
Edith Cowan University Edith Cowan University

Research Online Research Online

Theses : Honours Theses

1996

Towards a model for software project estimating Towards a model for software project estimating

Stuart Hope
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses_hons

 Part of the Business Administration, Management, and Operations Commons, and the Software

Engineering Commons

Recommended Citation Recommended Citation
Hope, S. (1996). Towards a model for software project estimating. https://ro.ecu.edu.au/theses_hons/
705

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses_hons/705

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online @ ECU

https://core.ac.uk/display/41536989?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses_hons
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses_hons?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F705&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/623?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F705&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F705&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F705&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses_hons/705
https://ro.ecu.edu.au/theses_hons/705

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose

of your own research or study.

The University does not authorize you to copy, communicate or

otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following:

 Copyright owners are entitled to take legal action against persons
who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement. Where the reproduction of such material is

done without attribution of authorship, with false attribution of

authorship or the authorship is treated in a derogatory manner,

this may be a breach of the author’s moral rights contained in Part

IX of the Copyright Act 1968 (Cth).

 Courts have the power to impose a wide range of civil and criminal

sanctions for infringement of copyright, infringement of moral

rights and other offences under the Copyright Act 1968 (Cth).

Higher penalties may apply, and higher damages may be awarded,

for offences and infringements involving the conversion of material

into digital or electronic form.

Towards A Model for Software Project
Estimating

Stuart Hope
1996

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

I

A Model For Software Project Estimating

Towards A Model for Software Project
Estimating

By Stuart Hope B.App.Sc.

A Thesis Submitted in Partial Fulfilment of the Requirements for the Award of
Bachelor ·IJf Science (Honours) Computer Science

at the Computer Science Department
Faculty of Science, Technology and Engineering

Edith Cowan University

Date of Submission: 19"' July 1996

iii

A Model For Software Projct:t Estimating

Table of Contents

Abstract ... v
Declaration .. vi
Acknowledgements .. vi
List ofFigures .. vii
List of Tables .. vu

I. INTRODUCTION .. I

1.1 THE BACKGROUND TO TilE STUDY ... 1

1.2 THE SIGNIFICANCE OF THE STUDY ... 3
1.3 TilE PURPOSE OF THE STUDY ... 3
1.4 RESEARCH QUESTIONS .. , ... 3

2. METHOD ... 5

3. REVIEW OF THE LITERATURE ... 7

3.1 GENERAL .. 7
3.2 fUNCTION POINT ANALYSIS- ALBRECIIT ... 8
3.3 fUNCTION POINT ANALYSIS MARK 11 .. 14
3.4 fEATURE POINT ANALYSIS ... 16
3.5 COCOMO .. IS
3.6 COCOMO 2.0 ... 24
3.7 EXPERT JUDGEMENT .. 27

3.8 OTHER TECHNIQUES .. 29

4. ESTIMATING TECHNIQUE SURVEY ANALYSIS .. 30

5. THEORETICAL FRAMEWORK .. 33

6. ANALYSIS OF EXISTING MODELS ... J7

6.1 fUNCTION POINT ANALYSIS ... 37
6.2 COCOMO & LINES OF CO!)E MEASURES .. .42
6.3 CONCLUSION ... 43

7. PROPOSED MODEL , .. 44

7.1 GENERAL ... 44
7.2 THE MODEL ... 46

7.3 SUMMARY .. , 56

8. CONCLUSION .. ,. 57

9. REFERENCES ... , .. 59

iv

A Model For Software Pruject Estimating

Abstract

The use and development of software is an integral and critical part of modern

industrial society. The mttcomes of many software development and maintenance

projects have been less than satisfactoty with significant numbers being over

schedule, lacking in fimctionality and over budget. These problems are the result of

poor management of both the process and the product.

One of the major problems to overcome in the management of software development

projects is the ability to predict the outcomes early in the project when there are a

large number of unknowns. 'lhe ability to reliably predict the outcomes in a

repeatable manner requires accurate estimating techniques that are theoretically

sound, practical to use, relevant to the current situation and can cope with all the

project variables. Whilst a number of estimating techniques have been developed

they are poor in their predictive abilities, do not to take a total project approach and

are not used by practitioners.

This proposal is to define a model that will build on the strengths of the current

estimating techniques, account for their weaknesses and provide a framework for the

development of practical techniques that encompass all aspects of a software

development project.

v

A Model For Software Project Estimating

Declaration

"I certify that this thesis does not incorporate, without acknowledgment, any

material previously submilled for a degree or diploma in any institution of higher

education and that, to the best of my knowledge and belief, it does not contain any

material previously published or written by another person except where due

reference is made in the text".

Stuart Hope
19'' July 1996

Acknowledgments

I would like to thank my supervisor, Ken Mullin, for his comments on the draft
documents. I would also especially like to thank Julian Terry for his encouragement

and support in the preparation of this work.

vi

A Model For Software Project Estimating

Figures

Figure 1 Composition of Function Points .. \0
Figure 2 Function Point Complexity Ratings .. 12
Figure 3 -Value Adjustment Factors ... 13
Figure 4 - Feature Point Technique .. 17
Figure 5 Some Elements Impacting on a Project Estimate 47
Figure 6 Software Quality Attributes .. 51
Figure 7 Systems Dynamic Model .. 52

Tables

Table 1 Feature Point Complexity Multipliers... 18
Table 2 COCOMO coefficients .. 19
Table 3 COCOMO Cost Drivers ... 21
Table 4 COCOMO Schedule Equation Coefficients .. 23
Table 5 Percentage Comparison of Estimating Techniques Used 31
Table6 VAF0verlap ... : 39

vii

A Model For Software Project Estimating

1. Introduction

1.1 The Background to the Study

Software systems are now ubiquitous. Software impacts on virtually all aspects of

modern industrial society and is economically critical. Software is used to teach,

educate, govern, manage, entertain and manufacture. Most electrical and mechanical

equipment now includes software, in part, to provide control and functionality. The

effective functioning of modern society is becoming increasingly dependant on the

production of cost eflbctive software.

Software projects tend to be at the top end of complexity in human endeavours. In

most industries it is normal to produce the same type of products repetitively.

However the development of software tends to be the continuous design and

production 0fnew artefacts using new tools and methods. It is interesting to note

that with most human activities that are new or novel in nature it is difficult to predict

the outcomes. This has been so in all industries and is of particular significance in

software development as each project is a new design exercise. As a consequence of

this failure to deliver the expected outcomes numerous authors have referred to it as

the "software crisis". Pressman (1992) prefers to call it a "chrome affliction" because

the problems in the industry have been causing pain and distress for a long time and it

appears they will continue indefinitely.

The construction of software systems is dynamic with a large number of variables

affecting its outcome. Some of the variables are known and others are not when the

A Model For Software Project Estimating

most critical estimattls are required to be made at project initiation. As a consequence

software projects experience a high rate of failure because their success criteria is

judged on highly susp~ct initial estimates. They constantly fail to meet their financial,

schedule, effort, functional and quality targets. There is a school of thought,

Thomsett (1991), that with any reasonable sized development a project can only meet

one or two of the above targets. Software engineering is a new field of human

endeavour whose knowledge base is low on how to effectively measure the attributes

and entities that contribute to the building of systems. The demands and the

environment, both in terms of the requirements expressed and the enabling technology

are changing and evolving rapidly.

What are required are some methods to improve our ability to work in such an

environment and increase the probability of being successful in the delivery of

software systems. Estimating i~ one of the key Software Engineering techniques that

will enable the rationalisation of decision~making regarding software development.

More accurate estimates wiil increase the probability of success. Techniques are also

required that provide a step-wise feedback mechanism to enhance the accuracy of

estimates as the projects proceed (Abdei-Hamid, 1993).

A full practical estimating model is an ambitious goal that will require significant

empirical studies and experiments together with input from practitioners and

researchers in order to provide validation. The intention of this research is to provide

a comprehensive model that takes a total software project approach and act as a

2

A Model For Software Project Estimating

foundation to be modified, exteuued and perhaps refuted. Most current estimating

techniques only consider a sub-set of the total costs and effort involved.

1.2 The Significance of the Study

Software is critical for the future of Australian industry.

Pressman (1992) asserts that planning is one of the pivotal activities in the software

development process and good estimates are a precursor to good planning.

Most of the crises in the industry can be attributed to an inability to manage

(Weinberg 1993). A key input into the management and planning process is an

estimate of the cost, schedule and effort of the work to be performed.

1.3 The Purpose of the Study

This research aims to develop a model that comprehensively deals with all the

recognised complexities of estimating software development and maintenance and

hence to provide an effective way of managing projects. Its purpose is to investigate

current software project estimating techniques, establish their degree of validity and

develop a model that overcomes their perceived weaknesses.

1.4 Research Questions

The questions that this research will try to answer are :-

• What are the strengths and weaknesses of current software estimating techniques?

• What are the common features of existing software estimating techniques?

3

A Model For Software Project Estimating

• What are the barriers to the industrial use of estimating techniques? Surveys have

shown that techniques are not used widely. Hihn & Habib-agahi (1991) showed

that only 7% of respondents to their survey used models. It is of little use in

devising techniques unless they are of practical benefit and hence an understanding

of the barriers to use must be understood. Park, Goethert & Webb (1994)

conducted a survey that looked at the needs and improvements required in

software cost estimating.

• Can 1n optimal model be created that includes the strengths of existing models and

also overcomes their weaknesses? By optimal the model must be comprehensive,

theoretically sound and relatively easy to use in practice- i.e. techniques can be

derived from the model that can be used easily by practitioners.

