View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Research Online @ ECU

Edith Cowan University
Research Online

Theses : Honours Theses

1996

Towards a model for software project estimating

Stuart Hope
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses_hons

b Part of the Business Administration, Management, and Operations Commons, and the Software

Engineering Commons

Recommended Citation
Hope, S. (1996). Towards a model for software project estimating. https://ro.ecu.edu.au/theses_hons/
705

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses_hons/705

https://core.ac.uk/display/41536989?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses_hons
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses_hons?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F705&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/623?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F705&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F705&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F705&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses_hons/705
https://ro.ecu.edu.au/theses_hons/705

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose
of your own research or study.

The University does not authorize you to copy, communicate or
otherwise make available electronically to any other person any
copyright material contained on this site.

You are reminded of the following:

e Copyright owners are entitled to take legal action against persons
who infringe their copyright.

e A reproduction of material that is protected by copyright may be a
copyright infringement. Where the reproduction of such material is
done without attribution of authorship, with false attribution of
authorship or the authorship is treated in a derogatory manner,
this may be a breach of the author’s moral rights contained in Part
IX of the Copyright Act 1968 (Cth).

e Courts have the power to impose a wide range of civil and criminal
sanctions for infringement of copyright, infringement of moral
rights and other offences under the Copyright Act 1968 (Cth).
Higher penalties may apply, and higher damages may be awarded,
for offences and infringements involving the conversion of material
into digital or electronic form.

. > " |
Towards A Model for Software Project

Estimating

Stuart Hope
1996

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

A Modc! For Software Project Estimating

Towards A Model for Software Project
Estimating

By Stuart Hope B.App.Sc.

A Thesis Submitted in Partial Fulfilment of the Requirements for the Award of
Bachelor of Science (Honours) Computer Science
at the Computer Science Department
Faculty of Science, Technology and Engineering
Edith Cowan University

Date of Submission: 19" July 1996

iii

A Model For Software Project Estimating

Table of Contents
ADSETACE ...t e eee ittt e et e e et et st eensar e st eaes s et et e eateee s ee tmaearreeeseasaeannas v
DECIATALION ...ttt e e ettt e e s aneabeaneesrn i nerrsernaeaeentaneen vi
ACKNOWIEAZEMENES (.....iviviviiecie ettt et ea s e e sre b e et vi
List of Figures............. T RSO T SO ST T PPV OPR OO PTPUSRROUPRPON vil
LISt Of T aeS ..o e e et e et r e s e e eeenerea e nanaena vii
1. INTRODUCTION..... 1
1.1 THE BACKGROUND T THE STUDY .1.cuvvsiveeviresseeissssnesssansressassesstesssssassssnsss ssessssnsnsssesssassrsaesses 1
1.2 THE SIGNIFICANCE OF THE STUDY tiire e ciiveeeeeesititosrerseesssssersassssssssesses et sasnn sasstesssssssnses st sanransin 3
1.3 THE PURPOSE OF THE STUDY oeveiiieiiiees e e tie st eeeiasssssemesseressssnsisbeonsinseissessessessstteasasnesssstansorns 3
1.4 RESEARCH QUESTIONS 1uvovveeeviisvisreeeeeisviessisasssoresiesasass sosmessantosarssstsessansss s stseortsstesatantessnnssssnes 3
2. METHOD .occocvvmveirenrorineasmesssorssesssssessnees v -
3. REVIEW OF THE LITERATURE.. 7
B] GEMERAL...vuvee ettt ceseveee e soteeeeeeeeeassraasssessasn s emssesssssenaseesaresnesans resataanseesn s rmsseetbenresesarensos v 7
3.2 FUNCTION POINT ANALYSIS = ALBRECHT ..cvvivveeeceiiiiiissesranassrnsssesirnasssmessnmsesrenssasessnssnsasssanssnes 8
3.3 FUNCTION POINT ANALYSIS MARK §]...vec i rcsiiiiseerestnssmasese st ssssasssssssmnsrssnssstarassnses sasssnans 14
3.4 FEATURE POTINT ANALYSIS ..o eeiiioiiieerseieesisrasesaetieseetassastatesmas ssatsrteseentsstssemessstsiatssnssnsassrsansenss 16
S COCOMOD .ottt e e et e et b assb b e b ares seRb e rerbasabbesbesbasratasar e s bbebereebtasstsrtssrratarats 18
3.6 COCOMOD 2.0, ittt vttt i eevrrerens s raa s et eer e e s e ETEeer b besE oA bessaratabETnsoes 24
3.7 EXPERT JUDGEMENT ...ccovvriiieietrisieasisisssrmssessassasasnsssrsssssnssatbessssasnsssssnsensssassrassesssssranresssanasns 27
3.8 OTHER TECHUNIQUESocivtreiieiieieiisrrestisstsresstiststirassnssssnrsssstasbestsibsessssns sssssassstssasnssssansesnsts 29
4, ESTIMATING TECHNIQUE SURVEY ANALYSIS 30
5. THEORETICAL FRAMEWORK w33
6. ANALYSIS OF EXISTING MODELS 37
6.] FUNCTION POINT ANALYSIS Lovvivveeiiiiereee s s vsssstaetosieses sesissbansasssnsssissnsssssnsssenssesassssorosessnansons 37
6.2 COCOMO & LINES OF CODE MEASURES 1v.iviiiiiiieesescrasiseneesatistianessts nssesastsssnistesssassstsssssana 42
.3 CONCLUSION .cooviteretcircteeresiiestessbaseesssr et eeas s aassbassaseessesonsaatssnsssstessissantsnnnnastesntossnssssstoressssnonns 43
7. PROPOSED MODEL 44
T L GENERAL 11 ccvvveetreererisssersesssaenrassesstssrser aeasssstirraseenstesrseesssassterrestosesnssns bhebretentemtastansstsssrrsnns 44
T2 THE MODEL.....eiovvieiteerieistsisere s ssberessserstssansesssesstseas sassnsstasanssssessbontsans b absasessonsestenssietssrtans oot 46
T3 BUMMARY «.ovveeceiictisrirrestetesseressststastrarsssbtsas st aet st srtaarteeents st eerbnsbbatateanabbs s bressstentossentasartenensesns 36
8. CONCLUSION 57
49, REFERENCES . 50

v

A Model For Software Pruject Estimating

Abstract

The use and development of software is an integral and critical part of modern
industrial society. The outconmes of many software development and maintenance
projects have been less than satisfactory with significant numbers being over
schedule, lacking in functionality and over budget. These problems are the result of

poor management of both the process and the product.

One of the major problems 1o overcome in the management of software development
projects is the ability to predict the ontcomes early in the project when there are a
large number of unknowns. The ability to reliably predict the outcomes in a
repealtable manner requires accurate estimating techniques that are theoretically
sound, practical to use, relevant to the current sifuation and can cope with all the
project variables. Whilst a number of estimating techniques have been developed
they are poor in their predictive abilities, do not to take a total project approach and

are not used by practitioners.

This proposal is 10 define a model that will build on the strengths of the current
estimating fechniques, account for their weaknesses and provide a framework for the
development of practical techniques that encompass all aspects of a software

development projeci.

A Model For Softwaie Project Estimating

Declaration

“I certify that this thesis does not incorporate, without acknowledgment, any
material previously submitted for a degree or diploma in any institution of higher
edncation and that, io the best of my knowledge and belief, it does not contain any
matierial previously published or written by another person except where due

reference is made in the text”.

Stuart Hope
19 July 1996

Acknowledgments

I would like to thank my supervisor, Ken Muliin, for his comments on the draft
documents. I would also especially like to thank Julian Terry for his encouragement
and support in the preparation of this work.

A Model For Software Project Estimating

Figures
Figure 1 Composition of Function Points...............cccoeeieenieicvieeneesciseee e, 10
Figure 2 Function Point Complexity Ratings............cccocovviviecivv e cneesiesnenn 12
Figure 3 - Value Adjustment FACLOISc.ooivvvveeiieeccs et ee s s 13
Figure 4 - Feature Point Technique............c.coocvivviiiiiieiieieceee e e se e 17
Figure 5 Some Elements Impacting on a Project Estimate................covoeivieiveeinrs 47
Figure 6 Software Quality AtriDUtes........c.co.ooioiioie e v 51
Figure 7 Systems Dynamic Modelooco i e 52

Tables
Table 1 Feature Point Complexity Multipliers............c..ooii i v 18
Table 2 COCOMO CoefTiCIeNntS.........ooovvieriiii et 19
Table 3 COCOMO Cost DIIVEIS ...ooveiiieiceeccec vt et rab e 21
Table 4 COCOMO Schedule Equation Coefficients.............c...cccooveviriivineecvneinen, 23
Table 5 Percentage Comparison of Estimating Techniques Used............. ORI 31
Table 6 VAF Overlap 39

vii

A Model For Seftware Project Estimating

1. Introduction
1.1 The Background te the Study

Software systems are now ubiquitous. Software impacts on virtually all aspects of
modern industrial society and is economically critical. Software is used to teach,
educate, govern, manage, entertain and manufacture. Most electrical and mechanical
equipment now includes software, in part, to provide control and functionality. The
effective functioning of modern society is becoming increasingly dependant on the
production of cost eftective software.

Software projects tend to be at the top end of complexity in human endeavours. In
most industries it is normal to produce the same type of products repetitively.
However the development of sofiware tends to be the continuous design and
production of new artefacts using new tools and methods, It is interesting to note
that with most human activities that are new or novel in nature it is difficult to predict
the cutcomes. This has been so in all industries and is of particular significance in
sofiware development as each project is a new design exercise. As a consequence of
this fatlure to deliver the expected outcomes numerous authors have referred to it as
the “software crisis”. Pressman (1992) prefers to call it a “chronic affliction” because
the problems in the industry have been causing pain and distress for a long time and it
appears they will continue indefinitely.

