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ABSTRACT 

The utilisation of eucalypts around the world is increasing, mainly through the 

development of plantations. Clonal propagation has become important in some 

countries for production of such plantation trees. Micropropagation has been utilised 

to produce clones of trees selected for specific characteristics such as disease 

resistance, salt tolerance and fast growth rates. However, a suitable micropropagation 

protocol for all eucalypts has not been produced. One component of the 

micropropagation protocol, in which there is considerable difficulty, is the induction of 

adventitious roots on micropropagated shoots. Of particular interest, is the 

development of these procedures for Eucalyptus marginata Uarrah) that have been 

selected for dieback (Phytophthora cinnamomi. Rands.) resistance. 

The effect of different sugar sources was examined on the rooting of jarrah shoots. 

Sucrose, glucose and fructose were all effective in promoting roots on jarrah in vitro. 

The effectiveness of each sugar varied between clones. In particular, three clones 

produced higher rooting on a medium containing fructose. For two of these clones the 

increase was as high as 30%. 

Interactions between auxm, sugar and ethylene were examined. Optimum root 

induction was obtained when approximately I 0 ~ of auxin (indole butyric acid) and 

2% sugar (sucrose or fructose) was used in the medium. As auxin and sugar 

concentration in the medium in~reased, th~ amount of ethylene produced also 

increased. Similarly, this increase in auxin, sugar and ethylene reduced the chlorophyll 
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content of the shoots. The use of fructose appeared to produce lower amounts of 

ethylene than sucrose when used at the same concentration. The ethylene produced 

seemed to have no effect on the rooting response. 

The increases in rooting provided in some clones may be applicable to other clones 

that are difficult to root. This may lead to more efficient micropropagation with more 

clones being able to be produr.ed in large numbers. This will increase the genetic 

diversity of clones that. is currently available for jarrah breeding programs. 
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CHAPTER ONE 

INTRODUCTION 

1.1 EUCALYPTS 

The genus Eucalyptus dominates the native vegetation (mainly open woodland) of more 

than half of Australia, where over 500 species have been described. The forty-one million 

hectares of Australian eucalypt forest provides a great variety of wood products. Juvenile 

trees provide pulpwood, charcoal and fuelwood, poles, mining timber and fibreboard. 

Mature trees provide strong and durable wood used for high-quality sawn timber for 

furniture and joinery, construction and railway s(eepers. Eucalypts of all ages and sizes are 

capable of producing volatile oils for pharmaceutical and industrial uses (Eldridge et a!., 

1993). 

Eucalypts arc also the most widely planted hardwood trees in the world and can be grown 

in most tropical and temperate regions. There are over six million hectares of eucalypt 

plantations in these regions throughout the world (Eldridge eta!., 1993). In Australia there 

are just over 1 00,000 hc:ctare:~ of eucalypt plantations (Stepk.ns eta/., 1993). 



1.2 CLONING 

The use of clonal propagatio:1 ts important in the control of genetic variation and 

maintenance of desirable gene pools. Clonal propagation allows the gene pool to be 

maintained as the daughter plants are genetically identical to the mother plant (Mehra

Palta, 1982; Haissig eta/., 1992). 

Eucalypts can be cloned by a variety of techniques including; cuttings, graftings, 

micropropagation, callus cultures, organ cultures, suspension cultures, protoplast cultures 

and somatic embryogeru.:sis (Le Raux and van Stadcn, 1991). This enables desirable 

genotypes, such as high quality pulp, salt tolerance, frost tolerance, oil yield and disease 

resistance (for example, resistance to Phytop/Jtlwra cinnamomi, jarrah dit!back) (Le Raux 

and van Staden, 1991; McComb eta/., 1996) to be used in a range of purposes. 

When using conventional cuttage, or tissue culture, one of the limiting factors of cloning is 

the inability to induce adventitious root formation (Haissig et al., 1992). It is, therefore, 

essential to develop propagation methods that maximise advcntitiOU!' r .at formation. This 

enables genetically e!ite material to be fully exploited. Micropropagation is a method of 

clonal propagation that has shown considerable promise for utilisation of small scale 

plantings such as in seed orchards. 
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1.3 MICROPROPAGATION 

Plant tissue culture, in general tenus, refers to the growth of plant tissue::; on a nutrient 

medium in which a range of plant developmental processes can occur (Kartha, 1982). 

Many methods of tissue culture are currently employed for plant propagation: (1) 

Regeneration from callus and/or protoplast5 - this procedure uses hormonal combinations 

to generate the formation of growing shoots from unorganised masses of parenchymatous 

tissue (callus). Shoots are then treated with auxin to promote root growth (resulting in a 

clonal propagule or plantlct) and transferred to soil; (2) Organ cultures - of roots, 

lignotubers, anthers, microcuttings and shoot tips; (3) Suspension cultures - from callus 

with cytokinin, nodular aggregates formed from single cells in liquid culture, restabilised as 

friable callus cultures on agar medium; ( 4) Protoplast cultures - protoplasts are isolated 

and cultured onto solid medium which proliferates into callus. This technique can be used 

for the selection and propagation of frost resistant variants (Le Raux and van Staden, 

1991); (5) Somatic embryogenesis- embryos arise from callus; and (6) Micropropagation

growing shoot~ are exposed to media that stimulates axillary bud growth, and consequently 

shoot multiplication (Le Raux and van Staden, 1991 ). The shoot i;, then transferred to a 

root-promoting medium, adventitious roots are produced and gcneticall~r identical plantlets 

result. Micropropagation is the preferred mode of production of clones as it is generally 

less likely to lead to genetic variants, often referred to as somaclone.'s (Ahloowalia, 1986; 

Bajaj eta/., 1986). 
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1.3.1 Stages ofMicropropagation 

Micropropagation involves a number of stages; the isolation of the desirable plant 

characteristics, shoot multiplication, rvot induction, and acclirnatisation (Biondi and 

Thorpe, 1981; Krikorian, 1995). 

Shoot Multiplication 

Stem tips and lateral buds are the most commonly used starting material. Bud production 

or precocious branching is increased by the application of hormones. This is generally 

achieved by increasing the level of applied cytokinins. Depending upo:1 the type of shoot 

characteristics desired, pulsing - the application of cytokinin between subcultures, may be 

applied to modulate branching patterns. A carbon source and nutrients are also supplied. 

The carbon, usually in the form of sucrose, acts as an energy source (Krikorian, 1995). 

Shoots are often required to remain on the shoot multiplication media to become stabilised, 

before rooting is possible. Stabilisation periods varies with the species and age of the 

plants, with older plant material often requiring longer stabilisation periods (Bennett eta/., 

1994). 
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Root Induction 

Either single shoots or branched shoots, from stabilised shoot cultures, are placed on 

rooting media. The media is composed of auxins to stimulate roots, macro- and 

micronutrients supplied at lower levels than applied to shoot multiplication, and usually 

sucrose to act as an energy source (McComb and Bennett, 1986; Krikorian, 1995). 

Factors affecting root induction include the composition of the media, species of the 

plantlet - whether it is referred to as a hard-to-root species, the age of the plantlet -

juvenile plantlets tend to root better than older plant material, stabilisation periods, and 

clonal variation - within clones the ease of rooting varies and consequently the media 

composition may have to ~e altered (McComb and Bennett, 1986; Bell eta/., 1993). 

Acclimatisation 

Acclimatisation refers to the transfer of the plantlet from tissue culture to soil. Plants are 

required to be established in the soil (ie- resume or start photosynthesis, and grow in the 

absence of supplied nutrients, vitamins, sucrose and hormones). Transplanting of plant lets 

raised in vitro typically requires prolonged regulation of both temperature and relative 

humidity to allow acclimatisation of plantlets to glasshouse conditions (Grout and Millam, 

1985; Krikorian, 1995). 
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Major problems commonly experienced with transplanting are an inability of plantlets to 

regulate the transpiration stream and insufficient photosynthesis capability to achieve a 

positive carbon balance (Grout and Millam, 1985). This is due to poor in vitro plant 

devl;!lopment and poor photosynthetic performance. These problems may be overcome by 

manipulating the photosynthetic capacity of plants by decreasing medium carbohydrate 

concentration, or by increasing growth irradiance (Lees, 1994; Ziv, 1995). 

1.3.2 Environmental Conditions Affecting Micropropagation 

An advantage of in vitro culture is that both the physical and chemical environmental 

factors of the culture medium can be predetermined md altered throughout the culture 

growth cycle. The physical environmental conditions include headspace temperature, 

incident light at the culture surface (irradiance, spectra and photoperiod), and air 

movement. The chemical environmental factors of in vitro growth include pH and the 

composition of the medium (Kozai and Smith, 1995). 

For successful micropropagation high light transmittance, isolation from water loss und 

contamination, satisfactory gas permeability, constant air temperature, and the provision of 

an adequate growing area are characteristics of a suitable culture vessel (Tanaka et al., 

1992; Kozai and Smith, 1995; Smith and Spomer, 1995). 
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Ventilation of tissue culture vessels is essential to ensure !hat poor aeration, which can be 

damaging to growth, does not occur. Air movement within the culture headspace can 

range from very nearly stagnant (tightly wrapped closures) to independently-circulating 

(vessels and closures with forced ventilation or supplementary introduced gases). The 

gaseous environment in vitro, and the quality of the micropropagated plants can be 

significantly affected by closure around vessd caps (Jackson et a!., 1991 ). Studies have 

shown, that limited air exchange favours the early initiation stages in culture. Secondary 

metabolite in vitro production, however, is decreased under conditions of low gas 

exchange (tightly-sealed caps) due to ethylene accmr.ulation (Smith and Spomer, 1995). 