4

A Model For Software Project Estimating

2. Method

The work proceeded by:

1. A detailed examination of existing techniques to determine :

• theoretical strene;ths and weaknesses;

• commonality of entities and attributes;

• explicit and implicit assumptions;

• inclusivity of the techniques;

• practical strengths and weaknesses.

2. Analysis of two existing projects to determine:

• a classification of the project types;

• methods and techniques used in estimate formulation;

• accuracy of the above techniques;

• identification of"gaps" in the techniques where inaccurate through

exclusion where major cost elements in a project were not catered for by

the estimating technique.

The subject in the project examination was a semi-government utility who

had a considerable base of project information. Whilst it is recognised that

the information obtained is subjective in areas and not statistically valid, the

projects however form a representative sample that highlight some of the

estimating difficulties that are encountered in practice. Also the result of

this research is not intended to be definitive but a pointer to future work.

5

l

A Model For Softw11rc Project Estimating

3. Analysis of published surveys of industrial organisations to determine:

• utilisation of existing techniques;

• perceived strengths and weaknesses of existing techniques;

• barriers to the use of existing techniques;

• desired attributes of an estimating technique.

Information relating to estimating technique utilisation was obtained from

two published surveys, one conducted in the USA and the other in New

Zealand (Hihn & Habib-agahi, \99\: Wydenbach & Paynter, 1995).

4. Synthesis of the data into a model, designed to overcome weaknesses of existing

techniques and their utilisation, capitalise on strengths and cater for perceived

"gaps".

6

A Model For Software Project Estimating

3. Review of the Literature

3.1 General

The history and general classification of the estimating techniques or methods will be

discussed and then a detailed examination of the more prevalent techniques will be

g1ven.

The most widely quoted work in estimating is Boehm (1981) who was the first to

categorise estimating techniques into algorithmic models, expert judgement, analogy,

decomposition, Parkinson and "Price to Win". The later two techniques are not really

estimating techniques but a recognition of reality and expediency in some

organisations. More recently Humphrey (!995) has extended this list to include his

own technique and Putnam's Fuzzy Logic. Putnam & Myers (1992) do not elaborate

the Fuzzy Logic technique, however they do provide some useful information that can

be incorporated into an estimating database.

From the literature surveyed the most widely reported and used formal techniques are

COCOMO and Function Point Analysis. These are considered formal because they

have a well documented model with repeatable processes and methods by which

estimates are calculated. These techniques are discussed in mor detail below. The

other techniques such as estimating by analogy are not formally described in the

software industry and hence would vary widely from practitioner to practitioner.

The formulation of any software metric must be defined with its int.ended use in mind.

That is, without the clear specification of goals the metric is to achieve the measures

7

A Model For Software Project Estimating

will be of little prdctical benefit. This view is espoused by Fenton (1991) and Gilb

(1988) who support Basili's Goal Question Metric approach to measurement (Basili

& Rombach, 1988). Daskalantonakis (1992) provides practical experiences with this

approach.

Whilst some work, such as Mukhopadhyay & Kekre (1992), has been published that

addresses some of the issues involved with software estimating, few with the

exception ofKitchenham, Ptleeger & Fenton (1995) have addressed the fundamental

theoretical issues that form a necessary scientific basis for any technique. Matson,

BaiTett & Mellichamp (1994) provides an assessment through the use of several

statistical models that relate software development effort to software size in tt.:rms of

function points. They are concerned with the empirical data upon which the models

are based and the lack of attention to the aptness of the models. Jorgensen (I 995) in

addressing issues relating to the prediction of maintenance effort concludes, after the

examination of several prediction models, that "a formal prediction model should not

replace the use of expert predictions". This would support Boehm's (1981)

Wideband Delphi approach.

3.2 Function Point Analysis- Albrecht

Function Points were devised by Albrecht and first published in 1979 (Albrecht,

1979). Jones (1991) reports the goals set for this measure were that:-

• it dealt with the external features of the software that were important to the

user,

8

A Model For Software Project Estimating

• it could be applied early in a product's Iitecycle,

• it could be linked to productivity and

• be independent of the coding language.

Various modifications have been made to Function Points including Symonds Mark II

Function Point metric and Jones' Feature Points. Both of these techniques are

discussed below. These modifications came about because of perceived weaknesses

such as not accounting for algorithmic complexity. Dreger {1989) was instrumental in

making this estimating measure available to the general public with his publication,

which was essentially a function point tutorial. Garmus & Herron (1996) is probably

the most recent publication that provides function point counting guidance which

includes examples for the counting of Graphical User Interface applications.

Function Points measure software by quantifYing the functionality provided to the

user based primarily on logical design. The objectives of function point counting are

to:-

• Measure functionality that the user requests and receives

• Measure software development and maintenance independently of the

technology used for implementation.

There are three types of function point counts. These being:-

• Development project function point count

• Enhancement project function point count

9

A Model For Software Project Estimating

• Application function point count

The unadjusted function point count reflects the specific countable functionality

provided to the user by the project or application. The application1s specific user

functionality is evaluated in terms of what is delivered by the application, not how it is

delivered. Only user-requested and defined components are counted. The unadjusted

fimction point count has two function types - data and transactional. The composition

of these function types are shown in Figure 1.

Figure 1 Composition of Function Points
Internal

Logical Files

Unadjusted
Function Point Count

Data
Function Types

Transactional
Function Types

External
Interface Files

External
Inputs

External
Outputs

External
Inquiries

Data function types represent the functionality provided to the user to meet internal

and external data requirements. Data function types are either internal logical files or

external interface files.

• An internal logical file (ILF) is a user identifiable group oflogically related

data or control infonnation maintained within the boundary of the

application being counted.

10

A 1\Iodcl For Software Project Estimating

o An external interface file (ElF) is a user identifiable group oflogically

related data or control infonnation maintained outside the boundary of the

application being counted.

Transactional function types represent the functionality provided to the user to

process data by an application. Transactional function types are defined as external

inputs, external outputs and external inquiries.

• An external input (El) processes data or control information that comes

from outside the boundary of the application being counted.

• An external output (EO) generates data or control information sent outside

the boundary of the application being counted.

• An external inquiry (EQ) represents a combination of input (request) and

output (retrieval).

The raw function point count is calculated by determining the complexity of the data

or transaction function type in accordance with the number of attributes affected.

Figure 2 is a summary of the how function point complexity ratings are ascertained.

11

A Model For Software Project Estimating

Figure 2 Function Point Complexity Ratings

In ut Com led - J<:I 1-4 attributes S-IS attnbutcs 16+ attnbutcs

0 or I files accesso!d Low Low Avera e
2filcsa~d Low Avera c Hi '

3 + Iiles accessed Avera c Bih I-Ii '
Complexity weight: Ulw ~3, Average 4, High~ 6

Out ut Com lerl -EO 1-5 attributes 6-19attributes :ZO+ nltrlbutes
0 or I files a~"Ces.1cd Low Low Avera c
2 or 3 files accc...scd l"w Avera c Hi '

4 + lilc~ acces.o.cd Awra e Hi I-Ii '
Complexity wdght : Ulw 4, Average 5, lligb 7

File Com lull -JI,F 1-19attrlbuic,, 20-511 attributes 51+ attribute:!~

I lo ical rceordlcntit l"w Low Avera c
:Z-5 lo ical rcconls/cntiti.,s Low Avera c IIi '
6+ lo "en] records/entities Avera c Hi ' l Hi

Complexity weight : Low -7, Average ~ 10, lligh - I 5

Interface File Com Jcxltv- Elll 1-19attlibutc~ :Z0-511 attribute~ 51+ attributes

llo 'ca[TL';;ord/~ntit Low Low Awrn c
2-5 lo ical rccord<;/entitio!S Low Avera e liigh
6+ Jo ical rccordslcntitio!S Avcm e IIi ' Hi '

Complexity weight: Low~ 5, Avcrugc -- 7, High·- 10

Eu ul In ut Com Jexlt -EQ 1--1 attributes 5-15nlhibutcs 16+attribules
0 or I files acccs.<:ed Low Low Avera c

2 tiles acccs.~cd Low Avcra >c Hi '
3 + files UCCC!ISCd Avera •c IIi ' H; '

Complexity weight: l.uw ~3, Average-<\, High~ 6

En ul Out ut C.lUI Jed -E 1-Snltrilmtcs 6-19 nUributes :ZO+ ottribuiC!I
0 or I fi!C!I accessed I .ow Low Avera e
2 or 3 Iiles accessed Low Avera •c Hi ' 4 + Iiles accessed Average IIi ' High

Co111plcxity weight: l.uw - 4, Averag~ 5, High- 7

In order to determine a final count for the system the raw count is modified by

quantifying the key characteristics of the project and applying the resultant number to

the raw count. These modifYing characteristics are called the value adjustment factor

(V AF) wh!ch indicates the general functionality provided to the user of the

application. The V AF is comprised of 14 general system characteristics (GSCs) that

as~~:-;:s the general functionality of the application. See Figure 3.

12

A Model For Software Project Estimating

l1'igure 3- Value Adjustment Factors

l. Data communicalions 8. Online undalc
2. Distributed data nroccssing 9. CoffiPk~xOroccssim~-
3. Perfonnancc 10. Reusability
4. Heavilv used configuration II. lnsLallalion ease
5. Transaction rate 12. Oocrational case
6. Onliue data cntrv 13. Multi pic sites
7. End-user efficiency 14. Facilitate change

Each characteristic has six degrees of influence with associated descriptions that help

determine the degree of influence of the characteristic. The degrees of influence

range on a scale of zero to five as follows:

0 = not present or no influence;

1 = minor or incidental influence;

2 = moderate influence;

3 = average influence;

4 = significant influence;

5 = strong influence throughout.

The total V AF is determined by evaluating all fourteen general system characteristics

and summing them to produce the total degree of influence (TDI). The TDI is

inserted into the following equation to produce the value adjustment factor.