The construction of software systems is dynamic with a large number of variables

affecting its outcome. Some of the variables are known and others are not when the

A Mod¢! For Software Project Estimating

most critical estimates are required to be made at project initiation. As a consequence
software projects experience a high rate of failure because their success criteria is
judged on highly suspoct initial estimates, They constantly fail to meet their financial,
schedule, effort, functional and quality targets. There is a school of thought,
Thomsett (1991), that with any reasonable sized development a project can only meet
one or two of the above targets. Software engineering is a new field of human
endeavour whose knowledge base is low on how to effectively measure the attributes
and entities that contribute to the building of systems. The demands and the
environment, both in terms of the requirements expressed and the enabling technology
are changing and evolving rapidly.

What are required are some methods to improve our ability to work in such an
environment and increase the probability of being successfuf in the delivery of
software systems. Estimating is one of the key Software Engineering techniques that
will enable the rationalisation of decision-making regarding software development.
More accurate estimates will increase the probability of success. Techniques are also
required that provide a step-wise feedback mechanism to enhance the accuracy of
estimates as the projects proceed (Abdel-Hamid, 1993).

A full practical estimating model is an ambitious goal that will require significant
empirical studies and experiments together with input from practitioners and
researchers in order to provide validation. The intention of this research is to provide

a comprehensive model that takes a total software project approach and act as a

A Model For Software Project Estimating

foundation to be modified, extended and perhaps refuted. Most current estimating

techniques only consider a sub-set of the total costs and effort involved.

1.2 The Significance of the Study

Software is critical for the future of Australian industry.

Pressman (1992) asserts that planning is one of the pivotal activities in the software
development process and good estimates are a precursor to good planning,

Most of the crises in the industry can be attributed to an inability to manage
(Weinberg 1993). A key input into the management and planning process is an

estimate of the cost, schedule and effort of the work to be performed.

1.3 The Purpose of the Study

This research aims to develop a model that comprehensively deals with all the
recognised complexities of estimating sotiware development and maintenance and
hence to provide an effective way of managing projects. Its purpose is to investigate
current software project estimating techniques, establish their degree of validity and

develop a model that overcomes their perceived weaknesses.

1.4 Research Questions

The questions that this research will try to answer are :-
» What are the strengths and weaknesses of current software estimating techniques?

« What are the common features of existing software estimating techniques?

A Model For Software Project Estimating

s What are the barriers to the industrial use of estimating techniques? Surveys have
shown that techniques are not used widely. Hibn & Habib-agahi (1991) showed
that only 7% of respondents to their survey used models. It is of little use in
devising techniques unless they are of practical benefit and hence an understanding
of the barriers to use must be understood. Park, Goethert & Webb (1994)
conducted a survey that looked at the needs and improvemeats required in
software cost estimating,

» Can an optimal modet be created that includes the strengths of existing models and
also overcomes their weaknesses? By optinial the model must be comprehensive,
theoretically sound and relatively easy to use in practice - i.e. technigues can be

derived from the model that can be used easily by practitioners.

A Model For Software Project Estimating

2. Method

The work proceeded by:
1. A detailed examination of existing techniques to determine :

e theoretical strengths and weaknesses;

o commonality of entities and attributes;

s explicit and implicit assumptions;

¢ inclusivity of the techniques;

» practical strengths and weaknesses.

2. Analysis of two existing projecis to determine:

o a classification of the project types;

¢ methods and techniques used in estimate formulation;

» accuracy of the above techniques;

o identification of “gaps” in the techniques where inaccurate through
exclusion where major cost elements in a project were not catered for by
the estimating technique.

The subject in the project examination was a semi-government utility who
had a considerable base of project information. Whilst it is recognised that
the information obtained is subjective in areas and not statistically valid, the
projects however form a representative sample that highlight some of the
estimating difficulties that are encountered in practice. Also the result of

this research is not intended to be definitive but a pointer to fuiure work.

A Model For Software Project Estimating

3. Analysis of published surveys of industrial organisations to determine:
o utilisation of existing techniques;
e perceived strengths and weaknesses of existing techniques;
» barriers to the use of existing techniques;
e desired attributes of an estimating technique.
Information refating to estimating technique utilisation was obtained from
two published surveys, one conducted in the USA and the other in New
Zealand (Hihn & Habib-agahi, 1991: Wydenbach & Paynter, 1995).
4, Synthesis of the data into a model, designed to overcome weaknesses of existing
techniques and their utilisation, capitalise on strengths and cater for perceived

L(gaps‘),‘

A Modcl For Softwarce Project Estimating

3. Review of the Literature

3.1 General

The history and general classification of the estimating techniques or methods will be
discussed and then a detailed examination of the more prevalent techniques will be
given,

The most widely quoted work in estimating is Boehm (1981) who was the first to
categorise estimating techniques into algorithmic models, expert judgement, analogy,
decomposition, Parkinson and “Price to Win”. The later two techniques are not really
estimating techniques but a recognition of reality and expediency tn some
organisations. More recently Humphrey (1995) has extended this list to include his
own technique and Putnam’s Fuzzy Logic. Putnam & Myers (1992) do not elaborate
the Fuzzy Logic technique, however they do provide some useful information that can
be incorporated into an estimating database.

From the literature surveyed the most widely reported and used formal techniques are
COCOMO and Function Point Analysis. These are considered formal because they
have a well documented model with repeatable processes and methods by which
estimates are calculated. These techniques are discussed in mor detail below. The
other techniques such as estimating by analogy are not formally described in the
software industry and hence would vary widely from practitioner to practitioner,

The formulation of any software metric must be defined with its intended use in mind.

That is, without the clear specification of goals the metric is to achieve the measures

A Model For Software Project Estimating

will be of little practical benefit. This view is espoused by Fenton (1991) and Gilb
(1988) who support Basili’s Goal Question Metric approach to measurement (Basili
& Rombach, 1988). Daskalantonakis (1992) provides practical experiences with this
approach.

Whilst some work, such as Mukhopadhyay & Kekre (1992), has been published that
addresses some of the issues involved with software estimating, few with the
exception of Kitchenham, Pfleeger & Fenton (1995) have addressed the fundamental
theoretical 1ssues that form a necessary scientific basis for any technique. Matson,
Barrett & Mellichamp (1994) provides an assessment through the use of several
statistical models that relate software development effort to software size in terms of
function points. They are concerned with the empirical data upon which the models
are based and the lack of attention to the aptness of the models. Jorgensen (1995) in
addressing issues relating to the prediction of mainienance effort concludes, after the
examination of several prediction models, that “a formal prediction model should not
replace the use of expert predictions”. This would support Boehm’s (1981)

Wideband Delphi approach.

3.2 Function Point Analysis - Albrecht
Function Points were devised by Albrecht and first published in 1979 (Albrecht,

1979). Jones (1991) reports the goals set for this measure were that;-

o it dealt with the external features of the software that were important to the

user,

A Model For Software Project Estimating

o it could be applied early in a product’s lifecycle,
e it could be linked to productivity and
e be independent of the coding language.

Various modifications have been made to Function Points including Symonds Mark I
Function Point metric and Jones’ Feature Points. Both of these techniques are
discussed below. These modifications came about because of perceived weaknesses
such as not accounting for algorithmic complexity. Dreger (1989) was instrumental in
making this estimating measure available to the general public with his publication,
which was essentially a function point tutorial. Garmus & Herron (1996) is probably
the most recent publication that provides function point counting guidance which

includes examples for the counting of Graphical User Interface applications.

Function Points measure software by quantifying the functionality provided to the
user based primarily on logical design. The objectives of function point counting are

to :-
e Measure functionality that the user requests and receives

¢ Measure software development and maintenance independently of the
technology used for implementation,
There are three types of function point counts. These being :-
¢ Development project function point count

¢ Enhancement project function point count

A Modecl For Seftware Project Estimating

s Application function point count
The unadjusted function point count reflects the specific countable functionality
provided to the user by the project or application. The application's specific user
functionality is evaluated in terms of what is delivered by the application, not how it is
delivered. Only user-requested and defined components are counted. The unadjusted
function point count has two function types - data and transactional. The composition

of these function types are shown in Figure 1.

Figure 1 Composition of Function Points

Internal
Logical Files

. Data
Functiocn Types

External
Interface Files

Unadjusted

Function Point Count
External

Inputs

| __ Transactional External
Function Types Qutputs

Externai
Inquiries

Data function types represent the functionality provided to the user to meet internal
and external daia requirements. Data function types are either internal logical files or
external interface files,
¢ An internal logical file (ILF) is a user identifiable group of logically related
data or control information maintained within the boundary of the

application being counted.

10

A Modecl For Software Project Estimating

o Anexternal interface file (EIF) is a user identifiable group of logically
related data or control information maintained outside the boundary of the

application being counted.

Transactional function types represent the functionality provided to the user to
process data by an application. Transactional function types are defined as external
inputs, external outputs and external inquiries,
o An external input (ET) processes data or control information that comes
from outside the boundary of the application being counted.
e Anexternal output (EQ) generates data or control information sent outside
the boundary of the application being counted.
¢ An external inquiry (EQ) represents a combination of input (request) and

output (retrieval).

The raw function point count is calculated by determining the complexity of the data
or transaction function type in accordance with the number of attributes affected.

Figure 2 is a summary of the how function point complexity ratings are ascertained.