Vessels with high condensation, due to greater relative humidity (ie those sealed with 

oarafilm, and therefore have a reduced gas exchange) can lead to flaccid and often 

hyperhydric shoots (McClelland and Smith, 1990). Hussey and Stacey (1984) reported that 

restriction of gas exchange between the culture vessel and the external atmosphere inhibits 

tubering and potato nodes develop poor shoots (small leaves), effects which appear to be 

due mainly to ethylene build up. 

1.3.3 Uses ofMicropropagation 

Mir:iOpropagiil.tion is used to produce as many identical copies (clones) of plants as desired 

within a short period of time. It has several advantages over conventional cultivation of 

whole plants. These include; very rapid multiplication, all year round production, greater 
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physiological manipulation to improve responses and the multiplication of dis,zase free 

material (Crocomo eta/., 1981; George, 1993). 

Apart from commercial propagation for the production of large numbers of clones, 

micropropagation has been utilised in the following areas; seed orchards; progeny testing; 

conservation of rare, endangered or slow reproducing species, and the multiplication of 

desirable genotypes (such as pathogen resistant) (Biondi and Thorpe, 1981; George, 

1993). 

1.4 SUGARS IN MICROPROPAGATION 

Carbohydrates are essential for plant growth and are the primary energy-storage molecules 

in most living things. They serve as energy stores, fuels and metabolic intermediates and 

supply cr.ergy by the oxidation of their constituent elements (Candy, 1980; Walker, 1989). 

Su,e,1.rs, a group of carbohydrates, are separated into groups according to the number of 

carbon atoms and bond arrangements (Candy, 1980; Smith, 1993). Included are the 

monosaccharides such as glucose and fructose, the disaccharides such as sucrose, and the 

polysaccharides and sugar alcohols such as sorbitol. 
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1.4.1 Sucrose in situ 

Sucrose occurs in nearly all organs of plants and accumulates to high concentrations in a 

number of organs of some species (Hawker, 1985). It is the principal fonn of translocated 

carbon and it is the main storage sugar in plants (ap Rees, 1984). 

Sucrose is synthesised by the transfer of glucose from uridine diphosphate glucose (UDP-

glucose), an activated form of the sugar, to fructose 6-phosphate forming sucrose 6-

phosphate which is then hydrolysed to sucrose (Smith, 1993). 

1.4.2 Sugars in vitro 

Most sterile cultures are unable to support photosynthesis, so an exogenous carbohydrate 

is required (Wareing and Phillips, 1981; George, 1993). Findings have concluded that the 

best carbon source for plant growth in vit.··o is sucrose, followed by glucose, maltose and 

raffinose; with fructose, mannose and lactose less effective. Glucose in a few species 

results in better li1 vitro growth than sucrose. These findings may not necessarily apply to 

micropropagation of eucalypt~. as plant species vary in their ability to utilise sugars 

(Damiano eta/., 1987; George, 1993). 

Sugars (usually in the fonn of sucrose) are required for cellular metabolism and therefore 

regulate shoot and root growth and influence adventitious root formation providing energy 
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for these processes (Sacher, 1966; Jeffs and Northcote, 1967; Hyndman et a/., 1982; 

Capellades eta/., 1991). Root initiation requires a continuous supply of sugar from the 

medium for vigorous growth (ap Rees, 1984; Hawker, 1985; Cheng eta!., 1992; George, 

1993). 

Utilisation of Sucrose in Micropropagation 

Sucrose is a non-reducing disaccharide which is either hydrolysed or taken up in vitro 

unaltered depending on plant species. When sucrose is hydrolysed it is broken down into 

glucose and fructose. In whole plants complete hydrolysis occurs 16 hours after a plant 

takes up sucrose, and thus carbohydrates are then in the form of glucose and fructose 

(Sacher, 1966). 

Photosynthetic capabllity of micropropagatcd plantlets is influenced by the presence of 

sucrose in the culture medium (Hdider and Desjardins, 1994). Sucrose in micropropagation 

media has been found to inhibit chlorophyll formation and photosynthesis, making 

autotrophic growth less feasible (Rier and Chen, 1964; Edelman and Hanson, 1972). 

Hdider and Desjardins (1994) found that for in vitro strawbeny plantlets, problems arose 

during acclimatisation, because of the presence of high concentrations of sucrose in the 

media which resulted in poor photosynthetic apparatus development. 

10 



1.4.3 Use of Sugars Other than Sucrose 

While sucrose is the most common carbohydrate source used in plant tissue culture, some 

plants can metabolise other sugars more efficiently (Mac An tSaoir and Damvoglou, 1994). 

Sugars such as sorbitol, glucose and fructose have been investigated for their potential as 

effective growth promoters for a wide variety of species in vitro (Hew eta/., 1988; Marino 

eta/., 1993; Taji and Yuchua, 1994; Romano eta/., 1995). Romano eta/. (1995) found 

that sorbitol (D-gluctiol), a sugar alcohol, is the most effective carbon source for in vitro 

proliferation of some apple rootstocks. For apricot (Pnmus armeniaca L.), sorbitol in 

combination with fructose, has been found to produce high proliferation rates and longer 

shoots than other carbohyJrates including sucrose (Marino et al., 1993). 

1.5 HORMONES IN M1CROPROPAGATION 

Micropropagation most often reqmres the application of exogenous plant growth 

regulators that are essential for shoot multiplication and adventitious root formation. The 

main plant growth substances which are added to micropropagation media are auxin:; and 

cytokinins (George, 1993). The effects of these hormones upon plantlet development is 

variable, depending upon the concentration and the environmental conditions under which 

the cultur.~s are maintained. 

11 



1.5.1 Auxin 

Auxin occurs naturally as indole-3-acetic acid (IAA) but in micropropagation, artificial 

alternatives (such as napthalene acetic acid (NAA}, and indole butyric acid (IDA)) are 

used, as IAA tends to be readily denatured in culture media and is often less effective 

(George, 1993). 

Auxins are incorporated into media to promote the growth of roots and elongate shoots 

(Krikorian, 1995). Different tissues respond differently to the same concentration and the 

same type of auxin. Even anatomically identical tissues give different responses depending 

upon their age and other physiologic::al states (Marumo, 1986). When choosing the type 

and concentration of auxin several aspects have to be considered. These include; the 

growth or development required, the endogenous levels of auxin within the explant, the 

capacity of the cultured tissues to synthesise auxin naturally, and the interaction between 

applied synthetic auxin and the natural endogenous substances (George, 1993). 

Shoot Multiplication 

Auxins are readily taken up by shoots from the medium (Kateava et al., 1991). They are 

required to stimulate elongation of excised stem sections in micropropagation by 

promoting activity of the vascular cambium (Marumo, 1986) and are also necessary for 

vein growth (Wareing and Phillips, 1981). Shoots can be maintained on shoot 

12 
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multiplication media indefinitely with frequent (every 4 weeks) subcultures. Auxins, 

supplied in multiplication media, prolong the life of the shoot by maintainir:g rooting 

ability, by preventing abscission and aging of the shoot (Krikorian, 1995). 

Root Induction 

Adventitious root formation may be divided into three phases, namely dedifferentiation, 

induction and differentiation with high levels of auxin and low levels of cytokinin required 

during the induction phase (De Klerk et al., 1995). The promoting effect of auxins varies 

among species and cultivars, making it difficult to understand the mechantsm of their 

regulatory action (Baraldi et crl., \995). Auxins supplied at a certain level are necessary for 

adventitious root production (Fabijan eta!., 1981; Nordstrom eta!., 1991). The level 

required for optimal root production will depend upon a number of factors, most 

importantly the species, type of auxin supplied, and the physiological condition of the 

shoot material (Fabijan eta/., 1981; Marumo, 1986; Baraldi eta/., 1995). 

IAA and IBA are used to induce root formation in micropropagation, with IDA being the 

most commonly used auxin (Krikorian, 1995). Auxin stimulates root induction but inhibits 

root elongation (Wareing and Phillips, 1981). Therefore to encourage root eiongation 

plantlets are oficn transferred to auxin free medium after root induction has taken place 

(McComb eta/., 1996). 

13 
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1.5.2 Cytokinins 

Cytokinins are necessary to promote shoot formation. They promote cell-division and 

differentiation, and auxiliary bud stimulation, thereby enabling shoot multiplication to be 

obtained (Koshimizu and Iwamura, 1986). Cytokinins are generally supplied in the media 

in the forms of synthetic regulators such as 6-Benzylaminopurine (BAP) and kinetin 

(George, 1993). Cytokinins influence the development and establishment of bud 

elongation. This is generally achieved by the increasing the cytokinin level. However it may 

be preferable to select a lower multiplication rate by using low levels 0f cytokinin, as too 

rapid an increase may lead to genetic variations (Krikorian, 1995). 

Cytokinins generally inhibit root production and thus are removed ffom the media prior to 

rooting in difficult-to-root species (Krikorian, 1995). 

1.5.3 Use of Other Hormone Groups in Micropropagation 

Other hormones which may be included in micropropagation to promote growth include 

gibbercllins, absicisic acid (ABA) and ethylene. The types of hormones and levels applied 

to the tissue culture medium depends upon the type of growth required, the age and 

species of the plant material and the amount of endogenous hormones contained in the 

plant material (George, 1993). 
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The addition of gibbere!lins to micropropagation media is minimal. Gibberellins may be 

employ~d where plant1ets are preferred to have a uniform single stem, such as forest trees. 