VAF~(TDI * 0.01)+0.65.

When applied, the value adjustment factor adjusts the raw function point count +/-35

percent to produce a function point count.

13

A Model For Software Project Estimating

The final adjusted function point count is calculated using a specific formula for

development project, enhancement project, or application (system baseline)

(IFPUG, 1994)

3.3 Function Point Analysis Mark 11

Symons (1988) critically examined Albrectht's method and proposed a partial

alternative based on overcoming perceived weaknesses. This method is based on the

premise that a system consists of logical transaction types. Each transaction type

being a logical input/process/output combination. In order to provide a process size

measure of each transaction Symons (1988) considered the work of McCabe (1976)

and Jackson (1975) to arrive at the hypothesis that a measure of processing

complexity is to count the number of entities referenced by a transaction type.

Referenced means any access to the entity - create, read, update or delete. It should

be noted that Symons (1988) refers to entities as "anything (object, real or abstract) in

the real world about which the system provides information". Symons (1988) then

discusses the Mark II model in the context of using an entity relationship data model.

No stipulation as to the level of normalisation, of the data model, is given. The

reasoning was that the access path through an entity model involves a selection or

branch or loop. Therefore the number of entities referenced by a transaction type is

the measure of processing complexity. For other components of a logical transaction,

input and output, the number of data element types are the measure of the size of the

component. The formula for calculating Mark II Unadjusted Function Points (UFP)

is:

14

•

where

A Model For Software Project Estimating

N1 = number of input data element types,

W1 = weight of an input data element type,

NE = number of entity type references,

WE = weight of an entity type reference,

N0 = number of output data element types,

Wo = weight of an output data element type.

It should be noted that Nr, NE, N0 are each summed over all transaction types.

The weights were determined by calibration using data taken from twelve existing

projects to arrive at the average man-hours per component. These results were then

scaled to make the Mark II technique compatible with Albrecht's. This compatibility

ensured all eight systems, in the calibration data set, under 500 UFP's came out to be

identical on both scales. These weights were:

w, ~ 0.44,

WE ~ 1.67,

Wa ~ 0.38.

15

A Model For Software Project Estimating

The Mark II's Value Adjustment Factor (then known as the Technical Complexity

Factor) utilises the fourteen factors proposed by Albrecht (see figure 3) with the

addition five new ones. These new factors are for:

1. interfacing to other applications,

2. security features,

3. direct use by third parties,

4. special user training needs,

5. documentation requirements.

The technique also allows additional factors to be used by an organisation on the

provision that the factors are only those that can be derived fJ om user requirements.

3.4 Feature Point Analysis

Jones (1991) developed this technique in order to "give the benefits of the function

point method to real-time software, embedded software, systems software and

telecommunications software". This technique was designed to overcome the

perceived weaknesses of the function point technique with algorithmically complex

systems. The technique uses the average complexity weighting of Albrecht's

technique and adds a new parameter- algorithms with a weighting of three. In

addition it reduced the weighting of the files parameter from ten to seven. The

technique is summarised in figure 4.

16

A Model For Software Project Etdimatiog

Figure 4 R Feature Point Technique

Parameter
Algorithms

Inputs
Outputs
Inquiries

Files
Interface Files

Complexity Weight
3
4
5
4
7
7

This technique is not a simple extension to include the algorithm parameter, as alluded

to by Pressman (1992), but uses a totally different method to calculate complexity.

Complexity is not adjusted by using the fourteen value adjustment factors but by

answering two questions that Jones (1991) claims summarises their intent. These

questions relate to the problem complexity and data complexity as follows:

Problem Complexity.

1. Simple algorithms and simple calculations?

2. Majority of Simple algorithms and simple calculations?

3. Algorithms and calculations of average complexity?

4. Some difficult algorithms and calculations?

5. Many difficult algorithms and calculations?

Data Complexity.

1. Simple data with few variables and low complexity?

2. Numerous variables but simple data relationships?

17

A Model For Sof\· "'rc Project Estimating

3. Multiple files, fields and data interactions?

4. Very complex file structures and data interactions?

Both questions are answered and the resultant number summed together. Then a

complexity multiplier is obtained from table 1 and applied to the unadjusted function

point count.

Table 1 Feature Point Complexity Multipliers

Sum of Problem & Data Complexity Multiplier
c omolexitv

2 0.6
3 0.7
4 0.8
5 0.9
6 1.0
7 1.1
8 1.2
9 1.3
10 1.4

Jones (1991) asserts that Feature Points returns the same adjusted function point

count as does Albrecht's techniques and covers the same range but in a much simpler

fashion.

3.5 COCOMO

COCOMO was first described by Boehm (1981) and comprises three models which

correspond to available information at different stages in the development process.

Each of these models includes a number of algorithms relating product size in

18

A Model For Software Project Estimating

thousand lines of delivered source instructions (KDSI) to the development effort in

months (MMnom). COCOJ'vlO's three models are:

• basic COCOMO for initial estimates;

• intem1ediate COCOMO for when the major subsystems are

determined and

• detailed COCOMO when individual modules within the subsystems

have been identified.

The models' effort equations are of the form

b
MM,"', ~ a(KOSI)

where effort is measured in person months and size is measured in thousands of

delivered source instructions (KOSI). The values of a and b depend on the model

being used and the mode of development. See table 2.

These modes are Organic, Semi-detached and Embedded which represent increasingly

complex software development projects.

Table 2 COCOMO coefficients

Mode Basic Intermediate & Detailed
a b a b

Organic 2.4 1.05 3.2 1.05
Semi-detached 3.0 1.12 3.0 1.12
Embedded 3.6 1.20 2.8 1.20

··--

Organic is used to describe the situation of relatively small teams developing software

in a highly familiar in-house environment. Most people connected with the project

have extensive experience working with related systems and the requirements and

19

A Model For Software Project Estimating

schedule are not rigorously defined. The development environment is stable with little

changes to existing operational hardware and procedures.

The Semidetached mode is a mid-point between the extremes of organic and

embedded. The team members have an intermediate level of experience with related

systems and there is a mixture of skilled and unskilled people. The requirements and

schedule are more rigorously defined than the organic mode.

The embedded mode is used for projects that need to operate with tight constraints.

The resultant product must operate within a strongly coupled complex of hardware,

.vare, regulations and operational procedures. An embedded mode project tends

to operate in new areas of application, hardware and development environments.

The coefficient values and the cost drivers described below were determined by expert

opinion and a database of sixty three projects was used to refine the values.

Fifteen cost drivers are used to modifY the basic equation for intermediate and

detailed COCOMO by means of multipliers. These cost drivers are categorised into

product, process and resource attributes. The level of each cost driver must be

assessed on a six point ordinal scale. Table 3 summarises these cost drivers.

Note that all ratings categories are not applicable for each cost driver.

20

A Model For Software Project Estimating

Table 3 COCOMO Cost Drivers

Cost Description Ratings
Drivers

Vccy Low Nominal High Very Extra
Low High High

RELY Required software 0.75 IUH~ 1.00 l.l5 1.40
reliability

DATA Data base size 0.94 1.00 1.08 U6

CPLX Product complexity 0.70 0.85 1.00 1.!5 1.30 1.65

T!ME Execution time 1.00 Lll 1.30 1.66
constraint

STOR Main storage constrt~int I 00 1.00 1.21 1.56

VlRT Virtual machine tun 1.00 1.!5 uo
volatility

TURN Computer turnarm1nd 0.7!J 0.87 1.00 \.07 1.15
time

ACAP Analyst capability 1.46 1.\() 1.00 0.80 0.71

AEXP Applications c.'\perience 1.29 1.13 1.00 0.91 0.32

PCAP progmmming capability 1.-1-2 1.17 1.00 0.86 0.71

VEXP Virtual machine 1.21 1.10 1.00 0.90
experience

LEXP Programming langu,,gc 1.14 1. 07 1.00 0.95
experience

MODP Usc of modern 1.2.J. 1.10 1.00 0 .lJ I 0.82
programming practices

TOOL Usc of software tools 1.24 1.10 I . 00 O.lJ I 0.83 0.77

SCED Required dcvclopmel!t 1.23 1.08 1.00 I . O.J. l.\0
schedule

The basic effort estimate MMnom is adjusted by the product of all the cost driver

multipliers.

The important points about Intermediate and Detailed COCOMO are not just the

introduction of the cost drivers. Intennediate COCOMO is intended to be used when

the major components of the software product have been identified. This enables

21

A Model For Software Project Estimating

effort estimates to be made on a component basis using the size and cost driver

ratings appropriate for each component. The adjusted component estimates are

summed to attain the total estimate. Detailed COCOMO takes the estimation process

further and uses cost driver multipliers that differ for each major development phase.

COCOMO also has features for handling adapted code and assessing the maintenance

effort. Code re-use effects are determined by calculating an equivalent number of

delivered source instructions (EDSI), and using EDSI in place ofDSI in the effort

equations. Maintenance effort estimates are restricted to that which is expended on

the following:

• redesign and development of small portions of a product;

• design and development of .small interface packages that require some

redesign of the product;

• modification of the software's code, documentation or databa~e structure.

The Basic COCOMO estimate for annual software mnintenance is calculated in terms

of the annual change traftic (ACT) which is the fraction of the software product's

source instructions that undergo change during a year. It is calculated using the

following equation:

where

MMM .. t = ACT * MMnom

MMMt is the estimated annual maintenance effort;

MMnom is the estimated development effort.

22

A Model For Software Project Estimating

Boehm (1981) suggests that the annual maintenance estimate can be refined by using

the Intermediate COCOMO cost drivers with the following adaptations.

• SCED is not used.

