColumnWidth .RulerStyle ="1", .ColumnWidth ="1.2 cm"

NextCell

Insert "Data communications”

NextCeil

RightPara

tnsert Str$(scDC)

97

NextCell

[nsert "On-Line update”
NextCell

RightPara

Insert Str¥{scOU)
NextCell

Insert "Distributed Processing”
NextCell

RightPara

Insert Str${scDP)
NextCell

Insert "Complex Processing”
NextCell

RightPara

Insert Str${scCP)
NextCell

Insert "Performance”
NexiCell

RightPara

Insert Str$(scP)
NextCell

Insert "Reusability"
NexiCell

RightPara

Insert Str$(scR)
NextCell

Insert "Heavily used configuration”

NextCelt

RightPara

Insert Str§(scHUC)
NextCell

Insert "Installation ease™
NextCell

RightPara

Insert Str¥(sclZ)
NextCell

Insert "Transaction rates"
NextCell

RightPara

Insert Str¥{scTR)
NextCell

Insert "Operational ease”
NextCell

RightPara

Insert Str$(scOE}
NexiCell

Insert "On-Line data entry"
NextCeil

RightPara

[nsert Stri{scODE)
NextCell

insert "Multiple sites "
NextCell

RightPara

Insert StrE(scMS)

98

NextCell

Insert "End-User efficiency”

NextCell

RightPara

Insert Str¥(scEE)

NexiCell

Insert "Facilitate change”

Next(Cell

RightPara

Insert Str¥{scFC)

NextCell

NextCell

NextCell

Insert Chr8(13)

Bold

Insert "Total Degree of Influence (TDI)"

NextCell

Bold

RightPara

fnsertPara

Insert StrS(TDI)

LineDown 1

CharLeft 1

Bold

Insert "Technical Complexity Factor {TCF)"

InsertPara

Insert "= (TDI * .01) + 0.65"

NextCell

RightPara

InsertPara

Bold

Insert SU$(TCF)

LineDown 1

{nsert Chr$(13) + Chr$(13)

Bold

insert "Total Function Points" + Che$(9) + "= TCF * TUFP” + Chr$(13)

Insert Chr$(9) 4 Chr§(9) + Chr$(9) + "= " + Str§(TCF) + "*" + Sir$(TotalUFP} -+ Chr$(i3)

Insert Chr$(9) + Chr$(9) + Chr$(9) + "= " + Str$(TCF * TotalUFP) + Chr$(13) + Chr$(13) +
Chri(13)
End Sub'GenerateSysChars

o o ek o ok o o ok ok ok o Aok i ah ok sk ok ok ok TR R ok ok ok ok R R R ok ok ek ok ok ok

* CleanReport
ok e e e o o ok o oo e 3k o i e ok o ok o ke ok o Rl o i K N o ol ok R o o o ok ko ok Ak ek ek ook
Sub CleanReport
EditSelectAll
Font "Arial"
FontSize 8
LineBown 1
End Sub

Ik d Ak kA - eddh ok ke kR RkokR kR ek ke ko kRN

* AnalyseModuleDlg

ok o e sle ot g ook o ok s ol ok ok e ol ok e s ol o A e sk e ok o e ke e o ko ok ok o ok o e ook s ol ok o ok o i e ol e o o o o

Sub AnalyseModuleldg

99

Begin Dialog UserDialog 355, 85, "Function Point Analysis"
Text 24, 8, 300, 15, "Analyse another (or the first) module for", Analyselt
Text 23, 26, 125, 13, “this applicatien?", .Text|
OKBulten 82, 53, 88, 21
CancelButton 184, 53, 88, 21
End Dialog

Dim dlg As UserDialog

ModCtr = ModCtr + |

Button = Dialog{dlg) 'display the dialog

If Button = - | Then 'ok button
SelectModTypeDlg

Elself Button = (Then'cancel buiton
Analyse =0

End If

End Sub

Do o e b ok s o b e ek e s o ok ke ek ke s e R Rk ok ke ke ke Rk

bk SelectMod TypeDly
W ok ko ok ok oo o R R o o o e R R R ARk s ke R Rk R ok R s sk ok e
Sub SelectModTypeDlg
'‘Prompt for the module type.
Begin Dialog UserDialog 400, 118, "Function Point Analysis"
OKButton 99, 89, 88, 21
CancelButton 215, 89, 88, 21
GroupBox 18, 7, 369, 77, "Select the File Module Type"
OptionGroup .ModType
OptienButton 48, 23, 250, 16, "Oracle Forms : & Query-only"
OptionButton 48, 41, 250, 16, "Oracle Forms : &Not query-only"
OptionBuiton 48, 59, 250, 16, "Oracle &Repotts