In these cases gibberellins are applied to promote stem elongation (George, 1993; 

Krikorian, 1995). 

ABA is not considered useful for micropropagation as it slows growth and moderates the 

effects of cytokinins and auxins (George, 1993; Krikorian, 1995). 

Ethylene effects on plants in vitro is generally viewed as inhibitory and thus precautions 

are taken to reduce its concentration (Krikorian, 1995). Further implementations of 

ethylene in micropropagation is discussed in chapter four. 

1.6 MICROPROPAGATION OF EUCALYPTUS 

Micropropagation techniques have the potential for use in the genetic improvement of 

Eucalyptus (Le Raux and van Staden, 1991). Large scale micropropagation of eucalypts 

was first achieved in the 1980's (Bennett and McComb, 1982; Mchra-Palta, 1982; 

McComb and Bennett, 1986). Since then many eucalypt species have been successfully 

cloned (Lc Raux and van Staden, 1991; McComb eta/., 1996). However, for the in vitro 

propagation of Eucalyptus, there are difficulties in the establishment of a good general 

protocol. This is due to the variability between eucalypt species, different clones, and other 
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physiological variations that can occur within a species (Dawjano eta/., 1987; LeRoux 

and van Staden, 1991; McComb eta/., 1996). 

Shoot Multiplication 

Multiplication rates of eucalypt shoot cultures depe11ds upon a number of aspects 

including the explant, the age of the matefial, and the individual's genotype. Shoot 

multiplication media is largely developed and used for juvenile explants, but can be applied 

to mature explants (McComb and Bennett, 1986). 

Root Induction 

Stabilisation of shoot cultures may be required before rooting is possible. This applies to 

both juvenile and mature explants but has been best documented from mature material 

(McCown and McCown, 1987; Bennett el a/., 1994; McComb et al., 1996). Examples of 

this include three tv four subcultures for Solanum tuherosum (e·usscy and Stacey, 1984) 

and ten to twelve months for E. marginata (Bennett eta/., 1994). 

Root induction is maximal on media with limited or no vitamins, and contains lower 

concentrations of nutrients than that used in shoot multiplication (Mehra-Pelta, 1982; 

McComb et a/., 1996). The- induction of adventitious roots is difficult in many eucalypt 

species including E. marginata (Bennett et al., 1994). Shoots from juvenile explants of 
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eucalypts usually root well, but for shoots obtained from mature trees, rooting is minimal 

upon media optimised for juvenile shoots (McComb eta/., 1996). 

1.7 JARRAH 

E. marginata, a member of the Myrtaceae family (Morley and Toelken, 1983), grows in 

the southwest of Western Australia with a production area of about one to two million 

hectares. Jarrah is one of the most important hardwoods in Australia and is known 

throughout the world for its toughness and durability. In Western Australia it represents 

about two thirds of the annual production of sawn timber (Boland et a!, 1987; Kelly et 

a/., 1989). Jarrah is suitable for many purposes including poles, sleepers, furniture, and 

flooring. It is ~asily worked with and is resistant tv termites (Kelly eta/., 1989). 

I. 7.1 Jarrah Dieback 

Phytophthora cinuamomi is a fungai pathogen affecting plants of south-west Australia. 

The fungv.s kills its host by destroying the roots and girdling the base of the stem, 

depriving the plant of access to nutrients and water. The primary symptoms of infection 

include; advancing fronts of necrosis (lesions) in the inner bark of roots and stems, and 

root rot (Shearer, 1994). 
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Of the 9000 plant species occurring in the south-west of Australia, as many as 2000 

species may be susceptible toP. cinnamomi (Hardy eta/., 1994). Therefore, it is essential 

to develop strategies that reduce the damage, by cloning resistant species, and therefore 

conserve natural ecosystems. Included amongst these strategies is micropropagation, 

which can be adapted to any species (Shearer, 1994). Considerable variation in resistanc.e 

to dieback can be found within the genus Eucalyptus. Members of the subgenera 

Symphomyrtus and C01ymbia are tolerant, whilst members of the subgenus Monocalyptus, 

including jarrah, are susceptible to the pathogen (McComb and Bennett, 1986). The 

resistant and susceptible stocks available may provide the pedigreed stocks necessary for 

the detection of molecular markers for P. cinnamomi resistance in jarrah (Shearer, 1994). 

1.8 AIMS 

The aims of the study are to: (1) determine the effects of various carbon sources on root! 

plantlet production and ethylene production of jarrah cultures; and (2) determine the effect 

of auxins on root/ plantlet production and ethylene production ofjarrah cultures. 

1.9 HYPOTHESES 

The hypotheses that were tested include 

(1) Carbon source concentration in the root induction medium influences the number of 

roots and the condition of the resulting plantlet of Eucalyptus margbwta. 
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(2) Sucrose concentration in root induction medium influences endogenous ethylene 

production of shoots. 

(3) Auxi.n in root induction medium containing sucrose influences plantlet production. 

( 4) Auxin in root induction medium containing sucrose influences ethylene production. 
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CHAPTER TWO 

MATERIALS AND METHODS 

1.1 PLANT MATERIAL 

Clones of Eucalyptus marginata were obtained from research projects being conducted in 

the Department of Applied Science, Edith Cowan University. These cultures had been 

maintained for over two years in vitro and were thus stabilised. Clones which proved to 

have fast shoot multiplication rates included: I JN 30, 1 JN 98, 5 JN 336, 11 JN 50, I I JN 

379, 12 JN 35, 12 JN 96, and 91 JP 4 and therefore were used in numerous experiments. 

These clones have been identified as having varying degrees of resistance to Phytophthora 

cinnamomi (McComb eta/., i994). 

I .2 STERILE TECHNIQUE 

For har,dling of shoot cultures, and consequently the setting up of root induction 

experiments, a sterile technique was followed. All components necessary for subculturing 

and rooting experiments were autoclaved prior to use in a Labec autoclave (Laboratory 

Equipment, Australia) at I OOkPa for 15 minutes. This included all med:a, instruments used 

for the transfer and cutting of shoots, plastic cutting plates, and bottles of70% ethanol. 
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Subculturing took place in a laminar flow workstation (Email Westinghouse Pty Ltd, 

Australia). Prior to use, the workstation was exposed to ultra-violet lights for thirty 

minutes to reduce aerial and surface contaminants. The cabinet was then sprayed with 70% 

ethanol. During subculturing instruments were regularly resterilised in a sterilising unit 

(Sigma-Aldrich, Australia). 

1.3 MEDIA PREPARATION 

Shoot multiplication medium was modified from Bennett and McComb (1982) and 

contained full stre11gth Murashige and Skoog (I 962) (MS) minerals and vitamins 

(catalogue number 5519, Sigma, Australia) with added naphthalene acetic acid, benzyl 

amino purine, sucrose, agar (2.5g/L), and gelrite (2.5 giL) (Table 1.1). All medium 

components were dissolved in milli Q water. The pH of the medium was adjusted to 5.8 

prior to the addition of gelling agents. Fifty mi!lilitres of medium was dispensed into 250m! 

polycarbonate containers (Disposable Products Pty.Ltd, Australia) prior to autoclaving. 

Basal rooting medium consisted of, one quarter strength MS macronutrients, full strength 

MS micronutrients, lO).lM indole butyric acid, carbon source as required, agar (2.5 g/1), 

and gelrite (2.5g/L) (Table 1.1). The pH of the medium was adjusted to 5.5 prior to the 

addition of gelling agents. Murasbige and Skoog micronutrients stock solution was 

prepared from the method described by de Fossard (1976). 
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Table 1.1 Components of standard shoot multiplication and root induction media. Stocks 

of hormones and nutrients were maintained at 4 °C until required, with occasional checking 

to ensure compounds remained in solution. 

Compound 

NR.N03 

KNO, 

CaCI,.2H20 

MgS04.7H20 

KH,P04 

H3BO, 

MnS04.H,O 

ZnS04.7H20 

KI 

NazMo04 

CuS04.5H,O 

CoCI,.6H20 

FeS04 

FeNa.EDTA 

Naphthalene Acetic Acid (NAA) 

Benzyl Amino Purine (BAP) 

Shoot Multiplication Media 

Amount/L ofMedium 

20mM 

20mM 

3mM 

1.5 mM 

1.5 mM 

100 ~M 

100 ~M 

30 ~tM 

5 ~tM 

I ~tM 

0.1 ~M 

0.1 ).lM 

100 ~M 

100 ~M 

1.25 ~M 

2.5 ~M 

Root Induction Media 

Amount/L ofMedium 

5mM 

5mM 

0.75 mM 

0.375 mM 

0.375 mM 

100 ).lM 

100 ).1M 

30 ).lM 

5).lM 

l~M 

0.1 ).lM 

0.1 ).lM 

25 ).lM 
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Indole Butyric Acid (ffiA) 10 11M 

Sucrose 20 g 20g 

agar 2.5 g 2.5 g 

phytagel 2.5 g 2.5 g 

pH adjusted 5.8 5.5 

1.4 CULTURE CONDITIONS 

Shoot cultures were maintained in a room under a photoperiod of 16 hours with a light 

irradiance of approximately 36 Jlmol.s -t m -2• Shoots were cut into segments containing 

two to three nodes and placed on the multiplication medium, and transferred to fresh media 

every four weeks (subcultured) for continued growth. 