• Personnel ratings and computer tumaround are related to the

maintenance staff and computer.

• New cost driver multipliers are used for RELY and MODP.

COCOMO uses a relationship between the development time (schedule) and

development effort using the following equation;

TDEV ~ a(MM)"

where

TDEV is the development time in months;

:MM is the estimated effort to produce the product in man-months;

a and b are constants that depend on the mode of development as

shown in table S.The same values are used for Basic, Intermediate and

Detailed COCOMO.

Table 4 COCOMO Schedule Equation Coefficients

Mode
Organic

Semi-detached
Embedded

a
2.5
2.5
2.5

b
0.38
0.35
0.32

The COCOMO model also defines details such as a man month consists of 152 hours

of working time and perhaps most importantly provides a phase and Work

Breakdown Structure (WBS) for which the model applies. Boehm (1981) also details

23

A Model For Software Project Estimating

assumption-s such as the project "enjoys good management" and "the requirements

specification is not substantially changed after the requirements phase". Boehm's

work is thorough and demonstrates an excellent understanding of the realities of

software development.

Boehm (1987) also developed an improved version ofCOCOMO which is based on a

more modem process model which includes risk management and can be used to

predict the costs of Ada projects.

3.6 COCOMO 2.0

COCOMO 2.0 is currently under development and as yet there are only unpublished

preliminary manuals available. This work will be very important and impact on all

future software estimating models. It was recognised that COCOMO had increasing

difficulty in estimating the costs and schedules of business software, object oriented

software, software developed using an evolutionary approach and software that is a

composite of commercial packages.

COCOMO 2.0's construction has been guided by an anticipated model offuturtl

software development practices. This model's components are outlined below.

• End-user programming -where applications will be developed

using application generator tools such as spreadsheets, query

systems and parameter driven specialised systems.

24

A Model For Software Projet:t Estimating

• Infrastructure- where applications will be in the areas of operating

systems, data-base management systems and networks operating

systems together with the user interface tools.

• Application Generators- where the bulk of the tools used by the

end users will be developed such as financial analysis tools, project

management tools, etc.

• Application Composition - where applications too complex for a

single tool will be created from several inter-operable components.

• Systems Integration - where large scale, embedded or unusual

systems will be developed that require a significant amount of

customised software development.

COCOMO 2.0 provides a suite of increasingly detailed estimation models in order to

satisfy the different practices. The end user practice is not seen to need a COCOMO

2.0 model as the applications are simple and will be developed in a small number of

days. The first model addresses the Application Composition practice which

comprises applications that cannot be built using a specific tool such as a spreadsheet.

However the application can be created using a number of diverse packages. The

approach used is called Object Point estimation. This technique is similar to Function

Point analysis in that it uses a like process which is outlined below.

I. Assess object counts: estimate the number of screens, reports and

3GL components that comprise the application.

25

A Model For Software Project Estimating

2. Class.fy each object instance into simple, medium and difficult

comple:-..ity levels using supplied tables.

3. Assign a Wlight to each instance using a supplied table.

4. Add all the Jbject instances to obtain an Object Point count.

5. Estimate ,he percentage of re-use expected to be achieved in the

pro.ie...:t using the following formula:

New Object Points ~ (Object Points) * (100-% Re-use)
100

6. Determine a productivity rate (productivity being measured in terms

of the New Object Points per person month) from the supplied

table.

7. Compute the estimated person months.

The second and more detailed model, Early Design, uses unadjusted Function Points

as a sizing metric. The VAFs are not used as COCOMO (1995) advises that the

characteristics and relative weighting are inconsistent with their experience. The

unadjusted Function Points are translated into source lines of code (SLOC) and then

KSLOC by using tables such as those provided by Jones (1991). A set of cost drivers

is then applied.

The third model, Post Architecture uses KSLOC as per the Early Design model but

uses a more comprehensive suite of cost drivers.

26

A Model For Software Project Estimating

3.7 Expert Judgement

The techniques in this area involve consulting with experts to obtain their opinion and

consequent estimate as to the effort cost and schedule factors for a particular project.

An expert can factor in elements of a project such as the skill of the people involved,

the similarity with past projects and political aspects of the development. If a single

expert's opinion is obtained then the result can be subject to bias and an unfamiliarity

with major aspects of the system.

To overcome the difficulties associated with a single expert an number of group

consensus techniques have evolved such as the Delphi technique. This technique

originated at the RAND Corporation and the Wideband Delphi version is described by

Boehm (1981).

The use of the Wideband Delphi technique proceeds as follows.

1. A coordinator provides each expert with a specification of the system and

an estimation form.

2. A group meeting is held in which the project and estimation issues are

discussed.

3. The experts form an estimate individually and anonymously inciuding

rationale they feel may be required.

4. The coordinator summarises all the estimates and distributes to all the

experts without the rationale.

27

A Model For Software Project Estimating

5. Another group meeting is held which focuses on the areas where there is a

wide divergence of opinion. These areas are discussed in depth to ensure

all experts have an understanding of the issues involved.

6. Another estimate is made by the experts individually and anonymously and

steps 4 to 6 are iterated to obtain convergence.

This method ensures that there is good understanding of all the issues involved

through communicating at the meetings whilst also minimising the impact of any

dominant individual.

This technique has been extended by Hope (1993) whereby detailed estimating fonns

(see attachment 1) are provided to the experts that require them to make optimistic,

probable and pessimistic estimates of both cost and effort. The elements of the fonns

were derived from analysis of five large projects implemented on a national basis

within Telecom Australia. The method has not been validated however proved use1d

to identify cost and effort factors not considered by other known techniques. For

instance in one project with a total cost of$4.8m, $1.3m was identified to

environmental costs (Telecom, 1992).

Afonnula

Estimate Oplimi,\'liCrol + (.J* Prohab/e)rn1 + Pessimisticr01

6 * Erol

is used to give a weighting to the sum of the estimates. Ermis the number of experts

providing estimates. The rationale behind the equation is the standard deviation of a

beta distribution.

28

A Model For Software Project Estimating

3.8 Other Techniques

There are numerous other estimating models available. These are listed below,

however are not described as they add little more to this research. These other

techniques are:

• TRW Wolverton Model

• TSDC Model

• Walston-Felix

• SOFTCOST

• PRICE SP

• ESTIMACS

• Bailey-Basili Meta Model

• Putnam's model

• Parr

• Jensen

• COPMO

29

A Model For Software Project Estimating

4. Estimating Technique Survey Analysis

Estimating technique utilisation which was obtained from three published surveys, one

conducted in the USA another in New Zealand and the third in the Netherlands.

Wydenbach & Paynter, (1995) also reported Heemstra & Kusters' (1989) results from

a similar survey conducted in the Netherlands. (Hihn & Habib-agahi, 1991:

Wydenbach & Paynter, 1995).

Hihn & Habib-agahi's (1991) survey contained four categories which were informal

analogy, formal analogy, rules of thumb and models. Their research was limited to

the technical divisions of a single organisation, the Jet Propulsion Laboratory. The

categorisation was not rigorous with overlaps and the data "reflects the authors'

interpretation of what techniques were the dominant ones".

Wydenbach & Paynter, (1995) contained eight categories and their survey was

conducted by mail on New Zealand organisations involved in software development.

The data indicates that whilst eighty percent of respondents consider the estimation

process to be imp01tant and ninety eight percent make some form of estimate only

twenty five percent use a formal approach. The most common formal estimation

method was found to be function point analysis. Table 5 below is a summary of data

contained in these surveys. Where a method was not considered in a survey it has

been marked not applicable (N/A).

30

A Model For Software Project Estimating

Table 5 Percentage Comparison of Estimating Techniques Used.

Estimation Estimation Estimation

\
Meth<XI; %of total Methods %of total Methods Hihn

Wydenbnch& res~~n~~nts Heemstra & respondents & Habib-agahi Respondents (83)
Pavnter 209 Kusters (369l~

Primary Secondary
% %

Expert 86% Consult an 26% Rules oftluunb 6% 55%
judgement expert (c.xpcrt)

N/A Intuition 62% Analogy, 83% 34%
intbnnal

Reasoning by 65% Analogy metltod 61% Analogy, fonnal 4% 0%
analogy

Bottom· up 51% N/A NIA

Modds 26% Parametric 14% Models
models

Price-to-win 16% Price-to-win 8% N/A

Top-do\ VII 13% N/A N/A

Available 11% Capacity 21% N/A
capacity problem
OUter 0% Other 9% N/A

Heemstra & Kusters' (\989) data indicates that only fourteen percent use a fonnal

model approach. This difference from the New Zealand survey (26%) was explained

by Heemstra & Kusters' (1989) large percentage of the "other" category purports to

contain non-commercial models.

It is interesting to note that in all surveys conducted above, the largest category was

estimating by analogy.

Park et al (1994) conducted a survey in 1993 to assess the need for improvements in

software cost estimating and as an input to the prioritisation of the work at the

Software Engineering Institute at Carnegie Mellon University. The survey was basic

with only eight questions, one of which was contact information. They distributed the

31

A Model For Sortware Project Estimating

survey widely to groups affiliated with the SEI and those who have an obvious

interest in software estimating such as the COCOMO user group. This has, no doubt

biased any results obtained. It is also of interest to note they only received 249

responses. The question of most interest in this research was "What improvements

would be of most help?". This question did not have a structured reply and the

authors grouped according to the general areas they addressed and advised" ...

everyone sees a need to improve software estimating, but few see the same needs".

The general area groupings used were size, models, databases, metrics and process.

Unfortunately Park (1994) did not supply the total data, however, gave forty nine

examples of the responses. Of these, fom1een were concerned with the improvement

of the sizing of a software project and thirty one advised a standard model and/or

process with which to develop and record estimates would be of benefit.