11

A Model For Software Project Estimating

Figure 2 Function Point Complexity Ratings

Input Complexity - K1 14 attributes 5-15 attnbutes 16+ attributes
0 or 1 files accessed Low Low Average
2 files aecessed Low Average High
3 + files accessed Average High High
Complexily weight - Low =3, Average = 4, lligh =6
Qutput Complezity - EO 1-5 nttributes 6-19 attributes 20+ atiributes
0 or 1 files accessed Low Low Averane
2 or 3 files accessed Low Average High
4 + files accessed Averape High High
Complexily weight ; Low = 4, Average =35, High=7
File Comptesity - IL¥F 1-1% attribuics 20-50 attributes 51+ attributes
1 logical record/entity Low Low Average
2-5 logica) records/emitics Low Average High
0+ lopicul records/entitics Averape Higls High
Complexity weight : Low = 7, Average = 10, High =15
Interface Flle Complexity - EIF 1-19 aitributes 20-54 uttributes 51+ attributes
i logical record/entity Low Low Averape
2-5 logical records/entities Low Averape High
6+ logical records/entities Averuge Hiph High
Complesity weight : Low = 5, Averaga = 7, Iligh = 10
Enguiry Input Complexity - IEQ) 1-4 nttributes 5-15 ativiliples 16+ attributes
0 or 1 files accessed Low Low Averape
2 files aceessed Low Averape High
3 + files nccessed Average Iliph High
Complexity weight : Low =3, Averape =4, High =6
Enguivy Qutput Complexity - EG 1-5 nitributes 6-19 attrilutes 20+ attribules
0 or 1 files aceessed low Low Average
2 or 3 [iles mecessed Low Averape High
4 + [iles accessed Average High High

Complexity weight : Low = 4, Averape = 5, High=7

In order to determine a final count for the system the raw count is modified by

quantifying the key characteristics of the project and applying the resultant number to

the raw count. These modifying characteristics are called the value adjustment factor

(VAF) which indicates the general functionality provided to the user of the

application. The VAF is comprised of 14 general system characteristics (GSCs) that

asscss ihe general functionality of the application. See Figure 3.

12

A Maode! For Software Project Estimating

Yigure 3 - Value Adjustment Factors

L. Data communicalions 8. Onlinc updale

2, Disttibuled data processing 9. Complex processing
3. Performance 19, Reusability

4, Heavily used confipuration i1, Installation ease

5, Transaction rate 12, Qperatipnal ease

6. Oudiiie data entry 13, Multiple sites

7. End-user efficiency 14. Facilitate change

Each characteristic has six degrees of influence with associated descriptions that help
determine the degree of influence of the characteristic. The degrees of influence
range on a scale of zero to five as follows:

0 = not present or no influence;

1 = minor or incidental influence;

2 = moderate influence;

3 = average influence;

4 = gignificant influence;

5 = strong influence throughout.

The total VAF is determined by evaluating all fourteen general system characteristics
and summing them to produce the total degree of influence (TD1). The TDI is
inserted into the following equation to produce the value adjustment factor.

VAF =(TDI * 0.01) + 0.65.
When applied, the value adjustment factor adjusts the raw function point count +/-35

percent to produce a function point count.

13

A Model For Software Project Estimating

The final adjusted function point count is calculated using a specific formula for
development project, enhancement project, or application (system baseline)

(IFPUG, 1994)

3.3 Function Point Analysis Mark Il

Symons (1988) critically examined Albrectht’s method and proposed a partial
alternative based on overcoming perceived weaknesses. This method is based on the
premise that a system consists of logical transaction types. Each transaction type
being a logical input/process/output combination. In erder to provide a process size
measure of each transaction Symons (1988) considered the work of McCabe (1976)
and Jackson (19735) to arrive at the hypothesis that a measure of processing
complexity is to count the number of entities referenced by a transaction type.
Referenced means any access to the entity - create, read, update or delete. It should
be noted that Symons (1988) refers to entities as “anything (object, real or abstract) in
the real world about which the system provides information”. Symons (1988) then
discusses the Mark II model in the context of using an entity relationship data model.
No stipulation as to the level of normalisation, of the data model, is given. The
reasoning was that the access path through an entity model involves a selection or
branch or loop. Therefore the number of entities referenced by a transaction type is
the measure of processing complexity. For other components of a logical transaction,
input and output, the number of data element types are the measure of the size of the

component. The formula for calculating Mark II Unadjusted Function Points (UFP)

is:

14

A Model For Software Project Estimating

UFP = NiW; + NgWg; + NoWo

where

N; = number of input data element types,
Wi = weight of an input data element type,

Ni: = number of entity type references,

k=
I

weight of an entity type reference,
No = number of output data element types,

Wo = weight of an output data element type.
It should be noted that Ny, Ny;, No are each summed over all transaction types.

The weights were determined by calibration using data taken from twelve existing
projects to arrive at the average man-hours per component. These results were then
scaled to make the Mark 11 technique compatible with Albrecht’s, This compatibility

ensured all eight systems, in the calibration data set, under 500 UFP’s came out to be

identical on both scales. These weights were:

WI - 0.44,
WE = 1.67,
Wo = 038

15

A Model For Software Project Estimating

The Mark II's Value Adjustment Factor (then known as the Technical Complexity
Factor) utilises the fourteen factors proposed by Albrecht (see figure 3) with the
addition five new ones. These new factors are for:

1. interfacing to other applications,

2. security features,

3. direct use by third parties,

4. gpecial user training needs,

5. documentation requirements.

The technique also allows additional factors to be used by an organisation on the

provision that the factors are only those that can be derived fiom user requirements.

3.4 Feature Point Analysis

Jones (1991) developed this technique in order to “give the benefits of the function
point method to real-time software, embedded software, systems software and
telecommunications software”. This technique was designed to overcome the
perceived weaknesses of the function point technique with algorithmically complex
systems. The technique uses the average complexity weighting of Albrecht’s
technique and adds a new parameter - algorithms with a weighting of three. In
addition it reduced the weighting of the files parameter from ten to seven. The

technique is summarised in figure 4.

16

A Model For Software Project Estimating

Figure 4 - Feature Point Technique

Parameter Complexity Weight
Algorithms
Inputs
Outputs
Inquiries
Files
Interface Files

=1 -] B ouh W

This technique is not a simple extension to include the algorithm parameter, as alluded
to by Pressman (1992), but uses a totally different method to calculate complexity.
Complexity is not adjusted by using the fourteen value adjustment factors but by
answering two questions that Jones (1991) claims summarises their intent, These

questions relate to the problem complexity and data complexity as follows:

Problem Complexity.
1. Simple algorithms and simple calculations?
2. Majority of Simple algorithms and simple calculations?
3. Algorithms and calculations of average complexity?
4. Some difficult algorithms and calculations?

5. Many difficult algorithms and calculations?

Data Complexity.
1. Simple data with few variables and low complexity?

2. Numerous variables but simple data relationships?

17

A Mode! For Sofv: ~re Project Estimating

3. Multiple files, fields and data interactions?

4. Very complex file structures and data interactions?

Both qguestions are answered and the resultant number summed together. Then a
complexity multiplier is obtained from table 1 and applied to the unadjusted function

point count.

Table 1 Feature Point Complexity Multipliers
Sum of Problem & Data Complexity Multiplier
Complexity
2 0.6
3 0.7
4 0.8
5 0.9
6 1.0
7 1.1
8 1.2
9 1.3
10 1.4

Jones (1991) asserts that Feature Points returns the same adjusted function point

count as does Albrecht’s techniques and covers the same range but in a much simpler
fashton,
3.5 COCOMO

COCOMO was first described by Boehm (1981) and comprises three models which
correspond to available information at different stages in the developrnent process.

Each of these models includes a number of algorithms relating product size in

18

A Model For Software Project Estimating

thousand lines of delivered source instructions (KDSI) to the development effort in
months (MM, o). COCOMO’s three models are:
e basic COCOMO for initial estimates;
o intermediate COCOMO for when the major subsystems are
determined and
o detailed COCOMO when individual modules within the subsystems
have been identified.

The models’ effort equations are of the form
_ b
MMncm - a(KDSI)

where effort is measured in person months and size is measured in thousands of
delivered source instructions (KDSI). The values of g and & depend on the model
being used and the mode of development. See table 2.

These modes are Organic, Semi-detached and Embedded which represent increasingly

complex software development projects,

Table 2 COCOMO cocfficients

Mode Basic Intermediate & Detailed
a b a b
Organic 24 1.05 32 1.05
Semi-detached 3.0 1.12 3.0 1,12
Embedded 3.6 120 238 1.20

Organic is used to describe the situation of relatively small teams developing sofiware
in 2 highly familiar in-house environment. Most people connected with the project

have extensive experience working with related systems and the requirements and

19

A Model For Software Project Estimating

schedule are not rigorously defined. The development environment is stable with little

changes to existing operational hardware and procedures.

The Semidetached mode is a mid-point between the extremes of organic and

embedded. The team members have an intermediate level of experience with related

systems and there is a mixture of skilled and unskilled people. The requirements and

schedule are more rigorously defined than the organic mode.

The embedded mode is used for projects that need to operate with tight consiraints.

The resultant product must operate within a strongly coupled complex of hardware,
ware, regulations and operational procedures. An embedded mode project tends

to operate in new areas of application, hardware and development environments.

The coefficient values and the cost drivers described below were determined by expert

opinion and a database of sixty three projects was used to refine the values.

Fifteen cost drivers are used to modify the basic equation for intermediate and

detailed COCOMO by means of multipliers. These cost drivers are categorised into

product, process and resource attributes. The level of each cost driver must be

assessed on a six point ordinal scale. Table 3 summarises these cost drivers.

Note that all ratings categories are not applicable for each cost driver.

20

A Model For Software Project Estimating

Table 3 COCOMO Cost Drivers

Cost Description Ratings
Drivers
Very Low Nominal High Very Extra
Low High High
RELY Required sofiware 0.75 0.88 1.00 115 1.40 -
reliability
DATA Dala base size - 0,94 1.00 1.08 1.16 -
CPLX Product complexity (.70 0.83 1.00 1.15 1.30 1.65
TIME Exccution time - - 1.60 111 1.30 1.66
constraind
STOR Main slorage constraint - - 1.00 1.06 1.21 1.56
VIRT Virlval machine - 0.87 1.00 115 1.30 -
volatility
TURN Computer turnaround 0.79 0.87 1.00 1.07 115 -
time
ACAP Analyst capability 146 1.19 1.00 0.86 0.71 -
AEXP Applications experience 1.29 1.13 1.00 0,91 0.32 -
PCAP programming capability 1.42 1.17 1.00 (.80 0.71 -
VEXP Virtual machine 1.21 1.10 1.00 0.90 - -
gxpericnce
LEXP Programming languagc L14 1.07 1.00 0.95 - -
experience
MODP Use of modern 1.24 1,10 1.00 091 0.82 -
programming practiccs
TOOL Use of software 1oois 124 114 1.00 (.91 0,43 0.77
SCED Required development 1.23 1.08 1.00 1.04 1.10 -
schedule

The basic effort estimate MM, is adjusted by the product of all the cost driver
multipliers.