After substantial growth on shoot multiplication media, shoot clumps were cut into 

approximately 1 to 2 em single shoots and transferred randomly onto root induction media. 

Five or 10 shoots pt:r container were placed in complete darkness for seven days at 25°C 

and then transferred to a germination incubator (Clayson Laboratory Apparatus Pty. Ltd, 

Australia) at a constant temperature of 25°C with a light irradiance of approximately 24 

I -1 -2 lJ.mO .s m . 
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Culture vessels were spaced at approximately 3cm, allowing for air flow around the entire 

vessel. Culture vessels were regularly rearranged on the shelving and checked for 

contamination. 

Roots were counted on day 11, 12, 13, 14, 21 and 28. The average number of roots per 

shoot anti percentage of rooted shoots per culture vessel were calculated each day the 

roots were scored. 

1.5 CHLOROPHYLL DETERMINATION 

Chlorophyll content was determined using a technique modified from Moran and Porath 

(1980). After 28 days on root induction media, 1 to 2 shoots were randomly chosen from 

each culture vessel, and the fresh weight determined. Shoots were placed in 5 ml of 

Dimethylformamide (BDH, Australia) and left in the dark overnight. Absorbency was 

measured at 647nm and 664nm on a U-1100 spectrophotometer (Hitachi, Ltd., Japan). 

Chlorophyll was calculated using: 

Total chlorophyll (chlorophyll a and b)~ (ABS664 x 7.04) + (ABS647 x 20.27) in llg/ml 

Chlorophyll per grams of fresh weight was calculated by: 

Chlorophyll content ftg/ml per tiesh weight~ Total chlorophyll x5/fresh weight (g). 
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The average chlorophyll content was taken for each treatment from a sample size varying 

from 6 to 14. 

1.6 QUANTIFICATION OF ETHYLENE 

After 28 days gas samples were removed from culture containers using a Sml gas~tight 

syringe and needle (Hamilton, Australia). Quantification of ethylene was accomplished 

using a gas chromatograph (GC) (Varian Australia Pty. Ltd) in combination with a flame 

ionisation detector (FID) and a packed column (stainless steel, A1tech Association, 

Australia). Identification of ethylene was based on GC retention time and on elimination of 

the corresponding GC peak (Yoshii and Jmaseki, 1982; Adkins, 1992; Hedden, 1993). As 

standard ethylene samples supplied were faulty and could not be replaced in time for the 

quantification of experiments, individual peak areas (area under the ethylene peak) were 

recorded and averages for each treatment calculated. All gases, Helium (carrier gas), 

Hydrogen and air, were supplied by BOC Gases, Australia. 

!.?DATA ANALYSIS 

Results are expressed as the mean and standard error of the mean (SEM) for all the 

variables studied. For any results using percentages, the arcsin percentage transfonnation 

was used. Means were compared by two .. way and one-way analysis of variance. Where 

differences were obtained due to experimental treatments, Duncan's new multiple range 
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test (Duncan, 1955) was applied with a significance level of 95%. Correlation coefficients {); 

and regressions were applied to parameters such as chlorophyll content, number of roots 

produced per shoot, ethylene concentration, auxin concentration and sucrose 

concentration. 
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CHAPTER THREE 

EFFECTS OF CARBON ON ROOT INDUCTION 

I. INTRODUCTION 

There are numerous reports on the effect of sugar, as a carbon source, upon shoot 

proliferation and root induction (Hildebrandt and Riker, 1953; Okonkwo, 1966; Hyndman 

eta/., 1982; Steffen eta/., 1988; Cheng eta/., 1992; Marino eta!., 1993; Taji and Yuehua, 

1994; Romano et al., 1995). Variations in these reports include; the type of sugar, 

concentration of sugar, and techniques used for the sterilisation of media. 

Hildebrandt and Riker (1953) experimented with sucrose in callus tissue and found a 

concentration of 2% produced optimum growth (greatest increase in weight). Roots from 

callus grew progressively better on media through concentration from 0, 0.5, 1, 2, 3, and 

4% sucrose while 5 and 6% produced no further increase in root length. These levels have 

been routinely incorporated into a large number of media formulations for different species. 

The optimum concentration for growth usually ranges from 2-5% (Okonkwo, 1966; 

Hyndman eta/., 1982; Cheng et al., 1992; Hdider and Desjardins, 1994). 

Stehsel and Caplin (1969) found that the best growth (fresh weight of carrot tissue) occurs 

on medium containing sucrose, with glucose second best and fructose was least effective. 
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They found that autoclaving the culture media produced positive and negative effects on 

both callus and organ growth. The magnitude of the effect was dependent on the type of 

sugar used. 

Steffen et a/. (1988), experimented with differing sugars and the effect of filter and 

autoclave sterilisation upon floret initiation of Bougainvillea. Their results differed from 

those ofStehsel and Caplin (1969), as floret initiation using different sugars was the same 

whether the media was filter sterilised or autoclaved. In addition sucrose and fructose were 

found to have similar effects on growth and development of young leaves. 

An experiment on Rosa plantlets by Taji and Yuehua (1994), found that a concentration of 

120 mM sucrose, glucose, or tiuctose, produced more roots per plantlet and higher 

number of roots compared with those of 6 mM and 60 mM. Higher concentrations resulted 

in better general appearance and growth and greater fresh weight. Higher sugar 

concentration, irrespective of type, enhanced root formation and survival of Rosa plantlets 

when transferred to soil. 

Recent studies comparing sucrose with glucose and fructose have found that the most 

effective sugar varies with species and response required (Hew eta/., 1988: Romano eta/., 

1995). Glucose is the most effective carbon source in relation to root promotion of cork 

oak (Quercus suber). Plantlets rooted on 4% glucose were fOund to have a significantly 

higher chlorophyll content and higher rooting (Romano eta/., 1995). Fructose has been 
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found to have various effectt; depending on plant species, and is the sugar most rapidly 

utilised by orchid meristem tissue (Hew et a!., 1988). Sucrose at a concentration of 3 

percent was found to be the best carbon source during shoot proliferation and elongation 

of Dendrobium meristem tissue. At higher concentrations, these sugars limited root 

extension, but increased the number of roots produced. 

Cheng eta/. (1992), investigated the e.ffects of different levels of sucrose and auxin to 

identify the optimal combinations for rooting and plantlet formation for Eucalyptus 

sideroxylon. Regardless of auxin type and explant type used, it was found that sucrose 

concentrations of 2-6% favoured root development. Higher concentrations of 8-10% 

lowered rooting percentage, inhibited callus formation and suppressed explant growth 

during culture. 

The methods reported for the tissue culture of jarrah have all utilised sucrose as the sugar 

source (Bennett and McComb 1982; McComb and Bennett 1982; McComb et a/., 1996). 

As several studies have shown that sucrose is not always optimal, other sugars and their 

effects on plantlet production were investigated in this study. 
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2. MATERIALS AND METHODS 

2.1 Experiment One: Root Induction Using Different Concentrations of Sucrose 

Shoots of clones 5 JN 336 and 91 JP 4 were randomly placed on media with four su:.:rose 

concentrations, 0, 1, 2, or 4%. Treatments contained 5 shoots per culture container and 

were replicated 7 1imes. Mean rooting percentage and mean number of roots per shoot 

were scored progressively up to 28 days after the transfer of shoots to rooting media. 

Chlorophyll content was determined after day 28. 

2.2 Experiment Two: Root Induction Using Different Sugars 

Shoots of clones I JN 30 and 12 JN 96 were placed on root induction media containing 

treatments of2% sucrose (CSR, Australia), 2% analytical grade sucrose (Ajax chemicals, 

Australia), 2% glucose (BOB chemicals, Australia), 2% fructose (Ajax chemicals, 

Australia) or 2% sorbitol (Sigma, Australia). Treatments contained five shoots per 

container with 7 replicates for done l JN 30, and 8 replicates for clone 12 JN 96. Mean 

rooting percentage and mean number of roots per shoot were scored progressively up to 

28 days after the transfer of shoots to rooting medi3. Chlorophyll content was determined 

after day 28. 
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2.3 Experiment Three: Root Induction Using Different Concentrations ofFructose 

Shoots of clones 1 JN 30 and 91 JP 4 were placed on media containing concentrations of 

0, 1, 2, or 4% fructose and compared with 2% sucrose. Treatments contained five shoots 

per container, with 6 to 9 replications. Mean rooting percentage and mean number of roots 

per shoot were scored progressively up to 28 days after the transfer of shoots to rooting 

media. Chlorophyll content was determined after day 28. 

2.4 Experiment Four: Root Induction Using Different Combinations of Fructose and 

Glucose 

Shoots of clone 5 JN 336 were placed on media containing 2% sucrose, 2% glucose, 2% 

fructose and varying ratios of glucose and fructose; lglucose:lfructose (1% each), 

3glucose:lfructose (1.5%:0.5%) and Iglucose:3fructose (0.5%:1.5%). There were eight 

replicates, 5 shoots per replicate, for each treatment. Mean rooting percentage and mean 

number of roots per shoot were scored progressively up to 28 days after the transfer of 

shoots to rooting media. Chlorophyll content was d1'!termined after day 28. 