End Dialog
Dim dlig As UserDialog
If Dialog(dlg) Then
Select Case dlg.ModType
Case 0
ModType$(ModCtr) = "QQ"
GetFileName
AnalyseModuleDlg
Case |
ModType3(ModCtr) = "NQO"
GetFileName
AnalyseModuleDlg
Case 2
ModType${ModCtr) = "R"
GetFileName
AnalyseModuleDlg
Case Clse
MsgBox "Not a list style”
End Select

Else 'Cancel button
ModCtr = ModCtr - 1
End If
End Sub'SelectMod TypeDig

Ve K A b e R b o R S R ok o o R o R R oK ok o ok ok R e b kR ok ok

100

* GetFileName
UTI IR 2L SRS R RSN REEL AR 22 R 22222 RIS TELI TR 20 Y
Sub GetFileName
*Fills an array with the names of all files in the current directory, 'The instructions first count the files to
determine the size of the ‘array. Then they define the array, fill it
'with the filenames, and sort the clements. The array is then presented
‘in a user-defined dialog box.
temp$ = Filess("*.*")
Counter =- |
While temp$ <> ""
Counter = Counter + |
temp$ = Files$(}
Wend
If Counter> - 1 Then
Dim list${Counter)
list$(0) = Files§("*.*")
Fori=1 To Counter
list$(i) = Files$({)
Next i
SortArray list$()
Else
MsgBox "No files in current directory.”
End If

FileNameDig{List$(})
End Sub

CEdkkr bk ko ko ke kR kb ARk Rk ko kokk ok ko ek kR %

h FileNameDlg(FileList$())

e e o oo o o ol o o o ofe ok ofe ok o e ok ok ok ol ok e o o o R K N ok e ok sk ol ke o ok ok ok ok sk o ol o e o i e o o ol ol el ok ok R

Sub FileNameDlg(FileList$())

On Error Resume Next

Begin Dialog UserDialog 440, 160, "Function Point Analysis"
Text 29, 8, 261, 13, "Select the text file to be analysed:"
ComboBox 29, 25, 380, 84, FileList8(), .Filelist
OKButton 134, 123, 88, 21
CancelBution 248, 123, 88, 21

End Dialog

Dim dlg As UserDialog

If Dialog(dlg) Then
ModName$(ModCtr) = dlg.FileList

Else
ModCtr = ModCtr - 1

End If

End Sub

VRN e R Rk ok kR R kR ook ok R i Rk R sk sk
* ParseThisFiie(ThisFile$)
VA oot e o o ok o ok ok o ok ok o o ok R oo o o ok ok ok ok ok i sk e ok ok o i ok sk oo o A ok el e g
Sub ParseThisFile(ThisFile$)
If Files${ ThisFile$) <= *" Then

FileOpen ThisFile$

SearchTheTables

FileClose(2)
Else

101

MsgBox "File " + ThisFile$ + " not found.”

End If

End Sub
L T e T s Ty P L P ™
" SearchTheTables ,

T ok aje ol A e b b e o ok ok e ki ol Nk kol i ke e e e b ok Rk ke ek E ke ko ok b Rk R
Sub SearchTheTables

'DETERMINE THE NUMBER OF POSSIBLE BASE TABLES.
Open "CATEMP\REPORT.DOC" For Output As #1
Print #1, "*#** A LIST OF POSSIBLE BASE TABLES ##*+"
Searchlt("B", "Table", 1, "base tables")
Close #1

'DETERMINE THE NUMBER OF POSSIBLE TABLES REFERENCED.
Open "CATEMMREPORT.DOC" For Append As #1
Print #1, "**** A LIST OF POSSIBLE TABLES ****"
SearchIt("T", "From", 0, "tables referenced")
Close #1

‘DETERMINE THE NUMBER OF BASE TABLE COLUMNS,
Open "CATEMPAREPORT.DOC" For Append As #1
Print #1, "**** A LIST OF POSSIBLE BASE TABLE COLUMNS #**#»
Searchlt("BCOL", "Base Table Item True", 0, "base table columns")
Close #1