The important points about Intermediate and Detailed COCOMO are niot just the
introduction of the cost drivers. Intermediate COCOMO is intended to be used when

the major components of the software product have been identified. This enables

21

A Model For Software Project Estimating

effort estimates to be made on a component basis using the size and cost driver
ratings appropriate for each component. The adjusted coniponent estimates are
summed to attain the total estimate. Detailed COCOMO takes the estimation process
further and uses cost driver multipliers that differ for each major development phase,
COCOMO also has features for handling adapted code and assessing the maintenance
effort. Code re-use effects are determined by calculating an equivalent number of
delivered source instructions (EDSI), and using EDS1 1n place of DSI in the effort
equations. Maintenance effort estimates are restricted to that which is expended on
the following;

¢ redesign and development of small portions of a product;

¢ design and development of smail interface packages that require some

redesign of the product;

¢ modification of the software’s code, documentation or database structure.
The Basic COCOMO estimate for annual software maintenance is calculated in terms
of the annual change traffic (ACT) which is the fraction of the software product’s
source instructions that undergo change during a year. It is calculated using the
following equation:

MMan = ACT * MMon
where
MMan 18 the estimated annual maintenance effort:

MMuom 1s the estimated development effort.

22

A Model For Software Project Estimating

Boehm (1981) suggests that the annual maintenance estimate can be refined by using
the Intermediate COCOMO cost drivers with the following adaptations.
¢ SCED is not used,
s Personnel ratings and computer turnaround are related to the
maintenance staff and computer.

¢ New cost driver multipliers are used for RELY and MODP.

COCOMO uses a relationship between the development time (schedule) and
development effort using the following equation;
TDEV = a(MM)"
where
TDEV is the development time in months;,
MM is the estimated effort to produce the product in man-months,
a and b are constants that depend on the mode of development as
shown in table 5. The same values are used for Basic, Intermediate and

Detailed COCOMO.

Table 4 COCOMO Schedule Equation CoefTicients

Mode a b
Organic 2.5 0.38
Semi-detached 2.5 0.35
Embedded 2.5 0.32

The COCOMO model also defines details such as a man month consists of 152 hours
of working time and perhaps most importantly provides a phase and Work

Breakdown Structure (WBS) for which the model applies. Boehm (1981) also details

23

A Model For Software Project Estimating

assumptions such as the project “enjoys good management” and “the requirements
specification is not substantially changed after the requirements phase”. Boehm’s
work is thorough and demonstrates an excellent understanding of the realities of

software development.

Boehm (1987) also developed an improved version of COCOMO which is based on a
more modern process model which includes risk management and can be used to

predict the costs of Ada projects.

3.6 COCOMOQ 2.0

COCOMO 2.0 is currently under development and as yet there are only unpublished
preliminary manuals available. This work will be very important and impact on all
future software estimating models. It was recognised that COCOMO had increasing
difficulty in estimating the costs and schedules of business software, object oriented
software, software developed using an evolutionary approach and software that is a
composite of commercial packages.
COCOMO 2.0°s construction has been guided by an anticipated model of future
software development practices. This model’s components are outlined below.

¢ End-user programming - where applications will be developed

using application generator tools such as spreadsheets, query

systems and parameter driven specialised systems.

24

A Model For Software Project Estimating

Infrastructure - where applications will be in the areas of operating
systems, data-base management systems and networks operating
systems together with the user interface tools,

Application Generators - where the bulk of the tools used by the
end users will be developed such as financial analysis tools, project
management tools, etc.

Application Composition - where applications too complex for a
single tool will be created from several inter-operable components.
Systems Integration - where large scale, embedded or unusual
systems will be developed that require a significant amount of

customised software development.

COCOMO 2.0 provides a suite of increasingly detailed estimation models in order to

satisty the different practices. The end user practice is not seen to need a COCOMO

2.0 model as the applications are simple and will be developed in a small number of

days. The first model addresses the Application Composition practice which

comprises applications that cannot be built using a specific tool such as a spreadsheet.

However the application can be created using a number of diverse packages. The

approach used is called Object Point estimation. This technique is similar to Function

Point analysis in that it uses a like process which is outlined below.

1. Assess object counts: estimate the number of screens, reports and

3GL components that comprise the application.

25

1.

A Model For Software Project Estimating

Classify each object instance into simple, medium and difficult

complexity levels using supplied tables.

. Assign a weight to each instance using a supplied table.
. Add all the dbject instances to obtain an Object Point count,

. Estimate .he percentage of re-use expected to be achieved in the

proje.t using the following formula:

New Object Points = {Object Points) * (100 - % Re-use)
100

Determine a produclivity rate (productivity being measured in terms
of the New Object Points per person month) from the supplied
table.

Compute the estimated person months.

The second and more detailed model, Early Design, uses unadjusted Function Points

as a sizing metric. The VAFs are not used as COCOMO (1995) advises that the

characteristics and relative weighting are inconsistent with their experience. The

unadjusted Function Points are translated into source lines of code (SLOC) and then

KSLOC by using tables such as those provided by Jones (1991). A set of cost drivers

is then applied.

The third model, Post Architecture uses KSLOC as per the Farly Design model but

uses a more comprehensive suite of cost drivers.

26

A Model For Software Project Estimating

3.7 Expert Judgement
The techniques in this area involve consulting with experts to obtain their opinion and
consequent estimate as to the effort cost and schedule factors for a particular project.
An expert can factor in elements of a project such as the skill of the people involved,
the similarity with past projects and political aspects of the development. If a single
expert’s opinion is obtained then the result can be subject to bias and an unfamiliarity
with major aspects of the system,
To overcome the difficulties associated with a single expert an number of group
consensus techniques have evolved such as the Delphi technique. This technique
originated at the RAND Corporation and the Wideband Delphi version is described by
Boehm {1981).
The use of the Wideband Delphi technique proceeds as follows.
1. A coordinator provides each expert with a specification of the system and
an estimation form.
2. A group meeting is held in which the project and estimation issues are
discussed.
3. The experts form an estimate individually and anonymously inciuding
rationale they feel may be required.
4. The coordinator summarises all the estimates and distributes to all the

experts without the rationale.

27

A Model For Software Project Estimating

5. Another group meeting is held which focuses on the areas where there is a
wide divergence of opinion. These areas are discussed in depth to ensure
all experts have an understanding of the issues involved.

6. Another estimate is made by the experts individually and anonymously and
steps 4 to 6 are iterated to obtain convergence.

This method ensures that there is good understanding of all the issues involved
through communicating at the meetings whilst also minimising the impact of any
dominant individual.

This technique has been extended by Hope (1993) whereby detailed estimating forms
(see attachment 1) are provided to the experts that require them to make optimistic,
probable and pessimistic estimates of both cost and effort. The elements of the forms
were derived from analysis of five large projects implemented on a national basis
within Telecom Australia. The method has not been validated however proved useful
to identify cost and effort factors not considered by other known techniques. For
instanice in one project with a total cost of $4.8m, $1.3m was identified to
environmental costs (Telecom, 1992).

A formula

Estimate = Optimisticy, + (4* Probable)r, + Pessimisticyy,
6* ET{JI'

is used to give a weighting to the sum of the estimates. Fr,, is the number of experts
providing estimates. The rationale behind the equation is the standard deviation of a

beta distribution.

28

A Model For Software Project Estimating

3.8 Other Technigues
There are numerous other estimating models availabie. These are listed below,
however are not described as they add little more to this research, These other
techniques are;

¢ TRW Wolverton Model

e TSDC Model

* Walston-Felix

s SOFTCOST

e PRICE SP

o ESTIMACS

¢ Bailey-Basili Meta Model

e Putnam’s model

e Parr

e Jensen

e COPMO

29

A Model For Software Project Estimating

4. Estimating Technique Survey Analysis

Estimating technique utilisation which was obtained from three published surveys, one
conducted in the USA another in New Zealand and the third in the Netherlands,
Wydenbach & Paynter, (1995) also reported Heemstra & Kusters’ (1989) results from
a similar survey conducted in the Netherlands. (Hihn & Habib-agahi, 1991:
Wydenbach & Paynter, 1995).

Hihn & Habib-agahi’s (1991) survey contained four categories which were informal
analogy, formal analogy, rules of thumb and models. Their research was limited to
the technical divisions of a single organisation, the Jet Propulsion Laboratory. The
categorisation was not rigorous with overlaps and the data “reflects the authors’
interpretation of what techniques were the dominant ones”.

Wydenbach & Paynter, (1995) contained eight categories and their survey was
conducted by mail on New Zealand organisations involved in software development.
The data indicates that whilst eighty percent of respondents consider the estimation
process to be important and ninety eight percent make some form of estimate only
twenty five percent use a formal approach. The most common formal estimation
method was found to be function point analysis. Table 5 below is a summary of data
contained in these surveys. Where a method was not considered in a survey it has

been marked not applicable (N/A).

30

A Model For Software Project Estimating

Table 5 Percentage Comparison of Estimating Techniques Used.