3. RESULTS 

Roots generally appeared after 11 days on rooting medium. Rooting increased up to day 

21 and generally remained at this level to day 28. In most cases the mean number of roots 
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per shoot were equivalent to the mean rooting percentage and therefore only the mean 

rooting percentage is presented. Mean rooting percentage was used as the number of roots 

per shoot has often been shown not to display a nonnal distribution when the non-rooted 

shoots are included (De Klerk eta/, 1995). 

3.1 Experiment One 

The different levels of sucrose induced varying amounts of rooting with the absence of 

sucrose being significantly lower (P < 0.05) than all other trt>atments (Figure 3.1 A). In 

addition, there was a difference in rooting between the two clones with 91 JP 4 producing 

significantly fewer roots (P < 0.05). 

For clone 5 JN 336 1, 2 and 4% produced the same percentage rooting, but for 91 JP 4, 2 

and 4% sucrose was significantly higher (P < 0.05) than both 0 and I%. The chlorophyll 

content was not affected by the different media (Figure 3 .IB). 

3.2 Experiment Two 

The different sources of sugar produced a variation in rooting, with fructose having at least 

30% higher rooting (P < 0.05) than any of the other treatments for clone I JN 30. There 

was a difference in rooting between the two clones with 12 JN 96 producing significantly 

fewer roots (P < 0.05). No rooting was obtained for either clone on sorbitol medium and 
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there was no difference in the other treatments for 12 JN 96 (Figure 3.2 A).The 

chlorophyll content was affected by the different media for clone 1 JN 30, with glucose and 

analytical sucrose being significantly higher than sorbitol (P < 0.05), but not different from 

fructose or sucrose. The treatments had no effect on clone 12 JN 96 (Figure 3.2 B). 

3.3 Experiment Three 

Fructose was found to be necessary in the media to promote rooting, as zero fructose was 

found to give low rooting percentages for clone I JN 30 and no rooting for clone 91 JP 4 

(Figure 3.3). One, 2 and 4% fructose compared to 2% sucrose was not significantly 

different at day 28. However, for clone 1 JN 30 there was earlier emergence of roots on 

2% fructose compared to zrlo sucrose (P < 0.05), this trend was also evident (but not 

statistically significant) fer clone 91 JP 4 (Figure 3.4). 

Chlorophyll content for clone I JN 30, (Figure 3.3 B) was significantly Jess on 4% fructose 

than all other treatments except 0% fructose. Two percent sucrose was significantly 

greater than both 0 and 4% fructose. For clone 91 JP 4 (Figure 3.3 B) there was no 

difference between treatments. 
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3.4 Experiment Four 

The variations in ratios of different sugars produced no difference in rooting after 28 days 

(Figure 3.5 A). However, all media containing fructose showed earlier emergence of roots 

(P < 0.05) (Figure 3.5 B) with the media containing higher proportions of fructose giving 

the highest rooting percentages. For chlorophyH content the diflhing sugar combinations 

had no effect (Figure 3.5 C). 

4. DISCUSSION 

4. 1 Experiment One 

As rooting response was similar in medium of 2 and 4% sucrose for both clones, it can be 

concluded that further increases in sucrose will not increase rooting. This reflects the 

results of other reports that found a concentration between 2-5% to be optimum for 

various plant species (Hildebrandt and Riker, 1953; Okonkwo, 1966; Hyndman eta/., 

1982; Hdider and Desjardins, \994; Romano et a!., 1995). For studies on Eucalyptus 

species, sucrose concentrations between 2·6% (Cheng eta/., 1992) were found to favour 

root development, reflecting the results observed in this experiment. 

Although it was expected that higher levels of sucrose would lower chlorophyll content 

(Rier and Chen, 1964; Edelman and Hanson, 1972), chlorophyll results indicate that 
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sucrose concentration does not effect plantlet condition (measured by chlorophyll content) 

for clone 5 JN 336. 

4.2 Experiment Two 

From the five carbon sources, sorbitol was found to be the least effective carbon source for 

rooting. This reflects the results from other studies as Romano eta/. ( 1995), found sorbitol 

to be completely ineffective on root induction of cork oak. fructose for clone 1 JN 30, was 

found to increase rooting by 30%. This may be because it is more readily utilised (Smith, 

1993). Fructose, can therefore be considered as the best carbon source for rooting for 

clone 1 JN 30. As this experiment produced unexpected results further experimentation of 

fructose took place in the following two experiments. 

The difference in the response to the carbon sources from the two clones is an effect that 

has been reported previously for eucalypts. Often where one clone responds well to a 

medium variation other clones may not (McComb eta!., 1994). 

4. 3 Experiment Three 

Media with fructose were found to produce earlier emergence of roots as it was more 

readily utilised (Smith, 1993). This reflects the studies of Hew eta/. (1988), who found 

that fructose was the sugar most rapidly utilised by Dendrobium meristem tissue. As the 
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hydrolysis of sucrose, the breakdown of sucrose into fructose and glucose, occurs in the 

medium and becomes readily available (ap Rees, 1984; Hawker, 1985; George, 1993}, 

rooting rates increased. Therefore mean rooting percentages of 1, 2 and 4% fructose and 

2% sucrose were not significantly different at the end of the 28 days. 

It is recommended that the clones be grown on medium containing fructose for up to 14 

days and then be transferred to stabilising medium so acclimatisation can occur. This 

process will limit the photosynthetic apparatus inhibition that results from sucrose in the 

medium, and thus would possibly increase chances of the plantlets survival when 

transferred to the soil (Hdider and Desjardins, 1994). Treatments were found to have a 

negative effect on chlorophyH content, as fructose concentration increased, chlorophyll 

content decreased for clone 1 JN 30. 

4.4 Experiment Four 

Results indicate that up to day 14, all media containing fructose is a better carbon source 

for rooting of clone 5 JN 336 than those containing 2% sucrose. As mentioned before, it is 

suggested that these plantlets be taken off media at day 14, therefore reducing 

photosynthetic apparatus damage and enabling acclimatisation to occur two weeks earlier, 

as a substantial increase in root grO\vth was not apparent after day 14. 
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4.5 General Discussion 

The results from these four experiments indicate that fructose can substantia11y increase 

rooting ti-Jr particular clones. Fructose was also illustrated as generally appearing to be a 

better carbon source due to earlier emergence of roots. Plantlets grown on fructose media 

can be acclimatised at an earlier date, reducing problems associated with sucrose 

dependence. 

The results indicated variations between clones with some statistically significantly 

increasing their rooting percentage on media with fructose, while others did not. The 

results of experiment three differed from the previous experiment in that for clone 1 JN 30, 

fructose was found to be no different frorn sucrose of the same concentration. In the 

previous experiment a difference was observed. This illustrates the variability that can 

occur within a clone, and how a clone may grow differently between subsequent trials and 

highlights the variation between trials. This has been reported in other species (Damiano et 

a/., 1987). 
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CHAPTER FOUR 

INFLUENCE OF AUXIN AND SUCROSE ON ENDOGENOUS 

ETHYLENE PRODUCTION 

l. INTRODUCTION 

1.1 Ethylene in vivo 

Ethylene synthesis is strongly influenced by the presence of auxin. Auxin regulates r.thylene 

production by commlling the endogenous levels of 1-Am:nocyclopropane-lcarboxylate 

(ACC), the immediate pi.?cursor of ethylene (Yoshii and Imaseki, 1982). Endogenous 

ethylene production is affected by conditions of stress, chemicals added to the culture 

media and senescence of plant matcrhi (George, 1993). Ethylene is involved in the 

regulation of several physiological processes that require, for their initiation, cell wall 

dissolution and cell lysis through an increased production or release of hydrolytic enzymes 

(Drew et a!., 1981 ). For the early stages of generation endogenous ethylene is inhibitory, 

for example, bud development in pea seedlings is retarded (Burg and Burg, 1968). At later 

stages of development endogenous ethylene is encouraging or essential, with root growth 

and inflorescence production being promoted in some species (Matthys et al., 1995). 
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The effect of ethylene upon root initiation of cuttings in vivo is variable, depending upon 

the amount of ethylene and plant species (Fabijan eta/., 1981). Excess ethylene results in 

necrotic spots and some radial swelling of the hypocotyl and decreases the rate of root 

elongation (Fabijan eta!., 1981). The effect of ethylene upon growth in vitro is a1so 

variable. 

1.2 Ethylene in v1:tro 

The role of ethylene in micropropagation has received little attention, however, its effects 

on callus growth have been more thoroughly investigated. Ethylene has been found to 

suppress chlorophyll synthesis and chloroplast development, inhibit shoot formation if 

initiall/ p1 ·nt in culture, and have both promotory and inhibitory P.ffects on rooting in 

vitro (George, 1993; Biddington and Robinson, 1994). It was been reported tha.[ ethylene 

stimulates rooting, but can also inhibit or have no effect upon rooting depending on 

species. T.~.:; varying effects on rooting depends upon the applied concentration and on !he 

physiological condition of the cxplants (Bol!mark and Eliassen, 1990; Buddendorf-Joosten 

and Woltering, 1994). 

Ethylene has been known to decrease IAA levels in plant tissue (and therefore may have 

negative effects on rooting), stimulate the metabolism of IAA, and decrease levels of 

cytokinins in Ncrway spruce hypocotyl cuttings (therefore stimulating rooting) (Bollmark 

and Eliassen, 1990). Low concentrations of ethylene in vitro seem to be necessary for 
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organogenesis, higher concentrations result in negative effects on growth and devdopment 

and generally induces senescence (Buddendorf-Joosten and Weltering, 1994). 