It is unfortunate that a comprehensive survey that addresses and analyses the needs of

this research was not found. Work is in progress at Edith Cowan University to

address this gap.

It can be concluded from these surveys that the more formal and structured estimating

techniques like CO COMO are not widely used in practice. The majority of software

practitioners appear to estimate by using expert judgement and analogy.

32

I

A Modd For Software Project Estimating

5. Theoretical Framework

The estimating of software projects has important ramifications on organisations who

are making decisions based on the estimates and on the teams and personnel who

undertake the projects. Therefore it is important that any measur:.::s derived for

estimating purposes must be based in measurement theory if they are to have any

mathematical validity. It is apparent that a number of"metrics" in the Software

Engineering paradigm fail to take heed of the available theory and hence the metrics

espoused are flawed (Fenton 1994).

Measurement is defined by Fenton as "the process by which numbers or symbols are

assigned to attributes of entities in the real world in such a way as to describe them

according to clearly defined rules". An entity can be either an object, such as a

requirements specification, or process of interest, such as the requirements phase of a

project. An attribute is a property of an entity such as the length of a requirements

document. There are two types of measurement, direct and indirect. Direct

measurement is where the measurement of an attribute does not depend on the

measurement of any other attribute. Indirect measurement is an attribute that

comprises the measurement of one or more other attributes.

Hence it is important to note that measurement is a defined mapping of numbers or

symbols to an attribute which must preserve any intuitive or empirical observations

about the attribute.

33

A Model For Software Project Estimating

For instance, we could measure the length of a requirements document by mapping to

the attribute length the number of pages or the number or words comprising the

document. To be clear about the attribute we would have to have a formal definition

or model for the requirements document that defined the rules under which the

measurement took place in orde.:- that the length could be stated unambiguously and in

a repeatable fashion. For instance a requirements document model would have to

cater for various aspects that could impact on the attribute such as page size, font

size, line spacing, standard contents, etc. It is interesting to note where common

measurements are taken this definition applies. For instance, in the measurement of

the height of a person rules apply as to the person's attitude, ie standing with feet on

the ground and the disposition of the footwear before mapping the person's length to

a number system.

Fenton (1991) is of the opinion that where no previous measurement has been

performed or the attributes are not well understood one should attempt to obtain

direct measures in order to gain an understanding of the entity and attributes in

question.

For measures to be valid it is generally considered that they should obey the

representation condition of measurement theory (Fenton, 1991). The representation

theory of measurement has a mathematical framework based on sets, relations, axioms

and functions. The components are :-

• Empirical relation systems which determine the axioms that characterise

any empirical observations or relations between the entities. The set of

34

A Model For Software Project Estimating

entities E, together with the set of empirical relations R, is called an

empirical relation system (E,R) for the attribute under observation. For

ex&.mple, the attribute length of a document leads a binary relation "is

longer than" and this satisfies the axiom of transitivity. That is, if document

A is longer than document B which in tum is longer than document C, then

we may infer that A is longer than C. Relations do not have to always be

binary, for instance, "is long" would only apply to an single instance of a

document.

• The representation condition is required for measurement in order that the

attribute defined in the empirical relation system (E,R) can have a mapping

Minto a numerical relation system (N, P) in such a way that all empirical

relations are preserved. That is M maps attributes in E to numbers in N

and empirical relations in R are mapped to numerical relations in P. Noie

the representation condition asserts that the correspondence between

empirical and numerical relations is two way. For instance with the

document example above if we considered E as the set of all documents

and R contains the relation "longer than" Then a measure M of length

would ma_'J E to the set of positive integers and "longer than" to the

relation">". The representation condition asst!rts that document A is

longer that document 8, if and only ifM(A) > M(B).

It should be noted that empirical relations are normally established by

subjective means as a precursor to mar(! objective forms.

35

A Model For Software Project Estimating

• The scale types that can be meaningfully applied to the measurement of an

attribute are dependant on the representation mapping M from an empirical

relation system E to some numerical relation system N. If such a

representation exists then the triple (E,N, M) is called the scale.

A framework for the validation of software measurement has been proposed by

Kitchenham et al (1995) which should prove useful in this work. The framework is

based on Fenton's work and has the goals of helping both the areas of research and

practice by facilitating the understanding of:

• measure validation

• validation work assessment

• appropriateness of measures in a given situation.

36

A Model For Software Project Estimating

6. Analysis of Existing Models

6.1 Function Point Analysis

There is confusion as to what function points are actually measuring. Albrecht's

Function Point Analysis and Jones' Feature Point Analysis are assumed to either

measure size or functionality as perceived by the user of the software product. The

view held by the International Function Point Users Group, IFPUG (1994) is

somewhat confusing as they discuss both "as a measure of the functional size of

information systems" and a "measure of functionality that the user requests and

receives". Albrecht (reported in Symons 1988) stated that the "measure isolates the

intrinsic size of the system from environmental factors ... ".

However, function points are calculated from the sum of a number of different

elements and therefore appear to be an atrribute in their own right derived from an

attribute relationship model. As Kitchenham et a\ (1995) espouses., "the term function

point does not seem appropriate; function points might be better renamed as

functionality or user requirement size".

However, more fundamental issues need to be 8ddressed with function points.

Function points are the sum of five elements derived from the number of inputs,

outputs, inquiries, data and interface files. The input clement is based on the number

of data elements involved in each system input - see figure 2 for details. If the number

of data elements involved in all inputs were summed then this would be an acceptable

37

A Model For Software Project Estimating

measure of input data size. However, the function point model involves classifYing

each input as simple, average or complex, using an ordinal scale, according to the

number of data elements and files accessed. The values derived are then mapped to

numbers and summed. It would appear that the function point model is in violation of

basic measurement theory in that you cannot sum ordinal scale measures. Also the

counting rules mean that the smallest system has a value of three which implies that

the values are discontinuous and there is no unit value. This is another violation of

the measurement framework. These arguments ae also applicable to Feature Points.

Albrecht's Function Points have also been criticised by Symons (1988) on a number

of grounds. These being:

• It is difficult to define the basic counts objectively.

• The complex, average and simple classification is over simplified.

• The choice of weights for the initial classification and calculation of

the technical complexity factor was determined subjectively and

based on experiences at IBM.

• Internal complexity is treated twice, during the initial classification

and during the calculation of the technical complexity factor.

• The effect on function point counts of comparing a group of

independent systems linked by interfaces and a single fuliy

integrated system is counter intuitive.

38

A Model For Software Projed Estimating

There are also problems with the value adjustment factors in several ways. Jeffrey,

Low & Barnes (1993) has shown that the complexity adjustments do not improve

effort predictions and there was no signiticant differences between unadjusted and

adjusted function points as effort predictors. Kitchen ham & Kansala (1993) have

reported similar results.

Fenton (1994) is of the opinion that using the V AF adjustment, for a model that

measures system functionality, is "analogous to redefining measures of height of

people in such a way that the measures correlate more closely with intelligence'.

Other concerns with VAFs is that they are open to interpretation and it is easy to see

overlap. See table 6 for details of overlap.

I.
2.
3.
4.
5.
6.
7.
8.
9.
10.
II.
12.
13.
14.

T11blc 6 VAF Overlap

VAF
Data communications
Distributed data processing
Performance
Heavily used configuration
Transaction rate
Online data entry
End-user efficiency
Online update
Complex processing
Reusability
Installation case
Operational ease
Multiple sites
Facilitate change

V AF Overlnp
6, 8, 2

I
6,8

I, 3, 8
6, 8

1,3,6,7,14

Therefore the use ofVAFs are subjective and depends on interpretation as to what the

person conducting the count perceives a sbeing in each category. VAFs were

formulated in 1984 and as such are not wholly relevant to modem software products

39

A Model For Software Project Estimating

and development environments. For instance, the graphical capabilities required and

the provision of inquiries as defaults in fourth generation languages are not easily

accounted for. One oft he more important modifiers to most other estimating

techniques are aspects of the quality of the sotlware product, most of the quality

attributes arc missing fi·om the function point model. The application of the model

will always give a linear result which is counter-intuitive in that the amount of work

increases geometrically as the size of the project increases ie large projects take a

significant amount of more work than smi'lll ones.

The applicable scope of a sollware project covered by function points is undefined.

This would ap;,ear to be a major omission as one of the stated aims oflFPUG (1994)

is to provide a normalisation factor for software comparison. The least the Function

Point models should do is outline the lifecycle phases and major activities that are part

of the "size".

Mark II function points take a different approach in that the function points are

derived from the inputs, outputs and entities for each business transaction. The

transaction input size is the sum of the data elements that are input into the system;

the transaction output size is the sum of the data elements that are outrut from the

system; the transaction data processing size is the sum of the number of entities

referenced when the transaction is processed. These values are summed for each

transaction and therefore represent three different size attribute elements that are

input into the system. The model requires that the attribute values be weighed and

summed. The weights are different for each attribute and represent the development

40

A Model For Software Project Estimating

effort involved. This violates the measurement framework if we regard Mark II

function points as a size or functionality measure, however, it could be considered to

be an effort measure as the weights are derived from the number of manhours

involved in delivering each component.

It must be concluded that there are major problems associated with the meaning and

construction of function point measures. It is interesting to note that there is little

work published on the validity of the measures as to their predictive capability.

From the project data the initial size of one project was estimated at 1477 function

points and although a count was never conducted on the final product it was

estimated the final system was in excess of3500 function points. This is based on an

extrapolation from the forty one entities of the data model used in the initial estimate

to the final having one hundred and twenty three entities (Telecom 1993). Whereas is

another project, Telecom (1992), the initial count was 1230 function points and the

count on the delivered system was 1876 function points. All these counts were

conducted in the same environment by the same people using the same delivery

systems and count mechanism. From this example it can be seen that function point

counting can be inconsistent and subject to a great deal of variation. UnfOrtunately no

published material could be found that compared actual function point counts with

estimated ones.