Estimation Estimation Estimation l
Methods % of totat Methods % of {olal Methods Hihn
Wydenbuach & respondents Heemstra & respondents & Habib-agahi Respondents (83) I
Paynter {200 Kusters (369) |
Primary Secondary
% %
Expert 86% Cousult an 20% Rules of thumb 6% 55%
judgement experl (expert}
N/A - Intuitien 62% Analogy, 83% 34%
informal
Reasoning by 65% Analogy method 61% Analogy, formal 4% 0%
analogy
Bottom-up 51% N/A - N/A - -
Models 20% Parametric 14% Models
models
Price-to-win 16% Price-1o-win 8% Nia - -
Top-down 13% NIA - N/A - -
Available 1% Capacity 21% MiA - -
capacity problem
Otlier 0% Other 9% N/a - -

Heemstra & Kusters’ (1989) data indicates that only fourteen percent use a formal

model approach. This difference from the New Zealand survey (26%) was explained

by Heemstra & Kusters’ (1989) large percentage of the “other” category purports to

contain non-commercial models.

It is interesting to note that in all surveys conducted above, the largest category was

estimating by analogy.

Park et al (1994) conducted a survey in 1993 to assess the need for improvements in

software cost estimating and as an input to the prioritisation of the work at the

Software Engineering Institute at Carnegie Mellon University. The survey was basic

with only eight questions, one of which was contact information. They distributed the

3l

A Model For Software Project Estimating

survey widély to groups affiliated with the SEI and those who have an obvious
interest in software estimating such as the COCOMO user group. This has, no doubt
biased any results obtained. It is also of interest to note they only received 249
responses. The question of most interest in this research was ’What improvements
would be of most help?”. This question did not have a structured reply and the
authors grouped according to the general areas they addressed and advised “. ..
everyone sees a need to improve sofiware estimating, but few see the same needs”.
The general area groupings used were size, models, databases, metrics and process.
Unfortunately Park (1994) did not supply the total data, however, gave forty nine
examples of the responses. Of these, fourteen were concerned with the improvement
of the sizing of a software project and thirty one advised a standard model and/or

process with which to develop and record estimates would be of benefit.

It is unfortunate that a comprebensive survey that addresses and analyses the needs of
this research was not found. Work is in progress at Edith Cowan University to

address this gap.
It can be concluded from these surveys that the more formal and structured estimating

techniques like COCOMO are not widely used in practice. The majority of software

practitioners appear to estimate by using expert judgement and analogy.

32

A Model For Software Project Estimating

5. Theoretical Framework

The estimating of software projects has importart ramifications on organisations who
are making decisions based on the estimates and on the teams and personnel who
undertake the projects. Therefore it is important that any measurcs derived for
estimating purposes must be based in measurement theory if they are to have any
mathematical validity. It is apparent that a number of “metrics” in the Software
Engineering paradigm fail to take heed of the available theory and hence the metrics
espoused are flawed (Fenton 1994).

Measurement is defined by Fenton as “the process by which numbers or symbols are
assigned to attributes of entities in the real world in such a way as to describe them
according to clearly defined rules”. An entity can be either an object, such as a
requirements specification, or process of interest, such as the requirements phase of a
project. An aftribute is a property of an entity such as the length of a requirements
document. There are two types of measurement, direct and indirect. Direct
measurement 1s where the measurement of an attribute does not depend on the
measurement of any other attribute. Indirect measurement is an attribute that
comprises the measurement of one or more other attributes.

Hence it is important to note that measurement is a defined mapping of numbers or
symbols to an attribute which must preserve any intuitive or empirical observations

about the attribute.

33

A Modcl For Software Project Estimating

For instance, we could measure the length of a requirements document by mapping to
the attribute length the number of pages or the number ot words comprising the
document. To be clear about the attribute we would have to have a formal definition
or model for the requirements document that defined the rules under which the
measurement took place in order that the length could be stated unambiguously and in
a repeatable fashion. For instance a requirements document model would have to
cater for various aspects that could impact on the attribute such as page size, font
size, line spacing, standard contents, etc, It is interesting to note where common
measurements are taken this definition applies. For instance, in the measurement of
the height of a person rules apply as to the person’s attitude, ie standing with feet on
the ground and the disposition of the footwear before mapping the person’s length to
a number system.
Fenton {1991} is of the opinion that where no previous measurement has been
performed or the attributes are not well understood one should attempt to obtain
direct measures in order to gain an understanding of the entity and attributes in
question.
For measures to be valid it is generally considered that they should obey the
representation condition of measurement theory (Fenton, 1991). The representation
theory of measurement has a mathematical framework based on sets, relations, axioms
and functions. The components are :~

s Empirical relation systems which determine the axioms that characterise

any empirical observations or relations between the entities. The set of

34

A Model For Software Project Estimating

entities E, together with the set of empirical relations R, is cailed an
empirical relation system (E,R) for the attribute under observation. For
example, the attribute length of a document leads a binary relation “is
longer than” and this satisfies the axiom of transitivity. That is, if document
A is longer than document B which in turn is longer than document C, then
we may infer that A is longer than C. Relations do not have to always be
binary, for instance, “is long” woulid only apply to an single instance of a
document.

The representation condition is required for measurement in order that the
attribute defined in the empirical relation system (E,R) can have a mapping
M into a numerical relation system (N, P) in such a way that all empirical
relations are preserved. That is M maps attributes in E to numbers in N
and empirical relations in R are mapped to numerical relations in P. Note
the representation condition asserts that the correspondence between
empirical and numerical relations is two way. For instance with the
document example above if we considered E as the set of all documents
and R contains the relation “longer than”. Then a measure M of length
would ma» E to the set of positive integers and “longer than” to the
relation “>“. The representation condition asserts that document A is
longer that document B, if and only if M{A) > M(B).

It should be noted that empirical relations are normaily established by

subjective means as a precursor to more objective forms.

35

A Model For Software Project Estimating

¢ The scale types that can be meaningfully applied to the measurement of an
attribute are dependant on the representation mapping M from an empirical
relation system E to some numerical relation system V. Ifsuch a

representation exists then the triple (E,N, M) is called the scale.

A framework for the validation of software measurement has been prop osed by
Kitchenham et al (1995) which should prove useful in this work. The framework is
based on Fenton’s work and has the goals of helping both the areas of research and
practice by facilitating the understanding of

e measure validation

» validation work assessment

» appropriateness of measures in a given situation.

36

A Model For Software Project Estimating

6. Analysis of Existing Models

6.1 Function Point Analysis

There is confusion as to what function points are actually measuring. Albrecht’s
Function Point Analysis and Jones” Feature Point Analysis are assumed to either
measure size or functionality as perceived by the user of the software product. The
view held by the International Function Point Users Group, IFPUG (1994) is
somewhat confusing as they discuss both “as a measure of the functional size of
information systems™ and a “measure of functionality that the user requests and
receives”. Albrecht (reported in Symons 1988) stated that the “measure isolates the
intrinsic size of the system from environmental factors...”.

However, function points are calculated from the sum of a number of different
elements and therefore appear to be an atrribute in their own right derived from an
attribute relationship model. As Kitchenham et al (1995) espouses, “the term function
point does not seem appropriate; function points might be better renamed as

functionality or user requirement size”.

However, more fundamental issues need to be addressed with function points.
Function points are the sum of five elements derived from the number of inputs,
outputs, inquiries, data and interface files. The input element is based on the number
of data elements involved in each system input - see figure 2 for details. If the number

of data elements involved in all inputs were summed then this would be an acceptable

37

A Model For Software Project Estimating

measure of input data size. However, the function point model involves classifying
each input as simple, average or complex, using an ordinal scale, according to the
number of data elements and files accessed. The values derived are then mapped to
numbers and summed. It would appear that the function point model is in violation of
basic measurement theory in that you cannot sum ordinal scale measures. Also the
counting rules mean that the smallest system has a value of three which implies that
the values are discontinuous and there is no unit value. This is another violation of

the measurement framework. These arguments ere also applicable to Feature Points,

Albrecht’s Function Points have also been criticised by Symons (1988) on a number
of grounds. These being:
¢ It is difficult to define the basic counts objectively.
» The complex, average and simple classification is over simplified.
» The choice of weights for the initial classification and calculation of
the technical complexity factor was determined subjectively and
based on experiences at IBM.
» Internal complexity is treated twice, during the initial classification
and during the calculation of the technical complexity factor.
o The effect on function point counts of comparing a group of
independent systems linked by interfaces and a single fully

integrated system is counter intuitive.

38

A Model For Software Project Estimating

There are also problems with the value adjustment factors in several ways. Jeffrey,
Low & Barnes {1993) has shown that the complexity adjustments do not improve
effort predictions and there was no significant differences between unadjusted and
adjusted function points as effort predictors. Kitchenham & Kansala (1993) have
reported similar results,

Fenton (1994) is of the opinion that using the VAF adjustment, for a model that
measures system functionality, is “analogous to redefining measures of height of
people in such a way that the measures correlate more closely with intelligence’.
Other concerns with VAFs is that they are open to interpretation and it is easy to see

overlap. See table 6 for details of overlap.

Table 6 VAF Overlap

VAF VAF Overlap
Data communications 6,8, 2
Distributed dala processing 1
Performance 6,8
Heavily used configuration
Transaction rate
Online data entry 1,3, 8
End-user efficiency 6, 8
Online update 1,3,6,7
9. Compiex processing
10. Reusability
11. Installation ease
12. Operational ease
13. Multiple sites
14. Facilitate change

W N kW —

Therefore the use of VAFs are subjective and depends on interpretation as to what the
person conducting the count perceives a sbeing in each category. VAFs were

formulated in 1984 and as such are not wholly relevant to modem software products

3y

A Model For Software Project Estimating

and development environments. For instance, the graphical capabilities required and
the provision of inquiries as defaults in fourth generation languages are not easily
accounted for. One of the more important modifiers to most other estimating
techniques are aspects of the guality of the software product, most of the quality
attributes are missing from the function point model. The application of the model
will always give a linear resuit which is counter-intuitive in that the amount of work
increases geometrically as the size of the project increases ie large projects take a
significant amount of more work than small ones.

The applicable scope of a soltware project covered by function points is undefined.
This would ap;ear to be a major omission as one of the stated aims of IFPUG (1994)
is to provide a normalisation factor for software comparison. The least the Function
Point models should do is outline the tifecycle phases and major activities that are part
of the “size”.