1.3 1-Aminocyclopropane-1-carboxy1ate (ACC) 

1-Aminocyclopropane-lcarboxylate (ACC) stimulates ethylene production (Yoshi and 

lmaseki, 1982; Adkins, 1992}. It can be added to rooting media, to promote ethylene 

production in various plant tissues (a11.d thereby engendering physiological effects) that 

normally produce little ethylene (Adams and Yang, 1979; George, 1993). Studies have 

found that the addition of high ACC concentrations (100~M) to standard MS medium 

induces necrosis and decreases rice callus growth by 15% (Adkins, 1992). 

The production of ethylene via ACC, is enhanced by the provision of exogenous 

carbohydrates, light, auxin, cytokinins and carbon dioxide (Kumar et a/., 1987). For 

example, Garcia and Einset (1983) noted that the rate of ethylene production increased in 

cell suspension cultures when the cells were subjected to stress of some kind. 

Although the effect of ethylene on various tissues is variable, it is generally expected that 

the build up of ethylene in the tissue culture systems of jarrah will be inhibitory to growth. 

This is based on the findings of McClelland and Smith (1990) and Jackson eta/. (1991), 

who found that ventilation of the culture system is necessmy to dissipate ethylene build up 

and promote healthy plantlet growth. 
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2. MATERIALS AND METHODS 

2.1 Experiment One: Effect of Auxin on Ethylene Production 

Clones 91 JP 4, 1 JN 30 and II JN 50 were placed on media containing 0, 0.1, 1, 10 or 

100 J1M indole~butyric-acid (IBA). Ten shoots were randomly placed in each container to 

ma:ximise ethylene production. Due to limited plant material sample size varied from 3, for 

clone 11 JN 50, to 5, for clones 91 JP 4 and 1 JN 30, replications per treai:ment. 

Containers were sealed with two strips of parafilm (Crown, Australia) 10 em in length to 

prevent ethylene leakage. :t\1ean rooting percentage, mean number of roots per shoot, 

ethylene area counts, and chlorophyll content were determined after day 28. 

2.2 Experiment Two: Effect of Sucrose on Ethylene Production 

Clones 91 JP 4, 12 JN 96 and 12 JN 35 were placed on media containing sucrose 

concentrations of 0, 1, 2, and 4% or 2% fructose. Replications of either 4 or 5 were used, 

depending upon the clone, with 10 shoots per container, which were s~aled with parafilm. 

Mean rooting percentage, ntJmbcr of roots per shoot, ethylene area counts, and chlorophyll 

content were determined after day 28. 
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2.3 Experiment Three: Effect of Auxin on Ethylene Production with Applied ACC 

Clones 5 JN 336 and 12 JN 96 were placed on media containing different amounts of auxin 

(0, 0.1, I, 10 and 100 I!M) with 25 I!M ACC. An additional treatment of IOI!M IBA 

without ACC was also included. A 1 mM stock of ACC was prepared in milti Q water and 

dispensed into the separate media. Ten shoots were placed in each container. Sample size 

of4, for clone 12 JN 96, and 5, for clone 5 JN 336, was used per treatment and containers 

were sealed with parafilm. Mean rooting percentage, mean number of roots per shoot, 

ethylene area counts, and chlorophyll content were determined after day 28. 

2.4 Experiment Four: Effect of Sucrose on Ethylene Production with Applied ACC 

A combination of clones (due to limited plant material) 1 JN 30, 11 JN 50, 1 JN 98, 12 JN 

35, and 1 I JN 379 was placed over five treatments 0, 1, 2, and 4% sucrose with 25~Lm of 

ACC, or 2% sucrose without ACC. Two shoots of each clone were placed in each 

container (10 shoots in total) with five replicates per treatment and the containers were 

sealed with parafilm. Mean rooting percentage, mean number of roots per shoot, ethylene 

area counts, and chlorophyll content were determined after day 28. 
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3. RESULTS 

Roots appeared at about day 11. Rooting increased up to day 21 and generally remained at 

this level to day 28. In most cases the mean number of roots per shoot reflected the results 

obtained using tht: mean rooting percentage and therefore only the mean rooting 

percentages are presented. Where there was an apparent difference between mean rooting 

percentage and mean number of roots per shoot, both graphs are included. 

3.1 Experiment One 

The different levels of auxin induced varymg amounts of rooting with the higher 

concentrations of auxin (10 and 100 uM) being significantly greater for all three clones (P 

< 0.01) than the remaining treatments (Figure 4.1 A). In addition, there was a difference in 

rooting between the three clones with 9\ JP 4 producing significantly fewer routs (P < 

0.05). 

For clone 1 JN 30, 100 and 10 ~1M !BA, rooting percentages were found to be significantly 

greater than all other treatments, and I ~1M IBA significantly greater than 0 ~tM IBA. For 

clone 11 JN 50, I 00 and I 0 ~LM IBA, were also found to be significantly greater than all 

other treatments. For clone 91 JP 4, 0 and 0.1 ~LM IBA, rooting percentages were 

significantly ''~ss than the other three treatments. 
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Figure 4.1 Roaring response of91 JP 4, I JN 30, and 11 JN 50 !o dlfferent 
auxin concentrations A. Mean rooting percentage, B. Mean chlorophyll 
content (6-10 replicates) and C. Mean ethylene area counts (3-5 replicates) 
after 28 days. Vertical bars denote SEM. 
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The different concentrations of auxin were found to have varying effects on the resulting 

chlorophyll content (P < 0.05) with 100 uM of auxin giving a significantly less chlorophyll 

content for all three clones tested (Figure 4.1 B). 

The multiple range test indicated for clone 91 JP 4 that shoot chlorophyll content was 

greater on 0, 0.1, and I ~M IBA than on 100 ~M IBA. For clone I JN 30, 0 and I I'M 

IBA shoot chlorophyll content was significantly greater than I 00 ~LTv! IBA. For clone 11 

JN 50, 0, 0.1 and I 0 11M IBA, chlorophyll content were found to be significantly greater 

than I 00 ~lM IBA. 

The different clones were found to produce varying amounts of ethylene, with clone 1 JN 

30 producing significantly less ethylene than 9 I JP 4 at I O~tM and I I JN 50 at 100 I!M (P 

< 0.05) (Figure 4. I C). 

For clone 91 JP 4, 10 ~tM IBA produced significantly more ethylene than any other 

treatment. For clones I JN 30 and II JN 50, there was no diflhence found between the 

five auxin treatments and the ethylene produced. The correlations between mean rooting 

percentage and ethylene (Figure 4.2) ranged from positive weak to modest positive 

relationship. Indicating that as mean rooting percentage increased, ethylene increased. 

50 



A. 20000 

~ 
r ~ 0.57 91 JP 4 -1i 15000 

" "' ~ 10000 
v c v 

:t 5000 
Ill 

0 
0 0 0 0 0 0 0 0 0 

N ~ ~ ~ ~ ~ 00 

Mean rooting percentage 

B. 20000 
~ r ~ 0.354 I JN 30 -c 
" 15000· 0 

" "' v :;; 100f0 
v 
c v -£ 5000· - 100 uM 
Ill 

0.1 oM 
1uM lOoM o"M 

0 
0 0 0 0 0 0 0 0 - N ~ ~ ~ ~ ~ 00 

Mean rooting percentage 

C. 2(IDJ 
~ r ~ 0.456 

" 11 JN 50 
1l 
" 15000 

"' v 
~ 

"' v 10000 c v -.g 
5000 K _)JIOOuM 

Ill 

0.1 .......... /.. OuM 
0 

b b b 0 0 0 0 0 0 
N ~ ~ ~ ~ ~ 00 

Mean rooting percentage 

Figure 4.2 Correlation of mean rooting percentage and ethylene area counts of 
shoots after 28 days on media with differeing auxin concentrations. A. Clone 
91 JP 4 (5 replicates}, B. Clone 1 JN 30 (5 replicates) and C. Clone 11 JN 50 
(3-5 replicates). 
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Correlations between chlorophyll content and ethylene range from very weak and weak 

negative correlations for clones 91 n• 4 and 1 JN 30 (Figures 4.3 A and B) and a strong 

negative correlation for clone 11 JN 50 (Figure 4.3 C). 

The correlations between auxin concentration and ethylene production (Figure 4.4) ranged 

from very weak to a modest positive correlation. 

3.2 Experiment Two 

The different levels of sucrose induced varying amounts of rooting with the absence of 

sucrose being significantly lower (P < 0.05) than all other treatments (Figure 4.5 A). In 

addition, there was a difference in how each of the three clones responded to the 

treatments (P < 0.05). 

The multiple range test, for mean rooting percentage, indicated that for clone 91 JP 4, 0% 

sucrose was less than all other treatments, 2% fructose and 2% sucrose greater than 1% 

sucrose, and 4% sucrose greater than 1 and 2% sucrose. For clone 12 JN 96, 1% and 2% 

sucrose were found to be greater than 0% sucrose, and 2% fructose was found to be 

greater than 0% and 4% sucrose. For clone 12 JN 35, 2% fructose was found to be greater 

than all other treatments; 2 and 4% sucrose were found to be greater than 0 and 1% 

sucrose and; 1% sucrose greater than 0% sucrose. 
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Figure 4.3 Correlation of meaP. chlorophyll content and ethylene area counts of 
shoots after 28 days on media with differing auxin concentrations. A. Clone 91 JP 
4. B. Clone I JN 30. C. Clone 11 JN 50. Replicates between 6 and 10. 
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Figure 4.4 Correlation of auxin concentration and ethylene area counts of 
shoots after 28 days on media with differing auxin concentrations. A 
Clone 91 JP 4. B. Clone I JN 30. C. Clone II JN 50. Replicates 

between 4 and 5. 
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Figure 4.5 Rooting response of clones 91 JP 4, 12 JN 96 and 12 JN 35 to 
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counts ( 4-5 replicates) after 28 days. Vertical bars denote SEM. 
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The differing sucrose concentrations were found to have differing effects on the 

corresponding chlorophyll contents (P < 0.05) for clone 91 JP 4, with 4% sucrose having a 

greater chlorophyll content than any other treatments (Figure 4.5 B). For the two 

remaining clones, there was no significant difference found between the treatments. 