41

I

A Model For Software Project Estimating

6.2 COCOMO & Lines of Code Measures

The COCOMO model depends on estimates ofKDSI (thousands of delivered source

instructions) for its major input which is not really measurable until the software

product has been implemented. As such this measure is subjective although estimates

should become more accurate as the project progresses. Therefore it would seem that

a difficult prediction problem, effort, is being replaced with an equally difficult

prediction problem - size. Also the COCOMO models require that the modes of

development (organic, semi~detached or embedded) be determined and in the

Intermediate and Advanced models fifteen cost drivers must also be rated. Therefore

the objectivity of the inputs to the COCOMO models are questionable.

The use ofKDSI has other problems which are as follows.

• As Jones (1991) states there is no industry standard definition for a

line of code (LOC).

• Some languages such as Pascal and Ada allow many logical

statements per physical line whereas other languages such as

COBOL have physical line requirements.

• The types of lines that are counted need to be defined as most

procedural languages include four diftCrent kinds of source

statements executable lines, data definitions, comments and blank

lines. Data definitions can also cause problems as n variables can be

declared in one statement or 11 statements for the same logical

outcome.

42

A Model For Software Project Estimating

• The concept of a LOC is not represented in some fourth generation

languages such as Oracle Forms. These languages also tend to use

third generation type languages in part, thereby compounding the

problem.

The COCOMO models are extremely comprehensive and, being based on well

documented empirical studies, tend to be intuitively sound.

6,3 Conclusion

Function points do not relate to any lifecycle model or any set of activities. Therefore

in addition to the problems mentioned above it is difficult to know what activities can

be included when determining productivity and costing factors. That is, is it allowable

to include such elements as the effort to produce systems manuals, the cost of

development tools etc in the production of the system under investigation.

COCOMO has a model on which it is based and only covers the software lifecycle

from requirements to implementation for those activities in the work breakdown

structure nominated. However, it has all the problems espoused above and especially

those associated with lines of code measures.

It should be noted that no published material was found relating to experiences with

the Wide-Band Delphi method.

43

A Model For Software Project Estimating

7. Proposed Model

7.1 General

The proposed model outlined in this section cannot be considered complete, however,

has an underlying principle of providing an estimate for a total software project.

That is all costing and effort elements required to deliver system are considered. A

TOTAL project estimate is required as only this will provide the infonnation and

costing that will allow management to make valid decisions on the viability and

feasibility of the proposed system.

Estimation components of a software project consist of the product and the process

that produces it. However in order to compare different projects there must be

agreement as to the elements that will be counted as part of the cost of the software

projects in question. As related earlier a project with a total cost of$4.8m had $1.3m

attributed to environmental costs (Telecom, 1992). On examination these costs

related to changes and provision of both electrical and network cabling, provision of

lighting that reduced screen reflections and the provision of office furniture that was

ergonomically sound. Therefore this organisation considered it to be reasonable to

associate these costs to a single project. Other organisations may have considered

these as infrastructL_:e costs and handled them in a different manner. If another

organisation did not consider these environmental costs then any comparison between

projects would be flawed if the information was not normalised in some manner to

allow project comparison. Whilst this example is somewhat obvious and easily

44

A Model For Software Project Estimating

catered for, other costs are not so easily recognised and catered for in the data

collection. For instance in another project twenty three percent of the total number of

hours on the project could be attributed to unpaid overtime (Telecom 1993). Only

costing the hours worked and paid would give an unrealistic view of the productivity

factors that could be used in future projects.

Therefore elements ofthe total project need to be defined and those elements that are

particular to a single project extracted before comparisor.s are made between projects.

Therefore the ideal estimating model for a project would be to add all known factors

(F) together as follows:

Estimate = F 1 + F2 + F3 + + Fi

Each factor could have a different effect on the project and hence a multiplier (M), for

each factor, would be appropriate which leads to:

Estimate = M1F1-+ iV]zi;2 + .LvbF3 + ... + M;Fi

However, it is known from various studtG::. :>uch as Boehm (1981) that some factors

have a non-linear (NL) effect on the project (eg size) and therefore the equation

would be of the furm:

Estimate ~ (M1F1)NLr + (M2F2)NJ.l + (M3F3)'l·
3 + + (M;F,)'l·'

However, due the immaturity of software estimating and the wide variance in results

reported from empirical studies some factors would not be relevant to consider as

their impact would be within the scope of the variance. This leads to single factor

45

A Model For Software Project Estimating

models such as COCOMO (MMoom ~ a(KDSI)b) whose result is modified by the

application of fifteen cost drivers.

It would appear that these types of estimating models are valid for the environment in

which they were derived and are useful as long as that total environment remains

stable. This is evidenced by COCOMO (!995) where it is advised that COCOMO

and Ada COCOMO were reasonably well matched to the large customised projects

from which they were modelled however are not suitable for future environments.

7.2 The Model

A model is required that considers all the factors involved in the construction of a

software product. This is required as different classes of projects will contain

different components and be affected in different ways by the environment in which

they arc produced. Some elements of such a model are contained in figure 5.

The result of such a model would be an estimating handbook for software projects

perhaps in a similar fashion to the estimating handbooks used by architects and

builders. This handbook would contain all the elements that could constitute a project

estimate and the various factors that affect each element. The handbook would have

to continue to evolve as environments changed and data was collected to improve the

model. A candidate list is contained in Attachment 1.

46

A Model For Software Project Estimating

Figure 5 Some Elements Impacting on a Project Estimate

Product Size Data amount and complexity;
Proccssin~ amount (functions) and complexity;

Target Mainframe based; PC based; Distributed client server;
Environment Available memory and processors;

Network traffic intensity;
Combinations of the above;

Lifecycle Scope What phases arc included (esp maintenance)
Project clements Support hardware and software; System
hardware and software
Users time; User training;
Data take up and validation;

Quality Attributes Reliability; Maintainability etc
Some modilicd form of QFD mav be applicable.

Process Politics How acceptable is the system to the users; User commitment;
Docs it fit into the organisation's strategy;
Mana •ement commitment

Developer's Management capability;
attributes Personnel capability -skills, c.xpcricncc in the tools platform and

application domain;
Availability and continuity;

Risk Relates to product and process
Development Hardware; Software tools;
environment Management systems- QM, PM; CM; ...

Multi-site devclqpment
Constraints Schedule

Building for re-use;
New techniques and tools being utilised- Hawthomc effect-
results may not translate to nonnal practice:

The following discusses various aspects of the model.

7.2.1 Product

7.2.1.1 Size

Obtaining size estimates that are reliable is difficult and subject to a wide

range of uncertainty. As Boehm (198\) observed '"the biggest problem in

today's algorithmic software cost models is the problem of providing sound

sizing estimates". From the research it would appear the models utilising

function points and lines of code still have major problems today. Verner

47

A Model For Software Project Estimating

and Tate (1992) reported in a United States Air Force experiment which

compared six software size estimation models the results ranged from 6622

to 36700 lines of code. The actual size was 91771ines of code. Object

points have been mooted as an answer, however, more research needs to

take place in order to validate or refute them.

Data Size- It would appear that for data a case could be made to count the

attributes/fields/data elements that a user can see. This would give a

measure on a ratio scale ie we have a zero point. Then these could be

formed into a data model in third normal form and the number totalled. A

non-linear function would be required, for as the total increased, it could be

assumed that the inter-relationship between the entities and hence the

complexity of the application wouid increase which would lead to greater

effort and cost. Brooks (1975) and Jones (1991) provide adequate

evidence on the non-linear effect of size on a projects cost, effort and

duration.

Processing Size- One method would be a simple count of the functions to

be provided. There is a need for a non-linear expression to designate the

complexity of each function as this will impact on the overall estimate.

Estimating lines of code has the problems discussed previously. Also some

lines of code are more complex than others and hence require a greater

intellectual eftbrt to produce. For example if you had a recursive routine

that called another recursive routine then the effort in writing, testing and

48

A Model For Software Project Estimating

de-bugging would be more that that involved in two routines that formatted

a simple output.

Verner and Tate (1992) support the notion of a generic sizing model that is

not fixed but the partitioning can depend on the development technology.

This model follows a bottom-up approach that identifies the components of

a system and allows different estimation equations for different component

types.

7.2.1.2 Target Environment

The target platform(s) will not only have a effect on the development cost

but also on the ongoing maintenance. This will be evidenced mainly in the

configuration management costs. For example in Telecom (1993) an

application was impleme.nted in a client server environment and distributed

across Australia with major regional clients in the capital cities. This

involved areas of work in data communications analysis and installation,

implementation planning and execution, configuration management etc. In

developing a single PC based application these items would not be relevant.

7.2.1.3 Lifecydc

The work breakdown structure for a project needs to be defined. All

activities, effort and cost elements need to be defined in order that projects

can be compared and an historical information recorded. A definitive

method for recording items, such as man-hours, also needs to be

established. It is interesting to note in the research conducted it was found

49

A Model For Software Proj~ct Estimating

that only Boehm (1981) defined this element in the COCOMO model. The

International Standards Organisation lSO/IEC (1995) has published a

comprehensive document detailing lifecycle processes that would form an

internationally rer.ognised and publicly available source for this estimating

element. Project Elements such as support hardware and software user

training, user procedures and policy changes, environmental costs etc could

also be incorporated into the Work Breakdown Structure.

7.2.2 Quality
Most m. Hlcls incorporate some of the quality elements into their models such as

COCOMO's re~mbility cost driver, however most leave the majority of the

recognised quality attributes out. See figure 6 for software quality attributes.