Mark I1 function points take a different approach in that the function points are
derived from the inputs, outputs and entities for each business transaction. The
transaction input size is the sum of the data clements that are input into the system;
the transaction output size is the sum of the data elements that are output from the
system; the transaction data processing size is the sum of the number of entities
referenced when the transaction is processed. These values are summed for each
transaction and therefore represent three different size attribute elements that are
input into the system. The model requires that the attribute values be weighed and

summed. The weights are different for each attribute and represent the development

40

A Model For Software Project Estimating

effort involved. This violates the measurement framework if we regard Mark 11
function points as a size or functionality measure, however, it could be considered to
be an effort measure as the weights are derived from the number of manhours
involved in delivering each component.

It must be concluded that there are major problems associated with the meaning and
construction of function point measures. [t is interesting to note that there is little

work published on the validity of the measures as to their predictive capability.

From the project data the initial size of one project was estimated at 1477 function
points and although a count was never conducted on the final product it was
estimated the final system was in excess of 3500 function points. This is based on an
extrapolation from the forty one entities of the data model used in the initial estimate
to the final having one hundred and twenty three eatities (Telecom 1993). Whereas is
another project, Telecom (1992), the initial count was 1230 function points and the
count on the delivered system was 1876 function points. All these counts were
conducted in the same environment by the same people using the same delivery
systems and count mechanism, From this example it can be seen that function point
counting can be inconsistent and subject to a great deal of variation. Unfortunately no
published material could be found that compared actual function point counts with

estimated ones.

41

A Model For Software Project Estimating

6.2 COCOMO & Lines of Code Measures

The COCOMO mode! depends on estimates of KDSI (thousands of delivered source
instructions) for its major input which is not really measurable until the software
product has been implemented. As such this measure is subjective although estimates
should become more accurate as the project progresses. Therefore it would seem that
a difficult prediction problem, effort, is being replaced with an equally difficult
prediction problem - size. Also the COCOMO models require that the modes of
development {organic, semi-detached or embedded) be determined and in the
Intermediate and Advanced models fifteen cost drivers must also be rated. Therefore
the objectivity of the inputs to the COCOMO models are questionable.
The use of KDSI has other problems which are as follows.
* As Jones (1991) states there is no industry standard definition for a
line of code (LOC).
¢ Some languages such as Pascal and Ada allow many logical
statements per physical line whereas other languages such as
COBOL have physical line requirements.
¢ The types of lines that are counted need to be defined as most
procedural languages include four difterent kinds of source
statements executable lines, data definitions, comments and blank
lines. Data definitions can also cause problems as » variables can be
declared in one statement or n statements for the same logical

outcome,

42

A Maedcl For Software Project Estimating

+ The concept of a LOC is not represented in some fourth generation
languages such as Oracle Forms. These languages also tend to use
third generation type languages in part, thereby compounding the
problem.

The COCOMO models are extremely comprehensive and, being based on well

documented empirical studies, tend to be intuitively sound.

6.3 Conclusion
Function points do not relate to any lifecycle model or any set of activities. Therefore

in addition to the prablems mentioned above it is difficult to know what activities can
be included when determining productivity and costing factors. That is, is it aliowable
to include such elements as the effort to produce systems manuals, the cost of
development tools etc in the production of the system under investigation.

COCOMO has a model on which it is based and only covers the software lifecycle
from requirements to implementation for those activities in the work breakdown
structure nominated. However, it has all the problems espoused above and especially
those associated with lines of code measures.

It should be noted that no published material was found relating to experiences with

the Wide-Band Delphi method.

43

A Modcl For Software Project Estimating

7. Proposed Model

7.1 General

The proposed model outlined in this section cannot be considered complete, however,
has an underlying principle of providing an estimate for a total software project.
That is all costing and effort elements required to deliver system are considered. A
TOTAL project estimate is required as only this will provide the information and
costing that will allow management to make valid decisions on the viability and
feasibility of the proposed system.

Estimation components of a software project consist of the product and the process
that produces it. However in order to compare different projects there must be
agreement as to the elements that will be counted as part of the cost of the software
projects in question. As related earlier a project with a total cost of $4.8m had $1.3m
attributed to environmental costs (Telecom, 1992). On examination these costs
related to changes and provision of both electrical and network cabling, provision of
lighting that reduced screen reflections and the provision of office furniture that was
ergonomically sound. Therefore this organisation considered it to be reasonable to
associate these costs to a single project. Other organisations may have considered
these as infrastruct. e costs and handled them in a different manner. If another
organisation did not consider these environmental costs then any comparison between
projects would be flawed if the information was not normalised in some manner to

allow project comparison. Whilst this example is somewhat obvious and easily

14

A Model For Software Project Estimating

catered for, other costs are not so easily recognised and catered for in the data
collection. For instance in another project twenty three percent of the total number of
hours on the project could be attributed to unpaid overtime (Telecom 1993). Only
costing the hours worked and paid would give an unrealistic view of the productivity

factors that could be used in future projects.

Therefore elements of the total project need to be detined and those elements that are
particular to a single project extracted before comparisor.s are made between projects.
Therefore the ideal estimating model for a project wouid be to add all known factors
(F) together as follows;

Estimate = Fy+F,+F;+ .. +F
Each factor could have a different effect on the project and hence a multiplier (M), for
each factor, would be appropriate which leads to:

Estimate = M,F; + M;i» + MaF; + ...+ ME;
However, it is known from various studics such as Boehm (1981) that some factors
have a non-linear (NI.) effect on the project (eg size) and therefore the equation
would be of the form:

Estimate = (MF)™! + (MoF)™2 + (M3F)™ + .. + (MF)™
However, due the immaturity of software estimating and the wide variance in results
reported from empirical studies some factors would not be relevant to consider as

their impact would be within the scope of the variance. This leads to single factor

45

A Modcl For Software Project Estimating

models such as COCOMO (MMon = a(KD SI)b) whose result is modified by the

application of fifteen cost drivers.

It would appear that these types of estimating models are valid for the environment in
which they were derived and are useful as long as that total environment remains
stable. This is evidenced by COCOMO (1995) where it is advised that COCOMO
and Ada COCOMO were reasonably well matched to the large customised projects

from which they were modelled however are not suitable for future environments.

7.2 The Model

A model is required that considers all the factors involved in the construction of a
software product. This is required as different classes of projects will contain
different components and be affected in different ways by the environment in which
they are produced. Some elements of such a model are contained in figure 5.

The result of such a model would be an estimating handbook for software projects
perhaps in a similar fashion to the estimating handbooks used by architects and
builders. This handbook would contain ali the elements that could constitute a project
estimate and the various factors that affect each element. The handbook would have
to continue to evolve as environments changed and data was collected to improve the

model. A candidate list is contained in Attachment 1.

46

A Model For Software Project Estimating

Figure 5 Some Elements Impacting on a Project Estimate

Product Size Data amount and complexity;
Processing amount {(functions) and complexity;
Target Mainirame based; PC bascd; Distributed client server;
Environment Available menmory and processors,

Network traffic intensity;
Combinations of the above,

Lifecycle Scope | What phases are included (esp maintenance)

Project elements Support hardware and soltware; System
hardware and sofiware

Users time; User training;

Data take up and validailon,

Qualily Allribulcs Reliability,; Maintainabilily cic
Some modilied form of QFD may be applicable,
Process Politics How acceplable is the system to the users; User commitment,

Docs it fit into the organisalion’s strategy;
Managemeni commitment

Developer’s Management capability,

attributes Personnel capability - skills, experience in the tools platform and
application domain;

Availability and continuity,

Risk Relates to product and process

Developimcut Hardware; Software 1ools;
elvironment Management systems - QM, PM; CM; ...
Multi-sife development

Constraints Schedule

Building for re-usc;

New lechniques and tools being utilised - Hawthorne effect -
resulis may not translate to normal practice:

The following discusses various aspects of the model.

7.2.1 Product

7.2.1.1 Size
Obtaining size estimates that are reliable is difficult and subject to a wide

range of uncertainty. As Boehm (1981) observed “the biggest problem in
today’s algorithmic sofiware cost models is the problem of providing sound
sizing estimates”. From the research it would appear the models utilising

function points and lines of code still have major problems today. Verner

47

A Model For Software Project Estimating

and Tate (1992) reported in a United States Air Force experiment which
compared six software size estimation models the results ranged from 6622
to 36700 lines of code. The actual size was 9177 lines of code. Object
points have been mooted &s an answer, however, more research needs to
take place in order to validate or refute them.

Data Size - It would appear that for data a case could be made to count the
attributes/fields/data elements that a user can see. This would give a
measure on a ratio scale ie we have a zero point. Then these could be
formed into a data model in third normal form and the number totalled. A
non-linear function would be required, for as the total increased, it could be
assumed that the inter-relationship between the entities and hence the
complexity of the application wouid increase which would lead to greater
effort and cost. Brooks (1975) and Jones (1991) provide adequate
evidence on the non-linear effect of size on a projects cost, effort and
duration,

Processing Size - One method would be a simple count of the functions to
be provided. There is a need for a non-linear expression to designate the
complexity of each function as this will impact on the overalil estimate.
Estimating lines of code has the problems discussed previously. Also some
lines of code are more complex than others and hence require a greater
intellectual effort to produce. For example if you had a recursive routine

that called another recursive routine then the effort in writing, testing and

48

A Model For Software Project Estimating

de-bugging would be more that that involved in two routines that formatted
a simple output.