'DETERMINE THE NUMBER OF COLUMNS REFERENCED.
Open "CATEMMREPORT.DOC" For Append As #1
Print #1, "**** A LIST OF POSSIBLE COLUMNS »**#u
Searchlt("TCOL", "Select", 0, "columns referenced™)
Close #1

End Sub

PR R AR AR R AR R ok Aok AR R AR R Rk R R AR R kK

" SkipSpacesRight
¥k 2 ¢ e b ke e o o 0l ke ol ol ok o ok ol ook e e e ok ok o o ke o o ek ko ok ok o R ok ok ok ok ok R N R ek
Sub SkipSpacesRight
'Skip spaces & CR
While (Asc(Selection$()) = 13 Or Asc(Selection$()} = @ Or Asc(Selection$()) = 32)
CharRight 1, 0

Wend
End Sub
VAo o s R kK A R R K R R b R ek A Rk R AR
b SkipspacesLeft
O3 e e e o ek o R o o R o R o oK o o ok Rk R sk ok
Sub SkipSpacesLefl

‘Skip spaces & CR

CharLeft [, 0

While {Asc(Selection$()) = 13 Or Asc(Selection$()) = 9 Or Asc(Selection$()) = 32)

CharLeft §, 0

Wend

CharRight 1,0
End Sub

Vi i ok ke ok o ok R e ko s e ok ok b ke ok ok Rk Rk e ok Rk R ko o kR R N R R R

* NameWith_Symbol$

P oo o oA R K KR AR AR OR SRR R e ok oROR E R ke k a

102

Function NameWith_Symbol$.
*Assumes that the word is already selected.
TempWord$ = Selection$()

CharRight 1, 0

While Selection$()="_"
TempWord$ = TempWord$ + Selection$()
CharRight 1,0
SelectCurWord
TempWord$® = TempWord$ + Selection$()
CharRight 1, 0

Wend

WordLeft 1. 1

NameWith_Symbol$ = TempWord$

End Function

N O O o O o R o o o o oK o o o o o o o R o kN

b ADuplicate$(PossTabName$)
o ok ok i kK R ok ke kb ok ke ke ok ok ko ek kR R ek Rk ks e ek ok ok ok ok ok 3 okl
Function ADuplicate${PossTabName$)
Dim NameLength
ADup ="Y"
NameLength = Len(LTrim$(R Trim$(PossTabName$)))
Open "CATEMPMREPORT.DOC" For Input As #1
Input #1, name$
If name$ = "" Then

ADup$ = "N"
Goto Finish
End If
While LCase$(Lefi$(Name$, NameLength)) <
LCase$(LTrim$(RTrim$(PossTabName$))) '
If Eof(1) Then
ADup$ ="N"
Goto Finish
End If
Input #1, Name$
Wend
ADup$ ="Y"

Finish:
ADuplicate$ = ADup3
Close #1

End Function’ADuplicate$

Vo oo o o o oo oo o KA oo A o R R ok o kR ok R

" NotDuplicate(TempWord$)
T o ok e o e e oh e ok o o ofe ok ke o ek vk e ek e R e ke ke ok ke R R R ok ke ko o
Function NotDuplicate(TempWord$)
NotDup =0
Close #1
If (TempWord$ <> Chr${32) And ADuplicate$(TempWord$) = "N")} Then'not blank nor
duplicate
Open "CATEMMREPORT.DOC" For Append As #1
Print #1, L.Case$(TempWord$)
MNotDup = 1
Close #1
End [f'Print table

103

NotDuplicate = NotDup
End Function

UI 22 L P21 R PR TR 2RI ER L2+ R 222 2R P RN SRS RS LRI Ed 01220t

* IsLastCollnStatement
‘***#t***#*t*t**********i*t********#***#***‘**#tt!#t**#‘**t***#*#**
Function [sLastCollnStatement
'Assumes that the word is highlighted.