Weinberg (1971) proved the goal set for a programming team was usually the one

achieved. His experiments, using five programming teams, also provided evidence

that given the goal of usability or maintainability the cost of development was

higher than it would have otherwise been. All the quality attributes of a system

should be considered and a modified form of quality function deployment applied

as partially devised by Thomsett (1993). Thomsett (1993) requires all project

stakeholders to rate the quality attributes on a scale -3 to +3 with 0 being the

nominal quality provided in a system. This quality model would require empirkal

experimentation and calibration to make it useful. However, even without this

rigour it is still a useful approach as the quality cost drivers for a project are

explicitly stated.

50

• Correctness
• Reliability
• D'.lrnbility
• Etliciency
• Oenerulity
• Integrity
• Us~nbility

• Readability

• Testability

• Maintainability

• Fl~xibi\ity

• Portability
• Cmnpntibility

• Security

A Model For Software Project Egtimating

Figure 6 Software Quality Attributes

Doc~ it accurutcly do what is intended?
Docs it do it right every time?
Will it continue to work nficr u part fails?
Docs it run ns well as it could?
DO<;!,; it cover U1e whole problem domain ?
Can it be trusted to handle unusual conditions for which it was not explicilly designed?
Is it easy to usc?
Arc its processes easily understood ?
ls it easy to check tmd verilY correct ?
Is it easy to lix 7
Is it easy to adapt and extend?
Cml it be L'ltsily converted?
Docs it illtcrfacc well with other systems?
Is it safe tfom unnuthorised modilication or usc 'I

7.2.3 Process

The process of developing software is complex and involves numerous processes

that are all interrelated. This is another reason for the difficulty in estimating and

managing software projects. To arrive at an estimate that will predict the

outcomes accurately not only do all the elements constituting the development

have to be known but also their interrelationships and effects they have on the

dynamics of the system being estimated. Figure 7 from Abdel-Hamid and Madnick

(1989) shows such a model. Obviously some automated tool is required when

analysing such models. Other elements that are of note are discussed below.

7.2.3.1 Politics

The management of organisational politics is of great importance and if it is

not done well can have a detrimental affect on the project. The

management of all the stakeholders is essential. Thomsett (1993) discusses

the management and categorisation of stakeholders ir. order that the project

team focuses on the most critical areas. In the project described in

51

A Model For Software Project Estim&ting

Telecom (1992) little explicit attention was made in this regard however in

Telecom (1993) budgeted items amounting to $60K were allowed. This

enabled the system to be more readily accepted and ensured there were

designated people in each state who would "champion" the system.

COCOMO 2.0 also indudes this stakeholder management as part of the

TEAM rating components.

Figure 7 Systems Dynamic Model

(Abdel-Hamid and Madnick

Human Resources turnover
Managemennt~--.- hiring / rule

- '""""" ¥
experience

workforce mix

-----~--t-- --------- -r--- --
process losse~ potential

QA effort ~............. . / productivity

./ actual
error ,. ~ ---- d · · . - sofhVMC--- pro UC\IVtty

dctccho.n & dt.'velopmcnl I
co~cctwn / rate ~

error¥ learning Software
ruto Production

Planning ---- schedule . perceived
pressure ~ project tasks~ productivity

perceived
workforce

level needed

• I '""'"' ~ scheduled forecast I completed

completion completion I '\..... accurucy

d"l" date -.:L_ ""'- e!Tort

I
" ~· --..._ in progress
v~ I perceived measurement
I' still needed

workforce A_

& schedule llf'
percctvcd

project size
adjustment~ Control

52

A Model For Software Project Estimating

7 .2.3.2 Developer's Attributes

Boehm (1981) places the attributes of the developers as the element that

has most impact on the estimate for a project This is also recognised in

COCOMO (1995) where the same level of importance is attached. Various

studies such as in Brooks (1975) and Weinberg (1971) have shown that

there is a vast difference in productivity between development personnel.

The differences can be on the order of twenty to one. The differences can

also vary from development task to development task. Modelling and

measuring the skills of personnel is a difficult task that changes over time

and is also dependant on the environment in which a particular person is

operating in. One method would be to have nominal delivery rates for the

activities defined in the WBS and modify these based on individual's

performance data.

7 .2.3.3 Risk

Software Risk Management is an emerging discipline whose objectives are

to identifY, analyse, address and mitigate software risk items before they

become threats to the software products and systems. As has been alluded

to previously the outcome of software development activities are

probabilistic. Software risk management applies techniques for determining

probabilities and increasing the chances of success. Another effect ofthis

risk management process is the reduction of re-work. The direct impact on

a project estimate would be the cost of risk management which consists of

53

A Model For Software Project Estimating

assessment, analysis, mitigation and tracking. (Boehm 1992: Charette

1989).

7.2.3.4 Development Environment

DeMarco and Lister (1987) conducted experiments that showed the

development environment had a major affect on the productivity of

software development personnel. 111ey showed, in their experiments that if

one person in an organisation performed well then so did others. DeMarco

and Lister (1987) said " ... the best organisation worked 11.1 times faster

that the worst organisation". This they attributed, in the main, to the

workplace with the control of noise and provision of adequate work space

having major productivity affects. Software development is essentially an

intellectual activity and constant interruption or distracting noise makes it

difficult for competent people to work effectively.

The management systems within the organisation will also impact upon the

productivity. This is closely aligned to the processes that are being

undertaken. COCOMO 2.0 addresses this area explicitly with reference to

the Capability Maturity Model of Carnegie Mellon University for the

determination of their process maturity cost driver .. A software quality

management system has as one of its goals the reduction of re-work.

Organisations that allow errors to propagate throughout the development

have lower overall productivity.

Other aspects such as the development environment stability and

54

A Model For Software Project Estimating

availability, team distribution (collocated or dispersed), tool sophistication,

etc. All would need to be detailed and the project effect determined from

historical data.

7.2.3.5 Constl'aints

Various constraints can be placed on a project the chief one being any

schedule that is tighter than that initially estimated. Schedule constraints if

applied have a disproportionate affect on manpower requirements. Brooks

(1975) was one of the tirst to make this point in that "the man month as a

unit for measuring the size of job is a dangerous and deceptive myth"

because it implies that people and effort are interchangeable. They are only

interchangeable ifthere is no communication between the people involved.

In software development communication and interrelationships between

activities and people is high. As Brooks (1975) says "if each part of a task

must be coordinated with each other part of an activity, the effort increases

n(n-1)12". Therefore three people require three times as much

intercommunication as two and four six times as much as two etc. This can

lead to the effort in communication outweighing any benefit of task

division.

Other management imposed constraints may also impact upon the estimate.

For instance if a proportion of the system has to be developed for re-use

then greater effort is required in ensuring the components are sufficiently

55

A Model For Software Project Estimating

generic to be re-used. The same applies to the use of new tools and

techniques as there will be a learning curve involved.

7.3 Summary

As can be seen from the above there are numerous factors involved in estimating a

software project. These factors range from consideration of development

hardware to the skills of individuals involved in project activities. Not all will be

relevant to all projects, however, all need to be considered as the potential to

impact on the project estimate can be great. As stated earlier this is only a

framework from which an estimating technique can be developed.

56

A Model For Software Project Estimating

8. Conclusion

Estimating the size, effort, duration and cost of a software project is an essential

aspect of Software Engineering as these are the fundamental drivers for all project

decisions. This research has investigated and analysed the major software project

estimating techniques in use today. As can be seen there are significant weaknesses

with the existing models and techniques for estimating software projects. These range

from not catering for modern development environments (4GLs, object oriented

techniques and languages) to those that are theoretically unsound and not based firmly

in measurement theory. lt would also appear that most methods are too simplistic and

fail to adequately deal with all the complexities involved in developing a software

product. This would appear to be a inherent attribute of the software industry where

a "silver bullet" is always being sought.

The research has also revealed, through the analysis of existing surveys, that these

techniques are not widely used and most practitioners use expert judgement or

analogy to determine project cost and effort. This is despite most techniques being

available for ten to fifteen years now.

The proposed model is only a framework and more work is required to quantifY it and

to determine how it could be tailored to suit an organisation. The complexity and

dynamics of the software development process and the confounding organisational

factors make it, except in the most general terms, very difficult to compare between

organisations. Any comparison between software projects across organisations would

57

A Model For Software Projl:ct Estimating

have to be nom1alised. That is a standard of not only the activities and cost elements

involved but also the data collection and definition mechanisms would also have to be

agreed.

Estimating without either a detailed requirements document or design document is a

problem as this is the first time the data and functions required by the system are

expressed in a detailed form Perhaps a change in terminolobry is required and that all

efforts to predict the size, cost, effort and duration prior to these documents being

available should be referreJ to as forecasts.

A builder of houses uses an estimating workbook that spans several pages, however,

in the software industry we appear to seek a simple technique with a few parameters

on one page to estimate products that are orders of magnitude more complex to build

than a house. This research has revealed that an estimating framework that considers

all the parameters of a project in detail is not inappropriate.

58

A Model For Software Project Estimating

9. References

Abdel-Hamid, T. K, Madnick, S.E. (1989). Lessons Learned From Modelling the

Dynamics of Software Develogment. Vol32, No 12 Communications of the ACM.

Abdei-Hamid, T. K. (1993). Adapting, Correcting, and Perfecting Software

Estimates: A Maintenance Metaphor. Vol 26, No 3 Computer, IEEE Computer

Society.

Albrecht, A.J. (1979). Measuring Application Development Productivity.

Proceedings- Joint Share/Guide IBM Application Development Symposium pp 83-

92.

Basili, V.R., Rombach, D. (1988). The TAME Project Towards Improvement-

oriented Software Environments. Vol 14, No 6IEEE Transactions on Software

Engineering, IEEE Computer Society.