Verner and Tate (1992) support the notion of a generic sizing model that is
not fixed but the partitioning can depend on the development technology.
This model follows a bottom-up approach that identifies the components of

a system and allows different estimation equations for different component

types.
7.2.1.2 Target Environment
The target platform(s) will not only have a effect on the development cost
but also on the ongoing maintenance. This will be evidenced mainly in the
configuration management costs. For example in Telecom (1993} an
application was implemented in a client server environment and distributed
across Australia with major regional clients in the capital cities. This
involved areas of work in data communications analysis and installation,
implementation planning and execution, configuration management etc. In
developing a single PC based application these items would not be relevant.
7.2.1.3 Lifecycle
The work breakdown structure for a project needs to be defined. All
activities, effort and cost elements need to be defined in order that projects
can be compared and an historical information recorded. A definitive
method for recording items, such as man-hours, also needs to be

established. It is interesting to note in the research conducted it was found

49

A Model For Soeftware Project Estimating

that only Boehm (1981) defined this element in the COCOMO model. The
International Standards Organisation ISO/IEC (1995) has published a
comprehensive document detailing lifecycle processes that would form an
internationally recognised and publicly available source for this estimating
element. Project Elements such as support hardware and software user
training, user procedures and policy changes, environmental costs etc could

also be incorporated into the Work Breakdown Structure,

7.2.2 Quality

Most models incorporate some of the quality elements into their models such as
COCOMOQ's reiiability cost driver, however most leave the majority of the
recognised quality attributes out. See figure 6 for software quality attributes.
Weinberg (1971) proved the goal set for a programming team was usually the one
achieved. His experiments, using five programming teams, also provided evidence
that given the goal of usability or maintainability the cost of development was
higher than it would have otherwise been, All the quality attributes of a system
should be considered and a modified form of quality function deployment applied
as partially devised by Thomsett (1993). Thomsett (1993) requires all project
stakeholders to rate the quality attributes on a scale -3 to +3 with 0 being the
nominal quality provided in a system. This quality model would require empirical
experimentation and calibration to make it useful. However, even without this
rigour it is still a useful approach as the quality cost drivers for a project are

explicitly stated.

50

A Modcl For Softwarc Project Estimating

Correciness
Reliability
Purability
Efficiency
Generality
Integrity
Useability
Readability
Testability
Maintainabilily
Flexibility
Portability
Compatibility
Security

Figure 6 Software Quality Attributes

Does it accuraiely do what is intended 7

Does it do it right every time 7

Will it continue to work afler a part fails ?

Does it run as weil as il could ?

Does it cover e whole problem domain ?

Can it be trusted to handie unusval conditions for which it was not explicitly designed 7
Is it casy to use ?

Are jts processes casily understood ?

15 it casy te check and verify correct ?

Is it easy to Lix ?

Is it easy to adapt and extend ?

Can it be casily converted ?

Does it interface well with other systems ?

Is it safe trom unautherised modification or use ?

7.2.3 Process

The process of developing software is complex and involves numerous processes

that are all interrelated. This is another reason for the difficulty in estimating and

managing software projects. To arrive at an estimate that will predict the

outcomes accurately not only do all the elements constituting the development

have to be known but also their interrelationships and effects they have on the

dynamics of the system being estimated. Figure 7 from Abdel-Hamid and Madnick

(1989) shows such a model. Obviously some automated tool is required when

analysing such models. Other elements that are of note are discussed below.

7.2.3.1 Politics
The management of organisational politics is of great importance and if it is

ot done well can have a detrimental affect on the project. The

management of all the stakeholders is essential. Thomsett (1993) discusses

the management and categorisation of stakeholders ir order that the project

team focuses on the most critical areas. In the project described in

51

A Maodecl For Software Project Estimating,

Telecom (1992) little explicit attention was made in this regard however in
Telecom (1993) budgeted items amounting to $60K were allowed. This
enabled the system to be more readily accepted and ensured there were
designated people in each state who would “champion” the system.
COCOMO 2.0 also includes this stakeholder management as part of the

TEAM rating components.

Figure 7 Systems Dynamic Model
{ Abdel-Hamid and Madnick (1989))

Human Resources " turnover
Management g

rale
rale
expericnce

workforee _’—-——-’-"’ mix

process losses potential

QA effort \\ / productivity
/ actual

crror .
. soflware 4_,,-/' raductivily
detection & —J- P

development
CO]’TLCIIU[‘I
/ P T~
LI‘TEII'

Software
Production

learning

—— e — e —— — e r— am — ey

Planning schedule perceived
pressure project lasks _gem" productivity
i perceived
perceived scheduled forecast I completed
worklorce cnmplctiun completion ! \ accurey
level nccdud date date elfort in Progress
I perecived m pur i
/ | still needed cusiremen
worl».forcc
& schedule f A
adjusiments I perecived Control
. projecl size

52

A Model For Software Project Estimating

7.2.3.2 Developer’s Attributes
Boehm (1981) places the attributes of the developers as the element that

has most impact on the estimate for a project. This is also recognised in
COCOMOQ (1995) where the same level of importance is attached. Various
studies such as in Brooks (1975) and Weinberg (1971) have shown that
there is a vast difference in productivity between development personnel.
The differences can be on the order of twenty to one. The differences can
also vary from development task to development task. Modelling and
measuring the skills of personnel is a difficult task that changes over time
and is also dependant on the environment in which a particular person is
operating in. One method would be to have nominal delivery rates for the
activities defined in the WBS and modify these based on individual’s
performance data.

7.2.3.3 Risk
Software Risk Management is an emerging discipline whose objectives are
to identify, analyse, address and mitigate software risk items before they
become threats to the software products and systems. As has been alluded
to previously the outcome of software development activities are
probabilistic. Software risk management applies techniques for determining
probabilities and increasing the chances of success. Another effect of this
risk management process is the reduction of re-work. The direct impact on

a project estimate would be the cost of risk management which consists of

33

7.2.3.4

A Model For Software Project Estimating

assessment, analysis, mitigation and tracking. (Boehm 1992: Charette
1989).

Development Environment

DeMarco and Lister (1987) conducted experiments that showed the
development environment had a major affect on the productivity of
software development personnel. They showed, in their experiments that if
one person in an organisation performed well then so did others, DeMarco
and Lister (1987) said “... the best organisation worked 11.1 times faster
that the worst organisation”, This they attributed, in the main, to the
workplace with the control of noise and provision of adequate work space
having major productivity affects. Software development is essentially an
intellectual activity and constant interruption or distracting noise makes it
difficult for competent people to work effectively.

The management systems within the organisation will also impact upon the
productivity, This is closely aligned to the processes that are being
undertaken, COCOMO 2.0 addresses this area explicitly with reference to
the Capability Maturity Model of Carnegie Mellon University for the
determination of their process maturity cost driver.. A software quality
management system has as one of its goals the reduction of re-work,
Organisations that allow errors to propagate throughout the development
have lower overall productivity.

Other aspects such as the development environment stability and

54

A Model For Software Project Estimating

availability, team distribution (collocated or dispersed), tool sophistication,
etc. All would need to be detailed and the project effect determined from

historical data.

7.2.3.5 Constraints
Various constraints can be placed on a project the chief one being any

schedule that is tighter than that initially estimated. Schedule constraints if
applied have a disproportionate affect on manpower requirements, Brooks
(1975) was one of the first to make this point tn that “the man month as a
unit for measuring the size of job 1s a dangerous and deceptive myth”
because it implies that people and effort are interchangeable. They are only
interchangeable if there is no communication between the people involved.
In software development communication and interrelationships between
activities and people is high. As Brooks (1975) says “if each part of a task
must be coordinated with each other part of an activity, the effort increases
n(n-1)/2”. Therefore three people require three times as much
intercommunication as two and four six times as much as two etc. This can
lead to the effort in communication outweighing any benefit of task
division,

Other management imposed constraints may also impact upon the estimate.
For instance if a proportion of the system has to be developed for re-use

then greater effort is required in ensuring the components are sufficiently

35

A Model For Software Project Estimating

generic to be re-used. The same applies to the use of new tools and

techniques as there will be a learning curve involved.

7.3 Summary
As can be seen from the above there are numerous factors involved in estimating a
software project. These factors range from consideration of development
hardware to the skills of individuals involved in project activities. Not ail will be
relevant to all projects, however, all need to be considered as the potential to
impact on the project estimate can be great. As stated earlier this is only a

framework from which an estimating technique can be developed.

56

A Model For Software Project Estimating

8. Conclusion

Estimating the size, effort, duration and cost of a software project is an essential
aspect of Software Engineering as these are the fundamental drivers for all project
decisions. This research has investigated and analysed the major software project
estimating techniques in use today. As can be scen there are significant weaknesses
with the existing models and techniques for estimating sofiware projects. These range
from not catering for modern development environments (4GLs, object oriented
techniques and languages) to those that are theoretically unsound and not based firmly
in measurenmient theory. It would also appear that most methods are too simplistic and
fail to adequately deal with all the complexities involved in developing a software
product. This would appear to be a inherent attribute of the software industry where
a “silver bullet” is always being sought.

The research has also revealed, through the analysis of existing surveys, that these
techniques are not widely used and most practitioners use expert judgement or
analogy to determine project cost and effort. This is despite most techniques being
available for ten to fifieen years now.

The proposed model is only a framework and more work is required to quantify it and
to determine how it could be tailored to suit an organisation. The complexity and
dynamics of the sofiware development process and the confounding organisational
factors make it, except in the most general terms, very difficult to compare between

organisations. Any comparison between software projects across organisations would

57

A Maodel For Software Projcet Estimating

have to be normalised. That is a standard of not only the activities and cost elements
involved but also the data collection and definition mechanisms would also have to be
agreed.

Estimating without either a detailed requirements document or design document is a
problem as this is the first time the data and functions required by the system are
expressed in a detailed form. Perhaps a change in terminology is required and that all
efforts to predict the size, cost, effort and duration prior to these documents being
available should be referred to as forecasts.

A builder of houses uses an estimating workbook that spans several pages, however,
in the software industry we appear to seek a simple technique with a few parameters
on one page to estimate products that are orders of magnitude more complex to build
than a house. This research has revealed that an estimating framework that considers

all the parameters of a project in detail is not inappropriate.