IsLast=0

WordRight 1, 0

SkipSpacesRight

SelectCurWord

If (UCase$(Selection$()) = "FROM" Or UCase$(Selection$(}) = "INTO") Then

Islast=1 -

End If'is FROM

WordLeft 1,0

SkipSpacesLeft

WordLeft I, 1

IsLastColInStatement = [sLast
End Function

BRI R TR IR SRR SRR R RS RN A2 L ER 2R AR SR Rt Rt b lE])

* UsesFunction
Vol ol ke ol S ok o ool e e ook o o ok e sl ol e ol o ot sk ol e s e ok e ok ok ol o i ok o e o o o ok o ok ok ke ek ok ok b ok b
Function UsesFunction
'Assumes that word is highlighted
UsesFn=10
CharRight 1,0
SkipSpacesRight
If Setection$() = (" Then
UsesFn = |
End If
SkipSpacesLeft
WordLeft 1, 1
UsesFunction = UsesFn
End Function

1o e e e o bz o o e ok ok ok e i o o o o3 ek ok ol ok ok ol ok o o ok ok o ok ol okl ol R o o o K
f* ReferenceColumns
oo e ok o s ok o o e ol ok ook o e ok o e e ok ok ok ke o o ok o ok o o o ok o e e o v ok ok o e ko
Function ReferenceColumns
'Assumes that the word to the right of "select” is highlighted,
NotColomn$ = "COUNT"
teaveloop =0
TempCols =0
If InStr(NotColumn$, UCase$(Selection$())) <= 0 Then
'ep. neglect : sclect count(*) from emp;
L.caveLoop = |
End If
While Leaveloop =0
CharRight 1, 0
SkipSpacesRight
If Selection$() = *." Or Selection$) =" _" Then
‘eg. select id_number, name from emp;
SkipSpacesLeft

104

WordLeft 1, 1
TempWord$ = NameWith_Symbol$
Close #1
If UsesFunction = | Then
‘eg. select to_date(to_char(...}}..
CharRight 1,0
SkipSpacesRight
Goto UsesFrncijon
Else
Leavel.oop = IsLastCollnStatement
If NotDuplicate(TempWord$) = 1 Then
TempCels = TempCols + 1
End If
CharRight [, 0
SkipSpacesRight
WordRight 1
SelectCurWord
End Ifof UsesFunction
Elself Selection$() = "." Then
"eg, select e.idnumber from emp e;
CharRight 1,0
WordRight 1, 1
TempWord$ = NameWith_Symbol$
Close #1
LeaveLoop = [sLastColInStatement
If NotDunlicate(TempWord$) = 1 Then
' TempCols = TempCols + |
End If
CharRight 1, 0
SkipSpacesRight
WordRight |
SelectCurWord
Elself Selection$() = "(" Then
UsesFunction: .
'eg. select Itrim(rtrim(name)) fravn emp;
OpenBracketCounter = 1
CharRight 1, 0
While Selection$() <>)"
If Selection$() = “(" Then
OpenBracketCounter = OpenBracketCounter + |
End tf
CharRight 1,0
Wend
EditFind .Find = "{", .Direction = 1, .MatchCase = 0, .WholeWord = I, .PatternMatch
=0, .SoundsLike =9, .Format = 0, .Wrap =0
I EditFindFound() < 0 Then
CharRight 1,0
SkipSpacesRight
'Ersure it is not a form field eg :id_number
i Selection$() =" Then
CharRight 1, 0

End If
'Check for alias eg. emp.id_number
WordRight 1,0

If Setection$() = "." Then

105

CharRight 1,0
SkipSpacesRight
Else
WordLeft 1, 0
End If
SelectCurWord
TempWord$ = NameWith_Symbol$
Close #1
If NotDuplicate{TempWord$) = | Then
TempCols = TempCols + 1
End If

‘Check if this is the last column in statement
CharRigit 1, 0
For CloseBracketCounter = | To OpenBracketCounter
EditFind .Find = ")", .Direction = 0, MatchCase = 0, .WholeWord =

1, .PatternMatch = 0, SoundsLike = 0, .Format = 0, .Wrap =0

"INTO") Then

Else

End if

If EditFindFound() < 0 Thea
CharRighe 1,0

Else
LeaveLoop =1

MsgBox "Query statement contains a syntax error."
End if

Next CloseBracketCounter

SkipSpacesRight

If (UCase3(Selection$()) = "F" Or UCase$(Selection$()) = "1") Then
SelectCurWord
If {(UCase$(Selection$()} = "FROM" Or UCase$(Selection$()) =