Boehm, B.W. (1981). Software Engineering Economics. New York: Prentice Hall.

Boehm, B.W. (1984). Software Engineering Economics. Vol 10, No 1 IEEE

Transactions on Software Engineering, IEEE Computer Society.

Boehm, B.W. (1987). Ada COCOMO: TRW IOC version .. Third COCOMO User's

Group Meeting.

Boehm, B.W. (1992), Risk Control, American Programmer Vol 5 No 7, pp 2-9, New
York, NY.

Brooks, F.P. (1975). The Mythical Man Month. Addison-Wesley.

Charette, R.N. (1989). Software Engineering Risk Analysis and Management,
McGraw-1-fill Book Company, New York, NY.

59

A Model For Software Project Estimating

COCOMO (1995). COCOMO 2.0 Model User's Manual- Version 1.1. University

of Southern California.

Daskalantonakis, M. K. (1992). A Practical View of Software Measurement and

Implementation Experiences within Motorola. Vol IS, No lllEEE Transactions on

Software Engineering, IEEE Computer Society.

DeMarco, T. Lister, T. (1987). Peopleware: Productive Projects and_Teams. Dorset

House.

Dreger, J. (1989). Function Point Analysis. Englewood Cliffs, NJ: Prentice Hall.

Fenton, N. (1994). Software Measurement: A Necessary Scientific Basis. Vol20, No

3 IEEE Transactions on Software Engineering, IEEE Computer Society.

Fenton, N. E. (1991). Software Metrics- A Rigorous Approach. London: Chapman

& Hall.

Gannus, D., Herron, D., (1996). Measuring the Software Process: A Practical Guide

to Functional Measurements Englewood Cliffs, NJ: Prentice Hall.

Gilb, T. (1988). Principles of Software Engineering Management. Wokingham:

Addison-Wesley.

Hihn, J., Habib-agahi, H. (1991). Cost Estimation of Software Intensive Projects: A

Survey of Current Practices. 13th International Conference on Software Engineering,

IEEE Computer Society.

60

A Model For Software Project Estimating

Hope, S. (1993). Software Estimating Workshop Course Notes. Spiral Technology

Pty Ltd.

Humphrey, W.S. (1989). Managing the Software Process. Reading, Massachusetts:

Addison-Wesley.

Humphrey, W.S. (1995). A Discipline for Software Engineering. Reading,

Massachusetts: Addison-Wesley.

lFPUG, (1994). Function Point Counting Practices Manual, Release 4.0. International

Function Point Users Group, Westerville: Ohio.

ISO/IEC 12207: 1995. Information Technology - Software Lifecycle Processes.

Jackson, M. (1975). Principles of program Design. London, Academic.

Jeffery, D. R., Low, G.C., Barnes, M. (1993}. A ComP-arison of Function Point

Counting Techniques. Voll9, No 5IEEE Transactions Jn Software Engineering,

IEEE Computer Society.

Jones, C. (1991). Applied Software Measurement: Assuring Productivity and Quality.

New York: McGraw-Hill.

Jorgensen, M. (1995). Experience With the Accuracy of Software Maintenance Ta~k

Effort Prediction Models. Vol21, No SIEEE Transactions on Software Engineering,

IEEE Computer Society.

61

A Model For Sofhvarc Project Estimating

Kemerer, C. F., Porter, B.S. (1992). Improving the Reliability ofFunction Point

Measurement: An Empirical Study. Vol 18, No 10 IEEE Transactions on Software

Engineering, IEEE Computer Society.

Kitchenham, B., Kansala, K. (1993). Inter-item Correlations among Function Points.

Proceedings of the IEEE Metrics Symposium, IEEE Computer Society.

Kitchenham, B., Pfleeger, S.L., Fenton, N. (1994). Towards a Framework for

Software Measurement Validation. Vol2l, No 12 IEEE Transactions on Software

Engineering, IEEE Computer Society.

Matson, J. E., Barrett, B. E., Melli champ, J. M (1994). Software Development Cost

Estimation Using Function Points. Vol 20, No 4IEEE Transactions on Software

Engineering, IEEE Computer Society.

McCabe, T. J. (1976). A Complexity Measure. Vol2, No 4 IEEE Transactions on

Software Engineering, IEEE Computer Society.

Mukhopadhyay, T., Kekre, S. (1992). Software Effort Models for Early Estimation of

Process Control Applications. Vol 18, No 10 IEEE Transactions on Software

Engineering, IEEE Computer Society.

Park, R.E., Goethert, W.B., Webb, J.T. (1994). Software Cost and Schedule

Estimating: A process Improvement Initiative. Special Report CMU/SEI-94-SR-3,

Carnegie Mellon University.

Pressman, R.S. (1992). Software Engineering: A Practitioner's Approach. McGraw

Hill, Inc.

62

A Model For Software Project Estimating

Putnam, L.H., Myers, W. (199'2). Measures for Excellence: Reliable Software on

Time. within Budget. Englewood Cliffs, NJ: Prentice Hall.

Symons, C.R. (1988). Function Point Analysis: Difficulties and Improvements. Vol

14, No 1 IEEE Transactions on Software Engineering, IEEE Computer Society.

Telecom, (1992). WRS 1 Project File Notes. Australian Telecommunications

Corporation.

Telecom, (1993). WRS2 Project File Notes. Australian Telecommunications

Corporation.

Thomsett, R. (1991). Managing Superlarge Progects: A Contingency Approach. Vol

4, No 6 American Programmer, American Programmer Inc.

Thomsett, R. (1993). Third Wave Project Management. Englewood Cliffs, NJ:

Prentice Hall.

Verner, J. Tate G. (1992). A Software Size Model. Vol 18, No 4 IEEE Transactions

on Software Engineering, IEEE Computer Society.

Weinberg, G.M. (1971). The Psychology of Computer Programming. New York: Van

Nostrand Reinhold.

Weinberg, G.M. (1993). Quality Software Management: Volume 2 First Order

Measurement. New York: Dorset House Publishing.

Wydenbach, G., Paynter, J. (1995). Software Project Estimation: A Survey of

Practices in New Zealand. Technical report No 97, University of Auckland.

63

Problem Definition &
Feasibility Studv

Problem
Definition

R

Study Tern " Consultant

Feasibility
'
n Study Tem

Consultant
Prototyping

'
Mncro
Estimnting
Cost I3endit
Analysis
Reporting

Iota I

cgu1rcment.~ c mt10n D fi ..

Functional
Spcci!ication
Data
Spccitication
Prototyping
Infra~tmcturc

Specification
Specification
Review
Documentation
Customer
review
Tender
preparation
Tender
evaluation

Total

A Model For Software Project Estimating

Attachment 1
Modified Wideband Delphi Estimating Sheet

Dollars

OI!timistic Prohah\e Pe~simistic O[!timistic Probable Pessimistic

$ - $ - $ - II 0 0

$ - $ $ - II 0 0

64

System
specification
i\rchitcctural
specification
Detailed
functional
specification
Dctaibl data
spceitication
Component
design
Test
SJX:cification
System design
Tl!st design
Acceptance tes
spec & design
Data lond spec
& design
Documentation

t

Tot

Development
Component
coding &
testing
Subsystem
linking&
testing

,,

System
Integration
Operations and
system
documentation
System
Interface testing
System Testing
User
Documentation

Tot a t

O(!limistic

$

$

A Model For Software Project Estimating

Probnble Pessimistic Qplill.!h!k Probable Pessimistic

- $ - $ - 0 0 0

- $ - $ - 0 0 0

65

Implementation
Prepare &
load
ucccplancc
tests

Trnining

User
acceptance
test
Instullution
Data
validation
Databusc
loading
Manuul data
loading
Operations
acceptance
test
Fuullli.xing
Phase out old
system

Tota I

• Project Tcan
training
Training
sotlwurc
Training
hardware
Design &
loading
training
system
Preparation
of training
programme
Operations
training
User training
Training
environment

Tot a I

Optimistic

$ -

$ -

A Model For Software Project Estimating

J!!ill.ars
Probable

$

$

-

-

Pessimistic II Optimistic Probable

$ - II

$ - II

Effort

Pessimistic

0

0

0

0

66

De\·elopment
Software &
Hardware

Development
Server
Test Servers
Development
tennilmls
Cmnmunications
CASE tools
Horizontal
Software
Vcrtkal Sollwm '

To tal

Opcrutionul Software &
Hunlware

Servers
Mcmmy
Storag

Processor
Soflwar

'
'
'

Terminals
Memory
Storug
Screen

'
'
' Proces~ur

Soflwar
Communications

'
Network capacity

Network
element
Soft war

'
'

Tot a I

Optimistic

$ -

$ -

A Model For Softwal'c Project Estimating

Dollars

Prob~1blc Pessimistic Ootimistic Probable Pessimistic

$ - $ - {) 0 -0

$ $ - {) 0 0

67

Project Management
Administrntion

Project
management
Administration
Administration
lmrdwurc &
soft wan::

&

Stationary
Acconunodation
Travel costs
Quulity (IV & V
Configuration
management
Planning&

)

-,'ro\

R1: ·u!ti~ · ,·:-·;t~

'
E I t I Ch • nv ronmcn n n;, es

Ergonomic
Changes
Policy
Changes
Procedures
Development
Stundards
Customer
Impact

Total

Grand Totti!

O[!timistic

$ -

$ -

$

Project Estimutc I Dollars $

A Model For Software Project Estimating

Probable Pcssimhtic Optimistic Probal11c Pessimistic

$ - $ - 0 0 0

$ - $ - 0 0 0

$ $ 0 0 0

Mnnhour•. 0

68

	Towards a model for software project estimating
	Recommended Citation