58

A Model For Software Project Estimating

9. References

Abdel-Hamid, T. K, Madnick, S.E. (1989). Lessons Learned From Modelling the

Dynamics of Software Development. Vol 32, No 12 Communications of the ACM.

Abdel-Hamid, T. K. (1993)._Adapting, Correcting, and Perfecting Software

Estimates: A Maintenance Metaphor. Vol 26, No 3 Computer, IEEE Computer

Society.

Albrecht, A.J. (1979). Measuring Application Development Productivity.

Proceedings - Joint Share/Guide 1BM Application Development Symposium pp 83-

92.

Basili, V.R., Rombach, D. (1988). The TAME Project. Towards Improvement-

oriented Software Environments. Vol 14, No 6 IEEE Transactions on Software

Engineering, IEEE Cotnputer Society,

Boehm, B.W. (1981). Software Engingering Economics. New York: Prentice Hall,

Boehm, B.W. (1984), Sofiware Engineering Economics, Vol 10, No 1 [EEE

Transactions on Software Engineering, IEEE Computer Society.

Boehm, B.W. (1987). Ada COCOMO: TRW 10C version.. Third COCOMO User’s

Group Meeting,

Boehm, B.W. (1992), Risk Control, American Programmer Vol 5 No 7, pp 2-9, New
York, NY.

Brooks, F.P. (1975). The Mythical Man Month. Addison-Wesley.

Charette, R.N. (1989). Software Engineering Risk Analysis and Management,
McGraw-Hill Book Company, New York, NY.

59

A Model For Seftware Project Estimating

COCOMO (1995). COCOMO 2.0 Model User’s Manual - Version 1.1. University

of Southern California.

Daskalantonakis, M. K. (1992). A Practical View of Software Measurement and

Implementation Experiences within Motorola. Vol 18, No 11 IEEE Transactions on

Software Engineering, IEEE Computer Society.

DeMarco, T. Lister, T. (1987). Peopleware: Productive Projects and Teams. Dorset

House,

Dreger, J. (1989). Function Point Analysis. Englewood Cliffs, NJ: Prentice Hall.

Fenton, N. (1994). Software Measurement: A Necessary Scientific Basis. Vol 20, No

3 1EEE Transactions on Software Engineering, IEEE Computer Society.

Fenton, N. E. (1991). Software Metrics - A Rigorous Approach, London: Chapman

& Hall,

Garmus, D, Herron, D., (1996). Measuring the Sofiware Process; A Practical Guide

to Functional Measurements Englewood Cliffs, NJ: Prentice Hall.

Gilb, T. (1988). Principles of Software Engineering Management. Wokingham:

Addison-Wesley.

Hihn, J., Habib-agahi, H. (1991)._Cost Estimation of Software Intensive Projects: A

Survey of Current Practices. 13th International Conference on Software Engineering,

IEEE Computer Society.

60

A Maodel For Software Project Estimating

Hope, S. (1993). Software Estimating Workshop Course Notes. Spiral Technology

Pty Ltd.

Humphrey, W.S. (1989). Managing the Software Process. Reading, Massachusetts:

Addison-Wesley.

Humphrey, W.S. (1995). A Discipline for Software Engineering. Reading,

Massachusetts: Addison-Wesley.

1IFPUG, (1994). Function Point Counting Practices Manual, Release 4.0. International

Function Point Users Group, Westerville: Ohio.

ISO/IEC 12207:1995. Information Technology - Software Lifecycle Processes.

Jackson, M. (1975). Principles of program Design. London, Academic.

Jeffery, D. R, Low, G.C., Barnes, M. (1993). A Comparison of Function Point

Counting Techniques. Vol 19, No S IEEE Transactions on Software Engineering,

IEEE Computer Society.

Jones, C. (1991). Applied Software Measurement: Assuring Productivity and Quality,

New York: McGraw-Hill.

Jorgensen, M. (1995). Experience With the Accuracy of Software Maintenance Task

Effort Prediction Models. Vol 21, No 8 1EEE Transactions on Software Engineering,

IEEE Computer Society.

61

A Model For Software Project Estimating

Kemerer, C. F., Porter, B. S. (1992). Improving the Reliability of Function Point

Measurement: An Empirical Study. Vol 18, No 10 1IEEE Transactions on Software

Engineering, IEEE Computer Society.

Kitchenham, B., Kansala, K. (1993). Inter-item Correlations among Function Points,

Proceedings of the IEEE Metrics Symposium, IEEE Computer Society.

Kitchenham, B., Pfleeger, S.L., Fenton, N. (1994). Towards a Framework for

Software Measurement Validation. Vol 21, No 12 IEEE Transactions on Software

Engineering, IEEE Computer Society.

Matson, J. E | Barett, B. E., Mellichamp, J. M (1994). Sofiware Development Cost

Estimation Using Function Points. Vol 20, No 4 IEEE Transactions on Software

Engineering, IEEE Computer Society.

McCabe, T. J. (1976). A Complexity Measure. Vol 2, No 4 [EEE Transactions on

Software Engineering, IEEE Computer Society.

Mukhopadhyay, T., Kekre, S. (1992), Software Effort Models for Early Estimation of

Process Control Applications. Vol 18, No 10 IEEE Transactions on Software

Engineering, TEEE Computer Society.

Park, RE., Goethert, W B., Webb, J.T. (1994). Software Cost and Schedule

Estimating: A process lmprovement Initiative. Special Report CMU/SEI-94-SR-3,

Carnegie Mellon University.

Pressman, R.S. (1992). Sofiware Engineering; A Practitioner’s Approach. McGraw-

Hill, Inc,

62

A Maodel For Software Project Estimating

Putnam, L H., Myers, W. (1992), Measures for Excellence: Retiable Software on

Time, within Budget. Englewood Cliffs, NJ: Prentice Hall.

Symons, C.R. (1988). Function Point Analysis: Difficulties and Improvements. Vol

14, No 1 IEEE Transactions on Software Engineering, IEEE Computer Society.

Telecom, (1992). WRS1 Project File Notes. Australian Telecommunications

Corporation.

Telecom, (1993). WRS2 Project File Notes. Australian Telecommunications

Corporation.

Thomsett, R. (1991). Managing Superlarge Progects: A Contingency Approach, Vol

4, No 6 American Programmer, American Programmer Inc.

Thomsett, R. (1993). Third Wave Project Management, Englewood Cliffs, NJ:

Prentice Hall.

Verner,). Tate G. (1992). A Software Size Model. Vol 18, No 4 IEEE Transactions

on Software Engineering, IEEE Computer Society.

Weinberg, G.M. (1971). The Psychology of Computer Programming, New York: Van

Nostrand Reinhold.

Weinberg, G.M. (1993). Quality Software Management: Volume 2 First Order

Measurement. New York: Dorset House Publishing.

Wydenbach, G., Paynter, J. (1995). Software Project Estimation: A Survey of

Practices in New Zealand. Technical report No 97, University of Auckland.

63

A Model For Softwarce Project Estimating

Attachment 1
Modified Wideband Delphi Estimating Sheet

Dollars Effort

_Optimistic Probable Possimistic | Optimistic _Probable Pessimistic
Problem Definition &
Feasibility Study

Problem
Definjtion

Study Teamn

Consullants

Feasibility

Study Team

Consultants

Prototyping

Macro
Lstimating

Cost Benefit
Analysis

Reporting

Totall $ -l % i % .]]

Requircments Definition

Functional
Specification

[Data
Specitication

Prololyping

Infrastructure
Specification

Specification
Review

Documentation

Customer
review

Tender
preparation

Tender
evaluation

Total| % q 3 1 3% - 0 0

Desipgn

Deveiopment

Optimistic

A Medei For Software Project Estimating

Dollars

Prohable

Pessimistic

| Optimistic

Effort
Probable

Pessimistic

System

specification
Architectural
specification

Detatled
[unctional
specification
Detailed data
specitication

Component
design

Test
specification
System dusign
Test design
Acceptance test
spec & design

Data load spue
& design

Documentation

Total

Componenl
coding &
lesling
Subsystem
linking &
testing

System
Integration
Operattions and
system
documentation
System
Interface tesling
System Testing
User
Documentation

Total

65

A Model For Software Project Estimating

Daollars Eifort

Optimistic Probable Pessimistic | Optimistic Probable Pessimistic

Implementation

Prepare &
load
ncceplance
tests

User
acceplance
lest

Installalion

Daia
validation

Databasc
loading

Manual dala
loading

Operations
acceplinee
lest

Faull fixing

Phase out old
system

Totall $ -8 -l % - § 0

Training

Project Team
training

Training
software

Training
hardware

Design &
loading
training
system

Preparation
of training
programme

QOperations
training

User training '

Training
environment

Total| $ -1 3 BIE . 0 ¢

A Model For Softwarce Project Estimating

Dollars

Optimistic
Development
Software &
Hardware

Probable

Pessimistic

Optimistic

Effort
Probakle

Pessimistic

Development
Server

Test Scrvers

Development
terminals

Communications

CASE tools

Horizonlal
Software

Vertical Sofltware

Total] $ -3

0

Operational Software &
Hardware

Servers

Memory

Storage

Processors

Soflware

Terminals

Memory

Storage

Screens

Processors

Sollware

Communications

Network capacity

Network
elemenls

Soflware

Total| 3 - %

{

o?

A Modcl For Software Project Estimating

QOptimistic

RDollars

Probable

Project Manapgement &
Administyation

Pessimistic
LLIC

Optimistic

Probable

Effort

Pesslmistic

Project
management
Administration
Administration
hurdware &
sofiware
Stationary
Accommodation
Travel cosls
Quality (IV & ¥)
Configuration
manapenient
Planning &
.ol

T gitse wosls
]

LEnvironmental Chaagpe

Ergonomic
Changes
Palicy
Chunges
Procedures
Development
Standards
Customer
Impact

Total

Grand Tolad

3

Project Estimate

Daollars

0

! Munhour.

68

	Towards a model for software project estimating
	Recommended Citation