The different sucrose concentrations produced varying amounts of ethylene, with media 

without sucrose producing no measurable amounts of ethylene for all clones (P < 0.05). In 

addition, the clones were found to produce differing quantities of ethylene under similar 

sucrose medium (P < 0.05), with 12 JN 96 producing significantly more ethylene on 4% 

sucrose and 2% fructose than the other clones (Figure 4.5 C). 

For clone 91 JP 4, 2 and 4°/a sucrose were found to have significantly greater ethylene area 

counts than 0, 1% sucrose and 2% fructose. For clone 12 JN 96, 4% sucrose had a 

significantly greater ethylene area count than 0% sucrose. For clone 12 JN 35, 2 and 4% 

sucrose were found to be significantly greater than 0% sucrose. 

Correlations between mean rooting percentage and ethylene area counts (Figure 4.6) 

ranged from a weak to very strong positive correlation. Indicating that as rooting 

increased, ethylene production increased. 
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shoots after 28 days on media with differing sucrose concentrations; A, Clone 
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The correlation between sucrose concentration and ethylene area counts (Figure 4.7) 

ranged from strong to very strong positive correlation. Indicating that as sucrose 

concentration increased, ethylene production increased. 

3.3 Experiment Three 

The differing auxin concentrations were found to influence the mean rooting percentage 

and mean number of roots per shoot (Figure 4.8 A and B), with 100 j.tM plus ACC giving 

no root grmvth for both clones (P < 0.005). There was no difference found between the 

two clones in relation to the effect of the treatments. 

The multiple range test for mean rooting percentage indicated, for clone 5 JN 336, that 10 

~tM - ACC was greater than all other treatments, 10 and l ~1M lBA + ACC were greater 

than 0, 0.1 and 100 ~L'<l IBA + ACC. For clone 12 JN 96, 1 and 10 ~M JBA + ACC, and 

10 ~M IBA- ACC were found to be greater than 0, 0.1 and 100 ~LM IBA. 

For mean number of roots per shoot (Figure 4.8 B), clone 5 JN 336, treatments of 10 j.t.M 

IBA with and without ACC were found to be greater than 0, 0.1, 1 and 100 ~M IBA For 

clone 12 JN 96, 10 ~M IBA- ACC was found to be greater than all other treatments, and 

1 and 10 ~LMIBA + ACC greatertl1an 0, 0.1 and 100 ~LMIBA. 
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The differing auxin concentrations were found to have varying effects on the resulting 

chlorophyll content (P < 0.05) for clone 12 JN 96 with 10 J.!M minus ACC being greater 

than all the other treatments. In addition, there was a difference between the two clones 

and their consequent chlorophyll content (P < 0.05) (Figure 4.9 A). 

The differing auxin concentrations were found to have varying effects upon the amount of 

ethylene produced for clone 5 JN 336 (P < 0.05). For this clone, 10 uM- ACC produced 

less ethylene than 10 and 100 ~tM IBA + ACC. Ten ~M IBA + ACC produced more 

ethylene than 0, 0.1, and 1 ~tM IBA. One humlred J.lM lBA produced more ethylene than 

0.1, 1 J.!M IBA + ACC (Figure 4.9 B). For clone 12 JN 96 there was no difference found 

between any of the treatm~:1ts. 

Correlations between mean rooting percentage and ethylene area counts (Figure 4.10) 

ranged from a weak positive relationship for clone 5 JN 336, to modest negative for clone 

12 JN 96. Indicating for clone 5 JN 336 ethylene increases as rooting increases, but for 

clone 12 JN 96, ethylene decreased as rooting increased. These correlations were similar 

for mean number of roots per shoot. 

For chlorophyll content and ethylene area counts (Figure 4.11) correlations varied from a 

modest to a strong positive, indicating that as chlorophyll content increased, ethylene 

increased. Strong positive correlations were also found between ethylene area counts and 

auxin concentrations (Figure 4.12). 
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3.4 Experiment Four 

The different levels of sucrose induced varying amounts of rooting (P < 0.05) (Figure 4.13 

A and B), with the difference being more pronounced in the mean number of roots per 

shoot. For mean rooting percentage 2% sucrose - ACC was greater than 0, and 1% 

sucrose and; 0% sucrose was less than all other treatments. For mean number of roots per 

shoot 2% sucrose- ACC was found to be greater than all other treatments and 0% sucrose 

+ ACC was less than all other treatments. 

The various sucrose concentrations were found to influence the resulting chlorophyll 

content (P < 0.05) (Figure 4.14 A). Four percent sucrose was found to be greater than 0, 

1, and 2% sucrose + ACC. However, 4% sucrose was not significantly different to 2% 

sucrose- ACC. 

The treatments were found to vary the amount of ethylene produced (P < 0.05) (Figure 

4.14 B). One and 2% sucrose+ ACC produced more ethylene than 0% sucrose+ ACC 

and 2% sucrose - ACC. 

Correlations for mean rooting percentage (Figure 4.15 A), and mean number of roots per 

shoot (Figure 4.15 B), ranged from modest to strong positive relationships. This indicates 

that as rooting increased, ethylene increased. For chlorophyll content, a negative weak 

correlation resulted. 
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Figure 4.13 Rooting response of 5 clones to different sucrose 
concentration with applied ACC. A Mean rooting percentage (5 
replicates) and B. Mean number of roots per shoot (50 
replicates) after 28 days. Vertical bars denote SEM. 
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4. DISCUSSION 

4.1 Experiment One 

Auxin was indicated to be necessary for adventitious root production, as minimal rooting 

occurred at 0 ).lM IBA for all clones tested. This is supported by the findings of other 

studies that experimented with levels of auxin on differing plant species and plant tissue 

(Jackson and Harney, 1970; Arteca et al., 1988; Nordstron eta/., 1991; Pan and Zhao, 

1994; Baraldi eta!., 1995). Auxin was also found to encourage endogenous ethylene 

production for only one clone, 91 JP 4. For this clone this concurs with the results from 

other studies (Burg and Burg, 1968; Batten and Mullins, 1978; Yoshii and Imaseki, 1982). 

In addition, for this clone, very high auxin was found to be associated with lower ethylene 

amounts, supporting the findings of Bollmark and Eliassen ( 1990). They found that once 

auxin reached a critical level, ethylene production decreased. It did not appear that the 

levels of ethylene reduced root production. 

High auxin was found to be detrimental to shoot condition, as reflected in the chlorophyll 

content, with I 00 J.!M IBA significantly lowering the chlorophyll content for one of the 

three clones tested. High amounts of ethylene were found to be associated with low 

amounts of chlorophyll for one of the clones tested. Indicating that ethylene is inhibitory to 

shoot condition for this clone, and that the response of plantlets to ethylene varied between 

clones. These results are as excepted as other studies have indicated that chloroplast 
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synthesis and chloroplast development in vitro is depressed by ethylene (Dalton and Street, 

1976). 

4.2 Experiment Two 

Sucrose was found to be necessary in the media for the production of adventitious roots. 

Two percent fructose was found to be the best carbon source for one out of the three 

clones tested. This supports the results found for experiment two in the previous chapter. 

For one of the clones tested, 4% sucrose resulted in the highest chlorophyll content. This 

was unexpected as other studies have shown that high sucrose levels tend to limit 

chlorophyll apparatus (Rier and Chen, 1964; Edelman and Hanson, 1972). 

The increase in ethylene associated with higher sucrose concentrations is similar to the 

findings <.lf Kumar et a!. ( 1987), who found that ethylene production is increased by the 

provision of exogenous carbohydrates. The ethylene produced d!d not significantly effect 

the resulting shoot condition (chlorophyll content) in any way. This maybe due to the 

limited amount of ethylene produced in the tissue culture system. 

High rooting was found t0 be associated with high ethylene. This result suggests that the 

ethylene produced was r.ot high enough to inhibit rooting. 

71 



4.3 Experiment Three 

The presence of ACC in the media increased the production of ethylene substantially. This 

is supported by the findings of Adams and Yang (1979) who found that ACC increases 

ethylene production in various plant tissues which normally produce little ethylene. 

Auxin concentration of I 00 ~tM IBA, combined with ACC, was found to inhibit root 

production for the two clones tested. It is suggested that the combination of high auxin and 

ethylene caused this etfcct. It is known that the regulation of ethylene is by a feedback 

mechanism of the level of endogenous auxin. High concentrations of auxin stimulate 

ethylene formation, but the ethylene then, in :;ome way, causes a lowering of the auxin 

level in the tissue and therefore lowers rooting (Hayes, 1 981; Wareing and Phillips, 1981 ). 