LeaveLoop=1

End If

CharLeft 1,0
End If'is FROM
WordRight 1, 0
SkipSpacesRight
WordRight [, 0
SkipSpacesRight
Charleft 1,0

MsgBox "Error searching for open bracket.”
Leavel.oop =1

Elself (UCase$(Selection$()) = "F" Or UCaseS(Selection$(}} = "1") Then

'Ensure that it is the word "FROM" ar "INTO"

SeleciCurWord

If (UCase$(Selection$()) = "FROM" Or UCase$(Selection$()) = "INTO") Then

CharLeft 2,0

SkipSpacesLeft

SelectCurWord

TempWord$ = NameWith_Symbol$

Close #1

If NotDuplicate(TempWord$) = | Then
TempCols = TempCols + |

End If

106

LeaveLoop =1
EndIf
Else
'most likely not a proper select statement.
Leaveloop = 1
End If
Wend
ReferenceColumns = TempCols
End Function

e e ke vl o o o el ol ke i ek R kR ke ok ek ok ek ok ke e e ok ek kol ok Rk

* DetermineComplexity(ThisModType$) _
ok o e e o ale o ok ol o e ol ke ok o ol o o o ol e ol o o o o o o oo o o o e o o o e o o ol o e ke ok ol e o e e
Sub DetermineComplexity(ThisModType8)
‘called from Searchit.
"This proc determines the complexity rating of Low, Average, or High
'for a component,

Select Case ThisModType$

Case "R" ‘External Qutputs
Select Case NumB
Case 0 To |
Select Case NumBCol
Case 0
Case 1 To 19
EQ(N=EQ(1)+1
Qutput=L0O
Case Else
EO(2) = EO(2) +'1
Output = AV
: End Select
Case 2 To 3
Select Case NumBCol
Case 0
Case 1 To 5
EQ()=EO(1)+ 1
Qutput=L0O
Case 6 To 19
EO(2) = EOQ(2) + 1
Output = AV
Case Else
EO(3)=EQO(3)+1
Output = HI
End Select
Case Else
Select Case NumBCol
Case 0
Case 1 To 5
EQ(2) = EQ(2)+]
Output = AV
Case Else
EOQ(3)=EQ(3)+1
Output = HI
End Select
End Select

Case "NQO” 'External [npuls

107

'External

'External

'External
'External

'Extemal

'External

'External

Inquiry =LO

Inquiry = AV

Inquiry = LO

Inquiry = AV

~ Inquiry = HI

Select Case NumB

Case0To i
Select Case NumBCol
Case 0
Case 1 To 15
El(1) = EI(1) + 1 'External Output=LO
Case Else
EI(2) = EI(2) + 1 'External Output = AV
End Select :
Case 2
Select Case NumBCol
Case 0
Case 1 To 4
El(1) = EI(1) + | 'External Qutput = LO
Case 5To 15
EI(2) = EI{2) +] 'External Output = AV
Case Else '
EI{3) = EI(3) + | 'External Output = HI
End Select
Case Else
Select Case NumBCol
Case 0
Case 1 Tod
EI(2) = El(2) + | 'External Output = AV
Case Else
EI{3) = EI(3) + 1 'External Qutput = HI
End Select
End Select
Case "QO" 'External Inquiries
Select Case NumB
Case 0 To |
Select Case NumBCol
Case 0
Case 1 To 15
EQ()=EQ{1)+1 'External
Case Else _
EQ(2)=EQ(2)+ 1 'External
End Select
Case 2
Select Case NumBCol
Case 0
Case 1 To 4
EQ()=EQ(1)+ 1 ‘External
Case 5To 15
EQ(2)=EQ(2) + 1 'External
Case Else _ '
EQQ)Y=EQ(+1 'External
End Select
Case Else

Select Case NumBCol

108

Case 0
Case 1 To4

EQ(2)=EQ@)+1

- Inguiry = AV
Case Else
. EQ(3)=EQ(3) + 1
Inquiry = HI
End Select
End Select
Case Else
EO(1)=-2

End Select

End Sub

LI RTINS 2 LA R R sl bttt R 2t 2Rl s alisint]

'‘External

'‘External

v Searchlt{ltemType$, WordToSearch$, MatchTheCase, SearchItem$)