For one of the clones tested, auxin minus ACC gave highest chlorophyll content suggesting 

that ethylene/ ACC is inhibitory to shoot condition. This result is supported by Dalton and 

Street (1979) who stated that chlorophyll synthesis and chloroplast development in vitro is 

depressed by ethylene. 

Ethylene production was found to be the highest at an auxin concentration of 10 !J.M IBA 

for clone 5 JN 336. Further increases in ethylene producti.on did net occur at higher 

concentrations (1 00 ~tM IBA). This result is possibly due to the suggestion of Boll mark 

and Eliassen (1990), who state that as the auxin increases ethylene produ~tion, the 
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ethylene induces a decrease in the auxin production, which in turn decreases the ethylene 

production, until a stable equilibrium is reached. 

4.4 Experiment Four 

Sucrose concentration of 2% without ACC was found to promote a higher rooting 

response than any other treatment. Thus ethylene/ACC presence was associated with lower 

rooting. This is supported by the results ofFabijian et al. (1981), who found endogenous 

ethylene to be inhibitory for root initiation of Helianthus hypocotyls. Also supported by 

the observations of George (1993) who states that endogenous ethylene is inhibitory to the 

early stages of root generation. Other studies which have recorded the inhibitory elfects of 

ethylene on root induction include Adkins, (1992), Biddington and Robinson, (1994), 

Buddendorf-Joosten and Weltering, (1994) and Matthys eta/. (1995). 

Media with ACC was found to lower chlorophyll content, supporting the results of Dalton 

and Street (1976), who also found ethylene to be inhibitory to chlorophyll development. 

Chlorophyll content was found to increase as ethylene production decreased. 

As sucrose concentration increased, ethylene increased. Media with ACC, except for 0 % 

sucrose, produced more ethylene than 2% sucrose without ACC. This indicates that adding 

exogenou~ ACC to plants in vitro, results in a substantial increase in ethylene production 

(George, 1993). 
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4.5. General Discussion 

These experiments indicate that when shoots are grown on abnonnally high levels of auxin 

and sucrose, ethylene production increases. The quantity of ethylene production increased 

significantly when ACC was added to the media. Although ACC is not a component of 

nonnal root induction media, it enabled the observation and measurement of ethylene 

effects on the root production and shoot condition of jarrah in vitro to be determined. 

The results indicate variations between clones and their ability to produce ethylene, with 

some clones producing substantial amounts of ethylene while others did not. This is often 

reported with regard to other aspects of micropropagation. Reported variations between 

clones include; their rooting rates, their multiplication rates, their optimum sugar 

concentration and optimum auxin concentration (McComb and Bennett, 1986; Damiano et 

al., 1987; Bell eta!., 1993; Bennett cl al., 1994). 

These results appear to be contrary to those of other studies (Dalton and Street 1976; 

Fabijan e/ al., 1981; Adkins, 1992; George, 1993; Biddington and Robinson, 1994; 

Buddendorf-Joosten and Weltering, 1994; Matthys cl a!., 1995) in that ethylene was 

associated with high chlorophyll and high rooting, indicating that it was not inhibitory to 

growth as expected. This is possibly due to the ethylene produced not being high enough 

to have significant effects. Direct comparisons between the ethylene produced in these 
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experiments and those of others could not be made, as the ethylene could not be 

quantified, and therefore was represented as mean peak areas and not actual values. 
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CHAPTER FIVE 

GENERAL DISCUSSION 

Effect or Sugar Source 

When 2% sucrose was supplied in the medium, optimal rooting occurred for some of the 

clones tested. For the remaining clones, the most suitable carbon source was found to be 

fructose. These results concur with those of Damiano et a/. (1987), who observed that 

each clone may have a different optimum medium, however, these authors did not use 

fructose. The results presented here suggest that particular clones prefer fructose over 

sucrose for in vitro adventitious root production. This may be related to the ease with 

which fructose is taken up by the shoots (Smith, 1993). 

As there are no other studies currently available on the roming response of Eucal]JJtus 

species to fructose, it is suggested that further investigations be undertaken as 2% fructose 

increased rooting by up to 30% in three clones (I JN 30, 91 JP 4 and 12 JN 35). Not all 

clones were tested for their optimal carbon source, however, and it would be beneficial to 

test those currently hard-to-root clones, as the trend may follow other clones. 
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Auxin, Sugar and Ethylene 

Auxin was found to be required for adventitious root production. The standard 

concentration of I OllM from the current tissue culture protocol proved most effective. For 

the majority of clones this gave the best root production (for both !Tlean rooting 

percentage and mean number of roots per shoot) out of the five auxin concentrations 

tested. Higher concentrations of I OO~tM, increased rootiug percentage in a hard to root 

clone (11 JN 50) but, lowered the chlorophyll content significantly. The study showed that 

high amounts of ethylene were found to be associated with low aoounts of chlorophyll for 

all clones tested. There is no clear association between high ethylene and low chlorophyll. 

This is surprising given the data presented by other studies (Dalton and Street, 1976; Chi 

eta/., 1990). 

An increase in sucrose concentration up to 4% was found not to affect chlorophyll content 

and therefore resulting shoot condition of the plantlet. However, in another experiment, 

high sucrose concentration of 4%, with and without added ACC increased ethylene 

production. 

Sucrose with ACC, and therefore ethylene, was found to lower rooting (mean number of 

roots per shoot), suggesting that ethylene is inhibitory to rooting. As fructose was found 

to produce considerably less ethylene, it may be a better carbon source for in vitro growth 

of jarrah. 
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High auxin concentration (100J.1M) in association with ACC, was found to inhibit root 

production for all clones tested. Chlorophyll content was also lower than the standard 

medium (10 ~M IBA, 2% sucrose, without ACC), suggesting that 100 ~ IBA, in 

combination with ACC, is detrimental to shoot condition. This may be dJ.ie to the action of 

ethyletle, ACC or high auxin. This supports the findings of George (1993), who suggested 

that some of the responses of plants to auxins are ultimately brought about by the ethylene 

produced in response to an auxin treatment. 

The variability of clones, the limited amount of ethylene produced and the action of the 

sucrose and auxin treatments promoting ethylene production made it difficult to generalise 

about the effects of ethylene upon the rooting of jarrah. Ethylene was, however, 

implicated as being inhibitory to both shoot condition and root production when 

associated with high levels (100 IJ.M) of auxin plus ACC. These levels are not normally 

used in generalmicropropagation of Eucalyptus. Further research is warranted to examine 

both endogenous and exogenous ethylene, as some findings indicate that applied ethylene 

can promote root formation (Cummins and Fiorino ,1969; Krishnamoorthy, 1972). 

Conclusions 

From these, and other people1s findings, it is suggested that low amounts of auxin, enough 

to promote rooting, but to reduce ethylene production, be used. The balance between 

auxin and ethylene is hard to determine, but is an essential part of the plant tissue culture 
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environment, and may be critical for hard-to-root clones. Further investigations of auxin 

and ethylene relationships, would be appropriate to increase rooting and also increase 

survival of the plantlets when placed in soil. 

Optimum concentrations of auxin for the clones tested were found to differ. It is very 

probable for those clones not tested, that their response to auxin concentrations also 

differs (Damiano et al., 1987). As their tolerance levels of ethylene, producec'. by the 

auxin, varies, due to the variable characteristics of the clones (McComb and Bennett, 

1986). It is therefore suggested that further investigations on auxin concentration for those 

important clones be performed. Time restrictions disallowed further findings to be 

determined in this study. 

Although sealed tissue culture containers used for the ethylene experiments is not the 

normal protocol for micropropagation, quantities of ethylene built up under normal 

conditions (unsealed containers) fi·om a preliminary experiment were found to be 

significant. From these results, ventilation of tissue culture systems is an issue that should 

be considered, as containers were shown to have quantities of ethylene that in some cases 

may have been related to reduced ruoting response and poor shoot condition. Vented 

culture containers are commercially available for usc in plant tissue culture. These 

containers aiJow the flow of gases snci; n.~. ethylene, methane and carbon dioxide, out of 

the tissue culture environment. This significantly reduces gas build up, and in particular 
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ethylene accumulation, and therefore promotes the growth and development of healthy 

plantlets (Jackson eta/., 1991; Smith and Spomer, 1995). 

The variability of clones was highlighted in these experiments. Not all clones were found 

to respond similarly to the applied treatments of sucrose and auxin. These results are 

supported by the observations of McComb and Bennett (1986), and Damiano et a/. 

(1987), who did similar experiments with Eucalyptus clones. 

It is known that ethylene, auxin and st.:crose levels do influen~e chlorophyll content of 

plantlcts by retarding chlorophyll formation and photosynthesis (Dalton and Street, 1976; 

Capellades et a!., 1991; George, 1993), and as fructose produces considerably less 

ethylene than sucrose of the same concentration, acclimatisation may well be more 

successful when fructose is used as the carbon source. lt is therefore suggested that a 

concentration of 2% fructose in combination with an auxin concentration of I O~LM lBA, 

be used for the in 1•itro adventitious root production ofjarrah clones. 

A.n increase in rooting of 30 % can increase the number of clones that can be utilised in 

microprogatation. Clones grown on sucrose with rooting rate5 of less than 30% are 

generally considered uneconomical to produce in large numbers. An increase as high as 

30% would mean that many more clones could be readily produced. This could have a 

significant impact upon the way in which these clones could be used. In particular, it 
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would increase the genetic diversity that is now available for present jarrah breeding 

programs. 
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