PRk ke kR ko ke kR Rk kR h kR ek kR RN

Sub Searchlt(ItemType$, WordToSearch$, MatchTheCase, Searchltem$)
LeaveSearchloop = 0
StoredLineNumber = - 3
CommentedLine$ = "--, /*"

SpecialChar$ = Chr$(9) + Chr3(11) + Chr8(32) + Chr$(34) + Chr$(40) + Chr3(41) + Chr$(58)

+ Chr$(59) + Chr$(60) + Chr$(62) + Chr$(160)

NotTable$ = "FROM, ITEM, NULL, DUAL, THE, THIS, AND, NAME);" + SpecialChar$

EndOfDecument

Insert Chr§(13) + WordToSearch$ + " ENDOFDOCUMENTSYMBOL "
StartQfDocument

While LeaveSearchloop =0

EditFind .Find = WordToSearch$, .Direction = 0, .MatchCase = MatchTheCase,
.WholeWeord = 1, .PatternMatch = 0, .SoundsLike = 0, .Format =

0, Wrap=0
If EditFindFound{) < 0 Then

If Sellnfo{10) < StoredLineNumber Then

'ie. if there are >2 WordToSearch$ words in one line
Star{OfLine
CharRight 1, |

While LTrim5(Selection$()) = "*
CharRight 1, 1

Wend
CharRight 1, |
StoredLineNumber = Sellnfo(10)

If InStr(CommentedLine$, LTrim$(Selection$())} < 0 Then

LineDown
Goto EndOfL.oopLabel
Else
StartOfLine
EditFind .Find = WordToSearch$,

.Ditection = 0,

MatchCase = MatchTheCase, .WholeWord = 1, .PatternMatch = 0, .SoundsLike = 0, ,Format = 0,

Wrap=0
End IfCommented Line
End [fSellnfo

CharRight 1,0

SkipSpacesRight
SelectCurWord

109

If Selection$() = "ENDOFDOCUMENTSYMBOL" Then

EditReplace Find = WordToSearch$ + "
ENDOFDOCUMENTSYMBOL", .Replace = ", .Direction = 1, .MatchCase = 1, .WholeWord = 1,
JPatternMatch = 0, SoundsLike =0, .ReplaceOne, .Format = 0, Wrap = |
EditClear - 2
LeaveSearchloop = 1
Else
If ItemType$ = "BCOL" Then
CharRight 1
EditFind .Find = "Name ", .Direction = 1, MatchCase = 1,

WholeWord =, .PatternMatch = 0, .SoundsLike = 0, .Format =0, .Wrap =0
WordRight 1,0
SelectCurWord
End If

If ItemT}*pe$ ="TCOL" Then
Counter = ReferenceColumns + Counter

CharRight 1,0
SkipSpacesRight
Else
If InStr(NotTable$, UCase$(Selection$())) = 0 Then
If Selection$(} = Chr$(13) Then'Carriage return
CharRight 1, 0
SelectCurWord
End if
TempWord$ = Selection$()
CharRight 1, 0
While Selection$() ="_"
TempWord$ = TempWord$ + _"
CharRight 1,0
SclectCurWord
TempWord$ = TempWord$ + Selection$(}
CharRight 1,0
Wend
Close #1
1f NotDuplicate(TempWord$) = 1 Then
Counter = Counter + |
End If
Else
CharRight 1,0
End IfNot table
End If TCOL
' End IfErdOfDocSymbol
EndOfLoopLabel:
End If'EditFindFound
If temType$ = "BCOL" Then
CharRight |
EditFind .Find = WordToSearch§, Direction = 0, .MatchCase = MatchTheCdse, .WholeWord = 1,
JPatternMatch = 0, ,SoundsLike = 0, Format = 0, Wrap =0 :
End [f

Wend

110

Close #1
Select Case ltemType$
Case "T" 'Tables referenced in select statements.
NumT = NumT -+ Counter
Case "TCOL"Columns referenced in select statements.
NumCol =NumCol + Counter
Case "B"
NumB = NumB + Counter
Case "BCOL"
- NumBCol = NumBCol + Counter
End Select

Open "CATEMPAREPORT.DOC" For Append As #1
Print #1, "COUNT = " + Str$(Counter) + Chr${13) + Chr$(13) + Chr$(13)
Close #1

End Sub‘Searchlt

111

	An Investigation Into an Effective Method of Automatically Analysing Oracle Applications to Count Function Points
	Recommended Citation

